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ABSTRACT

DYNAMICAL EFFECTS

OF ISOTROPIC RADIATION

by David Francis Savickas

A small spherical body traveling through an isotrOpic

radiation field will generally experience a force caused by

the momentum it absorbs from the radiation. Due to the

DOppler shift, the radiation striking the front of the par—

ticle will be of higher frequency than the radiation striking

the back of the particle. Also, because of diffraction ef-

fects, a small particle will absorb amounts of momentum that

differ with the radiation's wavelength. These two factors

generally combine to exert a force on the particle and change

its velocity. The effect of this force on the particle's

motion was investigated.

By the use of relativistic mechanics a general ex-

pression for the force on the particle due to a plane-parallel

beam of radiation was obtained and then integrated over space

to obtain the total force of the whole radiation field. The

diffraction effects were taken into account by use of either

Debye's approximations for the pressure efficiency factors of

very small particles, or by the use of graphs of this factor

as a function of frequency.



D. F. Savickas

For approximations at low velocities it was found

that the ratio of the initial velocity to the velocity at

a later time is independent of the initial velocity. Gener-

ally the radiation exerts a retarding force on the motion

of the particle. However, for special cases where an essen-

tially monochromatic and isotropic field exists, it was

found that the particle could be accelerated to higher velo-

cities by the radiation. Numerical estimates for the time

it would take a particle in interstellar space to come to

l/e its initial velocity were found to be of the order of

10 11
from 10 to 10 years.
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INTRODUCTION

A plane wave of energy density u normally incident

upon a perfectly absorbing plane surface of area A will ex—

ert a force F = u A. The radiation's pressure is seen then

to be equal to its energy density. The effects of radiation

pressure on the motion of particles in space has been pre-

viously investigated for places in space where a single

source, such as the sun or a star, exerts a strong influence

on a particle's motion. However the effects of an isotropic

radiation field on a particle's motion have not been pre-

viously investigated.

When a particle is at rest in such a field it

obviously experiences no radiation force by reason of symmetry.

If, however, it is in motion then the radiation incident on the

particle in the direction Opposite to its velocity will have a

higher frequency than the radiation incident on it which is in

the direction of its velocity. This difference is due to the

Doppler shift and it is the effect of this,frequency shift

which we wish to investigate. Since the particles in space

are small, radiation diffraction effects are important and also

will be considered.



CHAPTER I

HISTORICAL BACKGROUND

The existence of radiation pressure was first de-

duced as a consequence of the electromagnetic theory by

Maxwell, and later experimentally confirmed by Lebedew. The

effects of radiation pressure exerted by the sun's radiation

on spherical particles in space was first considered by

J. H. Poyntingl in 1903. His calculations led to the in—

correct result that a body moving through space and receiving

no radiation from other sources would suffer a decrease in

velocity due to its own emission of radiation as its tempera-

ture cooled. This effect was presumed to exist because the

radiation was not emitted isotropically about the particle,

but rather was concentrated in the forward direction and

thinned out in the backward direction. Hence, since radiation

carries momentum in the direction emitted, more momentum is

lost by the particle in the forward direction than in the back-

ward direction. Thus Poynting's results show that the particle's

velocity decreases.

However a detailed investigation by L. Page was made

years later showing that, to the order of accuracy questioned,

a moving body does not experience a decrease in velocity as a

 



consequence of its own radiation. Using Page's work

J. Larmor2 pointed out the error in Poynting's results in

1918. He noted that the loss of momentum did not necessi-

tate a decrease in velocity but rather, by the relation

m = E/cZ, a decrease in the mass of the particle and con-

cluded that the particle "will move on with constant velocity, .g

but with diminishing momentum so long as it has energy to

radiate." However, Larmor's own corrections for the radia- e

‘
Y
J
-
i

tion pressure were also incorrect. 3

It was not until 1937, when H. P. Robertson3a con-

sidered the problem, that the matter was cleared up. He

made a rigorous relativistic derivation of the radiation

pressure caused by a plane-parallel beam of light and then

used the simpler form of the classical approximation of this

relativistic result to obtain the equation of motion for a

particle in the field of the sun. Robertson's results showed

the existence of a drag of the same kind which Poynting and

Larmor had predicted. His expressions for this force on a

spherical particle differed from theirs, but had the same

effect of causing the particle to spiral into the sun. He

showed the cause of this effect to be the particle's loss

of angular momentum.

The relativistic effects of radiation pressure were

considered again in 1960 when Richard Schlegel“ calculated

the force on a plane surface moving through an isotropic

radiation field. The results obtained were in error because



although the expression given for energy density was trans-

formed, the expression for the solid angle element d9 was

not; hence in the transformation from the laboratory frame

2
v

to the particle frame a factor of l - — was lost.
2

c

(l + % cos ¢')2

 

The correction for this angular transformation was subse-

quently pointed out by W. Rindler, D. w. Sciama5 and J.

6
Terrell.

 



CHAPTER II

THE RELATIVISTIC FORCE OF

ISOTROPIC RADIATION

Calculation bnyse of the

Stress—Energy Tensor

The purpose of my investigation is to calculate the

effects of radiation pressure on a spherical particle moving

through an isotrOpic radiation field. Of particular interest

is the radiation field in interstellar space at points distant

from any one particular star. According to present day know-

ledge "the particles responsible for interstellar absorption

are definitely tiny solid grains."7a Beyond their existence

as small particles not much is known about them. They may be

either metallic or dielectric, and their size is probably on

the order of the wavelength of light or much smaller. Much

of the interpretation of astronomical observation of parti-

cles in space has been based on the theories developed by

G. Mie8 in 1908 and P. Debye9a in 1909. Their theories cal-

culated the scattering of radiation by spherical particles

and the pressure exerted by the scattered and absorbed radia-

‘tion, but with no regard to the effects on the motion of the

particles.

 



The radiation pressure on particles depends strongly

on their size and they can be divided into three major

groups: first, large sized particles (radius much larger

than the wavelength of radiation); second, particles on the

order of the wavelength; and third, particles much smaller

than the wavelength. For the last two groups diffraction

effects are important.

The objective now is to obtain a general expression

for the force exerted by an isotrOpic radiation field on a

spherical particle. Consider such a particle moving along

the positive direction of the z axis of a coordinate system

in an isotropic radiation field. The coordinate system at

rest relative to the stars, and in which the radiation is

isotrOpic, will henceforth be referred to as the star system.

The coordinate system which moves with the particle will be

called the particle system. Because of symmetry no forces

perpendicular to the z axis will be exerted on the particle.

Hence in using the stress-energy tensor we need only calcu—

late those elements related to the 2 component of the force.

This will be done by dividing the isotropic radiation of

energy density u into pencils of radiation (plane waves) of

intensity u %% where d9 is the infinitesimally small solid

arugle of the pencil of radiation we are considering.

This assumes that the energy density u is composed

(If an infinite number of plane waves whose directions have

Ehl isotropic distribution about any point in space. The amount



of energy density moving in a particular direction, speci-

fied by the normal vector to the surface element dQ of a

unit sphere surrounding a point, is the fractional area

dQ/An where An is the total area of the sphere. The Carte—

sian components of the electric and magnetic components of

a wave in a nonconducting medium satisfy the well known £1

2

equation V2w - l5 i_g = 0. And E. T. Whittaker10

v at

mathematically proved that solutions of this equation can

in 1903

be broken up into plane waves. Thus the isotropic radiation

‘
1
‘

r
.

‘

can be represented as the sum of plane waves.

Consider the tensor

3T“V

 

G“ = - dV . . . . . . . . . . . . . . . (l)
\)

3x

where the components of x11 are defined as

x1 = x, x2 = y, x3 = z, x“ = ct.

The quantity dV is interpreted as a four dimensional volume

dV = dx dy dz cdt. Gu is a first rank tensor because 3Tuv

V

ax

is the covariant derivative in flat space-time and dV is an

invariant. The invariance of dV can be seen by comparing dV

in the star system (x“) to dV in the particle system (in).

Now

d2 = l — 32 dz, di = dx, dt = dt ’ and d§ = dy.

l - B

iMhere B is the velocity of the particle in the star system

diAJided by the speed of light. Therefore we see



Q
.

<

ll di o§ d'z' ch

2 cdt

dx dy — 8 dz = dV

1 - B

The components of G11 physically represent:

G1 = ch , G2 = ch , G3 = ch , G“ = dE,
x y z

where P and E are momentum and energy respectively. The

value of these components follow from the evaluation11 of

aTuv

3X

 

dV for each value of u. Hence the first three com—

ponents of Gu represent c times the amount of momentum

contained in the volume dV, and G” represents the amount of

energy contained in this volume.

The definition of TUV is as follows: let gi repre-

sent the density of momentum in the direction i. Then

F

T14 = cgi, Tu“ = energy density, and T13 = —$ + gi wJ,

A

J

where F1 is the force in direction i exerted by the medium

(in this case light) through the area A normal to the J

J

direction, and wj is the velocity of the medium in the

direction 3.

Using these definitions we can write the T1“) com-

ponents for a pencil of radiation. The relation between

the energy and momentum of radiation is

E = Pc

Therefore energy density and momentum density are related by

uf = go,

where u.f is the fractional amount of energy density u contained



in the solid angle d9. This plane wave has the direction

cosines cos a, cos 8, cos y. Hence:

_ uf _ u dQ

g - —— - — ——,

c c An

= 3 d9 cos a = 3 d9 cos B = 3 d9 COS
g1 c E? ’ g2 c E? ’ g3 c E? Y’

wl = 0 cos 0, W2 = c cos 8, and W3 = c cos y.

Since we are concerned with radiation in empty space Fi = 0.

Let c be the angle with the z axis and e be the angle with

x axis in spherical coordinates. Then

cos d = sin c cos 9,

cos B = sin c sin 9,

cos y = COS ¢.

Now using the above expressions the Tuv components may be

written as follows:

T11 = u %% cos 2d = u %% sin 2c cos 26,

T22 = u %% cos 2B = u %% sin 2¢ sin 29,

T33 = u %% cos 2y = u %% cos 2c,

TMl = u %9,
n

T1“ = TAll = u %% cos a = u %% sin ¢ cos a,

T2“ = T”2 = u %% cos B = u %% sin ¢ sin a,

T3“ = T“3 = u %% cos y = u %% cos o,

T13 = T31 - u %% cos a cos y = u %%-sin c cos 6 cos d,

 



T12 = T21 u %% cos 8 cos a

d9 . 2 .

u 3? Sin ¢ cos 6 Sin 6,

T32 d9 d9
and T23 u 3? cos 8 cos y u 5? sin ¢ sin 9 cos d.

In order to calculate the force acting on the parti-

cle we go to the particle system (denoted by bars) and

evaluate G3:

-32 -33 —34
3T 3T 3T dV.

-31

ELL—4. + +

3% ay 3% cat

'53:-   

To find the total value of G3 associated with an object of

volume V, the right side of the above equation must be inte-

grated over the object's volume.

—31 -32 -33
—3 _ 3T + 3T + 3T dV . . . . . . . (2)

3% By 32

   

(
I
)

I I

34
The last term has dropped out since T is not an explicit

function of time. The values of the tensor components T31,

T32 , and T33 are now needed. To obtain these we use the

tensor prOperty

Tu“: 3;“ 3§v TaB

3x“ 3x8

where the relations between in and xu are given by

i1 = x1, i2 = x2, i3 =y (x3 - Bx”), and in =y (xu - 8x3)

1

where B = K and y =

1 - B

For the particular values of p and v we see that
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T31 = yT31 - BYTul’ ‘

T32 = YT32 _ BYTu2, and
F. o o o o (3)

T33 = Y2 T33 - 2y2 6T3” + 8272 Tun.  
1

Substituting the values for T31 and TM1 into the first of

these last three expressions, we have

T31 = y %; d9 sin ¢ cos 6 cos c - By%? d9 sin c cos 9.

Now use is made of the following relations between the co-

ordinates of the two frames of reference

cos ¢ = cos ¢ + B ,

(l + 8 cos 6)

¢l - B2 sinA§

(l + 8 cos 5),

 

 

sin ¢ =

= (l - 82) d5

(1 + 8 008 $)2

 

The plane angles 5 and 6 and the solid angle dfi = sin 3 d3 d5

are measured in the particle system and correspond to the

angles ¢, 6 and d9 in the star system. The expression for

cos d in terms of cos 3 is well known. The expression for

sin ¢ can be obtained by simply using the relation

sin 2o = l - cos 2o. The expression for da can be obtained

»by differentiating cos d and remembering that 5 = 6.

Using these eXpressions relating the angles in the

two coordinate systems we can write the tensor components in

the star system in terms of the angles 5, o, and d5. Then
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substitute them into equation (3) to obtain:

2

 

 

 

2 _ _ _

T31 = u_ (l - B ) cos 6 sin c cos ¢ d5,

u" (1 + 8 cos E)“

—32 u 2 2 sin 5 sin 5 cos 3 —
T =—(l"8) -14 (in,

An (1 + 8 cos c)

2

2 2-

and T33 = 3— (l ‘ B ) COS *1 d6.

An (1 + 8 cos 5)“

'These eXpressions for the components of the stress-energy

tensor are those of a pencil of radiation whose direction

is specified by the angles 5 and E in the particle system

sand are independent of any absorbing or scattering surface.

In order to evaluate the integral for G3 the deriva—

‘tives of the tensor components must be specified. Suppose

we kmye a perfectly absorbing particle, i.e. one that ab-

scurbs all radiation incident upon it. Consider the first

ternn in equation (2)1

 {3T_ di d§ d2 cdt.

ax
V

ASSUIne that the particle is large compared to the wavelength

of raufliation and note that the particle is a sphere in the

parthzle system. An incident plane wave in this case illum-

inat€355'the front half of the sphere and does not illuminate

the t>aick half. Assume that there are no electromagnetic

Waves; inside the sphere, so that they do not penetrate the

squYic3e but are instead completely absorbed at the surface.
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Thus Tuv is zero everywhere inside the sphere. Also, since

this sphere does not scatter any waves which strike its sur-

face, the stress-energy tensor immediately outside the front

half of the Sphere is the same as that for the plane wave.

The stress-energy tensor is zero in the region Just outside

the back half of the sphere. Thus:

 

 

 

-3l _ _

3T_ dX = 1T31 on the front hemisphere,

3X

BT31 -
_ dx = O on the back hemisphere.

,

3X

We are now left with a surface integral over the area S of

the front hemisphere

; T31 d§ d2

S

Since T31 is independent of i, y, and 2 this expression becomes:

31 ft d§ d2

S

8
|

: d§ d2 = I - d8

3

Emit

(
0
%

+

Where I is a unit vector in the x direction and d8 is a

pOr”tion of the sphere's area. Now consider the volume in-

closed by the surface of a hemisphere of radius a and its

flat: side of area F = na2. By the divergence theorem

3 I - ds + I - aE = o.

s;

TheI’efore

—> —>

JI-dS=-II-dS=-na2cosd
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where E is the angle between the direction of the incoming

radiation and the x axis.

 

 

 

_3l _ _ - _

Hence SBT_ dV = -na2 T31 cos a cdt.

3x

V

Similarly it can be shown that j

_32 - _ - _

3T_ dV = -na2 T32 cos B cdt,

3y

7'

-32 _ _ _ -

and 3T_ dV = -na2 T33 cos y cdt.

82

V

Substituting these values into equation (2) we have

 

G3 = na2 cdt (cos 5 T31 + cos E T32 + cos § T33).

Remembering that the value of G3 is chZ we can now

write

ch

F = Z = flaz (cos 5 T31 + cos E T 2 + cos F T33).

z cdt

Sulrstituting into the above equation the values for the

Coexine angles and the tensor components in terms of E and

5 We have

2 2 -

.Fz == “32 (l - B ) don 2— (sin 25 Cos 25+sin 25 sin 25

(l + 8 cos F) A"

+ cos 25) cos 3.



1“

Since the velocity of the particle is in the z direction

 

FZ = Fz and therefore

2 2 - —

Fz = FZ = n&2 u (1 ' B ) Cfsui 99 . . . . . (u)

(l + B COS ¢) UN

This expression gives the 2 component of force in the star

system exerted on the particle by the portion of radiation

contained in the solid angle dfi. One of the factors

(1 — 82)/(l + 8 cos $)2comesfkmm1the transformation of the

energy density and the other comes from the transformation

for the solid angle. Since u is the magnitude of the pres-

sure, a2nu is the total magnitude of force which would be

exerted on the particle if B were zero. Thus the effective

absorbing area of the sphere is equal to the cross-sectional

area of the sphere as expected. An alternative way of look-

ing at this result is to consider the absorption of momentum.

'The sphere can be replaced by a perfectly absorbing disk of

aarea na2 whose normal is parallel to the path of the incident

Inadiation. This disk then absorbs the same amount of momen-

thn in the same direction per unit time as does the sphere,

sirice both objects absorb all radiation incident on their

Suarface. Hence they both experience the same force.

Equation (4) can be generalized to include diffrac-

tiCDn effects. In the particle system the incident wave is

Stfiill.a.plane wave carrying momentum in its direction of

motion. In this reference frame, which is electromagnetically
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equivalent to any other frame, we have a plane wave incident

upon a stationary spherical particle and classical electro-

magnetic theory is applicable. When diffraction occurs the

amount of momentum absorbed may be more or less than that

of the perfectly absorbing sphere. The increase or decrease

of absorbed momentum due to this diffraction effect must be

in the direction of the incoming wave since the wave and

sphere are symmetrical about this direction in the particle

system. This increase or decrease in absorbed momentum can

thus be accounted for by simply multiplying equation (A) by

factor Q. Since we are considering the particle in its rest

frame, Q in that frame must be independent of B and can only

be a function of the particle's radius a and the incident

wavelength I. Hence Q = Q(a, I). The ratio of force exerted

on a spherical particle to the force on a perfectly absorb-

ing disk of the same radius was calculated by Debye in 1909

using classical electromagnetic theory. This ratio is the

Q factor and is usually designated Qpr'

Hence

2
2 .—

Fzr = a2 E Q r (a, X) (l ' B ) 03849 at . . . (5)
A p (l + 8 cos c)

 

The "r" subscript serves to remind us that this is the force

due to a single ray.
!
W
.
,
.

.
W

,
.-
n
u
n
-
P
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Agreement with the Calculation from

RobertsonTE'Equation

 

 

This result can also he arrived at through use of

H. P. Robertson's paper "Dynamical Effects of Radiation in

the Solar System." He studied the mechanism by which a par-

ticle, orbiting the sun, would eventually fall into the sun

by the loss of angular momentum. These particles absorb

radiation from the sun but re-radiate it with a loss of their

own angular momentum. At the beginning of his paper

Robertson derived a relativistic expression for the force

exerted on a spherical particle by a pencil of radiation.

He then made a classical approximation and derived results

for the motion of a particle orbiting the sun. His relati-

vistic expression for the force was derived by transforming

the force vector, a first rank tensor. He3b wrote it in its

final form, in the star system, as

dm uu fw

o

T=r”
u - wu“). . . . . . . . . . . . (6)

where m0 is the proper mass, s the prOper time, up is a com-

ponent of unit velocity, and c is the speed of light. For

n = l, 2, or 3 the value of t“ is 0 times the cosine angle

of incident radiation in the star system and to is equal to

unity. Also w is equal to AD, the transformed component of

20 in the particle system. The eXpression f is the product

of the energydensitycicfiTtheincoming ray in the star system

and the particle's effective cross sectional area A.
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To change equation (6) to an expression for our case of

interest let d = u %%. Evaluate lo by the relation

-o
A0 = 3x8 28,

3x

where i0 = t, x0 = t, 23 - E, x3 = 2

Since 20 = 1, 23 = 0 cos ¢, and t = (t - BZ)Y,

we find A0 = y(l - 8 cos d).

The particle's velocity v is in the z direction only, so

up = VY. Substituting these relations into equation (6)

we have

d(moyv) u

T=AY (1-8008 4)) COS¢fidQ

- Ay2 (l -8 cos ¢)2 1% %— d9.
1T

let m = moy, divide both sides of the above equation by y,

and make the substitution for cos c and d9 in terms of

cos 6 and d5. The result is

 

 

2
2

Q£EX1 = fig- (1 - B )_ cos 5 d5.

dt An (1 + 8 cos ¢)

Since A is the effective area A = «a2 Qpr' We have then

22 -

Fzr = a2 a Q r (1 ' B ) Cfsu¢ ad . . . . . . (7)

A p (1 + 8 cos ¢)

which agrees with expression (5).

.

“
m
l
—
A

_
.
.
‘
_
E
—
m
:

'
7
I
?
"
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The Exact Expression for Qpr

 

Robertson used the classical approximation of

equation (6) to study the effect that radiation from the

sun would have on the motion of a particle under the gravi-

tational influence of the sun. No calculations have been

made of the effect on the motion of particles resulting

from a Doppler shift of frequency.

My purpose is to determine the effect of this fre— S

 ‘l’r
..

quency shift on a particle in an isotrOpic radiation field.

Equation (5) gives the force exerted by a single pencil of

light. In order to obtain the total force due to the whole

radiation field, equation (5) must be integrated over the

unit sphere. To do this Qpr (a,X) must be known. Defining

Qpr by the equation F = d Qpr U82 where d is the energy

density, na2 the particle's cross-sectional area and F the

force exerted on the particle, the value for Qpr was derived

 

by Debye9b in rationalized Heaviside units and was found to

be:

1 2
‘2 2 °° a + (X °° *

Q r = A H2 Re 2 (2n + 1) n n - 2 _§fl_i_l_ a i oi

p n a n=1 2 n=1 n(n + l)

°° n(n + 2) *l l *2 2

_ nil n + l (a n oLn+l + a n OLn+1) ’ ' (8)

The amplitude of the wave is represented by H and its

wavelength is I in the particle system. The alpha terms
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are complicated functions defined as follows:

 

 

 
 

    

a ' ' i

a1 = N1 wn (kaa) ki wn (kia) — ka wn (kaa) N1 "’11 (kia)

n a I l i 9

N1 Cn (kaa) ki wn (kia) - ka Cn (kaa) N1 l"n (kia)

and - - . (9)

a ' ' 1

a2 = N2 In (kaa) ki q’n (kia) ’ ka wn (kaa) N2 wn (kia) .m

n a '

N c (k a) k w' c' i w -
2 n a i n (kia) - ka n (kaa) N2 n (kia) E

The functions of ka are defined by ’

flka 1/2
FF

wn (ka) = 2 Jn+l/2 (ka)

and

1/2
_ nka 2

Cn (ka) ‘ 2 Hn+l/2 (ka)°

2

The functions Jn+l/2 (ka) and Hn+l/2 (ka) are respectively

Bessel and Hankel functions. The constants in equations (9)

are defined as

 

a a a a 2 52
Nl=i—, N2=i—, ka —2,

C C C

NI = 1 ea + a, N: = 1 HE,

C C C

2 ’2 ‘k _ cum _ i now

i 2 2
C C

The angular velocity, speed of light, dielectric constant, mag-

netic permeability, and conductivity are respectively represented

by 5, c, e, u, and o. The bars placed on w and A again denote

quantities measured in the particle system.



CHAPTER III

DYNAMICAL EFFECTS OF THE

RADIATION FIELD

Exact Solutions and Useful

Approximations

The dependence of the frequency 3 on the angle 3

is given by the well known relativistic expression

/ 2

v1-8 ...............(10)

l + 8 cos d

v:

where v is the frequency of radiation in the star system.

Since the terms in equation (8) are functions of 3 equation

(5) is seen to be difficult to integrate because of the

complicated dependence on 5.

Because of the complexity of the integration I had

tried an alternate approach in order to obtain an exact

solution for F2. This method is rather long and complicated

and was not completed. The basic idea of it is to avoid

complicated integrations.by the use of boundary conditions.

The rariiation pressure is independent of the direction of

pOlarization of the waves so any convenient direction of

polaJszation can be assumed. This makes it possible to

write and expression for the electric and magnetic components

20
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of the whole isotrOpic and monochromatic radiation field and

not just a single ray of radiation. The components are then

transformed relativistically from the star system to the par-

ticle system. My experience with this method ends at this

point. I have obtained by use of a method developed by

E. T. Whittaker in a paper cited above, the expressions for L”

the electromagnetic components in the particle system. At n

this point these components must be matched with a general
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expression for the scattered waves by using boundary condi-

tions on the surface of the spherical particle. This is

difficult since the frequency of the incident radiation

varies with the angle 5. If the scattered waves could be.

found a stress-energy tensor could be written and probably

integrated over any arbitrary surface containing the particle.

For many situations however, approximations are easy

to obtain, and they simplify Qpr to make equation (5) possi-

ble to integrate by the use of restrictions on the values of

I or a. Also computed graphs of Qpr as a function of Zia/X

can be used to make approximations.

The Relativistic Motion of a Large

Perfectly Absorbing Sphere

Consider the case of a perfectly absorbing sphere

whose ruadius a is large compared to the wavelength of inci-

dent raxiiation. The value for Qpr is then unity as it is

also irl the case of a large completely reflecting sphere.
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When Qpr is unity we have from equation (5)

2

2 2 -

ZI,=&'u(1'8) COS‘Pdfi ........(ll)

’4 (1+80085)u

The total force is then

n21!

2 ' 2 -

F=a—3 g<l-8)cos¢sin$d§d$.

z u

00

 

(1+ Bcos 3)

 

Let s = cos 5, then ds = - sin ¢ d c.

Therefore

1

2 2

Fz=2n§—u (1-82) Sds 74'

14 (1+ 8s)

-1

The value under the integral sign is

  
  

22

(1-8) —l + l + l _ l ]

2 2(1-8)2 3(1-s>3 2(l+8)2 3(1+e)3

which simplifies to Q ——§——§.

31-8

Hence Fz = -na2 u i ——§——§ . . . . . . . . . . . . (12)

31-8

The force exerted on the particle of rest mass m0 is

F=Cg-—-—O-'——-............o(l3)

Equatirug the right sides of equations (12) and (13) we

write

m=-nau3———§......(lu)
3

 

i
f
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It is important to note at this point that equation

(IA) assumes that all absorbed radiation is re-radiated

isotropically in the particle system. If it were not re-

radiated the increase of absorbed energy would cause an

increase in the mass of the particle other than that due to

the relativistic increase of mass with velocity. It might L_

be thought that an expression should be added to the right

side of equation (1A) since it was derived on the basis of

 absorbtion and scattering only and no stress-energy tensor L

terms were added to account for re-radiation. But these

additional terms are not necessary. The sum of any such

additional terms is zero since the net loss of re—radiated

momentum in the particle system is zero. Now using equation

(1A) the particle's velocity can be found as a function of

 

time.

Differentiating the left hand side of equation (1A)

yields

d__.e_ 1 ii
cmO dt - moc 2 3/2 t . . . . . (15)

1 _ B2 (1 - B )

Substituting this expression into equation (14) and rearrang-

ing ternns we have

2

m C U. dt = _ __g_§___— a

O {av/1 - 82

NOW ifflzegrate the left side of the above equation with re-

 

u
m
:

SpeCt tn) t from t = o to t = t and integrate the right side
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with respect to B from so to B where so is the initial veloc-

ity VO divided by c and B is v/c at a later time t. We

   

 

  

obtain:

5 ha ut = ln 1 + 1 - B2 8O \

3 moc s 1 + J1 - cb%[

Rearranging terms we find

_ fl n32ut

B B 3 m c

= 0 e 0.....(16)

l + Jl - e2 l + V1 - 3 2

I

When 8 is small (low velocities), we have a classical approxi-

 

mation:

_ 5 na2ut

%_ =6? 3 mbc’

0

Thus whenv=évo, the time constant te is found to be

m c

te=i ‘2’ (17)

A ha u

This result is interesting because it shows that the

time taken for the particle to slow down to g its initial

velocity is independent of its initial velocity, but is pro-

portional to its rest mass and inversely prOportional to

both the energy density u and its cross-sectional area na2.

Solving equation (16) for B we have

 



 

 

 

28 3 11321.11:

0 e 3 mOc

l + vi - 302

e = 2 . . . . . . (18)
B 2 _ 8 1T8. ut

1 3 moc
 + O 2 E}

(1 + J1 - 802)

Consider equation (18) when t is very large. This expres-

sion reduces to
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If so is large then the maximum effect of the relativistic

correction is that B is almost twice as large as the classi-

cal approximation. We see the retarding effect is not as

great in the relativistic case. Looking at equation (12)

this might seem paradoxical. If 82 is small equation (12)

reduced to the classical result

_ 2 A
FZ - —fla u g 8 . . . . . . . . . . . . . . . . (19)

as opposed to its relativistic form in which F2 is greater

than the classical value by a factor of l/(l - 82). Hence

the relativistic force is greater than the classical force.

But now look at equation (15). It shows that the relativis-

tic mass increase changes the expression g3?! by a factor

of l/(l - 82)3/2. The relativistic increase of force due

to radiation is not as great as the relativistic increase
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in mass. The net result is that the particle's velocity is

retarded at a slower rate at higher relativistic velocities.

The cause of the retardation of velocity for the

perfectly absorbing sphere is similar to the cause of the

loss of velocity of a particle in the neighborhood of the

sun. The only difference is that instead of losing angular

momentum the particle is losing linear momentum by re-radiat-

ing the absorbed radiation. The radiation striking the

particle on the front side has an increased energy density

due to the Doppler shift. For the same reason radiation

striking the particle on the back has smaller energy density.

This effect combined with the crowding of radiation in front

and the thinning out in back exerts a net retarding force on

the particle.

In the derivation of equation (18) it was assumed

that the particle was large compared to the radiation's

wavelength. This assumption breaks down when velocities

close to that of light occur. This is because at large

enough velocities the wavelength of radiation striking the

back of the particle is increased. Hence for certain veloc-

ities it can take on values of the same order as the radius

of the particle and thus diffraction effects can become im-

portant. At this point Qpr is no longer equal to unity.

'Phe value for so at which Qpr is no longer equal to unity

depends on the ratio of the radius a to the wavelength A.

If a/A is large then the values of so which are valid in
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equation (18) are large. Similarly if a/A is small the

values of so in this equation must also be small.

Linear Approximations for

Low Velocity Particles

 

 

Cases will now be considered in which Qpr is not a

constant but varies as a function of the wavelength of in-

cident radiation. If we consider dielectrics where o = O,

and look at the results of Debye quoted earlier (equation

(8)) we see that Qpr varies only as a function of the ratio

a/X. However, for conducting particles this is not the

case.

A comprehensive study of Mie scattering theory and

Debye's radiation pressure is presented by H. C. Van de Hulst12

in his book Light Scattering by Small Particles. He states
 

that if d is the energy density of incident radiation then

the total energy of scattered radiation ES is defined by
ca

use of the cross section AS defined by the relation

C8.

Esca = d Asca°

Similar definitions are used to define the cross sections

A and A8 for the absorption and extinction cross sections.
abs xt

Conservation of energy requires that Aext = Asca + Aabs'

Non-absorbing particles will have Aext = Asca' If cos ¢ de-

fines the average cosine angle at which radiation is scattered

then the radiation pressure cross section Apr can be defined

by the relation

 

1
r
T
u
m
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Apr = Aext - cos ¢ A

sea:

Discussions in light scattering theory use effi-

ciency factors Q rather than cross sections and are defined

by dividing the cross sections by the cross sectional area

of the particle na2. Then the above equation becomes 5

Q = Q - cos ¢ Qsca (20) {
pr ext

It is by the use of this definition of the efficiency factor

for the radiation pressure and Debye's expression for Qpr

 warthat calculations have been made.

Since the efficiency factors are complicated, much

use has been made of computers to calculate them. One such

case of particular interest is given by W. M. Irvine13a who

computed Qpr by use of equation (20) for different values

of the index of refraction for both dielectric and absorb-

ing spheres. Since the index of refraction for metals varies

as an explicit function of frequency, Qpr is for them a more

complicated function than it is for a dielectric, for which

the index of refraction is a function of e and u only.

Since Irvine's results show graphs of Qpr as functions of

‘the wavelength for fixed indexes of refraction, they can be

lised for computing the force on dielectrics. The dielectric

CCDnstant s will be assumed to be essentially constant for

diJelectrics when a small range of frequencies are involved.

311108 the temperature of particles in interstellar space

area estimated7b to be from 100K to 300K, or up to 1000K,the
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variation of s with frequency will be less than the usually

small variation at room temperatures.lu

In order to understand what kind of approximations

of Qpr are important, the extreme values of frequency in the

particle system must be considered. The frequency 3 seen

by the particle is given in equation (10). The two extreme

values of frequency which it sees are the higher frequency

sf of the radiation in front at angle E = n and the lower

frequency 3b of radiation in back at an angle 5 = 0. Thus

‘

 

B “Fifi;

—\) ————--:L_B=\)l-B

b 1+8 fie

Notice that for small 8, 3f and 3b differ from v by the same

amount v8 but the values are shifted in Opposite directions.

1+3= 1+3
Vl-C

l
p
—
b

>. . . . . . . . . . (21)

C
l l

 

The difference between these frequencies is generally

A3: 3f (22)

Now square both sides of this equation and solve for B.

We find

A3

VQA3)2 + sz

It: is seen from equation (23) that B can be small and still

8 . . . . (23)
 

égfisve rise to large frequency shifts if v is large. Since
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figure (5) gives Qpr as a function of x = 2na/X, we write

2na -

AX = v.

C

 

Equation (23) can then be written

 

B = . . . . . . . . . . . . . . . . . (2“)

13b
Now we look at Figure (A). The function Q is

ext

seen to be made up of major oscillations with minor oscilla-

tions, usually called "ripples: superimposed on them. The

major oscillations are caused by the interference between

diffracted radiation and transmitted radiation. When the

diffracted radiation and transmitted radiation constructively

interfere a maxima occurs. When they destructively interfere

a minima occurs. Since there is no transmitted radiation in

the case of the perfect reflector no such maxima or minima

occur in that case. This is seen in Figure (5).90 Finer

features of these curves are not so easily explained. Be-

cause of the complementary nature of the Eds—3 Qsca term in

equation (20) the major oscillations do not occur as strongly

in the graph of Qpr as they do in the graph of Qext'

To make an approximation for the Qpr function we

replace the curves in the graphs by simpler curves. There

are two ways of doing this. The whole range of values of x

from zero to infinity can be considered and a curve fit can

be made which ignores the minor features of Qpr (such as

 

1
F
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"ripples"), and yet still has the general form of the graph

of Qpr' But if the minor features are important an alter-

nate approach must be used. A small section of the curve

will have to be considered and a curve fit made for it. For

practical considerations it is these minor features that are

important. To illustrate this we use equation (2A). This

equation gives the velocity for a particle which encounters

values for x extending over an interval Ax.

Consider in Figure (A) the region around x = 1A.

If Ax is measured from the peak of the ripple occurring at

this point to the first trough on the right, then Ax E %.

The result of substituting these values into equation (2A)

-
is that 8 : 85' Since many dust particles in space have

15a
velocities averaging about 7 km/sec, these particles tra-

vel at speeds much smaller than one-sixtieth the speed of

light and hence intervals smaller than one-half are important.

Suppose a particle moves in a monochromatic and

isotropic radiation field and has a radius a such that

x0 = 2na/Ao where A0 is the wavelength in the star system.

Assume also that xO falls half way between a peak and trough

of a "ripple". As the particle's velocity increases the

value of the frequencies of radiation striking it on the

front and back diverge. For small 8 it is seen from equation

(21) that the values for x for radiation incident on the

front and back diverge equal amounts from the value x0. The

divergence of values of Qpr reaches a maximum when the

 

 



32

difference between x for the radiation incident on the front

and back differ by Ax equal to the distance between a peak

and adjacent trough. At this velocity the maximum difference

occurs between the Qpr value for the radiation on the front

and the radiation on the back. As the velocity increases

beyond this point the difference between the front and back l

values of Qpr will generally go to zero but increase again .

at still higher velocities.

 Because the curve between the peaks and troughs of

the "ripples" are very close to straight lines we will approx-

imate the Qpr function as a straight line in these regions.

Therefore we write

Q = mx + b = m 2na

pr + b’o
n
”

where m and b are constants whose values can be taken from

the graph. Now using equation (10) the above expression for

Qpr can be written

21/2

Q=m2—"iu(1‘8) +b........(25)

pr c (l + 8 cos F)

Substituting equation (25) into equation (5) we

obtain under integration

5/2
3 2

FZ = é—El mu (1 - B ) _ 5 cos 5 d5 +

2c (1 + 8 cos c)

2
2 2 -

+IJ—aub(l‘8)coffid§.

A (l + 8 008 ¢)
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Designate the first integral on the right hand side of the

above equation I1 and the second integral I2. Since I2 is

the same as b times the integral in equation (11), we have

2 A s

  

    

 

  

I = - b a nu — ———————— (26)
2 2

3 (l - B )

As before, using the relations 3 = cos E and l

ds = - sin 5 d 5 the first integral Il can be integrated {m

with respect to 5 and written

1 ‘~

I _. a3u1T2mV 2 5/2 8 d8 . L

l - ———-—-— (l - 8 ) 5 =

C . (1 + 83)

-1

Evaluating the integral we find

5/2

I _ a3uw2mv (1 - B2) -1 + l 1

1 ' 2 3 A + 3
c 8 3(1 + B) A(l + 8) 3(1 - 8)

- 1 ]

A<l - a)”

This simplifies to

_ a3un2mu (283 + 108)
I - - . . . . . . . . . . (27)
1 3c 2 3/2

(1 - B )

The expression for force exerted on the particle is obtained

by adding equations (26) and (27):

 

 

F - - E 1.32 ma 1283 + 108)+ AbB

A0 (1 - B )

u 2 mxO (B3 + 58) AbB (28)

01" FZ = _ _ .n-a 3/2 + 2 o o o o

3 2 (l - B )
(l - B )
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Retarding and Accelerating Forces
 

Now to find the force exerted on a particle in a

region where the linear approximation holds we need only to

substitute in the values for m and b and evaluate FZ from

equation (28) It is seen that as B approaches zero, Fz also

approaches zero as expected. The force experienced by equa- I J

tion (28) is the result of two effects. The first effect is.

due to the DOppler frequency shift which makes the frequency

of radiation incident on the front higher than the frequency  
of radiation incident on the back of the sphere. The second

effect, which we shall call the Qpr effect, is due to the

different values of radiation pressure efficiency factor Qpr'

The value of Qpr for radiation incident on the front may be

higher or lower than the value of Qpr for radiation incident.

on the back. If it is higher, then the Qpr effect adds to

the DOppler effect to give a larger retarding force to the

particle. If it is lower, then the retarding force will be

lower than the force it would have experienced due to the

DOppler effect above. The strength of the Doppler effect

increases as the particle's velocity increases. The strength

of the Qpr effect depends on the value of the slope m and the

constant b. If the slope m is positive it is seen from equa-

tion (28) that the Doppler and Qpreffects add to each other.

This is simply due to the fact that when m is positive the

higher frequency radiation (in front) has a larger Qpr and

therefore larger amounts of it are absorbed than the lower
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frequency radiation (in back) which has a smaller Qpr value.

If however, m is negative, the higher frequency radiation

will be less absorbed than the lower frequency radiation.

When m is negative the magnitude of the force is smaller and

the effect of the DOppler shift is diminished.

Looking at equation (28) it is seen also that if m P _

is a large negative number it is possible for F2 to be zero, ~ E

and for still larger negative values FZ will become posi-

 tive. In these cases the Qpr effect outweighs the Doppler

‘
H
fi
u
fi

-
.

effect. To find this critical value for m set equation (28)

equal to zero and solve for m. For practical reasons we are

most interested in small values of B so terms with B of higher

order than one can be ignored. Thus equation (28) becomes

 

- g 2
F2 - - 3 Na (Smxo + ub)8. . . . . . . . . . . (29)

If Fz = 0 then 5 mxO + 4b = O and we find

_ M b
m--§'X— oooooooooooooooooo(30)

o

where, as before, x0 = 2:a and A0 is the wavelength in the

0

star system. It is seen that at low velocities if the value

m is given by equation (30), the Qpr effect will balance out

the Doppler shift and the total force on the particle will

be zero. It also follows that if m is more negative than

the value given in equation (30), the total force on the par-

ticle will be positive. Thus the particle will experience

an acceleration in the forward direction. Of course the
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physical cause for this is that the particle absorbs more

momentum from the back where the Qpr function is larger than

from the front, and consequently its velocity increases.

In order to make equation (30) more immediately

understandable, make the substitution

b = h - mxO . . . . . . . . . . . . . . . . . . (31)

This is illustrated in Figure (l). The value for Qpr when

x = x is h. Equation (30) can be rewritten as

 
  

o

_ u
mxO - - 5 (h - mxo).

FIGURE 1. Linear approximation for Qpr'

{Qpr\

\

, \

\

-mx \

O \

b< "R/
| \

1’] Q \

L x \

0 x0 \\ x

Therefore mxO = - uh for F2 = O, . . . . . . . . . (32)

mxO < - Uh for F2 > O, . . . . . . . . . (33)

mxO > - Uh for F2 < 0. . . . . . . . . . (3h)

The interesting point of equations (32), (33) and

(34) is that they are independent of velocity (at low veloc-

ities). The factor determining whether the force a particle

<3Xperiences is positive, negative, or zero is determined by
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the relative size of mxO and h. Imagine if h were to in-

crease significantly while the value of mxO remained the same.

The fractional difference of the value of Qpr for the radia-

tion in front from that in the back of the particle would

diminish. Thus the DOppler shift would dominate and the

force would be negative for a large enough value for h. On

the other hand if h is held constant and we imagine that mxO

becomes more negative, then the values of Qpr will differ

more widely for the incident rays. This can be seen by re-

writing equation (25) in the form

1/2
2

Q r = mxO (l - B ) _ — l + h.

p (l + 8 cos ¢)

 

As mxO increases the fractional difference of values for Qpr

for the two angles 51 and 32 increases and enables the Qpr

effect to dominate.

It is interesting to look at the force exerted on

the particle by two rays whose angles with the z axis are

supplementary in the particle system as shown in Figure (2).

FIGURE 2. Supplementary ray diagram.
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When 3 is small, higher orders of B can be neglected and the

DOppler effect is a linear function of cos $. Since the Qpr

function is also linear over a small range of frequencies,

and since both the Doppler function and the Qpr function are

anti—symmetric about 3 = n/2 it is eXpected that the condi-

tions stated by equations (32), (33), and (34) can be gotten

by splitting up the isotrOpic radiation into pairs of rays

which are anti—symmetric about 3 = n/2. For the pair of

rays in Figure (2) then 3

F = F
2

z r (51) + Fzr (52),

Substituting the force values given by equations (5) and

(25), we have

  

  

_ cos 5 b cos 3

FZ = a2 3 d9 mxO l _ 5 + l_ u +

H (l + 8 cos ¢l) (l + 8 cos ¢l)

+ mxO cos ¢2 + b cos ¢2

(l + 8 cos $2)5 (1 + 8 cos $2)“

From Figure (2) $1 = n — $2 so cos $2 = - cos $1. Using this

relation and expanding the denominators of the above equation

to exclude terms of higher order than B we have

F = a2 % d5 [mxO cos $1 (1 - 58 cos $1) + b cos $1 (1 — “8 cos $1)

— mxO cos $1 (I + 58 cos $1) - b cos $1 (1 + “B COS 31%]

F = - a2 % d5 cos 2¢l (5me + Mb) 8,

OP

x
u
r

'Therefore FZ 0 when m = _ g

0
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This result agrees with equation (30). Equations (32), (33),

and (34) also obviously agree. Thus when the net force on

the particle is zero the particle absorbs equal amounts of

momentum from the radiation at angles 51 and $2. The radia—

tion at angle 51 has a larger frequency and higher density

than the radiation at angle $2, but it has a smaller Qpr F

factor which cancels out the increased momentum effect of the

higher frequency and energy density.

Consider a dielectric particle with an index of re-

 I“

fraction n = 1.33 as shown in Figure (4). If it is moving

in a monochromatic and isotrOpic radiation field, and the

ratio of its size to the wavelength of radiation is such

graph where the slopethat xO occurs at a pOlnt on its Qpr

has a large negative value, then at low velocities it will

experience an accelerating force. However,as its velocity

increases,the range of wavelengths of radiation striking it

also increases, and at a large enough velocity the linear

approximation for Qpr (x) will no longer hold. Then the

force on the particle will decrease and eventually reach zero

and the velocity will remain constant. By making a non-linear

approximation for Qpr (x) this velocity can be calculated.

As an example we will assume Qpr = fd3 + md + h,

where d = x — x h = Qpr (x0) and f and m are constants.
O,

Approximating equation (5) to the first order in B we find

2 u
Fzr = a 4 Qpr (l — 48 cos E) cos 5 d 5.
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Using the same approximation for equation (lO) we find

3 = v (1 - 8 cos 5).

Therefore d = x - x0 = — xOBs where s = cos 5. Substituting

this expression for d into the above expression for Qpr and

then substituting this Qpr function into the eXpression for

Fzr yields under integration F

r
l

3 3 4 2 3 4 5
J/ (-fxO B s - meOs + hs + 4fxO B s

-l

 _ 4mx082s3 - 48h32) ds E

Carrying out the integration we find

_ 2 l 3 3 l 4
FZ — -a un (B-fxO B + §m8xo + 38h).

As expected the above equation reduces to equation (28) when

 

 

the term containing 83 is neglected. Setting FZ = O and

solving for B we have

-mxO - 4h

8' 3 3 .(35)

—fx
5 0

Consider a particle of a size such that xO lies half

way between a peak and a trough in the Qp graph. One such
I"

value for X0 would be approximately 12.5 in Figure (4). Qpr

can be approximated in this region by setting f = 1.5,

m = - .40 and h = .6. A sketch of (Qpr - h) vs. d is con-

tained in Figure (3). Setting these parameters into equation

1
2?‘ At this velocity the radiation(35) we find 8 = ,ou =
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exerts no force. The radiation exerts an accelerating force

on the particle for velocities lower than B = .04 and a re-

tarding force for larger velocities. This phenomenon depends

on monochromatic radiation and can be expected to occur only

in cases where the energy density of radiation is concen—

trated about a particular wavelength. Since interstellar

radiation energy density is generally small a large amount of

time would be necessary for the particle to achieve this

velocity as a result of radiation pressure alone.

 

FIGURE 3.

Graph of Cubic Approximation for Qpr'

(Qpr - h)

-- l

5 1 t
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Very Small Particle Approximations

Now we turn our attention to particles small com-

pared to the wavelength of radiation. For these cases

9d
Debye made approximations by considering three different

sets of values for the conductivity and the dielectric

 136'
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For the dielectric with e = w and o = 0, Debyeconstant.

2n& 4

) . For finite values 

A

 

found that Qpr is proportional to

 

4

2"a} but has a different

 

of e, Qpr is also proportional to

A

prOportionality constant. If 0 is not zero then Qpr is pro-

2Za. In all cases p = l.

A

Now we are interested in calculating the effects

 portional to

of the radiation forces on very small particles. First con-

sider the case whereo # 0. Debye gives the pressure

efficiency factor on the particle due to a plane wave as

 

 

(9)- 2wa

Q = 12 w - . . . . . . . . . (36)

pr (8 + 2)2 +(02 X

to

Rewrite this in the form

Qpr = nip (i) (37)

312-)
where F (X) = 2 .

2 o
(e + 2) + (:)

In calculating the total force due to the radiation

field a difficulty arises because for metals both a and o

ShOW'a strong dependence on wavelength and therefore cannot

EH3 treated as constants. However the values of e and o havev

tMien experimentally determined for various metals and wave—

lengths, and from these values F (X) can be obtained.

J- L. Greenstein lists values for F (X) for iron and nickel

at various wavelengths. It can be seen from his table that
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for wavelengths near 5000A, F (X) can be approximated for

these metals by the linear function

F (X) = rX + t . . . . . . . . . . . . . . . . (38)

where r and t are constants. For iron Greenstein states the

values of F (X) to be .68, .62, and .55 for the wavelengths

of 4410A, 5080A, and 5890A respectively. For nickel he has

m
y
,

F (X) equal to .33, .24, and .19 for the same respective

wavelengths. These values also agree with computations made

from the indexes of refraction given by Van de Hulst.12a

 W

The function F (X) is closely approximated over this region

by .

F (X) — 8.8 x 103? + 1.07

4
and F (5") _ lo 7‘ + .76 >. o o . . . . . . (39)

 
/

for iron and nickel respectively. The wavelength is measured

in centimeters.

Combining equations (37) and (38) we find

Qpr = 4tx + 8nar . . . . . . . . . . . . . . . (40)

A linear approximation of F (X) in X leads to a linear

approximation of Qpr as a function of x. Thus from the

values for r and t in equations (39) we have for iron

Qpr = 4.3 i — 2.2 x lo5 a, . . . . . . . . . (41)

and for nickel

Qpr = 3.0 i - 2.5 x lo5 a. . . . . . . . . . (42)

Since iron and nickel are thought to be relatively abundant

in space, the effect of radiation pressure on them is of

‘
1
—
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interest. An estimate of this effect will be made later by

use of the above Qpr functions.

Now we consider the two other radiation pressure

efficiency factors given by Debye.

  

For 0 = O and e = w

4

Q r 2 ii (iii) . . . . . . . . . . . . . . . (u3)

pl 3 A

For 0 = 0 and finite e

2 4

Q r 2 Q (E ' 1 (2"3) . . . . . . . . . . . (nu)

p2 3e+l X

 

Both functions have the same dependence on X, they only differ

in their constant coefficients. Writing these functions in

terms of U and using equation (10), the resulting functions

Q and Qpr are substituted into equation (5) and yield

 

prl 2

4
4 6 4 2

FZ = KI} uuflna V (l - B 3 8 COS 3 d9

c (l + 8 cos ¢)

where K represents the constant coefficients in either Qpr

l

or Qpr . Now as before, using the substitution 5 = cos E,

2

the above equation becomes

4unua6 u
VF = K 8'

c (l + Bs)
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Integration yields

   

h

F = K 8un5a6 V4 (1 - B2) [_ 1 + 1

Z on 82 6 (1 + mg 7(1 + m7

  + - .

6(1—8)6 7(1-s)7]

By multiplying and rearranging the terms, this equation

  

 

becomes

2 3 l 5

6 4 (—B + -B -B )

FZ = i-l28Kun5 a X 3 3 2 g

c (l - B )

Hence for a particle with o = 0 and v = m the constant K

has the value lg so

8u56v“(38*§83+%85)
FZ = —7 X 2 -n a _4 2 3 . . . . . (45)

l 3 c (l - B )

 

2

For 0 = o and e finite, K = 8 (: + 1) so

_ _ 5
B + £83 + 78 )

  

u (F = _210 uM56 v?(E - l) (46)

Z? 3 e + l (l -B 2)3

Both F21 and FZ2 are prOportional to a6 and therefore become

smaller much faster than does the mass. These forces are

good approximations when the wavelengths are large compared

to the particle's size. At higher relativistic velocities

this approximation will eventually break down since the wave-

length of radiation incident on the front of the particle is

shortened.
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At low velocities higher order terms may be ignored

so equations (45) and (46) reduce to

 

4

8 u 5 6 v 8
F = -7 x 2 —w a -

Z1 3 0—5- 3 ' ° (“7)

10 u 5 6 4 — l B
and FZ = —2 —n a £4 (5———— -— (48)

2 3 c e + l 3

It might seem that these forces are large because

of the large value of v“. But it must be remembered that

a_v
these forces are based on the approximation that a/A = c

is much less than unity. Hence the radius of the particle

will be very small and consequently both forces will be

small.

 



CHAPTER IV

EFFECTS OF RADIATION ON PARTICLES

IN INTERSTELLAR SPACE

The Time Constant te

 

In the preceding chapters we obtained expressions

for the force exerted by the radiation on particles in terms

of the following parameters: the radiation energy density,

frequency, the particles radius, dielectric constant, and

conductivity. However the actual magnitude of the forces

are by themselves not very informative. The forces are small,

but another parameter, the particle's mass, is involved and

since the mass is also small the effect of the force on the

particle's motion may be significant. In this chapter we

will make numerical estimates of the effect of the radiation

force by computing the time constant te for each case.

For practical reasons we are interested in particles

traveling at low velocities compared to the speed of light.

For this reason we use the first order approximations for

the forces which are prOportional to B. In general we have

expressed all forces in the form

F = k8
‘l

47
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where k is a constant which can be either positive (accelerat—

ing forces) or negative (retarding forces). In most cases k

is negative. Since we neglect relativistic mass changes at

low velocities, we have

dv

m0 at = kB'

The integral of this expression yields

kt

_ m c
v - v06? 0 ,

  “
T
L

9
.

“
J
?
“

'
’
9
‘

‘

where V0 is the velocity at t = 0.

The value of its time constant is

_ o
te - TET . . . . . . . . . . . . . . . . . . . (49)

If k is negative then te is the time it takes a particle to

reach é times its velocity at t = 0. This result is inde-

pendent of the initial velocity v0. If k is positive te is

the time it takes to increase its velocity to etimes its

initial velocity. The time constant is a reasonable indica—

tion of the effect of the force on the particle's motion.

We will now evaluate it for the various forces previously

obtained.

Numerical Results
 

If the force on the large perfect absorbing sphere

is approximated for small 8, then we have from equation (17)

=_3_i‘o__°

4n32 u
te
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This expression, in terms of the particle's density p, is

written

— BEEte - u . . . . . . . . . . . . . . . . . . . (50)

The time constant is seen to be prOportional to the particle's

density and radius, and inversely prOportional to the energy

‘
.

density. In interstellar space it is estimatedle that

m
m

.
1
1
3
1
)

u = 12 x 10-13 erg/cm3.

Consider a metal such as copper, iron or nickel with a den-

sity of approximately 8 gm/cm3. We choose a particle of ; 
radius a = 2 x lo—ucm which,for many cases, is large enough

to exclude significant diffraction effects. For these

values equation (50) yields

te E 4 x 1019 seconds E 1012 years.

This is a long time indeed, even by astronomical standards.

17
Astronomers have recently estimated the age of the galaxies

to be about 1010 years. This is much too short a time for

isotropic radiation to affect the motion of larger inter-

stellar particles. The time constant above can be made

smaller by decreasing the radius a, but any appreciably

smaller value for a will necessitate the consideration of

diffraction effects.

The above value for te was calculated for particles

large compared to the largest wavelength making an important

contribution to the energy density u. Now let us go to the

"‘
1.

..
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opposite extreme and consider particles small compared to

the smallest wavelength contributing significantly to the

radiation energy density. From equations (49) and (29) we

find

_ c 4ap
te -' u (Smxo + “by c o o o o o o o o o o o o (51)
 

Since b is seen in equations (41) and (42) to be prOportional

to a, the time constants for small metal spheres are inde-

pendent of the particle's size. If we choose A = 5 x 10-5cm

and consider iron of density p = 8 gm/cm3, the time constant

can be evaluated from equation (51) using the values for m

and b in equation (41). At these values we have for iron

t8 5 4 x 1017 seconds E 1010 years.

For nickel, using the values from equation (42) and a den-

sity p = 9 gm/cm3, equation (51) yields

1018 seconds 2 3 x 1010 yearsl
l
?

te

Radiation pressure is generally larger for metal particles

than for dielectric particles because metal both scatters

and absorbs radiation. However, since the density of metal

is also larger, this partly counterbalances the effect of

the larger radiation pressure on the particle's motion.

Debye's approximation given in equation (36) holds

when the ratio 2na/I is on the order of .8 or smaller. It

breaks down of course when the particle is so small that it

does not have macroscopic qualities. The effect of radiation

"
'
1
g
‘
w

.
.

r
-
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pressure on metal particles larger than those considered here

is complex and I have not made any estimates of te for those

cases.

For small dielectric particles with e = m (perfect

reflector) we have, using equations (47) and (49)

5

t - 9mg 0 - 30ac . . . . . . . . . (52)

e 7 x 28u n5a6vu _ 28uxi

To find an order of magnitude for this time constant let

1 _ 3 6

x = I0 , p - l gm/cm , and a = 10- cm for A = 6000A.

Therefore

te E 3 x 1019 seconds 5 1012 years.

However if x = % and a = 3 x 10-6 cm, all other parameters

remaining the same as above, we find

te E 7 x 1017 seconds 2 2 x 1010 years.

Again the time constant is large but it is close to the

estimated age of the galaxies.

For the case of a small dielectric particle with

a dielectric constant é we have from equation (48)

9m 05

_e+l

10 5 6 4 ‘ (
TT V e - l

   393%, . . . (53)
64ux

   

Comparing this to equation (52) we see that for e = 1.5 the

values for te are about twice those given by equation (52)

for the perfect reflector. Hence for the same two sets of

parameters chosen for equation (52), equation (53) yields
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2 x 1012 years for the first case and

4 x 1010 years for the second case.

t
e

t
e

It should be remembered that particles in interstellar space

generally have low temperatures and this could be an impor-

tant factor in determining the values for the dielectric

constant and conductivity of a particle.

Particles with a size on the order of the radiation's

wavelength are also important to consider. For such cases

equation (29) is useful in finding the effects that the radia-

tion has on the particle's motion. Since we are interested

in low velocities, higher order term of B have been ignored

in equation (29) and using equation (31) we write

FZ=—‘-3ina2(mxo+uh)c ..........(54)

Now consider Figures (4) and (51 Figure (4) is an

example of Qpr varying as a function of x for a dielectric

(n - 1.33). Figure (5) shows the Qpr for a perfect reflector.

From these graphs we can measure the lepes at various values

of x and substitute them into equation (54) to determine the

force on the particle. In Figure (5) the greatest force

exerted on a particle will occur where x < 1 since the slope

there is very large. A representative point on this part of

the graph can be taken as the point where Qpr = 1. Thus

x = .7 and m = 5. Equation (54) then yields

F =--una B.
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If we choose A = 5 x 10-5 cm and assume all energy density

u has this wavelength we have then a = 5 x 10-6 cm and

F = - 3 x 10—22. To determine the effect of this force on
Z

the particle's motion we again compute the time constant.

Substitute the coefficient of B from equation (54) into the

denominator of equation (49) and write the mass in terms of

‘
1
‘
-

c
u
-

its density p and radius a. The result is

_ 4cao
te _ uImXO + 4h! . . . . . . . . . . . . . . (55)
 

 Assume p = l and the values of the parameters in the force

above, we have then from equation (55)

t8 5 5 x 1016 seconds 5 2 x 109 years.

In interstellar space however, the radiation density u does

not consist of monochromatic radiation, but is made up of a

continuum of different wavelengths. If this radiation is

concentrated over a region of about %A then it can be seen

from Figure (5) that the lepes for values of x in this

region are of about the same size as the lepe chosen above

at x = .7. For such a case te would be expected to be of

the same order of magnitude as computed above. Its exact

value would, of course, depend on the distribution of energy

density. For cases where x > 1 we see from Figure (5) that

the slopes are negative. For a particle of radius

5 x 10-5 cm, again setting A = 5 x 10-5 cm, we finda

I
I
!

x 6. Therefore m E 0 and h E 1. Here we see that equa-

tion (55) reduces to equation (50) as expected for larger
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particles. It is also seen that for dielectric material of

density p= 1 equation (55) yields for these values

te = g x 1018 seconds 5 4 x 1010 years.

For smaller values of x, where x is still greater than unity,

the slope is negative but the value of h increases. In this

region we see then that the value for te does not vary }

appreciably.

Figure (4) shows the behavior of Qpr for n = 1.33 E

 

n
u
s

e

to be quite different from that for n = w shown in Figure (5).

The ripples in Figure (4) make the behavior of the particle's

motion much more sensitive to the wavelength than in the case

of the perfect reflector. For values of x ranging from about

2 to 5, values of te will be on the same order of magnitude

as for the perfect reflector. If we choose x = 4 to repre-

10 years whensent this region we find that te E 5 x 10

A = 5 x 10—5 and p = 1. Of particular interest are the

ripples occurring at values of x larger than 10. As was

shown before, a particle may experience either a retarding

or an accelerating force in this region. If the slope is

positive it is a retarding force. If the lepe has a large

enough negative value the force accelerates the particle.

Consider a typical value for the larger lepes of a particle

'with a value xO between 10 and 15. If the slope is positive

‘then in the linear regions of the graph m = 1. If it is

:negative m E — %. Hence for a retarding force in the middle
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of this region

10
te E 2 x 10 years

when A = 5 x 10—5 cm and p = 1. An accelerating force yields

t E 8 x 1010 years in the same region, where now the time
e

constant is the time necessary for the velocity to increase

by a factor of e.

Again these results hold for monochromatic radiation.

Unless the energy density is concentrated at certain wave-

lengths an averaging effect would be expected which would

reduce the effects of the "ripples". In such a situation

some wavelengths would exert a retarding force, while others

would exert an accelerating force. If we assume a distribu-

tion among the wavelengths such that the value for Qpr can

be approximated by a straight line of lepe zero, and h E %;

then if p = l the time constant has a value between 1011 and

1012 years in this region.
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CHAPTER V

SUMMARY

The derivation of the expression for radiation F. '

force was based on relativistic mechanics. The stress-

energy tensor for a pencil of radiation was transformed

from the star system to the particle system. Then by inte-  
grating the partial derivatives of its components the

radiation force was obtained. This result was also shown

to be in agreement with a result calculated from Robertson's

equation.

The effects of the DOppler shift and the dependence

of Qpr on wavelength in an isotropic, and often monochroma-

tic, radiation field have been investigated. We have shown

that the total resulting force on a particle moving through

the field will generally retard the motion of the particle;

although it can in special cases accelerate a particle to a

velocity where the total radiation force will become zero.

It has also been shown that at non—relativistic speeds, the

ratio of the initial velocity to the velocity at a later

time will be independent of the initial velocity.

Finally, numerical estimates were made to determine

the order of magnitude of the time constants for this effect

56
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on particles in interstellar space. The results showed that

the time constant has a value on the order of from 1010 to

1011 years for many cases. This value is comparable to some

present day estimates of the age of the galaxies.
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FIGURE (4)

Irvine's graph of Qpr for n = 1.33.
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FIGURE (5)

Debye's graph of Qpr for the perfect reflector
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