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ABSTRACT

DYNAMICAL EFFECTS
OF ISOTROPIC RADIATION

by David Francis Savickas

A small sphéfical body traveling through an 1sotropic
radiation field will generally experience a force caused by
the momentum 1t absorbs from the radiation. Due to the
Doppler shift, the radiation striking the front of the par-
ticle willl be of higher frequency than the radiation striking
the back of the particle. Also, because of diffraction ef-
fects, a small particle will absorb amounts of momentum that
differ with the radiation's wavelength. These two factors
generally combine to exert a force on the particle and change
its velocity. The effect of this force on the particle's
motion was investigated.

By the use of relativistic mechanics a general ex-
pression for the force on the particle due to a plane-parallel
beam of radiation was obtained and then integrated over space
to obtain the total force of the whole radiation field. The
diffraction effects were taken into account by use of either
Debye's approximations for the pressure efficiency factors of
very small particles, or by the use of graphs of this factor

as a function of frequency.



D. F. Savickas

For approximations at low velocities 1t was found
that the ratio of the initial velocity to the velocity at
a later time 1s independent of the initial velocity. Gener-
ally the radiation exerts a retarding force on the motion
of the particle. However, for special cases where an essen-
tlally monochromatic and isotropic field exists, 1t was
found that the particle could be accelerated to higher velo-
cities by the radiation. Numerical estimates for the time
it would take a particle in interstellar space to come to
1/e its initial velocity were found to be of the order of

from 1010 to 1011 years.
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INTRODUCTION

A plane wave of energy density u normally incident
upon a perfectly absorbing plane surface of area A will ex-
ert a force F = u A. The radiation's pressure is seen then
to be equal to its energy density. The effects of radiation
pressure on the motion of particles in space has been pre-
viously investigated for places in space where a single
source, such as the sun or a star, exerts a strong influence
on a particle's motion. However the effects of an isotropic
radiation field on a particle's motlion have not been pre-
viously investigated.

When a particle is at rest in such a field it
obviously experiences no radiation force by reason of symmetry.
If, however, it 1s in motion then the radiation incident on the
particle in the direction opposite to its velocity will have a
higher frequency than the radiation incident on it which is in
the direction of its velocity. This difference is due to the
Doppler shift and it is the effect of this_ frequency shift
which we wish to investigate. Since the particles in space
are small, radiation diffraction effects are important and also

will be considered.



CHAPTER I
HISTORICAL BACKGROUND

The existence of radiation pressure was first de-
duced as a consequence of the electromagnetic theory by
Maxwell, and later experimentally confirmed by Lebedew. The
effects of radiation pressure exerted by the sun's radiation
on spherical particles in space was first considered by
J. H. Poynting® in 1903. His calculations led to the in-
correct result that a body moving through space and receiving
no radiation from other sources would suffer a decrease in
velocity due to its own emission of radiation as its tempera-
ture cooled. This effect was presumed to exist because the
radliation was not emitted isotropically about the particle,
but rather was concentrated in the forward direction and
thinned out in the backward direction. Hence, since radiation
carries momentum in the direction emitted, more momentum 1s
lost by the particle in the forward direction than 1n the back-
ward direction. Thus Poynting's results show that the particle's
veloclty decreases.

However a detailed investigation by L. Page was made
years later showing that, to the order of accuracy questioned,

a moving body does not experience a decrease in velocity as a



consequence of its own radiation. Using Page's work
J. Larmor2 pointed out the error in Poynting's results in
1918. He noted that the loss of momentum did not necessi-
tate a decrease in velocity but rather, by the relation
m = E/cz, a decrease in the mass of the particle and con-
cluded that the particle "will move on with constant velocity,
but with diminishing momentum so long as it has energy to
radiate." However, Larmor's own corrections for the radia-
tion pressure were also incorrect.

It was not until 1937, when H. P. Robertson3a con-
sidered the problem, that the matter was cleared up. He
made a rigorous relativistic derivation of the radiation
pressure caused by a plane-parallel beam of light and then
used the simpler form of the classical approximation of this
relativistic result to obtain the equation of motion for a
particle in the field of the sun. Robertson's results showed
the existence of a drag of the same kind which Poynting and
Larmor had predicted. His expressions for this force on a
spherical particle differed from thelrs, but had the same
effect of causing the particle to spiral into the sun. He
showed the cause of this effect to be the particle's loss
of angular momentum.

The relativistic effects of radiation pressure were
considered again in 1960 when Richard SchlegelLl caiﬁulated

the force on a plane surface moving through an isotropic

radlation field. The results obtained were in error because

SN



although the expression given for energy density was trans-
formed, the expression for the solid angle element dQ was

not; hence in the transformation from the laboratory frame

2
v

to the particle frame a factor of 1 - — was lost.

2
c

(1 + % cos ¢’)2

The correction for this angular transformation was subse-

quently pointed out by W. Rindler, D. W. Sciama5 and J.

Terrell.6




CHAPTER II

THE RELATIVISTIC FORCE OF

ISOTROPIC RADIATION

Calculation by Use of the
Stress-Energy Tensor

The purpose of my investigation is to calculate the
effects of radiation pressure on a spherical particle moving
through an isotropic radiation field. Of particular interest
1s the radiation field in interstellar space at points distant
from any one particular star. According to present day know-
ledge "the particles responsible for interstellar absorption
are definitely tiny solid grains."7a Beyond their existence
as small particles not much is known about them. They may be
either metallic or dielectric, and their size is probably on
the order of the wavelength of light or much smaller. Much
of the interpretation of astronomical observation of parti-
cles in space has been based on the theories developed by

8

G. Mie® 1n 1908 and P. Debye 2

in 1909. Their theories cal-
culated the scattering of radiation by spherical particles
and the pressure exerted by the scattered and absorbed radia-
tion, but with no regard to the effects on the motion of the

particles.



The radiation pressure on particles depends strongly
on their size and they can be divided into three major
groups: first, large sized particles (radius much larger
than the wavelength of radiation); second, particles on the
order of the wavelength; and third, particles much smaller
than the wavelength. For the last two groups diffraction
effects are important.

The objective now is to obtain a general expression
for the force exerted by an isotropic radiation field on a
spherical particle. Consider such a particle moving along
the positive direction of the z axis of a coordinate system
in an isotropic radiation field. The coordinate system at

rest relative to the stars, and in which the radiation is

isotropic, will henceforth be referred to as the star system.

The coordinate system which moves with the particle will be
called the particle system. Because of symmetry no forces
perpendicular to the z axis will be exerted on the particle.
Hence in using the stress-energy tensor we need only calcu-
late those elements related to the z component of the force.
This will be done by dividing the isotropic radiation of
energy density u into pencils of radiation (plane waves) of
intensity u %% where dQ is the infinitesimally small solid
angle of the pencil of radiation we are considering.

This assumes that the energy density u is composed

of an infinite number of plane waves whose directions have

an isotropic distribution about any point in space. The amount



of energy density moving in a particular direction, speci-

fied by the normal vector to the surface element dqQ of a

unit sphere surrounding a point, is the fractional area

dQ/Un where Unr 1s the total area of the sphere. The Carte-

sian components of the electric and magnetic components of

a wave in a nonconducting medium satisfy the well known o
' 2. 1 3% 10

equation v-w - =— —5 = 0. And E. T. Whittaker

v2 3t2

mathematically proved that solutions of this equation can

in 1903

be broken up into plane waves. Thus the 1sotropic radiation

;

can be represented as the sum of plane waves.

Consider the tensor

uv
R 22 &5
90X
where the components of x" are defined as
x1 = X, x2 =Y, x3 =z, xu = ct.

The quantity dV 1s interpreted as a four dimensional volume

dV = dx dy dz cdt. G" is a first rank tensor because 3T"V

\Y
aX
1s the covariant derivative in flat space-time and dV is an

invariant. The invariance of dV can be seen by comparing 4V

in the star system (x*) to d¥ in the particle system (x").
Now

4z = V1 - 8% dz, dX = dx, df = —3% > and 47 = dy.

1 -8
where B is the velocity of the particle in the star system

divided by the speed of light. Therefore we see
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[

dx dy dz cdt
2 cdt

dx dy - B dz = dVv
1 -8

The components of G* physically represent:

1 2 4
G* = cdP,, G° = cdP, a3 = cdP_, G = dE,

where P and E are momentum and energy respectively. The
11

value of these components follow from the evaluation of
a7V

- dV for each value of u. Hence the first three com-
39X :

ponents of ¢le represent ¢ times the amount of momentum
contained in the volume dV, and GLl represents the amount of
energy contained in this volume.

The definition of TH' 1s as follows: let gy repre-
sent the density of momentum in the direction i. Then

F
Tiu = CBy» Tuu = energy density, and T1J S S g4 WJ,

A
J
where Fi is the force in direction 1 exerted by the medium

(in this case light) through the area A, normal to the J

J

direction, and w, is the velocity of the medium in the

J
direction j.

Using these definitions we can write the ™V com-
ponents for a pencil of radiation. The relation between
the energy and momentum of radiation is

E = Pc

Therefore energy density and momentum density are related by
up = ge,

where Ugp is the fractional amount of energy density u contained



in the so0lid angle d@. This plane wave has the direction

coslines cos a, cos B, cos y. Hence:

u u dg
f
g=s—=—-——
c c Un
= 4 da cos a = 4 da cos B = 4 da cos
&1 T ¢ I > &5 T ¢ Ty > B3 T ¢ Ty Yo
W) = C COS a, W, = C COS B, and w3 = C COS Y.

Since we are concerned with radiation in empty space Fi = 0.
Let ¢ be the angle with the z axis and 6 be the angle with
X axls in spherical coordinates. Then

cos a = sin ¢ cos 6,

cos B sin ¢ sin 6,

cos vy cos ¢.

Now using the above expressions the T4V components may be

written as follows:

Tll = u %% cos 2a = u %% sin 2¢ cos 26,

T22 = Uu %% cos 28 = u %% sin 2¢ sin 29,

T33 = u %% cos 2y = u %% cos 2¢,

TMN = u %%,

Tlu = TLll =u %% cos @ = u %% sin ¢ cos 6,

T24 = Tu2 =u %% cos B = u %% sin ¢ sin 8,

T3u = TL‘3 =u %% cos y = u %% cos ¢,

T13 = T31 = u %% COsS & COS y = U %% sin ¢ cos 6 cos ¢,



le = T21 = u %% COS B COS a = u %% sin 2¢ cos 8 sin 6,
and T23 - T32 - dq - dq

u 7 cos B cos y U sin ¢ sin 6 cos ¢.

In order to calculate the force acting on the parti-
cle we go to the particle system (denoted by bars) and

evaluate G3:

_ =31 =32 =33 =34\ _
g3 - _ (T2 , 8T°° , aT?7 | T av.
X 3y 3z cat

To find the total value of 53 associated with an object of
volume V, the right side of the above equation must be inte-

grated over the object's volume.

m31 =32 =33
a3 = _ J(.aT + 3T°° aT- av + - - - -+ - (2)
X 3y 3z

The last term has dropped out since T3u is not an explicit

function of time. The values of the tensor components T31,
T32, and T33 are now needed. To obtaln these we use the

tensor property

UV ax¥" ax" e B

ax® ax®
where the relations between X" and x" are given by
gL = xl, %2 = x2, %3 =y (x3 - qu), and i” =y (xu - Bx3)

1

\'
where B = — and y = .
c Jl - 6E

For the particular values of u and v we see that
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1 41

T3l = YT3 - BYT ) \

T32 = YT32 - ByTMZ, and

33 o (2 033 | 5,2 o34 4 42,2 bl
4

Substituting the values for T31 and T
these last three expressions, we have

T3l

Y %; dQ@ sin ¢ cos 6 cos ¢ - B

Now use 1s made of the following relatio

ordinates of the two frames of reference
cos ¢ = cos ¢ + 8- s
(1 + B cos ¢)
Vi - 82 sin ¢
sin ¢ = —,
(1 + B cos ¢)
d a _(1-32)d§
- -2
(1 + B cos ¢)
The plane angles ¢ and 8 and the solid a

are measured 1in the particle system and

angles ¢, 8 and d2 in the star system.

cos ¢ in terms of cos ¢ is well known.

sin ¢ can be obtained by simply using th

2

¢ The expression for

2¢‘

sin 1 - cos

by differentiating cos ¢ and remembering
Using these expressions relating

two coordinate systems we can write the

the star system in terms of the angles 8

(3)
into the first of

u
\bip= dQ sin ¢ cos 6.

ns between the co-

ngle d@ sin ¢ d¢ db
correspond to the
The expression for
The expression for

e relation

dQ? can be obtained

that 8 0.

the angles in the

tensor components in

, ¢, and dQ. Then
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substitute them into equation (3) to obtain:

2

> - - -
T3l ~u (1 -8") cos & sin ¢ cos ¢ aa,
U (1 + B cos $)Ll
=32 _u 2.2 sin ¢ sin 6 cos ¢ .=
732 = Y (1 - g%) o3 ¢ g3,
Y (1 + B cos ¢)
2
2 2=
ana 733 =4 (1 = 87) cos ¢ 45

bn (1 + 8 cos §)°

These expressions for the components of the stress-energy
tensor are those of a pencil of radiation whose direction
is specified by the angles & and ¢ in the particle system
and are independent of any absorbing or scattering surface.

In order to evaluate the integral for 53 the deriva-

tives of the tensor components must be specified. Suppose
we have a perfectly absorbing particle, i.e. one that ab-
sorbs all radiation incident upon it. Consider the first

term in equation (2):

w31
(BT_ dX dy dZ cdf.
2%

\'
Assume that the particle is large compared to the wavelength
of radiation and note that the particle is a sphere in the
bParticle system. An incident plane wave in this case 1llum-
lnate s the front half of the sphere and does not illuminate
the back half. Assume that there are no electromagnetic
Waves inside the sphere, so that they do not penetrate the

SUrface but are instead completely absorbed at the surface.
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Thus T"° 1s zero everywhere inside the sphere. Also, since
this sphere does not scatter any waves which strike 1its sur-
face, the stress-energy tensor immediately outside the front
half of the sphere is the same as that for the plane wave.

The stress-energy tensor 1s zero in the region Jjust outside

the back half of the sphere. Thus:

=31 _ _ é
aT_ dx = tT31 on the front hemisphere, i
ax s
371 |

— dx = 0 on the back hemlsphere. -
X

We are now left with a surface integral over the area S of
the front hemisphere

& 31 4y az

S

Since T37 is independent of X, y, and z this expression becomes:
731 f: 4y 4z
S

>
But | t 4y dz = SI-dS
S

where 1 i1s a unit vector in the x direction and dS 1is a
bPortion of the sphere's area. Now consider the volume in-
Closed by the surface of a hemisphere of radius a and its

flat side of area F = na2. By the divergence theorem

S1~d~s+ I-d§=o.
S

Ther efore

> >
!3-d8=-;i’-ds=-nazcosa
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where a 1s the angle between the direction of the incoming
radiation and the x axis.

31 _ _ _ _
of = -na2 T31 cos a cdt.

Similarly it can be shown that

=32 _ o

3 4V = -ra® T2 cos B cdf,
ay

v
=32 _

and aT_ 4V = -na° T33 cos y cdt.

9z

v

Substituting these values into equation (2) we have

G3 = qal

ma® cdtf (cos a T3l

+ cos B T32 4 cos Y T33).

Remembering that the value of 33 is cd?z we can now

F_ = Z = 4a° (cos a T3' + cos § T32 + cos y T39).

cdt

Substituting into the above equation the values for the
cosine angles and the tensor components in terms of ¢ and
8 we have

2

- 2 =
F, = gl = 8) dd U (4, 25 cos 2Gesin 2F sin 8

(1 + B cos $)H b4m

+ cos 25) cos ¢.
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Since the velocity of the particle is in the z direction

Fz = Fz and therefore
> 2 - -
FZ=§Z=TT&2U(1-B)C(-)SM¢ ae L)
(1 + 8 cos §) 4n

This expression gives the z component of force in the star
system exerted on the particle by the portion of radilation
coﬁtained in the solid angle d2. One of the factors
(1 - 32)/(1 + B cos $)2comes from the transformation of the
energy density and the other comes from the transformation
for the solid angle. Since u 1is the magnitude of the pres-
sure, aZnu is the total magnitude of force which would be
exerted on the particle if B were zero. Thus the effective
absorbing area of the sphere is equal to the cross-sectional
area of the sphere as expected. An alternative way of look-
ing at this result 1s to consider the absorption of momentum.
The sphere can be replaced by a perfectly absorbing disk of
area wa2 whose normal 1is parallel to the path of the incident
radiation. This disk then absorbs the same amount of momen-
tum in the same direction per unit time as does the sphere,
Since both objects absorb all radiation incident on their
Surface. Hence they both experience the same force.
Equation (4) can be generalized to include diffrac-
tion effects. In the particle system the incident wave is
sti11] a plane wave carrying momentum in its direction of

Mot ion. In this reference frame, which is electromagnetically
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equivalent to any other frame, we have a plane wave incident
upon a stationary spherical particle and classical electro-
magnetic theory 1s applicable. When diffraction occurs the
amount of momentum absorbed may be more or less than that

of the perfectly absorbing sphere. The increase or decrease
of absorbed momentum due to this diffraction effect must be L
in the direction of the incoming wave since the wave and

sphere are symmetrical about this direction in the particle

system. This increase or decrease in absorbed momentum can |
thus be accounted for by simply multiplying equation (4) by

factor Q. Since we are considering the particle in its rest

frame, Q in that frame must be independent of B and can only

be a function of the particle's radius a and the incident

wavelength X. Hence Q = Q(a, X). The ratio of force exerted

on a spherical particle to the force on a perfectly absorb-

ing disk of the same radius was calculated by Debye in 1909

using classical electromagnetic theory. This ratio 1s the

Q factor and is usually designated Qpr'

Hence
2
2 u

2 -
_ =y (1 - B") cos ¢ .=
F = a“ =Q (a, X) de . . . (5)
zr y PT (1L + B cos 5)”

The "r" subscript serves to remind us that this 1is the force

due to a single ray.



16

Agreement with the Calculation from
Robertson's Equation

This result can also be arrived at through use of
H. P. Robertson's paper "Dynamical Effects of Radiation in
the Solar System." He studied the mechanism by which a par-
ticle, orbiting the sun, would eventually fall into the sun
by the loss of angular momentum. These particles absorb
radiation from the sun but re-radiate it with a loss of their
own angular momentum. At the beginning of his paper
Robertson derived a relativistic expression for the force
exerted on a spherical particle by a pencll of radiation.
He then made a classical approximation and derived results
for the motion of a particle orbiting the sun. His relati-
vistic expression for the force was derived by transforming
the force vector, a first rank tensor. He3b wrote it 1in 1ts

final form, in the star system, as

H
dmO u _ Eﬁ 9
ds c

L o I -9

where m is the proper mass, s the proper time, u” 1s a com-
ponent of unit velocity, and ¢ is the speed of light. For
=1, 2, or 3 the value of 2¥ is ¢ times the cosine angle
of incident radiation in the star system and 2 1s equal to
unity. Also w 1s equal to AO, the transformed component of
2° in the particle system. The expression f 1s the product
of the energydensity d of theincoming ray in the star system

and the particle's effective cross sectional area A.
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To change equation (6) to an expression for our case of

iInterest let 4 = u %%. Evaluate A° by the relation

-0
where x

"
ctl
»

"
o+

>
»

Since 2° = 1

P
[}

ccos ¢, and t = (t - Bz)y,
we find A° = y(1 - B cos ¢).

The particle's velocity v 1s in the z direction only, so

ud = vy. Substituting these relations into equation (6)
we have

d(moyv) u

T=AY (1 - B cos ¢) COS¢HdQ

- Ay2 (1 -8 cos ¢)2 l% %— aa.

m
let m = myYs divide both sides of the above equation by vy,
and make the substitution for cos ¢ and do in terms of

cos ¢ and d@. The result is

2
2
dlmv) _ Au (1 -8 )_ cos ¢ d4Q.
dt bm (1 + B8 cos ¢)
Since A is the effective area A = na2 Qpr' We have then
2.2 -
F_o=allq (L-B) 0054845 . . (1
y P (1 + B cos ¢)

which agrees with expression (5).

—n i A DRST 7 T
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The Exact Expression for Qpr

Robertson used the classical approximation of
equation (6) to study the effect that radiation from the
sun would have on the motion of a particle under the gravi-
tational influence of the sun. No calculations have been
made of the effect on the motion of particles resulting
from a Doppler shift of frequency.

My purpose is to determine the effect of this fre- :

|

quency shift on a particle in an isotropic radiation field.
Equation (5) gives the force exerted by a single pencil of
light. In order to obtain the total force due to the whole
radiation field, equation (5) must be integratéd over the
unit sphere. To do this Qpr (a,x) must be known. Defining
Qpr by the equation F = d Qpr na2 where d is the energy
density, na2 the particle's cross-sectional area and F the

force exerted on the particle, the value for Qpr was derived

by Debye9b in rationalized Heaviside units and was found to
be:
1 2
-2 2 © a + a © *
Q r = A2H2 Re £ (2n + 1) 2 1 _ 3 en+1 i ui
P n°a n=1 2 n=1 n(n + 1)
> nn+2) , %1 1 LI
nfl n+ 1 (a n%n+1 ¥ % n c‘n+l) - (8)

The amplitude of the wave is represented by H and 1its

wavelength is X in the particle system. The alpha terms
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are complicated functions defined as follows:

a1 N2y (kea) ky w% (k;a) - k, w% (kya) NI y_ (k) |

. N? Cn (kaa) ki wn (kia) - ka Cn (kaa) Ni wn (kia),

and >, . . (9)
Ny (k.a) k, v (k,a) - kv (k.a) No v (k,a)

“i = i n a 1 'n i a 'n a 2 'n i .
N2 tn (Ka2) Ky ¥n(a) -k B (kga) MDY (kga)

The functions of ka are defined by

1/2
_ | mka
v (ka) = | =5 Tne1/2 (ka)
and
1/2
_ [nka 2
h (ka) = > Hn+l/2 (ka).
2
The functions Jn+1/2 (ka) and Hn+1/2 (ka) are respectively

Bessel and Hankel functions. The constants in equations (9)

are defined as

- - -2
a w a w 2 w
N=i_, N=i_, k-—’
1 c 2 c a 2
Ni =1 & 4 2 N; = 1 Be

c c c
7 22 a
K2 = EMW" 4 pow
i 2 2
c c

The angular velocity, speed of light, dielectric constant, mag-
netic permeability, and conductivity are respectively represented
by w, ¢, €, u, and o. The bars placed on w and A again denote

quantities measured in the particle system.




CHAPTER III

DYNAMICAL EFFECTS OF THE

RADIATION FIELD

Exact Solutlions and Useful
Approximations

The dependence of the frequency v on the angle ¢

is given by the well known relativistic expression

w1l - 62

1 + B cos ¢

e e . (10)

where v is the frequency of radiation in the star system.
Since the terms in equation (8) are functions of v equation
(5) 1is seen to be difficult to integrate because of the
complicated dependence on §¢.

Because of the complexity of the integration I had
tried an alternate approach in order to obtain an exact
solution for Fz. This method 1is rather long and complicated
and was not completed. The basic idea of it is to avoid
complicated integrations by the use of boundary conditions.
The radiation pressure 1is independent of the direction of
Polarization of the waves so any convenient direction of
bpolarization can be assumed. This makes it possible to

write an expression for the electric and magnetic components

20
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of the whole isotropic and monochromatic radiation field and
not just a single ray of radiation. The components are then
transformed relativistically from the star system to the par-
ticle system. My experience with this method ends at this
point. I have obtained by use of a method developed by
E. T. Whittaker in a paper cited above, the expressions for
the electromagnetic components in the particle system. At
this point these components must be matched with a general
expression for the scattered waves by using boundary condi-
tions on the surface of the spherical particle. This is
difficult since the frequency of the incident radiation
varies with the angle ¢. If the scattered waves could be
found a stress-energy tensor could be written and probably
integrated over any arbitrary surface containing the particle.
For many situations however, approximations are easy
to obtain, and they simplify Qpr to make equation (5) possi-
ble to integrate by the use of restrictions on the values of
X or a. Also computed graphs of Qpr as a function of 2wa/}X
can be used to make approximations.

The Relativistic Motion of a Large
Perfectly Absorbing Sphere

Consider the case of a perfectly absorbing sphere
whose radius a is large compared to the wavelength of inci-
dent radiation. The value for Qpr is then unity as 1t is

also in the case of a large completely reflecting sphere.

T

e
Cricrmm
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When Qpr is unity we have from equation (5)

a2u (1 - 62)2 COS ¢ .=
F. = ¢ 43 . . . . . ... (11

4 (1 + B8 cos 5)“

The total force is then

man

2 ' 2 _
p =24 f(l_s)cos¢sin$d§d$.
20y
o“/0

(1 + B cos $)u

Let s = cos ¢, then ds = - sin ¢ d ¢.
Therefore
1
2 2
FZ = 2r & u (1 - 62) s ds .
b (1 + Bs)
-1

The value under the integral sign is
2

(1 - 82) -1 + 1 + 1 _ 1
> 2(1 - 8)°  3(1L - 8)3 201 +8)° 3(1+ 8)3
8 B
which simplifies to = — -
31-28
Hence FZ = -na2 u ] ——ﬁ——E S G =)
31 -8

The force exerted on the particle of rest mass mg is

F = c a —2 S ¢ D)

Equating the right sides of equations (12) and (13) we

write

C%—:—nazug—-—z......(lu)

)
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It 1s important to note at this point that equation
(14) assumes that all absorbed radiation 1s re-radiated
isotropically in the particle system. If it were not re-
radiated the increase of absorbed energy would cause an
increase in the mass of the particle other than that due to
the relativistic increase of mass with velocity. It might l_
be thought that an expression should be added to the right

side of equation (14) since it was derived on the basis of

absorbtion and scattering only and no stress-energy tensor

Eag
i

terms were added to account for re-radiation. But these
additional terms are not necessary. The sum of any such
additional terms 1is zero since the net loss of re-radiated
momentum in the particle system is zero. Now using equation

(14) the particle's velocity can be found as a function of

time.
Differentiating the left hand side of equation (14)
yields
a [ |, 1 a8
em ¢ = mc 5372 at © " (15)
1 - g2 (1 - 8%)

Substituting this expression into equation (14) and rearrang-

ing terms we have

2

moc BG.- B2

Now integrate the left side of the above equation with re-

4
3

SPect to t fromt = o to t = t and integrate the right side
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with respect to 8 from Bo to B where Bo is the initial veloc-

ity v, divided by c and B 1s v/c at a later time t. We

obtain:
i wa2 ut = 1n A 82 . fo \
3 mgc B 1+ V1 - Bo%[ L
Rearranging terms we find -
_ 5 TTaZUt T
B B 3 mc 4
4 0 e O . . . . . (16) }-::
1 +V1 - g? 1+\/1-so2 .
|
When B8 1is small (low velocities), we have a classical approxi-
mation:
_ 4 wa2ut
%_ =e 3 -mge”
o
Thus when v = é:vo, the time constant te is found to be
m_c
te = '3— g . . . . . . . . . . . . . . . 3 . . (17)
4 ma“u

This result is interesting because it shows that the
time taken for the particle to slow down to é its initial
velocity 1s independent of 1ts initlal velocity, but is pro-
portional to its rest mass and 1lnversely proportional to

both the energy density u and 1ts cross-sectional area na2.

Solving equation (16) for B we have



5 _ 4 na2ut
B0 e 3 mOc
1 + \/G - 302
B = 2 . . . 3 . . (18)
8 2 _ § rTa ut
1 3 moc

Consider equation (18) when t is very large. This expres-

slon reduces to

ma ut

It Bo i1s large then the maximum effect of the relativistic
correction is that B 1s almost twice as large as the classi-
cal approximation. We see the retarding effect is not as
great in the relativistic case. Looking at equation (12)
this might seem paradoxical. If 62 is small equation (12)
reduced to the classical result

_ 2 4
FZ = —ma‘u 3 B v et e e e e e e e e e e e e e (19

as opposed to its relativistic form in which FZ is greater
than the classical value by a factor of 1/(1 - 82). Hence
the relativistic force is greater than the classical force.
But now look at equation (15). It shows that the relativis-
tic mass increase changes the expression Qa%l by a factor

of 1/(1 - 32)3/2. The relativistic increase of force due

to radiation is not as great as the relativistic increase
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in mass. The net result 1s that the particle's velocity is
retarded at a slower rate at higher relativistic velocities.

The cause of the retardation of velocity for the
perfectly absorbing sphere is similar to the cause of the
loss of velocity of a particle in the neighborhood of the
sun. The only difference 1s that instead of losing angular
momentum the particle is losing linear momentum by re-radiat-
ing the absorbed radiation. The radiation striking the
particle on the front side has an increased energy density
due to the Doppler shift. For the same reason radiation
striking the particle on the back has smaller energy density.
This effect combined with the crowding of radiation in front
and the thinning out in back exerts a net retarding force on
the particle.

In the derivation of equation (18) it was assumed
that the particle was large compared to the radiation's
wavelength. Thils assumption breaks down when velocities
close to that of light occur. This 1s because at large
enough velocities the wavelength of radiation striking the
back of the particle 1s increased. Hence for certain veloc-
ities it can take on values of the same order as the radius
of the particle and thus diffraction effects can become im-
portant. At thls point Qpr i1s no longer equal to unity.
The value for Bo at which Qpr 1s no longer equal to unity
depends on the ratio of the radius a to the wavelength A.

If a/)x is large then the values of Bo which are valid in

\T‘_"l“-’ N
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equation (18) are large. Similarly if a/x 1is small the

values of BO in this equation must also be small.

Linear Approximations for
Low Velocity Particles

Cases will now be considered in which Qpr is not a
constant but varies as a function of the wavelength of in-
cldent radiation. If we consider dielectrics where o = 0,
and look at the results of Debye quoted earlier (equation
(8)) we see that Qpr varies only as a function of the ratio
a/X. However, for conducting particles this 1is not the
case.

A comprehensive study of Mie scattering theory and
Debye's radiation pressure i1s presented by H. C. Van de Hulst12

in his book Light Scattering by Small Particles. He states

that if d is the energy density of incident radiation then
the total energy of scattered radiation ESca is defined by
use of the cross section Asca defined by the relation

E =d A
s

sca car-

Similar definitions are used to define the cross sections

Aabs and Aext for the absorption and extinction cross sections.

Conservation of energy requires that Ae = A + Aa

xt sca bs”®

Non-absorbing particles will have Aext = Asca' If cos ¢ de-
fines the average cosline angle at which radiation is scattered
then the radiation pressure cross section Apr can be defined

by the relation
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A = A

pr ext ~ €08 ¢ Ag

ca’
Discussions in light scattering theory use effi-
clency factors Q rather than cross sections and are defined

by dividing the cross sections by the cross sectional area

of the particle na2. Then the above equation becomes l
Qpr = Qext - cos ¢ Qsca e e e e e e e (20)

It is by the use of this definition of the efficlency factor

for the radiation pressure and Debye's expression for Qpr

NETT T

that calculations have been made.
Since the efficiency factors are complicated, much

One such
13a

use has been made of computers to calculate them.
case of particular interest is given by W. M. Irvine who
computed Qpr by use of equation (20) for different values

of the index of refraction for both dielectric and absorb-
ing spheres. Since the index of refraction for metals varies

as an explicit function of frequency, Qpr is for them a more

complicated function than it 1s for a dielectric, for which
the index of refraction 1s a function of ¢ and u only.
Since Irvine's results show graphs of Qpr as functlons of
the wavelength for fixed indexes of refraction, they can be
used for computing the force on dielectrics. The dielectric
constant ¢ will be assumed to be essentlally constant for
dielectrics when a small range of frequencies are involved.
Since the temperature of particles in interstellar space

are estimated P to be from 10°K to 30°K, or up to 100°K,the
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variation of ¢ with frequency will be less than the usually
small variation at room temperatures.lu

In order to understand what kind of approximations
of Qpr are important, the extreme values of frequency 1in the
particle system must be considered. The frequency v seen
by the particle is given in equation (10). The two extreme
values of frequency which it sees are the higher frequency
Gf of the radiation in front at angle ¢ = m and the lower

frequency v, of radiation in back at an angle ¢ = 0. Thus

b

1 B 1l + 8

f=1s“Jl___B?

<

Yo v e e e e e e .. (2D)

o = VT Y
B 1 -8

<l
|

Notice that for small B8, Cf and ;b differ from v by the same
amount vB but the values are shifted in opposite directions.
The difference between these frequencies is generally
AV = Gf - v, =V e e e e e e . (22)
Now square both sides of this equation and solve for B.
We find
AV

V(a5)2

It is seen from equation (23) that B can be small and still

e voe . (23)

€1 ve rise to large frequency shifts if v is large. Since
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figure (5) gives Qpr as a function of x = 2ra/), we write

2na A;.

AX = e

Equation (23) can then be written

ax
B = x . L . . . . L] L] . . L] . L] . . L] L] (2“)
=
X
13b g
Now we look at Figure (4). The function Qext is .

seen to be made up of major oscillations with minor oscilla-

tions, usually called "ripples,' superimposed on them. The

major oscillations are caused by the interference between
diffracted radiation and transmitted radiation. When the
diffracted radiation and transmitted radiation constructively
interfere a maxima occurs. When they destructively interfere
a minima occurs. Since there is no transmitted radiation in
the case of the perfect reflector no such maxima or minima
occur in that case. This is seen in Figure (5).9c Finer
features of these curves are not so easily explained. Be-
cause of the complementary nature of the cos ¢ Q ., term in
equation (20) the major oscillations do not occur as strongly
in the graph of Qpr as they do in the graph of Qext‘

To make an approximation for the Qpr function we
replace the curves in the graphs by simpler curves. There
are two ways of doing this. The whole range of values of x

fromzero to infinity can be considered and a curve fit can

be made which ignores the minor features of Qpr (such as
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"ripples"), and yet still has the general form of the graph
of Qpr' But if the minor features are important an alter-
nate approach must be used. A small section of the curve
will have to be considered and a curve fit made for it. For
practical considerations it 1s these minor features that are
important. To illustrate this we use equation (24). This
equation gives the velocity for a particle which encounters
values for x extending over an interval aAx.

Consider in Figure (4) the region around x = 14,

If Ax 1s measured from the peak of the ripple occurring at
1
5.
The result of substituting these values into equation (24)

is that B8 = %5' Since many dust particles in space have

15a

this point to the first trough on the right, then aAx =

velocities averaging about 7 km/sec, these particles tra-
vel at speeds much smaller than one-sixtieth the speed of
light and hence intervals smaller than one-half are important.
Suppose a particle moves in a monochromatic and
isotropic radiation field and has a radius a such that
X, = 2na/AO where AO is the wavelength in‘the star system.
Assume also that X, falls half way between a peak and trough
of a "ripple". As the particle's velocity increases the
value of the frequencies of radiation striking it on the
front and back diverge. For small B it is seen from equation
(21) that the values for x for radiation incident on the

front and back diverge equal amounts from the value X The

divergence of values of Qpr reaches a maximum when the
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difference between x for the radiation incident on the front
and back differ by Ax equal to the distance between a peak
and adjacent trough. At this velocity the maximum difference
occurs between the Qpr value for the radiation on the front
and the radiation on the back. As the velocity increases
beyond this point the difference between the front and back
values of Qpr will generally go to zero but increase again
at stiil higher velocities.

Because the curve between the peaks and troughs of
the "ripples" are very close to straight lines we will approx-
imate the Qpr function as a straight line in these regions.

Therefore we write

olci

Qpr =mx + b =m 2na

+ b,
where m and b are constants whose values can be taken from
the graph. Now using equation (10) the above expression for

Qpr can be written

> 1/2
Q =mp2a, (1-8") FD oo e e (29)

pr c (1L + B8 cos ¢)

Substituting equation (25) into equation (5) we

obtain under integration

3 2 _
F, = a’um m, (1-8") —— cos ¢ do  +
2¢c (1 + B cos ¢)
2

2 2 -
(e e
L (1 + B cos ¢)

U

y
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Designate the first integral on the right hand side of the

above equation I, and the second integral 12. Since 12 is

1
the same as b times the integral in equation (11), we have

2 4 8
I. = -balmu 2B L (26)
2 3 (1 - 8%)

As before, using the relations s = cos ¢ and
ds = - sin ¢ d ¢ the first integral Il can be integrated

with respect to & and written

1
I. = a3uﬂ2mv (1 2 5/2 s ds
;= 2 (- g9) —==2
c (1 + Bs)
-1
Evaluating the integral we find
5/2
1. = a3un2mv (1 - 82) -1 + 1 + 1
1 2 3 4 3
c B 3(1 + B) h(1 + 8) 3(1 - B)
P - ]
4L(1 - B)
This simplifies to
I. = - a3ur°my (283 + 108) (27)
1 - ; 7/
(1L - 87)

The expression for force exerted on the particle is obtained

by adding equations (26) and (27):

p oo _u _2[mra (283 + 108), _ ubs
2 3 5 3/2 (1 - 82)
|2, (1 - 8%)
u 5 [mx (83 + 58) Lbg (28)
Or FZ S e - Ta 3/2 + 2 . . . .
3 _(l - 82) (l - B )

u‘f
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Retarding and Accelerating Forces

Now to find the force exerted on a particle 1n a
region where the linear approximation holds we need only to
substitute in the values for m and b and evaluate FZ from
equation (28) It 1s seen that as B approaches zero, FZ also

approaches zero as expected. The force experienced by equa-

tion (28) 1is the result of two effects. The first effect is -

due to the Doppler frequency shift which makes the frequency
of radiation incident on the front higher than the frequency
of radiation incident on the back of the sphere. The second
effect, which we shall call the Qpr effect, is due to the
different values of radiation pressure efficiency factor Qpr’
The value of Qpr for radiation incident on the front may be
higher or lower than the value of Qpr for radiation lncident
on the back. If 1t is higher, then the Qpr effect adds to
the Doppler effect to give a larger retarding force to the
particle. If it is lower, then the retarding force will be
lower than the force it would have experienced due to the
Doppler effect above. The strength of the Doppler effect
increases as the particle's velocity increases. The strength
of the Qpr effect depends on the value of the slope m and the
constant b. If the slope m is positive it 1s seen from equa-
tion (28) that the Doppler and Qpreffects add to each other.
This 1is simply due to the fact that when m is positive the
higher frequency radiation (in front) has a larger Qpr and

therefore larger amounts of it are absorbed than the lower
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frequency radiation (in back) which has a smaller Qpr value.
If however, m is negative, the higher frequency radiation
will be less absorbed than the lower frequency radiation.
When m is negative the magnitude of the force 1s smaller and
the effect of the Doppler shift is diminished.

Looking at equation (28) it is seen also that if m P |
is a large negative number it is possible for FZ to be zero, -

and for still larger negative values Fz will become posi-

tive. In these cases the Qpr effect outweighs the Doppler

T

effect. To find this critical value for m set equation (28)
equal to zero and solve for m. For practical reasons we are
most interested in small values of 8 so terms with B8 of higher
order than one can be ignored. Thus equation (28) becomes

u 2

FZ = - § ma (smxo + ub)Bc . . . . . . . . . . (29)
If F, = 0 then 5 mx_  + 4b = 0 and we find
mn
m - - gx_b . . L] (30)
o
where, as before, X, = 2;a and Ao is the wavelength in the

star system. It is seen 2hat at low velocities if the value
m 1s given by equation (30), the Qpr effect will balance out
the Doppler shift and the total force on the particle will

be zero. It also follows that if m 1s more negative than

the value given in equation (30), the total force on the par-
ticle will be positive. Thus the particle will experience

an acceleration in the forward direction. Of course the
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physical cause for this 1s that the particle absorbs more
momentum from the back where the Qpr function 1s larger than
from the front, and consequently its velocity increases.
In order to make equation (30) more immediately
understandable, make the substitution
D =h-mx_ . . .. . (31)

This is illustrated in Figure (1). The value for Qpr when

x = x, 1s h. Equation (30) can be rewritten as

_ y
mx o= - 5 (h - mxo).

FIGURE 1. Linear approximation for Qpr'

Qpr\
N\
, \
\
-mx \
\
* [ ’(\/
| N
h N
| .=§=L .
N\
0 o A \ X
Therefore mx o= - 4h for FZ =0, .. e e e e .. (32)
mx, < - 4n for FZ > 0y o o o . . . . (33)
mx, > - 4h for F, <0« . .. . .. (3

The interesting point of equations (32), (33) and
(34) is that they are independent of velocity (at low veloc-
lties). The factor determining whether the force a particle

€Xperiences 1s positive, negative, or zero is determined by
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the relative size of mx and h. Imagine if h were to in-
crease significantly while the value of mx remained the same.
The fractional difference of the value of Qpr for the radia-
tion in front from that in the back of the particle would
diminish. Thus the Doppler shift would dominate and the

force would be negative for a large enough value for h. On {
the other hand if h is held constant and we imagine that mx
becomes more negative, then the values of Qpr will differ

more widely for the incident rays. This can be seen by re- '

writing equation (25) in the form

1/2

2
Q p = MXg (1 - 87) — - 1| + h.
p (1 + 8 cos 3)

As mx increases the fractional difference of values for Qpr
for the two angles $1 and $2 increases and enables the Qpr
effect to dominate.

It is interesting to look at the force exerted on
the particle by two rays whose angles with the z axis are

supplementary in the particle system as shown in Figure (2).

FIGURE 2. Supplementary ray diagram.

P

v

NI
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When B 1is small, higher orders of B can be neglected and the
Doppler effect is a linear function of cos ¢. Since the Qpr
function 1s also linear over a small range of frequencies,
and since both the Doppler function and the Qpr function are
anti-symmetric about ¢ = n/2 it is expected that the condi-
tions stated by equations (32), (33), and (34) can be gotten
by splitting up the isotropic radiation into pairs of rays
which are anti-symmetric about ¢ = n/2. For the pair of
rays 1n Figure (2) then

F, = Fzr (¢l) + Fz

] (3,).

r
Substituting the force values given by equations (5) and

(25), we have

_ cos ¢ b cos ¢
F,o=a® 2 4d mx 1_5+ L
4y (1 + B cos ¢l) (1 + B cos ¢1)
N mx, cos ¢2 s b cos ¢2 )
(1 + 8 cos 32)5 (1 + B cos ;2)4
From Figure (2) $l =7 - 52 SO cos 62 = - cos 51. Using this

relation and expanding the denominators of the above equation
to exclude terms of higher order than B we have

F, = a® % daQ [mxo cos 51 (1 - 58 cos 31) + b cos 51 (1 - 48 cos 31)

- mx_ cos $1 (1 + 58 cos $1) - b cos El (1 + 4B cos 31%

2

or F = -2 % dQ cos 2¢l (Smxo + 4b) 8,

Therefore FZ 0 when m = - % .

x|o
o
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This result agrees with equation (30). Equations (32), (33),
and (34) also obviously agree. Thus when the net force on
the particle is zero the particle absorbs equal amounts of
momentum from the radiation at angles 51 and $2. The radia-
tion at angle 51 has a larger frequency and higher density
than the radiation at angle 52, but it has a smaller Qpr k
ffactor which cancels out the increased momentum effect of the
higher frequency and energy density.

Consider a dielectric particle with an index of re-

xr

fraction n = 1.33 as shown in Figure (4). If it is moving

in a monochromatic and isotropic radiation field, and the
ratio of its size to the wavelength of radiation 1is such

that X, occurs at a point on its Qpr graph where the slope
has a large negative value, then at low velocities it will
experience an accelerating force. However,as its velocity
increases,the range of wavelengths of radiation striking it
also increases, and at a large enough velocity the linear
approximation for Qpr (x) will no longer hold. Then the
force on the particle will decrease and eventually reach zero
and the velocity will remain constant. By making a non-linear
approximation for Qpr (x) this velocity can be calculated.

As an example we will assume Qpr = fd3 + md + h,

where 4 = x - X h = Qpr (xo) and f and m are constants.
Approximating equation (5) to the first order in B we find

F,p = a° % Qpr (1 - 48 cos ¢) cos ¢ d Q.
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Using the same approximation for equation (10) we find

Vv=v (l-28cos $).
Therefore d = x - X, = - XOBS where s = cos ¢. Substituting
this expression for d into the above expression for Qpr and
then substituting this Qpr function into the expression for

Fzr yields under integration P
r-‘:

1
3.3.4 2 3,45
j/ (—fxo B™s - meos + hs + foo B s
-1

- me08233 - Mehsz) ds ="

Carrying out the integration we find

- 2 1 3.3 1 by
FZ = -a“ unm (gfxo B- + §m8xo + §6h).

As expected the above equation reduces to equation (28) when

the term containing 63 is neglected. Setting Fz = 0 and
solving for B we have
-mx - 4h
B = A A . . . . . . . . . . . . . . . . (35)
ifx 3
570

Consider a particle of a size such that X, lies half

way between a peak and a trough in the Q graph. One such

pr

value for X, would be approximately 12.5 in Figure (4). Qpr

can be approximated in this region by setting f = 1.5,
m = - .40 and h = .6. A sketch of (Qpr - h) vs. d is con-

tained in Figure (3). Setting these parameters into equation

1

(35) we find B = .04 = 35" At this velocity the radiation



41

exerts no force. The radiation exerts an accelerating force
on the particle for velocities lower than B = .04 and a re-
tarding force for larger velocities. This phenomenon depends
on monochromatic radiation and can be expected to occur only
in cases where the energy density of radiation is concen-
trated about a particular wavelength. Since interstellar
radiation energy density is generally small a large amount of
time would be necessary for the particle to achieve this

velocity as a result of radiation pressure alone.

FIGURE 3.
Graph of Cubic Approximation for Qpr’
(Qp = h)
+ 1
} f {
-1 1 d
41

Very Small Particle Approximations

Now we turn our attention to particles small com-

pared to the wavelength of radiation. For these cases

9d

Debye made approximations by considering three different

sets of values for the conductivity and the dielectric
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constant. For the dielectric with € = = and o = 0, Debye

found that Q . is proportional to 2ra
X

Yy
) . For finite values
Ta

of e, Qpr is also proportional to 2_ but has a different
A
proportionality constant. If o is not zero then Qpr is pro-
portional to 2za. In all cases u = 1.
A

Now we are interested in calculating the effects
of the radiation forces on very small particles. First con-
sider the case whereo # 0. Debye gives the pressure

efficiency factor on the particle due to a plane wave as

(o}
Q. =12 (51 5 . 21a L. ... (36)
pr (e + 2) +(o X
w
Rewrite this in the form
Qpr = UXF (X)) v v v v v e e e e e e e e e e e e (3D

3 [¢]

2 ’
(e + 2)2 + (2)
w

where F (X)) =

In calculating the total force due to the radiation
field a difficulty arises because for metals both ¢ and o
Show a strong dependence on wavelength and therefore cannot
be treated as constants. However the values of ¢ and o have
been experimentally determined for various metals and wave-
lengths, and from these values F (X) can be obtained.
16

J. I,. Greenstein lists values for F (X) for iron and nickel

at  various wavelengths. It can be seen from his table that
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for wavelengths near 5000A, F (X) can be approximated for
these metals by the linear function

F(X)=rx+t .« v v v v v v v v v v v v . (38)
where r and t are constants. For 1ron Greenstein states the
values of F (X) to be .68, .62, and .55 for the wavelengths
of U4410A, 5080A, and 5890A respectively. For nickel he has ?
F (X) equal to .33, .24, and .19 for the same respective
wavelengths. These values also agree with computations made

from the indexes of refraction given by Van de Hulst.12a

ke

The function F (X) is closely approximated over this region

by

- 8.8 x 1057 + 1.07

"10“7\*‘-76 e e e e e e e e . (39

F (X)

and F (X)

for iron and nickel respectively. The wavelength 1s measured
in centlimeters.
Combining equations (37) and (38) we find
Qpr = utx + 811’8.1" . L] . . . . . . . . . . . . ] (L‘O)
A linear approximation of F (X) in X leads to a linear

approximation of Qpr as a function of x. Thus from the

values for r and t in equations (39) we have for iron

Qpr = u.3 }-(- -— 2,2 X 105 a, . . . . . . . . . ()41)
and for nickel
Q, = 3.0 % - 2.5 x 102 8.+ o v e e e ... (42)

Since iron and nickel are thought to be relatively abundant

in space, the effect of radiation pressure on them 1is of

1o
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interest. An estimate of this effect will be made later by
use of the above Qpr functions.

Now we consider the two other radiation pressure
efficiency factors given by Debye.

For 0 = 0 and ¢ = =
u )
., =i (2—3 (43)

pry 3\ X

For 0 = 0 and finite ¢

6—12
e + 1

(2ga)“...........(uu> {

Q. =2
3 )

pro,

Both functions have the same dependence on X, they only differ
in their constant coefficients. Writing these functions in
terms of v and using equation (10), the resulting functions

Q and Q are substituted into equation (5) and yield
pry bry

4

4 6 y 2
P, = KIJ Uunaa v (1 -8 _?_ g cos ¢ dq
c (1 + B cos ¢)

where K represents the constant coefficients in either Qpr
1

or Qpr . Now as before, using the substitution s = cos ¢,
2

the above equation becomes

1
4 6 i
Jur 'a Yy 2 2ns ds
F, = K —p— v (1 - 8B9) ———
z c f’ (1 + Bs)

-1
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Integration yields

4
Pk Bura® 4 (1 - 8%) [_ 1 X
z R 82 6 (1L +8)° 7 (1+8)

U |
6 (1 -8)° 7 (1-8)

By multiplying and rearranging the terms, thils equation

becomes
5 a0," (?B * %83 %85)
FZ = =128Kur i 53
c (1 - 87)
Hence for a particle with ¢ = 0 and v = « the constant K
has the value l% SO
8u56v“(%6*§63+%35)
Fz = —7)(2 —n-a _u 23 . tuu.(“S)
1 3 c (1 - 8%)
F - 0 and e finite, k = & [e+ 1)
or ¢ = and ¢ nite, = 3 ] SO
. (§B+§s3+;65)
F,o= =20 u,5,6 v (e = 1) >3 (46)
2 3 ¢ e + 1 (1 -8°)
Both Fz and Fz are proportional to a6 and therefore become
1 2

smaller much faster than does the mass. These forces are
good approximations when the wavelengths are large compared
to the particle's size. At highef relativistic velocities
this approximation will eventually break down since the wave-
length of radiation incident on the front of the particle is

shortened.
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At low velocities higher order terms may be ignored

so equations (45) and (46) reduce to

M
8 us56 v 8
F = =7 x 27 =n”a -
21 3 et o3 (47)
10 6 4 1
and F, = =2 45, XE (5—:——) B e e e e e .. (b8)
2 3 c e + 113

It might seem that these forces are large because

of the large value of vu. But it must be remembered that

these forces are based on the approximation that a/x = %3

is much less than unity. Hence the radius of the particle
will be very small and consequently both forces will be

small.



CHAPTER IV

EFFECTS OF RADIATION ON PARTICLES

IN INTERSTELLAR SPACE !

The Time Constant t, E

In the preceding chapters we obtained expressions
for the force exerted by the radiation on particles in terms
of the following parameters: the radiation energy density,
frequency, the particles radius, dielectric constant, and
conductlvity. However the actual magnitude of the forces
are by themselves not very informative. The forces are small,
but another parameter, the particle's mass, is involved and
since the mass 1is also small the effect of the force on the
particle's motion may be significant. In this chapter we
will make numerical estimates of the effect of the radiation
force by computing the time constant te for each case.

For practical reasons we are interested 1n particles
traveling at low velocities compared to the speed of 1light.
For this reason we use the first order approximations for
the forces which are proportional to B. In general we have
expressed all forces in the form

F = kg,

b7
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where k is a constant which can be either positive (accelerat-
ing forces) or negative (retarding forces). In most cases k
1s negative. Since we neglect relativistic mass changes at

low velocities, we have

dv _
m, e kB.
The integral of this expression yields ’%
kt
m_c

v = Vo€3 o,

Hm =
R R

where v, is the velocity at t = 0.

The value of 1ts time constant is

te = TRT * ° ¢ c c ottt e e e e e (49)

If k is negative then te is the time it takes a particle to
reach é times its velocity at t = 0. This result 1is inde-
pendent of the initial velocity Vo If k is positive te is
the time it takes to increase its velocity to € times its
initial velocity. The time constant 1s a reasonable indica-
tion of the effect of the force on the particle's motion.

We will now evaluate 1t for the various forces previously

obtained.

Numerical Results

If the force on the large perfect absorbing sphere
is approximated for small B, then we have from equation (17)
3 m, ¢

Mnaz u

te =
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This expression, in terms of the particle's density e, 1is

written

_ pac
te TR R R R R (50)

The time constant is seen to be proportional to the particle's

density and radius, and inversely proportional to the energy

denslity. 1In interstellar space it is estimatedlsb that

MR LA
al

u =12 x 10713 erg/cm3.

Conslder a metal such as copper, iron or nickel with a den-

sity of approximately 8 gm/cm3. We choose a particle of 2

radius a = 2 x lo-ucm whichyfor many cases, is large enough
to exclude significant diffraction effects. For these
values equation (50) yields

ty = 4 x 109 seconds = 10%° years.

This 1s a long time indeed, even by astronomical standards.
17

Astronomers have recently estimated the age of the galaxies

to be about 1010 years. This 1s much too short a time for
isotropic radiation to affect the motion of larger inter-
stellar particles. The time constant above can be made
smaller by decreasing the radius a, but any appreciably
smaller value for a will necessitate the consideration of
diffraction effects.

The above value for te was calculated for particles

large compared to the largest wavelength making an important

contribution to the energy density u. Now let us go to the
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opposite extreme and consider particles small compared to

the smallest wavelength contributing significantly to the

radiation energy density. From equations (49) and (29) we
find

_ ¢ lap
te - u (Sme + ub) . . . . . . . . . . . . . (51)

Since b is seen in equations (41) and (42) to be proportional
to a, the time constants for small metal spheres are inde-

pendent of the particle's size. If we choose A = 5 x lo_scm
and consider iron of density p = 8 gm/cm3, the time constant

can be evaluated from equation (51) using the values for m

and b in equation (41). At these values we have for iron
te = 4 x 1017 seconds = 10lo years.
For nickel, using the values from equation (42) and a den-

sity p = 9 gm/cm3, equation (51) yields

t 1018 seconds = 3 x lO10 years

e

"

Radiation pressure 1s generally larger for metal particles
than for dielectric particles because metal both scatters
and absorbs radiation. However, since the density of metal
is also larger, this partly counterbalances the effect of
the larger radiation pressure on the particle's motion.
Debye's approximation given in equation (36) holds
when the ratio 2ma/X 1is on the order of .8 or smaller. It
breaks down of course when the particle 1is so small that it

does not have macroscopic qualities. The effect of radiation
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pressure on metal particles larger than those considered here
is complex and I have not made any estimates of te for those
cases.

For small dielectric particles with € = « (perfect

reflector) we have, using equations (47) and (49)

5 1
9m ¢ -

t = 7> — = 3035 N € - ;
© 7 x 2°u n5a v 28ux '

To find an order of magnitude for this time constant let .

X = %5 , 0 =1 gm/cm3, and a = 10-6 cm for A = 6000A.
Therefore
te 2 3 x 1019 seconds = lO12 years.

However if x = % and a = 3 x 10_6 cm, all other parameters

remaining the same as above, we find

te = 7 x lO17 seconds £ 2 x 1010 years.
Again the time constant is large but it 1s close to the
estimated age of the galaxies.

For the case of a small dielectric particle with
a dielectric constant ¢ we have from equation (48)
9mO 05

210n5ua6;Il

3pac
T - - - (53)

t=e+1
€ 6h4ux

e - 1

e + 1
e - 1

Comparing this to equation (52) we see that for € = 1.5 the
values for te are about twice those given by equation (52)
for the perfect reflector. Hence for the same two sets of

parameters chosen for equation (52), equation (53) yields
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e

te

2 x lO12 years for the first case and

4 x lOlo

years for the second case.

It should be remembered that particles in interstellar space
generally have low temperatures and this could be an impor-
tant factor in determining the values for the dielectric
constant and conductivity of a particle.

Particles with a size on the order of the radiation's
wavelength are also important to consider. For such cases
equation (29) is useful in finding the effects that the radia-
tion has on the particle's motion. Since we are interested
in low velocities, higher order term of B have been ignored
in equation (29) and using equation (31) we write

FZ = - 1_31_ 'n'az (mxo + uh) B e o o o e e e s o s (514)

Now consider Figures (4) and (5), Figure (4) 1is an
example of Qpr varying as a function of x for a dielectric
(n = 1.33). Figure (5) shows the Qpr for a perfect reflector.
From these graphs we can measure the slopes at various values
of x and substitute them into equation (54) to determine the
force on the particle. In Figure (5) the greatest force
exerted on a particle will occur where x < 1 since the slope
there 1s very large. A representative poinf on this part of
the graph can be taken as the point where Qpr = 1. Thus

Xx = .7 and m = 5. Equation (54) then yields

F = - = uma 8.
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If we choose A = 5 x 10"5 cm and assume all energy density

6

u has this wavelength we have then a = 5 x 10 -~ cm and

F = - 3 x 10°°°,

z To determine the effect of this force on

the particle's motion we again compute the time constant.
Substitute the coefficient of B from equation (54) into the
denominator of equation (49) and write the mass in terms of

its density p and radius a. The result is

_ beap
ty = aTmx_ + Al e 1)

Assume p = 1 and the values of the parameters in the force
above, we have then from equation (55)

t, 25 x 1010 seconds = 2 x 109 years.

In interstellar space however, the radiation density u does
not conslist of monochromatic radiation, but is made up of a
continuum of different wavelengths. If this radiation is
concentrated over a region of about %x then 1t can be seen
from Figure (5) that the slopes for values of x in this
reglon are of about the same size as the slope chosen above
at x = .7. For such a case te would be expected to be of
the same order of magnitude as computed above. Its exact
value would, of course, depend on the distribution of energy

density. For cases where x > 1 we see from Figure (5) that

the slopes are negative. For a particle of radius

a="5x 1072 cm, again setting » = 5 x 1072 cm, we find

~

6. Thereforem = 0 and h = 1. Here we see that equa-

X

tion (55) reduces to equation (50) as expected for larger
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particles. It is also seen that for dielectric material of
density p= 1 equation (55) yields for these values

te = % x 1018 seconds = 4 x 1010 years.

For smaller values of x, where x is still greater than unity,
the slope 1s negative but the value of h increases. In this
region we see then that the value for te does not vary
appreciably.

Figure (4) shows the behavior of Qpr for n = 1.33
to be quite different from that for n = « shown in Figure (5).
The ripples in Figure (4) make the behavior of the particle's
motion much more sensitive to the wavelength than in the case
of the perfect reflector. For values of x ranging from about
2 to 5, values of te will be on the same order of magnitude
as for the perfect reflector. If we choose Xx = 4 to repre-

10 years when

sent this region we find that te = 5 x 10
A =5x 1072 and p = 1. Of particular interest are the
ripples occurring at values of x larger than 10. As was
shown before, a particle may experilence either a retarding
or an accelerating force in this region. If the slope is
positive 1t 1is a retarding force. If the slope has a large
enough negative value the force accelerates the particle.
Consider a typical value for the larger slopes of a particle
with a value X, between 10 and 15. If the slope 1s positive
then in the llnear regions of the graph m = 1. If it 1is

negative m = - %. Hence for a retarding force in the middle

T
o .
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of this region

t, 22 x 1010 years
when A = 5 «x 10"° cm and p = 1. An accelerating force yields
te 2 8 x 1010 years in the same region, where now the time

constant is the time necessary for the velocity to increase

by a factor of €.

Again these results hold for monochromatic radiation.

Unless the energy density is concentrated at certain wave-
lengths an averaging effect would be expected which would
reduce the effects of the "ripples". In such a situation
some wavelengths would exert a retarding force, while others
would exert an accelerating force. If we assume a distribu-

tion among the wavelengths such that the value for Qpr can

be approximated by a straight line of slope zero, and h = %;
then if p = 1 the time constant has a value between 10ll and

1012 years in this region.

‘F T



CHAPTER V

SUMMARY

The derivation of the expression for radiation P, |
force was based on relativistic mechanics. The stress-
energy tensor for a pencil of radiation was transformed

from the star system to the particle system. Then by inte-

Lhig
KRN

grating the partial derivatives of its components the
radlation force was obtained. Thils result was also shown

to be in agreement with a result calculated from Robertson's
equation.

The effects of the Doppler shift and the dependence
of Qpr on wavelength in an isotropic, and often monochroma-
tic, radiation field have been investigated. We have shown
that the total resulting force on a particle moving through
the field will generally retard the motion of the particle;
although 1t can 1in speclal cases accelerate a particle to a
velocity where the total radiation force wlll become zero.
It has also been shown that at non-relativistic speeds, the
ratio of the initial velocity to the velocity at a later
time will be independent of the initial velocity.

Finally, numerical estimates were made to determine

the order of magnitude of the time constants for this effect

56
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on particles in interstellar space. The results showed that

the time constant has a value on the order of from 10lo to

10ll years for many cases. This value is comparable to some

present day estimates of the age of the galaxies.




58

FIGURE (U4)
Irvine's graph of Qpp for n = 1.33.
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FIGURE (5)
Debye's graph of Qpr for the perfect reflector

pr
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