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ABSTRACT

INTERPOLATION OF STATIONARY RANDOM FIELDS
OVER IOCALLY COMPACT ABELIAN GROUPS

By

John Karl Scheidt

let G be a locally compact abelian group. Let (xg) be
a stationary random process indexed by elements g of G.

A.N. Kolmogorov, P. Masani, and H. Salehi derived numerous results
on the minimality and interpolation of random processes indexed by
integers. The main efforts of this thesis are to derive similar
results for processes indexed by the group G. Although the ideas
and concepts used here are similar to the ones used by Salehi in
his work, some of the techniques are different, since the integers
are ordered and singly generated whereas an arbitrary group need
not be.

First, the univariate case is considered. Results comparable
to Kolmogorov's Minimality Theorem, the Wold Decomposition Theorem,
and the Wold-Cramer Concordance Theorem are obtained. In addition,
results similar to the work of H. Salehi on interpolation of
stationary random processes are established. This subsumes a correct
version of the recent work of L. Bruckner whose main theorem is in
error.

Secondly, the multivariate case is considered. Under extra

assumptions, most of the results of the univariate case are extended.
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Finally, there is a discussion of some open problems of the

multivariate case, as well as infinite dimensional random processes.
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1. INTRODUCTION

The study of stationary stochastic processes was originated by
A. Khintchine in 1934 [ 7]. 1In subsequent years the theory of sta-
tionary stochastic processes has undergone a remarkable development.
The basic contribution to the theory of prediction of stationary
stochastic processes is due to A.N. Kolmogorov 2’8], H. Cramer [2 ],
and N. Wiener [31]. Kolmogorov was the first to formulate the basic
problems of prediction and minimality of stationary stochastic processes
indexed by integers. One of his most famous theorems is on the char-
acterization of minimality for univariate processes in terms of
spectral properties. P. Masani [13] extended the concept of minimality
to multivariate stationary stochastic processes indexed by integers
and obtained a similar characterization of minimality for such pro-
cesses. H. Salehi [28] extended Masani's work, using generalized
inverses, to deal with interpolation of multivariate stationary
stochastic processes indexed by integers.

The idea of having processes indexed by elements of a group,
instead of the integers, has attracted the attention of several
mathematicians. WangShou-JenEIn considered stationary random fields
indexed by the lattice points of the plane. He was able to generalize
Kolmogorov's minimality theorem for univariate stationary random fields
indexed by these lattice points. Later, L. Bruckner [1 ] studied

the question of minimality and interpolation of univariate stationary



stochastic processes indexed by elements of a discrete locally compact
abelian group (LCAG). Some of the proofs of Bruckner seem to be in
error. An example to justify this claim will be given later (cf. 6.3 ).
Other aspects of the theory of stationary stochastic processes over
LCAG's were studied by M. Rosenberg in [22].

In this paper the questions of minimality and interpolation
of univariate, as well as multivariate, stationary random fields over
LCAG's are systematically studied. Results motivated by those of
H. Salehi's on minimality and interpolation of stationary stochastic
processes over the integers will be established for stationary random
fields over LCAG's. Although many of the ideas and concepts are
similar to the ones used in Salehi's paper, some of the techniques
used here will be different, since the integers are ordered and singly
generated whereas an arbitrary group need not be.

With reference to this background we may now summarize the
contents of this thesis and indicate the new results established.

In §2 we first recall the Hilbertian structure of the space
Nq, and then introduce the notion of a non-negative, hermitian, q X q
matrix-valued measure M over an arbitrary measurable space (Q,3).
M. Rosenberg [21] defined the integral ggpugf for any measure M
in such a way that the space LZ(Q,B,)_{) of q X q matrix-valued
functions § for which gﬂggf exists becomes a Hilbert space under
the inner product ((§,Y)) = tr(ggﬁugf). We will quote some of his
results here. We then, following Rosenberg, introduce the concept
of ﬂg-valued countably additive orthogonally scattered (c.a.o.s.)
measures, and study briefly the theory of integration with respect

to such measures.



In §3, we first review the theory of q-variate stationary
random fields over LCAG's. We introduce several definitions and
notations needed in the following sections. The notion of the rank
of a process with respect to a given family of sets, as given here,
is a direct generalization of the one given previously by Wiener and
Masani [32] and will turn out to be very fruitful in studying several
aspects of the theory of q-variate stationary random fields over
LCAG's. We then state the Wold Decomposition Theorem, the Wold-
Cramer Concordance Theorem, and some basic results due to Kolmogorov,
Masani, Salehi, and others in their work on minimality and interpolation
of stationary stochastic processes, since we will be primarily inter-
ested in these topics.

In §4 we consider a univariate stationary random field over a
LCAG G. First, we state the Wold Decomposition Theorem for any
family, 4, of non-empty Borel sets of G. Under the assumption
that G 1is discrete, we establish several important results, such as
Kolmogorov's minimality theorem and the Wold-Cramer Concordance
Theorem. We also extend the work of H. Salehi on interpolation of
stationary stochastic processes specialized to the univariate case to
any stationary random field over any discrete LCAG.

In §5 the same problems as considered in §4 are studied for
q-variate (1l < q < ®) stationary random fields over LCAG's. Most
of the results of the univariate case are extended, though, in some
instances, extra assumptions are needed. The results of §5 extend
those contained in §4 in the same spirit that Masani and Salehi's
work generalized Kolmogorov's work from the univariate case to the

multivariate case when the process is indexed by integers.



In §6 we will include several examples which were mentioned
in the earlier sections. There will be a brief discussion on the open
problems related to minimality and interpolation of q-variate sta-
tionary random fields over LCAG's. Also, a few remarks will be made
on the minimality and interpolation of infinite-dimensional stationary

random fields over LCAG's.



2. l(q-VALUED c.a.o.s. MEASURES AND STOCHASTIC INTEGRALS

In the first part of this section we review the theory of the
spaces ﬂg, where & is a Hilbert space. In the second part we shall
consider the special cases tﬂ = _I:Z(O,B,yl_), where M is a non-negative,
hermitian, q X q matrix-valued measure, ¥ being the space fz(n,B,bi)
of q-dimensional (row) vector-valued functions on {}. In the third
part we define the notion of countably additive orthogonally scattered
(c.a.o0.s.) measures and study briefly the theory of integration with
respect to such measures. These results will be used in later sections
of this work.

2.1 Notation. Small underscored letters x, y, etc. will
denote q-dimensional column vectors with complex components xi, yi,
etc. large underscored letters A, B, etc. will denote q X q
matrices with complex entries a,

ij?
denote q X q matrix-valued functions.

bij’ etc. and F, G, etc. will

2.2 Definition. let % be a complex Hilbert space with inner
product ( , ) and norm l |. The Cartesian product Nq is defined ’
to be the set of all q-dimensional (column) vectors x with components

in %,
i.e., X = (xi)t,l=1 el o X, EN i=1,2,...,q

Addition of vectors in 1 and multiplication by q X q complex-

valued matrices are defined as usual (cf. [32]).
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q
i=1

Then (a) the Gramian (x, y) of x and y 1is defined by

2.3 Definition. let x = (xi) and y = ‘y1)1=1 e,

x, ¥ = [(xi’yj)] l<i,j<q

where (xi,yj) is the inner product in %&. (The Gramian may be

thought of as a matrix-valued inner product.)

(b) The inner product of x and y and the norm of x

are defined by:
((x,y)) = tr(x,y) and ||x|| =/\/tr()£,5).
(c) We say that x 1y ® (x,y) =0

i.e., for all 1< 1i,j < q, (xi,yj) =0

{For the definition given in (c), we refer the reader to [32].}

2.4 Definition. (a) A linear manifold in %% 1is a non-

void subset 7 such that if x,y €, then A x +By €M for all
q X q matrices A, B.

(b) A subspace of K’q is a linear manifold which is closed
in the topology of the norm || ||.

(c) let T be an operator on ¥ into #%. Then the

inflation T of T to 23 is defined as follows:
= q - q
for all x = (x,)}_, € WV, T(x) &N, -

(d) For a given x € ¥ and a subspace 7N Ck(q, (ﬂ?_]{) will
denote the orthogonal projection of x onto 7 (cf. [32], p. 132).
It is easy to see that T 1is a bounded linear operator on

¥ T is a bounded linear operator on [ Ta



We shall now turn to a brief discussion of the Lebesgue

integrals for q X q matrix-valued functions on a space (.

2.5 Definition. Let (Q,8,0) be a measure space with
a non-negative measure. Then for all §, 0 < § < =, we define
La(ﬂ,ﬁ,p,) as follows: Lé(ﬂ,ﬁ,u.) consists of all q X q matrix-
valued functions F = [fij] on (@ with complex-valued entries

fij € La(n,ﬁ,u)-

2.6 Definition. The integral of a function F

[fij] €
_I_.I(Q,B,p.) is defined by

gz«»)u(dw) =[] £ @pd)] .
Q

The following is a well-known result (cf. [327).

2.7 Theorem. (a) F € LG(Q,B,p.), 0< 6 <o»eF has measur-

able entries and \P—“Eli) € L,@Bw). L @Bw),156<a isa

Banach space under the us:ial algebraic operations and the norm
6 B
d .
IFlly,,, = ([IE@ g @]
(b) LZ(Q’B’I-") is a Hilbert space under the same operations

and the inner product ((E,G))u = tr (E,g)u, where (g,g)u. =

*
aL_Fl(w)g (W)p(dw) is thematricial inner product of F and G.
(c) F € Lm(ﬂ,B,u.) © F has measurable entries and ‘E‘E
is essentially bounded. L (Q,8,u) is a Banach algebra under the

usual algebraic operations and the norm “E“co = ess.l.u.b. |§(w)‘E.

1
)If A is a p X q matrix, then the Euclidean norm of A is

defined to be ‘A‘E =



2.8 Remark. It is easy to see that the matricialinner product
(Lg)u is the Gramian of F and G (cf. 2.3 (a)), when we look
upon F and G as elements of Vq, where & is the space
Lz(n,B,p.) of q-dimensional (row) vector-valued functions on ()
whose entries are in LZ(Q,B,u.). This remark leads us to the following

definition.

2.9 Dpefinition. (a) If F, G € LZ(Q,B,U,), then we say that
FiGe (F, 8 =0.

(b) A sequence (gn)o_om in LZ(Q,B,M.) is called orthonormal
® EprEy) = Syl

2,10 Remark. 1In the Hilbert space L2 (3,8,u) considered
in 2.7 (b), we took . to be a non-negative measure over ((,5).
For many purposes it is necessary to consider LZ ©,3,M), where M
is a non-negative, hermitian, q X q matrix-valued measure over

(©1,8). Rosenberg [21] and Mandrekar and Salehi [9 ] have studied

this question. For ease of reference, we will state the main result

here.
2.11 Definition. let (Q,9) be a measurable space. Then
M= [Mij], 1l <i,j £q is called a (bounded) countably additive,

non-negative, hermitian, q X q matrix-valued measure over (1,8) «

(i) l1<i,j £q, M is a countably additive (c.a.)

i}
(complex-valued) measure on f3.

(ii) M is a non-negative, hermitian, q X q matrix-

valued function on 2.

2.12 Remark. Let M be a non-negative, hermitian, q X q

matrix-valued measure over (,8), and let §, ¥ be B-measurable



q X q matrix-valued functions on (}. Rosenberg has shown [21] that
the integral ggdﬂ* may be so defined that the space LZ(Q,B,I‘_{)

of q X q matrix-valued functions Y such that {g\l_'dM_‘{’* exists is
a Hilbert space under the usual algebraic operations (cf. [32]), the

inner product (( , )), and the norm I\ where

\\Z’M

(2.13) (@YD), = tr @) 12ll, = (@)

@Dy, = z[;i(w)ﬂ(dw)‘i*(w) i

He observed that M << tr 1\_41) and defined
dM
* = *
(2.14) l[;gdm_\y_ = J‘gd Ty L dtrM
n -—
dM

where FETR] is thematricial Radon-Nikodym derivative of M with

respect to tr M and the R.H.S. of (2.14) is defined by (2.6).

We now turn to the discussion of A(q-valued c.a.0.s. measures
and study briefly the theory of integration with respect to such
measures. Rosenberg has studied this topic in detail. We will state

several of his results which will be needed later.

2.15 Definition. Let (i) X be a complex Hilbert space.
(ii) M be a c.a., non-negative, hermitian q X q matrix-
valued measure over (,8) (cf. 2.11). Then a function § on B

into %9 such that for all B,C € B

(@), §(C)) = M®B N C)

I)The symbol << stands for absolute continuity. If M 1is a matrix-
valued measure and . 1is a scalar measure, then M << u means each
entry Mij of M 1is absolutely continuous with respect to .
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is called an 9 -yalued countably additive orthogonally scattered (c.a.o.s.)

measure where M is a non-negative, hermitian, matrix-valued measure.
When necessary, we shall write !g instead of M. M 1is called the

associated measure of §.
if BNC= ¢, and

It easily follows that E(B) 1 E(C)
EUB,) =z E@B,) if the Bk's are disjoint, where the convergence
k k

on the right is in the %% -norm.
There is a well established theory of integration with respect

to such measures for q 2z 1. For ease of reference we shall restate

the definition of integration and the main theorem.

2.16 Definition. (Step 1). For a simple function

n
=3 AkXE , Where ék are q X q matrices,
1 k

n
{Eidi =z ék E.(Ek) *
1

(3 )° is a sequence of

A direct computation shows that if 1
2

simple functions then
fenss - Jedall = llzg - £l -

Hence the following definition is unambiguous.

2.17 Definition. (Step 2). Llet § € LZ(Q’B’Mg)' It is

known (cf. (217, p. 296 ) that there exists a sequence (gn)? of

Qﬂ - 3% in LQ(Q,B,ﬂg). We define

simple functions such that

n—o (]

{[;q_?dg = lim [g dg .

The following is an important theorem on the subject.
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2.18 Theorem. Let (i) § be an’(q-valued c.a.0.S. measure
with associated measure t;ig over (Q,8).

(ii) SgL be the set of all stochastic integrals j‘g(m) € (dw) .
1]

Then (a) (gi(w)i(dw), Zl[;‘l(m)i(dw)) = (_QJ_’)Mg-

(b) The correspondence § - gg(w)i(dw) is an isomorphism on

. q
Lz(ﬂ,ﬁ,}_ig) onto SS. In particular, S§ is a closed subspace of & .



3. PRELIMINARY RESULTS ON PREDICTION AND INTERPOLATION
OF STATIONARY RANDOM FIELDS

let G be a locally compact abelian group (LCAG) and G*
the dual group of G. Then G* is also a LCAG under the compact-
open topology. We will denote the elements of G by g and those
of G* by A\. The value of ) € G* at g € G will be denoted by
(g5\). The Borel field B of G 1is the g-field generated by the
open subsets of G. Similarly, 5?, the Borel field of G*, is de-
fined. It is well known that G is discrete if and only if G* is
compact. Furthermore, it is known that there exists a regular Haar
measure m defined on B*. Without loss of generality, when G
is discrete, we will assume m(G*) =1,

We now give the definition of a q-variate stationary random

field over G.

3.1 Definition. (a) A gq-variate mean continuous weakly
stationary random field (WSRF) over a LCAG G (under the operation

+) is a function such that

®gdeeq

(i) Eg € % for each g €cG W 1is a fixed Hilbert space)

ii the X Gramian matrix (x_,x =T(g -g'

(ii) q Xq (_g,_g.) (g -8")
depends only on g - g°'.

(iii) - X 45 X - Eg') -0 as g -g' -0 (mean con-

(x
8 B8 B
tinuity).

(b) The q-dimensional temporal domain 2& of a g-variate

is the closed subspace of e spanned by the
12

WSRF ()_cg)gec
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Eg € ﬂﬂ, g € G with q X q matrix coefficients.

(© let () .

over the same G. We say that X and are
y @) gco ¥y gec

and (r)ycq  be w3 -valued WSRF's

mutually homogeneously correlated if (Eg’zg') depends only on g - g’'.
The following is contained in {227 and will be stated here

for completeness.

3.2 lemma. Let ()_gg)gEG be an Ng-valued WSRF. Then there
exists a strongly continuous group of unitary operators (Ug)geG on

& such that for each g € G, we have

% = Uy %o

where gg is the inflation of Ug to kq (cf. 2.4c).

We shall now recall the generalization of Stone's theorem

({227, Theorem 2.3) and of Bochner's theorem ([22], Theorem 2.4).

3.3 Stone's Theorem. Let (Ug)gGG be a weakly continuous

family of unitary operators on a Hilbert space % over a LCAG G.
Then there exists a unique spectral measure E(-) defined on the

*
Borel subsets of the dual group G such that

Uy = f*(g,x)E(dx) .
G

3.4 Bochner's Theorem. (a) f 1is a continuous positive
po

definite complex-valued function on the LCAG G if, and only if,
there exists a bounded non-negative regular measure m on the Borel

* *
subsets [  of the dual group G such that for all g € G

@) = [ (&M .
G
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(b) If for all g € G,

INCRSLIGVRSICRYACY
G G

*
where m and p are bounded complex-valued regular measures on 3 ,

then m = .

3.5 Remark. It is known (cf. [22]) that if E(-) is a
spectral measure defined on the Borel field Eﬁ for a Hilbert space
¥ and E(-) 1is the inflation of E(:) to Nq, then E(-) = E(.)go
is an Nﬂ-valued c.a.0.8. measure. The non-negative, hermitian, q X q

matrix-valued measure F defined by:

F@®B) = (&®), &(®))

*
where B € 8 , is called the spectral distribution of the WSRF (gg)gec.

With this in mind, we state the following lemma (cf. [227,

P. 339).

3.6 Lemma. Let (Ug) be the shift group of the ﬂq-valued

g€G

WSRF and let E(-) be the associated spectral measure. Let

(’ig) gcG
S be defined by:

S={xex :y=[ 8ME@x, 2 €L C E8,D).
*
G

Then

Now, applying (2.18) together with this lemma, we obtain the

following important theorem.
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3.7 1Isomorphism Theorem. With the above notation, we have:

* %
(@) For §, Y € LZ(G B ,E),

[ 2OOE@Nz,, [ YIVEENK,) = (3.0 =
G G

j*gmz(dx)g*m :
G

(b) The correspondence § -o‘r g()\)g(d)\)g_o is an isomorphism
*
* % G
on L'-Z(G 3 ,F) onto m -

We will now introduce some new notations.

3.8 Notations. Let g be any family of Borel subsets of
B closed under translations (i.e., if I € 4, then I +g € U for
all G). Let I be an arbitrary element of and (x
g € G) ry 4 (—g)gEG
be an l(q-valued WSRF over G.
(i) We will let mI,x denote 6(§g, g € 1I); i.e., the
closed subspace of Nq spanned by }_cg, g €I,
(ii) We will let 7 . denote miL,x nm; i.e.,n  is
1 s X I » X
the closed subspace of m, orthogonal to '/_711,)(.
iii) We will let = N .
( ) m,a,x 1€ mI,x

The following definition is a generalization of the concept

of rank given by Wiener and Masani (cf. [32], p. 136).

3.9 Definition. Let I €8 and g € G. Then the rank of
the %% -valued WSRF (ig)gEG with respect to I and g, denoted by
Pr g’ is defined to be the rank of the Gramian matrix of

H]

- i f; i.e.
Eg (’-Eg‘ml,x) with itsel i.e.,

py,g = Tk - ("-g\l’&,Q’ X, - (igl'l_le’x))-

9
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3.10 Remark. If G is a discrete LCAG, the families
of Borel subsets of [ with which we will be concerned are:

(i) Jb is the family of complements of singletons of G.

(ii) J = {go,gl,...,gn} SG. J is the family

go,gl,.oo ,gn
of the complements of the translates of J; i.e., J

By ta8y -
{Jc + g, g8 € G}, where J¢ is the complement of J in G. For
simplicity, when there is no danger of confusion, 4 veeerg will
be denoted by J%. ° :

(iii) JL is the family of complements of finite subsets
of G.

(iv) For G = Z, the integers,_ap is the family of In's
where I = {k : k < n}.

We introduce here the following definitions which arose in

this study.

3.11 Definition. Let g be a family of Borel subsets of
G. Then
(1) An Ng-valued WSRF (ﬁg’ g € G) 1is called yg-singular

if for all I € U, mI,x =mx; i.e. m.p,x =7—"x'
(ii) An &3-valued WSRF

m‘a’x = {9} *

For G = Z, the integers, Masani, Salehi, and others have

(:_(g)geG is called g-regular if

introduced some of these notions under somewhat different terminology.
To make the relation between their work and ours clear, we will state

some of their results and make the appropriate comparisons.

3.12 Definition (Kolmogorov, Masani). An Nq-valued WSRF

© 3
(x,)_, 1is said to be minimal if, and only if, x, ¢ Qh’x, where
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I={...-2, -1, 1, 2,...}.

3.13 Remark. It is easy to see that if G = Z, an 3d-valued
WSRF (§n)°:uo is not minimal if, and only if, (gn)fm is Jb-singular.
Obviously, a WSRF i8 either minimal or not minimal.

However, in general, it is not true that a WSRF is either
regular or singular, as the example in §6 (cf. (6.3 ) shows. The
statement of the main theorem (4.1) of L. Bruckner, which he considers
his extension of Kolmogorov's minimality theorem, as well as its proof,
is in error. The error stems from the fact that he claims that a
WSRF is either Jb-regular or Jb-singulat. The exact relationship
between the two concepts of regularity and minimality for a WSRF
will be given in Theorem 4.8.

In §4, we will define the concept of minimality for any dis-
crete LCAG, and extend Kolmogorov's minimality theorem.

To give the flavor of the types of theorems proved in §5,
we give some existing results for integers. The following, Kolmogorov's
minimality theorem (cf. [13], Theorem 2.8) is one of the most funda-

mental results of this theory.

3.14 Theorem (Masani). Let (:_c_n)QD be an kﬂ-valued WSRF
_— -

with spectral distribution F. Let be the rank of

e

)T@ is

°1,0 &,

with respect to I ={..., -2, -1, 1, 2,...} and 0. Then (§n

minimal and pI 0= 1 if, and only if, F' 1is invertible a.e. on C,
]

and g"l €Ly

Also, in [28], H. Salehi introduces the notion of interpola-

tion for ¥d-valued WSRF's over the integers. He proves several

theorems on the interpolability of a given WSRF in terms of the spectral
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distribution of the random field. From one of his theorems (cf.
[28], Theorem 2) he deduces the following, from which Masani's

multivariate extension of the minimality theorem follows.

3.15 Theorem (Salehi). Let (§_k)°:°° be an Hﬂ-valued WSRF.
let I =1{..., -2, -1, 1, 2,...}] and let 2, be the orthogonal
k
4 =
projection of X, onto the subspace ﬂ&,x' Let z, U z, where
k, o . . ®
(4 )., 1s the associated shift group of (gk)_w. Let
Yy = (go,z )#E_k where (EO’EO)# is the generalized inverse of
(z952,) (cf. [20], p. 355 ). Then
2
" n J@)Jg D
(a) (‘Z'O’EO) = (XO’XO) = ﬁ\[ﬂ T
where J is the projection matrix on the space Cq of q-tuples of

complex numbers onto the range of (Eo,go) in the privileged basis

of ci. 2
- T oJN I
®) (ik)-m is minimal iff ‘[“ —TE.— #0.

In §5, we will extend Salehi's theorems of interpolation of
WSRF's with respect to the integers to %7 -valued WSRF's over any LCAG.
Our extension will yield a generalization of Masani's (Kolmogorov's)
minimality theorem from integers to any LCAG.

We may add that our notion of J%-singularity coincides with
the concept of interpolation of a finite set of integers introduced
by Salehi [287]. Similarly, our notion of J _-singularity and Salehi's

concept of interpolability of the entire random field are the same.

J()n) 2J

1) o
For the definition of y —aF — » see ( (28], p. 308 ).
- F
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We will now state some known results (most of which concern
WSRF's over integers) which we will use in the later sections in
connection with our results about the concordance of the Wold and

Cramer decompositions. We start with Cramer's decomposition.

3.16 Remark. let N be a non-negative, hermitian, q X q
matrix-valued measure defined on the family of Borel subsets of
(-o,»). Let . be a g-finite, non-negative, scalar-valued measure
on the same family. Then there exist unique matricial measures

a
N and N° such that N =N* 4N, N <<p , 8 +u D and

a s . co s .
N and N are non-negative, hermitian measures. This was proved

by Cramer [ 2 ] and goes by his name.
The following, a finite dimensional Cramer decomposition

theorem, can be derived from Mandrekar and Salehi's result ([12],

Theorem 3.15).

3.17 Theorem (Cramer's decomposition). Let F be the

sepctral distribution associated with the kn-valued WSRF (:_cg)gEG
*

where G 1is a LCAG. Let m be the Haar measure on B , the family

*
of Borel sets of G . Then

F=F +E

where Eé << m, E? 1L m, and both gé and g? are non-negative,
hermitian. For simplicity, the Radon-Nikodym derivative of Eé
with respect to the Haar measure m is called the spectral density

of the WSRF (Zg)g€G°

I)E? i 3]l means each component N:j of Eé is singular with respect
to the measure .
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On the other hand, for multivariate processes indexed by
integers, the Wold decomposition theorem was proved by Wiener and

Masani ([ 32], Theorem 6.11).

3.18 Theorem. Let (x )°° be an ¥%-valued WSRF. If
Lheorem X
(gn)Tm is non-deterministic; i.e., for some n, X ¢ Z&

n-l’x’
I =({k : k <n}, then
n

X u +v
n —mn -
where (i) u_ L v for all n,
-n T -
@
ii is purely non-deterministic; i.e. = {0
(ii) (En)_°° P y > ’ mw ,u {_}:
(iii) ¢ )m is deterministic; i.e = P
iii 20 N m c; i.e., z%ﬁ v 2“.
In §5 we will prove a Wold decomposition theorem with respect
to a given family Y, closed under translations, of Borel subsets
of G, a LCAG.
Under certain assumptions, there is concordance between the
Wold decomposition in the time domain and the Cramer decomposition

in the spectral domain. The following theorem is due to Wiener and

Masani ([32], Theorem 7.11).

3.19 Theorem. Let (i) (’in):, be an ¥%-valued WSRF and

I, = {... =2, -1, 0}; (ii) pIo,l =q; (iii) X =u +v be its
Wold decomposition; (iv) F, Eu’ Ev be the spectral distributions

. ® ® ® . ) a
of the random fields (En)-m’ (En)-m’ (!_n)_m respectively; (v) F,

Eé be the absolutely continuous and singular parts of F respectively.

Then
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Later, Robertson ([19], Theorem 5.2) obtained the concordance

result under a weaker assumption.

3.20 Theorem. For any x%-valued WSRF (In)fw with
pIO,l =p (0 <p s5gq), there is concordance between the Wold de-
composition and the Cramer decomposition if, and only if, rank
F'(6) = p a.e. (Leb.), where F 1is the spectral distribution of

and F' is the derivative of F with

the random field (x_ y®
respect to the Haar measure on the circle.

In §4 and §5, we will prove a Wold-Cramer concordance theorem
for the cases 4=y, J=J and g = 4 -

3.21 Remark. As we already mentioned in the first paragraph
of this section, the group G 1is discrete if, and only if, its dual
G* is compact. In this case, the Haar measure of G* will be finite.
These facts allow us to stay in the framework of the theory of Fourier
series rather than Fourier transforms.

For a non-discrete group G the notion of minimality of a
WSRF over G has not been treated in the literature. This may be
due to the fact that in a discrete group every point is a neighbor-
hood of itself while in a general group this may not be the case.
However, one may consider the problem of interpolation for WSRF's
over a group which is not necessarily discrete (See [25], [29] and
[35]). The results for the non-discrete case do not follow from those
of the discrete case and need a separate discussion involving the theory
of Fourier transforms.

For these reasons and in order to keep this thesis within its
previously stated confines we are not including the theory of minimality

and interpolation of WSRF's over a non-discrete group.



4. MINIMALITY AND INTERPOLATION OF UNIVARIATE WSRF's

In this section we will extend Kolmogorov's minimality
theorem (Theorem 4.7) for univariate WSRF's over the integers to
LCAG's. L. Bruckner has considered this case. As we mentioned in
Remark 3.13, his main theorem is in error. (The earlier work of
Rozanov on WSRF's indexed by integers [24] also indicates Bruckner's
mistake.) Among other things we will give a corrected version of
his theorem (Corollary 4.9) and give the exact relationship between
the concepts of singularity and regularity defined by Bruckner and
the notion of minimality given by Kolmogorov and Masani (Theorem 4.8).

We will state the Wold decomposition theorem (Theorem 4.2)
for univariate WSRF's with respect to a family 4, closed under
translations, of nonempty Borel subsets of a LCAG G. This provides
an extension of the usual Wold decomposition theorem given for WSRF's
over the integers. Using our result on minimality we will then
establish the concordance relation between the Cramer decomposition
and the Wold decomposition theorems (Theorem 4.13). This will con-
stitute a natural extension for the univariate case of the same result
given by Wiener and Masani ([32], p. 146) and Doob ([ 3], p. 576)
for WSRF's over the integers.

We will specialize our result on minimality to the case where
the random field is over the integers. 1In this case, the notions of
past, future, and past & future are well defined. Using our results,

we will examine the relationship between the past and the past &
22
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future of such a random field.

We finally give an extension of Salehi's results on inter-
polation of random processes over the integers to univariate WSRF's
over LCAG's. This will provide a natural extension of earlier
results of this section in the same way that Salehi's work on inter-
polation provided a generalization of Kolmogorov and Masani's work
on minimality. Although the ideas and concepts used here are similar
to the ones used by Salehi in his work, some of our techniques are
different, since the integers are ordered and singly generated whereas
an arbitrary group need not be.

The main reason we have considered the univariate case
separately is that Kolmogorov's minimality theorem and most of the
results of Salehi on interpolation theory can be extended without
any further assumptions. To get the corresponding results in the
multivariate case we have to make certain assumptions, under which
we are able to carry out our work.

Throughout this section only univariate WSRF's will be con-
sidered. We first state the Wold decomposition theorem whose proof
is given in L. Bruckner's paper for the univariate case. First,
though, we will need the following definition.

4.1 Definition. Let (xg) (yg) be univariate

8€G :4SE
WSRF's over a LCAG G. Let J be any family of non-empty Borel
f . h i aid to b -subordinate t

sets of G. Then (yg)gEG is sai o be g-subordinate to (xg)gEG
if

(i) M, <My 3

i f 11 ;
(ii) mI,y c mI,x or a I ey

iii and are tually h e 1 elated.
(iii) (xg)gGG n (yg)gec re mutu y homogeneously corr
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We will now state the Wold decomposition theorem for a uni-
variate WSRF over a LCAG G.

4,2 Theorem (Wold decomposition). Let 4 be any family
of non-empty Borel sets of G closed under translations. Let
(xg)gEG be a univariate WSRF with values in &. Then there exists

a unique decomposition of (xg)g with respect to g in the form

G
x = + w
g g g

where

(i) &.) G and (w ) c are #-valued WSRF's on G;

g'8 g8
(ii) (yg)gEG and (wg)gGG are J-subordinate to (xg)gec;
(iii) (yg)gEG and (wg)gEG are orthogonal; i.e.,
(gsWge) = 0 for any g,g' € G;
(iv) (yg)gEG is Jg-regular; (wg)gEG is g-singular.

We will now state the definition of minimality for a uni-
variate WSRF over a discrete LCAG.
4.3 Definition. Let G be a discrete LCAG. Then the

univariate ¥-valued WSRF (xg) is minimal if, and only if,

cl)

8€G
X, ¢ W&,x where I = {0}
The proof of the minimality theorem for WSRF's over a dis-
crete LCAG will depend on the following lemmas.
4.4 lemma. Let (xg)gEG be an f-valued WSRF over a dis-
crete LCAG G. Let ﬁg denote Xy " (xglwﬁ+g,x)’ where I = {0}°.

Then is an ¥-valued WSRF over G. Also, (xg) and

®g)gco g€C

1){0]c will stand for the complement of the zero element of G.
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’

b3 have the same shift.
®gecc
Proof. Let (Ug)gGG be the unitary group of shift operators
associated with (x . Then U ,=Ux, -U (x =
*gdecs gg' " g’ T Vgl g"wﬁ*g',x)

-U oI ati la U§= 'UX .
*g'4g s(xs"W&+s'.x) n particular, TRy = *g = Uyl O‘W&,x)
Since Uéml,x = Mg %’ it follows that Ug(xol”ﬁ,x) = (xng&+g’x).

H is a WSRF, which implies that (%
ence ((xg‘wﬁ+g,x))géc i R ich implies (xg)gEG
also a WSRF. Q.E.D.
4.5 Lemma. Let (x) be an §-valued WSRF. Then
I 8" 8€G
is minimal if, and only if, for all G
(xg)gEG is mini , and only if, for g €G, xg ¢ w&*g,x’
1 = {0)".

Proof. The proof of sufficiency follows trivially. 1If
(xg)gEG is minimal, then by (4.3) X ¢ ”&,x' But Ug”&,x = W&+g,x
implies that x ¢ . Therefore x ¢ for all G. Q.E.D.
P g & Trig,x g & Toig,x 8 €G- Q
The next lemma plays an important role in the theory of
minimality of WSRF's.
4,6 lemma (Main Lemma I). Let (xg)gEG be an ¥-valued
WSRF over a discrete LCAG G with the shift group of unitary operators
(Ug)gec G
a c a 12
= - = a d = .
Xy =%y (xg|W&+g,x)’ I = {0} nd o ‘xo\ Let F be the

and E be the spectral measure of (Ug)gE Let

spectral distribution of and f be its spectral density;

X
( g)gEG
i.e., f 1is the Radon Nikodym derivative of Fo {absolutely continuous

component of F as in 3.17} with respect to the Haar measure. Then

&g = ] @NMEMENX,
G
where %% is defined by
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o/f, on the carrier of e
% . s
0 , on the carrier of F .

Proof. Without any loss of generality, it suffices to prove

that io is given by

G

Since &0 €M > by the Isomorphism Theorem (3.7)

%o = j*cpo(x)E CINEN
G

for some P € LZ(G*,E;;F). Also, (cf. 3.2),

Xy = j*<g,x)E(dx>x0 .
G

Therefore,

Gegofo) = [ (809 (WF @V

G
¢9)
= [ &:NgMEMIMEN) + [ (8,09 (MF° @\).
* *
G G
Recalling that Xg = X - (XOlW&,x)’ we see that (xg,xo) =
) o where § is the usual Kronecker delta and ¢ 1is as above.
g,0 g,0
From [26], p. 10 , we know that I (g,\)m(d)) = 6g o Therefore,
* >
G
(11) (xgo%0) = o [ (g;0m(dn).

G

Combining (I) and (II), we get the following equation:

o [ @@ = [ @NGHMEMmEN) + [ (@05 0F @0
G G G
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which in turn is equivalent to:

(111) j'*(g,k)[c - (N Im(dn) = J‘*(g,k)Eo(x)Fs(d;\)
G G

By Bochner's Theorem (cf. Theorem 3.4 ), we get that

@) [ @ - GQMEO)m@N = [ GOF @0, B €8 .
*
B B

. s . . . .
Since F is singular with respect to m, it follows that each of

the integrals in (IV) is equal to zero. Therefore,

@ 0= (0-gMEONm@D) = [ 5 WF @) for all 8" ¢ 4.
* 0 * 0
B B

From (V) and [5 ], p. 105, it follows that

Therefore, if o # 0, we have

a
o/f, on the carrier of F

% = . s
0 , on the carrier of F

A 2
If o = 0, then |x0\2 = 0 and, hence, I*‘¢Ol dF = 0. There-

fore’ (p = 0 a,e, F. G Q.E.D.

We are now ready to state and prove the minimality theorem

for a univariate WSRF (x ) over a LCAG G.
g g€G

4,7 Theorem (Kolmogorov minimality theorem). Let G be a

discrete LCAG and (xg)gec a univariate f-valued WSRF over G with

spectral distribution F. Then (xg)gEG is minimal if, and only if,
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1 * %
€ L1<G ,8 ,m) where f is the spectral density of (xg)gEG
Proof. Sufficiency. Set ¢()\) = % (\), on the carrier of Fa

0 , on the carrier of FS.

Then

2 1.2 2. s
£*|¢(x)| F() = [ [gay) Em@n) + [ 077 (a)
G G

= f*f}x) m(d)) < = (by assumption).
G

* %
Hence, ¢ € L2(G ,B8 ,F). Now, by the Isomorphism Theorem (3.7), there

exists a y € W& such that

y = ] eE@xX, -
G
= 2 = ——1—
Note that (y,y) I*‘¢(k)l F(d)) I*f(k) m(d)) # 0. (Otherwise,

G G
% = 0 on every set of positive Haar measure which is impossible be-

cause F is a finite measure.)
We will next show that vy l-xg, g #0. Let X be an

arbitrary element of the WSRF (x ) . Then
8" gcG

(0¥) = [ @NeMFEN = [ @ m@n) =35, , -
G G
Since {xg, g # 0} is dense in Wﬁ,x’ 1= {O}C, we have that
y = cxq where ¢ 1is a non-zero constant. Hence, Xq ¢ W&,x which
implies that (xg)gEG is minimal.
Necessity. Suppose (xg)geG is minimal., Then %O ¢0

(cf. Lemma 4.5). Now, by Main Lemma 4.6,

%o = [ oo WE DX,
G
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where
(ﬁo,ﬁo)/f, on the carrier of F2
¢b ) 0 , on the carrier of FS .
Hence,
GgrRe) = Ro2)°] Fiy N
Therefore,

(ﬁo:x J‘ m( A
G

But, since §0 # 0, we have (ﬁo,io)-l is finite and hence
J\ —)—m(d)\) < o,

G

1

or ?G L (G @ ,m) . Q.E.D.

Next, we will establish a theorem on the relationship be-

tween the concept of minimality and that of Jb-regularity introduced

in 3.11.

4.8 Theorem. Let (xg) be a (non-trivial)l) univariate

g€G
#/-valued WSRF over a discrete LCAG G. Then (xg)gGG is Jb-regular

if, and only if, (xg) cc is minimal and F, the spectral distribu-

tion of (xg)gEG is absolutely continuous with respect to the Haar

measure m.

Proof. ecessity. Since
0o Necessity ince (x )geG

= = {0}, wh = [0}°. ,
mJO,X 1-|.g€_g mI'l'g,x {0}, where I = {0} Hence, x, 47721_'_3’)(

is Jb-regular,

Dje. m, * {0}.
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for g € G, and so (xg)geG is minimal.
We now wish to show that F 1is absolutely continuous.

*
Define the function § on G as follows:

. a
0, on the carrier F

Y\ =

] s
1, on the carrier F .

Then

[ 1F@n = [ @fm@n + [ 1@y
G G G

*
F°(G ) < w.

* *
Hence § € IQ(G B8 ,F). By the Isomorphism Theorem (3.7) there exists
z € W& such that 2z = I W(X)E(dx)xo. From Lemma 4.6 (Main Lemma I),
*

= G
%, = ] @NgE@X; where
G
(ﬁo,io)/f, on carrier of F-
% =

s
0 , on carrier of F .

Hence,

@ &) = [ @NGMIYFEN

G
(§0’§0) s
= \\) —e—— 0. d .0-
[, &N —F5 EQOm(@) + [ (8,001 F (@)
G G
=0 for all g € G.
Note that Wub’x = {0} iff Wd%’x = ﬂ&. Since Wd%’x = closure
I&gﬁé;g’x = closure z q(ﬁg) = o(ﬁg, g € G), we have

(11) S(ftg, g8 €G) =M.
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From (I) and (II) it follows that =z J.W&. But z € W&, and hence

z = 0. Therefore, 0 = \z\2 = I*|¢(h)|2F(d1) = I*Fs(dx) = r° @,

G G
which shows F° = 0. Hence, F is absolutely continuous.

Sufficiency. Let =z € W&. If we can show that z . &g
for all g € G implies that =z = 0, then we will have shown that
{xg, g € G} is dense in W&, and hence that S(xg, g €G) = W&.
But, as above, 6(%3, g €G) =m iff th’x = {0}; i.e.,

(xg)gEG is Jb-regular.

From Main Lemma I, we get that

%y = ] @My (MEM@Nx,  for all g€,
G
where ) is as in the lemma. Since z €7, z = I ¥ (DE(dN)x,
*

* _*
where ¢ € L2(G ,8 ,F). Hence, if we assume that G(z,i‘cg) =0 for

all g € G, we get that

0= (%) = [ ¥ (&M gVF (L)

G
(io,ﬁo)j*v(x)(-g,x)m(dx) for all g € G.
G

From minimality, we have &0 # 0. Therefore, we obtain the following:

j y(\) (-g,\)m(dr) =0 for all ge€G .
*
G

This implies that all the Fourier coefficients of | are zero, and
hence, by Bochner's Theorem 3.4, §y = 0 a.e. m. Hence, since F

is absolutely continuous,

2
=2) = [ ¥ F@n) = ] 0 m@n = 0,
G G
which shows that =z = 0. Q.E.D.
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From the above theorem and Theorem 4.7, we obtain the follow-

ing corollary.

4.9 Corollary. Let (xg)gEG be as in 4.8. Then (xg)gEG
is Jb-regular if, and only if, F, the spectral distribution of
1
is absolutel ti and d wh f is
(xg)gGG’ s solutely continuous an I*f(k) m(d}) < =, ere i
G

th tral d ity of .
e spectr ensity o (xg)gEG

As in the case where G = Z, there is a definite relation
between the concept of Jb-singularity and non-minimality, as the
following remark shows.

4.10 Remark. Let (x ) be a univariate ¥-valued WSRF

*g’gea
over G, a discrete LCAG. Then (xg)gEG is Jb-singular if, and

* *
only if, % ¢ L,(G ,8 ,m) where f is the spectral density of

G is not minimal).

Proof. let 1 = {O}C. Then (xg)gEG is J,-singular iff

(xg)gEG (or, equivalently, (xg)ge

Wﬁ+g,x = Wk, g €G iff xg € W&+g,x’ g € G iff (xg)gEG is not
minimal iff % ¢ Ll(G*,B*,m), by Theorem 4.7. Q.E.D.
As we have mentioned earlier (cf. Remark 3.13), the main
theorem 4.1 of L. Bruckner [ 1] and the proof of this theorem are
in error. Using results of 4.7 - 4.9, we first give a characteriza-
tion of a WSRF over a discrete LCAG which is neither Jb-regular nor
Jb-singular in terms of its spectral distribution. An example of
such a random field will be given in §6. We will then give a con-
dition under which a WSRF (xg)gEG over a discrete LCAG must be
either Jb-singular or Jb-regular, as Bruckner claims.
4.11 Theorem. Let (xg)gEG be a univariate ¥-valued WSRF

over G, a discrete LCAG. Let F be the spectral distribution of

*
(o) oo and f be its spectral density. Then % € 1, 5w
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s . C
and F # 0 if, and only if, {0} *m.ﬂo,x %7[&.

Proof. Necessity. Suppose m-po’x = Wg( Then (xg)gEG is
*
Jo-singular and, hence, by Remark 4.10, %4 Ll(G*,B ,m), which is a
d . = {0}. Th is -
contradiction. Now, suppose m-oo’x { }. Then (xg)gEG i JO

regular and, hence, by Theorem 4.8, F 1is absolutely continuous,
which is a contradiction. Hence, O %m %7’&
-po,x
Sufficiency. If m_p - ¥ 'I!(x, then (xg)gGG is not .00-
: * %
singular, and, hence, by Remark 4.10, %E L1(G @ ,m). If
ng’x
* %

Corollary 4.9, either %4 Ll(G 8 ,m) or F is not absolutely

# {0}, then (xg)gEG is not J -regular and, hence, by

* *
continuous. But, above, we showed that %E LI(G B ,m). There-
fore, F is not absolutely continuous; i.e., F° # 0. Q.E.D.

4,12 h . Let b in 4.11. 1let F, the
Theorem (xg)g€G e as in ’

spectral distribution of (xg) , be absolutely continuous with

:{S¢
respect to the Haar measure m. Then (xg)gEG is either _po-singular
or Jo-regu lar.

Proof. If (xg)géG is not J,-singular, then m'ao’x #W(X.

i h tha = Oc;
Then there exists an g0 8 € G, such that X, émI-!-g,x’ I = {0}

* _k
i.e., (xg) is minimal. By Theorem 4.7, %E Ll(G B ,m). This

g€G

fact, together with the assumption that F is absolutely continuous,

imply, by Theorem 4.8, that (xg) is .po-regular. Q.E.D.

S

Our next objective will be to establish the Wold-Cramer con-

cordance relation for a univariate §-valued WSRF (x ) over G,

geG
a discrete LCAG, with respect to “00' The proof of this theorem

will depend on results on minimality and regularity of the WSRF

x ) over G, a discrete LCAG, as established in this section.
b
8" 8¢cG
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Our proof will resemble the proof given by Wiener and Masani ([32],
p. 146) and Doob ([3 ], p. 576) for the Wold-Cramer Concordance
Theorem with respect to the past of a process. The following is
our Wold-Cramer Concordance Theorem.

4,13 Theorem (Wold-Cramer concordance for Jb). Let

(i) (xg)gEG be a univariate %-valued WSRF over G, a discrete
LCAG;

ii w be the components of (x ) as
(ii) ¢ g)gEG (yg)gEG o) gcc

occurred in the Wold Decomposition Theorem with respect to Jb;

(iii) F, Fy’ and F_ be the spectral distributions of (xg)gEG’

and w respectively and f, f and f their
(yg)gec’ ( g)gEG P y > y’ n W

corresponding spectral densities;

(iv) Fa, F° be the absolutely continuous and singular components

of F with respect to the Haar measure m, as in the Cramer Decomposi-
tion Theorem ;

™) % €L,@ 85 m.

Then

Proof. From Lemma 4.6 (Main Lemma I), % . = y o (AE (1) x
0~ J, % 0

where G

(ﬁo,ﬁo)/f, on the carrier of F°
@ .
0 , on the carrier of F .
. 1 * % . .
Since ¢ € LI(G 8 ,m), by Theorem 4.7, (xg)gEG is minimal and,
hence, (ﬁo,ﬁo) > 0. We will need this fact later in the proof of

the theorem.
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Now, (xg,xo) = (Wg + yg’ Yo + yo) = (wg,wo) + (yg,yo). Also,

(g = [ @NFEN5 Gr,90) = [ (:0F, (@0
G G

(yg’yo) = I*(S:X)Fy(dk)-
G

Hence,

J @WF@) = [ @ME, +F)(E)) for all g €G.
G* G*

Therefore, by Bochner's Theorem 3.4, we get that
(1) dF = dF, + dF,

Si
nce (yg)geG

4.8, we see that Fy is absolutely continuous, and hence, from (I),

is non-trivial by ( v) and is Jb-regular, by Theorem

that
(1I1) dF = dF_ + fydm .
From the Cramer decomposition theorem 3.15, we have
(111) dF = £ dm + dF° .
Combining (II) and (III), we obtain
(IV) f dm + dF° + f dm = £ dm + dF°

w W y
which is equivalent to

s s

w) (f - fy - fw)dm = de - dr .

Since the left-hand side of (V) is absolutely continuous and the

right-hand side is singular with respect to the Haar measure m,
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it follows that

f=f +f a.e. m,
y w

dr® = dF° .
w

We now wish to show that f = fy a.e. m, which will complete our

. a c
proof. Since kg =%y - (xg‘ml-ﬁg,x)’ I = {0}, we see that

xg 'LmI-I'g,x for all g € G and, hence, xg L gQGmI"'S,x 'm.po,x

for all g € G. However, from the Wold Decomposition Theorem
it follows that m_p;,x = 778, Hence, ?tg € 778, for all g € G. Since
*x % * %
% € L2(G 8 ,F), by (I) it follows that 9 € LZ(G B ’Fy) n
* %
LZ(G »P ’Fw)' Hence, the integrals in the following equations are

well defined.

V1) %, = cho(x)E(dx)xo = J GME@N (v + wp)
G G

= j‘*cpo(k)E(dk)yo + j'*cpo(x)E(dx)wo )
G G

But by Lemma 3.6 [ go(ME(NY, €M and [ ¢ (VE@NW, €7, -
G G
Also, 3‘(0 € '”S’ Therefore, by (VI), f*cpo(k)E(d)\)wo € my = 7,‘:-
G

Hence, J'*cpo(x)E(dx)wo =0 and
G

(VII) %y = j‘*cpo(x)E(dk)yo .
G

Combining (VII) with the result in Main Lemma I, we get

(VIII) %o = j'*cpo(k)E(dx)xo = ] BoME@NY,-
G G
Using the first equality in (VIII), we get



37

@) GoRe) = [ lop W1 %F (@) = @gs2p) j fm m(dy) .
G G

Using the second equality in (VIII), we obtain
£ (k)

(X) (RooRg) = j \¢b(x)| F (N = BosR) I* o m(d)) -
" G

Combining (IX) and (X) and recalling that (io,ﬁo) > 0, we get

£
(XI) i f%if m(d) = [ L—m@) .
*
c )
Hence,
1 —
(XII) [, 7o - £,00/E0)Im(an) =

G
But, since f =f <+ £ a.e. m, £ 2 fy a,e. m and, hence,

1 - fy/f 20 a.e. m. Therefore, by (XII)
1/£[1 - £,/£] =0 a.e. m.

But 1/f >0 a.e. m. Therefore, 1 - fy/f =0 a.e. m, and hence,
f =f a.e. m. Q.E.D.
Y *
*
4.14 Remark. If 1/f ¢ Ll(G ,B ,m), we note that Remark

4.10 implies that () e

X =W for all g, and, hence, that F =F . 1In this case F
g g W w

could be absolutely continuous with respect to the Haar measure.

is Jb-singular, which shows that

Using Theorem 4.8, we can easily show that if (yg)gEG is non-trivial

and the Wold-Cramer Concordance Theorem holds (i.e., Fa =F ;

y

s * %
F =F.), then 1/f wmust be in Ll(G 3 ,m).

In general,any analytic condition on the spectral distribution

of a WSRF gives rise to certain geometric properties of the random
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field itself. As we have seen, the analytic condition
1/f € LI(G*JB*,m) is equivalent to minimality for the process.
For a WSRF over the integers, the analytic condition
log £ € Ll(G*,Er,m) implies, among other things, that the process
is non-deterministic (for the definition of a non-deterministic
processes, cf. Theorem 3.18).

From our work one may suspect that the analytic condition
1/f ¢ Ll(G*,Br,m) will have a definite relation to the past &
future of the process in the same way that the weaker analytic con-
dition 1log f € Ll(G*JB*,m) had a close tie with the past of the
process. For this reason we will temporarily digress to a short
discussion of WSRF's over the integers where these notions of
past and past & future are meaningful. Using our results on
minimality we will then make appropriate comparisons between the past
and the past & future of a WSRF over the integers.

We will first set up some notations.

4.15 Notations. Let Z be the integers. Let (xn)f

be a univariate ¥-valued WSRF over Z. Let Iy = {k}c and

I, = {n: n sk}, Then

(i) ka,x will denote &(x , n # k)

(ii) mIk,X will denote 6(xn, n < k) (cf. Remark 3.10, (iv)).

With these notations, we see that M for all
1 X J, sX
k-1 k
@ ®
k. Hence N = N N S N M = .
'pp’x k== Ik’x k=- Jk’x JO,X

In the following theorems we will examine conditions under

.
» X

C
which =N =M or M * M
JP X JO X -ap ' X JO
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4.16 Theorem. Let (xn): be a univariate ¥-valued WSRF
* %
over the integers. Let %E LI(G ,8 ,m), where f is the spectral

. )
density of (xn)_m. Then m‘ap’x = m‘ao,x.
Proof. From Theorem 4.13, we see that Fw = FS; Fy = Fa,

where Fw and Fy are the spectral distributions of the components
)>_ and ®  of )*  given by the Wold d iti
(wn e 2N (yn)_m o (xn - 8lven by the Wo ecomposition
theorem with respect to the family {Jk}: (cf. Theorem 4.2). 1In
* %
addition, since 1/f and f are in LI(G B ,m), then log f is
. * % s a
also in Ll(G ,8 ,m). Hence, by Theorem 3.17, F,=F;;F =F,
where FV and Fu are the spectral distributions of the components
@ (-} . . .
(vn)_w and (un)_w given by the usual Wold decomposition theorem

with respect to the family {Ik}: (cf. Theorem 3.16). Combining

these two results, we obtain

() F, =Fy F = F .

i1 _
From (I) and the fact that m.,ﬂo,x zm.ﬂp,x’ we will show that wo=v
for all n. We observe that
(11) (xnlm_pp,x) = ((xn‘m.ao,x)m.ap,x)

i = and = i
Hence, since v (xnlm.a ,x) n Wn (xn‘m,po,x)’ it follows that
v. = (w "m ). Using this last relation, we can easily show that
n n _ap,x

v, (wrl - vn) for each n, from which it follows that

(111) \wn\z S |un|2 + \wn - vn|2 for all n.

Now, (a9 = [ @GN F, (@) = £ () and

G

V¥ = [ @NEN Fy @0 = F @)

G
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|2 =0 for all n

Combining (I) and (III), we get that \wn - vy
and, hence, LA for all n, which implies that 7&, = 'mv Since

= d = = . .E.D.
m} m‘p,x an 7&’ m‘a’x,we see that mJ,x m.ﬂ,x Q.E.D
P 0 P 0
In the above theorem we assumed that the analytic condition
*
1/f£ € L,(G ,B*,m) held and saw that 7N =M . The natural
1 Jp’x JO’X
question to ask is what happens when we assume that the weaker
* %
analytic condition of 1log f € Ll(G ,8 ,m) holds, but not the con-
*
dition 1/f € Ll(G ,B*,m). The answer is given in the next theorem.
4.17 Theorem. Let (xn):D be as in Theorem 4.16. Let
* % * %
1/f ¢ L, @G B8 ,m). Let log f €L (G ,B ,m). Then Wz w; ==w&.
p!x Jo’x
Proof. Since 1/f ¢ L (G B ,m), by Remark 4.10, (xn)-m
is Jo-smgular, and, hence m.ﬂo,x =M. It is well known ({3 7],
p. 577) that if log f € L (G B ,m), then (xn)_cm is non-
deterministic and, hence, m.pp,x % 7/& Q.E.D.

In §6, we will give an example of a process for which

log f € Ll(G*,B*,m), but l-?li ¢ Ll(G*,B*,n), where P 1is any given
polynomial. 1In particular, 1/f will not be in Ll(G*,B*,m). (cf. 6.4).
4.18 Remark. If we assume log f ¢ Ll(G*,B*,m), then
1/f will not be in Ll(c*,ﬁf,m). By Remark 4.10 and ({3 ], p. 577),
we have m_p MJO’X =M We also note that when
1/f € L (G B ,m) then mJ x - g, % = {0} iff F° = 0. Further-
more, in case 1/f ¢ L (G B ,m), but log f €L (G B ,m), then
mJ’x-{O} iff F° = 0.
4.19 Remark. The rest of this section will be devoted to
an extension of Salehi's work on the interpolation of WSRF's indexed

by integers to univariate WSRF's over discrete LCAG's. (This concept
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for WSRF.'s indexed by integers or real numbers was first studied by
A.M. Yaglom [35] and later by Y.A. Rozanov [24].) This will provide
a natural extension of earlier results of this section in the same
way that Salehi's work on interpolation provided a generalization of
Kolmogorov and Masani's work on minimality. Although the ideas and
concepts used here are similar to the ones used by Salehi in his work,
some of the techniques are different, since the integers are ordered
and singly generated whereas an arbitrary group need not be.

Our main reason, besides the historical one, for treating
the minimality problem separately is that in this case the results
are obtained in a more closed, compact, clear, and simplified form.
In addition some of the results on interpolation are obtained under
the added assumption that the group G 1is endowed with an order
relation compatable with the structure of G.

We will now recall some of our notations and introduce some
new ones needed in the rest of this section.

4.20 Notation. Let (xg)gEG be a univariate ¥-valued WSRF
over the discrete LCAG G with spectral density f. Let
J = {go,gl,...,gn} be a fixed set of n+l elements of G. Then,
we will denote by:

CONN (M =7"ch xnw& (cf. 3.8);

n

(ii) 0 ={P: P()\) = zoc (gk,x), c ,cl,...,cn arbitrary

complex numbers, and |p(x)| /E()\) €L (c S m);

(it) 9 = (3°+g, g €c}.

4.21 Remark. The set of polynomials 63 and the subspace

were introduced in Salehi's work and will play an important

nJ X

’
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role in the theory of interpolation of WSRF's. It is obvious that

z € 75 x if, and only if, z + xg for all g € J¢ and that
H]
=G(X_ yee.,% where X is defined b
Myx T OGg ety ) g; 7
x =x - (x /M ).
By 8 8i 1%,x

We will now make the following definition which is an exten-

sion of non-minimality for a WSRF over a discrete LCAG.
4.22 Definition. Let J be as above and (x )
- 38 :{S¢

univariate ¥-valued WSRF over G, a discrete LCAG. We say that

(x)) o is interpolable with respect to J if

g8
m sm
J,x Jc,x
or, equivalently,
= 0 L]
7 = 10)

It is clear that 76 is a subspace of M It is also

X
H
obvious that the set 63 is a linear subset of all polynomials.

We introduce an inner product in 63 in the following manner.

P, (VP ()

(BB)yse = [ —Fay M@V, BB, €0

G
The proof of the following lemma is straightforward and thus
will be omitted.
4.23 Lemma. With the above notation, 63 is an inner pro-
duct space over the complex numbers with the inner product
P, (MP, ()

J* £\
G

(PI’PZ)I/f = m(d)), Pl’PZ € OJ.
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The fact that this inner product space is finite-dimensional
and, hence, complete will follow from the following important lemma.
This lemma will be used repeatedly in the interpolation of WSRF's
over G.

4.24 lemma (Main Lemma II). With the above setting the
finite-dimensional subspace nJ,x (cf. Remark 4.21) and the inner
product space OJ are isometric; i.e., there exists a linear operator

T on ﬂJ,x onto G‘J such that

(zl’zz) = (TZI,TZZ)I/fs 21’22 € nJ,X .
Proof. let 2z € nJ < We define the polynomial Pz by

n
(¢9) P\ = T (z,x_)(g, s\)-
2 k=0 Bk K
We claim that Pz is an element of OJ. In view of the fact that

the subspace nJ « 1s spanned by {i‘:g R ,...,% ], it suffices
b}

0o &1 &n
to prove that PS! € 9,]’ 0 <i<n. For simplicity, Pi()‘) will
gin
denote P, (\) = L (& ,x_ )(g ,\). Since X €M, by the
e, k=0 85 B X By

Isomorphism Theorem (cf. Theorem 3.7), there exists

* % "
9; € Ly(G ,8 ,F) such that xgi = J‘*Qpi()\)s(dx)xo. From the fact

G
that i‘:g J.xg, g € J, we get the following:
i
A = - = Cc
(11) SRR J, 900 & MF (@) 0 » 8 €J

¢ G x), g€l
g; 8

let ¢, = ® ,x ), 0 <k <n. Then we have the following equations.
k By Bk
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n
(111) I*Pi(x)(-g,x)m(dx) L ey j*(gk,x) (-g,\)m(d))
G G

k=0

n
I K [, & gs0m@n)
=0 G

0 ,gGJC

Ck,gEJ.

From (II) and (III) we see

() J i) CesMm@n) = [ o, 00 (g, MF @)
G G

which is equivalent to

W [ GBI - o, MEM @D = [ (-g,0)p; (VF (@) -
* Y%
G G

s . . . . .
But F is singular with respect to m. Using measure theoretical

arguments, we get

[ 8NP0 - g EMIm(@n) = 0

V1) ¢

[ (8N F (&) = 0
G

which imply by Bochner's theorem 3.4

Pi(x) = Qi(k)f(k), on the carrier of Fa

(VII) s

¢i(x) =0 , on the carrier of F .

2
But f*|¢i(x)| F(d)\) < » and, hence, I* ——??xy—— m(d)) < «». There-
G G
fore Pi € 63.
We now define the operator T on nJ . into 63 by
’

(VIII) Tz =P, ,z €N, .
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Clearly, T is linear and it is not hard to show that it preserves

the inner product.

It remains to prove that T is onto. To do that, we show

n
that for any given P€g@_, P= & ck(gk,x), there exists a z € ﬁJ x
k=0 ?
such that P = Pz' We remark that the function
P(A)/£()), on the carrier of Fo
e(\) = s
0 , on the carrier of F
I3 . * * .
is in LZ(G B ,F). Define z € m, by
= [ 9ME(ENx,
*
G
We now examine Tz:
(tz) (\) = T([ 9OIE@Nx) (V)
*
G
- kz_:o(j*cp(x)E(dx)xo [, BeNE@IX) - @0
G G
= 2 ‘I‘(P(k)( gk:k)F(d)\) ° (gk:)\)
k=0
n
n n
= z (g =g, > A)m(d)) -+ (g, 5\)
k=0 j=0 ° 7B k
G
n
= ZC(g sA) = P(\) .
k=0 K™k
Therefore, Pz = P. Q.E.D.

The following is the analogue of Kolmogorov's minimality

theorem (cf. Theorem 4.7) for the case when J has n+l elements.
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4.25 Theorem. Let J = {go,...,gn} be a fixed set of n+l
elements of G, a discrete LCAG. Let (xg)gEG be a univariate f/-

valued WSRF over G with £ its spectral density. Then (xg)gEG

is not interpolable with respect to J 1if, and only if, there
*
exists a non-zero trigonometric polynomial P()\) on G of the

n
form P()\) = T ck(gk,x) such that ‘P‘z/f € LI(G*’B?’m); i.e.,

k=0
@, * {0}.

Proof. Necessity. Since X
y *g)gec

m. *# M - Hence, there exists a g € J such that x &m,. -
J ,x & J ,x

is non-interpolable,

Without loss of generality, let g = 8o Since xg ¢ M. » it
0 J ,x

follows that %g # 0. By Main Lemma II, the function
n 0
P(\) = T (_ x
k=0 B0 Bk
Clearly, P is a non-zero polynomial since (¢ ,x ) = |§
8o 8p 8o
Sufficiency. Now suppose there exists a non-zero polynomial
n
*  *
P of the form P(\) = & ck(gk,x) such that |P|2/f € LI(G J3 ,m).
k=0

Then P € 9& and, hence, by Lemma 4.24 , there exists a z € nJ

A 2 *x %
)(gk,x) is such that ‘P\ /f € Ll(G 8 ,m).

\2>0.

»X
= d h
such that z f*¢(k)E( )\)xo where
G
P(\)/£(\) , on the carrier of F

o(\) = s
0 , on the carrier of F .

2
Hence, \z‘ = f ‘P(x)‘z/f(x)m(dx). Since P is a non-zero polynomial
*
G
and f is finite-valued a.e. m, it easily follows that
I \P(A)\z/f(x)m(dx) > 0. Hence, \zlz >0, and so z # 0. Therefore,
*
G

we have exhibited a non-zero element in 7h X’ namely, z, and, hence,
3

(xg)gEG is not interpolable with respect to J. Q.E.D.
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The proof of the following corollary is immediate.
4.26 Corollary. With the same setting as in the above

theorem, we have: (xg) is interpolable with respect to J 1if,

S
. 2 * % .
and only if, |P|"/f ¢ L,G ,8 ,m) for any non-zero trigonometric
n
*
polynomial P on G of the form P()\) = I ck(gk,x); i.e.,
k=0

= {0}.
e, = 0}

The following lemma will be used in the proof of the next
theorem. 1Its proof is very similar to the proofs used in Lemmas 4.4
and 4.5 and, hence, will be omitted.

4.27 Llemma. let J = {go,gl,...,gn}. Let ﬁg €EN be

. X
i Js

such that &g # 0 for some fixed g €J. Then
i

~

*gtg .

1

M . ) # 0 for all g € G.

L (xg'*gil J 4g,x

1

Next, we will establish a theorem on the relationship between
the concept of non-interpolability and that of J%-regularity intro-
duced in 3.11.

4,28 Theorem. Let (xg)gEG be a univariate ¥-valued WSRF

over G, a discrete LCAG, F be its spectral distribution, and f
be its spectral density. Let J = {go,gl,...,gn}, J% = {J°+g, g €GJl.

(a) 1f (xg)gEG is non-trivial and is J%-regular, then

is not interpolable with respect to J, {hence with respect

*g)ecc

to J +g, for all g € G}, and F is absolutely continuous.

(b) Let G be ordered. If F 1is absolutely continuous

and (xg)gEG is not interpolable with respect to J, then
(xg)gGG is Jh-regular.
Proof (a). Since (xg)8€G is J -regular, then Wh%’x = {0}.
In particular, for some g € G, M # W&. Then, by Lemma 4.27,
J 4g,x

nJ,x # {0}; i.e., (xg)gGG is not interpolable with respect to J.
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We now wish to show that F is absolutely continuous.

= L =
Since mJn,x {0}, it follows that m‘p x 'ﬂg( But

n
m+ = closure U M+ = closure U 7N =
¥ g€G I 4g,x gec 1B
G(ﬁgi+g, 0<i<n, g€ G). Hence,
= G(X , 0<1ic< .
¢9) M 6(xg1+g i<n, g €gG)

In the proof of Main Lemma II (Lemma 4.24), we saw that

igi = f*¢i(k)E(dk)xo where

G
Pi/f, on the carrier of F°
Pi - . s
0 , on the carrier of F ,
0 <is<n. Hence, from % =U % , it follows that
8,18 g 8;
(11) ﬁgi*g =] (BNe;(VE@NX,, 0 isn, g€G.

G
Now, as in the proof of the necessity part of Theorem 4.8, define

*
the function § on G as follows:

a
0 , on the carrier of F

(111) V= s
1, on the carrier of F .

* %
Then § € LZ(G 43 ,F) and, hence, by the Isomorphism Theorem, there

exists a z € W& such that z = I ¢(X)E(d1)x0. Hence,
*
G

@) Ry 402 = [ @Ne; VYIFEN)

1

G
P, (V) .
= [ @N gy 0 - fmEN + [ @0 - 0 17 @)
G G

=0 .
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From (I) and (IV), we see that z J.Wk. But z € W& and hence

z = 0. Therefore, 0 = |z|% = [ |y |%F(@n) = [ Fo@n = F° Y,
* *

G G
which shows F° = 0. Hence, F 1is absolutely continuous.

(b). The proof of this part of the theorem will closely
resemble the proof of the sufficiency part of Theorem 4.8. Let

z € ”&' If we can show that z ﬁg +g for all i € {0,1,...,n}

i
and all g € G implies that z = 0, then we will have shown that

{ig g’ 0<is<n, ge€G} is dense in W& and, hence, that

1

S(x 0sisn,gec)=mx. But,ﬁ(ﬁg 0<isn,ge€eQG) =

g;*8’ e’

if, and only if, Wh%}x = {0}; i.e., (xg)gEG is J%-regular.

In the proof of Main Lemma II (Lemma 4.24), we showed that

fcg =j ¢; (ME(d\)x, where
i *
G
Pi/f , on the carrier of P
i = i s
0 , on the carrier of F |,
0 <i<n. Since X% =U % we get
gt g’ °
A = x . . .
(1) K 8 [ @M E@Ix, , 0<isn, gec

G

Since z € W&, z = f ¢(X)E(dk)x0, where ¢ € LZ(G*,E*,F). Hence,
*

if we assume that G(z,ﬁ =0,0<1i<n, g €G, we get

)
g;*8
(D 0= Gy 4502) = [ ;) G M¥ OF ()

G
=[P, O(C-8NYMIM(AN), 0 si<n, g€GC .
*
G
This implies that all the Fourier coefficients of Pi . V are zdro,

0 < i < n, and, hence, by Bochner's Theorem (3.4),
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(I11) P, y=0 ae. m ,0<isn.

Since (xg)gEG is not interpolable with respect to J, by Theorem

4.25, there exists some g, € J such that ﬁg # 0. This implies
i

that the corresponding polynomial Pi is non-zero. Since G is
ordered and P, is a non-zero polynomial, it will be shown in the
following lemma (Lemma 4.,29) that Pi cannot vanish on a set of
positive Haar measure. Hence, by (III), y = 0 a.e. m. Therefore,
2
\z‘ = I ‘w(x)‘zF(dx). But, F 1is absolutely continuous and, hence,
*
2§ 2
12| = [ WO E(m(@n) = 0, which shows 2z = 0. Q.E.D.
*

G

4.29 lemma. lLet G be endowed with an order relation
compatable with its structure. Let P be a non-zero trigonometric
polynomial on G*. Then P cannot vanish on a set of positive
Haar measure.

Proof. Because G 1is ordered one can show that there exists

some g, € {go,...,gn} such that

(1) POV = (8,50 P10,

n
where P,(\) = jEOdj(gj,x), with g, =0, do # 0, and g; 20,

1 <j<sn. It follows (cf. [26], Theorem 8.4.1) that
* % * %
log |pl\ € L,(G ,8 ,m) and, from (I), log || € L,(G ,8 ,m). But
this implies P # 0 on every set of positive Haar measure. Q.E.D.
An immediate consequence of Theorem 4.25 and Theorem 4.28
is the following corollary.

4.30 Corollary. Let (xg)gEG be as in 4.28. Then

(a) 1f (xg)gEG is non-trivial and is J%-regular, then F,

the spectral distribution of (xg)gEG’ is absolutely continuous and
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for all  J +g €y, J = {ggs---08,)s €, # {O).

(b) Let G be ordered. If F is absolutely continuous
and for J €4, J = {go,gl,...,gn}’ 05 # {0}, then (xg)gEG is
J%-regular.

4.31 Remark. If G 1is not ordered, one can easily con-
struct a non-zero polynomial P on G* such that P = 0 on some
set of positive Haar measure. An example of such a polynomial will
be provided in §6, Example 6.5.

We see that the assumption that G 1is ordered was used in
the proof of Theorem 4.28(b). As we saw earlier (cf. Theorem 4.8),
this assumption is not needed when J consists of a single point.
It may be that the conclusion of part (b) of Theorem 4.28 is true
even without the assumption that G 1is ordered. However, our
proof does not demonstrate this.

Just as there was a definite relation between the concepts
of Jb-singularity and non-minimality, there is also a relation be-
tween the concepts of Jh-singularity and interpolability, as the
following remark shows.

4.32 Remark. Let (x))

X be a univariate WSRF over G,
g8 8cG

a discrete LCAG. Let J = {go,gl,...,gn} be a fixed set of n+l

elements in G. Then (xg)gEG is Jh-singular if, and only if,

for all g € G, nJ+g,x = {0}, or, equivalently, for all g € G,
65+g = {0].
Proof. (xg)gec is 4 -singular iff Wgc+g’x =M & €G,
iff 7G+g,x = {0}, g € G, or, equivalently 65+g = {0}, g € G. Q.E.D.

Now, using Theorem 4.28, Corollary 4.30 and Remark 4.32, we

will first give a characterization of a WSRF over a discrete LCAG
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which is neither g -singular nor J, -regular in terms of its spectral

distribution. We will then give conditions under which a WSRF

(x))

xg g€G over a discrete LCAG must be either J%-singular or J%-

regular.

4.33 Theorem. IlLet (xg) be a univariate f-valued WSRF

g€eG
over G, a discrete LCAG. Let F be the spectral distribution of

(xg)gEG and f be its spectral density. Let J = {go,gl,...,gn}

be a fixed set of elements in G and J% = {Jc +g, 8 €G}.

(@) 1f @ # {0} and F° #0, then {0) ?m_pn’x ®m, .
C
(b) let G be ordered. If {0} Em_pn’x %, then

s
63+g # {0} for all g €G and F # 0.

Proof (a). Suppose ng,x = W&. Then (xg)gEG is Jh-
singular and, hence, by Remark 4.32, 6& = {0}, which is & contradic-

tion. Now, s se = f0}. Then is -regular
» Suppose M, {0} ), J_-regu

€G

and, hence, by Corollary 4.30, F is absolutely continuous, which is

—
- Tm S
a contradiction. Hence, {0} ng,x W&

(b) If WU%,X # W&, then (xg)gEG is not J%-singular and,

hence, by Remark 4.32, 63+g # {0} for all g € G. If Wh%’x ¥ {0},
then (xg)gEG is not J%-regular . By Corollary 4.30(b), this implies

that either F 1is not absolutely continuous or for all g € G, or

65+g = {0}. But the latter cannot happen. Hence, F is not absolutely

continuous; i.e., F° # O. Q.E.D.
4,34 Theorem. let G be a discrete LCAG which is ordered.

let J and 4, be as in 4.33. Let (xg)geG be a univariate ¥-

valued WSRF over G and F, its spectral distribution, be absolutely

continuous with respect to m. Then either (x )

e g€ is J%—s1ngu1ar

or Jh-regular.
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Proof. 1If (xg)gEG is not J -singular, then Wg%’x ¥ M, -

Hence, M _ # W&, which implies that (xg) is not interpolable

J 5X 86
with respect to J. Based on this and the fact that F is absolutely
continuous and G is ordered, Theorem 4.28(b) implies that
(xg)gEG is J -regular. Q.E.D.

Our next objective will be to establish the Wold-Cramer
concordance relation for a univariate f-valued WSRF (xg)gEG over
G, a discrete LCAG with respect to J%. The proof of this theorem

will depend on results on interpolation and J%-regularity of

(x))

g)gcc that were just established.

4.35 Theorem (Wold-Cramer concordance for J%). Let
(1) e

discrete LCAG, which is ordered; J = {go,...,gn} and

be a univariate ¥-valued WSRF over G, a

Jo= {3 +8,8€6};
(1) Geee a9 Uglgeg

as occurred in the Wold decomposition theorem with respect to 45

be the components of X
P *g)gec

(iii) F, Fy, and Fw be the spectral distributions of

(%))

xg g€G’ (yg)gEG and (wg)gec respectively and f, fy, and fw
their corresponding spectral densities;

(iv) Fa, F°  the absolutely continuous and singular com-
ponents of F with respect to the Haar measure m, as in the Cramer
decomposition theorem;

) &, # {0}.

Then
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Proof. By Main Lemma II, 4.24, ﬂb ¥ {0}. Without loss of

generality we may assume that ﬁg # 0 . In the proof of Lemma 4.24
0
(Main Lemma II), we saw that xgo = I*qb(k)E(dk)xo where
G

PO/f, on the carrier of F°

% = . s
0 , on the carrier of F ,

n

P =

n m , we see that & 17
gec Jc,g go Jn’x go Jn9x

from the Wold decomposition theorem (Theorem 4.2), it follows that

W& = W§L9x. Hence, ﬁgo € W@.

Since (yg)gGG is non-trivial and is Jk-regular, by Theorem

Y(g,>\). Also, since & .17 and 7 =
k « 8o Jcsg J%’x

However,

4,28(b), it follows that Fy is absolutely continuous with respect
to m. Then, using the same technique as in the proof of the Wold-
Cramer concordance theorem with respect to Jb (Theorem 4.13), we

obtain
(I) f = fy + fw a.e. m,
dr® = drF° .
w

Hence, if we can show that £ = fy a.e. m, our proof will be

finished. In the same manner as in Theorem 4.13, we get

an %, - £*¢b<x)E(dx>xo - g*qb(x)E(dx)yo .

Using the first equality in (II), we obtain

an & L2 ) = [ g I’F@En = [ [Bo |2 /£om@n .
8y 8o G* G*
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Using the second equality in (II), we get

2 .2 Loy | %F, (@) ‘P°(m2f<><d>
aw) &% )= M| F @) = [ ——— £_()m@d)
Bo &0 ;E* oy {;* VR
Combining (III) and (IV), we get
2 ‘Po(k)\z
& [ R/ Em@y) = [ —5—— £ ()m@N),
* * £y Y
G G
which is equivalent to
2
| 2o | £ ()
-0 7 X =
(V1) . 2N [1 f()\)]m(d)\) 0.

G

But (I) implies that f 2> fy a.e. m and, hence, 1 - fy/f 20 a,e. m.

Then, by (VI), we get

||

f

f

(VIiI) (1-71=0 ae. m

Since G 1is ordered, Lemma 4.28 implies that \Po\z >0 a.e. m.
Since 1/f >0 a.e. m, it follows from (VII) that 1 - fy/f =0 a.e.
and, thus, f = fy a,e. m. Q.E.D.
4.36 Remark. If any non-zero trigonometric polynomial P
on G* of the form P()\) = kéock(gk,x) satisfies the
condition |P|2/f ¢ Ll(G*,B*,m), then, by Remark 4.32, (xg)gEG is
Jh-singular, which shows that xg = wg for all g and, hence, that
F = Fw. In this case, Fw could be absolutely continuous with respect
to m.
We will now specialize our results on interpolation of WSRF's
to processes indexed by the integers. As in the case of minimality,

under suitable analytic conditions we will make appropriate comparisons

between the subspaces in the time domain (i.e., 'm‘p x and '”‘.a x).
’ ’
P n

m,
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First, we will recall some notation and introduce some new ones.

[--]

4,37 Notation. Let Z be the integers. Let (xn) be

-

a univariate ¥-valued WSRF over Z. Let J = {ko,kl,...,kn;

k0-< k

Ik={j : j s k}. Let

g <=oo< kn} be a fixed set of n+l integers and

(i) ch-H(,x = 8(x,, J #k. +k, 0<1is<n).
(ii) mIk’x =6(xj’ = k)’

@ (-
Obviously, M = N S N
S mlk’x k=-o J +k,X

In the following theorems, we will examine conditions under

= m.ﬂn’x.

hich =
whic me’x mn or

c

3
o0 sX me,x mJn’x
4 .38 Theorem. Let (xn)“_m0° be a univariate g-valued WSRF

over Z, the integers. Suppose there exists a non-zero trigonometric
n

*

polynomial P on G of the form P()) = ¢ cj(kj’m such that
j=0
* %
\P‘z/f € Ll(G ,B ,m), where f is the spectral density of (xn):o.
Th = .
en m.ﬂp,x m.on,x
Proof. By Theorem 4.35, we see that FW = Fs; Fy = Fa, where

F_ and Fy are the spectral distributions of the components

(wn)m and (y )" of (xn):o given by the Wold decomposition

-0 n =

theorem with respect to the family 4 = {J +k, k€ 2} (cf. Theorem
*
4.2). Also, since there exists a non-zero P on G of the form

n 2 ' * _*
P(A) = ¢ cj(k ,\) such that |P|“/f ¢ L,(G ,5 ,m), Theorem 4.25

g=0 173

tells us that (xg) is not interpolable with respect to

gEG
J = {k ,...,kn}, which implies that there exists a k € J such

c
that x, ¢ 6(xj, jJ €J7). But this implies x, ¢ S(xj, j < ko)
and, hence, by stationarity, xko ¢ S(xj, j < ko). Thus, (xk):”
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* %
is non-deterministic and so 1log £ € LI(G J3 sm). Thus, by Theorem
3.17, F_ = FS; F = Fa where F and F are the spectral dis-

v u v u
tributions of the components (vn)fm and (un)“:‘D given by the usual

Wold decomposition theorem with respect to the family {Ik}am' Hence,

(¢9) F, = Fys F, = F_.

By (I) and the fact that N 2nM we can use an argument similar
Jn:x Jp’x

to the one given in the proof of Theorem 4.16 to show that

My x =My x* Q.E.D.

P n
4.39 Theorem. Let (xn):D be as in Theorem 4.38. Let

*  *

log £ € Ll(G B8 ,m) where f 1is the spectral density of (xn):o.
*

Suppose that for any non-zero trigonometric polynomial P on G

n
of the form P()\) = £ c,(k,,\), we have

it
P 2/f ¢ G* * 3=0 G =
\ \ Ll( ’B ’m)' Then m‘ap’x m-pn,x Wg('
Proof. By Remark 4.32, we see that (xn)u_o is Jn-singular
and hence, m.ﬂn,x =m. It is well-known ([3], p. 577) that if
* %
log f € LI(G ,B ,m), then (xn):o is non-deterministic and, hence,
m.pp,x ; mx.
* %

4.40 Remark. If we assume log f ¢ L, (G ,8 ,m), then
m_ﬂp,x = mx and, hence, m-an’x = mx.

This concludes our discussion on the problem of interpolation
with respect to 4 = {Jc + g}, where J 1is a fixed set of n+l
elements of G, a discrete LCAG. We will devote the rest of §4 to
interpolation theory with respect to 4 the family of complements
of finite sets of elements in G. First, though, we will recall some

notation, introduced earlier, which is relevant to what we will be

doing.
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4.41 Notation. Let (xg)gEG be a univariate ¥-valued WSRF
over G, a discrete LCAG. Let f be the spectral density of
(x )gEG and J be any finite set of elements of G. As in 4.20
g

we will set
@ N =mt Nm;
j ST O,
(ii) @, ={P: P(\) = T c_(g,\), c_'s are arbitrary complex
JZ g€l 8 g
*
numbers, and |P\ /f € L, ,5*,m)};
(iii) JL = family of complements of finite sets of G.
We are now able to give the following definition of inter-
polability.

4.42 Definition. Let (x_) be a univariate &-valued

*g’gec
WSRF over G, a discrete LCAG. We say that (xg)gEG is interpolable
if (xg)gEG is interpolable with respect to every finite set of
elements of G.
The following remark follows immediately from Theorem 4.25.
4.43 Remark. let (xg)gGG be as in 4.42. Then (xg)gEG
is interpolable if, and only if, 63 = {0} for any finite set J € G.
As we mentioned earlier (cf. Remark 3.13), there was an
error in the main Theorem 4.1 of L. Bruckner [1]. A similar type
of error regarding the relation between JL-regularity and its char-
acterization in terms of the spectral density of the WSRF is contained
in Theorem 5.2 of Bruckner. The following establishes a relation-
ship between the concept of non-interpolability and that of 4 -
regularity and includes a corrected version of Bruckner's result.
Here, again, part (b) may be true without the assumption that G

is ordered, but at this point we are not able to diSpense with
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this assumption.

4.44 Theorem. Let (xg)gGG be a univariate ¥-valued WSRF
over G, a discrete LCAG. let F denote the spectral distribution
of (xs)gEG and f its spectral density.

(a) 1f (xg)gEG is non-trivial and is Jm-regular, then
there exists a finite subset J of G such that OJ # {0} and
F 1is absolutely continuous with respect to m;

(b) lLet G be ordered. If F 1is absolutely continuous

and there exists a finite set J of G such that @ # {0}, then

(x)

g’ gcc is Jm-regular.

Proof (a). Trivially, there exists a finite set J of G
such that &; ¢ {0]..
a

Let y = | 0 , on the carrier of F

s
1, on the carrier of F .

It is obvious that y§ € LZ(G*,B*,F). Let z € 779( correspond to

Y. Using techniques similar to those in the proof of Theorem 4.28(a),
we can show that =z LﬂJ,x for all finite subsets J of G. But
this implies, because (x_)

8 g€G
z = 0, which implies (z,z) = FS(G*) = 0.

is -
Jm regular, that =z _me. Hence,

(b) Trivially,

(1) m

c (]
X = m-p X ? Jn = {J +8, 8¢ G} °
® n

€G
is Ja-regular. Q.E.D.

By (I) and Theorem 4.28(b), we have 7 = {0}. Thus, (x )
Jw’x g8

In the following remark we will state a characterization of

Jo-singularity for a WSRF over a discrete LCAG.
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4.45 Remark. Let be as in 4.44. Then (x
Remark (xg) ( g)gec

g6
is Jo-singular if, and only if, any non-zero trigonometric polynomial
P on G* satisfies the condition that |Pl2/f ¢ LI(G*,sf,m); i.e.,
for all finite sets, J, of elements of G, GB = {0].

Next, we will give conditions under which a WSRF over a dis-
crete LCAG is neither JL-singular nor JL-regular. We will then give
conditions under which a process must be either JL-singular or JL-
regular. The proofs of these results follow from 4.43 and 4.44 in
the same manner that the proofs of 4.33 and 4.34 were derived from
4.28 and 4.32.

4.46 Theorem. Let (xg) be a univariate f-valued WSRF

gcG
over G, a discrete LCAG. Let F be the spectral distribution of

(x))

g€G and f be its spectral density.

X
g
(a) 1f there exists a finite set J of G such that
s C C
OJ # {0} and F # 0, then {0} #m‘pm’x Fm, -
c c
(b) let G be ordered. If {0} *m‘am’x M then there
exists a finite set J of G such that 63 # {0} and F° # 0.
4.47 Theorem. Let (x)) be as in 4.46. Let G be
E— 8" 8€G

ordered and F, the spectral distribution of be absolutely

(xg)gec ’

continuous with respect to m. Then either (xg) is .am-singular

geG
or .aw-regular.

4.48 Remark. Let G be ordered. We have proved that if
F° = 0, then we have either Y-regularity or Jg-singularity for the cases
J=Jdy> 4> and g (cf. Theorems 4.12, 4.34, and 4.47). We remark
that if the WSRF is Jb-regular, then it is also J% and JL-regular;
or, equivalently, if the WSRF is JL-singular, then it is also Jh

and Jo-singular. Other cases of interest may happen; e.g., a WSRF
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may be Jb-singular and yet Jh and hence JL-regular.

We will now establish the Wold-Cramer concordance theorem
for 4 - Since the proof of this theorem is very similar to the
proof of Wold-Cramer concordance theorem for Jh (Theorem 4.35),
we will only sketch it.

4.49 Theorem (Wold-Cramer concordance for J&). Let

ORI J

discrete LCAG, which is ordered; 4= family of complements of finite

be a univariate %-valued WSRF over G, a

sets of G;

ii W and be the components of
(ii) (g)gEG (yg)gEG p (xg)g‘,:G

as occurred in the Wold decomposition theorem with respect to 45
(iii) F, Fy’ and Fw be the spectral distributions of

( )gEG’ (yg)gEG’ and (wg) respectively and f, fy, and fw

g g€G
their corresponding spectral densities;

(iv) Fa, Fs the absolutely continuous and singular com-
ponents of F with respect to the Haar measure m, as in the Cramer
decomposition theorem;

) there exist a finite set J in G such that 63 # {0}.

Then

Proof. Let 2z be a non-zero element in nJ < Trivially,
’

z ‘Lm_p x and, hence, from the Wold decomposition theorem with
[--}
respect to JL, z E,WS. A similar proof to that of Theorem 4.35

shows that £ =f a.e. m. Hence, F = Fo F, = F. Q.E.D.

4.50 Remark. If any non-zero trigonometric polynomial P

*
on G* satisfies the condition that ‘P‘Z/f ¢ LI(G ,ﬁf,m), then,
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.45 is -8i lar. Hence =w for all
by Remark 4.45, (xg)gEG i Jm ingular nce, xg . or
g, and, thus, F = Fw' In this case, Fw could be absolutely con-

tinuous with respect to m.

In specializing our results for Jm to the case when G =2,

the integers, we will simply state the results comparing m.ﬂ % and
?

P
7)(.9 x* since their proofs follow closely the corresponding proofs
3
(-]

for Jn.

(<]

4.51 Theorem. Let (xn)_w be a univariate -valued WSRF
over Z, with spectral distribution F and spectral density f. 1If,

for all n € Z, there exists a finite set J containing n such

that @, # {0}, then My x =My«
P ©’

4.52 Theorem. Let (x ). be as in 4.51. Let
* %
log f € L1(G J3 ,m). Suppose for all finite sets, J, of elements

- c _
of 2z, é; = {0}. Then m.ﬂp,x ¥ m“w’x M, (see Example 6.4).

4.53 Remark. If log f ¢ Ll(G*,B*,m), then

m.ap,x - m.ﬂm,x =My



5. MINIMALITY AND INTERPOLATION OF q-VARIATE WSRF's

In this section we will consider the problems of minimality
and interpolation for g-variate qu-valued) WSRF's over a discrete
LCAG. 1In the univariate case the fact that the spectral density is
a non-zero scalar a,e. m and, hence, has a well-defined inverse
simplifies the work considerably. Since in the multivariate case
the spectral density is matrix-valued and, hence, does not have an
inverse in general, the results on minimality and interpolation
become harder to handle.

By employing the notion of the generalized inverse of a
matrix, we can extend several of our results on the univariate case
to the multivariate case. The notion of a generalized inverse in
connection with the minimality and interpolation of a WSRF indexed
by integers was first introduced and exploited by H. Salehi [28].

We shall use his ideas. However, in some cases, it will be necessary
to use actual inverses. In these cases, we will make the assumption
that certain matrices have full rank.

To avoid any duplication between our work on the univariate
case (as presented in §4) and on the multivariate case (as presented
in this section) we will omit the proofs of those results in the
multivariate case which are analogous to the proofs of the correspond-
ing works in the univariate case. Hence, we will provide proofs

only for those statements which involve new techniques or new ideas.

63
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Our first objective will be to establish the Wold decomposi-
tion theorem for the multivariate case. Since the proof is similar
to the proof for the univariate case, we will only outline the main
steps of the proof for the benefit of the reader. First, we intro-
duce the following definition.

5.1 Definition. Let (xg)geG be ¥-valued

X and
(—g)gGG
WSRF's over G, a LCAG. let J be any family of non-empty Borel
sets of G. Then (28)geG is said to be y-subordinate to

doeg I

%
A m<n s
(ii) Zk,y < 2&,x for all I € J4;
(iii) (g_g)gEG and (zg)gEG are mutually homogeneously
correlated.
5.2 Theorem (Wold decomposition). Let 4 be any family
of non-empty Borel sets of G closed under translations. Let
(§g)gEG be an Nq-valued WSRF over G, a LCAG. Then there exists

a unique decomposition of (§g) with respect to 4 1in the form

BEG
= +w
XLty
where
, d ) . )
(i) (Xg)gGG an (Eg)gEG are ﬂq valued WSRF's on G;
(ii) (xg)gEG and (‘—'g)gec are g-subordinate to
(ig)gec;

(iii) (zg)gEG and (gg)gEG are orthogonal; i.e.,
(zg09,0) = O for any g,8' €G;

(iv) (xg)geG is Jg-regular; (gg)g

is g-singular.

€G
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Proof. Let (Uj)gEG be the group of unitary operators on
%1, associated with (g-g)gGG' It can be shown that gg m_a,x = m_p,x
and hence l—Jg(mj,x) =7_7!j’x for all g € G. Let !g = (%\MJ’X)
and zg = 58 - gg for all g € G. Then it is easy to see that
M, = mJ,x and '/_r(y = mj,x' The argument that (zg)gEG and
(v_lg)gec are WSRF's and the proofs that (v_wg)gEG and (lg)géc are

-subordinate to X are straightforward.
J (—g)gec g

To prove that (lg)gEG is Jg-regular, we observe that 7_7[-0 y
b

is both perpendicular to Z_I{J . and contained in it, so that
b

= {0}. Therefore is regular. An argument similar
m‘a’y {_} ’ (Xg)gec J-regu gu

to the classical one (cf. [32], p. 137) shows that mJ N =7—71J y @m&w
b b

and hence = . Therefore, (w) is Jg-singular.
Bp “2'e

€G

We remark that for any decomposition of (x )gGG into

(xg)gEG and (V_«g)gGG satisfying conditions (i)-(iv), we have that
7_7[.p w 7_)[.0 < This important relation makes the decomposition unique.
H 3

We will now state the definition of minimality for a q-variate

WSRF over a discrete LCAG.

5.3 Definition. Let G be a discrete LCAG. Then the ﬂ{q-
valued WSRF (,'gg)gGG is minimal if, and only if, X, ¢ mI,x’ where

1 = {0}°.

The proof of the minimality theorem for q-variate WSRF's
over a discrete LCAG will depend on the following lemmas. The proofs
of these lemmas are analogous to the proofs of Lemmas 4.4 and 4.5
and hence will be omitted.

5.4 lemma. Let be an Vq-valued WSRF over a dis-

(x-g)gec
crete LCAG G. Let X denote x - (x where I = {0 c.
R n:t (-g|zﬁ4g,x)’ (03

h X is a ¥ -valued WSRF . additi
Then (ig)gGG i l(q va lue over G. 1In ion, (x—g)gGG
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and ) have the same shift.

gE€G

5.5 Lemma. Let (x) be an Hq-valued WSRF over G, a
R —8’ 8cG

is minimal if, and only if, for all

%

di t . The
screte LCAG n ()_t_g)gEG

c
= {0} .
gEG’EgémI.'.g’x’I {}
The next lemma plays an important role in the theory of

minimality of % -valued WSRF's.

5.6 Lemma (M&in Lemma I). Let (gg)geG be an ¥ -valued

WSRF over G, a discrete LCAG, with the shift group of unitary

operators (Ug) and E be the spectral measure of (U )

geG g8’ g€G’

Let ig = zg - (§g|2&+g,x)’ I= {O]C. Let F be the spectral

distribution of » F' its spectral density, and E'# the

(zg)gEG F
generalized inverse of F' (cf. [17] and [20]). Then

&, = ], (8N MIEM@NX,
G

where %

&, is defined by

(go,go)g'# , on the carrier of Eé

N

o

. s
» on the carrier of F .

Proof. Without loss of generality, it suffices to prove

~

that X, is given by

%y = j*go(x)g(dx)zo .
G
Since 50 € 2&, by the Isomorphism Theorem (3.7),

8, (ME(@Nx,

t -,
G
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* %
for some go € LZ(G 8 ,F). Also (cf. 3.2),

x, =] @VE@VR, for all g .
G

Using the same techniques as in the proof of the univariate case

(Lemma 4.6), we arrive at the following

a - . a
(1) (50,2_0) QOE , on the carrier of F

20 = 0 , on the carrier of ES .

Letting Y = , Where denotes the projection operator

$.P P
_O—EE ) —RE '

onto  Rge» the range of F', we can easily show that Y = &, in

* X
LZ(G 8 ,F). Therefore, (I) can be written as

A bl . a
(11) YF's= ()_co,:_(o) » on the carrier of F
Yy = 0 » on the carrier of Es .
Hence, by (II), it is clear that
(5‘_(0,130)F'# , on the carrier of Ea
Y= s
] , on the carrier of F . Q.E.D.

For the proof of Kolmogorov's minimality theorem, we need
the following lemma, whose proof is found in [20].
5.7 Lemma. let [B be a g-algebra of subsets of a space

0 and . be a non-negative g-finite measure on 3. Let be a

L4

non-negative, hermitian, q X q matrix-valued function on (] such

that 3 € L,(@,8,4). Then

rank ((L $ du) = rank § a.e. pu .
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The following theorem on the minimality of a WSRF over a
discrete LCAG is an analogue of a theorem by Masani (cf. 3.14) for
processes indexed by integers.

5.8 Theorem (Kolmogorov minimality theorem). Let (:_(g)gEG
be a q-variate WSRF over G, a discrete LCAG, F its spectral dis-
tributi and F' its spectral density. Th is minimal

ribution, and F' i pectr ensity. Then (:_cg)gEG is minim
and Pr o= q, I = {O}C if, and only if, E'-l exists a.e. m and
- * _*
B e L 68w

Proof. Sufficiency. Set

'-1 . a
F , on the carrier of F
¢ = s
0o » on the carrier of F
Then
* * s _*
(1) 8dF ¢ =[3F' @ dmn+ [ 3 dF
I* I* f* -
G G G
= J E'-ldm .
*
G

* %
Hence, § € LZ(G B8 ,F). Now, by the Isomorphism Theorem (3.7) there

exists Y enm such that
= d .
(11) = [ 2OVEENx,
G
Following the proof of Lemma 4.6, we can show that

(111) (o) = 8, oL -

Hence, y = A go. Note that by (I), y # 0 and thus go # 0.

Therefore, x, ¢ My o which implies (;_(g)geG is minimal.
, .



69

By (II) and the fact that y = é,go, we get

@) @y = ET0mEn = A4
G

By assumption, rank(g_"l) =q a.e. m and hence, by Lemma 5.6,
rank (y,y) = q. Thus, rank (5‘50,30) = q. Hence, pI’0 =q.
Necessity. Since pI,O = q, then rank (5‘_{0,):(_0) = q. But,

in the proof of Main Lemma I (5.6), we had

]
~
b4
£
~r
Y]
o
L]

3

]
& F

Hence, rank (F') = q a.e. m, which implies E'-l exists a.e. m.
. "~ = * = Y |'1 A
Since (%) j*godg ) j*qo,go)z ®,>%,)dm, and

G G
rank (?_(0,50) = q, we get

-1 * %

and hence F € LI(G B8 ,m). Q.E.D.
The following is a partial analogue of Theorem 4.8. We note

that in part (b), we need a stronger assumption than minimality;

namely, P10 =q, I = {O]C.
?

5.9 Theorem. Let (x.) be a non-trivial Vq-valued
_ —8°8€G
WSRF over a discrete LCAG G.
a f i - la h i ini
(a) I (:_:g)gec is JO regular, then (Eg)gEG is minimal

and th tral distributi f is absolutel -
nd F, the spectr istribution o (lc_g)gEG is absolutely con
tinuous with respect to m;
(b) 1f F is absolutely continuous and Pro -9 I = [O]C,
b

then is JO-regu lar.

®gec
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Proof (a). Since '_mJo’x = (0}, mjo’x =7_I&. But, as in the

proof of Theorem 4.8, we have 7t =6®R , g €6). Let
Ho* 8

. a
0 , on the carrier of F

. s
I , on the carrier of F .

As in the proof of Theorem 4.8 we can show Y € L, (G*,B*,I_"_). By
the Isomorphism Theorem (3.7), there exists a y € mx such that
(¥sy) = I*! dF. ‘i*. It is not hard to show that (X,gg) =0 for all
g €G, aGnd hence y = 0. Thus, since (y,y) = ES(G*), Es = 0.

for all g,

iviall i = {0
Trivially, since m‘po,x {0}, % éml-l-g,x

and hence (x is minimal.
(’g)gEG
(b) Let =z emx. If we can show that z .L;_sg for all
g € G implies that z = 0, then we will have shown that
{gg, g €G} 1is dense in N, and hence that 6(53, g €G) ='/_le.
But 6(58, g €G) =M, iff m_po,x = {0}; i.e., (x-g)gEG is Jy-
regular.

From Main Lemma I (5.6), we get that

&, =], @0 MEMENK, for all g €,
G

where § is as in 5.6. Since z ¢ @(, z =I X(X)E(dk)x_o where
*

-.0
* ok . o G
Y € _I:._Z(G B8 ,F). As in the univariate case,

0= (_2_:f_¢g) = (f_(o,f_to)f*‘l(-g,k)m(dk) for all g € G.
G

Since =q; i.e., rank (5“50, = q, hence,

P1,0 2

0=[¥M(-g,)m@d\) for all g €G.
*
G
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As in the proof of Theorem 4.8, we get Y =0 a.e. m. Therefore,

since F is absolutely continuous,

* *
(z,2) = f*x dEY =[YLEYdm=0
G G

which shows that z = 0. Q.E.D.

From the above theorem and Theorem 5.8, we obtain the follow-
ing corollary.

5.10 Corollary. Let ()_cg)geG be as in 5.9.

(a) 1f (:_cg)gEG is Jb-regular, then (>_<g)gEG is minimal
and F is absolutely continuous;

(b) 1If F 1is absolutely continuous, g'-l exists a.e. m,
and Z'-l € LI(G*,B?,m), then (:_cg)geG is Jb-regular.

5.11 Remark. We can easily give a characterization of
Jb-singularity in terms of

In fact, is Jb-singular

P1,0° (Eg)gec
if, and only if, pI,O = 0. However, in terms of the spectral domain,
we are, at this time, only partially able to extend the characteriza-
tion of Jb-singularity for the univariate case to the multivariate
case, as the following remark indicates. The proof is straight-

forward and, hence, will be omitted.

5.12 Remark. Let (x) be an ﬂg-valued WSRF over G,
- —B8 86

a discrete LCAG. is Jb-singular, then either g'-l

If (x
&) peq
' . -1 * %
doesn't exist a.e. mor else F' " ¢ L,(G ,8 ,m.
As in the univariate case, there exist conditions under
which a gq-variate WSRF over a discrete LCAG is neither Jb-singular

nor Jb-regular. Once again the proof is not difficult and thus

will be omitted.
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5.13 Theorem. Let be a q-variate WSRF over a

g gec
discrete LCAG G. If P10 £O0, I = {O}C, and F° # 0, then
c

@77, S -

In the following we prove a theorem on the concordance of
the Wold decomposition with respect to Jb and the Cramer decomposi-
tion for a q-variate WSRF over a discrete LCAG under the assumption
that the process has full rank. The problem remains open when this
condition is not satisfied. As one can see from Theorem 3.20, for
q-variate processes indexed by the integers Robertson has given a
necessary and sufficient condition involving the rank of the
spectral density for concordance of the Wold decomposition with
respect to the past of the process and the Cramer decomposition.
For q-variate WSRF's over a discrete LCAG, it would be interesting
to give a necessary and sufficient condition involving the rank of
the spectral density for concordance between the Wold decomposition
with respect to Jb and the Cramer decomposition.

5.14 Theorem (Wold-Cramer concordance for JO). Let

(i) (Eg)géc be an kq-valued WSRF over G, a discrete
LCAG;

(ii) (Hg)gEG and (Zg)gGG be the components of ()_c_g)gEG
as occurred in the Wold decomposition theorem with respect to Jb;

(iii) F, Ey, and Ew be the spectral distributions of
(Eg)gGG’ (xg)gEG and (!g)gEG respectively and F', g;, and g&
their corresponding spectral densities;

(iv) Eé, E? be the absolutely continuous and singular
components of F with respect to the Haar measure, as in the Cramer

decomposition theorem;
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- *
™) F' 1 exist a.e. m and F' 1 € L,(c ,B?,m).

Then
a _ .8
E,=F ; B, =F .
Proof. By assumption (v) and Main Lemma I, 5.6, we get
@ 2y = [ 2o WE@X,
G
where
% % )F'.1 on the carrier of F-
=0’=0’'=- =

Q =
=0 » on the carrier of g?.

By Theorem 5.9(b), Ey is absolutely continuous with respect to m.
Now, using the same type of proof used in Theorem 4,13, we obtain

the following relations:

(1D F'=F'+F' a.e. m
L LEVERANE 5%
dFs = dF8 .
L 2w

~

Since we can easily show that X, € 29, again imitating the proof

of Theorem 4.13, we obtain

2, (ME@NY, -

(111) ?‘o = _(‘*
G

By (I), it follows that

A a = * = '-1 A a
W) &Ry j*godz 3, J*@o,go)g ®yoR,)dm
G G

By (III), we get



2 & * = 'R ST BN
W) Golg) = [ 8 80 = [ BoEE TEE' T @y 8g)m -
G G
Combining (IV) and (V), we have
1) j‘ &, >R,)F 1(:“: % )dm =j‘ ® ., )F'-IF'F'-I(ﬁ £ )dm .
% 0’70 0’30 % 070 == =070
G G
But, by assumption (v) and Theorem 5.8, rank (% ,50) = q, and, hence,
(VI) is equivalent to
-1 Tt S | =
(VII) j*(g -E' EE' Ddm =0 .
G
By (II), F' 2 F' a.e. m and, hence, F'-1 2 F' lF m.
- -y - - "y 1
This fact and (VII) imply, by Lemma 5.7, that F' -1 g"lg;g"
a.e. m and, hence, F' =I‘_‘1: a.e. m. Q.E.D.
c .
5.15 Remark. If P1,0 =0, I = {0}, then (x—g)gEG is

,po-singular and hence, }_(g = gg for all g € G. Thus F = Ew' In
this case, Ew could be absolutely continuous with respect to m.
We will now specialize our results to the discrete group Z,
the integers. We will first recall some notations (cf. 4.15).
5.16 Notation. Let Z be the integers. Let (xk)_m be

a q-variate WSRF over Z. let Jk = {k}c; I = {n: n < k}. Then

(1) 1M =S, 0¥tk

k’
(ii) mlk’x = 6()_(1‘, n < k) .
Clearly, | = ﬂ n =M .
Jp’x k= o:l‘lk’x k=-c Jk)x Josx

In the following theorem we will give a condition under
which 7_)1-0 X =7_7{J0’x.

P

5.17 Theorem. Let (’—(n):o be an N-valued WSRF over Zz.

Let Ev"l exist a.e. m and g"lekl(c*,ﬁ*,m). Then m, =m, L

0
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Proof. By Theorem 5.14, Ey =F ; = Ef. Since

F
w

ZZIn-l’x

5.8, Py

S it foll ha 2 .
n n’x, ollows that pIO’l pJO’O But, by Theorem

= q and, hence, p = q. Then by Theorem 3.19,
30 Io,l
are the spectral distributions of the

0

s a
EEESE=E. KK

components (v )O ’ )  in the usual Wold decomposition of
- -0 -

(g,

(En)f; with respect to the past. Hence, we get

(I)

F F 3 F F .
u v’ = =w

Using the same techniques as in the proof of Theorem 4.16, by (I)
and the fdct that = we get = .
C MJO’X me’x’ g me’x mJo’x Q’E'D'

5.18 Remark. In Theorem 4.17 we gave analytic conditions
. c
in terms of the spectral density under which # =M.

pe y Mypx ™ Mgy x =T

For the q-variate case, in general, a reasonable analytic condition
is not available. However, in terms of the rank of the process we
make the observation that if Py

0=0 and P > 0, then

1
= 0, then

0’

0’
c -
me:x F mJo’x = mx' On the other hand, if pI

0’
m_ap,x - m.ao,x =%

The rest of this section will be devoted to an extension of
Salehi's work on the interpolation of q-variate WSRF's indexed by
integers to q-variate WSRF's over discrete LCAG's. 1In this connec-
tion we may add that comments similar to the ones made in Remark
4.19 regarding the minimality and interpolation of a univariate
WSRF can also be made for the multivariate case. To avoid duplica-
tion we will not repeat these comments and will refer the interested

reader to Remark 4.19.

As we saw in the theory on minimality, some of the results

in the univariate case could only be partially extended to the
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multivariate case. We will find that the same thing happens in our
theory on interpolation. Whenever necessary, we will make the
assumption that certain matrices have full rank.

We will now recall some old notation and introduce some new

ones needed in the rest of this section.

5.19 Notation. Let (x ) be an ¥%-valued WSRF over a
LCAG G. Let F be the spectral distribution of (x ) , F' its

#_,1)

spectral density, g'# the generalized inverse of F', and Q =F' F'

let J = {go,gl,...,gn] be a fixed set of n+l elements of G. Then

oy . =7_7£;'c . nms
’ n

i) ¢, = {B: B(V) = I (8,5MA,, ﬁk's are arbitrary
k=0

q X q complex-valued matrices; PQ = P a.,e. m and

e 16 85 m s

PF'
(iii) 4 = (J° +8g, g € G}.
5.20 Remark. It is easy to see that z € ZLJ . if, and
’
Cc ~ A A
only if, z 1 x for all €J and that =6(x X eee X
y y Z X g nJ,x ('80’_81’ :__gn)’
where % is defined by & =x - (x_ |7 ).
n:7 B; T8y 8 Jc,x

We now make the following definition which is an extension

of non-minimality for a q-variate WSRF over a discrete LCAG.

5.21 Definition. Let J be as above and (x ) be a
—_— 8 8¢cG
-variate WS a di te L . W ay that is
q-variate WSRF over G, iscrete LCAG e say (x )gEG

interpolable with respect to J 1if

MJ,x C',—Rc

J ,x

1)

Q 1is the orthogonal projection onto the range of F'.
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or, equivalently,

n, = (0} -

It is clear that is a subspace of . t is also
By pa .- I
obvious that the set Qa is a linear subset of all the matrix-
*
valued polynomials on G . We introduce a matricial inner product

in Q& in the following manner:

P.,P
F =1’=2 € QJ

i# *
= '
(BB 4 = [ B OOET B (m(@n),
= G

The proof of the following lemma is straightforward and
thus will be omitted.

5.22 lemma. With the above notation, Qh is an inner pro-

duct space over the ring of q X q matrices with the inner product

(@) = or [ B R B Mn@0, Bk, € g
= G

The fact that the inner product space is finite-dimensional
and, hence, complete will follow from the following important lemma.
This lemma will be used repeatedly in the interpolation of Ng-valued
WSRF's over G, a discrete LCAG.

5.23 Lemma (Main Lemma II). With the above setting the
finite-dimensional subspace Zh,x and the inner product space Q&

are isometric; i.e., there exists a linear operator T on ZG x
d

onto Qh such that
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Proof. Llet z € ﬂJ x° We define the polynomial Ez by
n
() P(\) = T (8.\ (E’x ) .
e k=0 X By

We claim that P is an element of QJ. In view of the fact that

the subspace ZZJ < 18 spanned by {?_cg ,5_!8 ,...,f_tg }, it suffices
)

0 1 n
to prove that -P;i‘: € QJ, 0 <1i <n. For simplicity, Bio‘) will
g
i
n
denote P, €\) = I (g,.>\)(_ ,x_ ). Since ¥ €M, by the
g, k=0 < By Bk g, <

*
Isomorphism Theorem (3.7), there exists 3 € Lz(G ,B ,F) such

N

that :_:_gi = J‘*gi()‘)g(d)\)a_(o. Using a similar proof to that of
G

Lemma 4.24, we get

(1I1) P, =3 F' , on the carrier of }_‘a

§. = O , on the carrier of F°

—-1 —-— — .

Thus j‘gig'#pd = J‘ 3 E'EVR' 3, dm
* *
G G
=3 F'Q* dm
i =
G
*
=[ &9, -
G*
gk * * %
Hence, gig gi € LI(G 9 ,m). Also, by (II) it follows that

_gig_sgi a.e, m and thus giEQJ.

We now define the operator T on ZlJ x into QJ by
bl

(111) T2z=F,z€RN -

Clearly, T is linear and it is not hard to show that it preserves

the matricial inner product.
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It remains to show that T is onto @,. To do that, we show
n
that for any given P€ @ , P(\) = I (g8,,\)4A,, there exists a
= J? = k=0 k’ ™=k

z € ZKJ’X such that P = P. We remark that the function

#

PF' , on the carrier of E_a

e
"

[\] , on the carrier of P_‘s
* %
is in _1._2((; 3 ,F). Define z 67_@ by

z=[ 8(E@Nx .
G* 0

As in the proof of 4.24, by examining T z, we get:

n
Tz = T (0] (B NRMWE (WE' (Wm(dn)
k=0 o

n
= I (85N (-8, >A)E(\)m(d))
o], o

n
= T (g,5\) = P(\) »
Z BN

where the second equality follows because PQ =P a.e. m. Q.E.D.

5.24 Remark. If g"l exists a.e. m, then Q =1 a.e. m
and, hence, the condition PQ =P a.e. m is automatically
satisfied. In particular, this is true in the univariate case since
f has an inverse a.e. m.

The following is the analogue of Kolmogorov's minimality
theorem (cf. Theorem 5.8) for the case when J has n+l elements.
The proof follows directly from Main Lemma II (5.23), and thus
will be omitted.

5.25 Theorem. Let J = {go,gl,...,gn} be a fixed set of

n+l elements of G, a discrete LCAG. Let (:_:g)SEG be an Vq-valued
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WSRF over G. Then (58)SEG is not interpolable with respect to
J if, and only if, Qﬁ ¥ {0}.

The following corollary is immediate.

5.26 Corollary. With the same setting as in the above
theorem, (§g)
if, ¢, = {0}.

We will need the next two lemmas in the proof of Theorem

g€ is interpolable with respect to J if, and only

5.29. The proof of the first is easy and is omitted.
5.27 Lemma. Let J = {go,gl,...,gn} and g € J. Then

2 #0 if, and ly if, &
_gi s only » 2o

e TS T Gl 0 FO
5.28 lemma. let G be an ordered, discrete LCAG and K
be any finite subset of G. ILet P be a non-zero trigonometric
polynomial of the form P()\) = 8Ek(g,x)ég, where each ég is a
q X q complex-valued matrix. Then rank P = constant a.e. m.
Proof. By examining the minors of P of various orders,
one can show there exists a minor of order r, say Ar’ lg<r<gq,
such that Ar is a non-zero polynomial and all minors of higher
order are identically zero. As in the proof of Lemma 4.29, we can
prove that A_ $#0 a.e. m. Therefore, rank P=r a.e. m. Q.E.D.
The following theorem is an analogue of Theorem 4.28. At this
stage we have only been able to prove it under a full rank condition.

5.29 Theorem. let (:_cg) be an A%-valued WSRF over G,

g€eG
a discrete LCAG., let J = {go,gl,...,gn} be a fixed set of n+l
c
elements in G; g = {3"+g, g8 €G}.
(a) 1If (;58)gEG is non-trivial and is Jh-regular, then

(l_cg)BEG is not interpolable with respect to J + g for all g € G,
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and F is absolutely continuous with respect to the Haar measure m.
(b) Let G be ordered. If F 1is absolutely continuous

and there exists a polynomial P in QJ such that rank P = q

on a set of positive Haar measure, then Q"g)gEG is Jn-regular.

Proof (a). The proof that (x_8 ) is not interpolable with

gcG
respect to J +g for all g € G follows immediately. As in the

proof of Theorem 4.28(a), we can show that Jn-regularity implies
1 = G(% , 0<i<n, g€ag).
68 I, = Sy 4y ;

In the proof of Main Lemma II (5.23), we saw that

gir_'#, on the carrier of E_‘a

£ =1[2& (WE@Mx, where 3§ =

By g* i 0 ' 0 , on the carrier of E_S,
n

_I_’_i()\) = ¥ (gk,x)(i_!'8 ,53 ), 0 < i< n., By stationarity it follows
k=0 i %k

that

(11) g‘éi*é = [, @M EENK, , 0si<n, g€C.

G

Using the same techniques as in Theorem 4.28(a), by (I) and (II) we
*
obtain ES(G ) = 0 which implies that F 1is absolutely continuous.
b) Let =z . If we can show that 2z , % for all
(b) z €M z 4 R e
ie¢€ {0,1,...,n} and all g € G implies that 2z = 0, then we will

ha h that s 0<i< =nm. t
ve shown 6(}_:gi+g, i<n, g €6G) mx Bu

"
m.pn’x 86(331'*3’ 0<isn,géeG) and hence Ty " {0} which
shows that (’ig)gec is Jn-regular.

By Lemma 5.28 and the fact that rank P = q on a set of
positive Haar measure, we get rank P=q a.e. m. Since PQ =P

a.e. m, it follows that rank F' =q a.e. m and, hence,
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-1 %
rank P F' 12 =q a.e. m. Then, by Lemma 5.7,

(1) j*_r; F' 10" am # 0 .
G

Let y be the element in zzJ x corresponding to P (cf. Lemma
’
5.23). By (I), y is non-zero. Then, similar to the proof of

Lemma 5.6, we can show that

Y
(11) U, @ =] @NEMEMEDE,
G
where
-1 a
PF » on the carrier of F
g = s
0 » on the carrier of F .,

Let z = I*!()\)E_I(d)‘)x_o € 7, such that (5,,_(3{'_8) =0,0s<1is<n,
g €G. 1¥ then follows that (E’Uﬂg yy =0 for all g € G. But

(111) 0=(z,u, p =[ ¥ dF(-g,)¢ for all g €G .
I *
G
By (II) and (I11), we get

() 0= [ YOE (g m(@)  for all g€ .
G

*
Hence, Y P =0 a.e. m. Since P has full rank a.e. m, we conclude
that ¥ =0 a.e. m. Now, since F 1is absolutely continuous, it

follows that
*
V) (z,2) =[YdFY =[YF'Y dm=0.
G G

Hence, z = 0, Q.E.D.

b (gg)gEG is the shift group of (Eg)gec.
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Results similar to Corollary 4.30 and Remark 4.31 hold for
the multivariate case, but will not be stated.

The following shows a relation between the concept of JL~
singularity and the notion of interpolability.

5.30 Remark. Let (3{_3)gEG be a q-variate WSRF over G,
a discrete LCAG. Let J = {go,...,gn} be a fixed subset of G.
Then (Eg)geG is J%-singular if, and only if, for all g € G, .
&4, = (9.

Now, we will give a characterization for an % -valued WSRF
over a discrete LCAG which is neither J%-singular nor J;—regular in
terms of its spectral distribution.

5.31 Theorem. Let (gg) be a gq-variate WSRF over G,

geG
a discrete LCAG and F be its spectral distribution. Let
J = {go,gl,...,gn} be a fixed subset of G and I = {Jc + g, g € G}.

(@) 1f @ # {0} and F° # 0, then {0} %m_an’x Fm
() (i) If Z, x #M, then @ # (0} forall g €.

(ii) Let G be ordered. If {0} #‘mm < and there exists a polynomial
n’
Pin Qh such that rank P = q on a set of positive Haar measure then gf#g;
Proof (a). The proof is analogous to the proof of 4.33(a).
() (1) 1If mJn’x #mx, then (:_(g)gEG is not .an-smgular

and, hence, by Remark 5.30 and stationarity, # {0} for all g € G.

Z14g
(ii) 1f ﬂhh,x ¥ {0}, then (Eg)geG is not J -regular.
Hence, by 5.29(b), either F 1is not absolutely continuous or else
for all P 6'2; rank P<q a.e. m. But the latter is not true by
assumption. Hence, gf #0. Q.E.D.

Our next goal will be to establish the Wold-Cramer concordance

relation with respect to Jh for a q-variate WSRF over a discrete LCAG.
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5.32 Theorem (Wold-Cramer concordance for .nn). Let

(1) (Eg)gEG
LCAG, which is ordered; J = {go,gl,...,gn} and J = [Jc +g, g €G}.

be a q-variate WSRF over G, a discrete

ii W and be the components of (x
() @) e ) gco P ®gdgcc
as occurred in the Wold decomposition theorem with respect to J%;

(iii) F, Ey’ and Ew be the spectral distributions of
X and W respectively;
Egee Yedgeg (8g) g TesPectively

s

(iv) E?, F be the absolutely continuous and singular com-
ponents of F with respect to the Haar measure, as in the Cramer
decomposition theorem;

) P be a polynomial in Qb such that rank P=q on

a set of positive Haar measure.

Then

F
ﬂ
Proof. By assumption (v) and the fact that G 1is ordered,
as in the proof of Theorem 5.29, rank F' =q a.e. m,

-1 %
J PF' 12 dm # 0, and if 2z is the element in Zh < corresponding
* ’

?o P,

(1) z= J‘*m)g(dx):;o
G
where

-1
PF' , on the carrier of F_

. s
0 » on the carrier of F .

Also, since X 4 for 0 < i < n, it follows that =z L,
O, Egi GMJ“,X Iy O! -emjn,x

But in the proof of the Wold decomposition theorem, we observed that
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'{gy =7_71j x 2nd, hence, g € 7_/gy

n’
By Theorem 5.29(a), gy is absolutely continuous. Thus,

using the same type of proof as used in Theorem 4.13, we obtain

| Q- '
(11) E'=F +E ae. m
S s
dF° = dE,

where F' and F' are the spectral densities of F and F
—y - -

regpectively. Since 2z ¢ 'L’(y’ again imititating the proof of Theorem

4,13, we get

I1I = d .

(111) z = [ 2ENY,
G

By (I), it follows that

@ (@2 = [ 2OEENET0) = [ ZOE T WE (@
G G

By (III), we get

W @2 = [ EWEENE Q) = [ BOE TR WE T WE (In@n.
* *
G G

Combining (IV) and (V) and rearranging, we have

-1 % - -1 %
I (pF' P - PP R e ydm = 0 .
) j*__ B -RE'EE"R) [
G
- * - - *
By (I1), F' 2 F' a.e. m and, hence, PF' lP -PF' 1F'F' 1P 20 a.e. m.
L2y LA S < Lo M S
-1 %
This fact and (VI) imply, by Lemma 5.7, that P F' lp =
- it Wy
PF gyg P a.e. m. Since rank P=q a.e. m and
rank F' = q a.e. m , we get F)', =F' a.e. m. Q.E.D.

5.33 Remark. 1If e, = {0}, then, by Remark 5.30, Oig)gec

In this case, Ew could be

is _an-s ingular, and, hence, F F,-
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absolutely continuous with respect to m.

We will now specialize our results on interpolation of q-
variate WSRF's to processes indexed by the integers. Under suitable
analytic conditions, we will make appropriate comparisons between
the subspaces 7 and 7N in the time domain. First, though,

Jpax Jn:X
we will need the following notation.
5.34 Notation. Let Z be the integers. Let (:_En)o_om be
q .
an ¥ -valued WSRF over Z. Let J = {ko,kl,...,kn, ko < k1 Coeol kn}
be a fixed set of n+l integers and Ik ={j€z :j sk} Let

i m. =5(£j,j#ki+k,0$i5n);
J +k,x
(1) By = SCys 351
[- <] [+ <]
Obviously, M = n SN N’ =n . In the following
_ap,x o I* Jc+k,x ¥
theorems, we will examine conditions under which 7 =M
Jpax Jn,x

or

c
¥ .
m-pp’x m-an’x
5.35 Theorem. Let (En)m be a q-variate WSRF over Z.
— -®
Suppose there exists a polynomial P in QJ such that rank P =q

on a set of positive Haar measure. Then 7-’1_9 x = '/_Iu x*
p’ n’

S

a
Proof. By Theorem 5.32, we see that F =F ; F =F
-y - ~w

Let Eu and E'v be the spectral distributions of the components
[
(gn)__c=> and (\%):D given by the usual Wold decomposition theorem
with respect to the family {Ik]o_om. It can be shown without much
difficulty that F_ < F and, hence, rank F' < rank F' a.e. m.
y = =u -y -u
Since rank P=q a.e. m and F =Fa, it follows that F' has
v = -u
full rank a.e. m. Therefore, by Lemma 5.1, [19], we have Pr ,1 =9

0’
Hence, by Theorem 3.17, l'_‘u = Ea H E'v = Es. Now, using a similar
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roof to the one used in Theorem 4.16, we get = .
P ? & me:x m-pn,x
Q.E.D.
5.36 Theorem. Let ()_cn)°_°°° be as above. Let
log det F' € L (G 8" and = (0}. Th % =
og det b € _1( »B 9m) n QJ {_ ° en 7_’{J ,X m.on,x mx.
Proof. 1If Qh = {0}, then, by Remark 5.30, (in)f; is
J_-singular and, hence, 7 =m . It is well known ([32], p. 145)
n WX *x
*
that if log det F' ¢ lq(G ,8 ,m), then (}_{n)f°° is non-deterministic
and, thus, 'L".pp,x S . Q.E.D.
5.37 Remark. If we assume pIO,l = 0, then m‘a x = mx
and, hence, m.ﬂn,x =7_;‘x.
This concludes our discussion on the problems of interpola-
tion with respect to Jh = {Jc +g, g €G}, where J is a fixed
set of n+l elements of G, a discrete LCAG. We will devote the
rest of §5 to interpolation theory with respect to J , the family
-]

of complements of finite sets of G. First, though, we will recall

some notation.

5.38 Notation. Let (x ) be an §%-valued WSRF over G,
EE— —8'8€G
a discrete LCAG. Let F' be the spectral density of (Eg)gEG’

E'# the generalized inverse of F', and Q =F'"F'. Let J be

any finite subset of G. Then, similar to the notation in 5.19,

we set
ORI SRS (L%
J ,x

ii = {P: P = 5 A , A's are arbitrar X
(ii) @; = {B: BV gej(g,X)_g, a , y 4 Xx4qg
* * %
complex-valued matrices; PQ = Pa.e. m and PF' P ¢ LI(G B ,m)}.
We are now able to give the following definition of inter-

palability.
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3 fi ion. t be a q-variate WSRF
5.39 Definition. Le (Eg)gEG e a q-variate over G,

is interpolable if X
g€G P ( g)gEG

is interpolable with respect to every finite set of elements of G.

a discrete LCAG. We say that (§g)

The following remark follows immediately from Corollary 5.26.

5.40 Remark. Let be as in 5.39. Then

()Lg)gEG (}—cg)gec
is interpolable if, and only if, 2; = {0} for any finite subset
J of G.

The following establishes a relationship between the concept
of non-interpolability and that of JL-regularity.

5.41 Theorem. Let (gg) be a q-variate WSRF over G,

gcG
a discrete LCAG, and F be the spectral distribution of (x ) .

-8 86
(a) 1f (Eg) is non-trivial and is g -regular, then
(o]

g€G
there exists a finite subset J in G such that @ # {0} and
F 1is absolutely continuous with respect to the Haar measure m;

(b) Let G be ordered. I1If F is absolutely continuous
and for some finite set J in G there exists a polynomial
Pe Qb such that the rank P = q on a set of positive Haar measure,
then (zg)geG is J;-regular.

Proof (a). The proof that there exists a finite set J
in G such that g, # {0} is trivial. Using similar techniques
as in the proofs of Theorem 4.44(a) and Theorem 5.29(a), we can
easily show that F 1is absolutely continuous.

(b) Trivially,
(1) me,x < 7_74_0

- (o
n,x’-”n'{J +g, 8 €G} .
Therefore, our assumptions satisfy those of Theorem 5.29(b) and,

thus, (53)gEG is Jk-regular. Hence, in view of (1), ()_(g)geG is
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,a@-regu lar. Q.E.D.
In the following remark, we will state a characterization
of _am-singularity for an ¥-valued WSRF over a discrete LCAG.
5.42 Remark. Let (’ig)gEG be as in 5.40. Then ()-('g)géc
is 4 -singular if, and only if, e, = {0} for any finite subset
J of G.
Next, we will give a characterization for a q-variate WSRF
over a discrete LCAG which is neither J -singular nor Jm-regular.
Its proof is similar to that of Theorem 5.31 and thus is not given.

5.43 Theorem. Let ()ig) be a q-variate WSRF over G,

gEcG
a discrete LCAG and F be its spectral distribution.

(@) 1f @; # {0} for some finite subset J of G and
s c c
E # g’ then {g} * m-pm,x ¥ 7_’%('

() (1) 1f x #7_7!,(, then 2, # {0} for some finite

7.’[_‘,&
subset J of G.
(ii) let G be ordered. If O #m_p x "and there exists a poly-
t]
0

nomial P in QJ for some finite subset J of G such that

s
rank P = q on a set of positive Haar measure, then F # 0.

We will now state the Wold-Cramer concordance theorem for
the multivariate case with respect to the family JQ. Its proof
follows from the proof of Theorem 5.32 in the same way that the proof
of Theorem 4.49 follows from the proof of Theorem 4.35, and, hence,
is omitted.

5.44 Theorem (Wold-Cramer concordance for Jm). Let

(i) ("‘g)gCG be a q-variate WSRF over a discrete LCAG

G, which is ordered; J_o= family of complements of finite sets of G;
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ii W and be the components of
CESI 0 e P
(x_g)geG as occurred in the Wold decomposition theorem with respect
to J;
[}

(iii) F, E‘y’ and F, the spectral distributions of

(Eg)gEG’ (xg)gEG’ and (!g)gEG respectively;

(iv) ga, _lis the absolutely continuous and singular com-
ponents of F with respect to m, as in the Cramer decomposition
theorem;

w) For some finite subset J, QJ contain a polynomial

P such that rank P=q on a set of positive Haar measure.

Then

a s
E.y‘g »Ew"g .

5.45 Remark. If @ = {0} for every finite subset J of

G, then, by Remark 5.41, is Jm-singular and, hence, F = Ew

X
(-g)gGG
In this case, Ew may be absolutely continuous with respect to m.
In specializing our results for Jm to the case when G =2,
the integers, we will simply state the results comparing mJ . and
b4
m.ﬂ D since their proofs follow closely the corresponding proofs
H]
for Jn.
5.46 Theorem. Let ()_gn):) be a q-variate WSRF over Z.

1f there exists a polynomial P € QJ for some finite set J of integers

such that rank P = a.e. m, then = .
- q ? me:x m.ﬂpax

5.47 Theorem. Let (x ) be as in 5.45. Let
Theorem )

* %
log det F' € L)(G ,8 ,m). Suppose @ = {0} for every finite set

£ i . Th ¥ =m.
J of integers. Then '[_f(‘ap’x m.am’x mx
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48 Remark. If
p
-_— 1
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6. SOME EXAMPLES AND FURTHER REMARKS ON FINITE
AND INFINITE DIMENSIONAL STATIONARY RANDOM FIELDS

As we pointed our earlier, this section will be devoted to
the construction of some examples and to the discussion of some open
problems on q-variate WSRF's ovér LCAG's. We will also remark briefly
on the problems of minimality and interpolation of infinite dimen-
sional WSRF's over LCAG's.

Our discussions in the preceding sections have been mainly
on processes over discrete LCAG's. Concrete examples of such groups
are as follows:

6.1 Examples. (i) G = Z, the set of all integers;

(ii) G =R, the set of all real numbebs;
(iii) G = Rn, n-dimensional Euclidean space;
(iv) G = Zn, the set of all lattice points in n-dimen-

sional Euclidean spaces.

The following discrete LCAG should be of interest in the
study of WSRF's. As far as we know, in connection with stochastic
processes, this group has not been considered.

6.2 Example. Let T denote the unit circle. Let T,
stand for the infinite (countable) Cartesian product of T with
itself. Since T 1is compact, T°° is also compact under the usual
product topology. Let Zi denote the set of all infinite (countable)

sequences of integers only finitely many of which are different from

92
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zero. It is clear that Zi is a discrete LCAG.

By Theorem 2.2.3, [26], it follows that the dual of Z:
is T - Since Zi is a discrete LCAG and T°° is compact, the usual
Bochner theorem, 3.4, holds. Hence, our results in §4 and §5 on
minimality and interpolation of WSRF's indexed by elements of Zi
are valid.

The following is a counterexample to L. Bruckner's claim,
Theorem 4.1 of [1], that a process must be either Jb-singular or
Jb-regular. Because of Theorem 4.11, it suffices to find a process
whose spectral distribution F has the properties that
1/f € Ll(G*Jé*,m) and F° # 0. The example is as follows:

6.3 Example. ILet G =Z, the integers. Then G* = [0,2m].
Define dF in the following manner:

(i) f=1 on [0,2n];

(ii) p be the singleton measure with mass 1 at ;

(iii) dF = f dx + du.

Clearly, F* #0 and [ 1/f(x)dx = 21 < w.
*
G
Any WSRF over the integers with spectral distribution F

will constitute a counterexample to L. Bruckner's claim.
Our next example will be to construct a process over the
* *x
integers whose spectral density f is such that 1log f € Ll(G 2 ,m),
* 2 * % .
but, for any polynomial P on G , lP\ /f ¢ Ll(G B8 ,m). This
example will show, among other things, that the assumptions in

Theorems 4.17, 4.39, and 4.52 are not vacuous; i.e., there do

c
ist ses such that M =M = = .
exist processes suc WQ%’X y_x g % Wh%,x W&
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6.4 Example. Let G =Z, the integers. Let (x Y  be

n -
any WSRF over Z, whose spectral distribution is absolutely con-
1//2

tinuous and whose spectral density is given by f()) = e

= -1/ * ok . 1//A= > 1
Then 1log f 1\ € LI(G B ,m). Since e nEo W—,

by simple manipulations one can show that \Plz/f ¢ LI(G*,B#,m)
for any non-zero polynomial P.

Our last example will show that if G is not an ordered
group, then it is possible to construct a non-zero polynomial P
on G* such that P =0 on a set of positive Haar measure, as
Remark 4.31 claims.

6.5 Example. Let G = {0,1} and its binary operation

"+' be defined in the following way:
04+0=0;0+1=14+0=1;1+1=0.

It is easy to see that G cannot be ordered compatible with its
*
structure and that G contains only two elements, kl and kz,

defined in the following manner:
A(0) = 15 A (1) = 15 2,(0) = 15 A, (1) = -1 .

Define P by P()\) = (0,)) + (1,\). Then P()\l) = xl(O) + >\1(1) =2
P(kz) = xz(O) + xz(l) = 0. Note that P =0 -on the set {xz}
where m({xz}) =1/2 and P# 0 on the set {xl} where
m({)‘l}) = 1/2.
Next, we will mention some open problems that arose from our

study of q-variate WSRF's over LCAG's.
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6.6 Open problems.

(1) let )T; be a q-variate WSRF over Z, the integers.

&,
Wiener and Masani, [32], showed that log det F'e¢ Ll([O,Zn]Jé*,Leb.)
if, and only if, the rank of the process with respect to the past is
full. Llater, Wiener and Masani, [34], extended this result to cover
bivariate processes, not necessarily of full rank. The most inter-
esting result, in connection with this area, is due to Matveev, [16].
He gave a necessary and sufficient condition in terms of the spectral
density of the process for the process to have any rank between zero
and q.

In Theorem 5.8, a characterization for full rank of a WSRF
over a discrete LCAG with respect to the '"past & future'" was given
in terms of the spectral density. It would be very interesting to
extend this result, in the same spirit that Matveev extended Wiener
and Masani's result, and obtain a characterization in terms of the
spectral density for the rank of a WSRF over a LCAG with respect to
the '"past & future" to assume any value between zero and q.

(II) For the integers, Robertson (Theorem 3.20) gave a
complete characterization for concordance between the Wold decomposi-
tion with respect to the past and the Cramer decompos ition in terms
of the rank of the spectral density. For a WSRF over any discrete
LCAG, we believe a characterization for concordance between the
Wold decomposition with respect to the "past & future'" and the Cramer
decomposition in terms of the spectral density is possible. 1In fact,
Theorem 5.14 tells us that our conjecture is true when we assume
that the rank of the spectral density is full a.e. m and its inverse

* %
is in LI(G J3 ,m). Similarly, in general, the concordance between
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the Wold decomposition with respect to J% and JL and the Cramer
decomposition remain open.

(III) In the univariate case, for a non-trivial WSRF over
a discrete LCAG, we saw, by Corollary 4.9, that Jb-regularity implies
that 1/f € LI(G*JQ*,m). In the multivariate case, for a non-trivial
WSRF over a discrete LCAG, Theorem 5.9(a) implies that F is
absolutely continuous. If the rank (with respect to the '"past &
future") of the WSRF is full, then, by Theorem 5.8, g"l exists
a,e. m and is in ‘LI(G*J?*,m). In general, when the rank is not
full, it seems reasonable to assume that perhaps a similar implica-

tion holds; i.e., if (x.)
8
F'#

g€G is Jb-regular, then maybe
€L, 5 m.

(1v) In the statements of some of our results in both the
univariate and multivariate cases involving 4%- and JL-regularity;
e.g., Theorem 4.28(b), Theorem 4.35, Theorem 5.29(b), Theorem 5.32,
and Theorem 5.44, we assumed that the group G was endowed with an
order relation compatible with its structure. We feel that one
should be able to dispense with this assumption to carry out the work.

) In several of our theorems in the multivariate case,
such as 5.9(b), 5.17 and 5.35, we have assumed that certain matrices
have full rank. It may be possible to obtain these results under
weaker assumptions.

We now direct our attention to a short discussion on in-
finite dimensional stationary random fields.

6.7 Remark. Based on the isomorphism, Theorem 3.7, between

the time and spectral domain of (58)g , a g-variate (q finite)

€G

WSRF over a LCAG G, we were able to obtain analytic characterizations
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gcc’ This

work enabled us to establish various interesting results concerning

of the notions of minimality and interpolation for (Eg)

the time and spectral domain of (:_:g)g as presented in sections

@’
4 and 5.

Recently, V. Mandrekar and H. Salehi [9] have studied the
structure of the space of square-integrable operator-valued functions
with respect to a non-negative operator-valued measure. They
established [11] an isomorphism theorem between the time and spectral
domains of a WSRF over a LCAG. Based on this, they settled some
questions on subordination of an infinite-dimensional WSRF with respect
to another infinite-dimensional WSRF [11]. They also used this
isomorphism in connection with infinite-dimensional linear differential
systems drived by white noise [10].

The same way that LQ(G*,B?,E) was used to study various
results on minimality and interpolation of a gq-variate WSRF over a
discrete LCAG, one can use the space of square-integrable operator-
valued functions with respect to a non-negative operator-valued
measure (cf. [9]) to study the problems of minimality and inter-
polation for infinite-dimensional WSRF's over a discrete LCAG. These
questions are under study by us and the results will be announced

elsewhere.
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