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ABSTRACT

OPTIMAL SINGULAR CONTROL THEORY WITH

APPLICATION TO VEHICULAR BRAKING

by Michael Bishop Scherba

General results from both the Maximum Principle and Green's Theorem

are specialized to a class of singular control problems encountered in

vehicular braking processes. These problems are in the class of nonlin-

ear problems in which the control appears linearly. These are of the form

i(t) - f(x,t) + B(x,t)u

where the n dimensional vector x(t) is the state of the system at time t

and the r dimensional vector u is the control vector. The object is to

find a control vector which takes the system from some initial state x0

at time to to state xT at time T and minimize the functional

T

Jlu] - J fo(t,x,u)dt

to

In the vehicular braking problems, the functional J[u] corresponds to stop-

ping distance. This problem is shown to be equivalent to the time optimal

problem for the class of functions encountered.

Necessary conditions along singular arcs are established using both

the Maximum Principle and Green's Theorem. Algorithms for determining op-

timal trajectories along both singular and nonsingular arcs are developed

using the concept of reachable and controllable sets.

The optimal control as a function of the state variables — the closed

loop problem - is solved. Application to vehicular braking processes is



shown by means of both rate and amplitude limited controls. The result-

ing systems are singular "pang-pang" and singular "bang-bang" systems.

The inability of a single mathematical performance index to encom—

pass all the qualities desired in the vehicular braking system resulted

in the development of suboptimal control systems. Favorable comparison

with optimal control systems is shown by means of digital and analog

techniques. Simulation including real hardware shows application of the

theory. Several frequency domain criteria are included to provide in-

sight regarding the effect of time delays in suboptimal vehicular braking

systems.
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CHAPTER I

INTRODUCTION

Writers have called attention to the fact that a gap exists be-

tween contemporary control theory and control practice [G7]. The gap

can be attributed to the fact that theoreticians and designers do not

study and solve the same problems in the same order and manner. In the

present study - Optimal Control of a Vehicle During Braking — there ap—

pear many difficulties. Those of an essentially mathematical nature are

of interest to the theoretician. These difficulties are not usually

the same as those which concern the designer. The theoretician often

finds interesting and worthy of study a simplified version of the de—

signer's problem. On the other hand, the designer often will change the

design to bypass a difficulty which he has insufficient time to analyze.

This thesis is an attempt to decrease the communication gap due to the

divergent interests of theoreticians and designers in the area of optimal

vehicular braking.

Nonlinear systems in which the control appears linearly may be

singular control problems [H3]. Chapter 11 presents a unification of

singular control theory results found in the literature. The Maximum

Principle approach to singular control problems due to Johnson and

Gibson [J1], [J2] is presented and extended.

The Green's Theorem approach first presented by Miele [M2] and

generalized by Haynes [H1] is quite useful in low order systems. In the

first approximation model of the vehicular control system, this method

1



is applied. Studies by Snow [S3] concerning reachable and attainable

sets supplement the development of the Green's Theorem approach. Geo-

metric rules for determining optimal trajectories which contain both

singular and non-singular arcs are developed and presented.

To establish necessary conditions for minimality of singular arcs,

the second variation approach developed by Robbins [R1] and also by

Kopp, Kelley, and Moyer [K2], [K3] is presented.

In Chapter III the general theory of singular control as presented

in the previous sections is applied to low order time optimal control

systems. This specialization is directed toward the vehicular braking

control problem.

The first section employs the necessary conditions obtained from

extensions of the Maximum Principle to derive the optimal control law.

The mathematical model of the friction-slip characteristic used in the

vehicular control system is of an exponential nature. This permits

further specialization and simplification of the control law. The

result of this approach is a closed loop system, in which the control

is a function of state variables, operating as a second order system in

the singular mode and as a fourth order system in the non-singular mode.

The singular "bang-bang" cases concerned are designated Problem 3.1 and

Problem 3.2.

Using the Green's Theorem approach, no additional information is

obtained for these problems. The necessary conditions for singular arcs

to exist are compared and tabulated. It is shown that the necessary

conditions of the Maximum Principle approach imply the necessary condition



of the Green Theorem approach.

The previous problems dealt with bounded control variables. Problem

3.3 is the singular "pang-pang" time optimal control problem and models

a vehicular braking control system when the control pressure is rate

limited. It is shown that the control law for both the singular "bang-

bang" case and the singular "pang-pang" case are identical on the singu-

lar portion of the trajectory. The terminology singular ”bang-bang" and

singular "pang-pang" is defined in Chapter III.

The "pang-pang" problem increased the order of the system to three,

since the control u became a state variable and a became the new control

signal. The extension of Green's Theorem from two to three dimensions is

the traditional Stoke's Theorem. The generalization to higher dimensions

will be designated as the n-dimensional Green's Theorem. ,This generali-

zation is considered and a procedure for applying Green's Theorem to

n-dimensional problems is presented. The concluding section of Chapter III

applies the second variation approach to Problem 3.1, the singular "bang-

bang" time optimal control problem.

The chapters to this point have stressed the theoretical aspects re-

lated to the problem of interest. Chapter IV is concerned with the ap-

plication of the previous material to the vehicular braking control

problem. As such, it is of interest to both the theoreticians and the de-

signers. A mathematical model of the one-wheel vehicular braking control

model is optimized using the Green's Theorem approach. Reachable and at-

tainable sets are obtained and a realizable control algorithm determined.

A computer program to automate the procedure is discussed and included



in Appendix II. By eliminating the constraint on the control signal and

using an impulse function in the control, a simple analytical solution

is obtained. This provides a design tool for this particular problem and

serves to check the digital computer solution.

Implementation of the optimal control based on the Green's Theorem

approach shows the feasability of this method. However, the optimal con-

trol system model used shows that unavoidable time delays in the IBM

360-65 computer are responsible for the control signal oscillating or

chattering about the theoretical value. By means of small signal analy-

sis, relations between the variables are derived so that the magnitudes of

the oscillations can be predicted. These are primarily of theoretical in-

terest, since they would have negligible effect on a hardware system.

They do indicate that time delays, such as encountered in various trans-

ducers, will affect the practical system.

In Chapter IV, the vehicular braking control problem was formulated

as a time optimal control problem. By means of Green's Theorem, it is

shown that minimizing time to stop the vehicle is equivalent to minimizing

Vehicle. stopping distance. A criterion is also derived which shows the

relationship necessary for equivalence.

The one-wheel vehicular braking control model with rate and amplitude

limited control is solved by using the n-dimensional Green's Theorem deve-

lopment. The three dimensional trajectory is described.

The problems considered to this point, have been aimed at directly

assisting in the develOpment of a vehicular control system. Subject to

well defined constraints, the optimal control problem has been solved by



both the Maximum Principle and the Green's Theorem approach. The de-

signer, however, is faced with constraints which are not well defined.

Diverse facts such as cost, reliability, variability, and noise sen-

sitivity must be considered. The complexity forces the designer - at

this stage - to optimize, in some undefined sense, a system which will

be called the suboptimal vehicular braking control system. This is done

in Chapter V. The basic supoptimal control system developed first is

almost indistinguishable from the optimal control system. Since time

delays, due to transducers are significant, the final suboptimal system

developed takes these into account.

Studies using both the analog and the digital computer are conduct-

ed, using the optimal control system as a reference system. It is shown

that it is possible to compensate for transducer time delays which are

no more than approximately 20 milliseconds. Also, if the time delays are

in this range, they may be treated linearly. Representative plots and

their comparison with respect to the optimal control system are included.

In order to predict the effect of various system parameters more

easily, it is necessary to develop models which reduce the complexity of

the system. Several models are developed in Chapter VI, which are useful

under various operating conditions. The first model, which is valid for

a properly compensated system having time delays, establishes a criterion

relating time delay to ripple frequency present in the system response.

Another model developed is appropriate for systems having physically

realizable time delays but operating without compensation. This model

considers the effects of two nonlinearities, the friction-slip characteristic



and the relay characteristic. The use of these models in predicting the

effect of system parameters is demonstrated and comparison with computer

studies is included.

In summary, this thesis presents a unification of singular control

theory and specializes the general results to a class of problems en—

countered in vehicular braking processes.

It develops necessary conditions along singular and nonsingular tra-

jectories, which are used to develop algorithms necessary to mechanize

time optimal models based on both the Maximum Principle and Green's

Theorem. The equivalence of minimum time and minimum stopping distance

criteria is proved.

Parameter studies of suboptimal systems are made using both analog

and digital technique. The suboptimal performance of simulators using

real hardware is shown to compare favorably with the optimal control

system.

Several frequency criteria are developed to permit evaluation of

suboptimal control systems.



CHAPTER II SINGULAR CONTROL THEORY

2.1 lgtrodggtion

This chapter is a survey of some of the currently known mathematical

techniques applicable to the study of systems described by nonlinear

differential equations in which the control appears linearly, i.e.,

r

i1(c) - fi(x,t) + E bij (x,t)uj 1 . 1,2,..., n (2.1)

j 1

It will be shown that when the control appears linearly, a class of

solutions which are called singular may appear. In matrix notation, the

above equation may be written as

x(t) - f(x,t) + B(x,t)u (2.2)

In the above equation, t is the independent variable (t = time in the

practical cases considered). The n dimensional vector x(t) is the state of

the system at time t, and the r dimensional vector u is the control vector.

The problems of primary interest are those in which control vectors,

i.e., a set of control functions ua(t), are to be found which will take

the system from state x at time t to state x at time T.
O o T

By requiring that the control vectors Optimize some performance

criterion, we have an optimal control problem. This criterion is usually

a functional which may depend on time, the state of the system, and the

control vector. When expressed in integral form it appears as follows:

T

J[u] - I f (t,x,u)dt (2.3)

t o

O



In much of the study that follows the scalar f will be 1. This

0

is the classical time optimal control problem.

The control vector will be selected from a class of functions U

depending on the problem. Bounds on the control and its derivative such

as

Iul_<_l a=1,2,...,r

a

and

Ida] :_1 are considered.

The system equations may always be written so that the magnitudes of the

control components are normalized, i.e., Iu I < l.
a ._

For an optimal control problem, a trajectory is said to be singular,

if along the trajectory, the necessary conditions for optimality such as

provided by the Pontryagin Maximum Principle are satisfied in a trivial
 

manner. Application of the usual necessary conditions here produces no

useful information. A definition due to Hermes [H5] states that a control

vector is totally singular when the Maximum Principle yields no informa-

tion in time optimal problem for any components of the optimal control.

If a trajectory is nonsingular, it is called normal. The trajectories

considered in this study have subarea which may be normal and other sub-

area which may be singular.

2.2 The Maximum Principle Approach
 

In this section application of the Maximum Principle will show that

the usual necessary conditions provide no information regarding the sin-

gular control. Hence, other necessary conditions will be developed to

provide additional information regarding the control.



The practical cases considered later will be time invariant with

a single control variable. Consider,

Problem 2.1
 

i,(c) - fi[x(t)] + bi[x(t)Ju(t) 1 = 1,2,..., n (2.4)

or in vector notation

x(t) - ftx<c>1 + b[x(t)Iu(t) (2.5)

where the state vector is the n dimensional vector x and u(t) is a

sectionally continuous scalar control function.

Assume that u(t) is constrained in magnitude by the relation

[u(t)] 5 1 for all t ts[O,T] (2.6)

The problem is to drive the initial state x(0) = a to x(t) = b

while minimizing the functional

T

JluJ - L {fo[x(t)1 + b0[x(t)hi(t)}dt (2.7)

which can be represented as

10 - fo[x(t)] + bo[x(t)]u(t) x (0) = o (2.8)

The Hamiltonian is defined as

n n

u(x.u.t.p) - Z £i[x(c)1p1(t) +‘.(t) Z bi[x(t)1p1(t) (2.9)

i=0 i=0

The vector p is the costate or adjoint vector and is given by

' _.__2§___t I

p1( ) 3x1(t)
i = 1.2.000,“ (2.10)

or in vector form as

5(t) . _ .22. (2.11)

3x
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From equation (2.9) and (2.10), we have

. ( ) r21 ( ) £j[x(t)] n )ab [x(t)] (2.12)

p t " - t '- t

The following theorem is one form of the Maximum Principle which

gives necessary conditions for Problem 2.1 [A1].

Theorem 2.1
 

If u*(t) is an Optimal control and if x*(t) is the corresponding

optimal trajectory, then there exists a nonzero absolutely continuous

*

vector valued function p*(t) and a constant po 3 0 such that

 
 

e * * * *

1) x. (c) - filx (t)] + bilx (c)1u (t) (213)

*

u 3f [x t)] u 3b [x*(t)]

é,*(t) - -2 p *(t) 1 - u*(t)) pj*(t) 3
3=1 1 3x: (t) j=i axju) (2.14)

i k

x (O) = a x (T) 8 b i=1,2,...,n (2.15)

ii) For t s [0,T] and all u(t) satisfying the constraint Iu(t)|g 1,

the following relation holds

11 n *

a a e

u (t) 2 b [x*(c)1p (c) :_u<c) Z bilx (t)]pi (t) (2 16)

1-0 1 1 i=0

iii) If T is free

so? ,u*,c,p*) - o c s [0,T] (2.17)

iv) If T is fixed

a *

H(x*,u ,t,p ) - C - a constant t e [0.T] (2.18)

As long as the scalar E b1[x(t)]p1(t) is not zero, minimizing

i-O

equation (2.9) yields the well-defined control law,
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* n

u (t) - - sgn X b [x(t)]p (t) (2.19)

when IuLg 1.

Since the signum function is not defined for argument equal to zero,

the cantrol u may be any admissible value. Admissible values are those

which satisfy the constraint lu|§_l. This presents no problem as long

as the scalar function 2 b1[x(t)]pi(t) is not zero over finite time in-

terval. This is the cl::gic "bang-bang" case[L1]. If, however, the

scalar Z b1[x(t)]pi(t) is zero over a finite interval then the problem

is singzlgr and is no longer "bang-bang". This may be formalized by the

following:

Definition 2.1 Optimal Singular Control

Problem 2.1 is singular if the optimal control u*(t), the resulting

trajectory x*(t), and corresponding costate p*(t) have the following

property:

There is at least one half-open interval (t1,t2] in [0,T] such that

Z b1[x*(t)]pi*(t) = o for all t e (t1,t2] (2.20)

1-0

* *

PO (t)'P0 3.0

The control will be called an extremal control u(t) if it satisfies all

the necessary conditions of Theorem 2.1 such that corresponding state x(t)

and costate p(t) have the property that

Z b1[x(t)]pi(t) - 0 for all t s (t1,t2] (2.21)

50(t) ' P0 ' 0
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To avoid nonessential generalization, singular extremal controls in

low order systems will be considered using the Maximum Principle. First

form the Hamiltonian as given by (2.9) in vector notation

H - (f,p) + u (b,p) for all t s (t1,t2) (2.23)

To simplify notation, the x(t) dependence of the variables will be

omitted.

In Problem 2.1 consider the free terminal-time case and then

minimize H with respect to u, to find

[I

_2§_. . - 2.24
an 0 140 bit:1 (b,p) ( )

Here the control u is assumed to be in the interior of its allowed

region U so that gfl—-exists. If u is on the boundary of U, it would then

u

fall into the "bang-bang" category. Transitions from the boundary 0f U to

the interior of U will be considered later.

Problem 2.1 concerns the scalar control case. If u is a vector con-

trol (dimension 3,2) in the interior of its allowed region, then an

extremal arc would be singular if the matrix Huu with typical element

33§n§;—- is singular everywhere on the arc. This means that its deter-

minantjis identically zero on the arc, assuming the existence of the

necessary partial derivatives. Since H - 0 along the arc, another

condition obtained from the Hamiltonian is

n

X fip . 0 for all t s (t1,t2) (2.25)

1-0 1

Additional necessary conditions may be obtained by differentiating

(2.24) and (2.25)

§ E d? d9: 0 (2 26)_§_ bp " [b +____p]" .

dt 1-0 1 1 1-0 1 351 dt 1



n n dp df

d z ‘ i i
—— fp=) f-—-—+-———p] =0 (2.27)

dt 1.0 1 1 i=0 1 dt dt 1

Using equation (2.10) and substituting equation (2.25), and (2.26)

g ( 3H dp1

-b ___ + ___p 1 = 0 (2.28)

i=0 i axi dt 1

E [ 3H df1

_,f __ + -—P] a 0 (2.29)

1.0 1 3X1 dt 1

Using equation (2.22)

n 8f n 3b

2%.. I Z pja—x-J + u 2 pj 8—)?1 i=0,1.2,oeo,n (2030)

1' 3-0 1 j=0 1

substituting the above in (2.28) and (2.29) and making use of (2.4)

 

E [ n afj abj n 3bi

0 - -b p + p -—— + p ——(f + b u)] (2.31)

1'0 i J-o( 3 3x1 u 3 3X1 1 j=0 3x1 1 3

I g afj abj n afi J

0 - {-f p -———— + p -——— + p -—(f.+ b ) (2.32)
1-0 1 j-O j 3x1 u 3 3x1 1 jéo 3x3 3 Ju

By interchanging the summation indices in and j in one of the u

terms of (2.31), the coefficient of the u term is readily seen to be zero.

Hence,

“ n 3b 8f

——1- _;L-

120 320 [fjpi 3xj bipj axi ] 0
(2.33)

or interchanging indices in the second term, we obtain the necessary

condition,

f -—- - b -——— ] - 0 (2.34)

1_0 1.0 p1 J 3x3 3 axj

The interchange of indices in equations (2.31) and (2.33) is per-

missible since, the indices of summation are dummy indices.
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In a similar manner, we obtain from equation (2.32)

n n af 3b

__i - __1 . 2.35

“110 120 91(b1 ij f1 8X3) 0 ( )

Equation (2.35) implies equation (2.34) or u - 0

Hence, at this stage, using the Maximum Principle Approach, we

have the necessary condition for an extremal singular control.

n

uc1 2 b p - o (2.36)

1-0 1 1

‘2‘ucz f p - o (2.37)

1-0 1 1

g p Bfi 3b1

NC3 p (b -- - f -—-) - o (2.38)

The differentiation above can be continued resulting in additional

necessary conditions. In matrix form these necessary conditions may be

represented as

      

Pbo b1 b2 b 1 p 1 F0 I
... n p0

£0 £1 £2 oos fn pl 0

810 811 812... aln p2 ' o (2'39)

Ban-7’0 an-l’nj ban .0 a

For example, at

n . b-

a - 2 (b __i - f 3.3.) (2.40)

11 j-O J 3x1 3 3x3

and higher order terms are obtained from the additional differentiation.

In the application these will be obtained when necessary.
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2.3.1 The Green's Theorem Approach
 

The problem to be considered in this section is essentially the same

as previously treated in Section 2.2. The Green's Theorem technique dis-

cussed in [M2], [H5], [H3] is a powerful tool in resolving the singular

control problem, especially when the dimension of the state space is of

low order. By this method, it is possible to obtain global conditions for

optimality. Consider a system with control appearing linearly, e.g.,

Problem 2.2
 

i1(t) - fi[x(t)] - b1[x(t)]u(t) 1 - 1,2,...,n (2.41)

u(t) is a scalar control function constrained in magnitude by the relation

0 §_u(t) :_1 for all t t c [0,T] (2.42)

Drive the initial state x(0)=a to x(T)-b, while minimizing the functional

T

J[u] - [0 f0[x(t)]dt (2.43)

The two dimensional problem will be considered before considering ex-

tensions of Green's Theorem to higher dimensions. The basis of the deve-

lOpment is the transformation of line integrals into surface integrals.

Assume that the integral in (2.43) may be written as

b

J[u] - J [P(x1,x2)dx2 + Q(xl,x2)dxl] (2.44)

a

This requires that dt can be expressed in terms of dxl and dxy.

Consider that the class of arcs being investigated is contained in a

region bounded by the closed curve e(xl,x2) - 0. The initial point

(xl(0),x2(0)) and the final point (xl(T), x2(T)) are on the boundary of

this domain. Figure 2.1 shows two possible paths, C and D. Note that

paths may have corners indicating a discontinuity in the derivative dx/dt.
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1(TI F

X“)

I

  

Figure 2.1

Comparison of Trajectories

By comparing the value of the integral (2.44) along all admissible

paths, the extremal are which will be a global minimum (or maximum) can

be determined. This is done as follows:

Designate path C by ICF and path D by IDF. Here I and F represent

initial and final points on the arc or trajectory. Then Subtract the inte-

grals associated with these paths,

AJ ' I (PdXZ + del) - I (PdX2 + QXm) (2.45)

ICF IDF

This is equivalent to the closed contour integral
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AJ -¢ (de2 + del) (2.46)

ICFDI

Green's Theorem is applicable if the functions P and Q and their partial

derivatives are continuous in the region a bounded by the two admissible

paths. Assuming that these conditions are met, Green's Theorem is used to

transform the line integral into a surface integral. Hence,

§ (de2 + del) 3 1&1 (-—Q - ———)dx1 dx2 (2.47)

ICFDI 3x2

The integration along the trajectories proceeds counterclockwise. A

negative sign would be associated with the right hand side of the equa-

tion if the integration along the trajectories was clockwise.

The fundamental function, as defined by Miele [M2], is

3Q 39
___ _ ___

(2.48)

8x2 3x1

w(x1,x2) -

A study of this function in the admissible domain provides the necessary

information to evaluate the relative merits of all possible trajectories

between I and F. In general, the function m(x1,x2) will change sign in

the admissible domain. However, first consider the case where w is con-

stant over the entire domain. If m is positive over the entire domain,

then J > J . In fact, J

ICF IDF IGF

trajectory, hence is the maximum arc. Similarly JIDF < JICF if m is nega-

tive over the entire domain. If m is zero over the entire domain, then

is greater than any other admissible

the integrals are independent of path, and JIDF = JICF'

Now, considering the general case where w may change sign within



18

the admissible domain. It is possible to have several subdomains in

which w is positive and several in which w is negative. In order to

find the trajectory from I to F, corresponding to the maximum or mini-

mum value J, proceed as follows referring to Figure 2.2:

X:

 
 
 

X:

Figure 2.2

Determination of Optimal Trajectory

Starting at I, compare IAB versus 18. Since the domain encircled has

w > 0. and going CCW,J Compare AB vs. ACB. The domain en->IIAB IB

circled has m > 0, hence < J . Likewise I Z J

AB ACB IAD IQD

similarly,

E
—

é
—
fi
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Therefore I is the maximum integral and IADHMF is the corresponding

IADHMF

trajectory.

This procedure may be summarized as follows: To determine the tra-

jectory which makes the integral given by equation (2.44) a maximum,

start at the initial point I and proceed so that the subdomains w > 0 are

on the left and subdomains where m < 0 are on the right. This means the

trajectories will be either on the boundary of the domain or on the arc

w I 0. The procedure for minimizing the integral is just the opposite.

Hence, the minimizing trajectory is IDAMHF. The singular arcs are those

where m'I 0. The nonsingular arcs are those where e(x1,x2) I 0.

When comparing trajectories using the above procedure, it is assumed

that the admissible control functions are able to generate the trajecto—

ries, including the singular arc w I 0. When constructing the domain

and its boundary s(x1,x2) I 0, it may not be obvious that the singular

arc w I 0 is not admissible in certain cases.

XF

    f(xhxl) . O

 
 

Figure 2.3

Permissible Domain of Operation
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The domain of operation is constructed by determining the inter-

section of two sets, 81 and $2. The set 31 is the set of points attainable

by admissible controls starting from the central point x0. 82 is the

set attainable by admissible controls starting from the final point xf

with time reversed, or equivalently, the set of points from which it is

possible to derive xf using admissible controls. In this domain are

found all admissible trajectories.

If, arbitrarily, a trajectory m = 0 is drawn, it is not obvious

that this trajectory can be generated by an admissible control u(t). If

it can, then it is a possible candidate for a singular arc. For example,

consider the domain shown in Figure 2.4. This domain is associated with

the system

*1 . X1 + XZU (2.49)

222 - X2 + Xlu (2.50)

IUI 5 1 (2.51)

’2

 

 

“III

 
Figure 2.4

Optimal Trajectory Not Along an m = 0 Are
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The fundamental function w(xl,x2) associated with various perform-

ance criteria can have the form shown. An example is given in [H2]. As

is evident from this system, the permissible trajectories emanating from

any point in or on the boundary of the domain are confined to angles be-

tween -45° and +45°. Hence, when point A is reached, the trajectory con-

tinues downward instead of going along w I 0. If the slope of the line

w I 0 is l, we have the interesting case where the trajectory is now a-

long w I 0 and the problem is singular and still "bang-bang". This is

because u I +1 along w I 0.
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2.3.2 Determination of Reachable Regions

The Green Theorem Approach necessitates determining regions over

which control is possible. Two regions are of interest. The first is

the set of states that can be reached, given a class of functions U and

initial state x(to) I x0. The total set will be called the Reachable

set. Related to this set is the set of states that can be reached at

time T by use of admissible controls. This set was called the T-Reachable

set by Snow [53]. It should be noted that both the Reachable set and the

T-Reachable set are independent of any performance criteria.

The second region of interest is the set of states for which there

is an admissible control in U that drives the state to a given final

state. This set of states will be called the Controllable Set. Related

to this set is the set of states for which there is an admissible con-

trol U that drives the state to a given final state in time T. This set

is defined as T-Controllable by Snow. The name controllable is related

to the concept of controllability, which states that a system is control-

lable if, given any two states, there is a control which will drive the

system from one state to the other in finite time.

In the application of the Green's Theorem Approach, only the chara-

cter of the Reachable Region and the Controllable Region need be known.

The intersection of the Reachable Set and the Controllable Set contain

all trajectories from the initial point to the final point.

A method of obtaining the Reachable Set was developed by Snow [83].

His method is based on the solution of three Hamilton-Jacobi partial
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differential equations. The equations are solved by the method of

characteristics. The Reachable region is the region bounded by the

surfaces S(x,t) I S(x0,t0) where S(x,t) represents the solutions of

the Hamilton-Jacobi equations.

The method used here will be based on several theorems developed

by Hermes and Haynes [H3]. The theorems are directly applicable to

Problem 3.2 which will be considered later.

The system to be considered is two dimensional with the control

function appearing linearly.

x1 I f1(xl,x2) + bl(x1,x2)u x1(0) x10 (2.52)

x I f2(xl,x2) + b2(x1,x2)u x2(0)2 x20 (2.53)

The control functional u is’a scalar and is in the set of admissible

control functions, U.

u : {u:|u(t)l 5 1 , c e [0,m1} (2.54)

In the development, the solution of equations (2.52) and (2.53)

<

when a constant control u(t) = a. -1 E o — 1, is applied is designated

a

ase.

It is assumed that fl, f2, b1, and b2 are once continously differ-

entiable in an open, simply connected set DC R2. The initial point

x0 and the final point xf are always considered to be in D.

The Reachable Set (set of points which can be attained from x0) is

defined as

2

R(x0) E {x c R : x I ¢u(t,x0), u s U} (2.55)
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The Controllable Set, (set of points from which xf can be attained in a

finite time), is defined as

u(xf) s {x s R2 : x 3 (pt: Waxy: u E U} (2.56)

The relationship between the T-Controllable Region for a given system

and the T-Reachable Region for the system with time reversed is deve-

loped by Snow [S3], who shows that if the system is described by n first

order equations, the T-Reachable Region for the forward time equation is

precisely the same as the (T-to) Controllable Region for the reversed

time system. This is not true in general for a system described by a

single nth—order differential equation.

If a solution to the Optimal Control problem exists the trajectory

connecting x0 to xf must lie in R(x0){)R(xf).

The following lemmas due to Hermes and Haynes [H3] are the basis

for the theorem giving sufficient conditions so that the trajectories

¢1 (', x0), ¢'1(',x°), ¢1(',xf), and ¢'1 (',xf) determine and bound

R‘XO)I]R(Xf).

The following definitions are used in the theorems and lemmas.

My) 5 -b2 (y) f1 (y) + b1 (5') f2()’) y e D (2.57)

6(a,y) is the angle traced out by the ray 5 (o,y) as o varies

continuously from -1 to a.

The vector 6 is defined as,

f1(Y) + bl(Y)a

f2(Y) . b2(y)a (2.58)

5(09Y) E

The possible directions which solution trajectories can assume at a

point y in the two-dimensional Space are given by the vector s(o,y).
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Lemma 2.1

If A (y) I 0, the set { s (d,y) : Iolfij} of possible directions is

bounded by c(-1,y) and e(l,y) with O<|6(1,y)I<H.

This lemma implies that the set of possible trajectory directions

at X0 are confined to an angle of less than or eQual to H.

The next lemma shows that if the angle 6(1,¢1(t,x0)) is observed

as t increases from zero, the condition A(¢1(t,x )) I 0 will not change.

Similarly A(¢'1(t,x0) f 0 implies that the sign of ¢(1,¢-1(t.x0))

will not change. As expected, all trajectories are confined to a region

bounded by ¢1(-,x0) and ¢'1(',x0).

Lemma 2.2

Let y(o), o :_o §_o be a continuous curve in D along which
f,

A(y(o)) I 0; then signum 6(1, y(o)) is invariant along the curve. Thus

0

all possible trajectories are bounded by ¢1(°,x0) and ¢'1(°,x0) and are

contained in an angle less than or equal to n.

Similar statements can be made about xf.

In order to insure the existence of solutions to (2.52), (2.53),

and (2.54) joining x0 to xf, the following conditions are imposed.
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Condition 2.1 Either F(x0) or F(xf) properly separates D, where

I
I
I

F(xo) {¢1(t,x0): t s T(l,x0)}[]{¢‘1(t,x0): t s T(-1,x0), t>0}

F(xf) {¢'1(-t,xf): c s T(1,xf)}LI{¢'1(-t,xf): c e T(—l,xf), c>0}

and there exist t1, t2, t3, t“ > 0 such that

1) ¢1(t1.x0) - ¢”1(-t2.xf)

11) ¢-1(t1,xo) - ¢1(-c,.xf)

iii) The trajectory arcs ¢1(t,x0), O :_t :_t1;

¢'I(t,xo), 0 _<_ t i t3; ¢1(-t,xf), 0 i t i t“;

¢'1(-t.xf). 0 1 c i t , all lie in 1)
2

iv) A(x) I 0 in the set F(x0) or F(xf) which properly

separates D

Theorem 2.1 If a problem satisfies Condition 2.1 and A(y) f 0 for
 

y s S, then S I R(x0)flR(xf)

Summarizing, Theorem 2.1, provides a rigorous basis for the de-

termination of the region containing all the admissible trajectories.

It also shows that this region is bounded by trajectories resulting

from application of "bang-bang" control signals.
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2.4 The Second Variation Approach

This section will present equations for minimality of singular arcs

over a finite time interval. Special control variations are used to ob-

tain a second variation test for singular arcs. The approach is based

on the work of Kopp,Ke11y, and Moyer [K2], [K3].

Consider the system of differential equations and boundary conditions

£1 I f1(x1,...,xn,u,,...,ur,t) i I 1,2,...,n (2.59)

x1(t0) I xio i I l,...,n (2.60)

xi(T) I xif i I l,...,m(m §_n) (2.61)

The cost functional to be minimized will be formulated in the Mayer

form of the calculus of variation, i.e., minimize

J(xm+l(T),...xn(T), T) (2.62)

Although the minimization is also subject to constraints on the controls,

i.e., Iu[§_1, these constraints will present no difficulty since the

control corresponding to a singular arc is usually interior to the bound-

ary of U.

Therefore, in the development that follows, u will be considered to

be in the interior of the class of admissible controls U.

The Hamiltonian is defined as

n

1-1 1 1

Introduce the auxiliary vector pi(t). This turns out to be the ad-

joint or costate vector and is defined by the following differential

equations and boundary conditions,



 

. n 3f 3H

- - - - -—- 1 -- 1 .4p1 321111 31 3X1 3 an (2 6)

BJ

p1(T) -

axif 1 = m+1,...,n (2-65)

Necessary conditions for P to be a minimum are that the Hamiltonian

be a minimum.for all admissible controls,

* t * *

H(u1 + Au1,...,ur + Ant) 1 H(ul ,...,ur ) (2.66)

Asterix denotes the optimal controls.

Singular subarcs occur when the matrix Huu’ With typical element

3H

Bu 8
1 u

, is singular over a finite interval of time.

Emphasis will be on the case in which a single variable appears

linearly in the system equation as in the vehicle braking problem.

The total variation in the cost functional J[Lfl due to a variation

in the vector u is

 

n n n 32J(xf+eAxf)

AJ'I 2 -§l- Ax + 8 Z 2 Ax Ax

8x if i=m+1 Im+l 3x 3x if 1biIm+1 if 3 if if (2.67)

where 0 :_6 §_l.

Consider the case where the end points are fixed. Then, due to a

a

change Au away from the optimal u ,

* * *

Aii I fi(x*+Ax,u +Au,t) - fi(x ,u ,t) i=1,...,n (2.68)

I g ’00., 2069Ax1(t0) O i 1 n ( )

I 1.1,eee’n (2.70)Ax1(tf) 0
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Consider the equation

n . n t s * *

121 piAx1 - 121 p1[f1(x +Ax,u +Au,t) - fi(x ,u ,t)] (2.71)

Using the Hamiltonian in equation (2.71),

n , * e * *

Z 1:14):1 - u(x +4x.u +2....) - no: .u ,t) (2.72)

1.1

Now consider

d n E n

-—- Ax I p Ax + p Ax (2.73)
d, 121 P1 1 1-1 1 1 1:1 1 1

Multiplying through by dt and integrating,

 

n tf tf n . n

X piAx1 I J [ Z piAxi + X piAxil dt (2.74)

iIl t0 t0 iIl i=1

Due to the boundary conditions

 

n t n * a * *

1-m+1 3‘11 t 1'1 1 1 1

n as * *- z __ (X g“ ,t)AX } C“:
(2.75)

. 3x 1i 1 1

Using Taylor's expansion, and substituting the Hamiltonian,

 

n t n
* a H *

SJ Ax I f [H(p,x ,u +Au,t) + Z 2—-(p,x ,u*+Au,t)Ax
ax if i

1-m+1 if to 1-1 311

n n 32H * *

+ k 2 Z S;—;;— (p,x ,+6Ax,u +Au,t) Axiij

iIl jIl i j

a a 3 an e a

- H(p,x ,0 ,t) ' X SIT-(P931 su at)Axi] dt

i=1 i (2.76)
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Substituting (2.76) into (2.67) the total variation due to a variation

in control vector u is as follows:

' a * a a

t [H(x ,u +Au,t) - H(x ,u ,t)] dt

AJ - I f

to

t
* * * *

+J f [g2 (Psx :11 + “,t) " 21(1)." a“ at)]Ax dt

to 1 3x1 1

n n 2
a H a e

+ h I Z Z --—- (p,x +6Ax,u +Au,t)AxiAx dt

 

1-1 1-1 311313 J

n n 32J(x +6Ax )

+ 8 Z X f (f Ax Ax

3-1 1-1 3X1£3XJ£ 11 if (2.77)

At this point, assume that the control U appears linearly in the system

equation (2.59). The control will then also appear linearly in the

Hamiltonian. When the first integral of (2.77) is expanded using the

2

Taylor expansion, the §_§ term will vanish because the Hamiltonian is

auz

linear in u.

Hence, minimality cannot be established. Therefore, to obtain ad-

ditional necessary conditions, further inspection of the second order

terms is required. The classical derivation of the Legendre necessary

condition was Obtained by employing a special derivation in conjunction

with the second variation [GI]. The second variation for the present

case is obtained from Kelley. Letting Au I K6x, the second variation is



31

t 2.
h a *

AJ2 I K2! 1 a (x ,u ,t) 6x16u dt + 

 

 

t0 3X13“

t

KZIfEn 311 (1*)Ax4xd+
—-- x ,u ,t t

2 101-1 j-1 311313 1 1

2 n n *
_IZEI Z X 3J(X ,t) OX 6x

J-1 1-1 axif 3x1, if if (2.78)

The first and second control variations used by Kelly, Kopp, and

Mayer are shown in Figure 2.5.

dL‘

ta (0-)

 

 

  

e e 1:1"! :1 (H

U 1w
Figure 2.5

  

  
a) First special control variation b) Second control variation

The first special control variation is designated as ¢0'(t,r). The

time tIO is the center of an interval 21, and may occur at any interior

point of the singular subarc. The parameter T will approach zero in the

limit.



32

In minimizing J2, the constraint equations are

 
 

 

n 3f1(x,u,t) 3f (x,u,t)

6x - Z ax 6xj + 1 a On

3-1 1 “ (2.79)

6x1(t0) - o i=1,...,n (2.80)

5x1(tf) I 0 iIl,...,m (2.81)

Letting

A I 3:2; s 32H

1 1 au 3p au
2 1 (2.82)

n 3f

A1 2 ' 1 ‘SE1 A 1 ‘ A1 1 (2'83)
’ 3-1 1 1’ ’

01'

n 2a a

“1.2 11.1 3.1—1'31; 11.1 ' A1.1 12'8“)

the necessary condition obtained by Kelly, Kopp, and Moyer for the sin-

gular arc to be minimizing is

n n 2 n n 2

’ 32H 3 H 3 H

1.31:) ___—11.2.... egg—A...
t . l l-

1_1 auaxi 1 2 1.1 3u8x1 1:2 131 j=1 axiaxj 1’ 3’

(2.85)

An equivalent and more compact form is due to Robbins [R1]

3 d2 3H

3.115;: Tu ) :0 (2.86)

The equality part of the sign in the conditions (2.85) and (2.86) means

that the conditions are met marginally and the nature of the extremal is

still undetermined. Hence, it is necessary to proceed to the second

special variation, and so on. Using the Robbins form, the second special

variation leads to



33

The general form of the necessary condition is

 

W) Z O (2.88)

where k is a positive integer.



CHAPTER III TIME OPTIMAL SINGULAR CONTROL

3.1 Maximum Principle Approach

The problem to be considered is a time optimal problem where it is

desired to drive xo to O in minimum time. Consider the system equations

of Problem 3.1.

Singular BanngangTTime Optimal Control Problem

i1(t) - f1[x1(t), x2(t)] + blu x1(0) = x10

i2(c) - f2[x1(t), x2(T)] + bzu x2(0) - x20

b1 and b2 are constant and u is a scalar

This is the Mayer form BIG], if we minimize x0(T) where

io(t) - 1 x0(0) - o

The control will be constrained to

0 g_u i 1

Again dropping the arguments for notational convenience, the

Hamiltonian is

H - pa + plfl + plblu + pi2 + p2b2u

The costate equations are

Po ' 0

_ I .._.. +

p1 p1 3x1 p2 BXI

‘ afl sz

"Pz ' P2 "'"’+ 92 _"'

8x1 8x2

Mtnbmizing H with respect to u yields

an

'53-". plbl + p2b2 " O (NCl)

34

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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Again, since we are interested in singular arcs, u is assumed to

be in the interior of its allowed region and 3H/3u is assumed to exist.

Since H - 0, and p0 - 1, (This is permissible since pO functions only

as a scale factor).

1 + plfl + p2f2 - o (ncz) (3.10)

Differentiating (3.9)

élbl + $282 - o (NC3) (3.11)

b ( 'afl + afz) + b ( af‘ + afz) o (3 12)
1 p1 3X1 P2 3X1 2 P1 3X2 P2 3X2 .

Differentiating (3.10)

3fl . + 3f1 . + , + 8f2 . + sz . + f . 0

P1(‘3;T X1 5;; x2) flpl P2(;;: x1 5;; X2) 292

. .
(3.13)

Replacing x and p,

at, afl ail afz

—- -—- - -- + -— +PIIBXI (f1 + b10) + 3x2 (f2 + bZU)] f1(Pl 3x1 P2 axl)

3f f b + afz b f afl + 3f2) 0leaxl ( 1 1“) 3x2 (f2 2u)] 2(P1 3x1 P2 3x2

(3.14)

From (3.11) the coefficient of u is zero while the remaining

terms cancel out. Hence (3.11) is the third necessary condition.

pl(bl -—— + b2 -——) + p2 (bl -- + b2 ———) I 0 (N04) (3.15)

3x1 3x2 8x1 3x2

This necessary condition‘appears as row 3 of equation(2.39), i.e.,

pla11 + pza12 - 0 (310 - O) (3.16)

where 3f ail
. b __l + b ... (3.17)a.

ll 1 31! 2 3X2
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afz 3f2

3X1 3X2

Differentiation of this equation will yield additional information.

    

 

(3.21)

    

(3.22)

p15 + p a + p a + p a = O (3.19)

11 1 11 2 12 2 12

azfl 32f1. 32f1 . azfl .

all I b1( x1 + x2 + b2( x1 + x2)

3x12 Bxlaxz 3x28x1 3x22 (3.20)

, azfl 32f] 32f azf1

a I b -——— + b -——-—— f + b + b . + b -—— f + b11 ( 13x12 23x23x1)( 1 10) ( laxlaxz 23X12)( 2 Zn)

. 82f2 32f2 azfz 32f2

8112 - (bl + b2 )(fl + blu) + (bl + b2 )(f2 + bzu)

3x 2 3x 3x 3x 8x 3x 2
1 2 1 1 1 2

Substituting in (3.19) the following reSult is obtained,

2 2 2 3f 3f 82f 32f
i

Z ( — bjpi -E ——$ + b fk-——1 + (.bek -—-—-) . o

1-0 3:0 kxo 3x3 Bxk 3 xkaxj xkax

(3.23)

In the‘general case the upper summation limit would be n.

It is possible to solve this equation for the control u. To be

more specific consider the determination of the singular are for,

Problem 3.2 Singular Bang-Bang Time Optimal Control

x1 I f1 X1 (0) - X10 (3.24)

i2 - f2 + b2“ x2(0) I x20 b2I constant (3.25)

i0 - 1 x3(0) I O (3.26)

Since b1 I 0,

N01 implies p2 I 0 on the singular.

nca implies p2 - o



NC2 implies plf1 I -1

Sfl

NC4 implies pl 5;; 3 0

This implies that p1 I 0 or 3—— I 0

x
2

The condition pII 0 would contradict NC2 which requires that H I 0

3f
1

on the Optimal trajectory. Hence NCA implies that «3;; I 0.

substituting necessary conditions in (3.19) rather than the more formid—

able (3.23),

azfl ._ azfl

f1 3x 3x ( 2 2U) 3x22 0 ( )
 

on the singular arc. The optimal control is synthesized as

azfl azfl

f -———-— + f -——2

laxzaxl 23x

u ' ' (3.28) 

 

For a practical case to be considered later, it will be convenient to

consider

3x1 X1 3x2

and

3f x 3f

__3 . - .3 __3 (3.30)

8x1 x1 6x2

This modified version of Problem 3.2 shall be designated as Problem 3.2M.

Differentiating with respect to x2 and taking advantage of the neces-

3f

sary condition -—- I O on the singular arc,

8x

2 2 2
8 fl - x2 8 fl

2
axlaxz x1 3x2

(3.31)  
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Substituting this in (3.28) gives the optimal control function for this

case as

x2

u I ( - f1 - f2)/b2 (3.32)

1‘1

This control function can be shown to be a constant. Differentiate (3-32)

with respect to time.

d“ X2 afl sz f

1

b2- I -— [--f1 + -—--(f2 + bzu)] + -; [x1(f2 + bzu) I x2f1] -

dt x1 3x1 ‘ 3x2 x1

3f2 3f2

[_fl + __(fz . .2.” (333)
8x1 8x2

3f

From (3»29) and the necessary condition -— I O, and assuming x , f 0,

8x

2

du f x 8f 3f x
l 2 2 2

dt x12 x1 3x1 3x2 xl

Finally using (3.30)

du _

dt

Therefore the singular control for this problem is a constant.

3.1.2 Closed Loop System Control

The problem of determining the Optimal control as a function of the

state of the system is called the closed loop problem. On the singular
 

arc,(3.32) provides this information for the modified problem 3.2M.

Equation (3.28) would be required for Problem 3.2. A block diagram for

Problem 3.2M will be shown. As (3-28) indicates, three additional func—

tion generators would be required to implement Problem 3.2.



39

 

 

 

  

 

  

Closed Loop System On Singular Arc

 

  
  

Figure 3.1

  

When operating on a nonsingular arc, the control as given by (2.19)

and applied to Problem 3.2M is,

The costate equations for Problem 3.1M are

u*(t) - - sgn b2p2(t)

P .I 0

ail

‘91'P1_+P2

fi
2

32!]

3f

8x2
2

afz

3x

3f

N
H

3x2

(3.36)

(3.37)

(3.38)

(3.39)
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The costate equations require four function generators for Problem 3.1.

In Problem 3.1M,

since,

. Bfl x2 sz x2

91 . -— (p1 -—> + —- (p2 —) (3.40)

3x2 xl 3x2 x1

, Bfl 8f2

3x2 3x2

The block diagram which applies for Problem 3.1M when operating on the

nonsingular arc is then given by Figure 3.2.

:55
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Pa

)Mnther
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x" Generator 3}. Mu. "If
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K

Figure 3.2

Portion of Closed Loop System on Nonsingular Arc
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The complete closed loop system which functions on the complete

trajectory requires a decision element to switch u to either the singu-

lar control u or the nonsingular control u .

 

The decision element must operate according to the logic demanded by the

necessary conditions. If the system is on a nonsingular arc, then it

shold transfer to the singular arc.

u I us if 92 I 0 p2 I 0 (3.42)

u I unS otherwise (3.43)

3.2.1 Green's Theorem Approach
 

Determination of singular and nonsingular arcs associated with the

time optimal problem is considered. The system constraints are:

X1 - f1(xlsx2) + bl“ (3.44)

X2 - f2(xlsx2) + b2“ (3.45)

0 5 u(t) 5.1 0 :.t :_T (3.46)

Since the functional to be minimized is,

T

J[u] I J dt (3.47)

it will be necessarg to put this in the form of equation (2.44).

Since the procedure basically eliminates u(t) from the equations,

it is only necessary to find a vector orthogonal to the column vector

T

b I [b1 ble. In this case, we may use [—b2 b1] as the orthogonal col-

umn VBCCOI'.
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Multiplying through by [---b2 b1] and solving for dt, equation

(3.47) becomes

x1 :x2 bldxz ' bzdxl

[“1 Jx x ‘B3f2 - 82$,
10’ 20

 

The fundamental function w(x1,x2) is

 
 

 

3 b2 3 b1

- .__. — — ___ .4

“(xl’xz’ 3x2 ( blfz - bzfl ) 3x1(b1f2 - b2f1 ’ (3 9)

afz 8f] 8f2 Bfl

152(1)];— - b2 _) + b1(b1 3— - b2 7)

X2 X2 X1 X1

w(xl:x2) ‘ (3.50)2
(ble ’ bzfl)

Since w(x1,x2) I 0 is of primary interest, we obtain the condition on the

singular arc as,

3f2 2 3f2 2 3f2 3f

(3.51)

(be2 - bzfl) # o

In Problem 3.2, b1 I 0, therefore a necessary condition for singular

arc is

afl
_§;;_ - o (3.52)

This same result was also obtained by the Maximum Principle approach.

The necessary conditions involving the costate variables will not appear,

since they are not present in the Green Theorem approach. A comparison of

the necessary conditions for Problem 3.1 using both approaches is shown

as follows:
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Necessary condition for singular arcs for Problem 3.1
 

Maximum Principle Approach
 

NC]. Plbl + p2b2 - 0

NCZ l + plf1 + pzf2 I 0

NC3 plbl + pzbz I 0

afl Bfl 8f2 8f2

NC4 p1(b1 -—- + b2 -——) + p2(bl -——-+ b2 -——) I 0

3x1 3x2 8x1 3x2

Necessary condition for singular arcs for Problem 3.1

Green's Theorem Approach

afz 3f 3f 3f
1 l

1 2 2 1 1 2

8x 8x 3x 3x

2 2 1 1

It is evident that NCl of the Green's Theorem Approach is obtainable by

eliminating the costate variables from NCl and NC4 for the Maximum

Principle Approach. Hence the necessary conditions of the Maximum

Principle Approach imply the necessary condition of the Green Theorem

Approach.

3.2.2 Problem 3.3 Singglar'PangIPang_Time Optimal Control

The previous problems involved controls that were bounded. In the

next case the control signal will be rate limited in addition to being

magnitude limited. Consider the following system equations,

i,(t) I f1(x1,x2) (3.53)

O

x2(t) I f2(x1,x2) + gzu, 0 §_Iu| __ (3.54)A

H

 
x3(t) - 8 - v {1| 1 1 (3.55)
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By letting u I x3, the order of the state equations has been in-

creased to three. Also x3 may now be a bounded state variable. These

complications are compensated for by having a control signal which is

only magnitude limited. In a practical case to be considered later

there is only rate limiting. This will be designated in Problem 3.3M

and will be considered using both the Maximum Principle Approach and

the Green Theorem Approach.

Since the general expression is long, the necessary conditions

for singular control will be obtained by going to the basic equations

directly. The process will be as before; to repeatedly differentiate

until no further information is obtainable.

For the time optimal program we again introduce

x0 I l x0(0) I O (3.56)

The Hamiltonian is, again letting p0 I l,

H I 1 + plf1 + pzfz + ngZx3 + p3v (3.57)

For the nonsingular trajectories, v I -sgn p3 minimizes H. For the sin-

gular case, we obtain the first necessary condition

p3 I O (NCl) (3.58)

If we write the costate equations,

60 - 0 p0 - 1 (3.59)

ail sz

-8 - p ___ + p -—— (3.60)

1 1 3x1 2 3x1

. afl at

-p I p .__... + p _Z
(3.61)

2 1 3x 2 3x

2 2

-p . 928 (3.62)
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Necessary condition, p3 I O on the singular arc, implies p3 I O, or

equivalently,

p2 - 0, 32 # 0 (N02) (3.63)

This in turn implies, p2 I 0. Therefore, from equation (3.61),

an

9 —- I 0 (N03) (3.64)

1 3x

2

Using equation (3.57) p2 I O and p3 I O, we have on the singular arc,

H I 1 + plf1 (3.65)

Since H I O on the optimal trajectory,

P1 . _ .l. (NC4) (3.66)

fl

Assuming p f O, necessary condition 3 becomes

ail

— - 0 (NC3) (3.67)

3x2

This was expected since the projection of the singular arc in the xl-x2

plane for this problem should be the same as Problem 3.2.

The value of the control function u on the singular arc is to be

determined next.

Differentiating equation (3.65). with respect to time,

ail . afl. .

p (—x +-—x)+pf-0 (3.68)
1 3X 1 3X 2 ll

1 2

Substituting for £1, and i2 and p1,

ail afl afl ail 3f2

p (-—-f + --f + -—-g u) - (f p -- + f p .__) I O (3.69)

1 3x 8x 2 8x 2 1 18x 1 28x

1 2 2 1 1

Using equation (3.71) and.(3.63), OIO.
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Thus, no new information was obtained by that approach. Differentiate

equation (3.67) with respect to time.

82£1 azfl

i + x2 - 0 (3.70)
1

axlaxz 3x22

  

Substituting for £1 and i2,

82£1 azfl

f + (f + gzu) = 0 (3.71)

Bxlaxz 1 3x22 2

  

This equation may be solved for u,

 

 

 

 

32f1 32f}

f + f

3x 3x 1 3x 2 2

l 2 2

ug—

32f1 (3.72)

23X2

2

The control signal u (t) for both the singular "bang-bang" case and the

singular "pang-pang" control are identical on the singular arc. Assume

that u(t) I x3(t) is in the interior of its allowed region, U. Hence,

there is no magnitude limiting of u(t). Equivalently, the state vari:

able x3 is not bounded.

3.2.3 N-Dimensional Singular Control Problems

In the case of Problems where the dimension of the state space is

greater than two, the Green's Theorem Approach must be extended. The ex—

tension of Green's Theorem from two to three dimensions is the traditional

Stoke's Theorem. The generalization to higher dimensions is designated

,as both the generalized Green's Theorem [H1] and the generalized Stoke's

Theorem. -The developments are via exterior calculus and differential
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forms. A brief treatment of differential forms is given in Appendix III.

Consider the differential constraint equation,

. 1'

xi(t) = £1(x) + gj_1bij(X)uj(t) i = l,2,...,n _ (3.73)

L
s
.

A__n-1

or,

i<t> - f(x) + B(X)u(t) (3.74)

In order to transform equation (3.73) into the proper form for

application of Green's Theorem, it is necessary to eliminate the uj(t).

Since j §_n-1, an n-dimensional vector, 9(x), orthogonal to the columns

of B can be found. Hence the inner product

(W(x).i(t)) I (W(x).f(x)) (3.75)

since

(f(X).B(X)) I 0 (3.76)

Equation (3.75) permits the determination of dt in the functional

J[u] , where

t

J[u] - I f fodt (3.77)

t0

Hence,

- f (W(x),dx)
J[u] I: f0 ( (x),f x (3.78)

0

In the notation and nomenclature forms, equation (3.77) may be written as

J[u] I f n (3.79)

P

where, n is the pfaffian or one-form

n

X a (X)dxi (3.80)“-f M
.

0 <w<x).f(x>> 1
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The generalized Green's Theorem is (see Appendix III)

I dfl I J n (3.81)

s r

As in the two dimensional form of Green's Theorem, P is a curve from

x0 and xf and s is a surface containing the points x0 and xf. The term

dn is called the exterior derivative of n and is the differential two-form

defined as,

n

301
d 5—: d Adx .82n §-1 x xj 1 (3 )

i.

The exterior multiplication sign A is often omitted. An alternate

useful form may be obtained by using the rules from differential form

theory.

dx1 A dxj I -dxj A dxi (3.83)

and

dx1 A dx1 I 0 (3.84)

then

dn I wijdxidxj iI1,...,n-l j=(i+1),...,n (3.85)

where

Ba Ba

(1311' —-1 - -—-3- (3.86)

3xJ 3x1

In a 3-dimensional case, the exterior derivative given by (3.80) would

be written as

dw I mlzdxldxz + mlsdxldx3 + w23dx2dx3 (3.87)

and

301 30.2

332 3X1

301 803

”13 I -—- - -— (3.89)

3x 3x
3 l
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3&2 303

“’23 " 5;" ‘ :3:
(3.90)

3 2

These will be useful in the 3-dimensional case to be considered later.

The procedure for applying Green's Theorem to n-dimensional may be

summarized as follows:

1) Convert the functional to be minimized to the line integral

form by equation (3.79).

2) Use equation (3.86) and wij I 0 to determine singular hypersur-

faces. There are no more than (n—l) independent hypersurfaces.

The intersection.of hypersurfaces, if it exists, is a singular'arc.

3) Compare trajectories by using the generalized Green's Theorem

as given by equation (3.81). The possibilities of singular arcs

must be investigated.

3.3 The Second Variation Approach

The necessary condition of Kelly, Kopp, and Meyer will be applied in

Problem 3.1, the singular "bang-bang" time optimal control problem.

Using equations (2.82), (2.83) and (2.84)

at1

Am " 5';- ' b1 (3.91)

at,

“2’1 " 5';- " b2 (3.92)

A “I. . “I. A )192 - — 191 "— 2:1 191 (3.93

3x1 3X2

8 .

2’2 3x1 1’1 3x2 2’1 2’1 ° )

Simplifying equations (3.92) and (3.93)
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Bfl sz

A1,2 I b1-——-+ b2——- (3.95)

3x1 3x2

3f2 at,

A2’2 ' b1"" ' b2“' (3.96)

3x 8x
1

The necessary condition for minimality is, using equation (2.85)

32H 32H 32H

.____ 2 ______. ____ 2a 2A1,l + (A1,1A1,2 + A2,1A1,l) + 2A2,1 3_0 (3.97)

x1 3x13:2 8x2

Substituting equations (3.95) and (3.96)

  

282H 32H 82H

_. 2b1 2 + 2blb2 + b2 2 3_0 (3.98)

3x1 axlaxz 8x2

The Hamiltonian for Problem 3.1 was

H I l + plf1 + plblu + p2f2 + p2b2u (3.99)

Substituting partial derivatives of H into equation (3.98)

  
 

 

82:1 azf2 azfl 82f2
2

b1 (P1 2 + 132-7) + 2b1b2(P1 + P2 ) +

8x1 3x1 3x13x2 axlax2

azfl azfz

b22(91 + pz-—-) :_0

3x22 8x22 (3.100)

This is one form of the necessary condition for minimality along the

singular arc. Using the alternate form,

3 d an
_. __ < 0 3.101

3u(dtz Bu) -' ( )

since

a I5%. plbl + p262 (3.102)

The first necessary condition is obtained from equation (3.102) and
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plb1 + pzb2 I O (3.103)

and

' 62p 62p
d2 an 1 2

-—- -) I b -——— + b— (3.104

dt2 3“ 1 8:2 2*dt2 )

then substituting expressions for p1 and pz,

2 3f 3f2 d 3f1 3f2
d 3H 1

-—-( ) I - b1-(pl-—- + pZ-——) - b2-—(p1——— + p,-——) (3.105)

dtz Bu dt 3X1 3X1 2(11: 3X 2 8x2

we obtain

a d2 an a 82f1 a2f1

-— --( ) I - - b1p1[ -——--(f1 + blu) + (f2 + bzu)]

Bu dt2 3n Bu 3x12 axlax2

32f2 82f2

bp[ (f +bu)+ (f +bu)]-

l 2 3X12 1 l 3x13x2 2 2

a2f1 a2f1

bp[ (f +bu)+ (p +bu)]

2 1 axlax2 1 1 3x2 2 2

a2f2 32f2

b2p2[ (fl + blu) 4» (f2 + bzu)]

8x13x2 8x22 (3.106)

After taking the partial derivative with respect to u, and using equation

2 8H

(3.101), equation (3.100) is obtained. Although the form -(—d -

au 8:2 an

is quite compact it nevertheless involves quite a few manipulations. If

as indicated previously, the equality applies, it is then necessary to

proceed further using equation (2.25).

Using the somewhat simpler Problem 3.2, the necessary condition for

minimality along the singular arc is obtained by substituting b1 = O in
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equation (3.99) and (3.103), then

 

p2 I 0 NCl (3.107)

82f1

p O NC2 (3.108)

13x2

2

Using H I 0, equation (26) gives

p I -—- NC3 (3.109)

Hence, NCZ can be written as

a2fl

 5.0 NC2' (3.110)
2

f1 3x2



CHAPTER 1V OPTIMAL CONTROL OF THE VEHICULAR BRAKING PROCESS

4.1 Introduction

The vehicular braking process to be considered first will consist

of a single wheel carrying a body on a flat horizontal surface.

Figure 4.1 and 4.2 show the model used and the pertinent parameters.

 

Figure 4.1

Model of One-Wheel System

 

 

 
Figure 4.2

Force and Torque Diagrams

S3
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The symbols in the figures are defined as follows:

Fb braking force developed at the tire-surface interface

Fe external force on the vehicle

Fr reaction force between the body and axle

g acceleration due to gravity

J Polar mass moment of inertia of the wheel and associated

rotating members

M mass of the vehicle

N normal force at the tire—surface interface

R rolling radius of the wheel

Tb torque exerted on the wheel by the brake

Tr rolling resistance and bearing friction torque

v vehicle velocity

u coefficient of friction

n slip

Q
.

angular velocity of wheel

As the vehicle moves with velocity v, the wheel runs under slip

as it transmits driving, braking, or cornering forces to the surface.

Slip is defined as the ratio of effective slip velocity in a specified

direction to the forward ground speed of the vehicle. Since braking

will be the main concern, slip during braking is defined as

".2239. and05n<1 (4.1)

The so-called "panic stop" usually results in a slip of 1.0, corre-

sponding to zero wheel velocity. The braking force Fb developed at the

tire surface interface is due to the friction coefficient u and is
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defined as

Fb I uN (4.2)

where N is the normal force at the tire-surface interface.

Investigators in the area of tire friction [K13] [N6], have found

that the friction characteristic depends on factors such as vehicle

velocity, normal load, tire tread pattern, tire inflation pressure,

tire temperature, and surface composition. The friction-slip model

used in this study is shown in figure 4.3

 
 

"5 SUP 41 ‘-°

Figure 4.3

Model of Friction-Slip Characteristic

The selection of this model is based on investigtions [F6], [K14],

which show that regardless of surface composition, the friction coeffi-

cient u, usually has a peak value and this peak value occurs when the

slip is in a range about the 0.15 point.
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The optimal control for the one wheel model will use minimum time

as the optimum criterion. As will be shown in section 4.3.3 this control

will also minimize stopping distance. Optimal control theory will show

that the control should bring the state of the system to the peak of

friction-slip curve and then keep it there. It should be noted that due

to the low value of slip, the wheel velocity will be an appreciable

fraction of the vehicle velocity. This will also benefit more complex

models such as two wheel and four wheel models which are concerned with

lateral stability. When one tire Of the vehicle is subjected to a differ-

ent friction characteristic than the opposite tire, a torque tending to

rotate or spin the vehicle is developed. When the wheels of the vehicle

are rotating.the tendency to spin is reduced and the vehicle has more

lateral stability. This problem will be considered in more detail later.

4.2 ‘Qevelopment of the System Equations

The differential constraint equations for the Optimal control problem

are obtained by referring to Figure 4.2.

The normal force N is obtained from the summation of the vertical

forces,

N I Mg (4.3)

The horizontal forces are summed, obtaining,

F + M dv 4

The external force Fe is neglible with reSpect to the braking

force. Then using the relation (4.2), equation (4.4) becomes.

dv

Mdt- -uMg (4.5)
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or

6 - -ug (4.6)

Now considering the torques associated with the wheel,

d6

rbn —Tb-Tr = J'gf' (4.7)

Here the rolling resistance and bearing friction torque are

assumed negligible with respect to the brake torque. To make the

units of wheel velocity the same as the units of vehicle velocity

equation (4.7) is written as

d6 2

R-EE-I (uMgR -RKPb)/J (4.8)

In the above equation Fb is replaced by uMg and brake torque is

assumed to be linearly related to brake pressure Pb, i.e.,

Tb I KPb (4.9)

Typical values for an equivalent one wheel model are

R I 1.1 ft.

M8 I 5000 lbs.

J I 5.0 ft-lbs/sec.2

K I 6.0 ft-lbs/p.s.i.

Letting x1 I v (4.10)

x2 I R0 (4.11)

Here the first state vector corresponds to vehicle velocities

and the second state vector corresponds to wheel velocity. The dif-

ferential constraint equation then becomes

i1 - ~32u (4.12)

22 - 1210“ - 1.329 (4.13)
b
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Constraining the brake pressure to 0 f Pb 5 1200 psi and intro-

ducing the control u, 0 f u f 1 equation (4.12) becomes

i2 I lZlOn - 1584u (4.14)

The friction coefficient n is a function of x1 and x2 which will

be designated state variables.

I: I u(x1.x2) (4.15)

As indicated previously, the friction-slip characteristic has the

general shape as shown in Figure 4.3.

This shape will be generated by

-a(l-x2/x1) _ e-b(l-x2/x1)]

u(x1,x2) I no [a (4.16)

Recall that the slip is given by

n I 1 - x2/x1 , (4.17)

The factor no will take into account the surface-tire interface.

For example, no I 1 will correspond an interface having the highest

friction coefficient such as concrete, while a low friction surface such

as ice may have a value of no I .06. This function will have a peak of

approximately 0.947 no at a slip of 0.2 when a I 0.225 and b I 23.5.

These are values that are used in most of the later computations.

4.3.1 Optimization Of the One-Wheel Vehicular Braking Control Model

The problem to be considered is the time optimal regular problem,

i.e., take the vehicle from an initial state to the origin in minimum

time, subject to the constraints

12,- -32u (x1362) x1(0) - 60. (4.18)

{:2- 1210u (x1,x2)-1584u x2(0) - 60. (4.19)

0 5 u f l
(4.20)
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The function n(xl,x2) is given by equation (4.15) with no + l,

a I .225, and b I 23.5. This problem when stated in real physical terms

is: Find the control pressure P(t), constrained to be between zero and

1200 psi, which will stop a given vehicle initially travelling at 60 ft/Sec

(approximately 40 MPH) in minimum time. It should be noted that there is

no limitation on pressure rate in this case. This problem will be label-

ed Problem 4.1 and will be called the singular "bang-bang" control problem.

This problem fits the format of Problem 3.2, where

flI I32n (x1,x2) (4.21)

f,- 1210u (x1,x2) (4.22)

4.23H _ €-a(l-x2/x1)-E-b(l-x2/xl) ( >

Any of the methods in Chapter III provide the necessary condition for

a singular are

(4.24)Q
)

I
:

I

O

Q
)

X

N

or,

Ia(l-X /x ) -b(l-x /x )

x1 x1

Solution of this equation gives an equation relating x1 and x2 on the

singular arc. For the values of the constants used, a linear relation

exists,

x2 I kx1 k is approximately 0.8 (4.26)

This problem is most readily solved using the Green Theorem Approach.

The regions which are reachable and controllable are found and their in-

tersection provides the region containing all permissible trajectories

from the initial point xo to the final point xf. In order to find the
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region containing all the trajectories, Theorem 2.1 is used. If the

conditions Of Theorem 2.1 are satisfied then the region containing all

trajectories from x to xf are bounded by the four trajectories

0

obtained by solving (4.19) and (4.18) as follows:

1

a) starting at x0, use uIl and obtain 0 .

b) starting at x0, use qu+ and obtain 000+.

c) starting xf, integrate backwards (reverse time)

use uIl, obtain ¢fl°

d) starting at xf, integrate backwards use u>0, Obtain ¢f°+.

To satisfy the conditions of Theorem 2.1, it was necessary to use

u>0 in (b) since uI0 leads to xlIO and 22-0 and the A condition of

Theorem 2.1 is not satisfied. Also it is convenient in this study to

use 0 5 u S 1 instead of Iulfll. Theorem 2.1 is applicable in either

case, since it is only necessary to change (4.19) to

izI 1210 u(x1.x2) - 752 - 752a Iulgl (4.27)

The results appear in Figure 4.4

Y:

 
 

Y1

 
Figure 4.4

Reachable and Controllable Regions
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The singular arc, wIO, Obtained from the necessary condition

is also shown in Figure 4.1. We are now ready to apply the Green

Theorem Approach. In this problem, w is positive in the region above

the curve mIO, which is a straight line in this case.

The global Optimal trajectory is obtained as follows:

a) Start at x0, keeping the region w<0 on the right, proceed to

the point where the trajectory intersects the wIO line.

b) Now proceed along the wIO line until xfis reached.

Note that along the wIO, the region w>0 is on the right and the region

m<0 is on the left. Also, if the final point xfwas not on the curve w=0

the procedure would be the same except that a boundary of the region

containing the admissible trajectories would be reached before xf is

reached. Traversing the boundary keeping w>0 on the right or w<0 on

the left would then ultimately terminate the trajectory at x Figuref.

4.5 shows a case where xfI(a,0). The Optimal trajectory is xO-a-b—xf.

Y1

 
  

MIL

\AIo

Figure 4.5

Optimal Trajectory
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Having found the optimal trajectory, it is now possible to des-

cribe the Optimal Control. The boundaries establish the "bang-bang"

values of u while the value of control on the singular arc is deter-

mined from (3.3.) and (3.34). The approximate value of u=.735.

Figure 4.6 shows the Optimum Control function as a function of time.

u(t)

-—1(.O

 
 

 
t.

Figure 4.6

Optimal Control for Vehicular Braking System

Constraint on Control Signal

A program P2 was written to automate the above procedures. This

program does the following:

1)

2)

3)

4)

scans the w region of all permissible trajectories

finds the proper boundary

finds the singular arc

finds the Optimal control on all parts of the trajectory

including the singular arc

The listing of P2 and a typical output is shown in Appendix II.
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4.3.2 Analytical Verificgtion of the Optimél Control

In the previous section, the Green's Theorem Approach showed that

the Optimal control is piecewise constant. As shown in Figure 4.3, maxi-

mim control of uIl is applied for time t1; then, reduced control is

applied until the state vectors both reach zero. Recall that the two

state vectors correspond to vehicle velocity and wheel velocity.

In this case, a very simple solution is possible if the constraint

on u(t) is removed. The Optimal control will consist of an impulse at

tIO and then a value Of less than 1.0 for the remaining time. See

Figure 4.7

4) lm yo“.

 U“) .735

   

Figure 4.7

Optimal Control for Vehicular Braking System

No Constraint on Control Signal

The impulse Of Figure 4.7 drives the system to the peak Of the

friction curve in zero time while the pulse of Figure 4.6 drives the

system to the peak of the n-curve in minimum time t1. As will be shown

t1 is much less than tf, the time to drive the system to zero. Hence,

the impulse method leads to negligible error.

From (4.23), the maximum value of the friction coefficient n is
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0.947, corresponding to x2/x1I0.8.

From (4.18), if an impulse is applied at tIO, no change in xl

takes place.

Applying an impulse of strength 6 and using x2=0.8x1, (4.18)

becomes,

48 0+

I dx2 I -1584 J 6dt (4.28)

o

60

The strength of the impulse is

6 I .00757 (4.29)

If it is assumed that the area of the pulse of Figure 4.3 is

equal to the strength of the impulse, then time t1 would be equal to

.00757 seconds. This also assumes that u is limited to 1.0. Although

this is not accurate, it is sufficient to show that t1 is much less

than t .

f

From (4.18) and using nI0.947,

0 cf

I dxl I -32 x .947 I dt (4.30)

60 0

Solving for tf,

tf I 1.98 seconds (4.31)

Corresponding to this minimum stopping time, the minimum stopping

distance is 60 feet.

The Optimal control signal during this interval may be found by

eliminating n from (4.19) and (4.18).

Integrating the resulting equation,

0 1.98
o

I dxz I -37.81 I dxl - 1584 I uzdt (4.32)

48 60 o
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Solving,

u - 0.735 (4.33)
2

The impulse solution will differ only from the actual solution

because of t1. By assuming n I t/t1 during interval t1, equation

(4.19) may be solved to yield,

t1 I .0123 seconds (4.34)

This agrees with the digital computer solution shown in Appendix

II. The results of the analytical approach are summarized in Figure 4.8

u(t)

 

q
)
-

 

0072, \‘991 $06.

     

 

Vdmde Vs loo. )1,

Lbh¢e\

Vdomhj

 1

.0115 1-992 50‘ -

Figure 4.8

Optimal Control and State Vectors vs Time
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4.3.3 Equivalence of Minimum Time and Minimum

StoppingiDistance Criteria

In this section it will be shown that minimizing the time to go

from xoto xf is equivalent to minimizing the vehicle stopping distance.

It has been shown that the intersection of the reachable region

R(xo) and the controllable region R(xf) contains the set of all possible

trajectories from xo to xf. Also, the construction of this set is in-

dependent of the performance criteria imposed by the functional J[u].

Using the Green Theorem Approach, it has been shown that the Optimal

trajectory is contained in the boundary of this set unless singular arcs

exist. Then the Optimal trajectory will contain portions of the boundary

and portions of the singular arc. Hence, the solution is no longer

"bang-bang". Two criteria will be equivalent if the singular arcs gene-

rated by these criteria are the same.

Consider

t

f

t

o

t

f

J2[u] - I xldt (4 36)

t

0

Since x1 corresponds to vehicle velocity in problcm(4.l), J2[u]

is the stopping distance while J1[u] corresponds to the time required

to stop.
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To show that these criteria are equivalent, it will be shown that

the critical function, w - 0, which determines the singular arc is the

same for both criteria.

From equation (4.18), determine dt and substitute in

 

 

 

 

 

I 1 {xi dxl (4 3 )J u - . 7
1 X0 ’32p(x1,X2)

Xf x dx

J2[u] ' (4.38)

x0 -32u(x1.x2)

Since, the general form for the cost function is

. . 19. - i2.J [del + de2 [[(3x1 8X2) dxldx2 (4.39)

and

P1 - - 1 Q1 - o (4.40)
32u(x1,x2)

P - x Q - o (4 41)
2 32u(x1,x2) 2 °

Solving for the partial derivatives

ax2 3x2 u

3? x 3 (x1 x ) 1

-3 - 1 “ ' 2 2 (4.43)
3x2 3x2 32lJ

We are interested in the condition w - 0, where

3Q 3?

w - ( - --) (4.44)
3x1 3x2
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If xlfo and ufO, then referring back to equation (4.16)

3U(xlsxz)

 

ml - (.02 - 3x2 (4045)

Typically, as indicated in Figure 4.1, the x #0 and ufO con-

ditions are satisfied except at the origin. The origin presents no

problem since u(0,0) - 0.

Therefore minimizing stopping time is equivalent to minimizing

stopping distance in Problem 4.1.

f(xl)

“(X1 9X2)

since the partial derivative is taken with respect to x .

Any criteria which results in P - would be equivalent

4.3.4 An Optimal Digital Control System

In principle, the implementation of the optimal control is straight

forward. Based on the Green's Theorem Approach the steps are as follows:

1) Apply maximum permissible control.

2) Continually solve for w. The condition w=0 indicates that

the singular arc has been reached.

3) Reduce the control signal u(t) in order to hold the

condition, w-O.

Due to time delays, the desired control u(t) is not obtained in zero

time. As a result the control oscillates about the predicted value

of 0.735.

The program shown in Appendix II shows this variation in u(t). The

state vectors corresponding to vehicle and wheel velocity are essentially

ideal in the digital computer system.
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The Digital Optimal Control System in block form appears in Figure 4.9

_ 2 i‘ JD$QI+¢i — x‘ A Egan’s w ,

3 lini-qrulbr BX: }

a $ _ , ‘

i

 

 

 

 

 
 

l ("new
 

{ F I Punch.» xI
; d:

    X2.
 

 

 

 
    I _ u(t) - Into,«.6» 7

"564 and ‘

I Lumtcr

Figure 4.9

Digital Optimal Control System

Based on Green's Theorem Approach



70

The significant blocks are the blocks which determine the control

signal u(t). If m is positive the digital integration increases u unless

u is at its limiting value of 1.0. When u is zero, u would remain con-

stant except for the fact that time delays cause w to overshoot. In the

digital solution, u changes by 0.01 per integration time interval of

0.000002. The results of this simulation can be summarized by Figure

4.10. The velocity signals which are the state variables x1 and x2 are

close to the ideal values. There is a ripple frequency of approximately

300cps. This is a function of the digital integration gain. The peak

wheel velocity ripple is approximately 0.020. The m signal has a peak

value of approximately 0.012, while the peak value of theAu signal is

 

 

   

     

0.25.

'- L.

I" .1. W

u(t)

.5

oz

“ tfi-o *4”
(0.) ‘ not (b)

‘0.

vehicle Vol salty

Vchci Ve\oc\h,

*' 4c) t'

Figure 4.10 Wave Forms of Digital Control System

(a) Control Signal (b) Singular Function (c) Wheel and Vehicle Velocity



71

A sinusoidal analysis based on small signal follows. Consider

simplified diagram,

  

w AU($) 1 Au I AX1(’) “1

no (5) _ L AUG)

 

 

4
h
-

 

   
 

 

Figure 4.11

Diagram for Small Signal Sinusoidal Analysis

The velocities x and xI tend toward zero slowly when measured
2

on the ripple frequency time scale. Hence, at a given point (x1,x2)

the following equations may be considered to apply.

x1 ' ‘10
(4.46)

x2 . x20 + x Asin wt (4.47)

also,

x20 8 0.8xlo (4.48)

Since w is given by 4.25, and letting k = sz/x10

w - ._1_ (EC-8(1-.8-k sin wt)-b€-b(l".8-k sin wt)) (4.49)

Assuming that k<<.2, and using 5x :1 + x,

m - _$_ (as-°za(l + ak sin mt) - be-°2b(l + bk sin wt) (4 50)

x10 '

-028 '02b

Since as - be
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w I (ak-bk) sin wt/xlo (4.51)

w I -5.25 k sin wt/xlo (4.52)

2

m I -5.25 sz sin wt/x10 (4.53)

Using (4.19), a relation between sz and Au can be found. The p

term has a constant term which cancels the steady state term of u.

The sinusoidal variation in u is small relative to the cosinusoidal

variation of x2. Therefore,

u = u0 + Au cos mt (4.54)

and

2anx2 cos 2nft = -1584 Au cos 2nft (4.55)

This yields the relationship,

2

2nfx10 /5.25 I1584Au (4.56)

or

2

w I 1320 Au/xlo f (4.57)

The use of the above equation in conjunction with Figure 4.11,

permits determination of the small signal variations in the system.



73

4.4.1 The One-Wheel Vehicular Braking;Control

Model with Rate and Amplitude Limited Control

This problem is an extension of Problem 4.1 and fits the format of

Problem 3.3. It will be designated Problem 4.2.

The differential constraint equations are

£1 - -32u(x1.x2) x1 (0) - 60 (4.58)

i, = 1210u(x1,x2) - 1584..3 x2 (0) = 60 (4.59)

i, I v x3 (0) = 0 (4.60)

I v I _<_1 (4.61)

x3 :_0 (4.62)

The function u(x1,x2) is given in Problem 4.1. The control u(t) of

Problem 4.1 has been made a state variable with a constraint.

It is desired to minimize the time necessary to drive the state from

x0 to x The row vector x is [0 0 x3f is not specified.
f' f

This problem when stated in real physical terms is: Find the control

pressure as a function of time which will stop a given vehicle initially

traveling at 60 ft./sec. in minimum time. The pressure is rate limited

to 12000 psi/sec.

In the physical problem under consideration the pressure would normal-

ly be amplitude limited (e.g.0§P(t)§_1200psi). This would result in a
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singular problem which has a bounded state variable (x3). In this problem

the upper and lower bounds are not penetrated by the Optimal control and

hence the additional complication due to bounded state variables is not en-

countered. The approach necessary when bounded state variables occur will

not be considered at this time.

The development of section 3.2.3 will be applied to Problem 4.2 of

section 4.4.4. As may be seen from equations (4.58) to (4.60), the state

vector is 3-dimensional while the control in 1-dimensiona1. Hence

      

niil If; F01

i2 - £2 + 0 V (4.63)

Lia 101 Ll.

also

t

f

J]u] I I dt (4.64)

tO

T

Since there are two independent vectors orthogonal to b I [0 0 1] ,

dt may be expressed as

dt - dxl/fl ' dx1/-32U (4.65)

or

dt - dxz/fz - dxz/(1210u - 1584x3 (4,66)

Applying.equations (3.80) and (3.88) - (3.90) to (4.65)

a1 - -1/32u (4.67)
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612 - a(-l/32u)/3x2 (4.68)

“12 I 0 implies a singular surface exists and is given by

8u(x1,x2)/3x2 I 0 (4-69)

This surface will contain part of the optimal trajectory as shown

in Figure 4.13. It corresponds tO the arc B-C. Its projections in the

xl-x2 plane is D-0 and is the same as in Problem 4.1. Applying (3.80)

and (3.88) - (3.90) to (4.66),

 

 

1
a I

2 lZlOu-1584X3 (4.70)

Now

3 l

. - .._ 4.71

ml? ax1 (12100-1534x3) ( )

(1)13 - 0 ' (4'72)

3 1
. ___ ( ) (4.73) 

m

23 3x3 1210U-1584x3

Only “12' 0 implies a singular surface.

(4.74)

If x1 + 0, this produces the same singular condition given by (4.69).

The net result is that two equivalent forms are available to evaluate

 

 

J[u].

xf dxl.

J[ul I J ‘

x0 I32u(31:X2) (4,75)

and

Xf dXZ

- . 6

J[“] [:0 1210u(x1,x2)-1584X3 (4 7 )
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4.4.2 Solution of the Pang:Pang Singular Control Problem

by the Green Theorem Approach

Normally problems of the type formulated in the previous section re-

sult in the bang-bang behavior of u(t). This is referred to pang-pang

operation with respect to u(t).

Several modifications with respect to the procedure used in Problem

4.2 will be necessary. First, no theorem is available for the general

case which determined the reachable region in terms of special trajecto-

ries. For example, in a 3-dimensional problem with a 2-dimensional

control, the reachable region would intuitively appear as shown in

Figure 4.12. ¢kn   
#5-!

4""
 

Figure 4.12

Reachable Region for 3—dimensional Problem

191 19-1

In the figure, four edges determined by trajectories 0 , ¢ ,

-l,-l -1,1 1,1

0 , ¢ might be expected. The trajectory 0 is defined as the

solution x(t) with control‘ulIl, ule, x(0)Ixo. The other trajectories

would be defined in a similar manner.
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In the case under consideration only one control signal is available.

This reduces the reachable region to a surface. Hence, two dimensional

theory as given by Theorem 2.1 may be applied. In Figure 4.5, xo-A-B-D-xo

shows part of the reachable region. The curve xO-A is part of the tra-

jectory due to the application of v(t)-l. The curve xO-D is in the

xl-x2 plane and is due to the constraint which requires that x310. This

curve cannot be generated by any control v(t) but can be approached as

close as desired by using a sufficiently small v(t).

The trajectory of the pang-pang problem is shown in Figure 4.13.

The trajectory starts at x0, which lies in the xl-x2 plane. The surface

w=0 is a plane shown passing through points C, O, and D. Physically the

system acts as follows:

The pressure is increased at its maximum permissible rate until

point A is reached. Then, the pressure is decreased at its maximum per-

missible rate until the singular surface is reached. The trajectory then

continues from point B to the final point C. Along this trajectory, which

is singular, the pressure is maintained at a constant value. The value of

pressure required is determined by the singular control law.
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Figure 4.13

Optimal Trajectory for 3-Dimensional Problem



CHAPTER V SUBOPTIMAL VEHICULAR BRAKING CONTROL

5.1 Introduction

Theory indicates that the optimal control drives the state vector

to the peak of the friction-slip curve as fast as possible and then

holds it there. From apractical point of view the Maximum Principle

is not feasible. Figures 3.1 and 3.2 show the block diagram necessary

to mechanize the Maximum Principle solution. Since the initial costate

vector must be determined on—line, subject to various initial conditions

on the state vector, a rather complex and fast system would be needed

to satisfy this requirement. This in itself would present a formidable

Optimal control problem. The approach using Green's Theorem is more

feasible from a practical point of view. Figure 4.6 shows the block dia-

gram using this approach. The difficulties associated with this method

are due to the block which computes the m function which determines

the singular condition. Again this component must Operate with fast

response on-line. As indicated in section 4.3.4, the digital solution

using the IBM 360-65 produced the wave forms shown in Figure 4.10. The

results with respect to optimal stopping time were essentially optimal.

The velocity waveforms were also essentially optimal. A slight ripple

frequency appeared on the wheel velocity output. This ripple had a

peak amplitude of 0.020 fps while the vehicle and wheel velocities were

as high as 60fps. The control waveform deviated considerably from the

ideal waveform. The ideal control signal appears in Figure 4.8. It

should be noted that the digital solution oscillated at 300cps about

the ideal value of 0.735. Hence from a practical point of view, this

approach can be mechanized. However, in the interest of simplicity

79
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and economy the following suboptimal control was designed. The basic

idea is illustrated in Figure 5.1.

 

 

   
 

(on a.

54 um

 

    
  

Basic SubOptimal Control

Figure 5.1

The basic premise is that the peak point on the friction—slip

curve occurs at essentially the same relative slip regardless of vehicle

velocity. Reference to Figure 4.3 shows that this point corresponds to

a relative slip of 0.15, i.e., l - xz/x1 I 0.15. This implies that x2

which corresponds to wheel velocity is 85 percent of the vehicle velocity

x1 at the peak point. In addition, it is to be noted that the friction

coefficient decreases slowly as the relative slip increases. At a slip

Of 1.0, the friction coefficient is typically 0.8 of its maximum value.

This is the value achieved in the so-called "panic" stop. Therefore,

based on this curve the stopping distance can be reduced to 0.8 of the

"panic" value. Minimizing stopping distance is however only one factor

in making a safe stop. A factor that is equally important is maintaining

lateral stability. Due to small variations such as road surface unbalance,
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brake torque, and wind gusts, yawing may and usually does occur. These

effects may be minimized if the slip is kept small. The net result

implies that operation should be close to the peak of the friction-slip

curve. The most effective operation will be shown to occur at slip

values slightly greater than 0.15.

5.2 Block Diagram of Suboptimal Control System

The real system must contain transducers which are not ideal. The

principal characteristic can be approximated by a time delay. For example,

the wheel signal transducer generates an alternating voltage with frequency

being proportional to wheel velocity. The electronic processing generates

a voltage proportional to wheel velocity. This processing results in a

delayed wheel velocity signal. Similar delays are encountered from the

other transducers that must be used in the system. Hence. a realistic

model of the vehicular braking control system appears as shown in Figure

5.2b.

This system was programmed on both analog and digital computers. The

analog computer studies permitted interconnecting real components with simu-

lated components. The diagram shown in Figure 5.2a shows the four basic

elements, the road characteristics, vehicle dynamics, electronic control

module, and the braking pressure actuator. All four elements were simulated

on both analog and digital computers. In the analog setup, the simulated

electronic pressure actuator could be readily replaced by real components.

This feature permitted evaluation of various module and actuator designs.
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Basic Block Diagram
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suboptimal Control System With Time Delays
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5.3 Analog Computer Studies

The analog equivalent of the system shown in Figure 5.2 was stud-

ied extensively. In these studies, real components such as pressure

actuators and electronic control modules would be compared with their

simulated models. The primary object was to determine factors which ad-

versely affected performance. The optimal control system was used as the

reference system. Figure 5.3 shows response characteristics of a sub-

optimal system in which all components are simulated except the actuator

which is designated X2. As may be observed from the wheel velocity trace,

this response is, from a practical stand point, essentially optimal. This

is a very low friction case, having a panic coefficient of nominally 0.09.

The percentage error due to potentiometer settings is greater at the lower

values of friction. To remove this source of error, stopping distances

are compared with the skid control on and off. The panic stopping dis-

tance, for an initial vehicle velocity of 60 fps, assuming that the vehicle

is a point mass, is given by the following equation,

Panic Stopping Distance I 56/u
(5 1)

In this case, the nominal value of 0.09 would predict a value of 622

feet instead of 583 feet. This implies that u is actually 0.096 instead

of 0.09. The significant fact is the reduced value of 507 feet. It

should be noted that an ideal wheel velocity transducer is used. The er-

ratic operation that occurred was due to vacuum pressure going below the

design minimum. In summary, this test shows nearly optimal response even

with a real actuator in the system.

Figure 5.4 shows the effect on the same system by using a transducer
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that can be approximated by a time delay of 0.020 seconds. Stopping

distance is increased slightly, although considerably better than 186

feet, the value corresponding to the panic value of u I 0.3.

Actuator X1 has an initial pressure rise characteristic which has

adverse effects. This causes the wheel velocity to initially drop to

lower than desired values. This can cause lock-up under some road fric-

tion conditions. Figures 5.5a and 5.5b show these characteristics. The

initial part of this response is magnified in Figures 5.6a and 5.6b.

This actuator was one which had been considered satisfactory for systems

which did not employ anti-skid controls. An interesting nonlinear phe-

nomenon occurs in this set of traces. The Operating point is unstable.

The right wheel velocity approaches the vehicle velocity or free wheels,

while the left wheel velocity goes to the lock-up condition. This con-

dition will be considered in Chapter VI.

Figures 5.7a and 5.7b show a typical response characteristic of the

system without compensation. As may be noted the wheels alternately free

wheel and lock-up. These conditions are also clearly seen on the friction

curve. The panic value in this case is 0.8. Since the stopping distance

is the same whether the control is on or off, the average coefficient of

friction is 0.8. Also, it is to be noted that the pulsing frequency is

considerably lower. In this case, it is approximately 3 cps. With com-

pensation, pulsing frequencies as high as 20 cps have been encountered.
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ACTUATOR PRESSURE
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Figure 5.3

Velocity Response-Real Actuator X2

Ideal Wheel Velocity Transducer
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Figure 5.4

Effect of Wheel Velocity Transducer
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Figure 5.5b
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5.4 Digital Computer Studies
 

The Continuous Systems Modeling Program (CSMP) on the IBM 360-365

was used to supplement the studies made on the analog computer. The

listing of the simple one-wheel model is shown in Figure 5.8. This is

designated PROGRAM I. Listings of other models are shown in Appendix IV.

Sample outputs and histograms of PROGRAM I are shown in Figures 5.9

to 5.15. The model described by PROGRAM I is almost ideal with respect

to transducers. There is no delay in the pressure transducer and a neg-

ligible delay (I millisecond) in the wheel velocity transducer. NO

compensation is used.

In Figure 5.10, the first portion of the wheel velocity Of subopti-

mal vehicular control system is shown. In this suboptimal system, the

wheel velocity has a peak ripple velocity of approximately 7 feet per

second, whereas, the optimal control would have no ripple. More signi—

ficant is the friction coefficient, shown in Figure 5.11. After it

passes the peak value of 1.0, it varies from between 0.9 and 1.0. Hence,

the average value is approximately 0.95 for suboptimal system and just

under 1.0 for the optimal system. It should be noted that this is not

a realistic suboptimal control system, since the transducers are essen-

tially ideal.

Figures 5.13 and 5.14 show similar results when the friction coef-

ficient is 0.3. The supoptimal U averages 92 percent of the Optimal

value of 0.3. The low u case is,with respect to ripple magnitudes,

more nearly optimal than the high H case. Stopping distances show that
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the suboptimal system requires 59 feet at a u of 1.0 and 202 feet at a u

of 0.3. This compares with 56 feet and 186 feet for the optimal control

system. These values are for an initial velocity of 60 feet per second

or approximately 40 miles per hour.

Of interest is the ripple frequency, since this may be used as a

measure of optimality. The suboptimal system with essentially zero de-

lay has a ripple frequency of approximately 11 cps at u I 1.0 and 18 cps

when U I 0.3. When transducers, which have time delays are used, these

frequencies go down. To compensate for the delays, compensation net-

works are employed. In the suboptimal control system, the effectiveness

of the compensation can be judged by the ripple frequency generated.

The higher ripple frequencies imply that the system is more nearly

optimal. A criterion, based on ripple frequency, for estimatihg time

delays associated with transducers is established in Chapter VI.

The last two figures in this set, Figures 5.12 and 5.15 show the

control pressure for the U I 1 and U I 0.3 cases. As generated on the

digital computer, the rise and fall rates are 15000 and 45000 psi/second

for this case.

In the digital studies, use was also made Of the CSMP plotting fea-

tures. Typical plots are shown in Figures 5.16 to 5.23.

The effect of having unbalanced time delays was studied. Figure 5.16

and 5.17 show the effect of having 20 milliseconds delay in one of the

wheel velocity transducers and no delay in the other. Vehicle velocity

and pressure transducers also had no delay. The reference velocity in
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the suboptimal control system was set for 0.5 of the vehicle velocity and

the system used the average of the wheel velocity signals to establish

the error signal. These results show that, by using proper compensation,

this amount of delay may be tolerated. The principal disadvantage is

that the wheels lock up at a vehicle velocity of approximately 5 feet per

second. In other respects, the supoptimal control operates as desired.

This is clearly shown in Figure 5.17. The control pressure quickly

brings u to its maximum value. Then, due to the slip reference setting

of 0.5, keeps u at a relatively high value for almost the entire stop-

ping period. Earlier lockup is very clearly shown in this figure. The

value of u is seen to drop to the panic value of 0.8 while the control

pressure rises rapidly to its maximun of 1200 psi. The stopping dis-

tance for this suboptimal system is 60.21 feet as compared to 56 feet

for the optimal control system. The listing of this program, P 252, is

shown in Appendix IV.

The next set, Figures 5.18 to 5.21, show the effects of having 20

milliseconds delay in both wheel velocity signals. There are no other

changes from the previous system. The ripple frequency variation is

now quite prominent. The relatively high frequency of 12 cps indicates

satisfactory operation at this value of u. The stopping distance has

increased slightly to 60.76 feet.

The effect of subjecting one side of the vehicle to a peak u 0.95

and the other side to a peak u of 1.0 is shown in Figures 5.22 and 5.23.

All other components of the system are as in Program 252. The side of

the vehicle which is subjected to a u 0.95 and has a 20 millisecond
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delay in the transducer locks up early as seen by the WV2D trace in

Figure 5.22. Stopping distance was 63.4 feet as compared to the opti-

mal value of 57.2 feet. This is a two wheel model which used the average

of the two wheel velocity signal to produce a one-dimensional control

signal. This example points out the disadvantage of the one dimensional

control versus the two dimensional control system. Figure 5.23 clearly

indicates the changes in the u characteristic and control pressure that

occur after early lock-up.

The final figures of this section show the response of the system

which is designated as the reference suboptimal control system. As may

be noted from Figures 5.24 and 5.25, the wheel velocity response and the

friction coefficient response are almost undistinguishable from those

determined from the theoretical optimal control system. In Figure 5.23,

trajectory O-A-B is nonsingular, while B-C is the singular trajectory.

The control pressure response, in Figure 5.26, does not peak as expected

in the optimal response. The variation in the flat portion of the con-

trol pressure is due to the anticipatory nature of the compensation

network. Stopping distance for this system is 57.75 feet.

These figures are representative of the digital studies which show

that the suboptimal control system considered performs satisfactorily

and compares favorably with the reference optimal control system which,

it should be noted, does not contain time delays.



98

I‘I‘CONTINUDUS SYSTEM MODELING PROGRAMIIII

*‘IPROBLEM INPUT STATEMENTS***

IITLE

PARAM

FUNCT

METHOD

PROCED

ENDPRO

TIMER

FINISH

LABEL

PRINT

PRTPLT

END

PARAH

w
h
o

.
&

w
r
-

~
1
0

ASKC

B=l..C=l..D=l.

MUETIIII.15.-l.1.10..0.O).(.075..6).(.15.1.1.(.57

RKSFX

HU1=B*AFGENIHUET19ETAII

VVDOT='16.*(HUI+DI

VV‘INTGRLI60.09VVDUTI

VVD‘DELAY1510015'VV1

HV100T=1210..HU1*0.79*T1

SDIST=INTGRL(0.09VV1

HV1=INTGRL460.09HVIDOTI

HVID=DELAYI59.00IVHV117

ETA1A=VVDIHVID

lelsbé‘Pll

ETA1=1.OINV11/VV

HVII‘LIHITIO.96O.OQHV17

ETAIR=0.5‘VVD

Y1=DERIVI0.09ETA1A1

ERRIN1=ETA1AIETA1R

ERROTI=INSHIERRIN19 1.0.I3.0)

EI=ISOOO.*ERRUT1

PI=INTGRL(0.09X11

X1=EI*X11

Xll=DUIIP10E11

lFIEI'levZ

IF‘P1130494

XIIIO.O

GO TO 7

XII=I.O

GO TO 7

IFIPI'IZOO..59596

X11I1.O

GO TO 7

X1180.0

CONTINUE

P11=DELAYI150.00PII

FINTIM=fiooDELT‘.OOO4g

VVI1.O

ANSKC‘JGG*SCHERBA

ETAIR.ETAIA,MUI.ERRIN1,ERROTl,Pll,

ETAIROETAIAOHUIsERRINIQERRUTIopll9

B‘OOBQC'OO390303

RESET LABEL

LABEL

END

.STOP

ANSKC ("08.3)

PRDEL=.CZ

VV’PIOSDI

VVDPlsSDI

Figure.5.8 PROGRAM I CSMP Listing of One-Wheel Model
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Figure 5.10 Histogram of Wheel Velocity
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Figure 5.12 Histogram of Control Pressure
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Figure 5.13 Histogram of Wheel Velocity
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Figure 5.14 Histogram of Friction Coefficient
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Figure 5.15 Histogram of Control Pressure
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Velocity Response

Suboptimal System Employing a Single Control Pressure Signal
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Control Pressure Response

Suboptimal System Employing a Single Control Pressure Signal
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Friction Characteristic

Suboptimal System Employing a Single Control Pressure Signal
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Wheel Velocity Response - Unbalanced Friction

Suboptimal System Employing a Single Control Pressure Signal
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CHAPTER VI NONLINEAR PHENOMENON IN VEHICULAR BRAKING PROCESSES

6.1 Introduction
 

As the complexity of systems increases, it becomes more difficult

to predict the effects of the various system parameters. Also, in the

vehicular system considered, the wheel,velocities are tightly coupled.

This results in the generation of frequencies vastly different than those

obtained in the loosely coupled case. The presence of nonlinearities is

responsible for the generation of additional frequencies. In this chap-

ter, attempts to improve the intuitive feeling for some aspects of the

system will be made.

6.2 Time Delay Criteria by Describing;Function Technique

The suboptimal control system generates prominent variations in

wheel velocity, friction coefficient, and control pressure. These would

not be present in the optimal control system. These ripple frequencies

are primarily due to the time delay constraints present in the subopti-

mal control system with minimal time delays. It will be shown that the

ripple frequencies may be used as a measure indicating the degree of op-

timality achieved. Describing function techniques will be used to

develop criteria.

The one-wheel model using s-plane representations is shown in

Figure 6.1. The friction-slip curve, shown in Figure 6.2, will be line-

arized about a typical operating point. The gain characteristic will'

normally be negative; but, as evident from the friction characteristic,

may be positive. This gain term will be defined as,

1‘0 - All/An (6.1)
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Figure 6.1

S-plane Model of One-wheel Vehicular Control System
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Figure 6.2

Friction-slip Curve Linearized about Operating Point
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Since the vehicle velocity VV changes with respect to the wheel

velocity very slowly, it will be assumed constant. The effect of a

changing vehicle velocity will be discussed later. On an incremental

basis, the circuit may be represented as shown in Figure

The notation is the same as previously defined in Chapter IV.

  

 

 
Figure 6.3

Simplified Incremental Block Diagram

Onedwheel Vehicular Control System
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The block involving the u characteristic has a transfer function

given by

T. F. - 

3 " 1‘1 (6.2)

where,

2

k1 - kuM R /8 1 W (6.3)

For application of the Describing Function Technique, the final form

shown in Figure 6.4 is desirable.

_ A _

-,:F

. - K 6"" (H115) ,

S(s-kd

Figure 6.4

 

 

 

 
  

Nonlinear System used to Develop Time Delay Criterion

I

T2 is the time constant associated with the lead network.

T1 is the total time delay present in the system.
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Study of this block diagram reveals several significant character-

istics of the vehicular control system. First, if both time delays are

neglected, the system stability depends on the sign of k1, which in turn

depends on the friction-slip gain ku. Since the operating point is usu-

ally on the negative slope portion of the friction-slip curve, the

system is inherently unstable. This instability, however, has no adverse

affect on the optimality of the system. Some of the unusual phenomenon

observed is however due to this characteristic.

The second characteristic of interest is the chattering of the

wheel velocity as it is driven to zero. The chattering is readily ex-

plained by means of the Describing Function Technique. Designating the

nonlinear element as N(e, m) and the linear element as C(w), the oscil-

latory of chattering condition is

C(w) I - 1/N(e, w) (6.4)

Here e is the amplitude of the input to the relay element. The input

signal is assumed to be sinusoidal. A sketch of a typical Nyquist Plot

appears as shown in Figure 6.5

In GHQ

 

‘fifk Re 511“

u l'henasm,

 
Figure 6.5

Typical NYQuist Plot
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For typical values of T1 ! .010 seconds and T2 - .05, the

critical point is reached when w is approximately 142 radians per second

and N I 2860. A computer study was conducted to establish the accuracy

that could be expected. Using a symmetrical relay characteristic which

switches between -5000 and +5000, the input was approximately 3. Since

the fundamental component of the square wave is 4/0 - 5000, the gain N

of the relay element is 2120. This, with the loop gain of 1.32 gives a

total gain of 2800. The frequency was 22 cps or 138 radians per second.

These values are very close even though the generated waveforms in the

system are square, triangular and finally, approximately sinusoidal at

the input of the relay element.

A study of the NyQuist Plots shows that a simple criterion may be

established to evaluate time delays in this system. By neglecting the

effect of the gain factor k1, the angle criterion at the critical point

- l/N is satisfied by the following condition:

Angle of 2 (1+ij2) - 0 (6.4)

This is equivalent to the condition,

Tan w'l‘l " sz, le 1 '0/2 (6.5)

Solution of this transcendental equation gives the chatter fre-

quency in terms of the two time constants.’ Observation of various

solutions shows that le is almost 0/2 radians for all cases of interest.

Thus, the simplified form below may be used,

T1 - 2% seconds (6.6)
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Thus if m - 142 radians per second, the time delay in the system is

approximately .011 seconds. This simplified criterion is quite useful

in establishing the time delay in the system.

Concerning the effect of the neglected term k1, it is readily shown

that at the frequency of chatter, this term is insignificant except at

very low velocities where it tends to reduce the chatter frequency.

Due to the asymmetric character of the relay element, a Dual Input

Describing Function Technique was also investigated. For suboptimal op-

eration, due to the small variations which are essentially sinusoidal, no

significant additional information was obtained by this method.

6.3 Effect of Friction-slip Nonlinearity

In the previous section, the Describing Function Technique was

shown to be useful in establishing a criterion for estimating time delays

of the suboptimal control system. If compensation is not used, the system

performance is adversely affected. The criterion established in the pre-

vious section is no longer valid and it is necessary to include the effect

of the friction-slip nonlinearity shown in Figure 6.2. For time delays

which are in the realizable range - 10 milliseconds to 20 milliseconds -

operation will be on the positive slope portion of the friction-slip

curve. On this portion of the curve, the gain factor k1 is significant

and to a first approximation the following criterion will establish the

dominant frequency of the variation:

-ij1

Angle of 5 [(k1 + Jw) - -H/2 radians (6.7)
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Referring to Figure 6.4, it is to be noted that the loss of the

lead term due to the compensation network causes the system to make up

this phase change by finding a suitable gain factor k1 which reduces the

phase of the (s-+ k1) term in the denominator of the transfer function.

Several cases where no compensation was used were investigated. The

results of a system having no compensation and 10 ms delay is shown in

Figures 6.6 to 6.9.

Detailed study of the waveforms in these figures indicates that the

criterion given by (6.7) accurately predicts system performance. The

block diagram shown in Figure 6.10 will be used to illustrate the pro-

cedure. Except for the time delays, the diagram is based on the program

listing shown in Figure 5.8.

 

Figure 6.10

Diagram Used to Evaluate Variational Frequency

and Amplitudes of Variables

The procedure is as follows for the system having 10 milliseconds

delay.

Since operation is on the positive slope portion of the friction-
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slip curve, k1 is estimated as 40. The transcendental angle criterion

(6.7) is then solved for m. The result is approximately 60 radians per

second, comparing favorably with the measured frequency of 9.75 cps.

The friction-slip coefficient response should lag the pressure re-

sponse by 34.5 degrees. Detailed analysis of the response curves in

Figure 6.7 and 6.8 shows this to be the case.

The pressure amplitude is found by finding the fundamental component

of the asymmetrical relay output and dividing by w. The peak to peak

fundamental is “(1;— - .78 - 60,000/60 or 995 psi. This is essentially

the same as the measured value.

From the transfer function l/(s + k1) which relates pressure and

wheel velocity, the wheel velocity amplitude is calculated as 13.8 fps

peak to peak. This is higher than the measured value which is approxi-

mately 10 fps peak to peak.

The magnitude of the friction-slip coefficient variation is found

from

12100 ' WV ° k1 (6.8)

This results in a predicted value of 0.46, which is condiderably

lower than the measured value of approximately 0.9.

Considering the large amplitudes, the results are not unsatisfac-

tory. The Dual Input Describing Function Technique was not used here,

but would probably improve the accuracy. The presence of other frequen-

cies is clearly evident from the pressure response in Figure 6.7.
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Figure 6.6

Wheel Velocity Response
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Figure 6.8

Friction Coefficient Response
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CHAPTER VII CONCLUSION

The development of the system equation for the vehicular braking

control system shows that the control signal appears linearly. This

implies, since the system is nonlinear, the possibility of singular

controls. From the unified singular control theory presented, necessary

conditions which the time optimal control must satisfy are developed.

The class of functions encountered in the vehicular braking control sys-

tem are such that the minimum stopping time problem is equivalent to the

minimum stopping distance problem.

Based on the necessary conditions developed, the closed loop pro-

blem is solved and a block diagram showing the mechanization using the

Maximum Principle approach is presented. Since the initial costate

vector must be determined on-line, subject to various initial conditions

on the state vector, any cost functional which takes into account factors

such as, cost and simplicity would eliminate this method as a possible

candidate.

A more practical approach is the mechanization developed by applying

the Green Theorem approach. The critical component in this method is the

w function block which determined the singular condition. This method is

quite possible in applications which are relatively slow. An algorithm

for determining the optimal control is presented. For the vehicular brak-

ing control system, where significant changes occur in milliseconds, the

method becomes costly.

At this stage of design, the gap between theory and practice:is apparent.

131



132

The mathematical models which have been developed are not sufficiently

sophisticated to include noise, variability, cost, reliability and other

realistic factors. Inclusion of these factors would subject the models

to further constraints and adversely affect the performance.

The mathematically expedient models function as reference models,

indicating the ultimate that can be expected, and also giving clues as to

how the optimal control should function. As a result, a system called the

suboptimal vehicular braking control system was developed. This system is

optimal in the sense that it heuristically considers cost and simplicity

and is suboptimal since minimum stopping distance is slightly greater than

the optimal control system subject to a simple cost criterion. The ad-

vantages gained far outweigh the effect of slightly greater stopping dis-

tances. In zero time delay case, the stopping distance for the suboptimal

control system was 57.27 feet as against 57.2 feet for the optimal control

system. For systems with time delays, it would be desirable to have opti-

mal control models which include time delays. However, by employing pro-

per compensation, the suboptimal control systems with realistic time

delays compare favorably with optimal control systems having no time delays.

Whereas, most of the effort was devoted to one-wheel models, studies

of two-wheel models indicate that coupling effects will introduce several

new problems. This is especially true if the system is constrained to use

one control signal to control two wheels under different friction conditions.

Several criteria were developed to assist in the understanding of the non-

linear phenomena which take place. The criterion which evaluates time

delays present in the system is particularly useful.
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From the viewpoint of the builder of vehicular braking systems-in

particular, the automobile manufacturer - cost is a heavily weighted factor

in the performance functional. Elimination of a costly transducer is de-

sirable. At the present time, the vehicle velocity transducer is in this

category. This leads to a very significant vehicular braking control pro—

blem - the optimal control with inaccessible state variables.

Based on analog and digital studies already conducted, suboptimal con-

trol systems with inaccessible state variables compare favorably with the

optimal control system having accessible state variables. Hence, the so-

lution to the inaccessible state variable problem is of interest. With

the addition of time delays, these significant problems are left for

future development.
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Typical Output of Suboptimal One-Wheel Control System
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2000

CIMENSION xvtloooo1. v1110000). BUFFERIIOOO)

AHHmmEXII

PROGRAM USED IN OPTIMAL DIGITAL CONTROL SYSTEM

BNMH10NIHEENW3TEEWMQIAPPMMKH

_v—w—w-wv-  

CALL PLUTSIBUFFERIIIo 4000)

CALL PLUT(0000‘12.00 3)

CALL PLCTI2.Oo-ll.592)

EXTERNAL EVALt OUT

DIMENSION P151.Auxcs.21.v121.ov121

I=1

COMMON K0U0510H

COMMON/AREAIIXYIYYgl

U308

KLOCP=1

K=99

N=2

P(l)=0.

P(3)=.000002

1:121:20

PI4I=10

Y111=600

YIZI=600

07111310

07121-3000

WRITEIZStZOCOI

FURNAT16X9'T'12X'VV' 12X'hV'12X'U'12X'F1' lZX‘W'lZX'IB

CALL RKGS (P.Y00Y0NIBIS EVALQQUT.AUXI

IFIYII). LE. 0.11190 1 00 TO 5

KLOCP=KLO0P+1

IFIKLDOP-ISI 20505

CALL SCAL51vv.5.o.loooo.1.lo.01

CALL SCALEIXY05.091000001010.01

CALL AXISIQ. 0'0009'Y'91'999190'0 0YY11000110YY1100021

CALL AXISIO. 090.00'X'0 196.000.00XYI1000110XY110002)

CALL LINEIXYtYY01000001000OI

CALL PLCT10.0.0.09999I

STOP

END
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a—.—-— -- w- A

11

SUBROUTINE EVAL 1t.v.ov1

DIMENSION YIZIoDYI219PI5)

COMMON K.U,F1!H

N=.225*Exp1.225t1v121/Y1I1-1.11-23.5*Ex§123.5*1v121/v

FIcEXP1-.2251*EXP1.225tY121/v1l1I-Exp1-23.51*EXP123,5

v=u

0Y(11=:§23i?1"**”

DY121=1210.tFl-1584.#v

RETURN,

END

-I.‘ -.—..¢-~.‘ oo—m”. ‘--. 0.. I, I . .... 

...._. . 1 .__'.-..—--r_- 7-.-...
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- CA1: Lm-EINISZ I 031771: 1 9 T 0 Y9 Imuu In

SUBRUUTINE OUT (TOYODYOIBISDNQPI

DIHEASIUN YIZIiOYIZITPISI

DIMENSION XYIIOOOOIO YYIICOOOI

COMMON K.U.FI.N ”‘””'

COMMON/AREAI/XYIYYOI

IFINNcNEcII GO TO 301

 

 

RETURN

CALL FINDIIUTNQFIvTvaCYgI§I§lN}PONNvKI

RETURN

END

SUBROUTINE FINDZ1U.N.F1.I.Y.IBIS.PI

DIMENSION Y121.P151

DIMENSION xv1100001. vv1IOOO01

COMMON/AREAIIXYgYYgl '

IFIT.GE.O.156081 2151 = 1.0

.IEH-U-9391.29.10 1 WW-..
IFIH.E0.0.0) GO ID 3

GD 10 2

1 IFIU.GT.0.01-U=U-.01

GD 10 3

2 IFIUOLT0009999I U:U*QC1

3 K=K+l

IFIK-IOO) 415.5

5 HRITEIZSTZOOII ToYvUoFloNoIBIS

XYII1=YI11

YYIIItYIZI

Itl+1

2001 FDRMATI6E13.59159'YES'1_.

202 K=0

4 RETURN

END
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“on” _-' I' m. rm-

SUBRUUTINE FINDIIUVH'FIOT'Y'DYQIBIS'vayNNtx’

DIMENSION Y12110Y12119151

DIMEN§ION XYI100001!_1X1100901

COMMUNIAREAI/XYOYYQI

IFIUoGToOo9999) GO TO 200

IFIAB5Sl12§13£2921£¢f29L..-..-. I- _I

200 IFIITgGToCoOOOOSIoANDoIUoLToOo99991I PI51310

K=K+1

IFIK'1001 1921;” --

2 HRITEIZSOZOOII ToYvLoFlouleIS

XYIII=YI11

YYIIIFYIZI

I=I*1

IFIABSIHIoGT00o011 GU T0 202

. NN=1 .

2001 FORMATIbEl3oSOISI

202 K=0

1 RETURN

END
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APPENDIX III

Differential Forms

A2.1 Introduction
 

Knowledge of differential forms is useful in the analysis and

synthesis of engineering systems. A more complete treatment may be

found in Flanders [F7].

The objects that occur under integral signs are called exterior

differential forms. For example, the line integral, surface integral,

and volume integral lead to the following differential forms in 3-

dimensional Euclidean space:

w - A dx + B dy + C dz (one-form) (A2.1)

u = P dydz + Q dzdx + R dxdy (two-form) (A2.2)

A = H dxdydz (three-form) (A2.3)

In the n-dimensional space, the quantities are called r-forms in

n variables.

A2.2 Exterior Algebra
 

In the algebra of differential forms the operations of addition

and multiplication obey the usual associative and distributive laws.

Multiplication, however, is not commutative but anticommutative, i.e.,

. - A2.dxi A dxj clxj Adxi ( 4)

The exterior product is sometimes called the wedge product. Often the

product symbol A is omitted. Hence,

8 - 2 o 4
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In the two-form given (A2.2), use of (A2.4) eliminates terms

like dzdy.

The exterior product has the following properties:

(1) (w+C)NH * (wAn) + (CAO) (A2.5)

(2) (cw)AC = C(wAC) (A2.6)

(3)‘ Q A w = (-l)rsw A C , (A2.7)

if m has degree r and g has degree 3

(4) (CAw)An = CA(wAn) (A2.8)

A2.3 The Exterior Derivative

The exterior derivative of a p-form w is a (p+l)-form dm obtained

by applying an operator d to transform w to dw.

For example if m is a three—form in four variables

w = X wijk dxi A dxj A dxk (A2.9)

i<j<k

or, omitting the product symbol

w = w123 dxldxde3 + w124 dxldxzdx4 + w234 dx2dx3dx4 (2.10)

The exterior differential dw is defined as

dw = 2 dw dx dx d 2.11i<j<k 135 1 j xk < >

Where wijk is a function of x1, x2, x3, and x4 and is assumed to

be differentiable.

This definition is readily generalized.

The exterior differential has the following properties:

(1) d(w+n) = d01+ dn (A2.12)

(2) d(umn) = d0 A n + (-1)r w A dn, (A2.13)

if m is an r-form and nis an s-form

 .
r
}
:
l
—
‘
_

1
v
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(3) d(dw) = 0 (1.12.14)

w and n are assumed to be differentiable.

Property 3 is called the Poincare' lemma. It implies the equality

of mixed second partial derivatives. The general case is proved by

induction.

For simplicity only the O-form is 3 variables is considered,

w 8 f(x) (A2.15)

Then there results the l-form

d01=-8-f-dx+-§-£dy+-3—f-dz (2.16)
3X By 32

Then

d d = 8f + 3f + 3f 1( 01) d(‘a"i')AdX d('57-)A dy d(§-5-)A (12 (A2. 7)

Carrying out the differentiation, and using the properties of

exterior multiplication,

d(dm) = 0 (A2.18)

In 3-space, the Poincare' lemma d(dw) = 0 interprets as

curl (grad f) = O (A2.19)

div (curl V) = O (A2.20)

A2.4 Integration of Forms
 

The primary purpose of this section is to present the n-dimensional

Green's Theorem, also called the n-dimensional Stoke's Theorem. What

the classical theorems state for curves and surfaces, these theorems

state for the higher-dimensional analogs called manifolds.

An n—dimensional manifold consists of a space M and a collection

of local coordinates neighborhoods N1, N ... such that each point of
2’

M lies in at least one of the neighborhoods. Whereas, an n-dimensional
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manifold may not be a Euclidean space, it appears to be Euclidean to a

short-sighted observer in the manifold.

The proof of the n—dimensional Green's Theorem is simplified if the

concepts of chains and Euclidean simplices are introduced. This is done

to eliminate the need to chop up manifolds into small pieces. Instead

of working with manifolds where things are more difficult, Euclidean

spaces may be used where things are relatively more simple.

Euclidean simplices are defined as follows:
 

A O-simplex is a single point (p0).

A l-simplex is a directed closed segment on a straight line.

It is completely determined by its ordered pair of vertices

(P0, Pl)'

A 2-simplex is a closed triangle with vertices taken in some

definite order. It is determined by the ordered triple

(P0, P1, P2).

A 3-simplex is similarly the ordered quadruple (P0, P1, Pl, P3).

In general, an n-simplex is the closed convex hull (P0, ..., Pn) of

(n+1) independent points taken in a definite order. Independent points

means that the n vectors (Pl-PO), (PZ-PO), ... (Pn_P0) are linearly in-

dependent. The convexity condition implies that the n-simplex is the

set of points.

P - toPo + ... + tnPn 5130. l 51 = 1 (A2.21)

The boundary 38 of a simplex S is a formal sum of one lower dimension

with integer coefficients defined as follows:

n

a (P0, P1, ..., Pn) - 2 (-1)i(5u, ...5 _ ., Pn) (A2.22)

i=0
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For example, the 3-simplex is bounded by four faces, i.e.

3(P09 P1, P2: P3») = (P1: P29 P3)'(P09 P2: P3)+(P09 P]: P3)-

(P0, P1, P2) (A2.23)

The terms having positive signs correspond to orientations wnich

may be associated with an outward normal if the points are traversed

in a counter clockwise direction. See Figure A2-l.

  
Figure A 2.1 3—Simplex with Orientation

An n-chain is a formal sum

0 = Z 3181 (A2.24)

where a1 are constants and Si are n-simplices.

The boundary of the chain is defined as

80 - X a1 as1 (A2.25)

As a result, the boundary of each chain has zero boundary.

3(30) - O (A2.26)

For example consider the boundary of the 2-simplexS where

S = (PU. P1. P2) (A2.27)
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Then

BS = B(PO, P1, P2) = (P1’ P2)-(PO, P2)+(PO, Pl) (A2.28)

and

3(38) = (P2-P1)-(P2-PO)+(Pl—PO) (A2.29)

Hence

3(38) - 0 (A2.30)

and

3(80) = 0 (A2.31)

It is convenient to have standard models of the simplices. The

standard n-simplex is defined as

-n

s a (R , R ) (A2.32)
0’ " n

The points R , ..., R in n-dimensional space are taken as

0 n

R0 = (0 ... 0)

R1 = (10 ... 0)

R2 = (010 ... 0)

8n = (00 ... 01)

Integration of a n-form defined on a domain N of En which includes

n

S is written as

I _n w =Js‘“ A(x1, ..., xn) dxldxz...dxn (A2.33)

S

The right side is standard ordinary n—fold integration over the

standard n—simplex.

Since we wish to integrate a n-form on a manifold M, it is necessary

to relate the standard n-simplex to the n-simplex in M (denoted by on).
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Hence

wmw
o s (A2.34)

where 0 is a smooth mapping of the neighborhood N of s"n into M.

It can be shown that

I 0 = I dw (112.35)

30 0

Also since C = Z aidin’

J m ' I dw

80 c (A2.36)

This is Stoke's Theorem in its most general form. Recall that C is

a chain and 3C is its boundary.
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ALTERNATE DIGITAL PROGRAM

¥**#§0N71Nuous SYSIEHJQODELING PROGRAfltttt
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