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ABSTRACT
OPTIMAL SINGULAR CONTROL THEORY WITH
APPLICATION TO VEHICULAR BRAKING

by Michael Bishop Scherba

General results from both the Maximum Principle and Green's Theorem
are specialized to a class of singular control problems encountered in
vehicular braking processes. These problems are in the class of nonlin-
ear problems in which the control appears linearly. These are of the form

x(t) = f(x,t) + B(x,t)u
where the n dimensional vector x(t) is the state of the system at time t
and the r dimensional vector u is the control vector. The object is to
find a control vector which takes the system from some initial state xj

at t%me t, to state x,r at time T and minimize the functional
T
J[u] -J fo(t,x,u)dt
to

In the vehicular braking problems, the functional J[u] corresponds to stop-
ping distance. This problem is shown to be equivalent to the time optimal

problem for the class of functions encountered.

Necessary conditions along singular arcs are established using both
the Maximum Principle and Green's Theorem. Algorithms for determining op-
timal trajectories along both singular and nonsingular arcs are developed

using the concept of reachable and controllable sets.

The optimal control as a function of the state variables - the closed

loop problem - is solved. Application to vehicular braking processes is



shown by means of both rate and amplitude limited controls. The result-

ing systems are singular '"pang-pang" and singular "bang-bang'" systems.

The inability of a single mathematical performance index to encom-
pass all the qualities desired in the vehicular braking system resulted
in the development of suboptimal control systems. Favorable comparison
with optimal control systems is shown by means of digital and analog
techniques. Simulation including real hardware shows application of the
theory. Several frequency domain criteria are included to provide in-
sight regarding the effect of time delays in suboptimal vehicular braking

systems,
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CHAPTER I

INTRODUCTION

Writers have called attention to the fact that a gap exists be-
tween contemporary control theory and control practice [G7]. The gap
can be attributed to the fact that theoreticians and designers do not
study and solve the same problems in the same order and manner. In the
present study - Optimal Control of a Vehicle During Braking - there ap-
pear many difficulties. Those of an essentially mathematical nature are
of interest to the theoretician. These difficulties are not usually
the same as those which concern the designer. The theoretician often
finds interesting and worthy of study a simplified version of the de-
signer's problem. On the other hand, the designer often will change the
design to bypass a difficulty which he has insufficient time to analyze.
This thesis is an attempt to decrease the communication gap due to the
divergent interests of theoreticians and designers in the area of optimal

vehicular braking.

Nonlinear systems in which the control appears linearly may be
singular control problems [H3]. Chapter II presents a unification of
singular control theory results found in the literature. The Maximum
Principle approach to singular control problems due to Johnson and

Gibson [J1], [J2] is presented and extended.

The Green's Theorem approach first presented by Miele [M2] and
generalized by Haynes [H1l] is quite useful in low order systems. In the

first approximation model of the vehicular control system, this method

1



is applied. Studies by Snow [S3] concerning reachable and attainable
sets supplement the development of the Green's Theorem approach. Geo-
metric rules for determining optimal trajectories which contain both

singular and non-singular arcs are developed and presented.

To establish necessary conditions for minimality of singular arcs,
the second variation approach developed by Robbins [R1] and also by

Kopp, Kelley, and Moyer [K2], [K3] is presented.

In Chapter III the general theory of singular control as presented
in the previous sections is applied to low order time optimal control
systems. This specialization is directed toward the vehicular braking

control problem,

The first section employs the necessary conditions obtained from
extensions of the Maximum Principle to derive the optimal control law.
The mathematical model of the friction-slip characteristic used in the
vehicular control system is8 of an exponential nature. This permits
further specialization and simplification of the control law. The
result of this approach is a closed loop system, in which the control
is a function of state variables, operating as a second order system in
the singular mode and as a fourth order system in the non-singular mode.
The singular "bang-bang'" cases concerned are designated Problem 3.1 and

Problem 3.2.

Using the Green's Theorem approach, no additional information is
obtained for these problems. The necessary conditions for singular arcs
to exist are compared and tabulated. It is shown that the necessary

conditions of the Maximum Principle approach imply the necessary condition



of the Green Theorem approach.

The previous problems dealt with bounded control variables. Problem
3.3 is the singular "pang-pang" time optimal control problem and models
a vehicular braking control system when the control pressure is rate
limited. It is shown that the control law for both the singular '"bang-
bang" case and the singular "pang-pang" case are identical on the singu-
lar portion of the trajectory. The terminology singular "bang-bang" and

singular '"pang-pang" is defined in Chapter III.

The "pang-pang'" problem increased the order of the system to three,
since the control u became a state variable and u became the new control
signal. The extension of Green's Theorem from two to three dimensions is
the traditional Stoke's Theorem. The generalization to higher dimensions
will be designated as the n-dimensional Green's Theorem. This generali-
zation is considered and a procedure for applying Green's Theorem to
n-dimensional problems is presented. The concluding section of Chapter III
applies the second variation approach to Problem 3.1, the singular 'bang-

bang" time optimal control problem.

The chapters to this point have stressed the theoretical aspects re-
lated to the problem of interest. Chapter IV is concerned with the ap-
Plication of the previous material to the vehicular braking control
problem. As such, it is of interest to both the theoreticians and the de-
signers. A mathematical model of the one-wheel vehicular braking control
model is optimized using the Green's Theorem approach. Reachable and at-

tainable sets are obtained and a realizable control algorithm determined.

A computer program to automate the procedure is discussed and included



in Appendix II. By eliminating the constraint on the control signal and
using an impulse function in the control, a simple analytical solution
is obtained. This provides a design tool for this particular problem and

serves to check the digital computer solution.

Implementation of the optimal control based on the Green's Theorem
approach shows the feasability of this method. However, the optimal con-
trol system model used shows that unavoidable time delays in the IBM
360-65 computer are responsible for the control signal oscillating or
chattering about the theoretical value. By means of small signal analy-
sis, relations between the variables are derived so that the magnitudes of
the oscillations can be predicted. These are primarily of theoretical in-
terest, since they would have negligible effect on a hardware system.

They do indicate that time delays, such as encountered in various trans-

ducers, will affect the practical system.

In Chapter IV, the vehicular braking control problem was formulated
as a time optimal control problem. By means of Green's Theorem, it is
shown that minimizing time to stop the vehicle is equivalent to minimizing
vehicle stopping distance. A criterion is also derived which shows the

relationship necessary for equivalence.

The one-wheel vehicular braking control model with rate and amplitude
limited control is solved by using the n-dimensional Green's Theorem deve-

lopment. The three dimensional trajectory is described.

The problems considered to this point, have been aimed at directly
assisting in the development of a vehicular control system. Subject to

well defined constraints, the optimal control problem has been solved by



both the Maximum Principle and the Green's Theorem approach. The de-
signer, however, is faced with constraints which are not well defined.
Diverse facts such as cost, reliability, variability, and noise sen-
sitivity must be considered. The complexity forces the designer - at
this stage - to optimize, in some undefined sense, a system which will
be called the suboptimal vehicular braking control system. This is done
in Chapter V. The basic supoptimal control system developed first is
almost indistinguishable from the optimal control system. Since time
delays, due to transducers are significant, the final suboptimal system

developed takes these into account.

Studies using both the analog and the digital computer are conduct-
ed, using the optimal control system as a reference system. It is shown
that it 1s possible to compensate for transducer time delays which are
no more than approximately 20 milliseconds. Also, if the time delays are
in this range, they may be treated linearly. Representative plots and

their comparison with respect to the optimal control system are included.

In order to predict the effect of various system parameters more
easily, it 1s necessary to develop models which reduce the complexity of
the system. Several models are developed in Chapter VI, which are useful
under various operating conditions. The first model, which is valid for
a properly compensated system having time delays, establishes a criterion

relating time delay to ripple frequency present in the system response.

Another model developed is appropriate for systems having physically
realizable time delays but operating without compensation. This model

considers the effects of two nonlinearities, the friction-slip characteristic



and the relay characteristic. The use of these models in predicting the
effect of system parameters is demonstrated and comparison with computer

studies is included.

In summary, this thesis presents a unification of singular control
theory and specializes the generalAresults to a class of problems en-

countered in vehicular braking processes.

It develops necessary conditions along singular and nonsingular tra-
jectories, which are used to develop algorithms necessary to mechanize
time optimal models based on both the Maximum Principle and Green's
Theorem. The equivalence of minimum time and minimum stopping distance

criteria is proved.

Parameter studies of suboptimal systems are made using both analog
and digital technique. The suboptimal performance of simulators using
real hardware is shown to compare favorably with the optimal control

system.

Several frequency criteria are developed to permit evaluation of

suboptimal control systems.



CHAPTER II SINGULAR CONTROL THEORY

2.1 Introduction

This chapter is a survey of some of the currently known mathematical
techniques applicable to the study of systems described by nonlinear
differential equations in which the control appears linearly, i.e.,

r
ii(t) = fi(x,t) + z

b ,t 1i=1,2,000, (2.1)
iE 1y (x )uj n

It will be shown that when the control appears linearly, a class of
solutions which are called singular may appear. In matrix notation, the

above equation may be written as

x(t) = f(x,t) + B(x,t)u (2.2)

In the above equation, t is the independent variable (t = time in the
practical cases considered). The n dimensional vector x(t) is the state of

the system at time t, and the r dimensional vector u is the control vector.

The problems of primary interest are those in which control vectors,
i.e., a set of control functions ua(t), are to be found which will take

the system from state x_ at time to to state x at time T.

(o}

By requiring that the control vectors optimize some performance
criterion, we have an optimal control problem. This criterion is usually
a functional which may depend on time, the state of the system, and the
control vector. When expressed in integral form it appears as follows:

T

J[u] = I f (t,x,u)dt (2.3)
¢ ©

o



In much of the study that follows the scalar £ will be 1. This
o

is the classical time optimal control problem.

The control vector will be selected from a class of functions U
depending on the problem. Bounds on the control and its derivative such

as
Iua| <1 a=1,2,..., r

and
.
|ua| <1 are considered.

The system equations may always be written so that the magnitudes of the

control components are normalized, i.e., |u | < 1.
al —

For an optimal control problem, a trajectory is said to be singular,
if along the trajectory, the necessary conditions for optimality such as

provided by the Pontryagin Maximum Principle are satisfied in a trivial

manner. Application of the usual necessary conditions here produces no
useful information. A definition due to Hermes [H5] states that a control
vector is totally singular when the Maximum Principle yields no informa-
tion in time optimal problem for any components of the optimal control.

1f a trajectory is nonsingular, it is called normal. The trajectories
considered in this study have subarcs which may be normal and other sub-

arcs which may be singular.

2.2 The Maximum Principle Approach

In this section application of the Maximum Principle will show that
the usual necessary conditions provide no information regarding the sin-
gular control. Hence, other necessary conditions will be developed to

provide additional information regarding the control.



The practical cases considered later will be time invariant with
a single control variable. Consider,
Problem 2.1
x, (t) = £, 1x(t)] + b [x(t) Ju(t) i=1,2,.0., 10 (2.4)
or in vector notation
k(t) = flx(t)] + bx(t)]u(t) (2.5)
where the state vector is the n dimensional vector x and u(t) is a

sectionally continuous scalar control function.

Assume that u(t) is constrained in magnitude by the relation
|u(t)] 21 for all t te[0,T] (2.6)
The problem is to drive the initial state x(0) = a to x(t) = Db
while minimizing the functional

J[u] = Lf{folx(t)] + b [x(t) Ju(t) }dt (2.7)

which can be represented as
io = £ [x(t)] + b [x(t)Ju(t) x (0) =0 (2.8)
The Hamiltonian is defined as

n n
HGxuat,p) = [ £ [x(0)]p (8) +u() ] b [x(&)lp;(6) (2.9
i=o i=o

The vector p is the costate or adjoint vector and is given by

. H
t)-——a——
Py axy (t) i=1,2,...,0 (2.10)

or in vector form as

pe) = - S (2.11)

9x
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From equation (2.9) and (2.10), we have

2 () tz\ ) £4[x(t)] n )ab [x(t)] (2.12)
t) = - t) ———— t

The following theorem is one form of the Maximum Principle which

gives necessary conditions for Problem 2.1 [Al].
Theorem 2.1

If u*(t) is an optimal control and if x*(t) is the corresponding
optimal trajectory, then there exists a nonzero absolutely continuous

vector valued function p*(t) and a constant po* > 0 such that

1 %0 = £ X (0] + bylx (©)]u*(0) (213)
u of [x t)] ob, [x*(t)]
b = <)y (c)—-“—— M0 pyrer =3
j=1 * () =i 9x, (t) (2.14)
*y A
L] *
x (0) = a x (T) = b i=1,2,...,0 (2.15)

ii) For t € [0,T] and all u(t) satisfying the constraint |u(t)|§ 1,
the following relation holds
u’(6) Z b [x (e)Ip, ") < u( Z bilx (0)1p, *©) (2.16)
i=0 i=0

11i) If T is free
1 ,ule,p’) = 0 te [0,T] (2.17)
iv) If T is fixed

*
H(x*,u*.t.p ) = C = a constant t € [0,T] (2.18)

As long as the scalar f bi[x(t)]pi(t) is not zero, minimizing
i=0

equation (2.9) yields the well-defined control law,
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* n
u (t) = - sgn Z b

[x(t)]p, (t) (2.19)

when lu|< 1.

Since the signum function is not defined for argument equal to zero,
the control u may be any admissible value. Admissible values are those
which satisfy the constraint ]u]i 1. This presents no problem as long
as the scalar function Z bi[x(t)]pi(t) is not zero over finite time in-
terval. This is the cli:gic "bang-bang" case[Ll]. If, however, the
scalar z bi[x(t)]pi(t) is zero over a finite interval then the problem
is singzlgr and is no longer "bang-bang". This may be formalized by the

following:

Definition 2.1 Optimal Singular Control

Problem 2,1 is singular if the optimal control u*(t), the resulting
trajectory x*(t), and corresponding costate p*(t) have the following
property:

There is at least one'half-open interval (t,,t,] in [0,T] such that

Z bi[x*(t)]pi*(t) =0 for all t € (t;,t)] (2.20)
i=0

* *
po (t) =pyg 20

The control will be called an extremal control u(t) if it satisfies all
the necessary conditions of Theorem 2.1 such that corresponding state i(t)
and costate a(t) have the property that

) bili(t)]fai(t) =0 for all t e (t1,t,] (2.21)

Po(t) = pg = 0
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To avoid nonessential generalization, singular extremal controls in
low order systems will be considered using the Maximum Principle. First
form the Hamiltonian as given by (2.9) in vector notation

H = (£,p) + u (b,p) for all t ¢ (tl,tz) (2.23)
To simplify notation, the x(t) dependence of the variables will be
omitted.

In Problem 2.1 consider the free terminal-time case and then

minimize H with respect to u, to find

— () = b P = b .24

Here the control u is assumed to be in the interior of its allowed
region U so that %ﬂ— exists. If u is on the boundary of U, it would then
u
fall into the "bang-bang" category. Transitions from the boundary of U to

the interior of U will be considered later.

Problem 2.1 concerns the scalar control case. If u is a vector con-
trol (dimension > 2) in the interior of its allowed region, then an
extremal arc would be singular if the matrix Huu with typical element
Sﬁiniﬁ" is singular everywhere on the arc. This means that its deter-
minantjis identically zero on the arc, assuming the existence of the
necessary partial derivatives. Since H = 0 along the arc, another
condition obtained from the Hamiltonian is

n
) £p =0 for all t e (t),t;) (2.25)
i=0

Additional necessary conditions may be obtained by differentiating

(2.24) and (2.25)

b T (b, %5 + 9Py 0 (2.26)
d_ P, = [b +_1ip ] - .
Stao 17 Lltad THERT M



n n dp df
d z \ i i
< fp = ) f_.._..-i-.__p] =0 (2.27)

Using equation (2.10) and substituting equation (2.25), and (2.26)

f ( oH dpi
1=0 19x; de 1
§ ( oH dfi
-f, — + —p ] = ( (2.29)
1-0 i Bxi dt i

n of n 9b
Eo- ] psptu ) pja—il 1=0,1,2,...,n  (2.30)
£ gm0 %%y =0 1

Substituting the above in (2.28) and (2.29) and making use of (2.4)

n n afj 3bj n 3bi
0= ) [—bi jz ( ] + up, + py 5;3(f1+ bju)] (2.31)

p —— ———
{=0 =0 3 X4 Ix{ §=0
§ § 3ty ab n of, }
0= [-f pi—— + up,—— + p = (f.+ b, ,u) (2.32)
1=0 i y=0 j axi u j axi i jzo axj j ju

By interchanging the summation indices in and j in one of the u

terms of (2.31), the coefficient of the u term is readily seen to be zero.

Hence,
n n ab of
i
) (fp—-bp—J—]-o (2.33)
1m0 mg \ 371 3%y T1Tioxy

or interchanging indices in the second term, we obtain the necessary

condition,
§ E [ abi Bfi ]
f -b =0 (2.34)
120 ye0 b LTIy T TR

The interchange of indices in equations (2.31) and (2.33) is per-

missible since, the indices of summation are dummy indices.
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In a similar manner, we obtain from equation (2.32)

n n of by
i —_—) = 2,35
“120 JZO pi(bi axj fJ axj) 0 ( )

Equation (2.35) implies equation (2.34) or u = 0

Hence, at this stage, using the Maximum Principle Approach, we

have the necessary condition for an extremal singular control.

n

NCl l bp, =0 (2.36)
=g 11
)

NC2 f,;p, = 0 (2.37)
im0 1
tzn g afi Bbi

NC3 py(by =— - f, —) = 0 (2.38)
1m0 gm0 1 3 %xy 3 axy

The differentiation above can be continued resulting in additional
necessary conditions. In matrix form these necessary conditions may be

represented as

- - - o -
by b1 b2 ... b oy 0
fo £, f2 ... fn P, 0
a10 a11 aj2... aIp P, = 0 (2.39)
Ban-l.o an-‘l’nJ hpn-l -0 o

For example,

n of. ab;
i i
- b, — - f —) (2.40)
gt jZO ¢ 3 axy 3 9%y

and higher order terms are obtained from the additional differentiation.

In the application these will be obtained when necessary.
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2.3.1 The Green's Theorem Approach

The problem to be considered in this section is essentially the same
as previously treated in Section 2.2. The Green's Theorem technique dis-
cussed in [M2], [H5], [H3] is a powerful tool in resolving the singular
control problem, especially when the dimension of the state space is of
low order. By this method, it is possible to obtain global conditions for
optimality. Consider a system with control appearing linearly, e.g.,
Problem 2.2

x (1) = £, [x(0)] = b, [x()]u(e) 1=1,2,...,n (2.41)
u(t) is a scalar control function constrained in magnitude by the relation
0 <u(t) <1 for all t t ¢ [0,T] (2.42)

Drive the initial state x(0)=a to x(T)=b, while minimizing the functional

T
J(u] = Io £o[x(t)]dt (2.43)

The two dimensional problem will be considered before considering ex-
tensions of Green's Theorem to higher dimensions. The basis of the deve-
lopment is the transformation of line integrals into surface integrals.
Assume that the integral in (2.43) may be written as

b
Ilu) = Ja [P(x1 %) dx, + Qx,,%,) dx, ] (2.44)

This requires that dt can be expressed in terms of dx, and dx,.

Consider that the class of arcs being investigated is contained in a
region bounded by the closed curve e(xl,x2) = 0. The initial point
(xl(O),xz(O)) and the final point (xl(T), xz(T)) are on the boundary of
this domain. Figure 2.1 shows two possible paths, C and D. Note that

paths may have corners indicating a discontinuity in the derivative dx/dt.
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X\

Figure 2.1

Comparison of Trajectories

By comparing the value of the integral (2.44) along all admissible
paths, the extremal arc which will be a global minimum (or maximum) can

be determined. This is done as follows:

Designate path C by ICF and path D by IDF. Here I and F represent
initial and final points on the arc or trajectory. Then subtract the inte-

grals assocliated with these paths,

AJ = ! (Pdx, + Qdx;) - I (Pdx, + Qdx)) (2.45)
ICF IDF

This is equivalent to the closed contour integral
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AJ = ¢ (Pdx, + Qdx,) (2.46)
ICFDI

Green's Theorem is applicable if the functions P and Q and their partial
derivatives are continuous in the region o bounded by the two admissible
paths. Assuming that these conditions are met, Green's Theorem is used to

transform the line integral into a surface integral. Hence,

§ (deZ + del) = J I (—9 - -—)dX dX (2.47)
ICFDI X2

The integration along the trajectories proceeds counterclockwise. A
negative sign would be associated with the right hand side of the equa-

tion if the integration along the trajectories was clockwise.

The fundamental function, as defined by Miele [M2], is

9 P
w(x),x,) = -322- %, (2.48)

A study of this function in the admissible domain provides the necessary
information to evaluate the relative merits of all possible trajectories
between I and F. In general, the function w(x;,x,) will change sign in
the admissible domain. However, first consider the case where w is con-
stant over the entire domain. If w is positive over the entire domain,
then J >J . In fact, J

ICF IDF IGF

trajectory, hence is the maximum arc. Similarly JIDF < JICF if w is nega-

tive over the entire domain. If w is zero over the entire domain, then

is greater than any other admissible

the integrals are independent of path, and JIDF = JICF'

Now, considering the general case where w may change sign within
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the admissible domain. It is possible to have several subdomains in
which w 18 positive and several in which w is negative. 1In order to
find the trajectory from I to F, corresponding to the maximum or mini-

mum value J, proceed as follows referring to Figure 2.2:

X3

Xy

Figure 2.2

Determination of Optimal Trajectory

Starting at I, compare IAB versus IB. Since the domain encircled has

w > 0, and going CCW,I > J . Compare AB vs. ACB. The domain en-
IAB IB
circled has w > 0, hence | < J . Likewise I > J
AB /ACB IAD 1QD
similarly,

F
§——;
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Therefore J is the maximum integral and IADHMF is the corresponding
IADHMF
trajectory.

This procedure may be summarized as follows: To determine the tra-
jectory which makes the integral given by equation (2.44) a maximum,
start at the initial point I and proceed so that the subdomains w > 0 are
on the left and subdomains where w < 0 arc on the right. This means the
trajectories will be either on the boundary of the domain or on the arc
w = 0., The procedure for minimizing the integral is just the opposite.
Hence, the minimizing trajectory is IDAMHF. The singular arcs are those

where w = 0. The nonsingular arcs are those where e(x),x;) = 0.

When comparing trajectories using the above procedure, it is assumed
that the admissible control functions are able to generate the trajecto-
ries, including the singular arc w = 0. When constructing the domain
and its boundary e(x;,x;) = 0, it may not be obvious that the singular

arc w = 0 18 not admissible in certain cases.

E("ux:) s o

X¢

E(X..Xg) = 0

Figure 2.3

Permissible Domain of Operation
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The domain of operation is constructed by determining the inter-
section of two sets, S; and S,. The set S; is the set of points attainable
by admissible controls starting from the central point x3. S, is the
set attainable by admissible controls starting from the final point Xe
with time reversed, or equivalently, the set of points from which it is

possible to derive Ke using admissible controls. In this domain are

found all admissible trajectories.

If, arbitrarily, a trajectory w = 0 is drawn, it is not obvious
that this trajectory can be generated by an admissible control u(t). If
it can, then it is a possible candidate for a singular arc. For example,
consider the domain shown in Figure 2.4. This domain is associated with

the system

il = x; + X,u (2.49)
iz = x, + xu (2.50)
lu] =1 (2.51)
%2

Us ¢

Figure 2.4

Optimal Trajectory Not Along an w = 0 Arc
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The fundamental function w(x,,x,) associated with various perform-
ance criteria can have the form shown. An example is given in [H2]. As
is evident from this system, the permissible trajectories emanating from
any point in or on the boundary of the domain are confined to angles be-
tween -45° and +45°. Hence, when point A is reached, the trajectory con-
tinues downward instead of going along w = 0. If the slope of the 1line
w =0 is 1, we have the interesting case where the trajectory is now a-
long w = 0 and the problem is singular and still "bang-bang'. This is

because u = +1 along w = O.
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2.3.2 Determination of Reachable Regions

The Green Theorem Approach necessitates determining regions over
which control is possible. Two regions are of interest. The first is
the set of states that can be reached, given a class of functions U and
initial state x(t_ ) = x . The total set will be called the Reachable
set. Related to this set is the set of states that can be reached at
time T by use of admissible controls. This set was called the T-Reachable
set by Snow [S3]. It should be noted that both the Reachable set and the

T-Reachable set are independent of any performance criteria.

The second region of interest is the set of states for which there
is an admissible control in U that drives the state to a given final
state. This set of states will be called the Controllable Set. Related
to this set is the set of states for which there is an admissible con-
trol U that drives the state to a given final state in time T. This set
is defined as T-Controllable by Snow. The name controllable is related
to the concept of controllability, which states that a system is control-
lable if, given any two states, there i1s a control which will drive the

system from one state to the other in finite time.

In the application of the Green's Theorem Approach, only the chara-
cter of the Reachable Region and the Controllable Region need be known.
The intersection of the Reachable Set and the Controllable Set contain

all trajectories from the initial point to the final point.

A method of obtaining the Reachable Set was developed by Snow [S3].

His method is based on the solution of three Hamilton-Jacobi partial
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differential equations. The equations are solved by the method of
characteristics. The Reachable region is the region bounded by the
surfaces S(x,t) = S(xp,ty) where S(x,t) represents the solutions of

the Hamilton-Jacobi equations.

The method used here will be based on several theorems developed
by Hermes and Haynes [H3]. The theorems are directly applicable to

Problem 3.2 which will be considered later.

The system to be considered is two dimensional with the control
function appearing linearly.

*1 = fl(xl,xz) + bl(xl,xz)u xl(O) = Xjq (2.52)

o

x2 = fz(xl,xz) + bz(xl,xz)u x2(0) = X, (2.53)
The control functional u is a scalar and is in the set of admissible

control functions, U.

Uz fuzfu(e)] 1, te [0,0]} (2.54)

In the development, the solution of equations (2.52) and (2.53)
<
when a constant control u(t) = a, -1 Za s 1, is applied is designated

a
as ¢ .

It is assumed that fl, f2, bl’ and b2 are once continously differ-

entiable in an open, simply connected set D R?. The initial point

X, and the final point xf are always considered to be in D.
The Reachable Set (set of points which can be attained from xo) is
defined as

2
R(xo) = {xeR:x= ¢u(t,xo), u e U} (2.55)
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The Controllable Set, (set of points from which xf can be attained in a
finite time), is defined as

R("f) : (x€eR : xa=¢Y (-t,x), ue U) (2.56)
The relationship between the T-Controllable Region for a given system
and the T-Reachable Region for the system with time reversed is deve-
loped by Snow [S3], who shows that if the system is described by n first
order equations, the T-Reachable Region for the forward time equation is
precisely the same as the (T-t;) Controllable Region for the reversed
time system. This is not true in general for a system described by a

h

single ntP-order differential equation.

If a solution to the Optimal Control problem exists the trajectory

connecting x, to Xg must lie in R(xo)[\R(xf).

The following lemmas due to Hermes and liaynes [H3] are the basis
for the theorem giving sufficient conditions so that the trajectories
ot (5 x0)y ¢71(-,x0), ¢1(*x)), and ¢7 (“,x.) determine and bound

R(xo) N R(xy).

The following definitions are used in the theorems and lemmas.
a(y) = by (¥) £f1 (¥) + b1 (¥) £.(y) yeD (2.57)
e(u;y) is the angle traced out by the ray ¢ (o,y) as o varies
continuously from -1 to a.
The vector € is8 defined as,
£,(07) +b (Vo

£,(y) = by(¥)a (2.58)

e(o,y) =

The possible directions which solution trajectories can assume at a

point y in the two-dimensional space are given by the vector e(o,y).
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Lemma 2.1

If A (y) # 0, the set { ¢ (a,y) : |a|<|} of possible directions is

bounded by e(-1,y) and e(1,y) with 0<|e(l,y)|<I.

This lemma implies that the set of possible trajectory directions

at X, are confined to an angle of less than or equal to [.

The next lemma shows that if the angle 6(1,¢1(t,x0)) is observed

as t increases from zero, the condition A(¢!(t,x )) # O will not change.

Similarly A(¢'1(t,x0) ¥ 0 implies that the sign of ¢(l,¢‘1(t,x0))
will not change. As expected, all trajectories are confined to a region

bounded by ¢1(-,x0) and ¢'l(°,x0).
Lemma 2.2

Let y(0), 0, <0 <o be a continuous curve in D along which

f,
A(y(o)) # 0; then signum 6(1l, y(o)) is invariant along the curve. Thus

0

all possible trajectories are bounded by ¢l(',x0) and ¢"1(-,x0) and are

contained in an angle less than or equal to .
Similar statements can be made about xf.

In order to insure the existence of solutions to (2.52), (2.53),

and (2.54) joining x, to x_, the following conditions are imposed.

f’
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Condition 2.1 Either F(xo) or F(xf) properly separates D, where

r(xf)

and there exist tl, tz’ t

1)

ii)

iid)

mn

The trajectory arcs ¢l(t,x0), 0<t<t

{¢1(t,xo): t € T(l,xo)}tj{¢'1(t,x0): t e T(-l,xo), t>0}
{¢‘1(-t,xf): t e T(l,xf)}Lj{¢'1(-:,xf); t e T(-1,x.), >0}

3 t“ > 0 such that

1 = g—1(-
¢ (tl’xo) ¢ ( tz,xf)

¢-l(t1sx0) - ¢l(-tu’xf)

1?

o7 (t,xp), 0 <t <t ¢l(-t,xf), 0 <t<ty;

$71(-t,x), 0 <t < t,, all lie in D

2

iv) A(x) ¥ 0 in the set F(xo) or F(xf) which properly

separates D

Theorem 2.1 If a problem satisfies Condition 2.1 and A(y) # O for

ye S, then S = R(xo)[]_R(xf)

Summarizing, Theorem 2.1, provides a rigorous basis for the de-

termination of the region containing all the admissible trajectories.

It also shows that this region is bounded by trajectories resulting

from application of "bang-bang'" control signals.
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2.4 The Second Variation Approach

This section will present equations for minimality of singular arcs
over a finite time interval. Special control variations are used to ob-
tain a second variation test for singular arcs. The approach is based

on the work of Kopp,Kelly, and Moyer [K2], [K3].

Consider the system of differential equations and boundary conditions

xi - fi(xi,o..,xn,u,,...,Ur,t;) 1 = 1,2,..9,“ (2.59)
xi(to) - xio i=1,...,n (2.60)
xi(T) ol i=1,...,m(m < n) (2.61)

The cost functional to be minimized will be formulated in the Mayer
form of the calculus of variation, i.e., minimize
I, (Dsex (D, T (2.62)
Although the minimization is also subject to constraints on the controls,
i.e., |u|§_1, these constraints will present no difficulty since the
control corresponding to a singular arc is usually interior to the bound-

ary of U.

Therefore, in the development that follows, u will be considered to

be in the interior of the class of admissible controls U.
The Hamiltonian is defined as

n
H= ) pf (2.63)

Introduce the auxiliary vector pi(t). This turns out to be the ad-
joint or costate vector and is defined by the following differential

equations and boundary conditions,



) n  of 3H
- = .- 1 = eo o .
P1 jzi P11 3%y 1,...,n (2.64)
9J
p,(D) =
¥if i=mHl,...,n (2.65)

Necessary conditions for P to be a minimum are that the Hamiltonian
be a minimum for all admissible controls, v
* * * *

H(u1 + Aul,...,ur + Aur) > H(ul seeesl ) (2.66)

Asterix denotes the optimal controls.

Singular subarcs occur when the matrix Huu’ with typical element
oH
g o

1

Emphasis will be on the case in which a single variable appears

» 18 singular over a finite interval of time.

linearly in the system equation as in the vehicle braking problem.

The total variation in the cost functional J[u] due to a variation

in the vector u is

n n n 32J(xf+eAxf)
AJ = Z A ax,  + % )

if 0 9
immtl OXif i=mtl  Jembl Xy OXg

Ax1f Ax b

(2.67)

where 0 < 6 < 1.
Consider the case where the end points are fixed. Then, due to a
*
change Au away from the optimal u,

[ 3 * *
ak, = fi(x*+Ax,u *u,t) - £GNuh0 1l (2.68)

Axi(to) =0 i=1,...,n (2.69)

Axi(tf) =0 i=1,...yn (2.70)
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Consider the equation

n . n * * LI
= <+ - .
121 P A%, 121 p,Lf, (x +x,u +8u,0) - £,(x ,u ,0)] (2.71)

Using the Hamiltonian in equation (2.71),

n . * * * &
I pyAk; = H(x +ix,u +Au,t) - H(x ,u ,t) (2.72)
i=]1

Now consider

— Ax, = pP.Ox, + P.Ax (2.73)
dt 121 P1°%4 121 17%4 121 17%4

Multiplying through by dt and integrating,

e e [ ] oty §
P, Ax - J [ p.AX, + p,.Ax. ] dt (2.74)
=1 11 =1 1 4 14

0 t

Due to the boundary conditions

a t n * * %* *
. I £ { Y p [f (x +ax,u +0u,t) - £ (x ,u ,t)]
{=mt+] OKif t, 1=0 11 1
0 3H k&
-y — (x,u,t)ix } dt (2.75)
- 3x i
=1 %

Using Taylor's expansion, and substituting the Hamiltenian,

n t n
J x * 3H *
ai bxy e = f £ ouep,x",u™ou,0) + 7 Z—(p,x ’u*+Au’t)Ax1
1emt] if to i=] 9¥4
n n 321'1 * *
+ X% Z Z TRT (p,x ,+64x,u +Au,t) Axiij
1=1 $=1 °%1°%y
® ] n 3“ ® *
- H(p,x »u :t) - Z S—(p,x s U ,t)Axi] dt
1=1 M4 (2.76)
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Substituting (2.76) into (2.67) the total variation due to a variation

in control vector u is as follows:

' x * ® %
t_ [H(x ,u +Au,t) - H(x ,u ,t)] dt
AJ = f £

to

t
® *x x *
+ J £RE oo u* ue) - ot o)l de
to ax1 axi i

n n 2

9<H * *
+ I Z Z Pera—— (p,x +6Ax,u +Au.t)AxiAx dt
i=] jm=1 9%43%y 3

n n 32J(x _+64x )
+% X ) £ £ ax ax
4=1 1=l Ixq£Ix4¢ if 3t (2.77)

At this point, assume that the control U appears linearly in the system
equation (2.59). The control will then also appear linearly in the
Hamiltonian. When the first integral of (2.77) is expanded using the

2
Taylor expansion, the a8 term will vanish because the Hamiltonian is

du?
linear in u.

Hence, minimality cannot be established. Therefore, to obtain ad-
ditional necessary conditions, further inspection of the second order
terms is required. The classical derivation of the Legendre necessary
condition was obtained by employing a special derivation in conjunction

with the second variation [Gl]. The second variation for the present

case is obtained from Kelley. Letting Au = KSx, the second variation is
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2,.

t
2K * *
AT, = K2 £ (x ,u ,t) 6x,8u dt +
to axiau 1

t
k2 f E n 3H
3X X

x %
(x ,u ,t) A&x, Ax dt +
1°9%4 ]

i

2 n n *
K I z ): aJ(x*, t) 6% 6x
J=1 i=1 3x1f 3xjf if jf

The first and second control variations used by Kelly, Kopp, and

Moyer are shown in Figure 2.5.

-h‘
tt (a)
- T T ——
41
o I (b
J o —-’C’
-1
Figure 2.5

a) First special control variation b) Second control variation

The first special control variation is designated as ¢,'(t,T).

(2.78)

The

time t=0 is the center of an interval 2t, and may occur at any interior

point of the singular subarc. The parameter T will approach zero in the

limit.
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In minimizing J,, the constraint equations are

n afi(X,u,t) of (x:u’t)
6xi - 2 Y 6xj + 1 5 Su
j=1 b u (2.79)
Gxi(to) =0 i=l,...,n (2.80)
éxi(tf) =0 i=1,...,m (2.81)
Letting
3f; a2y
4,17 38 Top au
’ N (2.82)
§ Bfi
A - — A - A (2.83)
i,2 =1 8xJ 31 i,1
or
n 2
9°H
A = — A - A 2.84
102 45 apgaxy 3»1 - Tl (2.84)

the necessary condition obtained by Kelly, Kopp, and Moyer for the sin-

gular arc to be minimizing is

. n n 2 n n 2
324 3°H 32H
% Hd [} =——a, )+ ] A -% ) ) ——aA 1A4.1<0
ey dudxy 12Tyl duaxg T2 T D) 0 axgdx LTS
(2.85)
An equivalent and more compact form is due to Robbins [R1]

3 ,d®> 3

b (Ezz T ) <0 (2.86)

The equality part of the sign in the conditions (2.85) and (2.86) means
that the conditions are met marginally and the nature of the extremal is
still undetermined. Hence, it is necessary to proceed to the second
special variation, and so on. Using the Robbins form, the second special

variation leads to

2 ,d* _om 2.87)
au - det -3% ) 20 (
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The general form of the necessary condition is

35 20 (2.88)

where k is a positive integer.



CHAPTER I1III TIME OPTIMAL SINGULAR CONTROL

3.1 Maximum Principle Approach

The problem to be considered is a time optimal problem where it is

desired to drive x;, to 0O in minimum time. Consider the system equations

of Problem 3.1.

Singular Bang-Bang Time Optimal Control Problem

x(t) = fI[xl(t), xz(t)] + blu xl(O) =X, (3.1)
x,(8) = £ [x (£), x,(D] +b_u x,(0) = x,. (3.2)
b, and b, are constant and u is a scalar
This is the Mayer form H[6], if we minimize x((T) where
xo(t) =1 x0(0) = 0 (3.3)
The control will be constrained to
0<uc<l (3.4)
Again dropping the arguments for notational convenience, the
Hamiltonian is
He=py+pf; +pbu+ pzfz + p2b2u (3.5)
The costate equations are
po = Q (3.6)
—. = -——— + 307
gt pl ax1 P2 ax) ( )
, of, of,
-p. = — — .
P, = Py I P2 = (3.8)
1 2
Minimizing H with respect to u yields
oH
-a—u-- plbl + p2b2 = ( (NC1) (3.9)

34
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Again, since we are interested in singular arcs, u is assumed to
be in the interior of its allowed region and 3H/3u is assumed to exist.
Since H = 0, and P, = 1, (This is permissible since p, functions only

as a scale factor).

1+ pf) +p,f, =0 (NC2)  (3.10)

Differentiating (3.9)

ilbl + ﬁzbz =0 (NC3) (3.11)
b. ( , o2y b o0, 2f2y L (3.12)
1 (Py ;;: P2 -3;; 2(P, 3;; P2 "o, .

Differentiating (3.10)

afl . afl . . afz 3 afz . .
p,( st o, X,) + £1p+ p,(— x; + i x,) + £,p, =0
. . (3.13)
Replacing x and p,
af, of of | of,
—_ + —_ + - — —) +
g, +b L2 b oh af2) 0
—_— + + — + - — +p, —) =
leaxl (f, 1v) T (f2 + b2uw)] - f2(p) . P2 3%s
(3.14)

From (3.11) the coefficient of u is zero while the remaining

terms cancel out. Hence (3.11) is the third necessary condition.

pl(bl — b2 —_—) + P, (b1 —_— b2 —_) =0 (NC4) (3.15)
axl 3x2 9x, ax,

This necessary condition appears as row 3 of equation(2.39), i.e.,

- - 3.16
Pa;, *Pa,"0 (a)p = 0) (3.16)

where of) ofy 17
ay, -bl 5;:+b2 gx—z' (3.17)
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of, of
Bxl sz

Differentiation of this equation will yield additional information.

a +pa +pa +pa =0 3.19
P 11 p1 11 p2 12 pz 12 ( )
. 32f 32f 22f %

a, = bl( x, + X, + b2( x, + xz)

3x12 9x93x, IX,9x%, 8x22 (3.20)
. 92f, 392f, 9%f a2f,

- PR ——— + +
(3.21)
. ?a2f, ?2f, 02f, 902f,
a = (b +b Y(£, + b,u) + (b + b Y(f, + b_u)
12 1 2 2 1 1 1 2. 2 2
axl axzaxl 3x13x1 ax2

Substituting in (3.19) the following result is obtained,
2 2 2 3f, of 32f 32f
i
I I C-bypy &1y bjfk--—i + ubjb ——=) = 0
i=0 j=0 k=0 axj Xy xkaxJ X} 9%
(3.23)

In the-general case the upper summation limit would be n.

It is possible to solve this equation for the control u. To be
more specific consider the determination of the singular arc for,

Problem 3.2 Singular Bang-Bang Time Optimal Control

X = £ x,(0) = x)9 (3.24)

iz = f, +b,u x,(0) = %9 b,= constant (3.25)

X0 = 1 x,(0) =0 (3.26)
Since b; = 0,

NC1l implies P, = 0 on the singular.

NC3 implies p, =0
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NC2 implies p,f, = -1
afl
NC4 implies P -3-;; = Q
of,
This implies that p, = 0 or S-_ = (0
X

The condition P = 0 would contradict NC2 which requires that H = 0
of
1
on the optimal trajectory. Hence NC4 implies that 3;; = 0.

Substituting necessary conditions in (3.19) rather than the more formid-
able (3.23),

92f, , 92f,
+ (f, + byou)

X 3xX X 2
a231 a2

on the singular arc. The optimal control is synthesized as

32fl 32f)
+
flaxzaxl fzax 2

u= - (3.28)
32fl

b
2 2
sz

For a practical case to be considered later, it will be convenient to

consider
afl x2 Bfl (3 29)
Bxl xl sz

and
of x, of
2._.2_2 (3.30)
axl X, 3x2

This modified version of Problem 3.2 shall be designated as Problem 3.2M.

Differentiating with respect to x, and taking advantage of the neces-
of
sary condition —— = 0 on the singular arc,

ox
22, 2 x, 32f,
Qxlaxz x, szz
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Substituting this in (3.28) gives the optimal control function for this
case as
X2
u=(—f, - fz)/b2 (3.32)
X1

This control function can be shown to be a constant. Differentiate (3.32)

with respect to time.

du  x, af of, £
dt x; 9x, 9%, X,
3f2 8f2
[—f), + —(f, + b,w)] (3.33)
3x1 sz
of
From (3.29) and the necessary condition — = 0, and assuming x , # O,
Ix
2
du f X of of X
1 2 2 2 2
by— = -Z(xl. —f, - xzfl) -(—f, +— . —£f)) (3.34)
dt  x,; X, Bxl 3x2 X,
Finally using (3.30)
du
— = () b2 * 0 (3035)
dt

Therefore the singular control for this problem is a constant.

3.1.2 Closed Loop System Control

The problem of determining the optimal control as a function of the
state of the system is called the closed loop problem. On the singular
arc, (3.32) provides this information for the modified problem 3.2M,
Equation (3.28) would be required for Problem 3.2. A block diagram for
Problem 3.2M will be shown. As (3.28) indicates, three additional func-

tion generators would be required to implement Problem 3.2.
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Figure 3.1

Closed Loop System On Singular Arc

When operating on a nonsingular arc, the control as given by (2.19)
and applied to Problem 3.2M is,
*
u (t) = - sgn b,p,(t) (3.36)

The costate equations for Problem 3.1M are

=0 (3.37)
. of of,
iR W 4 W +p, — (3.38)
9xX] Bxl
. Bfl 3f2
P, *P - +p - (3.39)

1 2
ax2 ax2
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The costate equations require four function generators for Problem 3.1.
In Problem 3.1M,

since,
of X of X
P, = — (p, =)+ (p, ) (3.40)
sz xl sz X
. afl sz
X

2 Ix,

(3.41)
The block diagram which applies for Problem 3.1M when operating on the
nonsingular arc is then given by Figure 3.2,

Xa
X Y
PP il S - FVITHENS
&d Generator —
]
[
Multrplier
ol
P
-R ¥ P,
[ht«,mbr'—- -I-P' Inteqrator—
* .
%
Muitipher
¥ ‘ P2
. Cuncbion - Mulbool
leeneratedn viEspher
M n
%
Figure 3.2

Portion of Closed Loop System on Nonsingular Arc
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The complete closed loop system which functions on the complete
trajectory requires a decision element to switch u to either the singu-

lar control u or the nonsingular control u .

Rl - U
i | Logic u

U SWIcH
—_—

The decision element must operate according to the logic demanded by the
necessary conditions. If the system is on a nonsingular arc, then it
shold transfer to the singular arc.

u=u, 1ifp, =0 1p, =0 (3.42)

u=u. otherwise (3.43)

3.2.1 Green's Theorem Approach

Determination of singular and nonsingular arcs associated with the

time optimal problem is considered. The system constraints are:

x; = £,(x,x,)) +bu (3.44)
x, = fZ(xl’xz) + b2u (3.45)
0 <u(e) <1 0 <t<T (3.46)

Since the functional to be minimized is,
T
J[u] = I dt (3.47)
it will be neceasarg to put this in the form of equation (2.44).
Since the procedure basically eliminates u(t) from the equationms,
it is only necessary to find a vector orthogonal to the column vector

T
b = [b, bZ]T. In this case, we may use [-b, b;] as the orthogonal col-

umn vector.
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Multiplying through by [-b, b,] and solving for dt, equation
(3.47) becomes

X} »X;  bjdx, = bydx,

J = (3.48)
Lul Jx < bifz = bofy
10°%20

The fundamental function w(xl,xz) is
9 bz 3 b,

- - (— 4
3% B s b ) T TR bifs - BoE1 ) (3.49)

w(x),xy) =

af2 Bfl af2 3fl
bz(blg—‘ - by —) + bl(bl —5- - b2 —_)
x2 X, X, Bxl

m(xl,xz) (3.50)

2

Since w(xl,xz) = 0 is of primary interest, we obtain the condition on the

singular arc as,

of, , 2 , 26 of
blbzm-bz 3—)(2+b1 m-blbzm-o

(3.51)
(b,f, - byf)) #0

In Problem 3.2, b1 = (O, therefore a necessary condition for singular
arc is
of
RIS =0 (3.52)
This same result was also obtained by the Maximum Principle approach.
The necessary conditions involving the costate variables will not appear,
since they are not present in the Green Theorem approach. A comparison of

the necessary conditions for Problem 3.1 using both approaches is shown

as follows:



43

Necessary condition for singular arcs for Problem 3.1

Maximum Principle Approach

NC1 plbl + p2b2 =0
NC2 1+ plfl + pzf =0

2

NC3  Pyb, + b, = 0

af If af, af,

NC4 p(b, — +b —) +p (b —=+b —2) =0
3 2, 21, 2 5
xl x2 xl x2

Necessary condition for singular arcs for Problem 3.1

Green's Theorem Approach

of, 3f, 3f, 3f

NC1 bb =— b2 —=—+b2 S cwbb =—=0
12 o 2 5 I ox 12 o4
2 2 1 1

It is evident that NCl of the Green's Theorem Approach is obtainable by
eliminating the costate variables from NCl1 and NC4 for the Maximum
Principle Approach. Hence the necessary conditions of the Maximum
Principle Approach imply the necessary condition of the Green Theorem

Approach.

3.2.2 Problem 3.3 Singular Pang-Pang Time Optimal Control

The previous problems involved controls that were bounded. In the
next case the control signal will be rate limited in addition to being
magnitude limited. Consider the following system equations,

i](t) - fl(xx’xz) (3.53)

x,(t) = £,(x,,x) + 8,u, 0 < ful <

A
-

(3.54)

x,(t) == v la] <1 (3.55)
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By letting u = X3, the order of the state equations has been in-
creased to three. Also x3 may now be a bounded state variable. These
complications are compensated for by having a control signal which is
only magnitude limited. In a practical case to be considered later
there is only rate limiting. This will be designated in Problem 3.3M
and will be considered using both the Maximum Principle Approach and

the Green Theorem Approach.

Since the general expression is long, the necessary conditions
for singular control will be obtained by going to the basic equations
directly. The process will be as before; to repeatedly differentiate

until no further information is obtainable.

For the time optimal program we again introduce
io =] x,(0) = 0 (3.56)
The Hamiltonian is, again letting Py = 1,
H=1+pf, +p,f, + P28,x, + P,V (3.57)
For the nonsingular trajectories, v = -sgn P, minimizes H. For the sin-
gular case, we obtain the first necessary condition
P; =0 (NC1) (3.58)

If we write the costate equations,

130 =0 po =1 (3.59)
afl sz

“p =mp —+p — (3.60)
1 1 Bxl 2 axl
. Bfl of
2 1 3x 2 3x
2 2

P =P8 (3.62)

3 2 2
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Necessary condition, Py = 0 on the singular arc, implies §3 = 0, or
equivalently,

p, =0, g, + 0 (NC2) (3.63)
This in turn implies, 62 = 0. Therefore, from equation (3.61),

of,

p = =0 (NC3) (3.64)
1 3x
2

Using equation (3.57L p, = 0 and P = 0, we have on the singular arc,

H=1+ plf1 (3.65)

Since H = 0 on the optimal trajectory,
1

Pt - (NC4) (3.66)
1
Assuming p ¥ 0, necessary condition 3 becomes
af
-— = (NC3) (3.67)
8x2

This was expected since the projection of the singular arc in the X=X,

plane for this problem should be the same as Problem 3.2.

The value of the control function u on the singular arc is to be
determined next.
Differentiating equation (3.65), with respect to time,
P (ifl x + 3fli )+ pf =0 (3.68)
1 1 2 11

9x oxX
1 2

Substituting for x_, and iz and ﬁl,

1
of, of, of| of of,
P (——ef + wnmf + wmmg u) =~ (fpe=——+ fp =) =0 (3.69)
1 ax x 2 ax 2 1 1y 1 25%
1 2 2 1 1

Using equation (3.71) and (3.63), 0=0.
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Thus, no new information was obtained by that approach. Differentiate
equation (3.67) with respect to time.

92f, 92f,
x, =0 (3.70)

X, +
2
axlaxz Ix,

Substituting for il and iz’

a2f, 3%f
£+ (f +gu =0 (3.71)

3ax, 9%, 1 ax22 2

This equation may be solved for u,

92f, 92f,
£+ £
x3ax ! x 2 2
1 2 2
u-—
92f, (3.72)
25 2

2

The control signal u (t) for both the singular "bang-bang' case and the
singular "pang-pang'" control are identical on the singular arc. Assume
that u(t) = x3(t) is in the interior of its allowed region, U. Hence,
there is no magnitude limiting of u(t). Equivalently, the state vari-

able x3 18 not bounded.

3.2.3 N-Dimensional Singular Control Problems

In the case of Problems where the dimension of the state space 1is
greater than two, the Green's Theorem Approach must be extended. The ex-
tension of Green's Theorem from two to three dimensions is the traditional
Stoke's Theorem. The generalization to higher dimensions is designated

as both the generalized Green's Theorem [H1] and the generalized Stoke's

Theorem. . The developments are via exterior calculus and differential
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forms. A brief treatment of differential forms is given in Appendix III.

Consider the differential constraint equation,

. r
xi(t) = fi(x) + jZlbij(x)uj(c) i=1,2,...,n (3.73)
J <n-1
or,
x(t) = £(x) + B(x)u(t) (3.74)

In order to transtorm equation (3.73) into the proper form for
application of Green's Theorem, it is necessary to eliminate the uj(t).
Since j < n-1, an n-dimensional vector, ¥(x), orthogonal to the columns
of B can be found. Hence the inner product

(Y(x),x(t)) = (¥(x),£(x)) (3.75)
since

(Y(x),B(x)) =0 (3.76)

Equation (3.75) permits the determination of dt in the functional

J(u], where
t
Jlu] = I £ fode (3.77)
%
Hence,
I Y (y(x),dx)
J[ul [: £, ORIC (3.78)
0
In the notation and nomenclature forms, equation (3.77) may be written as
J[u] = [ n (3.79)
r

where, m is the pfaffian or one-form

n
=) a (x)dx, (3.80)

n= f M
O (Y(x),f(x))
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The generalized Green's Theorem is (see Appendix III)
I dn = I L (3.81)
8 r
As in the two dimensional form of Green's Theorem, I' is a curve from
X, and xf and 8 is a surface containing the points x; and xf. The term

dr is called the exterior derivative of 7 and is the differential two-form

defined as,

dn = 12; g% dx ,Adx (3.82)
1,3=1 3

The exterior multiplication sign A is often omitted. An alternate

useful form may be obtained by using the rules from differential form

theory.
dxi A dx:l = -dxj A dxi (3.83)
and
dxi A dxi = 0 (3.84)
then
d" - wijuidxj i.lgoot’n-l j=(i+1),...,n (3085)
where
doa da
oy -—d._ (3.86)
axj Bxi

In a 3-dimensional case, the exterior derivative given by (3.80) would

be written as

dm = w),dx,dx, + wladxldx3 + w23dx2dx3 (3.87)
and
3&1 302
9%, 90X,
301 303
W) 45 B —— - —— (3.89)
9x 9x

3 1
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8u2 3a3
-— - — (3.90)
3x3 3x2

These will be useful in the 3-dimensional case to be considered later.

The procedure for applying Green's Theorem to n-dimensional may be

summarized as follows:

3.3

1)

2)

3)

Convert the functional to be minimized to the line integral
form by equation (3.79).

Use equation (3.86) and Wy = 0 to determine singular hypersur-

3

faces. There are no more than (n-1) independent hypersurfaces.
The intersection of hypersurfaces, if it exists, is a singular arc.
Compare trajectories by using the generalized Green's Theorem

as given by equation (3.81). The possibilities of singular arcs

must be investigated.

The Second Variation Approach

The necessary condition of Kelly, Kopp, and Moyer will be applied in

Problem 3.1, the singular "bang-bang" time optimal control problem.

Using equations (2.82), (2.83) and (2.84)

Ay,

A

2%1

- a = b, (3.91)

® —— =), (3.92)

Apsg = 5=Aps ¥ Ay - Ay (3.93)

(3.94)

Simplifying equations (3.92) and (3.93)
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afl af,

Al’z = b)— + by— (3.95)
90X, 8x2
of, of,

Aysy = by— = b,— (3.96)
ox ax

1

The necessary condition for minimality is, using equation (2.85)

3%H , 32H 32y
_— —_— _— 2
2A1’1 + (A o1 Brop * A0 A1) + 2A2’1 20 (3.97)
ox) ax, 0%, 9%,

Substituting equations (3.95) and (3.96)

32H 32H 32H
blz— + 2b.b + b 2 >0 (3.98)
2 172 3 2 9x.2 -
axl 9X) x, X,
The Hamiltonian for Problem 3.1 was
H=1+ plfl + plblu + p2f2 + pzbzu (3.99)

Substituting partial derivatives of H into equation (3.98)

a2f, 92f, 92f, 321,
b,%(p, +p, ) + 2b,b,(p, + p, ) +
ox, 2 9x, 2 9x, 9%, ax, 3%,
aZfl a2f2
by2(p) + pp—=) 20
9x,2 9x,2 (3.100)

This is one form of the necessary condition for minimality along the

singular arc. Using the alternate form,

3 d° 3H
—(—y — .101
3u(dt au) =0 3 )
since
d
S = pyby +p,b, (3.102)

The first necessary condition is obtained from equation (3.102) and
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plbl + p2b2 =0 (3.103)
and
' d?p d?p
a? 3H, . 1 2
;l—ti(a—a) bl—dt—z + bz_(;t_z (3.104)

then substituting expressions for 61 and 52'

42 4 fy of, d 3f, af,
__.( ) = - bl—-(pl— + pz———) -b —-(pl—- + pz—) (3.105)
dt2 3y dt 3x 3x, 2at lox, 9%y
we obtain
3 d2 oH ? 9%f, 3%f)
— —(—)=— -bp [ —(f + buw + (f, + b ul -
du de?2 du du axlz Bxlaxz
92f, 32f,
bpl (f +bu + (f +bu] -
1 2 axlz 1 1 ax13x2 2 2
92f, 3%,
bpl (f +bu) + (p +bul -
21 axyox, ! 1 axp2 2 2
32f 92f
b,p, [ (f. + b u) + (f 4+ b u)l
2P2
ax,9x, | ! ax,2 2 2 (3.106)

After taking the partial derivative with respect to u, and using equation
9 2 3H
(3.101), equation (3.100) is obtained. Although the form —( dd2 =
Jdu t u
is quite compact it nevertheless involves quite a few manipulations. If

as indicated previously, the equality applies, it is then necessary to

proceed further using equation (2.25).

Using the somewhat simpler Problem 3.2, the necessary condition for

minimality along the singular arc is obtained by substituting b, = 0 in
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equation (3.99) and (3.103), then

p, - 0 NCl (3.107)
32f,

p — 0 NC2 (3.108)
lax2

2
Using H = 0, equation (26) gives

p =-% NC3 (3.109)
1 f
1
Hence, NC2 can be written as
a?-fl
= —c<0 NC2' (3.110)

2
fl 3x2



CHAPTER 1V OPTIMAL CONTROL OF THE VEHICULAR BRAKING PROCESS

4.1 Introduction

The vehicular braking process to be considered first will consist
of a single wheel carrying a body on a flat horizontal surface.

Figure 4.1 and 4.2 show the model used and the pertinent parameters.

Figure 4.1

Model of One-Wheel System

Figure 4.2

Force and Torque Diagrams
53
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The symbols in the figures are defined as follows:

Fb braking force developed at the tire-surface interface

Fe external force on the vehicle

Ft reaction force between the body and axle

g acceleration due to gravity

J Polar mass moment of inertia of the wheel and associated

rotating members

M mass of the vehicle

N normal force at the tire-surface interface

R rolling radius of the wheel

Ty torque exerted on the wheel by the brake

Tr rolling resistance and bearing friction torque
v vehicle velocity

u coefficient of friction

n slip

;) angular velocity of wheel

As the vehicle moves with velocity v, the wheel runs under slip
as it transmits driving, braking, or cornering forces to the surface.
Slip is defined as the ratio of effective slip velocity in a specified
direction to the forward ground speed of the vehicle. Since braking
will be the main concern, slip during braking is defined as

n-i‘l}g— and 0 < n <1 (4.1)

The so-called "panic stop" usually results in a slip of 1.0, corre-
sponding to zero wheel velocity. The braking force F, developed at the

tire surface interface is due to the friction coefficient y and is
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defined as
Fb = uN (4.2)
where N is the normal force at the tire-surface interface.
Investigators in the area of tire friction [K13] [N6], have found
that the friction characteristic depends on factors such as vehicle
velocity, normal load, tire tread pattern, tire inflation pressure,

tire temperature, and surface composition. The friction-slip model

used in this study is shown in figure 4.3

'8 SLIP -7 10

Figure 4.3

Model of Friction-Slip Characteristic

The selection of this model is based on investigations [F6], [K1l4],
which show that regardless of surface composition, the friction coeffi-
cient u, usually has a peak value and this peak value occurs when the

slip is in a range about the 0.15 point.
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The optimal control for the one wheel model will use minimum time
as the optimum criterion. As will be shown in section 4.3.3 this control
will also minimize stopping distance. Optimal control theory will show
that the control should bring the state of the system to the peak of
friction-slip curve and then keep it there. It should be noted that due
to the low value of slip, the wheel velocity will be an appreciable
fraction of the vehicle velocity. This will also benefit more complex
models such as two wheel and four wheel models which are concerned with
lateral stability. When one tire of the vehicle is subjected to a differ-
ent friction characteristic than the opposite tire, a torque tending to
rotate or spin the vehicle is developed. When the wheels of the vehicle
are rotating, the tendency to spin is reduced and the vehicle has more

lateral stability. This problem will be considered in more detail later.

4.2 Development of the System Equations

The differential constraint equations for the optimal control problem
are obtained by referring to Figure 4.2.

The normal force N is obtained from the summation of the vertical

forces,
N = Mg (4.3)
The horizontal forces are summed, obtaining,
F, + M dv 4

The external force Fe is neglible with respect to the braking

force. Then using the relation (4.2), equation (4.4) becomes.

dv

M I -uMg (4.5)



57

or
v = -ug (4.6)
Now considering the torques associated with the wheel,
de
FbR -T,-T, = J I (4.7)
Here the rolling resistance and bearing friction torque are
assumed negligible with respect to the brake torque. To make the
units of wheel velocity the same as the units of vehicle velocity
equation (4.72 is written as
de 2
R 97 = (uMgR -RKP, ) /J (4.8)
In the above equation F is replaced by uMg and brake torque is
assumed to be linearly related to brake pressure Pb, i.e.,
Ty = KPy (4.9)
Typical values for an equivalent one wheel model are
R=1.1 ft.
Mg = 5000 1bs.
J=5.0 ft—lbs/sec.2
K=6.0 ft-1bs/p.s.1.
Letting X, =v (4.10)
x, = RO (4.11)
Here the first state vector corresponds to vehicle velocities
and the second state vector corresponds to wheel velocity. The dif-
ferential constraint equation then becomes
X} = -32u (4.12)

*2 = 1210y - 1.32Pb (4.13)
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Constraining the brake pressure to 0 < Pb < 1200 psi and intro-

ducing the control u, 0 < u < 1 equation (4.12) becomes

x, = 1210u - 1584u (4.14)

2
The friction coefficient u is a function of x; and X, which will

be designated state variables.
B o= u(x),x,) (4.15)
As indicated previously, the friction-slip characteristic has the

general shape as shown in Figure 4.3.

This shape will be generated by
-a(l-lexl) - e'b(l"Xz/Xl) ]

H(X),X,) = u, le (4.16)
Recall that the slip is given by
n=1-x,/x (4.17)

The factor M will take into account the surface-tire interface.
For example, uo = ] will correspond an interface having the highest
friction coefficient such as concrete, while a low friction surface such
as ice may have a value of uo = ,06. This function will have a peak of

approximately 0.947 u, at a slip of 0.2 when a = 0.225 and b = 23.5.

These are values that are used in most of the later computations.

4.3.1 Optimization of the One-Wheel Vehicular Braking Control Model

The problem to be considered is the time optimal regular problem,
i.e., take the vehicle from an initial state to the origin in minimum
time, subject to the constraints

x1= =321 (x;,X,) x,(0) = 60. (4.18)
xp= 1210y (x,,x,)-1584u x,(0) = 60. (4.19)

0<ucx<l (4.20)
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The function u(xl,xz) is given by equation (4.15) with pygy + 1,
a= ,225, and b = 23.5. This problem when stated in real physical terms
is: Find the control pressure P(t), constrained to be between zero and
1200 psi, which will stop a given vehicle initially travelling at 60 ft/sec
(approximately 40 MPH) in minimum time. It should be noted that there is
no limitation on pressure rate in this case. This problem will be label-

ed Problem 4.1 and will be called the singular "bang-bang" control problem.

This problem fits the format of Problem 3.2, where

£,= =32y (xl,xz) (4.21)
£, 12104 (x,,%,) (4.22)

- - - - (4.23)
e a(l x2/x1)-e b(1 lexl)

Any of the methods in Chapter III provide the necessary condition for
a singular arc
(4.24)

Q
=
)
o

Q)
td
N

or,

-a(l—xz/xl)- —b(l—lexl)

W= — b_ € =0 (4.25)

Solution of this equation gives an equation relating x, and x, on the
singular arc. For the values of the constants used, a linear relation
exists,

x, = kx1 k is approximately 0.8 (4.26)

This problem is most readily solved using the Green Theorem Approach.
The regions which are reachable and controllable are found and their in-
tersection provides the region containing all permissible trajectories

from the initial point x, to the final point xf. In order to find the
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region containing all the trajectories, Theorem 2.1 is used. If the
conditions of Theorem 2.1 are satisfied then the region containing all
trajectories from x to xf are bounded by the four trajectories

o

obtained by solving (4.19) and (4.18) as follows:

1

a) starting at x_., use u=l and obtain ¢ .

(o]

b) starting at X,» use u-O+ and obtain ¢°°+.

c) starting xf, integrate backwards (reverse time)
use u=l, obtain ¢fl.
d) starting at Xes integrate backwards use u>0, obtain ¢f°+.
To satisfy the conditions of Theorem 2.1, it was necessary to use
u>0 in (b) since u=0 leads to x;=0 and %,=0 and the A condition of
Theorem 2.1 is not satisfied. Also it is convenient in this study to
use 0 < u < 1 instead of |u|§|1. Theorem 2.1 is applicable in either

case, since it is only necessary to change (4.19) to

x,= 1210 w(x;,x) = 752 - 752u |ul<1 (4.27)
The results appear in Figure 4.4

Y

X

Figure 4.4

Reachable and Controllable Regions
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The singular arc, w=0, obtained from the necessary condition
is also shown in Figure 4.1. We are now ready to apply the Green
Theorem Approach. In this problem, w is positive in the region above
the curve w=0, which is a straight line in this case.

The global optimal trajectory is obtained as follows:

a) Start at xo, keeping the region w<0 on the right, proceed to

the point where the trajectory intersects the w=0 line.

b) Now proceed along the w=0 line until xfis reached.
Note that along the w=0, the region w>0 is on the right and the region
w<0 is on the left. Also, if the final point X gwas not on the curve w=0
the procedure would be the same except that a boundary of the region
containing the admissible trajectories would be reached before X¢ is
reached. Traversing the boundary keeping w>0 on the right or w<0 on

the left would then ultimately terminate the trajectory at x Figure

f’
4.5 shows a case where xf-(a,O). The optimal trajectory is xo-a—b—xf.

%Xa

U=l

Us=o

Figure 4.5

Optimal Trajectory
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Having found the optimal trajectory, it is now possible to des-

cribe the Optimal Control. The boundaries establish the '"bang-bang"

values of u while the value of control on the singular arc is deter-

mined from (3.3.) and (3.34). The approximate value of u=.735.

Figure 4.6 shows the Optimum Control function as a function of time.

u)

{0

Figure 4.6
Optimal Control for Vehicular Braking System

Constraint on Control Signal

A program P2 was written to automate the above procedures. This

program does the following:

1)
2)
3)
4)

scans the w region of all permissible trajectories

finds the proper boundary

finds the singular arc

finds the optimal control on all parts of the trajectory

including the singular arc

The listing of P2 and a typical output is shown in Appendix II.
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4.3.2 Analytical Verification of the Optimal Control

In the previous section, the Green's Theorem Approach showed that
the optimal control is piecewise constant. As shown in Figure 4.3, maxi-
mim control of u=l is applied for time t,; then, reduced control is
applied until the state vectors both reach zero. Recall that the two
state vectors correspond to vehicle velocity and wheel velocity.

In this case, a very simple solution is possible if the constraint
on u(t) is removed. The optimal control will consist of an impulse at
t=0 and then a value of less than 1.0 for the remaining time. See

Figure 4.7

{ impoulse

U .T35

Figure 4.7
Optimal Control for Vehicular Braking System
No Constraint on Control Signal

The impulse of Figure 4.7 drives the system to the peak of the
friction curve in zero time while the pulse of Figure 4.6 drives the
system to the peak of the u-curve in minimum time t,. As will be shown
t; is much less than tes the time to drive the system to zero. Hence,
the impulse method leads to negligible error.

From (4.23), the maximum value of the friction coefficient u is
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0.947, corresponding to x,/x;=0.8.

From (4.18), if an impulse is applied at t=0, no change in X,
takes place.

Applying an impulse of strength 6 and using x,=0.8x,, (4.18)

becomes,

L8 o+
I dx2 = -1584 J §dt (4.28)
o
60

The strength of the impulse is
§ = .00757 (4.29)
If it is assumed that the area of the pulse of Figure 4.3 is
equal to the strength of the impulse, then time t; would be equal to
.00757 seconds. This also assumes that u is limited to 1.0. Although

this is not accurate, it is sufficient to show that t; is much less

th t_.
o te
From (4.18) and using u=0.947,
) tf
I dx; = -32 x .947 I dt (4.30)
60 o
Solving for tes
ty = 1.98 seconds (4.31)

Corresponding to this minimum stopping time, the minimum stopping
distance is 60 feet.

The optimal control signal during this interval may be found by
eliminating u from (4.1%) and (4.18).

Integrating the resulting equation,

o 1,98

0]
f dx, = -37.81 I dx, - 1584 f u,dt (4.32)
48 60 o
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Solving,
u, = 0.735 (4.33)
The impulse solution will differ only from the actual solution
because of t,. By assuming u = t/t) during interval t;, equation
(4.19) may be solved to yield,
t; = .0123 seconds (4.34)
This agrees with the digital computer scolution shown in Appendix

II. The results of the analytical approach are summarized in Figure 4.8

.0
135
u) 1
l
, |
o) 11992 Sec.
(7.3
Vdm{\’ Yehwle Veloc \'\.’
i Wheel
Vdouhj
fb‘l% ‘-”Z Sec.

Figure 4.8

Optimal Control and State Vectors vs Time
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4.3.3 Equivalence of Minimum Time and Mipnimum

Stopping Distance Criteria

In this section it will be shown that minimizing the time to go

from xoto Xg is equivalent to minimizing the vehicle stopping distance.

It has been shown that the intersection of the reachable region
R(xo) and the controllable region R(xf) contains the set of all possible
trajectories from x, to xg. Also, the construction of this set is in-

dependent of the performance criteria imposed by the functional J[u].

Using the Green Theorem Approach, it has been shown that the optimal
trajectory is contained in the boundary of this set unless singular arcs
exist. Then the optimal trajectory will contain portions of the boundary
and portions of the singular arc. Hence, the solution is no longer
"bang-bang'". Two criteria will be equivalent if the singular arcs gene-

rated by these criteria are the same.

Consider
t
f
Jl[u] = I dt (4.35).
t
o
t
f
J2[u] = J x,dt (4.326)
t
o

Since x) corresponds to vehicle velocity in problem(4.1), Js [u]

is the stopping'distance while J,[u] corresponds to the time required

to stop.
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To show that these criteria are equivalent, it will be shown that

the critical function, w = 0, which determines the singular arc is the

same for both criteria.

From equation (4.18), determine dt and substitute in

J, [u] Ixf -t
X x dx
3,lu] = I £
Xo °32u(x19x2)

Since, the general form for the cost function is

J = Idel + Qax,, = ”(Q.Q. -

aX]
and
1
P, = - —=—
1 32, (x),%,)

- . X
2 32u(x1,x2)

Solving for the partial derivatives

3P, 3,(x1,%)

.
9%, 3%y 32,

3P2 ) xlau(xl,xz) 1

2
3x2 ax2 32u

oP
axz) dxldx2

We are interested in the condition w = 0, where

2Q oP

CR G il oy

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)
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If xI#O and u¥0, then referring back to equation (4.16)

aU(xlaxz)
W =W, = ———

T (4.45)

Typically, as indicated in Figure 4.1, the x #0 and u#0 con-
ditions are satisfied except at the origin. The origin presents no

problem since u(0,0) = 0.

Therefore minimizing stopping time is equivalent to minimizing
stopping distance in Problem 4.1.
f(x;)

u(xl .Xz)
since the partial derivative is taken with respect to x .

Any criteria which results in P = would be equivalent

4.3.4 An Optimal Digital Control System

In principle, the implementation of the optimal control is straight
forward. Based on fhe Green's Theorem Approach the steps are as follows:
1) Apply maximum permissible control.
2) Continually solve for w. The condition w=0 indicates that
the singular arc has been reached.
3) Reduce the control signal u(t) in order to hold the
condition, w=0.
Due to time delays, the desired control u(t) is not obtained in zero
time. As a result the control oscillates about the predicted value

of 0.735.

The program shown in Appendix II shows this variation in u(t). The
state vectors corresponding to vehicle and wheel velocity are essentially

ideal in the digital computer system.
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The Digital Optimal Control System in block form appears in Figure 4.9

-32 x‘ Dg’|+¢| X| ﬁ )[“x.' w
Tnieqrater Xz #
M Function | X
— ]
Genersior
owgr tal X
2
‘210 Lndegratber
u@) | Integrater
1584 and
Limiter
Figure 4.9

Digital Optimal Control System

Based on Green's Theorem Approach
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The significant blocks are the blocks which determine the control
signal u(t). If w is positive the digital integration increases u unless
u is at its limiting value of 1.0. When w is zero, u would remain con-
stant except for the fact that time delays cause w to overshoot. In.the
digital solution, u changes by 0.0l per integration time interval of
0.000002. The results of this simulation can be summarized by Figure
4.10. The velocity signals which are the state variables x, and x, are
close to the ideal values. There is a ripple frequency of approximately
300cps. This is a function of the digital integration gain. The peak
wheel velocity ripple is approximately 0.020. The w signal has a peak

value of approximately 0.012, while the peak value of thes&u signal is

0.25.
133
I
u® = .
.5
t, t,—
(a) 4
o,
Vewcle Velocity
Wheel VeloTy
t © tr
Figure 4.10 Wave Forms of Digital Control System

(a) Control Signal (b) Singular Function (c) Wheel and Vehicle Velocity
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A sinusoidal analysis based on small signal follows. Consider

simplified diagram,

w avuls) AW aXy(s) AXa
r—- i
w (%) au(s)
W (5) -
A X,

Figure 4.11

Diagram for Small Signal Sinusoidal Analysis

The velocities X, and X, tend toward zero slowly when measured

on the ripple frequency time scale. Hence, at a given point (xl,xz)

the following equations may be considered to apply.

X = %), (4.46)
X, = X5, + x Asin ot (4.47)
also,
x20 = 0.8, (4.48)
Since w is given by 4.25, and letting k = sz/x10
o= L (ge8(1--8-k sin ut) | -b(1-.8-k sin wt) | (4.49)
x50
Assuming that k<<.2, and using ¢ =1 + x,
W= 1 (ae-°2a(1 + ak sin gt) - be—°2b(1 + bk sin yt) (4.50)
X10 .
-.2a -.2b

Since ae = be
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w = (ak-bk) sin wt/x)g (4.51)

w= =5.25 k sin wt/x; (4.52)
2

w = =5.25 Ax, sin wt/x10 (4.53)

Using (4.19), a relation between Ax, and Au can be found. The y
term has a constant term which cancels the steady state term of u.
The sinusoidal variation in u is small relative to the cosinusoidal

variation of x;. Therefore,

u = u0 + Au cos wt (4.54)
and

2nfAx, cos 2nft = -1584 Au cos 2nft (4.55)
This yields the relationship,

2

2nfx g /5.25 =1584Au (4.56)

or
2
w = 1320 Au/x)q £ (L.57)

The use of the above equation in conjunction with Figure 4.11,

permits determination of the small signal variations in the system.
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4.4.1 The One-Wheel Vehicular Braking Control

Model with Rate and Amplitude Limited Control

This problem is an extension of Problem 4.1 and fits the format of

Problem 3.3. It will be designated Problem 4.2,

The differential constraint equations are

X1 = -32u(x,X,) x; (0) = 60 (4.58)
Xy = 1210u(x),x,) - 1584x, x, (0) = 60 (4.59)
X3 =V xy (0) =0 (4.60)
lvlz1 (4.61)
x>0 (4.62)

The function u(x;,x,) is given in Problem 4.1. The control u(t) of

Problem 4.1 has been made a state variable with a constraint.

It is desired to minimize the time necessary to drive the state from

X, to x The row vector x,. is [0 O X3¢ is not specified.

£° f
This problem when stated in real physical terms is: Find the control
pressure as a function of time which will stop a given vehicle initially

traveling at 60 ft./sec. in minimum time. The pressure is rate limited

to 12000 psi/sec.

In the physical problem under consideration the pressure would normal-

ly be amplitude limited (e.g.0<P(t)< 1200psi). This would result in a
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singular problem which has a bounded state variable (x3). In this problem
the upper and lower bounds are not penetrated by the optimal control and
hence the additional complication due to bounded state variables is not en-

countered. The approach necessary when bounded state variables occur will

not be considered at this time.

The development of section 3.2.3 will be applied to Problem 4.2 of
section 4.4.4. As may be seen from equations (4.58) to (4.60), the state

vector is 3-dimensional while the control in l-dimensional. Hence

N .- .
X, fl 0
x,| = [£f * |0 V (4.63)
[ X3 [ 0] [ 1]
also
t
f
J]u] = dt (4.64)
t0

T
Since there are two independent vectors orthogonal to b = [0oo01],

dt may be expressed as

dt = dxllfl = dxl/-32u (‘l.65)

or

dt = dx,/f, = dx,/(1210u - 1584x, (4.66)

Applying equations (3.80) and (3.88) - (3.90) to (4.65)

a, = -1/32u (4.67)



75

w, = 3(-1/32u)/3x, (4.68)

wy, = 0 implies a singular surface exists and is given by

au(xl,xz)/ax2 =0 (4.69)

This surface will contain part of the optimal trajectory as shown
in Figure 4.13. It corresponds to the arc B-C. Its projections in the
X, =X, plane is D-0 and is the same as in Problem 4.1. Applying (3.80)
and (3.88) - (3.90) to (4.66),

1
a =
2 1210u-1584x3 (4.70)
Now
L ) (4.71)
“12. 7 7 3x, '1210u-1584x, .
w) 3 = 0 (4-72)

L S —— 4.73
W23 9%, (1210u-1534x3 ( )
Only W), 0 implies a singular surface.

u X, du

If x, + 0, this produces the same singular condition given by (4.69).

The net result is that two equivalent forms are available to evaluate

J(ul.
2 dx
J[l.l].[f—;—-
X0 =32u(x),x3) .75
and
Xg dx,
Alul = Ixo 1210u (x] ,x2)-1584x3 (4.76)



76

4.4.2 Solution of the Pang-Pang Singular Control Problem

by the Green Theorem Approach

Normally problems of the type formulated in the previous section re-
sult in the bang-bang behavior of &(t). This is referred to pang-pang

operation with respect to u(t).

Several modifications with respect to the procedure used in Problem
4.2 will be necessary. First, no theorem is available for the general
case which determined the reachable region in terms of special trajecto-
ries. For example, in a 3-dimensional problem with a 2-dimensional
control, the reachable region would intuitively appear as shown in

Figure 4.12. ¢kl

# ()

¢

Figure 4.12

Reachable Region for 3-dimensional Problem

1,1 1,-1
In the figure, four edges determined by trajectories ¢ s ¢ R
-1,-1 =1,1 1,1
¢ s ¢ might be expected. The trajectory ¢ is defined as the

solution x(t) with control u;=1, u,=1, x(O)-xo. The other trajectories

would be defined in a similar manner.
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In the case under consideration only one control signal is available.
This reduces the reachable region to a surface. Hence, two dimensional
theory as given by Theorem 2.1 may be applied. In Figure 4.5, x(-A-B-D-x,
shows part of the reachable region. The curve x;-A is part of the tra-
jectory due to the application of v(t)=1l. The curve X,=D 1is in the
x;-x, plane and is due to the constraint which requires that x3>0. This
curve cannot be generated by any control v(t) but can be approached as

close as desired by using a sufficiently small v(t).

The trajectory of the pang-pang problem is shown in Figure 4.13.
The trajectory starts at xgp, which lies in the X)-x, plane. The surface
w=0 1is a plane shown passing through points C, O, and D. Physically the

system acts as follows:

The pressure is increased at its maximum permissible rate until
point A 1s reached. Then, the pressure 1s decreased at its maximum per-
missible rate until the singular surface is reached. The trajectory then
continues from point B to the final point C. Along this trajectory, which
is singular, the pressure is maintained at a constant value. The value of

pressure required is determined by the singular control law.
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Xo

Xl

Figure 4.13

Optimal Trajectory for 3-Dimensional Problem



CHAPTER V SUBOPTIMAL VEHICULAR BRAKING CONTROL

5.1 Introduction

Theory indicates that the optimal control drives the state vector
to the peak of the friction-slip curve as fast as possible and then
holds it there. From a practical point of view the Maximum Principle
is not feasible. Figures 3.1 and 3.2 show the block diagram necessary
to mechanize the Maximum Principle solution. Since the initial costate
vector must be determined on-line, subject to various initial conditions
on the state vector, a rather complex and fast system would be needed
to satisfy this requirement. This in itself would present a formidable
optimal control problem. The approach using Green's Theorem is more
feasible from a practical point of view. Figure 4.6 shows the block dia-
gram using this approach. The difficulties associated with this method
are due to the block which computes the w function which determines
the singular condition. Again this component must operate with fast
response on-line. As indicated in section 4.3.4, the digital solution
using the IBM 360-65 produced the wave forms shown in Figure 4.10. The
results with respect to optimal stopping time were essentially optimal.
The velocity waveforms were also essentially optimal. A slight ripple
frequency appeared on the wheel velocity output. This ripple had a
peak amplitude of 0.020 fps while the vehicle and wheel velocities were
as high as 60fps. The control waveform deviated considerably from the
ideal waveform. The ideal control signal appears in Figure 4.8. It
should be noted that the digital solution oscillated at 300cps about
the ideal value of 0.735. Hence from a practical point of view, this

approach can be mechanized. However, in the interest of simplicity

79
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and economy the following suboptimal control was designed. The basic

idea 18 illustrated in Figure 5.1.

L Function M *‘ xl ‘"'Nf
- | v K
Genars 32 ntegrabs
[
| Compen-
TI“Q Sation
v \
1210 X2 imbegrater %
condyol — |ervor
|
Figure 5.1

Basic Suboptimal Control

The basic premise is that the peak point on the friction-slip
curve occurs at essentially the same relative slip regardless of vehicle
velocity. Reference to Figure 4.3 shows that this point corresponds to
a relative slip of 0.15, i.e., 1 - x2/x1 = 0.15. This implies that X,
which corresponds to wheel velocity is 85 percent of the vehicle velocity
x; at the peak point. In addition, it is to be noted that the friction
coefficient decreases slowly as the relative slip increases. At a slip
of 1.0, the friction coefficient is typically 0.8 of its maximum value.
This is the value achieved in the so-called "panic' stop. Therefore,
based on this curve the stopping distance can be reduced to 0.8 of the
"panic" value. Minimizing stopping distance is however only one factor

in making a safe stop. A factor that is equally important is maintaining

lateral stability. Due to small variations such as road surface unbalance,
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brake torque, and wind gusts, yawing may and usually does occur. These
effects may be minimized if the slip is kept small. The net result
implies that operation should be close to the peak of the friction-slip
curve. The most effective operation will be shown to occur at slip

values slightly greater than 0.15.

5.2 _Block Diagram of Suboptimal Control System

The real system must contain transducers which are not ideal. The
principal characteristic can be approximated by a time delay. For example,
the wheel signal transducer generates an alternating voltage with frequency
being proportional to wheel velocity. The electronic processing generates
a voltage proportional to wheel velocity. This processing results in a
delayed wheel velocity signal. Similar delays are encountered from the
other transducers that must be used in the system. Hences a realistic

model of the vehicular braking control system appears as shown in Figure

5.2b.

This system was programmed on both analog and digital computers. The
analog computer studies permitted interconnecting real components with simu-
lated components. The diagram shown in Figure 5.2a shows the four basic
elements, the road characteristics, vehicle dynamics, electronic control
module, and the braking pressure actuator. All four elements were simulated
on both analog and digital computers. In the analog setup, the simulated
electronic pressure actuator could be readily replaced by real components.

This feature permitted evaluation of various module and actuator designs.
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Basic Block Diagram
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Figure 5.2b

Suboptimal Control System With Time Delays
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5.3 Analog Computer Studies

The analog equivalent of the system shown in Figure 5.2 was stud-
ied extensively. 1In these studies, real components such as pressure
actuators and electronic control modules would be compared with their
simulated models. The primary object was to determine factors which ad-
versely affected performance. The optimal control system was used as the
reference system, Figure 5.3 shows response characteristics of a sub-
optimal system in which all components are simulated except the actuator
which is designated X2. As may be observed from the wheel velocity trace,
this response is, from a practical stand point, essentially optimal. This
is a very low friction case, having a panic coefficient of nominally 0.09.
The percentage error due to potentiometer settings is greater at the lower
values of friction. To remove this source of error, stopping distances
are compared with the skid control on and off. The panic stopping dis-
tance, for an initial vehicle velocity of 60 fps, assuming that the vehicle

is a point mass, is given by the following equation,

Panic Stopping Distance = 56/u (5.1)

In this case, the nominal value of 0.09 would predict a value of 622
feet instead of 583 feet. This implies that p 1is actually 0.096 instead
of 0.09. The significant fact is the reduced value of 507 feet. It
should be noted that an ideal wheel velocity transducer is used. The er-
ratic operation that occurred was due to vacuum pressure going below the
design minimun. In summary, this test shows nearly optimal response even

with a real actuator in the system.

Figure 5.4 shows the effect on the same system by using a transducer
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that can be approximated by a time delay of 0.020 seconds. Stopping
distance 18 increased slightly, although considerably better than 186

feet, the value corresponding to the panic value of u = 0.3.

Actuator X1 has an initial pressure rise characteristic which has
adverse effects. This causes the wheel velocity to initially drop to
lower than desired values. This can cause lock-up under some road fric-
tion conditions. Figures 5.5a and 5.5b show these characteristics. The
initial part of this response is magnified in Figures 5.6a and 5.6b.
This actuator was one which had been considered satisfactory for systems
which did not employ anti-skid controls. An interesting nonlinear phe-
nomenon occurs in this set of traces. The operating point is unstable.
The right wheel velocity approaches the vehicle velocity or free wheels,
while the left wheel velocity goes to the lock-up condition. This con-

dition will be considered in Chapter VI.

Figures 5.7a and 5.7b show a typical response characteristic of the
system without compensation. As may be noted the wheels alternately free
wheel and lock-up. These conditions are also clearly seen on the friction
curve. The panic value in this case is 0.8. Since the stopping distance
is the same whether the control is on or off, the average coefficient of
friction is 0.8. Also, it is to be noted that the pulsing frequency is
considerably lower. In this case, it is approximately 3 cps. With com-

pensation, pulsing frequencies as high as 20 cps have been encountered.
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Velocity Response-Real Actuator X2
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5.4 Digital Computer Studies

The Continuous Systems Modeling Program (CSMP) on the IBM 360-365
was used to supplement the studies made on the analog computer. The
listing of the simple one-wheel model is shown in Figure 5.8. This is

designated PROGRAM I. Listings of other models are shown in Appendix IV.

Sample outputs and histograms of PROGRAM 1 are shown in Figures 5.9
to 5.15. The model described by PROGRAM I is almost ideal with respect
to transducers. There is no delay in the pressure transducer and a neg-
ligible delay (1 millisecond) in the wheel velocity transducer. No

compensation is used.

In Figure 5.10, the first portion of the wheel velocity of subopti-
mal vehicular control system is shown. In this suboptimal system, the
wheel velocity has a peak ripple velocity of approximately 7 feet per
second, whereas, the optimal control would have no ripple. More signi-
ficant is the friction coefficient, shown in Figure 5.11. After it
passes the peak value of 1.0, it varies from between 0.9 and 1.0. Hence,
the average value is approximately 0.95 for suboptimal system and just
under 1.0 for the optimal system. It should be noted that this is not
a realistic suboptimal control system, since the transducers are essen-

tially ideal.

Figures 5.13 and 5.14 show similar results when the friction coef-
ficient is 0.3. The supoptimal u averages 92 percent of the optimal
value of 0.3. The low u case is,with respect to ripple magnitudes,

more nearly optimal than the high u case. Stopping distances show that
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the suboptimal system requires 59 feet at a p of 1.0 and 202 feet at a u
of 0.3. This compares with 56 feet and 186 feet for the optimal control
system. These values are for an initial velocity of 60 feet per second

or approximately 40 miles per hour.

Of interest is the fipple frequency, since this may be used as a
measure of optimality. The suboptimal system with essentially zero de-
lay has a ripple frequency of approximately 11l . cps at ¢ = 1.0 and 18 cps
when u = 0.3. When transducers, which have time delays are used, these
frequencies go down. To compensate for the delays, compensation net-
works are employed. In the suboptimal control system, the effectiveness
of the compensation can be judged by the ripple frequency generated.

The higher ripple frequencies imply that the system is more nearly
optimal. A criterion, based on ripple frequency, for estimatihg time

delays associated with transducers is established in Chapter VI.

The last two figures in this set, Figures 5.12 and 5.15 show the
control pressure for the y = 1 and u = 0.3 cases. As generated on the
digital computer, the rise and fall rates are 15000 and 45000 psi/second

for this case.

In the digital studies, use was also made of the CSMP plotting fea-

tures. Typical plots are shown in Figures 5.16 to 5.23.

The effect of having unbalanced time delays was studied. Figure 5.16
and 5.17 show the effect of having 20 milliseconds delay in one of the
wheel velocity transducers and no delay in the other. Vehicle velocity

and pressure transducers also had no delay. The reference velocity in



96

the suboptimal control system was set for 0.5 of the vehicle velocity and
the system used the average of the wheel velocity signals to establish
the error signal. These results show that, by using proper compensation,
this amount of delay may be tolerated. The principal disadvantage is
that the wheels lock up at a vehicle velocity of approximately 5 feet per
second. In other respects, the supoptimal control operates as desired.
This is clearly shown in Figure 5.17. The control pressure quickly
brings u to its maximum value. Then, due to the slip reference setting
of 0.5, keeps u at a relatively high value for almost the entire stop-
ping period. Earlier lockup is very clearly shown in this figure. The
value of u 18 seen to drop to the panic value of 0.8 while the control
pressure rises rapidly to its maximum of 1200 psi. The stopping dis-
tance for this suboptimal system is 60.21 feet as compared to 56 feet

for the optimal control system. The listing of this program, P 252, is

shown in Appendix IV.

The next set, Figures 5.18 to 5.21, show the effects of having 20
milliseconds delay in both wheel velocity signals. There are no other
changes from the previous system. The ripple frequency variation is
now quite prominent. The relatively high frequency of 12 cps indicates
satisfactory operation at this value of u. The stopping distance has

increased slightly to 60.76 feet.

The effect of subjecting one side of the vehicle to a peak p 0.95
and the other side to a peak u of 1.0 i8 shown in Figures 5.22 and 5.23.
All other components of the system are as in Program 252. The side of

the vehicle which is subjected to a u 0.95 and has a 20 millisecond
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delay in the transducer locks up early as seen by the WV2D trace in
Figure 5.22. Stopping distance was 63.4 feet as compared to the opti-
mal value of 57.2 feet. This is a two wheel model which used the average
of the two wheel velocity signal to produce a one-dimensional control
signal. This example points out the disadvantage of the one dimensional
control versus the two dimensional control system. Figure 5.23 clearly
indicates the changes in the p characteristic and control pressure that

occur after early lock-up.

The final figures of this section show the response of the system
which is designated as the reference suboptimal control system. As may
be noted from Figures 5.24 and 5.25, the wheel velocity response and the
friction coefficient response are almost undistinguishable from those
determined from the theoretical optimal control system, In Figure 5.23,
trajectory O-A-B is nonsingular, while B-C is the singular trajectory.
The control pressure response, in Figure 5.26, does not peak as expected
in the optimal response. The variation in the flat portion of the con-
trol pressure is due to the anticipatory nature of the compensation

network. Stopping distance for this system is 57.75 feet.

These figures are representative of the digital studies which show
that the suboptimal control system considered performs satisfactorily
and compares favorably with the reference optimal control system which,

it should be noted, does not contain time delays.
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*#%&*CONTINUOUS SYSTEM MODELING PROGRAM***%
***PROBLEM [INPUT STATEMENTS*#*%

TITLE ASKC

PARAM B=1le9yC=1l4yD=1.

FUNCY MUET1=(=e159=1c) 9(0e90e0)s(a0759e6)9(alS59le) (57

METHOD  RKSFX
MUL=B*AFGEN(MUETL1,ETAL)
VVDOT=~-16.*%(MU14D)
VV=INTGRL(60.0,VVDOT)
VVD=DELAY{( S5y +015,VV)
WV1D0T=1210.*MU1-0,79%*T1
SDIST=INTGRL(O0.0,VV)
WV1=INTGRL(60.0,WV1DOT)
WV10=DELAY(59.001yWVLil)
ETA1A=VVD-WV1D
Tl=1.66%P11
ETAl1=1.0-WV1l/VV
WV11=LIMIT(04960.04WV1)
ETA1R=0,5%VVD
Y1=DERIV(O.0,ETALlA)
ERRIN1=ETA1A-ETA1LR
ERROT1=INSW(ERRINly 1.04-3.0)
E1=15000.*ERROT1
P1=INTGRL(O.0,X1)
X1=El*X1l1

PROCED X11=DUL(Pl,EL)

IF(EL)L1s1,2

IF(Pl) 3,44

X11=0.0

GO 10 17

Xll=1.0C

GO 10 7

IF(P1-1200.)5,4546

X1l=1.0

GO T0 7

X11=0.0

CONTINUE

VN » W e

~ O

ENDPRO
P11=DELAY(15,.0,P1)
TIMER FINTIM=4,,DELT=,0004, PRDEL=.C2
FINISH VV=1.0
LABEL ANSKC* JGG*SCHERBA

PRINT ETAIR.ETALA,MUL,ERRINL,ERRQOT1,4P11, VV,P1,SDI
PRTPLT ETALRyETAlA MULl,ERRINL,ERROT1,P11, VV,yP1,SDI
END

PARAM 8=0¢39C=0.34D=.3
RESET LABEL

LABEL ANSKC (MU=.3)
END

STOP

Figure. 5.8 PROGRAM 1 CSMP Listing of One-Wheel Model
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Velocity Response
Suboptimal System Employing a Single Control Pressure Signal
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CHAPTER VI NONLINEAR PHENOMENON IN VEHICULAR BRAKING PROCESSES

6.1 Introduction

As the complexity of systems increases, it becomes more difficult
to predict the effects of the various system parameters. Also, in the
vehicular system considered, the wheel.velocities are tightly coupled.
This results in the generation of frequencies vastly different than those
obtained in the loosely coupled case. The presence of nonlinearities is
responsible for the generation of additional frequencies. In this chap-
ter, attempts to improve the intuitive feeling for some aspects of the

system will be made.

6.2 Time Delay Criteria by Describing Function Technique

The suboptimal control system generates prominent variations in
wheel velocity, friction coefficient, and control pressure. These would
not be present in the optimal control system. These ripple frequencies
are primarily due to the time delay constraints present in the subopti-
mal control system with minimal time delays. It will be shown that the
ripple frequencies may be used as a measure indicating the degree of op-
timality achieved. Describing function techniques will be used to

develop criteria.

The one-wheel model using s-plane representations is shown in
Figure 6.1. The friction-slip curve, shown in Figure 6.2, will be line-
arized about a typical operating point. The gain characteristic will
normally be negative; but, as evident from the friction characteristic,
may be positive. This gain term will be defined as,

ku = Au/An (6.1)
118
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S-plane Model of One-wheel Vehicular Control System
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Figure 6.2

Friction-slip Curve Linearized about Operating Point
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Since the vehicle velocity VV changes with respect to the wheel
velocity very slowly, it will be assumed constant. The effect of a
changing vehicle velocity will be discussed later. On an incremental
basis, the circuit may be represented as shown in Figure

The notation is the same as previously defined in Chapter 1IV.

A
Eammkimmidimi

1+hS

P

l

1 S

|t |

| : |

| |
Figure 6.3

Simplified Incremental Block Diagram
One-wheel Vehicular Control System
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The block involving the u characteristic has a transfer function

given by

T‘ F. -

s - ki (6.2)
where,

(6.3)

2
k) = kUM8R /I v

For application of the Describing Function Technique, the final form

shown in Figure 6.4 is desirable.

L

k £-%% (1+Ts)
S(S-ki)

Figure 6.4

Nonlinear System used to Develop Time Delay Criterion

where,
K= KPR/I

T2 is the time constant associated with the lead network.

Tl is the total time delay present in the system.
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Study of this block diagram reveals several significant character-
istics of the vehicular control system. First, if both time delays are
neglected, the system stability depends on the sign of k,;, which in turn
depends on the friction-slip gain ku' Since the operating point is usu-
ally on the negative slope portion of the friction-slip curve, the
system is inherently unstable., This instability, however, has no adverse
affect on the optimality of the system. Some of the unusual phenomenon

observed is however due to this characteristic.

The second characteristic of interest is the chattering of the
wheel velocity as it is driven to zero. The chattering is readily ex-
plained by means of the Describing Function Technique. Designating the
nonlinear element as N(e, w) and the linear element as G(w), the oscil-
latory of chattering condition is

G(w) = - 1/N(e, w) (6.4)
Here e is the amplitude of the input to the relay element. The input
signal is assumed to be sinusoidal. A sketch of a typical Nyquist Plot

appears as shown in Figure 6.5
Im G(j‘ﬂ)

“h N\ Re G(jw)

w \’N‘.ncsm,

Figure 6.5

Typical Nyquist Plot
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For typical values of T, = .010 seconds and T2 = .05, the
critical point is reached when w is approximately 142 radians per second
and N = 2860. A computer study was conducted to establish the accuracy
that could be expected. Using a symmetrical relay characteristic which
switches between -5000 and +5000, the input was approximately 3. Since
the fundamental component of the square wave is 4/m . 5000, the gain N
of the relay element is 2120. This, with the loop gain of 1.32 gives a
total gain of 2800. The frequency was 22 cps or 138 radians per second.
These values are very close even though the generated waveforms in the
system are square, triangular and finally, approximately sinusoidal at

the input of the relay element.

A study of the Nyquist Plots shows that a simple criterion may be
established to evaluate time delays in this system. By neglecting the
effect of the gain factor k;, the angle criterion at the critical point
- 1/N 1is satisfied by the following condition:

Angle of € (1+jwT,) = 0 (6.4)
This is equivalent to the condition,

Tan wT; = wT,, wTy < 7/, (6.5)

Solution of this transcendental equation gives the chatter fre-
quency in terms of the two time constants. ' Observation of various
solutions shows that uT, is almost m/2 radians for all cases of interest.
Thus, the simplified form below may be used,

T, = Iﬁ seconds (6.6)
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Thus if w = 142 radians per second, the time delay in the system is
approximately .01l seconds. This simplified criterion is quite useful

in establishing the time delay in the system.

Concerning the effect of the neglected term k;, it is readily shown
that at the frequency of chatter, this term is insignificant except at

very low velocities where it tends to reduce the chatter frequency.

Due to the asymmetric character of the relay element, a Dual Input
Describing Function Technique was also investigated. For suboptimal op-
eration, due to the small variations which are essentially sinusoidal, no

significant additional information was obtained by this method.

6.3 Effect of Friction-slip Nonlinearity

In the previous section, the Describing Function Technique was
shown to be useful in establishing a criterion for estimating time delays
of the suboptimal control system. If compensation is not used, the system
performance is adversely affected. The criterion established in the pre-
vious section 18 no longer valid and it is necessary to include the effect
of the friction-slip nonlinearity shown in Figure 6.2. For time delays
which are in the realizable range - 10 milliseconds to 20 milliseconds -
operation will be on the positive slope portion of the friction-slip
curve. On this portion of the curve, the gain factor k; is significant
and to a first approximation the following criterion will establish the
dominant frequency of the variation:

=JuT,
Angle of ¢ /(k;, + jw) = -N/2 radians (6.7)
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Referring to Figure 6.4, it is to be noted that the loss of the
lead term due to the compensation network causes the system to make up
this phase change by finding a suitable gain factor k, which reduces the

phase of the (s + k;) term in the denominator of the transfer function.

Several cases where no compensation was used were investigated. The
results of a system having no compensation and 10 ms delay is shown in

Figures 6.6 to 6.9.

Detailed study of the waveforms in these figures indicates that the
criterion given by (6.7) accurately predicts system performance. The
block diagram shown in Figure 6.10 will be used to illustrate the pro-
cedure. Except for the time delays, the diagram is based on the program

listing shown in Figure 5.8.

Re4 W

Lot P .
1Ziop /k wv £ wp ft ' P

!
’U ? + = £

Figure 6.10

Diagram Used to Evaluate Variational Frequency
and Amplitudes of Variables

The procedure is as follows for the system having 10 milliseconds

delay.

Since operation is on the positive slope portion of the friction-
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slip curve, k; is estimated as 40. The transcendental angle criterion
(6.7) is then solved for w. The result is approximately 60 radians per

second, comparing favorably with the measured frequency of 9.75 cps.

The friction-slip coefficient response should lag the pressure re-
sponse by 34.5 degrees. Detailed analysis of the response curves in

Figure 6.7 and 6.8 shows this to be the case.

The pressure amplitude i8 found by finding the fundamental component
of the asymmetrical relay output and dividing by w. The peak to peak
fundamental is —:‘I- - .78 * 60,000/60 or 995 psi. This is essentially

the same as the measured value.

From the transfer function 1/(s + k;) which relates pressure and
wheel velocity, the wheel velocity amplitude is calculated as 13.8 fps
peak to peak. This is higher than the measured value which is approxi-

mately 10 fps peak to peak.

The magnitude of the friction-slip coefficient variation is found
from

1210u = WV * k) (6.8)

This results in a predicted value of 0.46, which is condiderably

lower than the measured value of approximately 0.9.

Considering the large amplitudes, the results are not unsatisfac-
tory. The Dual Input Describing Function Technique was not used here,
but would probably improve the accuracy. The presence of other frequen-

cies 18 clearly evident from the pressure response in Figure 6.7.
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Time Delays of Transducers
= Wheel Velocity WV1 10 ms
s d Wheel Velocity WV2 10 ms
a Vehicle Velocity VW 10 ms
Control Pressure P1 0 ms
No Compensation
s Reference Velocity =" 0.85
o
3
a.-.
0.00 0.50 1"% 159 2.00 2.50
Figure 6.6

Wheel Velocity Response
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Time Delays of Transducers

Wheel Velocity WV1 10 ms
Wheel Velocity WV2 10 ms
Vehicle Velocity VW 10 ms

Control Pressure P1 O ms
8. No Compensation
a‘r Reference Velocity = 0.85
— .
-y
=]
=8
-S'P
L ]
“g
TVl * !
8
?ID
g
0.00 0.50 T‘Ig 1.9 .00 .50
Figure 6.7

Control Pressure Response
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Time Delays of Transducers

Wheel Velocity WVl 10 ms
Wheel Velocity WV2 10 ms
Vehicle Velocity VV 10 ms
Control Pressure P1 O ms

No Compensation
Reference Velocity = 0.85

0 1.00 1.50 2.00 2.5
TIME
Figure 6.8

Friction Coefficient Response
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st
T
s \
dl!
#1
Time Delays of Transducers
Wheel Velocity WVl 10 ms
Wheel Velocity WV2 10 ms
8 Vehicle Velocity VWV 10 ms
o Control Pressure P1 O ms
No Compensation
Reference Velocity = 0.85
g Y A A A a
7 n 3 m v R L4
om om l.m ' lom ZQm z-m
TIME
Figure 6.9

Output Response of Asymmetrical Relay



CHAPTER VII CONCLUSION

The development of the system equation for the vehicular braking
control system shows that the control signal appears linearly. This
implies, since the system is nonlinear, the possibility of singular
controls. From the unified singular control theory presented, necessary
conditions which the time optimal control must satisfy are developed.
The class of functions encountered in the vehicular braking control sys-
tem are such that the minimum stopping time problem is equivalent to the

minimum stopping distance problem.

Based on the necessary conditions developed, the closed loop pro-
blem is solved and a block diagram showing the mechanization using the
Maximum Principle approach is presented. Since the initial costate
vector must be determined on-line, subject to various initial conditions
on the state vector, any cost functional which takes into account factors
such as, cost and simplicity would eliminate this method as a possible

candidate.

A more practical approach is the mechanization developed by applying
the Green Theorem approach. The critical component in this method is the
w function block which determined the singular condition. This method is
quite possible in applications which are relatively slow. An algorithm
for determining the optimal control is presented. For the vehicular brak-
ing contrgl system, where significant changes occur in milliseconds, the

method becomes costly.

At this stage of design, the gap between theory and practice is apparent.

131
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The mathematical models which have been developed are not sufficiently
sophisticated to include noise, variability, cost, reliability and other
realistic factors. Inclusion of these factors would subject the models

to further constraints and adversely affect the performance.

The mathematically expedient models function as reference models,
indicating the ultimate that can be expected, and also giving clues as to
how the optimal control should function. As a result, a system called the
suboptimal vehicular braking control system was developed. This system is
optimal in the sense that it heuristically considers cost and simplicity
and is suboptimal since minimum stopping distance is slightly greater than
the optimal control system subject to a simple cost criterion. The ad-
vantages gained far outweigh the effect of slightly greater stopping dis-
tances. In zero time delay case, the stopping distance for the suboptimal
control system was 57.27 feet as against 57.2 feet for the optimal control
system. For systems with time delays, it would be desirable to have opti-
mal control models which include time delays. However, by employing pro-
per compensation, the suboptimal control systems with realistic time

delays compare favorably with optimal control systems having no time delays.

Whereas, most of the effort was devoted to one-wheel models, studies
of two-wheel models indicate that coupling effects will introduce several
new problems. This is especially true if the system is constrained to use
one control signal to control two wheels under different friction conditions.
Several criteria were developed to assist in the understanding of the non-
linear phenomena which take place. The criterion which evaluates time

delays present in the system is particularly useful.
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From the viewpoint of the builder of vehicular braking systems - in
particular, the automobile manufacturer - cost is a heavily weighted factor
in the performance functional. Elimination of a costly transducer is de-
sirable. At the present time, the vehicle velocity transducer is in this
category. This leads to a very significant vehicular braking control pro-

blem - the optimal control with inaccessible state variables.

Based on analog and digital studies already conducted, suboptimal con-
trol systems with inaccessible state variables compare favorably with the
optimal control system having accessible state variables. Hence, the so-
lution to the inaccessible state variable problem is of interest. With
the addition of time delays, these significant problems are left for

future development.
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APPENDIX 1

*%xk%xCONTINUOUS SYSTEM MODELING PROGRAM***%

SUBOPTIMAL ONE-WHEEL MODEL CONTROL SYSTEM
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Typical Output of Suboptimal One-Wheel Control System
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APPENDIX 11

PROGRAM USED IN OPTIMAL DIGITAL CONTROL SYSTEM

BASED ON GREEN'S THEOREM APPROACH

DIMENSION XY(10000),y YY(10000)y BUFFER{1000)
CALL PLCTS(BUFFER(1)y 4000)

CALL PLOT(0.0"‘IZ.O' 3)

CALL PLCT(2609-1165,2)

EXTERNAL EVAL, CUT

DIMENSION P(5)4AUX(B42)4Y(2) 0¥ (2)

I=1

COMMON KyUyFl oW

COMMON/AREAL/ XY 4VYY, 1

U=,8

KLOCP=1

K=6GG

N=2

P(1)=0,

P(3)=,000C02

Pl2)=2,

Pl4)=1,

Y(1)=¢0.

Y(2)=60.

DY(1l)=1.

CY(2)=040

WRITE(2%,20C0)

FORMAT(O6X " TV12X*VVP12X "WV 12X'UY12X'FLl12X'W12X*I8
CALL RKGS (PyYoDYy Ny IBISyEVAL,OUT,,AUX)
IF(Y(1)eLEeOel1190 ) GC TO 5

KLOCP=KLOOP+1

IF(KLCCP=-15) 2+5,5 )

CALL SCALE(YY45.041000091910.,0)

CALL SCALE(XY945409100004149104,0)

CALL AXIS(0e090e0y'Y"* 31960099060, YY(10001),YY(10002)
CALL AXIS(0e¢090e09'X*9y=196¢090s0,4XY(10001)4XY(10002)
CALL LINE(XYyYY4100004140,40)

CALL PLCT(06040604999)

sTOP

END

136
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SUBROUTINE EVAL (T,Y,DY)
DIMENSION Y(2),0Y(2),P(5)
COMMON KyUsFloW A
Wxo225%EXP(0225%(Y(2)/Y(1)=14))=23.5%EXP(23.5%(Y(2)/Y
4 Fl=EXP(=4225) %EXP(225%Y(2)/Y (1) )=EXP (=23 ,5)%EXP (23,45
v=U
DY(1)==32,%*F1
DY(2)=1210.%F1-15844%*V
11 RETURN _
END

SUBROUTINE OUTY (T,Y,DY,IBIS,N,yP)
CIMENSION Y(2),CY(2),P(5)
DIMENSION XY(10000), YY(1C000)
COMMON KyUpFlow I
COMMON/AREAL/XY,YY,1

- IF(NN.NE.1) GO YO 301

CALL FIND2 (UyWoFlyT,Y,IBIS,P)
RETURN

301 CALL FINDLI(UsWoFlyT oY 4CYyIBISyNyPyNN,K)
RETURN T '
END

SUBROUTINE FIND2(UyWeFlgToYoIBIS,P)
? DIMENSION Y(2)4P(5)

: DIMENSION XY(10000), YY(10000)
COMMON/AREAL/XY oYY, 1
IF(TeGE40,15608) P(5) = 1.0
JF{WeGTo0,0) GO TC 1
IF(WeEQeOs0O) GO TC 3

GO 10 2
1 IF(U.GT.OQO, _U=U-001

GO 10 3
2 TF(UelLTa0e999S) U=U+,Cl
3 K=K+1

| IF(K=100) 45,5
| S WRITE(2592001) TeYsUsFlewyIBIS
| XY(I)=Y(1)
i YY(I)=Y(2)
| I=1+1
2001 FORMAT(6E13,5,15,'YES*)

202 K=0

4 RETURN
END
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SUBROUTINE FINDl(UvaFloT’YtDYiIBISvaP,NN K’
DIMENSION Y(2),0Y(2),P(5)

DIMENSION XY(10000), YY(10000)
COMMON/AREAL/ XY, YY, I

IF(UeGT 4069995) GO 1O 200
IF(ABS(W)eGToe0,03) U=U+,01

IF((TeGToCe00005) ANDe(UelLTe0.9999)) P(5)=1.,
K=K+1

IF(K=100) 14242 N

WRITE(2592001) ToYyeLyFlyW,IBIS

XY(1)=Y(1)

YY(I)=Y(2)

I=1+1

IF(ABS(W)eGTe0s.01) GO TO 202

NN=1 ‘

FORMAT(6E13,5,15)

K=0

RETURN

END
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00
00
00
00
00
00
00
00
00
00
oo
00
00
00
10
10
10
10
10

32661L°0
325618°0
325668 °0
3€5665°0
3E6615°0
3€55€8°0
3€565L°0
395659°0
3%5515°0
3%56L%°0
366615°0
356555 °0
355619°0
356619 °0
396613 °0
396612 °0
39566L°0
30L5618°0
3L6618°0
3L56L3°0

385518°0

38656L°0
38551L°0
3865L.9°0
366619°0
3656L19°0
366614°0
300008 °0
300001 °0
302001 °0
307001 °0
300001 °0
300001 °0

n

29
20
20
20
29
29
20
20
20
20
)
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

<0

4]
r4Y)
20
<0
[4Y)
o

323¢€l%°0
388¢eL%°0
363eLy°0
388¢el%°0
398¢L%°0
398¢€L%°0
368€L%°0
366eL%°0
32)%7L%°0
3%1%LH»°0
EATA TR A]
3eevlv 0
30%9L%°0
399 H5L%°0
36%%L%°0
ILSHYLY°0
3094%L%°0
329%L%°0
399491 %°0
31L%L%°0

ISLYLY°0

328%L%°0
3L89L%°0
3469150
3864%L%°0
3206L%°0
3015L%°0
3»1SsL%°0
3815L4°0
3.09L%°0
3559L%°0
398LL%°0
3Z18L%°0

AM

20
20
4]
20
20
40
4]
0
4y
4]
20
44
20
2o
(4]
2o
4
20
20
o
20
co0
4y
44
o
44}
20
raY)
20
2o
c0
4y
20

476155°0
300266°0
390265°0
321265°0
381265°0
352265°0
3J1€255°0
3LE255°0
3E%255°0
36%2565°0
156265°0
319265°0
309266 °0
3€1265°0
361265°0
3982565 °0
326265°0
386265°0
370€65°0
301€55°0
391€66°0
322€65°0
382€65°0
IPEESHSG®D
JT¥€65°0
JLYELS®0
IESELS °0
3566€56°0
359€65°0
31LE65°0
JLLE6GS 0
3E8E66°0
368€6G°0

AA

10-481122°0
10-381592°0
10-361292°0
10-302592°0
10-302€92°0
10-312192°0
10-322552°0
10-322262°0
10-3€2552°0
10-3%2€52°0
10-352152°0
10-3526%2°0
10-3921%2°0
10-3L25%2°0
10-3L2€%2°0
19-382142°0
10-3625€2°0
10-362L€£2°0
10-30£6€2°0
10-31€€€2°0

10-32€£1€2°0

10-32€622°0
10-3€€222°0
10-3%€522°0
10-3%€€22°0
10-35€122°0
10-39€512°0
10-39€L12°0
10-3L€S12°0

10-38€€12°0

10-38€112°0
10-36€602°0
10-30%L02°0

i A



APPENDIX III
Dif ferential Forms

A2.1 1Introduction

Knowledge of differential forms is useful in the analysis and
synthesis of engineering systems. A more complete treatment may be

found in Flanders (F7].

The objects that occur under integral signs are called exterior
differential forms. For example, the line integral, surface integral,
and volume integral lead to the following differential forms in 3-

dimensional Euclidean space:

w=Adx +Bdy + C dz (one-form) (A2.1)
a = P dydz + Q dzdx + R dxdy (two-form) (A2.2)
A = H dxdydz (three-form) (A2.3)

In the n-dimensional space, the quantities are called r-forms in
n variables.

A2.2 Exterior Algebra

In the algebra of differential forms the operations of addition
and multiplication obey the usual assoctative and distributive laws.
Multiplication, however, is not commutative but anticommutative, i.e.,

dx, A dxj = -dxj Adx (A2.4)
The exterior product is sometimes called the wedge product. Often the
product symbol A is omitted. Hence,
dx, dx = - d A2.4
1 &y dx:l x, ( )
This implies

dxi A dx1 =0 (A2.5)
141
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In the two-form given (A2.2), use of (A2.4) eliminates terms
like dzdy.

The exterior product has the following properties:

(1) (wtz)An = (wAn) + (zAn) (A2.5)
(2) (cw)Az = c(wAg) (A2.6)
3 zAhows= (-1)rsw ANz, (A2.7)
if w has degree r and ¢ has degree s Hl
(4) (ghw)An = gA(whAn) (A2.8)

A2.3 The Exterior Derivative

The exterior derivative of a p-form w is a (p+l)-form dw obtained
by applying an operator d to transform w to dw.
For example if w is a three-form in four variables

w = z wijk dxy A dxj
1<j<k

A dxk (A2.9)
or, omitting the product symbol
w = 0)123 dxldxzd)(3 + wlzl‘ dxldxzdxl. + w234 dxzdx3dx4 (2.10)
The exterior differential dw is defined as

de= ) do dx, dx, dx (2.11)
i<j<k 1jk i b k

Where wijk is a function of xl, Xg» x3, and xa and is assumed to
be differentiable.

This definition 1is readily generalized.

The exterior differential has the following properties:

(1) d(wtn) = dw + dn (A2.12)

(2) d(wAn) = dw A n+ (-1)F o A dn, (A2.13)

if w is an r-form and nis an s-form
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(3) d(dw) =0 (A2.14)

w and n are assumed to be differentiable.

Property 3 is called the Poincare' lemma. It implies the equality
of mixed second partial derivatives. The general case is proved by
induction.

For simplicity only the O-form is 3 variables is considered,

w = f(x) (A2.15)

Then there results the l-form

do = 25 ax + 2% gy 4+ 2F 4, (2.16)
LR ay 9z
Then
d(de) = of of of
(dw) = d(zp)hax + dgph dy + Az dz (A2.17)

Carrying out the differentiation, and using the properties of
exterior multiplication,
d(dw) = 0 (A2.18)
In 3-space, the Poincare' lemma d(dw) = O interprets as
curl (grad f) =0 (A2.19)
div (curl V) = 0 (A2.20)

A2.4 Integration of Forms

The primary purpose of this section is to present the n-dimensional
Green's Theorem, also called the n-dimensional Stoke's Theorem. What
the classical theorems state for curves and surfaces, these theorems

state for the higher-dimensional analogs called manifolds.

An n-dimensional manifold consists of a space M and a collection

of local coordinates neighborhoods Nl’ N ... such that each point of

2’

M lies in at least one of the neighborhoods. Whereas, an n-dimensional
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manifold may not be a Euclidean space, it appears to be Euclidean to a

short-sighted observer in the manifold.

The proof of the n-dimensional Green's Theorem is simplified if the
concepts of chains and Euclidean simplices are introduced. This is done
to eliminate the need to chop up manifolds into small pieces. Instead
of working with manifolds where things are more difficult, Euclidean
spaces may be used where things are relatively more simple.

Euclidean simplices are defined as follows:

A O-simplex is a single point (po).

A l-simplex is a directed closed segment on a straight line.
It is completely determined by its ordered pair of vertices
(PO’ Pl)'

A 2-simplex is a closed triangle with vertices taken in some
definite order. It is determined by the ordered triple
(Bgs Py Py,

A 3-simplex is similarly the ordered quadruple (PO, Pl’ PZ, Py).

In general, an n-simplex is the closed convex hull (PO, ooy Pn) of
(n+l) independent points taken in a definite order. Independent points
means that the n vectors (Pl—Po), (PZ—PO), e (Pn—PO) are linearly in-
dependent. The convexity condition implies that the n-simplex is the
set of points.

P=tP + ... +¢tP
oo

R £,20, Yty =1 (A2.21)

The boundary 95 of a simplex S is a formal sum of one lower dimension
with integer coefficients defined as follows:
n

i
3 (Pyy Ppy wves P) -120 (D, weub 5 P

vees Po) (A2.22)
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For example, the 3-simplex is bounded by four faces, i.e.
B(PO’ Pl’ PZ’ P3’) = (Pl» P2: P3)-(P0’ PZ’ P3)+(P(‘-’ Pja P_'-')‘
(PO’ P]’

The terms having positive signs correspond to orientations wnich

P,) (A2.23)

may be associated with an outward normal if the points are traversed

in a counter clockwise direction. See Figure A2-1.

Figure A 2.1 3-Simplex with Orientation

An n-chain is a formal sum

c=17 als; (A2.24)
where ai are constants and Si are n-simplices.
The boundary of the chain is defined as
Cc =) a1 3s (A2.25)

i

As a result, the boundary of each chain has zero boundary.
9(3aC) =0 (A2.26)
For example consider the boundary of the 2-simplexS where

S = (PU, P.s Py) " (A2.27)
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Then
3S = a(PO. Pl’ Pz) = (P, PZ)-(PO, P2)+(PO, Pl) (A2.28)
and
3(3S) = (P2-P1)-(P2-P0)+(P1-PO) (A2.29)
Hence
3(3S) =0 (A2.30)
and
3(3Cc) =0 (A2.31)

It is convenient to have standard models of the simplices. The

standard n-simplex is defined as

n
S = (RO, oo Rn) (A2.32)

The points RO’ ooy Rn in n-dimensional space are taken as

R0 = (0 ... 0
R, = (10 ... 0)

Ry = (010 ... 0)

.
.

R, = (00 ... 01)
Integration of a n-form defined on a domain N of E" which includes

n
S is written as

[ oo =Js‘“ AGkys -evs X)) dxjdxy...dx (A2.33)
s

The right side is standard ordinary n-fold integration over the
standard n-simplex.
Since we wish to integrate a n-form on a manifold M, it is necessary

to relate the standard n-simplex to the n-simplex in M (denoted by o).
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Hence

[on

o s (A2.34)
where ¢ is a smooth mapping of the neighborhood N of s™™ into M.
It can be shown that
I w = J dw (A2.35)
30 o]
- n
Also since C = ) a;04
J w= f dw
3C c (A2.36)

This is Stoke's Theorem in its most general form. Recall that C is

a chain and 93C is its boundary.



APPENDIX IV

ALTERNATE DIGITAL PROGRAM

**#¢CONT INUOUS SYSTEM MODELING PROGRAM®###

*%%*PROBLEM INPUT STATEMENTS*#»

TITLE
FUNCT
FUNCT
METHOC
PARAM

T IMER
FINISH
PRINT

ASKC

MUET 1= (".15""1.’9(Co'°o°’o(oc759.6’"015910' 0({e57

MUET2=(=e159=1e¢) 9(0e090e0) 9(e075906)9lel55le) 9(e57
RKSFX

A=1,9B8=1,

MULl=A*AFGEN(MUET1,ETAL)

MU2=B*AFCEN(MUET2,ETA2)

VVDOT==8¢*(MUL+MU2¢A+B)

VV=INTGRL(60.0,VVDOT)

vvD=VV

SOIST=INTGRL (0eOyVV)

WV1=INTGRL(60,0,WV1DOT)

WV1COT=1210+%MUL-C,e 79%*T1

WV200T=121C*MU2-0,79%T2

WV2=INTGRL (60409 WV200T)
WV11=LIMIT{(Oey60e0yWV1)

WV1C=DELAY(1ye0109hV1l)
ETAl1=1,0-WV11l/VV

WV22=L IMIT(0e9y60s0,WV2)

WV20=DELAY(1y«010,WV22)
ETA2=1,0-WV22/VV

Til=1,66%P1

T2=1,6€%P2

P2=P1

ETALIR=,15*VV
ETALA=VVC-(WVID+WV2D)*,5
Y1=CERIV(0,0,ETALA)
ERRIN1=(ETA1A+,15%Y]1)-ETALR
ERRINZ2=(ETA2A+,15%Y2)-ETA2R
ERROT1=INSW(ERRIN1ly 1¢0y=3,0)
E1l=15000+*ERROT1
Pl=INTGRL(CeOyX1)

Xl=X11%E1l

X11=I0R(Y1l11l,Y112)

Y111=AND(Y11,P1)

Y112=AND(E1l,Y12)

Y11=NOT(El)

Y12=NOT(P1-1200.)
FlNTIM:‘.'DELT’QCOCZ'DEL'IN‘.OOOOOOOOI'PRDEL'.OZ'O

VV=1,0
ETALRyETALAyMULyERRINLJERRCT1, WV2D4VV 4Pl ,SDIST

PRTPLT SIZE(Ses6e)VVyWV1D
PARAM S12€E=0.
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#%¢4CONTINUOUS SYSTEM MODELING PROGRAM$#s#

¢ e —— e G- -

*¢*PROBLEM INPUT STATEHENTS“‘

TITLE ASKC

METHOD RKSFX C T T

PARAM B=1.4C=1.90=2,

FUNCT MUETI=(-e15¢<1:1 910 G0 UTH (0TS 9361901591191 57

FUNCT MUET22(=e159=1¢) 9 (0690e0) 0 (e0T5¢0e6)9(elS551led (57
MUl=B*AFGEN(MUET1,ETALY — Tt
MU2=C*AFGEN(MUET2,ETA2)
VVDOT=-8,.®{MUL1+MU2Z24D) "~
VV=INTGRL(60.0,VVDOT)
VVD=DELAY(S,.0IS,vV}y ~— ~ "~ T T T T
WV1IDOT=1210.%MUL-0, 79%*T1
WV2D0T=1210.%*MU2-0, T9*TZ
SOIST=INTGRL(0.0,VV)
WVL1=INTGRL(60.0,WVLIDOTY =~ -
WV2=INTGRL(60.,WV200T)
ETA1A=VVD-WVID T
ETA2A=VVD-WV2D
Ti=1.66*%P11
T2=1.66*P22
ETAl=1,0-WV1l/VV
ETA2=1.0-WV22/VYV
WVL1=LIMITIO,.y60.0,WVIY " =~ — 77
WV22=L IMIT(0.960.09WV2)
WV20=DELAY(5,.015,WV22)
HVID'DELAY(S0.0I59“V11'
ETA1R=,85%VVD ’
ETA2R=,85%VVD
Y1=DERIV(D0.0,WVID) ~— —— T
Y2=DERIV(0.0,WV2D)
ERRIN1=ETALR-WV1D-,.10%Y1
ERRIN2=ETA2R-WV2D-.10%*Y2
ERROT1=INSW(ERRIN1,y 1.0,-3.0)
ERROT2=INSW(ERRINZ,1. 01‘3 0’
E1=15000.*ERROT1 T
E2=15000.*ERROT2
P1l=INTGRL(0.0,E1)
P2=INTGRL(0.0,4E2)
P22=LIMIT(0.91200.9P2)
P11=LIMIT(0.91200.4P1)

TIMER FINTIM=4,,DELT=,0002,0ELMIN=, 000000001.?“05L=.020

FINISH vv=1,0

PRTPLT SIZE(%44.+6.),TIME,WVID,VV

LABEL WHEEL VELOCITY VS TIME

PARAM SIZE=0,

PRTPLY SIZE(S.96¢)+sTIME,P1

PRTPLTY SIZE(S.¢b6.)TIME,MUY  ——~—— -~ 7770

PRTPLT SIZE(S5496.) ¢ TIME,ERRINL

PRTPLT SIZE(Se.96.)9TIME,WV20D '

PRINT ETALRyMUL yERRINL,ERROT1yWV1IDyVVDyVV,yP1,SOIST

END B
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*%x%PROBLEM INPUT STATEMENTS*%%

TITLE BRAKING DYNAMICS

FUNCT MUET13(=0159=10)9(0690e0) 90 e0T540e6)9(al15¢1e),(. 5T409)

METHOD RKSFX o o

PARAM Al’l.'AZS.') A3=.9'A4'l.

PARAM  MA=156.,A=4.9B36.,IVE1326.,W=3e yIWR=1.375,W121250.,W2:

PARAM W3I=1250.,W4&=1250,
MULl=A1*AFGEN{MUET1,FTAL1)
MU2=A2*AFGEN(MUET1,ETA2)
MU3=A3*AFGEN(MUET1,ETA3)
MU4=A4*AFGEN(MUET1,ETAS)
UDOT=VER-(1,/MA)*(B1+B24B3+B4)
U=INTGRL(60,,UDOT)
VOOT==U*R=-( 1. /MAY&(L1+L2+L3+L4)
V=INTGRL(0.,VDOT)
RDOT=(1./TV)*(B(L3¢L4)-A*(L1+L2) ¢W*(B1+B4-B2-83))
R=INTGRL(0.,RDOT)
ALPH1=(V+A®R) /U1
ALPH2=(V+A%R) /U2
ALPH3=(V-B#R) /U3
ALPH4=(V-B*R) /U4
Ul=U-W*R
U2=U+W=R
U3=U+W*R
U4e=U-W*R
SOIST=INTGRL(0.0,U)
WV1D0T=B1/IWR-0,79%*T1
WV200T=B2/IWR=0Q,T7T9%*Y2 . . . .
WV3D0T=R3/1WR-0,79%T3
WV4DOT=B4/IWR-0,T9*T4
WV1=INTGRL(60.,WVIDOT)
WV2=INTGRL(60.,WV2D0T)
WV3=INTGRL(60.4WV3DOT)
WV4=INTGRL(60,,WV4DOT)
WV11=LIMIT(O.,960.,9WV1)
WV22=L IMIT( 04600 yWV2)
WV33=LIMIT(0.¢60.9WV3)
WV443LIMIT( 0,960, ¢ WV&)
WV1D=DELAY(1,.020,WVI11)
WV20=DELAY(1,,020,WV22) _
WV3D=DELAY(1y.0204WV33)
WV4D=DELAY(1y.020,WV44)
ETAl=1.,-WV1l/U1
ETA2=1.-WV22/U2
ETA3=1.,-WV33/U3
ETA4=1,-WV4a/U4
Til=1,66%P11
T2=1.66%P22




FINISH
PRINT
PRTPLTY
END
PARAM

 B3=MU3*W34COS(7.85%ALPH3)
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T3=1,66%P33
T4=1,66%P64 . o
Bl=MU1*W1*COS(T7.85%ALPHI)
B2=MU2*W2*COS(T.85%ALPH2) L
B&4=MU4*W4*COS(T.B85%ALPHSG)
L1=MUL*W1*SIN(T.85%ALPH1)
L2=MU2*W2%*SIN( T .85%ALPH2)
L3=MU3*W3*SIN(T.85%ALPH3)
L4=MU4A*W4*SIN(T.85%ALPH4Y
ETA1R=0,5%U
FTALA=U=-.25%(WV1D+WV2D+WV3ID+WV4D)
Y1=DERIV(0.,ETALA)
ERRIN1=(ETALlA+,15%Y1)-ETALR
ERROT1=INSW(ERRIN1,1e9-3.)
E1=15000,*ERROT1
Pl=INTGRL(0.¢X1)
P2=P1
P3=p]
P4=P]
X1=X11%E1
X11=TOR(Y111,Y112)
Y111=AND(Y11,P1)
Y112=AND(E1,Y12)
Y11=NOT(E1)
Y12=NOT(P1-1200.)
P11=DELAY(14.,020,P1)
P22=P11
P33=P11
P44&=P11
HEAD=INTGRL (O, 4R)
YDOT=U%COS(HEAD)-VESIN(HEAD)
XDOT=U*SIN(HEAD) +V*COS(HEAD)
Y=INTGRL(0.yYDOT)
X=INTGRL(0. o XDOT)
T IMER FINTIM=4, ,DELT=,0002,DELMIN=,000000001,PRNEL
U=1l.

MULoWVL ¢sWV2oWV3I WVL,UsVeRyPl1oYoX,HEAD
MUL WVL o WV2,WV3,WVL,U,V,R,PLl,MU2,MJ3,MUSL

Al=1l.yA2=,7,A3=, T, AG=],

RESET LABEL

LABEL
END
PARAM

70 PERCENT MU

A=le9A2=,59A3=,59A4=1,

RESET LABEL

LABEL
END
svop

S0 PERCENT MU ON ONE SIDE
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