DECISIONBIASESINUSERAGREEMENTWITHINTELLIGENTDECISIONAIDS ByJacobBennionSolomon ADISSERTATION Submitted toMichiganStateUniversity inpartialfulÞllmentoftherequirements forthedegreeof MediaandInformationStudiesÐDoctorofPhilosophy 2015ABSTRACT DECISIONBIASESINUSERAGREEMENTWITHINTELLIGENTDECISIONAIDS ByJacobBennionSolomon IntelligentDecisionAids(IDAs)areemergingtechnologiesusedinareassuchasmedicine, Þnance,ande-commercethatleverageartiÞcialintelligence,datamining,orrelatedcompu- tationalmethodstoproviderecommendationstodecisionmakers.Animportantgoalfor designersshouldbetohelpusersidentifyandacceptgoodrecommendationsandignorepoor recommendations.However,considerableresearchhasfoundthatIDAusersfrequentlymake poordecisionsaboutwhichrecommendationstofollow. IpresentÞndingsfromthreestudiesthatprovideevidenceoffourdistinctdecision- makingbiasesrelatedtoIDA-supporteddecisionmaking.Thesebiasesarecharacterizedby anincreaseinusersÕagreementwithanIDAÕsrecommendationsthatisunassociatedwith therecommendationsthemselvesbutassociatedwithsomeotheraspectofthedesignofthe IDAoroftheuser. InanexperimentthatmanipulatedtheperceivedcustomizabilityofanIDAthatassisted usersinpredictingtheoutcomesofbaseballgames,Ifoundthatuserswhobelievedtheyhad customizedtheIDAweremorelikelytofollowbothgoodandpoorrecommendationsthan otheruserswhoreceivedidenticalrecommendationsfromtheIDAbutdidnotcustomizeits logic.ThisÞndingisevidenceofa customizationbias .Importantly,thisstudyfoundthat customizationbiasisnotcausedbyusersbelievingtheyhaveimprovedthealgorithmby customizingit. Inasecondexperiment,subjectswereencouragedtobelievethatthesystemhadei- therhighorlowe ! cacypriortoseeingrecommendations.Thisencouragementcreatedan expectationsbias inwhichsubjectsweremorelikelytofollowbothgoodandpoorrecom- mendationswhentheyhadhigherexpectationsoftheIDAÕse ! cacythanothersubjectswho hadexpectedtheIDAÕsalgorithmtoperformpoorly. Inthethirdexperiment,IassesseddecisionmakingbyusersofanIDAforrecommend- ingexerciseactivities.SubjectswhousedacustomizableversionofthisIDA,wherethe recommendationsdependedonhowusersconÞguredtheIDA,weremorelikelytoagree withtherecommendationsthanuserswhoreceivedrecommendationsofsimilarqualitybut didnotcustomizetheIDA.ThisÞndingshowsadditionalevidenceofcustomizationbias, demonstratingthatitextendstoIDAswherethecustomizabilityhasrealinßuenceoverthe recommendationsratherthanmerelyperceivedcustomizationasintheÞrststudy.Inthis studyIalsofoundthatwhenusersbelievethatanIDAÕsinternallogicismoreclearand understandable,theyaremorelikelytofollowrecommendationsregardlessoftheirquality. ThisÞndingsuggestsa transparencybias .Therewasastrongrelationshipbetweenthequal- ityofrecommendationsthatsubjectsreceivedandthequalityoftheirdecisions,indicating thatwhendecisionmakersaresupportedbyIDAs,thequalityofrecommendationsisim- portanttosystemsuccess.However,subjectswhoperformedthedecisiontaskunaidedby anIDAperformedaswellastheIDA-supportedsubjects. TheseÞndingsshowthatwhendecisionmakersareaidedbyanIDA,thesystema " ects thedecisionmakingprocessbyrequiringuserstoevaluaterecommendations.IDAusersmay makebiasedevaluationsduetocharacteristicsoftheinterfaceandinteractiondesignofthe systemaswellasindividualcharacteristicsoftheusers.IntheconcludingchapterIdiscuss theimplicationsoftheseÞndingsforthedesignofIDAsandrelatedsocio-technicalsystems, aswellasforfutureworkoncomputer-supporteddecisionmaking. ACKNOWLEDGMENTS Therehavebeenmanycontributionsfrommanydi " erentpeoplethathavemadeitpossible formetopursueaPh.D.andcompletethisdissertation,andIwouldliketoacknowledge thosecontributionshere. Ihavebeenfortunatetohavebeensupportedincountlesswaysbymyfamily,andIam gratefultothembeyondwhatIcanadequatelydescribe.IamgratefultomywifeChalsea forgivingmeherfullsupportformetocompleteaPh.D.Iamalsogratefultomyparents whohavebeensupportiveandencouragingofmeunconditionallythroughoutmylife. MyadvisorRickWashhasspentcountlesshoursprovidingfeedbackandguidanceonmy workandtomeasayoungresearcher.Hehasgivenmewithopportunitiestoworkasa researchassistantonhisgrant-fundedresearch,whichprovidednotonlyÞnancialsupport butalsoinvaluableexperienceatdesigningandexecutingresearch.Thatexperiencehas beencriticaltomydissertationworkandtomydevelopmentasaresearcher.Rickhas encouragedmyideas,givenmeconstructivecritiques,andbeenpatientandallowedme ßexibilitytopursuenewideas(evenbadones)thathavehelpedmelearnandgrow. Mydissertationcommitteehasmademanyimportantcontributionstomydissertation andIamgratefulfortheirinputandfeedbackthathaveimprovedthisworksubstantially.I Þrstcameupwithseveralideasthatweretheseedsforthisdissertationfromthediscussion andfeedbackIreceivedinWeiPengÕscourseinmyÞrstyearasaPh.D.student,andher feedbackandsuggestionscontinuedtobehelpfulthroughouttheprocessofdevelopingand reÞningmydissertation.EmileeRaderhasprovidedimportantfeedbackonthedesignand executionoftheresearch,andshehasalsogivenmeimportantguidanceforimprovingthe wayIcommunicatemyideas.Emileehasalsogenerouslyprovidedfundingforsomeof researchinmydissertation.JoshIntronemadeseveralsuggestionsonboththedesignof thestudiesandthedesignofthesystemusedinmyresearchthatprovedtobecriticalfor ivobtaininginterpretableresearchresults.IamalsogratefulfortheguidanceIreceivedfrom formermembersofmycommitteeGaryHsiehandJosephB.Walther,whocontributedto theearlystagesofthisresearch. IhavebeenamemberoftheBITLabatMSU,whereIhavebeenfortunatetohave receivedhelpfulfeedbackonmanyoccasionsfromthefacultyandstudentsthere.Iam particularlygratefultoChankyungPak,whohelpedmeÞgureouthowtodosomeofthe morecomplexstatisticalproceduresthatareusedinmydissertation. AndIalsowishtoacknowledgetheÞnancialsupportIreceivedforthisworkfromthe CollegeofCommunicationArtsandSciencesintheformofaDissertationCompletionFel- lowshipandSummerResearchFellowship. TABLEOFCONTENTS LISTOFTABLES ...................................ixLISTOFFIGURES ...................................xiCHAPTER1INTRODUCTION ...........................11.1IntelligentSystemsandIntelligentDecisionAids................2 1.2AgreementwithRecommendations.......................6 CHAPTER2BACKGROUND ............................112.1ComputationalTechniquesforDecisionSupport................12 2.1.1CollaborativeFiltering..........................12 2.1.2Content-BasedRecommendations....................14 2.1.3ArtiÞcialNeuralNetworks........................15 2.1.4GeneticAlgorithms............................15 2.2ApplicationsofIDA................................16 2.3IDAE "ectiveness.................................17 2.4AgreementwithRecommendations.......................19 2.4.1Trust....................................19 2.4.2AutomationBias.............................21 2.5Transparency...................................23 2.6Customization...................................26 2.6.1CustomizationofInteractiveSystems..................27 2.6.2CustomizationinIDAs..........................29 2.6.2.1TheoreticalBasisforCustomizableIDAs...........29 2.6.2.2CustomizableIDAResearch..................33 2.6.3PotentialProblemswithCustomizationinIDAs............37 2.6.4SummaryofCustomization.......................40 2.7Summary.....................................41 CHAPTER3CUSTOMIZATIONBIAS .......................443.1Introduction....................................44 3.2Methods......................................48 3.2.1GamePlay................................49 3.2.2IDAandConditions...........................52 3.2.3SubjectMatching.............................53 3.2.4Measures.................................56 3.3Hypotheses....................................59 3.4Results.......................................62 3.4.1DescriptiveStatistics...........................62 3.4.2E ! cacyBeliefsandAgreement.....................65 vi3.5Discussion.....................................76 3.5.1Limitations................................82 CHAPTER4CAUSALEFFECTOFEFFICACYBELIEFSANDEXPECTA- TIONSBIAS ..............................854.1Methods......................................86 4.2Results.......................................89 4.2.1Descriptiveresults............................89 4.2.2Manipulationcheck............................89 4.2.3Estimateofe "ectofe !cacybeliefsonagreement...........93 4.2.4Causale "ectofe !cacybeliefsonagreement..............94 4.2.5DecisionMaking.............................97 4.3Discussion.....................................98 4.3.1Limitations................................101 CHAPTER5CUSTOMIZATION,NON-CUSTOMIZATION,ORBOTHINAN IDAFOREXERCISEDECISIONS ..................1025.1ResearchQuestions................................103 5.2ExerciseRecommender..............................107 5.2.1IDARecommendationData.......................107 5.2.1.1CrowdsourcingExercise/AttributeEvaluations.......110 5.2.1.2LatentAttributes........................111 5.2.2CustomizingRecommendations.....................113 5.3Methods......................................115 5.3.1DecisionTask...............................115 5.3.2ExperimentConditions..........................118 5.3.3Procedure.................................120 5.3.4Measures.................................122 5.4Results.......................................123 5.4.1Questionnaire...............................123 5.4.2RecommendationQuality........................125 5.4.3DecisionMaking.............................126 5.4.4Agreement.................................133 5.4.5Transparency...............................136 5.5Discussion.....................................138 5.5.1Limitations................................143 CHAPTER6CONCLUSIONS ............................1456.1IDA-SupportedDecisionMaking.........................145 6.2CustomizationasanIDADesign........................148 6.3ImplicationsforIDAsintheWild........................151 6.4Conclusion.....................................154 APPENDICES ......................................155AppendixATrustPropensityScale ........................156AppendixBBaseballKnowledgeScreeningQuiz .................157AppendixCCategoryRatingsSurvey .......................158AppendixDExerciseRecommenderSeedDataSurveyExample .........159AppendixEExerciseActivitiesandLatentFactorScores ............160AppendixFExerciseRecommenderStudyInstructions .............163AppendixGExerciseRecommenderInterface ...................167AppendixHPost-TestQuestionnaireforExerciseRecommenderStudy .....171REFERENCES .....................................178viiiLISTOFTABLES Table3.1Factoranalysisofe ! cacybeliefsmeasures..................57 Table3.2Factoranalysisofpropensitytotrustautomateddecisionaidsitems....58 Table3.3Descriptivestatistics..............................63 Table3.4E !cacybeliefsmodel..............................66 Table3.5MultilevelmodelsofagreementwithIDArecommendations.........68 Table3.6Mediationanalysisforscoreagreement....................71 Table3.7Mediationanalysisforwinneragreement...................71 Table3.8Resultsofpost-testsurvey...........................74 Table3.9Recommendation/conÞgurationconsistencyledtogreateragreement....77 Table3.10Summaryofresults...............................78 Table4.1Descriptivestatisticsandfactoranalysisofdependentvariables.......89 Table4.2E !cacyvariablesbyexperimentcondition..................91 Table4.3E " ectofencouragementone ! cacybeliefs..................91 Table4.4E " ectofe ! cacybeliefsonagreement.....................92 Table4.5Two-stageleastsquaresestimatesofcausale " ectofe ! cacybeliefson agreement.E ! cacybeliefsareinstrumentedbyencouragementinthis model......................................93 Table4.6Decision-makingquality............................97 Table4.7Summaryofresults...............................98 Table5.1Latentattributesfromexercisesurvey.....................111 Table5.2PercentagesofpeopleansweringyestothesequestionsabouttheExercise Recommender..................................123 ixTable5.3Questionnairequestionsaboutrecommendations.Answeredon5-point Likertscale(StronglyDisagreetoStronglyAgree).Standarddeviations inparentheses..................................123 Table5.4Self-reporteduserexperiencevariables....................124 Table5.5Self-reportedunderstandingofIDAlogic...................125 Table5.6Meansandtandarddeviationsofrecommendationqualitywithinconditions.126 Table5.7Thee " ectofeachrecommendationtypeondecisionquality.........128 Table5.8DecisionmakingwithinonlytheIDA-supportedconditions.........130 Table5.9ModelofagreementwithoneoftherecommendationsinCustomonly andNon-customonlyconditions........................132 Table5.10Transparencymeasuresbycondition.Itemsareona5-pointscale.....135 Table5.11Relationshipbetweenperceivedtransparencyandagreementwithrec- ommendations..................................136 Table5.12Summaryofresults...............................139 Table6.1DecisionbiasesinIDA-supporteddecisionmaking..............146 TableE.1Exerciseratingsfactorscores..........................162 xLISTOFFIGURES Figure2.1SomehypotheticalsystemdesignsandtheirplacementwithinParasur- amanetal.Õsofdecisionmakingstagesandlevelsofautomation......31 Figure3.1HowcustomizationcancreateagreementwithIDArecommendations...46 Figure3.2CustomizableIDA...............................51 Figure3.3Distributionofmatchespercustomizer....................55 Figure3.4PreferenceforconÞguredcategories......................63 Figure3.5Averagewinneragreementbyroundnumber................65 Figure3.6Agreementwithrecommendedscore.....................67 Figure3.7ProbabilityofagreeingwithIDAÕspredictedwinner............69 Figure3.8Totalpointsearnedbysubjectsineachconditionoverthe12rounds...72 Figure3.9Decisionqualitybyrecommendationquality.................73 Figure3.10GreaterconsistencybetweenrecommendationandconÞgurationledto moreagreement................................76 Figure4.1Winneragreementoverthecourseofthe12rounds.............90 Figure4.2E ! cacyBeliefsoverthecourseofthe12rounds...............90 Figure4.3Distributionsofe ! cacybeliefsbyencouragementcondition........92 Figure4.4Associationbetweene ! cacybeliefsandagreement.............95 Figure5.1ExerciseRecommenderinterface.......................108 Figure5.2Distributionofweightedrecommendationscores..............127 Figure5.3Distributionofrecommendationscoreslistedas#1onthepage......127 Figure5.4Distributionofscoresofbestrecommendationonthepage.........129 Figure5.5E " ectofrecommendationqualityondecisionquality...........131 Figure5.6Agreementwithrecommendations......................134 xiFigure5.7Changeinaverageagreementoverthe10roundsoftheexperiment....135 Figure5.8E " ectoftransparencyonagreementwithrecommendations........137 Figure6.1IDA-supporteddecisionmakinginvolvesevaluatingrecommendations, whichdoesnotÞtneatlyintoParasuramanetal.Õsframework.......147 FigureF.1Exerciserecommenderinstructions.....................164 FigureG.1Exerciserecommenderinterface.......................167 FigureH.1Exerciserecommenderpost-testsurvey....................171 xiiCHAPTER1 INTRODUCTION Advancesinmachinelearning,artiÞcialintelligence,andrelatedcomputationaltechniques havebeenwidelyappliedtohelppeoplefrommanydi " erentindustriesandcircumstances makebetterdecisions.AclassofsystemscalledIntelligentDecisionAids(IDAs)provide recommendationstodecisionmakersbyleveraginglargequantitiesofdataandapplying artiÞcialintelligenceorsophisticatedstatisticalmodelstogeneraterecommendations. Inthisdissertation,IarguethatusingIDAstoassistindecisionswithhighuncertainty altersthedecisionmakingprocessbyrequiringuserstoevaluatetherecommendationsthat thesystemprovides.Iwillshowthatthiscanbeachallengingtaskfordecisionmakersand thatpeoplearenotalwayscapableofidentifyinggoodandpoorrecommendations.Iwillalso showthatthewhilequalityofrecommendationsiscriticaltoagreementwithrecommenda- tions,userscanhavebiasesthatcaninßuenceusersÕagreementindependentlyofthequality ofrecommendations.Thereisacustomizationbias,whereusersareinclinedtoagreewith recommendationswhentheyhaveparticipatedincustomizingtheIDAÕsinnerlogic.There isalsoanexpectationsbias,whereusersaremoreinclinedtoagreewithrecommendations whentheyexpectthesystemtoperformwellbecausetheybelieveitsprocessforproducing recommendationsise !cacious.Aconsistencybiasoccurswhenuserswillbemorelikely toagreewithrecommendationsthatappeartobeconsistentwiththewaytheIDAwas conÞgured.Andthereisatransparencybias,whereusersaremoreinclinedtoagreewith recommendationswhentheyfeeltheyunderstandthelogicthatwasusedtoproducethem. Thesebiasesareevidencethatthedesignoftheuserexperienceisinßuentialinthedecisions thatusersmakeandthereforeinthee " ectivenessofanIDAasasocio-technicalsystem. Thesebiaseshaveprovenancebothinthedesignofsystemsandintheusersofsystems. Byobservingandreportingthesebiases,Imakeacontributiontotheoriesofcomputer- 1supporteddecisionmakingando " erknowledgethatadvancesknowledgeabouthowpeople makedecisionswhensupportedbyintelligentsystems.Additionally,anunderstandingof thesebiasesmakesapracticalcontributiontothedesignofIDAs.Becausethesebiases showpredictablebehaviorthatiscausedbythedesignofthesystem,systemdesignerscan navigatethesebiasesorevenemploythesebiasesinane " orttoengineerbetterdecision makingbyusersoftheirsystems. 1.1IntelligentSystemsandIntelligentDecisionAids SophisticatedcomputationaltechnologiessuchasartiÞcialintelligenceandÒbigdataÓalgo- rithmsareincreasinglybeingdevelopedtoaddautomationtoknowledgeworkandtodaily life(Carr,2014).Thesetechnologieshavebeencalled intelligentsystems (Guerlain,Brown, &Mastrangelo,2000).ExamplesofintelligentsystemsarethealgorithmsthatÞltercontent onsocialmediaorotheronlinecontentresources(Pariser,2011),systemsthatcollect,ag- gregate,andanalyzedetailedpersonalinformationabouthealthandbehaviortoindividuals inwhatareoftencalledsystemsfortheÒquantiÞedselfÓ(Choe,Lee,Lee,Pratt,&Kientz, 2014),searchenginesthatcatalogthewebandusealgorithmstomatchqueriestoinfor- mationwithinthecatalog,recommendersystemsthatsuggestproductstobuyormovies tosee,oralgorithmsthatcontrol(underhumansupervision)unmannedvehiclesinmilitary operations(Clare,Cummings,How,Whitten,&Toupet,2012). Afeatureofintelligentsystemsisthatdespitesophisticatedautomation,theystillne- cessitatesomehumaninteractionorcooperation(Guerlainetal.,2000).Forthisreason, intelligentsystemsaresocio-technicalsystems.Establishedprinciplesofhuman-centered designargueformakingsystemfunctionsvisibleandcontrollable(Norman,1990a),yetthe computationalmethodsbehindintelligentsystemsarenotalwaysamenabletovisibilityor controllabilitybecauseoftheircomplexity.Thishascreatedaconsiderablechallengeforde- signersofintelligentsystems,whomustdesigntheinterfacesandinteractionsbetweenusers 2andthealgorithmscontainedwithinthesystem.Asaresultofthisdi ! cultyindesigning theseinterfaceswithintelligentsystems,manysystemssu " erfrompoorusability,utility,or haveotherpracticalchallenges.ÒFilterbubblesÓ,forexample,resultfromalgorithmsthat Þlteronlinecontentinsuchawaythatthediversityofcontentthatanyonepersonsees isslowlyreduced,andthislackofdiversitycangounnoticedbyusers(Pariser,2011).Or aswillbediscussedinchapter2,intelligentsystemsusedinmedicine,aviation,andother domainscanleaduserstomakepoordecisionsbecausetheyareill-suitedtoenablingusers toproperlycalibratetheirtrustinthesystems. Norman(1990b)argued25yearsago,inresponsetoconcernsregardingtheunfulÞlled potentialofautomationtechnologies,thattheunfulÞlledpotentialofautomationisthere- sultofinadequateinterfacesandinteractiondesignbetweenhumansandautomation.Iecho thisargumenttodayregardingintelligentsystems.Intelligentsystemscannotbesuccessful unlesstheinterfacesthata " ordhumaninteractionandcollaborationwiththemareaspow- erfulandsophisticatedasthecomputationalmethodsthatmakethemÒintelligent.ÓIargue forahuman-centereddesignapproachtointelligentsystemsthatfocusesondevelopingan understandingofusers,designingtechnicala " ordanceswithinthissystem,andevaluating therelationshipbetweenthenatureoftheusersandthetechnicaldesignofthesystemon thesystemÕsoutcomes.Inthisdissertation,Ipresentresearchthatexaminesindividualand aggregateddi " erencesinhowpeopleuseintelligentsystemstomakedecisions,testsdi " erent designsofintelligentsystemsthatassistindecisionmaking,andevaluateshowthedesign ofthesystemandthenatureofitsuserscombinetodeterminedecisionmakingoutcomes. InthisdissertationIhavefocusedontheapplicationofintelligentsystemstodecision aids.ThestudiesinthisworkevaluatetheusersanddesignofaclassoftechnologyIreferto asintelligentdecisionaids .IdeÞneintelligentdecisionaidsascomputationaltechnologies that:¥ProvidearecommendationorsetofrecommendationsaboutspeciÞcactionsoritems 3thatmaybechosenbyadecisionmaker. ¥GeneratetheserecommendationbymeansofartiÞcialintelligence,statisticalormath- ematicalmodeling,orsimilarlycomplexcomputationalmethodsthatcannotbeclearly ore !cientlyrepresentedtodecisionmakersinentirety. ¥Provideauserinterfacewithwhichadecisionmakerinteractsinordertoaccessthese recommendations. ¥Refrainfromactuallyselectingorexecutinganactionordecisionwithouttheapproval oftheuser. SomeexamplesofsystemsthatareincludedinthisdeÞnitionofanintelligentdecision aidare: ¥AclinicaldecisionsupportsystemsuchasDxPlain(Barnett,Cimino,Hupp,&Ho " er, 1987)whereaclinicianprovidesinformationaboutapatientÕscase,thenclicksabutton toreceiveasetofpotentialdiagnosesthatshouldbemostseriouslyconsidered. ¥Asystemthatrecommendsmoviesthatusersmayenjoywatchingbyestimatingtheir interestsincertaintypesofmoviesbasedondatacollectedabouttheuser. ¥Asystemthatrecommendsstocksthataninvestormaywishtopurchase. ¥Asystemthatalertsaluggagescreenerofthepotentialforahazardousitemusing imagerecognitionsoftware. Twotypesofintelligentdecisionaidshaveemergedthathavebeeninvestigatedseparately bydistinctresearchcommunities. IntelligentDecisionSupportSystems havebeenthetopic ofresearchininformationsystemsliterature.Oneoftheprimaryapplicationsofthislineof researchhasbeentargetedtowardsdevelopingintelligentclinicaldecisionsupportsystems (Berner,2007).OtherapplicationswithininformationsystemsliteraturehavebeeninÞnance 4andoperationsplanning. RecommenderSystems havebeenthetopicofconsiderableresearch inhuman-computerinteractionandcomputerscience.Recommendersystemsarefrequently designedfore-commercetohelpcustomersÞnditemsorservicesthatmatchtheirpreferences. ManyrecommendersystemsuseacollaborativeÞltering(Su&Khoshgoftaar,2009)approach inwhichrecommendationsaremadetodecisionmakersbyÞndingitemspopularamong peoplesimilartothedecisionmaker. User-centeredresearchonbothintelligentdecisionsupportsystemsandrecommender systemsrevealsconsiderableoverlapinthesocio-technicalissuesthatmustbeconsideredin thedesignofthesesystems.Issuesoftrust(Wang&Benbasat,2008;OÕDonovan&Smyth, 2005;Massa&Avesani,2007;Muir,1987;Sanchez,Fisk,&Rogers,2004)transparency (Sinha&Swearingen,2002;Crameretal.,2008;Herlocker,Konstan,&Riedl,2000)and usability(Lietal.,2012;Herlocker,Konstan,Terveen,&Riedl,2004)pervadetheresearch frombothresearchcommunities. IhavefocusedthisdissertationonIDAs,ratherthanothertypesofintelligentsystemsor onintelligentsystemsmorebroadly,fortwoprimaryreasons.First,theyareanimportant subclassofintelligentsystemsthatarebeingincreasinglyadoptedtoassistinmedicine,law, Þnance,andotherprofessions(Carr,2014)wheredecisionmakersmakedi !cultdecisions thata " ectlives.BygeneratingnewknowledgethatcanbeusedtoimproveIDAs,this researchcanmakeanimportantcontributionintherealworld.Second,IDAshaveseveral propertiesthatmakethemidealforhuman-centeredsocio-technicalresearchasdescribed above.Theycanbeusedtoassistinveryexplicitdecisionsforwhichadherencetothe systemcanbeclearlyandobjectivelyevaluated.Othertypesofintelligentsystemsmayhave amultiplicityofintendedpurposesorofdi " erentbehaviorsthatareofinterest.Filtering algorithmsonsocialmedia,forexample,mayhavepurposestocreateanengagingsite butalsotoselladvertisements,andtheremaybemanydi " erentoutcomesorbehaviorsof interestlikecontentconsumption,contentcreation,orcontentsharing.IDAscan,atleast inalabsetting,beplausiblypresentedtohaveasingularpurposeandasingularbehavior 5ofinterestwithclearandobjectivelydeÞnedcriteriaforevaluation.Thesepropertiesmake IDAshighlyusefulforquantitative-basedresearchthatseekstounderstandusersandtest intelligentsystemdesigns. However,inspiteofthisfocusonIDAs,thereisanimportantreasonthattheresultsof thesestudiesmightberelevanttointelligentsystemsmorebroadly.TheissuesthatIhave assessedinthisdissertationarelargelyfunctionsofthedesignoftheinterfacebetweenusers andthesophisticatedcomputationalmethodsembeddedinthesystem.Thecustomizability ofanalgorithm,theconsistencybetweenalgorithminputandoutput,thetransparencyof thealgorithm,orthesystemÕsself-evaluationofitsowne !cacyareaspectsofthedesign that,basedontheresultsofthestudiesdescribedinthefollowingchapters,cana " ect usersÕbehaviorwheninteractingwithintelligentsystems.AlthoughthespeciÞcbiasesand behaviorsIobserveinthisdissertationmaymanifestthemselvesdi " erentlyinnon-IDA intelligentsystems,theyareworthyofconsiderationinhuman-centereddesignandresearch onthosesystemsaswellandthisdissertationprovidesabasisforextensionsofthisIDA- focusedresearchtoothertypesofintelligentsystems. 1.2AgreementwithRecommendations Consideradoctorwhousesacomputerizedsystemthatsuggeststreatmentoptionsfor patients.Thedoctormayaddrelevantinformationaboutthepatientandthediagnosis, andthesystemwillreturnalistofsuggestedtreatments,andmaynotewhichtreatmentor treatmentsitbelievesaremostlikelytobesuccessful.Thedoctormustthenexaminethislist andconsidertheseoptions,aswellasconsideroptionsthatheorsheisawareofbutthathave notbeenrecommendedbythesystem.Imagineifthetoprecommendationisanoptionthat thedoctorwouldnothaveconsideredorwithwhichthedoctorhaslittleexperienceandwould bereluctanttoprescribe.Andalsoimagineifthistoprecommendationisthetreatment thatwouldtrulybemostbeneÞcialtothepatient.Ifthedoctordecidestofollowthis 6recommendationandprescribesthistreatment,thesystemhasbeene " ectiveatimproving decisionmaking.However,ifthedoctordoesnotfollowthisrecommendationandinstead choosesalessbeneÞcialtreatmentforthepatient,thesystemhasfailedtoimprovedecision makingdespiteachievingatechnicalsuccessatÞndingthebestpossibletreatmentforthe patient.Areversesituationisalsoplausible,wherethesystemrecommendsalessthanideal treatmentbutthedoctorignoresthatrecommendationandchoosesanotherbettertreatment thathasnotbeensuggestedbytheIDA.Inthiscase,thesystematworsthascausedno harmandmayevenbeconsideredasuccessiftheprocessofusingthesystemcontributed insomewaytothedoctormakingthecorrectdecision,eventhoughitsrecommendation wasnÕtfollowed.Butifthedoctorchosetofollowthepoorrecommendationeventhough itisnotwhatheorshewouldhaveotherwisechosen,thanthesystemwillhaveactually causedharm. ThisscenarioillustrateswhyitisimportanttounderstandwhatcausesusersofIDAsto followorignorerecommendations.IDAscanonlybee " ectiveatimprovingdecisionsifthey a)providerecommendationsthatarebetterthanwhatdecisionmakerswouldotherwise choose,andb)persuadedecisionmakerstofollowthosegoodrecommendations.Ifboth ofthoseconditionsarenotmet,anIDAmaybeine "ectiveorevenharmful.Designers mustÞndwaystoimproveboththequalityandtheacceptabilityoftherecommendations thatthesystemproducessimultaneously,andthiscanbeaseriouschallenge.Itisfurther complicatedbythefactthatifIDAsarenotsuccessfulorareinconsistentatcreatinghigh qualityrecommendations,thananye " ortstopromoteagreementwithrecommendationsmay actuallybecounterproductivebecausetheywillleaduserstomakebaddecisions. IDAs,inspiteoftheire " ortstoprovidecriticalinformationtodecisionmakers,may createnewuncertaintyfordecisionmakersiftheydonotfullyunderstandhowthesystem hasproduceditsrecommendations.Thedoctorintheexampleabovemaychoosetoignore thegoodrecommendationbecauseheorshedoesnotunderstandwhyitwassuggested, insteadoptingforalesseroptionbecauseitisbetterunderstood.IDAshavebeenshown 7tofrequentlysu " erfromalackof transparency inthatusersdonotfullyunderstandhow theyworkorwhyspeciÞcrecommendationswereprovided(Sinha&Swearingen,2002). However,therehasbeenconsiderablee " ortinIDAresearchanddesigncommunitiesto designmoretransparentsystems,primarilybyprovidinguserswithclearexplanationsfor recommendations(Lim,Dey,&Avrahami,2009;Ehrlichetal.,2011;Tintarev&Mastho " ,2011).Nevertheless,transparencyisnoteasilyachievedinIDAdesigns(Herlockeretal., 2000).ResearchontransparencyinIDAshasoftennotmadeadistinctionbetween understand- inghowasystemworksand preferring howitworks.Iarguethatuserscanlooselybe categorizedasthosewhodonotunderstandhowasystemworks,thosewhounderstandhow itworksandbelievetheprocessise " ective,orthosewhounderstandanddonotthinkthe processise " ective.InthisdissertationIwillshowthatthesedi " erenttypesofuserswill oftenmakedi "erentdecisionsinregardtoagreementwithIDArecommendations,evenwhen therecommendationsthemselvesarenodi " erent.Iwillshowthatwhenusersunderstand howasystemworksandfeelthatthesystemÕsprocesshasgoode !cacy,theywillbemore likelytofollowbothgoodandpoorrecommendationsthanotherswhohavethesamelevel ofunderstandingbutfeelthesystemhaslowe !cacy.Thisisimportantbecauseitprovides atargetforsystemdesigners.Aslongasthesystemcanproducegoodrecommendations, designerscanencouragestrongagreementbytakingmeasurestoincreaseusersÕexpectations aboutthee !cacyofthesystemÕsrecommendationlogicsothattheyarelikelytofollowthe goodrecommendations.Atthesametime,systemsneedtodevelopmethodstohelpusers understandwhenrecommendationsmaybeunreliable. Onewaythatdesignersmaybeabletosimultaneouslyimproverecommendationsand usersÕbeliefsaboutitse !cacyisbydesigningcustomizablesystemsthatrequirethedecision makertoprovidespeciÞcinputtothesystemÕslogicoralgorithm.Thisinputmaybeused toprovidelocalexpertiseorinformationtohelptheIDAprovidearecommendationthat bestsuitsthespeciÞccircumstancesofthedecision.Andbyallowinguserscontroloverthe 8algorithm,customizationcanallowuserstogiveitaconÞgurationthattheybelievehashigh e! cacy. Ihavepreviouslyfound,however,thatcustomizationleadsuserstomoreagreement withrecommendationsintheirdecisions(Solomon,2014).Thisisadecisionmakingbias thatIcall customizationbias .Inchapter3,Iwillshowthatusersarebiasedbyperceived customizationevenwhentheydonotbelieveithasledtoanygreatere ! cacyoftheIDA. ThishasanimportantimplicationforIDAresearchanddesign,asitisanexampleofhow theprocessandexperienceofusinganIDAcanimpactthedecisionmakinginwaysthatare unrelatedtothequalityofrecommendationsthesystemproduces.Inchapter5Iwillshow thatthisbiasisobservableunderastateoftruecustomizationwhereusersÕinßuenceover therecommendationsmorevisiblethaninthestudyinchapter3.Thisadditionalevidence providessomeexternalvaliditytotheÞndingofcustomizationbias. WhenusershaveanunderstandingoftheconÞgurationofasystemÕslogic,whetherbe- causetheyhavecustomizedthatconÞgurationthemselvesorhavesimplybeenmadeaware ofitinthedesignoftheIDA,thereisanopportunityforthemtoevaluatewhetherthe recommendationsareconsistentwiththeconÞguration.Forexample,inanIDAforrecom- mendingstockstopurchase,iftheusercustomizesthesystemtofocusonenergy-related stocks,andtherecommendationsdonotsuggestanyenergy-relatedstocks,theusermight thinkthatthesystemhasmalfunctionedorissimplyapoorsystem,andthenmightchoose toignoretherecommendations.Butthesystemmayhaveagoodreasonfornotsuggest- ingenergy-relatedstocksinspiteoftheconÞguration(e.g.itsalgorithmthinksallenergy stocksarepoorinvestmentsatthatmoment),andthereforeignoringthisrecommendation wouldbeabadchoicebytheuser.Inthisscenario,thelackofconsistencybetweenthe conÞgurationandtherecommendationsiscausingabias,becausetheuserisignoringthe recommendationonthebasisofalackofconsistencyeventhoughthesystemismakinga goodrecommendationthatshouldbefollowed.Iobservedthisbiasinthestudypresented inchapter3,andIarguethatitisanotherexampleofthedesignoftheinteractionbetween 9userandIDAinßuencingdecisionsindependentlyofthequalityofrecommendations. 10CHAPTER2 BACKGROUND Designingintelligentdecisionaidspresentsanumberofchallengesduetothesocio-technical natureofcomputer-supporteddecisionmaking.Computingtechnologiescanbepowerful andcapableofprovidingvaluableinsighttodecisionmakers.However,decisionmakersare humanandthereforediverseintheircapabilitiesandcharacteristics,pronetousingheuristics andhavingbiasesindecisionmaking,andmayhavedi " erentdecisionmakinggoalsthan systemdesigners.Forthisreason,anydesignthatkeepshumansintheloopofdecision makingmustaccountforthesehumanfactors. Inthissection,Iwilldiscussexistingresearchonthedesignofintelligentdecisionaids.I willdescribesomecommontechnicalapproachestoprovidingcomputerizeddecisionsupport. IwillalsogiveanoverviewofresearchonhumanfactorsinIDAs,withafocusonissuesof trustinautomation,transparencyofsystemsÕinnerlogic,usercontrolandthedivisionof laborbetweenuserandsystem. Fromthisoverview,Iwillmakeatheoreticalargumentthatacompletelytop-down approachtoIDAdesignwheresystemengineersmakealldeterminationsabouthowthe systemproducesrecommendationsmaybeinadequateformaximizingthepotentialofIDAs. Iwillprovideevidencefromtheliteraturethatallowingend-userstohavesomecontrolover thedesignofanIDAÕsinnerlogic,aprocesscalled customization,canservetomakeIDA designslessvulnerabletoknownhumanfactorsproblemswithIDAs.Iwillalsodiscussthe theoreticalbasisfornewhumanfactorsproblemsthatmayarisefromanIDAdesignthat a"ordsend-usercustomizationofitsrecommendation-producingprocess. 112.1ComputationalTechniquesforDecisionSupport Thereisawidevarietyofcomputationaltechniquesthathavebeendevelopedanddeployed withinIDAstoprovidesupporttodecisionmakers.Forthemostpart,thesecomputational techniquesareusedtoprocessandanalyzedatathatisavailabletothesysteminorder toproducerecommendationsfortheuserabouttheirdecision.InthissectionIwillbrießy describeafewofthemostcommoncomputationaltechniquesthatareusedinIDAs,including adiscussionofthestrengthsandweaknessesoftheseapproaches. 2.1.1CollaborativeFiltering ManyIDAsmakeuseofacollaborativeÞltering(Su&Khoshgoftaar,2009)approachto generatingrecommendations.IncollaborativeÞltering,usersgenerallyprovideratingsor otherinformationabouttheirpreferenceforitemsinasystemÕscatalog.Collaborative Þlteringtechniquestypicallycreateamatrixorsetofmatricesthatrepresentusersoritems withinthesystem.AUser-Itemmatrixrepresentsaratingorotherformofvaluationfor everycombinationofuseranditemwithinthesystem,althoughmanyofthecellsofthis matrixmaybeemptybecauseuserstypicallyonlyrateasmallportionofallpossibleitems. AUser-User(aswellasanItem-Itemmatrix)storesaÔsimilarityÕvaluecalculatedusinga distancemetricsuchascosinedistanceorEuclideandistancebetweeneachpairofusersor items.Forexample,considertwouserswhohaveeachratedasetofmovies.Thesimilarity betweenthesetwouserscanbecalculatedbythecosinedistancebetweeneachusersÕvector ofratedmovies.Ifthetwousersmostlyagreeontheirratingsofmovies,thecosinedistance willbesmallandthesimilaritylarge.ThissimilarityvalueisthenstoredintheUser-User matrix.Fromthesematricesorsimilardatarepresentations,recommendationscanbegenerated usingoneofavarietyofcomputationaltechniques.Acommonapproachtoproducingrecom- mendationsfromthesematricesisk-nearestneighbors(Ekstrand,Riedl,&Konstan,2011). 12Inthisapproach,thesystemÞndsasmallgroup(ofsizek)ofusersfromthesystemthatare mostsimilartothecurrentuserintermsoftheirexplicitvaluationsofitems,thenrecom- mendstothecurrentuseritemsthataremostpopularwithintheirÔneighborhoodÕ.Another approachismatrixfactorization.Matrixfactorizationtechniques(Koren,Bell,&Volinsky, 2009)seektoÞndlatentfactorswithinthematricesthatindicatesomeunderlyingconcept orvariableamongasetofusersÕpreferencesforitems.Forexample,matrixfactorization techniquesmayrevealthatmoviesmayfallonsomescalebetweenÔseriousÕandÔescapistÕ andthatusersÕpreferencesforthedi "erentextremesofthisscaleismanifestedintheirrat- ingsofmovies(Korenetal.,2009).Thus,byidentifyingsuchlatentfactors,asystemcan determinebothwhereonthescaleauserÕspreferenceliesandwhereonthescaleeachitem lies,andrecommenditemsthatareaclosematchtotheinferredpreference. ArelatedapproachtocollaborativeÞlteringisanetwork-basedapproachtogenerating recommendations.Inthisapproach,asocialnetworkisconstructedfromthesetofusersand itemsinthesystem,andvariousattributesofthenetworkareusedtomakerecommendations suchasthecentralityofnodes.Forexample,Qinetal.(2010)builtarecommendersystem forYouTubevideosbybuildinganetworkofvideosasnodesandconnectinganytwovideos iftheyshareatleastonecommonuserwhohascommentedonthevideo.Theythenmake recommendationsbyusingnetworkpropertiestoproduceexpectedutilitiesforvideosand usersandrecommendingtousersthevideoswiththehighestexpectedutilities. Asocialnetworkingapproachtorecommendationscanbeparticularlyusefulwhenso- cialconnectionsthemselvesaretheitemsbeingrecommended.Socialnetworkingsitescan recommendotheruserstoeachotherbyevaluatingthenumberofsharednodeswithinthe networkofusers,aswellasotherfeaturesofthenetworkstructure,andusethisinformation tosuggestnewconnections(Rothetal.,2010). OneofthegreateststrengthsofcollaborativeÞlteringisthatitisÒcontent-independentÓ (Park&Chu,2009).Thismeansthatthesystemdoesnotneedtohaveverymuchexplicit informationabouttheitemsitrecommends.Forexample,movierecommendationscanbe 13madeusingcollaborativeÞlteringwithjustthetitleofeachmovieandasetofratingsfrom users,sincetherecommendationsareentirelydeterminedbytheratingsandnotanything inthecontentoftheitems.Thiscontent-independencecanalsobebeneÞcialinthatitcan leadtomoreÒserendipitousÓrecommendations.CollaborativeÞlteringcanÞnditemsthat aresimilartoitemsauserlikesbutinwaystheuserhasnotpreviouslyconsidered(Park& Chu,2009). Thecontent-independence,however,comesatacostforcollaborativeÞlteringofbeing highlyuserdependent.Thisuser-dependenceisknownastheÒcold-startproblemÓ(Lam,Vu, Le,&Duong,2008).CollaborativeÞlteringrequiresdataaboutusers,particularlyratings ofitems,inordertobeuseful.Itrequiresarelativelylargeexistinguserbaseinorderto Þndmeaningfulclustersofusersthatsharepreferences.Andforanygivenuser,itneeds ratingsorotherinformationaboutthatuserinordertoÞndsimilarusersfromwhichto makerecommendations.Newsystemsdonothavethedatatheyneedtobeusefultousers, whichmakesitdi ! culttobuildthecriticalmassofusersrequiredtoeverbecomeuseful. 2.1.2Content-BasedRecommendations Content-basedrecommendersystemsproducerecommendationsbyusingknownandexplicit attributesofitems.ThesesystemsmaintainanItem-Attributematrixwhereallitemshave beenevaluatedontheattributes,andthesystemsthenelicitpreferencesfromusersfor attributesandrecommenditemsthataresimilartousersÕstatedpreferencesforattributes (Leino,2014). Oneoftheprimaryadvantagesofcontent-basedrecommendersisthattheysu " erless fromthecold-startproblemthatplaguescollaborativeÞltering(Schein,Popescul,Ungar,& Pennock,2002).Content-basedrecommendersdonotrequireacriticalmassofexistingusers tobeabletomakerecommendations,meaningthatnewsystemscanbemoreusefulfrom inception.However,content-basedrecommendersdostillneeddataaboutagivenuserin ordertomakepersonalizedrecommendations,meaningthecold-startproblemisnotentirely 14eliminated. Aproblemwithcontent-basedrecommendersisthatcuratingthecontentfeaturescanbe di ! cultandcostly.Pandora.com,forexample,usesacontent-basedrecommender(Glaser, Westergren,Stearns,&Kraft,2006)thatrequireseverysongintheirdatabasetoberated byamusicalexpertonover400musicalfeatures 1.Developingandcuratingthedatainsuch awaymaynotbepracticalforalltypesofrecommendations. 2.1.3ArtiÞcialNeuralNetworks OtherinnovationsinartiÞcialintelligencehavebeenadoptedinsomecontexts,mostnotably inmedicine.ArtiÞcialNeuralNetworks(ANNÕs)areaformofartiÞcialintelligencethat triestoÞndpatternsamonglargeandcomplexdata(Hill,Marquez,OÕConnor,&Remus, 1994).ANNÕsareareplicationofbiologicalneurologicalprocessesandhavebeenfound tobepowerfulinmanyanalytictasks,particularlyincontextswheretraditionalstatistical approachesbasedonregressionareproblematic(Hilletal.,1994).ANNÕshavebeenfound tobeparticularlyusefulforIDAthatsupportclinicaldecisionmaking(Berner,2007).A knownshortcomingofANNÕsisthatunlikemanyothertechniques,ANNÕsdonotprovide clearreasoningabouthowtheyhavecometoconclusions(Berner,2007). 2.1.4GeneticAlgorithms GeneticalgorithmsareanothertechniquefromartiÞcialintelligencethathavebeendeployed withsomesuccessinIDAs(Berner,2007).Geneticalgorithmssimulateanevolutionary processbasedonthenotionofsurvivaloftheÞttest.Attributesofrecommendableitems thataredistributedamongadatasetarerandomlycombinedandtheresultingcombinationis evaluatedaccordingtoanestablishedcriteriaorÒÞtnessfunction.ÓCombinationsthatyield thebestevaluationsarekept,whileweakercombinationsaredropped,andnewcombinations 1https://www.pandora.com/about/mgp 15formedfromtheremainingset.Thisprocessiscontinueduntilperformancestopsimproving, atwhichpointasolutionisapparentthatcanbeusedasabasisforrecommendations. GeneticalgorithmshavethesameshortcomingasANNÕsinthattheystruggletoprovide clearreasoningfortherecommendationsthatareproduced(Berner,2007). 2.2ApplicationsofIDA Oneofthechallengesinresearchinganddevelopinge " ectiveIDAsisthetremendousvariety inthedecisioncontextsforwhichtheyareimplemented.TheapplicationsofIDAtechnolo- giesrangefrome-commercetoÞnancetomedicinetojournalism.E-commercewebsitessuch asAmazon.comhaveadoptedrecommendersystemstosuggestproductstocustomersand helpthemchooseitemsfromanenormouscatalog(Linden,Smith,&York,2003).Recom- mendersystemsonlargesitessuchasAmazonmaymakerecommendationsaboutspeciÞc itemswithinaclassofalternatives(e.g.whichbooktoread)aswellassuggestingdi " erent classesofitemsforitscustomerstoconsider(e.g.whethertolookforabookoracamera). Othere-commercerecommendersystemsfocusonamorespeciÞcdecisioncontext,suchas puttingtogetheranoutÞtorwardrobe(Tu&Dong,2010). SomehighlysuccessfulIDAimplementationsmakerecommendationsaboutmediacon- sumption.Netßixhassoughttoimprovetheuserexperienceofitsservicebyresearching anddeployingarecommendersystem 2.MovieLens(Miller,Albert,Lam,Konstan,&Riedl, 2003)isasimilarmovierecommendationservicewhichhasbeendevelopednotonlytomake recommendationstodecisionmakersbutasatestinggroundforexperimentalapproachesto recommendersystemdesign.OnlinemusicservicessuchasPandora 3andLastFM 4have usedrecommendersystemstoengageusersbyprovidingpersonalizedbutserendipitousmu- sicrecommendations.SocialnetworkingsitessuchasasFacebook,Twitter,orLinkedIncan 2http://www.netßixprize.com/index 3http://www.pandora.com 4http://www.last.fm 16helppeoplemakedecisionsaboutwhopeopletointeractorcommunicatewith.LinkedIn, forexample,makesrecommendationstousersaboutwhotheymightconnectwithforpro- fessionaldevelopmentandnetworking,aswelljobsorothercareeropportunities(Skeels& Grudin,2009).AnimportantapplicationofIDAsisinrecommendingnewsarticlesorother typesofweb-contentforuserstoconsume.Largeweb-portalssuchasGoogleandYahoo usetechniquestakenfromrecommendersystemstoproducepersonalizednewsportalsthat recommendcontentthatisexpectedtobeofinteresttousers(Liu,Dolan,&Pedersen, 2010).2.3IDAE ! ectiveness IDAshavebeenfoundtobee " ectiveatreducingthetimeande " ortrequiredtomake decisions,(Hostler,Yoon,&Guimaraes,2005;Amento,Terveen,Hill,Hix,&Schulman, 2003;Chen&Pu,2009;Xiao&Benbasat,2007).IDAscanautomatetheacquisitionand analysisofinformation,reducingthenumberofalternativesthatadecisionmakermust consider(H¬aubl&Trifts,2000)andthusreducinge " ort.ThisisanimportantbeneÞtthat IDAsprovidetodecisionmakersthatjustiÞestheirdevelopmentandimplementation. However,someresearchersarguethatIDAsshouldbeneÞtnotonlydecisionprocesses suchasthee ! ciencyofmakingdecisions,butalsothedecisionoutcomesthemselves(Knijnenburg, Willemsen,&Kobsa,2011;Xiao&Benbasat,2007).Researchershavehaddi ! cultyines- tablishingthee ! cacyofIDAswhenusedinpractice.Forexample,inclinicalsettings,Bright etal.(2012)conductedasystematicreviewofclinicaltrialsofIDAs.Theyfoundthatonly 20%ofrandomizedtrialsofclinicalIDAsevenevaluateddecisionoutcomes,whereasmost werefocusedonassessingdecisionprocessmeasuresandtheeconomicjustiÞcationofIDAs. Amongthetrialsthatdidassessdecisionoutcomes,theyfoundonlylimitedevidencethat IDAswerebeneÞcial.Theynotedhoweverthatthelackofclearevidencemaybeduetothe tremendousdi ! cultythatexistsinexecutingclinicaltrialsforIDAsthatevaluatedecision 17outcomes.Theremaybeaseriousselectionbiasinthatsystemsandcircumstancesforwhich clinicaltrialscanbeeasilyexecutedarealsothoseforwhichtheparticularsystemsareinef- fective.Brightetal.concludednotthatIDAswereine " ectivebutthatthereisinsu ! cient evidencetodrawaconclusion. Ine-commerce,therearenocomparablereviewsorevenanystudiestomyknowledge thatassessthebroadimpactofIDAsondecisionqualityordecisionoutcomesthatarebased ondataoutsideofalaboratorysetting.Thismaybeduetothehorizontaldi "erentiation ofmostdecisionsine-commerceinwhichusersmayhavewidelyvaryingcriteriaforwhat theyprefer,makingitdi !culttodevelopmeasuresfordecisionqualitythatareobjective. However,therehasbeenconsiderableworktoevaluatee-commerceIDAsinlabsettings wheredecisionqualitycanbeobjectivelydeÞnedandmeasured(Xiao&Benbasat,2007). Someexamplesofsuchmeasuresincludeamatchbetweentheattributesofachosenitem andsubjectsÕpreferencesforthoseattributes(Pereira,2001)orthefrequencywithwhich subjectschangetheirdecisionlaterwhengivenacost-freeopportunitytochange(H¬aubl& Trifts,2000).XiaoandBenbesat(2007)conductedasystematicreviewofIDAresearchin e-commercethatusedsuchmeasures,andnotedthatthereweremixedÞndings,withsome studiesÞndingtheIDAshelpeddecisionmakingwhileothersfoundnoe " ectoreventhat IDAsharmeddecisions.However,theyfoundthatvariationsinthedesignoftheIDAsused inthesestudies,suchasthewaypreferenceswereelicitedandthewayrecommendations presented,hadanimpactondecisionquality.ThissuggeststhatthedesignoftheIDAis animportantfactorfordecisionmaking.Italsosuggeststhatthereisastrongneedfor socio-technicaltheoryofIDAdesigntohelpdesignersengineergooddecisionmaking. 182.4AgreementwithRecommendations 2.4.1Trust Technologiesthatautomatedecisions,actions,informationprocessing,orotherfunctions withinahuman-machineinteractionplaceaburdenonuserstodeveloptrustinthesystem. TrustintechnologieshasbeenakeyareaofresearchonIDAsandinautomationtechnologies moregenerally.Researchersintheseareashavesoughttounderstandhowusersdeveloptrust insystems,howuserslosetrustinsystems,andhowusersÕtrustinanautomatedtechnology inßuencestheirbehaviorsordecisions. LeeandMoray(1992)arguethatasautomationisincreasedinasystem,thecontrol thatusersexertoverasystemanditsoutputshiftsfromanactivecontroltoÒsupervisory control.ÓThisroleofasupervisorratherthanadirectcontrollerdemandsthatusersplace anincreasedamountoftrustinthesystem. Inseekingtounderstandhowusersdevelopandmaintaintrustinautomatedtechnolo- gies,researchershavedisagreedovertheappropriatewaytodeÞnetrustwithinthecontext ofahuman-machineinteraction.Oneapproachthathasfrequentlybeentakenistoborrow deÞnitionsoftrustfromresearchoninterpersonalrelationships(Ho " man,Johnson,Brad- shaw,&Underbrink,2013;Muir,1987;Madhavan&Wiegmann,2007;Wang&Benbasat, 2008).InterpersonaltrusthasbeendeÞnedasÒawillingnessofapartytobevulnerableto theactionsofanotherpartybasedontheexpectationthattheotherwillperformaparticular actionimportanttothetrustor,irrespectiveoftheabilitytomonitororcontrolthatparty?Ó (Mayer,Davis,&Schoorman,1995,p.712).Inthissense,trustinautomationcanbeviewed asauserÕswillingnesstobevulnerabletoasubordinatemachineÕsactionsinthesameway thatsupervisorsinahierarchicalinterpersonalrelationshiparevulnerabletotheactionof thosetheysupervise.TheÒComputers-Are-Social-ActorsÓparadigm(Nass&Moon,2000), whichdemonstratesahumanpropensitytoformsocialrelationshipswithinteractivema- chines,hasoftenbeenusedasajustiÞcationfortreatingandmeasuringtrustintechnology 19usinganinterpersonalconceptualizationoftrust(Madhavan&Wiegmann,2007). However,muchworkhasfoundthatpeopletrusttechnologyindi " erentwaysthanthey trustotherpeople.LeeandSee(2004)claimthatwhileinterpersonaltrustissymmetrical inthatbothpartieshaveaneedtodeveloptrustinoneanotherthroughrepeatedinterac- tion,trustinautomationisgenerallyasymmetrical.Usersmayneedtodevelopbeliefsand attitudesthatallowthemtobewillinglyvulnerable,butautomatedsystemsgenerallydo notneedtodeveloptrustintheirusers. OtherworkhasfoundthatpeopleÕsleveloftrustinsystemsoftendi "ersfromtheirlevelof trustinahumanperformingthesamerolewiththesamereliability.Forexample,Dzindolet andcolleagues(Dzindolet,Pierce,Beck,&Dawe,2002;Dzindolet,Peterson,Pomranky, Pierce,&Beck,2003),inexperimentsthatcontrolthereliabilityandutilityofbothan automateddecisionaidandahumandecisionaid,foundthatpeoplehaveaninitialtendency totrustandrelyontheautomatedaidmorethantheytrustthehuman.However,theyalso foundthatincaseswheretheaidmadeanobviouserror,usersÕrelianceontheautomated aidplummetedconsiderablytoalevelfarbelowboththereliabilityoftheautomatedaidand belowtherelianceobservedinaconditionusinganotherhumanasthedecisionaidinplaceof theautomatedsystem.ThissensitivitypresentsanimportantchallengefordesigningIDAs. DesignersmustÞndwaystoappropriatelysetexpectationsofsystemquality.Expectations canbeapowerfulinßuenceonbehaviorinsocio-technicalsystems(Wash,2013),andIDA usersmayhavedi ! cultyformingaccurateexpectationsofthesystem. Trust,particularlyinthecontextofautomationuse,istypicallydeÞnedasanattitude orabelief(J.D.Lee&See,2004).Thisdistinguishestrustfromarelatedconceptknown asreliance ,whichisabehaviorinwhichusersrelyonordeferactiontoanautomated system.LeeandSee(2004)arguethatwhiletrustinßuencesreliance,thetwoconceptsare notidentical.Theyarguethattrustisexplicitlyanattitudeandshouldbetreatedand measuredassuchinresearchontrustandautomation,whereasrelianceisthebehaviorof deferringactionsordecisionstoanautomatedsystem. 20Animportantquestionthathasbeenexploredintheresearchontrustinautomation relatestohowtrustisdeveloped.Onehypothesisisthattrustistheresultofreliabilityover time.Asasystemdemonstratesthatitisreliable,usersgrowtotrustitmoreandbecome morereliantontheautomation.LeeandMoray(1992)suggestthattrustinautomationis enhancedwhenusersunderstandtheprocessthattheautomationusestoproduceitsoutput. Anumberofindividualdi " erencesbetweenuserscanalsoimpacttrustinautomation. Sanchezetal.(2004)foundthatolderadultsweremoresensitivethanyoungeradultsto declinesinthereliabilityofanautomateddecisionsupportsystemforadrivingtask,losing trustinthesystemmorequicklyasthesystembecamelessreliable.Merrittandcolleagues (Merritt&Ilgen,2008;Merritt,Heimbaugh,LaChapell,&Lee,2012)showedthatsome peoplehavemoreofageneralpropensitytotrustautomationthanothers. Someresearchers(OÕDonovan&Smyth,2005;Massa&Avesani,2007)haveusedthe notionoftrustasabasisformakingrecommendations.InacollaborativeÞlteringsystem, similaritybetweenusersintermsofpreferencescanbereplacedbyatrust-metric,where usersÕdegreeoftrustofotherusersiselicitedorestimatedinordertomakerecommendations. LeeandSee(2004)arguethatanimportantgoalofresearchonautomationistoÞnd waystodesignforcalibrationbetweenusersÕtrustinasystemanditsreliability.Ifasystem ishighlyreliable,thanusersshouldtrustandfollowitsrecommendationsandbydoingso willmakeoptimaldecisions.Ifasystemisonlymoderatelyreliable,usersÕshouldbeless trustingandcarefullyscrutinizeitsrecommendations.Asadesignobjective,IDAdesigners shouldÞndwaystohelpusersproperlycalibratetheirtrustinanIDAinordertooptimize decisionmaking. 2.4.2AutomationBias Humanfactorsengineeringresearchershaveexaminedwhetherautomateddecisionaidssuch asalertsystemsandscreeningtoolshelpusersmakebetterdecisions.SkitkaandMosier (Skitka,Mosier,&Burdick,1999)haveobservedconsiderableevidenceof automationbias .21Automationbiasoccurswhenadecisionmakerfailstoseekoutevidencethatcontradicts recommendationsprovidedbyadecisionaid,leadingthemtofollowpoorrecommendations andmakepoordecisions(Manzey,Reichenbach,&Onnasch,2012).SkitkaandMosier (Skitkaetal.,1999)conductedanexperimentonaßightsimulatortaskwhereanautomated alertsystemwas94%accurate.Theyfoundthatwhenthesystemgaveanincorrectalert, subjectsfollowedtherecommendation65%ofthetime.Theyalsofoundthatsubjectsfailed totakeappropriateactionwhentheywereusinganautomatedalertsystemanditincorrectly failedtoalertthem,ascomparedtoacontrolgroupwhichdidnothaveanautomatedalert system.SimilarÞndingshavebeenreportedusingotheraviationtasks(Mosier,Skitka, Heers,&Burdick,1998),luggagescreening(Madhavan&Phillips,2010),processcontrol (Manzey,Reichenbach,&Onnasch,2008),andmammography(Alberdi,Povyakalo,Strigini, &Ayton,2004). Automationbiashasbecomeaseriousprobleminclinicaldecisionmaking.Goddard etal.(2012)conductedametaanalysisofstudiesonautomationbiasinclinicaldecision making.Theirreviewincludedautomationbiasinducedbothbyintelligentdecisionaidsas wellasothertypesofautomatedsystemssuchasalerts.Theyfoundthatwhenadecision aidgaveincorrectrecommendations,itincreasedtheriskofapoorclinicaldecisionby26%. Coieraetal.(2006)havearguedthatautomationbiashasbeenoneoftheprimaryculprits forwhyintelligentsystemshavefailedtomeetexpectationsforimprovingcareinclinical settings.TheyarguethatwhileintelligentsystemsprovidemanybeneÞts,automationbias andotherrelatedhumanfactorsproblemsaresimultaneouslycreatedbytheintroductionof intelligentsystemsthatmayo " setthegains. Carr(2014)providesanumberofexamplesofautomationbiasasacauseofdevastating decisionmakingincontextssuchastransportation,Þnance,andlaw.Hearguesthatan over-relianceonintelligentsystemsthatautomateknowledgeandintellectualworkmaydull theanalyticalskillsrequiredforgooddecisionmakingandcreativeproblemsolving.Partof this,heargues,isthatsuchsystemmaydeprivepeopleofthemoreenjoyableaspectsoftheir 22workandmakethemindi " erenttothedecisionmakingprocessbyremovinganemotional attachmenttoit. Fortunately,thereisevidencethatautomationbiasisnotaninevitableconsequence ofusingintelligentsystems,andthatautomationbiascanbeminimizedthroughsystem design.Dzindoletetal.(2003)foundthatautomationbiaswasreducedwhenthesystem explaineditsreasoningprocess.Thetransparencyofasystemmaymakeiteasierforusers toscrutinizerecommendationsandappropriatelycalibratetheirrelianceandagreementwith them.Minimizingtheprominenceofaninformationdisplay(Berner,Maisiak,Heudebert,& YoungJr,2003)canalsohelpusersavoidbecomingtooreliantonanautomateddecisionaid. Byavoidinginformationoverload,usershavemorecognitiveresourcesavailabletoprocess informationontheirownandscrutinizerecommendationsmadebyanaid. 2.5Transparency OneofthemostimportanttopicsinIDAresearchanddesignis transparency .Transparency referstothedegreetowhichusersunderstandwhythesystemgaveitsrecommendations, orunderstandthesystemlogicforhowtheyweregenerated.Transparencyisoftenaccom- plishedinIDAbygivingusersexplanationsforrecommendations.Forexample,e-commerce siteslikeAmazonoftenexplainrecommendationsbystatingÒPeoplewhopurchasedthis itemalsopurchasedtheseitems.Ó TransparencyisimportantforIDAsforseveralreasons.Herlocker,Konstan,andReidl (2000)havearguedthatmostIDAareÒblackboxesÓandthattransparencyisimportant sothatuserscanhandleerrorsinrecommendations.Sincerecommendersystemsarerarely perfect,itishelpfulforuserstounderstandwhyarecommendationwasgivensotheycan determineforthemselveswhetherarecommendationcontainserror.Thisapproachallo- catesthefunctionofrecognizingerrorstotheuserbutplacesthedemandofarticulatingor communicatinghowrecommendationsaregeneratedtothesystem.TintarevandMastho "23(2012)havesuggestedthatprovidingexplanationsinrecommendersystemsservestoestab- lishusertrustinthesystemandtomaketherecommendationsmorepersuasive.Alackof transparencyinintelligentsystemsforhomeautomationhasbeenfoundtobeoneofthe primaryfrustrationsofusersandanimpedimenttomorewidespreadadoption(R.Yang& Newman,2013). Insection2.1above,IoutlinedasetoftechnicalapproachesfortheinnerlogicofIDAs. Thereisconsiderablevariabilityacrossthesetechnicalapproachessuchthattwodi " erent systemsdesignedtoassistthesametypeofdecisionmayreasonablyuseoneofmanydi "erent technicaldesigns.Thissuggeststhatfromtheperspectiveofusers,itisunreasonablefor designerstoexpectevenpeopleexperiencedwithusingIDAstoknoworhaveanexpectation thatasystemworksinanyparticularway.Usersshouldnotbeexpectedtothinkthatthe blackboxthatgeneratesrecommendationsinonesystemisthesameastheblackboxof anothersystem.Therefore,usersÕbeliefsabouttheinnerlogicmustprimarilycomefrom whattheyaretoldwithinthesysteminterface,documentation,ortrainingaboutthesystem. MuchoftheworkontransparencyinIDAsorrelatedsystemshasfocusedonevaluating di" erentwaystodesignexplanationsintotheinterfaceofanIDA(Tintarev&Mastho " ,2011).Limetal.(2009)havecomparedexplanationsthatexplainrecommendationsin termsofÒwhy,ÓÒwhynot,ÓÒhowto,ÓorÒwhatif.ÓTheyfoundthatforenhancinguser understandingofthesystem,ÒwhyÓandÒwhynotÓexplanationsworkedbestandthat otherformsofexplanationsdidnothelpusersbetterunderstandasystemthanproviding noexplanations.OtherworkinthisareahasexploredusingvisualizationstoexplainIDA recommendations(Verbert,Parra,Brusilovsky,&Duval,2013;Knijnenburg,Bostandjiev, OÕDonovan,&Kobsa,2012),providingdetailedtutorials(Kulesza,Stumpf,Burnett,& Kwan,2012),usingandexplainingsimpleformulasastherecommendationlogic(Aksoy, Bloom,Lurie,&Cooil,2006),describingthetradeo "sbetweenitemsasawaytojustify recommendations(Wang&Benbasat,2007),andhierarchicalexplanationsthatallowusers toÒdrilldownÓfurtherandfurtherdownadecisiontreeuntiltheyaresatisÞedwiththe 24explanation(Kay&Kummerfeld,2012). ManystudiesofIDAsÞndthatprovidingtransparencyleadstousersatisfactionwith thesystemandmakesthemshowgreatertrustinrecommendations(Herlockeretal.,2000; Tintarev&Mastho ",2012,2008;Sinha&Swearingen,2002;Crameretal.,2008).These studiesshowthatusersprefertransparentIDAinterfacesandreportthattheyareusefulin thedecisionmakingprocess.However,amorepertinentquestioniswhethertransparency actuallyhelpsusersmakebetterdecisions.CummingsarguesthattheÒinabilityofthe humantounderstandcomplexalgorithmsonlyexacerbatesthetendencytowardsautomation biasÓ(Cummings,2004,p.3).WhenusersdonÕtunderstandhowasystemproducesits recommendations,theymayÞndithardertoidentifywhenthesystemhasmadeanerror andthereforemaymakepoordecisionswhenthesystemprovidespoorrecommendations. Someresearchhasshownthoughthattransparencyalonemaynothelpdecisionmaking, andinsomecasemayactuallyleadtodecisionerrors.Ehrlichetal.(2011)foundthatina DSSforhelpingITadminsdetectsecurityattacks,providingexplanationsledsomeusersto haveunwarrantedconÞdenceintherecommendationsandsubsequentlymakepoordecisions whenthesystemmadepoorrecommendations.TintarevandMastho " (2012)foundthat inrecommendersystemsformoviesandforcameras,userswhoweregivenexplanations forrecommendationswereactuallymorelikelytochangetheirmindabouttheirdecision lateron,suggestingthattheexplanationspromptedthemtomakeadecisionthattheylater regretted.Theseresultshavesomeimportantimplications.Onereasonthatusersmay makepoordecisionswhenasystemistransparentisthattheymaybeconvincedbythe explanationfortherecommendationmorethantherecommendationitself.Inotherwords, usersmaydevelopapreferenceforhowrecommendationsaregeneratedthatisthebasis fortheirdecisionsmorethananindependentevaluationofrecommendationquality.This wouldsuggestthattransparency,incontrasttoCummingÕsargumentmentionedabove,can increaseautomationbiasifuserpreferenceforsystemlogicsupersedesacriticalanalysisof therecommendationsbytheuser. 252.6Customization AnemergingdesignapproachtoIDAsistoa " ordend-usercustomizationofthesystem. Thismeansthatusersaregivensomecontroloversomeaspectsofthesystem.Usersmay beabletocustomizethevisuallayoutorotheraestheticdetailsoftheinterface,thedata thatarestoredorusedinthesystem,oreventhealgorithmorreasoningprocesscanbe controlledorinßuencedbytheuser. Customizationisawidespreadapproachtodesigningalltypesofinteractivesystems, includingIDAs.CustomizationinIDAhasoftenbeenconceivedasallowinguserscontrolover thedatathattheyinput,andÞndingswaystoelicitthebestdata(e.g.itemratingsoruser proÞleinformation)fromusers(McNee,Lam,Konstan,&Riedl,2003).However,recently manyexperimentalIDAhaveexploredcustomizationofanIDAÕsalgorithm(Bostandjiev, OÕDonovan,&H¬ollerer,2012;Han,He,Jiang,&Yue,2013;Schafer,Konstan,&Riedl,2004; Bostandjiev,OÕDonovan,&H¬ollerer,2013;Parra,2013).Ashortcomingofthepublished researchonthesekindsofsystemsisthattheyhavenotbeenevaluatedintermsoftheir e " ectondecisionmaking.Rather,user-centeredevaluationsofusabilityorusersatisfaction havebeenfavoredinmostcases.Thus,itisnotclearfromtheexistingworkoncustomizable IDAhowtheya " ectuserdecisionmaking. Inthissection,Iwilldiscusstheliteratureoncustomizationininteractivesystemsand whatisknownaboutmakinghuman-machinesystemscustomizablefromadesignanduser- experienceperspective.IwillthendiscusstheliteraturespeciÞcallyaboutcustomizableIDA andmakeanargumentbasedonboththeoryandempiricalÞndingsthatcustomizationcan bebeneÞcialtoIDA-supporteddecisionmaking.However,Iwillalsopointtoevidencethat suggestsnewhumanfactorsdesignproblemsthatmayariseasaresultofcustomizableIDA. 262.6.1CustomizationofInteractiveSystems Muchoftheexistingworkoncustomizationhaslookedatcustomizationwithininteractive mediasuchaswebportals,newsfeedreaders,andonlinecommunitieswithuser-generated content.Sundar(Sundar,2008;Sundar,Oh,Bellur,Jia,&Kim,2012)hasarguedthat interactivemediasuchasthesethata " orduserstheabilitytocustomizesomeaspectof theinterfacenurtureasenseofagencyinusers,andthatthissenseofagencyisapowerful predictorofusersatisfactionwhenusinginteractivemedia.Sundardescribesthesenseof agencyexperiencedbyusersofcustomizablemediaasafeelingofÒself-as-source,Ómeaning thatusersfeelrewardedbysimultaneouslybeingbothaconsumerandaproducerofthe medium. Onepurposeforcustomizationininteractivemediais personalization .Personalization meansthatcontentprovidedthroughthemediumispersonallyrelevantorengagingtothe user.Personalizationmaybeachievedbyasystemtryingtoestimatewhatcontentauserwill preferorÞndmostrelevantandtheninsertingthatcontentintothemedium.Blom(2000) describesacontinuumbetween personalization andcustomization,where personalization issystem-initiatedtailoringofcontentwhereascustomizationisuser-initiatedtailoringofcon- tent.Personalizedsystemsgatherandprocessinformationautonomouslyaboutusersand performtailoringofcontentoftenwithoutthedirectionorevenawarenessofusers.Cus- tomizationprovidesaninterfaceforuserstoexplicitlyinßuencethistailoring.Forexample, targetedadvertisingthattriestoshowusersthemostrelevantadsbasedoninformationit collectsthroughcookiesaboutusersbrowsingwouldbeanexampleofpersonalization,as thetailoringofthecontentisentirelysystem-initiated.However,asystemthatgivesusers promptsandasksquestionstoexplicitlyallowuserstotailortheiradswouldbeacustomiz- ablesystem.Thisdistinctionhighlightsadi "erenceintheprocessofhowcontentbecomes tailoredtoauser,butnodistinctionintheoutcomeoftheprocessinwhichthecontentis highlyrelevantandengagingtoaparticularuser. 27Animportantquestionthatfollowsfromthisdistinctioniswhetherornotdi " erences intheprocessofprovidingtailoredcontent,user-controlledvs.systemcontrolled,hasany impactonusersÕexperienceswithinteractivemedia.Sundaretal.(2010)haveexploredthis question,seekingtodeterminewhethercustomizationispurelyaformofuser-controlled personalization,orwhetherithasothere " ectsonusers.Theycomparedacustomizable versionofanRSSnewsreaderwithonethatwaspersonalizedtoproviderelevantcontent usingacollaborativeÞlteringtechnique.TheyfoundthatÒpowerusersÓwereabletogenerate contentthattheymostpreferredwhenusingthecustomizableinterfaceratherthanthe personalizedinterface.However,non-poweruserspreferredthecontentinthepersonalized interface.Theauthorsperformedafollow-upstudytodeterminewhetheraperceptionof controlovertheinterfacecanexplainthepreferencethatpowerusershadforthecontent, butthisstudyfoundthatperceivedcontroldidnotexplaintheresults.Thisresultsuggests thatthebeneÞtofcustomizationisthatitallowsskilleduserstomaximizeasystemÕsoutput tomatchtheirpreferencesbetterthanasystem-maintainedalgorithmmight.Whenusers aregivencontrolofamediumandtheyhavetheskilltouseitproperly,theycantailorits outputtomaximizeitsquality. Otherwork,however,hasfoundthatthesenseofagencya "ordedbycustomization providesadditionalbeneÞtstousersatisfactionbeyondsimplyenablingasystemtoprovide high-qualitycontenttobeconsumed.MaratheandSundar(2011)arguethatcustomization enablesaninterfacetobepredictabletotheuser.Theyalsoarguethatcustomizationfosters notonlyasenseofcontroloragency,butalsoasenseofidentityforuserswithinthemedium. Customizationofamediumallowsuserstoexpresswhotheyarethroughthemedium,and thisa " ordanceofself-expressionisbeneÞcialtousersatisfactionanduserexperiencewith aninteractivesystem.Inanempiricaltestofthishypothesis,theyfoundthatusinga customizablewebportalleduserstobothhaveagreatersenseofcontrolandtofeelthat thesystemwasamorepreciseexpressionoftheiridentity. Thethemeresultingfromthisworkoncustomizationininteractivemediaisthatcus- 28tomizationenablesskilleduserstotailorcontentoroutputtomatchtheirpreferences,and thatthisa " ordancealsoleadstoagenerallymoresatisfactoryuserexperiencebyfostering asenseofcontrol,identity,andpredictabilitywhenusinginteractivesystems. 2.6.2CustomizationinIDAs Iscustomizationagooddesignforintelligentdecisionaids?Howdoesitimpactthedecision outcomes,decisionprocesses,anduserexperienceofIDA?Inthissection,Iwilldetaila theoreticalargumentforthebeneÞtsofcustomizationinIDAs.Iwillthenexamineempirical evaluationsofcustomizableIDAanddiscusshowtheysupportthisargument.Iwillalso reviewsomeresearchthatdemonstratespotentiallynegativeconsequencesofcustomization inIDAs. 2.6.2.1TheoreticalBasisforCustomizableIDAs Inanyhuman-machinesystem,thereissomedivisionoflaborbetweentheuserandthe system,whereusersfulÞllsomefunctionsorsub-tasksnecessarytotheprimarytaskand thesystemperformsotherfunctions.DesignersofIDAsandotherhuman-machinesystems mustdeterminewhichfunctionsaretobeperformedbythemachineandwhichfunctions shouldbelefttousers,andmakingthisdeterminationcanbeadi ! cultdesignchallenge.In theÞeldofhumanfactorsengineering,thisdivisionoflaboristhe functionallocation ,and ithasbeenanimportantareaofresearchforover60years(deWinter&Dodou,2014). Astechnologieshaveadvancedincapabilities,thisquestionhasgenerallybecomeeven morecomplicatedbecausethereisincreasinglyoverlapbetweenthefunctionsthatcanfeasi- blybeperformedbyeitherhumansormachines.Manytheoriesandframeworkshavebeen developedtoassistdesignersinallocatingthefunctionsofasystem.Themostprominent oftheseframeworksisFittsÕlist(Fitts,1951).Thislist,sometimesknownastheMABA- MABAlist(ÒMenAreBetterAt-MachinesAreBetterAtÓ)makesdeclarationsabouttypes 29offunctionsthateachentityislikelytoexcelatincomparisontotheotherentity.As examples,thislistsuggeststhathumansarebetteratperceivingpatterns,improvisingor usingßexibleprocedures,andreasoninginductively.Itsuggeststhatmachinesarebetterat followingprocedureswithprecisionandperformingmultiplefunctionssimultaneously. Sinceitsoriginalpublication,FittslisthasfrequentlybeenadaptedandmodiÞedtoapply tonewtypesofmachinesandtechnologies.However,itsbasicpremiseofcreatingheuristics thatdistinguishtherelativestrengthsofhumansandmachineshasbeenwellpreservedin engineeringanddesign(deWinter&Dodou,2014). IDAdesignersfacemanyfunctionallocationdecisions.Functionssuchasinputingand validatingdata,conductinganalysisorÞlteringoutputmayconceivablybecompletedby eithertheuserorthesystem.Forexample,designersofanIDAmayallocatetotheuser functionofacquiringorcuratingrelevantinformation,andallocatetothemachinethe functionofcalculatingprobabilitiesorretrievingadocumentfromadatabase.Orthe designersmayallocatethefunctionofinputingdatatothesystemthroughanautomated webcrawler,andthefunctionofanalyzingtherelevanceofthedatatotheuserorusers. Designersmayneedtobalancefactorsofutility,reliability,andusabilityinmakingfunction allocationchoices. Parasuraman,Sheridan,andWickens(2000)haveproposedaclassiÞcationframework todetermineanIDAÕs levelofautomation .Thelevelofautomationcanthoughtofas theproportionoffunctionsthathavebeenallocatedtothesystemratherthentheuser. Thisframeworkproposesascalebetweencompletelyautonomoussystemsthatdecideand executealldecisionsandcompletelyunassisteddecisionmaking.Thisframeworkisuseful fordescribingsystemswherefunctionsareuniquelyallocatedtoeithertheuserorthesystem inaÒdivide-and-conquerÓdesign. Figure ??illustratesParasuramanetal.Õsframework,includingsomeexamplesofhypo- theticalsystemdesignsandwheretheyÞtintotheframework.Parasuramanetal.explain thattheÞrsttwostages,informationacquisitionandinformationanalysis,canbethoughtof 30Information Acquisition Information Analysis Action Selection Action Implementation Decision Stages Low Automation High Automation Moderate Automation All data input from sensors or existing databases Some data input from sensors or existing databases. Other data input or verified by user All data input by user directly System performs calculations or makes predictions and presents analyses to user User specifies parameters or chooses analysis technique, then system performs analysis System recommends a few options, user then makes final choice System chooses an action, allows user to veto System chooses a final action, informs user System chooses a final action, does not inform user System implements action, notifies user of status User implements action, system monitors progress Figure2.1:SomehypotheticalsystemdesignsandtheirplacementwithinParasuramanet al.Õsofdecisionmakingstagesandlevelsofautomation. astheÒinputÓtothesystemwhereasthelatterstagesareitsoutput.CustomizableIDAs,as discussedinthisdissertation,referstousercustomizationofsysteminputs,andthereforeÞts intotheÞrsttwostagesofdecisionmaking.Byallowinguserstoinßuenceinputs,customiz- ableIDAswouldbestbedescribedashavingamoderatetolowlevelofautomationinthese inputstages.Completemanualcontrol,thelowestlevelofautomationintheframework, wouldfalloutsidethedeÞnitionofanintelligentdecisionaidhowever. Researchonautomationattheinputstageshasgenerallyfoundthatahigherlevelof automationleadstoimprovedtaskperformanceaslongastheautomationperformsreliably. Butwhentheautomationfails,thisleadstoworseperformancethaniftheinputstages hadbeenallocatedprimarilytotheuser(Onnasch,Wickens,Li,&Manzey,2013;Schuster, Jentsch,Fincannon,&Ososky,2013).Onnaschetal.(2013)attributedthistoalossof situationalawareness .Thismeansthatusersbecomelessawareofalltheconditionsand 31informationthatshouldimpacttheirdecisionandthismakesitharderforthemtorecognize afailureofthesystem. AcustomizabledecisionaidmaybeabletotakeadvantageoftheperformancebeneÞts ofautomationwhileavoidingthelossofsituationalawarenessthatleadstopoordecision making.BymakingasystempersonalizedtothespeciÞcdecisioncontext,customizationmay makethesystemmorereliable,i.e.providebetterrecommendations.Buttheinvolvement requiredoftheusertocustomizethesystemmaydemandthatusersmaintainsituational awarenessandmaybebetterabletorecognizewhenthesystemhasfailedorprovidedpoor recommendations.Inotherwords,customizationmaybeabletocreateamiddleground boththebeneÞtsofmanualcontrolandautomationarerealized. Insupportofthise "orttoÞndanidealcompromisebetweenallocatinginputfunctionsto theuserortothesystem,therehasbeenanincreasingcallamongautomationresearchersto exploreamorecollaborativestyleofhuman-machineinteraction(Cummings&Bruni,2009) thantheoneprescribedbytraditionfunctionallocationtheories,includingParasuraman etal.Õsframework.Inhuman-machinecollaboration,functionsarenotnecessarilydivided betweenuserandsystemandthelevelofautomationisnotnecessarilyameasureofÒhow muchÓisdonebyeitherentity.Instead,theinteractionisdesignedtoallowfunctionsand rolestobesharedtovaryingdegreesandcommunicationencouragedandsimpliÞedtoallow theuserandsystemtocollaborativelyarriveatanoptimalsolution. CummingsandBruni(Cummings&Bruni,2009)havebuiltontheParasuramanetal.Õs levelsofautomationframeworktomakeitmoreinclusiveoftheconceptofhuman-machine collaboration.Theyidentifythreeimportantrolesinthedecisionprocess,andeachofthese rolescanbeallocatedeitherinfullorinparttoeitherthehumanuserorthemachine.The generator producesasetofdecisionalternativesorrecommendations.The decider makesa Þnalchoicefromamongthegeneratedalternatives.Andthe moderator keepsthingsmoving forwardtowardsmakingandexecutingaÞnaldecision. CustomizableIDAscreateamixedfunctionallocationforthe generator role.Thesys- 32temÕsrecommendationsareinßuencedbothbythesystemÕsinternal(automated)logicas wellasbytheusersinput.CummingsandBruiniÕsempiricallyevaluatedtheirframework andexplicitlytestedvaryingdegreesofautomationwithinthe generator role.Theyfound thatdecisionmakingoutcomessu " eredinadesignwherethe generator rolewasmostly performedbythemachine,incomparisontotwootherdesignswherethisrolewaseither mostlyperformedbytheuserorevenlysplitbetweenuserandmachine.Thisexperiment testedasystemthatwasprimarilyasearchengine,andwecannotsaywhetheritsresult wouldextendtoIDAs.However,itdoessupportthehypothesisthatcustomizationcould haveapositivee " ectondecisionmakingifimplementedasasystemdesign. Functionallocationandlevelsofautomationaretheoriesthathavebeendevelopedto explainhumanbehaviorandperformanceasassistedbyabroadspectrumofassistivetech- nologies.IDAsareincludedinthetechnologiesbuttheresearchusedtobuildandvalidate thesetheoriesofteninvolvessystemsthatfalloutsideofthedeÞnitionofanintelligentde- cisionaid.Forthisreason,thereisnotyetconvincingevidenceinthefunctionallocation literaturethatcustomizableIDAswillimprovedecisionmaking,eventhoughito " erstheo- reticalsupportforthishypothesisiftheÞndingsfromthebroaderclassofdecisionaidsare maintainedwithinthesubsetofintelligentaids. 2.6.2.2CustomizableIDAResearch AdditionalevidencesupportingtheuseofcustomizationinIDAscanbefoundwithinthe IDAliterature. AutomationtechnologiessuchasIDAshavebeencriticizedforbeingtoorigid(Norman, 1990b).Rigidsystemsdonotaccountwellenoughforthevariabilityinthecontextsinwhich theywillbeused,variabilityinthepeoplewhowillusethem,andthisrigidityleadstovarious errorseitherbythesystemorbyusers.McDonaldandAckerman(2000)haveappliedthis criticismspeciÞcallytorecommendersystemsthatuseacollaborativeÞlteringapproach whereitemsarerecommendedbyaggregatinggroupswithsimilaroverallpreferences.They 33arguethatvaryingcontextsoftendemanddi "erentapproachestomakingrecommendations, butmostsystemsaredesignedtomaximizetheaccuracyofasingleapproach. OnewaytocreateßexibilityinanIDAistolettheusercustomizethesystemtomeet theneedsofthespeciÞcdecisioncontext.Inotherwords,allowingcustomizationenablesa systemtoreliablybetailoredtoaspeciÞcdecisioncontext.MuchresearchinHCIhassought todesignandevaluatenewwaystoallowuserstocontrolorcustomizetheoutputofanIDA. Oneapproachtoa "ordinguserssomecontrolisforthesystemtoacceptfeedbackfromusers abouttherecommendations.ChenandPu(2012)describevariouswaystoforasystemto acceptfeedbackfromusersaboutrecommendations,includingstructuredinterfacesforusers tocritiquespeciÞcaspectsoftherecommendationsetaswellasnaturallanguagedesigns thatletusersexpressqualitativefeedbackthatcanbeinterpretedbythesystemandused tobuildauserproÞle.Thiscritique-basedapproachtofeedbackisdesignedtoa " ordsome controltousersbylettingthemdialoguewiththesystemtohelpitbuildamoreaccurate user-proÞle. CustomizationmayalsohelpuserÒbuyinÓtorecommendationsmorethanpersonalized systemsthatgiveuserslittlecontrol.LeeandLee(2009)showedthatIDAsine-commerce thatrecommenditemstobuyusingpersonalizationtechniquescancreateasenseofpsy- chologicalreactanceinwhichusersfeeltheirfreedomtochooseisbeingrestricted.Intheir study,thesensethattheIDAwasrestrictingfreechoiceleduserstorejectusingthesystem altogether.Customizationmayprovideasolutiontothisproblem.Bygivinguserschoice intherecommendation-producingprocess,customizableIDAsmayavoidthispsychological reactancewillstillgettingpersonalizedrecommendations. CustomizingIDAshasgenerallybeenshowntoincreaseuserengagementandsatisfaction withthesystemanditsrecommendations(Hijikata,Kai,&Nishida,2012;Knijnenburgetal., 2012;Parra,2013;Burkolter,Weyers,Kluge,&Luther,2014).However,despitetheseclear beneÞtsofcustomizationasadesignchoice,muchlessresearchhaslookedatcustomization anditsimpactondecisionmaking.ThisisanimportantgapintheIDAresearchbecausefor 34manyIDAs,decision-centeredcriteriaaremoreimportantthanuser-centeredcriteria.For example,ifdoctorsenjoyusingasystemandcometorelyonitbecausethecustomizationis engaging,butitleadsthemtomakeworsedecisions,thanthesystemasawholeisharmful toitstruepurposeofhelpingtoprovidebettercareforpatients.Likewise,ane-commerce recommendersystemthatuserslovetousebutleadsthemtobuyproductsthatdonÕtactually matchtheirpreferencesmaybecounter-productive,asuserswilllikelyreturnproductsor stoppatronizingthesite. Onereasonthatcustomizationmayhelpusersmakebetterdecisionsisbya " ordinga Òwhat-ifÓstyleofanalysiswhereuserscancanrepeatedlytryoutdi " erentconÞgurationsor inputstothesystemandevaluatetheoutput.What-ifanalysisisacommontechniquein businessintelligenceasawaytoobtaindecisionsupport(Golfarelli,Rizzi,&Proli,2006). What-ifanalysisallowsuserstesthowvariationsinimportantparametersinadecision contextwilla " ecttheoutcomeofthedecision(Golfarellietal.,2006).CustomizableIDAs canenablethisbyallowingthesechangesinparameterstobespeciÞedaspartoftheinput toasystem,anduserscanthenusetherecommendationsthatareproducedasanestimation ofthee " ectthesechangeswillhave.What-ifanalysiscanbee " ectiveatimprovingdecision makingwhencertainconditionsfavorit(Kottemann,Boyer-Wright,Kincaid,&Davis,2009). Therefore,asameansofimprovingdecisionmaking,customizationmaybehelpfultodecision makersbya " ordingwhat-ifanalysis. Bostandjievatal.(2012)havearguedthatacustomizableIDAthatallowsusersto adjustweightsandotheralgorithmfeaturescanhelpuserslearnabouthowthealgorithm work.Theyarguethatwhat-ifanalysisisa " ordedbythistypeofcustomizationandthatit canmakethesystemmoretransparent. Usersofcomputingtechnologieshaveatendencytobefocusedandengagedwiththeim- mediateinterfacethattheyareusing,andgenerallydonottreatinteractionwithacomputer asproxyforinteractionwiththepeoplewhodesignedandbuiltthecomputer(Sundar& Nass,2000;Solomon&Wash,2014).ItisunnaturalforuserstotrytoÒgetinsidetheheadsÓ 35ofsystemdesignerstoreasonabouthowthesystemmightwork.Rather,usersgenerallyare orientedtowardstheimmediateinterfacewithwhichtheyareinteractingasthesourceof theinteraction,andarenotorientedtowardsothersourceslikethesystemdesigners. Customizationofsystemlogicprovidesameansintheinterfaceforuserstonaturally thinkabouthowasystem shouldworkbasedontheirownunderstandingofthedecision problemandtheirexpertiseinitsdomain.Byrequiringuserstothinklike asystemdesigner withoutrequiringthemtothinklike thesystemdesigners,customizationmayhelpusersnot onlyimprovethesystemÕsrecommendationbutalsoimprovetheirsituationalawareness. InlinewiththenotionofÒself-as-sourceÓ,thereisevidencethatwhenanIDAworksor thinksinafashionthatissimilartousers,theywilllikeusingthesystemandÞndituseful. Aksoyetal.(2006)foundincontrolledexperimentsthatsimilaritybetweenarecommender systemÕslogicandusersÕdecisionmakingstrategyhelpedusersmakebetterdecisionsand prefertousetherecommendersystem.Thisresearchsuggeststhatithelpsuserswhenthe systemÒthinksÓliketheydo.OnewaytoensurethatanIDAthinkslikeitsuseristo allowuserstoconÞguretomatchtheirpreferredmethodofgeneratingrecommendations. However,thisstudyhasanimportantlimitationthatnecessitatesfurtherresearch.The recommendersystemusedwasquitesimpleasitsimplyrankeditemsastheweightedsumof fourattributescores.Theformulawasdescribedtousersclearly,meaningthatthesystem hadanexceptionallyhighdegreeoftransparency.Suchahighdegreeoftransparencyat thistimenotrealisticformanymorecomplexmethodsofgeneratingrecommendations. Therefore,itisnotclearwhetherthissimilaritye " ectwillholdtruewhenuserscanonly infersimilarityorhaveonlypartialinformationaboutthesimilaritybetweentheirwayof thinkingandthesystemÕs.Andmoreimportantly,ifuserscanonlychangeapartofthe algorithmorsystemlogicthroughcustomization,howissimilaritybetweenuserlogicand systemlogicperceived? InasimilarstudyAl-Natouretal.(2008)foundthatusersexpressedmorepositive opinionsaboutarecommendersystemthatusedlogicthatmatchedtheusersÕdecision 36makingstyle.Inthestudy,subjectsmadeadecisionaboutalaptoppurchaseandthen completedasurveythatmeasuredtheirdecisionmakingstyle.Theythenusedadecision aidtogetarecommendationforthedecisiontheyhadjustmade,andthissystemexplained theprocessitusedtoproducetherecommendation.Insomecases,thesystemusedasimilar decisionprocesstotheonethesubjecthadused,andothertimesitusedadi " erentprocess. Subjectsthenreportedtheirattitudesandintentionstousethedecisionaid,withsubjects whohadseenasystemthatsharedtheirpersonaldecisionmakingprocessreportingmore positiveattitudesandintentionstousethesystemforfuturedecisions. ThesestudiesdemonstratethepotentialforcustomizationinIDAs.Whensystemspro- videexplanationsoftheirlogicortakeothermeasurestoestablishtransparency,userreac- tionstothesystemmaylargelydependonwhetherthelogicusedispreferredbytheuser. Customizationprovidesameanstonotonlyenhancetransparency,buttoalsoensurethat thelogicispreferredbyusers.EstablishingthisassertionwithinacomplexIDAandevalu- atingtheactualdecisionmakingthatensuesusingtheIDAhasnotbeenaddressedinthe literature. 2.6.3PotentialProblemswithCustomizationinIDAs Inmypreviouswork,IshowedthatwhenuserscustomizeanIDA,theybecomebiased towardsacceptingitsrecommendations(Solomon,2014).Inthisstudy,subjectsplayeda fantasybaseballgame,andusedanIDAthatrecommendedlikelyoutcomesforbaseball gamestohelpthemmakepredictions.Someusersweregiventheopportunitytocustomize thesystembychoosingsomeattributesofthegamethattheywantedthesystemtoempha- sizewhenproducingarecommendation.Inthestudy,customizingthealgorithmdidnot actuallya " ecttherecommendations,althoughusersbelievedthatitdid.Theseuserswho customizedtheIDAweremorelikelytoacceptbothgoodandpoorrecommendationsthan asetofuserswhowerenotallowedtocustomizethesystem.Thisdemonstratesanewform ofdecisionmakingbiasthatIhavecalled customizationbias .Whenrecommendationsare 37highquality,havingcustomizedasystemmayleadtoimproveddecisionmaking,regardless oftheiractualinßuenceontherecommendations.However,ifthesystemgivesapoorrec- ommendation,usersmaynotscrutinizetherecommendationswellenoughandmakepoor decisions. Customizationbiasisaformofautomationbiasinthatcustomizationleadsuserstorely toomuchontheIDAÕsrecommendationsandbecomepoorjudgesofrecommendationquality. Onereasonforthismaybethatcustomizationcreatesan illusionofcontrol inIDAusers. Langer(1975)hasdemonstratedanillusionofcontrolinhumandecisionmakingwhereby peoplebecomeoverconÞdentthatrandomeventswillhavepositiveoutcomesbecausethey havemadesometypeofchoiceassociatedwiththeoutcome.Forexample,Langershowed thatpeoplewerewillingtobetmoreinacardgamewhentheywereabletoblindlychoose acardfromthedeckratherthanbedealtthetopcard.Choosingacardfromashu # ed deckdoesnota " ecttheprobabilityofagettingagoodcard,butpeoplebelievedtheycould controlthequalityofcardtheydrew. However,someotherrecentworkonillusorycontrolhasprovidedadi " erentinterpreta- tionofthisÞnding.Ginoetal.(2011)haveshownthatÞndingsfromillusorycontrolstudies arenotlikelytheresultofauniversaltendencyforpeopletooverestimatetheircontrol,but ratherofatendencytohavepoorperceptionoftheiractualcontroloveroutcomes.Intheir studies,theyvariedthedegreeofactualcontroloveranoutcomebetweennocontrol(acom- pletelyrandomoutcome)tocompletecontrolwheretheoutcomewasdeterminedentirely byasubjectÕschoice.Somesubjectsweregivenmoremoderateamountsofactualcontrol, wheretheirchoicesa "ectedoutcomeswithsomeprobability.Theyfoundthatwhenactual controlwaslow,peopletendedtooverestimatetheircontroljustasinillusorycontrolstud- ies.However,whenactualcontrolwashigh,peopletendedtounderestimatetheircontrol. Perceptionofcontrolwasonlymildlycorrelatedwithactualcontrol.Thisworksuggests thatpeopleareperhapspoorjudgesoftheircontrol,ratherthaninherentlybiasedtowards overestimation. 38Afewstudieshaveexploredwhethertheillusionofcontrolismanifestinusingdecision supportsystems.KottemanandDavis(1994)foundthatusersofaspreadsheet-basedÞnan- cialforecastingsystemweremoreconÞdentintheirdecisionswhenthesystemallowedthem tomakeadjustmentstoitsinputsandvalues.However,theirconÞdencewasnotwarranted astheyperformedatthesamelevelintheirdecisionmakingasotherswhohadusedalocked- downversionofthesystemthatcouldnotmakechanges.Kahaietal.(1998)replicated bothoftheseÞndingsinascenariowhereuserscustomizedadecisionaidbyhelpingtobuild thestatisticalmodelitusedtogenerateforecasts. AnotherpotentialproblemwithusingcustomizableinputinIDAsisthatitmayenable conÞrmationbias.ConÞrmationbiasisaninformationseekingbehaviorinwhichpeopleseek orinterpretevidencethatispartialtoexistingbeliefsorhypotheses(Nickerson,1998).Con- ÞrmationbiashasbeenobservedinIDAswhereuserscontrolthesystemÕsinput(Woolley, 2007;Berneretal.,2003;Solomon,2014;MessierJr,Kachelmeier,&Jensen,2001). RelatedtoconÞrmationbiasisanotherproblemwithcustomization.E "ectivelycus- tomizinganIDAmayrequireafairamountofexpertisebothinusingthesystemandin thedecisiondomain.Berneretal.(2003)studiedaclinicalIDAthatalloweduserstocus- tomizequeriesforrecommendationsthatthoseuserswhohadtheexpertisetocreategood customqueriesgenerallyalreadyknewthebestdecision,andmerelyconÞrmeditwiththe system.ThosewithoutexpertisealsotendedtoconÞrmtheirinitialhypothesesusingthe system,buttheseinitialhypotheseswereoftenincorrectandthereforepoordecisionswere made.ThisÞndingsuggestsapossibleparadoxforcustomization.Thepeoplewhohavethe expertisetouseittogenerategoodrecommendationsmaynotactuallyneedtheIDA,while thosewhocouldmostbeneÞtfromitmaynotbeabletouseite " ectivelytoproducegood recommendations. 392.6.4SummaryofCustomization DesigningIDAstobecustomizablebyend-usershasanumberofimportanttheoretical advantages.Theseinclude: ¥AllowinguserstopersonalizethesystemÕsinnerlogictobestmeettheirspeciÞccir- cumstances,potentiallyleadingthesystemtomakebetterrecommendations. ¥Addingtransparencytothesystemsothatusershaveanadequateunderstandingof howitworksandhowitsrecommendationshavebeenproduced. ¥Givingusersanopportunitytothinkcriticallyabouttheirdecisionandbuildsitua- tionalawareness. ¥HelpsusersbuildtrustintheIDAsothattheywillrelyonitwhenitgivesgood recommendations. ¥AllowsuserstoconductÒwhat-ifÓanalysisthatcanhelpthemlearnbothaboutthe systemaswellasthedatathatinformit,potentiallyleadingtoinsightaboutthe decision. ¥Situatesthesystematamoderatedegreeofcontrolforactivitiesofinformationac- quisitionandinformationanalysis,reducingthepotentialforautomationbiasand complacency. However,customizationmayalsopresentseveralnewchallengesthatneedtobeinves- tigatedandconsideredintheoriesthatinformIDAdesign.Someofthesenewchallenges are:¥Creatingabiaswherebyusersarepronetoagreementwithsystemrecommendations evenwhentherecommendationsarepoor. 40¥Creatingamisplacedsenseofcontrol,whereusersincorrectlyjudgethee "ectoftheir inputonthesystemÕsoutput,leadingtopoordecisionmaking. ¥EnablingconÞrmationbiasbylettinguserstailorinformationacquisitionandanalysis sothatitconÞrmspriorbeliefs ¥Usersmaybeabletocustomizeasystemsothatitmatchestheirsubjectiveprefer- enceforhowasystemshouldworkorhowdecisionsshouldbemade,whichmaynot objectivelybethebestapproachforagivensituation. ¥CustomizinganIDAe " ectivelymayrequireexpertisethatuserswhocanmostbeneÞt fromanIDAmaynotpossess. 2.7Summary IntelligentDecisionAidscanbepowerfulinhelpingtheirusersacquireandanalyzeinforma- tionandselectactionsaspartofadecisionmakingprocess.Avarietyofpowerfultechnologies havebeendevelopedthatcanautomatetheprocessingandanalysisoflarge-scaledataand usethatprocessingtomakerecommendationstousersaboutaparticulardecision.The applicationofthesetechnologiestodecisionmakinginmedicineandhealthcare,business ande-commerce,andmanyotherimportantdomainssuggeststhatcomputer-assistedde- cisionmakingisseenashavingtremendouspotentialforimprovingdecisionprocessesand outcomes.However,todatethereissomeconcernthatthetheorizedbeneÞtsofthesetechnologies arenotbeingrealized.Oneoftheconcernsisthatwhilethetechnologiesthatdrivethese systemsarepowerful,thedesignoftheinteractionbetweenusersandsystemshasnotbeen perfected.Humanfactorsproblemssuchasmiscalibratedtrust,automationbias,conÞr- mationbias,andothercognitivebiaseshavebeenshowntolimitthee " ectivenessofthese systemsinhelpingusersanddecisionmakersactuallyimprovetheirdecisionmaking.For 41thisreason,user-centeredapproachtoIDAdesignthatconsidersusersasanintegralpart ofthesystemisnecessary.Suchauser-centeredapproachtoIDAdesigndemandsastrong theoreticalunderstandingofhowcharacteristicsandfeaturesofanIDAdesignimpactusersÕ decisionmaking. OneofthemostwidelystudieddesigncharacteristicsinIDAresearchisthenotionof transparency.Sincetheunderlyingsystemlogic,includingbothalgorithmsorstatistical modelsaswellasdatabases,isoftentoolarge,complex,orvariedforuserstoeasilysee, IDAsareoftenthoughtofasÒblack-boxes.ÓHowever,muchworkhassoughttodesigntrans- parentIDAsthato " ersomeformofinsighttousersabouthowasystemworkstoproduce recommendations.ManybeneÞtshavebeendemonstratedtomakingIDAstransparent. However,itisnotyetclearwhetherimproveddecisionmakingisoneofthosebeneÞts.The littleresearchthatexaminesthatquestionisinconclusive,withsomeworkevensuggesting thattransparentIDAmayinhibitsomeaspectsofdecisionmaking.Forthisreason,IDA designsthatprovidetransparencymustbecarefullyevaluatedinordertodeterminehowthe designmaybeimpactingdecisionmaking. Onesuchdesignfeaturethatrequiresacarefulevaluationiscustomization.Customiza- tionmaymakeanIDAsmoretransparentbyallowinguserstoplayadualroleasboth systemuserandsystemdesigner.AcustomizablesystemthatallowsuserstoconÞgureitin awaythattheyexpectwillhelpitpersonalizeitsrecommendationsprovidessomeautomatic transparencytousers.Sinceusersknowwhattheyhavedonetoasystemincustomizing, theygainatleastsometransparencyintohowitworks. However,customizationasadesignfeaturemayhaveotherconsequencesforsystem usabilityandforcomputer-supporteddecisionmaking.Customizingasystemmaycreate orenhancesomebiasesthatarisewhenusersrelyonautomatedaidstoassistindecision making.Usersmaybecomebiasedtowardsagreeingwithrecommendations,theymaytryto customizeasystemtoconÞrmanexistinghypothesis,theymayhavemiscalibratedtrustor unrealisticexpectationsforhowwellthesystemwillworkasaresult.Oneofthedi ! culties 42withcustomizationofanIDAÕsinternallogicisthatinmostcases,customizationonly providespartialcontroltousers.Therefore,theiractionstoconÞgurethesystemmust interactwithanumberofotherpotentiallyinvisiblefactorswithinthesystemÕslogic,and usersmaynotbeabletoeasilyinterprethowtheyhavea " ectedthesystemÕsoutputbyway oftheircustomizationofthesystem. 43CHAPTER3 CUSTOMIZATIONBIAS 3.1Introduction Customizationisadesignapproachtocreatingpersonalizedrecommendations.Ratherthan completelyusingartiÞcialintelligenceorcomputationaltechniquestopersonalizeandtailor recommendationstotheuserandthespeciÞcdecisioncontext,customizableIDAsallocate someoftheresponsibilityofpersonalizingrecommendationstotheusersthemselves. Fromtheperspectiveofadesigner,therecanbeseveralgoalsbehindusingthisdesign. OneimportantgoalcanbetoleverageusersÕknowledgeoftheirlocalcircumstances,pref- erences,andsituationalawarenesstohelpthesystemproducebetterrecommendationsfor users.Anothergoalcanbetogiveusersasenseofcontroloragencythatproducesapositive userexperienceandattitudetowardsthesystem. Thereisanassumptionbehindthisgoal,whichisthatwhenasystemproducesgood recommendations,thenuserswillaccepttheserecommendationsandconsequentlymake gooddecisions.Herlockeretal.(2004)suggestthatrecommendationqualityisoftenthe fundamentalfocusofIDAdesignersandthatotherevaluationcriteria,particularlyhuman- centeredcriteria,areoftenignored.Iarguethatinmostcases,IDAshouldbemostcritically evaluatedbasedonthedecisionsthattheirusersmakeratherthano # inetechnicalcriteria oruser-centeredcriteriasuchasusabilityorusersatisfaction.However,thisisatremen- douschallengeforIDAresearchbecauseofthecomplexityofevaluatingdecisionmaking, particularthetypesofdecisionsthatIDAarefrequentlydesignedtoassistthathavehigh uncertainty,highstakes,timepressure,andvariabilityindecisionmakersÕexpertise(Klein, 2008).Also,formanydecisions,noteveryoneagreesonthebestcriteriaforwhichdecisions shouldbeevaluated.IDAsmayforexamplebeusedtorecommendproductsthatare hori- 44zontallydi !erentiated (Cremer&Thisse,1991),whichmeansthatagooddecisionforsome willbeapoordecisionforothers. Furthermore,sincedecisionqualitymaybedi ! culttoevaluate,particularlyinrealtime, thequalityofrecommendationsthatasystemprovidescannotbeeasilycommunicatedto usersorevenknowntothesystempriortoprovidingrecommendations.Thispresentsachal- lengeforIDA-supporteddecisionmaking.WhenanIDAgivesarecommendation,should usersfollowtherecommendation?Howcanusersknowhowhowgoodarecommendationis andwhetherornotrecommendationsaretrustworthy?UsingIDAtosupportdecisionmak- ingaddssomecomplexitytodecisionsinthatIDAsprovidenewbutaggregatedinformation intheformofrecommendationsthatusersmustevaluateaspartofthedecisionprocess. AsdiscussedinChapter2,thereisanabundanceofevidencethatIDAusersoftenmake decisionerrors.Usersoftenfollowpoorrecommendationfromasystem(Skitkaetal.,1999), althoughusersmayalsofailtofollowgoodrecommendationswhichhurtstheirdecision quality.Fromahumanfactorsengineeringperspective,understandingwhatleadsusers tofollowordeterfromIDArecommendationsisacriticalaspectofunderstandinghowto makesystemsthatimprovedecisionmaking.AsarguedbyDzindoletetal.(2003),agoalof human-centeredIDAdesignshouldbetocalibrateusersÕrelianceonIDAsÕrecommendations withthesystemÕsÒreliability,Ówhichistosaythequalityoftherecommendationsthey produce.Ifuserscane " ectivelydetectrecommendationquality,theycanuseanIDAto makegooddecisions. Inthischapter,IwillpresentastudythatexamineshowIDAdesignsthata " ordend- usercustomizationcanimpactuserdecisionmaking,leadingtoadecisionmakingbiascalled customizationbias .Customizationbiasoccurswhenusersbecomepartialtoacceptingrec- ommendationsfromIDAsasaresultoftheirinvolvementincustomizingitsalgorithm.I Þrstobservedthisbiasinmypreviouswork(Solomon,2014)oncustomizableIDAs.This studywillbuildonthatworkbytestingatheoreticalmechanismbywhichcustomization biasisenabled. 45EfÞcacy Beliefs Agreement Customization Figure3.1:HowcustomizationcancreateagreementwithIDArecommendations. IDAsthatarecustomizablea " orduserstheopportunitytotailorthesystemÕsinner logictomatchtheirpreferencesforhowrecommendationsareproduced.Theintentofthis tailoringistoallowtheusertocreateanalgorithmthatworksinawaythattheuserbelieves ise !cacious.Inotherwords,customizationallowsuserstomakethesystemworkinaway thattheybelievewillbesuccessfulatproducinggoodrecommendations.Iwillreferto usersÕbeliefsaboutthequalityofrecommendationsthatusersexpectasystemtoproduce ase" cacybeliefs. Onepossiblereasonforcustomizationbiasisthatbyallowinguserstotailorthealgo- rithm,theydevelopinßatedbeliefsaboutthesystemÕse !cacy.Usersmaybelievethattheir actionsincustomizingtheIDAwilluniformlyimprovethesystem,ignoringthepossibility thattheyhaveharmedthealgorithmÕsperformanceorhadlittlee " ect. TheconceptofusersÕe ! cacybeliefsisanimportantconstructbothforunderstanding customizationbiasaswellasmoregenerallyforIDAdesign.Howdousersformexpectations 46orbeliefsaboutthee ! cacyofasystem?ParticularlywhenanIDAlackstransparencyor whentheuserhaslittleexperiencewithasystem,usersmayhavelittleinformationthat allowsthemtoadequatelyassesshowwellasystemislikelytoworkatproducinggood recommendations.Butthisbeliefmaynonethelessimpacttheirdecision.Ifusershavelittle knowledgeaboutadecisionoraboutasystem,theymayhavelittletofallbackonwhen makingdecisionsotherthanabelief. Figure3.1illustratesthetheoreticalrelationshipbetweencustomization,e ! cacybeliefs, andagreement.ThisÞgurerepresentsthreerelationships.First,itsuggeststhatcustomiza- tioncausesincreasede ! cacybeliefs.Second,itsuggeststhate ! cacybeliefscauseagree- ment.Together,thesetworelationshipsareanargumentfor mediation ,inthatthee " ectof customizationonagreementismediatedbyusersÕe ! cacybeliefs.ThisÞgurealsosuggestsa thirdrelationship,whichisadirectrelationshipbetweencustomizationandagreementthat isnotrelatedtoe !cacybeliefs. Thisdiagramsuggestsacausalchainfromcustomizationtoagreement.Customization causesuserstoincreasetheirbeliefsinsysteme ! cacy,andbecausetheyhaveincreased theire ! cacybeliefstheywillthenbeinclinedtoagreewiththeIDAÕsrecommendation.It alsosuggeststhatthedirectinßuenceofcustomizationonagreementiscausalinnature. Inthischapter,Iwillpresentanexperimentthatteststhecausalrelationshipsbetween customizationande ! cacybeliefs,aswellasthedirectrelationshipbetweencustomization andagreement.Thisexperimentwillalsolookattherelationshipbetweene ! cacybeliefs andagreement,althoughitwillonlyo "erweakevidencethattherelationshipiscausal. However,thecausalityofe ! cacybeliefsonagreementwillbetestedinasubsequentstudy reportedinchapter4. 473.2Methods ToevaluatetheroleofcustomizationindecisionmakingwithIDA,Icreatedanexperiment whereIDAusersaregivenrecommendationspurportedlygeneratedbyacomplexalgorithm. SomeusershadthechancetocustomizetheIDAtoinßuenceitsrecommendations,butin realitythecustomizationhadnoe " ectontherecommendations.Thisdesigntestswhether theactofcustomizinganIDAinßuencesdecisionswhileholdingthequalityofthoserec- ommendationsconstant.Thisallowsforacomparisonofdecisionmakingbetweenusers whocustomizeanIDAandthosewhodonotbutwhoreceiveidenticalrecommendations. Byholdingrecommendationqualityconstantbetweenconditions,thisdesignevaluatesthe e"ectcustomizationhasdirectlyonthedecisionsthataremadebyusers,ratherthanany e " ectthatisduetothechangeinrecommendationsthatcomesfromcustomizingtheIDA. Thedecisionintheexperimentwasafantasybaseballpredictiongameinwhichsubjects triedtopredictthescoresofMajorLeagueBaseballgamesafterbeingshownstatisticsabout theteamsinvolved.Thistaskhasseveraladvantages.First,itisataskwithalowthreshold forexpertise,sincemanypeopleinthegeneralpopulationfollowbaseballandplaysimilar games.Second,itisataskforwhichIDA-liketoolsarefrequentlyusedtohelppeoplemake choices.Third,itisataskthatrequiresadecisiontobemadewithouttheavailabilityofall possiblyrelevantinformation.Eventhebeststatisticalsimulatorsarenotperfectlyreliable inpredictinggameoutcomes,andthereforesomejudgementorextraknowledgefromthe decisionmakerisrequired.Fourth,itisataskthatcaninvolvebothabinary,Óyes/noÓ typedecision(ÓWhichteamwillwin?Ó),aswellasacontinuousoutcome(ÓHowmanyruns willeachteamscore?Ó),andeachoftheseoutcomescanbeobjectivelycomparedtoactual outcomes.249subjectswererecruitedfromAmazonMechanicalTurktoplaythisgameaspartofa studytoÒhelpimproveanalgorithmictoolforaidingdecisionsinfantasybaseball.ÓInorder tocompletetheexperiment,subjectshadtoÞrsttakeatimedtestonthebasicrulesand 48statisticsofbaseball.ThisquizisdescribedingreaterdetailinAppendixB.73ofsubjects didnotsuccessfullycompletethisquiz.Thesesubjectswerepaid$0.40andscreenedout offurtherparticipation.Thisbasicknowledgewasequivalenttotheminimumknowledge requiredtoplayfantasybaseball.Inordertoenrollinthestudy,subjectswererequired throughMechanicalTurkÕssystemtobeintheUnitedStatesandtohavecompletedatleast 95%oftheirpreviousassignmentsonMechanicalTurk.MechanicalTurkworkerswhohad participatedinpilotsofthisstudyorinmypreviousstudyusingthistask(Solomon,2014) werealsonoteligibletoenroll.Subjectswerepaid$2forparticipation.Subjectswerealso promisedanadditionalpaymentthatwoulddependontheirperformanceinthegame,and weretoldthattheaverageexpectedpaymentwouldbe$2.25.Subjectstookanaverageof 14.4minutestocompletetheexperiment.SixsubjectswereremovedfromtheÞnaldataset becausetheycompletedthestudyinlessthanÞveminutes.InpilottestingIdeterminedthat Þveminuteswasnotsu !cienttobeabletocompletethestudywhilegivinganythoughtto thedecisions.Twoadditionalsubjectswereremovedbecausetheyhadnomatchingsubject fromthenon-customizationcondition(thisisexplainedindetailinsection3.2.3). TheÞnaldatasetcontained168subjects.Thesubjectpoolwas73%malewithanaverage ageof33yearsold. 3.2.1GamePlay SubjectsÞrstreadinstructionsandwererequiredtopassadi ! cultquizontheinstructions. Onaverage,subjectsrequired2.1attemptstopassthisquiz.Thedi !cultyandtimerequired topassthequizensuredthatthedistributedonlinesamplehadsinceremotivetoparticipate andthattheyadequatelyunderstoodthegame.Subjectsplayed12roundsofthefantasy baseballpredictiongame.Inthisgame,subjectswereshownextensivestatisticsabouttwo teamsandaskedtomakeapredictionaboutthescoreofthegamebetweenthetwoteams. Toensurethatonlytheavailablestatisticalinformationwasusedtoinformdecisions,the namesoftheteamswerenotrevealedtosubjects.Additionally,thebaseballgamesthat 49subjectswerepredictingweregamesthathadalreadybeenplayed.Subjectsweretoldthat eventhoughthegameswerepastgames,allstatisticsandalgorithmsinthestudytreated thegamesasiftheywereinthefuture. Iselectedgamesfortheexperimentfromthe2011and2012MajorLeagueBaseball seasonsusingseveralcriteria.IÞtanexistingstatisticalmodel(T.Y.Yang&Swartz,2004) forassessingtheprobabilityofahomevictorytogamesfromtheseseasons.Thismodel estimatestheprobabilitythatahometeamwillwinusingtherelativestrengthofeachteam inthreecategories:winningpercentage,theEarnedRunAverageofthestartingpitcher,and BattingAverage.ThemodelalsoincludesanadjustmentforhomeÞeldadvantage.Alldata aboutMajorLeagueBaseballgamesandplayerswastakenfromBaseball-Reference.com 1.Iselectedgamestomatchtheapproximatedistributionofprobabilitiesestimatedbythe model.Ichosetwogameswherethepredictedwinnerhadlessthana60%chanceofwinning, fourgameswherethepredictedwinnerhada60-70%chanceofwinning,fourgameswere selectedwithprobabilitybetween70and80%,andtwogameswithprobabilitygreaterthan 80%.Onlygameswheretheteamwiththehigherexpectedprobabilityactuallywonthe gamewereincludedintheÞnalsetof12games.These12gameswerepresentedinarandom ordertoeachsubject. Subjectsearnedpointsinthegamebymakingaccuratepredictionsabouttheoutcome ofthegame.Subjectsearn20pointsiftheypredicttheexactlycorrectscore.Ifthey choosethewrongwinner,theylose10pointsfromtheirscore.Theyalsoloseonepointfor theabsolutedi " erencebetweenthepredictednumberofrunsforeachteamandtheactual numberofruns.Forexample,iftheÞnalscoreofagamewasAway5ÑHome3andthe subjectpredictedAway4ÑHome6,thesubjectwouldlose10pointsforchoosingthe wrongwinner,lose1pointformissingtheAwayruntotalby1,and3pointsformissingthe Homeruntotalby3,leavingatotalof6pointsforthegame.Thisbaseballtask,likemany decisions,hasaclearÒbestpossibleoutcomeÓyetnoclearÒworst-possibleoutcomeÓsince 1http://www.Baseball-Reference.com 50Figure3.2:CustomizableIDA. onecantheoreticallypredictscoresthatdeviateinÞnitelyfromtheactualscore.Similarly, doctorscouldprescribethewrongmedicineandalsoprescribeadosageanddurationthat deviateinÞnitelyfromtheoptionthatintruthwouldbemostbeneÞcialtoapatient.The presenceofclearÒbestoptionsÓmeansthatanydeviationisalosstothedecisionmaker. Forthisreason,thescoringsystemidentiÞedaclearbestoptionandtheIDAwascapable ofrecommendingthisbestoption,anddeviationfromthisoptimaldecisionwasrepresented asaloss. 513.2.2IDAandConditions AllsubjectsusedanIDAthatprovidedextensivestatisticalinformationabouttheteams involvedineachofthegames.Inadditiontoprovidingstatisticalinformation,theIDA alsorecommendeditsownpredictionaboutthescoreofthegame.Subjectsweretold thispredictionwasbasedonastatisticalalgorithm.However,therecommendationswere actuallypre-determinedforeachgame.Thereweretwotypesofrecommendations.Good recommendationssuggestedtheactualscoreofthegame,yielding20pointsiffollowed exactly.Poorrecommendationssuggestedthewrongwinner,aswellasascorethatwould yield5points.Subjectsweregivenpoorrecommendationsforfourgames(onerandomgame foreachdi ! cultylevel),andgoodrecommendationsfortheremaininggames.Overthe12 games,theaveragescoreoftheIDAÕsrecommendationswas15.Subjectsweretoldofthis average,andthattherewasconsiderablevariationinthequalityoftherecommendation. Thereweretwoconditionsoftheexperiment.Inthecustomizablecondition,subjects hadtheopportunitytomakeadjustmentstotheIDAÕsrecommendationalgorithmafter seeingatableofstatisticalcomparisonsbetweentheteams(seeFigure3.2).Subjectswere askedtochoosebetweenoneandÞvestatisticalcategoriestoreceiveextraemphasisin thesimulationalgorithm.Forexample,asubjectcouldselectwinningpercentage,home runs,andstartingpitcherERAandthealgorithmwouldthenemphasizethecontribution ofthesestatisticswhenestimatingthegameÕsoutcome.Theinstructionsstatedthatgood customizationimprovestheperformanceofthealgorithm,butpoorcustomizationcould harmperformance. Inthenon-customizationcondition,subjectssawthesametableofstatisticalcomparisons asthecustomizationcondition.Theinterfacehadpre-loadedasetofcategoriesthatwould beemphasized,andthebuttonsusedtoconÞgurethesystemweredisabledsothatchanges couldnotbemadetotheconÞguration.Intheinstructions,subjectswereinformedthat thepre-loadedcategorieswereconÞgurationsthathadbeenusedbyprevioususersofthe 52systemwhowerecompletingthesametask.DetailsofhowtheconÞgurationwasselected forusersinthenon-customizableconditionaredescribedbelowinthesection3.2.3. Afterviewingthestatistics(andifinthecustomizationconditioncustomizingtheIDA), subjectsclickedabuttontogeneratearecommendationabouttheoutcomeofthegame thattheycouldusetohelpthemmakeadecision.Priortoseeingtherecommendations, subjectsansweredathreequestionsurveytoassesstheirbeliefabouthowwelltheyexpected thesystemtoperform.Thissurveyisdescribedinthemeasuressectionbelow.Subjects werethenshowntheIDAÕsrecommendationandgiventheopportunitytomaketheirown predictionaboutthegameoutcome.Oncesubjectshadsubmittedtheirdecision,theywere directedtothenextrounduntilall12roundswerecompleted.Subjectsthentookapost- testquestionnaire,andweregivenacodetoreturntoMechanicalTurktobesubmitted forpayment.Aftertheentirestudywascompleted,subjectsweresentamessagewitha breakdownoftheirscoreforeachgameandadebrieÞngstatementaboutthetruenature oftheIDA.Subjectswereshownalltheirscoresafterthestudy,ratherthanimmediately followingeachround,toreducethenuisancefactoroflearningabouttheIDAorthedecision scenariooverthecourseofthestudy. 3.2.3SubjectMatching Apotentialconfoundcanariseinanystudythatcomparesacustomizablesystemtoanon- customizablesystem.Whensubjectscustomizeasystem,theyhavesetitsconÞguration. Subjectswhodonotcustomizeasystemmustneverthelessuseasystemthathasbeencon- Þguredinsomeway.IftheconÞgurationforthesystemusedbythenon-customizersis pre-determined,aswasdoneinmypreviouswork(Solomon,2014),thereisaconfoundin thatthecustomizationconditiondi " ersbothinthe actofcustomizingaswellasthe product ofcustomizing(i.e.theconÞgurationthatisused).Di " erencesbetweentheconditionsmay bebecauseoftheactofcustomizing.ButtheyalsocouldbebecauseofspeciÞcconÞgura- tionsthatareused.Forexample,ifnon-customizerssimplydonotthinkthatthedefault 53conÞgurationisagoodconÞguration,theymaybelesspronetoagreementnotbecausethey havenÕtchosentheconÞgurationbutbecausetheybelieveitistrulyapoorconÞguration. Thepurposeofthisstudyistounderstandhowthe actofcustomizinganIDAinßuences decisionmaking,andisnotconcernedwith product ofcustomizing.Thisisbecausetheact ofcustomizingisgeneralizabletoothersystemsandotherdecisionscenariosbesidestheone usedinthisstudy.TheproductofcustomizingisspeciÞctothetaskandIDAusedinthe studybutwillnothaveapplicabilitytoothersystems(e.g.knowingwhichcategoriesof baseballstatisticspeopleselectwonÕttellusanythingaboutwhatparametersaninvestor shouldusetocustomizeastockrecommender). Forthisreason,thisstudywasdesignedtoremovethisconfoundandensurethatonlythe actofcustomizingwasvariedbetweenconditions.Todothis,thestudywasrunonecondi- tionatatime.ThecustomizationconditionwasrunÞrst,followedbythenon-customization condition.TheconÞgurationsthatsubjectsinthecustomizationconditionusedwereas- signedtosubjectsinthenon-customizationcondition.Thisensuredthatsubjectsinthe non-customizationcontrolconditionwereusingthesameconÞgurationsasthoseinthecus- tomizationcondition. RatherthanrandomlyassigningconÞgurationstonon-customizers,acollaborativeÞl- teringtechniquewasusedtomatchnon-customizerstothemostsimilarsubjectfromthe customizationconditionintermsoftheirattitudesaboutthespeciÞcbaseballstatisticalcat- egories.Thiswasdonetoreducedi " erencesinsubjectiveopinionsaboutwhichcategories aremoste "ectiveforacomputerizedsimulatorinestimatinggameoutcomes.Forexample, somepeoplemayfeelthatHomeRunsandEarnedRunAveragearethemostinformative statisticalcategories,whereasothersmaythinkOn-BasePercentageandStolenBasesare bettercategories.Ifweassumethatcustomizerswillchoosetheirpreferredcategoriesmost ofthetime(andthisassumptionissupportedbythedatashowninFigure ??),thensubjects whocustomizemayhavedi " erentoutcomesinthestudyasaresultofthispreferencefor theconÞgurationratherthantheactofcustomizing.ThecollaborativeÞlteringtechnique 54123456789123456891012How many non !customizers were matched to each customizer countFigure3.3:Distributionofmatchespercustomizer. isintendedto,asbestaspossible,assignnon-customizersconÞgurationsthattheyprefer equivalentlytothecustomizers. ToexecutethiscollaborativeÞlteringmatching,subjectstookapre-testsurveythat askedthemtoassesshowinformativeeachofthe27statisticalcategoryoptionsmight betoacomputerizedbaseballoutcomesimulator.Theyansweredaquestionabouteach categoryona5-pointscale.Wheneachnon-customizerÞnishedthissurvey,thecosine similaritybetweentheirresponsesandtheresponsesofeverysubjectfromthecustomization conditionwascalculated.Then,thenon-customizerwasmatchedwiththecustomizerwith thehighestcosinesimilarity.Thenon-customizerthendidthebaseballpredictiontaskusing thesameorderofgames,andforeachgametheIDAÕsconÞgurationwasshownasthesame conÞgurationthatthecustomizerhadused. Aconsequenceofthismatchingapproachisthattwosubjectswhocustomizedthesystem 55nevergotmatchedtoanynon-customizers.ThesesubjectswereremovedfromtheÞnaldata set,leaving49subjectsinthecustomizationgroup.Inane " orttoÞndmatchesforthe majorityofcustomizers,andtoobtainmultiplenon-customizers,119additionalsubjects wererecruitedforthenon-customizationcondition.Thematchingdistributionwasnot uniform.9customizersonlyreceivedonematchingnon-customizer.Onecustomizerreceived 12matches,whichwasthemaximum.ThisdistributionisshowninFigure3.3.Theaverage cosinesimilaritybetweenmatcheswas0.983,withastandarddeviationof0.014.Overall, subjectsinthenon-customizationconditionhadverysimilarresponsestotheirmatchfrom thecustomizationconditionandtherewasonlyasmallamountofvarianceacrosssubjectsin theirsimilarity.Forthisreason,theunevendistributionofmatchesisnotlikelyproblematic becausenon-customizersallhadverynearlythesamesimilaritytotheirmatchingsubject fromthecustomizationgroup. Alimitationofthisstudydesignisthatthematchingtechniquecreatesamildviolation ofrandomassignmentbecausesubjectswhosignedupearlierforthestudyweremorelikely tobeinthecustomizationgroup.Ananalysisofalldemographicandpre-treatmentvariables didnotÞndanystatisticallysigniÞcantorevenpotentiallymeaningfuldi " erencesbetween subjectsineachcondition.Therefore,Ihavenoreasontosuspectthatthisbiasimpacted theresultsoftheexperiment. 3.2.4Measures Agreement. TherearetwomeasuresofagreementbetweensubjectsÕpredictionsforthe outcomesofagameandtheIDAÕsrecommendation. WinnerAgreement isabinarymeasure ofagreement.Winneragreementiscodedas1ifthesubjectpicksthesameteamtowinas theIDAÕsrecommendation,andcodedas0iftheychoosetheoppositeteam. ScoreAgreement isacontinuousmeasurethatusesthegameÕsscoringmechanism.Score agreementismeasuredusingthesamemethodassubjectsÕpointtotalsasdescribedabove, howeverratherthanusingthetrueoutcomeofthegameasthecomparison,itusestheIDA 56recommendation.Forexample,iftheIDApredictsAway2ÑHome6,andthesubject predictsAway4ÑHome5,scoreagreementwouldbe15sincethesubjectstartswith20 points,thenloses4forthedi " erenceinAwayscoresand1forthedi " erenceinHomescores. Thismeasureisincludedtoprovideagranularindicationofagreementandrelianceonan IDA.Moststudiesthatexaminerelianceondecisionaidsuseonlyabinarytasksothat relianceoragreementismeasuredasafrequency.However,manyIDA-supporteddecisions havemoregranularityintheoptionsusershave.Adoctor,forexample,canuseanIDAto determineadosageordurationofatreatment.TheIDAmaygiveaspeciÞcrecommendation, andthedoctormaybeinßuencedbytherecommendationbutmaymakeasmalladjustment toit.Usingonlyabinarymeasureofagreementwouldnotcapturethatinßuence,and thereforebothacontinuousandbinarymeasurearevaluabletounderstandingagreement. BeliefsofSystemE " cacy. SubjectsÕbeliefsaboutsysteme !cacyweremeasuredusing threeindicators.Subjectsansweredthefollowingquestionona7-pointLikertscale: Based onthecategoriesthatarebeingemphasized,howwelldoyouexpectthesimulatortoperform atmakingitsprediction? Asecondmeasuredaskedsubjectstoestimatethenumberof pointsthattheIDAÕspredictionwouldearnifitwerescored.Thethirdmeasureasked subjectstoassesstheprobabilitythatthesimulatorÕspredictionwouldchoosethecorrect teamtowinthegame. Table3.1:Factoranalysisofe ! cacybeliefsmeasures. StatisticFactorLoading(Std.Error)MeanSt.Dev.MinMax 7-pointLikert1.000(Ð)4.7731.29117 ExpectedPoints2.272(0.095)12.9313.714020 CorrectWinner9.240(0.370)72.85912.93450100 FitIndices ComparativeFitIndex1.000 RootMeanSquareError0.000 AconÞrmatoryfactoranalysiswasusedtoevaluatethereliabilitybetweenthesemeasures 57fromthedata.Table3.1describesthisfactoranalysis.Overall,thethreemeasureswere consistentwitheachotherandloadedontoalatentvariablewithastrongÞt.Intheanalyses presentedintheresultssection,thefactorscoreforeachobservationthatresultedfromthis analysiswasusedasasinglevariablecalled e" cacybeliefs .Theanalyseswerelaterrepeated usingeachoftheindividualindicatorsseparately,andthismadenodi " erencetoanyofthe conclusionsthatweredrawnfromtheanalyses. Propensitytotrustautomation. Sincesubjectsmayhaveindividualdi " erencesintheir attitudesaboutautomationordecisionaids,ImeasuredsubjectsÕpropensitytotrustauto- mateddecisionaidsusingthescaledevelopedandvalidatedbyMerrittetal.(2012).This scalehas6itemsthatarelistedinAppendixA.CronbachÕsalphafortheseitemswas0.72. Toobtainafactorscoreforeachsubjectasameasurementofpropensitytotrustautomated decisionaids,IconductedaconÞrmatoryfactoranalysisthatincludedallsixitemsontoa singlefactor.ThisanalysisisdescribedinTable3.2.Thefactorscoresforeachsubjectwere calculatedandusedasasinglevariablecalled automationtrustpropensity inthesubsequent analyses.Theseitemswereadministeredinthepre-test,beforesubjectssawtheIDAorhad anyotherinformationaboutit. Table3.2:Factoranalysisofpropensitytotrustautomateddecisionaidsitems. StatisticFactorLoading(Std.Error)MeanSt.Dev.MinMax Trust11.00(Ð)3.4940.92215 Trust2(Reverse)-0.733(0.088)2.5890.99315 Trust30.941(0.071)3.1900.92815 Trust41.125(0.066)3.1370.96615 Trust51.126(0.073)3.3271.02415 Trust60.947(0.084)3.1071.03315 FitIndices ComparativeFitIndex0.977 RootMeanSquareError0.104 Categoryratings. ForasingleconÞgurationoftheIDA,whichcouldemphasizebetween 58oneandÞvecategories,subjectsÕoverallratingoftheconÞgurationwascalculatedasthe averageratinggiventoallthecategorieswithinaconÞguration.ThisisameasureofsubjectsÕ beliefsaboutwhethertheemphasizedcategoriesaregoodindicatorsofgameoutcomes. Control,helpfulness,accuracy,andimportance. Inthepost-testquestionnaire,subjects answeredquestionsandrespondedon7-pointLikertscalesabouthowtheyusedtheIDAfor theirdecisions.Thesequestionsandtheirassociateconstructswere: ¥Control -Iwasabletocontroltheaccuracyofthesimulator. ¥Helpful -Howhelpfulwasthesimulator? ¥Accurate -Howaccuratedoyouthinkthesimulatorwasatpredictingtheoutcomeof games?¥Important -HowimportantwerethesimulatorÕspredictionsininformingyourpredic- tions? Decisionquality. Thenumberofpointsearnedfromadecisionwasusedtomeasure decisionquality. 3.3Hypotheses H1.SubjectswhocustomizetheIDAwillbelievethatthesystemhashighere " cacythan thosewhodonotcustomizethesystem. Theillusionofcontrol(Langer,1975)wouldpredict thatuserswhomakechoicesabouthowtheIDAsalgorithmworkswillbelieveitworksbetter thanotheruserswhouseanidenticalalgorithmbutdonotmakethechoicetouseitinthe IDA.Importantly,thisillusionisstrictlytheresultofmakingthechoiceabouthowtheIDA isconÞgured,andnottheresultofusersconÞguringitusingcategoriesthattheyfeelare betterpredictorsofgameoutcomes. 59H2.SubjectsÕbeliefsabouttheIDAÕse " cacywillbepredictiveoftheiragreementwith itsrecommendations.Subjectswillhavemoreagreementwhentheybelievethesystemhas greatere " cacy. IexpectuserswhobelievetheIDAÕsprocessforproducingrecommenda- tionsise " ectivetoevaluaterecommendationstobemoreaccurateandtrustworthy,and thereforetheseuserswillagreewithrecommendationsmorethanthosewhofeeltheprocess isine " ective. H3.SubjectswhocustomizetheIDAwillhavegreateragreementwithitsrecommendations thanthosewhodonotcustomize. Iexpecttheresultsofthisstudytobeconsistentwith mypreviouswork(Solomon,2014)whichfoundthatusersaremorelikelytoagreewith recommendationswhentheybelievetheyhavecustomizedtheIDA.Thedesignofthisstudy allowsthishypothesistobebrokenintotwopieces: ¥H3a.Thee !ectofcustomizationonagreementwillbepartiallymediatedbye " cacy beliefs.SubjectswhocustomizewillagreemorewiththeIDAinpartbecausebycus- tomizingthesystemtheyincreasetheirbeliefsinitse " cacy(H1andH2). Ifboth H1andH2aresupported,itwouldfollowthatcustomizationcancauseagreementby causinganincreaseine ! cacybeliefs,whichthencausesmoreagreement. ¥H3b. Therewillbeadirecte !ectofcustomizationonagreement.Subjectswhocus- tomizewillagreemorewiththeIDAforreasonsotherthananincreasedbeliefinits e" cacy. Thereareatleasttwomechanismsotherthane ! cacybeliefsbywhichcus- tomizationmightplausiblycausegreateragreement.OneisaconÞrmationbias.If, forexample,auserlooksoverthestatisticsoftheteamsandformsanopinionthatthe awayteamwillwinbecausetheyhaveabetterpitcher,shemightconÞguretheIDAto emphasizepitchingstatistics,whichareconsistentwithherinitialopinion.Thenifthe IDArecommendedtheawayteamtowin,shemaytreattherecommendationascon- Þrmationbythesystemthatherinitialopinionhasmeritandbeinclinedtoagreewith 60therecommendation.Anotherpotentialmechanismisthee " ortrequiredtoconÞgure theIDA.TheIKEAe " ect(Norton,Mochon,&Ariely,2011)illustratesthatpeople aremoreinclinedtobuyproductswhentheyhaveparticipatedincreatedthem.If thise " ectextendedtofollowingIDArecommendationsitwouldpredictgreateragree- mentwithrecommendationsbycustomizers.E " ortmightalsocauseagreementby creatingfatigueinusers,suchthatafterexertinge "orttocustomizetheIDAusersare fatiguedandnotinterestedinexertingmorecognitivee " orttoscrutinizeandevaluate recommendationsclosely,andinsteadjustchoosetoagreebecausethatiseasierthan formingtheirownprediction.Andtheremayalsobeotherunconsideredreasonsthat customizationmayincreaseagreementotherthanthroughe ! cacybeliefs.Thepur- poseofthisstudyisnottoidentifyanymechanismsotherthane ! cacybeliefs.Rather itisintendedtoidentifywhethere !cacybeliefsareamechanismforcustomizationÕs e " ectonagreementandwhetherthereisaneedforfutureresearchthatexploreand identifyothermechanisms. H4.SubjectswhocustomizetheIDAwillmakebetterdecisions,earningthemmorepoints inthegame,thanthosewhodonotcustomize. Iexpectthistohappenbecausecustomizers areinclinedtoagreewiththeIDAÕsrecommendations(H3),andsincetheIDAgivesmostly reliablerecommendations,itwillbemoreusefultotheminmakinggooddecisionsinthe baseballpredictiongame. H5.SubjectswhocustomizetheIDAwillreportfeelingmorecontroloverthesystemthan subjectswhodonotcustomize. Previousworkoncustomizationinwebportalshasfound thatcustomizationincreasesusersÕsenseofcontrol(Marathe&Sundar,2011),andIexpect thatthiscanbereplicatedbyusersofanIDA. H6.SubjectswhocustomizetheIDAwillreportthatthesystemisa)morehelpfultothem astheymakedecisions,b)generatesmoreaccuraterecommendations,andc)isamore 61importantpartoftheirdecision-makingprocessthansubjectswhodidnotcustomize. Cus- tomizationhasbeenfoundtobebeneÞcialtousersÕperceptionsofthesystemanduser experience(Hijikataetal.,2012;Knijnenburgetal.,2012).Iexpectthistoholdtruein thisstudyandcauseusersfeelthesystemismoreaccurateandbeneÞcialtotheirdecision process. H7.ConsistencybetweentherecommendationsthattheIDAgivesandtheconÞgurations usedwillleadtogreateragreementbysubjects.Whentheteamthatispredictedtowinthe gamebytheIDAisstrongerinthecategoriesthatwereusedintheconÞguration,subjects willbemorelikelytoagreewiththeIDA,eveniftherecommendationispoor. Inmyprevi- ouswork(Solomon,2014)Ifoundthatuserswhocustomizedweremorelikelytoagreewith recommendationswhentheyappearedtobeconsistentwithhowtheyhadconÞguredthe system.Thatstudycouldnotassesswhetherthiswouldbetrueforuserswhodonotcus- tomize.Thisstudyhoweverenablesthisassessment,andIexpectsubjectsinbothconditions toagreemorewhenthesystemÕsrecommendationsareconsistentwithconÞgurations. ¥H7a.Thise !ectwillbestrongerforsubjectswhohavecustomizedtheIDAthanthose whodidnotcustomize. TheconÞrmationbiasdescribedunderH3bwillmakethee " ect ofconsistencystrongerforuserswhocustomizebecausetheyhavetheopportunityto conÞguretheIDAtomatchtheirinitialopinionmorepreciselythanthosewhodonot customize. 3.4Results 3.4.1DescriptiveStatistics Themeansandstandarddeviationsforthethreemeasuresofe ! cacybeliefsarereported inTable3.1.Ingeneral,subjectshadfairlypositivebeliefsthattheIDAwouldproduce 62Table3.3:Descriptivestatistics. StatisticNMeanSt.Dev.MinMax WinnerAgreement2,0160.7670.42301 Agreement2,01615.4465.877 !220 PointsEarned2,01614.8615.905020 Control1682.9881.67217 Helpful1685.0241.62417 Accurate1684.4971.20217 Important1684.9761.52917 Non!Customized Customized 02004006001234512345Average Rating of Configured Categories countDistribution of Preference for Configured Categories Figure3.4:PreferenceforconÞguredcategories. goodrecommendations,althoughresponsesacrossthespectrumofthethreevariableswere observed. Onaverage,subjectsagreedwiththeIDAÕspredictedwinner77%ofthetime,withan averagescoreagreementof15.47(aperfectagreementscoreis20).Thesenumbersclosely matchthereliabilityoftheIDA,whichpredictedthecorrectwinner67%ofthetimeand scoredanaverageof15points.Thisindicatesthatsubjectshadreasonablywell-calibrated relianceontheIDAintermsofthefrequencywithwhichtheyfolloweditsrecommendations. However,aswillbediscussedbelow,calibrationofthefrequencyofrelianceisnotthe 63sameasdiscernmentofgoodandpoorrecommendations.Subjectsdidnotalwaysmake gooddecisionsbyfollowinggoodrecommendationsorrejectingpoorrecommendations.On averagesubjectsearned14.86pointsperround,althoughtherangeofpointsearnedspread betweentheminimumandmaximumpossible(0to20points). DistributionsoftheothermeasuresarelistedinTable3.3.Figure ??showsthedistri- butionofthesubjectsÕcategoryratings,brokenintothetwoconditionsofthestudy.As canbeseenfromthisÞgure,inbothconditionssubjectswereveryfavorabletowardsthe categoriesthattheIDAusedinaround.Ononlyahandfulofoccasionsdidanyonegivean averageratingofthecategorieslowerthantheneutralpointof3onthescale.Soitappears thatinbothconditions,subjectsfeltthecategoriesbeingusedweregoodcategoriesthatare informativetopredictingtheoutcomeofabaseballgame.Thissupportstheassumption statedabovethatuserswilltendtochoosecategoriesthattheybelieveworkworkwellin producingrecommendations. Itisimportanttoevaluatehowwellthematchingmechanismoftheexperimentworked atassigningconÞgurationsthatmatchedthepreferencesofsubjectsinthenon-customizable IDAcondition.AlinearmodelwasÞttotestwhethersubjectsinthecustomizableIDA conditionratedtheirchosencategorieshigherthanthoseinthenon-customizableIDAcon- dition,whohadbeenassignedconÞgurationsexpectedtomatchtheirpreferences.This modelincludedarandome " ectforeachsubjecttoaccountforhavingmultipleobservations foreachsubject.ThemodelfoundastatisticallysigniÞcantdi "erencebetweenconditions (p<.05),withcustomizerspreferringtheircategoriesmorethannon-customizers.However, althoughstatisticallysigniÞcant,themagnitudeofthise " ectwasverysmall.Thedi " erence inmeansbetweenconditionswas0.17ontheÞvepointscale.Overallitappearsthatthe matchingmechanismworkedreasonablywellatpairingsubjectswithsimilarbeliefsabout howstatisticalcategoriesmighthelpacomputerizedsimulator. Becausesubjectsplayedthegamerepeatedly,therewasthepossibilityforthemtolearnor adapttheirdecisionmakingoverthecourseoftheexperiment.Figure3.5showshowsubjects 640.650.700.750.800.85123456789101112Round NumberAverage Winner Agreement Non!Customized Customized Figure3.5:Averagewinneragreementbyroundnumber. adjustedtheiragreementwiththeIDAovertheroundsonaverage.Therewasoverallaslight trendagainstagreeingwiththeIDAastheexperimentwenton.However,thiswasnota smoothdeclinebutrathersomewavesofincreasedanddecreasedagreement.Thispattern wassimilarforbothconditionsoftheexperiment,suggestingthatcustomizationdidnot leadtouserslearningabouttheIDAinanywaythatdi " eredfromthenon-customization users.Becauseofthisnegativetrend,theroundnumberforeachobservationwasincluded inallmodelsofdecisionmakingpresentedbelow. 3.4.2E " cacyBeliefsandAgreement E " cacyBeliefs. Totestthee " ectofcustomizationone ! cacybeliefs(H1),IÞtamultilevel linearregressionmodeltothedata.Thismodelestimatesthee !cacybeliefsscorefor eachroundofthegameforeachsubject.Itincludestheconditionthesubjectwasin 65Table3.4:E ! cacybeliefsmodel. Dependentvariable: E! cacyBeliefs Intercept !1.444"""(0.225)Customized0.040 (0.093)CategoryRatings0.367 """(0.051)TrustPropensity0.129 ""(0.055)RoundNumber !0.020"""(0.005)RandomE " ectsStd.Deviation0.649 LogLikelihood !2,434.228LogLikelihood !223.423"""Note: "p<0.1;""p<0.05;"""p<0.01(customizationornon-customization)aswellassubjectsÕaveragecategoryratingforthe emphasizedcategories,theirpropensityfortrustinautomateddecisionaids,andtheround numberascovariates.Becausetherearemultipleobservationspersubject,themultilevel modelincludedarandome " ectthatvariedtheinterceptofthemodelforeachindividual subject.Thisrandome "ectaccountsforthelackofindependencebetweenobservationsfrom thesamesubject. H1wasnotconÞrmed,astherewasnotastatisticallysigniÞcantdi " erencebetween customizersandnon-customizers.ThemodeldidÞndthatwhentheIDAusedcategories thatthesubjecthadratedhighly,theyhadahigherbeliefofitse !cacy.Themodelalso foundthatpeoplewithahigherpropensitytotrustautomateddecisionaidsbelievedthe IDAhadhighere ! cacythanthosewithalowerpropensitytotrustautomateddecisionaids. 6605101520!3!2!1012Efficacy Beliefs ScoreScore AgreementGood RecommendationPoor Recommendation Non!Customized Customized Effect of Customization and Efficacy Beliefs on Agreement Figure3.6:Agreementwithrecommendedscore. ThisÞndingindicatesthathavingcontroloveranIDAÕsinnerlogicdoesnotleadusers toinßatedexpectationsforhowwellthesystemwillwork.Subjectswhocustomizedthe systemlargelyconÞgureditusingcategoriesthattheybelievedwouldworkwell.Subjects whodidnotcustomizetheIDAbutwereassignedconÞgurationsthatcloselymatchedtheir ratingsofthecategoriesreportedthesamebeliefsinthesystemÕse !cacyasthepeople whohadchosenthecategories.Thissuggeststhatcustomizationdoesnotpromptusersto irrationallybelievethatasystemwillworkbettersimplybecausetheyhaveinßuencedit. Rather,usersbelieveasystemwillworkwellwhentheyhavesomeunderstandingofhowit worksandtheybelieve,basedontheirdomainknowledgeofthedecision,thatitslogicis appropriateforthedecisionathand. Agreement. Toevaluatetheagreementvariables,twomultilevelmodelswereÞttothe data.Amultilevelregressionmodelestimatedscoreagreementusingtheconditionthe 67Table3.5:MultilevelmodelsofagreementwithIDArecommendations. Dependentvariable: ScoreAgreementWinnerAgreement Intercept16.248 """2.406"""(1.403)(0.691) Customized1.014 ""0.507""(0.495)(0.235) PoorRecommendation !3.519"""!1.633"""(0.235)(0.126) CategoryRatings0.114 !0.037(0.320)(0.156) E! cacyBeliefs0.726 """0.282"""(0.145)(0.075) TrustPropensity0.2430.097 (0.291)(0.132) RoundNumber !0.063"!0.039""(0.032)(0.018) RandomE "ectsStd.Deviation2.5110.499 LogLikelihood !6,209.821!950.162LogLikelihood !2245.75"""206.27"""Pseudo R20.232Note: "p<0.1;""p<0.05;"""p<0.01680.250.500.751.00!3!2!1012Efficacy Beliefs ScoreProbability of Agreeing with IDA Good RecommendationPoor Recommendation Non!Customized Customized Effect of Customization and Efficacy on Agreement Figure3.7:ProbabilityofagreeingwithIDAÕspredictedwinner. subjectwasin,thequalityoftherecommendationreceived,thesubjectÕse ! cacybelief, theircategoryratingsfortheemphasizedcategories,theirpropensitytotrustdecisionaids, andarandome "ectforeachsubject.Toevaluatewinneragreement,amultilevellogistic regressionmodelwasÞtusingthesameindependentvariables.Thismodelestimatesthelog oddsofasubjectchoosingthesameteamtowinthegameastheIDA.Thesemodelsare describedinTable3.5andvisualizedinFigure3.6andFigure3.7. H2,therelationshipbetweene ! cacybeliefsandagreement,istestedbythecoe ! cients fore ! cacybeliefsinthesemodels.Inbothmodels,therewasastatisticallysigniÞcant relationshipbetweensubjectse !cacybeliefsandtheiragreementwithIDArecommenda- tions.Whensubjectsbelievedthesystemwouldworkbetterpriortoactuallyseeingits recommendations,subjectsagreedmorewiththerecommendations.Thise " ectcanbeseen inFigure3.6andFigure3.7.Notethatforthemodelofwinneragreement,the R2value 69listedinthetableisaPseudo R2.ThismeasureofÞtwascalculatedusingthemethod presentedbyTjur(2009)thatisbasedontheaccuracyofthemodelatcorrectlypredicting theobservedvaluesofeitheragreeordisagree.Itshouldnotbeinterpretedasanindicator oftheproportionofvarianceexplainedbythemodel.ThisPseudo R2willbereportedfor alllogisticregressionmodelsinthisdissertation. H3isatestofthee " ectofcustomizationonagreement,andwastestedusingthesame models.ThestatisticallysigniÞcantcoe !cientforcustomizationindicatesthee " ectthatthe typeofIDAhadonagreement.H3wassupported,assubjectswhocustomizedthesystem overalldidagreemorewiththeIDAÕsrecommendationsthannon-customizers. H3apredictedthatsomeofthee " ectofcustomizationonagreementwouldbehappenby customizationinßuencinge ! cacybeliefs,ande ! cacybeliefsinturninßuencingagreement. H3bpredictedthatcustomizationwouldalsoinßuenceagreementforotherunobservedrea- sons.ToevaluateH3aandH3b,Iconductedamediationanalysistoestimateboththe indirecte " ectofcustomizationonagreement(bywayofe !cacybeliefs)andthedirectef- fect.Anestimateofthee " ectsizeoftheindirecte " ectcanbeobtainedbymultiplying thecoe !cientsforthee " ectfromtreatmenttomediatorbythecoe !cientfrommediator tooutcome(Imai,Keele,&Tingley,2010).Inthisstudy,thismeansthecoe !cientfor customizationinthee ! cacybeliefsmodel(Table3.4),andthecoe ! cientfore ! cacybeliefs intheagreementmodels(Table3.5).Imaietal.(2010)developedaproceduretoperform hypothesistestingonthisestimatebysimulatingthepotentialoutcomeforeachobservation. Thepotentialoutcomeforanobservationrepresentsthee ! cacybeliefsandagreementthat wouldhavebeenobservedwerethegivensubjectassignedtotheoppositecondition.Imai etal.showedthatthedistributionforthepotentialoutcomeofanobservationcanbetaken fromtheobserveddataundertheassumptionthatthetreatment(i.e.customization)was randomlyassignedandthattherearenounobservedpre-treatmentconfoundingvariables. Thissecondassumptionisuntestable(Imaietal.,2010)andthereforethemediationanalysis ofthisexperimentcanprovideonlyincompleteevidenceofamediatedcausalrelationship 70betweencustomizationandagreementbywayofe ! cacybeliefs. Imaietal.Õsmethodforhypothesistestingamediatedcausalrelationshipinvolvesa MonteCarlosamplingofsimulateddatabasedontheobservedparameterestimatesofthe modelstobuildaconÞdenceintervalaboutitssizeanddirection.1000simulationsofthe datasetareperformedandineachsimulationtheMediatedE " ect,theDirectE " ect,and theTotalE " ectofthetreatmentontheoutcomearemeasured.Theaveragee " ectsfromall 1000simulationsarecalculatedalongwitha95%conÞdenceintervaltotestthehypotheses ofmediatedanddirecte "ectsofcustomizationonagreement.Thetotale "ectthatresults fromthisanalysiscanbeinterpretedastheaveragechangeinagreementthatsubjectswould experiencehadtheybeenassignedtotheoppositecondition.Themediatede " ectrepresents theportionofthetotale " ectthatwouldbetheresultofachangeine !cacybeliefs.The directe " ectcanbeinterpretedastheexpectedchangeinagreementthatwouldbeobserved thatisnotduetoachangeine !cacybeliefs. Table3.6:Mediationanalysisforscoreagreement. Estimate95%CILow95%CIHighSig. AverageMediatedE " ect0.026-0.1080.167 AverageDirectE " ect1.0310.0922.022** TotalE " ect1.0580.0892.025** Table3.7:Mediationanalysisforwinneragreement. Estimate95%CILow95%CIHighSig. AverageMediatedE " ect0.02-0.0050.009 AverageDirectE " ect0.0680.0080.125** TotalE " ect0.0700.0090.129** Contrarytoexpectations,therewasnotsupportforH3a.Thee " ectofcustomization onagreementwasnotmediatedbysubjectsÕe ! cacybeliefsusingeithermeasureofagree- ment(seeTable3.6andTable3.7).ThisÞndingprovidesmoreevidencefortheconclusion 71125150175200Non!Customized Customized Total Points Earned Figure3.8:Totalpointsearnedbysubjectsineachconditionoverthe12rounds. discussedunderH1,namelythatcustomizationdoesnotcreateanirrationalorinßatedex- pectationofsysteme ! cacythatthenleadsuserstoagreewithitmoreoften.Andwhile beliefsofhighsysteme ! cacydoleadtomoreagreement,thesebeliefsarenotenhanced purelybytheactofcustomizingthesystem,butratheraredeterminedbyusersÕpreferences forhowasystemcanbestworktogeneraterecommendations. ThemediationanalysisdidÞndsupportforH3binthattherewasastatisticallysigniÞcant (p<. 05)directe "ectofcustomizationontreatment.Subjectswhocustomizethesystem didagreemorewithitsrecommendationsthanthosewhodidnot,butthise " ectisunrelated tosubjectsÕe !cacybeliefs(Table3.6andTable3.7). Decisionquality. H4predictedthatuserswhocustomizewillmakebetterdecisionsas determinedbythenumberofpointstheyearninthegame.Figure3.8showsthedistributions ofpointsearnedbysubjectsinthegame.At-testindicatedthattherewasnotastatistically 7203006009001200Good Rec. AgreedPoor Rec. Disagreed Good Rec. DisagreedPoor Rec. Agreed Type of Decision countPoor Decision Good DecisionNon!customized Customized Figure3.9:Decisionqualitybyrecommendationquality. signiÞcantdi "erencebetweenthecustomizationandnon-customizationgroupsintermsof howmanypointstheyearned( t(166)= !0.649,p=0.517).Overall,customizationdidnot leadtobetterdecisionmakingthananon-customizableIDA. Thenatureofthedecisiontaskallowsfordi "erenttypesofÒpoorÓdecisionmakingrel- ativetotherecommendationthatwasprovided.Apoordecisioncouldhappeniftheuser wasgivenagoodrecommendationbutfailedtofollowit,orifhewasgivenapoorrecom- mendationandagreedwithit.Conversely,gooddecisionmakingcanbeconsideredtobe whenauseragreeswithagoodrecommendationordisagreeswithapoorrecommendation. Figure3.9illustratesthedi " erenttypesofdecisionsthatweremadeinthestudy,separated bythecondition.Chi-squaretestswereperformedtodeterminewhethertherewereanydif- ferencesinthetypesofdecisionsthatsubjectsmadebasedontheirexperimentcondition.In termsofanytypeofgoodorpoordecision,therewasnotastatisticallysigniÞcantdi " erence 73betweenconditions.Subjectsineitherconditionwereequallylikelytomakegooddecisions. However,somesmalldi " erencesbetweentheconditionswerenotedwhenexaminingthe typesofdecisions.Subjectsinthecustomizeconditionhadaslightlyhigherproportion (9%)ofdecisionsinwhichtheyagreedwithapoorrecommendationthannon-customizers. Andconversely,thenon-customizershadaslightlyhigherproportion(9%)ofdecisionswhere theydisagreedwithagoodrecommendation.Thesedi " erenceswerestatisticallysigniÞcant (p<.05).Table3.8:Resultsofpost-testsurvey. Dependentvariable: ControlHelpfulAccurateImportant (1)(2)(3)(4) Intercept2.377 """4.679"""4.426"""4.253"""(0.360)(0.442)(0.333)(0.400) CustomizedSystem2.306 """0.536"0.3340.583 ""(0.230)(0.282)(0.213)(0.255) Age !0.0010.002 !0.0030.009 (0.010)(0.013)(0.010)(0.012) Gender(Female) !0.1690.3500.1590.744 """(0.233)(0.286)(0.216)(0.259) AutomationTrustPropensity0.1570.2420.219 "0.319""(0.135)(0.166)(0.125)(0.150) R20.3900.0520.0420.129 ResidualStd.Error(df=163)1.3371.6411.2361.485 FStatistic(df=4;163)26.081 """2.238"1.7816.047 """Note: "p<0.1;""p<0.05;"""p<0.01H5predictedthatuserswhocustomizethesystemwouldfeelmorecontroloverit.H6 predictedthatuserswhocustomizewouldreportthattheIDAwasmorehelpful,accurate, andmoreimportanttotheirdecisionthanuserswhodidnotcustomize.H5andH6were 74testedusinglinearregressionmodelsthatestimatedtheresponsetothesurveyquestions usingthecondition,demographicinformation,andautomationtrustpropensity.These modelsarepresentedinTable3.8.H5wasconÞrmed.Theuserswhocustomizethesystem reportedthattheyfeltmoreincontrolthanthosewhocustomizedthesystem. H6waspartiallyconÞrmed.SubjectswhocustomizedtheIDAfoundthesystemtobe morehelpfulandmoreimportantintheirdecisionmaking.However,theydidnotÞnd theIDAÕsrecommendationstobemoreaccuratethanthenon-customizers.Theseresults supporttheexistingworkoncustomization(Sundaretal.,2012;Hijikataetal.,2012)in thatcustomizableIDAsarebetterperceivedbyusersthansystemsthatdonothavethis a"ordance.Alsonoteworthyisthatuserswhohadahigherpropensitytotrustautomationreported thatthesystemwasmoreaccurateandmoreimportantintheirdecisionthanthosewithlower trustinautomation.ThisisanexpectedÞnding,butitshouldbenotedasanimportant individualdi " erenceamongusers.Thewidevariabilityintrustinautomationthatwas observedinthissubjectsamplesuggeststhattheremaybeunderlyingmentalmodelsand attitudesaboutthee ! cacyofIDAsthatcanimpacthowpeopleusethemtomakedecisions. TotestthehypothesisthatgreaterconsistencybetweenconÞgurationandrecommenda- tionwouldbeassociatedwithgreateragreement(H7)IÞtamultilevellogisticregression modelsimilartothelogisticregressionmodelreportedinTable3.5.Thismodelincluded therecommendationconsistencyvariabletodeterminewhethertheconsistencybetweenthe conÞgurationandtherecommendationwouldinßuencesubjectsÕagreementwithrecommen- dations,whilecontrollingfortheothervariablesknowntoa " ectagreementreportedabove. Themodelalsotestedforaninteractionbetweentheconditionandrecommendationcon- sistencytodeterminewhetheranye "ectofrecommendationconsistencywasequivalentin bothconditionsofthestudy(H7a). ThismodelfoundthatthemoreconsistentarecommendationwaswiththeconÞguration thathadbeenused,themorelikelyasubjectwastoagreewiththerecommendation.This 750.50.60.70.80.90.000.250.500.751.00Recommendation Consistency with Selected Categories Probability of Agreeing with IDA Good Rec.Poor Rec. Non!customized Customized Figure3.10:GreaterconsistencybetweenrecommendationandconÞgurationledtomore agreement. resultsupportsH7.However,H7awasnotsupported,astheinteractione " ectofcustomiza- tionandrecommendationconsistencywasnotstatisticallysigniÞcant.Itdoesnotappear thatthistendencytoagreewithrecommendationsthatmatchedupwellwiththeconÞgu- rationthatwasusedisanydi " erentwhenuserscustomizeanIDAthanwhentheydonot customize. 3.5Discussion Theseresultssuggestthatcustomizationbiasasfoundinmypreviouswork(Solomon,2014) isnotentirelytheresultofthepersonalizedaspectofthesystemconÞguration.Inthis studywherenon-customizerswereassignedconÞgurationsthatwerebelievedtomatchtheir preferencesforhowasystemshouldwork,subjectsreportedthesamebeliefsabouttheIDAÕs expectede ! cacyasuserswhohadtheopportunitytoactuallyselecttheconÞguration. However,inspiteofthenon-customizershavingthesameexpectationsforthesystemÕs 76Table3.9:Recommendation/conÞgurationconsistencyledtogreateragreement. Dependentvariable: WinnerAgreement Intercept1.309 """(0.175)Customized0.623 ""(0.314)RecommendationConsistency1.408 """(0.236)PoorRecommendation !1.530"""(0.128)E! cacyBeliefs0.297 """(0.074)CustomizedXRec.Consistency !0.277(0.469)RandomE " ectsStd.Deviation1.065 LogLikelihood !930.304LogLikelihood !2245.98"""Psuedo R20.255Note: "p<0.1;""p<0.05;"""p<0.01e! cacypriortousingit,theywerelesslikelytoagreewithitsrecommendations.This suggeststhatthereisanothercauseofcustomizationbiasthathasnotbeenmeasuredin thisstudy. ThisÞndinghasimportantimplicationsforIDAdesign.Firstofall,ithighlightsthe importantconceptualdi " erencebetweenpersonalizationandcustomization,andshowsthat evenifpersonalizationcanachievethesameintermediateoutcomeofÞndingsomethingthat highlymatchesusersÕpreferences,itmaystillleadtodi " erentoutcomesintermsofthe decisionsthatusersmakeinresponsetorecommendations. 77Table3.10:Summaryofresults. Hypothesis ResultH1SubjectswhocustomizetheIDAwillbelievethatthe systemhashighere ! cacythanthosewhodonotcus- tomizethesystem. Notsupported H2SubjectsÕbeliefsabouttheIDAÕse ! cacywillbepre- dictiveoftheiragreementwithitsrecommendations. Subjectswillhavemoreagreementwhentheybelieve thesystemhasgreatere !cacy. Supported H3SubjectswhocustomizetheIDAwillhavegreateragree- mentwithitsrecommendationsthanthosewhodonot customize. Supported H3a Thee " ectofcustomizationonagreementwillbepar- tiallymediatedbye !cacybeliefs. Notsupported H3b Therewillbeadirecte "ectofcustomizationonagree- ment.Subjectswhocustomizewillagreemorewiththe IDAforreasonsotherthananincreasedbeliefinits e! cacy. Supported H4SubjectswhocustomizetheIDAwillmakebetterdeci- sions,earningthemmorepointsinthegame,thanthose whodonotcustomize. Notsupported H5SubjectswhocustomizetheIDAwillreportfeeling morecontroloverthesystemthansubjectswhodonot customize. Supported H6SubjectswhocustomizetheIDAwillreportthatthe systemisa)morehelpfultothemastheymakede- cisions,b)generatesmoreaccuraterecommendations, andc)isamoreimportantpartoftheirdecision-making processthansubjectswhodidnotcustomize. Partiallysupported H7Consistencybetweentherecommendationsthatthe IDAgivesandtheconÞgurationsusedwillleadto greateragreementbysubjects. Supported H7a Thise "ectwillbestrongerforsubjectswhohavecus- tomizedtheIDAthanthosewhodidnotcustomize. Notsupported 78Thisisanimportantconclusionforsystemdesignersthatrelatestothefunctionalloca- tionproblem.Systemsthatautomatetheinformationacquisitionandinformationanalysis stagesofdecisionmakingwillproducedi "erentdecisionmakingoutcomesthansystemsthat allocatemoreofthosefunctionstotheuser,eveniftheautomationperformsthetaskequiv- alently.Similarly,systemdesignersthattrytoselectÒdefaultÓsettingsandconÞgurations thatwillinßuenceasystemÕsoutputmustconsiderthatevenifusersweretochoosethe sameconÞgurationsontheirown,theymayinterpretthesystemÕsoutputdi "erentlythan theoutputgeneratedbythedefaultprocess. Theconsequencesofcustomizationbiasmaybeeitherpositiveornegative,andthismay relatelargelytothereliabilityofthesystem.Inthisstudy,therewasnooverallimpactof customizationondecisionmakingquality.However,customizerswereslightlymorelikely tomakethepoordecisionofagreeingwithapoorrecommendation,andnon-customizers mademoreerrorswheretheydisagreedwithagoodrecommendation.Thereliabilityofthe systemisanimportantfactorfordesignerstoconsiderwhenevaluatingthepotentialcon- sequencesofcustomizationbias.Ifasystemwillproducehighlyreliablerecommendations, thencustomizationwilllikelybebeneÞcialtodecision-makingperformanceasuserswillbe nudgedtowardsagreement.Asystemthatproducesunreliablerecommendationsthatre- quireconsiderablediscernmentfromuserswouldÞndcustomizationbiastobeproblematic towardsdecisionmaking. Thisstudyalsoprovidesanevaluationofadi "erenttypeofsystemdesignthathas notbeenexaminedintheexistingliterature.CustomizationofanIDAÕsalgorithmisan emergingareaofresearchinIDA,andthisstudydemonstratesapotentialproblemthat end-usercustomizationcancreate.However,italsoshowsthatthisbiasmaybecountered byusingacrowdsourcingorcollaborativeÞlteringapproachtotailoringtheIDAÕsalgorithm thatremovestheactofcustomizingfromtheuser.Otherusersmakingsimilardecisions maybeleveragedtoprovidetheinputtothesystem,leavingtheuseranddecisionmakerto interprettheoutput.Futureresearchshouldexplorethisapproachfurthertodeterminehow 79itmaycounteractcustomizationbias.Aparticularlyimportantfocusforfutureresearch iswhetherusersbelievecrowdsourcingcanbee " ectiveingeneral.Subjectsinthisstudy reportedthattheconÞgurationsgeneratedbyotheruserswerejustase ! caciousasthose thathadbeecustomized,butthentheyproceededtodisagreewiththemmoreoften.UsersÕ mentalmodelsofcrowdsourcinganditscapabilitiesmaylargelydeterminewhetherthey willbereceptivetothisdesign.Itshouldbenotedthatsubjectsinthenon-customizable conditionknewthattheconÞgurationshadbeenchosenbyotherusers,butdidnotknow thattheyhadbeenmatchedtothemostsimilarotheruser.Whetherornotthisknowledge woulda " ectusersÕbeliefsofthesystemÕse ! cacyandagreementwithrecommendations wouldmakeanimportantcontributioninfutureresearch. ThisstudyhasanadditionalÞndingthathasimportantimplicationsforIDAdesign. WhentheIDAÕsrecommendationsappearedtobeconsistentwiththewayithadbeen conÞgured,subjectsweremorelikelytoagreewiththesystem.Thise " ectwasthesame forcustomizersandnon-customizers.VariationintheconsistencybetweenconÞguration andrecommendationwaslargelyafunctionofrandomchance.Somecategorieswerealways emphasized,andoneofthetwoteamsalwayswasstrongerineachcategory,soitalways hadtoappearthatthesystemhadbeenconsistentwiththeconÞgurationtosomedegree. Nevertheless,whenbychancethesystemappearedconsistent,itleduserstoagreement. ThisÞndingisevidenceofaconsistencybiaswhereIDAusersaremoreinclinedtoagree withrecommendationswhentheyfeelthattherecommendationsareconsistentwiththe waytheIDAisconÞgured.Thisisabiasbecauseithappenedregardlessofrecommenda- tionqualityandbecauseallusersreceivedtheexactsamerecommendations.ThisÞnding replicatestheÞndingfrommyearlierwork(Solomon,2014),whereIpositedthatitcould betheresultofconÞrmationbiaswhereusersmadeaninitialdecisionintheirminds,chose categoriesthatwouldbeconsistentwiththatinitialdecision,andthenwereassureditwas correctafterseeingrecommendationsthatwereconsistentwiththeinitialdecisionandcon- Þguration.TheÞndingsfromthisstudyrefutethatinterpretationandsuggestthatthis 80consistencybiasisnotanexampleofconÞrmationbias.Thisisbecausetheconsistencybias wasobservedinbothconditionsofthisstudy,withnostatisticallysigniÞcantdi " erencein thesizeoftherelationship.Subjectsinthenon-customizationconditionhadnoopportunity tochoosecategoriesandsocouldnotchoosecategoriesthatwereconsistentwithanyinitial decisiontheymayhavemade. RatherthanconÞrmationbias,thisbiasmaybeaconßationofalgorithmsuccesswith outcomesuccess.Whenitappearedthatthealgorithmwasabletosuccessfullyarriveat asolutionthatmatcheditsinput,subjectsmayhaveinterpretedthisasanindicatorof recommendationquality.ItispossiblethatusershaveamentalmodeloftheIDAalgorithm thatpermitsittoÞndsolutionsthatdonotmatchitsinput,butwhenitdoesÞndasolution itisanindicatorthatthesolutionisreliable. Animportantconsiderationforunderstandingthisbiasisthatitdependsonthetrans- parencyofthesystem.IfusersknownothingabouttheconÞgurationofthesystem,than itisnotpossibleforthemtoassesswhethertherecommendationsareconsistentwithits conÞguration.Consistencybiasisthereforehighlyrelatedtothetransparencyofthesystem. Oneinterpretationofthisbiasmaybethatusersaremoreinclinedtoagreewithrecom- mendationswhentheyunderstandhowitworks,butwhenthesystemisnotconsistentwith itself,itisconfusingtouserswhothenquestionwhetherthesystemworkshowtheythink. Therefore,itispossiblethatconsistencybiasisabiasofthetransparencyofthesystem.In chapter5,Iwilldiscusstransparencybiasanditsrelationshiptoconsistencybiasfurther. Anotherconsiderationforunderstandingthisbiasisthatbythedesignofthestudy, usersgenerallyhadhighexpectationsthatthesystemwouldworkwell.Therefore,itis possiblethatthisbiaswouldnotapplyinasituationwhereusersexpectedthesystemto performpoorly.IfthesystemwasusingaconÞgurationthatsubjectsexpectedtoproduce poorrecommendations,andthesystemproducedpoorrecommendations,thesystemwould beconsistentbutitwouldseemunlikelythatuserswouldagreewithit.However,this consistencymightleadtousershavingagenerallyhigherexpectationofthesystembecause 81itdemonstratesthatitslogicworksasintended,whichmightleadtogreateragreementin thefuture. Thestudywasnotdesignedtoidentifythemechanismbehindthisbias,butthisisan areaforfuturework.Inparticular,theideathatIDAusersmaybemislediftheyfeel thatasystemhasworkedÒas-intendedÓhasdesignimplications.Designingtransparent systemsthatallowuserstoseetheinnerlogicandunderstanditmayleadtosuchabias ifusersconßateasystemworkingÒas-intendedÓwithworkinge " ectivelytoproducegood recommendations. Overall,thisstudydemonstratesthatcustomizationbiaspresentsahumanfactorscon- cernforthedesignofinteractiveIDAs.Usersmaybecomepartialtoagreeingwithrecom- mendationspurelybecauseoftheirinvolvementinproducingthem,regardlessoftheactual qualityofrecommendationsoreventheirexpectationsthatthesystemworkswell.This createsthepotentialfordecision-makingerrorsandbiasesthatmaylimitIDAe " ectiveness. Nevertheless,animportanttakeawayfromthisstudyisthatuserbeliefsaboutsysteme ! -cacyarerelatedtodecisionmaking.Whatusersbelieveabouthowwellthesystemworks priortousingitinßuenceshowtheyinterprettheoutput.Thisissuewillbefurtherexamined inthenextchapter. 3.5.1Limitations AmajorlimitationofthisstudyisthattheIDAusedwasonlyashellanddidnotactually useanyintelligenttechnologytoproducerecommendations.TheconÞgurationsthatwere purportedlybeingusedbythesystemhadnoe " ectontherecommendations,andtherefore thissystemonlymimicsthefunctionalityofanIDA.Themanipulationchecksusedinthe studysuggestedthatuserswerenotawarethesystemwasfake,butitnonethelessmayhave providedadi " erentexperiencethanatrueIDAthatusesactualintelligenttechnologiesto producerecommendationsand,ifcustomizable,isresponsivetousers.Thislimitationis addressedinthestudyreportedinchapter5whichhasasimilarexperimentdesignbutuses 82anIDAthatisactuallyresponsivetoitsconÞguration. Anotherimportantlimitationforthisstudy,andforallthreestudiesreportedinthis dissertation,isthattheremaybeimportantdi " erencesbetweenthewaypeoplemakedeci- sionsinalabsettingandhowIDA-supporteddecisionsaremadeintherealworld.Some humanfactorsscholarshavearguedthatcontrolledlabexperimentssuchasthismustbe complimentedbyÞeldstudiesinÒnaturalisticÓsettings(Klein,2008)wherepeoplehavereal pressureandconsequencesfortheirdecisions.Kleinarguesthatstudyingdecisionmaking throughobservationalÞeldstudiesallowshumanfactorsresearcherstobetterunderstand cognitiveanddecision-makingprocessesastheyactuallyhappeninreal-worldandthatthis providesausefulbasisforsystemdesign.Inthisstudy,Io " eredincentivestosubjectsto makegooddecisions.Andsincethesubjectswererecruitedfromaworkforcewhoinmany casesuseparticipationinstudiesasameansofincome(Ross,Irani,Silberman,Zaldivar,& Tomlinson,2010),thedecisiontaskhassomeÒnaturalisticÓvalidity.However,thereareun- doubtedlydi " erencesbetweenanunfamiliarbaseballdecisiontaskworthafewextradollars andhighpressuredecisionslikethoseinahospitaloronabattleÞeld,andthesedi " erences maystronglya " ecthowpeopleuseandtrustanIDA.Furthermore,thedesignofthestudy triedtolimittheIDAasthe onlysourceofinformationaboutthedecisiontask,whenin morenaturalsettings,anIDAmaybeoneofmanyinformationtoolsbeingusedbyadeci- sionmaker.Icannotknowwhetherthee "ectIhavereportedherewouldbeapplicablein situationswhereusershaveavarietyoftoolsandinformationresources. AnotherlimitationisthatthisstudyfocusedonnoviceusersusingatoolfortheÞrst time,andtheseuserswerelimitedintheirabilitytolearnandadjusttheirdecisionmaking overtimebecausetheywerenotshowntheirscoresuntilafterallroundshadbeenplayed. Whilethisprovidessomeinternalvaliditytothestudy,itdoessoattheexpenseofsome externalvaliditysinceintherealworld,userscanevaluatetheirowndecisionperformance overtimeandusethattoinßuencetheirfuturedecisionsandfutureinteractionswithIDAs. Itisnotclearfromthisstudywhethertheseresultswouldapplytomoreexperiencedusers, 83orhowthesebiasesmightchangeovertime.ThisisimportantbecausemanyIDAsinreal- worldsettingsareusedprimarilybypeoplewithhighexpertiseandalotofexperience.It ispossiblethatthesebiasesonlya " ectnoviceusersandthatwithexperience,usersadjust theirbehaviortooptimizedecisions.However,itisalsopossiblethatthesebiasesbecome stronger,asexpertsbegintousemoreshortcutsorheuristicdecisionmaking.Additional researchisneededtoevaluatehowthesebiasesa " ectmoreexperiencedIDAusers. 84CHAPTER4 CAUSALEFFECTOFEFFICACYBELIEFSANDEXPECTATIONSBIAS BecauseIDAsareusedfordi ! cultdecisionswithhighuncertainty,andbecausethesys- temsthemselvesareoftennothighlytransparent,usersmayhavedi ! cultiesformingwell- calibratedbeliefsaboutasystemÕse ! cacy.UsersÕperceptionsofanIDAÕsreliabilitymay notmatchitsactualreliability,andthiscanbeasourceofautomationbias.Inthestudy presentedinthepreviouschapter,therewasarelationshipbetweenusersÕe !cacybeliefs andtheiragreementwithrecommendations.Whenusersexpectedthatasystemwould workwell,basedatleastpartiallyonhowitwasconÞgured,theyweremorelikelytoagree withrecommendationsregardlessoftheirquality. Theevidencefromthatstudyhowevercanonlysuggestanassociationbetweene ! cacybeliefsandagreementwithrecommendations.E ! cacybeliefswerenotrandomlyassigned, andtheonlyrandomlyassignedvariableinthatstudy(customizabilityoftheIDA)didnot haveane " ectone ! cacybeliefs.Althoughe ! cacybeliefsweremeasuredbeforeagreement, itcannotberuledoutthatagreementactuallycausede !cacybeliefs.Itispossiblethat subjectsdecidedwhethertheywouldagreewithrecommendationsbeforetheyactuallysaw themandthisdecisioninßuencedtheire !cacybeliefs.Orperhapsmorelikely,therelation- shipbetweene ! cacybeliefsandagreementisspurious,withsomeunobservedthirdvariable causinguserstobothhavehighbeliefsofe ! cacyandtoagreewithrecommendations.The designofthepreviousstudy,anditsanalysiswhichsuggestsacausalrelationship,assume nounobservedvariablesthatcauseaspuriousrelationship,butthisassumptioncannotbe testedunderthedesignofthatexperiment.Forthatreason,inthischapterIpresenta studythatisdesignedtoestimatethecausale "ectofe ! cacybeliefsonagreementwithIDA recommendations. Establishingthate ! cacybeliefscauseagreementmakesanimportantcontributionto 85IDAresearch.Ifagreementwithrecommendations,andconsequentlyusersÕcalibrationof trustanddecisionmaking,canbeinßuencedbytheire !cacybeliefs,thane !cacybeliefs presentatargetforsystemdesignerstoengineerusersÕdecisionmaking.Findingwaysto giveusersclearandpreciseexpectationsabouthowwellasystemworksandwhatqualityof expectationscanbeexpectedcanleadtobettercalibratedtrustinIDAsandbetterdecisions bytheirusers. Ife ! cacybeliefspriortoseeingrecommendationscauseuserstoagreewithrecommen- dationsregardlessoftheirquality,itrepresentsabiasthatiscausedbyusersÕexpectations oftheIDAÕse ! cacy.Butbecauseexpectationsweremerelyobservedandnotrandomly assigned,wecannotknowwhetherthebiasistrulyabiascausedbyexpectationsorifthat relationshipisaby-productofsomeotherunobservedbias.InthischapterIhavedesigned astudytoidentifywhetherexpectationscauseabiasinagreement.Thisstudyprovides evidencethattheexpectationsusershaveaboutanIDAÕse ! cacybiastheirsubsequent agreementwithitsrecommendations. 4.1Methods TostudywhetherusersÕbeliefsofsysteme ! cacycausethemtoagreewithrecommendations, Iconductedanexperimentusingarandomizedencouragementdesign.Underthisdesign, subjectswereencouragedbyarandomizedtreatmentvariablewhichisdescribedbelowto haveeitherhighorlowe !cacybeliefs.TheythenusedanIDAtogetrecommendationsand madetheirdecision.Thisdesignusestheencouragementvariableasaninstrumentalvariable inordertoestimatethecausale " ectofe ! cacybeliefsonagreement.Aninstrumental variableisavariablewhichhasnocorrelationwiththedependentvariableotherthanthrough itscorrelationwiththeexplanatoryvariable(i.e.e !cacybeliefs).Throughthismethod, variationintheexplanatoryvariablewhichiscausedbytheinstrument(whichhasbeen randomlyassignedinthiscase)canbeconsideredtoberandomvariationwithregardstothe 86dependentvariable.Therefore,correlationbetweentherandomvariationintheexplanatory variableandthedependentvariablecanbeinterpretedasacausalrelationshipbetweenthe explanatoryanddependentvariables(Angrist&Pischke,2008). Inthisstudy,thesamefantasybaseballtaskwasusedtoimplementthisrandomized encouragementdesignaswasusedinthecustomizationbiasstudy.Inthisstudy,onlythe non-customizableversionoftheIDAwasused.Thiswasdonetopreventcustomizationbias fromcreatingunwantednoiseinthedataset.Asinthepreviousstudy,theIDAprovided8 goodrecommendationsand4poorrecommendations,scoringanaverageof15points.The gamesusedinthetask,thescreeningquiz,thepre-testsurveyandpost-testsurvey,andthe scoringprocedureandincentivewerethesameasinthecustomizationbiasstudy. Encouragementofe " cacybeliefs. Subjectswereassignedtooneoftwoconditions.In thehighe " cacy condition,subjectsweretoldthatthesystemÕsaverageperformancewas 18points.TheywerealsotoldthatthedataaboutMajorLeagueBaseballusedbytheIDA wascomprehensiveandcontainednoknownerrors.Inthe lowe " cacy condition,subjects weretoldthatthesystemÕsrecommendationsscore12pointsonaverage.Theywerealso toldthatitsdatasetcontainederrorsandomissions.Thisinformationwaspresentedto subjectsintheinstructions,buttheinterfaceofthesystemalsocontainedareminderofthis information.Inordertoproceedtothebaseballpredictiongame,asinthepreviousstudy, subjectshadtopassaquizontheinstructionsthatveriÞedwhethertheyunderstoodthe averagequalityofthesystemÕsrecommendations. Thesedi "erencesintheinstructionswereintendedtoencouragesubjectstowardsabe- lievingtheIDAhadhighorlowe !cacyinproducingaccuraterecommendationsaboutthe outcomesofbaseballgames.Inadditiontothesedi "erencesininstructions,therewasalso adi " erenceintheconÞgurationthatwaspurportedlyusedbythesystem.Asinthecus- tomizationbiasstudy,subjectsratedeachofthe27categoriesaccordingtohowwellitwould informacomputerinpredictingtheoutcomeofbaseballgames.Usingtheratingsobtained aboutthesecategoriesinpilottesting,IcreatedconÞgurationsthatusedcategoriesthatwere 87eitherhighlyratedorpoorlyratedonaveragebysubjects.Icreated8conÞgurations,with 4usingmostlypoorlyratedcategoriesandtheother4usingonlyhighlyratedcategories.In thehighe ! cacycondition,theIDAwaspresentedasusingoneoftheconÞgurationswith highlyratedcategories,andinthelowe ! cacyconditiontheIDAusedonlyconÞgurations thatwerepoorlyrated. ThegoaloftheseconditionswastorandomlysetsubjectsÕbeliefsofsysteme ! cacyto eitherahighorlowlevel.Iusedthreedi "erentapproachestoencouragethesee ! cacybeliefs (expectedperformance,dataquality,conÞgurationquality)inordertocreateastrongand e"ectiveinstrument.Adisadvantageofsimultaneouslyusingthreeapproachesisthatthe e"ectofanyofthethreecannotbeidentiÞedastheyareconfoundedwiththecondition assignment.However,astheprimarypurposeofthisstudyistoestimateacausale " ect, astronginstrumentisnecessary.Pilotteststhatusedonlythedataqualityandexpected performanceapproachesproducedonlyamoderatedi " erenceine ! cacybeliefsandthusmay haveresultedinaweakinstrument. Atotalof93subjectswererecruitedfromAmazonMechanicalTurk.Subjectswerepaid $2forparticipationandanaverageof$2.25inbonuspaymentsfordecisionperformance. Subjectstookthesamebaseballknowledgescreeningquizasinthecustomizationbiasstudy inChapter2.31subjectsfailedthisquizandwerescreenedoutoffurtherparticipation. TheÞnaldatasetincluded62subjects,with32inthehighe ! cacycondition. Thisstudyhasthreehypotheses. ¥H1.Encouragementofhighorlowe ! cacybeliefswillcausesubjectstohavehighor lowe ! cacybeliefs. ¥H2.E! cacybeliefswillbeassociatedwithagreement. ¥H3.E! cacybeliefswillcauseagreementasassessedbytwo-stageleastsquaresre- gression.884.2Results Table4.1:Descriptivestatisticsandfactoranalysisofdependentvariables. StatisticNMeanSt.Dev.FactorLoadingStd.Err. Likertmeasure7444.8241.3951.000- Expectedscore74413.7434.2103.0130.121 Expectedprobability ofcorrectwinner 74475.88214.96111.2530.435 Agreement74415.1458.967 WinnerAgreement7440.7940.404 FactorAnalysisFitIndices ComparativeFitIndex1.000 RootMeanSquareError0.000 4.2.1Descriptiveresults AconÞrmatoryfactoranalysiswasperformedtoobtainfactorscoresforthee ! cacybeliefs variableusingthethreedi " erentmeasures.ThefactorloadingsarereportedinTable4.1. Figure4.1andFigure4.2showsubjectsÕe !cacybeliefsandwinneragreementover thecourseofthe12roundsoftheexperiment.IÞtmultilevelregressionmodelstothe datatodeterminewhethertherewasanytrendinhowusersmadedecisionsortheire !cacy beliefsasaresultofrepeatedlyplayingthebaseballpredictiongame.Thesemodelsfoundno statisticallysigniÞcanttrend.Subjectsdidnotadjusttheiragreementwithrecommendations ortheirbeliefsofitse !cacyasalinearfunctionofhowmanyroundsofthegamehadbeen played. 4.2.2Manipulationcheck Todeterminewhethertheencouragementhadtheintendede " ectonsubjectsÕbeliefsabout theIDAÕse ! cacy,IÞtamultilevelregressionmodelthatestimatedthee ! cacybeliefsfactor scorewiththeencouragementvariable,propensitytotrustdecisionaids,andarandome "ect890.60.70.80.9123456789101112Round NumberAverage Winner Agreement High Encouragement Low Encouragement Figure4.1:Winneragreementoverthecourseofthe12rounds. !1.0!0.50.00.51.0123456789101112Round NumberAverage Efficacy Beliefs High Encouragement Low Encouragement Figure4.2:E ! cacyBeliefsoverthecourseofthe12rounds. 90Table4.2:E ! cacyvariablesbyexperimentcondition. StatisticHighEncouragementLowEncouragement MeanSt.Dev.MeanSt.Dev. Likert5.5051.0674.0971.337 Score16.4643.34010.8422.903 Probability83.52912.63867.72512.791 E! cacyBeliefsFactor.6580.853-.702.850 Table4.3:E " ectofencouragementone ! cacybeliefs. Dependentvariable: E! cacyFactorLikertScoreProbability Intercept !0.662"""4.149"""10.923"""68.337"""(0.106)(0.136)(0.423)(1.707) Encouraged1.253 """1.272"""5.405"""14.179"""(0.149)(0.192)(0.598)(2.412) TrustPropensity0.362 """0.461"""0.735"5.499"""(0.102)(0.131)(0.409)(1.651) RandomE " ectsStd.Dev.0.5470.6862.2158.981 LogLikelihood !763.979!1,078.090!1,723.692!2,710.091LogLikelihood !261.176"""47.885"""59.624"""41.291"""Note: "p<0.1;""p<0.05;"""p<0.01foreachsubjectasregressors.IÞtthreeadditionalmodelsusingtheseparatee !cacybeliefs variables(LikertScale,ExpectedScore,andExpectedProbabilityofCorrectWinner).These modelsaredetailedinTable4.3.Allfourmodelso " erthesameconclusionthatsubjects intheHighencouragementconditionhadhigherbeliefsaboutthesystemÕse ! cacythan subjectsintheLowencouragementcondition.Figure4.3illustratesthedistributionsof e! cacybeliefsineachcondition.Fromtheseanalysesitisclearthattheencouragement variablewassuccessfulinitsintendede " ecttomanipulatesubjectsÕbeliefsaboutthesystemÕs e! cacy. 91!3!2!1012High Encouragement Low Encouragement Efficacy Beliefs Factor Score Figure4.3:Distributionsofe ! cacybeliefsbyencouragementcondition. Table4.4:E " ectofe ! cacybeliefsonagreement. Dependentvariable: AgreementWinnerAgreement Intercept16.591 """2.308"""(0.775)(0.221) E! cacyBeliefs1.315 """0.321""(0.380)(0.128) PoorRecommendation !4.226"""!1.554"""(0.519)(0.213) TrustPropensity !0.8980.297 (1.053)(0.238) RandomE " ectsStd.Dev.5.6221.029 LogLikelihood !2,533.185!329.493LogLikelihood !272.853"""66.118"""Pseudo R20.225Note: "p<0.1;""p<0.05;"""p<0.01924.2.3Estimateofe ! ectofe " cacybeliefsonagreement Table4.4describesmodelsthatestimateagreementwithrecommendations.Themodels showastatisticallysigniÞcantrelationshipbetweene ! cacybeliefsandagreementforboth measuresofagreement.Whensubjectsbelievedthatthesystemwouldworkwellprior toreceivingrecommendations,theyagreedwiththoserecommendationsmoreregardlessof theirquality.Anothernoteworthyresultfromthesemodelsisthattheindividualdi " erence ofgenerallyhavingtrustinautomateddecisionaidsdidnothaveastatisticallysigniÞcant relationshipwithagreementwhencontrollingfore !cacybeliefs.Thissuggeststhatthe individualvariationinunderlyingtrustiswellcapturedbythee !cacybeliefsmeasures. Whenuserstrustdecisionaids,theyalsoexpectthemtoperformwellbutbasetheirdecisions moreontheexpectationofsysteme !cacythanontheirunderlyingtrustofdecisionaidsin general.Table4.5:Two-stageleastsquaresestimatesofcausale " ectofe ! cacybeliefsonagreement. E! cacybeliefsareinstrumentedbyencouragementinthismodel. Dependentvariable: AgreementWinnerAgreement (1)(2) Intercept16.578 """0.870"""(0.487)(0.017) E! cacyBeliefs2.77 """0.087"""(1.210)(0.032) PoorRecommendation !4.298"""!.228"""(1.233)(0.034) RandomE "ectsStd.Dev.5.8790.135 R20.0530.084 Wald !213.09"""53.46"""Note: "p<0.1;""p<0.05;"""p<0.01934.2.4Causale ! ectofe " cacybeliefsonagreement Encouragementdesignssuchasthisonecanallowforcausalinferenceabouttheactual treatment,inthiscasee !cacybeliefs,eventhoughonlytheencouragementvariablehas beenreliablyrandomized.Theencouragementdesignusestherandomizedencouragement variableasaninstrumentalvariablethatcreatessomerandomvarianceine !cacybeliefs. Therandomvarianceine ! cacybeliefsthatiscausedbytheencouragementvariablecanbe usedtoestimatethecausale " ectofe ! cacybeliefsonagreement(Angrist&Pischke,2008). Iusedtwo-stageleastsquaresasthemethodforestimatingthecausale " ectofe ! cacy beliefswiththeinstrumentalvariablesmethod.Two-stageleastsquaresperformstwore- gressions.IntheÞrststage,theexplanatoryvariable(e !cacybeliefs)isregressedonthe instrument(encouragement),aswellastherecommendationqualityvariableasanexogenous covariate.Inthesecondstage,agreementisregressedone !cacybeliefsandrecommendation quality,withtheÞttedvaluesfromtheÞrststagereplacingtheobservedvalues. Becauseoftherepeatedmeasuresofthestudy,thedataweretreatedaspaneldatafor thepurposesoftwo-stageleastsquaresestimation.Sincetheencouragementvariablewas assignedatthesubjectlevel,ratherthanattheroundlevel,randome " ectsforeachsub- jectwereestimatedratherthanÞxede "ectsineachstageofthetwo-stageleastsquares. Fixede " ectscannotbeestimatedbecausethesee " ectsarecolinearwiththeencouragement variable.ThemodelwasrunusingStataÕs xtivreg commandwhichperformsageneralized two-stageleastsquaresregressionthatincludestherandome " ects.Robuststandarderrors werecalculatedusingabootstrappingmethodthatrandomlyresampledthedata1000times tore-estimatethestandarderrors.BootstrappedstandarderrorswereusedbecauseStataÕs xtivreg commandassumesconstantvarianceifregularstandarderrorsareused.Therandom e " ectsinthismodelnecessitateanadditionalassumption,whichisthatanyindividual-level e"ectsarenotcorrelatedwithanyoftheinstrumentsorcovariatesinthemodel(Mundlak, 1978).Thisassumptioncanreasonablybemadeforthesedatabecauseboththeencourage- 940.50.60.70.80.9!3!2!1012Efficacy Beliefs ScoreProbability of Agreeing with IDA Good RecommendationPoor Recommendation Effect of Efficacy on Agreement Figure4.4:Associationbetweene ! cacybeliefsandagreement. mentvariableandrecommendationqualitywererandomlyassigned. AseparatemodelwasÞtforeachversionofagreement.Forthemodelwiththebinary WinnerAgreementdependentvariable,IfollowedAngristandPischkeÕs(2008)suggestion andusedaLinearProbabilityModelthattreatsthebinaryvariableascontinuousrather thananon-lineartransformationsuchasthelogisticregressionsusedinotherpartsofthis dissertation.AngristandPischkearguethatthesenon-linearmodelscreateadditionalcom- plexitywhenusedwithinstrumentalvariablesandthatthisadditionalcomplexityisoften notjustiÞedbecauseLinearProbabilityModelsperformwellatestimatingmarginale " ects, eveniftheirpredictedvaluesareimprecise. Theresultsofthetwo-stageleastsquaresarereportedinTable4.5.Forbothmeasures ofagreement,theanalysisshowedstatisticallysigniÞcante " ectsofe ! cacybeliefsonagree- ment.TheseestimatessuggestthatbelievinganIDAhashighe !cacypriortoseeingits recommendationscausesuserstoagreewiththoserecommendations,evenwhencontrolling forthequalityoftherecommendation.Thise " ectisillustratedinFigure4.4 95Two-stageleastsquareshastwoprimaryrequirementsinordertobeabletointerpret acausale " ect.TheÞrstrequirementisthattheinstrumentisstronglycorrelatedwiththe explanatoryvariable.Theanalysespresentedintheprevioussectiono "erevidenceofa stronge "ectoftheencouragementone ! cacybeliefs.Inaddition,StockandYogo(2005) developedcriteriaforidentifyingweakinstruments.Undertheircriteria,amodelwithone endogenousexplanatoryvariableandoneinstrumentshouldhaveanF-statisticofgreater than16.38intheÞrststageregressioninordertobeassuredofonlyaminimalamountof biasduetoaweakinstrument.TheF-statisticfromtheÞrststageregressions(whichisthe sameregressionforbothmodels)is75.08.ThereforeIcanconcludethattheinstrumentis strong,satisfyingtheÞrstrequirement. Thesecondrequirementisthattheinstrumentshavenoe "ectontheoutcomevariable otherthanthroughtheexplanatoryvariable.Thiscanbetestedwhenamodelisoveriden- tiÞed,meaningthattherearemoreinstrumentsthanexplanatoryvariables(Sargan,1958). However,thismodelisexactly-identiÞedwithoneinstrumentandoneexplanatoryvariable, andthereforethisassumptioncannotbeexplicitlytested.Forthisreason,theinterpretation ofthetwo-stageleastsquaresmodelofacausale "ectofe !cacyonagreementisvalidonly inasmuchasthisassumptionisvalid.Whilethisisalimitationthatshouldbeconsidered intheinterpretationoftheseresults,Iarguethatthisassumptionisreasonableinthiscir- cumstance.OneoftheencouragementvariableÕsmanipulationswasasystem-estimationof itsowne !cacythatwasmerelycommunicatedtousers.Theothertwomanipulationswere variationsofhowthesystempurportedlyworkedtoproducerecommendations.Itisdi ! cult toconceiveofanywaytheserandomlyassignedmanipulationscoulda " ectagreementother thanbya " ectingsubjectsÕbeliefsaboutthesystemÕse !cacy.Forthisreason,themostlikely interpretationoftherelationshipthathasbeenfoundbetweene !cacybeliefsandagreement isthate ! cacybeliefscausesomeagreementwithIDArecommendations 964.2.5DecisionMaking Table4.6:Decision-makingquality. Dependentvariable: NumberofPointsEarned Intercept16.572 """(0.327)E! cacyBeliefs0.608 ""(0.240)TrustPropensity !0.730"(0.428)PoorRecommendation !6.199"""(0.400)RandomE "ectsStd.Dev.1.816 LogLikelihood !2,300.606LogLikelihood !2211.51"""Note: "p<0.1;""p<0.05;"""p<0.01IexaminedhowsubjectsÕe ! cacybeliefsimpactedtheirdecisionmakingqualitybyÞtting amultilevelmodelthatestimatesthenumberofpointsearnedfromaroundofthegamewith thee !cacybeliefsfactorscore,recommendationquality,andtrustpropensityasregressors alongwithrandome " ectsforeachsubject.ThismodelisdescribedinTable4.6. SubjectsmadebetterdecisionswhentheyhadhigherbeliefsabouttheIDAÕse ! cacy. Thiscanlikelybeexplainedbythefactthathighe ! cacybeliefscausedagreementwithrec- ommendations,andsincethereweremoregoodrecommendationsthanpoorones,andsince goodrecommendationssuggestedthebestpossibledecisionthatcouldbemade,subjects whobelievedthesystemwouldworkwelltendedtofollowthosegoodrecommendations. Althoughthise " ectisstatisticallysigniÞcant,itisnotaparticularlylargee " ect.Thedi " er- encebetweentheloweste ! cacybeliefsscoreandthehighestisonlyabout3points,which 97Table4.7:Summaryofresults. Hypothesis ResultH1Encouragementofhighorlowe ! cacybeliefswillcause subjectstohavehighorlowe ! cacybeliefs. Supported H2E! cacybeliefswillbeassociatedwithagreement. Supported H3E! cacybeliefswillcauseagreementasassessedbytwo- stageleastsquaresregression. Supported isfairlysmallgiventheoverallvarianceondecisionquality. AnothernoteworthyÞndingisthatsubjectswithhigherpropensitytotrustdecisionaids actuallymadeworsedecisionsthanthosewithlowerlevelsoftrust.ThisÞndingmayillus- trateanindividualdi " erenceinautomationbias.Peoplewhohavehigherpropensitytotrust decisionaidsmaynothavescrutinizedrecommendationscarefully,causingaparticularlyhigh rateoferrorwheretheyagreedwithapoorrecommendation. 4.3Discussion ThisstudyhasdemonstratedthatthebeliefsIDAusershaveaboutthee ! cacyofasystem priortoseeingitsoutputhasane " ectontheirdecisionmakingaftertheyseeitsrecommen- dations.Whenusersexpectthesystemtoproducegoodrecommendations,theyinterpret therecommendationsthesystemproducesasbeingmoretrustworthy.Inthisstudy,all subjectssawidenticalrecommendationsbutwereencouragedtohavevaryingbeliefsabout thee !cacyofthesystem,andthesebeliefschangedthelevelofagreementwiththesame recommendations. Becauserecommendationswereidentical,thisÞndingthate ! cacybeliefsinßuenced agreementisevidenceofanotherdecisionmakingbias.E ! cacybeliefsweremeasuredprior tosubjectsseeingtherecommendations,makingthemexpectationsaboutthesystemthat wereformedbasedonsubjectÕsknowledgeofthesystemandofthestatisticsaboutthe teamsplayinginthegame.Thegreateragreementbythosewithgreatere ! cacybeliefsis anexpectationsbias .98AnimportantimplicationforthedesignofIDAfromthisÞndingisthatwhenmaking decisions,evaluatingthee !cacyofthesystemisapartofthedecisionmakingprocess. AnIDAÕsrecommendationsareinformationthatmustbeevaluated,andbeliefsaboutthe processthatproducesrecommendationscanleadpeopletointerpretthesameinformation indi " erentways.ThishasrelevancetothedebateovertransparencyinIDAs.Transpar- entIDAÕsarewellunderstoodtoprovideabetteruserexperience(Herlockeretal.,2000), howevertheire " ectondecisionmakingislessconclusive,withsomeevidencesuggestinga negativeimpact(Ehrlichetal.,2011).Thisstudyo " erssomeevidenceforwhytransparency hasnotdemonstratedaclearimpactondecisionmakingperformance.Iftransparentsys- temsprovideinformationabouthowasystemworks,thisinformationmustbeevaluated byusers.EvaluatingthesystemÕsinnerlogicandforminganexpectationaboutitse ! cacy maydistractusersfromevaluatingrecommendations.Transparencymaythereforepresent somewhatofaparadoxbecauseusers,whoareseekingadvicefromanautomatedsystem becausetheyfaceadi ! cultdecisionwithhighuncertainty,mayhavehighuncertaintyabout whatconstitutesane " ectiveprocessforgeneratingrecommendations.Inmanycasesusers arelikelybetterqualiÞedtoevaluaterecommendationsdirectly(withoutknowledgeofany processthatproducedthem)thantoevaluateacomputationalprocessforproducingrec- ommendations.CalibrationofusersÕexpectedreliabilityofasystemanditsactualreliabilityshouldbe animportantgoalforsystemdesigners,becausethiscalibrationcanleadtobetterdecisions (Dzindoletetal.,2003,2002).Poordecisionsarecertaintohappenifusersbelieveasystem tobeeithermuchmorereliableormuchlessreliablethanitactuallyis.Therefore,IDA designsshouldconsiderwaystohelpuserscalibratetheire !cacybeliefs. Anothercontributionofthisstudyisthatitdemonstratesthate ! cacybeliefsaremal- leable,andthatthedesignofthesystemcaninßuenceusersÕe !cacybeliefs,atleastfor newuserslikethesubjectsinthisstudy.Theencouragementvariablemanipulatedthree aspectsofthesystem.Thesystemitselfstateditsexpectede !cacybyindicatingitsaverage 99performancewithintheinterface.Also,subjectsweregiveninformationaboutthequalityof thedatathatitusestomakepredictions.AndtheconÞgurationthatthesystemusedwas eitheronethatmightbeexpectedtoworkwelloronethatusedcategoriesmostpeopledo notthinkcouldworkwellforpredictinggameoutcomes.Becausetheintentoftheencour- agementvariablewastorandomlymanipulatee !cacybeliefs,thesethreedesignfeatures werevariedtohighorlowdegreessimultaneouslyinane " orttomaximizerandomvariation ine !cacybeliefs.Itisclearthatatleastoneofthesedesignfeaturesisresponsibleforthe observeddi " erencesine ! cacybeliefsbetweenconditions.However,thestudydesignmakes itimpossibletodeterminethespeciÞce " ectofeachindividualfeatureone !cacybeliefs. Nevertheless,allthreearereasonablecausesofe ! cacybeliefsthatcanbeincorporatedinto asystemdesign.FutureworkcanexplorehowthesefeaturesandothersinßuenceusersÕex- pectationsaboutIDAoutput.Aparticularlyusefulfuturestudywouldexaminetheconcept ofdataqualitymorepreciselytodeterminehowusersevaluatethequalityofdatathatare inputintoIDAsandhowthata " ectstheirexpectationsoftheire ! cacy.Thisdissertation hasprimarilyfocusedoncustomizationofIDAlogic,butcustomizationofdataisanother waytomakesystemscustomizable.Evaluatingwhethercustomizationofdataa " ectse ! -cacybeliefs,andhowcustomizationandgeneralattitudesaboutdataa "ectdecisionsand trustinthesystem,wouldmakeavaluablecontinuationoftheworkpresentedhere. Theresultthathighe ! cacybeliefsimproveddecisionmakingwarrantssomeadditional discussionaswell.Sincehighe !cacybeliefscauseuserstoagreewithrecommendations, highe !cacyworkstoimprovedecisionmakingwhensystemsarelargelyreliableandusers otherwisecommitomissionerrorsbynotfollowinggoodrecommendations.However,had theIDAinthisstudybeenfarlessreliable,itispossiblethathighe !cacybeliefscould havehurtdecisionmaking.Again,thisillustratestheimportanceofcalibrationbetween usersÕbeliefsandactualsystemperformance.Withoutthiscalibration,IDAscanleadusers topoordecisionmaking.DesigningtoallowuserstoformaccuratebeliefsaboutanIDAÕs e ! cacycanhaveimportantbeneÞtsformakingIDAsthataree " ectiveatimprovinguser 100decisionmaking. 4.3.1Limitations Thisstudywasdesignedtoidentifythecausale "ectofe ! cacybeliefsonagreement,and o"ersonlyverylimitedinsightintohowusersnaturallyformexpectationsofthesystemÕsef- Þcacy.Theencouragementvariablemanipulatedthreeaspectsofthesystem(conÞguration, pastperformance,dataquality)anditsinstructions,buttheseaspectswereintentionally confoundedwitheachother.ThereforeIcannotassesshowmucheachspeciÞcaspectcon- tributedtothevarianceine !cacybeliefs.Sincethestudyfoundthatexpectationscanhave astronge " ectonusersÕbehavior,itisimportanttoexploreaspectsofthesystemdesign orcharacteristicsofusersthatinßuencee !cacybeliefssoitcanbedeterminedhowbestto engineeragreementwithrecommendations. 101CHAPTER5 CUSTOMIZATION,NON-CUSTOMIZATION,ORBOTHINANIDAFOR EXERCISEDECISIONS CustomizationinIDAdesignscancreateadi ! cultsocio-technicalchallengefordesigners. CustomizableIDAsmaybeabletotakeadvantageofusersÕexpertise,theirlocalknowledgeof theirdecisionscenario,aswellaspersonalknowledgeoftheirpreferencesanddecisionmaking stylestoimprovetheIDAÕsalgorithmandprovidebetterrecommendations.However,asI willshowinthischapter,therearedecision-makingconsequencestothisdesign,andthese consequencesmaynotbejustiÞedbyanimprovementintheIDAÕsalgorithm. Inthischapter,IwillpresentastudythatcomparesanIDAdesignutilizingcustomizable recommendationlogictoadesignthatdoesnotgiveusersanycontrolovertherecommenda- tion.Additionally,thisstudywillevaluateadesignthatprovidesuserswithbothcustomized andnon-customizedrecommendationssimultaneously.Thisstudywillevaluateandcompare thesedi " erentdesignsregardingtheire " ectonusersÕdecisionmaking.Thepurposeofthis evaluationistoproduceinsightsthatcanhelpIDAdesignersdeterminehowbesttoin- corporatecustomization,ifatall,inanIDAdesign.Thisstudywillalsoextendmywork oncustomizationbiasandreplicatepreviousÞndingsinadi "erentdecisioncontextusing adi " erenttypeofIDA,notablythatwillactuallyadjustrecommendationsinresponseto usersÕconÞgurationdecisions. Inthisstudy,Iwillalsodescribeatestofthee "ectthatcustomizationhasonthe transparencyofanIDA.TransparencyinIDAsistypicallythoughtofasafunctionof providingexplanationsintheinterfaceabouthowrecommendationsweregenerated(see section5ofChapter2above).However,customizationmaymakeasystemmoretransparent withoutprovidingexplanationsbecauseitgivessignalsaboutwhataspectsofthedecision areimportanttothealgorithm.InthisstudyIwillshowthatcustomizationleadstoa 102moderateincreaseinthetransparencyoftheIDA.Iwillalsoshowanassociationbetween transparencyandusersÕagreementwithrecommendations.Userswhofeelthesystemis moretransparentaremorelikelytoagreewithit,evenwhencontrollingforrecommendation qualityandcustomizabilityoftheIDA.Thisassociationsuggestsanotherimportantdecision makingbiasthatresultsfromIDAuse. 5.1ResearchQuestions RQ1. CancustomizationleadIDAuserstomakebetterdecisionsevenifrecommendations arenobetterthanthoseprovidedbyanon-customizableIDA? OneargumentthatcanbemadeformakingIDAscustomizableisthatusersprovide expertise,localknowledgeandsituationalawarenessaboutthedecisionscenarioandtheir ownpreferencesthatisimpossibleordi ! cultforthesystemtoobtainfromanyothersource butthedecisionmaker.Therefore,byincorporatingacustomizablealgorithmintoanIDA design,designersallowthesystemtocaptureinformationthatmayleadtobetterrecommen- dationsforspeciÞcdecisions.However,becausecustomizationplacesadditionaldemandson users,itcreatesadi " erentdecisionprocesscomparedtosystemsthatcompletelyautomate theacquisitionandanalysisofinformation.UsersmustthinkabouthowtoconÞgurethe IDA,spendtimeande " ortdoingso,andinterpretbothhowtheirinputhasinßuenced thesystemÕsoutputaswellasevaluatetheoutputanditsappropriatenessforthedecision. Evenifcustomizationleadstobetterrecommendations,theseadditionaldemandsplaced ontheusermaya " ecttheirdecisions.Forexample,theprocessofthinkingabouthow toconÞgurethesystemmightleaduserstonewinsightsaboutthedecision,helpingthem makebetterdecisionsinawaythatisnotrelatedtotheactualrecommendationsprovided. Or,itmaycreatefatiguethatleadsuserstoinsu ! cientlyevaluateallalternativesortake cognitiveshortcutswhenselectinganaction.Theseareexamplesofmechanismsbywhich customizationmighta "ectdecisionmakingthatareindependentoftherecommendations 103thattheIDAproduces. InthisstudyIwillconductanexperimentthatcomparesdecisionmakingassupportedby bothcustomizableandnon-customizableIDAs.Ihavedesignedastudytoseekoutevidence thatcustomizationcanleaduserstomakebetterdecisions.ThemechanismbywhichI suspectthiscouldhappeniselaborationoverthedecisionthatmaybestructuredwithinthe decisionprocessbythedesignoftheIDA.Thismechanismisacognitiveprocessforwhich thereisnotaclearordirectmeasureatthistime.Therefore,IwillÞrstdeterminewhether customizationhasanya "ectondecisionqualityinthisstudysothatIcandeterminewhether developmentofameasureofcustomizationelaborationisaworthwhileresearchdirection. Thehypothesesrelatedtothisresearchquestionare: ¥H1UserswhousetheIDAwillmakebetterdecisionsthanotherswhomakethe decisionunaided. ¥H2Userswhoseecustomizedrecommendationswillmakebetterdecisionsthanusers whoseeonlynon-customizedrecommendations. RQ2. CancustomizationbiasbeobservedinanIDAthatistrulycustomizable? AmajorlimitationofthestudiesIhavepresentedoncustomizationbias(Chapter3, (Solomon,2014))isthattheIDAusedinthosestudieswasmerelyashellthatincludeda customizableinterface,butthesystemÕsrecommendationlogicwasnottrulycustomizable. Althoughmanipulationchecksfromthosestudiesindicatedthatusersdidperceivetohave somecontrolovertheIDAwhencustomizingit,thoseresultsmayhavebeentempered bythefactthatsubjectsmightnotalwayshavebeenabletorecognizeaclearconnection betweentheiractionsandthesystemÕsoutput.Therefore,thoseresultsmaybeonlya manifestationoftheIllusionofControl(Langer,1975).However,recentworkonthistheory hasdemonstratedthattheIllusionofControlcanonlybeobservedinsituationswhenpeople havelittletonoactualcontrol(Ginoetal.,2011),aswasthecaseinmypreviousstudies. 104Ginoetal.foundthatinsituationswherethereisahighdegreeofactualcontrol,peopletend tounderestimatetheircontrol.Ifcustomizationbiasfrommypreviousstudieswastheresult oftheIllusionofControl,theninacontextwhereusershaveahighdegreeofactualcontrol overtherecommendations,itisplausiblethatcustomizationbiaswouldnotbeobservedor thatcustomizersmaybebiasedagainstfollowingtheircustomrecommendations.Forthis reason,itiscriticaltoevaluatecustomizationbiasinacontextwhereusershaveahighdegree ofactualcontrolovertherecommendationsthatareproducedbytheIDA.Thehypothesis (H3)isthatuserswhoseeonlycustomrecommendationswillhavemoreagreementthan userswhoseeonlynon-customrecommendations. RQ3. CananIDAdesignutilizingbothcustomizedandnon-customizedrecommendations reducecustomizationbiasorimprovedecisionmakingovereitherapproachindividually? Customizationbiasmayhavepositiveornegativee "ectsonIDAe "ectiveness.Forex- ample,inasystemwhereusershavetoolittletrustandoftenignoregoodrecommendations, customizationmayhelpusersmakebetterdecisionsbyincreasingthelikelihoodthatthey followthesystemÕsadvice.However,customizationmayalsocreateautomationbiaswhere usersaretootrustingofthesystemandfollowpoorrecommendations.Becausecustomiza- tionmayhavenegativee " ectsondecisionmaking,developingdesigninterventionsthatcan reducecustomizationbiasisanimportantcontributiontoIDAresearch. OnepotentialinterventiononcustomizationbiasisfortheIDAtosimultaneouslyshow bothcustomizedrecommendationsaswellasrecommendationsproducedbyanalgorithm thatisnota " ectedbyusersÕinputs.Non-customizedrecommendationsmayprovideusers withacontrastingperspectiveoraÒsecondopinionÓaboutwhatdecisionshouldbemade. Thisadditionalperspectivemaytriggeruserstoscrutinizetheirrecommendationsmore closelyandbasetheirdecisiononabroadersetofinformation.Ifusersconsidermore alternatives,theymaybemoreinclinedtoacceptsomealternativesthatwerenotgenerated bytheircustomizedalgorithm. 105Thehypothesesare: ¥H4Userswhoseebothcustomandnon-customrecommendationswillmakethebest decisionsoverall. ¥H5Userswhoseebothcustomandnon-customrecommendationswillhavelessagree- mentwithrecommendationsthanuserswhoseeonlycustomrecommendations. RQ4. CancustomizationcreatetransparencyinanIDA? TransparencyiswellunderstoodtobeimportantfortheuserexperienceofIDAs(Cramer etal.,2008;Wang&Benbasat,2007).IDAresearchhasoftenusedexplanationsasthedesign mechanismtocreatetransparency(Herlockeretal.,2000).Notalltypesofexplanationsare e " ectivehowever(2009),andsomeworkhasfoundthatexplanationsneedtobetailored toindividualuserstobee " ective(Tintarev&Mastho " ,2007).Tailoringexplanationsto individualusersmaybeadi !culttechnicalchallenge,andIamnotawareofanyworkthat hasreportedsucceedingatthis.AndotherworkhasfoundthatsomeusersÕdecisionmaking isinhibitedbyexplanations(Ehrlichetal.,2011). Customization,however,mayprovideanopportunitytoaddtransparencywithoutneed- ingtoprovideexplanations.Acustomizablesystem,byvirtueofgivinguserscontrolsthat describesomee " ectonthealgorithm,giveusersasignalaboutwhatisimportanttothe algorithm.Thissignalmayhelpusersunderstandthesystemandgiveittransparency.In thisstudythatcomparescustomizableandnon-customizableversionsofanIDA,Iwillmea- suredi "erencesinhowwellusersfeeltheyunderstandthealgorithmandthelogicbehind therecommendations.Ihypothesizethatcustomizingthesystemwillmakeusersfeelthe systemismoretransparent( H6)andthatthemoretransparentusersfeelthesystemÕslogic is,themoretheywillagreewithrecommendations( H7).1065.2ExerciseRecommender Toanswertheseresearchquestions,IbuiltanIDAthatmakesrecommendationstousers aboutÞtnessorexerciseactivities.InthissectionIwilldescribethissystemanditsdesign indetail.Figure5.1andAppendixGshowtheinterfaceforthissystem. 5.2.1IDARecommendationData Icreatedalistof50exerciseactivitiesbyreferencingexistingcatalogsandselectingexercises oractivitiesthatarewellknown.Inselectingexercises,Itriedtocreateabalancebetween havingdiversityinthetypesofactivitiesthatcouldbechosenÐsothattheactivitiescould bedi " erentiatedfromeachotherbydecisionmakersÐ,andcreatinganexhaustivelistof activitiesthatwouldbeburdensomeforsubjectstobrowsewhenparticipatinginthestudy. Aftercreatinganinitiallistofactivities,Ithenchoseasetofattributesbywhichthese activitiescouldbeevaluated.Theseattributesare: ¥Cardio-Theamountofaerobicexerciserequiredbyanactivity. ¥Intensity-Howphysicallyorpsychologicallyintenseanactivityis.Lowintensity activitiescanbethoughtofasrelaxing. ¥Group-Howmanypeopleareideallyneededforanactivity.Thehighestvaluemeans atleast15people ¥LowerBody/Core-Thedegreetowhichanactivityprovidesexerciseforthelegs, abdomen,orlowerback. ¥UpperBody-Thedegreetowhichanactivityprovidesexerciseforthearms,neck, shoulders,orupperback. ¥Convenience-Theresourcesrequiredforanactivity.Inconvenientactivitiesrequirea lotofmoney,equipment,time,orotherresources. 107Figure5.1:ExerciseRecommenderinterface. 108¥Di ! culty-Theamountofskillorexperiencerequiredtoperformanactivity.Easy activitiescanbecompletedbyanovice.Di ! cultactivitiesrequiretrainingorexpertise toperformoptimally. ¥Fun-Whetheranactivityisenjoyableornot. Idevelopedthislistofattributesfortwopurposes.Onepurposewastocreateasetof preferenceproÞlesthatrepresentasetofthingsthatauserofanIDAsuchasthismight careaboutwhendecidingonanactivity.Thesecondpurposewastocreateattributesfor theIDAÕscontent-basedrecommendersystemtousewhenmakingrecommendations.As discussedinChapter2,content-basedrecommendersystemsmakerecommendationsbased onexplicitly-knownattributesoftheitemsinthesystemÕscatalog.Bycreatingthislistof attributes,IwasabletogivetheIDAexplicitcontentinformationabouttheexercisesin ordertomakerecommendations. Ichoseattributesthatwouldcreatesomediversitywithintheframeworkof search at-tributesversus experience attributes.Nelson(1970)developedthisframework,whichhasbe- comewidelyadoptedinmarketingofconsumergoods,thatdistinguishesbetweenattributes ofproductsforwhichinformationcanbeobtainedthroughsearchcomparedtothingsfor whichinformationcanonlybeobtainedthroughexperience.Forexample,amattresshas somesearchcharacteristicssuchasitssize,price,orbrandname.Thisinformationcanbe obtainedeasilythroughasearch.However,amattressalsocontainsexperienceattributes (e.g.comfort)whichforanyparticularpersonmayonlybeobtainedbyexperiencingthe mattress.Thedistinctionbetweenthesetwotypesofattributesisimportantforrecom- mendersystems(Ochi,Rao,Takayama,&Nass,2010).Usersmaybeabletoreasonably expectasystemtohaveanduseinformationaboutsearchattributesoftherecommendable items,butexperienceattributesmaybe,oratleastappeartousers,tobelesscompatible withautomatedrecommendations.Sinceusersmaycareaboutmanyexperienceattributes, butmayexpectthesystemtomaintainandusesearchattributes,Iincludedattributesthat 109Þtacrossthecontinuumofthisframework.The Fun attributeisastrongexampleofan experienceattribute,whereasthemusclegroupsworkedbyanactivitycanbeeasilyob- tainedthroughasearchorthroughbasicknowledgeofanactivity.Otherattributeslikethe intensityordi !cultymaybeunderstoodthroughsearchbutlikelyrequiresomeexperience aswelltoobtaincompleteinformation.IDAusers,particularlyofcustomizablesystems thatdemanduserinput,mayÞnditchallengingtocoercethesystemintoconsideringboth searchandexperiencecharacteristics.Yetthischallengeisinherentinmanycontextsof IDA-supporteddecisionmaking,andforthisreasonIchosetodiversifytheattributesthat gointothepreferenceproÞlesandintothesystemÕscontent-basedrecommendationsasan acknowledgementofthischallengingaspectofIDA-supporteddecisionmaking. 5.2.1.1CrowdsourcingExercise/AttributeEvaluations Becausetheattributelistcontainedbothsearchandexperienceattributes,andbecauseI wasunabletolocateareliablesourceofobjectiveevaluationsofexercisesforallsearch attributes,Iconductedasurveytocrowdsourcetheevaluationofallexercisesagainstall attributes.ThiscrowdsourcingservesasawaytobootstraptheIDAbyobtainingsome initialcontentratingsbywhichtomakerecommendations. Forthesurvey,112crowdworkerswereenlistedthroughAmazonMechanicalTurk,and eachwaspaid$0.50forcompletingthesurvey.Thesurveyaskedthemtorate40exercise activitiesthatweredividedinto4groupsof10,witheachgroupbeingratedaccordingtoa di" erentattribute.Forexample,asubjectwouldrateonegroupoftenexercisesonthe Fun attribute,thenanothergroupof10onthe Di " cultyattributeandsoon.Thesurveywas rununtilatleast10ratingshadbeenrecordedforeachofthe400exercise/attributepairs (50exercisesby8attributes).Workersweregiventhedescriptionforeachattributethatis listedabove.Theratingsforeachattributewereassessedona10-pointscale.AppendixD showsanexampleofthissurvey. Thesurveycontainedseveralmeasuresintendedtoensurehighdataquality.Workershad 110toanswerthreeÒattentioncheckÓquestionswheretheyweregivenspeciÞcinstructionsinthe questionprompttoverifythattheywerereadingtheprompts.Anyworkerwhofailedanyof theseattentioncheckquestionswasremovedfromtheÞnaldataset.Also,eachsubjectwas showntwoÒrepeatsÓofquestionstheyhadpreviouslyansweredtodeterminewhetherthey wouldbeconsistentabouttheirratings.Anyworkerwhoseanswertoarepeatedquestion deviatedbymorethanonepointfromtheiroriginalanswerwasremovedfromtheÞnaldata set.The10-pointscalealsoincludedanadditionaloptiontoindicatethattheworkerwas notfamiliarwiththeactivityinquestion,andexercisesthatfrequentlyreceivedthisresponse wereremoved.Afteralldatacleaning,83workersand44exercisesremainedinthedataset, foratotalof3320ratings. 5.2.1.2LatentAttributes Table5.1:Latentattributesfromexercisesurvey. AttributeWorkoutIntensityWorkoutAtmosphereMuscleGroup FactorLoadings Cardio0.6250.343-0.213 Convenience-0.659 Di!culty0.520 Fun0.7090.196 Group0.534-0.207 Intensity0.8120.111 LowerBody0.531-0.415 UpperBody0.823 FactorFitMeasures Sum-of-SquaredLoadings1.6091.3450.991 ProportionofVariance0.2010.1680.124 InsomeinitialusabilitytestingoftheExerciseRecommenderandthestudytask,I determinedthateightattributesweretoomanyforuserstosimultaneouslyconsiderinan explicitwaybothforusingandconÞguringtheExerciseRecommenderandformakinga decisionthatmatchedthepreferenceproÞleforallattributes.Torespondtothisproblem, 111Iconductedanexploratoryfactoranalysisontheratingssurveydatatoderiveasmaller numberoflatentfactors. Inthisfactoranalysis,Icreatedanexercise-by-attributematrix,andineachcellofthe matrixIinsertedthemedianratingforthatcombination.Theintentofthefactoranalysis wastoderivesomelatentfactorsthatrepresentcombinationsoftheexplicitattributessuch thatthecorrelationsbetweentheattributescouldbetranslatedintoameaningfulconstruct orlabel.Inanexploratoryfactoranalysisusingvarimaxrotationsuchasthisone,the researcherspeciÞesanumberoflatentfactorsforthealgorithmtoÞndsuchthatthevariance betweenthedi " erentfactorsismaximized.IinitiallyspeciÞedfourfactors,andfoundfour factorswithsu ! cientfactorloadings.However,uponexaminingthespeciÞccorrelations withinthesefactorsandthelistofexercisesthatwouldscorehighorlowonthesefactors, thefourthfactor(whichbydesignofthefactoranalysisprocessexplainstheleastvariance) didnotappeartohaveanidentiÞabletheme.Iwasunabletoputaclearlabeltothisfourth factor,whichwouldmakeitconfusingtousersoftheExerciseRecommendertounderstand. TheÞrstthreecategoriesdidhaveamoreclearthemehowever.Ithenranasecondfactor analysissearchingforonlythreefactors,theanalysisreturnedthreefactorswiththesame themeandgeneralcorrelationsastheoriginalanalysiswithfourfactors.Thisanalysisis describedinTable5.1.IusedthissecondanalysistogeneratefactorscoresusingBartlettÕs method(DiStefano,Zhu,&Mindrila,2009)foreachexercise/latentattributecombination. Iaddedthelabel WorkoutIntensity totheÞrstfactor.Theintensityattributehadthe highestloading,followedbycardio,lowerbody,anddi ! culty.Activitiesthatscoredhighon thisfactorwerethingslikeClimbingStairs,Jumprope,Basketball,Joggingforonehour,and Boxing.ActivitieslikeStretching,Bowling,GolfandYogascoredlowonthisfactor.The ExerciseRecommenderdescribesthisfactorasÒHowmuchwilltheactivitymakeyouwork hard,breathehardandsweat.ÓUserscanspecifyalevelforthislatentattributebetween ÒtakeiteasyÓandÒmakemesweat.Ó Igavethesecondfactorthelabel WorkoutAtmosphere .Thisfactorhadhighloadingsfor 112theFun andGroup attributes,aswellasstrongnegativeloadingfor Convenience .Thisfac- torappearstoidentifyactivitiesthatarefuntodoinagroupofpeoplesuchasrecreational activities(Snorkeling,WhitewaterRafting,SquareDancing)andteamsports(Soccer,Ul- timateFrisbee).Activitiesthataretypicallydonebyoneselfinagymscoredverylowin thisfactor,suchasLunges,Squats,Planks,andBicepCurls.Tohelpusersunderstandthis latentattribute,thehighlevelofthisattributewaslabeledintheExerciseRecommender interfaceasÒhavefunwithfriendsÓandthelowlevelasÒlistentomusic.ÓThedescriptionof thelatentattributewithintheinterfacewasÒFunsocialrecreationactivitiesversussolitary workouts.Ó ThestrongestfactorloadingsfortheÞnallatentattributewerethe UpperBody andLowerBody/Core attributes,whichhadoppositesigns.Forthisreason,Ilabeledthislatent attributeas MuscleGroup andlabeledthehighlevelasÒupperbodyÓandthelowlevelas Òlowerbody/core.Ó 5.2.2CustomizingRecommendations Oneofthemostimportantgoalsforthedesignofthissystemwastoallowuserstocustomize therecommendations.Userscancustomizerecommendationsbyspecifyingwhatlevelof eachofthethreelatentattributestheyprefer.Forexample,ifuserswantanexercisethat willbeintenseandalsofun,theymightset WorkoutIntensity andWorkoutAtmosphere tothehighersettings.Andiftheypreferacoreexercise,theycouldset MuscleGroup toalowersetting.TheExerciseRecommenderalsoallowsuserstoprioritizetheattributes. Therecommenderalgorithmdescribedbelowcangivemoreweighttoitemsthatmatchsome attributesthanmatchingonothers.Tofacilitatethisintheuserinterface,userscanmovethe blocksthatcontaineachattributeupanddownthroughthelistandrearrangetheirorder. Theattributeatthetopofthelistisgiventhehighestweightinthealgorithm,making activitiesthatmatchcloselyonthisattributemorelikelytoappearintherecommendations. Therecommenderalgorithmisbasedonaformulaforweightingqueriesinrecommender 113systemspresentedbySchafer,KonstanandReidl(2004).Thisformulacalculatesasimilarity scorebetweenauserÕsqueryandtheitemsinthesystemÕscatalog.AuserÕsqueryconsists oftwovaluesforeachofthethreeattributesforwhichuserscanspecifytheirpreferences. TheÞrstvalueisthelevelthattheuserspeciÞesforthatattribute.Thesevaluesareona scalebetween-2and2,whichapproximatelymatchestherangeofthecenteredfactorscores storedforeachactivity/attributepairwithinthesystemÕsdatabase.Thesecondvalueisthe rank(1,2,or3)thattheattributeissettoaspriorityforthatattribute.Thissecondvalue issubtractedfrom4inordertogivethehighestrankedattributeavalueof3andthelowest avalueof1. Takingthisquery,theExerciseRecommendercalculatesthesimilaritybetweenthisquery andeveryactivityinthesystemÕsdatabaseusingEquation5.1. Similarity (Activity,Query )=1!!"""""#$a#attributes w2a(1!da)2$a#attributes w2a(5.1)Inthisequation, drepresentsthedegreeofmatchbetweenthequeryandtheactivityÕs rating(factorscore)forthatattribute. discalculatedas d=|QueryLevel !Rating |/3.Dividingby3sets donascalebetween1and0whichisrequiredbytheequation. wisthe weightthattheattributeisbeinggivenbasedonthepriorityranking.Forexample,ifauser setthe MuscleGroup attributetolevel2,andtheactivitybeingcalculatedhasascoreof1 forthatattribute, dwouldbecalculatedas |2!1|/3=0 .333.Ifthatattributewasranked asmostimportant, wwouldequal3intheequation. Afterallsimilarityscoreshavebeencalculated,theactivitiesarethensortedbythese scoresandthetopÞvearereturnedtobepresentedintheuserinterface.TheExercise Recommenderwasbuiltasawebapplicationthatwasaccessedthroughawebbrowser.I builtanddeployedthesystemusingtheweb.py 1framework,HTML5,JQuery1.10.2and 1http://webpy.org 114jQueryUI1.11.4 2,andtheSkeletonCSSframework 3.Thesetechnologiesenabledthe systemtobeusablebothonatraditionaldesktopwebbrowseraswellasotherdeviceswith smallerscreensandtouchdevices. 5.3Methods IconductedanexperimentinwhichsubjectswoulduseaversionoftheExerciseRecom- mendertohelpthemmakeadecisionaboutwhichexerciseactivitywouldbemostappropri- ategiventheirpreferencesforthekindofactivitytheywant.Thestudycompareddecision makingusingdi " erentversionsoftheExerciseRecommender,aswellasacontrolcondition ofunaideddecisionmaking,inordertoanswertheResearchQuestionsdescribedabove. 5.3.1DecisionTask InordertoevaluatethequalityofdecisionsmadebyusersoftheExerciseRecommender,I createdadecisiontaskinwhichsubjectsweregivenasetofpreferencesforsomeattributes ofexerciseactivitiesandwereaskedtochooseanactivitythatmostcloselymatchedthose preferences.Animportantfeatureofthistaskisthatsubjectswerenotchoosingactivities thattheywouldprefertodooutsideofthecontextofthestudyontheirown.Instead,they werechoosingexercisesthatmatchedanassignedpreferenceproÞle. Underthismethod,ratherthanhavingeachsubjectsupplytheirownpreferencesaswould bemostnaturalistic,preferencesareassignedtosubjectsbytheresearchers.Igavesubjects anincentiveintheformofadditionalpaymenttomakedecisionsthatmatchtheassigned preferencesratherthantheirownpersonalpreferences.Byassigningallusersthesame preferences,decisionmakingaboutwhatmightotherwisebeahorizontallydi " erentiated setofpreferencescanbemadeverticallydi "erentiatedandobjectivelyevaluated.This 2http://jqueryui.com 3http://getskeleton.com 115approachdrawsonmethodologyfromexperimentaleconomics,andspeciÞcallyonInduced ValueTheory(Smith,1976).Smithshowedthatintheabsenceofotherincentives,subjects inadecisionmakingexperimentcanbeassignedpreferencesforsomedecisionalternatives overothersbyvaryingaÞnancialrewardfromtheexperimentfromchoosingthosemore valuedalternatives.Forexample,ifsubjectsaretoldthatiftheoutcomeofagameisA, theywillearn1pointandifitisoutcomeB,theywillearntwopoints,andthepointsare laterexchangedforrealcash,subjectswillactuallypreferthegametohaveoutcomeBover A,andwillmakedecisionsthattheybelievewillresultinB. ThedecisiontaskIcreatedforthisstudymakesuseofInducedValueTheorybygiving subjectsasetofpreferencesrepresentedaspointvaluesthatcanbeearnedfromachosen exerciseactivity.SubjectswereshownÞveattributesofexercises.TheseattributeswereÞve oftheeightattributesthatwereevaluatedintheexerciseratingsurveydescribedabove.The attributesthatmadeupapreferenceproÞlewere Cardio ,Convenience ,Fun ,Di " culty,and Group .Foreachoftheseattributes,subjectsweretoldtheyprefereitherahighoralowlevel, andassignedapointvalueforthatattribute.Theratingsgiventotheactivitiesforthese attributesestablishagroundtruth.Foreachattribute,amediansplitoftheratingsforthat attributedeterminedwhethertheexercisewouldbeclassiÞedasÒhighÓorÒÕlowÓforthat attribute.Whenasubjectselectedanactivity,thatactivityÕsgroundtruthhigh/lowratings werecomparedtothesubjectÕspreferenceproÞle.SubjectsearnedthespeciÞednumberof pointsiftheirselectedexercisehadthesamehigh/lowlevelastheirpreferredlevelfromthe proÞle. Forexample,ifasubjecthadthefollowingpreferenceproÞle: ¥HighinFun-30points ¥LowinCardio-20points ¥LowinGroup-15points 116¥HighinConvenience-10points ¥LowinDi !culty-5points andthesubjectchoseBowling,thesubjectwouldearn55pointsbecauseBowlingisratedas Highin Fun (30points),Lowin Cardio (20points),Highin Group (0points,notmatched), Lowin Convenience (0points,notmatched)andLowin Di " culty(5points). PreviousworkonIDAsine-commercehasusedasimilarapproachtoevaluatingdeci- sionmaking(Pereira,2001)thatappropriatespointstousersbasedonthematchbetween theirpreferenceforattributesandtheitemtheyhaveselected.Thereareafewimportant di" erencesbetweenPereiraÕsmethodandmyown.Pereiradidnoto " eranincentivefor subjectstoearnmorepoints.Iconsiderthisincentivetobecriticalforastudyconducted onlinebyMechanicalTurkworkers,whootherwisehavegreatincentivetoperformthetask quicklywithouttryingexceptionallyhardtomakegooddecisions.Theseconddi " erenceis thatPereiraaskedsubjectstocreatetheirownpreferenceproÞlespriortousingadecision aidbyselectingtheirpreferredvaluesforeachattributethenweightingtheimportanceof theattributes.Thismethodcreatessomeexternalvalidityforthedecisiontaskbecausesub- jectsaremakingdecisionsfortheirownpreferences.However,therearesomeseriousthreats tointernalvaliditywiththisapproachthatmakeitinappropriateformystudy.First,it eliminatesthepossibilitytoevaluatewhethersubjectsimprovetheirdecisionmakingover timebecauseasubjectcanhaveonlyoneproÞle.Second,itcreatesapotentialselection bias.Sincesubjectschoosetheirownpreferences,itispossiblethatsomesubjectshave preferencesthatareinherentlyabettermatchtothelimitedcatalogofoptionsthanothers. Thismeansthatsomesubjectsmayhavemoreoptionsavailabletothemthanothersthat wouldgivehighscores,andthemaximumpossiblescoremaybedi " erentforeachsubject. Forthesereasons,Ichosetoassignusersthesamepreferences,leaningonInducedValue TheorytoprovideassurancethattheassignedproÞlesdoinfactcreateatruepreferencefor selectingactivitiesthatmatchthem. 117Alongwithothercolleagues,IhaveusedthisapproachbasedonInducedValueTheory toassessdecisionmakingcrowdfundingsystems(Wash&Solomon,2014;Solomon,Ma,& Wash,2015).ThatresearchtookadvantageofanotherimportantcharacteristicofInduced ValueTheory,whichisthatitcanbeusedtoinducepreferencesinordertoevaluatestrategic decisionmakingingamesplayedbetweenmultipleparties.Theapplicationofthisapproach inthisstudyabouttheExerciseRecommenderismoresimple,asitinvolvesnostrategic behavior.SubjectsÕpayoutsaredeterminedentirelybytheirowndecisions.Thisisauseful featureofthistaskdesignbecauseitremovessomeexternalincentivesthatcancreepinto inducedvalueexperiments,suchaslearningandnegotiatione " ectsthatcancomefrom repeatedgames(Andreoni,1988).Instead,thequalityofsubjectsÕdecisionscanbequite objectivelymeasuredasthenumberofpointsearnedfromtheiractivityselection. TocreatethetenpreferenceproÞles,IÞrstclusteredtheexerciseactivitiesaccordingto theirratingsfortheÞveattributesinthepreferencesusinghierarchicalagglomerativecluster analysis.Icreatedtenclusters,thenchoseoneactivityfromeachclustertosetasaÒtop choice.ÓIthensetthepreferredlevelofeachattributeintheproÞletoequaltheratingofthe chosenexercise,sothateverypreferenceproÞlehadatleastoneactivitythatwouldscore themaximumof80points.TheclusteranalysiscreateddiversityinthepreferenceproÞles, andensuredthatalltypesofactivitiesthatcouldbechosenwererepresentedamongthe possiblebestchoices. 5.3.2ExperimentConditions Therewerefourconditionsofthestudy,whicheachrelatetodi "erentversionsoftheEx- erciseRecommender.Inthe UnaidedDecision condition,subjectsdidnotusetheExercise Recommendertohelpthemmakeadecision.Inthe CustomOnly version,subjectscould customizetheExerciseRecommenderÕsrecommendationalgorithmasdescribedabove,and wereshownonlyrecommendationsthatwereproducedbytheircustomizedalgorithm.In theNon-CustomOnly condition,subjectsusedaversionoftheExerciseRecommenderthat 118wasnotcustomizable,butprovidedrecommendationsofequivalentqualitytousers.These non-customizedrecommendationswillbedescribedindetailbelow.Inthe Bothalgorithms version,theExerciseRecommenderdisplayedrecommendationsproducedbytheuserscus- tomizedalgorithm,aswellasrecommendationsproducedbythenon-customizedalgorithm. Non-customizedrecommendations. Customizationmaya "ectdecisionmakingifusers aree " ectiveatcustomizingthealgorithmandthereforeimprovetherecommendationsthat areproduced.Animportantgoalofthisexperiment,andinunderstandingcustomization biasanddecisionmaking,istoaccountforthee " ectthatrecommendationqualitymight have.Recommendationqualitycanbeeasilymeasuredinthisdesignduetothenatureofthe decisionmakingtask,andthereforeanalysescanaccountforit.However,itwasnevertheless desirablethatrecommendationqualitybeasclosetoconstantaspossiblebetweenconditions. Becauserecommendationqualityisadependentvariableandcannotbeassignedtosubjects whocustomizetheIDA,thisisnotastraightforwardmanipulationintheexperimentdesign. Tobalancethequalityofrecommendationsbetweenconditions,thenon-customizable algorithmusedapoolofrecommendationsthathadbeenproducedinapilotstudyby usersoftheCustom-onlysystem.Inthispilot,37subjectsparticipatedinthethe CustomOnlyconditionofthestudy.WhentheExerciseRecommenderneededtodisplaysome non-customizedrecommendationstoauser,itrandomlysampledarecommendationset fromthispool.TheExerciseRecommenderselectedarecommendationsetthathadbeen producedbyapilotsubjectusingthesamepreferenceproÞleasthecurrentsubjectrequesting therecommendations.Thismethodofgivingnon-customizedrecommendationsresembles collaborativeÞlteringinthatthesystemgivesrecommendationstoauserbasedonthe actionsofothersimilarusers. TheExerciseRecommenderdidnotgiveanexplanationforhowthenon-customized algorithmworked,otherthantoindicatetousersinthe Bothalgorithms conditionthat theywerenota " ectedbytheuserÕsinput.Therewereseveralreasonsfornotexplaining thenon-customizedrecommendations.First,asadesignchoiceforanIDAthereislittle 119justiÞcationintheliteratureonexplanationsforgivingexplanationsinregardstodecision making.ExplanationsdonothaveaclearbeneÞttodecisionmaking,andinsomecasesmay harmfultodecisionmaking(Ehrlichetal.,2011).Asecondreasonisthatifanyexplanation weretobegiven,itwouldcreateaconßictforexperimentalvalidity.Forexampleifusersin thenon-customonlyconditionweretoldthatothersimilarusershadcustomizedtheIDA,it wouldrevealthenatureoftheexperimenttothoseusersandcreateapotentialfordemand e"ects.Ifafalseordeceptiveexplanationweregiven,itwouldviolatetheestablishednorms ofexperimentaleconomicsuponwhichthedecisiontaskisbased.Furthermore,di "erent explanationsmayresultindi "erente "ects,ashasbeenfoundinseveralpreviousstudies(Lim etal.,2009;Tintarev&Mastho ",2008,2012),whichmeansthatthespeciÞcexplanation chosencouldpotentiallyhaveadirecte " ectontheresultsoftheexperiment.Evaluating speciÞcexplanationdesignsisnotoneoftheresearchquestionsforthisstudy,althoughit isanimportantareaforfutureresearchthatbuildso " oftheexperimentprotocolIhave developedforthisstudy. 5.3.3Procedure IrecruitedsubjectsfromAmazonMechanicalTurktoparticipateinastudyaboutExercise Choices.Io "ered$2.00asaguaranteedpaymentforparticipation,andtoldtheminthe recruitmentpostthatthattheycouldearnabonuspaymentdependingontheirdecisions inthestudy,withtheaveragebonuspaymentexpectedtobe$3.00.Afterenrollinginthe study,subjectswereassignedtoaconditionandgiveninstructionsabouttheirtask.These instructionscanbeseeninAppendixF.Theseinstructionsdescribedthedecisiontask, includinghowmanypointswouldbeearnedanddescriptionsoftheattributestheywould begivenpreferencesfor.Afterviewingtheinstructions,subjectstookaquizthatevaluated theirunderstandingofthekeypointsoftheinstructions.Inparticular,thisquizrequired subjectstodemonstratethattheyunderstoodhowtheirscoreswerecalculated,understood theExerciseRecommenderandthewayitproducedrecommendations,andveriÞedthat 120subjectsunderstoodtheirincentivetomakegooddecisionsfortheirpreferenceproÞle.If subjectsansweredanyquestionincorrectly,theywereshownthecorrectanswersandthen redirectedtotheinstructionsforreview.Theythenhadtoretakethequizwiththequestions andanswersslightlyalteredandreordered.Theyhadtopassthequizbeforemovingon,but werefreetotakeitasmanytimesasneeded.Themediannumberofquizattemptswas2. Aftercompletingthequiz,subjectswereshownapagewiththeirpreferences.Inthe unaidedcondition,theywerealsoshownamenuwheretheycouldselectanexercisefor thegivenpreferenceproÞle.InthethreeExerciseRecommenderconditions,afterviewing theirpreferencestheyhadtoloadtheExerciseRecommenderintoaframeonthescreen. Theythenusedthesystemtogetrecommendations,andoncerecommendationshadbeen generatedthemenuappearedwheretheycouldmaketheirdecision.Recommendations couldonlybeproducedonetimeperround,sothatalldecisionswerebasedonusingthe IDAtoproduceonesetofrecommendations,ratherthanallowingforrepeatedrequestsfor recommendations. Aftermakingtheirdecision,subjectswereshowntheirscore,andremindedthatthe maximumpossiblescorewas80pointssotheycouldgagehowclosetothebestpossible decisiontheyhadmade.Subjectsthenproceededtothenextroundwhereanewsetof preferenceswasshown.SubjectsusedthesameversionoftheExerciseRecommender(or usednoIDA)forallroundsofthestudy.AfterÞnishingthetenroundsofthedecisiontask, subjectsweredirectedtoapost-testquestionnaire.TheorderofpreferenceproÞlesthat subjectsmadedecisionsforwasrandomizedforeachsubject. Atotalof155subjectscompletedthestudy.Afteraninitialanalysisofthedata,I removedtwosubjectswhocompletedthestudyfromthesameIPaddress,andÞvesubjects whocompletedthedecision-makingportionofthestudyinlessthan3minutes.Inpilot testingIdeterminedthatthreeminuteswastoofastforsubjectstohavebeenseriously lookingattheirproÞlesandmakingthoughtfuldecisions,soIremovedfoursubjectswho completedthestudyinlessthanthreeminutes.48%femalewithamedianagecategoryof 12126-34.Subjectstookanaverageof27minutestocompletethestudy. 5.3.4Measures Decisionquality. Imeasureddecisionqualityusingthenumberofpointsearnedbythechosenactivityfor thesubjectÕspreferenceproÞle. Recommendationquality. TheExerciseRecommendergaveÞverecommendationsineachround,plusanadditional ÞvetosubjectsintheBothAlgorithmcondition.Iusedthreedi " erentmeasurestoassess thequalityofrecommendationsthatasubjectreceivedinagivenround. AverageRecom- mendationQuality wastheaveragenumberofpointsthatallrecommendationsshownwould earn. WeightedRecommendationQuality gaveextraweighttorecommendationshigheron thelist.Theaveragewascalculatedbyaddingcopiesofeachrecommendationscoretothe vector,withthenumberofcopiesdeterminedbytheactivityÕsrankintherecommendation list.Thetopactivitywasrepeated5times,whiletheÞfthactivityappearedonlyonce.The thirdmeasureisthescoreofthebestrecommendationonthepage. Post-testmeasures. Thepost-testquestionnaireassessedseveraladditionalmeasures.AppendixHshowsthe fullpost-testquestionnaire.ThisquestionnaireassessedsubjectsÕknowledgeaboutÞtness andexerciseactivities,theiruserexperiencewiththeExerciseRecommender,theirpercep- tionoftransparencyoftheExerciseRecommender,theirpropensitytotrustdecisionaids, anddemographicinformation.Thisquestionnairealsocontainedquestionsaboutwhether theylookedat,considered,trustedorignoredrecommendationsfromtheExerciseRecom- mender. 122Table5.2:PercentagesofpeopleansweringyestothesequestionsabouttheExerciseRec- ommender.CustomOnlyNoncustomOnlyBoth IusedtheExerciseRecommendertohelpme makemydecision 92%66%94% IcouldconÞguretheExerciseRecommender toadjusttherecommendationsitgaveme 73%3%77% TheExerciseRecommendergavemesome recommendationsthatIhadnocontrolover 41%18%74% TheExerciseRecommendergavemeonly recommendationsthatIhadnocontrolover 11%45%3% Table5.3:Questionnairequestionsaboutrecommendations.Answeredon5-pointLikert scale(StronglyDisagreetoStronglyAgree).Standarddeviationsinparentheses. CustomOnlyNoncustomOnlyBoth Lookedatrecommendations4.2164.0264.429 (0.584)(0.944)(0.502) Trustedrecommendations3.2972.9213.229 (0.996)(1.148)(0.843) Ignoredrecommendations2.1892.5792.229 (0.811)(1.056)(0.843) Lookedatcustomrecommendations4.054-3.971 (0.815)-(0.664) Lookedatnon-customrecommendations-3.5523.857 -(0.921)(0.879) 5.4Results 5.4.1Questionnaire Table5.2describessubjectsÕanswerstoquestionsabouttheExerciseRecommender.This tableillustratesthatsubjectsintheBothAlgorithmsconditionunderstoodthenatureof theirrecommendations,astheyfoundthesystemtobeconÞgurable,andthatsomebutnot alloftheirrecommendationswerenotinßuencedbytheirconÞguration. Table5.3describesthequestionnairequestionsaboutattentiontotheExerciseRecom- 123Table5.4:Self-reporteduserexperiencevariables. CustomOnlyNoncustomOnlyBoth Useful3.4593.0003.571 (1.016)(1.040)(0.884) Accurate3.4323.0003.324 (0.987)(1.040)(0.843) Easytouse4.1354.4214.118 (0.918)(0.793)(1.094) ConÞgurable3.5411.9733.029 (0.931)(1.000(0.937) menderÕsrecommendations.TherewerenostatisticallysigniÞcantdi " erencesbetweenany conditionsonanyofthesemeasures.Almostallsubjectsreportedthattheylookedatand consideredtheExerciseRecommenderÕssuggestions,withanaveragehigherthantheÒagreeÓ pointandonlyafewsubjectsreportinganydisagreementwiththestatementaboutconsid- eringrecommendations.Therefore,thedatainthethreeExerciseRecommenderconditions canbelargelyinterpretedasIDA-supporteddecisionmaking.Furthermore,subjectsinthe BothAlgorithmsconditionindicatedequivalentamountsoflookingandconsideringboth typesofrecommendations.Thesmalldi " erenceinmeansbetweenlookingatcustomand non-customrecommendationswithintheBothAlgorithmsgroupwasnotstatisticallysig- niÞcant.Thissuggeststhatsubjectswereawareofallrecommendationsandlookedover thembeforemakingdecisions,andthatthereisnodi " erencebetweenanyoftheExercise Recommenderconditionsintermsofseeingandconsideringrecommendations. Table5.4describesresponsestoquestionsabouttheuserexperienceoftheExercise Recommender.ANOVAandTukeyHonestSigniÞcantDi " erencetestsfoundthatsubjects intheNon-customconditionthoughttheIDAwaslessusefulthansubjectsintheBoth Algorithmcondition.Also,subjectsintheNon-customconditionfoundthesystemtobe lessconÞgurablethantheothertwoconditionswiththeIDA.Noothercomparisonsshowed statisticallysigniÞcantdi "erencesbetweenconditions. ThequestionnaireaskedthreequestionstoassessthetransparencyoftheExerciseRec- 124Table5.5:Self-reportedunderstandingofIDAlogic. CustomOnlyNoncustomOnlyBoth Understoodwhy3.9193.3683.829 (0.682)(0.942)(0.664) Madesense3.7843.2893.629 (0.672)(1.011)(0.770) Logicwasclear3.7843.2113.600 (0.787)(1.094)(1.094) ommender.Subjectsstatedona5-pointLikertScalewhethertheyunderstoodwhytheIDA gavecertainrecommendations,whetherthoserecommendationsmadesense,andwhetherthe systemÕslogicwasclear.Table5.5describedtheseresults.ANOVAandTukeyÕsHSDtests wereruntodetermineanydi " erencesbetweenconditionsontheseitems.TheNon-custom OnlyconditionwasratedashavinglesstransparencyonallthreemeasuresthantheCustom Onlycondition,and( p<.05),andtheNon-customOnlyconditionwasalsoratedasless transparentthentheBothAlgorithmconditionontheÒunderstoodwhyÓitem.ThisÞnding isnotsurprisingastheNon-customrecommendationsweregivennoexplanationabouttheir process,howeveritisnoteworthyinthatito " erssomeevidencethatusersperceivetheact ofcustomizingspeciÞcinputsasaformoftransparency.Itshouldbenotedhoweverthatthe e"ectsizesinthesetestsarerelativelysmall,andallmeanssatbetweentheÒneutralÓand ÒagreeÓpointsonthescale,suggestingthatsubjectsdidnotÞndtheIDAhighlytransparent overall. 5.4.2RecommendationQuality Table5.6describesthemeansandstandarddeviationsofthethreerecommendationquality measureswithineachcondition.IconductedANOVAÕsoneachofthesemeasuresbycon- dition.ThesetestsfoundnostatisticallysigniÞcantdi " erencesbetweenconditionsonthe measuresofaveragerecommendationquality,weightedaveragerecommendationquality,and number1recommendationscore.TherewasastatisticallysigniÞcantdi " erence( p<.05)125Table5.6:Meansandtandarddeviationsofrecommendationqualitywithinconditions. Non-customonlyCustomonlyBothalgorithms AverageRec.Quality45.013(15.238)46.486(15.210)46.279(14.843) WeightedAverageRec.Quality43.757(16.250)45.014(16.088)44.710(15.999) TopRec.Score64.854(15.546)65.897(15.210)72.500(11.959) onthemeasureofbestrecommendationscore,whichevaluatedhowmanypointsthebest recommendation(appearinganywhereonthepage)wouldearn.Furtheranalysisusinga multilevelregressionmodelindicatedthattheBothAlgorithmsconditionhadahigherav- erageforthebestrecommendationthatappearedonthepage.Thiscanlikelybeexplained bythefactthattheBothAlgorithmsconditionshowedtenrecommendationscomparedto ÞveintheotherIDAdecisions.Figure5.4showsthedistributionofthismeasure.Inmost rounds,thesystemgaveatleastonerecommendationthatscored80points,whichwasthe maximumpossibleineveryround. Overall,thestudydesignwassuccessfulatprovidingrecommendationsofequivalent qualitytosubjectsinallthreeIDA-supportedconditions.Customizedrecommendationswere equivalentinbothconditionsthatusedthem,aswerenon-customizedrecommendations. 5.4.3DecisionMaking Toevaluatedecisionmaking,IÞtamultilevellinearmodelthatincludeddummyvariables foreachrecommendationtype,theinteractionbetweenrecommendationtypes,andrandom e"ectsforeachsubjecttoaccountfortherepeatedobservationspersubject.Themodel alsoincludedaÞxede "ectforeachproÞle.IusedÞxede "ectsbecauseIwasinterested inthespeciÞce " ectofeachproÞleinthisstudy,andnotanye " ectsthatmightgeneralize toabroaderpopulationofpreferenceproÞlesforexerciseactivities.However,inapost- hoctestIcheckedthismodel(andallothersinthischapter)usingrandome " ectsforthe proÞles,andtherewasnosubstantivedi " erencethatwouldalteranyconclusions.The interceptofthismodelrepresentsadecisionmadeintheUnaidedconditioninproÞlenumber 126050100150020406080Weighted Recommendation Quality countBoth Algorithms Custom OnlyNoncustom OnlyFigure5.2:Distributionofweightedrecommendationscores. 0501001502002500255075Score of #1 RecommendationcountBoth Algorithms Custom OnlyNoncustom OnlyFigure5.3:Distributionofrecommendationscoreslistedas#1onthepage. 127Table5.7:Thee " ectofeachrecommendationtypeondecisionquality. Dependentvariable Points Intercept59.302 """(1.815)CustomizedRecs.Shown0.462 (1.492)Non-customizedRecs.Shown !0.500(1.482)BothRecommendationTypes !0.811(2.125)ProÞle2 !7.230"""(2.209)ProÞle33.074 (2.209)ProÞle4 !14.662"""(2.209)ProÞle5 !10.541"""(2.209)ProÞle64.527 ""(2.209)ProÞle7 !4.932""(2.209)ProÞle8 !16.385"""(2.209)ProÞle9 !8.108"""(2.209)ProÞle10 !7.838"""(2.209)RandomE "ectStandardDeviation2.370 LogLikelihood !6,444.970LogLikelihood !20.8921Note: "p<0.1;""p<0.05;"""p<0.01128010020030040050020406080Top Recommendation Quality countBoth Algorithms Custom OnlyNoncustom OnlyFigure5.4:Distributionofscoresofbestrecommendationonthepage. 1.Thecoe !cientlabeledÒBothRecommendationTypesÓrepresentstheinteractione "ectbetweenseeingcustomizedandnon-customizedrecommendations.Thismodelisdescribed inTable5.7. ThemodelsuggeststhattheExerciseRecommenderingeneraldidnothaveane " ecton theaveragedecisionqualityforsubjects,astherewerenostatisticallysigniÞcantdi " erences betweentheIDA-supporteddecisionsandtheUnaidedDecisioncondition.Whilesome proÞlesappearedtobemorechallengingthanothers,theExerciseRecommenderinanyform didnothelpsubjectsmakebetterdecisionsonaverage.Iconductedarepeatedmeasures ANOVAonthismodeltotestwhethertherewereanydi " erencesbetweenanyconditionsin decisionquality.ThistestfoundnostatisticallysigniÞcantdi " erencesbetweentheconditions ofthestudy( F(3,144)=0 .287)ondecisionquality.Forthisreason,thereisnosupport forH1(theIDAwillimprovedecisionmaking),H2(customizationwillimprovedecision making),orH4(showingbothtypesofrecommendationswillleadtothebestdecisions). AlthoughtheExerciseRecommenderdidnotimprovedecisionsonaverage,itdidinßu- 129Table5.8:DecisionmakingwithinonlytheIDA-supportedconditions. Dependentvariable: Pointsearnedfromchosenactivity Intercept(Bothcondition)28.994 """(4.358)CustomOnlyCondition5.442 (4.553)Non-customOnlyCondition7.327 (4.464)Avg.RecommendationQuality0.530 """(0.075)CustomxRec.Quality !0.089(0.093)Non-customxRec.Quality !0.141(0.092)ProÞle2 !1.235(2.554)ProÞle32.858 (2.513)ProÞle4 !3.869(2.792)ProÞle5 !3.886(2.611)ProÞle62.945 (2.510)ProÞle7 !0.895(2.517)ProÞle8 !7.568"""(2.594)ProÞle9 !1.076(2.665)ProÞle100.358 (2.763)RandomE "ectsStandardDeviation1.774 LogLikelihood !4,726.461LogLikelihood !2267.16"""Note: "p<0.1;""p<0.05;"""p<0.0113002040608020406080Average Recommendation Quality ScoreFigure5.5:E " ectofrecommendationqualityondecisionquality encedecisions.ThequalityofrecommendationsgivenbytheIDAhadastronginßuence onthequalityofdecisionsforusersinallthreeIDA-supportedconditions.IÞtamultilevel regressionmodeltothedatafromthethreeIDA-supportedconditionsandincludedthe averagequalityofrecommendationsonthepageasacovariate.Thismodelisdescribedin Table5.8.Theresultsweresimilarforallmeasuresofrecommendationquality.Figure5.5 illustratestherelationshipbetweenrecommendationqualityanddecisionquality.Forevery additionalpointofrecommendationquality,subjectscouldexpecttoearnanadditionalhalf apointfromtheirdecision. ThisÞndingsuggeststhattheIDAchangedthedecisionprocessforsubjectswhousedit whencomparedtothosewhomadeunaideddecisions.Evaluatingrecommendationsmade bytheIDAisanimportantpartofdecisionmaking,eventhoughitmaynotactuallyimprove overalldecisions. 131Table5.9:ModelofagreementwithoneoftherecommendationsinCustomonlyandNon- customonlyconditions. Dependentvariable: Logoddsofagreement Intercept(Customonly) !2.316"""(0.555)Non-customonly !0.536""(0.270)TrustPropensity0.496 """(0.158)Avg.Rec.Quality0.055 """(0.008)ProÞle21.441 """(0.409)ProÞle30.641 (0.395)ProÞle40.237 (0.416)ProÞle51.025 ""(0.404)ProÞle60.407 (0.390)ProÞle71.228 """(0.414)ProÞle82.328 """(0.459)ProÞle91.685 """(0.420)ProÞle100.713 "(0.412)RandomE "ectsStandardDeviation0.801 LogLikelihood !393.757LogLikelihood !2137.78"""Psuedo R20.289Note: "p<0.1;""p<0.05;"""p<0.011325.4.4Agreement Table5.9describesamodelthatestimatesthelikelihoodofagreeingwithoneoftherec- ommendationsgivenbytheIDAbysubjectsintheCustomonlyandNon-customonly conditions(H3).TherewasastatisticallysigniÞcantdi " erencebetweenthesetwoconditions inagreementwithrecommendations.Subjectswhocustomizedthesystemweremorelikely tofollowoneofitsrecommendationsthansubjectswhodidnotcustomizetherecommen- dations.TheseresultssupportH3,ando " erfurthersupportthatcustomizationcreatesa decisionmakingbiasbyIDAusers. Presentingbothcustomizedandnon-customizedrecommendationsdidleadtoastatis- ticallysigniÞcantreductionincustomizationbias,whichmeansthereisnosupportforH5. Inamodelthatestimatedthelikelihoodofagreeingwithcustomrecommendationsinthe CustomOnlyandBothAlgorithmscondition,therewasnostatisticallysigniÞcantdi " erence betweentheconditionsinagreementwiththecustomrecommendations. Recommendationqualityalsohadane "ectonagreementwithrecommendations.Sub- jectsweremorelikelytoagreewithrecommendationswhentheyhadhigherquality.This relationshipheldtrueforallmeasuresofrecommendationquality.Likewise,subjectswho reportedahigherdegreeofoveralltrustindecisionaidsweremorelikelytoagreewith recommendations.TheseÞndingsarenotsurprising,buttheyarenoteworthybecauseI observedcustomizationbiaswhilecontrollingfortheseotherimportantfactors.Asubject whocustomizedtheIDAwouldbemorelikelytoagreewithoneofthemthansomeoneelse whohasthesamepropensitytotrustdecisionaidsandreceivedrecommendationsofequal quality. TheBothalgorithmsconditiono " ersawithin-subjectsversionofthistestofcustomiza- tionbias,assubjectssawbothtypesofrecommendationsimultaneously.Ascanbeseenin Figure5.6,subjectsweremuchmorelikelytoagreewiththeircustomizedrecommendations thanthenon-customizedrecommendations.Subjectschoseanactivityfromthecustomized 1330%20%40%60%80%Custom onlyNon!custom onlyBoth (custom rec.)Both (non!custom rec.)Agreement with RecommendationsFigure5.6:Agreementwithrecommendations. listin67%ofallrounds,comparedtochoosinganactivityonthenon-customizedlistonly 37%ofthetime.ApairedMann-WhitneyU-testconÞrmedthisdi " erencewasstatistically signiÞcant( p<.001).Itshouldbenotedthatin27%ofrounds,thechosenactivityappeared onbothlistsatthesametime.Whensubjectschoseanactivitythatappearedononlyone list,79%ofthetimeitwasacustomrecommendationand21%itwasfromthenon-custom list. Figure5.7showshowsubjectsineachoftheIDAconditionsadjustedtheiragreement withtheIDAoverthecourseofthetenroundsoftheexperiment.InthisÞgure,thebolded linerepresentsamovingaveragesmoothedusingLOESS(LocalRegression)smoothing.The lightdottedlinesaretheactualaveragesforeachconditionateachroundnumber. ThisÞgureillustratesthateachconditionhadadistinctpatternofagreementovertheten rounds.SubjectsintheNon-customconditionmaintainedastationaryamountofagreement, withtheaveragebarelymovingatallandnottrendinginanydirection.Subjectsinthe CustomonlyconditionstartedathigheragreementthantheNon-customsubjects,andtheir 1340.50.60.70.812345678910Round number Average agreement BothCustomNon!customFigure5.7:Changeinaverageagreementoverthe10roundsoftheexperiment. Table5.10:Transparencymeasuresbycondition.Itemsareona5-pointscale. Non-customonlyCustomonlyBothalgorithms 1.Iunderstoodwhy thesuggestionsweremade 3.368(0.942)3.919(0.682)3.829(0.664) 2.Ithoughtthe suggestionsmadesense 3.289(1.011)3.784(0.672)3.629(0.770) 3.Thelogicbehind therecommendationswasclear 3.211(1.094)3.784(0.787)3.600(0.775) agreementincreasedfortheÞrstseveralroundsbeforebeginningagradualdecline.Subjects intheBothAlgorithmsconditionhadanoppositepatternfromtheCustomonlygroup.Their initialagreementwasalsohigh,buttheyimmediatelyshowedadeclineintrust.However, inthelaterroundstheyregainedthattrustandbytheendoftheexperiment,thesesubjects wereshowingthemostagreementwiththeIDA. 1355.4.5Transparency Table5.10showstheresponsestoquestionsrelatedtothetransparencyoftheExercise Recommender.IconductedanANOVAforeachitemfollowedbyTukeyÕsPost-Hocteststo testforpairwisedi " erencesbetweenconditions.AllthreeANOVAtestsindicatedthatthe modelwasstatisticallysigniÞcant( p<. 05).Subjectsreportedless understandingwhythe suggestionsweremade (Item1)thanbothoftheothertwoconditions( p<.05)accordingto theTukeyÕstestwithHonestSigniÞcantDi " erencestoaccountforthemultiplecomparisons. Foritems2and3,onlythedi " erencebetweentheNon-customonlyandtheCustomonly conditionswasstatisticallysigniÞcant( p>.05).TheseresultssupportH6andsuggestthat customizationcanservetoincreasethetransparencyofanIDA.Thesedi " erencesarenot particularlylargehowever,suggestingthatcustomizationmayonlyhaveamodeste " ecton transparency. Table5.11:Relationshipbetweenperceivedtransparencyandagreementwithrecommenda- tions. Dependentvariable: Logoddsofagreement (1)(2)(3) Item1(understoodwhy)0.401 """(0.143)Item2(madesense)0.314 ""(0.134)Item3(logicclear)0.335 """(0.124)RandomE " ectsStandardDeviation0.8340.8510.837 LogLikelihood !594.605!595.604!594.737LogLikelihood !2155.85"""153.87"""155.59"""Pseudo R20.2600.2600.260 Note: "p<0.1;""p<0.05;"""p<0.011360.250.500.751.0012345Transparency item response Probability of agreementLogic clearMade senseUnderstood why Figure5.8:E " ectoftransparencyonagreementwithrecommendations. TheseitemsarenottestsofsubjectsÕactualunderstandingofhowtheExerciseRecom- menderworks,ratherameasureoftheirperceptionofitstransparency.Toevaluatehow subjectsÕperceptionoftransparencya " ectedtheiragreementwithrecommendations,IÞt threemodelsthatestimatedthelogoddsofagreementwithrecommendationswithoneof thetransparencyitemsasanexplanatoryvariable.Thesemodelsalsoincludedtheexperi- mentconditionandaveragerecommendationqualityascovariates,alongwithÞxede " ects fortheproÞlesandarandome "ectforeachsubject.IÞtaseparatemodelusingeachofthe threeitems,ratherthanincludingthemallinonemodel,becausethethreeitemsarehighly correlatedwitheachotherandwouldcreatemulticollinearity.Similarly,propensitytotrust decisionaidswasmoderatelycorrelatedwiththethreetransparencyitems( r=0.448,0.449, and0.427)andsoitwasnotincludedinthesemodelseventhoughinpreviousmodelsI foundittobeastrongestimatorofagreement. Table5.11describesthesemodels.Notethatthistableexcludestheothercovariates inthemodelforbrevity,asthoserelationshipsarereportedinTable5.9.Thesemodels 137indicatethatholdingallothervariablesconstant,subjectswhoreportedperceivinghigher transparencyoftheExerciseRecommenderweremorelikelytoagreewithrecommendations. Thecoe ! cientofeachofthethreetransparencyitemswasstatisticallysigniÞcant,evenwhen controllingfortheconditionthesubjectwasin.Fromthesemodels,wecanconcludethat thereissupportforH7inthatthereisanimportantrelationshipbetweenusersÕperception oftransparencyofanIDAandtheirlikelihoodoffollowingitsrecommendations. Thisrelationshipisimportantbecauseitisobservableaftercontrollingforrecommenda- tionqualityandforcustomization.Thissuggeststhataperceptionoftransparencycreates anadditionaldecisionmakingbias.Twouserswiththesamepreferencesandgivenequiva- lentrecommendationsshouldhaveequivalentagreementwiththerecommendations.Yetthis modeldemonstratesthatthoseuserswhofelttherecommendationsweremoretransparent weremorelikelytofollowthem. 5.5Discussion TosummarizetheÞndingsofthisstudy: ¥Therewerenodi "erencesindecisionmakingquality(pointsearned)betweenanyof thefourconditions.TheExerciseRecommenderdidnothelpsubjectsmakebetter decisions,norwasthereanye " ectofthetypeofrecommendationdisplayed(orthe combinationofbothtypes). ¥SubjectswhocustomizedtheIDAweremorelikelytochooseoneofitssuggestions thanthosewhodidnotcustomize,evenwhencontrollingforthequalityoftherec- ommendations.Thisillustratesthatcustomizationbiasextendstosystemswithhigh controllability. ¥Thethreedi " erentIDAinterfacesledtodi " erentpatternsinagreementovertime. Non-customonlyrecommendationsledtoastationarypattern,wheresubjectsdid 138Table5.12:Summaryofresults. Hypothesis ResultH1UserswhousetheIDAwillmakebetterdecisionsthan otherswhomakethedecisionunaided. Notsupported H2Userswhoseecustomizedrecommendationswillmake betterdecisionsthanuserswhoseeonlynon-customized recommendations. Notsupported H3Userswhoseeonlycustomrecommendationswillhave moreagreementthanuserswhoseeonlynon-custom recommendations. Supported H4Userswhoseebothcustomandnon-customrecommen- dationswillmakethebestdecisionsoverall. Notsupported H5Userswhoseebothcustomandnon-customrecommen- dationswillhavelessagreementwithrecommendations thanuserswhoseeonlycustomrecommendations Notsupported H6Customizingthesystemwillmakeusersfeelthesystem ismoretransparent Supported H7ThemoretransparentusersfeelthesystemÕslogicis, themoretheywillagreewithrecommendations Supported notchangetheiraverageagreementovertime.Customonlyrecommendationsled toinitialgrowthinagreement,followedbyaslowdecline.Showingbothtypesof recommendationledsubjectstoslowlyreducetheiragreementinearlyrounds,then increasetheiragreementlateron. ¥SubjectswhousedtheNon-customonlyversionoftheIDAperceivedlesstransparency thanthosewhohadcustomizedtheIDA. ¥SubjectswhoreportedthattheybetterunderstoodthelogicbehindtheIDAÕsrecom- mendationsweremorelikelytoagreewiththerecommendations,regardlessofwhich conditiontheywerein. Thelackofanydi " erenceindecisionqualitybetweentheUnaidedandtheIDA-supported groupswassurprising,althoughitisconsistentwithmanyappliedstudiesofIDAe " ectiveness (Brightetal.,2012).Demonstratingthee ! cacyofIDAsforimprovingaggregatemeasures 139ofdecisionmakinghasproventobeachallenge,andtheresultsofthisstudyarefurther evidencethatdecisionaidswillnotautomaticallyleadtobetterdecisions. Whatisapparent,bothfromthisstudyandotherworkondecisionaids,isthatIDAs doalterthedecisionmakingprocess,eventhoughtheymaynotimproveit.Thestrong e"ectofrecommendationqualityondecisionqualityshowsthatwhengivenadecisionaid, usersdouseittoinformtheirdecisions.SubjectsinalltheIDA-supportedconditionsrelied onthedecisionaidtomakedecisions,andthereforethequalityofrecommendationswas astrongdeterminantoftheirscorefortheround.Bygivingsuggestionsforthedecision, IDAusersmustevaluatethosesuggestionsaspartofmakingtheirdecision.Evaluating thesesuggestionsmayaltertheoveralldecisionprocess.Forexample,itmayleadtousers toevaluatejustthesuggestedalternativesandnotconsiderothers,usingtheIDAasan initialÞlter.Inthiscase,suggestedalternativesmaybegivengreaterscrutinythanthose alternativeswouldreceiveinunaideddecisionmaking,andthiscouldmakeusersbetter discerningofthequalityofthosesuggestions.However,ifthesystemdoesnotrecommend thebestpossibleoptions,usersmaynotconsiderthem,andthereforeoverallthesystem wouldnotbeoptimallye " ectiveinrelationtounaideddecisionmaking.Alimitationofthis studyisthatitdidnotexploredecisionmakingstrategiesorrecommendationevaluation processindetail.Thatisanimportantdirectionforfutureresearchthatwouldbeavaluable contributiontounderstandingIDAe "ectivenessandinformingdesign.Thisstudyo "ers supportforahypothesisthatIDA-supportedandUnaideddecisionmakinginvolveseparate processes.IntroneandIandoli(2014)foundthattherewasnorelationshipbetweensubjects performanceinaIDA-supporteddecisiontaskandthesameindividualÕsperformancewhen makingthedecisionunaided.Thissuggeststhattheremaybeseparateskillsandseparate processesthatdeterminewhetherapersonwillmakegoodevaluationsofrecommendations thanwhethertheywillmakegooddecisions.ThefactthatIDA-supportedusersrelied heavilyontherecommendations,yetperformednobetterthanunaidedsubjects,further supportsthisÞnding.Inordertobuildmoree " ectiveIDAs,futureresearchisneededto 140betterunderstandtheprocessesinvolvedinevaluatingIDAoutputandhowthatÞtsinto theoveralldecision-makingprocess. Thisstudyo "ersmoreevidencethattheactofcustomizinganIDAalgorithmbiasesusers toacceptingitsrecommendations.Again,subjectswhocustomizedtheIDAweremorelikely tofollowoneofitssuggestionsthanthosewhoreceivedonlynon-customrecommendations, evenwhenaccountingforthequalityoftherecommendations.Thisisanimportantaddition totheÞndingsdiscussedinmypreviouswork(Solomon,2014)andinChapter3,asitshows thatthiscustomizationbiascanhappenwhenusingamoreresponsiveIDAthanwasused inthosestudies.ItalsogivesevidenceagainsttheIllusionofControlasamechanismof customizationbias.AstheIllusionofControlcanonlybeobservedincaseswherethereis littleactualcontrol(Ginoetal.,2011),thisstudyrefutesthattheoryasanexplanation.In fact,thisstudy,alongwiththeÞndingsofthepreviousstudies,suggestthatcustomization biasismostlikelytohappenwhentheIDAappearstobetrulyresponsivetousersÕinput. Thissuggeststhatcustomizationbiasmaybetheresultofusersfeelingthattheyhave successfullyexertedcontroloverthesystem,orthattheywereabletosuccessfullyproduce reasonable-lookingrecommendations. Thedi "erentpatternsofagreementshownbetweenconditionsovertimeillustratesan- otherdi ! cultywithdesigninge " ectiveIDAs.AscustomizationledtoaninvertedU-shape pattern,withsubjectsinitiallyincreasingtheiragreement,followedbyadeclinelateron.If customizationweretobeusedasane "orttoincreaseagreementwithrecommendations,the e " ectmaybeshort-lived.Itisunclearwhyusersofthesystemwithbothrecommendation typesshowedtheoppositepattern,wheretheyinitiallydecreasedtheiragreementbutlater begantoagreemoreoftenwiththeIDA.Thisdi " erenceisunclear,butnoteworthybecause inbothconditionssubjectscustomizedthesystem.Itsuggeststhatthedecliningpatternof agreementwithcustomizedrecommendationscanbealteredbydi "erentsystemdesigns. AnimportantÞndingfromthisstudyistheobservedrelationshipbetweentransparency andagreementwithrecommendations.Themorethatusersbelievedthattheyunderstand 141howthesystemproducesrecommendations,themorelikelytheyweretoagreewiththem. ThisisanotherexampleofadecisionmakingbiasbyIDAusers.Thisrelationshipheldtrue evenwhenaccountingforrecommendationqualityandforthecustomizabilityofthesystem (whichIhaveshowna " ectbothagreementandtransparency).Therefore,Iarguethatthis isevidenceofatransparencybias.SomeusersmayhavebeenactivelytryingÞgureout howtheIDAproducesrecommendations,whereasothersmaynothavetriedtoactivelysee intothesystemorgivenanythoughttohowrecommendationsareproduced.Someother possibilitiesarethatdi " erentusersbringdi " erentmentalmodelsandexperienceusingthese kindsofsystems,andtheymayusethatexperienceorthosementalmodelstoinferhowthe systemworks,withthisexperiencealsomakingthemmoreorlesstrustingofthesystem. Thecorrelationthatwasfoundbetweenpropensitytotrustautomateddecisionaidsand perceivedtransparencyo " erssomeevidencethatcouldsupportthisexplanation. ItisalsopossiblethatusersÕpre-dispositiontotrustingordistrustingdecisionaidsmay leadthemtoe " ectivelydecidewhethertheywillagreewiththeIDAbeforetheyreceivethe recommendation,andtheirevaluationofrecommendationscouldconsistofÞndingreasons toÒrationalizeÓthisdecision.IftheycanÞndareasontojustifytheirdecision,theymay claimthatthesystemÕsrecommendationsaremoreclear. Overall,thisÞndingisconsistentwithexistingliteratureontransparency(Sinha& Swearingen,2002;Tintarev&Mastho " ,2008;Crameretal.,2008).However,animpor- tantadditionhereisthatunlikepreviousstudies,transparencywasnotcreatedbyusing explanations.Infacttherewaslittlee " orttocreatetransparencyinthedesignoftheIDA, suggestingthattherecouldbeanimportantindividualdi "erenceinhowpeopleinterpretthe logicbehindanIDAsrecommendations.Somepeoplemayfeeltheycaneasilyunderstand recommendationswithoutexplicitexplanations,whereasothersmayneedexplanationsor otherindicatorswithinthedesign. Andunlikepreviouswork,thee " ectoftransparencyinthisstudycanbeconsideredto beabiasbecauseitwasobservedevenwhenholdingthequalityofrecommendationsand 142andtheexperimentconditionconstantinthestatisticalmodel.Althoughthisisonlyevi- denceofanassociationbetweentransparencyandagreement,thereissomeintuitiontoa hypothesisthatgreatertransparencywouldcausegreateragreementwithrecommendations. Ifusersbelievetheyunderstandwhyarecommendationwasgiven,itmayprovideconÞdence thattherecommendationisnottheoutputofarandomprocessbutthatitrepresentstrue insightintothedecision.However,alimitationofthisstudyisthatitwasnotdesigned explicitlydeterminewhethertransparencycausesagreement.Analternateexplanationmay bethatsubjectswhoagreedmoreoftenwithrecommendationsmayhavetriedtojustifythis agreementwhenpromptedabouttransparency,evenifitdidnota " ecttheirdecisionsduring theexperiment.Animportantareaforfutureresearchwillbetodeterminewhethertrans- parencycausesagreementandwhethervariationsinthedesignofanIDAa " ectagreement bywayofalteringitstransparency.Iftransparencycausesuserstofollowrecommendations, ito " ersdesignersanothertargetforengineeringagreementinIDAs. Asdiscussedinchapter3,thereisapparentsimilaritybetweenconsistencybiasand transparencybiasduetothefactthatconsistencybiasdependsonthesystemhavingsome transparency.Itispossiblethatthesebiasesarebothmanifestationsofasingleunderlying e"ect.Oneimportantconsiderationhoweveristhatinthisstudy,therewasanassoci- ationbetweentransparencyandagreement withinthenon-customonlycondition.Since consistencybiasasdescribedinchapter3requiresthatusershaveknowledgeaboutthecon- Þgurationofthesystem,theÞndingfromthepresentstudywouldappeartobedistinctfrom thate " ectbecausesubjectsinthenon-customonlyconditionhadnoinformationaboutthe conÞgurationofthesystem. 5.5.1Limitations Onelimitationofthisstudyisthatunlikemostrecommendersystems,subjectswerenot selectingitemsthatmatchtheirownpreferencesbutrathertomatchanassignedpreference proÞlethatincludedonlyasmallnumberofattributes.Therefore,thisdecisiontaskmay 143engageadi "erenttypeofdecisionmakingprocessthanwhatisdonebyusersinnaturalistic settings.Thisstudyusedadecisiontaskthatwouldnaturallyhavealotofhorizontal di" erentiationinthatdi " erentuserswouldhavewidelyvaryingpreferences.Someworkon recommendersystems(H¬aubl&Murray,2003)hasshownthatthesesystemscannotonly Þnditemsthatmatchusersexistingpreferences,butthatthesystemitselfcanpersuade userstoformnewpreferences.Thedesignofthisstudydoesnotallowforthataspectof interactionwithIDAsbecausepreferenceswerepre-determinedandÞxed. Anotherlimitationofthisstudyisthatuserswereshowntheirscoresbetweenrounds, andtheninapost-testwereaskedaboutthetransparencyofthesystem.Oneexplanation forthetransparencybiasresultisthatuserssawhowwelltheyhadperformed,andthen basedtheirreportedunderstandingofthesystemÕslogiconthescoretheyhadreceived. Inthiscase,thetransparencymeasuresmayprimarilyreßectusersÕinterpretationsoftheir performanceratherthanthetransparencyofthesystem. 144CHAPTER6 CONCLUSIONS IhaveshownthatIDAscanimpactthedecisionmakingprocessbyprovidingrecommen- dationstousersthatrequiresomeevaluation.IDAusersmustassessrecommendations anddeterminewhethertheactionstheysuggestwillmeetthegoalsoftheirdecisiontask. Givingusersgoodrecommendationsisacriticalfactortoobtainingagreementwithrecom- mendations,buttherearealsoseveralbiasesthata " ectagreementandareunrelatedto recommendationquality.Usersarebiasedtowardsagreeingwithrecommendationswhen theyhavecustomizedtheIDAslogic,evenwhentheircustomizationhashadnoactual impactontherecommendations.Usersarealsobiasedtowardsagreementwhenpriorto seeingrecommendationstheyhavehighexpectationsofthesystemÕse ! cacyatproducing recommendations.TheconsistencybetweenrecommendationsandtheIDAsconÞguration alsocreatesabias,withusersbeingmoreinclinedtoagreewithrecommendationswhenthey appeartobeconsistentwiththewaytheIDAwasconÞgured.Andthereisalsoabiasof transparency,withuserswhoreportedhigherunderstandingandclarityregardingtheway theIDAproducedrecommendationsalsobeingmorelikelytoagreewithrecommendations thanthosewhoreportedlowerunderstanding.InthissectionIwilldiscusstheimplicationsof theseÞndingsbothforIDAdesignandforfutureresearchonIDAsandcomputer-supported decisionmaking. 6.1IDA-SupportedDecisionMaking WhenIntelligentDecisionAidsprovidespeciÞcrecommendationstodecisionmakersaction andalternativesthatshouldbeconsidered,theyplaceademandonuserstoevaluatethese recommendationsbeforemakingadecision.Ihavepresentedevidencethatthisrequirement 145Table6.1:DecisionbiasesinIDA-supporteddecisionmaking. Bias Description Evidence CustomizationBias Usersagreemorewithrecommendations whentheycustomizetheIDA Table3.5,Table5.9, Figure3.6,Figure3.7, Figure5.6 ExpectationsBias Usersagreemorewithrecommendations whentheyexpectedittoworkwell beforeseeingrecommendations Table4.5 ConsistencyBias Usersagreemorewithrecommendations whentheyappeartobeconsistent withtheIDAsconÞguration Table3.9,Figure3.10 TransparencyBias Usersagreemorewithrecommendations whentheyfeelthattheIDAÕslogic ismoreclearandunderstandable Table5.11 ofevaluatingrecommendationsisanimportantpartofIDA-supporteddecisionmakingthat canbeinßuencedbythedesignofthesystemsuchthatdi "erentsystemdesignscanleadto di " erentevaluationsofthesamerecommendations.Inparticular,theprocessofgenerating recommendationsandusersÕbeliefsabouttheIDAÕse ! cacyandtheirinvolvementinthat processcanleaduserstorespondindi " erentwaystorecommendations. Thisrequirementtoevaluaterecommendationsdoesnothaveaclearplacementwithin Parasuramanetal.Õs(2000)frameworkofautomationindecisionsupportthatwasdescribed inChapter2(seeFigure ??).Evaluatingrecommendationsinvolvessomeanalysisofinfor- mationandmayÞtthere.However,whenconsideredwithinthedomainofhuman-machine cooperation,evaluationsofrecommendationsmustbeperformedbytheentity(userorma- chine)thatismostresponsiblefortheactionselectionstage.Itmakesnosense,forexample, forasystemtoproviderecommendationstoauseraboutactionstoselectifthesystemwill betheoneselectingtheaction.Indesignsthathavealowlevelofautomationattheaction selectionstage,whichistosaysystemssuchasIDAswhereahumanisprimarilyresponsible forchoosingtheaction,evaluatingrecommendationsshouldbeconsideredadistinctand criticalstageinthedecisionprocess(seeFigure6.1). Theresultsofthesestudiesprovidesomeevidencethatthisrecommendationevaluation 146Information Acquisition Information Analysis Evaluate RecommendationsAction SelectionAction ImplementationInputOutputEvaluating recommendations involves information analysis, but must be performed by the entity doing the action selectionFigure6.1:IDA-supporteddecisionmakinginvolvesevaluatingrecommendations,which doesnotÞtneatlyintoParasuramanetal.Õsframework. stageiscritical.Firstofall,inallthreeexperiments,thequalityofrecommendationswas oneofthemostimportantfactorsthata " ecteddecisionperformance.Thebettertherecom- mendationsthatsubjectsreceivedfromtheIDA,thebetterthedecisionsthattheymade. Thisshowsthattherecommendationsdoinfactmatter.Anargumentcouldbemadethat recommendationsprovidejustanadditionalpieceofinformationtoconsider,andthatusers mightlearnsomethingusefulfromanytypeofrecommendation,evenpoorones.Whilethis ispossible,theevidencefromthestudiesabovesuggeststhatusersdotendtofollowrecom- mendations,eventhough,asinthecaseoftheExerciseRecommenderstudy,theymaynot necessarilybeneÞtfromusingrecommendations. ThetransparencybiasobservedintheExerciseRecommenderstudyshowedthatusers weremorelikelytoagreewithrecommendationswhentheyhadabetterideaofhowthe systemÕslogicproducedthoserecommendations,i.e.whentheyfeltthesystemwasmore transparent.Andinthebaseballstudies,usersweremorelikelytoagreewithrecommenda- 147tionswhenpriortoactuallyseeingtherecommendations,theyfeltthatthelogicthatwould beusedwase ! caciousforproducinggoodrecommendations(expectationsbias).These Þndingssuggestthatevaluatingrecommendationsisachallengingstageandthatmanyfac- tors,fromindividualdi " erencesintrustofautomatedaidstothedesignofexplanations, customization,orotherfeaturesunrelatedtoactualrecommendationqualitycanimpacthow usersevaluateIDArecommendations.Inotherwords,whileprovidinggoodrecommenda- tionsisimportant,itmaynotalwaysbesu ! cienttoenablegooddecisionmaking.Users mustlearnhowtocalibratetheirtrustofIDArecommendationswiththeiractualreliability andlearnhowtoidentifyrecommendationquality.Animportantconclusionfrommystudies hereisthatthistaskisdi !cultandpronetobias.Characteristicsoftherecommendations, thesystem,ortheusersthemselvescanleadpeopletoperformpoorlyatidentifyingrecom- mendationquality,ultimatelyleadingtopoordecisions.Animportantareaforfuturework willbetodeveloptheoryabouthowusersevaluatethequalityofrecommendationsandhow theseevaluationscanbeengineeredthroughthedesignofthesystemsothatusersareable tomakegooddecisionsaboutwhentofollowornotfollowrecommendations. 6.2CustomizationasanIDADesign TheÞndingsfromthesestudieso " ersomepracticaldesignadviceregardingtheuseofcus- tomizationinIDAs.InChapter2,IoutlinedanargumentforusingcustomizationinIDAs thatwasbasedonthebeneÞtsofpersonalization,transparency,andtheoriesoffunction allocation.IarguedthatcustomizationcouldbeneÞtdecisionmakingbyimprovingrecom- mendations,helpingusersbuildsituationalawareness,andincreasingthetransparencyof theIDA.However,Ialsoarguedthatcustomizationmaycreatesomehazardsfordecision makers,notablythatitmaymakeusersbiasedtowardstheirrecommendations,itmayen- ableconÞrmationbiasbylettingpeopleproducerecommendationsthatsupportadecision theyhavealreadymade,orthatitmayrequiresomuchskilltoproducerecommendations 148thattheusersmostinneedofthedecisionaidmaynotpossess. BecauserecommendationqualityissocriticaltodecisionqualityinIDA-supportedde- cisionmaking,customizationcanbeverybeneÞcialtosystemsforwhichuserscanimprove recommendationsthroughcustomization.IfusersÕcustomrecommendationsarebetterthan personalizedrecommendationsachievedthroughintelligentalgorithmsorcollaborativeÞl- tering,thancustomizationwillbeneÞtdecisionmakingforthatsystem.Animportantpart ofauser-centereddesignprocessforIDAsthatareconsideringusingcustomizationisto evaluatehowwellusersperformatproducingrecommendationscomparedtothebestnon- customizablealternatives.Ifusersareunabletoproducerecommendationsofequivalent qualitytonon-customizablealternatives,thancustomizationwilllikelybeapoordesign forthatIDA.Theimportanceofrecommendationqualityinmanycaseswilloutweighany otherbeneÞtsthatmaycomefromcustomization,suchasimproveduserexperienceand useracceptanceofrecommendations,andthereforecustomizationwillbeveryharmfulto systeme " ectivenessifitleadstosuboptimalrecommendations.Likewise,thepotentialdetri- mentsofcustomizationsuchasbiaseddecisionmakingmaybetolerableifoverallusersare muchmoree " ectiveatproducingrecommendationsinacustomizablesystemthanthebest non-customizablealternative. Customizationbiasisanimportantconsiderationforsystemdesigners,andshouldbe carefullyconsideredalongsideevaluationsofrecommendationqualityaswellasevaluations oftrustcalibration.SystemsforwhichusersÕrelianceonrecommendationsisinconsistent withthequalityoftherecommendationsthatitproducesshouldcarefullyconsiderhow customizationbiasmighta " ecttheIDAÕse " ectiveness.Inasystemwhereusersoverrely onrecommendationsandarepronetomakingcommissionerrors,whichistosayproneto followingpoorrecommendations,customizationbiasshouldbeastrongconcernasitislikely toonlyexacerbatetheproblemoffollowingpoorrecommendations.However,systemsthat su " erfromanunder-reliancecouldbeneÞtfromcustomizationbias.Ifusersarelargely ignoringgoodrecommendationsandmakingerrorsofomission,thebiascreatedbygiving 149userssomecontroloverthesystemÕslogiccouldleadtobetterdecisionperformance.Itis possibleeventhatgivingonlytheperceptionofcontrolcouldbebeneÞcialinsuchcases. Adar,Tan,andTeevan(2013)describethebeneÞtsofÒbenevolentdeceptionÓinuserin- terfacesusingexamplessuchascrosswalksignalbuttonsorthermostatcontrolsthatdonot actuallydoanythingtothesystembutwhichgiveusersasenseofcontrolthatbeneÞtsthem inthecontextinwhichthesystemisbeingused.Customizationmaybeabletoprovidea similarbeneÞttousersbyincreasingbuy-intorecommendationstogoodrecommendations, evenifusersdonotchangetherecommendationsorareunabletoimprovethem.Incases wheremoreagreementisneeded,thiscouldbeneÞtIDAe "ectiveness. AnotherimportantconsiderationfordesigningcustomizableIDAsisthefeedbackthat usersreceiveabouthowtheircustomizationhasimpactedrecommendations.Inthesestud- ies,therewasnoe " ortmadetoprovideexplicitfeedbacktousersabouthowtheiractions hada " ectedthealgorithmortherecommendations.However,therewassomeevidencethat userssoughtoutthisinformationanduseditintheirdecisionmaking.Theconsistency biasdescribedinChapter3showedthatwhenthesystemappearedtogivearecommen- dationthatwasconsistentwithhowtheIDAhadbeenconÞgured,usersweremorelikely toagreewithrecommendations.Andthiswastrueforusersofboththecustomizableand non-customizableIDAs.ItsuggeststhatwhenusersbelievethataconÞgurationhasbeen successful,userswillbeinclinedtofollowrecommendations,includingpoorrecommenda- tions.WhenuserscustomizeanIDA,theyareawareoftheconÞgurationandmayseek evidenceintherecommendationsthattheconÞgurationhasbeensuccessfulorthatthe recommendationsareconsistentwiththeconÞguration.Iftheydonotappearconsistent, usersmaybelievethatthesystemdoesnotworkwellandpotentiallyignoregoodrecom- mendations.OriftherecommendationsappearconsistentwiththeconÞguration,usersmay misinterpretthesuccessofthealgorithmasagoodrecommendation.Systemdesignsshould seekoutwaystocommunicatetousershowtherecommendationstiebackspeciÞcallytothe conÞgurationssousersofcustomizableIDAscandeterminetheextentoftheirimpact. 1506.3ImplicationsforIDAsintheWild Industriesandsocietiesareadvancinge "ortstouseartiÞcialintelligenceandautomationin knowledgework(Carr,2014),andthesee " ortsmeanthatIDAswillimpactanincreasing numberofdecisions.DesigningIDAsthataree " ectiveatleadinguserstomakebetter decisionsthantheywouldunaidedshouldbetheprimarygoalforsystemdesigners.Ihave presentedseveralÞndingsinthisdissertationabouthowIDAsa " ectdecisionmakingina laboratorycontext.Anincorrectdiagnosisbyadoctor,apoorinvestmentbyabanker,ora missedsecuritythreatbyananalystcouldhavefarmoresevereconsequencesthanthefew dollarsthatthatgooddecisionswereworthtosubjectsinthesestudies.Yetifappliedtoreal worldsetting,wecanseethatthereareveryimportantconsiderationsforIDA-supported decisionmakingthatrelatetotheÞndingsIhavepresentedhere. Forexample,theclinicalIDADxPlain(Barnettetal.,1987)assistscliniciansinmaking diagnosesbyextractinginformationfromapatientÕshealthrecordandusinganextensive databaseandartiÞcialintelligencetorecommendpossiblediagnoses.Itallowsuserstocus- tomizethealgorithmbyemphasizingcertainaspectsofthehealthrecord,similartohowthe customizableIDAsinthisdissertationallowedforemphasizingcertaincategoriesofbaseball statisticsorcertainattributesofexerciseactivities.Ifthisa "ordanceofcustomizationcre- atesabiastowardsfollowingitsrecommendations,thanpatientscouldbeadverselya "ectedbyanypoorrecommendations.ErrorsinthedatabaseortechnicallimitationsoftheartiÞcial intelligencecouldleadtopoordiagnosesthatarefollowedasaresultofcustomizationbias. Andsinceevaluatingtheaccuracyofmedicaldiagnosesisslow,di ! cultandexpensive,it couldbedi ! culttoeverattributepoorhealthoutcomestothedesignofDxPlainifinfact suchproblemsexisted. Ine-commerce,givingusersgreatercontroloverthealgorithmsthatproviderecommen- dationscouldincreasesalesbyelicitingcustomizationbias.Ifusersfeeltheyhavegreater controloverhowasystemlikeAmazonorNetßixprovidesrecommendations,itcouldlead 151userstotrustthoserecommendationmorefrequentlyandpurchasemorerecommendeditems. Theseresultsmayhavesomeapplicationtoothertypesofintelligentsystemsbesides IDAs.SocialnetworkingsiteslikeFacebookusealgorithmstocontrolandÞlterwhatcontent usersseefromwithintheirnetwork,andusershavewidelyvaryingunderstandingsofhowthis algorithmworksandtheirownroleininßuencingit(Rader&Gray,2015).Facebookrecently madechangestothenewsfeedinterfacetoallowuserstocustomizewhatcontenttheysee, whichFacebookstateswasintendedtobetterpersonalizethenewfeed 1.Theresultsofthis dissertationsuggestthataslongasusersdoagoodjobofpersonalizingtheirnewsfeedsfor themselves,Facebookmayseeanincreaseinengagementwithitscontentthatexceedseven anyincreasethatwouldfollowmorepersonalizedcontent.InthestudiesIhavepresented here,recommendationswerepersonalizedequallyaswellforusersofbothcustomizableand non-customizablesystems,yetusersofthecustomizablesystemfolloweditsrecommendations morefrequentlyandclosely.Ifthise " ectextendstoconsumptionofcontentonFacebook, itwouldfollowthatuserswillconsumemorecontentfromtheirnewsfeedbecausetheyhave customizedthealgorithm.Systemsthatenableuserstocollectandanalyzeextensivedata aboutthemselveslikeÞtnesstrackerscouldallowuserstoconÞgurehowdataarecollected andanalyzed.Customizationbiasmightleaduserstobelievethedeviceismoreaccurate thanitreallyisbecauseoftheircustomization.PerceivedaccuracyinquantiÞedselfsystems orconsumptionofcontentinsocialmediamaybedi "erentfromagreementwithexplicit decisionrecommendationsprovidedbyIDAs.Butiftheinterfacesforinteractionwiththe underlyinglogicoralgorithmsaresimilar,itisreasonabletosuspectthatothertypesof intelligentsystemscanbea " ectedbythebiasesIhaveobservedinthesestudies. TheimportanceofusersÕbeliefsaboutanIDAÕse ! cacypriortousingthesystemhas implicationsformanytypesofIDAs.Ifclinicians,forexample,arenotwillingtofollowa goodrecommendationbasedonabeliefthatthesystemthatproduceditusespoorlogicor haserroneousinformation,thanthesystemmaybeharmingclinicaldecisionmakingand 1http://newsroom.fb.com/news/2015/07/updated-controls-for-news-feed/ 152harmingpatients.Similarly,investorsusinganIDAmaybepersuadedbyrecommendations tomakeaninvestmentbecausetheybelieveintheprocessthatthesystemused,suchasa particulartypeofstatisticalmodelthattheinvestorbelievesispowerful.Thisdissertation didnotseektounderstandclearlyhowusersformtheire ! cacybeliefs,andratherfocused ontheconsequencesofthosebeliefsonagreementwithrecommendationsandondecision making.Butitisclearthattheseconsequencesaremeaningfulandthereforeanimportant directionforfutureresearchwillbetounderstandhowuserscometoforme !cacybeliefs andhowappropriatee !cacybeliefsÐonesthatareconsistentwiththeactuale !cacyofthe IDAÐcanbeengineered. Animportantlimitationofofthestudiesinthisdissertationisthatalluserswereinex- periencedwiththeIDAtheywereusing.Theseresultsmayonlyapplytonewusersandas theygainexperience,potentiallyoveryearsofusingthesystem,thebiasesIhaveobserved heremaydisappearorchange. TheseÞndingspresentanotherpotentialchallengeforIDAsinapplication.Itisnotclear whethertheskillsthatmakeforagooddecisionmakerinagivencontext,suchasdomain knowledge,experience,andsounddecisionprocesses,willnecessarilytranslateintoskillin customizinganIDAwellorintointerpretingrecommendations.Itappearsthatsomedegree ofliteracywithIDAsmayberequired,andthismayplaceanundesireableburdenonusers todevelopthisliteracy.Forexample,theskillsandcapabilitiesrequiredtobecomeagood doctormaynotbethesamecapabilitiesthatwillenableapersontoe " ectivelyuseaclinical IDA.Anddevelopingthisliteracymightrequiretimeande " ortthatmightotherwisebe spentsharpeningtheirskillsintheirpractice.Thisisanotherimportantconsiderationfor futureresearchthatfollowsfrommyworkinthisdissertation.Howdi ! cultisitforpeople tolearntocontrolcomplexalgorithmsgivenana " ordanceofcustomization,andwhatare theconsequencesinpracticeifsubstantialliteracyisrequiredinorderforcustomizableIDAs tobee " ective? 1536.4Conclusion IntelligentDecisionAidshavetremendouspotentialtoimprovedecisionoutcomesinmany di" erentcontexts,buttheyalsopresentdi !cultsocio-technicalchallengesasusersmust learntointeracte " ectivelywithpowerfulbutoftencomplexandopaquetechnologies.Eval- uatingtherecommendationsthatareproducedcreatesanewtypeofuncertaintyfordecision makers,andIhavefoundthatusersoftendonotmakecorrectevaluationsofIDArecommen- dationsandfrequentlymakebiaseddecisionstofollowornotfollowrecommendations.The designoftheIDA,andparticularlytheuseofcustomizationtoa " orduserincreasedcontrol overthesecomplextechnologies,caninßuencehowusersnavigatethischallenge.Ibelieve thatIDAdesignsmustaccountforthewaythatinteractionwiththesystema " ectsdecisions andseekdesignsthathelpuserslearnhowtoidentifyrecommendationqualityandmake gooddecisionsaboutfollowinggoodrecommendationsandignoringpoorrecommendations. 154APPENDICES 155APPENDIXA TRUSTPROPENSITYSCALE Propensity to Trust Automation Scale !!Scale adapted from Merritt et al. (2012) !Items responses are on a 5 point scale. Strongly Disagree Ñ Disagree Ñ Neither Agree nor Disagree Ñ Agree Ñ Strongly Agree !1.I usually trust automated decision aids until there is a reason not to. 2.For the most part I distrust automated decision aids. 3.In general I rely on automated decision aids to assist me when they are available. 4.My tendency to trust automation decision aids is high. 5.It is easy for me to trust automated decision aids to do their job. 6.I am likely to trust an automated decision aid even when I have little knowledge about it. 156APPENDIXB BASEBALLKNOWLEDGESCREENINGQUIZ 1. How many innings are there in a typical Major League Baseball game?a. 7b. 3c. 9 d. 14 2. Which of the following best describes a designated hitter? a. A player who bats in place of his team's pitcher b. A player who is substituted into the lineup when a team really needs a hit c. The player who has the best batting average on the team. d. A player who bats in place of any other outfield player on his team.3. Which of the following pitchers has a better Earned Run Average (ERA)? a. Pitcher A 3.13 b. Pitcher B 6.49 4. Which of the following best describes a triple in baseball?a. When a player gets three hits in a gameb. When a player gets a hit and makes it safely to third basec. When a player gets three hits in one at batd. When a pitcher throws three strikes to the same batter5. Which of the following best describes a walk in baseball?a. When a pitcher is replaced and walks to the dugoutb. When a batter must walk back to home plate because his hit has gone foulc. When a batter can round the bases at a slow pace because he has hit the ball over the fence.d. When a pitcher throws four balls to a batter so he can walk to first base157APPENDIXC CATEGORYRATINGSSURVEY Category Rating Survey !Subjects answered this question about the 27 categories listed below: !How important do you believe the following statistical categories to be in helping a computer predict the outcome of baseball games? !Not at all important Ñ Very Unimportant Ñ Neither important nor unimportant Ñ Very important Ñ Extremely important !Team stats Winning Percentages !Team Hitting Batting Average Walks Home Runs Hits Triples Doubles On Base Percentage Slugging Percentage Runs Stolen Bases !Team Pitching Strikeouts Home Runs Earned Run Average Walks !Starting Pitcher Stats Innings Pitched season-to-date Earned Run Average Strikeouts Wins Hits Home Runs Losses 158APPENDIXD EXERCISERECOMMENDERSEEDDATASURVEYEXAMPLE 6/15/15, 1:23 PM Qualtrics Survey Software Page 10 of 37 https://msuccas.us2.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=X0PmbNLACyPXIQb9W1s7K !"#$%&'"()&* !"#$%#&$%%#%%&'(#)(#*&)(#&+,"",'-./&$0)-1-)-#%&2*,1-3#&$&(-/(&,*&",'&3#/*## ,+&!"#$% &'"()&+,(&-"%$&./%$,0/1 &)*$-.-./4&5(-%&6#$.%&)(#&$0)-1-)7&2*,1-3#%#*0-%# ),&)(#&9#/%:&;<3,6#.:&$.3&9,'#*&=$0>4&?+&7,@&$*#&@.+$6-"-$*&'-)(&$.&$0)-1-)7: 0(,,%#& 2345 &&&A,&9,'#* =,37BC,*# D)*#./)( 5*$-.-./ EEEEEEEEF-/( 9,'#*=,37BC,*# D)*#./)( 5*$-.-./ AB;C$"-%)(#.-0% &&5#..-% &&D>--./ &&=,8-./ &&G(-)#'$)#* H$+)-./ &&H,'-./&I$0(-.# &&G*#%)"-./ &&J""-2)-0$" I$0(-.#&KL&6-.4 &&M,//-./&NO&6-.4 &&5#..-% &&M,//-./&P&(*4 &&159APPENDIXE EXERCISEACTIVITIESANDLATENTFACTORSCORES ActivityWorkoutIntensityWorkoutAtmosphereMuscleGroup 1Basketball1 .4690 .352-0 .1252BenchPress0 .889-0 .5262 .3243BicepCurls-0 .701-1 .2502 .2464Biking1Hr0 .4060 .438-1 .3755Bowling-2 .7521 .1290 .7066Boxing1 .3240 .0721 .3837Calisthenics0 .800-0 .804-1 .1638Canoeing-0 .0740 .6200 .8609Curling-0 .990-1 .0430 .87110Deadlift0 .402-0 .846-1 .54111Diving-1 .3690 .1420 .20412DumbellFly0 .418-1 .0401 .46913EllipticalMachine0 .283-1 .085-0 .77614Golf-1 .3680 .011-0 .26515Hiking1 .0570 .462-0 .44116InlineSkating0 .1911 .157-1 .87517Jogging1Hr1 .082-1 .003-1 .19918Jogging30Min0 .114-1 .325-1 .79319Jumprope1 .346-1 .4060 .111TableE.1Exerciseratingsfactorsscores 160TableE.1(contÕd) 20Lunges-0 .209-1 .781-1 .33721MedicineBall-0 .708-0 .8190 .30122MountainClimbing0 .1411 .7751 .37023PaddleBoarding0 .0860 .2121 .36724Pilates-1 .0400 .3230 .33425Planks-0 .379-1 .4961 .02426Plyometrics0 .979-0 .5891 .49127Pushups1 .038-1 .1701 .89728RockClimbing1 .4850 .9670 .87129RowingMachine0 .330-0 .8830 .83130ScubaDiving-0 .6952 .0380 .53031ShoulderPress-1 .644-0 .6181 .45432Skiing0 .9540 .7930 .18533Snorkeling-1 .3541 .937-1 .08334Soccer1 .0561 .274-1 .56435SquareDancing-0 .8041 .294-2 .10636Squats0 .513-1 .651-1 .29337Stairs30Min1 .396-2 .013-1 .95338Stretching-3 .328-1 .691-0 .53439SurÞng0 .4691 .746-0 .44640Swimming1 .0220 .5420 .42541TableTennis-1 .6590 .851-0 .11342Tennis0 .3271 .028-0 .29243UltimateFrisbee0 .0970 .485-0 .02744Volleyball0 .5471 .974-0 .324161TableE.1(contÕd) 45Walking1Hr-2 .2410 .998-1 .41546Wallsits0 .052-1 .532-0 .98547WhitewaterRafting0 .4771 .5551 .24648Wrestling1 .006-0 .0860 .72449Yoga-1 .085-1 .1400 .11550Zumba0 .6471 .624-0 .314TableE.1:Exerciseratingsfactorscores. 162APPENDIXF EXERCISERECOMMENDERSTUDYINSTRUCTIONS 163FigureF.1:Exerciserecommenderinstructions Click Here to Return Thank you for participating in the Exercise Decision Study. Read these instructions carefully, as you will be required to pass a quiz on them in order to continue to the study task. In this study, you will select an exercise activity that best matches a hypothetical scenario. You will repeat this task for 10 rounds, in each round using a different scenario. You will earn points for your decisions. The more points you earn, the larger your bonus payment will be. Each scenario lists the number of points you will earn for choosing an activity that meets certain criteria. Each scenario has slightly different criteria, and different criteria will earn a different number of points. These preferences will change each round. Here are the criteria that are used in the scenarios: Attribute Description Cardio High Cardio activities demand a lot of oxygen and make you breathe hard. LowCardio Activities do not require lots of additional oxygen. Group Group Activities are best done with more than one person. Individual activities can be done alone easily. Resources Resource-intensive activities require money, equipment, or a lot of space or take a long time. Convenient activities can be done at home or a park and don't require a gym, expensive equipment or a lot of time or space. Difficulty Challenging activities require a lot skill, experience, or training. Not challenging activities can be completed by a novice. FunFun activities make you forget that you are exercising. Boring activities are not engaging but may be more efficient and not distracting. Here is an example scenario. If you had this scenario, you would want an exercise that is: High Cardio (earns 25 points) Group activity (earns 25 points) Convenient (earns 12 points) Challenging (earns 10 points) Fun (earns 5 points) All the activities that you can choose from have been rated on each of the attributes. For example, Volleyball has been rated as being Low Cardio, a Group Activity, Resource-intensive, Challenging, and Fun. If you had the example scenario and you chose Volleyball, you would earn 40 points (25 for choosing a Group activity, 10 for choosing a Challenging activity, and 5 for choosing a Fun activity). You would earn no points from the Cardio and Resources attributes because Volleyball does not match your preference for those attributes. In the task, you will not be given any information about how different activities have been rated. You must use your own judgment to choose the activity that will earn the most points. After you make your choice, you will be shown your score before moving on to the next scenario. To help you make your decision you will use an experimental tool called the Exercise Recommender for recommending exercise activities. The purpose of this research is to evaluate how well the tool works at helping users choose exercise activities that they will like. 164FigureF.1(contÕd) This system will provide some recommendations for exercises that you can select. You do not have to choose one of the activities. You are free to choose any activity even if the Exercise Recommender has not suggested it. You will be able to adjust the settings of the Exercise Recommender to help its algorithm suggest activities for you. You can adjust three settings: Workout Intensity is how much will the activity make you work hard, breathe hard and sweat. Workout Atmosphere looks for either Fun social recreation activities or solitary workouts depending on your setting Muscle Group looks for activities that focus more on upper body muscles or an lower body and core muscles. The system will prioritize each setting category in the order they are listed. If Muscle Group is listed at number 1, the Exercise Recommender will try hardest suggest activities that match your specification for Muscle Group. You can adjust the priority order by clicking the arrow buttons to move the tiles up and down, or by dragging tiles up and down. 165FigureF.1(contÕd) The system will provide two sets of recommendations. One set is based on your configured settings and the priority order you have specified. These suggestions apear on top. The second set of recommendations is based on a different experimental algorithm. This algorithm does not use your settings to produce its suggestions. Both of the algorithms can produce good recommendations, but sometimes they might produce different results. You should evaluate and consider all recommendations when making your decision. Again, you do not have to choose an activity that has been suggested by the Exercise Recommender. Important Points: Each round, after looking over your preferences, click the link that says "Load Exercise Recommender" to open up the system to help you make your decision. You must load the Exercise Recommender and generate recommendations before you can select an activity. The Exercise Recommender does not have any information about your points. Its suggestions are based entirely on the settings you enter or on an intelligent algorithm that does not know either your settings or your point preferences. You can only generate recommendations one time per round. Be sure your settings are correct when you click the "Generate Recommendations" button. Reminder- You are free to choose an activity that has not been suggested. Your objective is to choose the activity that you believe will score the most possible points, regardless of what the system suggests. The system works well, but it may not always suggest the best possible activity. Be sure you fully understand the instructions. Before beginning the task, you must pass a quiz on these instructions Click here to continue to the quiz If you have already passed the quiz, click here to return to the game 166APPENDIXG EXERCISERECOMMENDERINTERFACE FigureG.1:Exerciserecommenderinterface Non-custom only interface !167FigureG.1(contÕd). Custom only interface !168FigureG.1(contÕd). Both algorithms interface 169FigureG.1(contÕd). Experiment Interface 170APPENDIXH POST-TESTQUESTIONNAIREFOREXERCISERECOMMENDER STUDY FigureH.1:Exerciserecommenderpost-testsurvey. 7/30/15, 12:40 AMQualtrics Survey Software Page 1 of 7 https://msuccas.us2.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=5Gb2DNrVs0nsAbr0DQkklQ Male Female Under 13 13-17 18-25 26-34 35-54 55-64 DemographicsBrowser Meta Info This question will not be displayed to the recipient. Browser: Safari Version: 7.1.5Operating System: Macintosh Screen Resolution: 1440x900Flash Version: 18.0.0Java Support: 1User Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit/600.5.17 (KHTML, like Gecko) Version/7.1.5 Safari/537.85.14 GenderHow old are you? 171FigureH.1(contÕd). 7/30/15, 12:40 AMQualtrics Survey Software Page 2 of 7 https://msuccas.us2.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=5Gb2DNrVs0nsAbr0DQkklQ 65 or over Fitness Experience Please indicate whether the following activities are High Cardio or Low Cardio in your opinion. Low Cardio High Cardio Paddle Boarding Swimming Please indicate whether the following activities are Individual Activities or Group Activities in your opinion. Individual Group Walking for 1 hour Lunges Please indicate whether the following activities are Challenging or Not Challenging in your opinion. Not ChallengingChallengingScuba Diving Stretching Please indicate whether the following activities are Convenient or Resource Intensive in your opinion. Convenient Resource Intensive Squats Pushups 172FigureH.1(contÕd). 7/30/15, 12:40 AMQualtrics Survey Software Page 3 of 7 https://msuccas.us2.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=5Gb2DNrVs0nsAbr0DQkklQ Far more knowledgable Somewhat more knowledgable About average Somewhat less knowledgable Far less knowledgable I used the Exercise Recommender to help me make my decision I could configure the Exercise Recommender to adjust the recommendations it gave me The Exercise Recommender gave me some recommendations that I had no control over The Exercise Recommender gave me only recommendations that I had no control over I do not agree with any of these statements Please indicate whether the following activities are Boring or Fun in your opinion. Boring FunDeadlift Whitewater Rafting What is your level of knowledge about fitness and exercise compared to the general population?Manipulation Checks Check all statements below that you agree with In the last round of the task, you selected ${e://Field/decision}. Please explain why you chose ${e://Field/decision} in this round. Your answer must have at least 100 characters. 173FigureH.1(contÕd). 7/30/15, 12:40 AMQualtrics Survey Software Page 4 of 7 https://msuccas.us2.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=5Gb2DNrVs0nsAbr0DQkklQ As a reminder, in that round you had the following preferences: ${e://Field/prefs} IDA questions Overall, the Exercise Recommender was ... Not at all useful Extremely useful Inaccurate Accurate Difficult to use Easy to use Not at all configurable Highly Configurable When the Exercise Recommender made suggestions ... Strongly Disagree Disagree NeitherAgree nor Disagree Agree Strongly Agree I understood why the suggestions were made I thought thesuggestions made sense the logic behind the recommendations was clear When making my decision about which activity to choose, I ... 174FigureH.1(contÕd). 7/30/15, 12:40 AMQualtrics Survey Software Page 5 of 7 https://msuccas.us2.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=5Gb2DNrVs0nsAbr0DQkklQ Strongly Disagree Disagree NeitherAgree nor Disagree Agree Strongly Agree Looked at the Exercise Recommender's suggestions and considered them Trusted the suggestions made by the Exercise Recommender Ignored the Exercise Recommender's suggestions Looked at the suggestions that I had configured by adjusting the settings Looked at the suggestions that were made by the Intelligent Algorithm (not affected by your settings) When making my decision about which activity to choose, I ... Strongly Disagree Disagree NeitherAgree nor Disagree Agree Strongly Agree Looked at the Exercise Recommender's suggestions and considered them Trusted the suggestions made by the Exercise Recommender Ignored the Exercise 175FigureH.1(contÕd). 7/30/15, 12:40 AMQualtrics Survey Software Page 6 of 7 https://msuccas.us2.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=5Gb2DNrVs0nsAbr0DQkklQ Recommender's suggestions Looked at the suggestions that I had configured by adjusting the settings When making my decision about which activity to choose, I ... Strongly Disagree Disagree NeitherAgree nor Disagree Agree Strongly Agree Looked at the Exercise Recommender's suggestions and considered them Trusted the suggestions made by the Exercise Recommender Ignored the Exercise Recommender's suggestions Looked at the suggestions that were made by the Intelligent Algorithm (not affected by your settings) Trust Propensity In the following questions, the term automated decision aids refers to any kind computer system that makes recommendations about making a decision or taking an action. Examples of such systems are: 1. Recommendations listed on e-commerce sites such as Amazon suggesting products you might be interested in 2. Alerts on a car dashboard telling the driver that the fuel is low or maintanence is required 176FigureH.1(contÕd). 7/30/15, 12:40 AMQualtrics Survey Software Page 7 of 7 https://msuccas.us2.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=5Gb2DNrVs0nsAbr0DQkklQ Survey Powered By Qualtrics 3. Suggestions about movies or videos to watch on sites like Netflix or YouTube 4. Suggestions about people to connect with on social networking sites like Facebook or LinkedIn 5. Automated recommendations made on an online stock trading website about which stocks or investments to buy Strongly Disagree Disagree NeitherAgree nor Disagree Agree Strongly Agree I usually trust automated decision aids until there is a reason not to For the most part I distrust automated decision aids In general I rely on automated decision aids to assist me when they are available. My tendency to trust automated decision aids is high It is easy for me to trust automated decision aids to do their job I am likely to trust an automated decision aid even when I have little knowledge about it 177REFERENCES 178REFERENCES Adar,E.,Tan,D.S.,&Teevan,J.(2013).Benevolentdeceptioninhumancomputer interaction.In Proceedingsofthesigchiconferenceonhumanfactorsincomputing systems(pp.1863Ð1872). Aksoy,L.,Bloom,P.N.,Lurie,N.H.,&Cooil,B.(2006).Shouldrecommendationagents thinklikepeople? JournalofServiceResearch ,8(4),297Ð315. Alberdi,E.,Povyakalo,A.,Strigini,L.,&Ayton,P.(2004).E " ectsof incorrectcomputer-aideddetection(CAD)outputonhumandecision-making inmammography. AcademicRadiology ,11(8),909Ð918.Retrievedfrom http://www.ncbi.nlm.nih.gov/pubmed/15354301 Al-Natour,S.,Benbasat,I.,&Cenfetelli,R.T.(2008).Thee " ectsofprocessandoutcome similarityonusersÕevaluationsofdecisionaids*. DecisionSciences ,39(2),175Ð211. Amento,B.,Terveen,L.,Hill,W.,Hix,D.,&Schulman,R.(2003).Experimentsinso- cialdatamining:Thetopicshopsystem. ACMTransactionsonComputer-Human Interaction(TOCHI) ,10(1),54Ð85. Andreoni,J.(1988).Whyfreeride?:Strategiesandlearninginpublicgoodsex- periments. JournalofPublicEconomics ,37(3),291-304.Retrievedfrom http://www.sciencedirect.com/science/article/pii/0047272788900436 doi:10.1016/0047-2727(88)90043-6 Angrist,J.D.,&Pischke,J.-S.(2008). Mostlyharmlesseconometrics:AnempiricistÕs companion .Princetonuniversitypress. Barnett,G.O.,Cimino,J.J.,Hupp,J.A.,&Ho " er,E.P.(1987).Dxplain:anevolving diagnosticdecision-supportsystem. Jama ,258(1),67Ð74. Berner,E.S.(2007). Clinicaldecisionsupportsystems:theoryandpractice .SpringerScience &BusinessMedia. Berner,E.S.,Maisiak,R.S.,Heudebert,G.R.,&YoungJr,K.R.(2003).Clinician performanceandprominenceofdiagnosesdisplayedbyaclinicaldiagnosticdecision supportsystem.In Amiaannualsymposiumproceedings (Vol.2003,p.76). Blom,J.(2000).Personalization:ataxonomy.In ChiÕ00extendedabstractsonhuman factorsincomputingsystems (pp.313Ð314). 179Bostandjiev,S.,OÕDonovan,J.,&H¬ollerer,T.(2012).Tasteweights:avisualinteractivehy- bridrecommendersystem.In Proceedingsofthesixthacmconferenceonrecommender systems(pp.35Ð42). Bostandjiev,S.,OÕDonovan,J.,&H¬ollerer,T.(2013).Linkedvis:exploringsocialand semanticcareerrecommendations.In Proceedingsofthe2013internationalconference onintelligentuserinterfaces (pp.107Ð116). Bright,T.J.,Wong,A.,Dhurjati,R.,Bristow,E.,Bastian,L.,Coeytaux, R.R.,...Lobach,D.(2012).E "ectofclinicaldecision-supportsys- tems:Asystematicreview. AnnalsofInternalMedicine .Retrievedfrom http://www.ncbi.nlm.nih.gov/pubmed/22529043 doi:10.1059/0003-4819-157-1- 201207030-00450Burkolter,D.,Weyers,B.,Kluge,A.,&Luther,W.(2014).Customizationofuserinterfaces toreduceerrorsandenhanceuseracceptance. Appliedergonomics ,45(2),346Ð353. Carr,N.(2014). Theglasscage:Automationandus .NewYork:W.W.Nortonand Company. Chen,L.,&Pu,P.(2009).Interactiondesignguidelinesoncritiquing-basedrecommender systems. UserModelingandUser-AdaptedInteraction ,19(3),167Ð206. Chen,L.,&Pu,P.(2012).Critiquing-basedrecommenders:surveyandemergingtrends. UserModelingandUser-AdaptedInteraction ,22(1-2),125Ð150. Choe,E.K.,Lee,N.B.,Lee,B.,Pratt,W.,&Kientz,J.A.(2014).UnderstandingquantiÞed- selfersÕpracticesincollectingandexploringpersonaldata.In Proceedingsofthe32nd annualacmconferenceonhumanfactorsincomputingsystems (pp.1143Ð1152). Clare,A.S.,Cummings,M.L.,How,J.P.,Whitten,A.K.,&Toupet,O.(2012).Oper- atorobjectfunctionguidanceforareal-timeunmannedvehicleschedulingalgorithm. JournalofAerospaceComputing,Information,andCommunication ,9(4),161Ð173. Coiera,E.,Westbrook,J.,&Wyatt,J.(2006).Thesafetyandqualityofdecisionsupport systems. MethodsofInformationinMedicine ,45(1),S20Ð5.doi:10.1.1.111.9326 Cramer,H.,Evers,V.,Ramlal,S.,VanSomeren,M.,Rutledge,L.,Stash,N.,...Wielinga, B.(2008).Thee "ectsoftransparencyontrustinandacceptanceofacontent-based artrecommender. UserModelingandUser-AdaptedInteraction ,18(5),455Ð496. Cremer,H.,&Thisse,J.-F.(1991).Locationmodelsofhorizontaldi " erentiation:aspecial caseofverticaldi "erentiationmodels. TheJournalofIndustrialEconomics ,383Ð390. 180Cummings,M.L.(2004).Automationbiasinintelligenttimecriticaldecisionsupport systems.In Aiaa1stintelligentsystemstechnicalconference (Vol.2,pp.557Ð562). Cummings,M.L.,&Bruni,S.(2009).CollaborativehumanÐautomationdecisionmaking. InSpringerhandbookofautomation (pp.437Ð447).Springer. deWinter,J.,&Dodou,D.(2014).WhytheÞttslisthaspersistedthroughoutthehistory offunctionallocation. Cognition,Technology&Work ,1Ð11. DiStefano,C.,Zhu,M.,&Mindrila,D.(2009).Understandingandusingfactorscores:Con- siderationsfortheappliedresearcher. PracticalAssessment,Research&Evaluation ,14(20),1Ð11. Dzindolet,M.T.,Peterson,S.A.,Pomranky,R.A.,Pierce,L.G.,&Beck,H.P.(2003). Theroleoftrustinautomationreliance. InternationalJournalofHuman-Computer Studies,58(6),697Ð718. Dzindolet,M.T.,Pierce,L.G.,Beck,H.P.,&Dawe,L.A.(2002).Theperceivedutilityof humanandautomatedaidsinavisualdetectiontask. HumanFactors:TheJournal oftheHumanFactorsandErgonomicsSociety ,44(1),79Ð94. Ehrlich,K.,Kirk,S.E.,Patterson,J.,Rasmussen,J.C.,Ross,S.I.,&Gruen,D.M. (2011,February).Takingadvicefromintelligentsystems:Thedoubleedged swordofexplanations.In Proceedingsofthe15thinternationalconferenceonin- telligentuserinterfaces-iuiÕ11 (p.125).NewYork,NewYork,USA:ACM Press.Retrievedfrom http://dl.acm.org/citation.cfm?id=1943403.1943424 doi:10.1145/1943403.1943424Ekstrand,M.D.,Riedl,J.T.,&Konstan,J.A.(2011).CollaborativeÞlteringrecommender systems. FoundationsandTrendstextregisteredinHuman-ComputerInteraction ,4,175-243.Fitts,P.M.(1951).Humanengineeringforane " ectiveair-navigationandtra ! c-control system. Gino,F.,Sharek,Z.,&Moore,D.A.(2011).Keepingtheillusionofcontrolundercon- trol:Ceilings,ßoors,andimperfectcalibration. OrganizationalBehaviorandHuman DecisionProcesses ,114(2),104Ð114. Glaser,W.T.,Westergren,T.B.,Stearns,J.P.,&Kraft,J.M.(2006,February21). Consumeritemmatchingmethodandsystem. GooglePatents.(USPatent7,003,515) Goddard,K.,Roudsari,A.,&Wyatt,J.C.(2012).Automationbias:asystematicre- viewoffrequency,e " ectmediators,andmitigators. JournaloftheAmericanMedical 181InformaticsAssociation ,19(1),121Ð127. Golfarelli,M.,Rizzi,S.,&Proli,A.(2006).Designingwhat-ifanalysis:towardsamethod- ology.In Proceedingsofthe9thacminternationalworkshopondatawarehousingand olap(pp.51Ð58). Guerlain,S.,Brown,D.E.,&Mastrangelo,C.(2000).Intelligentdecisionsupportsystems. InSystems,man,andcybernetics,2000ieeeinternationalconferenceon (Vol.3,pp. 1934Ð1938).Han,S.,He,D.,Jiang,J.,&Yue,Z.(2013).Supportingexploratorypeoplesearch:astudy offactortransparencyandusercontrol.In Proceedingsofthe22ndacminternational conferenceonconferenceoninformation&knowledgemanagement (pp.449Ð458). H¬aubl,G.,&Murray,K.B.(2003).Preferenceconstructionandpersistenceindigital marketplaces:Theroleofelectronicrecommendationagents. JournalofConsumer Psychology ,13(1-2),75Ð91. H¬aubl,G.,&Trifts,V.(2000).Consumerdecisionmakinginonlineshoppingenvironments: Thee "ectsofinteractivedecisionaids. Marketingscience ,19(1),4Ð21. Herlocker,J.L.,Konstan,J.A.,&Riedl,J.(2000).ExplainingcollaborativeÞltering recommendations.In Proceedingsofthe2000acmconferenceoncomputersupported cooperativework (pp.241Ð250). Herlocker,J.L.,Konstan,J.A.,Terveen,L.G.,&Riedl,J.T.(2004).Evaluatingcollab- orativeÞlteringrecommendersystems. ACMTransactionsonInformationSystems ,22(1),5Ð53.doi:10.1145/963770.963772 Hijikata,Y.,Kai,Y.,&Nishida,S.(2012).Therelationbetweenuserintervention andusersatisfactionforinformationrecommendation.In SACÕ12Proceedingsof the27thAnnualACMSymposiumonAppliedComputing (pp.2002Ð2007).doi: 10.1145/2231936.2232109Hill,T.,Marquez,L.,OÕConnor,M.,&Remus,W.(1994).ArtiÞcialneuralnetworkmodels forforecastinganddecisionmaking. InternationalJournalofForecasting ,10(1),5Ð15. Ho " man,R.R.,Johnson,M.,Bradshaw,J.M.,&Underbrink,A.(2013).Trustinautoma- tion.IntelligentSystems,IEEE ,28(1),84Ð88. Hostler,R.E.,Yoon,V.Y.,&Guimaraes,T.(2005).Assessingtheimpactofinternetagent onendusersÕperformance. DecisionSupportSystems ,41(1),313Ð323. Imai,K.,Keele,L.,&Tingley,D.(2010).Ageneralapproachtocausalmediationanalysis. 182Psychologicalmethods ,15(4),309. Introne,J.,&Iandoli,L.(2014).Improvingdecision-makingperformancethroughargu- mentation:Anargument-baseddecisionsupportsystemtocomputewithevidence. DecisionSupportSystems ,64,79Ð89. Kahai,S.S.,Solieri,S.A.,&Felo,A.J.(1998).Activeinvolvement,familiarity,framing,and theillusionofcontrolduringdecisionsupportsystemuse. DecisionSupportSystems ,23(2),133Ð148. Kay,J.,&Kummerfeld,B.(2012).Creatingpersonalizedsystemsthatpeoplecanscrutinize andcontrol:Drivers,principlesandexperience. ACMTransactionsonInteractive IntelligentSystems(TiiS) ,2(4),24. Klein,G.(2008).Naturalisticdecisionmaking. HumanFactors:TheJournaloftheHuman FactorsandErgonomicsSociety ,50(3),456Ð460.doi:10.1518/001872008X288385 Knijnenburg,B.P.,Bostandjiev,S.,OÕDonovan,J.,&Kobsa,A.(2012).Inspectability andcontrolinsocialrecommenders.In Proceedingsofthesixthacmconferenceon recommendersystems (pp.43Ð50). Knijnenburg,B.P.,Willemsen,M.C.,&Kobsa,A.(2011).Apragmaticprocedure tosupporttheuser-centricevaluationofrecommendersystems.In Proceedingsof theÞfthacmconferenceonrecommendersystems (pp.321Ð324).NewYork,NY, USA:ACM.Retrievedfrom http://doi.acm.org/10.1145/2043932.2043993 doi:10.1145/2043932.2043993Koren,Y.,Bell,R.,&Volinsky,C.(2009).Matrixfactorizationtechniquesforrecommender systems. Computer(8),30Ð37. Kottemann,J.E.,Boyer-Wright,K.M.,Kincaid,J.F.,&Davis,F.D.(2009).Understanding decision-supporte " ectiveness:Acomputersimulationapproach. Systems,Manand Cybernetics,PartA:SystemsandHumans,IEEETransactionson ,39(1),57Ð65. Kottemann,J.E.,Davis,F.D.,&Remus,W.E.(1994).Computer-assisteddecisionmaking: Performance,beliefs,andtheillusionofcontrol. OrganizationalBehaviorandHuman DecisionProcesses ,57(1),26Ð37. Kulesza,T.,Stumpf,S.,Burnett,M.,&Kwan,I.(2012).Tellmemore?:thee "ectsof mentalmodelsoundnessonpersonalizinganintelligentagent.In Proceedingsofthe sigchiconferenceonhumanfactorsincomputingsystems (pp.1Ð10). Lam,X.N.,Vu,T.,Le,T.D.,&Duong,A.D.(2008).Addressingcold-startproblem inrecommendationsystems.In Proceedingsofthe2ndinternationalconferenceon 183ubiquitousinformationmanagementandcommunication (pp.208Ð211). Langer,E.J.(1975).Theillusionofcontrol. JournalofPersonalityandSocialPsychology ,32(2),311Ð328.doi:10.1037/0022-3514.32.2.311 Lee,G.,&Lee,W.J.(2009).Psychologicalreactancetoonlinerecommenda- tionservices. InformationandManagement ,46(8),448-452.Retrievedfrom http://www.sciencedirect.com/science/article/pii/S0378720609000962 doi:http://dx.doi.org/10.1016/j.im.2009.07.005 Lee,J.,&Moray,N.(1992).Trust,controlstrategiesandallocationoffunctioninhuman- machinesystems. Ergonomics ,35(10),1243Ð1270. Lee,J.D.,&See,K.A.(2004).Trustinautomation:Designingforappropriatereliance. HumanFactors:TheJournaloftheHumanFactorsandErgonomicsSociety ,46(1),50Ð80.Leino,J.(2014). Userfactorsinrecommendersystems:Casestudiesine-commerce,news recommending,ande-learning (Unpublisheddoctoraldissertation).UniversityofTam- pere. Li,A.C.,Kannry,J.L.,Kushniruk,A.,Chrimes,D.,McGinn,T.G.,Edonyabo,D.,&Mann, D.M.(2012).Integratingusabilitytestingandthink-aloudprotocolanalysiswith Ònear-liveÓclinicalsimulationsinevaluatingclinicaldecisionsupport. International journalofmedicalinformatics ,81(11),761Ð772. Lim,B.Y.,Dey,A.K.,&Avrahami,D.(2009).Whyandwhynotexplanationsimprove theintelligibilityofcontext-awareintelligentsystems.In Proceedingsofthesigchi conferenceonhumanfactorsincomputingsystems (pp.2119Ð2128). Linden,G.,Smith,B.,&York,J.(2003).Amazon.comrecommendations:Item-to-item collaborativeÞltering. InternetComputing,IEEE ,7(1),76Ð80. Liu,J.,Dolan,P.,&Pedersen,E.R.(2010).Personalizednewsrecommendationbasedon clickbehavior.In Proceedingsofthe15thinternationalconferenceonintelligentuser interfaces (pp.31Ð40). Madhavan,P.,&Phillips,R.R.(2010).E "ectsofcomputerself-e ! cacyandsystemreliability onuserinteractionwithdecisionsupportsystems. ComputersinHumanBehavior ,26(2),199-204.doi:10.1016/j.chb.2009.10.005 Madhavan,P.,&Wiegmann,D.A.(2007,July).Similaritiesanddi " erencesbetween humanÐhumanandhumanÐautomationtrust:anintegrativereview. TheoreticalIssues inErgonomicsScience ,8(4),277Ð301.doi:10.1080/14639220500337708 184Manzey,D.,Reichenbach,J.,&Onnasch,L.(2008).Performanceconsequencesofautomated aidsinsupervisorycontrol:Theimpactoffunctionallocation.In Proceedingsofthe HumanFactorsandErgonomicsSocietyAnnualMeeting (Vol.52,pp.297Ð301).doi: 10.1177/154193120805200421 Manzey,D.,Reichenbach,J.,&Onnasch,L.(2012).Humanperformanceconsequencesof automateddecisionaids:Theimpactofdegreeofautomationandsystemexperience. JournalofCognitiveEngineeringandDecisionMaking ,1555343411433844. Marathe,S.,&Sundar,S.S.(2011,May).Whatdrivescustomization?In Pro- ceedingsofthe2011annualconferenceonhumanfactorsincomputingsystems -chiÕ11 (p.781).NewYork,NewYork,USA:ACMPress.Retrievedfrom http://dl.acm.org.proxy2.cl.msu.edu/citation.cfm?id=1978942.1979056 doi:10.1145/1978942.1979056Massa,P.,&Avesani,P.(2007).Trust-awarerecommendersystems.In Proceedingsofthe 2007acmconferenceonrecommendersystems (pp.17Ð24). Mayer,R.C.,Davis,J.H.,&Schoorman,F.D.(1995).Anintegrativemodeloforganiza- tionaltrust. Academyofmanagementreview ,20(3),709Ð734. McDonald,D.W.,&Ackerman,M.S.(2000).Expertiserecommender:aßexiblerecom- mendationsystemandarchitecture.In Proceedingsofthe2000acmconferenceon computersupportedcooperativework (pp.231Ð240). McNee,S.M.,Lam,S.K.,Konstan,J.A.,&Riedl,J.(2003).Interfacesforelicitingnewuser preferencesinrecommendersystems.In Usermodeling2003 (pp.178Ð187).Springer. Merritt,S.M.,Heimbaugh,H.,LaChapell,J.,&Lee,D.(2012).Itrustit,butidonÕt knowwhye " ectsofimplicitattitudestowardautomationontrustinanautomated system. HumanFactors:TheJournaloftheHumanFactorsandErgonomicsSociety ,0018720812465081.Merritt,S.M.,&Ilgen,D.R.(2008).Notalltrustiscreatedequal:Dispositionaland history-basedtrustinhuman-automationinteractions. HumanFactors:TheJournal oftheHumanFactorsandErgonomicsSociety ,50(2),194Ð210. MessierJr,W.F.,Kachelmeier,S.J.,&Jensen,K.L.(2001).Anexperimentalassessmentof recentprofessionaldevelopmentsinnonstatisticalauditsamplingguidance. Auditing: AJournalofPractice&Theory ,20(1),81Ð96. Miller,B.N.,Albert,I.,Lam,S.K.,Konstan,J.A.,&Riedl,J.(2003).Movielensunplugged: experienceswithanoccasionallyconnectedrecommendersystem.In Proceedingsofthe 8thinternationalconferenceonintelligentuserinterfaces (pp.263Ð266). 185Mosier,K.L.,Skitka,L.J.,Heers,S.,&Burdick,M.(1998).Automationbias:Decision makingandperformanceinhigh-techcockpits. TheInternationalJournalofAviation Psychology ,8(1),47-63.doi:10.1207/s15327108ijap0801 3Muir,B.M.(1987).Trustbetweenhumansandmachines,andthedesignofdecisionaids. InternationalJournalofMan-MachineStudies ,27(5),527Ð539. Mundlak,Y.(1978).Onthepoolingoftimeseriesandcrosssectiondata. Econometrica: journaloftheEconometricSociety ,69Ð85. Nass,C.,&Moon,Y.(2000).Machinesandmindlessness:Socialresponses tocomputers. JournalofSocialIssues ,56,81Ñ-103.Retrievedfrom http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.2456 Nelson,P.(1970).Informationandconsumerbehavior. TheJournalofPoliticalEconomy ,311Ð329.Nickerson,R.S.(1998).ConÞrmationbias:Aubiquitousphenomenoninmanyguises. ReviewofGeneralPsychology ,2(2),175Ð220.doi:10.1037/1089-2680.2.2.175 Norman,D.A.(1990a). Thedesignofeverydaythings .NewYork:Doubleday. Norman,D.A.(1990b).TheÕproblemÕwithautomation:inappropriatefeedbackandinterac- tion,notÕover-automationÕ. PhilosophicalTransactionsoftheRoyalSocietyofLondon. B,BiologicalSciences ,327(1241),585Ð593. Norton,M.,Mochon,D.,&Ariely,D.(2011).TheÕIKEAe " ectÕ:Whenlaborleadsto love. HarvardBusinessSchoolMarketingUnitWorkingPaper (11-091).Retrieved from http://papers.ssrn.com/sol3/papers.cfm?abstract id=1777100Ochi,P.,Rao,S.,Takayama,L.,&Nass,C.(2010).Predictorsofuserperceptionsofweb recommendersystems:Howthebasisforgeneratingexperienceandsearchproduct recommendationsa " ectsuserresponses. InternationalJournalofHuman-Computer Studies,68(8),472Ð482. OÕDonovan,J.,&Smyth,B.(2005).Trustinrecommendersystems.In Proceedingsofthe 10thinternationalconferenceonintelligentuserinterfaces (pp.167Ð174). Onnasch,L.,Wickens,C.D.,Li,H.,&Manzey,D.(2013).Humanperformanceconsequences ofstagesandlevelsofautomationanintegratedmeta-analysis. HumanFactors:The JournaloftheHumanFactorsandErgonomicsSociety ,0018720813501549. Parasuraman,R.,Sheridan,T.B.,&Wickens,C.D.(2000).Amodelfortypesandlevelsof humaninteractionwithautomation. Systems,ManandCybernetics,PartA:Systems 186andHumans,IEEETransactionson ,30(3),286Ð297. Pariser,E.(2011). TheÞlterbubble:Whattheinternetishidingfromyou .PenguinUK. Park,S.-T.,&Chu,W.(2009).Pairwisepreferenceregressionforcold-startrecommendation. InProceedingsofthethirdacmconferenceonrecommendersystems (pp.21Ð28). Parra,D.(2013).Usercontrollabilityinahybridrecommendersystem. Pereira,R.E.(2001).Inßuenceofquery-baseddecisionaidsonconsumerdecisionmaking inelectroniccommerce. InformationResourcesManagementJournal ,14(1),31. Qin,S.,Menezes,R.,&Silaghi,M.(2010).Arecommendersystemforyoutubebasedonits networkofreviewers.In Socialcomputing(socialcom),2010ieeesecondinternational conferenceon (pp.323Ð328). Rader,E.,&Gray,R.(2015).Understandinguserbeliefsaboutalgorithmiccurationin thefacebooknewsfeed.In Proceedingsofthe33rdannualacmconferenceonhuman factorsincomputingsystems (pp.173Ð182). Ross,J.,Irani,L.,Silberman,M.,Zaldivar,A.,&Tomlinson,B.(2010).Whoarethe crowdworkers?:shiftingdemographicsinmechanicalturk.In ChiÕ10extendedabstracts onhumanfactorsincomputingsystems (pp.2863Ð2872). Roth,M.,Ben-David,A.,Deutscher,D.,Flysher,G.,Horn,I.,Leichtberg,A.,...Merom, R.(2010).Suggestingfriendsusingtheimplicitsocialgraph.In Proceedingsofthe 16thacmsigkddinternationalconferenceonknowledgediscoveryanddatamining (pp.233Ð242).Sanchez,J.,Fisk,A.D.,&Rogers,W.A.(2004).Reliabilityandage-relatede " ectson trustandrelianceofadecisionsupportaid.In Proceedingsofthehumanfactorsand ergonomicssocietyannualmeeting (Vol.48,pp.586Ð589). Sargan,J.D.(1958,July).Theestimationofeconomicrelationshipsusinginstrumental variables. Econometrica ,26(3),393-415. Schafer,J.B.,Konstan,J.A.,&Riedl,J.(2004).Viewthroughmetalens:usagepatterns forameta-recommendationsystem. IEEProceedings-Software ,151(6),267Ð279. Schein,A.I.,Popescul,A.,Ungar,L.H.,&Pennock,D.M.(2002).Methodsandmetrics forcold-startrecommendations.In Proceedingsofthe25thannualinternationalacm sigirconferenceonresearchanddevelopmentininformationretrieval (pp.253Ð260). Schuster,D.,Jentsch,F.,Fincannon,T.,&Ososky,S.(2013).Theimpactoftypeandlevel 187ofautomationonsituationawarenessandperformanceinhuman-robotinteraction.In Engineeringpsychologyandcognitiveergonomics.understandinghumancognition (pp.252Ð260).Springer. Sinha,R.,&Swearingen,K.(2002,April).Theroleoftransparencyinrec- ommendersystems.In ChiÕ02extendedabstractsonhumanfactorsincom- putingsystems-chiÕ02 (p.830).NewYork,NewYork,USA:ACM Press.Retrievedfrom http://dl.acm.org/citation.cfm?id=506443.506619 doi:10.1145/506443.506619Skeels,M.M.,&Grudin,J.(2009).Whensocialnetworkscrossboundaries:acasestudyof workplaceuseoffacebookandlinkedin.In Proceedingsoftheacm2009international conferenceonsupportinggroupwork (pp.95Ð104). Skitka,L.J.,Mosier,K.L.,&Burdick,M.(1999).Doesautomationbiasdecision- making?InternationalJournalofHuman-ComputerStudies ,51(5),991-1006.doi: 10.1006/ijhc.1999.0252Smith,V.L.(1976,May).ExperimentalEconomics:InducedValueTheory. TheAmerican EconomicReview ,66(2),274Ð279. Solomon,J.(2014).Customizationbiasindecisionsupportsystems.In Proceedingsofthe 32ndannualacmconferenceonhumanfactorsincomputingsystems (pp.3065Ð3074). Solomon,J.,Ma,W.,&Wash,R.(2015).DonÕtwait!:Howtiminga " ectscoordination ofcrowdfundingdonations.In Proceedingsofthe18thacmconferenceoncomputer supportedcooperativework&socialcomputing (pp.547Ð556). Solomon,J.,&Wash,R.(2014,October).Human-whatinteraction?understandinguser sourceorientation.In Humanfactorsandergonomicssocietyannualmeetingproceed- ings.Stock,J.H.,&Yogo,M.(2005).Testingforweakinstrumentsinlinearivregression. Identi- Þcationandinferenceforeconometricmodels:EssaysinhonorofThomasRothenberg .Su,X.,&Khoshgoftaar,T.M.(2009).AsurveyofcollaborativeÞlteringtechniques. AdvancesinartiÞcialintelligence ,2009,4. Sundar,S.S.(2008).Self-as-source.InE.Konijn,S.Utz,M.Tanis,&S.B.Barnes(Eds.), Mediatedinterpersonalcommunication (pp.58Ð74).NewYork:Routledge. Sundar,S.S.,&Marathe,S.S.(2010).Personalizationversuscustomization:Theimpor- tanceofagency,privacy,andpowerusage. HumanCommunicationResearch ,36(3),298Ð322.188Sundar,S.S.,&Nass,C.(2000,December).SourceOrientationinHuman- ComputerInteraction. CommunicationResearch ,27(6),683Ð703.Re- trievedfrom http://crx.sagepub.com/content/27/6/683.abstract doi:10.1177/009365000027006001 Sundar,S.S.,Oh,J.,Bellur,S.,Jia,H.,&Kim,H.-S.(2012,May).Interactivityasself- expression.In Proceedingsofthe2012ACMAnnualConferenceonHumanFactorsin ComputingSystems-CHIÕ12 (p.395).NewYork,NewYork,USA:ACMPress.doi: 10.1145/2207676.2207731Tintarev,N.,&Mastho " ,J.(2007).E " ectiveexplanationsofrecommendations:user- centereddesign.In Proceedingsofthe2007acmconferenceonrecommendersystems (pp.153Ð156). Tintarev,N.,&Mastho " ,J.(2008).Thee " ectivenessofpersonalizedmovieexplanations: Anexperimentusingcommercialmeta-data.In Adaptivehypermediaandadaptive web-basedsystems (pp.204Ð213). Tintarev,N.,&Mastho " ,J.(2011).Designingandevaluatingexplanationsforrecommender systems.In Recommendersystemshandbook (pp.479Ð510).Springer. Tintarev,N.,&Mastho " ,J.(2012,February).Evaluatingthee " ectivenessofexpla- nationsforrecommendersystems. UserModelingandUser-AdaptedInteraction .Retrievedfrom http://www.springerlink.com/content/9087j6w55r654255/ doi:10.1007/s11257-011-9117-5Tjur,T.(2009).Coe ! cientsofdeterminationinlogisticregressionmodelsÑanewproposal: Thecoe ! cientofdiscrimination. TheAmericanStatistician ,63(4),366Ð372. Tu,Q.,&Dong,L.(2010).Anintelligentpersonalizedfashionrecommendationsystem.In Communications,circuitsandsystems(icccas),2010internationalconferenceon (pp.479Ð485).Verbert,K.,Parra,D.,Brusilovsky,P.,&Duval,E.(2013).Visualizingrecommendations tosupportexploration,transparencyandcontrollability.In Proceedingsofthe2013 internationalconferenceonintelligentuserinterfaces (pp.351Ð362). Wang,W.,&Benbasat,I.(2007).Recommendationagentsforelectroniccommerce:Ef- fectsofexplanationfacilitiesontrustingbeliefs. JournalofManagementInformation Systems,23(4),217Ð246. Wang,W.,&Benbasat,I.(2008).Attributionsoftrustindecisionsupporttechnologies:A studyofrecommendationagentsfore-commerce. JournalofManagementInformation Systems,24(4),249Ð273. 189Wash,R.(2013). Expectationsandcriticalmassinonlinecommunities. (NSFProposal) Wash,R.,&Solomon,J.(2014).Coordinatingdonorsoncrowdfundingwebsites.In Pro- ceedingsofthe17thacmconferenceoncomputersupportedcooperativework&social computing (pp.38Ð48). Woolley,D.J.(2007).Theinßuenceofdecisioncommitmentanddecisionguidanceon directingdecisionaidrecommendations. AcademyofInformationandManagement SciencesJournal ,10(2),39. Xiao,B.,&Benbasat,I.(2007).E-commerceproductrecommendationagents:use,charac- teristics,andimpact. MisQuarterly ,31(1),137Ð209. Yang,R.,&Newman,M.W.(2013).Learningfromalearningthermostat:lessonsfor intelligentsystemsforthehome.In Proceedingsofthe2013acminternationaljoint conferenceonpervasiveandubiquitouscomputing (pp.93Ð102). Yang,T.Y.,&Swartz,T.(2004).Atwo-stagebayesianmodelforpredictingwinnersin majorleaguebaseball. JournalofDataScience ,2(1),61Ð73. 190