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ABSTRACT

THE EFFECT OF EXPERIMENTAL NONIDEALITIES ON THE RESULTS

OF ELECTRODE KINETICS EXPERIMENTS

By

Edward W. Schindler, Jr.

Experiments designed to measure fast electrochemical reaction

rates cannot be performed exactly as they are described by the

theory. Factors such as instrumental nonidealities and the electro-

static interaction between the electrode and the charged reactant

(diffuse-layer adsorption) have negligible effects under most condi-

tions, but might exert a greater influence as the method is pushed

to measure faster rates. It is of interest to determine to what ex-

tent these factors affect the accuracy of the measured rate constants.

The transient techniques which were studied include coulostatics,

galvanostatic double pulse, and potential-step experiments. A parallel

simulation method was used to generate transients showing the influence

of weak reactant adsorption or an instrumental nonideality such as

finite potentiostat risetime. These simulated transients were then

subjected to data analysis procedures to determine the accuracy of

the extracted rate constants.
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Both reactant adsorption and finite potentiostat risetime were

found to affect the shape of normal pulse polarograms when the cur-

rent is sampled at or below the 1 ms time scale. Peaks resembling

d.c. polarographic maxima were found for both cases. The true limit-

ing current was attained with adsorbed reactant, while finite rise-

time polarograms exhibited a plateau region in which the current

decreased toward the true limiting value for many hundreds of milli-

volts beyond the wave.

Heterogeneous rate constants were derived from these simulated

data both by nonlinear regression on the chronoamperometric decay

transients and by a pulse polarographic method. The accuracies of

the values obtained by both methods were comparable, showing large

errors (10 - 1002) for typical experimental conditions and large rate

constants (>0.l cm/s).

Small-perturbation methods were also studied in a similar manner,

and the derived rate constants were found to be extremely sensitive

to both instrumental and chemical nonidealities for fast reactions.

The shapes of the nonideal transients showed no anomalous features.

The conventional analysis for galvanostatic double pulse experiments

was found to be superior to other analyses, yielding fairly accurate

rate constants even under conditions such that no reasonable value

could otherwise be derived.
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CHAPTER 1

INTRODUCTION



Reactions involving the transfer of electrons between two redox

centers are fundamental in many fields, from biochemistry (photo-

synthesis) to industrial processes (chlor-alkali technology). They

are also the most basic type of reaction as there are no chemical

bonds formed or broken. In many important systems, of course, the

electron-transfer process is only one step in a mechanism involving

several other, chemical steps, but it is generally the key step.

Because these reactions are so basic, it is important to study their

detailed mechanisms and rates so that the overall processes might be

better understood.

Electrochemical reactions (heterogeneous electron-transfer reac-

tions) occur at the surface of an electrode immersed in a solution of

an oxidizable or reducible (electroactive) species. In this special

case of electron-transfer reactions, the electrode acts as the other

reactant in the redox reaction, supplying or accepting electrons as

required. The advantages of studying the kinetics of redox species

in this manner are that it is relatively easy to follow the rate of

the reaction, only the chemistry of a single species needs to be

considered, and finally that the thermodynamics of the system (elec-

trode plus reactant) are continuously variable by adjustment of the

electrode potential.

Various experimental techniques have been developed to study

the kinetics of electrode reactions, and, like their chemical kinetics

counterparts, they are subject to limitations based on the time scale



of the method. Steady state methods are useful for studying rela-

tively slow reactions, while transient techniques are used for rela-

tively fast rates. It is important to know under what conditions

the theory of a given experiment breaks down and the results yield

no useful information.

Electrochemical techniques, like all chemical experiments, are

subject to minor experimental nonidealities. There are always factors

which are not taken into account in the theory, but that do occur in

the actual performance of an experiment. These effects must be minor,

or the particular theory would not have general acceptance.

This dissertation will examine a variety of electrochemical

transient techniques to determine whether the nonidealities that

are inevitable in actual experiments affect the results as the method

is used to determine faster and faster reaction rates. Effects which

are largely negligible when slow reactions are studied could induce

significant error as the technique is taken to its limits. This is

because the rate of a fast electrode reaction is controlled more by

the diffusion of reactant molecules to the electrode surface than by

the actual kinetics of the charge-transfer process. A given experie

mental method must be sensitive enough to extract the small amount

of kinetics information which is available in the data, and might

therefore be more sensitive to nonideal experimental conditions.

Both the instrumentation and the chemical system itself must

lead to variations from the theoretical conditions for an experiment.

Instruments rarely perform ideally; for example, a potentiostat re-

quires a period of time to attain a new cell potential, even though

 



a step-function is assumed in the derivation of the relevant equations.

Additionally, coulombic attractive or repulsive forces between the

reactant ions and the electrode are virtually universal, but seldom

considered.

Some previous work (1-4) has examined the effects of finite measure-

ment precision and some instrumental limitations upon the results of

many of the same electrode kinetics experiments which are examined

here. These investigations simply used an explicit solution for the

response of the system, rounded the results or otherwise modified the

data to reflect the nonideal conditions, and derived the hetero-

geneous rate constants from these modified data. Thus, no nonideali-

ties could be treated in this manner in the absence of an explicit

solution. The work described in this dissertation removes that restric-

tion by using the digital simulation of electrochemical systems,

which allows a much wider variety of nonideal conditions to be exr

amined.

Flanagan and Anson (5-7) examined some electrochemical systems

to determine the effects of reactant adsorption for reversible systems.

This work did not address the question of finite electron-transfer

rates, but instead considered only deviations in the morphology

response curves. They did, however, rely on digital simulation of

the electrochemical experiments in some of their studies.

The remainder of this chapter is devoted to some basic concepts

of electron-transfer kinetics, a description of some transient tech-

niques used to study fast electrode reactions, and a discussion of

both the instrumental and chemical nonidealities which must occur,

 



to at least some extent, in every experiment for the measurement of

electrochemical reaction rates. The bulk of the dissertation examines

the effects of these nonidealities on several common transient tech-

niques and some general implications for the use of these methods.

1.1. Phenomenological Electron Transfer Kinetics

For a chemically irreversible process

-kf

0x + ne -* Red (1.1)

occurring at an electrode surface, the rate constant kf is known to

be a function of the electrode potential:

anF

kf . k td exp [- RT (E-Estdfl (1.2)
s

For these irreversible processes, kstd is simply the heterogeneous

rate constant at some arbitrary potential Estd' This expression is

in fact a linear free energy relationship, correlating the rate of

the electron-transfer reaction to the free energy driving force as

it varies with the electrode potential (AG - -nFE).

If the process is chemically reversible, however, we must also

consider the rate of the reverse reaction,

-kf

0x + ne, Q? Red (1.3)

The thermodynamic equilibrium of this redox process is governed by

 



the Nernst equation (neglecting activity coefficients),

(1.4)

which specifies the potential at which no net reaction occurs for a

given ratio of product to reactant concentration (the equilibrium

potential). Since the Nernst equation defines the equilibrium constant

at a given electrode potential, and this equilibrium constant must

be equal to the ratio of forward and reverse rate constants (K -

kf/kb), it is possible to derive an expression for the rate constant

for the reverse reaction as a function of potential,

kb =- kstd exp[S-]‘%1i.22-§ (E-E (1.5)
std)]

The standard potential, E for these chemically reversible

std’

redox couples is now the thermodynamic E0; both the forward and

reverse rate constants are equal to the standard rate constant at

this potential. When this standard rate constant is very large

(>10—100 cm/s), the couple is termed "reversible". At very small

standard rate constants, the back reaction becomes insignificant (Eggg,

in order to force kf to be large enough, the potential must be set

sufficiently negative so that the reverse rate constant kb is very

small). Under these conditions, the system behaves as if it were

chemically irreversible, and is termed "irreversible". Redox couples

with standard rate constants between these extremes are usually re-

ferred to as "quasi-reversible".



1.2. Experimental.Techniques Used to Study Fast Electrode Kinetics

Because of their speed, transient techniques (as opposed to

steady-state methods) are usually used to study fast electrochemical

reactions (9). These experiments involve, in the case of quasi-

reversible reactions, a system at some equilibrium state to which a

sudden perturbation is applied. The response of the system to the

perturbation is followed, and rate parameters can be derived from

these data. In the case of irreversible reactions, where no real

redox equilibrium can exist, the perturbation usually involves a

change in some experimental parameter which will initiate the electro-

chemical reaction. The perturbations in either type of chemical system

can he steps of potential, current, or charge, or continuously applied

waveforms, such as an ac signal or a triangle wave.

Potential-step experiments (10) are conceptually quite straight-

forward. An electrode in a solution of the species of interest is

held at a potential such that no reaction occurs and no current flows.

The potential is rapidly changed to a new value, the reaction begins,

land current flows. This current is monitored as a function of time.

Various modes of this type of experiment are possible, depending on

tihe chemistry of the reactant species. Large potential steps (sev-

eral hundred millivolts) are needed if the reaction is irreversible

(10), as one must start at a potential which yields a negligible rate

c=01Msltant and step to one which causes the reaction to proceed at

a faster rate.

llarge potential steps can also be used for quasi-reversible re-

actclc>ns (10) if the concentration of one half of the redox couple



is very small. A large step from the equilibrium potential is required

in order to change the relative concentrations of the oxidized and

reduced forms of the reactant enough to yield an observable current.

This mode is used in the normal pulse polarographic study of quasi-

reversible redox reactions, and is characterized by the addition of

only one form of the redox couple to the solution.

Quasi-reversible reactions can also be studied when both the

oxidized and reduced forms of the species are in solution at the start :

of the experiment (11). The electrode is held at the equilibrium po— 1

tential for the system as given by the Nernst equation. A step in

potential of several millivolts is applied, requiring the electrode

reaction to proceed in order to adjust the concentration ratio of the

reactants at the surface to that required by the Nernst equation.

Analogous to the small potential-step experiments are coulostatics

experiments (12,13) in which the perturbation of the system is a fast

injection of charge into the cell. The charge then leaks off into the

solution at a rate controlled by the electrode reaction rate and by

the diffusion of fresh reactant to the surface. The overpotential is

followed as it decays, since it is impossible to measure the current

itself because the flow of electrons occurs only from the electrode

surface to the solution once the charge has been injected.

In small-step coulostatics for the study of quasi-reversible re-

actions (12,13), both the oxidized and reduced species are in the solu-

tion and the electrode is initially at the equilibrium potential.

The equations describing the overpotential decay are somewhat more

complicated, however, due to the fact that the potential (and hence

 



the rate constants) is changing continuously throughout the experi-

ment.

The remaining step technique which has been commonly employed by

electrode kineticists is galvanostatics (14). In these experiments,

a system, again at such a potential that no current flows, is sub-

jected to the sudden imposition of a constant current. The response

of the system to this perturbation is a change in the overpotential

sufficient to make the reactions proceed fast enough to consume these

electrons as they flow through the cell. This overpotential-time

transient contains information about the kinetics of the electron-

transfer reaction.

Galvanostatic double pulse experiments were developed (15) to

deal with very fast electrode reactions by precharging the electrode

double layer with a fast, high current pulse. The overpotential-

time data are recorded immediately thereafter during the application

of a smaller current to the cell.

In addition to the step experiments, other types of transient

signals have been used to measure electrochemical reaction rates.

The application of an alternating potential waveform to a system

at some equilibrium condition causes an alternating current to flow

in response (16). Phase sensitive detection allows the extraction of

heterogeneous rate data in these experiments. A potential ramp or

triangular waveform can also be applied in techniques known as linear

sweep voltammetry or cyclic voltammetry (17,18). A peak in the cur-

rent is observed in the forward and reverse sweeps; the separation of

these peaks can be related to the rate constant for the reaction of
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interest.

The responses of any of the transient techniques are controlled

by the rate of charge-transfer and that of diffusion, the former

dominating at short times and the latter at longer times. The faster

the charge transfer process, the sooner the diffusion of reactants

controls the response. These transient techniques are useful, there-

fore, for the study of fast electrode reactions because the perturba-

tion to the system can be made in a very small amount of time.

Of the step methods, potentiostatics is the slowest because of

its high demands on the instrumentation. At the time of the step, the

potentiostat must provide a large amount of current to charge the

double-layer capacitance, yet it must be sensitive enough to measure

the small currents due to faradaic processes. Because of this and

problems with uncompensated resistance, the potential-step method is

not used on much less than a 0.1 ms time scale, which is suitable only

for the measurement of heterogeneous rate constants up to about 0.1

cm/s.

Charge-step methods are quite fast (indeed, this is the reason

for their development),with the perturbation being applied in well

under 1 us, depending on the solution resistance. Galvanostatic

methods also can be employed on the microsecond time scale. In both

these methods, the capacitance of the electrode has a direct effect

on the resulting transient; there is no need for the instrumentation

to "beat out" the charging process as in potentiostatics. These

methods have been claimed to be suitable for the measurement of rate

constants in the 0.1 to 10 cm/s range.
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AC methods are limited by the frequency which can be applied to

the cell (16). At higher frequencies, the technique is affected by

stray capacitances and other irreproducible nonidealities which render

the signal virtually useless for kinetics purposes. The upper limit

of the accessible rate constant is roughly the same as for coulostatics

and galvanostatics.

Linear sweep methods are limited by the rate at which the potential

can be scanned (17). At high sweep rates, the current which charges

the double layer becomes quite large and deviations due to uncompensated

resistance result, obscuring the kinetics information. Rate constants

of about 0.1 cm/s are the maximum accessible with these methods.

1.3. Instrumental Nonidealities

The instrumentation used to perform these transient techniques

is basically the same as that required for steady-state methods,

except that optimizations for a fast response time must be included.

A typical potentiostat (19) contains a potential control amplifier

whose function is to hold the working electrode at some fixed poten-

tial relative to the reference electrode by supplying current to

the cell. This current is measured by a second amplifier acting as

a current to voltage converter.

The response of an ideal potentiostat to an instantaneous step

function in the control potential is a simultaneous step in the cell

potential. In a real potentiostat, however, the response time is

limited by the time constants of both the cell and the potentiostat

itself, as wellas by the maximum current which can be supplied to

 



12

the auxillary electrode (20,22).

Uncompensated resistance between the reference electrode and the

working electrode is another factor which prevents the applied potenr

tial from following the control potential (22). When current flows,

the error in the cell potential is equal to iRu. Since the most cur-

rent flows at the moment the step is applied, the potential only ap-

proaches the control potential as the current decays.

Although the amount of uncompensated resistance varies with the

solution composition (as does the cell time constant), it is present

to at least some extent in all experiments since it can never be per-

fectly compensated. Because of this and the previously mentioned

factors, all potential-step experiments must be to some degree non-

ideal; an instantaneous potential step can never be applied to a real

cell.

Solution resistance is also a problem in performing coulostatics

experiments. The theory (15) calls for an instantaneous injection

of charge into the cell, but in practice a finite amount of time is

needed to accomplish this. Additionally, current impulse charge in-

jection experiments (23) have an inherent injection time during which

a current pulse is applied.

Galvanostatic experiments also suffer from iR drop errors in the

measurement of the overpotential while current is applied. Not only

is uncompensated resistance a problem, but the theory assumes that

the current is initiated instantaneously (14). Again, instrumentation

limitations prevent a perfect step function from being applied, lead-

ing to deviations from the ideal predictions.
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These types of nonidealities are of interest here because they

are inevitable when experiments are performed with real instrumenta-

tion. The nonidealities on which attention is focused in this work

are finite potentiostat risetime and finite charge injection time in

coulostatics. Uncompensated resistance effects were not considered

because the effects in potentiostatics are similar to those of

finite risetime.

1.4. Weak Reactant Adsorption

In most electrochemical experiments, we are dealing with charged

reactant ions in solution in the vicinity of‘a charged electrode.

One would therefore expect some sort of electrostatic interaction to

exist between them, either a concentration enhancement or reduction

depending on the relative signs of the charges. A concentration en-

hancement due to these factors can be looked upon as a form of ad-

sorption, and can be referred to as diffuse-layer adsorption.

This phenomenon is of interest because it must be present to at

least some extent in almost all experiments which are designed to

measure electrode kinetics (the exception being experiments which

take place at a potential such that the total charge on the electrode

is zero, EggL, the potential of zero charge, or p.z.c., in the absence

of ionic specific adsorption). This electrostatic effect is well

known in electrode kinetics through so-called double layer correc-

tions of apparent heterogeneous rate constants, which consider the

effect of the electrode charge on the relative stability of the

transition state (24).
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However, this correction does not consider the effect of the ex—

cess number of molecules at the surface of the electrode upon the

diffusion profile created during electrochemical processes. This

extra reactant, known as the surface excess, will cause distortions

in the diffusion profile because electrons which should be reacting

with species diffusing from the bulk solution will be used in the re-

action of the adsorbed species. The derivations of the equations des-

cribing the transient responses assume the existance of an ideal,

well-defined concentration gradient; hence, deviations from this ideal

behavior will result. Because of the integrating effect of the dif-

fusion profile, the transient will continue to be affected even after

all the adsorbed species has reacted. It is of interest to determine

the extent of the error in the rate constants which are derived from

these distorted transients.

In this study we will consider this adsorption to be relatively

weak and to follow the Henry adsorption isotherm (25),

I‘ a Ka ca (1.6)
d

This is the isotherm typically used for weak adsorption because it

does not consider adsorbate-adsorbate interactions, and hence implies

surface coverages low enough to ensure the absence of any such inter-

acti.on effects. It will be shown below that the Henry isotherm is

consistent with Gouy-Chapman double-layer theory (26) when the en-

hancenmmt is not large.

in: determine the extent of the electrostatic interactions, we
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must consider the structure of the aqueous electrolyte solution in

the vicinity of the charged electrode. A fixed layer of water mole-

cules or specifically adsorbed anions is found at the surface of the

electrode. This "inner layer" limits the access of other ions in the

solution to the surface, in that the ions can progress only as far as

some "plane of closest approach", or "outer Helmholtz plane" (o.H.p.).

Gouy-Chapman theory defines the potential at that point in the inter-

facial region, o2, with respect to the bulk solution, as a function

of the total charge inside the o.H.p. (the actual charge on the elec-

trode, qm, plus the charge of any adsorbed anions in the inner layer,

q') to be

4,2 =- 21.52 s1nh’1[q/(11.74 015)] (1.7)

for aqueous symmetrical electrolytes of charge 2 at 25 °C.

Since this potential is relative to the bulk solution, it must

decay to zero with increasing distance from the electrode. It

is this region of potential decay that is called the "diffuse layer".

The function describing the shape of this decay is also given by

Gouy-Chapman theory:

_ ¢ flzl

4),, ° T23]? tanh 1[tfimh(lea—flew(-I<x)], K' - 3.3 x 107|z|cl5

(1.8)

for aqueous z-z electrolytes at 25°C.

The concentration of an ion with a charge 2 in this region will
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be affected by this potential according to the following equation:

Cx = C exp (-Zf¢x) (1.9)

Using these equations, it is possible to calculate the enhance-

ment or reduction in concentration of a given ion as a function of

distance from an electrode of charge q, for a given supporting

electrolyte composition. Note that the use of these equations implies

that any ions in solution in addition to the supporting electrolyte 1

must be at concentrations low enough that Equations 1.7 and 1.8 still

apply.

We can now calculate the adsorption coefficients in the Henry

isotherm. The surface excess P can be given as

1‘ = f,” (ex-0) dx (1.10)

With the substitution of Equation 1.9, the expression for the surface

excess takes the form of the isotherm:

(D

P 8 Cf; [exp(-Zf¢x)-1]dx (1.11)

Equation 1.9 can be combined with experimental data for the charge

on an electrode as a function of potential to give the potential

dependence of the adsorption coefficient for each system (supporting

electrolyte plus reactant) of interest. The results of these cal-

culations for the adsorption of 3+ ions in 1 M KF are shown in
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Figure 1.1, while those for the adsorption of 3+ ions in 0.1 M KF

are given in Figure 1.2.

These results provide only an upper limit on the value of the

adsorption coefficients due to the assumption that the presence of

the higher-charged reactant ions does not change the double-layer struc-

ture as calculated for the l+/l- electrolyte. A lower limit on these

values may be obtained by assuming the supporting electrolyte charge

is the same as the charge on the reacting ion. This calculation pro-

duces estimates of the adsorption coefficients which are far smaller

than those calculated above. For example, the 3+/3- calculation for

a constant amount of charge on the electrode surface (qm + q') yields

of 3.5 x 10.8 cm, while the original l+/1- approxima-

6

a value of K

ad

tion gives 2.4 x 10‘ em (both for l M solutions). The 3+/3— values

are clearly too low because they were calculated assuming that the

more highly charged species was several orders of magnitude more

concentrated than it would be in a typical experiment.

Unfortunately, the exact solutions for an arbitrary number of

variously charged ions are not available in closed form, so it is

quite difficult to calculate the values more closely. Some clues

are available, however. It is possible to calculate values of oz

for these complex systems, and the variations are quite small with

even a 1 mM addition of 3+ ions to a 0.1 M solution of l+/l- support-

ing electrolyte. The calculation for 3+/3- supporting electrolytes

‘underestimates the ¢2 values by a factor of 2 or 3, which would have

a.drastic effect on the calculated surface excess.

The Debye length, l/K, describes the distance through which the
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diffuse layer extends into the bulk solution. This quantity can also

be calculated exactly for systems with an arbitrary number of ions,

again showing a very small effect for a 1 mM addition of 3+ ions,

while underestimating the value for 3+/3- electrolytes by a factor

of 3. Thus, it appears that while the upper limit values are prob-

ably somewhat large, those calculated for the 3+/3- system as a lower

limit are certain to be much too small.

Intuition and the above calculations predict the depletion of re-

actant species when the charges on the electrode and the reactant ion

are of the same sign. Because the degree of depletion is quite small

compared to the amount of adsorption necessary to produce a significant

deviation in the simulated transients, it was not considered further.

The extent of any diffuse-layer adsorption depends on the total

charge inside the o.H.p., which includes the charge on the metal it-

self, qm, and the charge of any adsorbed ions from the supporting

electrolyte in the inner layer, q'. It is therefore possible to

modify the diffuse-layer adsorption properties through the appropriate

choice of a supporting electrolyte. Most halide ions have the effect

of making the total electrode charge more negative at positive

potentials, but have only a small effect at negative potentials.

0n the other hand, some quaternary ammonium cations (Egg;, tetra-

ethylammonium ion) are strongly adsorbed at negative potentials.

Clearly, in the study of the redox properties of a 3+ reactant at

negative potentials, the use of an adsorbing cation in the supporting

electrolyte will reduce or even eliminate the extent of diffuse-

layer adsorption. Although these electrostatic interactions are
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inevitable, the electrochemist can exert a degree of control on their

magnitude.

In addition to this diffuse-layer adsorption, there often exists

a chemical interaction between the reactant and the electrode surface.

This chemical interaction is known as specific adsorption (25). The

extent of this process depends on the species itself as well as on the

nature of the electrode material. At low surface coverages, one might

expect the same sort of behavior as would be expected for diffuse-

layer adsorption. While specific adsorption is not as prevalent as

diffuse-layer adsorption, the Henry's law isotherm should apply under

these conditions as well at sufficiently low coverages.

The diffuse layer adsorption process is seen to be in true equilib-

rium if one examines only the concentration of reactant close to the

surface (igg;, in the diffuse layer itself). When one considers that

the "excess" molecules are in fact identical to those molecules which

are present simply as an extension of the bulk concentration, it is

clear that this must be true. The "change" of a bulk molecule to

one which is adsorbed is only an expression of the model, and not

the physical reality. This change does, however, induce a separate

mass-transport process to replace the molecule which becomes adsorbed.

This situation is in contrast to that for specific adsorption,

in which.the adsorbed species is indeed different from those in the

bulk of the solution (and also the diffuse layer). Here, the bond

making/bond breaking processes need not be in equilibrium, but can

respond at some finite rate to the demands of the thermodynamics.

The limit of applicability of the Henry adsorption isotherm was
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taken to be a surface coverage of about 102, which for a 1 mM reactant

leads to a maximum adsorption coefficient of about 2 x 10-5 cm.

This might be valid for specifically adsorbed reactants, but for dif-

fuse-layer adsorption an order of magnitude lower is more likely to

be appropriate.

1.5. Summary of Dissertation

The remainder of this dissertation consists of an explanation of

the methods used to pursue this investigation followed by analyses

of four types of experiments designed to measure fast electron-trans-

fer kinetics, and implications which may be drawn from this work.

Chapter 2 describes the overall methodology of the investigation

and details the processes of digital simulation and nonlinear regres-

sion, as well as some other numerical procedures used for this work.

Chapters 3 and 4 consist of studies of potential-step experiments

applied to irreversible and quasi-reversible reactions. The effects

of finite.potentiostat risetime and of weak reactant adsorption on

the results of the analyses of both chronoamperometric decay tran-

sients and normal pulse polarograms are determined. Some conclusions

are made about the consequences of using normal pulse polarography

for electrode kinetics measurements as well as for chemical analysis.

Chapter 5 is a study of coulostatics experiments, focusing on the ac-

curacy of derived rate constants in the presence of weak reactant

adsorption and finite charge injection time. Galvanostatic double

pulse experiments in the presence of weak reactant adsorption are

the subject of Chapter 6. At this point, some conclusions about the
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analysis of experimental results for small-step perturbation methods

are presented.

Finally, some suggested paths are presented for further research

in this area in Chapter 7.



CHAPTER 2

METHODS

24



This investigation is aimed towards determining the effect of ex-

perimental nonidealities on the results of electrode kinetics experi-

ments designed to measure the rates of fast electrode reactions.

The general approach used involves assuming a rate constant, using

digital simulation to produce a nonideal transient, and analyzing

that transient with nonlinear regression or with a conventional method

as if the transient is indeed ideal. It was assumed that all other ex-

perimental parameters, such as concentrations, diffusion coefficients,

etc., were known-and their exact values were used for the analyses.

The rate constant derived in this manner can then be compared to the

known value of the rate constant to assess the error due to that

particular nonideality. This general outline, illustrated in Figure

2.1, was applied to several different electrochemical methods, includ-

ing potential-step chronoamperometry, small-step coulostatics, and

galvanostatic double pulse experiments.

This procedure should mimic the practice of performing an experi-

ment in the laboratory (very likely under nonideal conditions) and

then analyzing the resulting data according to the equations des-

cribing the ideal experiment. Through the use of digital simulation,

it is possible to control the extent of each nonideality in the system,

as well as evaluate the errors they cause in the rate parameters.

The remainder of this chapter will examine each step of the pro-

cedure in more detail, while dealing only with the aspects of each

topic which are common to all the experimental techniques. The

25
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Figure 2.1. Summary of the process used to determine the

effects of nonidealities upon the results of electrode kinetics

experiments.
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specifics of the ideal data analysis and the simulation of each ex-

perimental method will be left to the particular chapter which covers

that method.

2.1. Digital Simulation
 

Since Feldberg introduced the method to electrochemists in 1969

(27), digital simulation has been used in a variety of investigations.

As the simulation of electrochemical transients is a major part of

this work, a general explanation of the process (28-30) will be

presented.

Experiments designed to measure electrode kinetics are described

by solutions of Fickls second law of diffusion with initial and

boundary conditions appropriate to the particular method used. When

the boundary conditions are not too complex, the method of Laplace

transformation can be used to solve the partial differential equation.

Unfortunately, for the nonideal conditions of interest here, exact

solutions of Fick's second law are very difficult to derive in closed

form. Numerical methods are the other obvious choice, and the digital

simulation scheme chosen for this work is known as an explicit finite

difference solution. Other more sophisticated types of numerical

methods have been used to improve accuracy or for other special pur-

poses, but the added complexity was not needed here, as will be shown

later.

When simulating electrochemical experiments, we need to be con-

cerned with the concentration of the species of interest close to the
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electrode surface both as a function of time and of distance from the

interface. This is seen from Fick's second law, where the time

derivative of the concentration is proportional to the second deriva-

tive of concentration with respect to distance. Additionally, Fick's

first law states that the flux of reactant or product to or from the

surface is proportional to the first distance derivative of concen-

tration at the surface. Digital simulation relies on concentration

values at a discrete set of points near the surface, the distance,

Ax, between each of which being known. Calculations are performed

for discrete time intervals, At, starting at the beginning of the

experiment and continuing for as long as necessary.

The general scheme of digital simulation is shown in Figure 2.2

(27). First, initial conditions for the experiment are set up.

Then, for each time interval, the boundary condition equations are

used to calculate the concentration and flux of species at the elec-

trode surface. This newly calculated surface concentration gives

rise to a concentration gradient, so that the effect of species dif-

fusing from the bulk of the solution can be calculated for each dis-

crete point in the solution. The time variable is then incremented

and the boundary conditions are recalculated.

The initial conditions for most experiments are easily implemented

in the simulation. For example, the condition that no concentration

gradients exist in the solution before the start of the experiment,

I: 3 0, x _>_ 0, C (2.1)

' Cbulk
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chemical experiments.
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is implemented by setting the concentration at each discrete point in

the solution equal to the bulk value. If adsorption is present, the

initial surface excess can also be calculated.

The equations for the boundary conditions can become quite complex.

In this work, four cases of surface boundary conditions are of interest:

kinetically controlled chemically irreversible and reversible systems,

both with and without adsorption. (If the reaction is fast enough,

the response of the system is controlled solely by diffusion.) The

irreversible systems will be used as examples. For the case in which

no adsorption is present, the following equations must hold:

0 = D (BC/3x)x$0 (2.2)

0 = k C (2.3)

The first is Fick's first law of diffusion, while the second is a

statement of the rate law of the electrode reaction. Writing the

equations in terms.of the discrete quantity Ax,

o = D(C1-Co)/Ax (2.4)

0 = k Co (2.5)

These equations can be solved simultaneously for the flux of re-

actant at the surface and the concentration of reactant at the

surface,

-
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.
-
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o = kaID/(D+kax) (2.6)

co = c1 - (FAX/D (2.7)

The resulting expressions can be evaluated at each At time increment,

using the appropriate rate constant if the potential is some func-

tion of time.

When weak adsorption is present, the equations become more complex.

The adsorption process is assumed to be in equilibrium at all times

and can be written for a species 0x as

C (2.8)

Fick's first law still holds, but the rate law is modified by allow-

ing adsorbed species to react at the surface in addition to molecules

diffusing from the bulk.solution, and by the addition of a term

which allows for changing surface excesses:

<l> - k 00 + kaI‘ - AF/At (2.9)
f f

These equations can be solved for the parameters of interest, the flux

¢' Co’ and AF:
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a

co - rAx + AtDC1/[KadAx + AxAt(kf + Kadkf) + AtD] (2.10)

a

AP = AtD(C1-Co)/Ax - AtCo(kf + Kadkf) (2.11)

a

0 = Co(kf + Kadkf) - AF/At (2.12)

Now, however, the flux of electrons at the surface is no longer

equal to the flux of molecules. To calculate the current, we con-

sider only the faradaic flux,

ofar = 00(1.f + Kadki) (2.13)

This takes into account the possibility that the total flux includes

some molecules coming from the bulk of solution to form or replenish

the adsorbed layer. Of course, Kad can also be calculated as a func-

tion of potential (and hence, time).

Since there is a rapid equilibrium, the rate constants will

always appear as a sum:

8 k
a

koverall f + Ka k (2°14)d f

The following work has been done assuming that the rate constant for

the adsorbed species was zero, in order that the rate constants kf

might be equated with koverall for ease of interpretation. The

existence of finite adsorption-desorption kinetics would complicate

the calculation considerably; the rate constants would have to be
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treated separately.

For the quasi-reversible systems, we include terms for both the

oxidized and reduced species and solve them in the same manner,

although this is somewhat more complicated, especially with adsorbed

reactant present.

Once the concentration Co is calculated, the new concentrations

at each point in the solution must be calculated. Fick's second law

governs diffusion in the bulk solution,

2 2
3C/3t a D(3 C/ax ) (2.15)

for planar geometry. This equation can be written in discrete terms

for each point i as,

2
ACi a DAt(C1+1 - 2Ci + Ci-1)/(Ax) (2.16)

In practice, the calculation is carried far enough out into the solu-

tion that ACi is insignificant. After all the AC1 terms have been

calculated for each species, the concentrations C are adjusted to

i

their new values,

Ci = C1 + ACi (2.17)

At this point, the time variable is incremented by the element At

and the calculation of the boundary conditions begins with the new

value of Cl (and possibly E, k, Kad’ or any other time-dependent term).



34

The computation continues in this manner, the flux being con-

verted to current and recorded at the appropriate time interval until

the calculation is complete. In this way it is possible to simulate

a miriad of types of experiments by making relatively minor changes

in the equations. It is this simplicity of modification and generality

which makes digital simulation so valuable a tool in electrochemistry.

2.2. Accuragy of Digital Simulation

Since digital simulation is a numerical solution to the relevant

differential equations, it can provide only approximate results.

The main factors which influence the accuracy of a given calculation

are the simulation parameters Ax and At. Obviously, the finer the

grid of time and distance increments, the closer the simulation ap-

proaches the true solution.

The choice of Ax and At is constrained by several factors. First,

the parameter 8, defined as

s = DAt/ (A102 (2.18)

must always be less than 0.5 (27). Not meeting this condition will

cause the ACi terms to be too large (larger than the corresponding

C1), so that the concentration values may become negative and oscil-

late. This is a mathematical constraint, general to all explicit

finite difference and finite element solutions.

A second constraint on the choice of the simulation parameters

is practical in nature. As At or Ax approach zero, more and more
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calculations must be performed, and many concentration values must

be stored. Computer calculation speed is finite, so that a limita-

tion is imposed on how fine a grid can be used.

A related constraint is the precision (number of significant fig-

ures) to which the calculation is carried. Smaller grid increments

produce smaller changes and differences, so that accuracy will be

limited by the precision of the computation. Of course, the pre-

cision can be extended, but at a relatively large cost in computation

time.

Given these limitations, one can see that it is unreasonable to

expect anything but an approximate solution to the problem. An

accuracy of around one percent or less can be achieved in reasonable

amounts of computation time, which makes simulations suitable for

qualitative studies of the shapes of electrochemical transients, but

limits their usefulness in more quantitative applications.

An optimization of the procedure which was found to be success-

ful involves the principle of expanding distance increments (31).

Since one is interested mainly in conditions close to the surface,

it makes sense to concentrate the calculation in this region. One

does not need the same amount of precision far out in the solution,

as the concentration gradient is quite small. Although the time in-

crement size is limited by the smallest distance increment, Axl,

the number of concentration points which need to be calculated at

each time can be greatly reduced.

An exponential expansion function was used for this work,

Ax1 - Ax exp(const ° 1) (2-19)
1
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The value of the constant can be varied; a value of 0.1 tended to

limit most of the simulations to about twenty to thirty concentra~

tion values.. It is necessary to modify the discrete form of Fick's

second law to reflect this unequal spacing,

(c -C ) (C -c )
1+1 1 1 1-1

ACi = 21311: ( “1+1 - Axi )/(Ax1+1 + Axi) (2.20)

Of course, the equations for the boundary conditions use the value

of Axl.

The use of this method of expanding distance increments yields a

computation time savings of about 50%, even though the diffusion

equation is more complex. No adverse effect on the overall accuracy

of the simulations from the use of this equation were observed unless

the concentration grid was severely expanded.

2.3. Parallel Simulation Method (32)

As the diffusion limit of a particular method is approached with

larger and larger reaction rates, the shape of the transient depends

less and less on the exact value of the rate constant. The rate

constant which can then be derived from the transient depends heavily

on minor variations in its shape. It is for this reason that some

minor deviations from ideality produce no substantial error at slower

rates, but induce significant error for faster reactions. Unfortunately,

simulation inaccuracy has a similarly large effect on this parameter,

sometimes even masking the deviations due to the nonideality itself.



37

It was found to be necessary to develop a scheme which would eliminate

this error, recognizing that conventional methods of optimization were

impractical due to computer time limitations.

The simulated systems in this work deal with conditions which cause

deviations from some ideal experiment. These deviations are generally

minor, and a closed form solution is generally available for the exact

case. The method developed to eliminate simulation inaccuracy uses

parallel simulations of the nonideal system of interest and the cor-

responding ideal experiment. All simulation parameters (Ax, At, etc.)

are identical; the only difference between the resulting transients

is due to the effect of the nonideality. The result of the parallel

simulation is-a sort of error curve which gives the deviation from

ideality at each point along the transient. This error curve can

then be impressed on the exact ideal transient calculated from the

closed form solution to yield a calculated, nonideal transient which

reflects only the effect of the nonideality and shows no error from

simulation inaccuracy. The process can be summarized by the followb

ing equation:

nonideal

nonideal g ideal X
(2.21)

calculated calculated ( xideal )simulated

where X is the measured quantity, usually a function of time.

To verify that this scheme minimizes the dependence of the

transients on the simulation parameters, a nonideal system was

needed to which an exact solution has been derived. The case of a
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linearly rising potential-step experiment (33) was chosen to serve

as the nonideal case, while the well-known instantaneous-step experi-

ment (34) was used as the ideal system. Simulations were performed

as outlined above, and the results compared to the exact transient

calculated from the equation through the use of a standard deviation

from simulation,

1 2!:

Osim . l:n 2(isim,- icalc) ] (2°22)

Figure 2.3 shows the results for a typical set of parameters which

shows the error, in arbitrary units, as a function of the simu-
Osim’

lation parameter Ax1 for the standard simulation and the newly de-

veloped parallel simulation scheme. It is clear that the new method

produces simulations which are more accurate and less dependent on

the actual simulation parameters than does the conventional method.

This point is further illustrated in Figure 2.4, which displays the

error as a function of computation time. Even though the parallel

scheme requires twice the time for a given set of simulation param-

eters, a great savings is gained in the time required for an accurate

calculation.

This parallel simulation scheme was used throughout this work

when the resulting transient was to be subjected to nonlinear regres-

sion analysis. Other analysis methods seem to be less sensitive to vari-

ations in the shape of the transient; conventionally simulated tran-

sients were used in these cases for convenience.

The overall scheme of this investigation as shown in Figure 2.1
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simulation. Curve 2: parallel simulation.
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41

can now be modified to include the parallel simulations and the impres-

sion of the error curve on the calculated ideal transient. The over-

all process, as modified, is shown in Figure 2.5.

2.4. Details of Simulation Programming

An example of the complete program used to generate the error

curve in the above example is presented in the Appendix to illustrate

the application of the concepts developed above. The language used

in this work was FLECS (35), a structured pre-processor for FORTRAN.

Translation of this code to FORTRAN would be a trivial matter for

anyone with a knowledge of programming. Structured programming (36)

was chosen for ease of coding, maintenance, and modification, and

for the clarity of the final result.

The programs were executed in an interactive environment on

Digital Equipment Corporation LSI-ll and LSI-11/23 processors (37)

under version 4 of operating system RT-ll (37).

2.5. NOnlinear Regression Analysis

After the nonideal system is simulated, the apparent rate constants

must be extracted from the transients. Although there are several

ways of accomplishing this, nonlinear regression is a generally ap-

plicable method which has been used extensively in this work. A

brief outline of the technique and its use follows.

There are many examples in electrochemistry and in chemistry in

general of the analysis of experimental data by linearizing the
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dependence of some measured quantity on an independent variable.

This linearized data can then be analyzed with graph paper and a ruler,

or with the more sophisticated linear least squares calculation.

This type of manipulation of the data is not always statistically

sound, as when the same variable ends up plotted on both axes of the

graph, and can lead to erroneous results (38). Additionally, approxi-

mations of certain functions often must be made so that the equations

may be reduced to a linear form. When these approximations do not

hold, the line displays curvature, rendering any calculated slope

and intercept meaningless. Even worse is the treatment of such

curved plots with polynomial least squares; the resulting virial co-

efficients have no physical significance whatsoever in most cases,

and the resulting equation cannot be used for any sort of reliable

extrapolation.

Nonlinear regression (39) is a numerical method which can be used

to fit an arbitrary equation to a set of data by adjusting certain

key parameters. Many algorithms have been used for the actual adjust-

ment of the parameters, but all attempt to minimize the overall resid-

ual. At the minimum residual, the values of the adjustable paramr

eters are those which make the equation best fit the data.

One is able to use the theoretically predicted equation to fit

the data as they are measured so as to avoid doubtful approximations

in the analysis procedure. Of course, if the data are not actually

described by the equation, the results of this method must be in

doubt. It is possible to get an indication of the goodness of fit

‘by examining the individual residuals along the curve for evidence
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of a systematic pattern (39). A perfect fit has all zero residuals,

but we usually see a random scatter around zero due to the random

errors of measurement. For a given fit to discriminate among

correct and incorrect models, the systematic deviations must be

large enough to be seen through the random scatter. Standard devia-

tions from regression can also be calculated and compared to get an

indication of which is the better fit.

In this work, we are purposely fitting nonideal, simulated data

to ideal models. In most of the cases, the systematic deviations

would not be clearly evident were the transients recorded at normal

measurement precision; however, the shape would differ enough that

errors in the adjusted parameters would still result.

Since the equations do not fit the data, a question arises about

the interval over which data is to be analyzed. Using different ranges

of data along the same nonideal transient will yield a variation in

the results. (The same will be true for analyzing a curved line with

linear regression.) For the following work, if an optimum time range

for analyzing transients from which to derive rate parameters has

been published, that range was used in these analyses. If no optimum

range has been specified, a range consistent with a reasonable ex-

perimentally accessable measurement time has been used.

The nonlinear regression itself was done by program CFT4A (40).

This routine, while not especially efficient, was developed specific-

ally for small computer systems and has been applied successfully for

'many chemical systems and experiments. No changes were made to the

calculational portion of the program, although some I/O and control

parameters were added for convenience. CFT4A provides for a separate
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subroutine which calculates (by any method) a set of data according

to user-provided equations, the set of independent variables, and

the current values of the adjustable parameters. This calculated

data set is then compared to the experimental set. The equations

in this routine can be simple algebraic equations, a complex integra-

tion routine, or even a digital simulation procedure.

2.6. Error Function Evaluation
 

The calculation of the ideal transients often requires the evalua-

tion of the exponential error function,

f(x) = exp(xz) erfc(x) (2.23)

When x is a real number, a rational function approximation developed

by Flanagan (41) was used, which is valid over a wide range of

arguments.

In equations describing the ideal transient for some electrochem-

ical methods, however, the argument of the function is a complex number.

A procedure has been published (42,43) for the evaluation of the so-

called complex error function,

g(z) = exp(-zz) erfc(iz), z = x + iy (2.24)

which is valid for arguments z in the first quadrant (x and y greater

than zero). The relationship between the function of interest, f(z),

and the calculable function g(z) is trivial:
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f(z) = g(iz) (2.25)

It is also necessary to extend the evaluation of g(z) to other

quadrants by means of the following relationships:

g(-Z) = 2 exp (-22) - 3(2) (2.26)

g(conj z) = conj g(—z) (2.27)

conj z = x - iy (2.28)

These equations allow the function f(z) to be calculated from

variations of the function g(z). Figure 2.6 displays the functions

which must be evaluated to obtain f(z) in the four quadrants.



47

Figure 2.6. Functions of g(z) to obtain f(z) in four quadrants.
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CHAPTER 3

POTENTIALPSTEP EXPERIMENTS FOR THE STUDY

OF IRREVERSIBLE ELECTRODE REACTIONS

48



3.1. Description of Experiment
 

A species which undergoes an irreversible electron-transfer re-

action can be conveniently studied with potential-step experiments

(44). In these methods, the electrode is in a solution of the

species under study at a potential such that no reaction occurs.

The potential is then stepped and held constant at the new value.

The electron transfer reaction starts at a rate determined by the

rate constant kf, establishing a concentration gradient. The measured

current decays as the concentration depletion region grows out into

the solution.

In chronoamperometry (10), this decaying current is followed as

a function of time, and the entire transient is used to determine the

rate constant at that potential. A series of experiments may be

performed with varying potential step sizes so that the potential de—

pendence of the rate constant can be evaluated. At large enough over-

potentials, though, the rates of the electron-transfer reaction are

so large that the decay is controlled entirely by the diffusion of

reactant through the solution. These diffusion-limited transients

contain no heterogeneous kinetics information, and the onset of dif-

fusion control defines the largest measurable rate constant under

those conditions.

Normal pulse polarography (45) involves the same series of

potential steps of increasing magnitude, but only the current flow-

ing at one specified time is recorded. If these current values are

49
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plotted against the applied potential (as is commonly done), a curve

of a similar shape as a d.c. polarogram results. The data in this

form can be analyzed to determine the dependence of the rate constant

on potential as well.

For a totally irreversible process

- kf

Ox + ne + Red (3.1)

the equation describing the response of the ideal current-time tran-

sient to a potential-step perturbation can be shown to be (44)

i = nFACkf exp(kgt/D) erfc(kftk/Dk) (3.2)

At the extreme of very large electron transfer rate constants, kf,

the rate of decay is a simple function of time, as given by the Cot-

trell equation (46),

1 - nFACDLi/ (195:5) (3 . 3)

As the above equations were derived assuming an instantaneous po-

tential—step perturbation, it is of interest to study the effect of

finite potentiostat risetime on the results of these experiments.

In addition to this instrumental nonideality, weak reactant adsorption

‘will.also be studied.



51

3.2. Analysis of Data from Potential-Step Experiments
 

Since all the terms in Equation 3.2 are known except the rate

constant and since it is possible to calculate decay transients given

values of the variables, nonlinear regression suggests itself as a

convenient method for extraction of the rate constant from the ex-

perimental current-time transient (47). If either the concentration

or the diffusion coefficient is uncertain, a two-parameter analysis

may be used. It is not possible, of course, to vary all three

parameters since there would be an infinite number of possible solu-

tions.

Other methods of analysis have been used for the extraction of

rate constants from these data which involve linearized forms of Equa-

tion 3.2 (48,49). These analyses are limited to particular ranges

of arguments ("large", "small") of the erfc(x) term. Because non-

linear regression is not subject to either the limitations or the

approximations of these linear analysis methods, it was the tech-

nique used for the analysis of the chronoamperometric transients in

all the following work.

A Laplace plane analysis has also been suggested (50) for deriva-

tion of values of rate constants from chronoamperometric decay tran-

sients. Its main advantages are that it is not necessary to calcu-

late the exponential error function complement term, and that the

transformed data are linear, so that a simple linear least squares

treatment will suffice. Since it is possible to calculate this func—

tion and to perform nonlinear regression quite routinely, there seems

to be no advantage in transforming the data to the Laplace plane
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for analysis.

An optimal time range for the kinetics analysis of irreversible

transients has not appeared in the literature. Recording data at

100 us intervals is feasible during the experiment if a high-speed

transient recorder or a computer is used (51). Twenty current values

recorded at this rate or at a rate 10 times slower (2 ms or 20 ms

total time) were used in the following analyses. If, however, ob-

viously nonideal features (iggg, a peak in the chronoamperometric

decay curve) were observed at the beginning of the transient, the

first several points were not used in the analysis.

An alternative method of extracting rate constants from this type

of data is to use the Oldham-Parry (48) method, in which the value

of the current at a particular sampling time is compared to what it

would have been had the transient been purely diffusion limited. This

method is generally used when the data are collected as a pulse polaro-

gram, where one simply takes the ratio i/i11m for currents on the

rising part of the wave.

Analysis of data by the latter method has several advantages.

The concentration terms cancel out; uncertainty in this value does

not effect the derived values of the rate constants. Additionally,

measurements are easily carried out using pulse polarography, as

many commercial instruments include this technique. The disadvan-

tages, however, seem to outweigh these advantages in many instances.

Each rate constant is generally derived from only two measurements

of the current, and the derivation of any value depends on the cor-

rect measurement of the limiting current, i Often, this value
lim°
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is not accessible for some reason, such as another electrode reaction

obscuring the region of interest of the wave, or possibly because of

instrumental nonidealities. This will be discussed later.

Chronoamperometric analysis, on the other hand, bases its deriva-

tion of the rate constant on many current measurements along a single

transient. Adjusting the concentration or the diffusion coefficient

simultaneously costs only one degree of freedom; this is easily com-

pensated for by the large number of experimental points. No separate

measurement of the limiting current is needed, so that access to this

region of the polarogram is not necessary. The disadvantage of

chronoamperometry is the somewhat more complicated instrumentation

needed to record the current-time transient. The Oldham—Parry

analysis can be performed on a hand-held calculator while nonlinear

regression analyses require a computer to implement, but this is not

a real advantage to the practicing worker as a computer system is

often utilized to perform the experiment, and subsequent analysis of

the data can easily be performed on-line.

Tyma, ggflgl. (21) have compared the performance of the pulse

polarographic analysis and the chronoamperometric analysis for fast,

irreversible electrode reactions. Both procedures yielded essentially

identical values of the rate constant at each potential, but it was

'noted that it was easier to spot nonideal conditions just by examin-

ing the shape of the polarograms The methods had roughly the same

maximum accessable rate constant. Although evidence of nonideal condi-

tions was noted in this study, no attempt to analyze any apparently

nonideal (peaked) polarogram was made.



54

Due to the fact that the nonlinear regression analysis of chrono-

amperometric transients seems to provide the most statistically re-

liable method of deriving rate constants, the following work will

focus on the effect of various nonidealities when the data is analyzed

in this manner. The effect of the nonidealities on the shapes of pulse

polarograms and the rate constants derived from them will be examined

as well.

3.3. Unique Aspects of Simulation

The simulation of irreversible chronoamperometric decay transients

and normal pulse polarograms is straightforward; the method outlined

in Chapter 2 was used directly.

The model chosen for the applied potential waveform was a simple

exponential described by a time constant:

E - [1 — exp(-t/T)] + Einit (3-4)
Estep

The actual applied potential profile of a fast potentiostat has

been determined (21). The waveform was found to be described by

a double exponential curve modified by a triangular deviation super-

imposed on the rising part of the waveform. However, a single ex-

ponential form also provides an acceptable fit and is more suitable

for use here, in that only one parameter is needed to describe the

risetime characteristics, rather than four for the experimentally

determined profile.

Since the potential is changing throughout the risetime, the
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potential dependence of the rate constant k must be considered:

f

anF
kf kstd exp[- RT (E - Estdn (3.5)

The equation used in the simulations produced a rate constant as a

function of time given a potential step size, the rate constant at

the final potential, and the time constant,

k =- k EXP[% E exp<-u/1-)] (3.6)
f f E, step step

Thus, for every new time period (every At), a new rate constant

is calculated to reflect this finite potential risetime.

3.4. Effect of Finite Potential Risetime

The distortions in the chronoamperometric transient produced as

a result of non-ideal potential control are illustrated in Figures

3.1a and 3.1b. Figure 3.1a displays the effect when the potentio-

stat time constant T is short enough so that the potential is close

to the desired potential before the current is first sampled. As

expected, the current is too high at every point along the curve (and,

in fact, will never exactly meet the ideal line). Figure 3.lb shows

the distortions produced when T is large enough that the potential

is not yet near the control potential when the current is first

sampled. Here we see a steep rise in current as the potential ex-

ponentially approaches the final potential, and then the usual decay,

with currents larger than ideal at every point.
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Figure 3.1. Chronoamperometric transients for irreversible reac-

tions illustrating the effects of potentiostat risetime, with kf -

0.3 cm/s, C - 1 mM, D - 1x10.5 cmZ/s, Estep - -500 mV. Curve 1:

ideal system. Curve 2: T - 20 us. Curve 3: T - 50 us.
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A comparison of the shapes of the ideal and nonideal transient

responses suggests that a rate constant derived from the data on the

basis of Equation 3.2 will appear to be larger under finite risetime

conditions. In extreme cases, we might even see decay transients

which appear steeper than pure diffusion control would allow. Any

attempt to derive a rate constant under these conditions using the

conventional diffusion model will surely meet with failure. Addi-

tionally, any attempt to analyze transients with sampling times so

short that a peak appears cannot be expected to yield a valid value

for the rate constant.

It is important to consider the effect that the time range over

which the data are analyzed has on the resulting values of the rate

constant. Although the effect of the nonideality upon the transient

diminishes sharply with time, the sensitivity of the apparent rate

constant to smaller variations in the shape of the transient in-

creases with time. It is not intuitively obvious which factor, if

any, will dominate, and whether the most reliable rate constant will

be derived from the short or from the long time range.

A set of chronoamperometric transients was simulated with various

potentiostatic time constants for a number of rate constants. Table

3.1 shows the error in the rate constants derived from these tran-

sients by means of one-parameter nonlinear regression analyses for a

time range of 2 ms (100 us sampling time), and the same results

when the current is sampled at 1 ms intervals over 20 ms.

Several observations can be made. First, and most obvious, the

error in the rate constant increases as the time constant increases.
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Table 3.1. Error in Rate Constants Derived3 from Chronoamperometric

Transients for Irreversible Reactionsb Due to Finite Po-

tentiostat Risetime.

 

 

 

 

kf (cm/s)

T (us) 0.03 0.1 0.3 1.0

Short Time Rangec g

0.5 -—- +0.2Z +1.0% +7.5% E

l --- 0.4 2.0 16.7 F

2 --- 0.8 4.0 43.7

5 --- 2.0 11.1 f

10 --— 4.2 27.1 f

20 +0.9Z 7.0 73.1 f

50e 3.1 18.8 f f

Long Time Ranged

0.5 --- +0.12 (+0.62 (+6.02

1 --- 0.2 1.2 13.2

2 --- 0.4 2.5 33.3

5 --- 1.1 6.8 f

10 --- 2.2 14.9 f

20 +0.72 4.4 37.7 f

50 1.9 12.2 f f

aOne-parameter nonlinear regression.

bC - 1 mM, D a l x 10"5 cmz/s, E a -500 mV.
step

c100 us sampling time, 2 ms time range.

dl ms sampling time, 20 ms time range.

e

fAnalysis failed to yield reasonable value of rate constant.

First one or two points dropped before analysis.
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Larger time constants produce more severe distortions in the shape of

the transients, hence, larger errors. Second, the relative error is

greater for larger rate constants at a given time constant. A come

parison of the results for the two time ranges shows that there is

a slightly larger amount of error for the transients sampled at short

times. Although it is not a large difference, some advantage is

gained by using a longer sampling time. ;

Other results show that the error in the rate constant due to these

instrumental nonidealities does not depend on the concentration. For

values of reactant concentration ranging from 0.1 to 10 mM, the error

was found to be constant, even though the current varied over 2 orders

of magnitude.

It was also noted that the size of the potential step has only a

mild effect upon the value of the rate constant derived from the

nonideal transient for a given risetime. For example, analysis of a

system with T - 2 us and kf - 0.3 cm/s yielded rate constants of 0.3122

and 0.3156 for a 500 mV and a 1000 mV potential step, respectively.

In an actual experiment, of course, the time constant 1 would depend

on the magnitude of the potential step.

It is reasonable to consider that, since the potential does not

reach the desired value until some point after the beginning of the

experiment, the rest of the transient would be "time-shifted" so that

the apparent time zero occurs a short period after the potential

begins to rise. If this were the case, the equation which describes

the transient could be written

1 , nFACkf exp[t§(t-Ac)/D]er£c[kf(c-At)*/Dk] (3.7)
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A two-parameter nonlinear regression analysis (varying kf and At)

‘might be expected to yield a more accurate value of the rate constant

than could the aforementioned one-parameter analysis. Table 3.2

compares values of rate constants derived from Equations 3.2 and 3.7

for given time constants and rate constants over both the long and

short analysis time ranges.

These results indicate that an improvement in the accuracy of kf

is indeed obtained by the two-parameter analysis in most cases; the

correction is, however, not perfect, and varies with experimental

parameters. For larger rate constants (0.3 and 1.0 cm/s) in the 20

ms transients, hardly any effect is seen. The greatest improvement

is found at smaller rate constants and shorter analysis time ranges.

The correction is not perfect because the effect of finite rise-

time is not simply to "time-shift" the transient to later times; the

concentration gradient begins to form, and the surface concentration

begins to change, as soon as the potential rises enough to allow the

electrode reaction to proceed at a significant rate. Thus, Equation

3.7 is inadequate because it implies an infinitely fast potential

step at some time At after time zero, and an unperturbed system prior

to the step, which is clearly not the case here. An examination of

Figure 3.1a or 3.1b shows that the difference in time values at a

given current value varies with time throughout the transient.

It does not seem likely that the "time-shift" analysis will be

of much utility to the electrode kineticist. The greatest gains

in accuracy are obtained under conditions such that the error in the

apparent rate constant is small anyway. Additionally, the effect of
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Table 3.2. Comparison of Results of Standard and "Time-shift" Analysesa

of Chronoamperometric Transientsb with Finite Risetime.

 

 

  

 

Error in kf

Short Time Rangec Long Time Ranged

T (us) kf(cm/s) Standard Time-Shift Standard Time-Shift

2 0.1 +0.78% +0.02% '+0.422 +0.04%

0.3 4.1 0.4 2.5 2.3

1.0 43.7 42.1 33.3 31.4

5 0.1 2.0 0.06 1.0 0.08

0.3 11.1 1.4 6.7 6.3

10 0.1 4.2 0.18 2.2 0.15

0.3 27.1 4.2 14.8 15.2

20 0.03 0.92 0.06 0.73 0.01

0.1 7.0 5.9 4.4 0.30

0.3 73.1 29.4 37.8 38.3

 

aStandard analysis: one-parameter (kf) nonlinear regression. "Time-

shift" analysis: two-parameter (kf and At) nonlinear regression.

b 5
cm2/s, Estep I -500 mV.

c100 us sampling time, 2 ms time range.

d

c-1mM, D=1x10'

1 ms sampling time, 20 ms time range.
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such an empirical correction would be difficult to predict under

actual experimental conditions, where finite potential risetime is

not the only nonideality encountered.

3.5. Effect of Weak Reactant Adsorption

The effect of weak adsorption on the shape of the chronoampero-

metric transient depends on the relative degree of adsorption before

and after the potential-step perturbation. Figure 3.2a shows the

deviation from ideality for k - 0.1 cm/s when there is an equal amount
f

of adsorption before and after the step. Currents are greater for all

times; this is a consequence of the surface concentration enhance-

ment, and the resulting faster reaction rate. Figure 3.2b displays

the shape of the transient which results under differing degrees of

adsorption before and after the step, again with kf - 0.1 cm/s. When

there is adsorption at the initial potential, but none at the final

potential, currents are now even higher than the previous case at short

times because the adsorbed species which are released at the onset

of the potential step enhance the concentration at the surface and

reduce reactant depletion in the diffusion layer. The effect of this

"extra" reactant is seen throughout the transient because of the

cumulative response of the concentration gradient. The opposite ef-

fect is seen when the reactant only adsorbs on the electrode after the

step. The current is seen to be too small at short times because the

additional flux from the diffusion layer needed to "coat" the surface

depletes reactant in the vicinity of the electrode. Once the ad-

sorbed layer is completed (which is a diffusion-controlled process
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Figure 3.2. Chronoamperometric transients illustrating the effects

of weak reactant adsorption, with parameters as in Figure 3.1,

except kf - 0.1 cm/s. Curve 1: ideal system. Curve 2: Kid a

5
a _ 0 1 a -5 B 'Kad 2x10 cm. Curve 3. Kad 2x10 cm, Kad 0. Curve 4.

5
1 _

Kad = 0, Kad = 2x10 cm.
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because of the rapidly attained equilibrium), the reaction proceeds

with the enhanced surface concentration, which will tend to increase

the total current. This effect becomes pronounced at longer times,

when the current is seen to exceed the ideal value.

In summary, the chronoamperometric decay is steepest when the

reactant is adsorbed before the potential step (but not after), and

mildest when it is adsorbed only after the perturbation. One would

expect larger apparent rate constants from steeper decay curves; this

is indeed observed upon analysis of these nonideal transients.

Some chronoamperometric transients were simulated with various

values of kf and adsorption coefficients. The results of the non-

linear regression analyses of these transients according to the ideal

decay equation (Equation 3.2) are given in Table 3.3. Somewhat greater

errors in the rate constant are observed for the short-time analyses,

but the difference is not large. The major difference between the two

cases, in fact, is that the short time results tend to conform to the

earlier, intuitive analysis (112;, the concept of the rate of decay

being directly proportional to the rate constant) than do the long-

time results. At longer times (and higher rate constants) the derived

values of kf are found to be the largest when the degree of adsorp-

tion is equal before and after the step.

This variation in the results as a function of the time period

over which the transient is analyzed is due to the fact that the

ideal chronoamperometric decay equation does not exactly fit the

shape of the decay when adsorption is present for any value of kf.

It was seen in Figure 3.2b that after a sufficient period of time, the
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Table 3.3. Error in Rate Constants Derived3 from Chronoamperometric

Transientsb Due to Weak Reactant Adsorption.

 

Adsorption Condition

 

 

Before Step After Step Before + After

kf (cm/s) only‘2 only 3 tepe

Short Time Rangef

0.01 +15% -12.8% +2.02

0.03 19 -12.3 5.6

0.10 34 -1l.6 22

0.30 86 - 2.6 190

Long Time Range8

0.01 +6.01 - 3.9% +2.02

0.03 9.0 - 3.0 6.3

0.10 18 + 3.0 26

 

a
One-parameter nonlinear regression.

5 5 cmzls, E = -500 mv.c-1mM, 0a1x10'
step

cK1 - 2 x 10"5 cm, K - 0 cm.
ad ad

1 -5
dKad - 0 cm, Kad - 2 x 10 cm.

i -5
8K,ad - Kad - 2 x 10 cm.

f100 us sampling time, 2 ms time range.

81 ms sampling time, 20 ms time range.
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current in the nonideal experiment becomes higher than the ideal

value. If the analysis looked only at this region of the curve,

one might indeed expect a derived rate constant to be too high under

these conditions. That the derived rate constants are found to be

highest at equal reactant adsorption before and after the step can

be understood upon observation of Figures 3.2a and 3.2b. Although the

current begins much higher in Figure 3.2b, it returns much faster to

the ideal value than does the transient in Figure 3.2a, where equal

adsorption before and after is present. At longer times, the devia-

tion from ideal is smaller when there is adsorption only before the

step, which would account for the results in Table 3.3.

A more detailed view of the error in the derived rate constant as

a function of the adsorption coefficients is given in Table 3.4. The

complete variation for a typical rate constant of 0.1 cm/s analyzed

over a 2 ms time range is shown. It is obvious that more error is

produced by more reactant adsorption, although the error becomes for-

tuitously small for the conditions where the derived rate constant

goes from too high to too low. This point at which the deviations

exactly compensate to yield the correct rate constant seems to depend

on too many factors to isolate.

Another question which could be asked is whether the error in the

rate constant depends only on the amount of adsorbed reactant, F,

or on the ratio of adsorbed species to bulk species, Kad' A series

of transients were generated in which the bulk concentration and ad—

sorption coefficients were varied in such a way as to keep the surface

excess constant. The resulting rate constants showed wide variation
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Table 3.4. Error in Rate Constants Derived3 from Chronoamperometric

Transientsb with Varying Amounts of Weak Reactant Adsorp-

 

 

 

tion.

Kad (cm)

Kid (cm) 0 1 x 10"6 3 x 10'6 1 x 10'5 2 x 10‘5

0 0 -0.42 -1.3z -5.22 -11.62

1 x 10"6 +1.42 +1.0 +0.2 -3.7 -1o.2

3 x 10‘6 4.3 3.9 3.1 -0.7 - 7.4

1 x 10’5 15.2 15.0 14.3 +10.7 + 3.4

2 x 10'5 33.6 33.7 33.4 30.2 22.0

 

aOne-parameter nonlinear regression.

b100 us sampling time, 2 ms time range. k a 0.1 cm/s, C = 1 mM,

-5 2 f
D I l x 10 cm /s, E I -500 mV.

step
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in the amount of the error, with low concentrations and high adsorp-

tion coefficients producing the largest error. Another series of

transients were simulated again with varying concentration, but with

constant adsorption coefficient (care was taken not to exceed a sur-

face excess greater than about 102 surface coverage). The rate

constants derived from these transients were identical, showing that

it is the adsorption coefficient, and not the surface excess itself,

which dictates the amount of error in the derived rate constants.

This is expected given the linear nature of the adsorption isotherm.

3.6. Effect of Coupled Risetime/Adsorption
 

Weak reactant adsorption and finite potential risetime combine to

produce transients which yield rate constants that are in error by an

amount which is somewhat greater than would be expected assuming the

individual contributions were additive. There seems to be no general

rule, however, to allow the prediction of the extent of this coupling.

Table 3.5 shows the effects of an increasing risetime on each of

the three adsorption cases, in addition to that when no adsorption

is present. As expected, increasing risetime increases the error in

the rate constant, but to a somewhat greater extent than when no ad-

sorption is present. The same trends are seen for analyses in both

time ranges.

It is interesting to note the compensation of errors produced by

finite risetime (which yields positive errors) and the case in which

the reactant is adsorbed after the application of the potential step

(negative errors). The adsorption is seen to be the controlling
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Table 3.5. Error in Rate Constants Derived3 from Chronoamperometric

Transientsb Due to Both Finite Risetime and Weak Reactant

Adsorption.

 

Adsorption Conditions

 

T (us) None Before Onlyc After Onlyd Before and Aftere

 

Short Time Rangef

0 0 +342 -1l.6Z +22%

5 +22 43 -11.0 24

10 4 51 —10.3 28

20 7 64 - 9.8 32

Long Time Range8

0 0 +18% +32 +26%

5 +12 22 3 28

10 2 25 4 30

20 4 30 5 34

50 12 48 12 50

 

a

One-parameter nonlinear regression.

kf - 0.1 cm/s, C 1 mM, D l x 10 cm ls, Estep . —500 mV.

°1<1 - 2 x 10'5 cm, K - 1 x 10'11 cm.
ad ad

1 -11 -5
dKad 1 x 10 cm, Kad - 2 x 10 cm.

1 -5
eKadIKadIleO cm.

f
100 us sampling time, 2 ms time range.

81ms sampling time, 20 ms time range.
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factor, with the error in the derived rate constant changing only

slightly with increasing risetime. It is possible that the depletion

of the solution near the electrode makes the experiment insensitive

to the exact risetime conditions.

The opposite adsorption scheme, in which the reactant is released

into the solution at the time of the step, shows the largest sensitivity

to the potential risetime, probably due to the opposite factors which

are Operating above. When the adsorption coefficients remain constant

throughout the experiment, the errors induced by each nonideality

are almost additive.

3.7. Effect of Nonidealities on Normal Pulse Polarography

Finite potential risetime and weak reactant adsorption can have

a clearly visible effect on the shapes of pulse polarographic waves

when the current is sampled at short enough times. Two things need

to be considered when data is collected or displayed in this format,

the first and more important of which is the apparent value of the

limiting current. The kinetics analysis of the polarogram depends

on this value, as do electroanalytical determinations. The second

thing to be considered is the actual shape of the wave; deviations

could yield nonlinear plots of in kf Kg, potential (Tafel plots) or

incorrect values of alpha, the transfer coefficient, as well as simple

errors in the rate constant.

Figure 3.3a is a comparison of an ideal normal pulse polarogram

sampled at 100 us and the corresponding polarogram which includes the

influence of a finite potential time constant of 20 us. The most
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Figure 3.3. Pulse polarograms illustrating the effects of

5 cmzls.finite risetime, with a - 0.5, c - 1 mM, D - 1x10“

Curve 1: ideal system, 100 us sampling time. Curve 2: T I

20 us, 100 us sampling time. Curve 3: ideal system, 1 ms

sampling time. Curve 4: r I 20 us, 1 ms sampling time.
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noticeable feature in the nonideal polarogram is the presence of a

peak, similar in appearance to d.c. polarographic maxima. This peak

is disturbing because the current does not decay to the true dif—

fusion-limited value (or even to a constant value) even at potentials

up to 500 mV or more past the peak. Additionally, the current sampled

along the wave is too high beyond about one third of the way up the

wave.

These deviations are very sensitive to the sampling time at which

the polarogram is recorded. Figure 3.3b shows the identical system

and risetime of the previous figure, except that the sampling time is

1 ms. Although the peak can still be discerned, the maximum error

is only about 22, compared to about 35% when sampling at 100 us.

There is much less error in the rising part of the wave as well.

A problem that arises when one attempts to derive rate constants

from these nonideal polarograms is that it is unclear what value

of the limiting current to use, since no constant diffusion-limited

value can be obtained reasonably near the wave. A comparison between

the two data analysis methods for the finite risetime case would be

of interest, though, so it was decided to use the current several

hundred millivolts from the wave as the limiting current in the

analysis.

Table 3.6 shows the results of the pulse polarographic analysis with

nonideal currents sampled at 100 us and the results of the correspond-

ing chronoamperometric analyses. One can see that at the lower rate

constants there is more error induced by the polarographic analysis,

while the reverse is true for larger rate constants. One might
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Table 3.6. Comparison of Results from Pulse Polarographic and Chrono-

amperometric Analyses of Transientsa with Finite Risetimeb.

 

 

 

 

Error in kf

Pulse c Chrono-

Estep (mV) kf (cm/s) Polarographic amperometric

-450 0.0066 -9.12 O

-500 0.017 -5.9 0

-550 0.045 -4.4 +2.22

-600 0.12 0 -8.3

-650 0.30 +3.3 30

3C I 1 mM, D = l x 10-5 cm2/s

bT I 20 us.

cSampling time I 100 us, Oldham—Parry analysis.

leO us sampling time, time range 2 ms. One-parameter nonlinear re-

gression.
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expect larger errors from the OldhamrParry analysis (48) simply be-

cause the deviations in the transient are highest at the shortest

times; the range of sampling times for the chronoamperometric analysis

extended to 2 ms, while the polarographic analysis was limited to the

values at 100 us. Additionally, the use of a limiting current value

which is too high will cause errors in relatively undisturbed regions

of the wave. At higher rate constants, however, there seems to be a

compensation effect. The measured current and the limiting current

are in error by roughly the same amount, so that the i/i11m value is

.closer to ideal, and less error in the rate constant results.

Weak reactant adsorption also produces peaks in normal pulse

polarograms. Figure 3.4a displays an ideal polarogram sampled at

100 us and one in which the reactant is adsorbed equally before and

after the potential step. Note that the maximum has a different shape

than that due to potential risetime; its maximum value comes at lower

overpotentials, and, more importantly, the current falls to a true

diffusion-limited value one or two hundred millivolts beyond the peak.

Electroanalytical applications of normal pulse polarography will not

suffer from this nonideality (unless the limiting region of the wave

is not accessible for some reason), but errors will arise for elec-

trode kineticists since the current is considerably different from

ideal along all but the foot of the wave. As with the finite rise-

time case, the effect of the nonideality falls off rapidly with in-

creasing sampling time. Figure 3.4b illustrates this point, showing

the same system as in Figure 3.4a except that the sampling time was

1 ms.
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Figure 3.4. Pulse polarograms illustrating the effects of reac-

tant adsorption, with a I 0.5, C I 1 mM, D I 1x10.5 cm2/s. Curve

1: ideal system, 100 us sampling time. Curve 2: Kid I Kad I

2x10.S cm, 100 us sampling time. Curve 3: ideal system, 1 ms

sampling time. Curve 4: Kid I Kad I 2x10-5 cm, 1 ms sampling time.
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It is interesting to note the effects of varying amounts of ad-

sorption at the initial and final potential. Figure 3.5 shows an ideal

polarogram, one in which there is adsorption only at the final poten-

tial, and one where adsorption is present only before the step. The

latter curve starts out with currents which are too low, the former

has larger than ideal currents at the foot of the wave. These curves

converge towards the top of the wave to yield identical, somewhat high

responses, although with smaller peaks than the equal adsorption

case.

Since the true limiting currents are accessible for these weak

adsorption polarograms, a kinetics analysis may be carried out to

determine the amount of error in the rate constants derived from the

nonideal waves. Table 3.7 lists the rate constants derived from these

polarograms at selected potentials along the wave, as well as the cor-

responding values from the chronoamperometric analysis.

At lower rate constants, the error is clearly larger for the pulse

polarographic analysis when the adsorption is not equal before and

after the step. At equal adsorption conditions, very little difference

exists between the methods. At higher rate constants, this difference

becomes negligible. It is easy to understand why this occurs. The

pulse polarographic analysis uses only the current sampled at 100 us

to estimate the rate constant, while the chronoamperometric uses that

point plus many others at longer times. It has already been shown

that the deviations from ideal are largest at short times, so an

analysis based only on the shortest time cannot be expected to yield

as reliable a value as would one based on many data at longer times.
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Figure 3.5. Pulse polarograms illustrating the effects of reac-

tant adsorption, with a I 0.5, C I 1 mM, D I 1x10.5 cm2/s, 100 us

sampling time. Curve 1: ideal system. Curve 2: Kid I 2x10.5 cm,

.1. _ -5
Kad I 0. Curve 3. Kad 0, Kad 2x10 cm.
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Table 3.7. Comparison of Results from Pulse Polarographic and Chrono-

amperometric Analyses of Transients with Weak Reactant

 

 

 

 
  

 

 

Adsorption.

Error in kf

Adsorption Conditions

Before Onlyb After Onlyc Before and Afterd

e f e f e f

E (mV) kf (cm/s) PP CA PP CA PP CA

-450 0.0066 +32% +152 -332 -122 0 +2Z

-500 0.017 35 18 -29 —12 0 6

-550 0.045 38 22 -31 ~13 +6.62 8.9

-600 0.12 42 38 -28 -12 17 25

-650 0.30 83 87 -13 - 3 160 190

aC I 1 mM, D I l x 10"5 cm2/s.

bKi = 2 x 10.5 cm, K a l x 10_11 cm.

ad ad

cxi =- 1 x 10"11 cm, K - 2 x 10'5 cm.
ad ad

d i f -5
Kad Red 2 x 10 .

e01dham-Parry analysis, 100 pa sampling time.

f1 parameter nonlinear regression, 100 us sampling time 2 ms time range.



79

An analysis of polarograms sampled at 1 ms, although the largest

accessible rate constant was not as high, was found to produce sig-

nificantly less error than the 100 us waves. The error observed was

still fairly high, averaging around 1002, and followed the same trends

as the shorter time analysis. The errors were roughly comparable to

the chronoamperometric analyses; the current at 1 ms was about in the

middle of the current-time transients which were analyzed.

Thus, it appears that no increases in accuracy can be gained

through the use of the pulse polarographic over the chronoamperometric

data analysis when weak adsorption is present. Both procedures seem

to suffer from roughly the same relative amount of error in the rate

constant under these conditions.

3.8. Correlation of Model with Experimental Data

The types of deviations noted in the previous sections have been

observed experimentally in this laboratory (21). It was of interest,

therefore, to try to correlate this model of finite potentiostat

risetime and weak reactant adsorption with these data in an attempt

to derive meaningful values of the rate constant from apparently non-

ideal transients when ideal analyses are unable to do so.

A set of chronoamperometric transients was available for Cr(OH2)g+

reduction on a mercury electrode (21). When displayed in pulse polaro-

graphic format, a maximum was observed in the wave at short sampling

times (less than about 500 us). These data were analyzed with the

ideal chronoamperometric (nonlinear regression) analysis and by the

pulse polarographic (OldhamrParry) method. As can be seen in
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Table 3.8, at rate constants above about 0.16 cm/s, points deviated

considerably from the Tafel line extrapolated from smaller rate

constants, suggesting a failure of the analysis to derive a meaningful

value of the kinetics parameter. Below this level, however, there was

good agreement between rate constants produced by the two analysis

methods.

An alternative analysis method was then used to attempt to extend

the range of accessible rate constants under these nonideal conditions.

Instead of the ideal equation, a parallel simulation routine was used

as the calculation subroutine in the nonlinear regression program.

However, there are now four unknowns in the equation: the rate

constant, the risetime of the potentiostat, and the adsorption co-

efficients before and after the application of the step. Since the

potential was stepped from a point at which the adsorption coefficient

is predicted to be quite small (see Chapter 1), it was assumed that

any diffuse layer adsorption at this potential would be negligible,

(allowing one of the unknowns to be eliminated. The results of the

analysis show very good agreement with the two ideal analyses at the

lower rate constants; at higher values, however, the derived values

are considerably closer to the extrapolated line than either of the

other two methods, as shown in Figure 3.6. Indeed, correct rate

constants up to 1.47 cm/s seem to have been extracted from these

data. There was, however, some problem with two of the intermediate

transients; the reason for this is unknown. Table 3.9 contains the

resulting values of all three of the parameters. Although the rate

constant is derived successfully, there seems to be little sense to
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Table 3.8. Rate Constants for Cr%:§) Reduction Derived by Pulse Pol—

arographic and Chronoamperometric Analyses.

 

 

 

kf (cm/s)

Pulse Chrono-

E (mV) Polarographic amperometric

-975 0.0109 0.0112

-1000 0.0180 0.0189

-1025 0.0355 0.0329

-1050 0.0535 0.0560

-1075 0.0945 0.0968

-1100 0.15 0.185

-1125 a 1.464

-1150 a 0.589

-1l75 a b

-1200 a b

 

aCurrent was too close to diffusion-limited value to obtain meaningful

results.

bAnalysis failed to yield meaningful results.
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Table 3.9. Results of Simulation Analysis of Cr?:q) Data.

 

Derived by Analysis

 

 

E (mV) kf (cm/S) T (118) Kad (cm)

-975 0.0112 11.5 0

-1000 0.0190 31.5 2.5 x 10‘6

-1025 0.0331 8.6 1.8 x 10'6

-1050 0.0554 33.9 7.0 x 10'6

-1075 0.0955 20.7 11 x 10'6

-1100 0.168 20.7 180 x 10"6

-1125 0.494 11.2 0

-1150 1.321 9.4 139 x 10‘6

-1175 0.904 47.5 0

-1200 1.47 52.0 12 x 10'6
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be made of the series of adsorption coefficients and risetimes. It

is possible that either nonideality can account for the deviations

in the transients; one factor may dominate on the basis of trivial

differences in the curves.

It is also possible that the exact shape of the transient is

extremely sensitive to the shape of the profile of the applied poten-

tial. A single exponential model might not be sophisticated enough

to adequately fit these data. If this is the case, the actual applied

potential profile can be recorded together with the current response

to eliminate errors due to the incorrect choice of a risetime model.

Clearly, much more remains to be done in this work. The results

of these preliminary experiments are promising, but further systems

need to be studied under more well-defined conditions. The major

drawback to the use of this method is the long computation time re-

quired for this type of analysis - approximately three orders of

magnitude longer than the ideal nonlinear regression analysis. This

is clearly not the method of choice for data on which the ideal analyses

perform well.



CHAPTER 4

POTENTIAL-STEP EXPERIMENTS FOR THE STUDY OF

QUASI-REVERSIBLE ELECTRODE REACTIONS
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4.1. Description of Experiment

The potential-step experiment for quasi-reversible reactions (34)

is analogous to that described in Chapter 3 except that the chemical

system to which it is applied now includes a back reaction component:

_ kf

Ox + ne 2 Red (4.1)

“6

Both large and small potential steps may be used to study the kinetics

of this type of process.

In small-step experiments (10), both the oxidized and reduced

species are present in the solution while the electrode is maintained

at the equilibrium.potential. The applied potential is suddenly

changed by several millivolts, and the current which flows at this

new potential is monitored.

Large-step experiments (10) start with only one species of the

redox couple in a solution in which the electrode is held at a poten-

tial such that this species is strongly favored on the basis of the

Nernst equation. A potential step of several hundred millivolts is

applied, causing the reaction to proceed. The current is again moni-

tored as a function of time. The results of these large-step experi-

ments can be treated in the same way as the small-step experiments,

or alternatively displayed and analyzed in the form of a normal pulse

polarogram.

The equation which describes the current response of a quasi-

86
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reversible system to either a large or small potential-step perturba-

tion is (34):

— 2 2 .1 - nFA (kaOX-kbcred)exp(kft/Dox+kbt/D )
red

erfc(kftk/DEX-t-kbtk/Difed) (4.2)

Note that when kstd is very small, the reverse reaction terms drop

out, yielding the equation for the irreversible case.

This equation describes the ideal experiment in which there is

no reactant adsorbed at the electrode surface, and in which the

potential rises instantaneously to the new value. It is of interest,

therefore, to determine the effects of reactant adsorption and finite

potentiostat risetime on rate constants derived from these potential-

step experiments, both in chronoamperometric small- and large-step

procedures, and to compare the large-step chronoamperometric data

treatment to that of normal pulse polarograms.

4.2. Conventional Data Analysis

As was the case for irreversible redox systems, nonlinear regres-

sion on Equation 4.2 is an obvious method with which to derive hetero-

geneous rate data. The rate information of interest is contained in

the standard rate constant, from which kf and kb can be derived.

Thus, it is possible to perform a one-parameter nonlinear regression

analysis of the current-time transient to derive a value of the

standard rate constant. Since the experiment is (ideally) carried
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out at constant potential, the forward or reverse rate constant could

be obtained instead. (This is not the case for coulostatics and gal-

vanostatic double pulse experiments in which only the standard rate

constant is accessible.)

Normal pulse polarography (52) can also be performed on quasi-

reversible systems. Now, however, the OldhameParry analysis (48)

must be modified to include the effect of the back reaction (46).

Since only forward rate constants are derived through this procedure,

the Estd of the redox couple must be known in order to determine

the standard rate constant (this is also the case for the small-step

nonlinear regression analysis).

The advantages and disadvantages of each type of analysis as

described in Chapter 3 apply for quasi-reversible reactions as well.

4.3. Unique Aspects of Simulation

The simulation of quasi-reversible systems was a straightforward

extension of the irreversible simulations described in Chapter 3.

A single exponential was used as the applied potential waveform, and

the Henry isotherm was applied independently to both the oxidized and

reduced form of the species.

In small-step experiments, it is not necessary to consider a po-

tential dependence of the adsorption coefficients, so that values of

Kox and Kred at the equilibrium potential are sufficient to describe

the adsorption. The large-step experiments, however, need values of

the adsorption coefficient for each Species both before and after the

step as these parameters exhibit a dependence on potential.
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The parallel simulation method was used for simulations of small-

step experiments. Conventional simulations were used for pulse pol-

arographic and large-step experiments because the original goal of these

calculations was simply to observe the morphology of the wave. In

determining the error in rate constants derived from these transients

and polarograms, the values of the rate constants obtained by the same

analysis procedure on ideal and nonideal transients were compared to

help eliminate the effects of simulation error.

4.4. Effect of Risetime on Small-Step_Chronoamperometry

Finite potentiostat risetime produces very similar effects in the

shape of small-step chronoamperometric transients from both ir-

reversible and quasi-reversible systems. Figure 4.1 shows an ideal

transient together with one generated with a potential risetime con-

stant of 50 us. Because of the relatively long risetime, the poten-

tial has not yet reached the desired value by the time the current

is first sampled; the shape of the nonideal transient at short times

illustrates this. Once the potential is at the desired value, the

nonideal transient is larger than ideal, and will remain larger be-

cause the slow potential rise causes the diffusion layer around the

electrode to be less depleted than it would have been had the experi-

ment been ideal.

A series of small potential-step experiments was simulated using

various standard rate constants and potential risetime constants.

Two time ranges were used, as for the irreversible systems. The

errors in the rate constants derived from these simulated transients

using a one-parameter nonlinear regression analysis are listed in
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Table 4.1. These results show that serious errors in the rate

constant are found for systems with kstd greater than about 0.1 cm/s

with reasonable time constants of 5 or 10 us, regardless of the time

range used.

A comparison of the results for the two time ranges shows that

the short time range analysis yields more accurate results under

these conditions. This is the opposite of what is found for the

analysis of irreversible reactions, in which larger time ranges pro-

duced less error, although the degree of this error is roughly com-

parable overall.

‘An adjustable experimental parameter in this method is the size

of the potential step which is applied to the system, and it is of

interest to determine if it is possible to adjust this value to op-

timize the measurement of the rate constant under nonideal conditions.

A series of transients was generated with a range of step sizes from

0.5 mV to 50 mV, keeping all other parameters constant. The error

in the rate constants derived from these transients was independent

of the step size, except that the error increased dramatically for

step sizes over about 30 mV. (In actual practice, however, the time

constant probably depends on the size of the potential step.)

It is also of interest to determine whether the concentrations of

the reactants affect the accuracy of the derived rate constant under

constant risetime conditions. Several series of transients were

generated for various values of Cox and Cred in a range from 0.1 mM

to 10 mM. When the concentration of each of the species was equal,

the error in the derived rate constant was independent of the
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Table 4.1. Error in Rate Constants Deriveda from Chronoamperometric

Transients for Quasi-Reversible Reactionsb Due to Finite

 

 

 

 

Risetime.

kstd (cm/8)

T (us) 0.03 0.1 0.3 1.0

Short Time Rangec

1 +0.12 +0.42 +2.32 +292

2 0.1 0.8 4.7 129

5 0.3 2.0 13.4 e

10 0.7 4.3 35.8 e

20 1.3 9.0 215 e

d
Long Time Range

2 +0.12 +0.52 +3.82 +1122

5 0.2 1.2 10.4 e

10 0.4 2.4 24.7 e

20 0.7 5.1 88.8 e

50 1.9 14.7 e e

aOne-parameter nonlinear regression.

b -5 2 a _
Cox I Cred I 1 mM, Dox I Dred I l x 10 cm /s, Estep 10 mV.

c100 us sampling time, 2 ms time range.

d1 ms sampling time, 20 ms time range.

eAnalysis failed to yield reasonable value of rate constant.
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concentration. There was, however, a dependence on the ratio Cox/

C More error was induced in the rate constant when cox/Cred
red'

deviated from unity in either direction. Even though the actual

size of the deviation in the transient wasn't strongly affected by

this variation, there simply is less kinetics information available

in the transients as the equilibrium potential gets farther from the

standard potential. Thus, the kinetics parameter is more sensitive

to deviations in the shape of the transient, and larger errors will

result for a given size deviation under these conditions.

4.5. Effect of Adsorption on Small-Step Chronoamperometry

The influence of weak reactant adsorption on the shape of the

small-step chronoamperometric decay curve is shown in Figure 4.2.

The transient which was generated with both species of the redox

couple adsorbed is higher than ideal all along the transient, espec-

ially at small times. When only one of the species is adsorbed, the

deviation from ideal is roughly half that seen when both species ad-

sorb; there is only a minor difference in the shapes of the transients

with only the reactant or product adsorbed. This additional current

is due to the reaction of the adsorbed species and to the steeper

concentration gradient which is needed to replenish the adsorbed layer.

To obtain an overview of the accuracy of the rate parameters derived

fll'om transients generated with weak reactant adsorption, a series of

<fllrves were generated with equal adsorption of 0x and Red for various

rate constants and adsorption coefficients. The results of the

8.Ilalysis of these transients are shown in Table 4.2. There is
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Table 4.2. Error in Rate Constants Derived3 from Chronoamperometric

Transientsb Due to Weak Reactant Adsorption.

 

 

 

 

kstd (cm/s)

xox - Kred (cm) 0.03 0.1 0.3 1.0

Short Time Rangec

1 x 10"6 +0.62 +2.12 +6.42 +28.32

3 x 10‘6 1.9 6.5 23.4 e

1 x 10’5 6.2 25.2 e e

2 x 10'5 12.4 62.7 e e

a
Long Time Range

1 x 10'6 +0.62 +2.02 +6.52 +28.52

3 x 10'6 1.9 6.3 24.1 e

1 x 10‘5 6.5 26.7 e e

2 x 10'5 13.8 93.6 e e

aOne-parameter nonlinear regression.

Cox Cred 1 mM, Dox Dred 1 x 10 cm /s, Estep 10 mV.

c100 us sampling time; 2 ms time range.

dlms sampling time; 20 ms time range.

eAnalysis failed to yield reasonable value of rate constant.
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virtually no difference between analysis of 2 ms or 20 ms transients,

except at the largest levels of adsorption. The error in the de-

rived rate constants is quite severe for small amounts of adsorption

(Kox I K.re I 3 x 10-6 cm, or a coverage of about 12 of a monolayer
d

in a 1 mM solution) when the rate constant is greater than about 0.1

cm/s.

The accuracy of the rate constant determination depended only to

a very small extent on the size of the potential step which is applied

to the cell, as was the case with finite risetime. A potential

step size of 10 mV was used for all small potential-step simulations.

It is of interest to expand the study of weak reactant adsorption

to situations in which Kon is not equal to Kred' Table 4.3 shows the

results of the analysis of a series of simulated transients for

various values of the adsorption coefficients at a rate constant of

0.1 cm/s. It can be seen that the error increases roughly with the

total amount of adsorption, although the effect is not additive for

both species. Combined adsorption of both species produces more than

the sum of the errors caused by adsorption of the individual species.

The slight asymmetry about the Kox I Kred diagonal reverses with a

potential step of the Opposite sign; apparently the adsorption of

the reactant species produces larger deviations in the shape of

the transient than does adsorption of the product.

Variation of the relative concentrations of the oxidized and re-

duced half of the redox couple while keeping the adsorption coefficients

constant has the same sort of effect as in the finite risetime case.

Table 4.4 shows the results of the analysis of a typical series of
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Table 4.3. Error in Rate Constants Derived3 from Chronoamperometric

Transientsb Due to Weak Reactant Adsorption (K i K ).

ox red

K'red (cm)

Kox (em) 0 1 x 10'6 3 x 10'6 1 x 10‘5 2 x 10'5

0 -- +0.82 +2.52 +8.82 +18.12

1 x 10‘6 +1.22 2.1 3.8 10.3 19.8

3 x 10‘6 3.8 4.7 6.5 13.3 23.4

1 x 10‘5 13.6 14.6 16.9 25.2 37.9

2 x 10"5 29.3 30.7 33.7 45.0 62.7

 

a

One-parameter nonlinear regression.

b

C.

kstd

I 0.1 cm/s, C I C

100 us sampling time; 2 ms time range.

I 1 mM, D I l x 10- cmz/s,
ox red ox Dred

E I -10 mV.

step
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Table 4.4. Error in Rate Constant Derived3 from Chronoamperometric

Transientsb Due to Weak Reactant Adsorptionc (C i C ).

ox red

Cred (mM)

(mM) 0.1 0.3 1 3 10

ox

0.1 +2.12 +2.62 +4.22 +7.22 +14.22

0.3 2.2 2.1 2.7 4.2 7.6

l 3.1 2.2 2.1 2.6 4.2

3 4.9 3.0 2.2 2.1 2.7

10 9.0 5.1 3.0 2.2 2.1

aOne-parameter nonlinear regression.

b

100 us-gampéing time, 2 ms time range. kStd I 0.1 cm/s, Dox I Dred

1 x 10 cm /s, E I -10 mV.
. step

c at I1x10-6cm.
ox red
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nonideal transients with various concentrations Cox and Cred' Again,

the Cox/cred ratio controls the accuracy of the derived rate constant,

with a slight asymmetry around the Cox I C diagonal.
red

These results rule out the possibility of minimizing errors due

to weak reactant adsorption by adjusting the concentration of the

redox couple. If diffuse-layer adsorption is occurring, however,

it may be possible to shift the potential at which the experiment is

performed closer to the electrode's p.z.c., sacrificing some sensi-

tivity to the electrode kinetics to lower the extent of the adsorp-

tion. The success of this strategy depends on the specific chemical

system involved, however.

4.6. Comparison of the Effect of Risetime on Normal Pulse Polarography

and Large-Step Chronoamperometry

A finite potentiostat risetime affects the normal pulse polarogram

of a quasi-reversible system in much the same manner as is seen for

irreversible reactions (Chapter 3). Figure 4.3 shows some simulated

pulse polarograms of a species with kstd I 0.1 cm/s at a 100 us sampl-

'ing time with the time constant of 20 us, 10 us, and 0 us (ideal case).

Again, the current along the nonideal waves is too large at all po-

tentials, with the least deviation at the foot of the wave and far

out into the diffusionrlimited region. The shape of the deviation

is virtually independent of the value of the standard rate constant"

of the system as can be seen by comparing Figures 3.3a and 4.3.

Other aspects of the shape of the nonideal waves show the same

trends as were seen in the previous chapter. The true value of the



100

 

400 b 3\

.. '\

 

 

  
 

A 2 1

3

u

8
H

s 200 -

U

100 - /

0 I l 1 1 1

0 -200 -400

Potential (mV)

Figure 4.3. Pulse polarograms illustrating the effects of finite

risetime, with kstd I 0.1 cm/s, a I 0.5, Estd I 0 mV, Cox I

I5 2
1 mM, Dox I Dred I 1x10 on Is, 100 us sampling time. Curve 1:

ideal system. Curve 2: T I 10 us. Curve 3: T I 20 us.
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limiting current is not approached until many hundreds of millivolts

past the wave. The observed current is decreasing continuously past

the peak.although this might not be apparent in the presence of an

increasing baseline current. There is also a strong dependence on

sampling time, with deviations becoming considerably smaller than

those in Figure 4.3 when the current is sampled at 1 ms.

The kinetics analysis of these polarograms is complicated by the

absence of any apparently normal limiting current region. However,

it is possible to use the current at an arbitrary potential after the

peak so that results of the pulse polarographic and chronoamperometric

analyses may be compared. (Since the choice of the limiting current

is arbitrary, though, any analysis based on it must be equally ar- 1

bitrary.)

Several transients were simulated at various points along the

wave for a standard rate constant of 0.1 cm/s and a time constant

of 20 us. Ten points along each transient were recorded, equally

spaced from 100 us to 1 ms. Two polarograms were assembled from these

data, representing the extremes of the sampling range,and were analyzed

using the Oldham-Parry analysis with the back reaction correction.

The current-time transients were also analyzed using nonlinear regres-

sion to determine the rate constant kf at each potential. The error

in the resulting values of k are shown in Table 4.5 for all three
f

sets of data.

The errors in the rate constants derived by the chronoamperometric

analysis appear to be the largest, averaging around 402, while the

rate constants derived from the 100 us polarograms are the most
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Table 4.5. Comparison of Chronoamperometric and Pulse Polarographic

Analysis of Transientsa with Finite Risetime.b

 

Error in kf Derived by

 

Chrono- Pulse Pulse

E (mV) kf (cm/s) amperometryc Polarography 100 us Polarographylms

 

45.7 0.0411 +47.22 +3.02 +13.62

20.7 0.0668 25.9 -3.4 7.7

- 4.3 0.109 22.5 - 4.2 6.5

-29.3 0.177 30.7 - 0.9 8.5

-54.3 0.288 67.7 + 9.6 16.1

-79.3 0.468 d 44.0 e

-104.3 0.762 d e e

 

a100 us sampling time, 1 ms time range. Estg I 0 mV. kstd I 0.1 cm/s,

- 2
Cox I 1 mM, Cred z 0, Dox I Dred I l x 10 cm ls.

bT I 20 us.

c
One parameter nonlinear regression.

dAnalysis failed to yield reasonable values of rate constant.

ei/i too large for meaningful results.
lim
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accurate. The reason for this behavior can be seen upon examination

of the shapes of the pulse polarograms and the position of the ap-

parent limiting current. Especially on the 100 us polarograms, the

amount of error in the current increases up the wave, so that the

values of i/i11m are fortuitously close to ideal. This compensa-

tion will occur to some extent whenever a larger-than—correct value

of the limiting current is used. Since the error in the limiting

current was considerably smaller with the 1 ms polarograms, the ef-

fect is not as striking, although the results are still better than

the chronoamperometric analysis.

The apparent success of the normal pulse polarographic analysis

under conditions in which the data are clearly suffering from some

nonideal effect must be viewed with caution. ‘It is not clear whether

such an arbitrary method can be relied upon to yield reliable esti-

mates of electrochemical rate parameters under laboratory conditions.

The success hinges on selecting the "right" limiting current for the

conditions involved, and there would seem to be no way to determine

this value from the data alone.

4.7. Comparison of the Effect of Adsorption on Normal Pulse Polarog:

raphy and Large-Step Chronoamperometry

The adsorption of reactants in large potential-step experiments

leads to a relatively large number of cases to be considered, as we

need to be concerned with the adsorption of two species both before

and after the step. Since these large-step experiments are generally

carried out with a very small concentration of product in the solution,
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its initial degree of adsorption may be neglected. It has been de-

termined that the adsorption of product has only a minimal effect at

the final potential, so that in this work only the adsorption of the

reactant needs to be considered.

Even with this limitation, there are three possible variations:

the reactant may be adsorbed at the initial potential, the final po-

tential, or at both potentials. As was seen for irreversible reactions 1

in Chapter 3, these variations lead to different shapes in the result-

ing normal pulse polarograms. These effects are shown in Figure 4.4. s

Again, the deviations in the shapes of the polarograms were es-

sentially the same as those seen for irreversible reactions. In all

three cases, the ideal limiting current was reached only one or two

hundred millivolts after the peak. The largest deviation is seen

when the reactant is adsorbed at both the initial and final potentials.

Adsorption which occurs only at the final potential leads to currents

which are too small on the rising part of the wave, while the opposite

is true for adsorption only at the initial potential. These two

curves become identical at the top of the wave in the peaked region

and beyond.

One interesting aspect of these systems is the behavior of the

polarograms as the reversible limit is approached. Flanagan and Anson

(6) have examined normal pulse polarograms under Henry's Law adsorp-

tion conditions, but with a reversible electrode reaction and a model

which considers the depletion of the reactant molecules from the

vicinity of the growing electrode due to the adsorption process.

They observed waves which were too small, but otherwise normal, when
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reactant and product were equally adsorbed throughout the experiment,

which they attributed to reactant depletion. They also observed

maxima and a shift in the potential range of the wave with differing

degrees of adsorption for the reactant and the product.

Because the adsorption coefficients and concentrations they

chose lead to surface coverages equivalent to about 5 - 50 monolayers,

it is doubtful that the Henry isotherm would apply. However, if their

adsorption parameters are used in the simulation programs employed in

this work, maxima at least 10 times larger than they report appear in

the wave, which could be due to the depletion phenomenon. Other charac-

teristics seem identical, except for the absence of the depletion

effects.

As an example of this effect, Figure 4.5 displays two polarograms

with equal degrees of adsorption.~ One has a standard rate constant of

0.1 cm/s, while the other system has kstd I 3 cm/s. For comparison,

Figure 3.4a illustrates the effect of the same amount of adsorption

on a.totally irreversible wave. At 3 cm/s, there is no evidence of

any deviation due to the nonideality. This is probably because the

reaction proceeds so fast that all the adsorbed species reacts at the

very beginning of the experiment, so that all the current observed,

even at 100 us, is due only to diffusing species, as the theory pre-

dicts.

Since the limiting current is readily accessible from the nonideal

polarograms, it is possible to derive rate constants from the data

without the ambiguities involved in the polarograms distorted by

finite potentiostat risetime effects. Again, a series of transients
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was generated for all three adsorption schemes out of which polaro-

grams were constructed. The results of the analyses of both the

original transients and of the polarograms are given in Table 4.6.

Here, the difference between the analysis methods is not as

distinct as was seen previously. The chronoamperometric analysis

yields somewhat more accurate rate constants in almost every case.

The overall error in the rate constants is quite large, regardless

of analysis method used.

4.8. Implications for the Use of Normal Pulse Polarquaphy

Because of the extensive use of normal pulse polarography in

electrode kinetics studies as well as analytical work (53), some comI

ments about the implications of the results of this work will be

made.

The normal pulse polarographic mode of large potential-step ex-

periments is quite useful for diagnosing nonideal conditions. The

presence of a peak resembling d.c. polarographic maxima is a clear

indication of something nonideal in the experiment; the theory des-

cribing the ideal experiment predicts no such shape. Furthermore,

the exact shape of the maximum yields information on whether chemical

or instrumental nonidealities are at fault. Peaks due to adsorption

fall off rapidly to yield a constant, diffusion-limited value, while

those due to finite potentiostat risetime show an extended region past

the peak in which the current constantly decays. This diagnostic

information is all that can be extracted from obviously nonideal

polarograms; it is clear that data on the rising part, and even at
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the foot of the wave, are affected by the nonideal conditions.

The implications of this work for electrode kinetics experiments

have for the most part already been outlined in this chapter and in

the preceding one. The main interest in these experiments is in the

rising part of the wave (although errors in the limiting current will

influence the results also).

In a crude and not particularly general way, pulse polarography

might be useful for distinguishing fast kinetically controlled re-

actions from those which are reversible (or nearly so), since the

maximum is reduced in size as reversibility is approached. The ab-

sence of a peak (assuming that all is well with the instrumentation)

can.be interpreted either as indicating a reversible reaction or

simply that there is no reactant adsorption. This limited diagnos-

tic ability might occasionally prove useful, however, in those cases

when a reactant is known to be adsorbed at the electrode surface.

The need for a reliable, fast-rise potentiostat in the study of

rapid heterogeneous electron transfer-kinetics is especially obvious

when one attempts to sample the current at short times. A general

rule for the study of fast reactions might be that the risetime of

the potentiostat be at least 100 times faster than the time at which

the current is sampled.

Diffuse-layer adsorption should not pose a problem if the experi-

ments are carried out in l M supporting electrolyte at such a poten-

Is.“
-—.——-—.

tial that the total charge on the electrode is small, or if the samr

«“—

pling time is at least long enough that maxima are not visible along

the wave. There could, however, be serious problems in systems with
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lower supporting electrolyte concentrations, or in solutions in most

nonaqueous solvents due to unfavorable double-layer conditions (en-

hanced diffuse-layer adsorption), or increased solution resistance.

Even though the Henry isotherm is probably not valid for significant

degrees of diffuse-layer adsorption, the results of this work suggest

that any weak reactant adsorption has a strong effect on the shapes

of the pulse polarograms sampled at short times. As long as one

doesn't attempt to extract rate data from obviously nonideal polaro-

grams, the errors will probably be small. This does, however, form

‘
u
m
m
n
w

a limitation on the maximum accessible rate constant under a given

set of conditions.

The use of normal pulse polarography in chemical analysis has

both different procedures and different goals than in electrode kin-

etics. Here reactant concentrations are often quite small (<10-4 M),

and the only part of the wave which is of interest is the diffusion-

limited plateau. The optimization of sensitivity is usually achieved

by decreasing the sampling time to increase the measured current

(53).

Because of this need to enhance the sensitivity of the experi-

ment, the risetime of the potentiostat plays. a critical role. It

must be fast enough to allow the limiting current to be measured ac-

curately as soon as possible after the potential step. Thus, the

potentiostat, and the system itself, place a lower limit on the

sensitivity of the analysis.

The Henry isotherm for diffuse-layer adsorption is valid at the

trace reactant concentration level, even to adsorption coefficients
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greater than 2 x 10.5 cm. Analytical systems often have low support-

ing electrolyte concentrations, are sometimes in nonaqueous solvents,

and involve somewhat uncharacterized systems. Diffuse-layer or

specific adsorption might be quite strong under these conditions.

A basic problem in these analytical experiments is that the full

polarographic wave is rarely recorded in applications such as flow

injection analysis (54) or chromatographic detection (55). A potential 3

is chosen which is assumed to be well into the diffusion-limited

region, and all the measurements are done at that single potential. 3

If this value is far enough into the plateau, adsorption of the analyte I

should not influence the experimental results, although instrumental

problems may still occur. It is thus quite important to verify that

one is indeed in a well-defined (if not ideal) region of the wave for

every variation which is made in the chemical system.

A final, positive point can be made regarding the use of normal

pulse polarography in analytical applications. Since the nonidealities

studied here show very little dependence on the concentration of the

reactant, working curves made from carefully made standards should be

valid. As long as all conditions leading to the assorted non-

idealities remain constant, accurate analyses might still be made,

even in the presence of nonideal conditions.

The next two chapters contain a study of two other methods used

in the investigation of electrode kinetics. These small-step per-

turbation techniques will be studied in much the same way as was done

for the small potential-step experiments. The results of the three

studies will be compared in an effort to determine the most reliable
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method for the study of fast electrode reactions in the face of in-

evitable experimental nonidealities.



CHAPTER 5

COULOSTATICS EXPERIMENTS
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5.1. Description of Method

The small-step coulostatic experiment, as it is usually practiced,

requires both the oxidized and reduced form of a redox couple in soluI

tion together with an electrode at such a potential that the system

is at equilibrium. An injection of charge takes place (usually in

the form of a short current pulse (23) or the discharge of a capaci-

T
“
”
[
.
"
_
,
'
.

tor) which causes the potential to increase by several millivolts.

The system is no longer in equilibrium, as the Nernst equation demands

a change in the ratio of oxidized to reduced species concentrations

at the surface. The electron-transfer reaction begins in order to

adjust this ratio, using electrons which are part of the injected

charge. This causes a concentration gradient to be established in

the solution near the electrode. Thus, charge leaks off into the

solution and the overpotential decays back to the original equilibrium

value. The rate of this decay is controlled by both the rate of the

electron—transfer reaction, and by the rate at which molecules can

diffuse through the solution.

A general equation which describes the coulostatic overpotential-

time transient has been derived by Keller and Kirowa-Eisner (56),

although much earlier Delahay (12) and Reinmuth (13) both derived

a more limited case of this equation. For a process

Ox + ne- Red (5.1)

O
F
+
1
H
1
W
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under both activation and diffusion control, the overpotential-time

transient is described by the following equation:

 

° 2 1, 2 11
n ' §E§{Y83P(B t)erfc(8t )-Bexp(y t)erfc(yt )] (5.2)

where

31

Ta 1 Ta 1,
B- +— -—-—1) (5.3)

Zr. .3 41.

T1 1 Ta 5
y--—--—— -———-1) (5.4)

21C 3 41¢

n° - 0163/(°11°A) (5.5)

The charge transfer time constant Tc and the diffusion time constant

Td are defined as follows:

2 2 l-o 0

Tc RICd2/(n F kstdcox cred) (5'6)

2

1,5 + 1,5 )] (5.7)

ox ox Cred red

It is traditional to identify two limiting cases of Equation

5.2. If Td << Tc, the overpotential decay is totally charge-transfer

controlled, and Equation 5.2 reduces to
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n I no exp(-t/Tc) (5.8)

At the other extreme, when T >> Tc’ the rate of reactant diffusion

d

controls the overpotential decay, and Equation 5.2 reduces to

n = no exv(t/rd)erfC(t8/Tdk) (5.9)

Unfortunately, neither of these limiting cases is particularly

useful to the electrode kineticist. The latter situation provides

“
-
q
u
c
’
!
‘

A
.

.
_
.

n

no information about the kinetics of the redox couple under study,

while the former is useful only for relatively slow reactions

(k < 0.1) or at concentrations which are too high (>10 mM) to avoid
std

reactant ion migration or disturbances of the double layer.

The above equations assume an instantaneous injection of the re-

quired charge at the start of the experiment. This work will assume

that the charge is applied in the form of a current pulse of large

amplitude and very short duration. This model was chosen over the

capacitance discharge method because of its more well-defined nature.

Experimentally feasible pulse widths range from about 30 us to 500 us,

the longer times being required for solutions of high resistance.

As only a relatively small number of electrons are being used in

this experiment, the presence of additional molecules of reactant at

the electrode surface might be expected to have a significant effect

on the coulostatic decay transient, considerably more so than a

potential-step experiment, for example, in which a virtually unlimited

number of electrons are available. Thus, even very weak reactant
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adsorption could cause major deviations from ideality in the shape

of the transient.

5.2. Analysis of Data from Coulostatics Experiments
 

A number of methods have been used to extract kinetics and/or

capacitance information from coulostatic overpotential decay curves.

e
.
-
;
fl

Originally, experiments were designed in such a way that simple charge-

.
‘
-
_
A

1
I

transfer control applied (12,13). Under these conditions, a plot of

la n 3g, time has an intercept which is inversely proportional to the

double-layer capacitance, and a slope which is directly proportional

to the standard rate constant. Deviations from linearity due to an

increasing contribution from diffusion increase with time, leading to

curvature in the simple plot. ‘In this case, the initial slope of the

curve would be used.

Recently, nonlinear regression on the full decay equation (Equa-

tion 5.2) has been used to provide estimates of the double-layer

capacitance of the electrode and of the standard rate constant of the

redox couple under study (57). This procedure has the advantage of

extracting rate data from the experimental transient while the decay

curve contains a significant contribution from diffusion.

A comparison of coulostatic data analyses has been published by

Kudirka, Daum, and Enke (4) which indicates that nonlinear regression

is a superior technique for extracting charge transfer information

. for experiments in which the ratio ‘rc/Td was less than about 10.

Keller and Kirowa-Eisner (2) have analyzed the errors inherent in

both of the above-mentioned procedures, and have determined the
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optimal parameters for the determination of the capacitance and/or

the standard rate constant. The study suggests that the best accuracy

for the determination of the kinetics parameter can be obtained by

analyzing data over a time range of twice the charge transfer time

constant from the start of the experiment, for experiments with

Tc/Td greater than about 0.5.

Additionally, an analysis procedure based upon a transformation

of the experimental data to the impedance plane and the use of the

Laplace transform of Equation 5.2 has been suggested (58).

v
.
.
.
r
u
m
.

.
‘
1

In the present work, all analyses were performed via nonlinear

regression on Equation 5.2 which, although somewhat time consuming,

should give valid results for most values of the ratio Tc/Td. How-

ever, if a transient is totally diffusion controlled, no kinetics

information is available and the analysis (indeed, any analysis) will

fail to yield a reasonable value for the standard rate constant.

The optimal time range for the derivation of heterogeneous rate

constants using nonlinear regression suggested by Keller and Kirowa-

Eisner (2) was used in this work. This interval is equal to twice

the charge transfer time constant, which turns out to be an experi-

mentally reasonable window for standard rate constants less than

about 5 cm/s. Twenty evenly spaced data points were used for the

analysis of the nonideal coulostatics experiments.

5.3. Unique Aspects of Simulation

The simulation of an ideal coulostatic experiment differs from

that of the previously discussed potentiostatic experiment. The
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overpotential varies with time, being a function of the flux of

electrons at the electrode surface. In other respects, however, the

potential has the same effect on the flux itself (through the rate

constants) as it has in the previous techniques.

The initial overpotential depends on the capacitance of the elec-

trode and the amount of injected charge, as indicated in Equation

5.5. This is calculated as an initial condition in the ideal simula-

tion.

As electrons are transferred across the surface, the rate of decay

of overpotential must be given by

dn/dt . -F¢ (5.10)
far/C62

Once the flux has been calculated in the usual manner, the equation

can be applied in discrete form to calculate the change in the over-

potential during that time increment At. The next calculation of the

boundary conditions proceeds from this new overpotential.

In the simulation of current impulse charge injection, the initial

boundary conditions were calculated during a pre-time zero simulation

period. Before this time, the concentration profiles are flat. Charge

starts to be injected at a constant rate (112;: the current is switched

on), the overpotential increases, and faradaic processes occur which

distort the concentration gradient. At the end of the current pulse,

the overpotential is less than that predicted by Equation 5.5, and

concentration gradients have been established in the bulk of the solu-

tion. This time is defined as time zero. During the charging period,
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the overpotential increases as follows:

dn/dt I Pamp/(Cd£'A) - F¢farlcd2 (5.11)

The duration of the charging period and the current pulse amplitude

Pamp determine the total amount of injected charge, Qinj'

5.4. Effect of Finite Charge Injection Time

Current impulse charge injection can be thought of as a linear

charging of the electrode double layer, during which, ideally, none

of this charge has time to "leak off" due to faradaic processes at the

surface and the diffusion profile is undisturbed at the end of the

current pulse. In an actual experiment charge does leak off,

so the charging is not quite linear and the experiment starts at a

slightly smaller overpotential and with a concentration gradient al-

ready set up in the solution. Intuitively, this would seem to lead

to an apparent value of the capacitance which is too high, but the

effect on the standard rate constant obtained from the overpotential-

time decay curve is not obvious.

The shape of the deviation produced by a finite charge injection

time is shown in Figure 5.1. This shape is typical for a range of

rate constants and conditions.

The time it takes to apply a given amount of charge depends on

a number of factors - among them are the pulse generator charac-

teristics and cell solution resistance. Experimentally feasible in-

jection times for such small amounts of charge as are required (on



122

 

O
v
e
r
p
o
t
e
n
t
i
a
l

(
m
y
)

   I l I 1

0 5 10

Time (us)

 

Figure 5.1. Coulostatic transients illustrating the effects of

finite charge injection time, with kstd I 1 cm/s, Cd1 I 20 uF/cmz,

2
Qinj I 1 nC, area 0.02 cm., cox I cred 1 mM, Dox Dred

1x10-55 cmzls. Curve 1: ideal charge injection. Curve 2:

tinj I 500 ns.
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the order of 10.3 uCoul) for these experiments range from about 10 ns

to 200 ns. All transients in this section were generated with injec-

tion times in this range, and with standard rate constants between

0.1 and 10 cm/sec.

Table 5.1 displays the error in the standard rate constants ob-

tained for a series of analyses of nonideal transients with various

concentrations of oxidized and reduced species, as well as the values

of Tc and TC/Td for each case.

These data are difficult to interpret due to a number of complica-

tions. First, as the rate constant gets smaller, the time range

of the experiment expands to maintain a 21c interval. Thus, for a

given injection time, one is extracting rate data further and further

from the nonideality. The observed effects might be expected to be

smaller under these circumstances for this reason alone. Secondly,

as the rate constants increase at a given set of concentrations, the

ratio Tc/Td decreases. The smaller Tc/Td is, the more effect a

small variation in the transient has on the derived value of the rate

constant. Finally, one can observe that negative deviations are found

in some of the cases studied, and positive deviations in others, $352)

the derived rate constants are too high. Further, this seems to be

a function of the ratio Tc/Td. Negative deviations in the value of

the rate constant are observed when this ratio is less than unity,

while positive deviations occur at values of rc/Td greater than one.

This last somewhat curious result prompted some additional experi-

ments under conditions that Tc/Td I 1. The results, also in Table

5.1, show that the correct standard rate constant is derived regardless
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of the injection time. The reasons for this result are unknown, but it

seems that there must be some sort of compensation effect in the devia-

tion in different parts of the transient. It is probably true that

the 2Tc time range over which the data is analyzed is significant.

Other results indicate that correct rate constants are derived regard-

less of the concentration of each species, or the ratio of the concen-

trations. V

A summary of the results obtained for experiments with various in-

jection times is given in Figure 5.2, which shows the relative error

in the derived value of kstd as a function of the ratio Tc/Td for

given values of the ratio tinj/Tc' As one might expect, larger

errors in the rate parameter are observed the larger the value of

tinj/Tc (iggg, the closer the injection time is to the range of data

which is analyzed).

The minimization of deviations due to long injection time can be

accomplished by attempting to adjust conditions so that the value of

“re/1'd is close to unity. For large rate constants, however, this

would necessitate increasing the reactant concentration (but not so

high that the ions start making a substantial contribution to the

double layer). Unfortunately, as the concentration is increased,

the charge transfer time constant decreases, and data must be col-

lected over a much smaller time range. Again, experimentally attain-

able accuracy is determined by a compromise between ideal measure-

ment conditions and physical practicality.

‘The value of the rate constant is needed to calculate Tc/Td

but, of course, it is this parameter which the method is employed
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to measure. Any attempt to optimize an experiment in this manner

probably will have to proceed through an iterative process, suc-

cessively refining the estimate of the standard rate constant until

consistent results are attained. It is not clear that this approach

would not yield instances of false agreement, though.

From the shape of the deviation from the ideal transient produced

by finite injection time, one might expect values of the double-layer

capacitance derived from nonideal transients to be too high. Table

5.2 shows the error in values of the double-layer capacitance obtained

from the analyses which concurrently yielded the rate constant data

in Table 5.1. The capacitance values are indeed too high. The data

are summarized in Figure 5.3, which shows the relative error in the

value of the capacitance as a function of the ratio Tc/Td at constant

tinj/Tc' Obviously, the effect of finite charge injection time upon

the apparent value of the capacitance is in general much smaller than

was seen for the standard rate constant. For no value of Tc/Td is

this error completely eliminated, however.

5.5. Effect of Weak Reactant Adsorption

An excess of reactant at the surface of the electrode during a

coulostatic experiment would be expected to produce a transient showI

ing a steeper decay than would be seen if there were no adsorption.

The enhanced surface concentration would lead to a greater reaction

rate, and hence a faster discharge of the double layer. The extent

of the deviation might be expected to be related to the rate of charge

transfer compared to that of the diffusion process. For reactions
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with small rate constants, there should be very little deviation from

the pure charge-transfer control, Equation 5.8. However, the appar-

ent time constant would be smaller than that calculated on the basis

of bulk reactant concentrations. Once the influence of diffusion is

present, the decay will obey neither Equation 5.8 nor Equation 5.2,

which takes both charge transfer and diffusion into account.

The deviations produced by a surface excess equivalent to about

102 coverage are considerably larger than those seen for finite charge

injection time conditions. Figure 5.4 shows a family of coulostatic

transients which were generated with a standard rate constant of 1

cm/sec and identical adsorption coefficients for the oxidized and

reduced species. Note that significant deviations are seen for ex-

tremely small surface excesses (0.5%.surface coverage) for the moder-

ately fast (1 cm/sec) experiments.

Systems which have differing adsorption coefficients for the

oxidized and reduced species show deviations in the transients which

are intermediate between the no-adsorption and equal-adsorption cases.

Only a slight difference is seen for K - 0 cm, K - 2 x 10-5
ox red

cm and K - 2 x 10.5 cm, X - 0 cm.
ox red

The use of Equation 5.2 in the analysis implies that, for given

reactant concentrations, a transient can never decay faster than the

diffusion limited rate. Some of the transients which were generated

for fast reaction rates and high amounts of adsorption appeared to

the analysis to be decaying faster than should be possible; the results

obtained therefrom are meaningless (and easily identifiable as such,

since the kst values are generally in the hundreds; the final result
d
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depends on the termination routine in the nonlinear regression

program). This problem is not unique to the nonlinear regression

analysis; a log n vs, time curve will show no linear region, and its

initial slope will be meaningless.

Table 5.3 displays the error in the values of standard rate

constants derived from transients for various concentrations of oxi-

dized and reduced species, and with various values of K0; and Kred'

In all cases, Kox - Kred' The values of Tc and Tc/Td are given for

reference.

Perhaps the most striking trend visible in these data is that the

relative error in kstd is almost constant for a given adsorption co-

efficient and rate constant, as long as C - C The relative
. ox red'

error increases somewhat as the concentration decreases. Also, there

is a larger effect on the rate constant for larger adsorption coef-

ficients, as would be expected.

The fact that the relative error in kstd

value of the adsorption coefficient indicates that it is the ratio

is so dependent on the

of surface excess to bulk concentration that is operative, and not

the absolute magnitude of the surface excess. For example, a coverage

of 102 with bulk concentration of 10 mM produces the same error in

k as does a coverage of only 0.1% when C- - C - 0.1 mm. This

std ox red

result is somewhat disturbing for it indicates that decreasing the

adsorption by decreasing the bulk concentration will be ineffective

in producing a more reliable value of the standard rate constant.

The slight increase in the relative error as the concentrations

are decreased is probably due to the value of the ratio Tc/Td becoming
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more unfavorable, so that the same deviations in a transient produce

a larger and larger uncertainty in the derived value of the kinetic

parameter.

The above generalizations do not include the case when Cox ¥

C As can be seen in Table 5.3, the error in kstd is substantially
red'

higher when Cox - 10 Cred’ even though the values of Tc/Td are almost

the same as those for Cox - C - 1 mM. A representative adsorp-
red

tion coefficient of 10"6 cm and standard rate constant of l cm/sec

were used with various bulk concentrations Cox and Cred to generate

a series of transients which were analyzed to yield values of kstd'

These results are shown in Table 5.4, and one can note several points

of interest.

First, the minimum error in kstd is found when Co - C As

x red'

the ratio Cox/Cre deviates from unity in either direction, the rela-

d

tive error in kstd increases, but not symmetrically. This could be

a consequence of going further from the standard potential and de-

creasing the sensitivity of the experiment to the rate constant.

Finally, the trend in kstd does not correlate well with Tc, Tc/Td,

Cox/Cred’ or the total amount of adsorbed species. It was also noted

that the'injection of charge of the opposite sign produced only minor

variations in the derived rate constant, except at very small values

of Tc/Td.

Table 5.5 shows the results of analyses of some transients gen-

erated using unequal adsorption coefficients, and representative values

of the rate constant (0.3 cm/sec) and concentration (Cox - cred - 1 mM).

The data show a rough symmetry about the Kox - Kred diagonal, and it
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OX red

Table 5.4. Effect.of Varying Reactant Concentration on Error in Rate

Constant Deriveda From Coulostatic Datab with Weak Reactant

Adsorption.c

Error in kstd

c (mM) c (mM) (us) 1' /T no - -2 5 mV no . +2 5 mV
ox red c c D ' '

0.05 1 23.8 0.0191 +932 +1132

0.1 1 16.8 0.0491 65 ---

0.2 1 11.9 0.117 40 ---

0.5 1 7.53 0.295 28 28

l 1 5.32 0.470 26 26

2 l 3.76 0.590 27 27

5 1 2.38 0.583 37 ---

10 1 1.68 0.491 55 ---

20 1 1.19 0.381 100 100

l 0.05 23.8 0.0191 +1012 +1202

1 0.1 16.8 0.0491 68 ---

1 0.2 11.9 0.117 41 --

l 0.5 7.53 0.295 28 ---

1 l 5.32 0.470 26 26

l 3.76 0.590 27 ---

l 5 2.38 0.583 37 --

1 10 1.68 0.491 55 --

1 20 1.19 0.381 100 100

aTwo-parameter nonlinear regression.

b -5 2 _ -3
kstd - 1 cm/s,2 Dox = Dred l x210 cm /s, Qinj - 10 ucoul,

Cdfi a 20 uF/cm ; Area - 0.02 cm .

CK - x =- 1 x 10'6 cm.
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Table 5.5. Effect of Varying Adsorption Coefficients on Error in Rate

Constant Deriveda From Coulostatic Data.

 

 

 

 

Kred (cm)

KOx (cm) None 1 x 10.6 5 x 10-6 1 x 10"5 2 x 10-5

none 0 +2.72 +142 +272 +452

1 x 10‘6 +3.02 6.3 18 32 52

5 x 10"6 11 19 37 55 83

1 x 10'5 29 34 56 81 120

2 x 10'5 48 56 86 123 176

aTwo-parameter nonlinear regression.

bk - 0 3 cm/s C - C - 1 mM D a D - l x 10-5 cm2/s
std ° ’ ox red ’ ox red ’

10‘3 ucoul, c - 20 uF/cmz, Area - 0.02 cmz.
Qinj ' d2
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was found that values on each side of the diagonal are swapped when

charge of the opposite sign is injected. It can also be seen that the

deviations produced in kstd do not depend entirely on the sum of the

surface excesses.

The interpretation of the above results is not obvious, and no

wide-ranging generalizations will be attempted regarding the error in l

the derived value of k8t under differing degrees of adsorption. No

d

attempt will be made to map out every possible combination of concen- 3

.
‘
n

q
r
?

_
.
.
‘

trations, adsorption coefficients, and rate constants; however, some

less general conclusions can be made.

The most obvious result is that the error in kstd gets larger as

the amount of adsorption increases and as the rate constant itself

increases. It was also seen that for a given set of adsorption condi-

tions, the least error is found when Cox - Cred' These results in-

dicate that a substantial amount of error in kstd is present for even

a moderately fast reaction when very weak adsorption is present.

Since diffuse-layer adsorption can be of this magnitude, one can ex-

pect the technique to yield erroneous results even for non-specifically

adsorbed reactants whenever the equilibrium potential is at a point

such that there is a significant amount of charge on the electrode.

Thus, the concentrations of the oxidized and reduced species probably

should be adjusted to bring the equilibrium potential as close as pos-

sible to the p.z.c., minimizing the adsorption, although at the ex-

pense of sensitivity of the transient to the rate parameter.

The transients which were used to compile Tables 5.3, 5.4, and

5.5 also yielded values for the double-layer capacitance. Tables
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5.6, 5.7, and 5.8 display the error in these values in the same for-

mat as was used for the three previous tables. In contrast to the rate

constant results, the derived value of the double-layer capacitance

is smaller than expected in all cases, although the magnitude of the

relative error was smaller.

Some other interesting differences can be noted. The clearest

indication of the general behavior of the.results of the analyses F

of these nonideal transients can be seen in Table 5.7, and that is

the smaller the overall reactant concentration, the less error is ob- 1

served in the apparent value of the capacitance. The relative error L

seems to be inversely related to the charge transfer time constant,

although the results in Table 5.6 indicate that it is not due to this

factor alone.

Table 5.8 shows the effect of varying the adsorption coefficients.

Again we see the rough symmetry in the amount of error about the Kox a

Kred diagonal.

It seems, then, that conditions for the Optimization of a coulos-

tatic experiment for measurement of the double-layer capacitance are

not the same as for an experiment in which the kinetics parameters

are of prime interest. One must lower the concentrations as much as

possible to achieve the most accurate estimate of the double-layer

capacitance. Since one is generally interested in the capacitance

as a function of the electrode potential, it is not practical to ad-

just the relative concentrations of the reactants so that the equilib-

rium potential is near the p.z.c. to eliminate diffuse-layer adsorp-

tion. If the adsorption is too strong, the transient will decay
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Table 5.7. Effect of Varying Reactant Concentration on Error in

Double-Layer Capacitance Deriveda From Coulostatic Data

with Weak Reactant Adsorption.c

140

b

 

Error in Cd£

 

 

 

Cox (mM) Cred (mM) Tc (us) Tc/TD n°-2.5 mV n°-+2.5 mV

0.05 1 23.8 0.0191 -0.12 -0.12

0.1 1 16.8 0.0491 -0.3 ---

0.2 1 11.9 0.117 -0.3 ---

0.5 1 7.53 0.295 -0.4 -0.4

1 5.32 0.470 -0.5 -0.5

l 3.76 0.590 -0.7 -0.7

5 1 2.38 0.583 -l.1 ---

10 1 1.68 0.491 -1.7 ---

20 l 1.19 0.381 -2.9 -2.8

1 0.05 23.8 0.0191 -0.12 -0.22

1 0.1 16.8 0.0491 -0.3 ---

1 0.2 11.9 0.117 -0.4 ---

1 0.5 7.53 0.295 -0.4 ---

1 1 5.32 0.470 -0.5 -0.5

l 2 3.76 0.590 -0.6 ---

1 10 1.68 0.491 —1.6 ---

l 20 1.19 0.381 -2.8 -2.9

aTwo-parameter nonlinear regression.

bkstd - l cm/s, Cd2 = 20 uF/cmz, Dox - Dred a l x 10"5 cmz/s, Qinj -

10.—3 ucoul, Area - 0.02 cmz.

CK -1< a-1x10‘6 cm.
OX red
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Table 5.8. Effect of Varying Adsorption Coefficients on Error in

 

 

 

 

Double-Layer Capacitance Derived8 from Coulostatic Data.b

Kred (cm)

K 0"6 0‘6 0‘5 ‘ox (cm) none 1 x l 5 x l 1 x l 2 x 10

none 0 0 -0.82 -2.12 -4.22

1 x 10"6 0 -0.12 -0.9 -2.3 -4.5

5 x 10'6 0 -0.9 -2.9 -3.9 -6.5

1 x 10'5 -2.32 -2 4 -4.0 -6 0 -9.4

2 x 10'5 -4.3 -4.8 -6.8 -9.5 -13.1

aTwo-parameter nonlinear regression.

b -5 2
kstd - 0.3 cm/s, Cox 8 Cred = 1 mM, Dox a Dred - l x 10 cm /s,

2 -3 2
Cdi - 20 uF/cm , Qinj 10 ucoul, Area 0.02 cm .

a-
7
"
”
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faster than the diffusion limited rate, especially at lower concen-

trations, and the analysis will fail to give a meaningful value for

k Under these circumstances it would be risky to trust a capaci-
std'

tance value estimated simultaneously with the rate constant. Thus,

it seems impossible to obtain a reliable estimate of the double-layer

capacitance in the presence of a weakly adsorbed electroactive species

if the electron transfer is even moderately fast (>0.1 cm/sec).
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CHAPTER 6

GALVANOSTATIC DOUBLE PULSE EXPERIMENTS
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6.1. Description of Experiment

The galvanostatic double pulse technique was developed (15,59) as

an improvement over the single pulse method in that it allows a pre-

charging of the double layer prior to the actual measurement of the

transient signal. This is important because it assures that all the

current which is flowing is used in the faradaic (electron-transfer)

process. An initial, short, but relatively large amplitude current

pulse is applied to the cell, followed immediately by a second pulse

of smaller amplitude. Depending on the duration of the first pulse

and the relative amplitudes of the two pulses, a minimum in the over-

potential-time curve can be observed at some time after the first

pulse. This minimum occurs because the first pulse not only charges

the double layer, but also sets up a steeper concentration gradient

than is required to maintain the flux from the second pulse. This

excess reactant causes the potential to return towards the equilibrium

value until the gradient adjusts to the new flux and the potential

begins to increase again.

To perform a galvanostatic double pulse experiment, the worker

interactively adjusts the magnitude and duration of the first pulse,

keeping the current in the second pulse constant. The pulses are

adjusted so that the minimum in the overpotential-time curve falls

exactly at the end of the first pulse. The value of the over-

potential at this minimum as a function of the duration of the first

144
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pulse is conventionally used to derive the rate data of interest.

The equations which describe the ideal overpotential-time behavior

after the first current pulse are somewhat more complicated than those

in coulostatics because the concentration gradients both before and after

the pulse must be considered. For small overpotentials (15),

ilG(t) (11-12)G(t-t1)

 

 

 

n '- W- (6.1)

d2 Cd£(Y-B)

C(x) "J%[exp(82x)erfc(8xk)‘+ 28(x/n)k - 1] -

B

-J%{exp(y2x)erfc(yxk) + 21((x/1r);5 - l] (6.2)

Y

1-a 0
~ C C

B/‘Y' std 021: red( 115 +4.?) +/_

oxDox credDred

2 2 l-a 0

[wk (c1“C°‘ )<——— + —‘-;;—)}2- n F kstdc” F:m‘llz
std ox Cred C D8 RTCdz

ox ox CDredred (6.3)

It is also possible to define the time constants of the system. The

charge transfer time constant Tc and the diffusion time constant Td

are given by the expressions

2F2c1--aa

Tc 8 RTCdl/(DF cox Credkstd) (6'4)
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stdCox Cred

rd = "m‘lD—s' + Tn. cl'ac0‘ 12(5.s)

ox ox CredDred

The consequences of adjusting the experimental parameters, par-

ticularly the current in the second pulse, are the key to the success

of this method. One can optimize the experiment for the particular

rate constant, concentrations, and double-layer capacitance simply by

adjusting the pulses appropriately. This sort of "fine tuning" is

not possible in the usual potentiostatics experiments; perhaps a double

potential-step method would be useful for establishing a concentration

gradient in the solution before the start of the experiment.

6.2. Analysis of Data from G.D.P. Experiments

As stated above, the galvanostatic double pulse experiment is

typically performed by adjusting the amplitude of the first pulse until

the minimum in the overpotential-time curve occurs exactly at the

beginning of the second pulse. This process is repeated, varying the

duration of the first pulse, while keeping the amplitude of the second

pulse constant. These minimum values of the overpotential can be

plotted against the square root of the pulse time to yield an inter-

cept which is inversely proportional to the-standard rate constant

for the redox couple (15):

2F2Cl-aa o

kstd . RT12/(nF Cox crednmin) (6'6)
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This relationship is obtained (60) by differentiating Equation 6.1

with respect to time, and setting (dn/dt)tmin equal to zero. This

yields an expression for the minimum overpotential as a function only

of 12 and t1. Setting t1 equal to tmin’ expanding the exp(x2)erfc(x)

function, and dropping all but the first term of the expansion leads

to an expression in t? with the intercept given by Equation 6.6

above.

Because there are some instrumental difficulties in observing the

overpotential at the exact point at which the current is switched,

Nagy (60) has developed equations which allow the minimum in over-

potential to fall at some defined time after the first pulse ends.

The result of this work is a set of alternative equations relating

the intercept of the “min gs. t? plot to the standard rate constant.

All of these methods involve approximations in the linearization

of the overpotential minimum-pulse time data. The obvious alternative

to the above procedures is simply to use nonlinear regression to fit

the transient to the explicit equation, Equation 6.1. As with

coulostatics, the analysis will adjust two parameters, the standard

rate constant and the double-layer capacitance. In fact, Nagy (62)

has shown that this type of curve-fitting is superior to the conven-

tional analysis in the accuracy of the derived rate constants in the

presence of random measurement errors. As long as a minimum is ob-

servable, the advantage of precharging the double layer remains (61).

Although no optimal time ranges for the nonlinear regression

analysis of galvanostatic double pulse data have been discussed, Nagy

(62) has established some guidelines for single pulse galvanostatic
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experiments:

t2 - 10 Tc if Td > 10 1c (6.7)

t2 = Id if Tc < Td < 10 Tc (6.8)

F
t2 - 35(Tc + rd) if Tc > Td (6.9) .

These time ranges were used for all the following work.when analyzing

.
7

‘
u
e
e
e
~
*

0
.

the g.d.p. data by nonlinear regression on Equation 6.1.

The effect of finite galvanostat risetime has been considered in

the literature (1), and an explicit equation has been derived assum-

ing a linearly rising current pulse. Nagy (61) states that the non—

linear regression analysis of g.d.p. data is quite sensitive to this

risetime when the ideal equation (Equation 6.1) is used in the analysis.

However, in his study of the effect of measurement precision, he found

that the results which were obtained for the errors in the rate constants

were essentially independent of the specific equation which was used

in the regression. Finite measurement precision had the same effect

on the results whether the galvanostat was considered ideal or not.

Because galvanostat risetime has been previously discussed in the

literature (1), it was not considered here. Given the sensitivity

of coulostatics to weak reactant adsorption, however, it was of

interest to investigate the effects of this chemical nonideality on

the results of the g.d.p. experiments. To simplify the procedure,

it was assumed that the galvanostat was indeed ideal. In view of

the above-mentioned measurement precision study, this should yield
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essentially equivalent results as would using a nonideal galvanostat

model.

6.3. Unique Aspects of Simulation

The digital simulations of this technique were performed in a

manner similar to those in preceding chapters. The constant current

condition was identical to the current impulse coulostatics charge

injection period, where the change in overpotential with respect to

time can be expressed

dn/dt - 11/(Cd2'A) - N (6.10)
far/Cd2

The constant current began at time zero, however, and was reduced to

the smaller value at the appropriate time. (When the second current

is zero, the experiment is identical to current impulse coulostatics.)

Twenty points were recorded at equal intervals along the simu-

lated transients over a time period specified by the above conditions

(Equations 6.7-6.9). The parallel simulation scheme was used for all

transients which were to undergo the nonlinear regression analysis.

Conventional simulations were used for those transients subjected

to the conventional g.d.p. analysis. In these few cases, the minimum

values were recorded manually as the current parameters were adjusted

interactively for the various pulse times.

 



150

6.4. Shape of Deviations Due to Reactant Adsorption

The effect of weak reactant adsorption on the galvanostatic

double pulse transient is shown in Figure 6.1 for a typical system

with varying amounts of adsorption. There are two features of the

overpotential-time curves which are immediately noticeable. The over-

potential which is attained after the first pulse is lower than ex-

pected and is decaying at a faster rate when adsorption is present.

The reasons for this are exactly analogous to those for coulo-

statics. There is more reactant at the surface when the species is

adsorbed, so electrons are lost to the faradaic process faster.

This keeps the electrode from charging as fast as it might, and the

result is a lower overpotential, even though the number of electrons

flowing into the cell is the same.

There are no obvious features which distinguish these nonideal

transients from those which are ideal. The minimum.is shifted, and

the decay is steeper, but in the performance of an experiment these

would be interpreted as a maladjusted current pulse sequence rather

than any chemical nonideality. Indeed, after suitably adjusting the

current in each pulse, it is not at all obvious that adsorption is

present.

The larger than ideal currents necessary to compensate for the ef-

fects of weak reactant adsorption are used in the equation describ-

ing the ideal transient (Equation 6.1), so one would expect that the

rate constants derived on the basis of this equation might be in error,

even if the absolute shape of the measured transient was identical to

H
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Figure 6.1. Galvanostatic double pulse transients illustrating

- 0.3 cm/s, C -the effects of reactant adsorption, with kst d1
d
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the ideal case. Thus, any rate constants derived on the basis of

this equation must be in error. It is not clear, however, how

much error would be produced, or even whether the derived parameters

would be too high or too low.

6.5. Initial Investigations

Galvanostatic double pulse experiments are unique in that there

are a large number of parameters which can be adjusted for each chemi-

cal system. The pulse parameters control the shape of the resulting

transient: The first pulse mainly controls the overall overpotential

change at the beginning of the experiment, while the second pulse

controls the position of the overpotential minimum and steepness of

the measured transient.

It must be determined whether the results of the nonlinear regres-

sion analysis are dependent on the adjustable experimental parameters

when weak adsorption is present. (If the experiment were ideal, of

course, there would be no problem because the equations take these

experimental parameters into account.) There are three adjustments

which can conveniently be made by the experimenter in setting the

pulse parameters: 1) the length of the first pulse, 2) the overall

potential change during the first pulse, and 3) the position of the

minimum along the transient.

In order to determine the influence of these variations on the

results of the nonlinear regression analyses, three sets of transients

were generated under identical adsorption conditions. The errors in
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the values of k8 and Cdl derived from these transients are listed

rd

in Table 6.1. The first group shows that the effect of varying the

first pulse time is quite small, with slightly larger errors from

longer pulse times. This is probably due to the reduced amount of

kinetics information available at these longer times. The second

and third groups in the table show that the overpotential range of the

experiment and the position of the minimum along the transient influence

the error in the rate constant or in the double-layer capacitance only

to a very small degree.

It is now possible to proceed with a systematic variation in the

amount of adsorption to observe the errors in the derived rate constants

and capacitances. In these simulations, the initial pulse time will

be held at 1 us for convenience, while the currents will be adjusted

to produce a minimum overpotential of about 3 (+/-0.5) mV at a position

roughly 10 to 302 along the transient. These small variations should

have only minor effects on the results.

6.6. Effect of Adsorption in Nonlinear Regression Analysis

A series of transients was generated to investigate in a general

way the effect of weak reactant adsorption upon the results of non-

linear regression analyses. For this preliminary work, the concentra-

tion of both the oxidized and reduced species as well as their dif-

fusion and adsorption coefficients were assumed to be equal. The

6 cm to 2 x 10.5 cmadsorption coefficient was varied from 1 x 10-

for a series of rate constants. The results of the nonlinear regression

analyses of these transients are shown in Tables 6.2 and 6.3.
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Table 6.1. Effect of Adjustable Experimental Parameters on Error in

Rate Constant and Double-Layer Capacitance Deriveda From

G.D.P. Transientsb with Weak Reactant Adsorption.c

 

 

t1 (us) tmin (us) nmin (mV) Error in kstd Error in Cdfi

0.5 2.8 2.6 +692 -4.32

l 3.8 2.7 71 -4.3

1.5 2.7 2.5 72 -5.0

2 3.3 2.6 74 -5.3

3 4.7 2.6 77. -6.0

l 2.5 .48 +672 -4.42

l 2.5 .97 70 -4.6

1 2.5 1.94 70 -4.6

1 2.5 3.88 70 -4.6

l 2.5 7.28 71 -4.7

l 2.5 2.7 +712 -4.72

l 6.4 2.7 71 -4.6

1 11.4 2.5 71 -4.6

1 17.8 2.3 71 -4.6

 

aTwo parameter nonlinear regression.

2

kstd - 2.3 cm/s, Cdl - 20 uF/cm , Cox = Cred

1x10-

: 1 mM, Dox a Dred g

cmzls.

5
c I 1 x 10- cm.

Kox . Kred
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Table 6.2. Error in Rate Constants Derived8 from G.D.P. Transientsb

 

 

 

Due to Weak Reactant Adsorption (K.ox - Kred)'

kstd (cm/s)

xox - Kred (cm) 0.1 0.3 1.0 3.0

1 x 10‘6 +22 +6.32 +24.sz +25.2z

3 x 10"6 6.3 19.8 125 c

1 x 10'5 22.3 70.1 c c

2 x 10‘5 45.9 135 c c

 

aTwo parameter nonlinear regression.

bt
2

l - 1 us, i1, 12 varying, Cdfi - 20 uF/cm , Cox - C - 1 mM,

5

red

D - D - l x 10- cm2/s.
reox d

cAnalysis failed to yield a meaningful value.
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Table 6.3. Error in Double-Layer Capacitance Derived3 from G.D.P.

Transientsb Due to Weak Reactant Adsorption (Kox . Kred)°

 

kstd (cm/s)

 

 

ox - xted (cm) 0.1 0.3 1.0 3.0

1 x 10‘6 +0.01: -0.12 -0.42 —2.82

3 x 10'6 -0.2 -0.7 -4.1 c

1 x 10"5 -2.3 -4.6 c c

2 x 10'5 -7.0 -9.3 c c

 

a

Two parameter nonlinear regression.

b 2
t1 - 1 us, 11’ 12 varying, Cdi - 20 uF/cm , C = C

ox red - 1 mM,

5
D - D - l x 10- cm2/s.
ox red

cAnalysis failed to yield a meaningful value.
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Table 6.2 shows the error in the rate constants which are derived

from these nonideal transients. In all cases, the derived rate con-

stants are too high. There were instances in which the overpotential

decay-was so steep that no meaningful value of either the rate con-

stant or the double-layer capacitance could be derived. This prob-

ably indicates that the curves decayed faster than diffusion control

would allow under these conditions. It can be seen that only a very

small amount of adsorption causes very serious errors in the rate

constant at values of l cm/s or more. This extreme sensitivity to

relatively minor deviations is due to the lack of kinetics information

in the shape of the transient. At smaller rate constants, there is

still a fairly large amount of error present, except when the adsorp-

6 cm).tion is very small (Kox - Kred - l x 10-

The errors in the capacitance values which were derived simul-

taneously with the rate constants are shown in Table 6.3. Here we

see that the errors are considerably smaller than for the derived

rate constants, but that they do approach 102 for large adsorption co-

efficients. The probable reason for this is that, although there

is very little kinetics information left as diffusion control is ap-

proached, the transient is still quite sensitive to variations in the

capacitance. The error that is produced is due to the apparently

larger extrapolated overpotential at the end of the first pulse, which

would imply a smaller capacitance. The tendency for this to occur

increases as the redox reaction rate increases, so we observe more

error in the capacitance at faster reaction rates.

Even though some of the capacitance values seemed reasonable

.
'
-
"
1
.
1
.
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.
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when the corresponding rate constants clearly were not meaningful,

their values were not reported in Table 6.3. It is thought doubtful

to trust one parameter when others derived simultaneously are obviously

in error.

Another series of transients was generated to examine the effect

of varying the individual adsorption coefficients in a typical system

(kstd - 0.3 cm/s). The resulting errors in the derived rate constants

are shown in Table 6.4. As in coulostatics and chronoamperometry, we

see that the same general rule applies: The more adsorption, whether

of the oxidized or the reduced species, the greater the error in the

rate constant .

The slight asymmetry in the data is due to the inherent asym-

metry of the experiment. Even though the electrode is initially at

the equilibrium potential, the current flow causes one half of the

redox couple to be a reactant, while the other becomes the product.

Thus we see that the adsorption of the reactant has a slightly larger

effect on the shape of the transient than does adsorption of the

product. The asymmetry in Table 6.4 has been found to be reversed

if the current flows in the opposite direction.

The trends in the errors in the double-layer capacitance values

are the same as those for the rate constants, with a maximum error

of about 102 when the adsorption coefficient of each species is the

same, and only about 32 when only one of the species is adsorbed.

Finally, it is of interest to study the effect of varying the

concentration of the reactants. It was determined that it is the

value of the adsorption coefficient which determines the error, and
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Table 6.4. Error in Rate Constant Deriveda from G.D.P. Transientsb

Due to Weak Reactant Adsorption (Kox i Kred)°

 

 

 

Kred (cm)

ox (cm) 0 1 x 10'6 3 x 10'6 1 x 10'5 2 x 10‘5

0 ---- +2.82 +8.32 +23.72 +36.42

1 x 10"6 +3.12 6.3 12.2 29.0 43.2

3 x 10‘6 9.5 13.0 19.8 39.3 56.5

1 x 10‘5 27.0 32.3 42.1 70.1 96.1

2 x 10'5 42.6 49.2 61.9 99.7 135

 

a

Two parameter nonlinear regression.

b
2

5
20 uF/cmz, c - c . 1 mM, 0 - 0 - 1 x 10' cmZ/s.

0x re 0xd red
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not the absolute magnitude of the surface excess when there is equal

concentrations of both species in the solution.

Table 6.5 shows the error in both the standard rate constant and

the capacitance derived from transients generated while varying the

concentration of one half of the redox couple. It can be seen that

equal concentrations of the oxidized and reduced species produces the

minimum error, with the error increasing as the ratio of the concenr

trations deviates from unity in either direction. The error in the

double-layer capacitance, on the other hand, is smallest at the small-

.
4
—

‘
2
'

.
-
s
.

‘
a

est concentrations.

As was the case with coulostatics, it is not possible to correlate

these effects to the experimental variables in any systematic way; the

exact amount of error depends on too many factors for correlations to

be particularly useful. Some general conclusions can be made, however.

The uncertainty in the rate constants deriVed using nonlinear regres-

sion from g.d.p. transients is minimized when the equilibrium.poten-

tial is the formal potential (1:3;J when the concentration of the two

species are equal). Attempting to decrease the diffuse-layer adsorp-

tion by adjusting the system for a new equilibrium potential closer

to the p.z.c. will only work if the adsorption can be made negligible;

otherwise, the accuracy gained by the smaller degree of adsorption will

be counterbalanced by changing the concentration ratio from unity.

6.7. Effect of Adsopption in Conventional Analysis

Conventional simulations were performed for two systems to compare

the performance of the nonlinear regression analysis with the
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Table 6.5. Error in Rate Constants Derived8 from G.D.P. Transientsb

c
Due to Weak Reactant Adsorption (Cox # Cred)'

 

 

ox (mM) Cred (mM) Error in kstd Error in Cdz

l 0.1 +5002 -2.72

l 0.3 110 -3.4

l l 70 -4.6

l 3 84 -7.7

1 10 150 -12.

 

aTwo parameter nonlinear regression.

b 2
t1 - 1 Us, 11 - 0.055 A/cm , 12 varying, kStd I 0.3 cm/s, Cdl

2 -5
20 uF/cm , Dox Dred 1 x 10

= 1 x 10-5 cm.

cm2/s.

c

Kox - Kred

e
‘
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conventional ”min-zg' ta analysis. One of the systems chosen for this
1

treatment failed to provide any kinetics information under the none

linear regression analysis, while the other yielded rate constants which

were in error by about 702.

Figures 6.2 and 6.3 show the nm vs. tk plots for each system
in.-- 1

both with and without adsorption. The ideal case was simulated for

reference because the simulated data were generated using conventional

digital simulation routines. The linear regression lines are also

plotted on the graph. It is clear that the presence of adsorption

W
‘
W
T
V
'

‘
“

"

produces large deviations in both the slope and the intercept of these

plots, as well as some degree of nonlinearity in the data. The inter-

cepts from the linear regression together with the corresponding rate

constants derived from these values using Equation 6.6 and their ap-

proximate uncertainties are shown in Table 6.6.

These results are strikingly improved over those derived by the

nonlinear regression procedure. ‘In the first system, where kstd -

0.3 cm/s, we see only a 32 error in the rate constant compared to about

702 from the other analysis. The other system, for which nonlinear

regression failed entirely to yield a reliable rate constant, yields

a result by this analysis which is in error by roughly 602. The

surprisingly more accurate results afforded by the conventional

analysis were seen for a wide range of rate constants and adsorption

parameters.

Apparently, the method of adjusting the current pulses to position

the minimum at a reproducible time in the experiment is responsible

for this improvement. During the first current pulse, not only does
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Figure 6.2. Overpotential minimum vs. t? for conventional g.d.p.

- 20 uF/cmz, i - 0.003 A/cmz,
d d1 2

5
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analysis, with kst - 0.3 cm/s, C
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Table 6.6. Results of Conventional Analysis of G.D.P. Data8 with

Weak Reactant Adsorption.b

 

 

 

Intercept (mV) Derived kstd (cm/s)

kstd = 0.3 cm/s

Ideal 2.673 0.299 t .001

Adsorptionb 2.588 0.308 2 .002

kstd a 3.0 cm/s

Ideal 1.619 3.289 t .16

Adsorptionb 0.982 5.423 1 .67

8C t C - 1 mM D a D = l x 10.5 cmzls not parallel
ox red ’ ' ox red ’

simulation.

bK - K - l x 10.5 cm.
ox red
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the double-layer charge to the appropriate value, but the faradaic

reactions of bulk species and adsorption occur as well. The extrapo-

lation back to time zero which is conventionally done to correct for

this concentration polarization during the first pulse evidently also

corrects for the reaction of the adsorbed species. The t? plot lin-

earizes the contribution from the diffusing species, as seen in Figures

6.2 and 6.3 for the ideal system, but the adsorbed species distorts

the diffusion profile, rendering curvature in the data. It can be

seen that a rough, curved extrapolation yields an intercept even

closer to the ideal value, and hence a more accurate rate constant.

6.8.v Ipplications for the Use of Small-Step Methods

It was found that experimental nonidealities in small potential-

step, coulostatics, and galvanostatic double pulse studies of fast

reactions produce a large amount of error when the resulting tran-

sients are analyzed with nonlinear regression. In the face of non-

ideal conditions, the traditional advantage of nonlinear regression

(i;g;, the sensitivity of the analysis to minor variations in the

shape of the transient) actuallyworks against the derivation of ac-

curate rate constants from experimental data. As the amount of ki-

netics information in the transient decreases (for faster reactions),

a deviation of a given magnitude will produce a greater error in the

rate parameter.

These results should serve as a warning to those who routinely

use nonlinear regression analyses to reduce their data. The equation
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to which the experimental data is fit must accurately reflect the

processes which are occurring in the experiment. This is especially

important when the curve contains only a small amount of the informa-

tion of interest. (Of course, the nonideal data examined here could,

in principle, be adequately fit by an equation which takes the non-

idealities into account. In this case, nonlinear regression would

probably be the analysis method of.choice.)

The surprising success of the conventional galvanostatic double

pulse analysis was indeed a welcome result in the midst of failing

nonlinear regression analyses for every other experimental method

examined. Ideally, of course, an equation might be derived to allow

a valid extrapolation of the ”min 3g. pulse time curve to zero time,

but even the rough, linear approximation produces much more accurate

results than those obtained by nonlinear regression analyses, and

even yields estimates of the rate constant under conditions in which

nonlinear regression was not able to do even that.

Other methods are also used to study the rates of quasi-reversible

reactions, in particular, a.c. polarography. This method was not

examined in this study because of the lack of a closedrform solution

to the overall current response to the small a.c. potential perturba-

tion. Conventional simulations yielded responses which were too in-

accurate to be of use. It would be expected, though, that adsorption

of the reactants would interfere with the measurement of fast rate

constants here as well. Another method sometimes used to study the

rates of fast electrode reactions is cyclic voltammetry. This tech-

nique was not examined because preliminary studies (with conventional
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simulations) showed only very minor effects due to reactant adsorp-

tion; indeed, the observed errors were less than other known errors

(Edfii: iR drop) for these experiments.

Thus, it seems that the galvanostatic double pulse experiments

with the conventional data analysis will yield the best estimates of

fast electron-transfer rate constants in the face of inevitable experi-

mental nonidealities.
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SUGGESTIONS FOR FURTHER RESEARCH
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7.1. Extension to Other Adsorppion Isotherms
 

While this work has illustrated that the influence of weak reactant

adsorption becomes pronounced only when one attempts to measure the

rate constants of very fast reactions, it is possible that stronger

adsorption will influence transient responses to a larger extent

even when slower reactions are studied.

There are two isotherms in relatively common use for describing

strong adsorption (l): the Langmuir isotherm and the Frumkin isotherm.

The Langmuir equation needs two parameters to describe the adsorption

properties, as it takes into account a saturation-coverage limit. The

Frumkin isotherm takes this one step further (and adds one more ad-

justable parameter) in considering adsorbate-adsorbate interactions.

Either of these isotherms can be used in more complicated simula-

tions to study the influence of strong adsorption. The study is made

considerably more complex than the Henry's law case in that we now

need several parameters (and their dependence on potential) to de-

scribe the adsorption properties of each species in the system. The

situation is further complicated by the fact that specific adsorption

is usually not in equilibrium over the time scale of these experiments;

for a realistic model, adsorptionrdesorption kinetics would also have

to be considered.

Despite these complications, it should be possible to apply some

appropriate simplifying assumptions and obtain useful results from

the simulation of these systems. A more realistic model could aid

170
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considerably in the interpretation of experimental results, as

described below.

7.2. Alternative Analysis Procedures

As suggested in Chapter 3, these more realistic models could be

applied in a nonlinear regression analysis of data which was recorded

in such a way as to maximize the extent of the nonideal behavior.

Not only could rate data be recovered, but also information about the

adsorption properties of the reactant. Two approaches suggest them-

selves.

The study of systems with strong adsorption could yield separate

kinetics information for the adsorbed reactant and the diffusing

reactant. At present, it is difficult to separate the overall faradaic

current into the various components, so that the kinetics of the ad-

sorbed species must be studied under conditions which minimize the

reaction of the diffusing species. Two methods are used for this: a

very small bulk concentration of the reactant (which requires very

strong adsorption), or very fast experiments so that very little re-

actant has time to diffuse toward the surface. A.simulation-based

analysis might be successful in determining the kinetics of both re-

actions simultaneously or even the adsorption-desorption kinetics of

the species in question.

A second possibility for simulation-based analysis is the compen-

sation for nonideal instrumentation. The actual applied waveform

(potential-step, current-step, etc.) could be measured independently

of the response transient and used in a simulation analysis. This
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approach might also make it relatively easy to do any resistance comr

pensation at the analysis stage instead of guessing before the experi-

ment is performed. By actually measuring the applied waveform, the

need for some instrumental model is eliminated, making the entire pro-

cedure more reliable.

Implicit in the above discussion is the assumption that charging

currents due to double-layer capacitance in potential-step experiments

make no contribution to the analyzed transients.. It is hard to ensure

this because of iR-drop problems, even though the current may not be

sampled until after the applied potential is at the desired value.

Although small-step coulostatics and g.d.p. experiments take the double-

1ayer capacitance into account, the theory assumes that it remains

constant throughout the experiment, which may not be true in the face

of specific adsorption of the reactants. Additionally, a change in

the number of adsorbed ions over the course of the experiment could

cause nonfaradaic current to flow if the electrosorption valency of

the adsorbate was large enough to affect the charge on the electrode.

These factors could be examined in more detail to see if they are

indeed large enough to produce deviations in the shape of the trans

sients.

The flexibility of digital simulation coupled with the generality

of the nonlinear regression analysis gives these procedures much

potential. On a mainframe computer, these analyses could become as

convenient as a linear least squares calculation.
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A SAMPLE SIMULATION PROGRAM

The following program uses the parallel simulation method to pro-

duce an error curve to be impressed on a calculated ideal small-step

chronoamperometric transient (see Chapter 2). Although comments have

been provided in the listing itself, a few explanatory notes will be

given.

The listing produced by FLECS includes indentation to show the level

of the control structure of an individual statement. The vertical columns

of dots allow the level to be traced from page to page. The statement

"FIN" serves only to indicate the end of a control level.

In addition to the initialization and the parallel simulations,

there are quite a few lines of code dedicated to a convenient user

interface. The internal procedure DISPLAYAMODIFY-PARMS allows any

number of the variables in the simulation to be adjusted during a session

with a minimum of effort.

The octal (base 8) constants (218;: "33) in WRITE statements to unit

7 (the terminal) are DEC VT-52 compatible escape sequences for controll-

ing the position of the cursor, clearing the screen, etc.

File output statements are not shown in this listing for clarity, al-

though all regular programs include this provision. The extra state-

ments include OPEN/CLOSE logic for new files, a data set header section

which records all the simulation parameters, and output statements

for the simulated data themselves.
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FLECS/RT-ll V28.0l PAGE 1

PROGRAM OSIM

GSIM - CHRONOAMPEROMETRY SIMULATION

PROGRAM BY E. SCHINDLER: 5/82

* OUASI-REVERSIBLE KINETICS

* LINEAR POTENTIAL RISE

DIMENSION C(100):P(100).CNEU(100):A(14)

DIMENSION CI(100).PI(100).DX(100)

REAL KFoKDaKSTDpKFIoKBI

BYTE ERR

EGUIVALENCE (A(1). KSTD). (ACE). ESTEP)

EGUIVALENCE (A(3): COX): (A(4): DOX)

EGUIVALENCE (A(5). CRED). (A(6)o DRED)

EGUIVALENCE (A(7). ALPHA): (A(S)o AREA)

EGUIVALENCE (A(9). DXI). (A(10)a000)

EGUIVALENCE (A(11).BETA): (A(12)oDTOUT)

EGUIVALENCE (A(13)aTFINAL)a(A(14)oTRISE)

DEFAULT PARAMETER VALUES

DATA A/.11 0.: 1.E"6a 1.E-3o 1.E-6o

I 1.E"30 .5: .02: 5.5-'6: .1: .4: 1.8-'4:

1 2.015-3. 1.5-SI



175

FLECS/RT-11 V28.01 PAGE 2

INITIALIZATION SECTION

WHILE (.TRUE.)

DISPLAY-MODIFY-PARMS

NVE-IO

NVEIBIO

DTNOR-BETA*DX1**2/AMAX1(DRED:DOX)

DT=TRISEI200.

IF (DTNOR.LT.DT) DTBDTNOR

TIME-0.0

TOUT-DTOUT

DO (I-laIOO)

. C(I)-COX

CI(I)=COX

P(I)-CRED

PI(I)-CRED

DX(I)=DX1*EXP(GGG*FLOAT(I))

.FIN

EEOUILI-25.691*ALOG(CRED/COX)

EBEEQUIL+ESTEP

KFIBKSTD*EXP(-ALPHA*E/25.691)

KBI-KSTD*EXP((1.-ALPHA)*E/25.691)

WRITE (7:100)_”38.”110a'33:”112
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FLECS/RT-ll V28.01 PAGE 3

NONIDEAL SIMULATION ROUTINE

REPEAT UNTIL (TOUT.GT.TFINAL)

. IF (TIME.GT.2.*TRISE) DT=DTNOR

WHEN (TIME.GE.TRISE) E-EEGUIL+ESTEP

ELSE E-EEGUIL+ESTEP*(TIME/TRIBE)

KF‘KSTD*EXP(-ALPHA*E/25.691)

KB-KSTDfiEXP((l.~ALPHA)*E/25.691)

SURFACE BOUNDARY CONDITIONS

FLUX 3 (KF*C(1)-KB*P(1)) /

5 (I.+KF*DX1/DOX+KB*DX1/DRED)

C0-C(1)-FLUX*DX1/DOX

PO=P(1)+FLUX*DX1/DRED

DIFFUSION

CNEH(1)-C(1)+DOX*DT/((DX(2)+DX1)*.5) *

((C(2)-C(1))/DX(2)-(C(I)-CO)/DX1)

DO (182:NVE)

CNEN(I)-C(I)+DOX*DT/((DX(I+1)+DX(I))*.5) *

. ((C(I+1)-C(I))IDX(I+1)-(C(I)-C(I-1))IDX(I))

...FIN

DO (IfllsNVE) C(IIICNEH(I)

CNEN(1)=P(1)+DRED*DT/((DX(2)+DX1)*.5) *

((P(2)-P(1))lDX(2)-(P(1)-PO)/DX1)

DO (I82oNVE)

. CNEW(I).P(I)+DRED*DT/((DX(I+1)+DX(I))*.5) *

((P(I+1)-P(I))IDX(I+1)-(P(I)-P(I-1))IDX(I))

...FIN

DD (I'lyNVE) P(I)-CNEN(I)

IF (ABS(C(NVE-2)-COX).GT.COX*.001) NVEBNVE+1

IF (ABS(P(NVE-2)-CRED).GT.CRED*.001) NVEBNVE+1

IF (NVE.GT.IOO) STOP ’TOO MANY VOLUME ELEMENTS’
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FLECS/RT-ll V28.01 PAGE 4

IDEAL SIMULATION ROUTINE

UNLESS (TIME.EG.0.0)

KF-KFI

. KB-KBI

...FIN

SURFACE BOUNDARY CONDITIONS

FLUXI I (KF*CI(1)-KB*PI(1)) /

(1.+KF*DX1/DOX+KB*DX1/DRED)

COI-CI(1)-FLUXI*DX1/DOX

POI8PI(I)+FLUXI*DX1/DRED

DIFFUSION

CNEH(1)-CI(1)+DOX*DTI((DX(2)+DX1)*.5) i

((CI(2)-CI(1))lDX(2)-(CI(1)-COI)/DX1)

DO (I-21NVEI)

CNEN(I)-CI(I)+DOX*DT/((DX(I+1)+DX(I))fl.5) *

((CI(I+1)-CI(I))/DX(I+1) -

. (CI(I)-CI(I-1))/DX(I))

...FIN

DO (I-lnNVEI) CI(I)'CNEN(I)

CNEH(I)-PI(1)+DRED*DT/((DX(2)+DX1)*.5) *

((PI(2)-PI(1))lDX(2)-(PI(1)-POI)/DX1)

DO (1-2:NVEI)

. CNEH(I)-PI(I)+DRED*DT/((DX(I+1)+DX(I))*.5) *

((PI(I+1)-PI(I))/DX(I+1) -

(PI(I)-PI(I-1))/DX(I))

...FIN

DD (I'laNVEI) PI(I)=CNEH(I)

IF (ABS(CI(NVEI-2)-COX).GT.COX*.OOI)

. NVEI-NVEI+1

...FIN

IF (ABS(PI(NVEI-2)-CRED).GT.CRED*.001)

. NVEIINVEI+1

...FIN

IF (NVEI.GT.100)

. STOP ’TOO MANY VOLUME ELEMENTS (I)’

.FIN
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FLECS/RT-ll V28.01

OUTPUT SECTION

IF (TIME+.5*DT.GT.TOUT)

TOUT-TOUT+DTOUT

CURRIFLUX¥964S7.E6*AREA

RATBFLUX/FLUXI

TYPEioTIME.CURRoRAT:NVE

.FIN

NEXT TIME INCREMENT

. TIME-TIME+DT

...FIN

. PAUSE

...FIN

STOP

PAGE 5
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FLECS/RT-ll V28. 01 PAGE 6

USER INTERFACE SECT ION

TO DISPLAY-MODIFY-PARMS

WRITE-DATA

REPEAT UNTIL (I.EG.0)

WRITE (7:110) ”33:”131:“61:”40:“83:“112

FORMAT (1X:6A1:’ENTER ENTRY TO CHANGE:’$)

ACCEPT*:I

CONDITIONAL

(I.LT.O) WRITE-DATA

(I.GT.14) “RITE-DATA

(I.E0.0) CONTINUE

(OTHERWISE)

TYPE*:’ENTER NEH VALUE’

ACCEPT*:A(I)

IIIII+"41

“RITE (7:120) “33:”131:III:“64:A(I)

...FIN

...FIN

...FIN

.FIN

TO "RITE-DATA

WRITE (7: 100) “33: "110: '83: “112:

KSTD: ESTEP: COX: DOX: CRED: DRED:: ALPHA

AREA: DXI: GOG: BETA: DTOUT: TFINAL: TRISE

FORMAT (1X:4A1: ’GUASI-REV CHRONOAMPS’: //

1X: ’ 1 STD RATE CON’: T22: 1PG10. 3:

1X: ’ 2 E STEP’: T22: 010. 3/

1X: ’ 3 CONC OX’: T22: G10. 3/

1X: ’ 4 DIFF COEFF OX’: T22: 010. 3/

1X: ’ 5 CONC RED’: T22: G10. 3/

1X: ’ 6 DIFF COEFF RED’: T22: 010. 8/

1X: ’ 7 ALPHA’: T22: G10. 3/

1X: ’ 8 AREA’: T22: GIO. 3/

1X: ’ S DELTA X 1 ’: T22: G10. 3/

1X: ’10 EXPANSION FACTOR’: T22: 010. 3/

1X: ’11 BETA’: T22: G10. 3/

1X: ’12 OUTPUT INTERVAL’: T22: 010. 3/

1X: ’13 FINAL TIME’: T22: 010. S/

. 1X: ’14 RISE TIME’: T22: 010. 3)

. . . FIN

END
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