

L Y
Michigan state
University

This is to certify that the

	thesis entitled
_	Two Bacteriophage
Produ	thesis entitled Two Bacteriophage Tybene cds which regulate bene for MFFECT DNA STructure presented by
EXPUSS	presented by
,	presented by Aarl Sirot (III)
	// 4/1

has been accepted towards fulfillment

PH, D degree in MICTUB, 0/094

11/19/78 Major pro

O-7639

**: 6.32.

TWO BACTERIOPHAGE T4 GENE PRODUCTS WHICH REGULATE GENE EXPRESSION AFFECT DNA STRUCTURE:

- I. The $\underline{\text{Alc}}$ Gene Product Unfolds the Host Nucleoid
- II. The <u>PseT</u> Gene Product Can "Shuttle" DNA Phosphates from 3' to 5' Termini

Ву

Karl Sirotkin

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Microbiology and Public Health

1978

jobual

ABSTRACT

TWO BACTERIOPHAGE T4 GENE PRODUCTS WHICH REGULATE GENE EXPRESSION AFFECT DNA STRUCTURE:

- I. The <u>Alc</u> Gene Product Unfolds the Host Nucleoid
- II. The <u>PseT</u> Gene Product Can "Shuttle" DNA Phosphates from 3' to 5' Termini

By

Karl Sirotkin

When T4 polymerizes cytosine (instead of its usual hydroxyl-methylcytosine) into its DNA it does not produce any progeny because it does not express its true-late genes normally. However, previous data indicate that T4's <u>alc</u> gene can be altered so that T4 with cytosine containing DNA develops normally. Such <u>alc</u> T4 express combinations of the following pleotrophic defects: 1) defectively unfolding the chromosome of its host, <u>E</u>. <u>coli</u>; 2) failing to induce a polypeptide that normally co-purifies with the host RNA polymerase; and 3) defectively preventing host transcription.

The selection that yields T4 that induce altered <u>alc</u> gene products sometimes yields T4 that induce altered <u>pseT</u> gene products as well. (The T4 <u>pseT</u> gene has previously been shown to be necessary for the induction of 3' phosphatase activity and for growth on an <u>E. coli</u> strain, CTr5x). Genetic evidence is presented here that <u>pseT</u> is the structural gene, not only for 3' phosphatase, but also for 5' polynucleotide kinase. In addition, the pseT gene product

is required for normal T4 true-late gene expression during infection of \underline{E} . $\underline{\operatorname{coli}}$ CTr5x. Adding efficient amber suppressing ability to \underline{E} . $\underline{\operatorname{coli}}$ CTr5x alters it so that all $\underline{\operatorname{pseT}}$ T4, even deletions, can grow on it. Thus, an amber mutation in an \underline{E} . $\underline{\operatorname{coli}}$ CTr5x gene probably prevents the growth of $\underline{\operatorname{pseT}}$ T4. It follows then that the normal functioning of a similar host gene in commonly used laboratory strains is probably required for growth of $\underline{\operatorname{pseT}}$ T4 on those strains.

ACKNOWLEDGMENTS

I would like to thank Drs. H. Sadoff, R. Costilow, L. Robbins and J. Hanna for serving on my committee. Special thanks to Dr. Costilow for the use of some of his laboratory equipment.

Of course, my deepest gratitude to Dr. Larry Snyder, without whose patient tutelage I could not have had such a rewarding apprenticeship.

I also acknowledge a three year National Science Foundation predoctoral fellowship.

My gratitude is also expressed to Drs. R. Patterson and H. Struck for helping me improve my writing skills.

TABLE OF CONTENTS

P	age
LIST OF TABLES	v
LIST OF FIGURES	vi
INTRODUCTION	1
LITERATURE REVIEW	4
Enzymes Altering DNA Supercoiling Their Biological Significance In vitro Observations Intermediates and Models The Relationship of Nicking or Gapping Enzymes to Gene Expression Requirements for T4 True-late Gene Expression T4 Induced Modifications of RNA Polymerase Is alc the Structural Gene for Polypeptide Number 2? The Structure of T4 DNA after Replication has Begun T4 nucleoids	4 5 8 9 11 12 13 14 16 17 18 19 19 23 24 25
T4 Mediated Alterations of Host DNA Organization and T4's Effect upon Host Gene Expression	26 26 27 27 28 29 31 34
A ROLE IN TRUE-LATE GENE EXPRESSION FOR THE T4 BACTERIOPHAGE 5' POLYNUCLEOTIDE KINASE 3' PHOSPHATASE	

																											Pag	зe
APPENDIX	I	•			•	•	•	•	•	•	•	•			•			•	•		•	•		•	•	•	82	2
APPENDIX	II	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	87	7
APPENDIX	III	•							•																		92	2

LIST OF TABLES

Table		Page
1	Strains Used	50
2-A	3' Phosphatase Assays	54
2-В	5' Polynucleotide Kinase Assays	55
APPEND	IX I	
1	Map Position of <u>alc</u> Mutations	84
2	Hybridisation of RNA Labelled after Infection by an $\underline{\text{alc}}$ Mutant to $\underline{\text{E}}$. $\underline{\text{coli}}$ DNA	86

LIST OF FIGURES

Figure		Page
1	A T4 Induced Polypeptide, Migrating with the Same Molecular Weight as 5' Polynucleotide Kinase is Missing in Extracts from psetz 2 Infected Cells	58
2	Late Proteins are Synthesized at a Lower Rate after $\underline{pseT}\Delta 1$ Infection of \underline{E} . \underline{coli} CTr5x	61
3	Complementation of <u>pseT1</u> on <u>E</u> . <u>coli</u> CTr5x and the Effect of Efficient Amber Suppression	65
4	The Model Categories Depicting Possible pseT Gene Product Functions	74
APPENDI	IX I	
1	An <u>alc</u> Mutant is Lacking a T4-coded polypeptide on the RNA Polymerase	83
2	Sucrose Gradients of Nucleoids after Infection by an <u>alc</u> Mutant	85
3	Time Course of Unfolding after Infection by alc Mutants	85
APPEND I	X II	
1	Fine Structure Map of <u>pseT</u> and its Position with Respect to Other Nearby Genes	87

INTRODUCTION

Studies of bacteriophage T4 transcription may be used to advance our knowledge of gene expression and its relationship to DNA structure because T4 drastically affects both the gene expression and DNA structure of its host, <u>E</u>. <u>coli</u>. After T4 infection, host gene expression ceases, host DNA organization changes, and, eventually, the host DNA itself largely disappears. Another reason to use T4 to study the relationship between DNA structure and function is that T4 induces many enzymes that are essentially duplications of host enzymes. For example, T4 directs the synthesis of many of the gene products necessary for the replication of its DNA (for example, see Alberts, et al., 1975). These duplications can make it easier to study functions as altered by phage mutants, since host mutants can be more difficult to isolate.

In addition, the regulation of T4's own gene expression is complex and interesting (for a review see Rabussay and Geiduschek, 1977). At least four classes of T4 genes have been described: immediate early, delayed early, quasi-late, and true-late. The early genes are transcribed almost exclusively from T4's 1-strand. Models for their control based upon either initiation at specific promoter sequences or termination at specific sequences can be used to explain existing data. The true-late genes are transcribed, generally, from T4's r-strand. Less is known about the control of true-late transcription. However, it is known that the expression of T4's true-

late genes seems to depend on specific DNA structures.

The <u>alc</u> and <u>pseT</u> genes are examples of T4 genes that can be exploited to study gene expression and its relationship to DNA structure. The <u>alc</u> gene product normally blocks T4 true-late gene expression when cytosine (instead of the usual hydroxylmethylcytosine) is polymerized into T4 DNA (Snyder et al., 1976). The T4 <u>alc</u> gene product is also required to "unfold" the host's chromosome and to block transcription of host RNA (Sirotkin et al., 1977 - appendix 1). The <u>alc</u> gene may induce an RNA polymerase subunit (Sirotkin et al., 1977 - appendix 1).

The selection that yields T4 <u>alc</u> mutants sometimes yields T4 that are <u>pseT</u> as well (table 1 of article 1). In addition, when T4 that are only <u>alc</u> are propagated, <u>pseT</u> mutants are often recovered (table 1 of article 1). Studies presented in article 1 demonstrate several properties of the <u>pseT</u> gene: 1) the <u>pseT</u> gene product can, <u>in vitro</u>, remove 3' phosphates from DNA termini and add gamma phosphates from ATP to 5' hydroxyl termini; thus it can be said to "shuttle" phosphates; 2) a host gene product can substitute for the <u>pseT</u> gene product; 3) the <u>pseT</u> gene product or its substitute, is required for normal T4 true-late gene expression.

Normally T4 true-late gene expression depends upon recently replicated DNA. The putative substitute for the <u>pseT</u> gene product can therefore be expected to support host gene expression that depends upon recently replicated DNA. Further research is currently using <u>pseT</u> mutants in a selection intended to yield host mutants in the gene(s) corresponding to the pseT gene (see appendix 3).

It is not clear how either the alc or pseT gene function in vivo, although some models to explain their function can be suggested (see literature review and article 1). For example, the alc gene product might function either as an RNA polymerase subunit that blocks transcription of cytosine containing DNA, or as an activity that removes the supercoiling of cytosine containing DNA. models for pseT function describe the end products of phosphate "shuttling" observed in vitro as intermediates appearing only transiently in vivo. For example, these intermediates may appear as DNA supercoils are created or destroyed. Thus to provide an adequate background for the understanding of the alc and pseT gene products, it is necessary to summarize research concerning DNA supercoiling. In addition, research in five areas more obviously related to the alc and pseT gene products will be discussed: 1) isolated bacterial nucleoids; 2) the structure of replicating T4 DNA; 3) T4 induced modifications of the host RNA polymerase; 4) T4's effect on the organization of host DNA and host gene expression; and 5) the regulation of T4 true-late gene expression. Research exploring the 5' polynucleotide kinase and 3' phosphatase activities has been summarized in article 1 rather than in the literature review.

LITERATURE REVIEW

Isolated Bacterial Nucleoids

<u>E. coli's DNA</u> is about one mm long (Cairns, 1963). Because the dimensions of <u>E. coli</u> cells average about one thousandth of this, DNA must be highly convoluted to fit into cells. Transcription, segregation, recombination, and replication all force further constraints on the DNA's organization. Understanding these processes probably requires understanding the restrictions they place upon DNA structure. Although it is reasonable to expect that lysing cells would necessarily destroy all of this organization, this is apparently not the case.

Stonington and Pettijohn (1971) reported the first lysis procedure that retained some <u>E</u>. <u>coli</u> DNA organization. Usually, unless the cells were quite dilute, most lysis procedures yielded viscous lysates. Their lysis procedure, however, produced lysates that were not viscous, because the DNA from the lysed cells did not spread throughout the solution. Being compact, this DNA sedimented more quickly than disperse DNA would have sedimented. All further work (see below) on these compact DNA structures, called "nucleoids," retained certain elements of Stonington and Pettijohn's (1971) three step lysis procedure. Cells were first resuspended on ice in a solution containing 20% sucrose, NaCl, and NaN3. The sucrose and salt gave the solution the correct osmolality to prevent spheroplasts from lysing prematurely. The NaN3 blocked ATP production via

oxidative phosphorylation. Interestingly, ATP alone, when added to these lysates after the third solution, turned them viscous (K. Sirotkin, R. Pearson, L. Snyder, unpublished), implying that the nucleoids were "unfolded." Lysozyme then turned the cells into spheroplasts. The third solution contained NaCl to a final concentration of at least 1 molar (to inhibit nucleases) and detergent to lyse the spheroplasts. These nonviscous crude lysates were often layered on sucrose gradients to purify or analyze the nucleoids.

Nucleoid structure

Stonington and Pettijohn (1971) reported that either SDS or heat "unfolded" the nucleoid structure, as shown by increased viscosity. Nicks introduced by DNAase, also disrupted the nucleoid structure (Stonington and Pettijohn, 1971; Worcel and Burgi, 1972), with a kinetics that implied that five to forty separate supercoiled loops or domains were involved (Worcel and Burgi, 1972). Surprisingly, both groups reported that RNAase unfolded nucleoid structure. Although in early work Worcel and Burgi, (1972) claimed that one nick, introduced by RNAase, was sufficient to unfold nucleoid structure, later workers (Pettijohn and Hecht, 1973; Drlica and Worcel, 1975), found intermediates after RNAase treatment. Thus, more than one nick was necessary to unfold nucleoid structure. The RNA molecules most tightly bound to the nucleoid and hence implicated in maintaining its structure, were studied by Hecht and Pettijohn (1975, 1976). They found that: 1) the RNA molecules were bound at more than one site (1975); 2) DNA that was either about to be replicated or freshly replicated did not bind more RNA

than did other DNA (1975); 3) about 60-90 molecules were bound per nucleoid (1976); 4) about 300 base pairs per RNA molecules were bound, probably as RNA:DNA hybrids (1976); 5) neither their hybridization kinetics nor their rifampicin mediated disappearance kinetics distinguished these preferentially bound RNA molecules from the bulk of E. coli's RNA; and 6) both rRNA and mRNA species were represented. Rifampicin treatment, which is capable of blocking all RNA initiation, unfolded the nucleoid in vivo so that after the lysis procedure outlined above, the lysates were viscous (Dworsky and Schaechter, 1973; Pettijohn and Hecht, 1973). Whether the nucleoid structure is disrupted before or after lysis, the resulting solution is spoken of as containing "unfolded" nucleoids.

All of these data are consistent with the model that the association of RNA with the nucleoid DNA occurs shortly after the RNA is transcribed, possibly by competing with the non-transcribed strand for hybridization, perhaps at regions that are slightly underwound because of supercoiling (supercoiling is discussed in a following section).

Other cellular constituents than RNA were isolated with nucleoids. Proteins and cell membrane pieces, and even part of the cell wall can be attached to the nucleoid. Depending on the temperature during the incubation with high salt and detergent, either membrane-attached (0°-4°C), membrane-released (22°C) or a mixture of types (10°C) were observed (Worcel and Burgi, 1974). Some of the attachment points, as measured by X-ray mediated breakage and later adherence to Mg⁺⁺-Sarkosyl crystals, disappeared after rifampicin

treatment, as if they arose during RNA transcription (Dworsky and Schaechter, 1973). Korsch et al. (1976) showed that the membrane attached nucleoids also had cell wall parts attached, and that, because of this, careful attention must be paid to the physiological state of the cells because of physiologically linked variations in lysozyme susceptibility. This varying lysozyme susceptibility was used by Korsch et al. (1976) to explain differences in sedimentation velocities for nucleoids from, for example, amino acid starved cells. By equilibrium CsCl centrifugation of fixed membrane released nucleoids, Giorno et al. (1975a) showed that the DNA to RNA to protein ratios were constant in spite of the observed heterogeniety of sedimentation profiles. The proteins included RNA polymerase (Stonington and Pettijohn, 1971).

Both protein and RNA maintain nucleoid structure (Drlica and Worcel, 1975). Different treatments produced partially disrupted membrane released nucleoids that could be distinguished by both their viscosity and sedimentation rate. Treatments that removed all supercoiling, 2ug/ml ethydium bromide or DNAase, yielded nucleoids that made slightly more viscous suspensions or were slower sedimenting than untreated nucleoids. Treatment with RNAase or incubation at 35°C in low (0.1 M NaCl) salt yielded more unfolded nucleoids. Since nucleic acid hybridization stability decreases at low salt (Marmur and Doty, 1962), and lessened ionic strength can be expected to increase the binding of proteins to nucleic acid, both the RNAase and low salt probably released the RNA:DNA hybrids mentioned earlier, rather than releasing structures stabilized by proteins. Treatment of these above slightly unfolded (35°C 0.1 M NaCl) nucleoids with

trypsin, or treatment of fresh nucleoids with 1% SDS completely unfolded them. These last treatments would be expected to destroy all interactions between proteins and nucleic acids. Thus both RNA and protein stabilize nucleoid structure.

It is important to realize that different groups used different gravitational field strengths, and that this alone can lead to different apparent sedimentation rates for nucleoids (Hecht, et al., 1977). The higher the field strength, the lower the apparent sedimentation rate.

Nucleoids: artifact or biologically significant:

One concern is that the procedures for isolating nucleoids might produce artifactual protein-DNA associations. Along this line, Silberstein and Inouye (1974) reported that the concentration of lysozyme commonly used in nucleoid isolation can lead to artificial DNA aggregation. However, Korsch et al. (1976) reported that the high salt of the lysis prevents such artificial aggregations. By flourescence microscopy, the dimensions and gross structure of the isolated nucleoids appeared similar to the appearance of DNA in intact cells (Hecht et al., 1975), corroborating the preceding result.

If nucleoids occur widely in nature, their universality would imply that some essential organization might be leading to their particular structure, even if their isolation gives rise to structures different from those occurring in vivo. Benyajat and Worcel (1976) isolated chromosomes from <u>Drosophila melanogaster</u> that resemble E. coli nucleoids in having separate supercoiled loops.

But because they were too unstable to purify, it was difficult to detail their structure. Pinon and Salts (1977) isolated supercoiled chromosomes from <u>Saccharomyces cerevisiae</u>. The isolated chromosomes contained at least 60 independent supercoiled domains and protein stabilized their structure. The chromosomes also differed in sedimentation rate depending upon the part of the yeast cell cycle from which they were isolated.

Griffith (1976) presented evidence that procaryotic and eucaryotic DNA had a similar beaded structure when viewed by electron microscopy, although because lysozyme was used in the presence of low salt to lyse the procaryotic cells, artificial associations between lysozyme and DNA might have occurred (Silberstein and Inouye, 1974).

These observations together imply that the structure of isolated nucleoids, even if not exactly corresponding to <u>in vivo</u> structures, at least might arise from fairly widespread <u>in vivo</u> organization.

Nucleoids as a probe of replication related events

Since the first claim that nucleoids from <u>E</u>. <u>coli</u> cells were released from their membrane attachments at the end of a round of replication in amino acid starved cells (Worcel and Burgi, 1974), many workers have investigated nucleoid structure and its relationship to the replication cycle. Ryder and Smith (1974) found evidence that membrane attached nucleoids can be found after lysing amino acid starved cells. They attributed the earlier reported absence to the membrane associated nucleoids being pelleted in a prespin used by Worcel and Burgi (1974). In fact, Ryder and Smith (1974) claimed that envelope associated nucleoids isolated from amino acid starved

cells sedimented about 50% faster than controls. These workers also reported (Ryder and Smith, 1975; Ryder et al., 1975) that a change in the sedimentation rate of isolated nucleoids can be observed that correlates with the initiation of DNA synthesis. They report that the sedimentation rate of isolated bacterial nucleoids increased about 14% at high temperature in a ts dnaC mutant and that the sedimentation rate decreased to normal after shift down to the permissive temperature. Disappointingly, no correlation with DNA content, degree of supercoiling, or number of membrane attachment sites was described by these workers.

Korsch et al. (1976) explained at least some of the preceding with the observation that amino acid starved cells were less affected by lysozyme. They also found that the membrane associated nucleoid contained cell wall material. After adjusting for the different susceptibility to lysozyme, amino acid starved cells gave similar results to control cells. By using cells growing with poor carbon sources so that some cells would not be replicating their DNA (Cooper and Helmstetter, 1968), Korsch et al. (1976) showed that membrane associated nucleoids isolated from cells sedimented at about the same rate whether or not they were replicating their DNA. The slight difference between the two rates could be accounted for by the greater DNA content of the replicating nucleoids. This, however, did not explain the results Ryder and Smith (1974) obtained with the ts dnaC mutant.

Thus, in spite of the fact that about 0.5% of the <u>E. coli</u> chromosome will not replicate without protein synthesis (Marunouchi and Messer, 1973) no convincingly different isolated nucleoids have been

obtained from amino acid starved cells.

After a lysis similar to that used to isolate <u>E. coli</u> nucleoids,

DNA near the <u>B. subtilis</u> origin was preferentially associated with membrane components after shearing (Yamaguchi and Yoshikawa, 1977; Imada et al., 1975). Since <u>B. subtilis</u> has a mesosome to which DNA seems to be attached, it is hard to compare these results to results obtained using E. coli.

Nucleoids as transcription and replication templates

Another way to test whether or not nucleoids retain components of their in vivo organization as they are isolated is to try to use them as templates for transcription and replication. Kornberg, et al. (1974) isolated membrane associated nucleoids with 10 mM spermidine replacing 1.0 M NaCl and tried to replicate them. About one percent of the genome replicated at about five percent of the in vivo rate. Although some increased viscosity after incubation in the replication mixture was observed, no decrease in sedimentation rate was detected. Interestingly, if both polymerase I and ligase were added, small DNA fragments were changed to large fragments, as occurred in vivo (Okazaki, et al., 1968).

Giorno, et al. (1975b) studied transcription with nucleoid templates. They found that the size of transcripts and their elongation rate were similar on folded and unfolded nucleoids. However, the number of active RNA polymerase molecules and the chain initiation rate were both greater on the folded chromosome. As is discussed below, it is possible that supercoiling alone accounted for this effect although this would not be established by these

experiments alone.

Enzymes Altering DNA Supercoiling

The first report on an enzyme catalytically relazing supercoiled DNA but leaving the DNA covalently closed, was made by Wang (1971). Burrington and Morgan (1976) purified this "omega" protein from <u>E. coli</u> and confirmed Wang's report that it only relaxed negative DNA supercoils. This is significant because most models for replication involve the generation of positive supercoiling (see Cairns, 1963, for example). However, Morgan (1970) proposed a model with linked progeny strands that would generate negative supercoiling.

Gellert et al. reported (1976a) an ATP dependent reaction capable of catalytically introducing negative supercoils into DNA. This supercoiling enzyme has been named DNA "gyrase." They also reported (1976b) that novobiocin and coumermycin inhibited DNA gyrase purified from cou^S, but not cou^E E. coli. Cou, a gene determining sensitivity to coumermycin, near 82 minutes on the standard E. coli map, is probably then the structural gene for a gyrase component. Very recent reports (Gellert et al., 1977; Sugino et al., 1977) identified a second gyrase component sensitive to nalidixic acid. This component, apparently the product of E. coli gene nala (48 minutes), had a number of interesting characteristics (Sugino et al., 1977). including the ability to relax supercoiled DNA. It is unlike the omega protein immunologically and in its ability to relax positively supercoiled DNA.

Enzymes capable of relaxing DNA supercoils have been purified from many eucaryotic sources (Bauer et al., 1977; Mattoccia et al., 1976; Champoux and McConaughy, 1976; Baase and Wang, 1976; Pullyblank

and Morgan, 1975; Keller, 1975; Champoux and Dulbecco, 1972; Vosberg et al., 1976). These enzymes could relax both positively and negatively supercoiled DNA and are thus similar to the nalidixic acid sensitive gyrase component.

Their biological significance

Supercoiling probably plays a role in replication. The previously mentioned antibiotic resistance studies (Gellert et al., 1976b; Gellert et al., 1977) imply that novobiocin and nalidixic acid which block replication disturb DNA supercoiling. Gyrase also plays a role in bacteriophage \$\phi\$x175 replication. Unless RFIV is supercoiled to RFI, the obligatory gene \$\frac{A}{2}\$ product cleavage will not occur (Marians et al., 1977). Because novobiocin and coumermycin inhibit bacteriophage T7 replication in \$\frac{cou^S}{2}\$ but not as severely in \$\frac{cou^T}{2}\$ hosts (Itoh and Tomizawa, 1977), supercoiling also probably plays a role in T7 replication. Interestingly, nucleoid-like structures are also observed in T7 infected cells, but these structures do not have the same RNAase or proteinase sensitivity as do the \$\frac{E}{2}\$. \$\frac{coli}{2}\$ nucleoids (Serwer, 1974; Hiebsch and Center, 1977; Paetkan, et al., 1977).

As they replicate, plasmids exist briefly, with fewer supercoils before becoming fully supercoiled (Timmis et al., 1976; Crosa et al., 1976). This implies that supercoiling might be an essential part of plasmid "maturation." It is not known, however, which plasmid functions require supercoiled DNA.

As mentioned in the introduction to this thesis, it is possible that the <u>pseT</u> gene product alters DNA supercoiling. The <u>alc</u> gene

product might also affect DNA supercoiling. It might, for example, unfold its <u>E</u>. <u>coli</u> host's nucleoid (Sirotkin, et al., 1977 - appendix 1) by removing its supercoiling. R. Pearson and L. Snyder (personal communication) in our laboratory have obtained preliminary results indicating that the <u>alc</u> gene product affects the supercoiling of bacteriophage lambda DNA.

In vitro observations

Three complications impede attributing in vivo biological significance to the biochemistry of DNA supercoiling observed in vitro. The first is common to all biochemistry: the assumption that enzymatic actions observed in vitro also occur in vivo. Although this could be argued, it is certainly a reasonable initial assumption. The second complication concerns the meaning of the finding that exextracted DNA is supercoiled. As a few moments of experimentation will demonstrate, to coil anything tightly requires rotation. The supercoiling would only stress the coil to the degree that it is extended. However, the DNA would tend to extend as it diffuses away from a coil that concentrates it. Thus, the equilibrium state of a supercoil must balance the energy stored in the coiling and the energy stored in the increased local DNA concentration. "Supercoiling" therefore refers as much to DNA topology as to any internal This point is independent of the number of strands making up the coil. As discussed in Griffith (1975), if a double helix is slightly denatured, in vivo, by proteins or ionic conditions, it will supercoil in the absence of the denaturing proteins or ionic conditions. (However the interpretation that RNA: DNA hybrids are

maintaining the structure of the isolated bacterial nucleoid (see above) supports the model that supercoiling generates some single stranded regions in vivo). The third complication involves the use of supercoiled DNA substrates. Not only are such experiments necessarily performed in vitro, but in addition, the DNA used may be in a form never found in vivo. Nonetheless, many such experiments have been performed and some information can certainly be gleaned from them.

For example, that an endonuclease specific for single stranded DNA makes some nicks in supercoiled DNA (Wang, 1974) implies that such DNA contains, at least transiently, single stranded regions. Perhaps this tendency towards unwinding explains why RNA polymerase binds much more tightly to supercoiled DNA (Warner and Schaller, 1977), and why there are more, and more stable, promoters on supercoiled DNA (Richardson, 1975). More difficult to interpret, Bochtan et al., (1973) found that more initiation occurs on lambda DNA if it is supercoiled, but that this transcription of the supercoiled template contains a lower proportion of lambda early mRNA and is less sensitive to lambda CI repressor. They assumed that these later facts implied that this transcription of the supercoiled template was not biological and so they reported no controls to see if it was only transcribed from one strand or experiments to determine whether such transcripts can be translated into late proteins. Some late lambda proteins can be made in the absence of the Q gene product (Sato and Campbell, 1970; Echols, 1971), which positively regulates lambda late gene expression. It is tempting to speculate that supercoiling mimics or substitutes for lambda Q gene product function.

In vitro lambda integrative recombination requires closed circular DNA (Mizuuchi and Nash, 1976) and this DNA must be supercoiled (H. A. Nash, personal communication). Holloman and Radding (1976) report that supercoiled DNA can accept DNA fragments in vitro, that the recA gene product can recombine into the supercoiled DNA in vivo. Perhaps the transient single strandedness of supercoiled DNA leads to both of these phenomena.

Intermediates and models

The relaxation complexes of some plasmids might represent some type of intermediate in supercoiled DNA processing, although it is not clear what biological significance they might have or even, in fact, if they involve omega proteins or gyrases at all. When the supercoiled plasmid and its associated (not covalently bound) protein are treated with SDS or pronase, one DNA strand is nicked, leaving a 3' hydroxyl (Guiney, 1975). This seems similar to the supercoil relaxing protein, the nalA gene product, that leaves a double strand break in the DNA when the nalidixic acid inhibited gyrase complex is treated with SDS (Sugino et al., 1977). The reported intermediate with a single strand nick for the rat liver omega protein (Champoux, 1976) may also be similar.

Sugino et al. (1977) proposed a simple model for the two component gyrase. The <u>cou</u> gene product, according to this model, melts the double helix forcing the same number of turns of the double helix into a shorter area thus causing the nonmelted regions to be more positively supercoiled. The <u>nalA</u> gene product then relaxes these positive supercoils. When the complex leaves the DNA, the DNA is underwound.

"shuttling" performed by the <u>pseT</u> gene product <u>in vitro</u>. Although the relaxation complex has the same phosphate orientation as would be left by the <u>pseT</u> gene product (article 1), no information is available on the mechanics of winding or unwinding of supercoiled DNA. So there is not any information, as yet, on the question of whether any of these other proteins "shuttle" phosphates as they function. The fact that they have not been observed to function <u>in vitro</u> similarly to 5' polynucleotide kinase might simply mean that they assay differently.

The Relationship of Nicking or Gapping Enzymes to Gene Expression

Besides the examples involving T4 DNA ligase and bacteriophage T5 exonuclease mentioned in article 1 of this thesis, some examples involving eucaryotic RNA polymerase and single stranded DNA have been reported. Mammalian RNA polymerase beta can initiate at single stranded DNA breaks if they have 3' hydroxyl termini (Dreyer and Hausen, 1976). ssDNA sequences, obtained using hydroxylappatite, appear disproportionately frequently as chick embryo mRNA (Tapiero et al., 1976), implying that DNA gaps play a role in mammalian gene expression.

The phosphate "shuttling" performed by the <u>pseT</u> gene product <u>in</u> <u>vitro</u>, if significant <u>in vivo</u>, could imply that the <u>pseT</u> gene product affects termini processing. The <u>pseT</u> gene product can alter phosphates at DNA termini so that, if those termini are at nicks or gaps, the ability of other enzymes to process those termini could be altered: a 3' phosphate would interfere with gap closing by DNA polymerase and either a 3' phosphate or a 5' hydroxyl would prevent DNA ligase from

sealing a nick.

Requirements for T4 True-late Gene Expression

Because this topic has recently been thoroughly reviewed (Rabussay and Geiduschek, 1977) and because it is discussed as it relates to the <u>pseT</u> gene product (article 1), this section will only provide a brief overview. Normally, T4 true-late gene expression requires concomitant T4 replication (Riva et al., 1970a), but by inactivating T4 DNA ligase (gene 30) and a T4 exonuclease (gene 46), T4 true-late gene expression can be uncoupled from replication (Riva et al., 1970b). The products of T4 genes 45 (Wu and Geiduschek, 1975), 33 and 55 (Bolle et al., 1969) are also required for T4 true-late gene expression. Unless the <u>alc</u> gene is altered, the DNA template must contain hydroxylmethylcytosine (Snyder et al., 1976).

In a recent paper appearing after the review, Wu and Geiduschek (1977) point out some additional requirements for T4 true-late gene expression. Protein synthesis early in the late period is required for efficient and abundant transcription of the true-late template DNA strand. Interestingly, a temperature sensitive mutation in gene 55 that is normally thermoreversible is irreversible when T4 true-late gene expression is uncoupled from replication. This is especially interesting because (see the section below discussing T4 induced RNA polymerase modifications) the product of gene 55 binds to the host RNA polymerase, (Ratner, 1974b), which is used throughout T4 development (Haselkown et al., 1969; Mizuno and Nitta, 1969; di Mauro et al., 1969).

T4 Induced Modifications of RNA Polymerase

Because the host RNA polymerase's response to antibiotics is retained by the T4 infected cell throughout infection (Haselkorn et al., 1969; Mizuno and Nitta, 1969; di Mauro et al., 1969), T4 is known to use the host polymerase throughout its development. However, the alpha subunit of the RNA polymerase was altered after infection (Goff and Weber, 1970). Two distinct gene products are responsible for this modification (Horvitz, 1974a, b). Both of these attach an adenine nucleotide to an arginine residue of the alpha subunit (Goff, 1974), and are therefore called ADP-ribosyltransferases (Rohrer et al., 1975). These enzymes are nevertheless not essential for T4's development (Horvitz, 1974b).

Stevens (1972) found that four T4 induced polypeptides bind to RNA polymerase. Confirming her gene assignments, Horvitz, (1973) proved that gene 33 codes for one peptide and Ratner (1974b) proved that gene 55 codes for another. The other two were simply named polypeptides numbers 2 and 4, with no known gene assignments. These polypeptides were distinguished by molecular weight. Some evidence (see below) implies that the <u>alc</u> gene may code for polypeptide number 2 (Sirotkin et al., 1977 - appendix 1). The product of gene 45 also binds to the host RNA polymerase, but much more loosely (Ratner, 1974a) than the others.

Is alc the structural gene for polypeptide number 2?

Although the RNA polymerase purified from cells infected with some <u>alc</u> mutants has lacked a polypeptide that might be polypeptide number 2 (Sirotkin et al., 1977 - appendix 1), there is some question

as to whether alc is actually the structural gene for polypeptide number 2. Even assuming that the missing polypeptide from alc infection is polypeptide number 2, genetic uncertainties remain. When alc T4 are originally selected or propagated, mutations in other genes appear (article 1 and unpublished). The T4 used to infect the cells from which the RNA polymerase was purified may have had second mutations in the actual gene coding for polypeptide number 2. Furthermore, when alc T4, that originally did not induce a polypeptide number 2, were propagated they sometimes changed so that polypeptide number 2 could be co-purified with the polymerase from infected cells. Although this may seem to be fairly good evidence that alc is not the structural gene for polypeptide number 2, there were other indications that weaken that interpretation. Not only do these alc T4 that changed so that they now induce a polypeptide number 2 that co-purifies with the RNA polymerase usually grow less well, by plaque size, with cytosine containing DNA, they also typically became less defective in their ability to unfold the host nucleoid (see below). That alc T4 sometimes tend to become "less alc" and also to lose some associated phenotypes could be explained by alc being required for a fully normal burst size, at least when T4 contain hydroxymethylcytosine. Alc might even be an essential gene. This could explain the selection of the above mutants, because they were all propagated with hydroxymethylcytosine containing DNA. The question then becomes whether the mutation(s) that "brings back" polypeptide number 2 and causes these other changes is in the alc gene. This question will remain until recombinants from infections with different alc T4 that

originally did not induce polypeptide number 2, but now do induce the polypeptide are found (see the recommendations below in a following section). So far (unpublished), when we have attempted to find <u>alc</u>⁺ recombinants from crosses with <u>alc</u> parents, they either eluded us or were so infrequent that they may actually have been revertants.

Another technique may lead to an answer to this question. C. Goff (personal communication) is using antibody precipitation to purify RNA polymerase from cells infected with progeny from multifactor genetic crosses. We have sent him some of our mutants to use. There is, however, a potential problem with comparing his results to ours (Sirotkin et al., 1977 - appendix 1). Antibody precipitation may detect a looser association of polypeptide number 2 with the polymerase than would phosphocellulose chromatography. Until such a chromatographic step is added, conclusions regarding the presence or absence of polypeptide number 2 cannot be compared between the different methods. (Of course, the bound antibody would totally distort such a chromatographic step). Thus, difference in methods could account for the difficulty repeating our results that C. Goff has personally communicated to us.

Another approach to this question would not be affected by the above problem. A T4 mutant exists which induces two species of polypeptide number 2 that differ slightly in molecular weight (H. R. Horvitz, D. I. Ratner, and A. R. Poteet, personal communication).

C. Goff (personal communication) is using multifactor crosses to locate the responsible mutation. So far, this mutation seems to map between genes 63 and 31, placing it, at least, very close to alc

(Sirotkin et al., 1977 - appendix 1).

One model for alc gene product function has it acting as a protease (see the models in a following section). If this is the case, the mutation causing the altered polypeptide number 2 could be in the alc gene and the alc gene would still not be the structural gene for polypeptide number 2. In this case, the recombination studies could also yield similarly deceptive "positive" results. The only way to prove that polypeptide number 2 is coded for by the alc gene would be similar to that used by Horvitz (1973) to prove that gene 33 codes for one of the other polypeptides co-purifying with the polymerase. He used multiple amber mutations in gene 33 and showed that the number of tyrosine residues inserted by an amber suppressing RNA increased as the number of amber mutations. However, this method presupposes that it is possible to get amber mutations in alc that have the "alc" phenotype. Since we do not even know if the alc phenotype can result from a deficiency, we cannot know if this is possible.

If, as mentioned earlier, <u>alc</u> is an essential gene, an amber <u>alc</u> may not be "<u>alc</u>" under any conditions. However, if an amber <u>alc</u> could be found, it would certainly produce an altered polypeptide number 2 when grown on nonsuppressing bacteria, if <u>alc</u> is the structural gene for polypeptide number 2. We have not yet been successful in selecting an amber <u>alc</u>. This, however, may be due to the necessity of forcing such mutants to grow on a nonsuppressor with cytosine containing DNA in order to enrich for them.

The Structure of T4 DNA after Replication has Begun

Altman and Lerman (1970) analyzed normal hydroxymethylcytosine containing T4 DNA from a low salt lysozyme lysis that had been treated with RNAase and trypsin. Because of the low salt and fairly high lysozyme concentration used, it is possible that some artifactual aggregation occurred (see Silberstein and Inouye, 1974). In spite of this problem, their work still merits discussion. They found DNA sedimenting at different rates: 1) "slow," sedimenting at less than 100s—probably genomic size DNA; 2) "fast," sedimenting at about 170—600s; 3) "phage," DNA in virions; 4) "bottom," sedimenting at 950 to 3,000s. Interestingly, the DNA in the fast and bottom categories only partially chased to the slow and phage categories; about one—third of it seems "locked into" the faster sedimenting states.

Gene 49 product, which is required for the packaging of DNA into phage particles, seems to cut single strand gaps in DNA at about genomic intervals (Curtis and Alberts, 1976). Under conditions where T4⁺ DNA sediments at about 200s, DNA from T4 with an amber mutation in gene 49 sediments at 1,000 to 1,800s (Kemper and Brown, 1976). Obviously, at least some of the differences reported by Altman and Lerman (1970) occurred because of packaging.

Another sedimentation difference is observed that correlates with whether or not T4 true-late genes are being expressed (Snyder and Geiduschek, 1968; Cox and Conway, 1975a, b). Both groups found that a slower sedimenting DNA fraction is absent from cells infected with T4 having an amber mutation in gene 55. (See the discussion of

T4 true-late gene expression). Although it is possible that some true-late genes (gene 49, for example) might be processing the DNA into a slower sedimenting form, it is tempting to speculate that this slower sedimenting state contains the DNA from which true-late mRNA can be transcribed. Consistent with this are the facts that the transcription of the DNA in the slower sedimenting form is sensitive to rifampicin (the faster sedimenting form is not sensitive) and, by immune precipitation, that the RNA transcribed from the slower sedimenting form can be translated into true-late gene products (Cox and Conway, 1975a). Not only that, but Cox and Conway (1975b) also report that mutants in gene 46-47 which express a DNA arrested phenotype, but which express true-late genes normally, created none of the faster sedimenting DNA and an increased amount of the slower form.

It is difficult to compare these results with those obtained with bacterial nucleoids because the conditions used to isolate the T4 DNA were very different from those used to isolate bacterial nucleoids.

T4 nucleoids

Hamilton and Pettijohn (1976) used a lysis procedure similar to that used to obtain isolated bacterial nucleoids to prepare corresponding particles of replicating T4 DNA. By flourescent microscopy, the particles had about the same dimensions as the cells from which they came. There was little effect of nicking by DNAase or RNAase treatment, but about 25% to 40% of the DNA leaves the nucleoids with SDS treatment. The change in sedimentation rate observed with different ethidium bromide concentrations was consistent with about

one-eighth of the nucleoid DNA being supercoiled. Perhaps the DNA that was supercoiled (or that which is removed by SDS treatment) corresponds to the slower sedimenting DNA mentioned earlier. Another possibility is that the DNA lost during nucleoid purification contains this DNA. Mutant studies could answer this point.

Effects of cytosine substitution in T4 DNA

Normally, T4 DNA contains alpha and beta glucosylated (Lehman and Pratt, 1960) hydroxylmethyl cytosine (Wyatt and Cohen, 1952). Except for it being susceptible to bacterial restriction enzymes, T4 with DNA that is unglucosylated because of mutations in the glucosyl transferase genes grows almost as well as T4 with glucosylated DNA (Hattman, 1969). T4 forced to replicate with cytosine in their DNA cannot express true-late genes, even though, as observed on neutral or alkaline sucrose gradients, there is little size difference between it and the glucosylated, hydroxylmethylcytosine containing DNA (Kutter et al., 1975). Some RNA from the strand (r) that codes for late genes was transcribed from cytosine containing DNA (Wu and Geiduschek, 1975), but it obviously has some unknown defect. Snyder et al. (1976) reported that the T4 alc gene product prevents truelate gene expression on cytosine containing DNA. Sirotkin et al. (1977 - appendix 1) report that other phenotypes sometimes occur when this gene is altered. For convenience, throughout the rest of this review, "alc T4" means T4 with a mutation in the alc gene that allows T4 with cytosine containing DNA to produce progeny.

T4 Mediated Alterations of Host DNA Organization and T4's Effect upon Host Gene Expression

Although T4 induces a number of nucleases that allow it to break down host DNA and incorporate host nucleotides into its genome (Wiberg, 1966; Warner et al., 1970; Hercules et al., 1971), these will not be discussed further here (see Snyder, 1976 for a review). The changes imposed upon the organization of the host genome will be emphasized rather than interruptions to the host genome's phosphate-sugar backbone.

Host chromosome disruption and unfolding

T4 infection causes a <u>disruption</u> of the location of the host chromosome visable by light microscopy with proper staining (Luria and Human, 1950; Murray et al., 1950), and T4 infection also causes the host nucleoid to be <u>unfolded</u> upon isolation (Tutas et al., 1974). The gene responsible for nuclear "disruption" has been identified as <u>D2b</u> (Snustad and Conroy, 1974), and the gene product responsible for "unfolding," <u>unf</u>, was mapped between genes 63 and 31 by Snustad, et al. (1976). T4 mutants deficient in nuclear disruption still unfold the host chromosome and vice versa (Snustad et al., 1972, 1976; Snustad and Conroy, 1974), although the "unfolding" is more extreme in terms of the resulting viscosity (see the previous discussion of bacterial nucleoids; Snustad et al., 1976; Sirotkin et al., 1977 - appendix 1) if the infecting T4 are also deficient in nuclear "disruption" (unpublished; and D. P. Snustad, personal communication).

Does the <u>alc</u> gene product unfold the host nucleoid?

Appendix 1 (Sirotkin et al., 1977) contains evidence that <u>alc</u> (Snyder et al., 1976) and <u>unf</u> (Snustad et al., 1976) are the same gene. It is clear (Sirotkin et al., 1977 - appendix 1) that many mutants selected for the <u>alc</u> phenotype are also <u>unf</u>. In addition, D. P. Snustad (personal communication) has recently informed us that the one <u>unf</u> mutant selected directly (Snustad et al., 1976) is also <u>alc</u>. Although we have not proven that the mutation that leads to the <u>alc</u> phenotype also leads to the <u>unf</u> phenotype, this seems likely. Finding <u>alc</u> progeny from a genetic cross between to <u>alc</u>, <u>unf</u> parents could provide additional evidence. As previously mentioned, however, we have not had success obtaining <u>alc</u> recombinants.

The shutoff of host gene expression

There may be two distinct processes which stop host gene expression after T4 infection. One prevents translation of host mRNA sequences (Kennel, 1968, 1970) the other, requiring T4 gene expression, blocks at least some host transcription. It is not clear whether the lack of host protein translation results from the mRNA being defective or from some T4 induced modification to the translation apparatus that discriminates against host mRNA. Kennel (1970), however, presents data indicating that host mRNA may be excluded from polysomes, supporting the latter possibility. The transcriptional shutoff, which is emphasized here, requires T4 gene expression to inhibit host RNA transcription (Duckworth, 1971; Nomura et al., 1962, 1966; Haywood and Green, 1965; Sirotkin et al., 1977 -

appendix 1).

Horvitz (1974b) reported that T4 that did not modify the alpha subunit of the host still shutoff the transcription of stable host RNA species. However, a role in RNA transcriptional shutoff was attributed to the genes responsible for altering the alpha subunit of the host (see the previous discussion) by Mailhammer et al. (1976), because they found that the T4 adenylated RNA polymerase transcribes both bacteriophage lambda and <u>E</u>. <u>coli</u> DNA poorly <u>in vitro</u>. They also found that, <u>in vitro</u>, the presence of T4 DNA blocked transcription of other transcripts, possibly by competing for RNA polymerase (see also Khesin et al., 1972).

Does the <u>alc</u> gene product prevent transcription of host RNA?

Appendix 1 (Sirotkin et al., 1977) contains evidence that at least one alc mutant (alcl) allows more transcription of host sequences than T4⁺. However, we do not know for sure if the alc mutation is responsible for this. If a mutation at a second site is responsible for this difference, however, it is likely to be very closely linked to the alc mutation, because the mutant used (Sirotkin et al., 1977 - appendix 1) had been backcrossed against its parent.

More alc mutants and segregants need to be tested for the ability to block host transcription. P. Dennis (personal communication) is testing many of our alc T4 for the ability to prevent transcription of host sequences carried by different transducing phage. Technically, it is easier to tell if host sequences carried by a transducing phage are present as RNA after infection than to examine total host RNA sequences. This technique also has the added advantage of

detecting if only certain sequences are affected. In addition, E. Kutter (personal communication) has found that two <u>alc</u> mutants (<u>alcl</u> and <u>alc2</u>) allow the transcription, <u>in vivo</u>, of host mRNA that can later be translated, <u>in vitro</u>. It would be potentially informative to repeat some of Kennel's (1970) <u>in vivo</u> work using these mutants.

Another dramatic and independent confirmation that the <u>alc</u> mutant affects host transcription comes from the work of T. Mattson (personal communication). He found that only infecting phage carrying the <u>alc</u> (<u>alcl</u>) mutation could have their defective late genes complemented by T4 wild type late genes cloned on host plasmids.

Models for <u>alc</u> and <u>pseT</u> Gene Product Function

If <u>alc</u> is the structural gene for polypeptide number 2, then a simple model can explain most of our data: that the <u>alc</u> gene product, by binding to and altering RNA polymerase, blocks the initiation of transcription (or causes its early termination) on cytosine containing DNA. This primary defect would then cause the other observed phenotypes. The "unfolding" can be explained by way of the cessation of normal transcription, as occurs after rifampicin treatment (Dworsky and Schaechter, 1973; Pettijohn and Hecht, 1973).

The beauty of this model is its simplicity. However, it does not explain why <u>pseT</u> mutations appear along with <u>alc</u> mutations. Some secondary role for the <u>alc</u> gene product's function on normal hydroxylmethylcytosine containing DNA would have to be invoked to account for the selection of these mutations.

Another model can explain both "unfolding" and host shutoff.

We can simply propose that the <u>alc</u> gene product has an "omega-like"

(see discussion of enzymes altering DNA supercoiling) or endonucleolytic activity on cytosine containing DNA. Then the "unfolding" of
the host nucleoid would be caused by releasing its supercoiling and
this lack of supercoiling would then lead to the transcriptional shutoff. Furthermore, it could be postulated that, on hydroxylmethylcytosine containing DNA, the <u>alc</u> gene product may also unwind the
helix, and this may be required in some way for normal phage development. This would make its function similar to the function proposed
for the nalA gene product (Sugino et al., 1977).

The interaction with the <u>pseT</u> gene product could occur if the two gene products together functioned similarly to DNA gyrase (Gellert et al., 1976a). Then, <u>alc</u> would correspond to <u>nalA</u> and <u>pseT</u> to <u>cou</u>. One prediction of this model would be that <u>E</u>. <u>coli</u> CTr5x (see article 1) has a gyrase deficiency and that, by blocking the gyrase of other <u>E</u>. <u>coli</u> strains with novobiocin, <u>pseT</u> T4 would not grow as well as <u>pseT</u> T4 in the presence of the antibiotic. This, however, does not seem to occur (L. Snyder, personal communication). To preserve the model, one could presume that novobiocin generates a dominant defect, even in the presence of a functional T4 pseT gene.

A third model would suggest that the <u>alc</u> gene product alters other gene products, perhaps as a protease. There is a precedent for this: the <u>recA</u> gene product, protein X, cleaves bacteriophage lambda's repressor (J. W. Roberts, C. W. Roberts, N. L. Craig, personal communication). This would explain both the pleotrophic

defects of <u>alc_</u> T4 and its interaction with the <u>pseT</u> gene product; it could even explain the previously mentioned polypeptide number 2 species observed in cells infected in one mutant (H. R. Horvitz, D. I. Ratner, A. R. Poteet, personal communication). Although this could explain much of the data, this could not be called a simple model.

The first two models predict that infections with <u>alc</u>, but <u>unf</u> phage would produce nucleoids that would be partially unfolded. They should differ at least slightly from those produced after <u>alc</u> infections. The third model does not necessarily predict this; the different phenotypes could be totally independent.

Recommendations

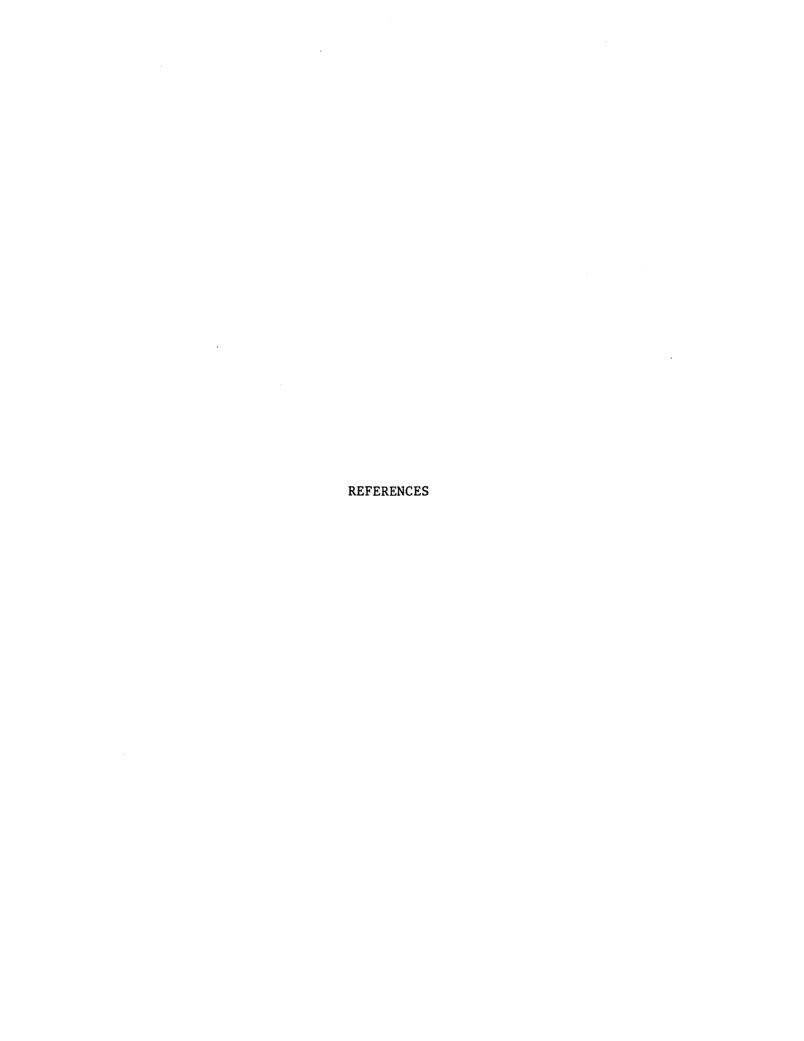
Two of the more unsettling and interesting aspects of working with \underline{alc} T4 are the various pleotrophic defects different \underline{alc} mutants express and the difficulty in obtaining \underline{alc}^+ recombinants. If a nonpermissive host for \underline{alc} T4, that is permissive for \underline{alc}^+ T4, could be found starting with a laboratory strain of \underline{E} . \underline{coli} , not only could \underline{alc}^+ recombinants be directly selected, but by mapping and identifying the responsible \underline{E} . \underline{coli} gene, an understanding of the \underline{alc} gene's function would most probably be advanced.

Two of the models for <u>alc</u> gene product function differed in whether they explained "unfolding" in terms of the shutoff of host RNA transcription or vice versa. R. Pearson in our laboratory is currently studying the effect of T4 infection after lambda induction on lambda supercoiling and gene expression hoping to distinguish between these explanations.

How T4 unfolded <u>E</u>. <u>coli</u> nucleoids compare to the four structures described by Drlica and Worcel (1975; see the discussion of nucleoid structure above), is not known. This should be examined after infection with a variety of <u>alc</u> T4, especially those <u>alc</u> T4 that still unfold, at least partially, the host nucleoid.

Directly studying the <u>alc</u> gene product's effect on cytosine containing T4 DNA may provide some clues. To test if the <u>alc</u>, <u>unf</u> phenotype arises from a less severe change to the <u>alc</u> gene product, than the <u>alc</u>, <u>unf</u> phenotype, the amount and length of r (late) strand transcripts could be measured: 1) for <u>alc</u>, <u>unf</u> phage; 2) for <u>alc</u> but <u>unf</u> phage; and 3) for <u>alc</u>, <u>unf</u> phage. If this is done, we would predict increasing amounts or lengths from (1) to (2) to (3).

If the slower sedimenting form of replicating T4 DNA (discussed above) is caused by true-late transcription and not by true-late gene products, its presence or absence from infections might provide useful information. The way to determine if some of the true-late gene products themselves create this slower sedimenting DNA or if the slower sedimenting DNA is responsible for their transcription is with a temperature shift up experiment with a mutant expressing a thermal labile gene 55 product. If enough time at the permissive temperature was allowed so that all the true-late gene products were present, a pulse-chase experiment after shift up would determine if gene 55 is necessary for the production of the slower sedimenting DNA. If gene 55 product is necessary, this would imply that the slower sedimenting form is necessary for true-late transcription and not simply created by the action of true-late genes. Similarly, studying the distribution of the various DNA components described by Altman and Lerman


(1970) may uncover some defects caused by <u>alc</u> gene product function when T4 replicates DNA containing cytosine.

Two aspects of Hamilton and Pettijohn's (1976) work might bear on the effect of <u>alc</u> gene product function on cytosine containing DNA. First, it might affect the yield or the very existence of T4 nucleoids. Second, the distinctive ethidium bromide sedimentation profile, that is consistent with about one-eighth of the DNA in the T4 nucleoids being supercoiled, might be affected by the <u>alc</u> gene product. Of course, any effect of <u>alc</u> on cytosine containing T4 DNA would have to be separated from the effect of the true-late genes themselves. As described above for the slower sedimenting form of T4 DNA, this is not a major problem, especially since we have some mutants that appear to be <u>alc</u> only at high temperature (M. Slocum, our laboratory).

Using cells synchronized by membrane binding (Cooper and Helmstetter, 1968) or amino acid starvation (Marunochi and Messer, 1973), a more dramatic shutoff of host mRNA synthesis might be obtained from cells replicating particular areas of their genome. This, of course, presupposes that a parallel to T4's replication coupled transcription exists in <u>E. coli</u> and that these replication coupled transcription units would cluster at certain areas of the genome.

Currently, by looking for "nibbled" colonies, a search for \underline{E} .

coli K12 mutants nonpermissive for \underline{alc} or \underline{pseT} T4, but permissive for $\underline{T4}^+$, is in progress. Of course, if the \underline{alc}^- phenotype is due to a partial deficiency, and there is no host counterpart, this is not likely to work for alc. (See appendix 3).

REFERENCES

- Alberts, B. Morris, C. F., Mace, D., Sinha, N., Bittner, M., and Moran, L. 1975. Reconstruction of the T4 Bacteriophage DNA Replication Apparatus from Purified Components. pp. 241-269 in DNA Synthesis and Its Regulation. Eds. M. Goulin, P. Hanawalt, C. F. Fox. W. A. Benjamin, Inc., Menlo Park, California.
- Altman, S., and Lerman, L. S. 1970. Kinetics and Intermediates in the Intracellular Synthesis of Bacteriophage T4 Deoxyribonucleic Acid. J. Mol. Biol. 50: 235-261.
- Baase, W. A., and Wang, J. C. 1973. An protein from <u>Drosophila</u> melanogaster. Biochem. 13: 4299-4303.
- Bauer, W. R., Ressner, E. C., Kates, J., and Patzke, J. V. 1977. A DNA Nicking-closing Enzyme Encapsidated in Vaccinia Virus: Partial Purification and Properties. Proc. Nat'l. Acad. Sci. U. S. A. 74: 1841-1845.
- Benyajati, C. and Worcel, A. 1976. Isolation, Characterization, and Structure of the Folded Interphase Genome of <u>Drosophila</u> melanogaster. Cell 9: 393-407.
- Bolle, A., Epstein, R. H., Salser, W., and Geiduschek, E. P. 1968.

 Transcription During Bacteriophage T4 Development: Requirements for Late Messenger Synthesis. J. Mol. Biol. 33: 339-362.
- Botchan, P., Wang, J.C., and Echols, H. 1973. Effect of Circularity and Superhelicity on Transcription from Bacteriophage λ DNA. Proc. Nat'l. Acad. Sci. U. S. A. 70: 3077-3081.
- Burrington, M. G., and Morgan, A. R. 1976. The Purification from Escherichia coli of a Protein Relaxing Superhelical DNA. Can. J. Biochem. 54: 301-306.
- Cairns, J. 1963. The Bacterial Chromosome and its Manner of Replication as Seen by Autoradiography. J. Mol. Biol. 6: 208-213.
- Champoux, J. J. 1976. Evidence for an Intermediate with a Single-strand Break in the Reaction Catalyzed by the DNA Untwisting Enzyme. Proc. Nat'l. Acad. Sci. U. S. A. 73: 3488-3491.
- Champoux, J. J., and Dulbecco, R. 1972. An Activity from Mammalian Cells that Untwists Superhelical DNA Possible Swivel for DNA Replication. Proc. Nat'l. Acad. Sci. U. S. A. 69: 143-146.

- Champoux, J. J., and McConaughy, B. L. 1976. Purification and Characterization of the DNA Untwisting Enzyme from Rat Liver. Biochem. 15: 4638-4642.
- Cooper, S., and Helmstetter, C. E. 1968. Chromosome Replication and the Division Cycle of <u>Escherichia coli</u> B/r. J. Mol. Biol. 31: 519-540.
- Cox, G. S., and Conway, T. W. 1975a. Template Properties of Bacteriophage T4 Vegetative DNA: I. Isolation and Characterization of Two Template Fractions from Gently Lysed T4-Infected Bacteria. J. Biol. Chem. 250: 8963-8972.
- Cox, G. S., and Conway, T. W. 1975b. Template Properties of Bacteriophage T4 Vegetative DNA: II. Effect of Maturation and DNA-arrest Mutations. J. Biol. Chem. 250: 8973-8977.
- Crosa, J. H., Luttropp, L. K., and Falkow, S. 1976. Covalently Closed Circular DNA Molecules Deficient in Superhelical Density as Intermediates in Plasmid Life Cycle, Nature, 261: 516-519.
- Curtis, M. J., and Alberts, B. 1976. Studies on the Structure of Intracellular Bacteriophage T4 DNA. J. Mol. Biol. 102: 793-816.
- di Mauro, E., Snyder, L., Marino, P., Lamberti, A., Coppo, A., and Tocchini-Valentini, G. P. 1969. Rifampicin Sensitivity of the Components of DNA-dependent RNA Polymerase. Nature 222: 533-537.
- Dreyer, C., and Hausen, P. 1976. In the Initiation of Mammalian RNA Polymerase at Single-strand Breaks in DNA. Eur. J. Biochem. $\frac{70}{1}$: 63-74.
- Drlica, K., and Worcel, A. 1975. Conformational Transitions in the Escherichia coli Chromosome: Analysis by Viscometry and Sedimentation. J. Mol. Biol. 98: 393-411.
- Duckworth, D. H. 1971. Inhibition of Host Deoxyribonucleic Acid Synthesis by T4 Bacteriophage in the Absence of Protein Synthesis. J. Virol. 8: 754-758.
- Dworsky, P., and Schaechter, M. 1973. Effect of Rifampicin on the Structure and Membrane Attachment of the Nucleoid of Escherichia Coli. J. Bact. 116: 1364-1374.
- Echols, H. 1971. Regulation of Lytic Development, In. <u>Bacteriophage</u>
 <u>Lambda</u>. pp. 247-270. ed. A. D. Hershey, Cold Spring Harbor,
 New York.
- Gellert, M., Mizuuchi, K., O'Dea, M. H., and Nash, H. A. 1976a.

 DNA Gyrase: An Enzyme that Introduces Superhelical Turns Into
 DNA. Proc. Nat'l. Acad. Sci. U. S. A. 73: 3872-3876.

- Gellert, M., O'Dea, M. H., Itoh, T., and Tomizawa, J. 1976b.

 Novobiocin and Coumermycin Inhibit DNA Supercoiling Catalyzed by DNA Gyrase. Proc. Nat'l. Acad. Sci. U. S. A. 73: 4474-4478.
- Gellert, M., Mizuuchi, K., O'Dea, M. H., Itoh, T., and Tomazawa, J. 1977. Nalidixic Acid Resistance: A Second Genetic Character Involved in DNA Gyrase Activity. Proc. Nat'l. Acad. Sci. U. S. A. 74: 4772-4776.
- Giorno, R., Hecht, R. M., and Pettijohn, D. 1975a. Analysis by Isopycnic Centrifugation of Isolated Nucleoids of Escherichia coli. Nucleic Acids Res. 2: 1559-1567.
- Giorno, R., Stamato, T., Lydersen, B., and Pettijohn, D. 1975b.

 Transcription in vitro of DNA in Isolated Bacterial Nucleoids.

 J. Mol. Biol. 96: 217-237.
- Goff, C. C. 1974. Chemical Structure of a Modification of the Escherichia coli Ribonucleic Acid Polymerase α Polypeptides Induced by Bacteriophage T4 Infection. J. Biol. Chem. 249: 6181-6190.
- Goff, C., and Weber, K. 1970. A T4 Induced RNA Polymerase α Subunit Modification. Cold Spg. Hrb. Symp. Quant. Biol. 35: 101-108.
- Griffith, J. D. 1975. The Unit Chromosomal Structure: Evidence for its Universal Nature. pp. 201-208. In <u>DNA Synthesis and its Regulation</u>. Eds. M. Goulin, P. Hanawalt, and C. F. Fox. W. A. Benjamin, Inc., Menlo Park, California.
- Griffith, J. D. 1976. Visualization of Prokaryotic DNA in a Regularly Condensed Chromatin-like Fiber. Proc. Nat'l. Acad. Sci. U. S. A. <u>73</u>: 563-567.
- Guiney, D. G., and Helinski, D. R. Relaxation Complexes of Plasmid DNA and Protein: III. Association of Protein with the 5' Terminus of the Broken DNA Strand in the Relaxed Complex of Plasmid colEl. J. Biol. Chem. 250: 8796-8803.
- Hamilton, S., and Pettijohn, D. E. 1976. Properties of Condensed Bacteriophage T4 DNA Isolated from Escherichia coli Infected with Bacteriophage T4. J. Virol. 19: 1012-1027.
- Haselkorn, R., Vogel, M., and Brown, R. D. 1969. Conservation of Rifamycin Sensitivity During T4 Development. Nature 221: 836-838.
- Hattman, S. 1964. The Functioning of T-even Phages with Ungluco-sylated DNA in Restricting Escherichia coli Host Cells. Virology 24: 333-348.

- Haywood, W. S., and Green, M. H. 1965. Inhibition of Escherichia coli and Bacteriophage Lambda Messenger RNA Synthesis by T4. Proc. Nat'l. Acad. Sci. U. S. A. 54: 1675-1678.
- Hecht, R. M., and Pettijohn, D. 1975. RNA Molecules Attached to DNA in Isolated Bacterial Nucleoids: Their Possible Role in Stabilizing the Condensed Chromosome. pp. 122-137. In DNA Synthesis and its Regulation. Eds. M. Goulin, P. Hanawalt, and C. F. Fox. W. A. Benjamin, Inc., Menlo Park, California.
- Hecht, R.M., and Pettijohn, D. E. 1976. Studies of DNA Bound RNA Molecules Isolated from Nucleoids of Escherichia coli. Nucleic Acids Res. 3: 767-788.
- Hecht, R. M., Taggart, R. T., and Pettijohn, D. E. 1975. Size and DNA Content of Purified <u>E. coli</u> Nucleoids Observed by Fluorescence Microscopy. Nature 253: 60-62.
- Hecht, R. M., Stimpson, D., and Pettijohn, D. 1977. Sedimentation Properties of the Bacterial Chromosome as an Isolated Nucleoid and as an Unfolded DNA Fiber. J. Mol. Biol. 111: 257-277.
- Hercules, K., Munro, J. L., Mendelsohn, S., and Wiberg, J. S. 1971.

 Mutants in a Nonessential Gene of Bacteriophage T4 which are

 Defective in the Degradation of <u>E. coli</u> Deoxyribonucleic Acid.

 J. Virol. 7: 95-105.
- Hiebsch, R., and Center, M. S. 1977. Intracellular Organization of Bacteriophage T7 DNA: Analysis of Parental Bacteriophage T7 DNA-membrane and DNA-protein Complexes. J. Virol. 22: 540-547.
- Holloman, W. K., and Radding, C. M. 1976. Recombination Promoted by Superhelical DNA and the RecA Gene of Escherichia coli. Proc. Nat'l. Acad. Sci. U. S. A. 73: 3910-3914.
- Horvitz, H. R. 1973. Polypeptide Bound to the Host RNA Polymerase is Specified by T4 Control Gene 33. Nature New Biol. 244: 137-140.
- Horvitz, H. R. 1974a. Control by Bacteriophage T4 of Two Sequential Phosphorylations of the Alpha Subunit of Escherichia coli RNA Polymerase. J. Mol. Biol. 90: 727-738.
- Horvitz, H. R. 1974b. Bacteriophage T Mutants Deficient in Alteration and Modification of the Escherichia coli RNA Polymerase.

 J. Mol. Biol. 90: 739-750.
- Itoh, T., and Tomizawa, J. 1977. Involvement of DNA Gyrase in Bacteriophage T7 DNA Replication. Nature 270: 78-80.

- Imada, S., Carroll, L. E., and Sueoka, N. 1975. Membrane-DNA Complex in Bacillus Subtilis. pp. 187-200. In DNA Synthesis and its Regulation. Eds. M. Goulian, P. Hanawalt and C. F. Fox. W. A. Benjamin, Inc., Menlo Park, Calif.
- Keller, W. 1975. Characterization of Purified DNA-relaxing Enzyme from Human Tissue Culture Cells. Proc. Nat'l. Acad. Sci. U. S. A. 72: 2550-2554.
- Kemper, B., and Brown, D. T. 1976. Function of Gene 49 of Bacteriophage T4: II. Analysis of Intracellular Development and the Structure of Very Fast-sedimenting DNA. J. Virol. <u>18</u>: 1000-1015.
- Kennel, D. 1968. Inhibition of Host Protein Synthesis During Infection of <u>Escherichia coli</u> by Bacteriophage T4: I. Continue Synthesis of Host Ribonucleic Acid. J. Virol. 2: 1262-1271.
- Kennel, D. 1970. Inhibition of Host Protein Synthesis During Infection of Escherichia coli by Bacteriophage T4: II. Induction of Host Messenger Ribonucleic Acid and its Exclusion from Polysomes. J. Virol. 6: 208-217.
- Khesin, R. B., Bogdanova, E. S., Goldfarb, A. D. Jr., Zograff, Yu. N. 1972. Competition for the DNA Template between RNA Polymerase Molecules from Normal and Phage-infected <u>E</u>. <u>coli</u>. Molec. Gen. Genet. 119: 299-314.
- Korch, C., Øvrebo, S., and Kleppe, K. 1976. Envelope-associated Folded Chromosomes from Escherichia coli: Variations under Different Physiological Conditions. J. Bact. 127: 904-916.
- Kornberg, T., Lockwood, A., and Worcel, A. 1974. Replication of the Escherichia coli Chromosome with a Soluble Enzyme System. Proc. Nat'l. Acad. Sci. U. S. A. 71: 3189-3193.
- Kutter, E., Beug, A., Sluss, R., Jensen, L., and Bradley, D. 1975. The Production of Undergraded Cytosine ontaining DNA by Bacteriophage T4 in the Absence of dCTPase and Endonucleases II and IV and its Effects on T4 Directed Protein Synthesis. J. Mol. Biol. 99: 591-607.
- Lehman, I. R., and Pratt, E. A. 1960. On the Structure of the Gluco-sylated Hydroxymethylcytosine Nucleotides of Coliphages T2, T4, and T6. J. Biol. Chem. 235: 3254-3259.
- Luria, S. E., and Human, M. L. 1950. Chromatin Staining of Bacteria during Bacteriophage Infection. J. Bact. <u>59</u>: 551-560.

- Mailhammer, R., Yang, H., Reiness, G., and Zubay, G. 1975. Effects of Bacteriophage T4 Induced Modification of Escherichia coli RNA Polymerase on Gene Expression in vitro. Proc. Nat'l. Acad. Sci. U. S. A. 72: 4928-4932.
- Marians, K. J., Ikeda, J., Schlagman, S., and Hurwitz, J. 1977. Role of DNA Gyrase in φx Replicative-from Replication in vitro. Proc. Nat'l. Acad. Sci. U. S. A. 74: 1965-1968.
- Marmur, J., and Doty, P. 1962. Determination of the Base Composition of Deoxyribonucleic Acid from its Thermal Denaturation Temperature. J. Mol. Biol. 5: 109-118.
- Marunouchi, T., and Messer, W. 1973. Replication of a Specific Terminal Chromosome Segment in <u>Escherichia coli</u> which is Required for Cell Division. J. Mol. Biol. 78: 211-228.
- Mattoccia, E., Attardi, D. G., and Tocchini-Valentini, G. P. 1976.

 DNA-relaxing Activity and Endonuclease Activity in Xenopus

 laevis oocytes. Proc. Nat'l. Acad. Sci. U. S. A. 73: 43514554.
- Mizuno, S., and Nitta, K. 1969. Effect of Streptovaricin on RNA Synthesis in Phage T4 Infected Escherichia coli. Biochem. Biophys. Res. Comm. 35: 127-130.
- Mizuuchi, K., and Nash, H. A. 1976. Restriction Assay for Integrative Recombination of Bacteriophage λ DNA in vitro: Requirement for Closed Circular DNA Substrate. Proc. Nat'l. Acad. Sci. U. S. A. 73: 3524-3528.
- Morgan, A. R. 1970. A Model for Replication by Kornberg's DNA Polymerase. Nature 227: 1310-1313.
- Murray, R. G. E., Gillen, D. H., and Heagy, F. C. 1950. Cytological Changes in Escherichia coli Produced by Infection with Phage T2. J. Bact. 59: 603-615.
- Nomura, M., Okamoto, K., and Asano, K. 1962. RNA Metabolism in Escherichia coli Infected with Bacteriophage T4: Inhibition of Host Ribosomal and Soluble RNA Synthesis by Phage and Effect of Chloromycetin. J. Mol. Biol. 4: 376-387.
- Nomura, M., Witten, C., Mantei, W., and Echols, H. 1966. Inhibition of Host Nucleic Acid Synthesis by Bacteriophage T4: Effect of Chloramphenicol at Various Multiplicities of Infection. J. Mol. Biol. <u>17</u>: 273-278,
- Okazaki, R., Okazaki, T., Sakabe, K., Sugimoto, K., and Sugino, A. 1968. Mechanism of DNA Chain Growth, I. Possible Discontinuity and Unusual Secondary Structure of Newly Synthesized Chains. Proc. Nat'l. Acad. Sci. U. S. A. <u>59</u>: 598-605.

- Paetkau, V., Langman, L., Bradley, R., Scraba, D., and Miller, R. C. Jr. 1977. Folded Concatenated Genomes as Replication Intermediates of Bacteriophage T7 DNA. J. Virol. 22: 130-141.
- Pettijohn, D. E., and Hecht, R. 1973. RNA Molecules Bound to the Folded Bacterial Genome Stabilize DNA Folds and Segregate Domains of Supercoiling. Cold. Spg. Hrb. Symp. Quant. Biol. 38: 31-41.
- Pinon, R., and Salts, Y. 1977. Isolation of Folded Chromosomes from the Yeast Sacchoromyces cerevisiae. Proc. Nat'l. Acad. Sci. U. S. A. 74: 2850-2854.
- Pulleyblank, D. E., and Morgan, A. R. 1975. Partial Purification of " Protein from Calf Thymus. Biochem. 14: 5205-5209.
- Rabussary, D., and Geiduschek, E. P. 1977. Regulation of Gene Action in the Development of Lytic Bacteriophages. Chapter 1. IN.

 <u>Comprehensive Virology</u>, Vol. 8. eds. H. Fraenkel-Conval and R. E. Wagner, (Plenum Press).
- Ratner, D. 1974a. The Interaction of Bacterial and Phage Proteins with Immobilized Escherichia coli RNA Polymerase. J. Mol. Biol. 88: 373-383.
- Ratner, D. 1974b. Bacteriophage T4 Transcription Control Gene 55 Codes for a Protein Bound to Escherichia coli RNA Polymerase. J. Mol. Biol. 89: 803-807.
- Richardson, J. P. 1975. Initiation of Transcription by <u>Escherichia</u>
 coli RNA Polymerase from Supercoiled and Non-supercoiled
 Bacteriophage PM2 DNA. J. Mol. Biol. 91: 477-487.
- Riva, S., Cascino, A., and Geiduschek, E. P. 1970a. Coupling of Late Transcription to Viral Replication in Bacteriophage T4 Development. J. Mol. Biol. <u>54</u>: 85-102.
- Riva, S., Cascino, A., and Geiduschek, E. P. 1970b. Uncoupling of Late Transcription from DNA Replication in Bacteriophage T4 Development. J. Mol. Biol. <u>54</u>: 103-119.
- Rohrer, H., Zillig, W., and Mailhammer, R. 1975. ADP-ribosylation of DNA-dependent RNA Polymerase of <u>Escherichia coli</u> by an NAD+: protein ADP-ribosyl Transferase from Bacteriophage T4. Eur. J. Biochem. 60: 227-238.
- Ryder, O. A., and Smith, D. W. 1974. Isolation of Membraneassociated Folded Chromosome from Escherichia coli: Effect of Protein Synthesis Inhibition. J. Bact. 120: 1356-1363.

- Ryder, O. A., and Smith, D. W. 1975. Properties of Membrane-Associated Folded Chromosomes of <u>E. coli</u> Related to Initiation and Termination of DNA Replication. Cell 4: 337-345.
- Ryder. O. A., Kavenoff, R., and Smith, D. W. 1975. Properties of Membrane-Associated Folded Chromosomes of Escherichia coli During the DNA Replication cycle. pp. 159-186. In DNA Synthesis and its Regulation. Eds. M. Goulian, P. Hanawalt, and C. F. Fox. W. A. Benjamin, Inc., Menlo Park, California.
- Sato, K., and Campbell, A. 1970. Specialized Transduction of Galactose by Lambda Phage. Virology 41: 474-487.
- Serwer, P. 1974. Fast Sedimenting Bacteriophage T7 DNA from T7 Infected Escherichia coli. Virology 59: 70-88.
- Silberstein, S., and Inouye, M. 1974. The Effects of Lysozyme on DNA-membrane Association in Escherichia coli. Biochimica et Biophysica Acta. 366: 149-158.
- Sirotkin, K., Wei, J., and Snyder, L. 1977. T4 Bacteriophage-coded RNA Polymerase Subunit Blocks Host Transcription and Unfolds the Host Chromosome. Nature 265: 28-32.
- Snustad, D. P., and Conroy, L. M. 1974. Mutants of Bacteriophage T4 Deficient in the Ability to Induce Nuclear Disruption: I. Isolation and Genetic Characterization. J. Mol. Biol. 89: 663-673.
- Snustad, D. P., Warner, H. R., Parson, K. A., and Anderson, D. L. 1972. Nuclear Disruption after Infection of Escherichia coliwith a Bacteriophage T4 Mutant Unable to Induce Endonuclease II. J. Virol. 10: 124-133.
- Snustad, D. P., Tigges, M. A., Parson, K. A., Bursch, C. J. H., Carson, F. M., Koerner, T. F., and Tutas, D. J. 1976. Identification and Preliminary Characterization of a Mutant Defective in the Bacteriophage T4-induced Unfolding of the Escherichia coli Nucleoid. J. Virol. 17: 622-641.
- Snyder, L., and Geiduschek, E. P. 1968. <u>In vitro</u> Synthesis of T4 Late Messenger RNA. Proc. Nat'l. Acad. Sci. U. S. A. <u>59</u>: 459-466.
- Snyder, L., Gold, L., and Kutter, E. 1976. A Gene of Bacteriophage T4 whose Product Prevents True Late Transcription on Cytosine Containing T4 DNA. Proc. Nat'l. Acad. Sci. U. S. A. 73: 3098-3102.
- Stevens, A. 1972. New Smalls Polypeptides Associated with DNA-dependent RNA Polymerase of <u>Escherichia coli</u> after Infection with Bacteriophage T4. Proc. Nat'l. Acad. Sci. U. S. A. 69: 603-607.

- Stonington, O. G., and Pettijohn, D. E. 1971. The Folded Genome of Escherichia coli Isolated in a Protein-DNA-RNA Complex. Proc. Nat'l. Acad. Sci. U. S. A. 68: 6-9.
- Sugino, A., Peebles, C. L., Krenzer, K. N., and Cozzarelli, N. R. 1977. Mechanism of Action of Nalidixic Acid: Purification of Escherichia coli nalA Gene Product and its Relationship to DNA Gyrase and a Novel Nicking-closing Enzyme. Proc. Nat'l. Acad. Sci. U. S. A. 74: 4676-4771.
- Tapiero, H., Leibowitch, S. A., Shaool, D., Monier, M. N., and Harel, J. 1976. Isolation of Single Stranded DNA Related to the Transcriptional Activity of Animal Cells. Nucleic Acids Res. 3: 953-963.
- Timmis, K., Cabello, F., and Cohen, S. 1976. Covalently Closed Circular DNA Molecules of Low Superhelix Density as Intermediate Forms in Plasmid Replication. Nature 261: 512-516.
- Tutas, D. J., Wehner, J. M., and Koerner, J. F. 1974. Unfolding of the Host Genome after Infection of Escherichia coli with Bacteriophage T4. J. Virol. 13: 548-550.
- Vosberg, H., Grossman, L. I., Vinograd, J. 1975. Isolation and Partial Characterisation of the Relaxation Protein from Nuclei of Cultured Mouse and Human Cells. Eur. J. Biochem. <u>55</u>: 79-93.
- Wang, J. C. 1971. Interaction between DNA and an Escherichia coli Protein ω . J. Mol. Biol. 55: 523-533.
- Wang, J. C. 1974. Interactions between Twisted DNAs and Enzymes: The Effects of Superhelical Turns. J. Mol. Biol. 87: 797-816.
- Warner, H. R., Snustad, D. P., Jorgensen, S. E., and Koerner, J. F. 1970. Isolation of Bacteriophage T4 Mutants Defective in the Ability to Degrade Host Deoxynucleic Acid. J. Virol. <u>5</u>: 700-708.
- Warner, C. K., and Schaller, H. 1977. RNA Polymerase-promoter Complex Stability on Supercoiled and Relaxed DNA. Febs Letters 74: 215-219.
- Wiberg, J. S. 1966. Mutants of Bacteriophage T4 Unable to Cause Breakdown of Host DNA. Proc. Nat'l. Acad. Sci. U. S. A. 55: 614-621.
- Worcel, A., and Burgi, E. 1972. On the Structure of the Folded Chromosomes of Escherichia coli. J. Mol. Biol. 71: 127-147.

- Worcel, A., and Burgi, E., 1974. Properties of a Membrane-attached Form of the Folded Chromosome of Escherichia coli. J. Mol. Biol. 82: 91-105.
- Wu, R., and Geiduschek, E. P. 1975. The Role of Replication Proteins in the Regulation of Bacteriophage T4 Transcription: I. Gene 45 and Hydroxymethyl-c-containing DNA. J. Mol. Biol. 96: 513-538.
- Wu, R., Geiduschek, E. P. 1977. Distinctive Protein Requirements of Replication-dependent and -uncoupled Bacteriophage T4 Late Gene Expression. J. Virol. 24: 436-443.
- Wyatt, G. R., and Cohen, S. S. 1952. A New Pyrimidine Base from Bacteriophage Nucleic Acids. Nature 170: 1072-1073.
- Yamaguchi, K. and Yoshikawa, H. 1977. Chromosome-membrane Association in Bacillus Subtilis. J. Mol. Biol. 110: 219-253.

ARTICLE I

A ROLE IN TRUE-LATE GENE EXPRESSION FOR THE T4 BACTERIOPHAGE 5' POLYNUCLEOTIDE KINASE 3' PHOSPHATASE

KARL SIROTKIN AND LARRY R. SNYDER

Manuscript submitted for publication to Journal of Molecular Biology with the addition of the material in Appendix II

ABSTRACT

The two T4 induced nucleic acid modifying activities, 5' polynucleotide kinase and 3' phosphatase, are both coded by the <u>pseT</u> gene. Therefore, the product of this gene is an enzyme which can remove phosphates from 3' termini and add them to 5' hydroxyl termini and thus could be said to "shuttle" phosphates on polynucleotides. This enzyme is involved in regulating T4 true-late gene expression, probably at the level of transcription, by establishing the required intracellular DNA structure. Our data suggest that a host gene product normally can substitute for the product of the <u>pseT</u> gene making it nonessential for phage multiplication on most laboratory strains of <u>E</u>. <u>coli</u>.

INTRODUCTION

The replication coupled true-late gene transcription of T4 coliphage draws the attention of molecular biologists because it seems to require specific DNA structures. This has been suspected since it was discovered that DNA replication is required for normal T4 true-late gene expression (Epstein et al., 1963). Progress has been made toward the elucidation of these structures (Wu and Geiduschek, 1975; Rabussay and Geiduschek, 1977), but we still need more information concerning in vivo requirements for T4 true-late gene expression.

T4 codes for about two hundred gene products of which about seventy are required for development on most laboratory strains. Many of the remaining, so called nonessential, genes are required on other normal T4 hosts. For example, the normally nonessential T4 $\underline{\text{pseT}}$ gene product, which is the subject of this publication, is required for phage production on $\underline{\text{E}}$. $\underline{\text{coli}}$ CTr5x (Depew and Cozzarelli, 1974).

Many T4 genes induce enzymes which have been assayed in vitro, While a number of these enzymes have been matched with their corresponding genes and probable biological functions, this has not been accomplished for other enzymes, including 5' polynucleotide kinase (E. C. 2.7.1.78) and 3' phosphatase.

The 5' polynucleotide kinase activity, discovered by Richardson (1965) and Novogrodsky and Hurwitz (1966) transfers gamma phosphates of ATP specifically to the 5' hydroxyl termini of nucleic acids.

This enzyme aids in sequencing nucleic acids (Jay et al., 1974; Maxam and Gilbert, 1977) and in synthesizing specific nucleic acids (Khorana et al., 1972; Walker et al., 1975); because of this, the T4 induced 5' polynucleotide kinase can be purchased from many biochemical supply companies. T4 mutants defective in the induction of 5' polynucleotide kinase have been reported (Chan and Ebisuzaki, 1970), but because they expressed no observable phenotype, they were not mapped. No polynucleotide kinase activity has been found in uninfected E. coli, but similar activities have been found in mammalian nuclei (Novogrodsky et al., 1966; Ichimura and Tsukada, 1971; Teraoka et al., 1975; Levin and Zimmerman, 1976).

The T4 induced 3' phosphatase activity, discovered by Becker and Hurwitz (1967), selectively removes 3' phosphate termini from DNA. Depew and Cozzarelli (1974) showed that T4 mutants, in a gene they mapped and named pseT, do not induce 3' phosphatase activity. They also showed that T4 pseT mutations cause no phenotype on normal laboratory strains, but they prevent multiplication on a clinical isolate of e.coli, they called CTr5x. When pseT mutants infect e.coli CTr5x, T4 DNA metabolism is altered and the DNA that is made is not packaged efficiently (Depew and Cozzarelli, 1974). The phenotypes of pseT mutants are all suppressed by stp mutations (closely linked to rIIB) even though the 3' phosphatase still is not induced. Uninfected cells of at least some e.coli strains have 3' phosphatase activity (Becker and Hurwitz, 1967).

The first connection between these two seemingly disparate kinase and phosphatase activities was made by Cameron and Uhlenbeck

(1977) when they reported that a 3' phosphatase activity copurifies with 5' polynucleotide kinase activity; and, by a number of criteria, both activities seem to be associated with the same polypeptide.

Thus this enzyme can remove 3' phosphates from DNA termini and add phosphates to 5' hydroxyls at DNA termini; therefore it can be said to "shuttle" phosphates on DNA.

Since the <u>pseT</u> gene induces most or all of T4's 3' phosphatase activity (Depew and Cozzarelli, 1974), we suspected that the activity copurifying with 5' polynucleotide kinase was the same as that discovered by Becker and Hurwitz (1967). Thus, we tested some pseT T4 for 5' polynucleotide kinase activity and some T4 mutants that do not induce 5' polynucleotide kinase for pseT gene function.

This led us to evidence, which we present, that: 1) the pseT gene codes for the 5' polynucleotide kinase as well as the 3' phosphatase; 2) the pseT gene product is required for normal true-late gene expression on E. coli CTr5x; and 3) the E. coli strain CTr5x is nonpermissive for pseT T4 because of an amber mutation in one or very few E. coli CTr5x genes.

MATERIALS AND METHODS

a) Materials

Gamma-³²P-ATP was made as described by Schendel and Wells (1973) or purchased from Amersham/Searle at a specific activity of about 3 Ci/mmol. Purified polynucleotide kinase was kindly furnished by V. Cameron and O. Uhlenbeck. Deoxynucleoside 3' and 5' monophosphates were purchased from Sigma. Micrococcal nuclease and bovine spleen phosphodiesterase were purchased from Worthington.

14C-leucine was purchased from Schwarz/Mann or Amersham/Searle.

b) Bacteriophage and bacterial strains

Table 1 describes the origins and relevant characteristics of the various bacterial and bacteriophage strains used.

c) Hydroxyalamine (HA) mutagenesis

Hydroxyalamine mutagenesis was performed according to Tessman (1968).

d) Infections for 3' phosphatase, 5' polynucleotide kinase, and β -glucosyl transferase assays

E. coli was grown to an 0.D. 625 of 0.4 in tryptone broth at 37°C and infected at a multiplicity of 5. Ten minutes after infection, the cells were harvested, pelleted, resuspended, and concentrated ten times in 0.05 M tris-HCl (pH 7.5) and 0.1% mercaptoethanol. The resuspended cells were sonicated once or twice for 15 seconds. β -glucosyl transferase was routinely assayed as a control on these infections.

TABLE 1

STRAINS USED

growth on

A) T4

	Stowers on	5			
Mutation	CTr5x CTr5x sus	-5x sus	Mutagenesis	Source	Comments
(T4 ⁺)	+	+		our lab	Obtained by crossing am E51 with an E10 (amber in gene 45) and selecting non-amber recombinants.
PseT1 PseT2	* * 1	+ +	НА	T. Snopek and N. Cozzarelli	Described in Depew and Cozzarelli, 1974
7-1	1	+	HA	K. Ebisuzaki	Described in Chan and Ebisuzaki, 1970 Isolated as polynucleotide kinase deficient
PseT4	1	+	spont.	our lab	arose as a second site mutation in an $\frac{1}{2}$ mutant stock (Sirotkin et al., 1977)
PseT∆1	1	+	spont.	our lab	Deletion; isolated in original alc selection with alc! (Snyder et al., 1976; Sirotkin et al., 1977)
PseTA3	ı	+	spont.	our lab	Deletion; isolated in <u>alc</u> selection
PseT12,14,47	ı	+	HA	our lab	Isolated in alc selections, by J. Runnels
5A7 #6	+	ND	Η	K. Ebisuzaki	Described in Chan and Ebisuzaki, 1970
5A7 #11	+	ND	HA		two different 3 polynucteolide kinase deficient segregants from a cross with E51, DD2 performed in our lab
am E51	+	+			am gene 56, dCTPase
DD2	+	+			Described in Snyder et al., 1976
nd 28	+	+			den A-
tsA56	+				ts in gene 31, obtained from Lindsay Black
B) E. coli					
Name	Comments	8:			
Be	B strain	<u>5</u>			

Described in Depew and Cozzarelli, 1974, hybrid between Kl2 strains and a clinical isolate of $\overline{\text{E. coli}}$

SupD, B. strain

B40 Sur

CTr5x

Selected for a more efficient amber suppressor by Brian Seed (personal communication)

CTr5x sus

*Failure to complement these two mutants for growth on E. coli CTr5x defines the pseT cistron

e) Infections for labelling proteins for SDS slab gel electrophoresis

E. coli was grown to an O.D. 625 of 0.4 in M9 at 37°C and infected at a M.O.I. of 10. If T4 were not CsCl purified, they were from lysates grown in M9 with no casamino acids.

f) 3' phosphatase assay

The assay mix was the same as reported previously (Depew and Cozzarelli, 1974), except that the assays were 0.5 ml. Exceptions to the infection conditions stated above are noted in the legend to table 2. 3'TM³²P was purified by alternating paper electrophoresis in 0.05 M NH₄ acetate (pH 3.5) with descending chromatography in pabst (1.8% NH₄OH; 62% isobuteric acid, 1 X 10⁻³ M EDTA) until a single spot running like 3' TMP was observed by UV absorbance or upon autoradiography.

g) 5' polynucleotide kinase assay

The 0.2 ml assay mix was essentially the same as that used by Richardson (1965) and consisted of 0.1 ml made up of 10 µl 1.0 M tris-HCl (pH 7.5), 10 µl 1.0 M MgCl₂, 1.5 µl mercaptoethanol, about 10⁶ cpm gamma ³²P-ATP, and 50 µl containing 30 to 80 ug hydroxyl terminated DNA prepared by sonication, alkaline phosphatase treatment, phenol extraction and dialysis. After 30 minutes at 37°C, 2 mls of cold calf thymus DNA, 200 µg/ml, was added, followed immediately by 0.5 ml of 7% perchloric acid. The resulting phosphorylated DNA was treated essentially by the method of Richardson (1965), except that the precipitate was dissolved twice with 2% KOH and finally precipitated with 0.5 ml of 50% TCA. The resulting suspensions were collected on glass fiber filters, rinsed with 5%

TCA and then 80% ethanol before being dried and counted with a toluene based scintillation fluid.

Because the assays reported were all done in crude extracts, calculation of specific activities was difficult, so parallel controls were always performed.

h) SDS slab gel electrophoresis

SDS slab gel electrophoresis was performed according to Studier (1973), and the gels were stained routinely with Weber Osborn stain diluted with 7% acetic acid to insure that the amount of total protein per column was uniform. 1 ml of cells infected as in (e) above was labelled with 1 μ Ci ¹⁴C leu (354 mCi/mmol) chilled with ice, centrifuged, and resuspended in 0.1 ml of H₂O + lysozyme (1 mg/ml). Then 0.15 ml of a 2X concentration of Studier's (1973) resuspension buffer was added before the mixture was boiled for 2 min. All viruses used to infect <u>E</u>. <u>coli</u> CTr5x were CsCl purified to prevent ghost exclusion (see below).

i) β -glucosyl transferase assays

The 0.2 ml assay mix consisted of 10 μ l of uridine diphospho- $^{14}c-$ glucose at 1 μ M/ml and 2 μ C/ml, 20 μ l 1.0 M tris-HCl (pH 7.5), 10 μ l 1.0 M MgCl₂, 60 μ l containing 3 to 12 μ g T4 DNA (lacking β -glucose because it was purified from T4 with a mutation in the β -glucosyl transferase gene) and the equivalent of 0.1 ml of 1X concentrated crude extract.

j) CsCl T4 purification

T4 lysates were treated with chloroform and the aqueous phase was spun to remove debris. The T4 were then concentrated either by

pelleting in an ultracentrifuge (35,000 X g for 1 hr) or precipitated with polyethylene glycol. If the viruses were pelleted, they were allowed to resuspend overnight in a small volumn. A slow speed spin removed any remaining debris and 2 mls of the resulting supernatant was layered on a CsCl step gradient prepared with 6-0.5 ml layers of 70% to 20% saturated CsCl and spun at 147,000 x g for 25 minutes. The lowest band contains infective T4 particles, the next highest band contains ghost (i.e. DNAless) particles. To prevent osmotic shock, the resulting T4 suspension collected from the bottom band is successively dialyzed for 2 hours against 2.0 M NaCl, 1.0 M NaCl, and 0.5 NaCl. The final dialysis is performed overnight in the cold against M9 medium without glucose. These T4 could then be used without the ghost exclusion that interferes with infections of E. coli

RESULTS

- a) \underline{PseT} is the structural gene for a 5' polynucleotide kinase as well as a 3' phosphatase
- If 5' polynucleotide kinase is coded by <u>pseT</u>, then many <u>pseT</u>

 T4 mutants should fail to induce kinase activity, and mutants isolated for failing to induce kinase activity should be <u>pseT</u>. Table 2 shows the kinase and phosphatase activities induced after infection by some T4 mutants. Of all the mutants isolated because they were <u>pseT</u> and do not induce 3' phosphatase activity (table 2A) e.g., <u>pseT</u> 1, <u>pseT</u> 2, <u>pseT</u> 4, <u>pseT</u> 12, <u>pseT</u> 14 and <u>pseTA1</u>), only <u>pseT</u> 1 induces 5' polynucleotide kinase activity (table 2B). In addition, 7-1, one of two mutants originally isolated for failing to induce 5' polynucleotide kinase activity (Chan and Ebisuzaki, 1970), also fails

TABLE 2

A) 3' phosphatase assays[†]

Exp.	T4 genotype	СРМ	norm. % subtracting background
1*	T4 ⁺	293	(100)
•	pseTl	103	24
	pseT∆l	101	23
	uninfected	64	10
	uniniected	04	10
2**	T4 ⁺	345	(100)
	pseT1	140	22
3 [@]	am E51, DD2, DenA	560	(100)
_	pseT2	102	11
	pseT4	101	11
	pseT2 X pseT4		
•	pseT ⁺ recombinant	431	74
	E51, DD2, 7-1	115	13.5
	E51, DD2, nd28, pseT12	128	14.5
	E51, DD2, nd28, pseT14	150	23
4@@	т4 ⁺	469	(100)
•	am E51, DD2, nd28	452	96
	uninfected	148	25
	pseT4	85	11
	pseT2 X pseT4	05	11
	pseT+ recombinant	389	81
	am E51, DD2, nd28, pseT12	85	11
	am E51, DD2, nd28, pseT14	90	12

^{†0.1} ml of 10 X concentrated crude extract.

^{*4800} total cpm in each assay. Harvested 15' post infection. Background calculated from exp. 2 (same 3'Tm 32-P).

^{** 8000} total cpm in each assay. Background 80 cpm.

[@]13,763 total counts in each assay. Background 38 cpm.

 $^{^{\}mbox{\scriptsize QQ}}$ Cells grown at 30° and harvested 15 minutes post infection. Background calculated as experiment 3.

TABLE 2

B) 5' polynucleotide kinase assays

Exp.	T4 genotype	СРМ	norm. % subtracting background
1++	Т4	11,672	(100)
-	pseT∆1	1,243	11
	am E51, DD2	12,618	108
	uninfected	413	3.5
2#	am E51, DD2	9,483	(100)
	am_E51, DD2, pseT∆1	955	9
	am E51, DD2, nd28	$-\frac{1}{5,882}$	(100)
	am E51, DD2, nd28, pseT12	941	16
	am E51, DD2, nd28, pseT14	1,782	29
3##	am E51, DD2	10,929	(100)
	am E51, DD2, pseT1	8,586	78
	am E51, DD2, pseT2	478	2
	am E51, DD2, 5A7 #6	1,302	2 9 1
	am E51, DD2, 5A7 #11	320	
	am E51, DD2, <u>pseT</u> ∆3	411	1
	uninfected	365	1
4 ^{&}	am E51, DD2	8,730	(100)
	am E51, DD2, <u>pseT</u> ∆1	935	4
	7–1	638	6
5 ^{&&}	T4 ⁺	2,155	(100)
	pseT2	202	5
	pseT4	205	5
	pseT2 X pseT4		
	pseT+ recombinant	1,865	86

^{++0.01} ml of 10X concentrated crude extracts.

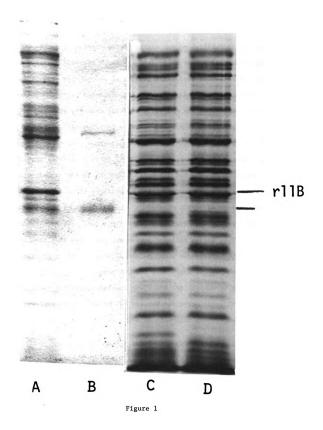
[#]Cells grown at 30° and harvested 15 minutes post infection. Background 100 cpm 0.1 ml of 1X concentrated extracts.

^{##}Cells grown and harvested as above, background 300 cpm. 0.1 ml of
1X concentrated extracts.

[&]amp;Background 126 subtracted. 0.03 ml of 1X concentrated extracts.

[&]amp;& B40 used, grown in M9s. Background of 100 cpm assumed. 0.1 ml of 1X concentrated extracts.

to induce 3' phosphatase activity (table 2A) and is <u>pset</u> (table 1). We had difficulty obtaining reproducible results with the other mutant, 5A7. It is defective in inducing 5' polynucleotide kinase activity (table 2B) but does plate on <u>E. coli CTr5x</u> (table 1). The results with these mutants strongly suggest that <u>pset</u> codes for both activities but it could be argued that they are all double mutants or have deletions spanning two genes.


We can rule out the deletion explanation and render the double mutant explanation unlikely by testing pset recombinants obtained from a cross between two pset parents for the ability to induce kinase and phosphatase activities. As shown in table 2, the two pset recombinants tested induce kinase normally (only one shown) and the one pset recombinant tested induces phosphatase normally. Thus, the most likely explanation is that, in at least one of the pset parents used in the cross, a single mutation in pset leads to the inability to induce both activities.

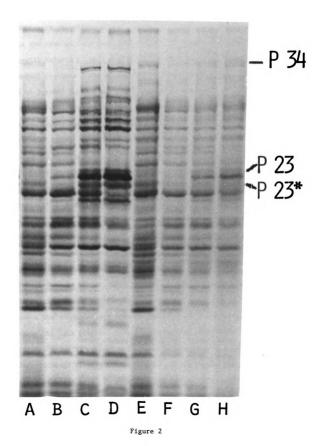
This does not rule out polarity as an explanation for our results. However, polarity in T4 has been shown to have only a slight effect on early genes (Stahl et al., 1968) and the frequency of mutations causing defects in both activities is very high.

Additional information concerning one mutant, <u>pseT1</u>, not only indicates that the <u>pseT</u> gene is required for the induction of both activities, but also indicates that <u>pseT</u> is the structural gene for both activities. O. Uhlenbeck and V. Cameron (personal communication) have purified 5' polynucleotide kinase from cells infected with <u>pseT1</u>. The purified enzyme contains no (0.5% or less of wild type)

Figure 1

A T4 induced polypeptide, migrating with the same molecular weight as 5' polynucleotide kinase is missing in extracts from pseT2 infected cells. E. coli B40 was infected with T4+ and pseT2, labelled from four to seven minutes, and the proteins were electrophoresed on a slab gel alongside of purified 5' polynucleotide kinase. The gel was stained with Comassie Blue for total proteins and polynucleotide kinase and used to autoradiographically expose a film for T4 proteins. Column A is a stained pattern showing the total E. coli proteins. Column B is a stained pattern showing the purified polynucleotide kinase (lower band). Columns C and D are autoradiographic patterns from pseT2 and T4+ infected cells, respectively. A T4 band of the same molecular weight as polynucleotide kinase is missing after pseT2 infections. Also identified is the band due to rIIB.

3' phosphatase activity. Because a mutation in the <u>pseT</u> gene alters the purified 5' polynucleotide kinase enzyme, <u>pseT</u> probably codes for it, as well as 3' phosphatase.


Since 5' polynucleotide kinase can be purified it should be possible to identify the pseT polypeptide on SDS acrylamide gels and see if this polypeptide is missing after infection by some pseT mutants. Purified polynucleotide kinase was co-electrophoresed on a slab gel with proteins labelled after T4+ and pseT2 infections (figure 1). The purified polynucleotide kinase (column B) is slightly smaller than rIIB suggesting a molecular weight of about 30,000 daltons (O'Farrell et al., 1973). This is in good agreement with the molecular weight of 33,000 reported for polynucleotide kinase subunits (Panet et al., 1973; Lillehaug, 1977). The higher molecular weight band is due to a contaminant (V. Cameron and O. Uhlenbeck, personal communication). That pseT2 infections lack this band (column C) suggests that pseT2 has a nonsense mutation in the pseT gene (not an amber since the host strain has an amber suppressor). Other mutants lacking the pseT polypeptide, are predictably, pseT Δ 1 and pseT Δ 3. The other difference between pseT2 and T4+ (column D) at low molecular weight may be due to the strains not being isogenic.

b) $\underbrace{\text{PseT}}_{\text{mutants}}$ mutants are defective in true-late gene expression on $\underline{\text{E. coli}}$ CTr5x

In order to understand the biological role of the 5' polynucleotide kinase 3' phosphatase, we decided to reinvestigate why \underline{E} . \underline{coli} CTr5x is nonpermissive for \underline{pseT} T4. The rate of DNA synthesis of \underline{pseT} T4 on \underline{E} . \underline{coli} CTr5x is 50% of the \underline{pseT} rate

Figure 2

Late proteins are synthesized at a lower rate after $pseT\Delta 1$ infection of E. coli CTr5x. Shown is an autoradiograph of a electropherogram of a slab gel of proteins labelled after T4 infection. Infections were as in materials and methods except the temperature was 30°C. Columns A-D are T4+; E-H $pseT\Delta 1$. Times after infection of the pulses are: A, E 4-6'; B, F 10-12'; C,G 18-20'; D, H 28-30'. Products of some late genes are identified; p23 is processed from p23.

(Depew and Cozzarelli, 1974; our unpublished observations). In addition to the effect on DNA synthesis, there is a dramatic reduction in the rate of late gene expression. As shown in figure 2, after pseT\Delta" linfects E. coli CTr5x, the rate of early protein synthesis is normal (columns A and E), but the rate of late protein synthesis is 3 to 5 times lower than normal (compare columns B, C and D to F, G and H); thus, late proteins are specifically affected. Rather than being merely delayed, late gene expression never achieves normal rates.

To show that the deficiency in true-late gene expression that T4 pseT Δ 1 exhibits when infecting E. coli CTr5x is due to its being pseT and not to some other defect, we performed some additional experiments. First, we examined pseT1, pseT2, and 7-1 (the latter originally isolated as 5' polynucleotide kinase induction deficient by Chan and Ebisuzaki, 1970, see table 1), and they all show the same defect. Second, no complementation is observed (e.g. late protein synthesis is not normal) when pseT1, pseT2, pseT47 and pseT∆1 mixedly infect E. coli CTr5x. Thus, if the defect is due to a second mutation, it is in the same cistron for all mutants tested so far. Figure 3 shows the complementation experiment for pseT1 and pseT2. Column A shows the late proteins from T4+ infections of E. coli CTr5x and columns C and E, respectively, have the proteins from pseT1 and pseT2 infections of \underline{E} . \underline{coli} CTr5x. Columns G and H show the mixed infections of these pseT T4 with T4+; the defect in true-late gene expression is recessive. Finally, column I shows that pseTl does not complement pseT2 for the defect in true-late protein synthesis on

<u>E. coli</u> CTr5x. Thus the 5' polynucleotide kinase 3' phosphatase is required for normal true-late gene expression during T4 infection of <u>E. coli</u> CTr5x.


It is reasonable that the 5' polynucleotide kinase 3' phosphatase is required for normal T4 true-late mRNA synthesis rather than translation because the <u>pseT</u> gene product is also required for normal replication (so acts on DNA) (Depew and Cozzarelli, 1974) and because other gene products required for true-late gene expression regulate transcription (Bolle et al., 1968). To verify this, we have performed "mixed-competitor" hybridization experiments (for methods see Snyder et al., 1976) with RNAs prepared for <u>pseT2</u> infections of <u>E. coli</u> CTr5x. Our preliminary results indicate that RNA taken at late times from <u>pseT2</u> infected <u>E. coli</u> CTr5x contains a lower concentration of the sequences which behave in hybridization-competition experiments like T4 true-late mRNA sequences (data not shown). Thus, the 5' polynucleotide kinase 3' phosphatase is probably required for normal T4 true-late transcription.

c) Evidence for a host function which can substitute for the T4 coded 5' polynucleotide kinase 3' phosphatase

<u>A priori</u>, there might be many genetic differences between <u>E. coli</u> CTr5x and other laboratory strains that cause <u>E. coli</u> CTr5x to be non-permissive for <u>pseT</u> T4. However, the following results imply that one or very few genes are involved. <u>E. coli</u> CTr5x has an amber suppressor but it is inefficient. Brian Seed (personal communication) at the California Institute of Technology selected a variant of <u>E. coli</u> CTr5x that efficiently suppresses T4 amber mutants. This efficient suppressing ability alters E. coli CTr5x so that it is

Figure 3

Complementation of pseT1 and pseT2 on <u>E. coli</u> CTr5x and the effect of efficient amber suppression. <u>E. coli</u> CTr5x sus were infected as in the materials and methods and the proteins labelled 20-23' post infection. Shown is an autoradiogram as in figure 3. Columns are: A, T4+ infecting <u>E. coli</u> CTr5x; B, T4+ infecting <u>E. coli</u> CTr5x sus +, C, pseT1 infecting <u>E. coli</u> CTr5x; D, pseT1 infecting <u>E. coli</u> CTr5x sus +; E, pseT2 infecting <u>E. coli</u> CTr5x; F. pseT2 infecting <u>E. coli</u> CTr5x; F. pseT2 infecting <u>E. coli</u> CTr5x; H, T4+ and pseT2 infecting <u>E. coli</u> CTr5x; I, pseT1 and pseT2 infecting <u>E. coli</u> CTr5x sus + produce late proteins at a greater rate than T4+ infections. This may be a general property of pseT mutants on permissive hosts.

now permissive for all of our \underline{pseT} mutants, including deletions (table 1).

We think that this more efficient amber suppressing strain is derived from \underline{E} . $\underline{\operatorname{coli}}$ CTr5x for the following reasons: 1) T4 mutated in other cistrons that do not plate on \underline{E} . $\underline{\operatorname{coli}}$ CTr5x do not plate on it (data now shown), 2) it has an unusually high activity in the 3' phosphatase assay which is characteristic of \underline{E} . $\underline{\operatorname{coli}}$ CTr5x (see below); and 3) it still carries a $\underline{\operatorname{str}}^r$ (Depew and Cozzarelli, 1974) marker.

A trivial explanation for the growth of <u>pset</u> T4 on this more efficient amber suppressing strain is that the original <u>pset</u> mutations are being suppressed. This could not be true for all <u>pset</u> mutants particularly those that appear to be deletions, such as $\underline{pset}\Delta 1$. In addition, 5' polynucleotide kinase is not induced when $\underline{pset}\Delta 1$ infects the efficient amber suppressing \underline{E} . \underline{coli} CTr5x (data not shown) but yet the phage multiply. Because \underline{E} . \underline{coli} CTr5x has a very high competing phosphatase activity, we cannot easily draw comparable conclusions regarding the induction of 3' phosphatase on this strain, but we assume it also is not induced.

The defect in true-late protein synthesis in <u>pseT</u> T4 infected <u>E. coli</u> CTr5x also is suppressed by the efficient amber suppressor of this host (figure 3, columns B, D and F). In fact, the rate of late protein synthesis may be higher than normal. The rate of T4 DNA synthesis is also no longer reduced on the suppressing host (data not shown). If there are other blocks to <u>pseT</u> T4 production on <u>E. coli</u> CTr5x, they must also be suppressed.

DISCUSSION

The work presented here indicates that the product of the pseT gene, a 5' polynucleotide kinase 3' phosphatase, has a role in true-late gene expression, probably at the level of transcription. There is good evidence that pseT codes for both activities: 1) cells infected with a number of mutants in the pseT cistron, discovered by Depew and Cozzarelli (1974), lack both activities when assayed in crude extracts (table 2); 2) two pseT mutants, which fail to induce both activities, yield pseT + recombinants inducing both activities (table 2); 3) an altered 5' polynucleotide kinase purifies from cells infected with one pseT mutant (V. Cameron and O. Uhlenbeck, personal communication); 4) cells infected with some pseT T4 lack a T4 induced polypeptide which comigrates on SDS gels with purified polynucleotide kinase (figure 1). We cannot, however, absolutely rule out other explanations based upon extreme polarity or protein alterations. Because some pseT mutants lack the pseT coded polypeptide, we conclude that inability of pseT mutants to multiply on E. coli CTr5x is simply due to a deficiency in this gene product and is not caused by special mutations in this gene.

Before presenting some possible models to explain the biological role of the <u>pseT</u> gene product, it is appropriate to summarize briefly previous research concerning both the 5' polynucleotide kinase and 3' phosphatase. The purified T4 induced 3' phosphatase, as originally reported by Becker and Hurwitz (1967), removed 3' phosphates, but not 5' phosphates, from monomeric and oligomeric deoxynucleotides. They also reported that the 3' phosphatase was

inactive on 3' monoribophosphates and 2'-(3')-P-(Up)₄. This last result conflicts with Cameron and Uhlenbeck's (1977) report that the 3' phosphatase activity co-purifying with 5' polynucleotide kinase removed selectively the 3' phosphates of (Up)₅, P(Up)₅, (Cp)₂Gp, and many other short ribonucleotides. We suspect that either those RNAs with 2' phosphates inhibit the enzyme or that the slightly different assay conditions explain the difference. Other similarities between the two reported activities are a pH optimum of about 6 and inhibition by inorganic phosphate.

The 5' polynucleotide kinase has been studied more extensively. The native enzyme has a molecular weight of 140,000 and is composed of 4 subunits of about 33,000 molecular weight (Panet et al., 1973; Lillehaug, 1977). It is most active on oligomeric nucleic acids, does work on 3' monophosphates, and is inactive on ribo- and deoxynucleosides (Richardson, 1965; Novogrodsky and Hurwitz, 1966). The kinase reaction works better on single stranded than double stranded DNA and at gaps in double stranded DNA than at nicks (Lillehaug, 1976). The kinase is freely reversible (van de Sande, 1973), but the reverse reaction has a lower pH optimum than the forward reaction (van de Sande, 1973). An endonuclease activity associated with kinase has been described which introduces single stranded nicks into DNA (Loewen, 1976). This activity is not present in freshly purified kinase preparations; it only appears upon storage, especially storage without ATP or mercaptoethanol. The activity filters through a G-100 column as if it is due to a disassociated kinase subunit (Loewen, 1976). The implications of this endonuclease for models of the biological role of the pseT gene product will be

discussed with the models themselves.

Although we cannot rule out the possibility that the phosphatase and kinase work on different substrates, we prefer the model that they both work on the same substrate in vivo. This model is supported by pseT47 and pseT1's having the same phenotypes even though one fails to induce kinase and the other fails to induce phosphatase. Because the kinase functions best on polymerized nucleic acids, and the phosphatase does not use ribomonophosphates, we think that polymerized DNA, rather than RNA, is probably the substrate in vivo, although this is not proven. It may be relevant to this discussion that many of our pseT mutations arose in alc mutant selections (see table 1). Many of these are second site mutations and may be selected because they enhance the multiplication of alc T4. Since alc has been shown to affect the structure of the bacterial nucleoid (Sirotkin et al., 1977), by association, pseT is also implicated in DNA structure. Before examining how this enzyme might change DNA to affect transcription, we shall discuss what is known regarding DNA structural requirements for T4 true-late transcription.

Concommitant T4 DNA replication is required for normal T4 true-late transcription (Riva et al., 1970a). However, true-late transcription can be genetically uncoupled from replication by inactivating T4 DNA polymerase, T4 DNA ligase and a T4 promoted exonuclease (Riva et al., 1970b). The antagonistic effect of ligase implies that nicks or gaps must be present in T4 DNA before it can serve as a template for true-late transcription. Apparently, the exonuclease must be inactivated to prevent degradation of the unligated DNA. The question remains of how these facts relate to our observations

that this form of transcription might be altered by the product of the pseT gene which in vitro, at least, alters the orientation of phosphates at termini. Since DNA synthesis and true-late transcription of pseT T4 are both defective on E. coli CTr5x, a trivial explanation for the defect in true-late transcription is that, because this transcription relies normally on DNA synthesis, the lessened DNA synthesis causes the lessened true-late transcription. Then the only effect of pseT would be on replication. We think that this explanation is unlikely because other mutations, which have an even more dramatic effect on DNA synthesis, do not affect true-late gene expression. Therefore, the following models are presented assuming both defects stem from a common problem of DNA structure or of DNA interaction with some other cell constituent.

All of the direct models for the biological activity of 5' polynucleotide kinase 3' phosphatase on DNA fall into three categories. The first includes those models in which the reactions are concerted. By this we mean that the kinase and phosphatase activities which we assay in vitro are actually components of an overall reaction in vivo. This reaction could involve the DNA's tertiary structure. Examples of a change in tertiary structure include DNA winding such as performed by DNA gyrase (Gellert et al., 1976) and DNA unwinding such as performed by omega proteins (Wang, 1971). There is evidence that some supercoiling may exist in replicating T4 DNA (Hamilton and Pettijohn, 1976). The three known activities (nickase, kinase, phosphatase) together with a ligating activity that can only be postulated, may work together concertedly. If the final DNA structure is stable or if the ligating protein forms a tight complex with the 5'

polynucleotide kinase 3' phosphatase, the ligating activity need not reside in the <u>pseT</u> gene product. In our view of this theoretical event: a nick leaves a 5' hydroxyl and a 3' phosphate; the phosphate is removed; with the phosphate and energy from ATP, some change in DNA structure occurs; the phosphate is attached to the 5'-hydroxyl; and finally, either by itself or utilizing DNA ligase activity from another polypeptide, the nick seals. In the process, the DNA strands are rotated 360° around one another. The intermediates in omega protein and gyrase action have not been isolated and these reactions could involve "phosphate shuttling."

Another category of model includes the <u>binding</u> of DNA to some other cell constituent, such as a protein or membrane phospholipid. In these models polynucleotide kinase forms the bonds between some phosphorylated compound and a 5' hydroxyl terminus in DNA. The apparent lack of specificity for the donor of phosphate in the kinase reaction (Novogrodsky et al., 1966) is consistent with these models. In <u>vivo</u>, in T4 infected cells, the bonds might be transient and therefore hard to detect. These models have to be elaborated to account for the 3' phosphatase activity.

One final model category assumes that the <u>phosphate shuttling</u> observed <u>in vitro</u> is biologically significant <u>in vivo</u>. These models imply that, in DNA with single strand nicks or gaps, the orientation of the phosphates, or their absence, accounts for the observed biological effects. The presence or absence of a 5' phosphate or 3' phosphate, respectively, might alter the terminus so that it can be used by some other enzyme, for example, DNA polymerases, ligases or exonucleases. As previously mentioned, nicks, at least, are already

implicated as being necessary for DNA to be competent for T4 truelate gene expression, since T4 DNA ligase is antagonistic to T4 truelate transcription. Since a 3' phosphate interferes with the filling of a single stranded gap in DNA by DNA polymerase and either a 3' phosphate or a 5' hydroxyl interferes in the ligation of nicks by DNA ligase, if gaps or nicks are simply required for true-late transcription, then the lack of the combined 3' phosphatase 5' polynucleotide kinase activities would increase true-late transcription. This is the opposite of what is observed on E. coli CTr5x; the lack of the combined activities decreases T4 true-late transcription. Two explanations could be offered to preserve these models in the face of this apparent contradiction: 1) T4 ligase acts at different times or places on the DNA than T4 5' polynucleotide kinase 3' phosphatase: 2) there is a third activity required for T4 true-late transcription which requires the phosphate orientations established by the pseT gene product. Ligase is antagonistic to this third activity rather than to the 5' polynucleotide kinase 3' phosphatase. This third activity could be an exonuclease. There is a precedent for exonucleases affecting gene expression. The T5 exonuclease (Frenkel and Richardson, 1971a and 1971b), is necessary for the expression of T5 late genes (Chinnadurai and McCorquodale, 1973). Perhaps for T4 true-late transcription, one DNA strand must be unzipped or degraded before RNA polymerase will act, and, either the 5' polynucleotide kinase 3' phosphatase unzips or degrades it itself or, by changing the DNA termini, allows another protein to do it. Gaps in intracellular T4 DNA have been reported by Curtis and Alberts (1976). However, the gene 49 product is required for their formation

Figure 4

The model categories depicting possible \underline{pseT} gene product functions. The figure is explained in the text.

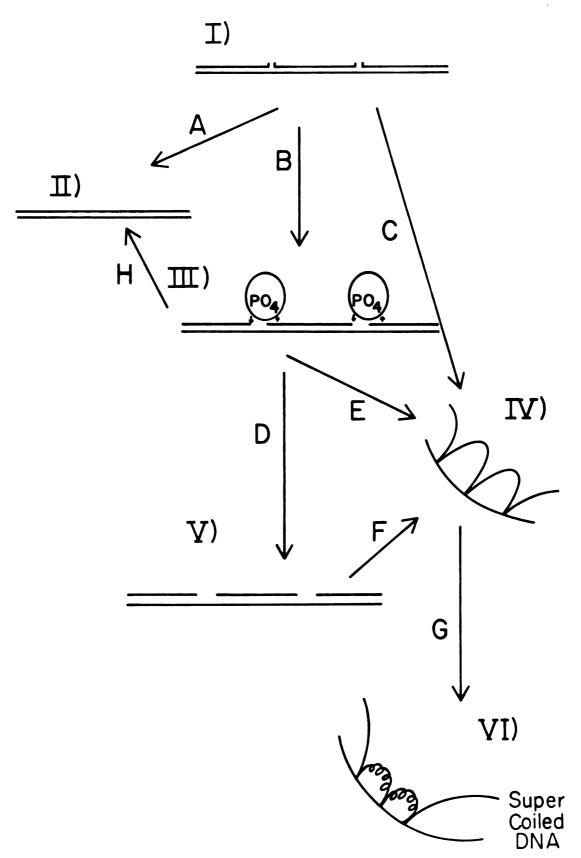


Figure 4

and mutants in gene 49 are normal in terms of gene expression, and only defective in packaging.

One way of presenting all three types of models appears in figure 4. Different DNA states are represented by Roman Numerals (I through VI) and different alterations are represented by letters (A through H). State I represents freshly replicated DNA that is assumed to contain nicks with unspecified phosphate orientations. Alteration A, performed by DNA ligase, leads to State II which is inactive for T4 true-late transcription. "Phosphate shuttling" performed by the 5' polynucleotide kinase 3' phosphatase, alteration B, could lead to state III that has 5' phosphate and 3' hydroxyl termini. The nicks might be sealed by DNA ligase (alteration H) or "gapped" by an exonuclease as in alteration D. If the pseT gene product binds the DNA to some cell constituent, either before or after the phosphates are shuttled (C or E), or after some third activity acts (F), this would lead to state IV. Supercoiling is alteration G leading to state VI. All alterations except D (gapping) and A and H (ligating) might, according to the models, be performed by the pseT gene product. In the discussion of the models, states III through VI are considered as possible required DNA structures for T4 true-late transcription.

To choose between the models, it may be relevant that <u>pseTl</u> and <u>pseT47</u> do not complement each other even though their activities are complementary. It could be argued that this supports the concerted reaction model but the fact that the isolated enzyme is a tetramer weakens the argument. More mutants should help in distinguishing between the models.

If we knew why <u>E</u>. <u>coli</u> CTr5x is nonpermissive for <u>pseT</u> mutants of T4, we might know how universal such functions are, as well as the details of the reaction they promote. Mutating <u>E</u>. <u>coli</u> CTr5x to an efficient amber suppressor changes it so that it becomes permissive for <u>pseT</u> T4. The simplest explanation for this is that a single locus in <u>E</u>. <u>coli</u> CTr5x contains an amber codon that, when suppressed efficiently, allows growth of <u>pseT</u> T4. Presumably the deficiency in this gene product makes <u>E</u>. <u>coli</u> CTr5x nonpermissive. Note that, since the original strain has an inefficient suppressor, there is probably some of this gene product in the cell. This leads to the conjecture that, with no amber suppression, no T4 true-late proteins would be made in <u>pseT</u> infections. It also leaves open the possibility that the gene product is required for growth of the host.

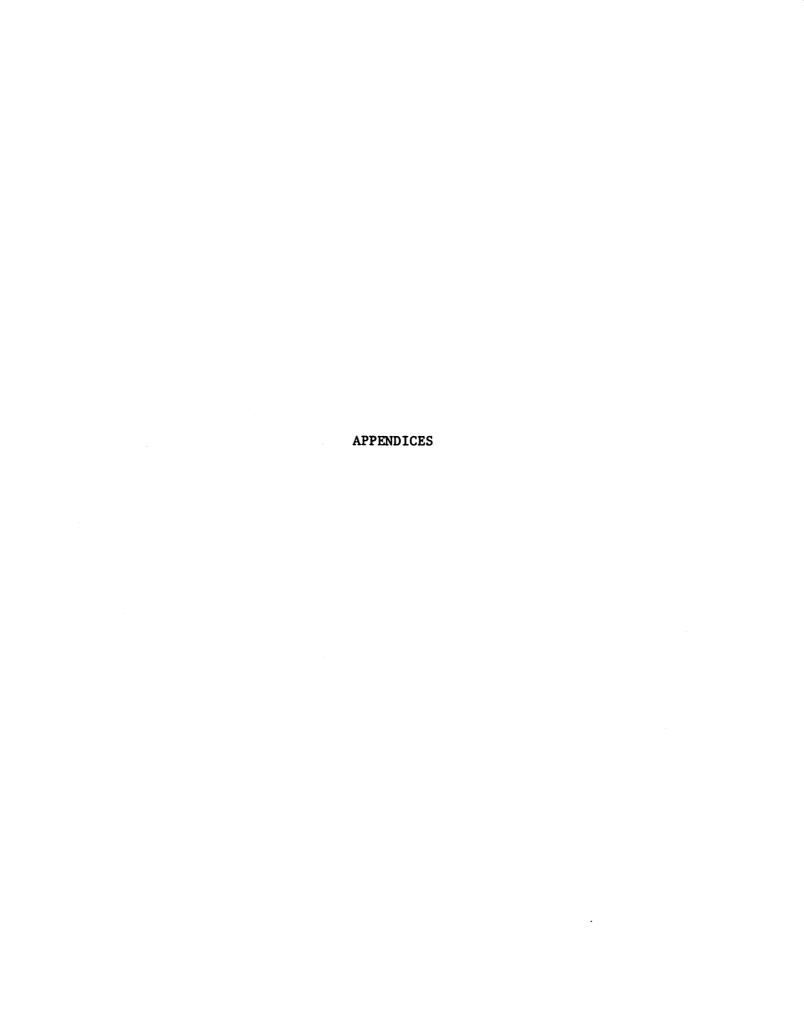
We imagine three possibilities as to how a host gene product can make a phage gene product nonessential: a) T4 "commandeers" a host gene product, which had a different function in uninfected cells, and uses it in its late mRNA synthesis; b) the host gene product is used in a pathway to make true-late mRNA which is different from the one in which the <u>pseT</u> gene product functions; c) the host gene product is an analogue of the T4 coded 5' polynucleotide kinase 3' phosphatase.

At present, we cannot distinguish between these possibilities. However, precedents exist for host proteins being able to substitute, under some conditions, for analogous phage proteins. For example, T4 can use the host DNA ligase in lieu of its own DNA ligase when the T4 RII gene is inactivated (Ebisuzaki and Campbell, 1969; Berger and Kozinski, 1969; Karam, 1969). If the parallel is accurate, this

could correspond to: 1) the host counterpart is normally able to substitute; 2) it is either unavailable or reduced because of an amber mutation in <u>E. coli CTr5x</u>; 3) inactivating <u>stp</u> (the extracistronic suppressor of the <u>pseT</u> phenotype; Depew and Cozzarelli, 1974) either makes less of it necessary or increases the availability of that of it that is made. That no 5' polynucleotide kinase has been detected in uninfected cells may merely mean that the host enzyme assays differently.

If there is a host counterpart to the T4 5' polynucleotide kinase 3' phosphatase, it may also be involved in transcription in uninfected bacteria. This transcription may share requirements with the true-late replication-coupled transcription of T4. In any case, only one or few differences are causing \underline{E} . \underline{coli} CTr5x to be non-permissive for \underline{pseT} mutants of T4, raising the possibility that similar restricting mutants can be isolated starting with other \underline{E} . \underline{coli} strains and the responsible mutations mapped.

ACKNOWLEDGMENTS


Preliminary portions of this work were supported by grant
AI-12133-03 from the National Institutes of Health. K. S. acknowledges an NSF predoctoral fellowship. We wish to thank V. Cameron
and O. Uhlenbeck for communicating their results before publication,
L. Gold, N. Cozzarelli and E. Kutter for many helpful suggestions,
and L. Gold for a timely introduction to O. Uhlenbeck.

REFERENCES

- Becker, A., and Hurwitz, J. (1967). J. Biol. Chem. 242, 936-950.
- Berger, H., and Kozinski, A. W. (1969). Proc. Natl. Acad. Sci. U.S.A., 64; 897-904.
- Bolle, A., Epstein, R. H., Salser, W., and Geiduschek, E. P. (1968). J. Mol. Biol. 33, 339-362.
- Cameron, V., and Uhlenbeck, O. C. (1977). Biochemistry in press.
- Chan, V. L., and Ebisuzaki, K. (1970). Mol. Gen. Genetics. 109, 162-168.
- Chinnadurai, G., and McCorquodale, D. J. (1973). Proc. Natl. Acad. Sci. U.S.A. 70, 3502-3505.
- Curtis, M., and Alberts, B. (1976). J. Mol. Biol. 102, 793-816.
- Depew, R. E. and Cozzarelli, N. R. (1974). J. Virol. 13, 888-897.
- Ebisuzaki, K., and Campbell, L. (1968). Virology 38, 701-702.
- Epstein, R. H., Bollé, A., Steinberg, C. M., Kellenberger, E., Boy de la Tour, E., Chevalley, R., Edgar, R. S., Susman, M., Denhardt, G., and Lielausis, A. Cold Spring Harbor Symp. Quant. Biol. 29, 375-392.
- Frenkel, G. D., and Richardson, C. C. (1971a). J. Biol. Chem. <u>246</u>, 4839-4847.
- Frenkel, G. D., and Richardson, C. C. (1971b). J. Biol. Chem. 246, 4848-4852.
- Gellert, M., Mizuumchi, K., O'Dea, M. H., and Nash, H. A. (1976). Proc. Natl. Acad. Sci. U.S.A. 73, 3872-3876.
- Hamilton, S., and Pettijohn, D. E. (1976). J. Virology <u>19</u>, 1012-1027.
- Ichimura, M., and Tsukada, K. (1971). J. Biochem. 69, 823-828.
- Jay, E., Bambara, R., Padmanabhan, R., and Wu, R. (1974). Nucleic Acids Research 1, 331-353.
- Karam, J. D. (1969). Biochem. Biophys. Res. Comm. 37, 416-422.

- Khorana, H. G., Agarwal, K. L., Buchi, H., Caruthers, H. M., Gupta, N., Kleppe, K., Kumar, A., Ohtsuka, E., Raj Bhandary, U. L., van de Sande, S. H., Sgaramella, V., Weber, H., and Yamada, T. (1972). J. Mol. Biol. 72, 209-217.
- Levin, C. J., and Zimmerman, S. B. (1976). J. Biol. Chem. <u>251</u>, 1767-1774.
- Lillehaug, J. R., Kleppe, R. K., and Kleppe, K. (1976). Biochemistry 15, 1858-1865.
- Lillehaug, J. R. (1977). Eur. J. Biochem. 73, 499-506.
- Loewen, P. C. (1976). Nucleic Acids Research 3, 3133-3141.
- Maxam, A. M., and Gilbert, W. (1977). Proc. Natl. Acad. Sci. U.S.A. 74, 560-564.
- Novogrodsky, A., Hurwitz, J. (1966). J. Biol. Chem. 241, 2923-2932.
- Novogrodsky, A., Tal, M. N., Traub, A., and Hurwitz, J. (1966). J. Biol. Chem. <u>241</u>, 2933-2943.
- O'Farrell, P. Z., Gold, L. M., and Huang, W. M. (1973). J. Biol. Chem. 248, 5499-5501.
- Panet, A., van de Sande, J. H., Loewen, P. C., Khorana, H. G., Raae, A. J., Lillehaug, J. R., and Kleppe, K. (1973). Biochemistry 12, 5045-5050.
- Rabussay, D., and Geiduschek, E. P. (1977). Proc. Natl. Acad. Sci. U.S.A. (in press).
- Richardson, C. C. (1965). Proc. Natl. Acad. Sci. U.S.A. <u>54</u>, 158-165.
- Riva, S., Cascino, A., and Geiduschek, E. P. (1970a). J. Mol. Biol. 54, 85-102.
- Riva, S., Cascino, A., and Geiduschek, E. P. (1970b). J. Mol. Biol. <u>54</u>, 103-119.
- Schendel, P. F., and Wells, R. D. (1973). J. Biol. Chem. <u>248</u>, 8319-8321.
- Sirotkin, K., Wei, J., and Snyder, L. (1977). Nature 265, 28-32.
- Snustad, D. P., Tigges, M. A., Parson, K. A., Bursch, C. J. H., Caron, F. M., Koerner, J. F., and Tutas, D. J. (1976). J. Virol. <u>17</u>, 622-641.

- Snyder, L., Gold, L., Kutter, E. (1976). Proc. Natl. Acad. Sci. U.S.A. 73, 3098-3102.
- Stahl, F. W., Crasemann, J. M., Yegian, C. D., Stahl, M. M., and Nakata, A. (1970). Genetics 64, 157-170.
- Studier, F. W. (1973). J. Mol. Biol. 79, 237-248.
- Teraoka, H., Mizuta, K., Satl, F., Shimoyachi, M., and Tsukada, K. (1975). Eur. J. Biochem. <u>58</u>, 297-302.
- Tessman, I. (1968). Virology 35, 330-333.
- van de Sande, J. H., Kleppe, K., and Khorana, H. G. (1973). Biochemistry 12, 5050-5062.
- Walker, G. C., Uhlenbeck, O. C., Bedows, E., and Gumport, R. I. (1975). Proc. Natl. Acad. Sci. U. S. A. 72, 122-126.
- Wang, J. C. (1971). J. Mol. Biol. 55, 523-533.
- Wu, R., and Geiduschek, E. P. (1975). J. Mol. Biol. <u>96</u>, 513-538.

APPENDIX I

T4 Bacteriophage-coded RNA polymerase subunit blocks host transcription and unfolds the host chromosome

APPENDIX I

T4 Bacteriophage-coded RNA polymerase subunit blocks host transcription and unfolds the host chromosome

This article, published in Nature, vol. <u>265</u>, January 6, 1977, pp. 28-32, appears as an appendix instead of an article in the body of the thesis because of University regulations.

T4 Bacteriophage-coded RNA polymerase subunit blocks host transcription and unfolds the host chromosome

Karl Sirotkin, Jane Wei & Larry Snyder

Department of Microbiology and Public Health, Michigan State University, East Lansing, Michigan 48824

T4 bacteriophage mutants selected for their ability to grow with cytosine in their DNA are defective in host transcriptional shutoff and host chromosome unfolding. The host RNA polymerase purified from cells infected by such a mutant lacks a small T4-coded subunit.

T4 BACTERIOPHAGE shuts off host transcription efficiently and rapidly but the molecular mechanism behind this remains a mystery. One reason for the mystery may be that no T4 mutants defective in host shutoff have yet been isolated. Since T4 probably uses the host RNA polymerase for all its transcription^{1,2}, inactivation of the polymerase cannot be involved in shutoff. During infection however, various T4 coded polypeptides bind to the host RNA polymerase. These include the products of T4 genes 55 (refs 3 and 4) and 33 (refs 3 and 5) and of two other unidentified genes. The latter two polypeptides, molecular weights 15,000 and 10,000, were assigned the numbers 2 and 4, respectively, by Stevens³. There are other polypeptides which bind loosely to the RNA polymerase⁶. In addition, the α subunit of the RNA polymerase is adenylated by two distinct T4-coded activities, alt and mod (ref. 25), one of which, alt, is carried in the virus particle*.9. The adenylated RNA polymerase transcribes E. coli genes poorly in vitro29. Neither alt nor mod mutants affect the shutoff of host protein or r RNA synthesis in vivo⁸, however, and none of the T4-coded RNA polymerase subunits has been implicated in host shutoff.

Besides changing the host RNA polymerase, T4 infection alters the host "chromosome". The host DNA changes its intracellular location³¹ (nuclear disruption), a process requiring the T4 *ndd* gene product¹⁰. The highly compact structure of the host nucleoid is unfolded¹², requiring the product of the T4 *unf* gene¹¹. The host DNA is degraded to mononucleotides chiefly by the products of genes *denA endoII* (refs 13 and 14) and 46, 47 (ref. 15). All of these phenomena can proceed independently of each other^{10,11}. None of them has been related in a simple way to the shutoff of the synthesis of at least the major host proteins¹¹.

T4 has hydroxymethylcytosine in its DNA instead of the usual cytosine¹⁶. It is tempting to speculate that the shutoff of host transcription and/or replication occurs when T4 causes the cell to reject DNA with cytosine for some aspect of transcription and/or replication. If this is true, T4 with cytosine in its DNA might "shut itself off". T4 mutations which permit the multiplication of cytosine-containing T4 would occur in genes normally involved in host shutoff. To test this hypothesis, and to find T4 regulatory genes, we have begun the search for T4 mutants which can produce T4 with cytosine in their DNA.

The first such mutants we have found are deficient in the function of a gene which we call *alc* (ref. 17). When cytosine-containing T4 DNA is made after infection, the *alc* gene product almost completely prevents true-late transcription. True-late mRNAs are those which require T4 DNA replication¹⁸ to have occurred and the products of genes 33, 55 (ref. 18) and 45 (ref. 19) to be present. Here we present evidence that the product of the *alc* gene becomes an RNA polymerase subunit,

probably the polypeptide no. 2 of Stevens³. It is also required to unfold the host nucleoid after infection and is likely to be the *unf* gene product of Snustad and his collaborators¹¹. We discuss the implications of this for the structure of the host nucleoid, and the relationship of the structure to transcriptional regulation.

Missing T4-coded polypeptide in alc RNA polymerase

In the original report on alc^- mutants, we proposed that the alc gene product, itself non-essential, interacts with an essential part of the transcription apparatus. We proposed that this may be one of the activities which adenylate the α subunit of the RNA polymerase or may be one of the T4-coded RNA polymerase subunits. Since mutants are available which lack one or the other adenyiating activity⁸, we tested these first. Neither alt^- nor mod^- mutants were able to confer the alc^- phenotype after recombination with T4 which makes cytosine-containing DNA. Thus, we

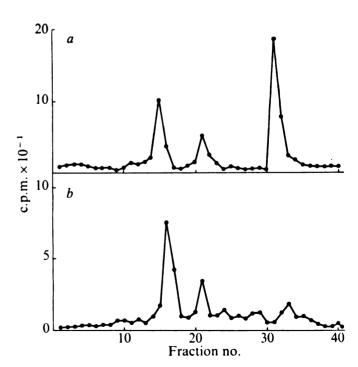


Fig. 1 An alc⁻ mutant is lacking a T4-coded polypeptide on the RNA polymerase. E. coli B^E (100 ml) growing in M9 without amino-acids at 30 °C were labelled with ³H-leucine 5-15 min after infection. They were then mixed with 1 g of uninfected cells, sonicated, and the RNA polymerase purified by the method of Burgess²¹ through phosphocellulose chromatography. The results of slicing and counting 12 °₀ SDS gels (procedure of Fairbanks et al.²²) is shown. The dye front was on the right. a. T4-coded polypeptides on the RNA polymerase from the parent of the spontaneous alc⁻ (alc1) mutant (b). The alc⁻ mutant is clearly missing the first peak from the right in about fraction 34. We think this peak is due to Stevens' polypeptide no. 2.

Table 1 Map position of alc - mutations												
Cross Crossover occurring	amH21, 54	alcl	× amH39 alc	amH39, 30	alcl	× amH54 alc	amN54, 31	alcl alc	× amM69	amM69,	alcl alc	× amN54 63
occurring		30			31				63	31		
Expected frequency alc -		~1			~1			~1			~}	
Observed		50			57			43			56	
frequency		<u></u>			65			112			97	
Map order: 54	30 31		alc 63									

Double mutants am. alc⁻ were constructed by crossing and screening am progeny for temperature sensitivity by spotting on K803 Rif '-2²³ at 42 °C. These double mutants were then crossed with single amber mutants in the region of gene 31. The am⁺ recombinants were spotted on K803 Rif '-2 to determine their temperature sensitivity. Shown is the fraction of the total am⁺ progeny from one plate which are alc⁻. The amber mutants used were am H21 (gene 54), am N54 (gene 31) and am M69 (gene 63). The alc⁻ mutant is alc1, the same mutant used in the RNA polymerase experiment in Fig. 1. alc1 is also unf⁻. We have also analysed other crosses, the results of most of which were also consistent with this map order.

tentatively concluded that alc - mutants are not simply alt - or mod-. We then purified the RNA polymerase from cells after infection by an alc- mutant to test for the presence of the T4-coded polypeptides. Figures 1a and b show polyacrylamide gels of RNA polymerase from alc + and alc | (alc -) infected cells respectively. The alc - mutant is conspicuously lacking the major peak of radioactivity in about fraction 33, but has all the others. By molecular weight determinations with known markers and by comparison with the published results of Stevens³, we think that the missing peak is the 15,000 molecular weight polypeptide no. 2. Alc1 was a spontaneous mutant of the alc: parent shown in Fig. 1a. Thus, we are quite sure that the alc - mutation caused the absence of the polypeptide in the RNA polymerase. In addition, we have done this experiment using 'mixed labels'. The alc1 mutant infected cells were labelled with 35S-methionine and the alc parent with 3H leucine. The infected cells were then mixed and the RNA polymerase purified as before. The polypeptide in question was only labelled with ³H offering additional evidence that, after infection by the alc1 mutant, the polypeptide is not bound to the RNA polymerase. This is not true for all apparent alc - mutants, however. We shall return to this point later. The alc1 mutation does not seem to affect the synthesis of any other T4 early gene products. Thus, alc is probably the structural gene for this RNA polymerase-bound polypeptide.

Map position of alc - mutations

The alc gene product seems to be relatively non-essential in most laboratory conditions. We have found, however, that the multiplication of some alc^- mutants, including alcI, is temperature sensitive. This effect is amplified in certain RNA polymerase mutants of E. coli of the Rif^R-2 type²⁴ and alcI will not form plaques at 42°C on these strains. We think the temperature sensitivity is due to the alc^- mutation because (1) a fairly high percentage ($\sim 10\%$) of spontaneous alc^- mutants are temperature sensitive, and (2) we have not been able to separate the temperature sensitive and alc^- phenotypes by recombination.

Even though we do not know the molecular basis of the temperature sensitivity we have used it to map alc^- mutations. First, we isolated the alcI mutation by crossing out the amber mutation and the rII deletion which were used in its selection¹⁷. We then crossed this temperature-sensitive mutant with amber mutants in genes around the T4 map and selected for non-temperature sensitive, am^- recombinants. We obtained the lowest recombination frequencies with mutants in the region of gene 31. To localise the mutation more precisely, we constructed double mutants of the temperature-sensitive mutant and amber mutants in genes in this region. We then crossed these against single amber mutants and tested the am^+ progeny for their temperature sensitivity (Table 1). We have shown the map order which is consistent with the data and the crossover occurring in each case. The data support the map order gene 63-alc-gene 31.

There are four other types of mutations which have been reported to map between genes 63 and 31. These are rIII, cd, pset and unf (ref. 11). Of these, unf may be related to alc since they both might be expected to play a part in host shutoff, unf because it is required for the unfolding of the bacterial nucleoid and alc because it prevents a type of transcription on cytosine-containing T4 DNA. Thus, we studied the ability of alc mutants to unfold the host nucleoid after infection.

alc - Mutants defective in host nucleoid unfolding

In 1971, Stonington and Pettijohn reported a lysis procedure which leaves *E. coli* DNA highly folded, perhaps in a similar state to its intracellular structure²⁰. These compact structures, nucleoids, have a high sedimentation rate and contribute little to to the viscosity of lysates. If they are unfolded, however, after T4 infection¹² for example, their S value drops markedly and the lysates are extremely viscous.

To see whether alc^- mutations affect the T4-induced unfolding of the host nucleoid, we made sucrose gradients of nucleoids from uninfected, alc^- infected and alc^+ infected cells (Fig. 2). In agreement with others, our nucleoids from uninfected cells sedimented heterogenously with an S value of about 2,000. This S value was largely unchanged by infection with the alc^- mutant while it dropped to about 1,000S after infection by alc^+ T4. Thus, the alc^- mutant is defective in host nucleoid unfolding.

We also determined the time course of unfolding by alc-mutants by measuring the viscosity of lysates of cells taken at different times after infection. The results for two independent alc-mutants and their parent are shown in Fig. 3. Both alc-mutants were defective in host nucleoid unfolding compared with the parent. One of them, alc2, probably never unfolds the host nucleoid whereas the other, alc4, is merely delayed about 1-2 min in unfolding. Some alc-mutations do not measurably affect the timing or extent of host nucleoid unfolding.

Are alc and unf the same gene?

Several considerations support the conclusion that alc and unf code for the same gene product. A fairly high percentage (>10%) of alc mutants are also measurably unf. Those alc mutants which are not measurably unf are also those which make reduced amounts of late gene prducts when cytosine-containing T4 DNA is made (data not shown). We have also obtained what seem to be partial revertants of the alc1 mutation (that is, they are less alc-). These have also become unf+ to varying degrees. The temperature-sensitive mutation which we have mapped is inseparable from alc by recombination and maps in the same region as the unf mutation of Snustad et al.11. So far, those alc - mutations which confer the most temperature sensitivity have been the most completely unf-. The alc2 mutant used was back-crossed against its parent three times at a ratio of 1:10, selecting the alcphenotype each time; it was still unf.. All of these observations

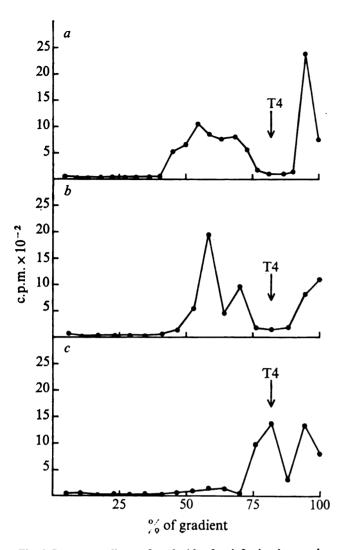


Fig. 2 Sucrose gradients of nucleoids after infection by an alc mutant. E. coli B^E (5 ml) growing at 30 °C in M9S were labelled for 1 h before infection with 16 µCi ml⁻¹ thymidine (5.5 mCi mg⁻¹). They were infected at a concentration of 4×10^8 ml⁻¹ at a multiplicity of infection of 5 in 10 µgml⁻¹ tryptophan. At 5 min after infection, 1.0 ml was poured into a chilled tube containing 0.1 ml of 1 mg ml⁻¹ chloramphenicol. The lysis procedure of Snustad et al.¹¹ was used except that the solutions were made up as follows. Solution I: 0.1 m Tris, 6.5 mg sodium azide, 1.0 g sucrose, 0.58 g NaCl, and 9 ml H₂O. Solution II: 1.2 ml Tris, 2.0 ml EDTA, 4 mg lysozyme, and 6.8 ml H₂O. Solution III: 0.1 ml Sarkosyl, 1.16 g NaCl, 0.5 ml EDTA, and 9.0 ml H₂O. Tris was 1 M adjusted to pH 8.15 with HCl. EDTA was 0.25 M adjusted to pH 7.0 with NaOH. After 5 min for lysis, two additional steps were performed before layering on gradients. 0.1 ml of 20.0 mg ml⁻¹ lysozyme dissolved in solution II were added for 10 min and then the lysate was diluted with 2.0 more ml of solution III. Five minutes later the lysate was chilled and 0.15 ml were layered on 4.7 ml 10-30% w/v sucrose gradients made up with 0.5 ml Tris, 0.25 ml EDTA, 0.25 ml Sarkosyl, 5.8 g NaCl, and 10 μ l mercaptoethanol per 50 ml. There was a 0.5-ml step at the bottom made from a solution containing 0.1 ml Tris, 6.0 g sucrose, 1.0 g NaCl, 3.0 ml saturated CsCl and 3.0 ml H₂O. They were centrifuged at 4 °C for 25 min at 17,000 r.p.m. in a Spinco SW50L rotor. Fractions were collected from the bottom which is at the left. a, Uninfected; b, amE51, DD2, alc2 (ref. 17), an alcmutant induced by hydroxylamine and back crossed three times against its parent at a ratio of 1:10; and c, the alc⁺ parent of alc2. The arrows show the peak of sedimentation of a T4 phage marker.

support the conclusion that alc and unf are the same gene. However, we have not rigorously excluded two other possibilities. One of these is that alc and unf are neighbouring genes and those alc mutants which are also unf are deletions spanning these two genes. The existence of partially unf mutants such as alc4, however, which is also intermediate in its temperature sensitivity and alc phenotype, argues against the

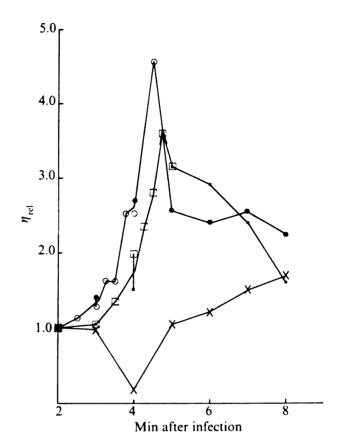


Fig. 3 Time course of unfolding of host nucleoids after infection by alc^- mutants. Cells were infected and all 5 ml lysed as in Fig. 2. 12 min after solution III was added, the viscosity of the lysate was measured without previous centrifugation by measuring the rate of movement in mg s⁻¹ through a 20-gauge needle 4 cm long. The ratio of this number to that obtained from lysates of cells at 2 min after infection is plotted. Lysates of uninfected cells flowed at close to the same rate as cells collected 2 min after infection and both were only slightly slower than H_2O . The process of measuring the viscosity of all the samples took less than 15 min and the uninfected cell lysates were still not viscous at this time. The closed and open figures of each type represent different experiments. We drew the line through the midpoint when the results were slightly different for the same time after infection. (\bigcirc), amE51, DD2 (ref. 17); \bigcirc , amE51, DD2, alc4; \times , amE51, DD2, alc4; \times , amE51, DD2, alc4?

deletion hypothesis. Also, the high frequency of alc^- ,- unf^- mutants has already been given as evidence for point mutants. The other possibility is that alc^- , unf^- mutants are double point mutants, alc and unf are adjacent genes, both the alc^- and unf^- mutations enhance the multiplication of cytosine-containing T4, and the temperature sensitivity is due to the unf^- mutation. However, we think these alternative explanations are very unlikely and that alc and unf are the same gene.

If alc and unf are the same gene why are not all alc mutations measurably unf deficient? The most likely explanation is that T4 mutants which are only partially defective in alc function can still multiply with cytosine in their DNA to make a plaque; but are not as temperature sensitive and are scored as unf in our unfolding test.

Implications for host shutoff and E. coli nucleoid structure

Although alc might be expected to play a part in host shutoff, alc and unf mutants do not affect the timing of shutoff of synthesis of the host proteins one sees on polyacrylamide gels (ref. 11 and our unpublished observations). Since there could be a translational shutoff superimposed on the transcriptional one, however, we looked at the shutoff of host RNA synthesis directly by testing to see whether any RNA synthesised after infection by an alc mutant can hybridise to E. coli DNA. The results are shown in Table 2. It is clear that the alc mutation

Table 2 Hybridisation of RNA labelled after infection by an alc - mutant to E. coli DNA									
RNA ³ H	Labelling time	c.p.m. Input	c.p.m. Hybridised	% of RNA Hybridised	% of RNA which is E. coli				
Uninfected	2-min pulse	8,397	1061	12.7	(100)				
T4+	4–6	4,736	107	2.26	17.8				
	8–10	3,033	31	1.04	8.2				
	14–16	2.557	103	4.0	31.5				
alc I	46	5.048	224	4.4	34.6				
	8-10	3,495	196	5.5	43.0				
	14–16	2,840	261	9.2	72.5				

RNA was pulse labelled at the times indicated in M9 medium at 30 °C with 10 uCi ml⁻¹ 3H-uridine (5 Cimmol⁻¹). The phage were alcl which had been crossed against the wild type (T4⁺) to remove the amE51 and DD2 mutations¹⁷. The multiplicity of infection was 10 and tryptophan was added at 10 µg ml⁻¹ before infection. Surviving bacteria were less than 0.1% at 2 min after infection. The RNA was extracted three times with phenol at 60 °C by the Method I of Bolle et al.1*, ethanol precipitated, treated with DNase (5 µg ml⁻¹) in 0.1 M Tris-Cl pH 8.0, 0.01 M MgCl, for 15 min at 37 °C, extracted twice and reprecipitated with ethanol. Hybridisation was with 20 µg ml⁻¹ E coli DNA³⁰ for 40 h at 60 °C in 2SSC. The hybrids were treated with RNase (12 µgml⁻¹ RNase A at 37 °C for 15 min), collected on presoaked Millipore filters, and washed with 0.5 M KCl, 0.01 M Tris, pH 7.5. The specific activities of the RNAs were from top down, 10.6, 6.76, 4.0, 3.32, 7.8, 5.85, and 4.27 c.p.m. ng. The percentage of RNA which is E. coli was determined by dividing the percentage of input counts which hybridised by the percentage of the uninfected labelled RNA which hybridised. This number is affected by changes in the relative concentrations of E. coli RNA species so should only be considered qualitative. It is perhaps surprising that E. coli transcription can continue so late into infection when the host DNA is being degraded. This RNA is presumably being made on fragmented DNA.

affects the shutoff of the synthesis of at least some E. coli transcripts. Thus, selecting T4 mutants which could multiply with cytosine in their DNA has led to the discovery of a host shutoff gene, alc.

If alc - mutants are defective in the shutoff of host transcription, why are they normal in the shutoff of the host proteins one sees on gels? One possibility is that there is a translational shutoff which is independent of transcriptional shutoff, and evidence has been presented for such a translational shutoff by T4 (refs 27 and 28).

Host RNA is still being made after infection even by alc+ phage, as also observed by Kennel²⁷. In fact, at late times the percentage of RNA synthesis attributable to the host apparently increases (see Table 2). Either alc is inefficient in its shutoff of host transcription or it is only responsible for shutting off a subset of the host RNA synthesis. Accordingly, we are undertaking experiments to determine whether all types of host transcription are shut off equally by alc.

In conclusion, we have presented evidence that an RNA polymerase subunit can cause the host nucleoid to unfold. Since mutants which lack the function of this subunit allow increased transcription of the host genome after infection, perhaps the alc gene product prevents the synthesis of RNA which holds the nucleoid together. In this connection, it has been reported that treating cells with rifampin causes the unfolding of the nucleoid26. Other types of experiment also suggest that RNA is important in maintaining the highly folded state of the host nucleoid since RNase treatment can cause it to unfold20. According to one model, then, the unfolding of the host chromosome is merely a consequence of shutting off host transcription by alc. However, another possibility should be considered: the unfolding of the host chromosome by alc may cause host transcription to cease. If so, perhaps T4 does not make RNA on cytosine-containing T4 DNA because alc causes it to "unfold itself". It should be possible to design experiments to test these, and other, hypotheses. Because of this,

the T4 alc gene product promises to be an important tool in the study of the modes and mechanism of prokaryotic transcription. It also promises to be useful in the study of the roles of RNA and RNA polymerase in maintaining the structure of the prokaryotic chromosome.

This work was supported by a grant from the NIH. K.S. acknowledges an NSF predoctoral fellowship. L.S. thanks Larry Gold for inspiration and hospitality in the early stages of this work.

Received August 23: accepted October 22, 1976.

- Haselkorn, R., Vogel, M., and Brown, R., Nature, 221, 836-838 (1969)

- Haselkorn, R., Vogel, M., and Brown, R., *Nature*, 221, 836-838 (1969), di Mauro, E., Snyder, L., Marino, P., Lamberti, A., Coppo, A., and Tocchini-Valentini, G., *Nature*, 222, 533-537 (1969). Stevens, A., *Proc. natn. Acad. Sci. U.S.A.*, 69, 603-607 (1972). Ratner, D., *J. molec. Biol.*, 89, 803-807 (1974). Horvitz, H. R., *Nature new Biol.*, 244, 137-140 (1973). Ratner, D., *J. molec. Biol.*, 88, 373-383 (1974). Goff, C., and Weber, K., *Cold. Spring. Harb. Symp. quant. Biol.*, 35, 101-108 (1970). (1970)

- (1970).

 8 Horvitz, H. R., J. molec. Biol., 90, 739-750 (1974).

 9 Rohrer, H., Zillig, W., and Mailhammer, R., Eur. J. Biochem., 60, 227-238 (1975).

 10 Snustad, D., and Conroy, L., J. molec. Biol., 89, 663-673 (1974).

 11 Snustad, D. et al., J. Virol., 17, 622-641 (1976).

 12 Tutas, D., Wehner, J., and Koerner, J., J. Virol., 13, 548-550 (1974).

 13 Hercules, K., Munro, S., Mendelsohn, S., and Wiberg, J., J. Virol., 7, 95-105
- 14 Warner, H., Snustad, D., Jorgensen, S., and Koerner, J., J. Virol., 5, 700-708
- Wiberg, J., Proc. natn. Acad. Sci. U.S.A., 55, 614-621 (1966).
 Wyatt, G., and Cohen, S., Nature, 170, 1072-1073 (1952).
 Snyder, L., Gold, L., and Kutter, E., Proc. natn. Acad. Sci. U.S.A., 73, 3098-3102
- Bolle, A., Epstein, R., Salser, W., and Geiduschek, E. P., J. molec. Biol., 31, 325-338 (1968).

- 325-338 (1968).

 19 Wu, R., and Geiduschek, E. P., J. molec, Biol., 96, 513-538 (1975).

 20 Stonington, O., and Pettijohn, D., Proc. natn. Acad. Sci. U.S.A., 68, 6-9 (1971).

 21 Burgess, R., J. biol. Chem., 244, 6160-6167 (1969).

 22 Fairbanks, G., Steck, T., and Wallach, D., Biochemistry, 10, 2606-2617 (1971).

 23 Montgomery, D., and Snyder, L., Virology, 53, 349-358 (1973).

 24 Snyder, L., Virology, 50, 396-403 (1972).

 25 Horvitz, H. R., J. molec, Biol., 90, 727-738 (1974).

 26 Pettijohn, D., and Hecht, R., Cold Spring Harb, Symp, quant, Biol., 38, 31-41 (1973).

- (1973).
 27 Kennel, D., J. Virol., 6, 208-217 (1970).
 28 Svenson, S. B., and Karlstrom, O., J. Virol., 17, 326-331 (1976).
 29 Mailhammer, R., Yang, H., Reiness, G., and Zubay, G., Proc. natn. Acad. Sci. U.S. A., 72, 4928-4932 (1975).
 30 Marmur, J., J. molec. Biol., 3, 208-218 (1961).
 31 Luria, S. E., and Human, M. L., J. Bact., 59, 551-560 (1950).

APPENDIX II

Fine structure map of \underline{pseT} and its position relative to other nearby genes

The following work was performed by Wendy Cooley, Karl Sirotkin and Larry R. Snyder.

APPENDIX II

Fine structure map of <u>pseT</u> and its position relative to other nearby genes.

To orient the pseT gene relative to other genes in this region and to locate mutations within the pseT gene, we have performed three factor crosses. We constructed double mutants consisting of tsA56 (gene 31) and some pseT mutations. These double mutants were crossed against other pseT mutants and pseT recombinants were tested for temperature sensitivity. We also tried to determine the endpoints of pseT Δ 1 and pseT Δ 3 by crossing them against other pseT mutants, but both deletions fail to recombine with all of those that we used. The relative position of another gene in this region, alc (-unf?) (Snustad et al., 1976; Sirotkin et al., 1977), was determined by crossing multiple mutants containing pseT mutations with or without the alc mutation in the necessary genetic background to test for the <u>alc</u> phenotype (Snyder et al., 1976), selecting pseT recombinants, and scoring for the alc phenotype. The map positions are shown in figure 1; the amino and carboxyl termini orientations are included, assuming these genes are transcribed with the same orientation as other early genes. It is of interest that pseTl, which only fails to induce 3' phosphatase activity (table 2) maps close to pseT47 which by a preliminary datum induces 3' phosphatase activity but which certainly fails to induce 5' polynucleotide

kinase activity (data not shown). This suggests that the active centers for these activities are not located on opposite ends of the polypeptide chain.

REFERENCES

- Sirotkin, K., Wei, J., and Snyder, L. (1977). Nature 265, 28-32.
- Snyder, L., Gold, L., Kutter, E. (1976). Proc. Natl. Acad. Sci. U. S. A. <u>73</u>, 3098-3102.

Figure 1

Fine structure map of <u>pseT</u> and its position with respect to other nearby genes. All distances are arbitrary. The map orders were obtained with "three factor crosses" using tsA56 (gene 31). <u>PseT12</u> could not be mapped because it plates on <u>E</u>. <u>coli</u> CTr5x at low temperature. We do not know the endpoints of <u>pseT Δ 1</u> and <u>pseT Δ 3</u>; this is represented by dotted lines.

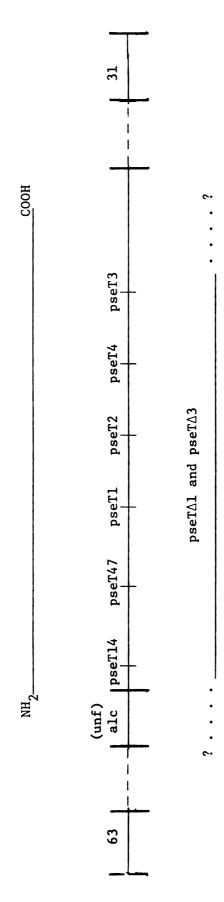


Figure 1

APPENDIX III

Isolation of a <u>E</u>. <u>coli</u> Kl2 mutant <u>selectively</u> nonpermissive for some <u>pseT</u> T4

Work performed by K. Sirotkin and L. Snyder during typing of this thesis.

APPENDIX III

Isolation of an \underline{E} . \underline{coli} Kl2 mutant selectively nonpermissive for some pseT- T4

A mutant of <u>E</u>. <u>coli</u> AB2495, a multiple auxotrophic female, isolated after NTG mutagenesis plates T4⁺ at 37°C with an efficiency of about 10% and <u>pseT</u>Al (see article 1) with an efficiency of about 0.1%. This <u>E</u>. <u>coli</u> mutant was selected as a "nibbled" colony in the presence of <u>pseT</u>Al. We estimate its frequency, after mutagenesis, at $5 \times 10^{-5 \pm 1}$. The growth of some <u>pseT</u> T4, such as <u>pseT</u>2, is not well supported by this strain, but the growth of, for example, <u>pseT</u>12 is about the same as T4⁺. This difference between plating efficiencies might arise from differences in the degree of inactivation of the <u>pseT</u> gene product. However, very recent evidence shows that some other mutants also do not plate on this strain. Experiments are in progress to determine if the mutation causing the low plating efficiencies maps near pseT.

It is also interesting to note that this <u>E</u>. <u>coli</u> strain plates $pseT^2$ normally at 42°C and is totally nonpermissive for even $T4^+$ at 27°C. We do not yet know if the reason this mutant does not support $T4^+$ at 27°C is the same as the reason it is less permissive for some $pseT^-$ T4 at 37°C.