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ABSTRACT

PULSATILE FLOW IN A UNIFORMLY POROUS TUBE

BY

Francis Martin Skalak

This work studies the fluid dynamics of pulsatile

flow in a porous tube under the following assumptions:

a) The flow is laminar, b) The flow is axisymmetric, c)

The transverse or angular velocity component is zero, d)

Density is constant, e) The tube is uniformly porous, f)

The viscosity is constant, 9) An unsteady periodic pressure

is imposed at the ends of the tube, h) The flow is fully

developed.

Under these assumptions the Navier-Stokes equations

are reduced to two ordinary differential equations. The

first equation, which represents the steady component of

velocity, is nonlinear and contains the crossflow Reynolds

number, R = ¥§-, where V is the velocity at which the fluid

is being injected or extracted, a is the radius of the tube,

and v is the viscosity, as a parameter. The second equation,

Which represents the unsteady component of velocity, is linear,

is coupled to the first but not conversely and contains as

parameters the crossflow Reynolds number and the Strouhal

a .
number, a =~§ v/Qg , where w is frequency.
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To examine the solution of the boundary value problem

for the nonlinear equation a scheme was used to transform it

into an initial value problem. The resulting equation was

examined theoretically and solved numerically. The numerical

integration was carried out by means of a Taylor series and a

fourth order Runge-Kutta method.

The boundary value problem for the linear equation

was solved numerically by a shooting method. Again the numer-

ical solution was found by using a Taylor series and a fourth

order Runge-Kutta method. Perturbation solutions for large

and small values of the Reynolds number and Strouhal number

were also studied by using series methods and the method of

matched asymptotic expansions.

For the nonlinear equation giving the steady component

of velocity the following results were obtained: a) It was

shown theoretically that this equation had two solutions for

R < 4, four possible solutions for R > 4 and no solutions

at R = 4. The qualitative behavior of each type of solution

was also characterized. b) All the theoretical solutions were

obtained numerically including two new solutions for large

suction.

For the linear equation giving the unsteady component

of velocity the following results were obtained: a) Numerical

solutions for various values of the Strouhal number and for

those values of R for which the steady equation had a solution
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were found. b) Suction can cause resonance like effects

for small frequency pressure gradients. c) The annular

effect occurs but only at higher frequences than in the case

of a nonporous tube. d) Asymptotic solutions were found for

large and small values of R and a. The results were com-

pared to the numerical solutions and agreement was generally

found to be good.

The corresponding two dimensional problem for steady

flow is also considered. It is shown theoretically that

there is only one type of solution for injection but that

three types are possible for suction. Each type of solution

is obtained numerically and the results examined in terms of

velocity profiles and skin friction at the wall.
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CHAPTER I

INTRODUCTION AND FORMULATION

Section 1.1. Introduction

The problem of describing the flow of a fluid through

a pipe from which fluid is being extracted or into which

fluid is being injected is important in the following phys-

cial processes: 1) Transpiration cooling. In this process

the walls of a pipe transporting a hot fluid are made of a

porous material through which fluid is injected to form a

protective layer of cooler fluid at the wall [33]. 2) Flow

in a heat pipe. In this type of flow fluid is condensing

or evaporating at the wall of the tube. In this process

the interface between the condensate and the vapor behaves

as a permeable wall [£3]. 3) Dialysis of blood in artificial

kidneys. In this process water and small solutes are removed

from the blood by diffusion across a porous wall [10]. 4)

The separation of U-235 from U—238 by gaseous diffusion [.3].

5) Boundary layer control to prevent separation and delay

transition to turbulence along an airfoil [18]. Since the

region of flow of a fluid around an airfoil can be treated

as an infinite domain while the region of flow through a tube

must be treated as a finite domain the applications of porous

tube flow to this process are limited.

1



The study of these problems has generally been based

on the following assumptions: a) The fluid is incompressible.

b) The flow is axisymmetric, laminar, and steady. c) Vis-

cosity is constant. d) The walls of the tube are uniformly

porous. e) The flow is fully deveIOped. The significance

of these assumptions will be discussed further in the next

section but for now we shall recount only the previous work

done on these types of flows.

The first treatment of a problem in which the fluid

is bounded on more than one side by a porous wall was in a

paper by Berman.[:2] in 1953 in which he examined the flow

in a uniformly porous channel Where fluid was being ex-

tracted or injected at the same rate at both walls. He

attadked the problem in terms of similarity solutions. By a

similarity solutions we mean that the solution of the govern-

ing system of partial differential equations can be obtained

by solving a system of ordinary differential equations. In

this case Berman was able to reduce the problem to solving a

non-linear ordinary differential equation involving the cross-

flow Reynolds number defined by R = ¥§ where V is the

velocity of the fluid at the walls, d is one-half the width of

the channel and v is the viscosity of the fluid, as the only

parameter. Berman, and later others, studied the asymptotic

and numerical solutions of this equation. Two papers by

Terrill [21,22] in 1964 and 1965 summarize most of the results

that have been obtained for flow through a uniformly porous



channel. In these papers Terrill reported one and only one

similarity solution was found for each value of the cross—

flow Reynolds number. But in 1970 Raithby [16] found numer-

ically a second similarity solution for large suction. The

problem of the number of similarity solutions possible for

flow in a uniformly porous channel will be treated in Appendix

A. We turn now to previous works on the topic of primary in-

terest, that is, flow through a uniformly porous tube.

This problem was first treated in 1955 by Yuan and

Finkelstein [33]. In their paper they examined the problem

of flow in a uniformly porous tube by seeking similarity

solutions. As in the channel problem examined by Berman

they were able to reduce the governing system of partial dif—

ferential equations to a non—linear ordinary differential

equation involving the crossflow Reynolds number, R, as the

only parameter. In this case R is defined as ¥€-, where

V is the velocity at which the fluid is being injected or

extracted, a is the radius of the tube and v is the vis-

cosity. A positive crossflow Reynolds number indicates suc-

tion while a negative crossflow Reynolds number indicates

injection. Their method of solution was to look for asymptotic

solutions for large and small values of the crossflow Reynolds

number. The authors were able to find two regular perturbation

expansions. The first was valid for small injection and suc-

tion while the second was valid for large injection. However

no numerical results were obtained to check the accuracy of

their expansions.



Later Morduchow [11] used the method of averages

to find an approximate solution to the ordinary differential

equation deduced by Yuan and Finkelstein valid for all values

of negative Reynolds number. However again no numerical re-

sults were obtained and the accuracy of the approximate values

obtained by Morduchow was checked by comparison with the asymp-

totic values obtained by Yuan and Finkelstein.

The first numerical results for this problem were ob-

tained by Eckert, Donoughe, and Moore [(5]. In their paper

they studied numerical solutions of the ordinary differential

equation given by Yuan and Finkelstein. For R, the crossflow

Reynolds number, negative only one numerical solution was

found, but for R positive two numerical solutions were found

at R = 2 and R = 10 but no numerical solutions were found

for 2 < R < 10. A year later Berman, studying the same

equation, found two solutions for 2.05 < R < 2.3 and R > 9

and no solutions for 2.3 < R < 9. Both Berman and Eckert et a1.

attributed their failure to find similarity solutions for

2.3 < R < 9 to the fact that as the Reynolds number in-

creased to 2.3 the skin friction at the wall drOps to zero

whidh, in conjunction with an adverse pressure gradient, re-

sults in separation of the flow from the wall. This situation

of multiple solutions or no solutions for suction contrasted

sharply with the case of channel flow where, up to this time,

one and only one similarity solution had been found for each

value of the corresponding crossflow Reynolds number.



To examine why no similarity solutions were found

in tube flow for 2.3 < R < 9 Weissberg [29] studied the

flow at the entrance region of the pipe. He was able to

show that for 2.4 < R < 7.6 and for a parabolic inlet

profile fully developed flow could not be achieved. Since

Weissberg the problem of flow in the entrance region for

a uniformly porous pipe has received considerable interest

in the literature. Since in this work we will not be con-

sidering the flow in the entrance region we refer the reader

to Quaile and Levy [15] for a current list of references on

this problem.

In 1962 White [30] studied the solutions of the or—

dinary differential equation deduced by Yuan and Finkelstein

by means of a power series expansion. He was able to pre—

dict dual solutions for 0 < R < 2.3 and R > 9.1, but was

unable to find any solutions for 2.3 < R < 9.1. Dual solu—

tions for 2.0 < R < 2.3 had been predicted previously by

Berman by extending Morduchow's method of averages to small

values of suction.

In 1969 Terrill and Thomas [24] published a compre—

hensive study of the theoretical results for similarity solu—

tions for flow through a uniformly porous tube. Numerically

they were able to find two solutions for all values of suction

and injection except for 2.3 < R < 9.0. They were able to

find asymptotic solutions for large injection and for small

suction and injection for the new solutions they had obtained.



Also they were able to obtain a series which was asymptotic

to both numerical solutions obtained for large suction. The

difference between the series and the two solutions for suc-

tion was found to be exponentially small but in this paper

they were unable to find these terms. However in a later

paper Terrill [23] was able to give the missing terms of the

expansion. Since the paper by Terrill and Thomas has the

most complete discussion of fully developed steady flow in a

uniformly porous tube, several of their results and techniques

will be useful in our study of unsteady flow in a porous tube.

Fully developed flows through porous tubes have also

been studied by Peng and Yuan [l3], Kinney [E3], Raithby [l6]

and others in connection with heat transfer problems. These

studies have as far as flow through porous tubes is concerned,

mainly reviewed and reworked older results.

In all the above studies of flow through a porous

tube the transverse or angular velocity component was assumed

to be zero. In 1972, however, Terrill and Thomas [25], ex-

tending an older work by Prager [14] examined fully developed

flow in a uniformly porous tube with a non-zero angular vel—

ocity component. The main point of this work was to examine

whether by including a non—zero angular velocity, similarity

solutions could be obtained for 2.3 < R < 9.0. Under this

assumption they were able to find in this range two similarity

solutions for each value of R. Although this is a very in—

teresting result our study will be restricted to the case where

the angular velocity component is zero.



Experimental work has been done recently for fully

developed flows in uniformly porous tubes. The case of

injection was examined by Bundy and Weissberg [‘4]. For

—8 < R < 0 their experimental results agreed well with the

theoretical results of the injection solution first studied

by Yuan and Finkelstein. The case of small suction was ex-

amined experimentally by Quaile and Levy [15]. Although

their experiment was designed to verify the entrance region

solution, their studies showed that for 0 < R < 1.2 there

was good agreement between the similarity solution originally

found by Yuan and Finkelstein and experimental results. For

1.2 < R < 2.3 the agreement between the theoretical simi-

larity solution and experimental results progressively de-

creased.

The problem of fully developed pulsatile flow in a

rigid impermeable pipe has been discussed in connection with

several applications. The most extensive work on this problem

has appeared in the study of the circulation of the blood.

However pulsatile flows have also been applied to studies in

acoustics, surge phenomena in power plants, and supercharging

systems in piston engines. This type of flow was first studied

experimentally by Richardson and Tyler [17] in 1929. They

observed that as the frequency of the pulsatile pressure in—

creased the maximum axial velocity of the fluid shifts from

the center to the wall of the tube. Sexl [19] in 1930 studied

similarity solutions for fully developed pulsatile flow in a



tube to explain this effect. The ordinary differential

equation he obtained, he was able to solve exactly in terms

of Bessel functions. The solution explained the phenomenom

observed by Richardson and Tyler. Womersley [31] in 1955

and Uchida [26] in 1956 both examined further aspects of the

solution obtained by Sexl. It was found that as the frequency

increased, the phase lag of the maximum shear stress or skin

friction at the wall and axial velocity relative to the pres-

sure gradient increased while the maximum skin friction at

the wall decreased.

No previous work has been found in the literature

on the effects of suction and injection on pulsatile flow

in a tube. The most closely related work is a paper by

Wang [28] which discusses pulsatile flow in a uniformly

porous channel and in an annulus in which fluid is being

injected from one side and extracted at the same rate from

the other side.

In this work we will be studying the effects of suc-

tion and injection on pulsatile flow. In the next section

we state our assumptions about the flow and reduce the gover-

ning system of partial differential equations to a system of

two ordinary differential equations in a manner analagous to

Berman's treatment of flow in a porous channel and Yuan and

Finkelstein's treatment of flow in a porous tube. The first

equation will be the same as that obtained previously in the

study of steady flow in a uniformly porous tube and will give



the steady component of the flow. The second equation, which

is coupled to the first, will give the unsteady component of

the flow. Since the unsteady component of the flow is coupled

to the steady component, but not conversely, we then proceed

to examine the following aspects of the steady component of

the flow:

1. The number and qualitative behavior of the solutions

for eadh value of the crossflow Reynolds number.

2. The numerical solutions.

3. The asymptotic solutions for large and small values

of the crossflow Reynolds number.

With these solutions we are then able to examine the follow—

ing aspects of the unsteady component of the flow:

1. The numerical solutions.

2. The effects of suction and injection on the skin

friction at the wall, the phase shift of the velocity

profile and skin friction at the wall relative to the

pulsatile pressure gradient, and the annular effect.

3. The asymptotic solutions for large and small values of

the crossflow Reynolds number and Strouhal number and

the accuracy of these solutions.

Section 1.2. Formulation of the Problem.

Consider flow through a rigid circular tube into

which fluid is being injected or from which fluid is being

extracted through the walls (see Figure 1.2.1). The follow—

ing assumptions about the flow will be made:
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a) The flow is laminar. For steady flow in an impermeable

tube laminar flow can be maintained up to an inlet Reynolds

number, defined by Ri = 23w , where w is the mean axial
 

flow-velocity, a is the radius of the tube, and v is

the viscosity, of around 2000 [18]. The value of Ri at

which transition from laminar to turbulent flow occurs in

a porous tube has not been thoroughly studied. However

the experimental studies of Quaile and Levy [15] indicate

that, at least for small suction, transition occurs at a

much lower value of R1“ There does not appear to be any

experimental data available in the literature on the tran—

sition of a flow driven by a pulsatile pressure gradient.

b) The flow is axisymmetric. This assumption means there

is no angular dependence in the velocity components.

c) The transverse or angular velocity component is zero.

As mentioned previously the effect of including a non-zero

angular velocity component on steady flow in a porous tube

has been studied by Terrill and Thomas [25] with interesting

results. However we will not examine this effect in our

study of pulsatile flow in a uniformly porous tube.

d) Density is a constant. This assumption greatly simplifies

the continuity equation but makes the solution of limited

applicability to a large number of important problems such

as filtration where density variations must be considered.

e) The tube is uniformly porous. In the literature this has

been taken to mean that the radial velocity at the wall is

a constant. The following discussion establishes the soundness
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of this condition in the case of injection. From Darcy's

Law [32] it is known that the velocity of a fluid through

a porous medium is proportional to the pressure difference.

That is, v = k(pb-pi) where v is the velocity through

the porous wall, k is a constant of proportionality, pO

is the pressure outside the porous wall, and pi is the

pressure inside the porous wall. If no >> pi then v a

kpb. Thus, since pb could be held constant, the velocity

of the fluid at the wall would be approximately constant.

However in the case of suction this condition is not so

plausible because the pressure at the inside wall of the

tube must be larger than the pressure outside the wall in

order that fluid be extracted from the flow. However the

pressure inside the wall is axially dependent. Thus it

would seem that to maintain a constant velocity at the

wall the permeability of the wall must also vary accord-

ingly with the axial position. In most physical situations

this does not occur. However Quaile and Levy [15] claimed

they were able to obtain uniform suction by using a tube

with very low permeability in their experiments. Also it

has been observed by Kinney [£3] that the vapor-liquid

interface of a vapor and its condensate could be treated

as a porous boundary through which fluid is being extracted

with a constant velocity. Thus the condition of constant

radial velocity at the wall could be used for both injec—

tion and suction.
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A problem in which the velocity at the wall has not

been assumed to be constant has been discussed by Kozinski,

Schmidt and Lightfoot [S9]. The governing equation used,

however, is the linear Stokes equation which does not ex—

hibit the complicated non—linear phenomena presented in this

study.

f) Viscosity is constant.

9) The tube is sufficiently long that the flow is fully

developed. By this assumption we mean that end effects and

the effects of starting the motion of the fluid from rest

will not be considered and also that the radial velocity is

a function of the radial distance only.

h) An unsteady periodic pressure is imposed at the ends of the

tube. The form of the imposed pressure will be determined by

the other assumption on the flow.

We turn now to the mathematical formulation of the

problem. In this case the cylindrical coordinate system

is the natural one to use. The axisymmetric Navier-Stokes

equation in cylindrical coordinates with no angular component

of velocity as given by Schlichting [18] become
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The continuity equation is given by

3v v 5v

1.2.2 r + _£.+ Z = 0

0r r 62

 

Since we will be examining the skin friction or shear stress

at the wall we give also that

avr avz

1.2.3 Trz = pv<7§f'+'7fi?)

The boundary conditions are

1.2.4 vr(a,z) = V vz(a,z) = 0

BVZ

317'! = O Vr(O,Z) = O

r=0

Since we are not considering the problem of starting the

fluid from rest no initial condition is required.

The continuity equation allows us to define a stream

function Y such that

1.2.5 a) v ,_fl b) v = 41

r 82 z or (r?)

Since it has been assumed that the radial velocity is a

function of r alone and to simplify the form of the equa—

tions we write
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where F(r) is a function to be determined.

Then from equations 1.2.5a and 1.2.6 we get

= ——————ZFr(r) + % cp(r,t)

where -% is an arbitrary function of integration. From

equations 1.2.5b and 1.2.7 we obtain that

128 v =——————‘ZF'(r)+—1——5—‘9
° ' z r r 3r

Substituting equations 1.2.6 and 1.2.8 into equation 1.2.2a

one obtains after an integration with respect to r

1.2.9a -%p= %(§—5r—)2 §;<—‘—) + 11231) + P1<z t)

where Pl(z,t) is an arbitrary function. Substituting equa-

tions 1.2.6, 1.2.8 and 1.2.9a into equation 1.2.2b gives

2 F’(r))
2 I

1_ a g -IF(r) F r) F (r) 2 d
1.2.9b r + z( r d-—rd(—$;-) +( r ) + V 2‘ r

Brat dr

+2_d_(fl_)_))+F__(r)_i(_ L)_F’r_§_§

r dr r r r ar) r2 ar

_Vi(i§°_p)_vi(l_§_)=__l_fi

ar2rar rarrar p 02

Since equation 1.2.9b is linear in t and the imposed pressure

is periodic we write -%-§% and P1(z,t) in terms of Fourier

series as follows:

iw t

n
13.9 -
r ar - G(r) +,: Hn(r)e
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_ fl iw t

P1(z,t) - CO(z) -+ %, Cn(z)e n

Since equation 1.2.9b shows that CO(z) must be quadratic

in z and Cn(z) must be linear in z and since the

linearity of equation 1.2.9b in t allows us, without loss

of generality to restrict our analysis to only one component

of the Fourier series we write v2 and p as follows:

1.2.10a v2 = -2fi: r) + G(r) + H(r)eiwt

1.2.10b -7§= -;-(-F--L£—)2 -v(g%+3%§1) + F(§))

r

— Az2 - Bz + Czelwt + D + Daelwt

where A,B,C,D and Da are constants.

To nondimensionalize the problem and simplify the

form of the resulting equations we rescale the variables as

follows:

1/2
r = an F(r) = an(Tl) G(r) = Vu(n)

a2

H(r) = (ii—a h('n.)

Equations 1.2.6 and 1.2.10a then become

 

_Vf )
1.2.1la vr — l 2

T]

l 2 11b V —ZVf’(n) + Vu( ) + ca2 h( n)eiwt

' ' z a 4V
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Substituting equations 1.2.lla, 1.2.1lb and 1.2.10b into

equation 1.2.9b we obtain the following system of ordinary

differential equations for the three unknown functions:

  

1.2.12 nf”’(n) + f”(n) + I31(f'2h'1) - f'(n)f(n)) = K

1.2.13 nu'm) + u'm) + §R(u(n)f’(n) - u'(n)f(n)) = d

a I _ 2 R I I
1.2.14 r11 ('0) + h (n) - S h(n) - l +§(f(n)h (n)-h(n)f (11))

2 2 . 2

where K = -Ra2A , d =‘§%V , s2 = 1:: and R =-¥§ is the

4V

crossflow Reynolds number. The boundary conditions given

by equation 1.2.4 become

 

1.2..5 f(1) =

n40

1.2.16 11(1) = O 1im nl/Zu’hq) " O

n40

1.2.17 h(l) = 0 lim nl/éh'(n) = 0

n40

The equation for pressure becomes

:2 2 i t iwt 2 f2 2f’
1.2.18 = -Az - Bz + Cze w + D + D e + V (——--

p a 2n R

The shear stress or skin friction at the wall is then given

by

1.2.19 Trz = flags f'(l) + 3&2 Vu'(l)

a

+ —(;-39-h’(l)elwt

1 f’(l) = 0 f(0) = 0 lim nl/zf'm) = 0
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Equations 1.2.12 and 1.2.13 represent the similarity

solutions to the problem of steady flow as studied by Terrill

and Thomas [24]. Equation 1.2.14 represents the effects of

suction and injection on unsteady flow.

Before proceeding we wish to comment on the solution

of equation 1.2.13. It has been observed by Terrill and

Thomas [24] that u(n) = gg-f’(n) is a particular solution

of equation 1.2.13 satisfying the boundary conditions given

by equation 1.2.16. This will be the only solution of equa-

tion 1.2.13 if the corresponding homogeneous problem has

only the trivial solution. By using Sturm-Liouville theory

Terrill and Thomas were able to show that if R‘s 0 and

f'(n)'2 0 on (0,1) the homogeneous problem had only the

trivial solution. Whether there are nontrivial solutions

of the homogeneous problem in other cases was not examined

by them. This work does not examine this problem further

and following their lead we take um) = i2 f’(n) as the

solution of equation 1.2.13. Thus the flow is described

by the solutions of’equation 1.2.12 and 1.2.14.

Section 1.3. Completeness of the Problem

for the Steady Component of Velocity.

Since the equation for the unsteady component of

velocity is coupled to the equation for the steady component

of velocity, but not conversely, we begin our analysis by

examining the solutions of equation 1.2.12. As discussed
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previously various authors have examined the solutions of

equation 1.2.12 and have found that for some values of R

this equation has no solutions While for other values of

R this equation has more than one solution. In attempting

to repeat numerically their solutions of equation 1.2.12

in order to examine the numerical solutions of equation

1.2.14 two solutions of equation 1.2.12, not previously

mentioned in the literature, were found. Thus it became

important to examine how many solutions of equation 1.2.12

were possible. The following method for examining the solu-

tions of equation 1.2.12 was motivated by the numerical

technique used for obtaining solutions of this equation.

This technique will be described further in Section 2.1.

By making the transformation

1.3.1 f(n) = lg(§)

where

n= é/b

Equation 1.2.12 becomes

1-3-2 €9”’(§) + 9”“? + 9’2(§) - 9(§)9”(§) = Kl

where

K1 = is— and x =%
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and boundary conditions 1.2.15 become

1.3.3 a) 9(0) = O c) g’(b) = O

b) 1im gl/2

.0
we>=o m mm=%=Rn

Since the transformation 1.3.1 is non-singular and from

boundary conditions 1.3.3 it is seen that solutions of

1.2.12 can be examined by studying the zeroes of g’(x)

for the following initial value problem.

1.3-4a :g”(§> + g”(§) + g'2<§) - g<§>g”(§> = K1

1.3.4b 9(0) = 0 g”(0) = B

g'(0)=a K=B+a

where a and B are non-zero real constants.

Only solutions of 1.3.4 will be examined which satisfy

the following:

a) g(§) is analytic at zero

b) gV(§) is continuous for all g 2,0.

By the assumptions on the flow any physically meaningful

solution could be expected to satisfy these smoothness re-

quirements. Thus the physical applicability of the solutions

is not compromised by these requirements.

Theorem 1.3.1. Let g(g) be any solution of 1.3.4 subject

to a) and b) above, then g”(§) is decreasing for all gig 0.
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Proof: Differentiating 1.3.4a twice gives

1.3.5 §91V(§) = g”’(§)(g(g) —2) - 9’(g)9”(g)

1.3.6 ggvm = gIV(g)(g(g> -3) - g'(g)2

and applying 1.3.4b gives

”I 1-

L3Ja g(0)=-—aB

1.3.716 gIV(O) = - %62

Since gIV(0) < 0 it is sufficient to show that gIV(§) g 0

for all g > 0. Let a > 0 be any point such that gIV(a) =

0, then from 1.3.6 gv(a) = 3%;3 g 0. Thus at any point where

gIV(§) is zero its slope is zero or negative. Therefore

91%;) g 0 for all g > 0. Q.E.D.

The zeroes of g'(§) will now be examined by examining

all combinations of signs for a and 5.

Theorem 1.3.2. If a < 0 and B < 0 then g’(§) has no

zeroes .

Proof: In this case by 1.3.7a g”’(0) = - %af3 < 0, g'(0)< 0

and g’(0) < 0. Thus by Theorem 1.3.1 g”(g) < 0 for all g.

Thus g'(g) and hence g’(g) are less than zero for all g.

Thus g’(§) has no zeroes. Q.E.D.

Theorem 1.3.3. If a < 0 and B > 0 then g’(§) has two

zeroes. See Figure 1.3.1 for a qualitative description of

this solution.
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Figure 1.3.1. .

The solution of equation 1.3.4. for a<0 and

B>O. The concavity of g“‘(§) is undetermined.
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In this case g”(0) = — %<IB > O, g”(0) > 0, g’(0) < O and

K1 = B + a? > O. The proof of the theorem is contained in

the following four lemmas.

Lemma 1.3.1. If a < 0 and B > 0 there exists a point c

such that g”(c) = 0 and g”(§) > 0 for all 0.3 g < c.

Proof: Suppose there is no such c. Then since gm(0) > 0

g”(§) \ 0 for all 5. Hence since g”(0) > 0, g'(§) > 0 for

all g. Thus g’(§) is increasing and concave up for all g

and thus must cross the g-axis. After the point where g’(§)

crosses the g—axis g(g) is increasing and concave up and

must eventually exceed the value 3. But past the point where

g(§) exceeds the value 3, gv(§) must necessarily be negative

as equation 1.3.6 shows. This makes g”(§) concave down and

since by Theorem 1.3.1 g“(§) must be decreasing there must

be a point c such that g”(c) = 0 and g”(§) > 0 for all

0 g g < c. Q.E.D.

Lemma 1.3.2. There exists a point a such that 0 < a < c

and g’(a) = 0.

Proof: At c since gm(c) = 0 equation 1.3.5 gives chV(c) =

—g’(c)g'(c). Since for 0.3 gig c g”(§).2 0 and since g”(0) >

0, g”(c) > 0. By Theorem 1.3.1 gIV(c) < 0. Therefore g’(c) >

0. Thus since g’(0) < 0 there is a point 0 < a < c such

that g’(a) = 0. Q.E.D.

At a g(§) and its derivatives have the following

prOperties:
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9(a) <0 g’(a) = 0 g”(a) >0 g”’(a) >0

By equation 1.3.3d this gives R = Zg(a) < 0. The solution

f(n) of 1.2.12 corresponding to this zero of g’(x) will

be denoted Section I solutions for injection.

Lemma 1.3.3. There exists a point b > c such that g’(b)==0.

Proof: Since for g > c g“(§) < O and by Theorem 1.3.1

g'igi will be decreasing and concave down and hence must

eventually cross the g-axis. After g”(§) cross the g-axis

g’(g) becomes decreasing and concave down. Hence there must

be a point b > c such that g’(b) = 0. Q.E.D.

At b equation 1.3.5 and Theorem 1.3.1 give gm(b)(g(b)-2)=

ngV(b) < 0. Since at b g”(b) < 0, g(b) > 2. Thus at b

g(g) and its derivatives have the following properties

g(b) > 2. 9’(b) = 0 9”(b) < 0 9”’(b) < 0

By equation 1.3.3d this gives R = 29(a) > 4. The solution

f(n) of 1.2.12 corresponding to this zero of g’(§) will be

denoted as Section V(i) solutions.

Lemma 1.3.4. g’(§) has no further zeroes.

Proof: Since at b gm(b) < 0 and by Theorem 1.3.1 g”(§) < 0

for all g > b. Therefore since at b g”(b) < 0 g”(§) < 0

for all g > b. Therefore since g’(b) = 0 g’(§) has no

zeroes for g > b. Q.E.D.
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Theorem 1.3.4. If u / 0 and B / 0 then g’(g) has

one zero. See Figure 1.3.2 for a qualitative description

of this solution.

In this case g"(0) < O, g'(0) \ 0, g’(0) > 0 and K1 > 0.

Proof: Since g”(0)<:0 and by Theorem 1.3.1 g”(§) is de-

creasing and concave down for all g. Therefore g”(g)

must eventually become negative and hence g’(g) will be

decreasing and concave down. Hence there must be a point

a such that g’(a) = 0. That g’(§) has no further zeroes

follows from the same arguments as for Lemma 1.3.4. Q.E.D.

At point a equation 1.3.5 and Theorem 1.3.1 give

g”(a)(g(a)-2) = agIV(a) < 0. Since at a g”fla) < 0, g(a) >2.

Thus at g = a g(g) and its derivatives have the following

properties.

9(a) > 2 g’(a) = 0 g”(a) < 0 g”’(a) < o

By equation 1.3.3d this gives R = Zg(a) > 4. The solution

f(n) of 1.2.12 corresponding to this zero of g’(x) will be

denoted as Section V(ii) solutions.

Theorem 1.3.5. If a > 0 and B < 0 then g’(§) has either

one zero or three zeroes. See Figures 1.3.3, 1.3.4, and 1.3.5

for a qualitative description of this case.

In this case g“(0) > 0, g'(0) < O, g’(0) > 0. K1 may be

positive or negative depending on the relative size of a and

B.
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The solution of equation 1.3.4. for CL>O and

B>O. The concavity of g‘"(f) is undetermined.
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The solution of equation 1.3.4. for a>0 and B<O

if aisa Type]! zero and there are no other

zeroes. The concavity of g“‘(£) is undetermined.
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The solution of equation 1.3.4.for a>0 and

B<0 if a is a Type II zero and there are

other zeroes The concavity 0f g“‘(£) is

undetermined.
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Again the proof of the theorem will be divided

into several lemmas.

Lemma 1.3.5. If there exists a point c such that g(g) > 2

for all g > c and g(c) = 2 then g’(§) has a zero.

Proof: From equation 1.3.5 and Theorem 1.3.1 at c

-g”(c)g’(c) = chv(c) < 0. Therefore at c g'(c) and

g’(c) must both have the same sign. Clearly if g’(c) and

g'(c) are both negative there is a point d < c such that

g’(d) = 0. If g'(c) and g’(c) are both positive and if

g“(c) is negative then by the same arguments as in the proof

of Theorem 1.3.4 g’(§) has a zero. If g’(c), g”(c) and

g”(c) are all positive then g'(§) has a zero by the same

arguments as used in Lemma 1.3.1 and Lemma 1.3.2. Q.E.D.

Lemma 1.3.6. If Kl ¥ 0 and g(g) < 2 for all 5 then

9'(§) has a zero.

Proof: If there is no point d such that g’(d) = 0, then

since g(0) = 0, g’(0) > 0, g'(0) < 0 g(g) and its deriv-

atives must have the following properties for large values

of g. g'(g) 40+, g'ig) 40- and gg”’(§) 40+. The fol-

lowing argument establishes the latter limit. If gg”(g) =

0(1) for large values of g then g”(§) = 0(ln g). But

this contradicts g”(g) 4.0-. Therefore from equation 1.3.4a

lim 59"(g) = lim(9'(§)(9(§) - 1) ' 9’2“? + K1)
gen 5"”
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and hence Kl = 0. But this contradicts the hypothesis

of the lemma. Therefore g’(§) must have a zero. Q.E.D.

Lemma 1.3.7. If K1 = 0 and 9(8) < 2 for all 5 then

9'(§) has a zero.

Proof: Suppose g’(g) ¥’0 for all E then since g(O) = 0,

g'(0) > 0 and 9(5) 3 2 9(5) must approach a constant C

as g approaches infinity where 0 < C's 2. Thus for large

values of 5

1.3.8 9(5) C + ¢(g) when g = eg and 8 << 1

and m is small and lim m(g) = O.

c-w

Substituting 1.3.8 into 1.3.4a gives

III II I2 I!

1.3.9 CT + m + w — (C + ¢)@ = 0.

Since m is small linearizing the equation gives

1.3.10 Ccp’” + cp” - Ccp' = 0

The solution of 1.3.10 is given by

_ C+l
w — C1 + ng + C3Q

Since m is not identially zero and m(o) = 0 C1 = C2 = 0

and C3 ¥’0. Thus C must be such that C + l < 0 or

C < -1. This contradicts 0 < C‘g 2. Therefore g’(§) has

a zero. Q.E.D.
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The above three lemmas establish that when a > 0

and B < 0 g’(g) has at least one zero. Let a be the

first zero of g’(g) then at a g”(a) may be positive

or negative. If g”(a) is negative then a will be

called a Type I zero and if g”(a) is positive a will

be called a Type II zero.

Consider first the case that a is a Type I zero.

In this case at a equation 1.3.5 and Theorem 1.3.1 give

g”(a)(g(a) — 2) < 0 and hence that g(a) > 2. It should

be observed here that if a is a Type I zero then g'(§)

has two zeroes between 0 and a. This is established

as follows. Since g“(a) < 0 there is a point a0, where

0 < a0 < a, such that gm(ao) = 0. From equation 1.3.5

and Theorem 1.3.1 at aO -g’(ao)g'(a0) < 0. Since a was

assumed to be the first zero of g’(g) and since g’(0) > 0

g'(a0) > 0. Therefore g'(a0) >0. Therefore since g'(0) < 0

there is a point a1, where 0 < a1 < a such that g”(a1)==0
O

and g”(a1) > 0. Since g'(a) < 0 g”(§) must have a second

zero between a0 and a. It should also be observed that

K1 > 0 for g’(g) to have a Type I zero. As was shown above

for g’(§) to have a Type I zero there must be a point a1

such that g'(al) = 0 and g”(al) > 0. At a1 equation

1.3.2 then gives -g’2(a1) + K1 = algm(al) > 0. This gives

2I
then Kl > 9 (a1) > 0.

Thus for a Type I zero at a g(g) and its deriv-

atives have the following properties.



33

g(a) > 2 g’(a) = 0 g”(a) < 0 g”’(a) < 0

By equation 1.3.3d this gives R = 29(a) > 4. The solutions

of f(fi) of 1.2.12 corresponding to this zero of g’(§)

will be designated as a Section IV(ii) solutions.

Lemma 1.3.8. If the first zero of g’(§) is a Type I zero

then g’(§) has no additional zeroes.

Proof: The same as for Lemma 1.3.4. Q.E.D.

Consider now that a is a Type II zero. In this

case at a equation 1.3.5 and Theorem 1.3.1 give

g”(a)(g(a) - 2) < 0 and hence g(a) < 2. Since g(0) = 0

and g’(0) > 0 this gives 0 < g(a) < 2. Thus for a Type

II zero at a g(g) and its derivatives have the following

properties.

0 < g(a) < 2 g’(a) = 0 g”(a) < O g”’(a) > 0

From equation 1.3.3d this gives 0 < R < 4. The solutions

f(n) of 1.2.12 corresponding to this zero of g’(x) will

be designated as Section I solutions for suction.

If g’(§) has a Type II zero at a, g’(§) may or

may not have a second zero. The following lemma shows what

conditions are necessary for g’(§) to have a second zero.

Lemma 1.3.9. If g’(§) has a Type II zero at a then

g’(g) will have a second zero if and only if there is a

point d > a such that g”(d) = 0.
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Proof: The necessity is clear. Suppose there is a point

d sudh that g'(d) = 0. Since at a g(a) < 2 and since

g’(g) g 0 for all a‘g g g,d. g(g) < 2 for all a.g g g.d.

Therefore at d by equation 1.3.5 and Theorem 1.3.1

g“(d)(9(d) - 2) < 0. Since g(d) < 2, g”(d) > 0. Therefore

for g > d, g'(g) and g”(g) will both be positive. There-

fore g’(§) will be increasing and concave up. Since equa-

tion 1.3.5 and Theorem 1.3.1 show that in this case g”(§)

cannot become negative before g’(§) becomes positive,

there is a point b such that g’(b) = 0. Q.E.D.

At b it was shown in the proof of the above lemma

that g(b) < 2. Therefore if g’(§) has a Type II zero at

a and a second zero at b then g(g) and its derivatives

have the following properties at b.

9(b) < 2 9’(b) = 0 9”(b) > 0 9”’(b) > 0

From equation 1.3.3d this gives R < 4. The solution f(n)

of 1.2.12 corresponding to this zero of g’(§) will be

designated as a Section II solution if R > 0 and a Section

III solution if R < 0. It should be observed here that

again K1 > 0. This follows by the same arguments as for a

Type I zero since there is again a point al sudh that

g'(a1) = 0 and g”(al) > 0.

Lemma 1.3.10. If g’(§) has a second zero at b then

g’(g) has a third zero at c where c > b > 0.
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Proof: This follows from the same arguments as used in

the proofs of Lemma 1.3.1 and Lemma 1.3.2. Q.E.D.

At c equation 1.3.5 and Theorem 1.3.1 give

9’”(C)(g(c) - 2) = chV(c) < 0. Since g”’(c) < 0, g(c) > 2.

Thus at c 9(5) and its derivatives have the following prop-

erties.

g(C) > 2 g’(c) = 0 9"(C) < 0 g’”(C) < 0

By equation 1.3.3d this gives R = 29(c) > 4. The solution

f(n) of 1.2.12 corresponding to this zero of g'(g) will

be designated as Section IV(i) solutions.

Lemma 1.3.11. g’(§) has no further zeroes.

Proof: Same as for Lemma 1.3.4.

This completes the proof of Theorem 1.3.5. No results

were obtained as to what conditions on a and B would deter-

mine whether g’(§) would have one or three zeroes. However

all the above possibilities were obtained numerically.



CHAPTER II

METHODS OF SOLUTION

Section 2.1. Numerical Solutions for

the Steady Component of Velocity.
 

Numerical solutions of equation 1.2.12 subject to

boundary conditions 1.2.15 were found by a scheme similar

to that used by Terrill and Thomas[24]. As in Section 1.3 let

2.1.1 f(n) = 19(5) where n = g/‘b

Then substituting equation 2.1.1 into equation 1.2.12 and

boundary conditions 1.2.15 and setting A = %: gives

2.1.2 gg”’(g) + g”<g) + 9'2(§) - 900985) = K1

where

K 12 ll

2.1.3 Kl = ——5 = g (0) + g (0)

lb

and

2.1.4 a) g(O) = 0 C) 9'03) =

ll 0b) lim 6” g"(§)
8+0
.3

d) g(b) = ——§-

Now a solution of equation 1.2.12 subject to boundary

conditions 1.2.15 can be found by choosing g’(0) and g”(0)

36
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and then numerically solving equation 2.1.2 until a point b

is found such that g’(b) = 0. Then R and l are found

from equation 2.1.4d and K is found from equation 2.1.3.

The inverse transformation then gives a solution of equation

1.2.12 subject to boundary conditions 1.2.15. Because of

the presence of the term gg”’(§) in equation 2.1.2 two

different numerical techniques were used to solve for g(g).

In the interval [0,gt] where 0 < gt < b, g(g), g'(g) and

g”(g) were computed by the following Taylor series about

zero:

. 2

2.1.5 9(9) = 59 (0) + 5.? g”(0) + +

2.1.6 g’(§)

9”(0) + 59”’(0) + +

6

5.
6|

I 5

9(0)+§9”(0) +---+-§-:-9 (0)

4

2.1.7 g”(§)
‘éT

where

9”’(0) = - % 9’<0)g”(0)

gIV(0) = - % [9”(0)]2

9V (0) =%g’<o> [<3”(0)]2

9VI(0) — - 33:5 [9’(O)9”(0)]2 + 1%- [9”(0)]3

. . . v11 5:
The error for each series 18 respectively 9 (T) 7,,

gVIIU) ET, and gVII(T) 5— where 0 < 'r_<_ g_<_ gt .

6 5

5!
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VII
0n the interval [0,gt] g (T) was approximated by

QVII(T) = QVII(0) + T gVIII(0) where

9VH<0) = - 575 g’(o> [g”(0)]3 - 3%[g’(0)13[g”<0)]2

II I II I II 2

gVIHm) =--.17[-}-,%[g (0)]2+-$-[g (onzig (0)]3+-1-1-5—[g (0)1419 (0)] ]

The point gt was then selected by requiring

5

‘gVII(O) + T VIII 5 _
g (0)|-5—‘§-_<_1010Max

O‘ngt

The values g(ét), 9’(§t), 9”(§t) and gt obtained

were then used as the initial values for the numerical integra—

tion of equation 2.1.2 on [§t,b]. The numerical integration

was carried out using Gill's modification of the fourth order

Runge-Kutta method [ 5]. The Runge-Kutta subroutine RKGS that

was used can be found listed in reference [20]. This sub-

routine has the advantage of automatically adjusting the step

size, h, to satisfy a user specified error bound at each

step. The error bound, 6, at each step is computed from the

following:

_ 1 I I II II

6 "’ 15 (a1 '91 - 92' + a2 '91 — 92' + a3 '91 - 92‘)

Where a1, a2, and a3 are weights specified by the user and

91 is the computed value of the function at an increment of

2b using a step size of 2h and 92 is the computed value

of tile function at an increment of 2h using a step size h.
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If 6 exceeded the specified bound, the step size was

automatically adjusted. It was found the error could be

1 = 0.0, a2 = 0.5 and

a3 = 0.5. In computing numerical solutions for h(n),

f'(n) and f”(n) also were each weighted at 0.5 and

controlled quite well by setting a

all other weights were zero.

By this method accurate solutions of equation 1.2.12

could be Obtained. The major difficulty with this method

is selecting the value of g’(0) and g”(0) to obtain a

particular type of solution for a particular value of R.

It was found that the easiest way to do this was to select

a fixed value of g’(0) and only vary g'(0). This turned

out to be especially useful in obtaining all the possible

solutions in the case where g’(0) > 0 and g”(0) < 0.

A major disadvantage of this method is that only

solutions of equation 1.2.12 are Obtained for which f”(0)

is finite even though the boundary condition

lflnV/fifi f”(n) = 0 permits the possibility of solutions for

040

which f”(0) is not finite.

Section 2.2. Numerical Solutions for the

Unsteady Component 9§_Velocity.

Once f(n) has been found from equation 1.2.12

equation 1.2.14 for h(n) is a linear differential equation

'With variable coefficients. To find a solution of h(n) of
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1.2.14 satisfying the boundary conditions 1.2.17 two real

constants C and C must be found such that

1 2

2.2.1a hR (0, C1, C2) = C1

2.2.lb hi (0, C1, C2) = 02

and

2.2.2a hR (1, C1’ C2) = 0

2.2.2b ‘hi (1, C1, C2) = 0

where hR and hi are the real and imaginary parts respec—

tively of a solution of 1.2.14. Equations 2.2.2 are a system

of two equations and two unknowns and since 1.2.14 is a

linear differential equation, this is a linear system [‘7].

Thus Newton's method for solving two equations and two un-

knowns will be exact in one iteration. Therefore if C?

and C3 are initial guesses for C1 and C2 then the exact

values of C1 and C2 are given by

0 ahRu) 8111(1)

2.2.36 C1 = C1 + (hi-(1) -—é-é-2-— - hR(1) —'6'é—2—)/AO

0 ah.1(l) BhRm

2.2.313 C2 = C2 + (hR(1) TCT - hi(l) —S€1’-‘)/AO

0hR(1) 0hi(l) 6hR(l) Bhi(l)

2.2.3c where A = -

0 0C1 0C2 0C2 3C

  

1

Here hR(l) and hi(1) are the real and imaginary parts

respectively of the solution of 1.2.14 with initial



41

2.2.4 condition h(0) = C? + 1c? and evaluated at one.

0hR(1) 0h.(l)

The __S——_' and the -—————— are found as the real and

C1 3C1

imaginary parts respectively evaluated at one of the

solutions of

2.2.5 nw”<n) + W'(n) = SZWM) +323 (f(n)W'(n) - W(n)f’(n))

with

2.2.6 w(0) = 1.0

BhR(l) 0hi(l)

and -—————- and ————-—- are found as the real and imagi—
BC2 0C2

nary parts respectively evaluated at one of the solutions

of 2.2.5 but with initial condition

2.2.7 ‘w(0) = i

Again because of the presence of the terms nh”(n)

and nw”(n) in equations 1.2.14 and 2.2.5 respectively

two different numerical techniques were used to solve these

equations. As in the previous section on the interval

[nt,l] where 0 < nt < 1 equations 1.2.14 and 2.2.5 were

integrated numerically using the Runge—Kutta method referred

to in the previous section. On the interval [0,nt] h(n)

and h'(n) were computed from the following Taylor series

at zero.

5

2.2.8 h(n) = h(0) + h’(0)n + + hviO) 15:17
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4

2.2.9 h’m) = h’(o> + h”(0ln + + th) 3};

VI 6

The error terms in 2.2.8 and 2.2.9 are given by h (T)'27

S

hVI(T) 97- respectively where 0.3 7.3 n S-nt . 0nand

the interval [0,nt] hVI(T) was approximated by

VI
2.2.10 h (T) = hVI(0) + thII(0)

The point. nt. at which the numerical integration was

begun was determined by setting nt = gt/b . It was found

by choosing nt in this manner was sufficient to guarantee

5

n

max lh‘glm) + thH (0) I g? _<_ 10
OSTsnt

-8

Exactly the same technique was used to compute w(n) and

w'(n) on [0,nt] with the same bound on the corresponding

error.

This technique had two advantages. First the exact

value for h(n) at zero was Obtained after one integration

across the interval [0,1]. Secondly this technique avoids

the numerically difficult prOblem of having to integrate

towards zero and apply the condition lbm\/Ffi h’(n) = 0 .

fl*0

However, this technique also had two disadvantages.

Ifiirst the evaluation of the partial derivatives required for

2-.2.3 introduces extra numerical integration. Secondly a

more serious disadvantage was that if the solution f(n) of
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1.2.12 had a boundary layer at one then numerical inac—

curacies resulted from having to integrate into the boundary

layer. This problem was the most severe for the Section

IV (ii) and V (ii) solutionscufl.2.12 for large crossflow

Reynolds numbers.

Section 2.3. Asymptotic Methods.
 

Solutions of equations 1.2.12 and 1.2.14 were also

sought by using perturbation techniques. The crossflow

Reynolds number was used as the perturbation parameter and

asymptotic solutions were sought for both large and small

values of this parameter. Since solutions of 1.2.14a depend

on solutions of 1.2.12, but not conversely, equation 1.2.12

was examined first. An asymptotic solution of the form

2.3.1 f(n) = v0(e)fo(n) + v1(e)f1(n) +

was assumed where e is the perturbation parameter. Equa-

tion 2.3.1 was then substituted into equations 1.2.12 and

boundary conditions 1.2.15. By examining the limits as 8

goes to zero the gauge functions 90(6),v1(e), --- were

determined. Then equating the terms of the same order

resulted in a sequence of boundary value prOblems for

fo(n),f1(n), ---, . The sequence of differential equations

was then solved and the boundary conditions applied. If the

sequence of functions were able to satisfy all their respec-

tive boundary conditions, then the problem of finding an
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asymptotic series for f(n) was completed. If, however,

these functions were unable to satisfy all the boundary

conditions, the technique of matched asymptotic expansions

was used to find an asymptotic solution. In this case

equation 2.3.1 with appropriate fewer boundary conditions

was taken as the solution in the outer region. In the

inner region equation 1.2.12 was rescaled in terms of a

new inner variable and a second asymptotic expansion valid

in the inner region was found. The two asymptotic series

were then matched in an intermediate region. This techni-

que is discussed in detail in references [12] and [27].

Using the results Obtained for f(n) asymptotic solutions

were Obtained for h(n) by using the same techniques.

The asymptotic results were then compared with the

results Obtained from numerical integration.



CHAPTER III

THE STEADY COMPONENT OF VELOCITY

Section 3.1. Numerical Results
 

Numerical solutions were obtained for each of the

possible types of zeroes of g’(§) discussed in Section

1.3 by the method discussed in Section 2.1. Figure 2.1.1

summarizes these results by plotting -f'(l) which, as

equation 1.2.19 shows, is prOportional to the skin friction

at the wall versus the Reynolds number. This format for

discussing the results for the steady component of velocity

was originally used by Terrill and Thomas [24]. Two solu-

tions were found for -m < R < 2.3 and 9.1 < R.< 20.6.

For 2.3 < R < 9.1 no solutions were found and for 20.6 <

R < a four solutions were found. Section 1, Section II,

Section III, Section IV(ii) and Section V(ii) solutions have

been found and discussed previously by Terrill and Thomas

[24] and others [3, 8, 16, 30, 33]. However the complete

set of Section IV(i) and Section V(i) solutions have not

appeared previously in the literature. Also the graph of

-f'(l) versus R is not as simple for R between 9.2

and 20.6 as has been previously reported by Terrill and

Thomas [24]. As mentioned in Section 1.1 the reason for

no similarity solutions for 2.3 < R < 9.1 has been studied

45
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by Weissberg [29]. By studying the inlet flow he was

able to show that for approximately these values of cross-

flow Reynolds number similarity flow is not deve10ped.

Also it should be noted that the discussion of the zeroes

of g’(§) in Section 1.3 indicated there would be no

solutions for R = 4.

The characteristics of each type of solution will

be briefly discussed here.

1) Section I solutions (-w < R < 2.3). In Figure 3.1.2

the axial velocity profiles of several Section I solutions

are graphed to indicate their characteristics. Section I

solutions exhibit no reverse flow and all velocity profiles

are concave down except those for R near 2.3 which have

an inflection point. These solutions have an inflection

point because the value of K in equation 1.2.12 changes

2

sign at R = 1.2. From K =~ZB§§A- and equation 1.2.18

4V

it is seen this change in sign corresponds to a change in

sign of the linear component of the pressure gradient.

2) Section II solutions (0 < R < 2.3). Two of the axial

velocity profiles for these solutions are shown in Figure

3.1.3. These flows for small suction have three character—

istics of interest. First they exhibit a region of reverse

flow near the wall of the tube. The graph for R = 2.29

does not indicate this clearly since as R approaches 2.3

the width of the region of reverse flow near the wall ap—

proaches zero. Second as R 4»0+ the velocity at the center
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of the tube becomes infinite. Third as R 4 2.3 the

Section I and Section II solutions approach the same ve—

locity profile.

3) Section III solutions (-m < R < 0). Graphs of the

axial velocity profiles of these solutions are shown in

Figures 3.1.3 and 3.1.4. There are four observations to

be made about these solutions. First they exhibit a region

of reverse flow near the center of the tube. Second as

R 4.0" the velocity at the center of the tube becomes in—

finite. Third the velocity profiles for small injection

are similar of those of Section II except the direction of

the flow is reversed. Fourth for large values of the Reynolds

number, that is for large injection, the Section III solutions

approach the same velocity profile as large injection Section

I solutions except for a boundary layer at the center of the

tube.

Mathematically the reason for the discontinuity for

R = 0 in the Section II and Section III solutions can be

explained relatively easily. In section 3.1 it was shown

that Section II and Section III solutions were obtained for

the second zero, if any, of a so called Type II zero. If

b is this zero then as g(b) 410+, and hence R 410+, gives

a Section II solution with reverse flow near the wall while

as g(b) 4.0", and hence R 410', yields a Section III so-

lution with reverse flow near the center of the tube. Since

g'(b) is not zero and since these two limits give such
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different velocity profiles a singularity at R = 0 is

to be expected.

4) Section IV(i) solutions (20.6 < R < m). Graphs of the

axial velocity profiles of the Section IV(i) solutions are

found in Figure 3.1.5. Two features of these solutions

are of interest. First there are two Section IV(i) solutions

for 20.6 < R < 23.7. Second these solutions have forward

flow at the center and wall of the tube but have an inter-

mediate region of reverse flow.

5) Section IV(ii) solutions (23.7 < R < m). Graphs of the

velocity profiles of these solutions are found in Figure

3.1.6. These solutions have three interesting properties.

First there is no region of reverse flow. Second as R 4

23.7 the Section IV(ii) and Section IV(i) solutions approach

the same velocity profile. Third the velocity at the center

of the tube for these solutions has a maximum at R = 23.7

and a minimum at R = 28.4.

6) Section V(i) solutions (10.1 < R < a). The graphs of

the axial velocity profiles for these solutions are given

in Figure 3.1.7. Two features of these solutions will be

noted here. First these solutions have a region of reverse

flow near the center of the tube. Second as R 4 m the

Section V(i) and Section IV(i) solutions appear to approach

the same velocity profile except at zero where the Section

IV(i) solution has a boundary layer while the Section V(i)

solution does not.
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7) Section V(ii) solutions (9.2 < R < 0). Graphs of the

axial velocity profiles of these solutions are found in

Figure 3.1.8. Five features of these solutions will be

pointed out here. First for these solutions there is no

region of reverse flow. Second for 9.1 < R < 10.0 there

are two Section V(ii) solutions. Third the axial velocity

at the center of the tube for these solutions has a minimum

at R = 10.0 and a maximum at R = 14.5. Fourth as R 4 m

the Section V(ii) and Section IV(ii) solutions approach the

same axial velocity profile. Fifth as R 4.10.0 the

Section V(ii) and Section V(i) solutions approach the same

axial velocity profile.

Section 3.2. Asymptotic Solutions for Large Injection.

Asymptotic solutions for large injection corresponding

to Section I and Section III solutions were first studied by

Yuan and Finkelstein [33] and Terrill and Thomas [24] re—

spectively. Since these solutions will be required for the

study of the unsteady component of velocity their results

will be rederived and reexamined here. In equation 1.2.12

setting 6 = - 2/R, where 6 << 1, we obtain the following

formulation for the problem of large injection.

III II I 2 II 2

3.2.1 8(nf (n) + f (n)) - f (n) + f(n)f (n) = -i3

with boundary conditions

3.2.2 f(0) = 0 f(1) = 1

lim 111/2

n40

f”(n) = O f'(1) = O
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where

3.2.3 -Bz =Ke

The justification of 3.2.3 is contained in the

results of Section 1.3.

An asymptotic series will now be sought which is

valid in the region where the inertial forces are much

larger than the viscous forces. Let

3.2.4 f(n) = fomnom + f1(n)yl(e) +

3.2.5 B = BOCO(8) + Blcl(e) +

Substituting 3.2.4 and 3.2.5 into equation 3.2.1

and collecting terms gives

III
I” II I, 2 I, - ’2

3.2.6 6Y0(nf0 + £0) + eyl(nfl + £1) -l- y0(f0f0 f )
0

+ (—2f'f'+ff'+ff’) + 2(-f'2+ff') +
Y0Y1 01 01 10 Y1 1 11

_ 22__ _22
— - COBO 2BOB1cOc1 Blc1 +

Because f(1) = l and since in the region where the viscous

forces are small the inertial forces must balance the pres-

= C = 1.sure gradient we set, without loss of generality, Y0 0

Thus in this region the leading term satisfies

Physically since for injection we expect the vorticity

generated at the wall would be carried toward the center of

the tube, any accumulation of vorticity would occur at the



59

center of the tube. Thus any viscous layer would be ex-

pected to occur there and hence the asymptotic expansion

3.2.4 would be expected to be valid in a region away from

the center of the tube.

Mathematically this can be established by the

following arguments. Suppose that near the center of the

tube the viscous forces are much smaller than the inertial

forces but that at the wall there is a boundary layer.

Then f would be a solution of the following boundary
0

value problem.

328 f’2 ff"-Bz
°° o’oo‘o

fO(O) = 0 lim V11 f6('fi) = O fo(l) = l

n40

Since the solution of this equation represents inviscid flow

near the center of the tube it would not be expected to sat—

isfy the non-slip condition at the wall. Thus the condition

f6(1) = 0 is dropped.

The possible solutions of equation 3.2.8 are

3.2.9a f (n) = {(5 sinh “/12 where RB sinh ~32- : l
O O - O K

3.2 9b f ( ) = (—l)mLB sin n/L ‘Where (-l)mLB sin l-= 1
° 0 n o o L

3.2.9c f0(n) = 60“ where 3b = l

L and K are constants of integration. In the assumed

boundary layer near the wall let F(x) = f(rfi where
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n = 1 - 6(e)l and 6(3) is the width of the boundary

layer. Substituting F(X) in equation 3.2.1 gives

1 2 2

5(a) B
 

2

3.2.10 e((>. - )F’”(>.) + F”(>.)) + F’ (1) - F(1)F”(>.) = 6

F(O) = 1 F’(O) = 0

Since in the boundary layer the viscous and inertial forces

are assumed to be of the same magnitude, we set 6(a) = 3.

Since the outer solutions given by equation 3.2.9 expanded

in inner variables give f ~ 1 — ex, F(X) in the boundary

layer must have the following expansion.

3.2.11 F(x) = Fo(x) + eF1(x) +

Substituting equation 3.2.11 into equation 3.2.10 and col-

lecting terms gives

m It 2 m II _ III _ n _ ’2 II

3.2.12 3(1F0 + F0) + g (XFl + F1) F0 eFl F0 + FOFO

_ . . . .. 2 _ .2 .,
+ e( 2F1FO + FoFl + FIFO) + e ( F1 + FlFl) +

2 2 2 2 2 2 2

This gives the following problem for F

2
_ m __ I II =

3 . 2 . 13 F0 F0 + FOFO 0

90(0) = 1 F'(O) = o F0(m) = 1

the latter boundary condition comes from matching the inner

and outer solution. It is clear that FO = l is a solution

CNf 3.2.13, but it is not clear this is the only solution of



61

3.2.13. The following argument will however establish

this. Assume F6(X) is continuous for 1.2 0.

Lemma 3.2.1. If FO(A) is any solution of 3.2.13 such

that there is a point a such that F6(a) g 0 then

F6(l) g 0 for all 1.2 a.

Proof: Suppose there is a point b > a such that F6(b) =

2

0, then at b, Fg(b) = -F6 (b) g_o. Thus at every point

b > a where F6(b) is zero its 310pe is zero or negative.

Thus since F6(a) 5'0, F6(x) 5,0 for all x.2 a. Q.E.D.

Theorem 3.2.1. The only solution of 3.2.13 is Fo(x) e 1.

Proof: Showing that FO(X) l is the only solution of

3.2.13 is equivalent to showing that for the following

problem that if b0 # 0 then Fo(o) # 1.

2

3.2.14 FO(1) = -F0 (1) + FO(A)FO(1)

FO(O) = 1 F6(O) = o Fg(0) = be

The proof of the theorem is now broken down into two cases.

Case 1) b0 < 0.

If bO < 0, then F6(O) < O and thus F6(1) g 0

for all x by Lemma 3.2.1. Thus Fo(x) is decreasing and

concave down for all 1. Hence F00») # 1.

Case ii) bo > O.
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In this case F6(O) > o and thus F6(1) starts

out at zero and is increasing. But if Fo(m) is to equal

1, F6(l) cannot be positive for all X- Thus there must

be a point b such that F6(b) < O and F6(b) = 0. Then

by the same argument as in case i) Fo(x) is decreasing

and concave down for all x_2 b. Thus F0(m) # 1. Q.E.D.

A similar result that will be useful in a later

section will be stated here as a corollary.

Corollary 3.2.1. The only solution of the following problem

is F0 2 1.

III _ I 2 II

3.2.15 FO(1) - F0 (1) - F0(1)F0(1)

F0(o) = 1 F6(O) = o F0(w) = 1

Proof: This result follows easily if the direction of the

inequalities in the proofs of Theorems 3.2.1 and Lemma 3.2.1

are reversed. Q.E.D.

Thus Theorem 3.2.1 establishes the solution of 3.2.3 is

F0 5 1. From 3.2.12 and the boundary conditions for F(x)

the following problem for F1 would be obtained.

3.2.16 1Fg'+ F6 - Ff - ZFiFé + FOFf + FlFS = o

_. I

FO(O) — O FO(O) O

The solution of 3.2.16 is

F1 = B(ex - l — l) where B is a constant.
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However because of the term ex this solution will

not be able to match any outer solution. A similar analysis

would show there could be no boundary layer or shock layer

between the center and wall of the tube. Therefore if there

is a viscous layer it must occur at the center of the tube.

Thus the leading term of the outer expansion satisfies the

following boundary value problem.

3.2.17 f’ - f f” = 5

fO(O) = o fO(l) = 1 95(1) = 0 lim J; fé'hw) = o

This case is unusual in that even though the order of

the equation was reduced all the boundary conditions can still

be satisfied. The solution of equation 3.2.17 is f0 =

cosBO(n-1) where 60: (2k+l)1r/2 and k is an integer.

Since the most general first order solution includes

the zeroth order viscous effects we set, without loss of gen—

erality, Y1 = cl = c. This gives the following first order

problem.

I” II __ I I II II = _
3.2.18 “£0 + £0 :ZfOfl + fofl + flfo 26051

f1(1) = O fi(l) = O

The solution of equation 3.2.18 is given by
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3

 

 

B 2

= Bow-m + .91“ 2.267.-..)
O

1

3
36 B

+ [Blgcos 50(1'1'1) + nsin 50(n-l)][—§9' - 39$“ cos £38:(SS_ 1)]

1

Bl
- 3/2 + BE cos 50‘7”“

The integrals in equation 3.2.19 require that

cos BO (n-l) must not be zero for 0 _<_ '0 _g 1. Using BO =

w/2(2k-+1) this requires that sin w/2(2k-tl)r] must not be

zero on this interval. Thus we must have k = 0. The same

conclusion can be obtained from the theoretical results of

Section 3.1 by observing that f” and hence fg cannot

change sign in the interval [0,1]. Therefore

= ° .13 =.E
3.2.20 f0 8111 2 and BO 2

The theoretical results of Section 1.3 showed two

and only two solutions were possible for injection. The numer-

ical results of Section 3.1 showed that both solutions could

be obtained for large injection. As Figure 3.1.2 shows the

Section I solutions exhibit no reverse flow and the velocity

profiles vary smoothly from the wall to the center of the tube.

From the theoretical results of Section 1.3 we have that f,

IV do not change signs in the interval [0,1]f’, f”, f” and f

for Section I injection solutions. Thus for large injection

Section I solutions no viscous layer is expected at the center

0f the tube. However, as Figure 3.2.4 shows, the Section III

solutions exhibit a region of reverse flow as well as a rapid
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change in the axial velocity profile near the center of

the tube. Therefore for large injection Section III

solutions a viscous layer is expected near the center of

the tube. Thus for Section I solutions it is expected

that the viscous forces are much smaller than the inertial

forces throughout the tube. This would require then that

equation 3.2.4 be valid for all n and thus that f1(0) = O

and lim V/E fi(n) = O. From equation 3.2.19 this then

. n40

gives

3 1 2

3.2.21 f 5 ds

0

 

__3:2.E

II

“
fl
fi

4
.

S
I
“

w
cos 2 (s—l)

The regular perturbation expansion thus obtained is asymptotic

to the Section I solutions and is the one first obtained by

Yuan and Finkelstein [33].

Since for the Section III solutions a viscous layer

near the center of the tube would be expected, equation 3.2.4

would be valid only as an outer expansion in the region near

the wall. In the inner region let F(x) = f(n) where l =

n/6(e) and 6(a) is the width of the inner region. Sub-

stituting this into equation 3.2.1 gives

2

3.2.22 ammm + Fun) - F’ (x) + Fawn) = - 5262

F(O) = 0 lim fl F”(x) = o

140

Expanding the outer solution given by equations 3.2.20 and

3.2.19 into the inner region gives
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3.2.23 f -%} 6(6) + O(6(e))

Therefore in the inner region F has the expansion

3 2.24 F = F0(l)6(e) + Fl(l)v1(e) +

Substituting equation 3.2.24 into equation 3.2.22 and

boundary conditions and collecting terms gives

2 2
III II m I II _ I

3.2.25 35(e)(xFO + F0) + ev1(xFl + F1) + 5 (FOFO F0 )

I II I 2- I2 I

+ v15(-2F6F1 + FOF1 + FIFO) + V1( F1 + FlFl

_ 2 2 2 2 2 2
— -5 Bo - 2506165 — 61;; 5 -

Since in the boundary layer the viscous and inertial forces

will be of the same magnitude, we need to set 6(a) = 6-

Therefore the leading term of the inner solution satisfies

the following problem.

2 2
m a _ I n = _

3.2.26 xFO + F0 F0 + FOFO 50

with boundary conditions

FO(O) = 0 lim V/i F5(x) O F'(oo) =1

x40 0 2

The latter condition results from matching the leading

terms of the inner and outer solutions and, as was pre-

viously determined, 5b =‘%. The solution of 3.2.26 was

found by Terrill and Thomas [24] and is given by

12.

3.2.27 F =IEL - 3 + 3e 2
O 2
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Now matdhing the leading term of the inner solution with

the two term outer solution gives for this case,

3 1 szds

I
O cos-27: (s-l)

The solution thus obtained is asymptotic to the Section

III solutions and is the asymptotic expansion for Section

III solutions first obtained by Terrill and Thomas [24].

Section 3.3. Asymptotic Solutions

for Small Injection and Suction.

Asymptotic solutions in the case of small injection

and suction (small crossflow Reynolds number), were first

studied by Yuan and Finkelstein [33] for the Section I

solutions and by Terrill and Thomas [24] for the Section

II and Section III solutions. Their results will be re-

derived and discussed here. Letting e = -R/2, where

151 << 1, the small injection and suction problem is form—

ulated as follows.

. 2

3.3.1 nf”(n) + f'(n) - e(f' (n) - f(n)f”(n)) = K

f(1) = l f(0) = O

f’(l) = 0 lim nl/zf”(n) - O

n40

The theoretical results of Section 1.3 show that K is

negative for all Section II and Section III solutions and

for all Section I injection solutions. However for section
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I suction solutions there are no theoretical results on

the sign of K. Our numerical results do show that for

0.5 Rig 1.2 K is negative while for 1.2 < R < 2.3 K

is positive. Thus in contrast to the previous section

no sign will be assigned to K in the following analysis.

Asymptotic series of the following form will now

be sought for f(n) and K. Let

3.3.2 f(n) = which.) + Yl(e)f1(n) +

3.3.3 x = Bocom + 51C1(e)+

Substituting equations 3.3.2 and 3.3.3 into equation 3.3.1

and collecting terms gives‘

334 (f’”+f”) + (f”’+f')+ 2(—f'2+ff”)
° ° Yo T‘0 0 Y1 n 1 1 W0 0 o o

2
+ ey0y1(-2f6fi + foff + flfg) + €yi(-fi + flff) +

= BOCO(€) + Blcl(€) +

As equation 3.3.4 shows there are two possibilities

for the leading term of the asymptotic expansion. Either

the viscous terms are much larger than the inertial terms

in which case we set, without loss of generality, Y0 = C0 = l

or the viscous and inertial terms are of the same magnitude

in which case we set, again without loss of generality, Y0 =



 

.3.,
l2.
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The first case with Y0 = C0 = 1 leads to an

expansion for f(n) and K in powers of e of the

following form.

o
n

u U
!

H
3 ll fO + efl +

3.3.6 K 60 + €51 +

where f0 and fl and BO and Bl are determined by

the following two problems respectively.

III II _

3.3.7 £0 + £0 - QC

f0(l) = l fO(O) = O

I _ - n _

fO(l) — 0 11m W1 f0(n) — O

n-O

338 f’”+f”-f’2+ff”=B
° ° “1 1 o oo 1

fl(1) = O fl(0) = O

fl’(l) = 0 lim J; fihq) = 0

11-0

Solving 3.3.7 and 3.3.8 gives

3.3.9 f0 = 271— n2

31‘: 3:13 313 2
3.3.10 f1 = 18 - 3 + 2 "§'fl

The calculation of further terms is straight forward. This

is the solution first obtained by Yuan and Finkelstein [33]

and corresponds to the Section I small injection and suction

solutions.
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The second case with Y0 = C0 = %- leads to the

following problems for the leading term.

3311 f’”+f”-f’2+ff”=5
'° “0 o o oo o

f0(1) = 0 130(0) = o

f’(l) = 0 lim J; f”(n) = o

o o
n43

Terrill and Thomas [24] were able to find an approximate

solution of 3.3.11 by essentially computing the Taylor

series near zero and near one and matching the two series

at an intermediate point. The approximate solution they

found is given by the following. In the interval [0,n*]

where n* = 0.262

5n3.3.12 = an + 3e‘ - 3
f0

where B = 4.196 and 5b = -52.

and in the interval (n*,l],

2
3.3.13 f0 = 8.81(n+ nlnn- n) + 1.577(1 + T1111.1. n)

- 0.435(1- 195 — 0.082(1- n)6 - 0.071(1- 11)?

- 0.082(1- “)8 + O[ (1' T99]

The solution they thus obtained was asymptotic to the Section

II and Section III solutions for small suction and injection

respectively.
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Section 3.4. Asymptotic Solutions for Large Suction.

The problem of asymptotic solutions for large suc—

tion have been examined by Terrill and Thomas [24] with

supplementary results by Terrill in [23]. The solutions

obtained in these papers are asymptotic to the Section

IV(ii) and Section V(ii) solutions. In this section the

asymptotic expansions they obtained will be rederived and

reexamined in the light of the theoretical results previously

obtained. Letting O < e = 2/R << 1 the problem for large

suction will be formulated as follows.

3.4.1 e(nf”’(n) + mm) + f'2(n) - fumfm) = :32

f(1) = 1 f(0) = O

f’(l) = 0 lim nl/Zf”(n) = o

n40

where 52 = 3K. That K is necessarily positive follows

from the theoretical results of Section 1.3. An asymptotic

expansion will now be sought which is valid in the region

where the inertial forces are much larger than the viscous

forces. Let

3.4.2 f(n) fo(n)yo(e) + fl(n)yl(€) +

3.4.3 B BbCO(e) + 51C1(e) +

Substituting 3.4.2 and 3.4.3 into equation 3.4.1 and col-

lecting terms gives
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2 ,,
3.4.4 eyo(nf(’)” + £5) + eylmff + ff) + find - £0120)

2 2
I p _ l _ II I _ a

+ y1y0(2fofl fofl flfO) + y1(fl flfl) +

_22 22
— Coab + ZBOBICOCl + Blcl +

The leading term of the expansion, f will satisfy the
0’

following differential equation.

3.4.5 f’ - f f” = 52

The region of validity of expansion 3.4.2 will now

be discussed.

We first consider the possibility that f(n) has a

regular perturbation expansion as was found for the case of

large injection. flfluai f0 would have to satisfy the following

boundary conditions:

3.4.6 f0(0) ==O fo(l) = 1

lim J; £5”) = o f6(l) = o

n40

As was shown in Section 3.2 the solution of 3.4.5 subject

to 3.4.6 would be

3.4.7 f = sinlgn

2

3%E- which contradicts theo-However 3.4.7 gives £810)

retical results of Section 1.3 which showed f"(0) > O for

all suction solutions. Thus unlike the case of large
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injection there can be no regular perturbation solution

for large suction.

A second possibility is that expansion 3.4.2 is

valid near the wall but that there is a viscous layer near

the center of the tube. By the same analysis as was used

in deriving equation 3.2.26 for the leading term in the

viscous layer for large injection Section III solutions, it

can be shown that the leading term, Fo(x), in the viscous

layer in this case would have to be a solution of the fol-

lowing problem.

2 , 2

3-4-8 XFglk) + F6(x) + F6 (1) - FO(X)F0(X) = gr

FO(O) = 0 lim ~/{ F6(k) = o F6(°) =.%

A40

But equation 3.4.8 is the same as equation 1.3.2 so the

results that held for g(g) in Section 1.3 will hold for

Fo(x). Since as l 4 m, F0(X) 4;%% + C where C is a

constant, Fo(x) must eventually exceed three. Then by

equation 1.3.6 Fg(X) will be negative. This and Theorem

1.3.1 would require Fg(X) to be decreasing and concave

down and thus Fg(1) must go negative. This then makes

F6(l) decreasing and concave down and hence it too must

go negative. Then F6(x) is decreasing and concave down

and hence F6(X) 4._¢. Thus problem 3.4.8 has no solution.

Thus if there is a region where the inertial forces are

larger than the viscous forces it must be at the center of
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the tube. Physically this is to be expected since the

fluid being withdrawn from the tube has the effect of

confining the vorticity in the region near the wall.

A further discussion of this confinement of vorticity

at the wall due to suction is to be found in Batchelor

[l ]-

Therefore since f(1) = 1, without loss of gener-

Y0 = C0 = 1. This gives the following

problem for the leading term of the outer expansion.

ality, we set

:52
2

’ -3.4.9 f f 0
II

0 OfO

130(0) = o fo(l) = 1 lim J3 fo”(n) = o

n40

The possible solutions of 3.4.9 are

3.4.10 fom) R50 sinh 7/}? where R60 sinh
x
H
H

ll

1
.
:

b
h
a

3.4.11 fom) (-1)mLBO sin r/L where (-1)“‘LBO sin

I

3

3.4.12 fo(n)

K and L are constants of integration and m is an integer.

In the inner region let F(x) = f(n) where n = l - 5(e)x

and 6(6) is the width of the boundary layer. Substituting

this into equation 3.4.1 gives

1

(e

 

2

3.4.13 6((X - ))F”’().) + F'().)) + F’ (1) - F(X)F”().) =62(e)52
6

F(O) = l F'(O) = O



 

(
A
)

.

A

E! 0

be.
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Since in the boundary layer the viscous and inertial terms

are to be of the same magnitude it is seen that 6(a) = 6-

Since the three possible outer solutions, given by equation

3.4.10, 3.4.11, and 3.4.12, when expanded in inner variables

give f ~ 1 - ex, F(X) must have the following expansion

in the boundary layer.

3.4.14 F(M = POD.) + 6131(1) +

Substituting 3.4.14 into 3.4.13 and collecting terms gives

III II 2 m II _ III _ III I2 _ II

3.4.15 g(xFo + F0) + e (1Fl + F1) F0 eFl + F0 FOFO

2
I I _ II _ II _ II

+ g(ZFlFO FOFl lFO ) + e%(F FlFl) +

_ 2 2 2

Therefore the leading term in the inner region satisfies

3 4 16 -F” + F’2 - F F” = o
‘ ° 0 o o o

FO(O) = 1 25(0) = o Fob») = 1

The last boundary condition comes from matching with the

outer solution. By Corollary 3.2.1 the unique solution

of 3.4.16 is F0 5 1.

Before examining the first order inner solution the

problem of which of the outer solutions, given by equations

3.4.10, 3.4.11, and 3.4.12, is the appropriate one should

be resolved. The resolution lies in examining f”(O).



th

53

$0

is

The
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Differentiating equation 3.4.1 once and evaluating it at

n = 0 gives

3.4.17 f’”(0) = - “2;; f’(0)f”(0)

Since in a region where the viscous terms are much smaller

than the inertial terms it has been shown that the leading

term in the expansion for f’(O) is finite and non-zero,

the leading term of the expansion for f”(0) and hence

f“KO), must be zero for otherwise, as equation 3.4.17

shows, the viscous terms at the center of the tube would

no longer be small relative to the inertial terms. This

then requires £610) = 0. Since only equation 3.4.12

satisfies this requirement, f = n is the correct outer
0

solution.

Returning now to the first order inner solution it

is seen that it satisfies the following problem.

III II _ III I I _ II _ II =
3.4.18 )‘FO + F0 F1 + 2F1FO FOFl FIFO 0

131(0) = o F’(O) = o

The solution of 3.4.18 is given by

_ _ '1
3.4.19 Fl(1) - C1(x l + e )

where C1 is a constant of integration. Matching the two

term inner expansion with the leading term of the outer ex—

pansion gives, if exponentially small terms are ignored in

matching, C1 = -l and Y1 = c. This gives from equation



SO

pe

EX
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3.4.4 that the first order outer solution satisfies the

following problem .

m II I I _ II _ II =

3.4.20 “£0 + fO + ZfOfl fOfl flfO 25051

f (0) = 0 lim J; f”(n) = o
l 1

n-O

Solving and matching with the two term inner solution gives

:61 = 'fl and 61 = 1. Continuing as above and ignoring ex-

perimentally small terms in matching gives the following

expansions for the outer solution, inner solution and B.

_ 2 3
3.4.21 f(n) — n+ en+3e 114-0(6)

3.4.22 Fm = 1 — en. — 1 + e-x) - 3((21 + 3)e->‘ + 1 — 3)

+ 0(c3)

3 _ 2 3
.4.23 B-l+e+3e+0(e)

These expansions were first obtained by Terrill and Thomas [24]

and were found to be asymptotic to both the Section IV(ii)

and Section V(ii) solutions. As was first observed by Terrill

and Thomas [24] this leads to the conclusion that the differ-

ence between these two solutions is exponentially small.

Terrill [23] was able to find inner and outer solutions which

included these exponentially small terms. His results are

given as follows.

For the outer solution

3.4.24 f = e; + 63(e)91(§) + ouszun
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vflhere

3.4.25 g = Bn/e

13.4.26 5 = 1 + g + 332 + 1833 + §§l.€4 + 0(e5)

- 7

2e

4

+ 0(6 )}

2 33

{Phe plus sign on 6(a) corresponds to the Section V(ii)
d

:solution and the minus sign corresponds to the Section IV(ii)

solutions .

For the inner solution

3-4-29 PM) = 1 + 6(1 - 1 - e—x) + e2(3 - 1. - (2;. + 3)e”‘)

- 2

+o<.~2)+flfl{—%<1-1+e‘*)+e<iz—-g

2 -2

+ 2 + e-x(;g‘—- 232* - 2)) + C(52)} + C(53)

e

130 asymptotic or approximate solutions for the Section IV(i)

<3r Section V(i) solutions were obtained. It appears that

in these solutions viscous and inertial effects are every-

‘where important. However since it was known from the the-

oretical results of Section 1.3 that a Section V(i) solution

corresponded to the second zero of a Section I injection

solution, the asymptotic Section I injection solution was

examined to see if asymptotic solutions could be obtained for

‘Section V(i) solution. However no results were obtained.



CHAPTER IV

THE UNSTEADY COMPONENT OF VELOCITY

Section 4.1. Numerical Results.

Numerical solutions of equation 1.2.14 for h(n),

the unsteady component of velocity, were found for various

values of the crossflow Reynolds number and for various

values of the non—dimensionalized parameter a, where a =

53/13 , by the technique discussed in Section 2.2. The

solutions for h(n) are classified according to the same

scheme as the corresponding steady solutions- For example,

if flu) in equation 1.2.14 was a Section I solution, then

the solution of 1.2.14 for h(n) would also be designated

as a Section I solution. The numerical results will be pre-

sented and examined in terms of the following properties:

a) The non-dimensionalized maximum skin friction at the wall.

From equation 1.2.19 we see that this is given by [h’(1)|.

13) The phase lag of the skin friction at the wall relative

to the pulsatile pressure gradient. This is given by e =

-1('_hi'(1)

hfifl)

 tan ) where 0_<_ e_<_1r and hR and hi are the

the real and imaginary parts respectively of h(n) . c) The

Iion-dimensionalized axial velocity profile. As equation

1 .2.llb shows, this is given by the real part of h(n)e1wt.

79
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Section I Solutions

a) Maximum skin friction at the wall.

Case i) a small. (See Figure 4.1.1)

There is a rapid decrease in skin friction with in-

creased injection. Increased suction results in a large

and rapid increase in skin friction until R = 1.2. For

1.2 _g R < 2.3 there is a marked decrease in skin friction.

Case ii) a large. (See Figure 4.2.2)

For a fixed amount of suction or injection in-

cxreasing 0 results in a decrease of skin friction. How-

taxrer for a. large and fixed, injection further decreases

skin friction. For suction as a increases the maximum

Ileaar R,= 1.2 is suppressed and for a sufficiently large

the maximum occurs at R = 2.3.

13’) Phase lag of the skin friction from the pulsatile pressure

gradient.

Case i) a small. (See Figure 4.1.3)

For all values of injection the phase lag is small.

Increasing injection further reduces the phase lag. However

as suction is increased there is a large and rapid increase

11') the phase lag until R = 1.2 where it attains a maximum.

A 0 I O O

iifiurther increase in suction causes a decrease in the phase

lag-
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Case ii) a large. (See Figure 4.1.4)

For a fixed amount of injection increasing (1

increases the phase lag but for a fixed (1 increasing

injection decreases the phase lag. For suction as o.

increases the maximum phase lag near R = 1.2, is suppressed

and for a sufficiently large the maximum occurs at R = 2.3.

(2) Axial velocity profiles.

Case 1) a small. (See Figures 4.1.5 - 4.1.6)

For injection the velocity profiles are parabolic

with the maximum velocity occurring at the center of the

tube and virtually in phase with the pressure gradient.

Increasing injection decreases the magnitude of the maximum

xreelocity and tends to flatten the velocity profile.

For suction the velocity profiles are also para-

bolic with the maximum occurring at the center of the tube.

Increasing suction up to R = 1.2 increases the magnitude

of the velocity at its maximum, but for 1.2 g R g 2.3 the

tr‘iiztimum velocity magnitude is decreased. For increased

sIll-etion there is also a phase shift in the velocity profile

relative to the pressure gradient with the maximum phase shift

occurring near R = 1.2.

Case ii) a large. (See Figures 4.1.7 - 4.1.8)

For a fixed amount of injection increasing 0 results

h a phase shift of the veloc1ty profile relative to the
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Figure44.1.5. Axial
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pressure gradient, in shifting the maximum velocity toward

the wall, and in a decrease in the magnitude of the veloctiy.

For 41 large, increasing injection shifts the maximum veloc-

ity back toward the center of the tube.

For a fixed amount of suction increasing a causes

the maximum magnitude of the velocity to be shifted towards

the wall but the size of the maximum to be decreased. For

a sufficiently large the maximum magnitude of the velocity

and the maximum phase shift for suction occur at R = 2.3.

Section II and Section III Solutions

Unlike the steady state Section II and Section III

solutions, the unsteady state solutions remain finite as

the crossflow Reynolds number approaches zero.

a) Maximum skin friction at the wall.

Case i) a small. (See Figure 4.1.9)

For this case the maximum skin friction occurs near

R = 0. An increase of suction or injection results in a

marked decrease in skin friction.

Case ii) a large. (See Figure 4.1.10)

As a is increased for a fixed amount of injection or

suction the magnitude of skin friction decreases. However as

a is increased the maximum value of skin friction near R = 0
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is suppressed and shifted toward larger values of suction

until eventually the maximum occurs at R = 2.3. Thus for

large values of a increased suction results in increased

skin friction while increased injection results in decreased

skin friction.

b) Phase lag of the skin friction from the pulsatile

pressure gradient.

Case i) a small. (See Figure 4.1.11)

For injection the phase lag is small and is further

reduced by increased injection. For suction, however, the

phase lag increases rapidly as suction increases and attains

a maximum at R = 2.3.

Case ii) a large. (See Figure 4.1.12)

Increasing a results in increased phase lag for both

suction and injection. However for fixed a increased in-

jection still decreases the phase lag while increased suction

increases the phase lag.

cl Axial velocity profiles.

Case i) a small. (See Figures 4.1.13 - 4.1.14)

For both suction and injection the flow is divided

into two regions which are n radians out of phase and sep-

arated by a point of velocity reversal. Increasing suction

moves the stagnation point toward the wall while increased
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injection moves it toward the center of the tube. In this

case the flow is either in phase with the pressure gradient

of w radians out of phase. As suction is decreased or in-

jection increased the magnitude of the maximum velocity, which

occurs near the center of the tube, is decreased.

Case ii) a large. (See Figures 4.1.5 - 4.1.6)

For a fixed value of suction or injection increasing

0 results in shifting the maximum velocity toward the wall,

in a phase shift of the velocity profile relative to the pres-

sure gradient, in the flow no longer separating into two

regions, and in a decrease of the magnitude of the maximum

velocity. For a large and fixed, increased injection re—

sults in shifting the maximum velocity back toward the center

of the tube.

Section IV(i) Solutions

a) Maximum skin friction at the wall.

Case i) a small. (See Figure 4.1.17)

In this case the maximum skin friction occurs at

R = 23.7. As suction is first decreased to R = 20.6 and

then increased the skin friction decreases markedly.

Case ii) a large. (See Figure 4.1.18)

For a fixed value of suction the skin friction de—

<=reases as a increases. For a large and fixed, as suction
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is first decreased to R = 20.6 and then increased the

skin friction decreases.

b) Phase lag of the skin friction from the pulsatile

pressure gradient.

Case i) a small. (See Figure 4.1.19)

For this case the phase lag is virtually w radians

for all values of suction, but increases slightly as suction

is first decreased to R = 20.6 and then increased.

Case ii) a large. (See Figure 4.1.21)

For a fixed amount of suction increasing a decreases

the phase lag. However for a sufficiently large the minimum

phase lag no longer occurs at R = 23.7.

c) Axial velocity profiles.

Case i) a small. (See Figure 4.1.22)

The flow in this case separates into three regions

separated by two points of velocity reversal. As suction

first decreases from 23.7 to 20.6 and then increases the mag-

nitude of the velocity of the flow is decreased while the

maximum velocity is shifted from the wall toward the center

of the tube.

Case ii) a large. (See Figure 4.1.23)

As a is increased for a fixed amount of suction

there results a decrease in the magnitude of the velocity,
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a change in the phase lag of the velocity profile relative

to the pressure gradient, and a shift of the maximum veloc-

ity toward the wall. For a large and fixed and R first

decreased for R = 23.7 to 20.6 and then increased results

in the maximum veloctiy being shifted back toward the center

of the tube.

Section IV(ii) Solutions

a) Maximum skin friction at the wall.

Case i) a small. (See Figure 4.1.17)

For this case as suction is increased skin friction

increases to a maximum at R = 25.6 after Which it decreases

markedly.

Case ii) a large. (See Figure 4.1.18)

For a fixed amount of suction an increase in a

results in a decrease in the magnitude of the skin friction

However for a large and fixed increasing suction increases

the skin friction.

b) Phase lag of the skin friction from the pulsatile pressure

gradient.

Case i) a small. (See Figure 4.1.19)

In this case the maximum skin friction is almost n

radians out of phase with the pressure gradient. Increasing

suction results in a slight decrease in the phase lag until a



111

minimum is reached between R = 35 and R = 40. Any further

increase in suction increases the phase lag.

Case ii) a large. (See Figure 4.1.21)

For a fixed amount of suction increasing a results

in decreasing the phase lag and in suppressing the minimum

phase lag between R = 35 and R = 40 until for a suffi-

ciently large the minimum occurs at R = 23.7. For a large

and fixed increasing the suction increases the phase lag.

c) Axial velocity profiles.

Case i) a small. (See Figures 4.1.24 - 4.1.25)

In this case increasing suction results in decreasing

the magnitude of the velocity of the flow and in a flattening

of the velocity profile.

Case ii) a large. (See Figures 4.1.26 - 4.1.27)

For a fixed amount of suction increasing 6 results in

a decrease in the magnitude of the velocity of the flow, a

change in the phase lag relative to the pressure gradient, and

in a shifting of the maximum velocity toward the walls.

Section V(i) Solutions

a) Maximum skin friction at the wall.

Case i) a small. (See Figure 4.1.17)
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In this case as suction is increased the skin friction

first increases to a maximum at R = 11.3 and then decreases

markedly. For large amounts of suction the maximum skin fric-

tion for the Section IV(i) and Section V(i) solutions apparently

approach each other.

Case ii) a large. (See Figure 4.1.18)

For a fixed amount of suction, increasing a decreases

the skin friction. For a large and fixed increasing suction

results in at first an increase of skin friction until a max-

imum occurs after which skin friction decreases. For a

sufficiently large the maximum no longer occurs near R = 11.3.

For a large the maximum occurs at larger values of suction.

b) Phase lag of the skin friction from the pulsatile pressure

gradient.

Case i) a small. (See Figure 4.1.20)

For this case there is a slight decrease in the phase

lag for increasing suction.

Case ii) a large. (See Figure 4.1.21)

For a fixed amount of suction, increasing 0 decreases

the phase lag. While for a large and fixed increasing the

suction increases the phase lag.

c) Axial velocity profiles.

Case i) a small. (See Figures 4.1.28 — 4.1.29)
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The flow in this case is divided into two regions

separated by a point of velocity reversal. Increasing suc—

tion decreases the magnitude of the velocity while shifting

the point of velocity reversal toward the wall of the tube.

Case ii) a large. (See Figures 4.1.30 - 4.1.31)

For a fixed amount of suction, increasing 0 results

in decreasing the magnitude of the velocity profile, shifting

the maximum velocity toward the wall, and in shifting the

phase of the velocity profile relative to the pressure

gradient. For a large and fixed, increasing suction de-

creases the magnitude of the velocity profile.

Section V(ii) Solutions

a) Maximum skin friction at the wall.

Case i) a small. (See Figure 4.1.17)

In this case as suction is first decreased to 9.1

and then increased the skin friction decreases markedly to

a minimum at R = 14.5 and then increases.

Case ii) a large. (See Figure 4.1.18)

For a fixed amount of suction increasing a de-

creases the skin friction. For a fixed and large as

suction first decreases to 9.1 and then increases the skin

friction at first decreases to a minimum and then increases.

As 0 gets larger the minimum occurs at smaller values of

suction.
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Figure 4.1.33. Axial velocity profile for a Sec-
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Figure 4.1.34. Axial velocity profile for a SeC-

tion 320i) solution with R=9.9743 and 05100.0.
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tionYOi) solution with R=319268 and £31000.
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b) Phase lag of the skin friction from the pulsatile

pressure gradient.

Case i) a small. (See Figure 4.1.20)

In this case as suction is first decreased to 9.1

and then increased the phase lag decreases to a minimum at

R = 17.5 and then increases.

Case ii) a large. (See Figure 4.1.21)

As a is increased for a fixed amount of suction

the phase lag is decreased. For a fixed and large, as

suction first decreases to 9.1 and then increases the phase

lag first decreases to a minimum and then increases. As

a increases the minimum occurs at smaller values of suction.

c) Axial velocity profiles

Case i) a small. (See Figures 4.1.32 — 4.1.33)

For this case as suction first decreases to 9.1 and

then increases the magnitude of the velocity profile is de—

creased While the velocity profile becomes flatter.

Case ii) a large. (See Figures 4.1.34 — 4.1.35)

Increasing a for a fixed amount of suction results

in a decrease in magnitude of the velocity profile, in a

change in the phase of the velocity profile relative to the

pressure gradient and a shifting of the maximum velocity
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toward the wall of the tube. For a large and fixed, first

decreasing the suction to 9.1 and then increasing suction

results in a decrease in magnitude of the velocity profile

and a flattening of the velocity profile.

From the numerical results we conclude the following:

1) The annular effect still occurs but the frequency at which

it becomes important is increased by both suction and injec-

tion. 2) The phase lag of the velocity profile and the skin

friction at the wall are decreased by injection but may be

increased or decreased by suction. 3) The maximum skin fric-

tion at the wall is decreased by injection but may be increased

or decreased by suction. 4) Small suction can cause resonance

like effects. As Figure 4.1.1 shows, there is a sharp max-

imum in the skin friction at the wall at R 5 1.25. An exam—

ination of a typical velocity profile in this region of crossflow

Reynolds numbers, such as given by Figure 4.1.6, shows this

maximum is due to a large increase in the magnitude of the

velocity at the center of the tube. Thus a small amount of

suction in the case of a small frequency pulsatile pressure

gradient can result in large velocity amplitudes at the center

of the tube. At the present it is not clear exactly what causes

this effect physically and this should be investigated further.

Section 4.2. Asymptotic Solutions for Large Injection.

In this section the asymptotic solutions in the case

of large injection for the unsteady component of velocity will
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be discussed. Letting e = -2/R, where 6 << 1, the problem

for the unsteady component of velocity is formulated as fol-

lows:

4.2.1 6(nh”(n) + h’(n)) + f(n)h'(n) — h(n)f'(n) - eszh(n) = -e

lim nl/zh’hq) = O h(l) = O

n40

The case in which f(n) is a Section I solution will be ex-

amined first. It was shown in Section 3.2 that f(n) has

a regular perturbation expansion of the form

4.2.2 f(n) = fo(n) + efl(n) +

where

_ - .134.2.3 fom) — sm 2

and f1(n) is given by equation 3.2.19.

Let

4.2.4 hm) = vo(e)h0(n) + yl(e)hl(n) +

Substituting equations 4.2.2 and 4.2.4 into equation 4.2.1

and collecting terms gives

4.2.5 mowing + ha) + evllrhf + hf) + Yo(foho " hofo')

, _ 1
I _ I

' — I

— eszYOhO + co. = —€
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To find the equation for the leading term the

relative sizes of yo, eszyo and 6 must be examined.

There are the following three cases to consider: 1)

a?) = 682 = 0(1) 2) €52 << 1 3) 6:82 >> 1.

The following arguments will establish that case

2 can be included in case 1. Suppose es2 << 1, then we

must have = e and the leading term of the expansion
Yo

will be a solution of the following equation:

4.2.6 f h’ — h f = -l
I

O O O 0

Since the first order terms would need to include

the unsteady effects we must set Y1 = 5252. Then hl

would be a solution of the following equation.

Since hO and hl

ential equation but with different forcing functions, we

both satisfy the same differ-

can, without loss of generality, include the unsteady

effects in the leading term of the expansion in this case

by assuming 352 = a: = 0(1). Thus case 2 is included in

case 1. For both case 1 and case 2 we have Y0 = 3.

Using equation 4.2.3 we obtain that the leading term

of the expansion in case 1 and case 2 is the solution of the

following problem.

4.2.8 Sin jf-ho (3 cos-7? + ao)hO 1

0 Ti C 1') 0(1’1)
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By observing that

4.2.9 h =T—(-a +321cos Till)

p 31.-.}
4 O

was a particular solution of 4.2.6, the following solution

of equation 4.2.6 satisfying both boundary condition was

obtained.

 

_._______ ,_ E. .__
4.2.10 hO — ( a + + 2 cos )

(csc‘Efl + cot ——)

Since this solution satisfies both boundary conditions it

should be observed that the Section I unsteady solutions

like the Section I steady solutions have a regular pertur—

bation expansion.

The most general first order term is obtained by

setting Y1 = ez. This gives the following problem for

h1(n).

2II I I _ I I _ ’ - _4.2.11 rho + hO + thl hlfO + flhO hOf1 aOhl O

h (1) =0 limfih'm) =0
1 1

71-0

Since equation 4.2.11 is a first order linear differential

equation it could be solved for hl(n). But due to the

complexity of the solutions for b0 and f1, the solution

would be in such a form as to yield little information about

the asymptotic properties of the solution.
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Using a: = i302 and separating equation 4.2.10

into real and imaginary parts we have then

  

2

4.2.12 h(ni = 2 e (co.2 sin %? sin(2€a 1nlcot3%Pl)

1_ + 2d4

4 e

+-% cos %9 + ie02(-14-sin-%? cos(%f a2 lnlcot 251‘)))

+ C(52).

However the asymptotic character of the maximum skin

friction at the wall given by |h’(1)‘ can be examined fur-

ther without solving for hl(n) or higher order corrections.

From equation 4.2.4 we have

I _ I

4.2.13 h (1) — tho(l) + Y1hf(l) +

Equation 4.2.6 gives

4.2.14

’ = .—h0(l) 1

Setting n = l in equation 4.2.11 gives

4.2.15

hi(1) = -h5(1) - h6(l)

Differentiating equation 4.2.6 and evaluating it at n = 1

gives

4 2 l6 h'(l) = azh’(l)
° ' O O O
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Combining equation 4.2.14, 4.2.15, and 4.2.16 gives

2
I _

4.2.17 hl(l) — a0 + 1

By setting Y2 = e3 and by the same procedure as above

we obtain

4 2 18 h’(1) = -2 4 - 4a2 - l + 13
° ' 2 a0 0 4

Using a: = ieaz and combining equation 4.2.14, 4.2.17,

4.2.18, and 4.2.13 we obtain

2
2

4.2.19 h'(l) ~ -e + e - 63(1 - %f) + 2650'4 + ic3 02(1 - 45)

Further terms of this series could be calculated by the same

technique. This series shows that as long as 302 = 0(1), a

has very little effect on the magnitude of the skin friction

at the wall or the phase shift of the maximum skin friction at

the wall relative to the pressure gradient. To examine the

accuracy of equation 4.2.19 the values of lh’(l)| given by

this equation are compared with the exact values computed nu-

merically in Table 4.2.1.

Table 4.2.1

‘h‘(l)l(Eqn. 4.2.19) \h’(l)‘(Exact)

e a2 = 0.2 a2 = 100.0 02 = 0.2 02 = 100.0

0.02545 0.02478 0.02466 0.02478 0.02466

0.04038 0.03865 0.03692 0.03869 0.03766

0.05361 0.05051 0.04338 0.05062 0.04736

0.13562 0.11355 0.81216 0.11695 0.07510
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As Table 4.2.1 shows the asymptotic and numerical results

agree well for large values of injection. The large dis-

crepancy between the asymptotic and exact values in the

case where e = 0.13562 and a2 = 100.0 is due to the

fact that in this case 302 is not 0(1).

Consider now case 3 when 552 >> 1. In the case

we must set Y0 = f%- and therefore the leading term satisfies

5

4.2.20 h = l

11m../fi hd(n) = 0

n40

Since hO cannot satisfy the boundary condition at the wall

there must be an inner region near the wall. To examine the

solution in this region let v =-J% , n = l - 6(v)l, H(l) =

s

h(n) and F(x) = f(n). Substituting these into equation

4.2.1 we obtain

4.2.21 ve((l - 6X)§:%%L -'% H'(l)) + g(H(l)F’(X) - F(X)H'(X))

5

- eH(l) = -ev

H(O) = 0

Let

4.2.21 H(x) pO<V)HO(x) + 01(v)Hl(x) +

4.2.23 F(x) = Gb(v)FO(x) + 01(v)Fl(x) +
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Substituting equations 4.2.21 and 4.2.23 into equation

4.2.21 and collecting terms gives

 

 

 

veuo ” veul ” MOVE ” ’

4.2.24 ——2—-HO+—§-—Hl - 6 ()\H0+HO)

0 6

“lave I a I)

- (1H” + H1) + 6000 (HOF - FOHO

up a

_\_1 I _ I l O I _ I
+ 6 Hoa1(HoF1 HOFl) + 6 (H1130 H160)

+_\J_L:];_.}.(HF’ -H’F)... H _ H +...=..

5 1F 1 1 1 6“0 0 cu1 1 5V

Since in the outer region

4.2.25 h(n) ~ V

we see that p0 = v and hence that 5 ~/§. This gives the

following problem for the leading term of the inner expansion

4.2.26 HO 0

HO(0) 0 Ho(m) = 1

Solving equation 4.2.26 gives

4.2.27 H = 1 - e-x

Therefore near the wall we have that

xul

4.2.28 h(n) ~ V(l - evfii)

Again to examine the accuracy of this expansion the asymptotic

and exact values of the maximum skin friction at the wall,

given by lh’(1)l, will be compared. Differentiating equation
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4.2.28, evaluating at one, and using v = we

ia

obtain

4.2.29 h’(l) ~ --§§§ (1 — i).

This gives then

’ 1

4.2.30 flu (1)l ~-a

Table 4.2.2 compares the asymptotic and the exact values

of |h’(l)l for a large value of a.

Table 4.2.2

a? = 100.0

3 £02 [h'(l)‘(Eqn. 4.2.30) ‘h’(1)‘(Exact)

0.05361 5.36059 0.10000 0.04736

0.13562 13.56224 0.10000 0.07510

0.33347 33.34733 0.10000 0.08843

0.65441 65.44112 0.10000 0.09316

As Table 4.2.2 shows the agreement is good when €02 is large.

This expansion shows that the annular effect occurs for large

values of injection but that it does not become important un-

til 602 >> 1.

Consider now the case where f(n) is a Section III

solution. In this case in Section 3.2 it was shown equation

4.2.2 was valid only as an outer solution in the region near

the wall. Thus equation 4.2.4 for h(n) will also be valid

only in the region near the wall. It was also shown that the
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width of the inner region or boundary layer was c. There-

fore setting H(x) = h(n) and F(x) = f(n) where X =

n/e and substituting into equation 4.2.1 the following

problem for the unsteady component of velocity in the

inner region is obtained.

4.2.31 e(xn'(x) + H’(x)) + F(1)H’(x) - H(i)F’(1) - €282H(x)

="€

lim.~/X H’(l) = 0

140

In Section 3.2 it was shown that the expansion for F(x) in

the inner region was of the form

4.2.32 F(x) = 620(1) + 62F1(x) +

Let

4.2.33 H(l) = vb(e)HO(l) + vl(e)Hl(1) +

Substituting equations 4.2.32 and 4.2.33 into equation 4.2.31

and collecting terms gives

a I I _ I 4' I I
4.2.34 evb(xHO + H0 + FOHO HOFO) + 501(le + H1 + FOHl

_ 2 I- I 2 I_ I

F0H1) + 9 “0(F1H0 H0F1) + e v1(F131 H1F1

2 2 2 2 _ 2

e s VbHO - e s VlHl + — — 6

Consider first the case where 682 = a = 0(1). In this case

the outer solution is given by

4.2.35 'h(n) ~ ého(n)
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where h0(n) is given by equation 4.2.10. Expanding the

outer solution in inner variables gives

4.2.36 hm) ~—+—§——
2

+ a0

N
l
d

This gives that vb(e) = e and hence that the leading term

of the inner expansion for the unsteady component of velocity

is the solution of the following problem

I I I _ I _ 2 _ __
4.2.37 xHO + H0 + FOHO HOFO aOHO — 1

o I _ __ 1

140 §-+ aO

_Trx

Since Fo(x) =-%)(— 3 + 3e 2 by equation 3.2.27, equation

4.2.37 becomes

-Wk -wg

II _ fl 2 I _ I: _ .21 2 2 :—4.2.38 m0 + ( 2 + 2 + 3e )HO (2 2 e + ao)Ho 1

. , _ _ 1

11m ,5 H00.) —- 0 80(6) — 7r 2

X-O E + 30

By inspection the solution of equation 4.2.38 was found to be

 

._Tr)‘

2

4.2.39 “0‘“ = —l—— - 3“

a2 +-1 w2 4
O 2 2(-4— - 30)

Since Fl(l) is unknown H1(x) could not be found.

Since the Section I and Section III solutions have the

same expansion near the wall, the asymptotic values for

lh’(l)‘, the maximum skin friction at the wall, for Section
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III solutions will also be computed from equation 4.2.19.

As Table 4.2.3 shows the agreement between the asymptotic

and numerical values in this case in similar to the case

of Section I solutions.

Table 4.2.3

lh’(l)|(Eqn. 4.2.17) lh’(l)l(Exact)

e 02 = 0.2 02 = 100.0 02 = 0.2 02 = 100.0

0.032 0.031 0.030 0.031 0.031

0.05295 0.04993 0.04322 0.04998 0.04689

0.07467 0.06848 0.03659 0.06869 0.05875

0.10042 0.09484 0.05654 0.08951 0.06772

To examine the accuracy of the asymptotic solution in the

inner region the asymptotic values of the maximum velocity at

the center of the tube, given by lh(0)l, will be compared

with the exact values obtained from numerical integration.

From equations 4.2.23 and 4.2.39 is obtained

 

 

4.2.40 h(0) ~ €( 2 l ' 23W )

a + 1- w 4
0 2 2(7r'- a0)

. . . 2 _ . 2
This gives, uSing aO — 13a ,

1/2
4.2.41

lh(0)‘ ~ 2 e (”2 + €204)

W 2 4

‘4‘ + e ‘1

Table 4.2.4 compares the asymptotic values of lh(0)\ ‘with

the exact values.
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Table 4.2.4

1h(0)‘(Eqn. 4.2.28) ‘h(0)\(Exact)

9 a2 = 0.2 a2 = 100.0 a2 = 0.2 a2 = 100.0

0.032 0.041 0.011 0.038 0.011

0.05295 0.06741 0.01069 0.05951 0.01082

0.07467 0.09506 0.01039 0.07995 0.01052

0.10042 0.12784 0.01023 0.10171 0.01034

As Table 4.2.3 shows the agreement between the exact and

asymptotic values of ]h(0)‘ is good.

Consider now the case where €52 >> 1 and let v=v£§.

s

In this case the outer solution expanded into the inner region

is given by

4.2.42 h(n) ~ v.

This gives then that = v and therefore the leading term

Vo

of the inner expansion for the unsteady component of velocity

is the solution of the following problem.

4.2.43 H = 1

lim Ji HéU.) = 0 Hon.) = 1

m

The solution of equation 4.2.43 is clearly H 1. Therefore
0

near zero we have

4.2.44 h(n) ~ v

It should be observed that this is the same expansion

that was obtained for Section I solutions near zero for
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352 >5 1. Thus we conclude that, if $52)) 1, the boundary

layer has only a secondary effect at zero and, as for

Section I solutions, the annular effect becomes important.

To examine the accuracy of the expansion the exact

and asymptotic values of the maximum velocity at the center

of the tube, given by ‘h(0)‘, will be compared. From

we obtain
 

equation 4.2.44 and by using v =

id

4.2.45 lh(0)‘ ~-33
(1

Table 4.2.5 compares the asymptotic values of 1h(0)1 with

the exact values for a large value of a.

Table 4.2.5

2
a = 100.0

e 802 ‘h(0)‘(Eqn. 4.2.45) |h(0)|(Exact)

0.07467 7.46677 0.01000 0.01052

0.10042 10.04177 0.01000 0.01034

0.82038 82.03849 0.01000 0.01004

As Table 4.2.5 shows the agreement is good if 6&2 is large.

In this section asymptotic solutions have been found

in the case of large injection for both the Section I and

Section III solutions. In both cases the asymptotic solutions

were in good agreement with the numerical solutions. It was

also shown that for large injection the annular effect does

occur but only if 552 >> 1.
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Section 4.3. Asymptotic Solutions
 

for Small Injection and Suction.
 

In this section asymptotic solutions for the un—

steady component of the velocity for the case of small

injection and suction will be discussed. Let 8 = -R/2,

where |e‘ << 1, then the problem for this case will have

the following formulation:

4.3.1 awn) + 6%) = 5211(6) - 1 - e(f(n)h’(n) - h(n)f'(n))

limfi h'm) =0 11(1) =0

n40

Consider first the case where f(fi) is a Section I solution.

In this case it was shown in Section 3.3 that f(rfi had a

regular perturbation expansion of the form

4.3.2 f(n) = fo(n) + ef1(n) +

where

2

433 f0(n) 211-1]

1': .113 .112. 2
434 f1(“)=18‘3+2“'§“

Let

4.3.5 h(r0 = Yo(e)ho(n) + Y1(e)h1(n) +

Substituting equations 4.3.2 and 4.3.5 into equation 4.3.1

and collecting terms gives
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N ’ fl ’ o o o = 2 2 —

.. ' I __ I I 2 _ I

+ ey0( thO + hofo) + eyl( thl + fohl) + e y0( hOfl

o 2 . I
+ hOfl) + c Y1(-flhl + hlfl) +

Since in this case 8 and 52 do not occur as a product,

the leading term of the expansion is independent of the

size of 32. Therefore we set, without loss of generality,

Y0 = l and obtain the following problem for ho:

4.3.7 «1115+ h6 = szho - 1

hO(l) = O lim‘/n h0’(n) = O

1140

Since the first order solution must take into account the

effects of the leading inertial terms, we set Y1 = 6.

This gives the following problem for hl(n).

4.3.8 nhf + 111’: th1 - £010 + hofé

h (1) = 0 lim f5 h'm) = 0
1 1

71-0

Equation 4.3.7 can be solved exactly and its solution is

 

given by

J (28%?)

4'3°9 110(71): 32” " 0J (28)
s 0

where B = -52 . This is the solution for pulsatile flow

in a non-porous tube. The properties of this solution have

been studied thoroughly by Womersley [31] and Uchida [26].

To examine the effects of small amounts of suction and
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injection on pulsatile flow h1(n) must be solved. Since

two linearly independent solutions of the homogenous part

of equation 4.3.8 can be found in terms of Bessel functions,

equations 4.3.8 could be solved exactly by using variation

of parameters. However the solution obtained is complex

and more information can be obtained by examining the

solutions of equation 4.3.8 for small and large values of

32. To do this, however, we must first expand the solution

of equation 4.3.7 for small and large values of sz. Con—

2
sider first the case where ‘32] << 1. Letting v = 3

equation 4.3.7 becomes

a .I _ _

4.3.10 Th0 + hO — Vho 1

110(1) = 0 lim J; h6(n) = 0

n4)

Let

4 3 11 h ( ) = k ( ) + k ( ) + 2k ( ) + 3k ( ) +

Substituting equation 4.3.11 into equation 4.3.10 and col-

lecting terms gives

4.3.12 nko” + k6 + v(1-,]<]‘_'+ kl’) + f(nk; + k2’) + 03(nk5 + 143'

- 2 3 O O O+ — \k0 + v k1 + v k2 + - l

Equating powers of v gives the following

4.3.13 nkg+k6=-l

k0(1) = 0 lim J1". kém) = 0

n40
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a I =
4.3.14 “kr + kr kr-l r > O

k (1) = 0 lim J7". k'm) - 0
r r

1140

Solving gives

4.3.15 k0 = 1 - n

112. 3
4.3.16 kl = fl" 4 _.Z.

2 3

= IL._ IL _.2 .12
4.3.17 k2 36 4“ + 36

3 4 2

.__.1'1... -231. 126-211
4°3'18 R3 36 596 16 + 36 576

Setting v = $2, equation 4.3.8 becomes

II I= __ I I
4.3.19 fihl + hl Vhl thO + hofO

Let

4 3 20 h < ) = 1 < ) + 04 < ) + 024 ( ) + 034 ( ) +
' ° 1 7‘ 0 7‘ 1 T‘ 2 T‘ 3 7‘

Substituting equations 4.3.20 and 4.3.11 into equation 4.3.19

and collecting terms gives

” + 4’ + v(n1{ + 11’) + v2(nz§ + 12’) + v3(nzg’ + Ag)4.3.21 Two 0

_ 2 3 4 . .
4' -v£o+v£l+v£2+vz3-foko+f0ko

_ I I 2_ I I 3_ I I
+ v( fokl + fokl) + v ( fok2 + fokz) + v ( fok3 + f0k3)

+
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Equating powers of v gives the following equations

I’ ’ = _ ’ I
4.3.22 n10 + £0 fOkO + fOkO

40(1) = 0 lim J} gown) = o

n-O

” ’ = _ I I

4.3.23 nzr + 2r zr-l fOkr + fOkr

L (1): 0 11!“ V71 I’M) = o

r
r

n40

Solving gives

13. IE. 29
4.3.24 ‘0: 9 .. 2 + 2n-T-8-

4 3 2

4.3.25 ‘1 144 9 .1 8 9 + 144

4 3 26 g ==.ZIE_.+.33 _ 25332 + 163n _ 1487

' ' 2 1200 8 24 48 600

4 3 27 L ==_:llfii.+_11 5 +,_1f___ 4333 + 118932

' ° 3 259200 7200 1152 324 1152

_ 23119n + 199523

7200 86400

Combining equations 4.3.5 and 4.3.20 we have for small values

of $2

2 3

4.3.28 hm) ~ho(n) + g(zo + v1.1 + v 1,2 + v 1.3)

To examine the accurary of this expansion the maximum skin

friction at the wall, given by |h’(l)1, computed from

equation 4.3.28 willtmecompared with the exact values ob-

tained from numerical integration. Differentiating equation

4.3.28, evaluatinganzone, and using v = id2 gives
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/ . 2 . 2

'1“ J1(2 ‘1“ ) 4 101 4 _5502i
+ €(— - -—--(1

ion2 Jon/11747) 3 6O 3

6629051

4320 )

 

4.3.29 'h'(l) ~

Table 4.3.1 compares the exact values of ‘h’(l)‘ with the

asymptotic values for a small value of a.

Table 4.3.1

02 = 0.2

e ‘h'(l)\(Eqn. 4.3.29) ‘h’(l)‘(Exact)

0.00000 0.99179 0.99179

0.10061 0.86206 0.87861

0.20445 0.72881 0.78883

0.47737 0.38651 0.62836

-0.02518 1.02432 1.02564

-0.03153 1.03253 1.03460

-0.18849 1.23578 1.33328

-0.34613 1.44041 1.94270

As Table 4.3.1 shows the asymptotic and exact values agree

well for small amounts of injection and suction.

 

Let us turn now to the case Where 15 << 1

is I

Setting v = f%- equation 4.3.7 becomes

5

n I _ _
4.3.30 v(rh0 + ho) - hO v

Let

4.3.31 h0 = 00(v)k0(n) + 01(v)kl(n) + 02(v)k2(r) +
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Substituting equation 4.3.311Jnx>equation 4.3.30 and col—

lecting terms gives

0
I I II I ll

4.3.32 qu(nk0 + k0) + Va1(fik2'+ k2) + 002(fik2 + k2

+ ... = aoko + alkl + 012k2 + --- —~0

Without loss of generality we set 00 —

3
v . This gives the following problems

I

S Q
[
.
1

ll

< 0
.
!

:
3

0
.
.

Q

N

4.3.33 k0 - l = 0

lim ‘/ 'n k6('n) = 0

n40

4.3.34 fik; + k; = kr_l r > 0

lim ~Zfi k£(n) = 0

71-0

Solving equation 4.3.33 and 4.3.34 gives

4.3.35 k = 1

4.3.36 k = 0 r > 0

Since k0 cannot satisfy the boundary conditons near the

wall there must be an inner region near the wall. To ex-

amine the solution in the inner region let n = l — 0(v)1

and HO(X) = h0(n). Substituting these into equation 4.3.30

gives

4.3.37 -JL ((1 — 01)H6 — 0H6) = H - v
2 O

6

Let
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4.3.38 HO(X) = Yo(v)KO(x) + Yl(v)Kl(x) + Y2(V)K2(X) +

Substituting equation 4.3.38 into equation 4.3.37 and col-

lecting terms gives

_\)_ II II a _ II _ II _ II
4.3.39 62(Y0KO + YlKl + Y2K2 5YOxKO sylxKl 5Y2xK2

— ' -- ’ — ' u— ' o o o =

0Y21K2 E>YOKO bYlK1 0Y2K2 + ) Y0KO

+ YlKl + YZKZ + ... - V

Since in the outer region

4.3.40 h(n) ~ v

we see that we must set Y0 = v and hence that 5 = ~/C

This gives that the leading term of the inner expansion is

a solution of the following problem

'— -4.3.41 K — K.O 1

KO(O) O Ko(ao) = 1

Solving equation 4.3.41 gives

= _ ‘1
4.3.42 K0 1 e

3/2
Setting Y1 = v and Y2 = v2 we obtain the following

problems for K1 and K2

4.3.43 K” - K = 1K6 + K’
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I _ = II I

4.3.44 K2 K2 1K1 + K1

K2(O) = 0 K20») = 0

Solving equations 4.3.43 and 4.3.44 gives

=3.» - '14.3.45 K1 4(1 l)e

4 3 2
= :1. 2.1._§_23_-_L ‘7‘

4°3°46 K2 (32 + 16 32 32)8

Setting v = 4%- equation 4.3.8 for hl(n) becomes

s

4.3.47 “7111+ hl’) = hl - V(f0h0 - hofo')

Let

4.3.48 h l = Gb(v)k0 + al(v)k1 +

Since in the outer region h0 = v, substituting equation 4.3.49

into equation 4.3.47 and collecting terms gives

” I I I ... =4.3.49 Vaoh'iko + k0) + Va1(71‘1 + k1) + aoko + alkl

+ -v2(2-2n)

. _ 2 _ 3 . .
Setting db - v and 01 - v gives the follow1ng problems

for RC and k1.

4.3.50 k0 + 2 — 2n = 0

lim fl k6(n) = O

1140

II I =
4.3.51 nko + k0 kl

lim \/r-1 kihj) = 0

“do
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Solving equations 4.3.50 and 4.3.51 gives

4.3.52 RC: 2.1— 2

4.3.54 k = 2

Therefore in the outer region

4.3.54 hlm) ... (Zn - 2)\)2 + 203

To examine the solution in the inner region let Hl(x) = h1(n),

Hb(1) = ho(n), and Fo(x) = fo(n) 'where rx= l - x/5 X and

substitute into equation 4.3.42. This gives

4-3-55 (1 '- WMHf - J?) H1: H1 + J?) (F0116 — HOFO’)

Let

4.3.56 H(k) = Y0(v)LO(x) + Y1(V)Ll(1) + Y2(v)L2(X) +

Equation 4.3.3 gives

_ 2
4.3.57 Fo(k) — l - v1

Substituting equations 4.3.56, 4.3.57 and 4.3.38 into equation

4.3.55 and collecting terms gives

I _ I _ I I _ fl _ ’

4.3.58 YoLo + J; YO( 1L0 LO) + YlLl + J; yl( 1L1 L1)

p _ ’ ...:
+ Y2L2 + vf— Y2(—1L2L2) + YOLO + YlLl + yZL2

3/2K0 + v2w + 05/2(K2' — 3.21% + 211(0) ++...+ 1

Expanding the outer solution given by equation 4.3.54 in

inner variables gives



4.3.59

Since v3/2 and v

Y0: 3/2, Y1=V2 an

ing problems for LO,L

4.3.60

LO(O)

4.3.61 Li - L1

Ll(0) =

4.3.62 L5 - L2 =

L2(o) = 0

Solving gives

4.3.63

4.3.64 L1 =

4.3.65 L2 = ‘21 + e

Combining equations 4.

for large values of s

4.3.66 h(‘h) ~h0('n) +

150

hl ~ —2105/2

are both larger than v5/2 we set

d Y2 = 05/2. This gives the follow-

1 and L2

L6 — L0 = K6

= 0 Lo(m) = 0

= st + L6 + Ki

0 L1(w) = 0

K5 - xzxé + 21KO + xLi + Li

Lé(m) = -2

_ -1

L0 ='_L§—_

'3‘” -31‘°‘)e'x

3.5 and4.3.56 gives that near the wall

2

1"11) + vS/ZL ($13))
.__. 2 w/C3/2 1_-_-j 2

e(v LO(\/§ )+ vL1(
Vfl;

Again to examine the accuracy of this expansion the asymptotic

and exact values of the maximum skin friction at the wall,
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given by ‘h'(1)‘, will be compared. Differentiating

 

 

equation 4.3.66, evaluating at one, and using v = 12

in

gives

. 2
. 2 J (2 -1a )

4.3.67 h’(l) ~-¥{:%g: l 2 - e ( 814 +-—£§)

ia 00(2./-ia ) 64a 20

Table 4.3.2 compares the exact and asymptotic values of

‘h'(1)\ for a large value of a.

Table 4.3.2

2
a = 100.0

8 ‘h’(l)‘(Egn. 4.3.67) \h’(l)\(Exact)

0.00000 0.09825 0.09825

0.101 0.098 0.098

0.2044 0.0976 0.0976

0.4774 0.0967 0.0966

-0.02518 0.09834 0.09834

-0.03153 0.09836 0.09836

-0.18849 0.09889 0.09889

-0.34613 0.09943 0.09943

-O.81633 0.10105 0 .10106

As Table 4.3.2 shows the agreement between the asymptotic

and exact values in excellent. Comparing Tables 4.3.1 and

4.3.2 shows that for large values of a suction and in—

jection have very little effect on skin friction but that

for small values of a suction and injection have very

pronounced effects in skin friction.
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Consider now the case where f(n) is a Section II

or Section III solution. In this case it was shown that

f(n) had an expansion of the form

_ 14.3.68 f(n) _ e fO(n) +

where f0(n) is the solution of 3.3.11. Let

403-69 11(13): YO(€)hO(T‘) + Yl(€)hl(n) +

Substituting equations 4.3.68 and 4.3.69 into equation 4.3.1

and collecting terms gives

I! I l I ..._ 2 2

4.3.70 yo(rho + ho) + y1(fihl + hl) + — Yos hO + Yls hl

- 1 + Yo(-foh0 + hofé) + y1(-f0h£ + fohf) +

Without loss of generality we set 1. Thus unlike theY0 =

steady state component of velocity the pulsatile velocity com-

ponent remains finite as e 4»0. This gives the following

problem for the leading term of the expansion.

2

4.3.71 6145(6) + 115(6) = s 110(6) - 1 + h0(n)f6(n) - f0(n)h6(n)

lim Via h6(n) = 0 ho(l) = 0

n4)

In Section 3.3 it was noted that on the interval [0,n*], where

n* = 0.262, an approximate solution for f0(n) ‘was given by

4.3.72 fo(n) = an _ 3 + 3e-Bn

where B = 4.196
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Thus in the interval [0,n*] an approximate solution of

ho(n) is obtained by solving

2
4.3.73 7116+ 116 = s hO-l+ (B-BBe—Bn)hO-h6(f3n— 3+3e-BT‘)

v’h h6(n) = 0lim

rfiO

It was found that

l + BBe-Bn

S 2 + B S‘'4 __5‘2'
 

4.3.74 hp(n)

is a particular solution of 4.3.73. However no solution of

the homogeneous equation was found. Thus to solve equation

4.3.73 in the interval [0,n*] a power series was used.

The power series solution is given as follows:

k
Q

4.3.75 hem) = Z bkn

k=0

where bl = (s2 — ZB)bO - l; b is arbitrary,

 

o

(k+1)2b +b(Bk-32"B)+3L=O k21
k+l k k

k+1 r r

where 1"k = 21 bk+1—r (-1) BkaI-Zr)

r= '

In the interval [n*,l] h0(n) is a solution of 4.3.71 with

ho(l) = 0. If the inertial terms are neglected then in this

interval ho(n) satisfies

4.3.76 71‘0““) + ham) = 32h - 1

hO(1) = O
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The solution of 4.3.76 is given by

- _1_4.3.77 ho(n) - C1J0(28./E) + c2Y0(2B./E) + 82

where

l _
4.3.78 C1J0(2B) + C2Y0(2B) + ';-2- — O

and B = -32

This is a valid approximation near one since at one

the inertial terms are zero. But to find an approximation

valid on the interval [n*,l] the effects of the inertial

terms must be considered. This will be done by examining

the power series for ho(n) at one. Letting h6(1) = D

the power series solution of 4.3.71 expanded about one is

given by

2 3

4.3.79 hon.) = -0“... .. 1) _. 1.0.34.1. + ($2 + 2)(:ng'l)

4
5

(452 + mug—.li— + (1832 + s4 + 24) (——:1—“)

 

5|

6 2 3

" (9632 + 954 + 120)415%%l_._ 115%%1__+ ijgnl)

( ) ( 1)5 2
-(6+sZ)-D———+(24+652)_n____

(120+36S

6 4 5

4)§3—‘:T1)—]-0f0(1).(—“—4.1—)— + (401351) - 20f6’(1))ifl%:£—+
+ [f6(l)(-16D + Ds2 - 4 + f’0”(1) (12D - 2) - 3DfIV(1)](_n-1)6

+ Gun-n7]
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IV
” H

where fo(l), fo(l) and f0 (1) are computed from equation

3.3.13.

Expanding the approximate solution given by equation

4.3.77 in a power series about one gives

2

4.3.80 how) = -13(c1J1 (213) + c2Y1(ZB))((n-l) - (_n:2:_l.l_

+ (2 + 32)Ln—————-- (6 + 432)iIL____.+ (1852 + s4

6 2

+24)§-D——- (9632 +9s4+120)Ln—1—)'—"Ln;—11—)‘_

5

4.2—£11213- (6+52)§'fl—-—:1—4+(24+662)(—LL)—

31 5!

(120+ 3652 + s4)5—“t—L—+o[(n-1)7]

By comparing equations 4.3.79 and 4.3.80 and setting

4.3.81 D = B(C1Jl(23) + C2Y1(ZB))

an approximate solution of equation 4.3.71 on [n*,l] is

given by the following equation.

4.3.82 how) = ClJO(ZBx/?)) + CZYOQBx/E) + ":5 ‘ Df0(1)(n4:14)

2
5

+ (4Df6(l) - 2Df6’(l))§-n-§—:l-)— + [f6’(l)(-16D + Ds - 4)

6

+ fo”’(l)(12D - 2) - 3Df$v(1)]J—n—;+IL + o[(n-1)7]

The four unknown constants C1’ C2, b0 and D were deter—

mined from equations 4.3.81 and 4.3.78 and by requiring equa-

tion 4.3.75 and equation 4.3.80 and their first derivatives

agree at n*. For this procedure thirty terms of equation

4.3.75 were used.
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Table 4.3.3 tabulates the results obtained for

these constants for three different values of a.

Table 4.3.3

ReC Reb Imb ReD ImD

2 0 0

az==0.2 1.22 6.09 1.94 0.113 -0.402 -0.008 -0.380‘0.012

02==1.0 -0.051 2.18 1.82 0.546 -0.384 -0.039 -0.374 0.059

1 ImC1 ReC2 ImC

        az==100.0 -3760 7040 7040 3760 0.000 -0.005 -0.050 0.052

To examine the accuracy of these results the approximate

value of the maximum velocity at the center of the tube

given by ‘bo' will be compared with the exact values,

given by 1h(0)‘, for small amounts of injection or suc-

tion obtained from numerical integration. A similar com—

parison will be made between the approximate value of the

maximum skin friction at the wall given by |D| and the

exact values given by |h’(l)|. These comparisons are

contained in Table 4.3.4.

Table 4.3.4

02 = 0.2 a2 = 100.0

Ibo] = 0.402 \D) = 0.380 )bo| = 0.005 )0) = 0.072

e )h(0)) )h'(1)) |h(0)| )h'(1))

0.360 0.370 0.372 0.010 0.097

0.056 0.399 0.386 0.010 0.098

-0.091 0.415 0.390 0.010 0.099

-0.344 0.445 0.390 0.010 0.100
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From Table 4.3.4 it is seen that the accuracy of the approx-

imation is fairly good for small values of a, but decreases

for large values of a. To increase the accuracy of this

approximation three things can be done. First more accurate

values of B and n* 'must be obtained. As Terrill and

Thomas [24] pointed out there is a 3% error in their evalu—

ation of B. Secondly more terms in the series in equation

4.3.82 would have to be calculated. Thirdly more accurate

values for f6(l), f6(l), fév(l), ... would have to be

found by computing more terms in equation 3.3.13.

In this section we have obtained asymptotic solutions

in the case of small injection and suction and have compared

these solutions with the exact solutions obtained by numer-

ical integration. In the case of Section I solutions good

agreement was found between the asymptotic and exact values.

In the case of Section II and Section III solutions the

agreement was not as good since only an approximate solution

could be obtained for the leading term of the expansion.

2
Also it was observed that for large values of s suction

and injection have very little effect on pulsatile flow.

Section 4.4. Asymptotic Solutions for Large Suction

In this section asymptotic solutions for large suction

for the Section IV(ii) and Section V(ii) solutions will be

discussed. No asymptotic solutions can be obtained for the

Section IV(i) and Section V(i) solutions since none have
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been obtained for the respective steady state components

of velocity. Any information about these solutions will

have to be obtained from the numerical results given in

Section 4.l. Letting e = R/2, where 6 << 1, the problem

for this case has the following formulation.

4.4.1 6(nh"<n) + h'(n)) +'h(n)f’(n) - f(n)h'(n) - eSthTfi== -€

lim .5 h'm) = 0 11(1) = 0

n40

In Section 3.4 it was shown that the Section IV(ii) and

Section V(ii) steady state solutions have a boundary layer

of width 6 at the wall. It was shown that if exponentially

small terms were neglected in matching the inner and outer

expansions that both solutions were asymptotic to the same

series. Using this series a solution for equation 4.4.1

will be sought which is also asymptotic to both the Section

IV(ii) and Section V(ii) solutions for the unsteady component

of velocity. In Section 3.4 it was shown that in the region

near the center of the tube the Section IV(ii) and Section

V(ii) solutions for the steady state component of velocity

were both asymptotic to the following series.

4.4.2 f(n) = fo(n) + ef1(n) + 62f2(n) +

where

4.4.3 a) fo(n) = n b) f1(n) = n C) f2(fi) = 3n
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4.4-4 h(rfl = Yo(e)ho(n) + Y1(e)h1(rfl + Y2(8)h2(n)'+

Substituting equations 4.4.4 and 4.4.2 into equation 4.4.1

and collecting terms gives

N I W I 4” I

4.4.5 eYb(rhO + ho) + eYl(fihl + hl) + 6Y2(fih2 + hz)

+

0 2

I_ I I_ I p_ I

Y0(h0f0 foho) + Yl(hlfO thl) + Y2(h2fO f h

1 2

2)

_ l _ I _ I

+ emo(ffho flho) + eYl(f£hl flhl) + eY2(ffh2 f h

+ €2Y0(h0f2’ - £2116) + eYl(h1f2' - fzhl') + 62Y2(f2'h2 — 112':-

2 2 2 _
- eYos ho - eYls hl - est hz + ... _ _e

As in the case of large injection the leading term in the

outer region near the center of the tube is determined by

the relative sizes of Y0, eszyo, and c. This gives again

the following three cases to consider. 1) a: = cs2 = 0(1)

2) es2 << 1 3) 332 >> 1. By using the same arguments

as for large injection it can be shown case 2 is included

in case 1. Thus only case 1 and case 3 need to be examined.

Let us consider first the case where as2 = a: = 0(1). For

this case we must have Y0 = e- Since the higher order

terms must include the effects of the lower order viscous

terms we set, without loss of generality, Y1 = 02 and

Y2 = 63. This gives the following problems for hO’hl’ and

h2.

4.4.6 h f’ - f h’ — azh = 1
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2I I I_ I :_ r_ =
4.4.7 The + hO + hofl flhO + hlfo fohl aohl 0

lim fa hl'(n) = 0

71-00

’ + h f’ - f h’ + h f’ - f h’
I r l _

4.4.8 fihl + h + h f th2 1 1 1 l 0 2 2 0
1 2 0

2 _
- aoh2 — 0

lim J; 115(7)) = O

1140

Solving equations 4.4.6, 4.4.7, and 4.4.8 gives

 

 

4.4.9 h = 1
0 a2 _ 1

0

4 4 10 h = 1
° ° 1 (a2 _ 1)2

0

3a: — 2

4.4.11 h2 = 2 3

(a0 - 1)

Therefore in the outer region we have

  

2 (3a: - 2).3

4.4.12 h(r9 ..-——£—— + 6 +
2 2 2 2 3

a0 - 1 (a0 - 1) (a0 - 1)

To examine the solution in the inner region at the wall let

H(x) = h(rfi and F(x) = f(n) where r)= l - ex. Substi-

tuting these into equation 4.4.1 gives the following problem

in the inner region:

4.4.13 (1 - ex)H'(X) - eH’(x) + F(X)H’(x) - H(1)F(x)

- eagH(X) = -62

H(O) = 0
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In Section 3.4 it was shown that in this region the Section

IV(ii) and Section V(ii) steady solutions were both asymp-

totic to the following series:

2

4.4.14 F(1)= FO(1)+ eFlU.) + 6 F20.) +

where

4.4.15 a) FO()) e 1 b) Fl(1) = 1 - 1 - e"1

c) F2(1) = 3 - x - (21 + 3)e-1

Let

4.4.16 Hm = vowmom + 9109810) + 92091120) +

Substituting equations 4.4.14 and 4.4.16 into equation 4.4.13

and collecting terms gives

I I _ I I I _ I I
4.4.17 vb(HO + Fpo HOFO) + vl(Hl + FOHl HlFO) + v2(H2

2
I _ I _ II _ I _

+ F H H F0) + evo( XHO H a0
I _ I

0 2 2 0 H + F H H Fl)
0 1 0 0

_ I_ (_2 I_ I _ II__ I

+ €V1‘ m1 H1 aOHl + F1H1 H1F1) + €V2‘ >~H2 H2

2 I _ I 2 I _ I 2

a032 + F132 H2F1) + e V'0‘F230 Hon) + e v1(F231'

2
HlFé) + €242(ané - HzFé) + .-- = -e

Expanding the outer solution given by equation 4.4.12 in

inner variables shows that V0 = a, v1 = 32, and v2 = 33.

This gives the following problems for HO,H1 and H2:
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# I _ I =

H (0) = o H (.) = 1
0 0 a2 _ 1

O

H (0) = O H (a) = l
1 l 2 2

(a0 - 1)

l I _ I _ I - I _ 2 I _ I
4.4.20 H + F H HOFO m1 H a H + F H HlFl

 

2 0 0 l 0 1 1 1

I _ I =
+ FZHO HOF2 0

3a: - 2

H2(0) = O H2(o) = 2 3

(a0 - l)

The condition at infinity comes from matching the inner and

outer solutions. Solving equations 4.4.18, 4.4.19, and

4.4.20 we obtain

  

 
 

 
 

4.4.21 H = ———l——-(1 — e'*)
0 a2 _ 1

0

2

(a - 2) _ _

4.4.22 H1 = g 1e 1 + 2 1 2 (1 - e 1)

(a - 1) (aO - 1)

((a3 - 2)2 + 3) 12 (2a2 - ine"x
_ ‘1 0

4.4.23 H - 0—— + x)e +

2 (1 _ a2) 2 (a2 _ 1)2

0 o

2 2 *1

a0 ‘21 -X (3aO - 2)(l - e )

+ 2 (e - e ) + 2 3

2(ao - 1) (a0 - 1)

The accuracy of these expansions will be examined by comparing

the asymptotic values for the maximum velocity at the center
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of the tube, given by |h(0)‘, and the maximum skin friction

at the wall, given by ‘h’(l)‘, with the exact values com-

puted from numerical integration for both Section IV(ii)

and Section V(ii) solutions. Substituting equations 4.4.21,

4.4.22, and 4.4.23 into equation 4.4.16, setting 1 =-l£LD ,

differentiating, and evaluating at one gives

  

  

1 2 _ as 1 2 (1 - Zag)

4.4.24 h’(1) ~—-——2-+g(-T——- 2 2)+ €( 2 2

1 - a0 a0 - 1 (a0 - 1) (a0 - 1)

((a3 - 2)2 + 3 + a3) (2 - Bag)
.1.

+ )

(a2 - 1) (a2 - 1)3
O O

The comparison between the exact and asymptotic values for

‘h(0)| and |h’(1)\ are contained in Tables 4.4.1 and 4.4.2

respectively.

Table 4.4.1

|h(0)|(Egn. 4.4.12) ‘h(0)‘(Exact)

e az=0.2 02:100.0 02=0.2 02:100.0

0.037 (IV(ii)) 0.036 0.010 0.036 0.010

0.049 (IV(ii)) 0.047 0.010 0.048 0.010

0.0576(Iv(ii)) 0.0539 0.010 0.0592 0.010

0.0680(Iv(ii)) 0.0628 0.0099 0.0881 0.0099

0.0738(IV(ii)) 0.0675 0.0099 0.1416 0.0100

0.044 (V(ii)) 0.042 0.010 0.042 0.010

0.0626(V(ii)) 0.0582 0.010 0.0545 0.010

0.0819(V(ii)) 0.0741 0.0099 0.0664 0.0099

0.0920(v(ii)) 0.0820 0.0099 0.0729 0.0099

0.1140(V(ii)) 0.0980 0.0100 0.0876 0.0099
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Table 4.4.1(cont'd.)

O.1373(V(ii)) 0.1133 0.0100 0.1044 0.0100

0.1794(V(ii)) 0.1356 0.0100 0.1357 0.0100

0.2067(V(ii)) 0.1463 0.0100 0.1509 0.0100

0.2184(V(ii)) 0.1498 0.0100 0.1415 0.0100

Table 4.4.2

lh’(l))(Egn. 4.4.24) )h’(l))(Exact)

e 02=0.2 02:100.0 02:0.2 02:100.0

0.037 (IV(ii)) 0.876 0.244 0.889 -—

0.049 (IV(ii)) 0.832 0.195 0.952 0.195

0.058 (IV(ii)) 0.801 0.179 1.158 0.177

0.0680(IV(ii)) 0.7588 0.1724 2.3077 0.1593

0.0738(IV(ii)) 0.7350 0.1740 4.6948 0.1510

0.044 (v(ii)) 0.851 0.212 0.806 --

0.063 (V(ii)) 0.781 0.174 0.595 0.169

0.082 (V(ii)) 0.701 0.181 0.444 0.148

0.092 (V(ii)) 0.656 0.198 0.402 0.141

Several things should be noted about these comparisons.

Since the numerical technique used required integrating into

a boundary layer for these solutions we were unable to obtain

accurate exact solutions for small values of 6 especially

2
at large values of a . Thus relatively large values of 6

were used in making the comparison. However the comparisons

made in Tables 4.4.1 and 4.4.2 still ShOW'the series obtained
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is asymptotic to both Section IV(ii) and Section V(ii)

solutions. The discrepancies between the series solution

and the exact solution for small a? and relatively large

8 is due to ignoring the exponentially small terms in matching

the inner and outer solutions. The discrepancies between the

series solution and the exact values for large 02 and large 8

is due to the fact that esz is no longer of order one.

Let us consider now case 3 when cs2 >> 1. In this

case we must set Y0 = 4%- and therefore the leading term

8

satisfies the following:

4.4.25 h = 1

lim fl h"('n) = 0

THO

Since h cannot satisfy the boundary condition at the wall
0

there must be an inner region near the wall. To examine

the solutionsin this region let v =~J% , 7‘: 1 — 5x, H(l) =

s

h(n), and F(x) = f(n) ‘Where 5 is the width of the bound-

ary layer. Substituting these into equation 4.4.1 we obtain

44% van-ovfl9l-%wun+§mumwm-Fwnmn
6

- HH(1) = -ev

Let

4.4.27 H(x> = HOHO(1) + piH1(l) +

and
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4.4.28 PM.) = GOFOU.) + alFlm +

Substituting equations 4.4.27 and 4.4.28 into equation

4.4.26 and collecting terms gives

 

 

veuo vcul ' ulve

—_ .. m l ’ .. __ I I
4.4.29 62 Ho + 62 H1 6 (1110 + HO) 6 (XHl + H1

W0‘3‘1_ . I _ I
3620000 (FOR quO) + 6 (1161“l FlHO)

W1‘30 , vulal , ,

+ 0 (HlFO ' H1F0) + 0 (HlFl - HlFl) - €”°H°

- gull-11 + . . . = “CV .

Since in the outer region

4.4.30 h(n) ~ V

we have that yo = v and from equation 4.4.14 we have

ab = l. The equation for the leading term in the inner

2

expansion depends on the relative magnitude of -¥—§ ,-%;

,6

and cv. This leads us to consider the following three

2 2 2 2
cases: 1) e v << 1. 2) e v = a0 = 0(1). 3) e v >> 1.

As before case one is included in case 2. Let us examine

now case 2 where ezv = a: = 0(1). In this case we must

have 5 = e and that the leading term in the inner region

is the solution of the following problem:

1 l I 2

HO(0) = O Ho(ao) = 1



167

Since F0 2 1 this becomes

a , _ 2 = 2
4.4.32 HO + H0 aOHO aO

110(0) = 0 HO(00) = 1

Solving equation 4.4.32 we obtain

4.4.33 H = l - e

where

4.4.34 D=-%_—(1 + ./1+4a(2))

Therefore in this case we have that near the wall

“DU-n)

4.4.35 hm) ~ v(1 - e e )

 

Let us examine now case 3 where 320 >> 1. In this

case we must set 5 = ~/;. This gives the leading term of

the inner expansion as the solution of the following problem:

”— =—4.4.36 HO Ho 1

HO(O) = 0 a
:

O

E
, l

1.
..

:

Solving equation 4.4.36 gives

4.4.37 H = 1 — e’)

Therefore in this case we have that near the wall

.n;_1.

4.4.38 'h(n) ~ v(l - e‘/-v )
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This expansion shows the annular effect does occur for

large values of suction but does not become important

until e232 >> 1. To examine the accuracy of the above

expansions we will compare the asymptotic values of the

maximum skin friction at the wall, given by )h’(l)‘,

with the exact values. Differentiating equation 4.4.33,

evaluating at one, and using equation 4.4.34 we obtain

  

I .22
4.4.39 h (1) ~ 26 (1 + l-tao)

Using v =-J% , s2 = iaz, and as = 520 and separating

8

real and imaginary parts equation 4.4.39 becomes

. 2 .

4.4.40 1_1,(1)Nrs1n9/ + 1L1 + rcos 6/2)

2.30:2 2.;c:2

where

1/4

4.4.41 r = (1 + 1654(14)

and

_ 2 2
4.4.42 9 — Arctan (46 a )

Differentiating equation 4.4.38, evaluating at one, and

using v =-l§, ‘we obtain

id

2 .
4.4.43 h’(l) ~ - 3%; (1 - 1)

Table 4.4.43 compares the asymptotic and the exact values

of )h’(1)\ for a large value of a.
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Table 4.4.3

02:100.0

)h’(l)) )h’(l)| )h’(l)]

e €2a2 (Eqn. 4.4.39) (an. 4.4.43) (Exact)

0.0738 (IV(ii)) 0.5446 0.1660 0.1000 0.1510

0.07824(IV(ii)) 0.61215 0.16097 0.10000 0.14580

0.08425(IV(ii)) 0.70981 0.15563 0.10000 0.14014

0.092 (V(ii)) 0.848 0.149 0.100 0.141

0.11399(V(ii)) 1.29937 0.13760 0.10000 0.13180

0.13731(V(ii)) 1.88537 0.13006 0.10000 0.12539

0.17943(V(ii)) 3.21956 0.12208 0.10000 0.11840

Because of difficulties in obtaining accurate

tions for large values of oz, in Table 4.4.3

able to make a limited comparison between the

asymptotic values. However Table 4.4.3 still

numerical solu-

we were only

exact and

does show that

there is good agreement between the asymptotic solutions in

their range of validity and the exact solutions.

In this section we were able to obtain a series which

was asymptotic to both the Section IV(ii) and Section V(ii)

solutions and differed from them by exponentially small terms.

These exponentially small terms were not included in the

expansion because, as noted previously, these terms were

and small a?

602 >> 1

important only for relatively large a and

‘were unimportant if e was small or and because

the equations involved in obtaining these terms were quite
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complex. We were also able to show that the annular effect

does occur for large suction but only if 3202 >> 1.



CHAPTER.V

DISCUSSION

Section 5.1. Summary and Comments.

In this section the preceding work will be reviewed

and the results summarized. The problem that has been

treated is the effect of suction and injection on pulsatile

flow in a tube. It was shown that the system of partial

differential equations governing the flow could be reduced

to a system of two ordinary differential equations. It

was observed that the equation for the unsteady component

of velocity was coupled to the equation for the steady com-

ponent of velocity, but not conversely. Thus we were able

to examine the two equations separately. The solutions of

the equation for the steady component of velocity were

studied and it was shown that for injection and small suction

two solutions were possible for each crossflow Reynolds

number, while for large suction four solutions were possible,

and that for R = 4 no solutions were possible. The quali-

tive behavior of all the possible solutions was also given.

The equation for the steady component of the velocity was

then integrated numerically and all the theoretically pos-

sible solutions were found including two solutions for large

171
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suction which had not previously been reported. The asymp-

totic solutions for large and small crossflow Reynolds number

for the steady component of velocity were rederived and ex—

amined in the light of the theoretical results obtained.

We were able to show that in the case of large injection

there could be no boundary layer at the wall and that in

the case of large suction there could be no boundary at the

center of the tube. By examining the diffusion of vorticity

in the flow this phenomena would be expected but it has not

been shown mathematically that it does occur for the tube.

Also it was shown that for large suction there is no regular

perturbation solution as there is in the case of large in—

jection. But we were unable to obtain any asymptotic solutions

for the two new large suction solutions we found.

Having examined the solutions for the steady component

of velocity we were able to study the solutions for the un-

steady component of velocity. Before proceeding with this

discussion we would like to again point out that, due to lin—

earity of the equation for the unsteady component of velocity,

although only a sinusoidally varying pressure gradient was

examined the results will be applicable to any time dependent

pressure gradient that has a Fourier series expansion. Using

the previously obtained solutions for the steady component

of the velocity numerical solutions were obtained for the

unsteady component of velocity. These solutions were used

to examine various aspects of the effects of suction and
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injection on the flow and the following results were found:

1) Injection decreases the maximum skin friction at the

wall while suction could result in either increasing or

decreasing it. 2) The phase lag of the velocity profile

and the skin friction at the wall relative to the pulsatile

pressure gradient is decreased by injection but could be

increased or decreased by suction. 3) The annular effect

still occurs for both suction and injection. 4) Suction

can cause resonance like effects for small frequency pul-

satile pressure gradients. Also asymptotic solutions were

found for the unsteady component of velocity. The results

were compared with the numerical solutions and the agree-

ment was generally found to be good.

Section 5.2. Final Considerations.

In this section we discuss the aspects of our present

problem which should be considered further and the assumptions

about the flow that would be interesting to modify and study.

The facets of our present problem which should be examined

further come under the two broad headings of analytical and

numerical problems. The analytical problems that would be

interesting to examine further are the following: 1) In the

case where a = g’(0) > 0 and B = g'(0) < 0, what conditions

on a and B ‘will guarantee g’(g), where g(g) is the

solution of equation 1.3.4, have exactly one or exactly three

zeroes. 2) What is the relationship between the magnitude

of a and B and the resulting value of R obtained.
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3) What can be said about the zeroes of g’(§) if weaker

assumptions are made about the solutions of equation 1.3.4

sudh as not assuming g(g) is analytic at zero. 4) Are

there any eigenvalue solutions of equation 1.2.13 if f(n)

is not a Section I injection solution. 5) Whether asymp-

totic solutions can be found for the Section IV(i) and

V(i) solutions. 6) How the inclusion of exponentially

small terms modify the asymptotic expansion obtained for

the Section IV(ii) and Section V(ii) unsteady component

of velocity. 7) Why resonance like effects occur for small

frequency pulsatile pressure gradients at certain values of

suction. The main numerical problem that needs further con-

sideration is how to modify the numerical technique used

to obtain more accurate solutions for the unsteady component

of velocity for large suction.

Although there are many possibilities for varying

the assumptions about the flow, we discuss here only the

following three which are of particular interest or impor-

tance: l) The introduction of an angular velocity component

into the flow. Terrill and Thomas [25] have already shown

the angular velocity component has some marked effects on

the steady component of the flow in a uniformly porous tube.

It would be interesting to examine how the unsteady component

is effected. 2) The walls are not uniformly porous. A steady

flow of this type'has been discussed by Kozinski, Schmidt, and

Lightfoot [£3]. The problem for unsteady flow in this case
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would be important for studying dialysis in the kidney.

3) The density is not constant. Unsteady flow in this

case would be especially important to examine for its

application to filtration problems.



APPENDIX A

COMMENTS ON STEADY FLOW IN A UNIFORMLY POROUS CHANNEL

Section A.1. Introduction.

In Section 1.1 it was noted Berman [2 ] was able

to reduce the system of partial differential equations gov-

erning flow in a uniformly porous channel to an ordinary

differential equation. Berman and others examined the

solutions of this equation for various values of the cross—

flow Reynolds number R, where R.= ¥§- and where V is

the velocity at which the fluid is being injected or ex-

tracted from the t0p and bottom of the channel, d is

one-half the width of the channel, and v is the viscosity

of the fluid. The case of R negative indicates injection

while the case of R positive indicates suction. Until

1970 only one solution for eadh crossflow Reynolds number

had been reported. However in that year Raithby [16] re—

ported obtaining numerically a second solution for large

suction. Since for the tube problem, none, two or four

solutions are possible for a given crossflow Reynolds

number, it is of interest to examine the number of solutions

possible for the channel problem.
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Consider flow in a long two dimensional channel

from whidh fluid is being extracted or into which fluid

is being injected at the same rate at top and bottom.

(See Figure A.l.l). As in the case of the tube we assume

the flow is laminar, the walls are uniformly porous, the

flow is fully developed, and the density is constant.

Under these assumptions the Navier-Stokes equations be-

come :
T
H
H

'
o
h
a

px +-\Nux + u )A.1.1 uu + vu =

X Y X YY

+ vv + v + vuvx p v( x )

Y X YY

and the equation of continuity becomes

The boundary conditions are

A.1.3 u(x,:d) O v(x,0) = O

v(x,id) 1V uy(x,0) = 0

Since the flow is assumed to be fully developed v will

be a function of y alone. This allows us to obtain from

equation of continuity, equations of the following form

for the velocity components:

Vx

A.1.4 u=-'E-f'('n) +u0('n)

A.1.5 v = Vf(n)

where r]: y/d.
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Substituting equations A.1.4 and A.1.5 into the Navier-

Stokes equations and applying the boundary conditions

gives

A.1.6 f’” + R(f’2 -- ff”) = k

f(0) = O f(1) = l

f'(0) = 0 f’(l) = 0

A.1.7 us + R(uof’ - uéf) = 2

116(0) = 0 110(1) = 0

where k and L are constants determined from the pressure

gradient. A particular solution of A.1.7 is obtained by

setting

A18 u()=—&-f'(n).. on k .

As in the case of the tube all other solutions of this

equation may be considered as eigenvalues solutions. There—

fore the important equation for describing flow in a uniformly

porous channel is equation A.1.6 and the solutions of this

equation are the ones we will examine here.

Using equations A.1.4, A.1.S and A.1.8 we get that

the shear stress or skin friction at the wall is given by

= 2135 _L
A.1.9 Txy pv(d2 +-kd)f~(1).
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Section A.2. Completeness of the Problem of

Steady Flow in a Uniformly Porous Channel.

By making the transformation

_ b
A.2.1 f(n) -Eg(§)

where x = bn equation A.1.6 becomes

2

A.2-2 9’”(§) + 9' (5) - 9(§)9”(§) = K

A.2.3 a) g(O) = O c) bg(b) = R

b) g”(0) = 0 6) g’(b) = 0

where K =.§§ .

0
'

Since the transformation given by equation A.2.1

is nonsingular and from equations A.2.2 and A.2.3 it is

seen that solutions of equation A.1.6 can be examined by

studying the zeroes of g’(§) for the solutions of the

following initial value problem:

A.2.4 g” = g”g - 9:2 1 K

a) g(O) =0 c) g’(0) =0 e) K=3+02

b) g”(0) = 0 6) 9'(0) = B

where a and B are non—zero real constants.

In the following discussion of this equation it will

be assumed gv(§) is continuous.
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Differentiating equation A.2.4 twice gives

A.2.5 gIV = 9”9 - 9'9”

v 2

A.2.6 g = gIVg — 9'

Theorem A.2.1. For any solution g(g) of equation A.2.4

g"(§) is a decreasing function of g.

Proof: It is sufficient to show gIV(§) g 0 for all §.2 0.

Let c'2 0 be any point such that gIV(c) = 0. Then, by

equation A.2.6, gV(c) = -g'2(c) 3:0. Therefore at any point

that gIV is zero its lepe is zero or decreasing. There-

fore since gIV(O) = O, gIV(§) g 0 for all g 2:0. Q.E.D.

Theorem A.2.2. If g’(O) = a < O and gMKO) = B < 0 then

for any solutions g(g) of equation A.2.4 g’(g) < 0 for

all g.2 0.

Proof: Since g”(O) < 0 and by Theorem A.2.1 g'(§) is

decreasing and concave down for all §.2 0. Since g'(O) =

0, g’(g) is also decreasing and concave down for all §.2 0.

Thus since g’(0) < O, g’(§) < 0 for all g 2:0. Q.E.D.

Theorem A.2.3. If g'(0) = a.> 0 and g“(0) = B > 0 then

for any solution g(g) of equation A.2.4 g’(g) has one and

only one zero. See Figure A.2:l. for a qualitative description

of this solution.

The proof will be contained in the following two lemmas.

Lemma A.2.1. In this case g’(§) has at least one zero.
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Figure A.2.1.

The solution of equation A.2.2. for CL>O and

fl>0. The concavity of g'"(§) is undetermined.
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Figure A.2.2.

The solution of equation A.2.2. for a>0 and

B<O. The concavity of g‘"(§) is undetermined.
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Proof: Suppose g’(§) > 0 for all g 2.0. Then since

g(O) = 0, g(g)'2 O for all g 2,0. Since gIV(§) = 0 for

all g.2 0 by Theorem A.2.1, gV(§) = 91V(§)9(§) - 9'(§)2 g 0

for all g 2,0. Therefore g”(§) is decreasing and concave

down for all §.2 0. Hence g'(§) must cross the g-axis.

This would make g'(g) decreasing and concave down and thus

g'(g) must cross the g—axis. This in turn makes g’(§)

decreasing and concave down and thus it too must cross the

g—axis. This contradicts the assumption g’(§) > 0 for all

gIZ 0. Therefore there is a point b such that g’(b) = 0.

Q.E.D.

At b g(g) and its derivatives have the following properties

g(b) > 0 g’(b) = O g”(b) < 0 9”’(b) < 0

By equation A.2.3c this gives R > 0. The solutions of

equation A.1.6 corresponding to this zero will be designated

a Section II(ii) solution. By equation A.2.4e we have also

that in this case K > 0.

Lemma A.2.2. In this case there are no further zeroes of

g’(§).

Proof: Since g”(b) < O, g'(b) < 0 and by Theorem A.2.1

g”(g) < 0 for all g‘z b. Therefore since g’(b) = 0,

g’(g) < 0 for all g 2 b. Q.E.D.

Theorem A.2.4. If g’(0) > 0 and 9‘10) < 0 then for any

solution g(g) of equation A.2.4 g’(§) has exactly one zero.

See Figure A.2.3 for a qualitative description of this solution.
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Proof: Since 9‘10) < 0 and by Theorem A.2.1 g”(§) < 0

for all 5.2 0. Thus since g'(0) = 0, g'(§) < 0 for

all g > 0. Hence since g’(0) > 0 and g’(g) is de-

creasing and concave down there is a point b such that

g'(b) = 0. That g’(§) has no further zeroes follows by

the same arguments as used in the proof of Lemma A.2.2.

Q.E.D.

At b g(g) and its derivatives have the following properties.

g(b) > O g’(b) = O g”(b) < O gMWb) < 0

By equation A.2.3d this gives R > 0. The solution of

equation A.1.6 corresponding to this zero will be designated

a Section I solution for suction.

Theorem A.2.5. If g’(0) < O and g”(0) > 0 then for any

solution g(g) of equation A.2.4 g’(§) has two zeroes.

See Figure A.2.3 for a qualitative description of this case.

This theorem will be proven by a series of lemmas.

Lemma A.2.3. In this case there is a point c such that

g”(c) = 0.

Proof: Suppose g”(g) > 0 for all g‘z 0. Then since

9"(0) = o, g'(§) 2 0 for all g 2 0. Thus g'm is in-

creasing and concave up for all §.2 0. Thus g’(§) must

cross the g—axis making g(g) increasing and concave up.

Hence g(g) must also cross the §-axis. This gives then
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Figure A.2.3.

The solution of equation A.2.2.f0r a<0 and

B>O. The concavity of 9"(5) is undetermined.
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v_ IV ,2 . ,, .
that g - g g - g < 0. Thus making 9 (g) decreas1ng

and concave down. Hence g"(§) must go negative. This

contradicts the assumption g”(g) > 0 for all g.2 0.

Therefore there is a point c such that g”(c) = O. Q.E.D.

Lemma A.2.4. There is a point a < c such that g’(a) = 0.

Proof: Since at c g"(c) = 0, equation A.2.5 gives gIV(c) =

-g’(c)g'(c). Since g'(c) >.0 and gIV(c) < 0, g’(c) >.0.

Thus since g’(0) < 0 there is a point a < c such that

9’(a) = 0. Q.E.D.

At a g(;) and its derivatives have the following properties.

9(a) < 0 'g’la) = O g”(a) > O g”’(a) > 0

By equation A.2.3c this gives R < 0. The solution of equation

A.1.6 corresponding to this zero will be designated a Section

I solution for injection. By equation A.2.4e we have also

that in this case K > 0.

Lemma A.2.5. There is a point b > c such that g’(b) = 0.

Proof: Since at c g”(c) = 0 and by Theorem A.2.1 g"(§) <

O for all g > c. Therefore g'(§) is decreasing and con—

cave down and hence must cross the g—axis. This in turn makes

9’(g) decreasing and concave down. Hence there must be a

point b > c such that g’(b) = 0. Q.E.D.

From equation A.2.5 we have that at b gIV(b) = g”(b)g(b).

since gIV(b) < 0 and ngb) < 0 we have g(b) 2 0.
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Therefore at b g(g) and its derivatives have the fol—

lowing properties.

g(b) > 0 g’(b) = 0 g'(b) < 0 9"(16) < 0

By equation A.2.3c this gives R > 0. The solution of

equation A.1.6 corresponding to this zero will be designated

as a Section II(i) solution. In this case as above we also

have K > 0.

Lemma A.2.6. There are no further zeroes for g'(x).

Proof: The same as for Lemma A.2.2.

Section A.3. Numerical Results.

Numerical solutions were obtained for equation A.1.6

by a method similar to that discussed in Section 2.1. These

results are summarized by plotting -f'(l), which, as shown

by equation A.1.9, is proportional to the skin friction at

the wall. Only one solution was found for R < 12.2 but

three solutions were found for R.2 12.2. The Section I

solutions have been found previously and discussed exten-

sively in the literature and the Section II(ii) solution was

found numerically by Raithby [16]. The Section II(i) solu-

tion has not been reported previously in the literature.

The characteristics of each solution will be discussed

briefly here.
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Axial velocity profiles for SectionI solutions.
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1) Section I solutions (—m < R < a). In Figure A.3.2

several axial velocity profiles of Section I solutions are

graphed. The Section I solutions are all well behaved and

exhibit no reverse flow. These solutions are in many ways

similar to the Section I and Section IV(ii) solutions for

steady flow through a uniformly porous tube.

2) Section II(i) solutions (12.2 < R < a). Several axial

velocity profiles for these solutions are given in Figure

A.3.3. For this case there are two solutions for 12.2 <

R < 13.1. These solutions exhibit a region of reverse flow

near the center of the channel.

3) Section II(ii) solutions (13.1 < R < e). Several axial

velocity profiles for this case are given in Figure A.3.4.

These solutions exhibit no reverse flow but do have an in-

flection point. It should be noted that as R 4-+c the

Section II(ii) and Section I solutions approach the same axial

velocity profile. This behavior is very similar to the case

of Section IV(ii) and Section V(ii) solutions for steady flow

in a uniformly porous tube. Also as R 4 13.1 the Section

II(i) and Section II(ii) solutions approach the same axial

velocity profile.
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