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ABSTRACT 

TWO ESSAYS ON EDUCATIONAL RESEARCH: (1) USING MAXIMUM CLASS 
SIZE RULES TO EVALUATE THE CAUSAL EFFECTS OF CLASS SIZE ON 

MATHEMATICS ACHIEVEMENT: EVIDENCE FROM TIMSS 2011; (2) POWER 
CONSIDERATIONS FOR MODELS OF CHANGE 

By 

Wei Li 

This dissertation is a collection of two essays that address issues of class size effects 

on student achievement and power analysis methods for model of changes. 

Class size reduction policies have been widely implemented around the world in the 

past decades. However, findings about the effects of class size on student achievement have 

been mixed. In addition, most of the studies about class size effects have focused on the 

effects on the average achievement for all students. Only a few studies have focused on the 

differential class size effects across the student achievement distribution, and their findings 

have been mixed. The first essay (Chapter 1 and Chapter 2) was designed to evaluate class 

size effects on student achievement. In particular,  Chapter 1 employed instrumental 

variables (IV) methods to examine the causal effects of class size on fourth grade 

mathematics achievement using data from TIMSS (Trends in International Mathematics 

and Science Study). While I found some evidence of class size effects in Romania and the 

Slovak Republic, overall there were no systematic patterns of class size effects. The results 

indicate that in most European and Asian countries class size reduction may not improve 

mathematics achievement in fourth grade.  

The first essay also evaluated the differential class size effects across mathematics 

achievement distribution. In particular, Chapter 2 employed quantile regression analysis, 

coupled with instrumental variables methods, to examine the causal effects of class size on 

 
 



fourth grade mathematics achievement. While I found some evidence of quantile-specific 

class size effects in Romania and the Slovak Republic, overall there were no systematic 

patterns of class size effects. What is more, there was no evidence to show that high- or 

low-achievers benefited more from smaller classes. The results indicate that in most 

European and Asian countries class size reduction may not increase or reduce the 

achievement gap between low- and high-achieving students in fourth grade. 

The second essay of this dissertation (Chapter 3) was designed to provide methods for 

three-level models in studies of polynomial change. Experiments that involve nested 

structures often assign entire groups to treatment conditions and follow them over time to 

assess group differences in the average of change, rate of acceleration, or higher degree 

polynomial effect. Chapter 3 provide methods for power analysis in three-level polynomial 

change models for cluster randomized designs (i.e., treatment at the third level) and block 

randomized designs (i.e., treatment at the second level). Both unconditional models and 

conditional models that include covariates at the second (e.g., student) and the third (e.g., 

school) levels are discussed. The power computations take into account nesting effects at 

the second and at the third level, the duration of study, sample size effects (e.g., the 

numbers of schools and students), and covariates effects. Chapter 3 also provided 

illustrative examples to show how powers are influenced by the study duration, sample 

sizes and covariates at the second and the third level. 
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INTRODUCTION 

This dissertation is a collection of two essays that address issues of class size effects 

and power analysis method for model of changes in longitudinal randomized control trails. 

The first essay (Chapter 1 and Chapter 2) focused on the effects of class size on fourth 

graders mathematics achievement. Many countries have recently enacted class size 

reduction policies. Mixed research findings leave policy makers, practitioners, and 

researchers wondering if class size reduction policy is an effective way of improving 

student achievement. Chapter 1 addresses the effects of class size on student average 

achievement. Specifically, Chapter 1 investigated the effects of class size on mathematics 

achievement for fourth graders using data from the Trends in International Mathematics 

and Science Study (TIMSS). Typical statistical method such as ordinary least square 

regression may produce biased estimates of class size effects because student and teacher 

allocation to classes is likely non-random. For example, students might be assigned to 

classes based on their prior achievement; however, there was no prior achievement 

provided in TIMSS. To account for the non-randomness of student assignment and to 

facilitate causal inference, I created a class size index that is independent of the unobserved 

process of student assignment, which is usually called Instrumental Variable (IV). In 

particular, I computed the grade and school specific average class size based on the 

maximum class size requirement in a country as the instrument. Generally, no systematic 

pattern of association between class size and mathematics achievement was found in my 

study. These results indicate that class size reduction may not improve fourth grade 

mathematics achievement.  
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Besides improving average student achievement, another critical objective of 

education interventions is to increase achievement for students at risk, and thus reduce the 

achievement gap between lower- and higher-achieving students. Class size reduction has 

been advocated as such an intervention by some researchers; however, no recent study has 

used current data to evaluate if CSR closes the achievement gap. Chapter 2 attempts to fill 

in that gap in the literature by exploring the differential class size effects for students with 

different levels of achievement. I employed quantile regression analysis, coupled with IV, 

to estimate the causal effects of class size on student achievement in the middle as well as 

the lower and upper tails of the achievement distribution. I also compared the differences 

of estimated effects of class size between low- and high-achieving students. Overall, there 

was were systematic differential class size effects across achievement distribution, and in 

most countries class size reduction may not reduce the achievement gap between low- and 

high-achieving fourth grade students.  

Chapter 3 addresses power analysis methods in three-level polynomial change models. 

An important part of the design phase of an experiment involves power analysis. Statistical 

power is the probability of detecting the treatment effect of interest when it exists. A priori 

power analyses help educational researchers identify how big a student, classroom, or 

school sample they need to ensure a good enough chance (e.g., > 80 percent) of detecting 

a treatment effect assuming it is true. It is common in education to employ designs where 

students are assigned randomly to a treatment and a control condition, and then they are 

followed over time. The main objective in these studies is to determine whether treatment 

effects fade or have lasting benefits over time. Previous work has presented methods for 

power analysis of two-level (e.g., repeated measures nested in students) models. 
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Nonetheless, populations in education have frequently more complicated structures. For 

example, students are also nested within classes or schools and so forth. As a result, it is 

natural to extend methods for power analysis for tests of treatment effects from two to 

three-levels. My second essay (Chapter 3) was designed to provide methods for power 

analysis in three-level models. Both methods for cluster randomized designs (i.e., treatment 

at the third level) and block randomized designs (i.e., treatment at the second level) were 

discussed.  
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CHAPTER 1 CLASS SIZE EFFECTS ON FOURTH GRADE MATHEMATICS 

ACHIEVEMENT 

 

Introduction 

Identifying the best allocation of school resources to improve student achievement has 

been a fundamental objective in education for a long time. As a result, school resources 

such as teacher pay, per-pupil funding, and class size have received considerable attention 

in the past three decades. The underlying assumption is that these school resources can 

have positive effects on student achievement. 

The effects of class size on student achievement have received particular attention in 

education research and policy. Results from experiments have indicated positive effects of 

small classes on student achievement (e.g., Finn & Achilles, 1990; Molnar et al., 1999). 

Specifically, evidence from Project STAR (Student-Teacher Achievement Ratio) in 

Tennessee has strongly indicated achievement improvements for students in small classes 

compared to students in regular size classes (e.g., Nye, Hedges, & Konstantopoulos, 2000; 

Krueger, 1999). However, results from quasi-experiments have indicated much smaller 

class size effects. For example, Angrist and Lavy (1999) found significant but smaller class 

size effects in Israel than those reported in Project STAR. Also, Hoxby (2000) analyzed 

data from a natural experiment in Connecticut and found that class size did not have a 

significant effect on student achievement.  

Findings about class size effects have informed policies in different countries and, as 

a result, various countries have enacted class size reduction (CSR) polices. Such policies 

have been quite popular in the U.S. especially during the past decade. Twenty-one states 

in the U.S. had a CSR policy in place in 2007-2008 (Education Week, 2008). In Asia, 
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countries such as South Korea, Japan, Singapore, and districts such as Hong Kong and 

Chinese Taipei, have implemented CSR policies aiming to increase student achievement 

in recent years.  

Similarly, in Europe, most countries have adopted CSR policies. In particular, two 

thirds of the European Union countries had introduced maximum class size requirements 

until 2011 in an attempt to ensure that class size does not exceed 30 students per class. 

Some European countries have lowered their upper class size limits in the last few years. 

For example, in Austria, since the 2007-2008 school year the number of students per 

classroom has been reduced at primary schools, general secondary schools, academic 

secondary schools and pre-vocational schools (EACEA Eurydice, 2011). Also, Scotland 

has reduced lately class size in first grade from a maximum of 30 students to 25 students 

(EACEA Eurydice, 2011). Other countries however, have stopped setting upper class size 

limits or have increased their upper class size limits in primary education. Norway for 

instance has stopped setting upper class size limits since 2003.2004. Also, Italy and 

Portugal have increased their upper class size limits from 25 and 24 in 2006- 2007 to 26 

and 28 in 2010-2011 respectively.  

Class size reduction policies require considerable investments in education. But 

economic budgets allocated to education at the federal and local levels are typically limited. 

Policy makers, practitioners, and researchers are still wondering whether CSR policies are 

an effective way of improving student achievement. Chapter 1 attempts to provide 

additional evidence about the effects of class size on student performance using data from 

a large-scale international assessment program. Specifically, the purpose of Chapter 1 is to 

examine the effects of class size on mathematics achievement using data from the 2011 
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fourth grade sample of TIMSS. My sample included hundreds of schools and thousands of 

students in 18 Asian and European countries and districts (see Table 1.1). I employed 

regression methods to analyze the data. To facilitate causal inferences of class size effects 

I used instrumental variables (IV) that take advantage of the maximum class size rule.  

My study contributes to the existing literature in two ways. First, I used the most recent 

TIMSS data from 2011 that allows us to evaluate recent, concurrent CSR policies and 

compare class size effects across 18 Asian and European countries and districts. Second, I 

used maximum class size rules that allowed us to construct instruments to estimate the 

causal effects of class size on mathematics achievement in fourth grade across countries.  

 

Literature Review 

During the past three decades, researchers explored the effects of class size reduction 

on student achievement through meta-analyses, experimental and quasi-experimental 

designs, as well as other advanced statistical methods such as IV. 

Meta-analytic reviews of early work on small class effects indicated positive 

relationship between small classes and student achievement, but the magnitude of the 

effects was small. For example, Glass and Smith (1979) synthesized 77 studies and found 

that the average effect-size when class sizes were reduced from 25 to 15 was 0.13 standard 

deviations (SD). Using a subset of the Glass and Smith (1979) sample that employed 

random assignment or initial controls for student quality, Slavin (1989) found extremely 

small effects of class size on achievement. He concluded that the class size effects are 

consistent, but small in kindergarten through third grades, slightly smaller in fourth through 

eighth grades, and non-existent in ninth through twelfth grades.  
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Project STAR is viewed as the most impressive and most powerful field experiment 

about class size effects in education (Mosteller, 1995). There have been numerous analyses 

of the Tennessee STAR data that have produced high internal validity estimates. Finn and 

Achilles (1990) were the first to analyze these data and found that students in small classes 

performed higher than those in regular classes in all subject areas, in every year of the 

experiment (kindergarten through third grade). Nye, Hedges, and Konstantopoulos (2000) 

analyzed the validity of Project STAR and suggested that the effects of class size might be 

under-estimated because of imperfect implementation. They also found that the estimated 

class size effects were consistent with those from Glass and Smith (1979). Other studies 

by Krueger (1999) and Konstantopoulos (2008) produced similar findings about the 

positive effects of small classes on student achievement in early grades.  

Studies that have used observational data, especially data from large-scale surveys, 

have usually produced results with high external validity (i.e., generality). However, the 

internal validity (or unbiasedness) of estimates in observational or quasi-experimental 

studies is not so easy to achieve. That is, researchers have to use advanced statistical 

methods to warrant the internal validity of estimates. For instance, traditional ordinary least 

square (OLS) regression may produce biased estimates because of omitted variables bias 

(i.e., predictors may not be orthogonal to the error term).  

Previous work has utilized different analytic methods to examine class size effects on 

student achievement. For example, Pong and Pallas (2001) used multilevel models to 

analyze TIMSS data from 1995 in nine different countries and found no class size effects 

on eighth grade achievement except in the U.S. Other researchers have used IV methods 

to analyze observational data in an attempt to explore the causal effects of class size 
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reduction. For example, Akerhielm (1995) used two instruments for class size-the average 

class size for a given subject in the student’s school and the eighth grade enrollment in the 

school-to analyze class size effects on eighth graders’ mathematics, science, English, and 

history scores using data from 1988 NELS. Her results indicated a significant and negative 

relationship between class size and student achievement. Hoxby (2000) used data from a 

natural experiment and used IV methods to estimate the effects of class size on student 

achievement in Connecticut. Her method exploited random variation in class size due to 

random variation in births from year to year in schools and district catchment areas. She 

found no class size effects in fourth and sixth grades. Cho, Glewwe, and Whitler (2012) 

applied Hoxby’s (2000) method to compute class size effects in Minnesota and found 

positive effects of smaller classes on student achievement, but these estimates were smaller 

than estimates from Project STAR. Moreover, Wossmann and West (2006) examined class 

size effects in 11 countries that participated in TIMSS 1995. Their results indicated that 

there was no clear pattern of whether or when class size affects student achievement.  

One of the best IV used to capture class size effects was introduced by Angrist and 

Lavy (1999). Specifically, their study used the Maimonides rule that sets the maximum 

class size to 40 students per classroom in order to evaluate the effect of class size on student 

achievement in Israel. The maximum class size rule of 40 was used to construct IV 

estimates of class size on test scores. The study reported a statistically significant effect of 

small classes on fifth grade reading and mathematics scores. In fourth grade the benefit of 

being in small classes was significant in reading, but not in mathematics. However, in third 

grade no significant effects of class size on achievement scores were detected.  
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Several other researchers have also used maximum class size rules as IV to evaluate 

class size effects. For instance, Bonesronning (2003) investigated class size effects using a 

maximum class size rule of 30 students per classroom in Norway. His analysis indicated 

small class effects. Wossmann (2005) explored class size effects in Europe using data from 

TIMSS 1995 for eighth grade students. He found two statistically significant relationships 

between class size and student achievement: a marginally significant effect in Norway and 

a highly significant effect in Iceland. He also found a statistically significant but positive 

relationship between class size and student achievement in Switzerland. For Denmark, 

France, Germany, Greece, Ireland, Spain, and Sweden, the estimates were not significant. 

A recent study about class size effects on fourth grade reading achievement in Greece also 

reported statistically insignificant estimates (Konstantopoulos & Traynor, 2014). Urquiola 

(2006) studied 10,018 third-grade students in Bolivia and found significant class size 

effects with effect sizes as large as 0.30 SDs, bigger than effects found in Project STAR in 

the U.S. and in Israel.  

 

Methods 

Data  

I used data from TIMSS latest survey in 2011. TIMSS is the largest international 

database that measures trends in mathematics and science achievement at fourth and eighth 

grades. First conducted in 1995, TIMSS provides reliable and timely data about 

mathematics and science achievement every four years. It also collects extensive 

information about students, teachers, school principals, and curriculum experts via 

background questionnaires. 
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A stratified two-stage cluster-sampling design was used in TIMSS, where schools are 

sampled at the first stage and one or more intact classes are sampled at the second stage in 

each of the sampled schools (Martin & Mullis, 2012). TIMSS has produced high-quality 

assessment measures. Also, teachers reported class size information on all intact 

classrooms that were sampled. Other useful information about students, teachers, and 

schools has also been collected. It is noteworthy, that TIMSS was designed to yield a 

national probability sample of fourth (or eighth) graders. With the use of appropriate 

weights, one can make projections to the population of fourth (or eighth) graders in each 

country, which points to the high external validity of the estimates.  

The stratified two-stage cluster-sampling design used in TIMSS makes the 

computation of the standard errors of estimates complicated because student data within 

the same school are correlated rather than independent. Following the suggestion from 

TIMSS technical report (Martin & Mullis, 2012), I used the jackknife repeated replication 

technique (JRR) to estimate the sampling variance because it is computationally 

straightforward and provides approximately unbiased estimates of the sampling errors (see 

Martin & Mullis, 2012). That is, JRR standard errors take into account clustering effects 

induced by the multi-stage sampling scheme.    

Country selection 

I used fourth grade data from the fifth and latest administration of the TIMSS 

assessment in 2011. I focused on fourth grade mathematics achievement because class size 

effects are typically expected in elementary grades (Nye et al., 2000). Twenty five 

European countries were surveyed in TIMSS 2011. I selected 14 countries of those 25 

participating countries that had known clear rules about maximum class size limits for 
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fourth graders in 2011 (see Table 1.1). The highest upper class size limit in the fourth grade 

was in Malta and the Czech Republic with a maximum number of 30 students per 

classroom. The lowest upper class size limit of 24 students per classroom was in Lithuania. 

The most common upper class size limit was also 28 students per classroom (EACEA 

Eurydice, 2012). I also selected four Asian countries and districts that set clear maximum 

class size limit in the fourth grade in 2011. Compared the rules in Europe, the upper class 

size limits were quite larger in Asia, which ranged from 30 (Hong Kong) to 40 (Japan and 

Singapore). Table 1 provides detail about the selected countries as well as their upper class 

size limits. 

Measures 

The dependent variable was mathematics achievement represented by five plausible 

values. Because the item pool of TIMSS 2011 was too large for students to finish in two 

hours, TIMSS used an incomplete booklet design that had each student complete only a 

proportion of the item pool (Martin & Mullis, 2012). Then, multiple imputation methods 

were used to construct a distribution of scores that the students might have obtained had 

they completed the full test. The plausible values are a sample of scores from this 

distribution that incorporates the uncertainty about student scores (Martin & Mullis, 2012). 

It has been shown that five plausible values can produce reliable and consistent estimates 

of student achievement (Schafer, 1999).  

The main independent variable was class size and was reported by teachers. 

Specifically, the class size measure was the number of students in a sampled classroom 

provided by the teachers. Student, teacher, classroom, and school variables of interest were 

also used as covariates. The student covariates included gender (e.g., a dummy for female),  
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Table 1.1: Maximum Class Size Rules: TIMSS 2011 

Country Maximum Class Size Rule Country Maximum Class Size Rule

Austria (AUT) 25 Lithuania (LTU) 24
Croatia (HRV) 28 Malta (MLT) 30
Czech Republic (CZE) 30 Portugal (PRT) 28
Denmark (DNK) 28 Romania (ROM) 25
Germany (DEU) 29 Slovak Republic (SVK) 25
Hungary (HUN) 26 Slovenia (SVN) 28
Italy (ITA) 26 Spain (ESP) 25

Hong Kong (HKG) 30 Singapore (SPG) 40
Japan (JPN) 40 Chinese Taipei (TWN) 32

12 
 



 
 

The teacher covariates included education (e.g., dummy for completing post-secondary 

education), years of teaching experience, gender (e.g., a dummy for female), and teacher’s 

instruction time per week. Classroom covariates included class level SES represented by 

aggregate measures of number of books in the home and average number of items in the 

home. The proportion of female students in the classroom and the average student positive 

affect to mathematics were also used as classroom covariates. School covariates included 

percent of economically disadvantaged students, percent of students having the tested 

language as their native language, income level of the school immediate area, and fourth 

grade enrollment and its square. Missing data flags (i.e., dummies) were included in the 

models to account for missing data effects. The Appendix A provides the full list of 

variables as well as detailed description about coding. 

Multiple Regression  

To examine the class size effects on student mathematics achievement, I employed 

first a multiple regression model that included class size and student, teacher/classroom, 

and school covariates namely 

 

0 1i i iScore ClassSizeβ β ε= + + +i 2 i 3 i 4STΒ + CL Β + SC Β      (1.1) 

 

where iScore  represents mathematics scores, 0β  is the constant term, ClassSizei is the 

main independent variable, 1β  represents the class size effect and is the regression 

coefficient of interest, STi is a row vector of student background characteristics, 2Β  is a 

column vector of regression coefficients of student characteristics, CLi a is row vector of 
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classroom or teacher characteristics, 3Β is a column vector of regression coefficients of 

teacher and classroom characteristics, SCi is a row vector of school characteristics, 4Β  is 

a column vector of regression coefficients of school characteristics, and iε is the error 

term. Because TIMSS used a complicated cluster sampling design (i.e., sampled schools at 

the first stage and then classes within schools), the clustering effect needs to be 

incorporated in the estimation of the standard errors. To achieve this we used JRR 

techniques to obtain a cluster robust standard error as suggested by Martin and Mullis 

(2012).   

Instrumental Variables 

Typical regression could provide consistent estimates of class size under the 

assumption that class size is not correlated with unobserved processes that may take place 

in schools. These unobservables are represented by the error term in model (1.1). However, 

such an assumption is strong and rarely met in observational studies. The assignment of 

students and teachers to classrooms is not random typically, and thus class size could be 

correlated with unobserved factors related to student, parent, and teacher characteristics. 

For example, students may be assigned to classes based on their prior achievement or 

motivation. Parents may also influence assignment to classes. For instance, parents may 

want their children to be assigned in the classroom with the highest quality teacher or a 

specific peer composition (e.g., their children’s friends). Teachers may also influence 

assignment by either selecting high achieving students in their classrooms by teaching the 

class with the higher proportion of high achieving students. If such processes were to take 

place, the estimated class size effect from equation (1.1) would be biased.   
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Because students and teachers are rarely randomly assigned to classrooms in a grade 

class size might be correlated with unobserved characteristics of students or teachers. For 

example, in order to help low achieving students, some schools might assign higher quality 

teachers to classes with higher proportions of low achievers. Variables that determine 

assignment of students and teachers to classes are not typically measured. For example, 

student motivation, family income, parental pressure, teacher quality, etc. are rarely 

available in observational datasets. In addition, cross-sectional data rarely provide indexes 

of prior ability or performance. Although we included as many covariates as we could in 

our multiple regression analysis, it is still possible that unobservable factors that are part 

of the error term in equation (1.1) are correlated with class size. If that were true, then the 

estimated class size effect in equation (1.1) would be biased.  

One way to overcome this potential shortcoming and facilitate causal inferences, is to 

compute an index of class size that is independent of unobserved student, teacher or school 

variables.  Specifically, we used the maximum class size rule in each country to compute 

school and grade specific average class size. This new variable was then used as an 

instrument to exclude unobserved variables from the teacher reported class size. In other 

words, this method creates a new class size variable that is “error free” and should not be 

related to unobserved variables. Our method is similar to that used by Angrist and Lavy 

(1999). The first step in this approach is to compute the average class size in fourth grade 

in each school. Specifically, the average class size in fourth grade in each school based on 

the maximum class size requirement is calculated as 

 

/ [int(( 1) / ) 1]i i if E E rule= − +        (1.2) 
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where iE  denotes the enrollment in grade four in a school; if  denotes the computed 

average class size based on the maximum class size rule; rule denotes the upper class size 

limit in a given country; for any positive number n, the function int(n) is the immediate 

smaller integer less than n. For example, if grade enrollment E = 70 and the maximum class 

size rule is 30 then int(n) = int(2.33) = 2. The upper class size limit generates discontinuities 

of the computed class size as the enrollment count increases to multiples of the upper class 

size limit. For example, if the maximum class size rule is 30 in a specific country, the above 

equation captures the fact that the maximum class size rule allows enrollment of cohorts of 

1-30 to be grouped in a single class, while enrollment of cohorts 31-60 are split into two 

classes with average class sizes 15.5-30, and so on.  

 The second step was to regress the teacher reported class size on the instrument (i.e., 

the school and grade specific average class size we computed in equation 1.2), as well as 

other covariates (see variables section). This step is designed to eliminate the 

unobservables (i.e., the error) from teacher reported class size.   

Specifically, the regression equation is 

 

  0 1i i iClassSize f uπ π= + + +i 2 i 3 i 4STΠ + CL Π + SC Π   (1.3) 

  

where if  is the computed average class size (i.e., the instrument) in a school based on the 

maximum class size rule and iu  is the error term. All other terms have been defined 

previously. Theπ ’s are the regression estimates that need to be computed. The fitted 
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values of this regression are computed and will be used in the third step as the new class 

size variable that is “free” of error.  

The third and final step of this procedure used a regression where the fitted values 

(denoted below of FVi) from the regression equation (1.3) represent class size and are the 

main independent variable in the following achievement regression  

 

0 1 2 3 4i i i i i iY FVδ δ ξ= + + + + +ST CL SC∆ ∆ ∆  (1.4) 

 

where Y indicates mathematics scores, iξ  is an error term and all other terms have been 

defined previously. The coefficient 1δ  represents the relationship between mathematics 

achievement and class size, adjusted for student, teacher/classroom, and school 

characteristics. Appropriate student weights were used in both regressions (equations 1.3 

and 1.4). The δs indicate regression estimates that need to be computed. The student, 

classroom/teacher, and school covariates included in equation (1.4) are the same as those 

included in equation (1.3). 

The method (i.e., instrumental variables) described above has been used in previous 

work to estimate causal class size effects (e.g., Angrist & Lavy, 1999; Krueger, 1999). We 

used JRR techniques to estimate the standard errors of the regression coefficients. The 

TIMSS sampling design makes the JRR techniques particularly well suited for estimating 

the standard errors in complex sampling surveys such as TIMSS (Martin & Mullis, 2012). 

Our analysis was conducted for each plausible value separately, and then the five sets of 

estimates were combined to construct one set of final estimates of class size effects. To 

combine estimates we used formulae provided by Shafer (1999). The standard error of the 
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class size effects was a combination of the sampling variance obtained through JRR 

techniques and the variance between plausible values (see Martin & Mullis, 2012). The 

standard errors of the regression coefficients were also corrected for the two-stage 

estimation (i.e., equations 1.3 and 1.4) before they were combined across plausible values.  

There were two key conditions that the computed average class size if  must meet in 

order for the instrument to be valid: (1) schools should follow the maximum class size rule 

very well. In other words, if  should be correlated significantly with reported class size; 

and (2) the instrument cannot be correlated with any of the unobserved student, teacher, or 

school characteristics (i.e., if  should not be correlated with the error term in equation 

1.1). The first condition can be checked through the first stage regression (equation 1.3). If 

the coefficient of the computed average class size (the instrument) is significantly different 

from zero, then the assumption that reported class size and the instrument are related holds. 

If the instrument is only marginally significant, our instrument may be weak. When 

instruments are weak, then the standard IV estimates, hypothesis tests, and confidence 

intervals may be unreliable (Stock, Wright, & Yogo, 2002). When multiple instruments are 

used the rule of thumb is that the F-statistic of all instruments in the first-stage regression 

should be larger than 10 (Staiger & Stock, 1997). In our study only one instrument is used 

(i.e., average class size per school) and thus we employ a t-test. The t-statistic of the 

regression coefficient of the instrument ( 1π  in equation 1.3) should be greater than 3.20 

and significant in the first stage regression. The t-statistic denotes the statistic for testing 

the hypothesis of a zero coefficient for the instrument (computed average class size using 

maximum class size rule) in the first stage regression.  
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The second condition which is called “exogenous assumption” or “exclusion 

restriction” indicates that computed average class size influences student mathematics 

achievement only through reported class size controlling for grade enrollment and other 

covariates. The question is essentially whether the instrument might be correlated with 

unmeasured factors that influence student assignment to classes. For example, private 

schools could manipulate the maximum class size requirement through adjusting their 

tuition or enrollment to avoid creating additional classrooms (see Urquiola & Verhoogen, 

2009). Unfortunately, I cannot identify public or private schools based TIMSS data. Parents 

could manipulate the class size rule as well if school choice is an option in their country. 

In other words, some parents might take advantage of the rules and make their kids study 

in schools with smaller classes. There was some evidence that showed associations 

between smaller class size and higher student SES level in Spain and Malta based on some 

regression analysis, which indicates parents with higher SES might manipulates the rules 

and raises some concern of the validity of the IV in these two countries.  

 

Results 

Descriptive statistics  

Table 1,2 presents descriptive statistics for selected student, teacher, and school 

variables of interest as well as samples sizes for students, classes, and schools. The national 

average mathematics scores for all countries participating in TIMSS have been set to a 

mean of 500 and a SD of 100. Fourteen countries in Table 1.2 had average scores greater 

than 500. Asian countries’ score were much higher than European countries. Singapore 

had the highest average score (605.79), closely followed by Hong Kong, Chinese Taipei, 
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and Japan. Denmark had the highest scores among European countries, closely followed 

by Lithuania, Portugal, and Germany. With an average score of 482.28, Romania had the 

lowest average score. Spain, Croatia, and Malta also had average scores lower than 500. 

About half of the students were females for all countries. At least 70 percent of students 

almost always spoke the tested language at home for all countries except Chinese Taipei, 

Malta, Singapore, and Spain. 

The average class sizes in grade four for European countries were much smaller than 

those in Asian countries. In Europe, the smallest average class size with 19 students per 

class was in Austria, closely followed by Slovenia, the Slovak Republic, Lithuania and 

Romania. With nearly 23 students per classroom on average, Spain had the largest classes. 

The largest average grade four enrollment (70.13) was in Italy; while the smallest average 

grade four enrollment (25.6) was in the Slovak Republic. In Asia, the largest average class 

size were found in Singapore (37). Teacher experience varied across countries. The highest 

average teacher experience was in Lithuania (24 years), while the lowest was in Singapore 

(nearly ten years). Almost all teachers completed post-secondary education in all countries  

in our sample except Italy and Romania. More than 75 percent of teachers were females in 

all European countries in our sample except Denmark, where only about half of the teachers 

were females; while among Asian countries, it ranged from 56 percent to 82 percent. In 

addition, school size was much larger in Asia than in Europe.  

The numbers of students and schools per country sample are also presented in Table 

1.2. The number of schools ranged from 96 in Malta to 216 in Denmark; the number of 

classes ranged from 197 in Malta to 351 in Singapore; the smallest sample of students was 

in Malta (3607), while the largest sample of students was in Singapore (6368).  
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Table 1.2: Descriptive Statistics for Some Variables of Interest of TIMSS 2011 Samples: Means and Standard Deviations 
AUT CZE DEU DNK ESP HRV HUN ITA LTU MLT PRT ROM SVK SVN HKG JPN SGP TWN

Student Variables
Mathematics Achievement 508.31 510.85 527.74 536.96 482.43 490.17 515.40 507.82 533.69 495.77 532.26 482.28 506.77 513.03 601.61 585.37 605.79 591.21

(62.70) (70.39) (62.14) (70.77) (70.31) (67.07) (89.79) (72.17) (74.02) (77.71) (68.68) (105.36) (79.63) (68.52) (66.42) (72.31) (78.18) (73.22)
Female 0.49 0.48 0.49 0.51 0.49 0.50 0.49 0.50 0.48 0.49 0.49 0.48 0.49 0.48 0.46 0.49 0.49 0.47

(0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50)
Age in Years 10.33 10.42 10.37 11.02 9.97 10.67 10.77 9.81 10.85 9.92 10.01 10.77 10.38 9.92 10.07 10.62 10.90 10.24

(0.44) (0.44) (0.49) (0.38) (0.44) (0.32) (0.51) (0.36) (0.37) (0.42) (0.49) (0.65) (0.64) (0.34) (0.51) (0.28) (0.46) (0.31)
Almost Always Speaking Tested Language at Home 0.76 0.86 0.73 0.78 0.67 0.85 0.97 0.78 0.82 0.16 0.89 0.88 0.79 0.65 0.85 0.32 0.50

(0.43) (0.35) (0.45) (0.41) (0.47) (0.36) (0.18) (0.42) (0.39) (0.37) (0.31) (0.33) (0.41) (0.48) (0.36) (0.47) (0.50)
SES: Numbers of Books in the Home 2.94 3.17 3.17 2.96 2.95 2.55 3.01 2.74 2.57 2.90 2.73 2.29 2.89 2.98 2.82 2.75 3.08 2.90

(1.13) (1.09) (1.10) (1.08) (1.16) (1.07) (1.25) (1.15) (1.04) (1.05) (1.07) (1.15) (1.13) (1.04) (1.15) (1.07) (1.08) (1.26)
SES: Numbers of Items in the Home 6.30 8.47 8.09 8.89 5.31 7.48 8.39 6.47 8.61 8.94 6.92 6.28 7.34 8.04 6.28 7.95 7.76 5.85

(1.21) (1.69) (1.65) (1.29) (0.92) (1.35) (1.94) (1.82) (1.79) (1.76) (1.55) (2.55) (1.80) (1.50) (2.03) (1.79) (1.93) (1.71)
Classroom Variables
Class Size 19.33 21.13 21.61 21.25 22.63 20.61 22.09 20.10 20.00 21.40 20.91 20.00 19.67 19.67 32.13 28.90 37.00 28.03

(4.12) (5.30) (3.89) (3.98) (4.17) (5.73) (5.45) (4.59) (5.11) (4.85) (4.78) (5.86) (4.84) (4.13) (5.38) (8.54) (5.57) (4.60)
Classroom SES: Average Numbers of Books in the Home 2.94 3.17 3.17 2.96 2.95 2.55 3.01 2.74 2.57 2.90 2.73 2.29 2.89 2.98 2.82 2.75 3.08 2.90

(0.48) (0.45) (0.46) (0.42) (0.57) (0.48) (0.65) (0.45) (0.48) (0.37) (0.53) (0.69) (0.59) (0.39) (0.50) (0.37) (0.47) (0.45)
Classroom SES: Average Numbers of Items in the Home 6.30 8.47 8.09 8.89 5.31 7.48 8.39 6.47 8.61 8.94 6.92 6.28 7.34 8.04 6.28 7.95 7.76 5.85

(0.40) (0.57) (0.66) (0.48) (0.31) (0.53) (0.98) (0.64) (0.85) (0.62) (0.74) (1.72) (1.07) (0.52) (1.02) (0.52) (0.77) (0.55)
Percent of Female Students 0.49 0.48 0.49 0.51 0.49 0.50 0.49 0.50 0.48 0.49 0.49 0.48 0.49 0.48 0.46 0.49 0.49 0.47

(0.14) (0.13) (0.11) (0.11) (0.10) (0.12) (0.13) (0.11) (0.13) (0.26) (0.14) (0.12) (0.12) (0.11) (0.17) (0.07) (0.21) (0.07)
Teacher Variables
Experience in Years 21.54 18.76 19.29 15.73 21.02 20.75 23.96 23.98 24.01 12.70 17.29 23.22 19.94 20.69 14.49 17.33 9.81 14.56

(11.58) (10.28) (12.27) (10.74) (11.00) (9.79) (9.92) (10.02) (8.49) (8.29) (8.62) (11.11) (10.02) (9.67) (8.24) (11.69) (9.11) (7.15)
Complete Post-Secondary Education 0.99 0.92 0.87 0.86 0.94 0.98 0.97 0.21 0.97 0.86 0.97 0.57 0.99 0.99 0.96 0.92 0.87 0.98

(0.11) (0.26) (0.34) (0.35) (0.23) (0.13) (0.17) (0.41) (0.16) (0.34) (0.17) (0.50) (0.10) (0.11) (0.19) (0.27) (0.34) (0.14)
Female 0.91 0.95 0.78 0.53 0.77 0.96 0.94 0.91 0.99 0.81 0.86 0.87 0.92 0.96 0.56 0.59 0.71 0.82

(0.28) (0.23) (0.41) (0.50) (0.42) (0.19) (0.24) (0.29) (0.10) (0.39) (0.34) (0.34) (0.27) (0.19) (0.50) (0.49) (0.45) (0.38)
Instruction Time in Hours 3.98 4.13 4.08 3.11 4.57 3.74 4.04 5.82 4.06 5.43 7.17 4.02 3.73 4.44 4.16 3.72 5.49 3.14

(0.90) (0.90) (0.97) (0.41) (0.69) (0.83) (1.21) (1.37) (0.95) (1.32) (1.08) (1.03) (0.12) (0.78) (0.76) (0.27) (1.68) (0.91)

NA
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Table 1.2 (cont’d) 
AUT CZE DEU DNK ESP HRV HUN ITA LTU MLT PRT ROM SVK SVN HKG JPN SGP TWN

School Variables
Grade 4 Enrollment 27.15 26.50 42.49 35.86 36.22 52.82 33.43 70.13 35.18 41.48 26.45 29.82 25.60 30.54 105.78 58.61 273.05 108.96

(22.37) (21.49) (25.37) (21.51) (23.13) (33.47) (25.20) (46.61) (55.25) (26.80) (25.58) (32.26) (26.82) (22.55) (48.65) (41.50) (88.83) (120.63)
Income Level of the School's Immediate Area: Low 0.25 0.48 0.21 0.22 0.29 0.34 0.59 0.18 0.68 0.14 0.39 0.65 0.56 0.42 0.06 0.05 0.07 0.06

(0.43) (0.50) (0.41) (0.41) (0.46) (0.47) (0.49) (0.39) (0.47) (0.35) (0.49) (0.48) (0.50) (0.49) (0.23) (0.21) (0.25) (0.24)
Income Level of the School's Immediate Area: Medium 0.71 0.50 0.71 0.64 0.66 0.64 0.40 0.71 0.32 0.85 0.60 0.33 0.43 0.56 0.40 0.80 0.74 0.60

(0.45) (0.50) (0.45) (0.48) (0.47) (0.48) (0.49) (0.46) (0.47) (0.36) (0.49) (0.47) (0.50) (0.50) (0.49) (0.40) (0.44) (0.49)
Income Level of the School's Immediate Area: High 0.04 0.02 0.07 0.14 0.04 0.02 0.01 0.11 0.00 0.01 0.01 0.02 0.01 0.02 0.54 0.15 0.19 0.34

(0.19) (0.14) (0.26) (0.35) (0.20) (0.14) (0.08) (0.31) (0.00) (0.10) (0.11) (0.14) (0.10) (0.14) (0.50) (0.36) (0.39) (0.48)
City Size: 0-3,000 0.56 0.58 0.27 0.38 0.27 0.36 0.45 0.11 0.58 0.29 0.43 0.46 0.58 0.53 0.37 0.21 1.00 0.05

(0.50) (0.50) (0.44) (0.49) (0.44) (0.48) (0.50) (0.32) (0.50) (0.46) (0.50) (0.50) (0.49) (0.50) (0.49) (0.41) (0.00) (0.22)
City Size: 3,001-15,000 0.26 0.17 0.27 0.22 0.15 0.37 0.21 0.40 0.13 0.60 0.27 0.39 0.15 0.22 0.50 0.30 0.00 0.24

(0.44) (0.38) (0.44) (0.41) (0.35) (0.48) (0.41) (0.49) (0.33) (0.49) (0.44) (0.49) (0.36) (0.42) (0.50) (0.46) (0.00) (0.43)
City Size: 15,001-50,000 0.03 0.10 0.22 0.19 0.16 0.08 0.13 0.18 0.09 0.10 0.12 0.06 0.13 0.09 0.07 0.13 0.00 0.26

(0.18) (0.31) (0.42) (0.39) (0.37) (0.28) (0.33) (0.39) (0.28) (0.30) (0.32) (0.24) (0.34) (0.29) (0.25) (0.34) (0.00) (0.44)
City Size: 50,001-100,000 0.02 0.06 0.06 0.09 0.13 0.06 0.05 0.12 0.02 0.00 0.03 0.03 0.07 0.03 0.05 0.30 0.00 0.27

(0.13) (0.24) (0.23) (0.29) (0.33) (0.23) (0.23) (0.33) (0.15) (0.00) (0.18) (0.17) (0.25) (0.18) (0.21) (0.46) (0.00) (0.44)
City Size: 100,001-500,000 0.05 0.06 0.10 0.05 0.16 0.05 0.09 0.07 0.13 0.00 0.07 0.05 0.04 0.08 0.01 0.06 0.00 0.15

(0.21) (0.23) (0.30) (0.21) (0.37) (0.22) (0.28) (0.26) (0.33) (0.00) (0.26) (0.22) (0.19) (0.27) (0.12) (0.24) (0.00) (0.36)
City Size: >500,000 0.08 0.03 0.09 0.08 0.14 0.08 0.08 0.11 0.06 0.01 0.08 0.02 0.03 0.04 0.00 0.00 0.00 0.03

(0.27) (0.18) (0.28) (0.28) (0.34) (0.27) (0.27) (0.31) (0.24) (0.10) (0.28) (0.14) (0.18) (0.20) (0.00) (0.00) (0.00) (0.17)

Schools 158 177 197 216 151 152 149 202 154 96 147 148 197 195 136 149 176 150
Classes 276 235 205 216 200 295 249 239 277 197 240 246 314 243 137 149 351 155
Students 4668 4578 3995 3987 4183 4584 5204 4200 4688 3607 4042 4673 5616 4492 3957 4411 6368 4284
Note: Weighted means are reported. Standard deviations are in parentheses. Variable "SES: Numbers of Books in the Home" takes values from one to five indicating 0-10 books, 11-25 books, 26-100 books, 101-200 books and more than 200 books;  it was used as a continuous variable in our 
analysis for simplicity.

Country abbreviations: AUT = Austria, CZE = Czech Republic, DEU = Germany, DNK = Denmark, ESP = Spain, HRV = Croatia, HUN = Hungary, ITA = Italy, LTU = Lithuania, MLT = Malta,     PRT = Portugal, ROM = Romania, SVK = Slovak Republic, SVN = Slovenia, JPN = Japan, 
TWN = Chinese Taipei, HKG = Hong Kong, SGP = Singapore.
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Regression Results  

The class size estimates of the OLS regression analysis are summarized in Table 1.3. 

Negative coefficients of class size indicate that student achievement increases as class size 

decreases; while positive coefficients indicate that student achievement increases as class 

size increases. The regression coefficients of class size were negative in eight of the 18 

countries, but none of them was significant at the 0.05 level after controlling for student, 

teacher/classroom, and school characteristics. 

Significant and positive class size coefficients were found in Croatia, Hong Kong and 

Malta. As we discuss in the method section, OLS results might be biased because of 

omitted variables. I analyzed the impact of the omitted variables (unobservable 

confounding variables) using approach in Frank (2000). The method is based on the idea 

that for a confounding variable to change the significance of the variable of interest (e.g., 

class size) it should be correlated with both the variable of interest and the dependent 

variable. Frank (2000) developed formulas to calculate the minimum correlations 

necessary to invalidate the inference. He defined the Impact Threshold for a Confounding 

Variable (ITCV) as the lowest product of the partial correlation between the dependent 

variable and the confounding variable and the partial correlation between the variable of 

interest and the confounding variable that makes the coefficient insignificant. The higher 

the absolute value of the ITCV is, the more robust the OLS estimate is. Table 1.4 presents 

the ITCVs, and their corresponding minimum correlations between students score and 

confounding variables and correlation between class size and the confounding variable, 

which would invalidate the reference of OLS results for countries and districts with the 

significant estimates. It should be noted that the correlation coefficients shown in Table  
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Table 1.3: OLS Regression Estimates and Standard Errors of Class Size 
AUT CZE DEU DNK ESP HRV HUN ITA LTU MLT PRT ROM SVK SVN HKG JPN SGP TWN

    Class size -0.78 0.55 0.80 0.68 -0.39 0.60* 0.00 -0.41 -0.51 0.98* -0.62 0.19 -0.87 0.17 2.71* -0.08 0.60 -0.84
(0.59) (0.54) (0.51) (0.72) (0.67) (0.30) (0.53) (0.78) (0.42) (0.42) (0.84) (1.08) (0.60) (0.57) (0.45) (0.22) (0.45) (0.75)

    Number of Schools 158 173 176 156 139 147 144 179 151 89 143 138 192 188 119 148 176 145
    Number of Students 4637 4517 3565 2965 3883 4427 4858 3690 4556 3346 3791 4359 5413 4366 3452 4389 6240 4155
    R-sq 0.258 0.254 0.311 0.222 0.277 0.203 0.439 0.193 0.283 0.213 0.304 0.352 0.328 0.236 0.381 0.219 0.453 0.240
* p < 0.05
Country abbreviations: AUT = Austria, CZE = Czech Republic, DEU = Germany, DNK = Denmark, ESP = Spain, HRV = Croatia, HUN = Hungary, ITA = Italy, LTU = Lithuania, MLT = Malta, PRT = Portugal, ROM = 
Romania, SVK = Slovak Republic, SVN = Slovenia, JPN = Japan, TWN = Chinese Taipei, HKG = Hong Kong, SGP = Singapore.

 

 

Table 1.4: Analysis of the impact of unobservable confounding variables 

Croatia Malta Hong Kong

ITCV|z 0.058 0.072 0.132
Rxcv|z 0.241 0.269 0.363
Rycv|z 0.241 0.269 0.363  
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1.4 are partial correlations that condition on the covariates included in equation (1.1).  

Therefore, for instance, in Hong Kong, the result indicates that to sustain an inference an 

omitted variable would have to be correlated at 0.363 with class size and at 0.363 with 

mathematics achievement, conditional on all the covariates in equation (1.1). The partial 

correlation coefficients shown in Table 1.4 ranged from 0.241 to 0.363, which were 

somewhat large since they conditioned on a group of student, teacher/classroom and school 

covariates. However, it is still difficult to tell if the significant coefficients in Croatia, Malta 

and Hong Kong were robust to omitted variables because TIMSS does not provide 

information such as prior achievement and family income, which are usually highly 

correlation with student achievement and class size.  

The positive class size coefficients are somewhat puzzling. One possible explanation 

is that parents chose high quality schools for their kids, which increased school enrollment 

and thus increased the average class size in high quality schools.  

IV Results  

The first stage regression results are summarized in Table 1.5, and the IV estimates of 

class size effects in Table 1.6. In 12 countries the first stage regression coefficients of 

computed average class size were significant and positive, and the t-statistic of the 

instrument was bigger than 3.20. This indicates that the correlation between reported class 

size and the instrument is strong enough in these countries (Staiger & Stock, 1997). It 

should be noted that, for Hong Kong, although the absolute value of the t-statistic was 

larger than 3.20, it was negative, which indicates the computed class size and the teacher 

reported class size were negative correlated. That is because, in Hong Kong, the maximum 

class size rules were only applicable to part of schools but not all of the primary schools. 
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However, there was no information from TIMSS data to identify which schools should 

follow the rules. Therefore, our IV methods were not appropriate to Hong Kong. In 

Denmark, the first stage regression coefficients of class size were also significant and 

positive, but the t-statistic of the instrument was smaller than 3.20. In Croatia, Italy Malta, 

and Singapore, the first stage regression coefficients of class size were insignificant, which 

indicate the IVs were quite weak in these countries.   

To sum up, the IVs might not be valid in Hong Kong, Malta and Spain; also, in Croatia, 

Denmark, Italy, Malta and Singapore, the IVs were weak, which made the IV estimates 

and inference unreliable. Therefore, I will focus on IV estimates from countries with valid 

and strong IVs.  

The IV estimates of class size are summarized in Table 1.6. The coefficients for 

Austria, Lithuania, Portugal, Slovenia, Japan and Chinese Taipei were negative but 

insignificant. The coefficients for the Czech Republic, Germany, and Hungary were 

positive but insignificant. The estimated class size effects were negative and significant at 

the 0.05 level in only two countries: Romania and the Slovak Republic. The magnitude of 

class size coefficients for Romania and the Slovak Republic were about 4.5, which is 

equivalent to 0.045 SD among all fourth graders who participated in TIMSS 2011. Such 

results indicate that a one student reduction would increase about 4.5 points (or 0.045 SD) 

of student mathematics achievement on average in the TIMSS scale. 

To facilitate interpretation, we transformed our estimates to effect sizes (standard 

deviations units) assuming a reduction in class size of 10 students. The effect size was 0.48 

SD and 0.44 SD respectively for Romania and the Slovak Republic. Such effect sizes are 

quite substantial in magnitude and larger than estimates reported in prior studies (e.g.,
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Table 1.5: First Stage Regression Estimates and Standard Errors of the Computed Average Class Size 

AUT CZE DEU ESP HUN LTU PRT ROM SVK SVN JPN TWN HKG DNK HRV ITA MLT SGP

    IV: Computed Average Class Size 0.50* 0.62* 0.47* 0.70* 0.50* 0.59* 0.38* 0.59* 0.49* 0.45* 0.82* 0.73* -0.50* 0.35* 0.10 0.26 0.28 0.28
(0.10) (0.08) (0.09) (0.08) (0.09) (0.11) (0.11) (0.08) (0.07) (0.08) (0.10) (0.11) (0.15) (0.14) (0.13) (0.16) (0.16) (0.19)

    T-Statistic for IV 5.23 7.94 5.06 8.96 5.28 5.49 3.38 7.38 6.62 5.52 8.12 7.45 -3.28 2.54 0.72 1.7 1.71 1.51
    Number of Schools 158 173 176 139 144 151 143 138 192 188 148 145 119 156 147 179 89 176
    Number of Students 4637 4517 3565 3883 4858 4556 3791 4359 5413 4366 4389 4155 3452 2965 4427 3690 3346 6240
* p < 0.05
Note: Standard errors are in parentheses.  

Countries with Strong IV Countries with Weak IV

Country abbreviations: AUT = Austria, CZE = Czech Republic, DEU = Germany, DNK = Denmark, ESP = Spain, HRV = Croatia, HUN = Hungary, ITA = Italy, LTU = Lithuania, MLT = Malta, PRT = Portugal, ROM = Romania, SVK = Slovak 
Republic, SVN = Slovenia, JPN = Japan, TWN = Chinese Taipei, HKG = Hong Kong, SGP = Singapore.

 

 

Table 1.6: Second Stage Regression Estimates and Standard Errors of Class Size 

AUT CZE DEU HUN LTU PRT ROM SVK SVN JPN TWN

    Class Size -1.82 0.24 1.33 0.45 -1.25 -3.80 -4.84* -4.40* -1.87 -0.81 -0.83
(1.27) (1.16) (1.26) (1.49) (1.28) (2.67) (2.28) (1.58) (1.32) (0.46) (1.23)

    Number of Schools 158 173 176 144 151 143 138 192 188 148 145
    Number of Students 4637 4517 3565 4858 4556 3791 4359 5413 4366 4389 4155
* p < 0.05
Note: Standard errors are in parentheses.  
Country abbreviations: AUT = Austria, CZE = Czech Republic, DEU = Germany,  HUN = Hungary, LTU = Lithuania, PRT = Portugal, ROM = 
Romania, SVK = Slovak Republic, SVN = Slovenia, JPN = Japan, TWN = Chinese Taipei.
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Angrist & Lavy, 1999). A reduction of eight students, which was by and large the average 

reduction in number of students between regular size and small size classes in Project 

STAR, would indicate an increase in mathematics achievement nearly one-third of a SD. 

This is a considerable effect knowing that the average benefit for students in small classes 

in Project STAR was nearly 0.20 SD.   

Comparison of Regression and IV Estimates 

Finally, I examined whether IV estimates were indeed different than regression 

estimates that could be biased. To compare OLS and IV estimates, we used the Durbin-

Wu-Hausman test (Durbin, 1954; Hausman, 1978; Wooldridge, 2010; Wu, 1973). 

Specifically, we ran the regression  

 

0 1 2 2 3 4+i i i i i i iScore Residual ClassSizeδ δ δ ξ= + + + + +ST CL SC∆ ∆ ∆  (1.6) 

 

where iResidual  is the residual term from regression equation (1.3). The idea is that once 

we control for reported class size (and other covariates) the coefficient of the residuals 

should not be significant unless there is omitted variable bias. The significance of 1δ  

indicates that the regression and IV estimates are different. The significance of 1δ  

indicates the reported class size is endogenous, that is, reported class size is correlated with 

omitted variables that are part of the error term of equation (1.3). Table 1.7 summarizes the 

results of the Durbin-Wu-Hausman test for the full samples. Significant estimates at 0.05 

level were found in Romania and the Slovak Republic; while significant estimates at 0.10 

level were found in Portugal, Slovenia, and Japan. The results suggest the regression and  
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Table 1.7: Results from Durbin-Wu-Hausman Test 

 

AUT CZE DEU HUN LTU PRT ROM SVK SVN JPN TWN

    First Stage Residual 1.35 0.43 -0.69 -0.53 0.87 3.46+ 6.67* 4.38* 2.55+ 0.95+ -0.02
(1.34) (1.14) (1.38) (1.52) (1.26) (2.00) (2.22) (1.68) (1.33) (0.50) (1.43)

    Number of Schools 158 173 176 144 151 143 138 192 188 148 145
    Number of Students 4637 4517 3565 4858 4556 3791 4359 5413 4366 4389 4155
* p < 0.05, + p < 0.10
Note: Standard errors are in parentheses.  
Country abbreviations: AUT = Austria, CZE = Czech Republic, DEU = Germany,  HUN = Hungary, LTU = Lithuania, PRT = Portugal, ROM = 
Romania, SVK = Slovak Republic, SVN = Slovenia, JPN = Japan, TWN = Chinese Taipei.
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IV estimates are different in these countries. They also indicate that reported class size was 

endogenous and thus correlated with omitted variables in these countries. These results 

support the notion that that IV analysis was necessary and that the IV estimates should 

capture the causal effects of class size on student achievement in these two countries. For 

other countries with strong and valid instruments -Austria, the Czech Republic, Germany, 

Hungary, and Lithuania, and Chinese Taipei- the results indicate that estimates from 

regression and IV analyses were overall similar. These findings may suggest that there is 

little bias from omitted variables in the regression analysis in these countries.  

 

Discussion 

I investigated the effects of class size on mathematics achievement for fourth graders 

in 18 countries and districts in 2011 using rich data from TIMSS. These European and 

Asian countries and districts had maximum class size limits, which allowed me to use an 

IV approach to explore the causal effects of class size on student achievement. Both 

regression analyses and IV analyses were conducted. By and large, I did not observe 

significant class size effects in most countries. Significant class size coefficients at the 0.05 

level were found in Romania and the Slovak Republic. These coefficients indicated that 

class size reductions increased mathematics achievement significantly and meaningfully. 

The estimates produced from the IV analysis were somewhat different than those from the 

OLS analysis in some countries. The Durbin-Wu-Hausman test provided some evidence 

that reported class size was correlated with omitted variables in some countries and that 

the IV analysis was necessary and provided valid estimates of class size effects in Romania 
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and the Slovak Republic. In other countries however, the regression estimates were similar 

to the IV estimates, which suggests that regression estimates were as good as IV estimates.  

Generally, the results indicated no systematic pattern of association between class size 

and achievement. For nine of the eleven countries and districts with strong and valid IV no 

class size effects were found. The exceptions were Romania and the Slovak Republic. 

These significant class size effects were quite substantial in magnitude compared to prior 

studies (e.g., Angrist & Lavy, 1999). Nonetheless, my findings are in congruence with 

findings of previous work that used prior cycles of TIMSS assessments and have indicated 

generally no significant relationships between class size and achievement (Pong & Palls, 

2001; Wossmann, 2005; Wossmann & West, 2006). Romania and the Slovak Republic are 

not as wealthy or developed countries compared to the other European countries in our 

sample, which might indicate that school resources such as class size reduction may play a 

more important role in less wealthy countries.  

Unfortunately TIMSS does not provide data about classroom dynamics, instruction, 

and practices and therefore it is difficult to know exactly why we failed to detect class size 

effects in most countries. Prior studies have suggested that class size have positive effects 

when teachers spend more time on individualized instruction or when pupils become more 

involved in learning activities (e.g., Finn & Achilles, 1990). Perhaps in most of my samples 

teachers did not utilize individualized instruction when class size was reduced. Also, 

perhaps students were not as actively involved in learning activities when class size was 

reduced.  

One possible limitation of our estimates is related to the enrollment information we 

used in our models. Specifically, enrollment information from the beginning of the school 

31 
 



 
 

year can predict average class size more accurately (see Angrist & Lavy, 1999). However, 

the enrollment information available in TIMSS is at the time of testing, which is near the 

end of the school year. Thus, we could not control for any enrollment changes during the 

school year. If potential changes of enrollment are not random, our results might be biased, 

and that’s a potential limitation of our study (Wossmann, 2005).  

Another potential limitation is that our IV method may not be valid. Although we 

tested if covariates were locally balanced across schools around cut-offs, it is unclear 

whether enrollment influences student achievement only though class size once enrollment 

and other important covariates are controlled for. However, if class size is related to 

unobserved variables that we could not control for (e.g., parental education level or family 

income) then our IV estimates may be biased.  
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CHAPTER 2 DOES CLASS SIZE REDUCTION CLOSE THE ACHIEVEMENT 

GAP 

 
Introduction 

The effects of class size on student achievement have been discussed repeatedly in 

education research and policy in the past decades. Meta-analytic reviews of early work on 

small class effects (e.g., Glass & Smith, 1979) and studies using data from a high-quality 

large-scale experiment (e.g., Finn & Achilles, 1990) indicated a positive relationship 

between small classes and student achievement. In particular, evidence from Project STAR 

(Student-Teacher Achievement Ratio) in Tennessee has strongly indicated achievement 

improvements for students in small classes compared to regular size classes (e.g., Krueger, 

1999; Nye, Hedges, & Konstantopoulos, 2000). These findings suggest that reducing class 

size is a promising policy option to increase academic achievement, on average, for all 

students. 

Besides improving average student achievement, another critical objective of 

education interventions is to increase achievement for students at risk, and thus reduce the 

achievement gap between lower- and higher-achieving students. Class size reduction has 

been advocated as such an intervention by some researchers (e.g., Finn & Achilles, 1990). 

One way to evaluate whether CSR can close the achievement gap is to examine the 

interaction effect between class size and student background such as gender, 

socioeconomic status (SES), minority status, etc. Prior studies have focused typically on 

the average effects of class size on student achievement for all students. Only a few studies 

have examined the differential class size effects for subgroups of students, most of which 

have used data from Project STAR. The findings of these studies were mixed. For example, 
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Finn and Achilles (1990) found some evidence that the positive effects of small classes 

were larger for minority students, especially in kindergarten and first grade, while Nye, 

Hedges, and Konstantopoulos (2002) found weak or no evidence for differential effects of 

small classes on minority and low-SES students. Another way to evaluate whether CSR 

can close the achievement gap is to estimate the differential class size effects across student 

achievement distribution using quantile regression. Konstantopoulos (2008) used quantile 

regression to evaluate the small size effects for student in the middle and tails of the 

achievement distribution using data from Project STAR and found that reductions in class 

size did not reduce the achievement gap between low- and high-achievers in the early 

grades. Later studies have found similar findings using the same data (Ding & Lehrer, 2011; 

Jackson & Page, 2013). Nevertheless, there is some evidence that the cumulative effects of 

being in a small class from kindergarten through third grade may reduce the achievement 

gap in reading and science in some of the later grades four through eight (Konstantopoulos 

& Chung, 2009). However, no recent study has used current data to evaluate if CSR closes 

the achievement gap.  

Chapter 2 was designed to fill in that gap in the literature and explore the differential 

class size effects for students with different levels of achievement. In particular, Chapter 2 

examined the effects of class size across the student achievement distribution (i.e., middle 

and upper or lower tails), in an attempt to address the question of whether CSR closes the 

achievement gap between high- and low-achievers, using the latest cycle of a large-scale 

international assessment program. 

Specifically, I used the data from the 2011 fourth grade sample of the Trends in 

International Mathematics and Science Study (TIMSS). I utilized maximum class size rules 
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available in some countries to gauge class size effects on mathematics achievement. I 

employed quantile regression to estimate class size effects on student achievement in the 

middle as well as in the lower and upper tails of the achievement distribution. To deal with 

the potential endogeneity of class size, I computed the average class size in a school based 

on the maximum class size rule in each country, which was used as an instrumental variable 

(IV) for class size. I used the control function approach (see Lee, 2007) to estimate the 

differential causal effects of class size effect on fourth graders’ mathematics achievement. 

Chapter 2 contributes to the existing literature in two ways. First, I used the most recent 

TIMSS data from 2011 that allowed us to evaluate recent, concurrent CSR policies, and to 

compare class size effects across Asian and European countries and districts. Second, I 

used quantile regression coupled with IV to evaluate causal class size effects across the 

achievement distribution. To my knowledge, the TIMSS data have not been used to 

examine differential class size effects, although some researchers have used previous 

cycles of TIMSS assessment to evaluate average class size effects (e.g., Pong & Palls, 2001; 

Wossmann, 2005; Wossmann & West, 2006). 

 

Literature Review 

During the past three decades, researchers explored the effects of class size reduction 

on student achievement through meta-analyses, experimental and quasi-experimental 

designs (e.g., RD), as well as other advanced statistical methods such as IV. Most 

researchers have focused exclusively on estimating mean differences in student 

achievement between small and regular-size classes (Konstantopoulos, 2008). For example, 

meta-analytic reviews of early work on small class effects have indicated a positive 
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relationship between small classes and student achievement, but the magnitude of the effect 

was small (e.g., Glass and Smith, 1979; Slavin, 1989). 

Project STAR is viewed as the most impressive and most powerful field experiment 

about class size effects in education (Mosteller, 1995). There have been numerous analyses 

of the Tennessee STAR data that have produced high internal validity estimates. Finn and 

Achilles (1990) were the first to analyze these data, and they found that students in small 

classes performed higher than those in regular classes in all subject areas, and in every year 

of the experiment (kindergarten through third grade). Nye, Hedges, and Konstantopoulos 

(2000) examined the validity of Project STAR, and they suggested that the effects of class 

size might be under-estimated because of imperfect implementation. They also found that 

the estimated class size effects were consistent with those from Glass and Smith (1979). 

Researchers also attempted to evaluate average class size effects using observational 

data. The main difficulty of analyzing observational data is that the internal validity (or 

unbiasedness) of estimates in observational or quasi-experimental studies is not so easy to 

achieve. That is, researchers have to use advanced statistical methods to warrant the high 

internal validity of estimates for observational data. Previous work has utilized different 

analytic methods to examine class size effects on student achievement. For example, Pong 

and Pallas (2001) used multilevel models to analyze TIMSS 1995 data in nine different 

countries and found no class size effects on eighth grade achievement except in the U.S. 

Other researchers have used IV methods to analyze observational data in an attempt to 

explore the causal effects of class size reduction (e.g., Akerhielm, 1995; Hoxby, 2000; Cho, 

Glewwe, & Whitler, 2012; Wossmann & West, 2006). 

One of the best instruments used to capture class size effects was introduced by Angrist 
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and Lavy (1999). They used the Maimonides rule that sets the maximum class size to 40 

students per classroom in order to evaluate the effect of class size on student achievement 

in Israel. The authors used this maximum class size rule of 40 to construct IV estimates of 

class size on test scores. They found a statistically significant effect of small classes on 

fifth grade reading and mathematics scores. However, they found no significant effects of 

class size on third grade scores. 

Several other researchers have also used maximum class size rules as IV to evaluate 

class size effects. For instance, Bonesronning (2003) investigated class size effects using a 

maximum class size rule of 30 students per classroom in Norway. His analysis indicated 

small class effects. Wossmann (2005) explored class size effects in Europe using data from 

TIMSS 1995 for eighth grade students. He found two statistically significant and negative 

relationships between class size and student achievement in Norway and Iceland. He also 

found a statistically significant but positive relationship between class size and student 

achievement in Switzerland. For Denmark, France, Germany, Greece, Ireland, Spain, and 

Sweden, the estimates were not significant. A recent study about class size effects on fourth 

grade reading achievement in Greece also reported statistically insignificant estimates 

(Konstantopoulos & Traynor, 2014). Urquiola (2006) studied third-grade students in 

Bolivia and found significant class size effects, with effect sizes as large as 0.30 standard 

deviations, bigger than the effects found in Project STAR in the U.S. and in Israel. 

Class size reduction can potentially affect average student achievement as well as the 

achievement gap among subgroups of students. In other words, interactions between class 

size effects and student background, such as student SES or achievement level, are possible 

(Konstantopoulos & Chung, 2009). If economically disadvantaged students or low-
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achieving students benefit more from being in smaller classes, CSR would decrease the 

achievement gap. However, most prior studies have focused on the average class size 

effects, while only few studies have explored the interaction effects between class size and 

student backgrounds or achievement levels. 

The differential effects of class size have traditionally been determined through 

statistical interactions between class size and student variables such as gender, SES, and 

race. Project STAR data have been used to examine such interaction effects. For example, 

early analyses have reported that class size reduction had larger positive effects for 

minority students (see Finn & Achilles, 1990). These average differences were significant 

for reading achievement for the first two years of the experiment (kindergarten and first 

grade). However, more recent studies could not fully replicate these findings. For example, 

Nye, Hedges, and Konstantopoulos (2000) found weak evidence that class size reduction 

had larger benefits for minority students. Also, Nye, Hedge and Konstantopoulos (2002) 

examined the differential effects of small classes for students who were low-achievers in 

previous grades, and they found no evidence of additional small class benefits for these 

students. 

Several non-experimental studies have also evaluated class size effects for subgroups 

of students, and almost all of them did not find differential class size effects. For example, 

Hoxby (2000) analyzed data from a natural experiment in Connecticut and found no 

evidence of class-size effects at schools that served high percentages of economically 

disadvantaged or minority students. In a similar study, Cho, Glewwe, and Whitler (2012) 

found the estimated class size effects did not differ by race/ethnicity, gender, or free lunch 

eligibility. One exception was the study by Jepsen and Rivkin (2009), which found 
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differential class size effects among subgroups. They analyzed the CSR policy in California 

and found that this policy initially helped economically advantaged (both in family 

background and performance) students more than their less affluent peers. 

One appropriate method of examining differential class size effects at different levels 

of achievement is quantile regression, which examines class size effects across the entire 

student achievement distribution. Konstantopoulos (2008) employed this approach to 

estimate class size effects at the tenth, twenty-fifth, fiftieth, seventy-fifty, and ninetieth 

quantiles, using data from Project STAR. He also constructed t-tests to examine whether 

the estimates were statistically different across quantiles and found some evidence that 

higher-achieving students benefited more from being in small classes in certain early 

grades than other students. Later studies confirmed such findings (e.g., Ding & Lehrer, 

2011; Jackson & Page, 2013). Nevertheless, Konstantopoulos and Chung (2009) examined 

the long-term effects of class size across the student achievement distribution. They found 

that for certain grades (fourth and sixth grade) in reading and science, low- achievers 

benefited more from being in small classes consistently in the early grades, while for other 

grades, no differential class size effects were found. 

Very few previous studies examined quantile-specific class size effects using non-

experimental data. To our knowledge, there were only two studies. One is by Levin (2001), 

who used quantile regression as well as IV methods through two-stage least absolute 

deviations (2SLAD) (Amemiya, 1987) to estimate the causal effects of class size on 

scholastic achievement across various points in the conditional distributions of 

mathematics and languages achievement of Dutch primary school students. He did not find 

any significant class size effects at any quantile. Levin (2001) did not examine differences 
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between estimates across quantiles, and thus it is not clear whether CSR reduced the 

achievement gap. Ma and Koenker (2006) reanalyzed Levin’s data and found that, for 

mathematics scores, lower-achieving students benefited more from smaller classes while 

average and high-achieving students did not get benefit from smaller classes. 

To sum up, it is not very clear if class size reduction would decrease achievement gap 

or not; also, there were quite limited studies that evaluated class size effects across 

achievement distribution. It is necessary to provide more evidence of class size effects 

across achievement distribution using concurrent data.  

 

Method 

In this chapter, I also used the data from TIMSS 2011, and focused on fourth grade 

mathematics achievement. I analyzed the same countries as I did in Chapter 1. Table 1.1 

provides detail about the selected countries as well as their upper class size limits. 

Quantile Regression 

The objective of my study was to examine class size effects across the distribution of 

fourth graders’ mathematics achievement, especially the effects in the upper and lower tails 

of the distribution. Ordinary least squares (OLS) regression fails to describe the full 

distributional impact of class size on student achievement, unless the lower-achievers and 

higher-achievers benefit the same from smaller classes as students in the middle of the 

achievement distribution. Quantile regression (Koenker and Bassett, 1978) is a tool that 

allows researchers to estimate quantile-specific class size effects, not only in the middle 

but also in the tails of the conditional student mathematics achievement distribution. Thus, 

we used quantile regression, and compared quantile-specific class size effects across 
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different quantiles of the achievement distribution to evaluate whether CSR closes or 

enlarges the achievement gap.  

I evaluated class size effects at the tenth, twenty-fifth, fiftieth, seventy-fifth, and 

ninetieth quantiles through the following equation 

 

0 1 2 3 4i i i i i iScore ClassSizeβ β ε= + + + + +ST CL SCΒ Β Β     (2.1) 

 

where iScore   represents mathematics scores, 0β  is the constant term, ClassSize is the 

main independent variable, 1β   represents the class size effect and is the coefficient of 

interest, STi is a row vector of student background characteristics, 2Β is a column vector 

of regression coefficients of student characteristics, CLi is a row vector of classroom or 

teacher characteristics, 3Β  is a column vector of regression coefficients of teacher and 

classroom characteristics, SCi is a row vector of school characteristics, 4Β  is a column 

vector of regression coefficients of school characteristics, and iε is the error term. 

Instrumental Variable and Control Function 

An important issue to consider in estimating quantile-specific class size effects is that 

class size may be endogenous because of omitted variable bias. The relative position of 

students in the conditional achievement distribution could be related to systematic 

differences in unobservables, such as motivation, family background, school or teacher 

quality, etc. In that case, the estimated class size effect from equation (2.1) cannot reflect 

the true quantile-specific class size effect. 

Because students and teachers are rarely randomly assigned to classrooms in a grade 
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class size might be correlated with unobserved characteristics of students or teachers. For 

example, in order to help low achieving students, some schools might assign higher quality 

teachers to classes with higher proportions of low achievers. Variables that determine 

assignment of students and teachers to classes are not typically measured. For example, 

student motivation, family income, parental pressure, teacher quality, etc. are rarely 

available in observational datasets. In addition, cross-sectional data rarely provide indexes 

of prior ability or performance. Although we included as many covariates as we could in 

our multiple regression analysis, it is still possible that unobservable factors that are part 

of the error term in equation (2.1) are correlated with class size. If that were true, then the 

estimated class size effect in equation (2.1) would be biased.  

In general, there are two sources of omitted variable bias that are related to student 

mathematics achievement, and to class size as well. First, students do not choose schools 

randomly but typically attend schools in their neighborhoods. Therefore, students within 

the same school might share common characteristics, such as parents’ education, parents’ 

occupations, and family income. That is, class size may be correlated with SES manifested 

via parents’ occupations or family income. Such variables were not measured or reported 

in the TIMSS 2011 fourth grade student survey. Second, students and teachers are rarely 

randomly assigned to classrooms, and thus class size might be correlated with unobserved 

student or teacher characteristics. For example, students may be assigned to classes based 

on their ability or motivation. TIMSS 2011, being a cross-sectional survey, did not include 

information about prior achievement (a proxy for ability). In the same vein, in order to help 

low-achieving students, some schools might assign higher quality teachers to classes with 

higher proportions of low-achievers. There were only very few teacher characteristics 
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reported in the TIMSS 2011 teacher survey, such as their gender, experience, and education 

level, which may capture only partially teacher “quality.” Although we included as many 

covariates as we could in our analysis, there are likely unobservable factors that could be 

correlated with class size that are part of the error term of equation (2.1). 

Just as with OLS, endogeneity of class size renders quantile-specific estimates biased. 

To overcome this potential shortcoming and to facilitate causal inferences, we used IV 

methods. Specifically, we created a grade and school specific average class size variable 

using the maximum class size rule, and we used it as an instrument for class size. Our 

method is similar to the one used by Angrist and Lavy (1999) and is the same as we did in 

Chapter 1. The average class size in fourth grade, based on the maximum class size 

requirement, could be calculated through the following equation 

 

/ [int(( 1) / ) 1]i i if E E rule= − +        (2.2) 

 

where iE    denotes the enrollment in grade four in a school; if   denotes the computed 

school and grade specific average class size based on the maximum class size rule; rule 

denotes the upper class size limit in a given country; and for any positive number n, the 

function int(n) is the largest integer less than or equal to n.  

I adopted the control function approach proposed by Lee (2007) to get quantile-

specific IV estimates. Lee’s approach fits our study for two reasons: first, his estimation 

approach is computationally convenient and simple to implement through the “qreg” 

command in STATA; second, the required assumptions by Lee’s control approach hold in 

general settings (see Lee, 2007). The control function approach is also a two-stage 
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estimation method that is similar to two-stage-least square (2SLS). The basic idea is to add 

a control variable to equation (2.1) such that, once we condition on this variable, the teacher 

reported class size will be independent of omitted variables (see Wooldridge, 2010). This 

so-called control variable usually needs to be estimated through a first stage regression, 

because it cannot be observed or measured directly. In our study, the first stage regression 

equation is 

 

0 1 2 3 4i i i i i iClassSize f uπ π= + + + + +ST CL SCΠ Π Π    (2.3) 

 

where if is the computed average class size in a school based on the maximum class size 

rule, and iu is the error term. All other terms have been defined previously. Theπ ’s are 

the regression estimates that need to be computed. 

Researchers typically use the estimated residuals from equation (2.3) as the control 

variable. Residuals can be estimated from a quantile regression, or even an OLS regression 

(Lee, 2007). It should be noted that Lee’s control function method is only applicable to 

continuous endogenous variables. Although class size is conceptually continuous, it has 

only a finite number of distinct values. In this case, Lee (2007) suggested using OLS 

regression in the first stage. I calculated residual ˆiu through the following equation 

ˆ =i i iu ClassSize ClassSize−  

where iClassSize is the fitted value of iClassSize from equation (2.3), the OLS regression. 

Contrary to the conventional control function approach that inserts ˆiu into equation (2.1) 
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as the second stage regression, Lee (2007) proposed inserting a power series or kernel of 

ˆiu  . He showed that with proper conditions, the estimator from his control function 

approach is consistent (See Appendix B for a proof). In this study, I added a fifth order 

polynomial of ˆiu  , denoted as ˆ( )iuλ  , into equation (1). Specifically, the second stage 

regression in each quantile (i.e., tenth, twenty-fifth, fiftieth, seventy-fifth, and ninetieth) is 

 

0 1 2 3 4ˆ( )i i i i i i iY ClassSize uδ δ λ ξ= + + + + + +ST CL SC∆ ∆ ∆     (2. 4) 

 

The coefficient 1δ  represents the relationship between mathematics achievement and class 

size, adjusted for student, teacher/classroom, and school characteristics; ˆ( )iuλ  represents 

a fifth order polynomial of ˆiu  . The δ  ’s indicate regression estimates that need to be 

computed. The student, classroom/teacher, and school covariates included in equation (2.4) 

are the same as those included in equation (2.3) (see Appendix A). Appropriate student 

weights were used in both regressions (equations 2.3 and 2.4). 

It should be noted that due to the two-step feature of the model, the standard errors of 

estimates in equation (2.4) were adjusted by nonparametric bootstrap techniques using 

1000 replications. I used the bootstrap method introduced by Kelnikov (2010), which is 

suitable for complex survey data and corrects the potential clustering effects (i.e., students 

nested within schools). Also, my analysis was conducted for each plausible value separately, 

and then the averages of the five sets of estimates were calculated and reported as the final 

estimates of class size effects for each quantile (see Schafer & Olsen, 1998). The standard 

error of the class size effects was a combination of the sampling variance obtained through 
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bootstrap techniques and the variance between plausible values (see Martin & Mullis, 

2012). 

Similar to the case in 2SLS context, there were two key assumptions that the computed 

average class size if  must meet in order for the variable to be a valid IV: (1) if  should 

be correlated with actual class size, and (2) if  should not be correlated with the error term 

in equation (2.1). 

The first assumption indicates that schools followed the maximum class size 

requirement when they assigned students to classrooms. In a 2SLS context, such an 

assumption can easily be tested through the first stage regression. If the instrument is only 

marginally significant, our instrument could be weak. When instruments are weak, then the 

standard IV estimates, hypothesis tests, and confidence intervals may be unreliable (Stock, 

Wright, & Yogo, 2002). The rule of thumb is that the t-statistic of the instrument in the 

first-stage regression should be larger than 3.2 (Stock, Wright, & Yogo, 2002). Results from 

Table 1.6 in Chapter 1 had shown that there were five countries or districts - Denmark, 

Croatia, Italy, Malta and Hong Kong- whose IVs were weak. In addition, the significant 

but negative coefficient in Hong Kong indicated that the IV was valid in Hong Kong. 

 

Results 

I only evaluated the class size effects for countries and districts with strong and valid 

IVs. The quantile-specific IV estimates of class size are summarized in Table 2.1. To 

compare the results between OLS regression and median regression (quantile regression at 

the fiftieth quantile), estimates from 2SLS are also presented. Negative coefficients of class 
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size indicate that student achievement increases as class size decreases, which is what 

researchers and policy makers expect. In Romania, the Slovak Republic, Slovenia, Japan  

Table 2.1: 2SLS and Quantile Regression Estimates and Standard Errors of Class Size 

10th 25th 50th 75th 90th
AUT -1.82 0.35 -2.07 -2.26 -2.51 -1.71

(1.27) (3.37) (3.04) (2.04) (2.15) (2.79) 
CZE 0.24 0.83 0.67 0.75 -0.10 -0.95

(1.16) (1.74) (1.48) (1.28) (1.56) (1.48) 
DEU 1.33 2.25 2.28 2.26 1.58 -0.30

(1.26) (2.28) (1.97) (1.68) (2.16) (2.42) 
HUN 0.45 1.31 -0.50 0.70 1.19 1.17

(1.49) (2.65) (2.24) (1.78) (1.92) (2.44) 
LTU -1.25 -0.06 -0.15 -0.79 -2.15 -2.81

(1.28) (3.27) (1.65) (1.75) (1.71) (2.41) 
PRT -3.80 -2.84 -2.89 -2.89 -3.05 -4.68

(2.67) (4.63) (3.10) (2.78) (3.10) (3.69) 
ROM -4.84* -5.46 -5.52 -5.72* -4.86+ -4.23

(2.28) (3.63) (3.71) (2.64) (2.92) (3.46) 
SVK -4.40* -4.42* -3.59 -4.10+ -4.68* -4.33

(1.58) (2.24) (2.57) (2.19) (2.16) (2.78) 
SVN -1.87 -1.13 -1.69 -2.03 -2.65 -2.70

(1.32) (2.69) (2.09) (1.86) (2.31) (2.52) 
JPN -0.81 -1.45 -1.03 -0.71 -0.51 -0.18

(0.46) (0.92) (0.81) (0.57) (0.63) (0.79) 
TWN -0.83 -1.83 -0.27 -0.63 -0.15 0.21

(1.23) (2.53) (2.27) (1.79) (1.86) (1.93) 
*p ≤ .05  + p ≤ 0.1
Note: Bootstrap standard errors are in parentheses.  

2SLS Quantile

 

and Chinese Taipei, the magnitude of the coefficients in the median regression were similar 

to those from 2SLS. In Germany, Hungary, Lithuania, and the Czech Republic, the 

magnitude of the coefficients in the median regression were quite different from those from 

2SLS. In terms of significance, the estimates from 2SLS and the estimates from median 

regression were quite similar and, by and large, insignificant. In addition, the standard 

errors from the median regression were larger than those from 2SLS. 

The coefficients of class size were negative but insignificant across all five quantiles 
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in Lithuania, Japan, Portugal, and Slovenia. The coefficients for Austria, the Czech 

Republic, Germany, Hungary, and Chinese Taipei were mixed: for some quantiles, they 

were positive, while for the other quantiles, they were negative. However, none of the 

quantile estimates were significant. Negative and significant quantile-specific class size 

estimates were only found in Romania and the Slovak Republic. In Romania, the class size 

coefficient at the fiftieth quantile was negative and significant at the 0.05 level. Also, the 

class size coefficient at the seventy-fifth quantile was negative and significant at the 0.10 

level. Such results indicate that students in the middle and upper tail of the achievement 

distribution benefitted from being in smaller classes. For instance, a one student reduction 

corresponds to an increase of about 5.7 points of mathematics achievement in the TIMSS 

scale for students in the middle of the achievement distribution. This is equivalent to about 

0.057 standard deviations (SD) among all fourth graders who participated in TIMSS 2011. 

For the other three quantiles, the estimates were negative but insignificant. The magnitude 

of the class size coefficients were similar across quantiles and ranged between 4.23 at the 

ninetieth quantile to 5.72 at the fiftieth quantile. 

In the Slovak Republic, the estimates at the tenth quantile and seventy-fifth quantile 

were significant and negative at the 0.05 level. The estimate at the fiftieth quantile was 

negative and significant at the 0.10 level. Such results indicate that students in the lower 

tail, median or upper tail of the achievement distribution benefitted from smaller classes. 

For the other two quantiles (twenty-fifth and ninetieth quantiles), the estimates were 

negative but insignificant. The magnitude of the class size coefficients were similar across 

quantiles and ranged between 3.59 at the twenty-fifth quantile to 4.68 at the seventy-fifth 

quantile. 
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To facilitate interpretation, I transformed the estimates to effect sizes expressed in SD 

units, assuming a reduction in class size of eight students, which was the average class size 

reduction in Project STAR. For Romania, the effect sizes were about 0.46 SD at the fiftieth 

quantile, and about 0.39 SD at the seventy-fifth quantile. For the Slovak Republic, the 

effect sizes were about 0.36 SD at the tenth quantile and the seventy-fifth quantile, and 

about 0.33 SD at the fiftieth quantile. Such effect sizes are quite substantial in magnitude 

and larger than the conditional mean estimates reported in prior studies (e.g., Angrist and 

Lavy, 1999; Nye, Hedges & Konstantopoulos, 2004). For example, the average effect size 

for Project STAR was about 0.20 SD. 

In Japan the magnitude of the coefficients indicated that the class size effects were 

consistently larger for low-achievers than for other students. For example, the magnitude 

of the coefficient estimated at the tenth quantile was more than eight times larger than that 

at the ninetieth quantile. In countries such as the Czech Republic, Lithuania, Portugal, and 

Slovenia, the magnitude of the coefficients indicated that the class size effects were 

consistently larger for higher-achievers than for other students. For example, the magnitude 

of the coefficient estimated at the ninetieth quantile was about 47 times as large as that at 

the tenth quantile in Lithuania. Overall these results seem mixed. In some countries, the 

results seem to support the notion that high-achieving students may benefit more from 

being in small classes than other students. In contrast, in other countries low-achievers 

seem to benefit more from smaller classes than other students. Still, one needs to examine 

whether the estimates across these different quantiles were statistically significant.  

A bootstrap procedure was employed to compute the standard errors of the differences 

between two quantile-specific estimates (Kelnikov, 2010). Table 2.2 summarizes the 
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differences between estimated class size coefficients and their bootstrap standard errors. I 

calculated the difference between two specific-quantile estimates by subtracting the 

estimated class size coefficient of lower achievers from the estimated class size coefficients  

 

Table 2.2: Differences in Quantile Regression Estimates 

AUT -2.07 0.36 0.54 -2.86 -0.44 -0.25 -2.61 -0.19
(3.01) (2.93) (1.83) (2.28) (2.16) (0.94) (1.73) (1.60) 

CZE -1.78 -1.62 -1.71 -0.93 -0.77 -1.05 0.26 0.23
(1.17) (1.26) (1.17) (1.35) (1.24) (1.11) (1.13) (1.09) 

DEU -2.42 -2.59 -2.56 -0.96 -0.71 -0.68 -0.14 -0.02
(2.02) (1.52) (1.37) (1.77) (1.36) (0.98) (1.57) (0.83) 

HUN -0.14 1.32 0.13 -0.12 1.57 0.38 -0.39 1.19
(2.05) (1.90) (1.40) (1.83) (1.55) (1.11) (1.59) (1.26) 

LTU -2.75 -2.66 -2.02 -2.08 -1.99 -1.36 -0.73 -0.64
(2.79) (1.55) (1.32) (2.59) (1.25) (1.00) (2.02) (0.99) 

PRT -2.45 -1.79 -2.21 -0.72 -0.48 0.03 -0.18 0.41
(4.76) (3.27) (2.55) (4.22) (2.55) (1.67) (3.70) (2.02) 

ROM 1.23 1.30 1.50 0.60 0.66 0.86 -0.27 -0.20
(3.08) (3.26) (2.18) (2.18) (2.42) (1.22) (1.45) (1.86) 

SVK 0.20 -0.74 -0.23 -0.09 -0.79 -0.51 0.18 -0.51
(2.30) (2.01) (1.42) (2.02) (1.69) (1.02) (1.55) (1.42) 

SVN -1.57 -1.01 -0.67 -1.53 -0.97 -0.62 -0.90 -0.34
(1.92) (1.56) (1.42) (1.70) (1.29) (0.90) (1.46) (1.10) 

JPN 1.27* 0.85 0.50 0.94 0.52 0.25 0.65 0.26
(0.60) (0.66) (0.41) (0.61) (0.62) (0.29) (0.50) (0.45) 

TWN 2.04 0.48 0.85 1.68 0.12 0.49 1.19 -0.37
(1.81) (1.37) (1.20) (1.61) (1.15) (0.92) (1.51) (0.81) 

*p ≤ .05  + p ≤ 0.1
Note: Bootstrap standard errors are in parentheses.  

50th vs. 25th 
Quantile

50th vs. 10th 
Quantile

90th vs. 10th 
Quantile

90th vs. 25th 
Quantile

90th vs. 50th 
Quantile

75th vs. 10th 
Quantile

75th vs. 25th 
Quantile

75th vs. 50th 
Quantile

  

of higher achievers. Thus, a negative difference indicated that high-achievers benefitted 

more from small classes than low-achievers. For example, in Japan, the difference of the 

class size coefficients between the ninetieth and the tenth quantile was 1.27, which 

indicates that a one student reduction in class size would increase achievement by 1.27 

points in the mathematics achievement scale between these two quantiles (favoring the 

tenth quantile). In other words, negative difference indicates an increase in the achievement 

gap between high-achievers and low-achievers as class size decreases. In contrast, a 
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positive difference indicates a decrease in the achievement gap between high-achievers and 

low-achievers as class size decreases.  

The results in Table 2.2 show that almost all differences between any two specific-

quantile estimates were insignificant with only one exception, which indicates that in 

general CSR did not reduce the achievement gap between high- and low-achievers. By and 

large, CSR is likely to have no impact on the achievement gap across countries, which is 

inconsistent with prior studies, especially the studies using data from Project STAR (e.g., 

Konstantopoulos, 2008; Ding & Lehrer, 2011; Jackson & Page, 2013) that consistently 

found high-achieving students got more benefit from small classes and thus achievement 

gap increased.  

 

Discussion 

I investigated the differential effects of class size at different levels of mathematics 

achievement for fourth graders, using rich data from TIMSS 2011. The European and Asian 

countries and districts I selected had maximum class size rules, which allowed me to use 

an IV approach to explore the causal effects of class size on student achievement across 

the achievement distribution. Specifically, I used a control function approach, coupled with 

quantile regression, to examine differential class size effects for students in the middle, 

lower, and upper tails of the achievement distribution. 

Generally, the findings from the quantile regression indicated no systematic patterns 

of association between class size and achievement. In nine of the eleven European and 

Asian countries and districts that had strong IV and valid RE design, we found insignificant 

class size effects. The only two exceptions were Romania and the Slovak Republic, where 
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significant class size effects were detected in some quantiles. These significant class size 

effects were quite substantial in magnitude compared to prior studies (e.g., Angrist & Lavy, 

1999). Nonetheless, my findings are in congruence with the findings of previous work that 

used prior cycles of TIMSS and have indicated generally insignificant relationships 

between class size and achievement (Pong & Palls, 2001; Wossmann, 2005; Wossmann & 

West, 2006). I also compared class size coefficients at the lower and upper tails of the 

achievement distribution. These results suggest no differential class size effects across the 

achievement distribution. In sum, our findings suggest that CSR has no impact on 

achievement gap between low- and high-achieving students. In other words, lower-

achieving students did not get hurt from CSR policies. Such findings are not in congruence 

with findings of previous works that used high-quality experimental data or (e.g., 

Konstantopoulos, 2008; Nye, Hedges & Konstantopoulos, 2002). In addition, our findings 

indicates that, for some specific countries such as Romania and the Slovak Republic, CSR 

is a promising policy that would increase student achievement but not increase 

achievement gap between low- and higher-achieving students.
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CHAPTER 3 POWER CONSIDERATION FOR MODEL OF CHANGE 

 

Introduction 

In recent years, there has been an increased interest in assessing the effects of 

educational interventions via experimental designs where students, classrooms, or schools 

are randomly assigned to a treatment and a control condition. An important part of the 

design phase of an experiment involves power analysis. Statistical power is the probability 

of detecting the treatment effect of interest when it exists (Boruch & Gomez, 1977; Cohen, 

1988). A priori power computations are critical in designing experiments because they 

inform empirical researchers about the sampling scheme needed to detect a treatment effect. 

Specifically, a priori power analyses help educational researchers identify how big a 

sample is needed at the student, classroom, or school level to ensure a high probability 

(e.g., > 80 percent) of detecting a treatment effect if it were true (Lipsey 1990; 

Konstantopoulos, 2008a).  

The recent resurgence of experiments in education has been an attempt to establish 

rigorous research in the field. That is, currently much of the empirical research in education 

employs randomized experiments that are typically large in scale. These field experiments 

allow education researchers to examine the effects of school, or student interventions on 

student performance. In addition, education experiments incorporate often times a 

longitudinal component where students are followed over time. The main objectives in 

these studies include assessing whether the treatment effects are cumulative or have lasting 

benefits or whether they fade over time. For example, the effect of a novel mathematics 

curriculum is evaluated through an experiment (i.e., novel versus traditional mathematics 
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curriculum) where measurements of student outcomes (e.g., mathematics achievement) are 

collected repeatedly over time (e.g., every spring for a few years).  

In repeated measures experiments each student has their own trajectory which is a 

function of time and indicates the rate of change over time (Raudenbush & Bryk, 2002). 

The central goal in such studies is not only to estimate the treatment effect in the first year 

of the study (e.g., immediate effects), but also gauge longer term effects over time. For 

example, a researcher may be interested in the change or growth of mathematics 

achievement for students who use a novel mathematics curriculum vis-a-vis students who 

use a traditional mathematics curriculum. In this case, it is important for the researcher to 

compare trajectories of students who received the treatment (i.e., novel curriculum) versus 

those who did not receive the treatment (i.e., traditional curriculum).      

The change in measurements over time does not always follow a linear trend. Instead, 

trajectories sometimes point to nonlinearities such as curvilinear trends. For example, 

Huttenlocher et al. (1991) studied how children’s vocabulary is accelerated in early years. 

One way of defining trajectories of change is via polynomial functions (Raudenbush & Liu, 

2001). The first degree polynomial indicates linear rate of change, the second degree 

polynomial indicates a quadratic rate of change, the third degree polynomial indicates a 

cubic rate of change and so forth. That is, treatment effects are estimated for linear rates or 

non-linear rates of change.  

Studies about polynomial change may be viewed as having a nested structure. For 

example, measurements are nested within individuals and this nesting needs to be taken 

into account in the design phase of the study as well as in the statistical analysis phase. 

Prior work has utilized two-level models (e.g., measurements within students) for repeated 
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measurements designs (see Raudenbush & Bryk, 2002). In particular, the authors presented 

methods for power analysis of treatment effects in studies of polynomial change with one 

level of nesting. Power is a function of the magnitude of the treatment effect, the sample 

size of individuals, the duration of the study, and the frequency of measurements over time. 

Researchers should take into account all of these parameters in the design phase of the 

experiment to ensure that treatment effects will be detected.  

Nonetheless, populations in education have frequently more complicated structures. 

For example, students are also nested within classes or schools and so forth. In addition, 

education interventions typically assign either schools or students randomly to treatment 

or control groups. For instance, students are assigned to small or regular classes within 

schools. Or schools are randomly assigned to an assessment program or not. It seems 

natural to extend methods for power analysis for tests of treatment effects in studies of 

polynomial change from two to three-levels. Consider for example, a nested structure 

where measurements are nested within students and students in turn are nested within 

schools. That is, the first level is repeated measurements, the second level is students, and 

the third level is schools. Spybrook et al. (2011) reported in the optimal deign manual 

formulae to calculate power for three-level polynomial change models without covariates.  

This study extends previous methods by Raudenbush and Liu (2001) and Spybrook et 

al. (2011), and provide methods for power analysis of tests of treatment effects in studies 

of polynomial change with two levels of nesting (e.g., students and schools) where the 

treatment is either at the third level (e.g., school intervention) or at the second level (e.g., 

student intervention). In particular, I present first methods for power analysis for cluster 

randomized designs (CRD) where for instance schools are randomly assigned in a 
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treatment and a control group, students are nested within schools, and repeated 

measurements are nested within students. This design assumes that schools are sampled 

randomly from a larger population at the first stage and then students within schools are 

randomly sampled. That is, both schools and students are random effects. Within CRD I 

briefly present the unconditional model (i.e., no covariates at any level), and then I expand 

the model to include covariates in the second and third levels. Second we provide methods 

for power analysis for block randomized designs (BRD) where the treatment is at the 

second level (e.g., student intervention) and the third level units (e.g., schools) serve as 

blocks. For example, students are assigned to treatment and control conditions within 

schools. In this design both schools and students are also treated as random effects. In 

addition, we will discuss how study duration, sample size (number of third and second 

level units), and covariates influence power through two illustrative samples.  

 

The Polynomial Change Model 

A polynomial is an algebraic expression that contains more than one term and is 

described as a sum of terms of the same variable (e.g., time) in different powers (Kirk, 

2012). For example, student achievement growth could be modeled through a polynomial 

equation of the third degree as 

 

 2 3
0 1 2 3Y a a aβ β β β ε= + + + +       (3.1) 

 

where Y is student achievement, a  is a measure of time such as age at each time of 

measurement, 0β  is a constant, 1aβ  is a linear component, 2
2aβ  is a quadratic component, 
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3
3aβ   is a cubic component, and ε  is an error term. One disadvantage of equation (3.1) is 

that the trend components are highly correlated, which leads to multicollinearity. To 

resolve the dependency problem, one can utilize orthogonal polynomial contrast 

coefficients, which have been frequently used to fit trends of repeated measures. Equation 

(3.1) can then be constructed as  

 

 0 0 1 1 2 2 3 3Y c c c c uα α α α= + + + +       (3.2) 

 

where 1 2, ,c  c  and 3c  are orthogonal polynomial coefficients that are independent with 

each other and thus enable researchers to independently test a null hypothesis for each of 

the three components (Kirk, 2012).  Orthogonal polynomial coefficients have been used to 

fit trends since the early 20th century (e.g., Fisher, 1928). Jennrich and Sampson (1971) 

provided an algorithm to generate the orthogonal polynomial contrast coefficients. They 

are provided in tables of many experimental design texts (e.g., Kirk, 2012). 

Previous work has discussed sample size and statistical power considerations for group 

comparisons using repeated measures, most of which however are focused on single-level 

models (e.g., Bloch, 1986; Hedeker, Gibbons, & Waternaux, 1999). Raudenbush and Liu 

(2001) extended this work and provided power analysis and sample determination methods 

for repeated measures in two-level models. They focused on studies in which two groups 

were followed over time to assess group differences in the average rate of change, rate of 

acceleration, or a higher degree polynomial effect. Through a two-level model combined 

with orthogonal polynomial contrasts at the first level, the authors examined how the 

duration of the study, frequency of observation, and number of participants affected 
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statistical power. They found that power increases as the study duration or the number of 

students increases. Meorbeek (2008) discussed how the costs of including more persons or 

taking more measurement influence powers in a two-level polynomial growth models and 

provided methods of comparing alternative design on the basis of their costs and sample 

size. She also took drop-out into consideration, and found that power decrease as the 

dropout increase, and thus increasing the study duration might have a negative effect on 

the power.  

Power analysis methods for growth models with two levels of nesting have rarely been 

discussed in prior literature. One exception was by Jong, Moerbeek, and Van der Leeden 

(2010), who discussed power estimation methods for three-level growth models with linear 

rate of change only. They have demonstrated that power is influenced by intraclass 

correlation coefficients, level of randomization, sample size, covariates and drop-out rates. 

However, their methods could not be applied to models with higher order of change rates 

(e.g., quadratic rate of change). The optimal design manual by Spybrook et al. (2011) has 

provided power calculation formulae for three-level models in studies of polynomial 

change where the treatment is at the third level (e.g., schools), but has not incorporated the 

effects of covariates.   

Both Randenbush and Liu (2001) and Spybrook et. al. (2011) discussed unconditional 

models that did not include any covariates at any level. However, prior studies have shown 

that covariates (e.g., students and school characteristics) could increase power significantly. 

Hedges and Hedberg (2007) documented that prior test scores and demographic covariates 

such as SES account for nearly one-third of the variance at the student level. Bloom, 

Richburg-Hayes, and Black (2007) found that controlling for baseline covariates could 
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improve the precision of CRD studies that examine the impact of school interventions. 

Konstantopoulos (2012) showed that covariates at different levels of the hierarchy 

potentially explain a considerable proportion of the variance at the corresponding levels, 

and centering of lower level covariates plays an important role in this (see also Snijders & 

Bosker, 1999). 

 

Statistical Models 

Design I: Treatment Assigned at Third Level (Cluster Design) 

Unconditional Model 

Consider a simple three-level growth design where level-3 units (e.g., clusters such 

as schools) are randomly assigned to treatment or control conditions (i.e., clusters are 

nested within treatment). The first level for change over time of level-2 unit i in cluster j 

can de expressed as a polynomial function, namely      

           

 

0 0 1 1 2 2 ( 1) ( 1)...gij ij g ij g ij g P ij P g gijY c c c c uα α α α − −= + + + + +    (3.3) 

 

where pgc  represent orthogonal polynomial contrasts of degree p (p = 0, 1, …, P-1) at 

measurement g (g = 1, …, G), pijα ’s represent the mean and the rates of change (linear, 

quadratic, cubic, etc.), and giju  is the within level-2 unit random term with variance 2
eσ . 

When p = 0,  0 1gc =  and 0ijα  represents the average outcome for level-2 unit i in level-3 

unit j. When p = 1, 1gc  is a linear contrast and 1ijα  is the linear rate of change for level-2 
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unit i in level-3 unit j, and so forth. We work with orthogonal polynomial contrasts because 

they facilitate the computations of estimators and their standard errors, and simplify power 

analysis (see Raudenbush & Liu, 2001). The results apply to studies of any length and for 

polynomials of any degree (Kirk, 2012).  

Orthogonal polynomial contrast coefficients should satisfy two conditions: The pth 

polynomial contrasts trend sum to zero, and the sum of the product of the pth and p’th 

polynomial contrasts is equal to zero (see Kirk, 2012) 
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∑
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 (3.4) 

 

Orthogonal polynomial coefficients that meet conditions shown in equation (3.4) are not 

unique because, any group of orthogonal polynomial coefficients denoted as pg p pgkC c= , 

also meet these two conditions, where pk  could be any constant (see Appendix C for a 

detailed proof). With equally spaced time points, the following formulae could be used to 

calculate orthogonal polynomial coefficients  
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(see Jennrich & Sampson, 1971), where pgc  is one possible orthogonal polynomial 

coefficient of degree p at measurement g as defined before, and pk  could be any constant.  

That is, researchers could choose any pk  to get their own orthogonal polynomial contrast 

coefficients. 

For example, when 0 1,  k = 1 1,  k = 2
1 ,  
2

k = and 3
1
6

k = , one can compute the first four 

orthogonal coefficients as  
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   (3.6) 

 

(see Appendix C for a detailed proof). When G = 4, then the values of the orthogonal 

coefficients are 

 

 

0

1

2

3

(1,  1,  1,  1)
( 1.5,  0.5,  0.5,  1.5)
(0.5,  -0.5,  0.5,  0.5)
( 0.05,  0.15,  0.15,  0.05).

c
c
c
c

=
= − −
= −
= − −

       (3.7) 
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Least squares estimates of each level-2 unit’s change parameter as well as their 

variance can be computed as  
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(see Seber & Lee, 2003), where  
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        (3.9) 

 

(see Appendix D for proof).   

In the second level model each of the parameters pijα  (e.g., the average polynomial 

change for each individual) from the first level equation varies between level-2 units (e.g., 

individuals) within level-3 units (e.g., schools), namely  

 

 0pij p j pijα β ξ= + ,        (3.10) 

 

where 0p jβ ’s represent the average polynomial effects within level-3 units such as schools 

and the pijξ ’s are individual specific random effects within level-3 units for each 
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polynomial change parameter. The random effects follow a multivariate normal 

distribution with zero means, variances 2
ppτ , and covariance 'ppτ  between the random 

effects pijξ  and 'p ijξ .  

At the third level each of the parameters, 0p jβ ’s (average polynomial change for each 

level-3 unit) vary across third level units such as schools, namely 

  

0 00 01 0p j p p j p jTβ γ γ η= + + ,       (3.11) 

 

where 00pγ ’s represent the average polynomial effects across level-3 units, 01pγ ’s represent 

the average difference between the treatment and the control group for each polynomial 

change parameter, and the 0p jη ’s are level-3 unit specific random effects for each 

polynomial change parameter. These random effects follow a multivariate normal 

distribution with zero means, variances 2
ppω , and covariance 'ppω  between the random 

effects 0p jη  and '0p jη .  

Suppose there are N level-2 units within each level-3 unit and m level-3 units within 

each treatment condition, which means that the total number of level-3 units is M = 2m and 

thus the total number of level-2 units is MN. Then, the estimate of the variance of the 

treatment effect for polynomial p is 

 

  2 2 2
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and 2

1

G

pg
g

c
=
∑  is defined in equation (3.9) (see Konstantopoulos, 2008a; Raudenbush & Liu, 

2001; Spybrook et al., 2011). 

Suppose that a researcher wants to test the hypothesis that 01pγ  is different from zero 

and carries out the usual t-test. The test statistic is defined as  

 

01 01ˆ ˆ/ ( )p pt Varγ γ= .        (3.13) 

 

When the null hypothesis is true, the test statistic t has a Student’s t-distribution with 2m-

2 degrees of freedom. When the null hypothesis is false, the test statistic t has the non-

central t-distribution with 2m-2 degrees of freedom and non-centrality parameter λ . The 

non-centrality parameter is defined as the expected value of the estimate of the treatment 

effect divided by the square root of the variance of the estimate of the treatment effect, 

namely  

 

01 2 2 2
1

2 ( )p
pp pp p

mN
N

λ γ
ω τ σ

=
+ +

.      (3.14) 

 

To calculate power, we need to define a standardized effect size first. Prior literature 

provided three definitions of standard effect size for three level models (e.g., Hedge, 2010; 

Konstantopoulos, 2008a, 2008b). The first option of defining the standardized effect size 

for a polynomial degree p in three-level models is the group differences divided by the 
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square root of the total variance (Hedges, 2010; Jong, Moerbeek, & Van der Leeden, 2010; 

Konstantopoulos, 2008a)  

 

01
1 2 2 2

p

pp pp p

ES
γ

ω τ σ
=

+ +
.       (3.15) 

 

However, the denomination of ES1 depends on 2
pσ , which is a function of the study 

duration as shown in equation (3.8). In other words, ES1 changes as the study duration 

varies. Because this study evaluates various designs with alternative study duration but 

with fixed effect size, ES1 is not appropriate.   

Another two ways of defining the standardized effects size are  

 

01

2 2

p

pp pp

ES
γ

ω τ
=

+
 or 01

2 ,p

pp

ES
γ
ω

=       (3.16) 

 

where ES is the group differences divided by the square root the sum of level-2 variance 

and level-3 variance (Jong, Moerbeek, & Van der Leeden, 2010; Spybrook et. al., 2011); 

while ES2 is the group differences divided by the square root level-3 variance. Both ES and 

ES2 could be used as the standardized effect size in three-level models (see Hedges, 2011). 

It should be noted that ES2 is larger than ES for the same model if 2 0ppτ > , especially when 

the level-2 variance account for a large proportion of the total variance. For example, in 

our illustrative example using data from Project STAR in a later section, the effect size was 

larger than one if ES2 is used; however the effect size from Project STAR was about 0.2 
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using Cohen’s d. Cohen (1988) suggested that 0.2 is considered as a small effect size, 0.5 

is considered as a medium effect size, and 0.8 is considered as a large effect size. Therefore, 

small or medium effect size might be interpreted as large effect size without cautiousness 

if ES2 is used. In order to avoid assuming a large standardized effect and keep consistent 

with Cohen’s definition of small, medium and large effect size, I use ES as the definition 

of standardized effect size in this study. Note that researchers still need to be cautious to 

interpret ES, which trends to be larger than ES1 since it does not take the variance at the 

first level into consideration.  

Then, the non-centrality parameter λ  of the t-test in equation (3.14) simplifies to   

 

2 2

2 2 22
pp pp

pp pp p

mNλ ES
N

ω τ
ω τ σ

+
=

+ +
.      (3.17)  

 

The power of a two-tailed t-test for a specified significance level α is defined as 

 

p1 = 1 – Η [c(α /2, 2m-2), (2m-2), λ] + Η [-c(α /2, 2m-2), (2m-2), λ]  (3.18) 

 

where c(α,v) is the level a one-tailed critical value of the t-distribution with v degrees of 

freedom (e.g., c(0.05,20)=1.72), and H(x, v, λ) is the cumulative distribution function of 

the non-central t-distribution with v degrees of freedom and non-centrality parameter λ. 

Alternatively, one can use an F-test with 1, 2m – 2 degrees of freedom and a non-centrality 

parameter 2 .λ  

Covariates at Second and Third Levels 
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When covariates are included at the second level equation (3.10) becomes 

  

0pij p j Apijα β ξΒ= + +ij p2jX ,       (3.19) 

 

where Xij is a row vector of k level-2 unit characteristics, and p2jΒ  is a row vector of k 

coefficients of level-2 unit characteristics. The Apijξ ’s are level-2 specific random effects 

within level-3 units for each polynomial change parameter, and subscript A indicates 

adjustment in the error term because of covariates. The random effects follow a 

multivariate normal distribution with zero means, variances 2
Rppτ , covariance 'Rppτ  between 

random effects pijξ  and 'p ijξ , and subscript R indicates residual variance because of 

covariates. All other terms have been defined previously.  

Similarly, the third level model of equation (3.11) becomes 

  

0 00 01 0p j p Ap j Ap jTβ γ γ η= + + +P02 jZ Γ       (3.20) 

 

where ZP02 is a row vector of q level-3 unit characteristics, and Γ j is a column vector of 

coefficients of level-3 unit characteristics. The 0Ap jη ’s are level-3 specific random effects 

for each polynomial change parameter, where subscript A indicates adjustment because of 

covariates (see Konstantopoulos, 2008a). These random effects follow a multivariate 

normal distribution with zero means, variances 2
Rppω , covariance 'Rppω  between random 
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effects 0p jη  and '0p jη , and subscript R indicates residual variance because of covariates. 

All other terms have been defined previously.  

As a result, the non-centrality parameter of the t-test for the three-level model with 

covariates at second and third levels is defined as  

 

 
01 2 2 2

3 2

1
2A Ap

pp pp p

mNλ
Nw w

γ
ω τ σ

=
+ +

,     (3.21) 

 

where  

 

 2 2 2 2
3 2/ , / ,Rpp pp Rpp ppw wω ω τ τ= =        (3.22) 

 

that is, 2w  indicates the proportion of the variance at the second level that is still 

unexplained; while 3w  indicates the proportion of the variance at the third level that is still 

unexplained. For example, when w3 = 0.8, it indicates that the variance at the third level 

decreased by 20% because of inclusion of covariates at the third level (assuming a centering 

approach where covariates can explain variance in the outcome only at their corresponding 

levels). In other words, the covariates at the third level explain 20% of the variance at the 

third level.  

We assume that the coefficient of the treatment does not change after adding covariates 

at the second and third level ( 01 01Ap pγ γ= ), which is reasonable since in experimental 
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designs the treatment (Tj) should be independent of any covariates (observed or 

unobserved). Then the non-centrality parameter Aλ  in equation (3.21) simplifies to 

   

2 2

2 2 2
3 22

pp pp
A

pp pp p

mNλ ES
Nw w

ω τ
ω τ σ

+
=

+ +
.     (3.23) 

 

The power of a two-tailed t-test for a specified significance level α is defined as 

 

p2 = 1 – Η [c(α /2, 2m-q-2), (2m-q-2), λA] + Η [-c(α /2, 2m-q-2), (2m-q-2), λA] (3.24) 

 

where q is the number of covariates at the third level. As mentioned previously, an F-test 

could be used instead. 

Design II: Treatment Assigned at Second Level (Block Randomized Design) 

Unconditional Model 

The first level model is identical to equation (3.3). The second level model 

incorporates the treatment (Tij), namely 

 

 0 1pij p j p j ij pij+ Tα β β ξ= + ,        (3.25) 

 

where 0p jβ ’s represent the average polynomial effects within level-3 units, ijT  is a dummy 

variable coded as one if second level unit i in third level unit j is assigned to treatment or 

control conditions and zero otherwise, 1p jβ  is the treatment effect within level-3 units, and 
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the pijξ ’s are level-2 random effects within level-3 units for each polynomial change 

parameter. The random effects follow a multivariate normal distribution with zero means, 

variances 2
ppτ , and covariance 'ppτ  between random effects pijξ  and 'p ijξ .  

The third level equations for the intercept ( 0p jβ ) and the treatment effect ( 1p jβ ) are 

 

 
0 00 0

1 10 1

p j p p j

p j p p j

β γ η

β γ η

= +

= +
,        (3.26) 

 

where 00pγ ’s represent the average polynomial effects across level-3 units, the 0p jη ’s are 

level-3 unit specific random effects for each polynomial change parameter, 10pγ ’s 

represent the average difference between the treatment and the control groups for each 

polynomial change parameter across level-3 units, and the 1p jη ’s are treatment by level-3 

unit random effects (interaction effects) for each polynomial change parameter. The 0p jη ’s 

follow a multivariate normal distribution with zero means and variances 2
ppω , whilst the 

treatment by level-3 unit random effects also follow a normal distribution with a mean of 

zero and a variance 2
Tppω , where subscript T indicates treatment at the second level whose 

effect varies at the third level. 

Suppose there are M level-3 units and n level-2 units within each treatment condition 

within each level-3 unit, which means that the total number of level-2 units in each level-

3 unit is N = 2n and thus the total number of level-2 units is MN. Then, the estimate of the 

variance of the treatment effect for polynomial p is 
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     (3.27)  

 

where subscript T indicates treatment at the second level whose effect varies at the third 

level. 

and 2

1

G

pg
g

c
=
∑  is defined in equation (3.9). 

Suppose that a researcher wants to test the hypothesis that 10pγ  is different from zero 

and carries out a t-test. The test statistic is defined as  

  

10 10ˆ ˆ/ ( ).p pt Varγ γ=         (3.28) 

 

When the null hypothesis is true, the test statistic t has a Student’s t-distribution with M-1 

degrees of freedom (Konstantopoulos, 2008b).  When the null hypothesis is false, the test 

statistic t has the non-central t-distribution with M-1 degrees of freedom and non-centrality 

parameter λ . The non-centrality parameter is defined as the expected value of the estimate 

of the treatment effect divided by the square root of the variance of the estimate of the 

treatment effect, namely  

 

 
10 2 2 2
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2 ( )p

Tpp pp p
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=
+ +

.      (3.29) 
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We define the standardized effect size for a polynomial degree p as  

 

 10

2 2

p

Tpp pp

ES
γ

ω ω
=

+
.        (3.30) 

 

Then, the non-centrality parameter λ   of the t-test simplifies to   

 

2 2

2 2 22
Tpp pp

Tpp pp p

Mnλ ES
n

ω τ
ω τ σ

+
=

+ +
.      (3.31)  

 

The power of a two-tailed t-test for a specified significance level α is defined as 

 

p3 = 1 – Η [c(α /2, M-1), (M-1), λ] + Η [-c(α /2, M-1), (M-1), λ]  (3.32) 

 

where c(α,v) is the level a one-tailed critical value of the t-distribution with v degrees of 

freedom, and H(x, v, λ) is the cumulative distribution function of the non-central t-

distribution with v degrees of freedom and non-centrality parameter λ. As noted previously 

one could use an F-test instead.  

Covariates at Second and Third Levels  

When covariates are included at the second level equation (3.25) becomes 

 

0 1pij p j Ap j ij Apij+ T +α β β ξ= +ij p2jX Β ,      (3.33) 
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where Xij is a row vector of k level-2 unit background characteristics, and Βp2j  is a row 

vector of k coefficients of level-2 unit characteristics. The Apijξ ’s are level-2 specific 

random effects within level-3 units for each polynomial change parameter, where subscript 

A indicates adjustment because of covariates. The random effects follow a multivariate 

normal distribution with zero means, variances 2
Rppτ , and covariance 'Rppτ  between random 

effects pijξ  and 'p ijξ . The subscript R indicates residual variance because of covariates. 

All other terms have been defined previously. 

When covariates are included at the third level equation (3.26) becomes 

 

0 00 0

1 10 1 ,
p j p Ap j

Ap j Ap Ap j

β γ η

β γ η

= + +

= + +
P1 p0j

P1 p1j

Z
Z
Γ

Γ
      (3.34) 

 

where ZP1 is a row vector of q level-3 unit characteristics and the Γ  ’s include regression 

coefficients. The 0Ap jη  ’s are level-3 unit specific random effects for each polynomial 

change parameter, and the 1Ap jη ’s are treatment by level-3 unit random effects (interaction 

effects) for each polynomial change parameter. The 0Ap jη ’s  follow a multivariate normal 

distribution with zero means, variances 2
Rppω , and the treatment by level-3 unit random 

effects also follows a normal distribution with a mean of zero and a variance 2
RTppω , 

subscript R indicates residual variance because of covariates.  The non-centrality parameter 

of the t-test when covariates are added at the second and third levels is defined as 
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      (3.35) 

 

where subscript A indicates adjustment because of covariates (see Konstantopoulos, 2008b) 

and  

 

             2 2 2 2
3 2/ , / ,RTpp Tpp Rpp ppw wω ω τ τ= =       (3.36) 

 

that is, 2w  indicates the proportion of the variance at the second level that is still 

unexplained, and 3w  indicates the proportion of the treatment by level-3 unit variance at 

the third level that is still unexplained. We assume the coefficient of the treatment does not 

change after adding covariates at the second and third level ( 10 10Ap pγ γ= ), which is 

reasonable since in experimental designs the treatment (Tij) should be independent of any 

covariates (observed or unobserved). Then the non-centrality parameter Aλ  of the t-test in 

equation (3.35) simplifies to  

  

2 2
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3 22
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+
=

+ +
.     (3.37)  

 

The power of a two-tailed t-test for a specified significance level α is defined as 

 

p4 = 1 – Η [c(α /2, M-q-1), (M-q-1), λA] + Η [-c(α /2, M-q-1), (M-q-1), λA],  (3.38) 
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where q is the number of covariates at the third level. As mentioned previously one could 

use an F-test instead. 

 

Illustrative Examples 

Cluster Randomized Design: A Linear Growth Model 

To illustrate the applicability of the methods to assess consequences of study duration, 

sample sizes (students and schools), and covariates on power, we firstly utilized the data 

from a large scale experiment that was conducted in Indiana. This experiment employed a 

CRD, where students were nested within schools, and schools were nested within treatment 

and control groups. Random assignment took place at the school level, that is, schools were 

randomly assigned to treatment and control conditions. Schools in the treatment group 

adopted specific diagnostic assessment tools to measure student learning a few times 

during the 2009-2010 school year and to provide diagnostic information to teachers to 

improve ongoing instruction. The study incorporated a longitudinal component and thus 

student mathematics and reading achievement were measured three times in the spring of 

2010, 2011, and 2012 (see Konstantopoulos, Miller, & van der Ploeg, 2013 for a more 

detailed introduction on this experiment). The total number of participating schools was 50 

with 32 schools in the treatment group. Overall, nearly 20,000 students participated in the 

study during the 2009-2010 school year.  

The outcome is standardized student mathematics achievement. Because the study 

duration was only 3 years, we used a linear rate of change model at level-1 (repeated 

measures), namely 
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 2
0 0 1 1 ,  (0,  )gij ij g ij g gij gij eMath c c u u Nα α σ= + +  ,                                                             

 

where gijMath is student mathematics achievement in year g, 0 (1,  1,  1)gc =  and 

1 (-1,  0,  1)gc =  at g = 1, 2, 3 in accord with the orthogonal polynomials in equation (3.6). 

This model defines 0ijα as the mean mathematics achievement for student i in cluster j, and 

1ijα  is the average rate of linear change of mathematics achievement for student i in school 

j. 

The second level model (student level) is 

  

2
0 00 0 0 00,  (0,  )ij j ij ij Nα β ξ ξ τ= +                                                                                       

 2
1 10 1 1 11,  (0,  )ij j ij ij Nα β ξ ξ τ= +  ,                                                                      

 

where 00 jβ  is the mean mathematics achievement in school j, and 10 jβ  is the average 

growth rate in school j. 

The third level model (school level) is  

 

 2
00 000 001 00 00 00= + ,  (0,  )j j j jT Nβ γ γ η η ω+                                                                           

 2
10 100 101 10 10 11= + ,  (0,  )j j j jT Nβ γ γ η η ω+  ,                                                                         
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where 000γ is the grand mean, 001γ  is the main effect of treatment for the mean, jT  is a 

binary indicator coded as one for treatment schools and zero for control schools,  100γ is 

the average rate of change, and 101γ is the main effect of treatment for the rate of change, 

which is my primary interest. We estimates of the relevant variances are  

 2 2 2
11 110.00092 0.,  = , 00091 0.00012eσ τ ω= = . 

To calculate power, we assumed a standardized effect size of 0.40 and a significance 

level of 0.05. We also assumed the sample size as m = 10 and N = 20, which indicates 10 

schools in the treatment group (20 schools in total) and 20 students in each treatment or 

control school.  

According to equation (3.8) and equation (3.9) with G = 3, p =1 and k1 = 1, first I 

calculate  

 2
1

0.0009212
4 3 2

0.00046σ ⋅
= =

⋅ ⋅
. 

Then, I calculate the non-centrality parameter of the t-test based on equation (3.17), namely  

  

2 2

2 2 2

0.0010 20 0 012 0.00091 .090
0.00012 0

.4 2
2 .00091 0.000462 300

pp pp

pp pp p

mNλ= ES =
N

ω τ
ω τ σ

+ ⋅ +
⋅ ⋅ ≈

+ + ⋅ + +
. 

 

Then, I compute the critical value of the test using the t-distribution with (2×10) - 2 = 18 

degrees of freedom as c(0.25, 48) ≈ 2.101. To compute power I use equation (3.18) as 

 

 p = 1 – Η [2.101, 18, 2.090] + Η [-2.101, 18, 2.090] ≈ 0.508. 
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Tables 3.1 to 3.3 and Figure 3.1 to 3.3 show how variations of study duration and 

sample sizes affect power to detect the treatment effect for the linear rate of change in 

cluster designs, assuming two-tailed t-tests at the 0.05 significance level and effect size as 

0.40. Table 3.1 and Figure 3.1 provide power estimates for designs that vary the study 

duration (D) and the number of schools (M), holding the number of students (N) in each 

school constant at 20. The estimate of power from above was 0.508 (see Table 3.1, row 2, 

column 2). As the study duration or number of schools increase, power increases. When 

the study duration is three and the number of schools is 40, power reaches to 0.80 (i.e., 

0.822). Note that, power increases significantly as study duration increases from two to 

three, but then power only changes marginally. This suggests that for a fixed number of 

students, increasing the study duration beyond a certain point has only a small effect on 

powers. In addition, the number of schools has bigger effects on powers compared to the 

study duration. For example, when study duration is tripled from two to six, powers are 

less than doubled; while number of schools tripled from 10 to 30, powers are more than 

doubled.  

Table 3.2 and Figure 3.2 provide power estimates for designs that vary the duration of 

study (D) and the number of students (N) in each school, holding the number of schools 

(M) constant at 20. As the study duration or the number of students grows, power becomes 

larger. In particular, power changes significantly when the study duration increases from 

two to three, and then powers does not change much as the study duration becomes longer. 

Similarly, increasing the number of students increases power to a specific number of 

students per school and beyond that number power does not change much. It is noteworthy 

that increasing the number of students is not an effective way of boosting power. For 
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Table 3.1: Effect of Study Duration (D) and Number of Schools (M) on Power Holding Number 
of Students (N) in Each School Constant at 20: CRD, Linear Rate of Change 

10 20 30 40 50 60 70 80 90 100
2 0.201 0.395 0.562 0.693 0.791 0.861 0.910 0.942 0.964 0.977
3 0.257 0.508 0.696 0.822 0.900 0.945 0.971 0.985 0.992 0.996
4 0.273 0.538 0.728 0.849 0.920 0.959 0.980 0.990 0.995 0.998
5 0.279 0.549 0.740 0.858 0.926 0.963 0.982 0.992 0.996 0.998
6 0.282 0.554 0.745 0.862 0.929 0.965 0.983 0.992 0.996 0.998
7 0.283 0.556 0.747 0.864 0.931 0.966 0.984 0.992 0.997 0.998
8 0.284 0.558 0.748 0.865 0.931 0.966 0.984 0.993 0.997 0.998

D
M

Note. Effect size is 0.4 with a significance level of 0.05.

 

 

 

Figure 3.1: Effect of Study Duration (D) and Number of Schools (M) on Power, Holding Number 
of Students (N) in Each School Constant at 20: CRD, Linear Rate of Change 

Note. Effect size is 0.4 with a significance level of 0.05
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Table 3.2: Effect of Study Duration (D) and Number of Students (N) on Power Holding Number 
of Schools (M) Constant at 20: CRD, Linear Rate of Change 

10 20 30 40 50 60 70 80 90 100
2 0.277 0.395 0.463 0.507 0.537 0.559 0.576 0.589 0.600 0.609
3 0.396 0.508 0.560 0.590 0.609 0.623 0.633 0.640 0.646 0.651
4 0.434 0.538 0.584 0.609 0.626 0.637 0.645 0.651 0.656 0.660
5 0.449 0.549 0.592 0.616 0.631 0.642 0.649 0.655 0.660 0.663
6 0.455 0.554 0.596 0.619 0.634 0.644 0.651 0.657 0.661 0.665
7 0.459 0.556 0.598 0.620 0.635 0.645 0.652 0.658 0.662 0.665
8 0.461 0.558 0.599 0.621 0.636 0.645 0.653 0.658 0.662 0.666

D
N

Note. Effect size is 0.4 with a significance level of 0.05.   

 

 

 

Figure 3.2: Effect of Study Duration (D) and Number of Students (N) on Power Holding Number 
of Schools (M) Constant at 20: CRD, Linear Rate of Change 

Note. Effect size is 0.4 with a significance level of 0.05. 
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Table 3.3: Effects of Number of Schools (M) and Number of Students (N) on Power Holding 
Study Duration (D) Constant at 3: CRD, Linear Rate of Change 

10 20 30 40 50 60 70 80 90 100
10 0.201 0.257 0.285 0.302 0.314 0.322 0.328 0.333 0.337 0.340
20 0.396 0.508 0.560 0.590 0.609 0.623 0.633 0.640 0.646 0.651
30 0.563 0.696 0.751 0.780 0.798 0.810 0.819 0.826 0.831 0.835
40 0.694 0.822 0.867 0.890 0.903 0.911 0.917 0.922 0.925 0.928
50 0.792 0.900 0.933 0.947 0.956 0.961 0.964 0.967 0.969 0.970
60 0.862 0.945 0.967 0.976 0.981 0.983 0.985 0.987 0.988 0.988
70 0.910 0.971 0.984 0.989 0.992 0.993 0.994 0.995 0.995 0.996
80 0.943 0.985 0.993 0.995 0.997 0.997 0.998 0.998 0.998 0.998
90 0.964 0.992 0.997 0.998 0.999 0.999 0.999 0.999 0.999 0.999

100 0.977 0.996 0.999 0.999 0.999 1.000 1.000 1.000 1.000 1.000

M
N

Note. Effect size is 0.4 with a significance level of 0.05.  

 

 

 

Figure 3.3: Effects of Number of Schools (M) and Number of Students (N) on Power Holding 
Study Duration (D) Constant at 3: CRD, Linear Rate of Change 

Note. Effect size is 0.4 with a significance level of 0.05. 
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example, as shown in Figure 3.2, power is still less than 0.70 even if the number of students 

per school reaches to 1000.  

Table 3.3 and Figure 3.3 provides power estimates for designs that vary the number of 

students (N) in each school and the number of schools (M), holding study duration constant 

at three. As the number of students per school or the number of schools increases, power 

increases initially and then does not change much. Power reaches to 0.80 with various 

combinations of the number of schools and the number of students per schools (e.g., M = 

30 and N = 60, M = 40 and N = 20, and M = 60 and N = 10). It also should be noted that 

the number of schools affects power more significantly than the number of students in each 

school, holding the study duration fixed. For example, power is at least about tripled when 

the number of schools increases from ten to 100; while power less than doubled when the 

number of students increases from ten to 100. 

Covariates also influence powers assuming they explain a certain proportion of 

variances at the second or the third level. Table 3.4 and Figure 3.4 shows how power varies 

as the proportion of the unexplained variances at the second and third levels vary for a 

design with M = 20 (or m = 10), N = 20, D = 3, and ES = 0.40. The degrees of freedom 

decrease when I add covariates at the third level. Assuming that five covariates are added 

at the third (q = 5), the degrees of freedom reduce to (2×10) - 5 - 2 = 13. As the unexplained 

variance decreases because of covariates, power increases. For example, when w3 = 0.9 and 

w2 = 0.9, which indicates the proportion of the unexplained variance at the second and the 

third level are 90% (or the covariates explain 10% of the variances at the second and the 

third level), the power is 0.526, which is larger than the power without covariates (0.508). 

In addition, covariates at the third level affect power significantly more than covariates at 
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Table 3.4: Effect of Covariates on Power: CRD, Linear Rate of Change 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.988 0.979 0.967 0.953 0.937 0.919 0.900 0.881 0.861
0.2 0.958 0.943 0.925 0.907 0.888 0.868 0.848 0.828 0.808
0.3 0.914 0.895 0.875 0.855 0.835 0.815 0.795 0.775 0.756
0.4 0.862 0.842 0.822 0.802 0.782 0.763 0.744 0.726 0.708
0.5 0.809 0.790 0.770 0.751 0.733 0.715 0.697 0.681 0.665
0.6 0.758 0.739 0.721 0.704 0.687 0.670 0.655 0.639 0.625
0.7 0.710 0.693 0.676 0.660 0.645 0.630 0.616 0.602 0.589
0.8 0.666 0.650 0.635 0.621 0.607 0.593 0.580 0.568 0.556
0.9 0.626 0.612 0.598 0.585 0.572 0.560 0.549 0.537 0.526

W3 W2

Note. The study duration is 3 with 20 schools and 20 students in each school; significance 
level is 0.05.

 

  

 

Figure 3.4: Effect of Covariates on Power: CRD, Linear Rate of Change 
Note. The study duration is 3 with 20 schools and 20 students in each school; significance level 
is 0.05. 
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the second level, which is mainly because the ratio between variance of level-2 random 

effect and variance of level-3 random effect ( 2 2
11 11/τ ω ) is small. For example, as the 

proportion of the unexplained variances at the second level (w2) decreases from 0.9 to 0.1 

with w3 = 0.9, power increases slightly from 0.526 to 0.626. However, as the proportion of 

the unexplained variance at the third level (w3) decreases from 0.9 to 0.1 with w2 = 0.9, 

power increases significantly from 0.526 to 0.861. 

To compare the powers between design with and without covariates, I also compute 

power estimates for designs that vary the number of students (N) in each school and the 

number of schools (M), assuming 40% of variances explained at the second and the third 

level (w2 = w3= 0.6), holding study duration constant at three, which are presented by Table 

3.5 and Figure 3.5. In general, power increases when covariates explain a certain proportion 

of variance at the second or the third level, comparing the power estimates in Table 3.3. 

There are only three exceptions (i.e., M = 10 and N = 10, M = 10 and N = 20, and M = 10 

and N = 30), where power decreases when covariates were added. That is because degrees 

of freedom decreases as I assume five covariates added at the third level. 

Block Randomized Design: A Linear Growth Model 

The second example utilized data from Project STAR (Student-Teacher Achievement 

Ratio) in Tennessee (e.g., Finn & Achilles, 1990; Krueger, 1999; Nye, Hedges, & 

Konstantopoulos, 2000). This experiment employed a block randomized design, where 

within each school (the block) and grade, students and their teachers were randomly 

assigned to one of three treatment conditions: small classes (13.17 students), regular-size 

classes (22-25 students), and regular classes with a full-time teacher aide (22-25 students). 

Project STAR was a longitudinal study that started in the 1985-1986 school year. The 
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cohort of students who entered kindergarten in the 1985-1986 school year remained in the 

experiment until their third grade. Students’ mathematics and reading achievement were 

measured four times in the end of kindergarten, first grade, second grade, and third grade. 

Overall, more than 11,000 students in 79 schools participated in the experiment over the 

four-year period. 

The sample included students in small classes or regular classes only to ensure a 

balanced design. Students in regular classes with a full-time teacher aide were excluded 

from the analysis. The outcome is standardized student mathematics achievement. A linear 

rate of change was used at level-1 (repeated measures), namely 

 

 2
0 0 1 1 ,  (0,  )gij ij g ij g gij gij eMath c c u u Nα α σ= + +  , 

 

where gijMath is student mathematics achievement in year g, 0 (1,  1,  1,  1)gc =  and 

1 (-1.5,  0.5,  0.5,  1.5)gc −=  at g = 1, 2, 3, 4 following equation (3.6). This model defines 

0ijα  as the mean mathematics achievement for student i in school j, and 1ijα is the average 

linear rate of change of mathematics achievement for student i in school j. 

The second level model (student level) is 

 

 

2
0 00 01 0 0 00

2
1 10 11 1 1 11

,  (0,  )

+ ,  (0,  )
ij j j ij ij ij

ij j j ij ij ij

T N

T N

α β β ξ ξ τ

α β β ξ ξ τ

= + ⋅ +

= + ⋅





       

where 00 jβ is the mean mathematics achievement in school j, 01 jβ  is the average 

difference of mathematics achievement between students in small classes and students in 
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Table 3.5: Effects of  Covariates, Number of Schools (M) and Number of Students (N) on Power 
Holding Study Duration (D) Constant at 3, w2 = 0.6 and w3 = 0.6: CRD, Linear Rate of Change 

10 20 30 40 50 60 70 80 90 100
10 0.195 0.253 0.283 0.302 0.315 0.324 0.331 0.337 0.341 0.345
20 0.525 0.670 0.734 0.768 0.789 0.804 0.814 0.822 0.829 0.833
30 0.727 0.861 0.906 0.927 0.939 0.946 0.952 0.955 0.958 0.960
40 0.851 0.945 0.970 0.979 0.984 0.987 0.989 0.990 0.991 0.992
50 0.922 0.980 0.991 0.994 0.996 0.997 0.998 0.998 0.998 0.998
60 0.960 0.993 0.997 0.999 0.999 0.999 1.000 1.000 1.000 1.000
70 0.981 0.998 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
80 0.991 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
90 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note. Effect size is 0.4 with a significance level of 0.05.

M
N

 
 

 

 

Figure 3.5: Effects of  Covariates, Number of Schools (M) and Number of Students (N) on Power 
Holding Study Duration (D) Constant at 3, w2 = 0.6 and w3 = 0.6: CRD, Linear Rate of Change 

Note. Effect size is 0.4 with a significance level of 0.05. 
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regular classes in school j, 10 jβ is the average linear growth rate in school j, and 11 jβ is the 

average difference of linear growth rate between students in small classes and students in 

regular classes in school j.  

The third level model (school level) is  

 

 

2
00 000 00 00 00

2
01 010 01 01 00

2
10 100 10 10 10

2
11 110 11 11 11

= ,  (0,  )

= ,  (0,  )

= ,  (0,  )

= ,  (0,  )

j j j

j j j T

j j j

j j j T

N

N

N

N

β γ η η ω

β γ η η ω

β γ η η ω

β γ η η ω

+

+

+

+









                                                                         

 

where 000γ is the grand mean, 010γ is the average treatment effect for all schools, 100γ is the 

average linear rate of change, and 110γ is the main effect of treatment for the linear change 

rate, which is my primary interest. The variance estimates are 

 2 2 2
11 110.30369 0.0,  = ,0753 0.020 7 9e Tσ τ ω= =    

To calculate power, I assumed a standardized effect size of 0.40 and a significance 

level of 0.05. I also assumed sample sizes M = 40 and N = 40, which indicates there were 

20 students in the treatment or control condition (40 students in total) in each school and 

there were 40 schools.  

According to equation (3.8) and equation (3.9) with G = 4, p =1 and k1 = 1, first I 

compute  

 2
1

0.3036912 0.060738
5 4 3

σ ⋅
= =

⋅ ⋅
.  

Then, I calculate the non-centrality parameter of the t-test based on equation (3.31) 
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3 2

0.00753
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40 20 0.020970.4
2 2 150 0.02097 0.0607

3
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1.93Tpp pp

Tpp pp p

Mn ES
nw w
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+ ⋅ +

= = ⋅ ⋅ ≈
⋅ + ++ +

. 

The critical value of the test using the t-distribution with 40 - 1 = 39 degrees of freedom is 

c(0.25, 39) ≈ 2.022.Finally, I computed power as 

 

 P = 1 – Η [2.022, 39, 1.933] + Η [-2.22, 39, 1.933] ≈ 0.471. 

 

Table 3.6 to 3.8 and Figure 3.6 to 3.8 show how variations of study duration and 

sample sizes affect the power to detect the treatment effect for the linear rate of change in 

block designs, assuming two-tailed t-tests at the 0.05 significance level and effect size as 

0.40. Table 3.6 and Figure 3.6 show how power changes as study duration (D) and the 

number of schools (M) changes, holding the number of students (N) in each school constant 

at 40. As the duration of study increases, the power of detecting a linear rate of change 

increases slightly when the study duration increases from two to six, and remains virtually 

unchanged as the study duration increases from six to eight. However, as the number of 

schools increases, power increases significantly more. For example, when the number of 

schools increases from 20 to 60, the power is more than doubled. In particular, when M = 

80 and D = 6, or M = 90 and D = 4, power reaches to 0.80. 

Table 3.7 and Figure 3.7 provides power estimates for designs that vary the duration 

of study (D) and the number of students (N) in each school, holding the number of schools 

(M) constant at 40. These results re-confirm that the power of detecting a linear rate of 
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Table 3.6: Effect of Study Duration (D) and Number of Schools (M) on Power Holding Number 
of Students (N) in Each School Constant at 40: BRD, Linear Rate of Change 

10 20 30 40 50 60 70 80 90 100
2 0.092 0.145 0.199 0.254 0.307 0.360 0.410 0.458 0.504 0.548
3 0.125 0.222 0.318 0.410 0.494 0.571 0.639 0.698 0.750 0.794
4 0.140 0.255 0.367 0.471 0.563 0.644 0.713 0.771 0.818 0.857
5 0.146 0.269 0.387 0.495 0.591 0.672 0.741 0.797 0.842 0.878
6 0.149 0.275 0.396 0.507 0.603 0.685 0.753 0.808 0.852 0.887
7 0.150 0.278 0.401 0.512 0.609 0.691 0.759 0.814 0.857 0.892
8 0.151 0.280 0.404 0.516 0.613 0.695 0.762 0.817 0.860 0.894

D
M

Note. Effect size is 0.4 with a significance level of 0.05

 

 

 

Figure 3.6: Effect of Study Duration (D) and Number of Schools (M) on Power Holding Number 
of Students (N) in Each School Constant at 40: BRD, Linear Rate of Change 

Note: Effect size is 0.4 with a significance level of 0.05. 
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Table 3.7: Effect of Study Duration (D) and Number of Students (N) on Power Holding Number 
of Schools (M) Constant at 40: BRD, Linear Rate of Change 

20 40 60 80 100 120 140 160 180 200
2 0.177 0.254 0.304 0.339 0.365 0.385 0.401 0.413 0.423 0.432
3 0.335 0.410 0.443 0.462 0.474 0.483 0.489 0.494 0.497 0.500
4 0.423 0.471 0.489 0.498 0.504 0.508 0.511 0.514 0.515 0.517
5 0.465 0.495 0.506 0.512 0.515 0.518 0.519 0.521 0.522 0.522
6 0.485 0.507 0.514 0.518 0.520 0.522 0.523 0.524 0.524 0.525
7 0.496 0.512 0.518 0.521 0.523 0.524 0.525 0.525 0.526 0.526
8 0.502 0.516 0.520 0.522 0.524 0.525 0.525 0.526 0.526 0.527

D
N

Note. Effect size is 0.4 with a significance level of 0.05  

 

 

 

Figure 3.7. Effect of Study Duration (D) and Number of Students (N) on Power Holding Number 
of Schools (M) Constant at 40: BRD, Linear Rate of Change 

Note: Effect size is 0.4 with a significance level of 0.05.  
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Table 3.8: Effects of Number of Schools (M) and Number of Students (N) on Power Holding 
Study Duration (D) Constant at 4: BRD, Linear Rate of Change 

20 40 60 80 100 120 140 160 180 200
10 0.128 0.140 0.144 0.146 0.148 0.149 0.150 0.150 0.151 0.151
20 0.229 0.255 0.265 0.270 0.274 0.276 0.278 0.279 0.280 0.281
30 0.329 0.367 0.382 0.390 0.395 0.398 0.400 0.402 0.404 0.405
40 0.423 0.471 0.489 0.498 0.504 0.508 0.511 0.514 0.515 0.517
50 0.510 0.563 0.584 0.594 0.601 0.605 0.608 0.611 0.612 0.614
60 0.588 0.644 0.665 0.676 0.682 0.687 0.690 0.692 0.694 0.696
70 0.656 0.713 0.734 0.744 0.750 0.755 0.758 0.760 0.762 0.763
80 0.716 0.771 0.790 0.800 0.806 0.810 0.813 0.815 0.816 0.818
90 0.767 0.818 0.836 0.845 0.850 0.854 0.857 0.858 0.860 0.861

100 0.810 0.857 0.873 0.881 0.886 0.889 0.891 0.893 0.894 0.895

M
N

Note. Effect size is 0.4 with a significance level of 0.05  

 

 

 

Figure 3.8: Effects of Number of Schools (M) and Number of Students (N) on Power Holding 
Study Duration (D) Constant at 4: BRD, Linear Rate of Change 

Note: Effect size is 0.4 with a significance level of 0.05. 
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change does not increase consistently as study duration increases. In addition, when the 

number of students in each school is small (e.g., 20), power is impacted more as study 

duration increases from two to four, compared to the power estimates when the number of 

students is large (e.g., 200). Similarly, power does not increase consistently as the number 

of students increases, especially after a certain number of students. For example, the power 

does not change much as the number of students increases from 160 to 200. What is more, 

it is hardly to boost power through increasing the number of students per schools. For 

example, as shown in Figure 3.7, even if there are 2000 students per school, powers are 

still around 0.5. 

Table 3.8 and Figure 3.8 provides power estimates for designs that vary the number of 

students (N) in each school and the number of schools (M), holding study duration constant 

at four. As the number of schools increases, power increases consistently. For example, 

power increases approximately 0.1 as the number of schools changes from ten to 50, and 

then powers increases around 0.06 for every ten school increase until they reach to 0.80. 

When M = 80 schools and N = 80 students, power becomes 0.80. In addition, power 

increases as the number of students increase from 20 to 80, but does not change much as 

the number of students increases from 100 to 200. Such results indicate that to boost power 

it is recommended to sample more schools rather than to sample more students per school.  

Table 3.9 and Figure 3.9 shows how the power of detecting a linear rate of change is 

influenced by the proportion of unexplained variance at the second and third levels when 

M = 40, N = 40, D = 4, and ES = 0.40. I assume that five covariates are added at the third 

level (q = 5) and thus the degrees of freedom reduce to 40 - 5 - 1 = 34. The results show 

that power increases when covariates are added in the model, as expected. For example, 
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Table 3.9: Effect of Covariates on Power: BRD, Linear Rate of Change 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.983 0.982 0.982 0.981 0.980 0.980 0.979 0.978 0.977
0.2 0.931 0.929 0.928 0.927 0.926 0.925 0.923 0.922 0.921
0.3 0.858 0.857 0.855 0.854 0.853 0.851 0.850 0.848 0.847
0.4 0.782 0.781 0.780 0.778 0.777 0.776 0.774 0.773 0.772
0.5 0.712 0.711 0.710 0.709 0.707 0.706 0.705 0.704 0.703
0.6 0.650 0.649 0.648 0.647 0.646 0.645 0.644 0.643 0.642
0.7 0.596 0.595 0.594 0.593 0.592 0.591 0.590 0.589 0.589
0.8 0.549 0.548 0.547 0.547 0.546 0.545 0.544 0.543 0.543
0.9 0.508 0.508 0.507 0.506 0.506 0.505 0.504 0.504 0.503

W3 W2

Note. The study duration is 4 with 40 schools and 40 students in each school; significance 
level is 0.05

 

  

 

 

Figure 3.9: Effect of Covariates on Power: BRD, Linear Rate of Change 
Note: The study duration is 4 with 40 schools and 40 students in each school; significance level 
is 0.05. 

93 
 



 
Table 3.10: Effects of  Covariates, Number of Schools (M) and Number of Students (N) on 

Power Holding Study Duration (D) Constant at 4, w2 = 0.6 and w3 = 0.6: BRD, Linear Rate of 
Change 

20 40 60 80 100 120 140 160 180 200
10 0.136 0.154 0.162 0.166 0.169 0.171 0.172 0.174 0.174 0.175
20 0.302 0.352 0.374 0.386 0.393 0.398 0.402 0.405 0.407 0.409
30 0.443 0.514 0.542 0.558 0.568 0.574 0.579 0.583 0.586 0.588
40 0.565 0.645 0.676 0.692 0.702 0.709 0.714 0.717 0.720 0.723
50 0.666 0.746 0.776 0.791 0.800 0.806 0.811 0.814 0.817 0.819
60 0.748 0.823 0.849 0.861 0.869 0.874 0.878 0.881 0.883 0.884
70 0.812 0.878 0.900 0.910 0.916 0.920 0.923 0.925 0.927 0.928
80 0.862 0.918 0.934 0.942 0.947 0.950 0.952 0.954 0.955 0.956
90 0.900 0.945 0.958 0.964 0.967 0.969 0.971 0.972 0.973 0.973

100 0.928 0.964 0.973 0.977 0.980 0.981 0.982 0.983 0.984 0.984
Note. Effect size is 0.4 with a significance level of 0.05

M
N

 

 

 

Figure 3.10: Effects of  Covariates, Number of Schools (M) and Number of Students (N) on 
Power Holding Study Duration (D) Constant at 4, w2 = 0.6 and w3 = 0.6: BRD, Linear Rate of 

Change 
Note. Effect size is 0.4 with a significance level of 0.05. 
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when covariates explain 40% of the variance at both the second and third level (w3 = w2 = 

0.6), the power increases from 0.471 to 0.641. The power increase is much larger than that 

when adding 20 schools or adding 160 students in each school. In addition, covariates at 

the second level have little influence on power, while the covariates at the third level affect 

power significantly more. Powers does not change much as the proportion of variances 

explained at the second level increase from 10% to 90% regardless how much of the 

variances at the third level are explained, which is mainly because the variance of the 

treatment by school random effects (i.e., 2
11τ ) only account for a small proportion of the 

total variance.  

Table 3.10 and Figure 3.10 provide power estimates for designs that vary the number 

of students (N) in each school and the number of schools (M), assuming 40% of variances 

explained at the second and the third level and holding study duration constant at four. In 

general, power increases when covariates explain a certain proportion of variance at the 

second or the third level, comparing the power estimates in Table 3.8. In particular, it 

requires fewer schools or fewer students per school for power to reach to 0.80.  For instance, 

with N = 40, only 60 schools are need to boost power to 0.80, which is 30 schools fewer 

comparing to the design without covariates included. 

Block Randomized Design: A Quadratic Growth Model 

I also used data from Project STAR to fit a model with quadratic rate of change at level 

- 1 (repeated measures), namely 

 

 2
0 0 1 1 2 2 ,  (0,  )gij ij g ij g ij g gij gij eMath c c c u u Nα α α σ= + + +  ,                                                             
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where gijMath is student mathematics achievement in year g, 0 (1,  1,  1,  1)gc = , 

1 (-1.5,  0.5,  0.5,  1.5)gc −=  and 2 (0.5,  0.5,  -0.5,  0.5)gc −=  at g = 1, 2, 3, 4 following 

equation (3.6). This model defines 2ijα  as the average quadratic rate of change of 

mathematics achievement for student i in school j. All the other terms has been defined 

previously. 

The second level model (student level) is 

 

 

2
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2
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2
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= + ⋅
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





                                                                        

 

where 20 jβ is the average quadratic growth rate in school j, and 21 jβ is the average 

difference of quadratic growth rate between students in small classes and students in 

regular classes in school j. All the other terms has been defined previously. 

The third level model (school level) is  
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where 200γ  is the average quadratic rate of change, and 210γ  is the main effect of treatment 

for the quadratic change rate, which is my primary interest. The variance estimates are 

 2 2 2
22 220.24239 0.0,  = ,0943 0.075 4 2e Tσ τ ω= =  

To calculate power, I assumed a standardized effect size of 0.40 and a significance 

level of 0.05. I also assumed sample sizes M = 40 and N = 40, which indicates there are 20 

students in the treatment or control condition (40 students in total) in each school and there 

are 40 schools.  

According to equation (3.8) and equation (3.9) with G = 4, p =1 and 2
1
2

k =  , first I 

compute  

 2
2

0.24239
0.24239

720
6 5 4 3 2

σ ⋅
= =

⋅ ⋅ ⋅ ⋅
.  

Then, I calculate the non-centrality parameter of the t-test based on equation (3.31) 

 

2 2

2 2 2
3 2

.07524 0.00943
.07524 0.00943 0.24239

40 40 0 1.0.40
2 2 150 0
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.

Tpp pp

Tpp pp p

Mn ES
nw w
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The critical value of the test using the t-distribution with 40 - 1 = 39 degrees of freedom is 

c(0.25, 49) ≈ 2.023.Finally, I computed power as 

 

 P = 1 – Η [2.023, 39, 1.756] + Η [-2.023, 39, 1.756] ≈ 0.403.
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Table 3.11: Effect of Study Duration (D) and Number of Schools (M) on Power Holding Number 
of Students (N) in Each School Constant at 40: BRD, Quadratic Rate of Change 

10 20 30 40 50 60 70 80 90 100
3 0.093 0.148 0.205 0.261 0.316 0.370 0.422 0.471 0.518 0.562
4 0.124 0.218 0.313 0.403 0.486 0.562 0.630 0.689 0.741 0.785
5 0.132 0.237 0.341 0.438 0.527 0.606 0.675 0.734 0.784 0.825
6 0.134 0.243 0.349 0.448 0.538 0.618 0.687 0.745 0.795 0.836
7 0.135 0.244 0.351 0.452 0.542 0.622 0.691 0.749 0.798 0.839
8 0.135 0.245 0.353 0.453 0.544 0.624 0.692 0.751 0.800 0.840
9 0.135 0.245 0.353 0.454 0.544 0.624 0.693 0.752 0.801 0.841

D
M

Note. Effect size is 0.4 with a significance level of 0.05.
 

 

  

 

 

Figure 3.11: Effect of Study Duration (D) and Number of Schools (M) on Power Holding 
Number of Students (N) in Each School Constant at 40: BRD, Quadratic Rate of Change 

Note. Effect size is 0.4 with a significance level of 0.05. 
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Table 3.12: Effect of Study Duration (D) and Number of Students (N) on Power Holding Number 
of Schools (M) Constant at 40: BRD, Quadratic Rate of Change 

20 40 60 80 100 120 140 160 180 200
3 0.190 0.261 0.302 0.330 0.349 0.363 0.374 0.382 0.389 0.395
4 0.360 0.403 0.419 0.428 0.433 0.437 0.440 0.442 0.443 0.445
5 0.421 0.438 0.444 0.447 0.449 0.450 0.451 0.452 0.452 0.453
6 0.440 0.448 0.451 0.452 0.453 0.454 0.454 0.454 0.455 0.455
7 0.447 0.452 0.453 0.454 0.455 0.455 0.455 0.455 0.455 0.456
8 0.449 0.453 0.454 0.455 0.455 0.455 0.456 0.456 0.456 0.456
9 0.451 0.454 0.455 0.455 0.455 0.456 0.456 0.456 0.456 0.456

D
N

Note. Effect size is 0.4 with a significance level of 0.05.  

 

 

 

Figure 3.12: Effect of Study Duration (D) and Number of Students (N) on Power Holding 
Number of Schools (M) Constant at 40: BRD, Quadratic Rate of Change 

Note. Effect size is 0.4 with a significance level of 0.05. 
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Table 3.13: Effects of Number of Schools (M) and Number of Students (N) on Power Holding 
Study Duration (D) Constant at 4: BRD, Quadratic Rate of Change 

20 40 60 80 100 120 140 160 180 200
10 0.114 0.124 0.127 0.129 0.131 0.132 0.132 0.133 0.133 0.133
20 0.197 0.218 0.227 0.232 0.235 0.237 0.238 0.239 0.240 0.241
30 0.280 0.313 0.326 0.333 0.337 0.340 0.342 0.344 0.345 0.346
40 0.360 0.403 0.419 0.428 0.433 0.437 0.440 0.442 0.443 0.445
50 0.437 0.486 0.505 0.515 0.521 0.526 0.529 0.531 0.533 0.534
60 0.508 0.562 0.583 0.593 0.600 0.605 0.608 0.610 0.612 0.614
70 0.572 0.630 0.651 0.662 0.669 0.673 0.677 0.679 0.681 0.683
80 0.631 0.689 0.710 0.721 0.728 0.732 0.736 0.738 0.740 0.741
90 0.683 0.741 0.761 0.772 0.778 0.782 0.785 0.788 0.790 0.791

100 0.730 0.785 0.805 0.814 0.820 0.824 0.827 0.829 0.831 0.832

M
N

Note. Effect size is 0.4 with a significance level of 0.05.

 

 

 

 

Figure 3.13: Effects of Number of Schools (M) and Number of Students (N) on Power Holding 
Study Duration (D) Constant at 4: BRD, Quadratic Rate of Change 

Note. Effect size is 0.4 with a significance level of 0.05. 
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Table 3.11 to 3.13 and Figure 3.11 to 3.13 show how variations of study duration and 

sample sizes affect the power to detect the treatment effect of the quadratic rate of change 

in block designs, assuming two-tailed t-tests at the 0.05 significance level and effect size 

as 0.40. Table 3.11 and Figure 3.11 show how power changes as study duration (D) and 

the number of schools (M) changes, holding the number of students (N) in each school 

constant at 40. Please note that there should be at least three repeated measures (D = 3) to 

estimate a quadratic growth model. As the duration of study increases, the power of 

detecting a quadratic rate of change increases slightly when the study duration increases 

from three to six; and remains virtually unchanged as the study duration increases from six 

to nine. However, as the number of schools increases, power increases significantly more. 

It should be noted that it requires more schools and longer study duration for power to 

reach to 0.80 comparing the results from linear growth model. That is mainly because the 

ratio between the level-2 random effects and the variance of treatment by school random 

effect (i.e., 2 2
22 22/ Tτ ω ) in the quadratic growth model was smaller than the ratio between the 

level-2 random effects and the variance of treatment by school random effect (i.e., 2 2
11 11/ Tτ ω ) 

and in the linear growth model. In particular, when M = 90 and D = 8, or M = 100 and D = 

7, power reaches to 0.80.  

Table 3.12 and Figure 3.12 provides power estimates for designs that vary the duration 

of study (D) and the number of students (N) in each school, holding the number of schools 

(M) at 40. The results were quite similar to those in Table 3.7. Both the study duration and 

the number of students in each school have quite limited influence on the power, especially 

when the study duration or the number of students in each school is beyond a certain  

 
 

101 
 



 
 

 
 

Table 3.14: Effect of Covariates on Power: BRD, Quadratic Rate of Change 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.950 0.949 0.949 0.948 0.948 0.948 0.947 0.947 0.946
0.2 0.865 0.865 0.864 0.864 0.863 0.863 0.862 0.861 0.861
0.3 0.774 0.774 0.773 0.773 0.772 0.772 0.771 0.770 0.770
0.4 0.691 0.691 0.691 0.690 0.690 0.689 0.689 0.688 0.688
0.5 0.620 0.620 0.620 0.619 0.619 0.618 0.618 0.618 0.617
0.6 0.561 0.560 0.560 0.560 0.559 0.559 0.559 0.558 0.558
0.7 0.511 0.510 0.510 0.510 0.509 0.509 0.509 0.509 0.508
0.8 0.468 0.468 0.468 0.468 0.467 0.467 0.467 0.467 0.466
0.9 0.432 0.432 0.432 0.432 0.432 0.431 0.431 0.431 0.431

W3 W2

Note. The study duration is 4 with 40 schools and 40 students in each school; significance 
level is 0.05.

 

 

 

Figure 3.14: Effect of Covariates on Power: BRD, Quadratic Rate of Change 
Note. The study duration is 4 with 40 schools and 40 students in each school; significance 
level is 0.05. 
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Table 3.15: Effects of  Covariates, Number of Schools (M) and Number of Students (N) 
on Power Holding Study Duration (D) Constant at 4, w2 = 0.6 and w3 = 0.6: BRD, 

Quadratic Rate of Change

20 40 60 80 100 120 140 160 180 200
10 0.120 0.135 0.142 0.146 0.148 0.150 0.151 0.152 0.153 0.153
20 0.254 0.298 0.317 0.328 0.335 0.339 0.343 0.345 0.347 0.349
30 0.373 0.438 0.465 0.480 0.489 0.496 0.500 0.504 0.507 0.509
40 0.481 0.559 0.590 0.607 0.618 0.625 0.630 0.634 0.637 0.640
50 0.576 0.660 0.692 0.710 0.720 0.727 0.732 0.736 0.739 0.742
60 0.658 0.742 0.773 0.789 0.799 0.805 0.810 0.813 0.816 0.818
70 0.727 0.807 0.835 0.849 0.858 0.863 0.867 0.870 0.873 0.874
80 0.784 0.857 0.882 0.894 0.901 0.905 0.909 0.911 0.913 0.915
90 0.831 0.896 0.916 0.926 0.932 0.935 0.938 0.940 0.941 0.943

100 0.869 0.924 0.941 0.949 0.953 0.956 0.958 0.960 0.961 0.962
Note. Effect size is 0.4 with a significance level of 0.05.

M
N

 
   

 
Figure 3.15: Effects of Covariates, Number of Schools (M) and Number of Students (N) on 
Power Holding Study Duration (D) Constant at 4, w2 = 0.6 and w3 = 0.6: BRD, Quadratic 
Rate of Change 
Note. Effect size is 0.4 with a significance level of 0.05. 
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number. Table 3.13 and Figure 3.13 provides power estimates for designs that vary the 

number of students (N) in each school and the number of schools (M), holding study 

duration constant at four. As the number of schools increases, power increases consistently 

as expected. When M = 100 schools and N = 60 students, power becomes 0.80.  

Table 3.14 and Figure 3.14, and Table 15 and Figure 15 show how the power of 

detecting a quadratic rate of change is influenced by the proportion of unexplained variance 

at the second and third levels when D = 4, ES = 0.40 and q = 5. The results are quite similar 

to the results in Table 3.9 and Table 3.10. Power increases as the proportion of variances 

explained increases at the second or the third level. In particular, fewer schools or fewer 

students per school are needed for power to reach to 0.80.  For instance, with N = 40, only 

70 schools are need to boost power to 0.80, which is more than 30 schools fewer comparing 

to the design without covariates included. In addition, covariates at the third level have 

more impacts on power than covariates at the second level. 

 

Conclusion 

Multilevel experimental designs are becoming more common in education. Frequently 

these designs assign individuals (e.g., students) or entire clusters such as schools randomly 

to a treatment or a control group and follow them over time. In such designs, researchers 

face the challenge of choosing study duration and sample sizes to ensure that treatment 

effects will be detected. The present study extended previous work on power analysis for 

two-level models in studies of polynomial change and presented methods for three-level 

models. 
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The power of the test of the treatment effect in studies of polynomial change with two-

levels of nesting is a function of the magnitude of the treatment effect, the study duration, 

the sample size of individuals, the sample size of clusters, and the proportion of the 

variances that covariates at the second or third levels explain.  

Several findings emerged from this study that applies to both CRD and BRD. First, 

power increases as the study duration, the number of students in each school, or the number 

of schools increases. Other things being equal, the number of level-3 units (clusters) 

influences power more than the number of level-2 units (individuals) or the duration of the 

study. In particular, the number of students and the study duration have limited influence 

on power. This indicates clearly that researchers should sample more schools rather than 

students within schools to maximize power. Note that the number of schools impacts power 

through the degrees of freedom of the t-test. It also should be noted that the higher order 

polynomials a growth model includes, the longer the study duration is needed. For example, 

to fit a linear rate of change model, the minimum study duration is two; to fit a quadratic 

rate of change model, the study duration should be at least three. 

Second, covariates that explain a proportion of variances at the second or third level 

could increases powers and thus reduce the study duration or sample sizes needed to boost 

power to a certain level. For instance, in the first illustrative example with a CRD, when 

covariates could explain 40% of variances at both the second and the third level, the 

required number of schools for power reaching to 0.80 drops from 30 to 20, holding the 

number of students in each school constant at 60. Because the number of covariates at the 

third level reduces the degrees of freedom for the t-test researchers should use a small 
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number of third level covariates that are strongly related to the outcome, especially when 

the number of schools is not large.  

Third, the effects of covariates on powers depend on the ratio between the variance of 

the random effects at the second and the third level. For instance, in my three illustrative 

examples, since the ratio between the variance of the random effects at the second and the 

third level is small, covariates at the third level affect powers more significantly than 

covariates at the second level. In addition, comparing the results from the second and the 

third illustrative sample, powers are larger in the second sample, which is mainly because 

the ratio between the variance of the random effects at the second and the third level is 

larger in the second example than that in the third example.  
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Appendix A: Variable Description 

Table A.1: Variable Names and Coding Methods using Data from TIMSS 2011 

Variables: Description (TIMSS Variable Name)
Student Variables
Mathematics Achievement Set of five overall mathematics score plausible value variables 
Female Binary indicator for the student whose gender is female 
Age Student age at the time of testing 
Speaking the Tested Language at Home Binary indicator for the student who spoke the tested language at home “always or almost always” 
SES: Books in the Home Number of books in the home 
SES: Items in the Home Sum of eleven wealth-related household possessions variables 
Positive Affect to Mathematics Average of five self-reported student's affect to mathematics variables, with negatively-worded items reverse-coded
Parents Asked What the Student was Learning in School Binary indicator for the parents asking the student what he/she is learning in school every day or almost every day 
Student Talked about the Schoolwork with Parents Binary indicator for the student talking about the schoolwork with parents every day or almost every day
Parents Made Sure the Student Set Aside Time for the Homework Binary indicator for the parents making sure that the student sets aside time for the homework every day or almost every day
Parents Checked if the Student Did the Homework Binary indicator for the parents checking if the student does the  homework every day or almost every day

Teacher/Classroom Variables
Class Size Number of students in the classroom
Classroom SES: Books Average number of books in the home
Classroom SES: Items Average number of items in the home
Proportion Female Proportion of female students in a class
Average Students' Positive Affect to Mathematics Average self-reported student's affect to mathematics in a class
Teacher Experience in Years Teacher's year of teaching 
Teacher Completing Post-Secondary Education Binary indicator for the teacher who completed post-secondary education 
Female Binary indicator for the teacher who is female
Instruction Time Time spending teaching mathematics to the students in the class per week 

School Variables
Percent Disadvantaged Students Set of four indicators for categorical percentage of economically-disadvantaged students 
Percent of Students Having Tested Language as Native Language Binary indicator for categorical percentage of the students having tested language as their native language more than 90% 
Students Having Early Numeracy Skills Set of four indicators for categorical percentage of the students entering the primary grades with early numeracy skills 
City Size Set of six indicators for categorical city population (labels = 0–3,000,  3,001–15,000, 15,001-50,000, 50,001-100,000,  

100,001–500,000, greater than 500,000)
Income Level of the School's Immediate Area Set of three indicators for the income level of the  school's immediate area 
Grade 4 Enrollment Total enrollment of fourth graders in the school
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Appendix B: Control Function Approach for Quantile Regression 

A quantile regression model with endogenous variables can be written as  

1' ( ) ' ( )
' ( )r

y x z u
x z v

β τ γ τ
π τ

= + +
= +

       (B.1) 

where x is a vector of endogenous variables, and z=(z1, z2) are exogenous variables, and 

our interest is to estimate ( )β τ , the coefficients of x at τ-th quantile.  

There are three ways to estimate ( )β τ in quantile regression literature. Amemiya 

(1982) and Powell (1983) first proposed a two-stage absolute value (2LAD) approach, 

which specifically focused on the median and is quite similar to the 2SLS estimation 

procedure. However, the required assumption for this approach is difficult to interpret and 

thus it was not been used widely for empirical studies.  

Chernozhukov and Hansen (2006) proposed an Instrumental variable quantile 

regression (IVQREG) approach that assume ( | ) 0uQ zτ = , which means the  τ-th quantile 

of u –one of the error terms in equation (A2.1) equals to zero, conditional on the other error 

term (z) in in equation (A2.1). 

Chernozhukov and Hansen (2008) developed inference procedures that are fully robust 

to weak instruments based on the IVQREG estimator. However, there is only Matlab codes 

available to their approach. In addition, it is not clear how to incorporate sampling weights 

and how to adjust the clustering effects (e.g., students nested in schools) using their 

methods. 

Lee (2007) proposed a control function approach deal with the endogenous variables 

in quantile regression. According to equation (B.1) we have  
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( | , ) ( | , )u uQ x z Q v zτ τ= .       (B.2) 

This approach assumes that the instrument variables z is independent of (u, v), therefore 

we have  

( | , ) ( | , )u uQ v z Q v zτ τ= .        (B.3) 

Substitute equation (A2.3) to equation (A2.1), we have  

1

1

( | , , ) ' ( ) ' ( ) ( | , )

                    ' ( ) ' ( ) ( | ).
y u

u

Q x z v x z Q z v
x z Q v

τ β τ γ τ τ

β τ γ τ τ

= + +

= + +
    (B.3) 

Therefore, to estimate ( )β τ , we must know ( | )uQ vτ , which is a function of v. Since 

v is not observed, we must estimate it through regressing x on z using OLS or quantile 

regression.  Also, we have no idea if the correlation between u and v is linear or non-linear, 

Lee (2007) suggest using a series or kernel of v to better model the relationship between u 

and v. 

To sum up, Lee’s (2007) control function approach is also a two-stage estimation 

approach: (1) regression x on z using OLS or quantile regression and get ˆ ' ( )rv x z π τ= − ; 

(2)  regress y on x, z1, and a series or kernel of v̂  through quantile regression to get ( )β τ . 
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Appendix C: Proof of Equation (3.6) 
 

According to Randenbush and Liu (2001), Ygi is an outcome for person i (i=1, 2, …, n) 

at occasion g (g=1, 2, ..., G) and thus 
1

+=
2

G

g

G Gm
=

×∑ （1 ）
. According to the equation (5) in 

Randenbush and Liu (2001), the equation (2) in Randenbush and Liu (2001) could be 

simplified as   
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 According to the equation provided in Fisher (1936, P149), we have  
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When 0 1,  k = 1 1,  k = 2
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According to equation in page 30 of Fisher(1957) and equation (1) from Jennrich and 

Sampson(1971), we have a recurrence formula:  
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where 
2 2 2

2

( )  
4 (4 1)p
p G p

p
α −

=
⋅ −

and g is number of occasions (g=1, 2, ...., G); p is the degree of 

the orthogonal polynomial; and pmC


the orthogonal polynomial coefficient of degree p at 

occasion g. 

According to equation (C.4), we have 
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To sum up, we have  
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Appendix D: Proof of Equation (3.9) 

Based on the equation (2) from Jennrich and Sampson (1971), we have: 
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Therefore we have 
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Also, according to equation (D.1), we have: 
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Also, Let 2K =H ,p p pk⋅  we have 
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In addition, according to equation (8) in P. 104 of Plackett (1960), we have: 
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Therefore we can write  
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