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ABSTRACT
TWO ESSAYS ON EDUCATIONAL RESEARCH: (1) USING MAXIMUM CLASS
SIZE RULES TO EVALUATE THE CAUSAL EFFECTS OF CLASS SIZE ON

MATHEMATICS ACHIEVEMENT: EVIDENCE FROM TIMSS 2011; (2) POWER
CONSIDERATIONS FOR MODELS OF CHANGE

By
Wei Li

This dissertation is a collection of two essays that address issues of class size effects
on student achievement and power analysis methods for model of changes.

Class size reduction policies have been widely implemented around the world in the
past decades. However, findings about the effects of class size on student achievement have
been mixed. In addition, most of the studies about class size effects have focused on the
effects on the average achievement for all students. Only a few studies have focused on the
differential class size effects across the student achievement distribution, and their findings
have been mixed. The first essay (Chapter 1 and Chapter 2) was designed to evaluate class
size effects on student achievement. In particular, Chapter 1 employed instrumental
variables (IV) methods to examine the causal effects of class size on fourth grade
mathematics achievement using data from TIMSS (Trends in International Mathematics
and Science Study). While I found some evidence of class size effects in Romania and the
Slovak Republic, overall there were no systematic patterns of class size effects. The results
indicate that in most European and Asian countries class size reduction may not improve
mathematics achievement in fourth grade.

The first essay also evaluated the differential class size effects across mathematics
achievement distribution. In particular, Chapter 2 employed quantile regression analysis,

coupled with instrumental variables methods, to examine the causal effects of class size on



fourth grade mathematics achievement. While | found some evidence of quantile-specific
class size effects in Romania and the Slovak Republic, overall there were no systematic
patterns of class size effects. What is more, there was no evidence to show that high- or
low-achievers benefited more from smaller classes. The results indicate that in most
European and Asian countries class size reduction may not increase or reduce the
achievement gap between low- and high-achieving students in fourth grade.

The second essay of this dissertation (Chapter 3) was designed to provide methods for
three-level models in studies of polynomial change. Experiments that involve nested
structures often assign entire groups to treatment conditions and follow them over time to
assess group differences in the average of change, rate of acceleration, or higher degree
polynomial effect. Chapter 3 provide methods for power analysis in three-level polynomial
change models for cluster randomized designs (i.e., treatment at the third level) and block
randomized designs (i.e., treatment at the second level). Both unconditional models and
conditional models that include covariates at the second (e.g., student) and the third (e.g.,
school) levels are discussed. The power computations take into account nesting effects at
the second and at the third level, the duration of study, sample size effects (e.g., the
numbers of schools and students), and covariates effects. Chapter 3 also provided
illustrative examples to show how powers are influenced by the study duration, sample

sizes and covariates at the second and the third level.
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INTRODUCTION

This dissertation is a collection of two essays that address issues of class size effects
and power analysis method for model of changes in longitudinal randomized control trails.

The first essay (Chapter 1 and Chapter 2) focused on the effects of class size on fourth
graders mathematics achievement. Many countries have recently enacted class size
reduction policies. Mixed research findings leave policy makers, practitioners, and
researchers wondering if class size reduction policy is an effective way of improving
student achievement. Chapter 1 addresses the effects of class size on student average
achievement. Specifically, Chapter 1 investigated the effects of class size on mathematics
achievement for fourth graders using data from the Trends in International Mathematics
and Science Study (TIMSS). Typical statistical method such as ordinary least square
regression may produce biased estimates of class size effects because student and teacher
allocation to classes is likely non-random. For example, students might be assigned to
classes based on their prior achievement; however, there was no prior achievement
provided in TIMSS. To account for the non-randomness of student assignment and to
facilitate causal inference, | created a class size index that is independent of the unobserved
process of student assignment, which is usually called Instrumental Variable (1V). In
particular, 1 computed the grade and school specific average class size based on the
maximum class size requirement in a country as the instrument. Generally, no systematic
pattern of association between class size and mathematics achievement was found in my
study. These results indicate that class size reduction may not improve fourth grade

mathematics achievement.



Besides improving average student achievement, another critical objective of
education interventions is to increase achievement for students at risk, and thus reduce the
achievement gap between lower- and higher-achieving students. Class size reduction has
been advocated as such an intervention by some researchers; however, no recent study has
used current data to evaluate if CSR closes the achievement gap. Chapter 2 attempts to fill
in that gap in the literature by exploring the differential class size effects for students with
different levels of achievement. | employed quantile regression analysis, coupled with 1V,
to estimate the causal effects of class size on student achievement in the middle as well as
the lower and upper tails of the achievement distribution. | also compared the differences
of estimated effects of class size between low- and high-achieving students. Overall, there
was were systematic differential class size effects across achievement distribution, and in
most countries class size reduction may not reduce the achievement gap between low- and
high-achieving fourth grade students.

Chapter 3 addresses power analysis methods in three-level polynomial change models.
An important part of the design phase of an experiment involves power analysis. Statistical
power is the probability of detecting the treatment effect of interest when it exists. A priori
power analyses help educational researchers identify how big a student, classroom, or
school sample they need to ensure a good enough chance (e.g., > 80 percent) of detecting
a treatment effect assuming it is true. It is common in education to employ designs where
students are assigned randomly to a treatment and a control condition, and then they are
followed over time. The main objective in these studies is to determine whether treatment
effects fade or have lasting benefits over time. Previous work has presented methods for

power analysis of two-level (e.g., repeated measures nested in students) models.



Nonetheless, populations in education have frequently more complicated structures. For
example, students are also nested within classes or schools and so forth. As a result, it is
natural to extend methods for power analysis for tests of treatment effects from two to
three-levels. My second essay (Chapter 3) was designed to provide methods for power
analysis in three-level models. Both methods for cluster randomized designs (i.e., treatment
at the third level) and block randomized designs (i.e., treatment at the second level) were

discussed.



CHAPTER 1 CLASS SIZE EFFECTS ON FOURTH GRADE MATHEMATICS

ACHIEVEMENT

Introduction

Identifying the best allocation of school resources to improve student achievement has
been a fundamental objective in education for a long time. As a result, school resources
such as teacher pay, per-pupil funding, and class size have received considerable attention
in the past three decades. The underlying assumption is that these school resources can
have positive effects on student achievement.

The effects of class size on student achievement have received particular attention in
education research and policy. Results from experiments have indicated positive effects of
small classes on student achievement (e.g., Finn & Achilles, 1990; Molnar et al., 1999).
Specifically, evidence from Project STAR (Student-Teacher Achievement Ratio) in
Tennessee has strongly indicated achievement improvements for students in small classes
compared to students in regular size classes (e.g., Nye, Hedges, & Konstantopoulos, 2000;
Krueger, 1999). However, results from quasi-experiments have indicated much smaller
class size effects. For example, Angrist and Lavy (1999) found significant but smaller class
size effects in Israel than those reported in Project STAR. Also, Hoxby (2000) analyzed
data from a natural experiment in Connecticut and found that class size did not have a
significant effect on student achievement.

Findings about class size effects have informed policies in different countries and, as
a result, various countries have enacted class size reduction (CSR) polices. Such policies
have been quite popular in the U.S. especially during the past decade. Twenty-one states
in the U.S. had a CSR policy in place in 2007-2008 (Education Week, 2008). In Asia,

4



countries such as South Korea, Japan, Singapore, and districts such as Hong Kong and
Chinese Taipei, have implemented CSR policies aiming to increase student achievement
in recent years.

Similarly, in Europe, most countries have adopted CSR policies. In particular, two
thirds of the European Union countries had introduced maximum class size requirements
until 2011 in an attempt to ensure that class size does not exceed 30 students per class.
Some European countries have lowered their upper class size limits in the last few years.
For example, in Austria, since the 2007-2008 school year the number of students per
classroom has been reduced at primary schools, general secondary schools, academic
secondary schools and pre-vocational schools (EACEA Eurydice, 2011). Also, Scotland
has reduced lately class size in first grade from a maximum of 30 students to 25 students
(EACEA Eurydice, 2011). Other countries however, have stopped setting upper class size
limits or have increased their upper class size limits in primary education. Norway for
instance has stopped setting upper class size limits since 2003.2004. Also, Italy and
Portugal have increased their upper class size limits from 25 and 24 in 2006- 2007 to 26
and 28 in 2010-2011 respectively.

Class size reduction policies require considerable investments in education. But
economic budgets allocated to education at the federal and local levels are typically limited.
Policy makers, practitioners, and researchers are still wondering whether CSR policies are
an effective way of improving student achievement. Chapter 1 attempts to provide
additional evidence about the effects of class size on student performance using data from
a large-scale international assessment program. Specifically, the purpose of Chapter 1 is to

examine the effects of class size on mathematics achievement using data from the 2011



fourth grade sample of TIMSS. My sample included hundreds of schools and thousands of
students in 18 Asian and European countries and districts (see Table 1.1). I employed
regression methods to analyze the data. To facilitate causal inferences of class size effects
| used instrumental variables (1V) that take advantage of the maximum class size rule.

My study contributes to the existing literature in two ways. First, | used the most recent
TIMSS data from 2011 that allows us to evaluate recent, concurrent CSR policies and
compare class size effects across 18 Asian and European countries and districts. Second, |
used maximum class size rules that allowed us to construct instruments to estimate the

causal effects of class size on mathematics achievement in fourth grade across countries.

Literature Review

During the past three decades, researchers explored the effects of class size reduction
on student achievement through meta-analyses, experimental and quasi-experimental
designs, as well as other advanced statistical methods such as 1V.

Meta-analytic reviews of early work on small class effects indicated positive
relationship between small classes and student achievement, but the magnitude of the
effects was small. For example, Glass and Smith (1979) synthesized 77 studies and found
that the average effect-size when class sizes were reduced from 25 to 15 was 0.13 standard
deviations (SD). Using a subset of the Glass and Smith (1979) sample that employed
random assignment or initial controls for student quality, Slavin (1989) found extremely
small effects of class size on achievement. He concluded that the class size effects are
consistent, but small in kindergarten through third grades, slightly smaller in fourth through

eighth grades, and non-existent in ninth through twelfth grades.



Project STAR is viewed as the most impressive and most powerful field experiment
about class size effects in education (Mosteller, 1995). There have been numerous analyses
of the Tennessee STAR data that have produced high internal validity estimates. Finn and
Achilles (1990) were the first to analyze these data and found that students in small classes
performed higher than those in regular classes in all subject areas, in every year of the
experiment (kindergarten through third grade). Nye, Hedges, and Konstantopoulos (2000)
analyzed the validity of Project STAR and suggested that the effects of class size might be
under-estimated because of imperfect implementation. They also found that the estimated
class size effects were consistent with those from Glass and Smith (1979). Other studies
by Krueger (1999) and Konstantopoulos (2008) produced similar findings about the
positive effects of small classes on student achievement in early grades.

Studies that have used observational data, especially data from large-scale surveys,
have usually produced results with high external validity (i.e., generality). However, the
internal validity (or unbiasedness) of estimates in observational or quasi-experimental
studies is not so easy to achieve. That is, researchers have to use advanced statistical
methods to warrant the internal validity of estimates. For instance, traditional ordinary least
square (OLS) regression may produce biased estimates because of omitted variables bias
(i.e., predictors may not be orthogonal to the error term).

Previous work has utilized different analytic methods to examine class size effects on
student achievement. For example, Pong and Pallas (2001) used multilevel models to
analyze TIMSS data from 1995 in nine different countries and found no class size effects
on eighth grade achievement except in the U.S. Other researchers have used IV methods

to analyze observational data in an attempt to explore the causal effects of class size



reduction. For example, Akerhielm (1995) used two instruments for class size-the average
class size for a given subject in the student’s school and the eighth grade enrollment in the
school-to analyze class size effects on eighth graders’ mathematics, science, English, and
history scores using data from 1988 NELS. Her results indicated a significant and negative
relationship between class size and student achievement. Hoxby (2000) used data from a
natural experiment and used IV methods to estimate the effects of class size on student
achievement in Connecticut. Her method exploited random variation in class size due to
random variation in births from year to year in schools and district catchment areas. She
found no class size effects in fourth and sixth grades. Cho, Glewwe, and Whitler (2012)
applied Hoxby’s (2000) method to compute class size effects in Minnesota and found
positive effects of smaller classes on student achievement, but these estimates were smaller
than estimates from Project STAR. Moreover, Wossmann and West (2006) examined class
size effects in 11 countries that participated in TIMSS 1995. Their results indicated that
there was no clear pattern of whether or when class size affects student achievement.

One of the best IV used to capture class size effects was introduced by Angrist and
Lavy (1999). Specifically, their study used the Maimonides rule that sets the maximum
class size to 40 students per classroom in order to evaluate the effect of class size on student
achievement in Israel. The maximum class size rule of 40 was used to construct IV
estimates of class size on test scores. The study reported a statistically significant effect of
small classes on fifth grade reading and mathematics scores. In fourth grade the benefit of
being in small classes was significant in reading, but not in mathematics. However, in third

grade no significant effects of class size on achievement scores were detected.



Several other researchers have also used maximum class size rules as IV to evaluate
class size effects. For instance, Bonesronning (2003) investigated class size effects using a
maximum class size rule of 30 students per classroom in Norway. His analysis indicated
small class effects. Wossmann (2005) explored class size effects in Europe using data from
TIMSS 1995 for eighth grade students. He found two statistically significant relationships
between class size and student achievement: a marginally significant effect in Norway and
a highly significant effect in Iceland. He also found a statistically significant but positive
relationship between class size and student achievement in Switzerland. For Denmark,
France, Germany, Greece, Ireland, Spain, and Sweden, the estimates were not significant.
A recent study about class size effects on fourth grade reading achievement in Greece also
reported statistically insignificant estimates (Konstantopoulos & Traynor, 2014). Urquiola
(2006) studied 10,018 third-grade students in Bolivia and found significant class size
effects with effect sizes as large as 0.30 SDs, bigger than effects found in Project STAR in

the U.S. and in Israel.

Methods
Data
| used data from TIMSS latest survey in 2011. TIMSS is the largest international
database that measures trends in mathematics and science achievement at fourth and eighth
grades. First conducted in 1995, TIMSS provides reliable and timely data about
mathematics and science achievement every four years. It also collects extensive
information about students, teachers, school principals, and curriculum experts via

background questionnaires.



A stratified two-stage cluster-sampling design was used in TIMSS, where schools are
sampled at the first stage and one or more intact classes are sampled at the second stage in
each of the sampled schools (Martin & Mullis, 2012). TIMSS has produced high-quality
assessment measures. Also, teachers reported class size information on all intact
classrooms that were sampled. Other useful information about students, teachers, and
schools has also been collected. It is noteworthy, that TIMSS was designed to yield a
national probability sample of fourth (or eighth) graders. With the use of appropriate
weights, one can make projections to the population of fourth (or eighth) graders in each
country, which points to the high external validity of the estimates.

The stratified two-stage cluster-sampling design used in TIMSS makes the
computation of the standard errors of estimates complicated because student data within
the same school are correlated rather than independent. Following the suggestion from
TIMSS technical report (Martin & Mullis, 2012), | used the jackknife repeated replication
techniqgue (JRR) to estimate the sampling variance because it is computationally
straightforward and provides approximately unbiased estimates of the sampling errors (see
Martin & Mullis, 2012). That is, JRR standard errors take into account clustering effects
induced by the multi-stage sampling scheme.

Country selection

I used fourth grade data from the fifth and latest administration of the TIMSS
assessment in 2011. | focused on fourth grade mathematics achievement because class size
effects are typically expected in elementary grades (Nye et al., 2000). Twenty five
European countries were surveyed in TIMSS 2011. | selected 14 countries of those 25

participating countries that had known clear rules about maximum class size limits for
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fourth graders in 2011 (see Table 1.1). The highest upper class size limit in the fourth grade
was in Malta and the Czech Republic with a maximum number of 30 students per
classroom. The lowest upper class size limit of 24 students per classroom was in Lithuania.
The most common upper class size limit was also 28 students per classroom (EACEA
Eurydice, 2012). I also selected four Asian countries and districts that set clear maximum
class size limit in the fourth grade in 2011. Compared the rules in Europe, the upper class
size limits were quite larger in Asia, which ranged from 30 (Hong Kong) to 40 (Japan and
Singapore). Table 1 provides detail about the selected countries as well as their upper class
size limits.
Measures

The dependent variable was mathematics achievement represented by five plausible
values. Because the item pool of TIMSS 2011 was too large for students to finish in two
hours, TIMSS used an incomplete booklet design that had each student complete only a
proportion of the item pool (Martin & Mullis, 2012). Then, multiple imputation methods
were used to construct a distribution of scores that the students might have obtained had
they completed the full test. The plausible values are a sample of scores from this
distribution that incorporates the uncertainty about student scores (Martin & Mullis, 2012).
It has been shown that five plausible values can produce reliable and consistent estimates
of student achievement (Schafer, 1999).

The main independent variable was class size and was reported by teachers.
Specifically, the class size measure was the number of students in a sampled classroom
provided by the teachers. Student, teacher, classroom, and school variables of interest were

also used as covariates. The student covariates included gender (e.g., a dummy for female),
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Table 1.1: Maximum Class Size Rules: TIMSS 2011

Country

Austria (AUT)

Croatia (HRV)

Czech Republic (CZE)
Denmark (DNK)
Germany (DEU)
Hungary (HUN)

Italy (ITA)

Hong Kong (HKG)
Japan (JPN)

Maximum Class Size Rule

25
28
30
28
29
26
26

30
40

Country

Lithuania (LTU)

Malta (MLT)

Portugal (PRT)
Romania (ROM)
Slovak Republic (SVK)
Slovenia (SVN)

Spain (ESP)

Singapore (SPG)
Chinese Taipei (TWN)

Maximum Class Size Rule

24
30
28
25
25
28
25

40
32
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The teacher covariates included education (e.g., dummy for completing post-secondary
education), years of teaching experience, gender (e.g., a dummy for female), and teacher’s
instruction time per week. Classroom covariates included class level SES represented by
aggregate measures of number of books in the home and average number of items in the
home. The proportion of female students in the classroom and the average student positive
affect to mathematics were also used as classroom covariates. School covariates included
percent of economically disadvantaged students, percent of students having the tested
language as their native language, income level of the school immediate area, and fourth
grade enrollment and its square. Missing data flags (i.e., dummies) were included in the
models to account for missing data effects. The Appendix A provides the full list of
variables as well as detailed description about coding.
Multiple Regression

To examine the class size effects on student mathematics achievement, |1 employed
first a multiple regression model that included class size and student, teacher/classroom,

and school covariates namely

Score, = f,+ fClassSize, + STB, + CLB, +SCB, +¢ (1.1)

where Score, represents mathematics scores, £, is the constant term, ClassSize; is the
main independent variable, S, represents the class size effect and is the regression

coefficient of interest, STi is a row vector of student background characteristics, B, is a

column vector of regression coefficients of student characteristics, CLi a is row vector of
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classroom or teacher characteristics, B;is a column vector of regression coefficients of

teacher and classroom characteristics, SCi is a row vector of school characteristics, B, is

a column vector of regression coefficients of school characteristics, and &j is the error

term. Because TIMSS used a complicated cluster sampling design (i.e., sampled schools at
the first stage and then classes within schools), the clustering effect needs to be
incorporated in the estimation of the standard errors. To achieve this we used JRR
techniques to obtain a cluster robust standard error as suggested by Martin and Mullis
(2012).
Instrumental Variables

Typical regression could provide consistent estimates of class size under the
assumption that class size is not correlated with unobserved processes that may take place
in schools. These unobservables are represented by the error term in model (1.1). However,
such an assumption is strong and rarely met in observational studies. The assignment of
students and teachers to classrooms is not random typically, and thus class size could be
correlated with unobserved factors related to student, parent, and teacher characteristics.
For example, students may be assigned to classes based on their prior achievement or
motivation. Parents may also influence assignment to classes. For instance, parents may
want their children to be assigned in the classroom with the highest quality teacher or a
specific peer composition (e.g., their children’s friends). Teachers may also influence
assignment by either selecting high achieving students in their classrooms by teaching the
class with the higher proportion of high achieving students. If such processes were to take

place, the estimated class size effect from equation (1.1) would be biased.
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Because students and teachers are rarely randomly assigned to classrooms in a grade
class size might be correlated with unobserved characteristics of students or teachers. For
example, in order to help low achieving students, some schools might assign higher quality
teachers to classes with higher proportions of low achievers. Variables that determine
assignment of students and teachers to classes are not typically measured. For example,
student motivation, family income, parental pressure, teacher quality, etc. are rarely
available in observational datasets. In addition, cross-sectional data rarely provide indexes
of prior ability or performance. Although we included as many covariates as we could in
our multiple regression analysis, it is still possible that unobservable factors that are part
of the error term in equation (1.1) are correlated with class size. If that were true, then the
estimated class size effect in equation (1.1) would be biased.

One way to overcome this potential shortcoming and facilitate causal inferences, is to
compute an index of class size that is independent of unobserved student, teacher or school
variables. Specifically, we used the maximum class size rule in each country to compute
school and grade specific average class size. This new variable was then used as an
instrument to exclude unobserved variables from the teacher reported class size. In other
words, this method creates a new class size variable that is “error free” and should not be
related to unobserved variables. Our method is similar to that used by Angrist and Lavy
(1999). The first step in this approach is to compute the average class size in fourth grade
in each school. Specifically, the average class size in fourth grade in each school based on

the maximum class size requirement is calculated as

f.=E [[int((E. -1)/ rule) +1] (1.2)

15



where Ei denotes the enrollment in grade four in a school, fi denotes the computed

average class size based on the maximum class size rule; rule denotes the upper class size
limit in a given country; for any positive number n, the function int(n) is the immediate
smaller integer less than n. For example, if grade enrollment E = 70 and the maximum class
size rule is 30 then int(n) = int(2.33) = 2. The upper class size limit generates discontinuities
of the computed class size as the enrollment count increases to multiples of the upper class
size limit. For example, if the maximum class size rule is 30 in a specific country, the above
equation captures the fact that the maximum class size rule allows enrollment of cohorts of
1-30 to be grouped in a single class, while enrollment of cohorts 31-60 are split into two
classes with average class sizes 15.5-30, and so on.

The second step was to regress the teacher reported class size on the instrument (i.e.,
the school and grade specific average class size we computed in equation 1.2), as well as
other covariates (see variables section). This step is designed to eliminate the
unobservables (i.e., the error) from teacher reported class size.

Specifically, the regression equation is

ClassSize, =, + x, f. + ST, + CL IL, + SCII, + U, (1.3)

where fi is the computed average class size (i.e., the instrument) in a school based on the

maximum class size rule and U; is the error term. All other terms have been defined

previously. The 7 ’s are the regression estimates that need to be computed. The fitted
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values of this regression are computed and will be used in the third step as the new class
size variable that is “free” of error.

The third and final step of this procedure used a regression where the fitted values
(denoted below of FVi) from the regression equation (1.3) represent class size and are the

main independent variable in the following achievement regression

Y. =0,+0,FV. +STA, +CLA, +SCA, +¢ (1.4)

where Y indicates mathematics scores, ¢, is an error term and all other terms have been

defined previously. The coefficient o, represents the relationship between mathematics

achievement and class size, adjusted for student, teacher/classroom, and school
characteristics. Appropriate student weights were used in both regressions (equations 1.3
and 1.4). The 8s indicate regression estimates that need to be computed. The student,
classroom/teacher, and school covariates included in equation (1.4) are the same as those
included in equation (1.3).

The method (i.e., instrumental variables) described above has been used in previous
work to estimate causal class size effects (e.g., Angrist & Lavy, 1999; Krueger, 1999). We
used JRR techniques to estimate the standard errors of the regression coefficients. The
TIMSS sampling design makes the JRR techniques particularly well suited for estimating
the standard errors in complex sampling surveys such as TIMSS (Martin & Mullis, 2012).
Our analysis was conducted for each plausible value separately, and then the five sets of
estimates were combined to construct one set of final estimates of class size effects. To

combine estimates we used formulae provided by Shafer (1999). The standard error of the
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class size effects was a combination of the sampling variance obtained through JRR
techniques and the variance between plausible values (see Martin & Mullis, 2012). The
standard errors of the regression coefficients were also corrected for the two-stage

estimation (i.e., equations 1.3 and 1.4) before they were combined across plausible values.

There were two key conditions that the computed average class size fi must meet in

order for the instrument to be valid: (1) schools should follow the maximum class size rule

very well. In other words, fi should be correlated significantly with reported class size;

and (2) the instrument cannot be correlated with any of the unobserved student, teacher, or

school characteristics (i.e., fi should not be correlated with the error term in equation

1.1). The first condition can be checked through the first stage regression (equation 1.3). If
the coefficient of the computed average class size (the instrument) is significantly different
from zero, then the assumption that reported class size and the instrument are related holds.
If the instrument is only marginally significant, our instrument may be weak. When
instruments are weak, then the standard IV estimates, hypothesis tests, and confidence
intervals may be unreliable (Stock, Wright, & Yogo, 2002). When multiple instruments are
used the rule of thumb is that the F-statistic of all instruments in the first-stage regression
should be larger than 10 (Staiger & Stock, 1997). In our study only one instrument is used

(i.e., average class size per school) and thus we employ a t-test. The t-statistic of the

regression coefficient of the instrument (7, in equation 1.3) should be greater than 3.20

and significant in the first stage regression. The t-statistic denotes the statistic for testing
the hypothesis of a zero coefficient for the instrument (computed average class size using

maximum class size rule) in the first stage regression.
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The second condition which is called “exogenous assumption” or “exclusion
restriction” indicates that computed average class size influences student mathematics
achievement only through reported class size controlling for grade enrollment and other
covariates. The question is essentially whether the instrument might be correlated with
unmeasured factors that influence student assignment to classes. For example, private
schools could manipulate the maximum class size requirement through adjusting their
tuition or enrollment to avoid creating additional classrooms (see Urquiola & Verhoogen,
2009). Unfortunately, I cannot identify public or private schools based TIMSS data. Parents
could manipulate the class size rule as well if school choice is an option in their country.
In other words, some parents might take advantage of the rules and make their kids study
in schools with smaller classes. There was some evidence that showed associations
between smaller class size and higher student SES level in Spain and Malta based on some
regression analysis, which indicates parents with higher SES might manipulates the rules

and raises some concern of the validity of the IV in these two countries.

Results
Descriptive statistics
Table 1,2 presents descriptive statistics for selected student, teacher, and school
variables of interest as well as samples sizes for students, classes, and schools. The national
average mathematics scores for all countries participating in TIMSS have been set to a
mean of 500 and a SD of 100. Fourteen countries in Table 1.2 had average scores greater
than 500. Asian countries’ score were much higher than European countries. Singapore

had the highest average score (605.79), closely followed by Hong Kong, Chinese Taipei,
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and Japan. Denmark had the highest scores among European countries, closely followed
by Lithuania, Portugal, and Germany. With an average score of 482.28, Romania had the
lowest average score. Spain, Croatia, and Malta also had average scores lower than 500.
About half of the students were females for all countries. At least 70 percent of students
almost always spoke the tested language at home for all countries except Chinese Taipel,
Malta, Singapore, and Spain.

The average class sizes in grade four for European countries were much smaller than
those in Asian countries. In Europe, the smallest average class size with 19 students per
class was in Austria, closely followed by Slovenia, the Slovak Republic, Lithuania and
Romania. With nearly 23 students per classroom on average, Spain had the largest classes.
The largest average grade four enrollment (70.13) was in Italy; while the smallest average
grade four enrollment (25.6) was in the Slovak Republic. In Asia, the largest average class
size were found in Singapore (37). Teacher experience varied across countries. The highest
average teacher experience was in Lithuania (24 years), while the lowest was in Singapore
(nearly ten years). Almost all teachers completed post-secondary education in all countries
in our sample except Italy and Romania. More than 75 percent of teachers were females in
all European countries in our sample except Denmark, where only about half of the teachers
were females; while among Asian countries, it ranged from 56 percent to 82 percent. In
addition, school size was much larger in Asia than in Europe.

The numbers of students and schools per country sample are also presented in Table
1.2. The number of schools ranged from 96 in Malta to 216 in Denmark; the number of
classes ranged from 197 in Malta to 351 in Singapore; the smallest sample of students was

in Malta (3607), while the largest sample of students was in Singapore (6368).
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Table 1.2: Descriptive Statistics for Some Variables of Interest of TIMSS 2011 Samples: Means and Standard Deviations

AUT CZE DEU DNK ESP HRV HUN ITA LTU MLT PRT ROM SVK SVN HKG JPN SGP TWN
Student Variables
Mathematics Achievement 508.31 510.85 527.74 536.96 482.43 490.17 515.40 507.82 533.69 495.77 532.26 482.28 506.77 513.03 601.61 585.37 605.79 591.21
(62.70)  (70.39)  (62.14)  (70.77)  (70.31)  (67.07)  (89.79)  (7217)  (7402)  (77.71)  (68.68)  (10536) (79.63)  (6852)  (66.42)  (72.31)  (78.18)  (73.22)
Female 0.49 0.48 0.49 0.51 0.49 0.50 0.49 0.50 0.48 0.49 0.49 0.48 0.49 0.48 0.46 0.49 0.49 0.47
(0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50) (0.50)
Age in Years 10.33 10.42 10.37 11.02 9.97 10.67 10.77 9.81 10.85 9.92 10.01 10.77 10.38 9.92 10.07 10.62 10.90 10.24
(0.44) (0.44) (0.49) (0.38) (0.44) (0.32) (0.51) (0.36) (0.37) (0.42) (0.49) (0.65) (0.64) (0.34) (0.51) (0.28) (0.46) (0.31)
Almost Always Speaking Tested Language at Home 0.76 0.86 0.73 0.78 0.67 0.85 0.97 0.78 0.82 0.16 0.89 0.88 0.79 NA 0.65 0.85 0.32 0.50
(0.43) (0.35) (0.45) (0.41) (0.47) (0.36) (0.18) (0.42) (0.39) (0.37) (0.31) (0.33) (0.41) (0.48) (0.36) (0.47) (0.50)
SES: Numbers of Books in the Home 2.94 3.17 3.17 2.96 2.95 255 3.01 2.74 2.57 2.90 2.73 2.29 2.89 2.98 2.82 2.75 3.08 2.90
(1.13) (1.09) (1.10) (1.08) (1.16) (1.07) (1.25) (1.15) (1.04) (1.05) (1.07) (1.15) (1.13) (1.04) (1.15) (1.07) (1.08) (1.26)
SES: Numbers of Items in the Home 6.30 8.47 8.09 8.89 5.31 7.48 8.39 6.47 8.61 8.94 6.92 6.28 7.34 8.04 6.28 7.95 7.76 5.85
(1.21) (1.69) (1.65) (1.29) (0.92) (1.35) (1.94) (1.82) (1.79) (1.76) (1.55) (2.55) (1.80) (1.50) (2.03) (1.79) (1.93) (1.71)
Classroom Variables
Class Size 19.33 2113 2161 21.25 22.63 20.61 22.09 20.10 20.00 21.40 2091 20.00 19.67 19.67 32.13 28.90 37.00 28.03
(4.12) (5.30) (3.89) (3.98) (4.17) (5.73) (5.45) (4.59) (5.11) (4.85) (4.78) (5.86) (4.84) (4.13) (5.38) (8.54) (5.57) (4.60)
Classroom SES: Average Numbers of Books in the Home 2.94 317 3.17 2.96 2.95 2.55 3.01 274 257 2.90 2.73 2.29 2.89 2.98 2.82 275 3.08 2.90
(0.48) (0.45) (0.46) (0.42) (0.57) (0.48) (0.65) (0.45) (0.48) 0.37) (0.53) (0.69) (0.59) (0.39) (0.50) (0.37) 0.47) (0.45)
Classroom SES: Average Numbers of Items in the Home 6.30 8.47 8.09 8.89 531 7.48 8.39 6.47 8.61 8.94 6.92 6.28 7.34 8.04 6.28 7.95 7.76 5.85
(0.40) (0.57) (0.66) (0.48) (0.31) (0.53) (0.98) (0.64) (0.85) (0.62) (0.74) 172 (1.07) (0.52) (1.02) (0.52) 0.77) (0.55)
Percent of Female Students 0.49 0.48 0.49 0.51 0.49 0.50 0.49 0.50 0.48 0.49 0.49 0.48 0.49 0.48 0.46 0.49 0.49 0.47
(0.14) (0.13) (0.12) (0.12) (0.10) (0.12) (0.13) (0.12) (0.13) (0.26) (0.14) (0.12) (0.12) (0.11) (0.17) (0.07) (0.21) (0.07)
Teacher Variables
Experience in Years 21.54 18.76 19.29 15.73 21.02 20.75 23.96 23.98 24,01 12.70 17.29 23.22 19.94 20.69 14.49 17.33 9.81 14.56
(11.58)  (10.28)  (12.27)  (10.74)  (11.00) (9.79) (9.92) (10.02) (8.49) (8.29) (8.62) (11.11)  (10.02) (9.67) (8.24) (11.69) (9.11) (7.15)
Complete Post-Secondary Education 0.99 0.92 0.87 0.86 0.94 0.98 0.97 0.21 0.97 0.86 0.97 0.57 0.99 0.99 0.96 0.92 0.87 0.98
(0.11) (0.26) (0.34) (0.35) (0.23) 0.13) 0.17) (0.41) (0.16) (0.34) 0.17) (0.50) (0.10) (0.11) (0.19) (0.27) (0.34) (0.14)
Female 0.91 0.95 0.78 0.53 0.77 0.96 0.94 0.91 0.99 0.81 0.86 0.87 0.92 0.96 0.56 0.59 0.71 0.82
(0.28) (0.23) (0.41) (0.50) (0.42) (0.19) (0.24) (0.29) (0.10) (0.39) (0.34) (0.34) (0.27) (0.19) (0.50) (0.49) (0.45) (0.38)
Instruction Time in Hours 3.98 413 4.08 311 457 3.74 4.04 5.82 4.06 5.43 717 4.02 3.73 4.44 4.16 3.72 5.49 3.14
(0.90) (0.90) (0.97) (0.41) (0.69) (0.83) (1.21) (1.37) (0.95) (1.32) (1.08) (1.03) (0.12) (0.78) (0.76) (0.27) (1.68) (0.91)
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Table 1.2 (cont’d)

AUT CZE DEU DNK ESP HRV HUN ITA LTU MLT PRT ROM SVK SVN HKG JPN SGP TWN
School Variables
Grade 4 Enrollment 27.15 26.50 42.49 35.86 36.22 52.82 33.43 70.13 35.18 41.48 26.45 29.82 25.60 30.54 105.78 58.61 273.05 108.96
(2237)  (2149)  (25.37)  (21.51)  (23.13)  (3347)  (25.20)  (46.61)  (55.25)  (26.80)  (25.58)  (32.26)  (26.82)  (22.55)  (48.65)  (4150)  (88.83)  (120.63)
Income Level of the School's Immediate Area: Low 0.25 0.48 0.21 0.22 0.29 0.34 0.59 0.18 0.68 0.14 0.39 0.65 0.56 0.42 0.06 0.05 0.07 0.06
(0.43) (0.50) (0.41) (0.41) (0.46) (0.47) (0.49) (0.39) (0.47) (0.35) (0.49) (0.48) (0.50) (0.49) (0.23) (0.21) (0.25) (0.24)
Income Level of the School's Immediate Area: Medium 0.71 0.50 0.71 0.64 0.66 0.64 0.40 0.71 0.32 0.85 0.60 0.33 0.43 0.56 0.40 0.80 0.74 0.60
(0.45) (0.50) (0.45) (0.48) 0.47) (0.48) (0.49) (0.46) (0.47) (0.36) (0.49) 0.47) (0.50) (0.50) (0.49) (0.40) (0.44) (0.49)
Income Level of the School's Immediate Area: High 0.04 0.02 0.07 0.14 0.04 0.02 0.01 0.11 0.00 0.01 0.01 0.02 0.01 0.02 0.54 0.15 0.19 0.34
0.19) (0.14) (0.26) (0.35) (0.20) (0.14) (0.08) (0.31) (0.00) (0.10) (0.11) (0.14) (0.10) (0.14) (0.50) (0.36) (0.39) (0.48)
City Size: 0-3,000 0.56 0.58 0.27 0.38 0.27 0.36 0.45 0.11 0.58 0.29 0.43 0.46 0.58 0.53 0.37 0.21 1.00 0.05
(0.50) (0.50) (0.44) (0.49) (0.44) (0.48) (0.50) (0.32) (0.50) (0.46) (0.50) (0.50) (0.49) (0.50) (0.49) (0.41) (0.00) (0.22)
City Size: 3,001-15,000 0.26 0.17 0.27 0.22 0.15 0.37 0.21 0.40 0.13 0.60 0.27 0.39 0.15 0.22 0.50 0.30 0.00 0.24
(0.44) (0.38) (0.44) (0.41) (0.35) (0.48) (0.41) (0.49) (0.33) (0.49) (0.44) (0.49) (0.36) (0.42) (0.50) (0.46) (0.00) (0.43)
City Size: 15,001-50,000 0.03 0.10 0.22 0.19 0.16 0.08 0.13 0.18 0.09 0.10 0.12 0.06 0.13 0.09 0.07 013 0.00 0.26
(0.18) (0.31) (0.42) (0.39) 0.37) (0.28) (0.33) (0.39) (0.28) (0.30) (0.32) (0.24) (0.34) (0.29) (0.25) (0.34) (0.00) (0.44)
City Size: 50,001-100,000 0.02 0.06 0.06 0.09 0.13 0.06 0.05 0.12 0.02 0.00 0.03 0.03 0.07 0.03 0.05 0.30 0.00 0.27
(0.13) (0.24) (0.23) (0.29) (0.33) (0.23) (0.23) (0.33) (0.15) (0.00) (0.18) 0.17) (0.25) (0.18) (0.21) (0.46) (0.00) (0.44)
City Size: 100,001-500,000 0.05 0.06 0.10 0.05 0.16 0.05 0.09 0.07 0.13 0.00 0.07 0.05 0.04 0.08 0.01 0.06 0.00 0.15
(0.21) (0.23) (0.30) (0.21) 0.37) (0.22) (0.28) (0.26) (0.33) (0.00) (0.26) 0.22) (0.19) (0.27) (0.12) (0.24) (0.00) (0.36)
City Size: >500,000 0.08 0.03 0.09 0.08 0.14 0.08 0.08 0.11 0.06 0.01 0.08 0.02 0.03 0.04 0.00 0.00 0.00 0.03
(0.27) (0.18) (0.28) (0.28) (0.34) 0.27) (0.27) (0.31) (0.24) (0.10) (0.28) (0.14) (0.18) (0.20) (0.00) (0.00) (0.00) 0.17)
Schools 158 177 197 216 151 152 149 202 154 96 147 148 197 195 136 149 176 150
Classes 276 235 205 216 200 295 249 239 217 197 240 246 314 243 137 149 351 155
Students 4668 4578 3995 3987 4183 4584 5204 4200 4688 3607 4042 4673 5616 4492 3957 4411 6368 4284

Note: Weighted means are reported. Standard deviations are in parentheses. Variable "SES: Numbers of Books in the Home" takes values from one to five indicating 0-10 books, 11-25 books, 26-100 books, 101-200 books and more than 200 books; it was used as a continuous variable in our
analysis for simplicity.

Country abbreviations: AUT = Austria, CZE = Czech Republic, DEU = Germany, DNK = Denmark, ESP = Spain, HRV = Croatia, HUN = Hungary, ITA = Italy, LTU = Lithuania, MLT = Malta, PRT = Portugal, ROM = Romania, SVK = Slovak Republic, SVN = Slovenia, JPN = Japan,
TWN = Chinese Taipei, HKG = Hong Kong, SGP = Singapore.
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Regression Results

The class size estimates of the OLS regression analysis are summarized in Table 1.3.
Negative coefficients of class size indicate that student achievement increases as class size
decreases; while positive coefficients indicate that student achievement increases as class
size increases. The regression coefficients of class size were negative in eight of the 18
countries, but none of them was significant at the 0.05 level after controlling for student,
teacher/classroom, and school characteristics.

Significant and positive class size coefficients were found in Croatia, Hong Kong and
Malta. As we discuss in the method section, OLS results might be biased because of
omitted variables. | analyzed the impact of the omitted variables (unobservable
confounding variables) using approach in Frank (2000). The method is based on the idea
that for a confounding variable to change the significance of the variable of interest (e.g.,
class size) it should be correlated with both the variable of interest and the dependent
variable. Frank (2000) developed formulas to calculate the minimum correlations
necessary to invalidate the inference. He defined the Impact Threshold for a Confounding
Variable (ITCV) as the lowest product of the partial correlation between the dependent
variable and the confounding variable and the partial correlation between the variable of
interest and the confounding variable that makes the coefficient insignificant. The higher
the absolute value of the ITCV is, the more robust the OLS estimate is. Table 1.4 presents
the ITCVs, and their corresponding minimum correlations between students score and
confounding variables and correlation between class size and the confounding variable,
which would invalidate the reference of OLS results for countries and districts with the

significant estimates. It should be noted that the correlation coefficients shown in Table
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Table 1.3: OLS Regression Estimates and Standard Errors of Class Size

AUT CZE DEU DNK ESP HRV HUN ITA LTU MLT PRT ROM SVK SVN HKG JPN SGP TWN
Class size -0.78 0.55 0.80 0.68 -0.39 0.60* 0.00 -0.41 -0.51 0.98* -0.62 0.19 -0.87 0.17 2.71* -0.08 0.60 -0.84
(0.59) (0.54) (0.51) (0.72)  (0.67)  (0.30) (0.53) (0.78)  (0.42)  (0.42)  (0.84)  (1.08) (0.60)  (0.57) (0.45) (0.22) (0.45) (0.75)
Number of Schools 158 173 176 156 139 147 144 179 151 89 143 138 192 188 119 148 176 145
Number of Students 4637 4517 3565 2965 3883 4427 4858 3690 4556 3346 3791 4359 5413 4366 3452 4389 6240 4155
R-sq 0.258 0.254 0.311 0.222 0.277 0.203 0.439 0.193 0.283 0.213 0.304 _ 0.352 0.328 0.236 0.381 0.219 0.453 0.240

*p <005

Country abbreviations: AUT = Austria, CZE = Czech Republic, DEU = Germany, DNK = Denmark, ESP = Spain, HRV = Croatia, HUN = Hungary, ITA = Italy, LTU = Lithuania, MLT = Malta, PRT = Portugal, ROM =

Romania, SVK = Slovak Republic, SVN = Slovenia, JPN = Japan, TWN = Chinese Taipei, HKG = Hong Kong, SGP = Singapore.

Table 1.4: Analysis of the impact of unobservable confounding variables

Croatia Malta Hong Kong

ITCV|z 0.058 0.072 0.132
Rxcv|z 0.241 0.269 0.363
Rycv|z 0.241 0.269 0.363
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1.4 are partial correlations that condition on the covariates included in equation (1.1).
Therefore, for instance, in Hong Kong, the result indicates that to sustain an inference an
omitted variable would have to be correlated at 0.363 with class size and at 0.363 with
mathematics achievement, conditional on all the covariates in equation (1.1). The partial
correlation coefficients shown in Table 1.4 ranged from 0.241 to 0.363, which were
somewhat large since they conditioned on a group of student, teacher/classroom and school
covariates. However, it is still difficult to tell if the significant coefficients in Croatia, Malta
and Hong Kong were robust to omitted variables because TIMSS does not provide
information such as prior achievement and family income, which are usually highly
correlation with student achievement and class size.

The positive class size coefficients are somewhat puzzling. One possible explanation
is that parents chose high quality schools for their kids, which increased school enrollment
and thus increased the average class size in high quality schools.

IV Results

The first stage regression results are summarized in Table 1.5, and the IV estimates of
class size effects in Table 1.6. In 12 countries the first stage regression coefficients of
computed average class size were significant and positive, and the t-statistic of the
instrument was bigger than 3.20. This indicates that the correlation between reported class
size and the instrument is strong enough in these countries (Staiger & Stock, 1997). It
should be noted that, for Hong Kong, although the absolute value of the t-statistic was
larger than 3.20, it was negative, which indicates the computed class size and the teacher
reported class size were negative correlated. That is because, in Hong Kong, the maximum

class size rules were only applicable to part of schools but not all of the primary schools.
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However, there was no information from TIMSS data to identify which schools should
follow the rules. Therefore, our IV methods were not appropriate to Hong Kong. In
Denmark, the first stage regression coefficients of class size were also significant and
positive, but the t-statistic of the instrument was smaller than 3.20. In Croatia, Italy Malta,
and Singapore, the first stage regression coefficients of class size were insignificant, which
indicate the Vs were quite weak in these countries.

To sum up, the IVs might not be valid in Hong Kong, Malta and Spain; also, in Croatia,
Denmark, Italy, Malta and Singapore, the 1VVs were weak, which made the IV estimates
and inference unreliable. Therefore, I will focus on IV estimates from countries with valid
and strong 1Vs.

The 1V estimates of class size are summarized in Table 1.6. The coefficients for
Austria, Lithuania, Portugal, Slovenia, Japan and Chinese Taipei were negative but
insignificant. The coefficients for the Czech Republic, Germany, and Hungary were
positive but insignificant. The estimated class size effects were negative and significant at
the 0.05 level in only two countries: Romania and the Slovak Republic. The magnitude of
class size coefficients for Romania and the Slovak Republic were about 4.5, which is
equivalent to 0.045 SD among all fourth graders who participated in TIMSS 2011. Such
results indicate that a one student reduction would increase about 4.5 points (or 0.045 SD)
of student mathematics achievement on average in the TIMSS scale.

To facilitate interpretation, we transformed our estimates to effect sizes (standard
deviations units) assuming a reduction in class size of 10 students. The effect size was 0.48
SD and 0.44 SD respectively for Romania and the Slovak Republic. Such effect sizes are

quite substantial in magnitude and larger than estimates reported in prior studies (e.g.,
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Table 1.5: First Stage Regression Estimates and Standard Errors of the Computed Average Class Size

Countries with Strong IV Countries with Weak IV

AUT CZE DEU ESP HUN LTU PRT ROM __ SVK SVN JPN TWN __ HKG DNK___ HRV ITA MLT SGP
IV: Computed Average Class Size ~ 0.50*  0.62*  047*  070*  050%  059*  038%  059%  0.49*  045%  0.82* 073  -0.50* 0.35* 0.10 0.26 0.28 0.28
(0.10)  (0.08)  (0.09)  (0.08)  (0.09)  (0.11)  (0.11)  (0.08)  (0.07)  (0.08)  (0.10)  (0.11)  (0.15) (014)  (013)  (016)  (0.16)  (0.19)
T-Statistic for IV 5.23 7.94 5.06 8.96 5.28 5.49 3.38 7.38 6.62 5.52 8.12 7.45 -3.28 2.54 0.72 1.7 1.71 1.51
Number of Schools 158 173 176 139 144 151 143 138 192 188 148 145 119 156 147 179 89 176
Number of Students 4637 4517 3565 3883 4858 4556 3791 4359 5413 4366 4389 4155 3452 2965 4427 3690 3346 6240
*p<005

Note: Standard errors are in parentheses.

Country abbreviations: AUT = Austria, CZE = Czech Republic, DEU = Germany, DNK = Denmark, ESP = Spain, HRV = Croatia, HUN = Hungary, ITA = Italy, LTU = Lithuania, MLT = Malta, PRT = Portugal, ROM = Romania, SVK = Slovak
Republic, SVN = Slovenia, JPN = Japan, TWN = Chinese Taipei, HKG = Hong Kong, SGP = Singapore.

Table 1.6: Second Stage Regression Estimates and Standard Errors of Class Size

AUT CZE DEU HUN LTU PRT ROM SVK SVN JPN TWN
Class Size -1.82 0.24 1.33 0.45 -1.25 -3.80  -4.84*  -4.40%  -1.87 -0.81 -0.83

(1.27)  (1.16)  (1.26)  (1.49)  (1.28) (2.67) (2.28) (158)  (1.32)  (0.46)  (1.23)
Number of Schools 158 173 176 144 151 143 138 192 188 148 145

Number of Students 4637 4517 3565 4858 4556 3791 4359 5413 4366 4389 4155
*p < 0.05

Note: Standard errors are in parentheses.

Country abbreviations: AUT = Austria, CZE = Czech Republic, DEU = Germany, HUN = Hungary, LTU = Lithuania, PRT = Portugal, ROM =
Romania, SVK = Slovak Republic, SVN = Slovenia, JPN = Japan, TWN = Chinese Taipei.
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Angrist & Lavy, 1999). A reduction of eight students, which was by and large the average
reduction in number of students between regular size and small size classes in Project
STAR, would indicate an increase in mathematics achievement nearly one-third of a SD.
This is a considerable effect knowing that the average benefit for students in small classes
in Project STAR was nearly 0.20 SD.
Comparison of Regression and 1V Estimates

Finally, 1 examined whether 1V estimates were indeed different than regression
estimates that could be biased. To compare OLS and IV estimates, we used the Durbin-
Wu-Hausman test (Durbin, 1954; Hausman, 1978; Wooldridge, 2010; Wu, 1973).

Specifically, we ran the regression

Score, = ¢, +d;Residual +J,ClassSize, + STA, + CL.A, +SCA, +& (1.6)

where Residual, is the residual term from regression equation (1.3). The idea is that once

we control for reported class size (and other covariates) the coefficient of the residuals

should not be significant unless there is omitted variable bias. The significance of 51

indicates that the regression and IV estimates are different. The significance of 51

indicates the reported class size is endogenous, that is, reported class size is correlated with
omitted variables that are part of the error term of equation (1.3). Table 1.7 summarizes the
results of the Durbin-Wu-Hausman test for the full samples. Significant estimates at 0.05
level were found in Romania and the Slovak Republic; while significant estimates at 0.10

level were found in Portugal, Slovenia, and Japan. The results suggest the regression and
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Table 1.7: Results from Durbin-Wu-Hausman Test

AUT CZE DEU HUN LTU PRT ROM SVK SVN JPN TWN

First Stage Residual 135 043 069 053  0.87 346+ 6.67* 438% 255+ 095+  -0.02
(1.34)  (114) (1.38) (1.52) (1.26) (2.00) (222) (1.68) (1.33) (0.50)  (1.43)
Number of Schools 158 173 176 144 151 143 138 192 188 148 145
Number of Students 4637 4517 3565 4858 4556 3791 4359 5413 4366 4389 4155
*p<0.05, +p<0.10

Note: Standard errors are in parentheses.

Country abbreviations: AUT = Austria, CZE = Czech Republic, DEU = Germany, HUN = Hungary, LTU = Lithuania, PRT = Portugal, ROM =
Romania, SVK = Slovak Republic, SVN = Slovenia, JPN = Japan, TWN = Chinese Taipei.
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IV estimates are different in these countries. They also indicate that reported class size was
endogenous and thus correlated with omitted variables in these countries. These results
support the notion that that IV analysis was necessary and that the IV estimates should
capture the causal effects of class size on student achievement in these two countries. For
other countries with strong and valid instruments -Austria, the Czech Republic, Germany,
Hungary, and Lithuania, and Chinese Taipei- the results indicate that estimates from
regression and 1V analyses were overall similar. These findings may suggest that there is

little bias from omitted variables in the regression analysis in these countries.

Discussion

I investigated the effects of class size on mathematics achievement for fourth graders
in 18 countries and districts in 2011 using rich data from TIMSS. These European and
Asian countries and districts had maximum class size limits, which allowed me to use an
IV approach to explore the causal effects of class size on student achievement. Both
regression analyses and IV analyses were conducted. By and large, | did not observe
significant class size effects in most countries. Significant class size coefficients at the 0.05
level were found in Romania and the Slovak Republic. These coefficients indicated that
class size reductions increased mathematics achievement significantly and meaningfully.
The estimates produced from the 1V analysis were somewhat different than those from the
OLS analysis in some countries. The Durbin-Wu-Hausman test provided some evidence
that reported class size was correlated with omitted variables in some countries and that

the IV analysis was necessary and provided valid estimates of class size effects in Romania
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and the Slovak Republic. In other countries however, the regression estimates were similar
to the IV estimates, which suggests that regression estimates were as good as 1V estimates.

Generally, the results indicated no systematic pattern of association between class size
and achievement. For nine of the eleven countries and districts with strong and valid IV no
class size effects were found. The exceptions were Romania and the Slovak Republic.
These significant class size effects were quite substantial in magnitude compared to prior
studies (e.g., Angrist & Lavy, 1999). Nonetheless, my findings are in congruence with
findings of previous work that used prior cycles of TIMSS assessments and have indicated
generally no significant relationships between class size and achievement (Pong & Palls,
2001; Wossmann, 2005; Wossmann & West, 2006). Romania and the Slovak Republic are
not as wealthy or developed countries compared to the other European countries in our
sample, which might indicate that school resources such as class size reduction may play a
more important role in less wealthy countries.

Unfortunately TIMSS does not provide data about classroom dynamics, instruction,
and practices and therefore it is difficult to know exactly why we failed to detect class size
effects in most countries. Prior studies have suggested that class size have positive effects
when teachers spend more time on individualized instruction or when pupils become more
involved in learning activities (e.g., Finn & Achilles, 1990). Perhaps in most of my samples
teachers did not utilize individualized instruction when class size was reduced. Also,
perhaps students were not as actively involved in learning activities when class size was
reduced.

One possible limitation of our estimates is related to the enrollment information we

used in our models. Specifically, enrollment information from the beginning of the school
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year can predict average class size more accurately (see Angrist & Lavy, 1999). However,
the enrollment information available in TIMSS is at the time of testing, which is near the
end of the school year. Thus, we could not control for any enroliment changes during the
school year. If potential changes of enrollment are not random, our results might be biased,
and that’s a potential limitation of our study (Wossmann, 2005).

Another potential limitation is that our IV method may not be valid. Although we
tested if covariates were locally balanced across schools around cut-offs, it is unclear
whether enrollment influences student achievement only though class size once enrollment
and other important covariates are controlled for. However, if class size is related to
unobserved variables that we could not control for (e.g., parental education level or family

income) then our 1V estimates may be biased.
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CHAPTER 2 DOES CLASS SIZE REDUCTION CLOSE THE ACHIEVEMENT

GAP

Introduction

The effects of class size on student achievement have been discussed repeatedly in
education research and policy in the past decades. Meta-analytic reviews of early work on
small class effects (e.g., Glass & Smith, 1979) and studies using data from a high-quality
large-scale experiment (e.g., Finn & Achilles, 1990) indicated a positive relationship
between small classes and student achievement. In particular, evidence from Project STAR
(Student-Teacher Achievement Ratio) in Tennessee has strongly indicated achievement
improvements for students in small classes compared to regular size classes (e.g., Krueger,
1999; Nye, Hedges, & Konstantopoulos, 2000). These findings suggest that reducing class
size is a promising policy option to increase academic achievement, on average, for all
students.

Besides improving average student achievement, another critical objective of
education interventions is to increase achievement for students at risk, and thus reduce the
achievement gap between lower- and higher-achieving students. Class size reduction has
been advocated as such an intervention by some researchers (e.g., Finn & Achilles, 1990).
One way to evaluate whether CSR can close the achievement gap is to examine the
interaction effect between class size and student background such as gender,
socioeconomic status (SES), minority status, etc. Prior studies have focused typically on
the average effects of class size on student achievement for all students. Only a few studies
have examined the differential class size effects for subgroups of students, most of which

have used data from Project STAR. The findings of these studies were mixed. For example,
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Finn and Achilles (1990) found some evidence that the positive effects of small classes
were larger for minority students, especially in kindergarten and first grade, while Nye,
Hedges, and Konstantopoulos (2002) found weak or no evidence for differential effects of
small classes on minority and low-SES students. Another way to evaluate whether CSR
can close the achievement gap is to estimate the differential class size effects across student
achievement distribution using quantile regression. Konstantopoulos (2008) used quantile
regression to evaluate the small size effects for student in the middle and tails of the
achievement distribution using data from Project STAR and found that reductions in class
size did not reduce the achievement gap between low- and high-achievers in the early
grades. Later studies have found similar findings using the same data (Ding & Lehrer, 2011;
Jackson & Page, 2013). Nevertheless, there is some evidence that the cumulative effects of
being in a small class from kindergarten through third grade may reduce the achievement
gap in reading and science in some of the later grades four through eight (Konstantopoulos
& Chung, 2009). However, no recent study has used current data to evaluate if CSR closes
the achievement gap.

Chapter 2 was designed to fill in that gap in the literature and explore the differential
class size effects for students with different levels of achievement. In particular, Chapter 2
examined the effects of class size across the student achievement distribution (i.e., middle
and upper or lower tails), in an attempt to address the question of whether CSR closes the
achievement gap between high- and low-achievers, using the latest cycle of a large-scale
international assessment program.

Specifically, 1 used the data from the 2011 fourth grade sample of the Trends in

International Mathematics and Science Study (TIMSS). I utilized maximum class size rules
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available in some countries to gauge class size effects on mathematics achievement. |
employed quantile regression to estimate class size effects on student achievement in the
middle as well as in the lower and upper tails of the achievement distribution. To deal with
the potential endogeneity of class size, | computed the average class size in a school based
on the maximum class size rule in each country, which was used as an instrumental variable
(1V) for class size. | used the control function approach (see Lee, 2007) to estimate the
differential causal effects of class size effect on fourth graders’ mathematics achievement.

Chapter 2 contributes to the existing literature in two ways. First, | used the most recent
TIMSS data from 2011 that allowed us to evaluate recent, concurrent CSR policies, and to
compare class size effects across Asian and European countries and districts. Second, |
used quantile regression coupled with IV to evaluate causal class size effects across the
achievement distribution. To my knowledge, the TIMSS data have not been used to
examine differential class size effects, although some researchers have used previous
cycles of TIMSS assessment to evaluate average class size effects (e.g., Pong & Palls, 2001;

Wossmann, 2005; Wossmann & West, 2006).

Literature Review
During the past three decades, researchers explored the effects of class size reduction
on student achievement through meta-analyses, experimental and quasi-experimental
designs (e.g., RD), as well as other advanced statistical methods such as IV. Most
researchers have focused exclusively on estimating mean differences in student
achievement between small and regular-size classes (Konstantopoulos, 2008). For example,

meta-analytic reviews of early work on small class effects have indicated a positive
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relationship between small classes and student achievement, but the magnitude of the effect
was small (e.g., Glass and Smith, 1979; Slavin, 1989).

Project STAR is viewed as the most impressive and most powerful field experiment
about class size effects in education (Mosteller, 1995). There have been numerous analyses
of the Tennessee STAR data that have produced high internal validity estimates. Finn and
Achilles (1990) were the first to analyze these data, and they found that students in small
classes performed higher than those in regular classes in all subject areas, and in every year
of the experiment (kindergarten through third grade). Nye, Hedges, and Konstantopoulos
(2000) examined the validity of Project STAR, and they suggested that the effects of class
size might be under-estimated because of imperfect implementation. They also found that
the estimated class size effects were consistent with those from Glass and Smith (1979).

Researchers also attempted to evaluate average class size effects using observational
data. The main difficulty of analyzing observational data is that the internal validity (or
unbiasedness) of estimates in observational or quasi-experimental studies is not so easy to
achieve. That is, researchers have to use advanced statistical methods to warrant the high
internal validity of estimates for observational data. Previous work has utilized different
analytic methods to examine class size effects on student achievement. For example, Pong
and Pallas (2001) used multilevel models to analyze TIMSS 1995 data in nine different
countries and found no class size effects on eighth grade achievement except in the U.S.
Other researchers have used IV methods to analyze observational data in an attempt to
explore the causal effects of class size reduction (e.g., Akerhielm, 1995; Hoxby, 2000; Cho,
Glewwe, & Whitler, 2012; Wossmann & West, 2006).

One of the best instruments used to capture class size effects was introduced by Angrist
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and Lavy (1999). They used the Maimonides rule that sets the maximum class size to 40
students per classroom in order to evaluate the effect of class size on student achievement
in Israel. The authors used this maximum class size rule of 40 to construct IV estimates of
class size on test scores. They found a statistically significant effect of small classes on
fifth grade reading and mathematics scores. However, they found no significant effects of
class size on third grade scores.

Several other researchers have also used maximum class size rules as IV to evaluate
class size effects. For instance, Bonesronning (2003) investigated class size effects using a
maximum class size rule of 30 students per classroom in Norway. His analysis indicated
small class effects. Wossmann (2005) explored class size effects in Europe using data from
TIMSS 1995 for eighth grade students. He found two statistically significant and negative
relationships between class size and student achievement in Norway and Iceland. He also
found a statistically significant but positive relationship between class size and student
achievement in Switzerland. For Denmark, France, Germany, Greece, Ireland, Spain, and
Sweden, the estimates were not significant. A recent study about class size effects on fourth
grade reading achievement in Greece also reported statistically insignificant estimates
(Konstantopoulos & Traynor, 2014). Urquiola (2006) studied third-grade students in
Bolivia and found significant class size effects, with effect sizes as large as 0.30 standard
deviations, bigger than the effects found in Project STAR in the U.S. and in Israel.

Class size reduction can potentially affect average student achievement as well as the
achievement gap among subgroups of students. In other words, interactions between class
size effects and student background, such as student SES or achievement level, are possible

(Konstantopoulos & Chung, 2009). If economically disadvantaged students or low-
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achieving students benefit more from being in smaller classes, CSR would decrease the
achievement gap. However, most prior studies have focused on the average class size
effects, while only few studies have explored the interaction effects between class size and
student backgrounds or achievement levels.

The differential effects of class size have traditionally been determined through
statistical interactions between class size and student variables such as gender, SES, and
race. Project STAR data have been used to examine such interaction effects. For example,
early analyses have reported that class size reduction had larger positive effects for
minority students (see Finn & Achilles, 1990). These average differences were significant
for reading achievement for the first two years of the experiment (kindergarten and first
grade). However, more recent studies could not fully replicate these findings. For example,
Nye, Hedges, and Konstantopoulos (2000) found weak evidence that class size reduction
had larger benefits for minority students. Also, Nye, Hedge and Konstantopoulos (2002)
examined the differential effects of small classes for students who were low-achievers in
previous grades, and they found no evidence of additional small class benefits for these
students.

Several non-experimental studies have also evaluated class size effects for subgroups
of students, and almost all of them did not find differential class size effects. For example,
Hoxby (2000) analyzed data from a natural experiment in Connecticut and found no
evidence of class-size effects at schools that served high percentages of economically
disadvantaged or minority students. In a similar study, Cho, Glewwe, and Whitler (2012)
found the estimated class size effects did not differ by race/ethnicity, gender, or free lunch

eligibility. One exception was the study by Jepsen and Rivkin (2009), which found
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differential class size effects among subgroups. They analyzed the CSR policy in California
and found that this policy initially helped economically advantaged (both in family
background and performance) students more than their less affluent peers.

One appropriate method of examining differential class size effects at different levels
of achievement is quantile regression, which examines class size effects across the entire
student achievement distribution. Konstantopoulos (2008) employed this approach to
estimate class size effects at the tenth, twenty-fifth, fiftieth, seventy-fifty, and ninetieth
quantiles, using data from Project STAR. He also constructed t-tests to examine whether
the estimates were statistically different across quantiles and found some evidence that
higher-achieving students benefited more from being in small classes in certain early
grades than other students. Later studies confirmed such findings (e.g., Ding & Lehrer,
2011; Jackson & Page, 2013). Nevertheless, Konstantopoulos and Chung (2009) examined
the long-term effects of class size across the student achievement distribution. They found
that for certain grades (fourth and sixth grade) in reading and science, low- achievers
benefited more from being in small classes consistently in the early grades, while for other
grades, no differential class size effects were found.

Very few previous studies examined quantile-specific class size effects using non-
experimental data. To our knowledge, there were only two studies. One is by Levin (2001),
who used quantile regression as well as IV methods through two-stage least absolute
deviations (2SLAD) (Amemiya, 1987) to estimate the causal effects of class size on
scholastic achievement across various points in the conditional distributions of
mathematics and languages achievement of Dutch primary school students. He did not find

any significant class size effects at any quantile. Levin (2001) did not examine differences
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between estimates across quantiles, and thus it is not clear whether CSR reduced the
achievement gap. Ma and Koenker (2006) reanalyzed Levin’s data and found that, for
mathematics scores, lower-achieving students benefited more from smaller classes while
average and high-achieving students did not get benefit from smaller classes.

To sum up, it is not very clear if class size reduction would decrease achievement gap
or not; also, there were quite limited studies that evaluated class size effects across
achievement distribution. It is necessary to provide more evidence of class size effects

across achievement distribution using concurrent data.

Method

In this chapter, | also used the data from TIMSS 2011, and focused on fourth grade
mathematics achievement. | analyzed the same countries as | did in Chapter 1. Table 1.1
provides detail about the selected countries as well as their upper class size limits.
Quantile Regression

The objective of my study was to examine class size effects across the distribution of
fourth graders’ mathematics achievement, especially the effects in the upper and lower tails
of the distribution. Ordinary least squares (OLS) regression fails to describe the full
distributional impact of class size on student achievement, unless the lower-achievers and
higher-achievers benefit the same from smaller classes as students in the middle of the
achievement distribution. Quantile regression (Koenker and Bassett, 1978) is a tool that
allows researchers to estimate quantile-specific class size effects, not only in the middle
but also in the tails of the conditional student mathematics achievement distribution. Thus,

we used quantile regression, and compared quantile-specific class size effects across
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different quantiles of the achievement distribution to evaluate whether CSR closes or
enlarges the achievement gap.
I evaluated class size effects at the tenth, twenty-fifth, fiftieth, seventy-fifth, and

ninetieth quantiles through the following equation

Score. = 5, + fClassSize. + STB, +CLB, +SCB, +¢. (2.1)

where Score; represents mathematics scores, /3, is the constant term, ClassSize is the
main independent variable, /5 represents the class size effect and is the coefficient of

interest, STi is a row vector of student background characteristics, B, is a column vector
of regression coefficients of student characteristics, CL.i is a row vector of classroom or

teacher characteristics, B, is a column vector of regression coefficients of teacher and

classroom characteristics, SCi is a row vector of school characteristics, B, is a column

vector of regression coefficients of school characteristics, and &j is the error term.

Instrumental Variable and Control Function

An important issue to consider in estimating quantile-specific class size effects is that
class size may be endogenous because of omitted variable bias. The relative position of
students in the conditional achievement distribution could be related to systematic
differences in unobservables, such as motivation, family background, school or teacher
quality, etc. In that case, the estimated class size effect from equation (2.1) cannot reflect
the true quantile-specific class size effect.

Because students and teachers are rarely randomly assigned to classrooms in a grade
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class size might be correlated with unobserved characteristics of students or teachers. For
example, in order to help low achieving students, some schools might assign higher quality
teachers to classes with higher proportions of low achievers. Variables that determine
assignment of students and teachers to classes are not typically measured. For example,
student motivation, family income, parental pressure, teacher quality, etc. are rarely
available in observational datasets. In addition, cross-sectional data rarely provide indexes
of prior ability or performance. Although we included as many covariates as we could in
our multiple regression analysis, it is still possible that unobservable factors that are part
of the error term in equation (2.1) are correlated with class size. If that were true, then the
estimated class size effect in equation (2.1) would be biased.

In general, there are two sources of omitted variable bias that are related to student
mathematics achievement, and to class size as well. First, students do not choose schools
randomly but typically attend schools in their neighborhoods. Therefore, students within
the same school might share common characteristics, such as parents’ education, parents’
occupations, and family income. That is, class size may be correlated with SES manifested
via parents’ occupations or family income. Such variables were not measured or reported
in the TIMSS 2011 fourth grade student survey. Second, students and teachers are rarely
randomly assigned to classrooms, and thus class size might be correlated with unobserved
student or teacher characteristics. For example, students may be assigned to classes based
on their ability or motivation. TIMSS 2011, being a cross-sectional survey, did not include
information about prior achievement (a proxy for ability). In the same vein, in order to help
low-achieving students, some schools might assign higher quality teachers to classes with

higher proportions of low-achievers. There were only very few teacher characteristics
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reported in the TIMSS 2011 teacher survey, such as their gender, experience, and education
level, which may capture only partially teacher “quality.” Although we included as many
covariates as we could in our analysis, there are likely unobservable factors that could be
correlated with class size that are part of the error term of equation (2.1).

Just as with OLS, endogeneity of class size renders quantile-specific estimates biased.
To overcome this potential shortcoming and to facilitate causal inferences, we used 1V
methods. Specifically, we created a grade and school specific average class size variable
using the maximum class size rule, and we used it as an instrument for class size. Our
method is similar to the one used by Angrist and Lavy (1999) and is the same as we did in
Chapter 1. The average class size in fourth grade, based on the maximum class size

requirement, could be calculated through the following equation

f.=E [[int((E. -1)/ rule) +1] (2.2)

where E, denotes the enrollment in grade four in a school; fi denotes the computed

school and grade specific average class size based on the maximum class size rule; rule
denotes the upper class size limit in a given country; and for any positive number n, the
function int(n) is the largest integer less than or equal to n.

| adopted the control function approach proposed by Lee (2007) to get quantile-
specific IV estimates. Lee’s approach fits our study for two reasons: first, his estimation
approach is computationally convenient and simple to implement through the “qreg”
command in STATA, second, the required assumptions by Lee’s control approach hold in

general settings (see Lee, 2007). The control function approach is also a two-stage
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estimation method that is similar to two-stage-least square (2SLS). The basic idea is to add
a control variable to equation (2.1) such that, once we condition on this variable, the teacher
reported class size will be independent of omitted variables (see Wooldridge, 2010). This
so-called control variable usually needs to be estimated through a first stage regression,
because it cannot be observed or measured directly. In our study, the first stage regression

equation is

ClassSize, = 7, + r, f. + STIL, + CL I, + SCII, +u. (2.3)

where fi is the computed average class size in a school based on the maximum class size

rule, and U is the error term. All other terms have been defined previously. The 77 ’s are

the regression estimates that need to be computed.

Researchers typically use the estimated residuals from equation (2.3) as the control
variable. Residuals can be estimated from a quantile regression, or even an OLS regression
(Lee, 2007). It should be noted that Lee’s control function method is only applicable to
continuous endogenous variables. Although class size is conceptually continuous, it has

only a finite number of distinct values. In this case, Lee (2007) suggested using OLS

regression in the first stage. | calculated residual U, through the following equation

U,=ClassSize, — ClassSize

where ClassSize, is the fitted value of ClassSize, from equation (2.3), the OLS regression.

Contrary to the conventional control function approach that inserts U, into equation (2.1)
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as the second stage regression, Lee (2007) proposed inserting a power series or kernel of
U; . He showed that with proper conditions, the estimator from his control function
approach is consistent (See Appendix B for a proof). In this study, | added a fifth order
polynomial of U, , denoted as A(U.), into equation (1). Specifically, the second stage

regression in each quantile (i.e., tenth, twenty-fifth, fiftieth, seventy-fifth, and ninetieth) is

Y. =, +0,ClassSize, + A(0.)+STA, +CLA, +SCA, +£& 2. 4)

The coefficient o, represents the relationship between mathematics achievement and class

size, adjusted for student, teacher/classroom, and school characteristics; A(U,) represents

a fifth order polynomial of U, . The 0 ’s indicate regression estimates that need to be

computed. The student, classroom/teacher, and school covariates included in equation (2.4)
are the same as those included in equation (2.3) (see Appendix A). Appropriate student
weights were used in both regressions (equations 2.3 and 2.4).

It should be noted that due to the two-step feature of the model, the standard errors of
estimates in equation (2.4) were adjusted by nonparametric bootstrap techniques using
1000 replications. | used the bootstrap method introduced by Kelnikov (2010), which is
suitable for complex survey data and corrects the potential clustering effects (i.e., students
nested within schools). Also, my analysis was conducted for each plausible value separately,
and then the averages of the five sets of estimates were calculated and reported as the final
estimates of class size effects for each quantile (see Schafer & Olsen, 1998). The standard

error of the class size effects was a combination of the sampling variance obtained through
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bootstrap techniques and the variance between plausible values (see Martin & Mullis,
2012).

Similar to the case in 2SLS context, there were two key assumptions that the computed

average class size fi must meet in order for the variable to be a valid I1V: (1) fi should

be correlated with actual class size, and (2) fi should not be correlated with the error term
in equation (2.1).

The first assumption indicates that schools followed the maximum class size
requirement when they assigned students to classrooms. In a 2SLS context, such an
assumption can easily be tested through the first stage regression. If the instrument is only
marginally significant, our instrument could be weak. When instruments are weak, then the
standard 1V estimates, hypothesis tests, and confidence intervals may be unreliable (Stock,
Wright, & Yogo, 2002). The rule of thumb is that the t-statistic of the instrument in the
first-stage regression should be larger than 3.2 (Stock, Wright, & Yogo, 2002). Results from
Table 1.6 in Chapter 1 had shown that there were five countries or districts - Denmark,
Croatia, Italy, Malta and Hong Kong- whose Vs were weak. In addition, the significant

but negative coefficient in Hong Kong indicated that the IV was valid in Hong Kong.

Results

I only evaluated the class size effects for countries and districts with strong and valid
IVs. The quantile-specific 1V estimates of class size are summarized in Table 2.1. To
compare the results between OLS regression and median regression (quantile regression at

the fiftieth quantile), estimates from 2SLS are also presented. Negative coefficients of class
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size indicate that student achievement increases as class size decreases, which is what

researchers and policy makers expect. In Romania, the Slovak Republic, Slovenia, Japan

Table 2.1: 2SLS and Quantile Regression Estimates and Standard Errors of Class Size

Quantile

25LS 10th 25th 50th 75th 90th

AUT -1.82 0.35 -2.07 -2.26 -2.51 -1.71
(2.27) (3.37) (3.04) (2.04) (2.15) (2.79)

CZE 0.24 0.83 0.67 0.75 -0.10 -0.95
(1.16) (1.74) (1.48) (1.28) (1.56) (1.48)

DEU 1.33 2.25 2.28 2.26 1.58 -0.30
(1.26) (2.28) (2.97) (1.68) (2.16) (2.42)

HUN 0.45 1.31 -0.50 0.70 1.19 1.17
(1.49) (2.65) (2.24) (1.78) (1.92) (2.44)

LTU -1.25 -0.06 -0.15 -0.79 -2.15 -2.81
(1.28) (3.27) (1.65) (1.75) (1.71) (2.41)

PRT -3.80 -2.84 -2.89 -2.89 -3.05 -4.68
(2.67) (4.63) (3.10) (2.78) (3.10) (3.69)

ROM -4.84* -5.46 -5.52 -5.72* -4.86+ -4.23
(2.28) (3.63) (3.71) (2.64) (2.92) (3.46)

SVK -4.40* -4.42* -3.59 -4,10+ -4.68* -4.33
(1.58) (2.24) (2.57) (2.19) (2.16) (2.78)

SVN -1.87 -1.13 -1.69 -2.03 -2.65 -2.70
(1.32) (2.69) (2.09) (1.86) (2.32) (2.52)

JPN -0.81 -1.45 -1.03 -0.71 -0.51 -0.18
(0.46) (0.92) (0.81) (0.57) (0.63) (0.79)

TWN -0.83 -1.83 -0.27 -0.63 -0.15 0.21
(1.23) (2.53) (2.27) (1.79) (1.86) (1.93)

*p<.05 +p<0.1
Note: Bootstrap standard errors are in parentheses.

and Chinese Taipei, the magnitude of the coefficients in the median regression were similar
to those from 2SLS. In Germany, Hungary, Lithuania, and the Czech Republic, the
magnitude of the coefficients in the median regression were quite different from those from
2SLS. In terms of significance, the estimates from 2SLS and the estimates from median
regression were quite similar and, by and large, insignificant. In addition, the standard
errors from the median regression were larger than those from 2SLS.

The coefficients of class size were negative but insignificant across all five quantiles
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in Lithuania, Japan, Portugal, and Slovenia. The coefficients for Austria, the Czech
Republic, Germany, Hungary, and Chinese Taipei were mixed: for some quantiles, they
were positive, while for the other quantiles, they were negative. However, none of the
quantile estimates were significant. Negative and significant quantile-specific class size
estimates were only found in Romania and the Slovak Republic. In Romania, the class size
coefficient at the fiftieth quantile was negative and significant at the 0.05 level. Also, the
class size coefficient at the seventy-fifth quantile was negative and significant at the 0.10
level. Such results indicate that students in the middle and upper tail of the achievement
distribution benefitted from being in smaller classes. For instance, a one student reduction
corresponds to an increase of about 5.7 points of mathematics achievement in the TIMSS
scale for students in the middle of the achievement distribution. This is equivalent to about
0.057 standard deviations (SD) among all fourth graders who participated in TIMSS 2011.
For the other three quantiles, the estimates were negative but insignificant. The magnitude
of the class size coefficients were similar across quantiles and ranged between 4.23 at the
ninetieth quantile to 5.72 at the fiftieth quantile.

In the Slovak Republic, the estimates at the tenth quantile and seventy-fifth quantile
were significant and negative at the 0.05 level. The estimate at the fiftieth quantile was
negative and significant at the 0.10 level. Such results indicate that students in the lower
tail, median or upper tail of the achievement distribution benefitted from smaller classes.
For the other two quantiles (twenty-fifth and ninetieth quantiles), the estimates were
negative but insignificant. The magnitude of the class size coefficients were similar across
quantiles and ranged between 3.59 at the twenty-fifth quantile to 4.68 at the seventy-fifth

quantile.
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To facilitate interpretation, | transformed the estimates to effect sizes expressed in SD
units, assuming a reduction in class size of eight students, which was the average class size
reduction in Project STAR. For Romania, the effect sizes were about 0.46 SD at the fiftieth
quantile, and about 0.39 SD at the seventy-fifth quantile. For the Slovak Republic, the
effect sizes were about 0.36 SD at the tenth quantile and the seventy-fifth quantile, and
about 0.33 SD at the fiftieth quantile. Such effect sizes are quite substantial in magnitude
and larger than the conditional mean estimates reported in prior studies (e.g., Angrist and
Lavy, 1999; Nye, Hedges & Konstantopoulos, 2004). For example, the average effect size
for Project STAR was about 0.20 SD.

In Japan the magnitude of the coefficients indicated that the class size effects were
consistently larger for low-achievers than for other students. For example, the magnitude
of the coefficient estimated at the tenth quantile was more than eight times larger than that
at the ninetieth quantile. In countries such as the Czech Republic, Lithuania, Portugal, and
Slovenia, the magnitude of the coefficients indicated that the class size effects were
consistently larger for higher-achievers than for other students. For example, the magnitude
of the coefficient estimated at the ninetieth quantile was about 47 times as large as that at
the tenth quantile in Lithuania. Overall these results seem mixed. In some countries, the
results seem to support the notion that high-achieving students may benefit more from
being in small classes than other students. In contrast, in other countries low-achievers
seem to benefit more from smaller classes than other students. Still, one needs to examine
whether the estimates across these different quantiles were statistically significant.

A bootstrap procedure was employed to compute the standard errors of the differences

between two quantile-specific estimates (Kelnikov, 2010). Table 2.2 summarizes the
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differences between estimated class size coefficients and their bootstrap standard errors. |
calculated the difference between two specific-quantile estimates by subtracting the

estimated class size coefficient of lower achievers from the estimated class size coefficients

Table 2.2: Differences in Quantile Regression Estimates

90th vs. 10th 90th vs. 25th 90th vs. 50th 75th vs. 10th 75th vs. 25th 75th vs. 50th 50th vs. 25th 50th vs. 10th
Quantile Quantile Quantile Quantile Quantile Quantile Quantile Quantile

AUT -2.07 0.36 054 2.86 -0.44 -0.25 2.61 -0.19
(3.01) (2.93) (1.83) (2.28) (2.16) (0.94) (1.73) (1.60)
CZE -1.78 -1.62 171 -0.93 -0.77 -1.05 0.26 0.23
(1.17) (1.26) (1.17) (1.35) (1.24) (1.12) (1.13) (1.09)
DEU -2.42 -2.59 -2.56 -0.96 -0.71 -0.68 -0.14 -0.02
(2.02) (1.52) (1.37) (1.77) (1.36) (0.98) (1.57) (0.83)
HUN -0.14 1.32 0.13 -0.12 157 0.38 -0.39 1.19
(2.05) (1.90) (1.40) (1.83) (1.55) (1.11) (1.59) (1.26)
LTU -2.75 -2.66 -2.02 -2.08 -1.99 -1.36 -0.73 -0.64
(2.79) (1.55) (1.32) (2.59) (1.25) (1.00) (2.02) (0.99)
PRT -2.45 -1.79 -2.21 -0.72 -0.48 0.03 -0.18 0.41
(4.76) (3.27) (2.55) (4.22) (2.55) (1.67) (3.70) (2.02)
ROM 1.23 1.30 1.50 0.60 0.66 0.86 -0.27 -0.20
(3.08) (3.26) (2.18) (2.18) (2.42) (1.22) (1.45) (1.86)
SVK 0.20 -0.74 -0.23 -0.09 -0.79 -0.51 0.18 -0.51
(2.30) (2.01) (1.42) (2.02) (1.69) (1.02) (1.55) (1.42)
SVN -1.57 -1.01 -0.67 -1.53 -0.97 -0.62 -0.90 -0.34
(1.92) (1.56) (1.42) (1.70) (1.29) (0.90) (1.46) (1.10)
JPN 1.27* 0.85 0.50 0.94 0.52 0.25 0.65 0.26
(0.60) (0.66) (0.41) (0.61) (0.62) (0.29) (0.50) (0.45)
TWN 2.04 0.48 0.85 1.68 0.12 0.49 1.19 -0.37
(1.81) (1.37) (1.20) (1.61) (1.15) (0.92) (1.51) (0.81)

*p<.05 +p<0.1
Note: Bootstrap standard errors are in parentheses.

of higher achievers. Thus, a negative difference indicated that high-achievers benefitted
more from small classes than low-achievers. For example, in Japan, the difference of the
class size coefficients between the ninetieth and the tenth quantile was 1.27, which
indicates that a one student reduction in class size would increase achievement by 1.27
points in the mathematics achievement scale between these two quantiles (favoring the
tenth quantile). In other words, negative difference indicates an increase in the achievement

gap between high-achievers and low-achievers as class size decreases. In contrast, a

50



positive difference indicates a decrease in the achievement gap between high-achievers and
low-achievers as class size decreases.

The results in Table 2.2 show that almost all differences between any two specific-
quantile estimates were insignificant with only one exception, which indicates that in
general CSR did not reduce the achievement gap between high- and low-achievers. By and
large, CSR is likely to have no impact on the achievement gap across countries, which is
inconsistent with prior studies, especially the studies using data from Project STAR (e.g.,
Konstantopoulos, 2008; Ding & Lehrer, 2011; Jackson & Page, 2013) that consistently
found high-achieving students got more benefit from small classes and thus achievement

gap increased.

Discussion

| investigated the differential effects of class size at different levels of mathematics
achievement for fourth graders, using rich data from TIMSS 2011. The European and Asian
countries and districts | selected had maximum class size rules, which allowed me to use
an 1V approach to explore the causal effects of class size on student achievement across
the achievement distribution. Specifically, I used a control function approach, coupled with
quantile regression, to examine differential class size effects for students in the middle,
lower, and upper tails of the achievement distribution.

Generally, the findings from the quantile regression indicated no systematic patterns
of association between class size and achievement. In nine of the eleven European and
Asian countries and districts that had strong IV and valid RE design, we found insignificant

class size effects. The only two exceptions were Romania and the Slovak Republic, where
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significant class size effects were detected in some quantiles. These significant class size
effects were quite substantial in magnitude compared to prior studies (e.g., Angrist & Lavy,
1999). Nonetheless, my findings are in congruence with the findings of previous work that
used prior cycles of TIMSS and have indicated generally insignificant relationships
between class size and achievement (Pong & Palls, 2001; Wossmann, 2005; Wossmann &
West, 2006). | also compared class size coefficients at the lower and upper tails of the
achievement distribution. These results suggest no differential class size effects across the
achievement distribution. In sum, our findings suggest that CSR has no impact on
achievement gap between low- and high-achieving students. In other words, lower-
achieving students did not get hurt from CSR policies. Such findings are not in congruence
with findings of previous works that used high-quality experimental data or (e.g.,
Konstantopoulos, 2008; Nye, Hedges & Konstantopoulos, 2002). In addition, our findings
indicates that, for some specific countries such as Romania and the Slovak Republic, CSR
is a promising policy that would increase student achievement but not increase

achievement gap between low- and higher-achieving students.
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CHAPTER 3 POWER CONSIDERATION FOR MODEL OF CHANGE

Introduction

In recent years, there has been an increased interest in assessing the effects of
educational interventions via experimental designs where students, classrooms, or schools
are randomly assigned to a treatment and a control condition. An important part of the
design phase of an experiment involves power analysis. Statistical power is the probability
of detecting the treatment effect of interest when it exists (Boruch & Gomez, 1977; Cohen,
1988). A priori power computations are critical in designing experiments because they
inform empirical researchers about the sampling scheme needed to detect a treatment effect.
Specifically, a priori power analyses help educational researchers identify how big a
sample is needed at the student, classroom, or school level to ensure a high probability
(e.g., > 80 percent) of detecting a treatment effect if it were true (Lipsey 1990;
Konstantopoulos, 2008a).

The recent resurgence of experiments in education has been an attempt to establish
rigorous research in the field. That is, currently much of the empirical research in education
employs randomized experiments that are typically large in scale. These field experiments
allow education researchers to examine the effects of school, or student interventions on
student performance. In addition, education experiments incorporate often times a
longitudinal component where students are followed over time. The main objectives in
these studies include assessing whether the treatment effects are cumulative or have lasting
benefits or whether they fade over time. For example, the effect of a novel mathematics

curriculum is evaluated through an experiment (i.e., novel versus traditional mathematics
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curriculum) where measurements of student outcomes (e.g., mathematics achievement) are
collected repeatedly over time (e.g., every spring for a few years).

In repeated measures experiments each student has their own trajectory which is a
function of time and indicates the rate of change over time (Raudenbush & Bryk, 2002).
The central goal in such studies is not only to estimate the treatment effect in the first year
of the study (e.g., immediate effects), but also gauge longer term effects over time. For
example, a researcher may be interested in the change or growth of mathematics
achievement for students who use a novel mathematics curriculum vis-a-vis students who
use a traditional mathematics curriculum. In this case, it is important for the researcher to
compare trajectories of students who received the treatment (i.e., novel curriculum) versus
those who did not receive the treatment (i.e., traditional curriculum).

The change in measurements over time does not always follow a linear trend. Instead,
trajectories sometimes point to nonlinearities such as curvilinear trends. For example,
Huttenlocher et al. (1991) studied how children’s vocabulary is accelerated in early years.
One way of defining trajectories of change is via polynomial functions (Raudenbush & Liu,
2001). The first degree polynomial indicates linear rate of change, the second degree
polynomial indicates a quadratic rate of change, the third degree polynomial indicates a
cubic rate of change and so forth. That is, treatment effects are estimated for linear rates or
non-linear rates of change.

Studies about polynomial change may be viewed as having a nested structure. For
example, measurements are nested within individuals and this nesting needs to be taken
into account in the design phase of the study as well as in the statistical analysis phase.

Prior work has utilized two-level models (e.g., measurements within students) for repeated
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measurements designs (see Raudenbush & Bryk, 2002). In particular, the authors presented
methods for power analysis of treatment effects in studies of polynomial change with one
level of nesting. Power is a function of the magnitude of the treatment effect, the sample
size of individuals, the duration of the study, and the frequency of measurements over time.
Researchers should take into account all of these parameters in the design phase of the
experiment to ensure that treatment effects will be detected.

Nonetheless, populations in education have frequently more complicated structures.
For example, students are also nested within classes or schools and so forth. In addition,
education interventions typically assign either schools or students randomly to treatment
or control groups. For instance, students are assigned to small or regular classes within
schools. Or schools are randomly assigned to an assessment program or not. It seems
natural to extend methods for power analysis for tests of treatment effects in studies of
polynomial change from two to three-levels. Consider for example, a nested structure
where measurements are nested within students and students in turn are nested within
schools. That is, the first level is repeated measurements, the second level is students, and
the third level is schools. Spybrook et al. (2011) reported in the optimal deign manual
formulae to calculate power for three-level polynomial change models without covariates.

This study extends previous methods by Raudenbush and Liu (2001) and Spybrook et
al. (2011), and provide methods for power analysis of tests of treatment effects in studies
of polynomial change with two levels of nesting (e.g., students and schools) where the
treatment is either at the third level (e.g., school intervention) or at the second level (e.g.,
student intervention). In particular, I present first methods for power analysis for cluster

randomized designs (CRD) where for instance schools are randomly assigned in a
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treatment and a control group, students are nested within schools, and repeated
measurements are nested within students. This design assumes that schools are sampled
randomly from a larger population at the first stage and then students within schools are
randomly sampled. That is, both schools and students are random effects. Within CRD |
briefly present the unconditional model (i.e., no covariates at any level), and then | expand
the model to include covariates in the second and third levels. Second we provide methods
for power analysis for block randomized designs (BRD) where the treatment is at the
second level (e.g., student intervention) and the third level units (e.g., schools) serve as
blocks. For example, students are assigned to treatment and control conditions within
schools. In this design both schools and students are also treated as random effects. In
addition, we will discuss how study duration, sample size (number of third and second

level units), and covariates influence power through two illustrative samples.

The Polynomial Change Model
A polynomial is an algebraic expression that contains more than one term and is
described as a sum of terms of the same variable (e.g., time) in different powers (Kirk,
2012). For example, student achievement growth could be modeled through a polynomial

equation of the third degree as

Y =4,+pa+pa’+pat+e (3.1)

where Y is student achievement, a is a measure of time such as age at each time of

measurement, /£, isaconstant, Sa isa linear component, j,a* is a quadratic component,
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p,a° isacubic component, and & is an error term. One disadvantage of equation (3.1) is

that the trend components are highly correlated, which leads to multicollinearity. To
resolve the dependency problem, one can utilize orthogonal polynomial contrast
coefficients, which have been frequently used to fit trends of repeated measures. Equation

(3.1) can then be constructed as

Y =o,C, +a,C, + a,C, + a,Cy + U (3.2)

where ¢, ¢,, and C; are orthogonal polynomial coefficients that are independent with

each other and thus enable researchers to independently test a null hypothesis for each of
the three components (Kirk, 2012). Orthogonal polynomial coefficients have been used to
fit trends since the early 20" century (e.g., Fisher, 1928). Jennrich and Sampson (1971)
provided an algorithm to generate the orthogonal polynomial contrast coefficients. They
are provided in tables of many experimental design texts (e.g., Kirk, 2012).

Previous work has discussed sample size and statistical power considerations for group
comparisons using repeated measures, most of which however are focused on single-level
models (e.g., Bloch, 1986; Hedeker, Gibbons, & Waternaux, 1999). Raudenbush and Liu
(2001) extended this work and provided power analysis and sample determination methods
for repeated measures in two-level models. They focused on studies in which two groups
were followed over time to assess group differences in the average rate of change, rate of
acceleration, or a higher degree polynomial effect. Through a two-level model combined
with orthogonal polynomial contrasts at the first level, the authors examined how the

duration of the study, frequency of observation, and number of participants affected
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statistical power. They found that power increases as the study duration or the number of
students increases. Meorbeek (2008) discussed how the costs of including more persons or
taking more measurement influence powers in a two-level polynomial growth models and
provided methods of comparing alternative design on the basis of their costs and sample
size. She also took drop-out into consideration, and found that power decrease as the
dropout increase, and thus increasing the study duration might have a negative effect on
the power.

Power analysis methods for growth models with two levels of nesting have rarely been
discussed in prior literature. One exception was by Jong, Moerbeek, and Van der Leeden
(2010), who discussed power estimation methods for three-level growth models with linear
rate of change only. They have demonstrated that power is influenced by intraclass
correlation coefficients, level of randomization, sample size, covariates and drop-out rates.
However, their methods could not be applied to models with higher order of change rates
(e.g., quadratic rate of change). The optimal design manual by Spybrook et al. (2011) has
provided power calculation formulae for three-level models in studies of polynomial
change where the treatment is at the third level (e.g., schools), but has not incorporated the
effects of covariates.

Both Randenbush and Liu (2001) and Spybrook et. al. (2011) discussed unconditional
models that did not include any covariates at any level. However, prior studies have shown
that covariates (e.g., students and school characteristics) could increase power significantly.
Hedges and Hedberg (2007) documented that prior test scores and demographic covariates
such as SES account for nearly one-third of the variance at the student level. Bloom,

Richburg-Hayes, and Black (2007) found that controlling for baseline covariates could
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improve the precision of CRD studies that examine the impact of school interventions.
Konstantopoulos (2012) showed that covariates at different levels of the hierarchy
potentially explain a considerable proportion of the variance at the corresponding levels,
and centering of lower level covariates plays an important role in this (see also Snijders &

Bosker, 1999).

Statistical Models
Design I: Treatment Assigned at Third Level (Cluster Design)
Unconditional Model
Consider a simple three-level growth design where level-3 units (e.g., clusters such
as schools) are randomly assigned to treatment or control conditions (i.e., clusters are
nested within treatment). The first level for change over time of level-2 unit i in cluster j

can de expressed as a polynomial function, namely

Ygi = ®giiCoq + QyjiCrg + AgjiCog +ot A p_1yiCipgyq +U (3.3)

gij

where C,, represent orthogonal polynomial contrasts of degree p (p = 0, 1, ..., P-1) at
measurement g (g = 1, ..., G), & ’s represent the mean and the rates of change (linear,
quadratic, cubic, etc.), and Ug; is the within level-2 unit random term with variance of.
Whenp =0, Cpy, =1 and a,;; represents the average outcome for level-2 unit i in level-3

unit j. When p = 1, G, is a linear contrast and &;; is the linear rate of change for level-2
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unitiin level-3 unit j, and so forth. We work with orthogonal polynomial contrasts because
they facilitate the computations of estimators and their standard errors, and simplify power
analysis (see Raudenbush & Liu, 2001). The results apply to studies of any length and for
polynomials of any degree (Kirk, 2012).

Orthogonal polynomial contrast coefficients should satisfy two conditions: The pth
polynomial contrasts trend sum to zero, and the sum of the product of the pth and p’th

polynomial contrasts is equal to zero (see Kirk, 2012)

(3.4)

Orthogonal polynomial coefficients that meet conditions shown in equation (3.4) are not

unique because, any group of orthogonal polynomial coefficients denoted as C =k c

p~pg !

also meet these two conditions, where k_ could be any constant (see Appendix C for a

detailed proof). With equally spaced time points, the following formulae could be used to

calculate orthogonal polynomial coefficients

Cog = kpcpg
0g :1
& g
Cy=g->2 (35)
g=1
. - _ PG -p%)



(see Jennrich & Sampson, 1971), where C, is one possible orthogonal polynomial

coefficient of degree p at measurement g as defined before, and kp could be any constant.
That is, researchers could choose any k, to get their own orthogonal polynomial contrast

coefficients.

For example, when k, =1, k =1, K, =%, and Kk, :%, one can compute the first four

orthogonal coefficients as

(s ) -t 3.6
CZgz[g EG] 12} e

(see Appendix C for a detailed proof). When G = 4, then the values of the orthogonal

coefficients are

C,=( 111

¢, =(-15 —05, 05 15)

¢, = (0.5, -0.5, —0.5, 0.5)

¢, = (-0.05, 0.15, —0.15, 0.05).

3.7)
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Least squares estimates of each level-2 unit’s change parameter as well as their

variance can be computed as

G
Z Cnggij

OA‘pii :g:cls—
C2
gz_; pg (3.8)

2
~ O
Var(a,;)=—5—*
2

ZC P9

g=1

(see Seber & Lee, 2003), where

S 2. (pY)’ _(G+p)!
2% =k o @p Dl G- p-1) (39)

(see Appendix D for proof).

In the second level model each of the parameters & ; (e.g., the average polynomial

pij
change for each individual) from the first level equation varies between level-2 units (e.g.,

individuals) within level-3 units (e.g., schools), namely

A :ﬂpOj +§pij: (3.10)

where f_..’s represent the average polynomial effects within level-3 units such as schools

poj
and the fpij ’s are individual specific random effects within level-3 units for each
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polynomial change parameter. The random effects follow a multivariate normal

2

distribution with zero means, variances Top s

and covariance oo between the random

effects & and &

pij p'ij

At the third level each of the parameters, 2 _,.’s (average polynomial change for each

poj

level-3 unit) vary across third level units such as schools, namely

ﬁpOj =7 poo +7p01Tj 100 (3.11)

where y ,,’s represent the average polynomial effects across level-3 units, y , ’s represent
the average difference between the treatment and the control group for each polynomial
change parameter, and the 77,,; s are level-3 unit specific random effects for each

polynomial change parameter. These random effects follow a multivariate normal

2

distribution with zero means, variances @,

and covariance @, between the random

effects 77,0; and 77,;.

Suppose there are N level-2 units within each level-3 unit and m level-3 units within
each treatment condition, which means that the total number of level-3 units is M = 2m and
thus the total number of level-2 units is MN. Then, the estimate of the variance of the

treatment effect for polynomial p is

: (3.12)

2
Var(7p01) = W(Na)ip +TI§P + O-i) ! O-é =
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G
and Zcig is defined in equation (3.9) (see Konstantopoulos, 2008a; Raudenbush & L.iu,
g=1

2001; Spybrook et al., 2011).

Suppose that a researcher wants to test the hypothesis that y ,, is different from zero

and carries out the usual t-test. The test statistic is defined as

t= 7;p01 / v y ar(?pOl) ) (313)

When the null hypothesis is true, the test statistic t has a Student’s t-distribution with 2m-
2 degrees of freedom. When the null hypothesis is false, the test statistic t has the non-
central t-distribution with 2m-2 degrees of freedom and non-centrality parameter 4. The
non-centrality parameter is defined as the expected value of the estimate of the treatment
effect divided by the square root of the variance of the estimate of the treatment effect,

namely

mN 1
A= . 3.14
7/p01\/ 2 \/(Nwﬁp + Tip + 0'5) ( )

To calculate power, we need to define a standardized effect size first. Prior literature
provided three definitions of standard effect size for three level models (e.g., Hedge, 2010;
Konstantopoulos, 2008a, 2008b). The first option of defining the standardized effect size

for a polynomial degree p in three-level models is the group differences divided by the

64



square root of the total variance (Hedges, 2010; Jong, Moerbeek, & Van der Leeden, 2010;

Konstantopoulos, 2008a)

ES, =2 (3.15)

[ 2 2 2
a)pp+rpp+ap

However, the denomination of ES: depends on a;, which is a function of the study

duration as shown in equation (3.8). In other words, ES: changes as the study duration
varies. Because this study evaluates various designs with alternative study duration but
with fixed effect size, ES; is not appropriate.

Another two ways of defining the standardized effects size are

or ES, =%, (3.16)

where ES is the group differences divided by the square root the sum of level-2 variance
and level-3 variance (Jong, Moerbeek, & Van der Leeden, 2010; Spybrook et. al., 2011);
while ES; is the group differences divided by the square root level-3 variance. Both ES and

ES> could be used as the standardized effect size in three-level models (see Hedges, 2011).
It should be noted that ES; is larger than ES for the same model if rﬁp > 0, especially when

the level-2 variance account for a large proportion of the total variance. For example, in
our illustrative example using data from Project STAR in a later section, the effect size was

larger than one if ES; is used; however the effect size from Project STAR was about 0.2
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using Cohen’s d. Cohen (1988) suggested that 0.2 is considered as a small effect size, 0.5
is considered as a medium effect size, and 0.8 is considered as a large effect size. Therefore,
small or medium effect size might be interpreted as large effect size without cautiousness
if ES; is used. In order to avoid assuming a large standardized effect and keep consistent
with Cohen’s definition of small, medium and large effect size, | use ES as the definition
of standardized effect size in this study. Note that researchers still need to be cautious to
interpret ES, which trends to be larger than ES; since it does not take the variance at the
first level into consideration.

Then, the non-centrality parameter / of the t-test in equation (3.14) simplifies to

mN > +72
A= / > ES\/NCOZ ":Tz "102 : (3.17)
pp pp p

The power of a two-tailed t-test for a specified significance level a is defined as

p1=1-H[c(a /2, 2m-2), (2m-2), 2] + H [-C(a /2, 2m-2), (2m-2), /] (3.18)

where c(a,v) is the level a one-tailed critical value of the t-distribution with v degrees of
freedom (e.g., ¢(0.05,20)=1.72), and H(x, v, 1) is the cumulative distribution function of
the non-central t-distribution with v degrees of freedom and non-centrality parameter A.
Alternatively, one can use an F-test with 1, 2m — 2 degrees of freedom and a non-centrality
parameter A2,

Covariates at Second and Third Levels
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When covariates are included at the second level equation (3.10) becomes

Ui = Booj + XiBpg + S (3.19)

where Xij is a row vector of k level-2 unit characteristics, and B,,, is a row vector of k

coefficients of level-2 unit characteristics. The prij ’s are level-2 specific random effects

within level-3 units for each polynomial change parameter, and subscript A indicates

adjustment in the error term because of covariates. The random effects follow a

multivariate normal distribution with zero means, variances répp , covariance 7, between

random effects &... and épvij , and subscript R indicates residual variance because of

pij
covariates. All other terms have been defined previously.

Similarly, the third level model of equation (3.11) becomes

IBpOj =Yoo T 7Ap01Tj + ZPozrj a0 (3.20)

where Zpoz is a row vector of g level-3 unit characteristics, and FJ— is a column vector of

coefficients of level-3 unit characteristics. The 77,,,;’s are level-3 specific random effects

for each polynomial change parameter, where subscript A indicates adjustment because of

covariates (see Konstantopoulos, 2008a). These random effects follow a multivariate

. . . . . 2 .
normal distribution with zero means, variances Wrpp» COVAriANCE gy between random
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effects 77,0; and 7,,;, and subscript R indicates residual variance because of covariates.

All other terms have been defined previously.
As a result, the non-centrality parameter of the t-test for the three-level model with

covariates at second and third levels is defined as

N 1
Ap = 7/Ap01\/m \/ 1 (3.21)

2 2 2
2 \Nwo,, + W,z +0,
where

2 2 2 2
Wy = gy, [ @ W, = Tg 7, (3.22)

that is, W, indicates the proportion of the variance at the second level that is still

unexplained; while W; indicates the proportion of the variance at the third level that is still

unexplained. For example, when wsz = 0.8, it indicates that the variance at the third level
decreased by 20% because of inclusion of covariates at the third level (assuming a centering
approach where covariates can explain variance in the outcome only at their corresponding
levels). In other words, the covariates at the third level explain 20% of the variance at the
third level.

We assume that the coefficient of the treatment does not change after adding covariates

at the second and third level (7, =7,0,), Which is reasonable since in experimental
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designs the treatment (Tj) should be independent of any covariates (observed or

unobserved). Then the non-centrality parameter 4, in equation (3.21) simplifies to

o’ +1°
i =™ g I R (3.23)
2 Nw,, +W,7,, + 07,

The power of a two-tailed t-test for a specified significance level a is defined as
p2=1-H[c(a/2, 2m-g-2), (2m-g-2), Aa] + H[-c(a /2, 2m-0-2), (2m-g-2), /a] (3.24)

where ¢ is the number of covariates at the third level. As mentioned previously, an F-test
could be used instead.
Design I1: Treatment Assigned at Second Level (Block Randomized Design)
Unconditional Model
The first level model is identical to equation (3.3). The second level model

incorporates the treatment (Tj;), namely
i = Booi BT + i (3.25)

where g ;s represent the average polynomial effects within level-3 units, T, is a dummy

poj i

variable coded as one if second level unit i in third level unit j is assigned to treatment or

control conditions and zero otherwise, £, . is the treatment effect within level-3 units, and

pLj
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the & ’s are level-2 random effects within level-3 units for each polynomial change

pij
parameter. The random effects follow a multivariate normal distribution with zero means,

variances 7’

»» and covariance 7. between random effects &; and & ;.

The third level equations for the intercept ( 5.,.) and the treatment effect (3_,. ) are

poj plj

ﬂpOj =700 Tpoj
ﬂplj :7p10+77p1j

(3.26)

where s represent the average polynomial effects across level-3 units, the 77, ’s are
level-3 unit specific random effects for each polynomial change parameter, y s
represent the average difference between the treatment and the control groups for each

polynomial change parameter across level-3 units, and the 77,;;’s are treatment by level-3
unit random effects (interaction effects) for each polynomial change parameter. The 77, ’s

follow a multivariate normal distribution with zero means and variances @?. , whilst the

pp’

treatment by level-3 unit random effects also follow a normal distribution with a mean of
zero and a variance alfpp , Where subscript T indicates treatment at the second level whose

effect varies at the third level.

Suppose there are M level-3 units and n level-2 units within each treatment condition
within each level-3 unit, which means that the total number of level-2 units in each level-
3 unit is N = 2n and thus the total number of level-2 units is MN. Then, the estimate of the

variance of the treatment effect for polynomial p is
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2 o
var(y ) = W(nwTpp +75 +00), Gi =—" (3.27)

where subscript T indicates treatment at the second level whose effect varies at the third

level.
G

and Y c2 is defined in equation (3.9).
g=1

Suppose that a researcher wants to test the hypothesis that y ,, is different from zero

and carries out a t-test. The test statistic is defined as

t=7.0/ Nar(7 ). (3.28)

When the null hypothesis is true, the test statistic t has a Student’s t-distribution with M-1
degrees of freedom (Konstantopoulos, 2008b). When the null hypothesis is false, the test
statistic t has the non-central t-distribution with M-1 degrees of freedom and non-centrality
parameter .. The non-centrality parameter is defined as the expected value of the estimate
of the treatment effect divided by the square root of the variance of the estimate of the

treatment effect, namely

Mn 1
A= . 3.29
7p10\/ 2 \/(na)rzpp +7h +07) (3.29)
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We define the standardized effect size for a polynomial degree p as

ES = % (3.30)
\/alrpp + a)pp
Then, the non-centrality parameter 1 of the t-test simplifies to
Mn alrz +7
/1=‘/ ES — P (3.31)
2 Ny, +7,, + 0,
The power of a two-tailed t-test for a specified significance level «a is defined as
pz=1-H [c(a/2, M-1), (M-1), 2] + H [-c(a /2, M-1), (M-1), /] (3.32)

where c(a,V) is the level a one-tailed critical value of the t-distribution with v degrees of
freedom, and H(x, v, 1) is the cumulative distribution function of the non-central t-
distribution with v degrees of freedom and non-centrality parameter 1. As noted previously
one could use an F-test instead.

Covariates at Second and Third Levels

When covariates are included at the second level equation (3.25) becomes

@iy = p pOj+ﬂAp1jTij+Xiij2j + 5Apij , (3.33)
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where Xij is a row vector of k level-2 unit background characteristics, and B,,; is a row

vector of k coefficients of level-2 unit characteristics. The §Apij ’s are level-2 specific

random effects within level-3 units for each polynomial change parameter, where subscript

A indicates adjustment because of covariates. The random effects follow a multivariate

normal distribution with zero means, variances r,ipp , and covariance 7, between random

effects ... and fp.ij . The subscript R indicates residual variance because of covariates.

pij
All other terms have been defined previously.

When covariates are included at the third level equation (3.26) becomes

ﬂpOj =7Vpoo ZPlrpOj M apoj

(3.34)
ﬂAplj =Vnp10 T ZPlrplj + 0 ap1j

where Zp1 is a row vector of g level-3 unit characteristics and the I" ’s include regression

coefficients. The 7, ’s are level-3 unit specific random effects for each polynomial
change parameter, and the 7, ,,’s are treatment by level-3 unit random effects (interaction
effects) for each polynomial change parameter. The 5, ,.’s follow a multivariate normal
distribution with zero means, variances a),ipp, and the treatment by level-3 unit random

effects also follows a normal distribution with a mean of zero and a variance a)éTpp,

subscript R indicates residual variance because of covariates. The non-centrality parameter

of the t-test when covariates are added at the second and third levels is defined as
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Mn 1
L (3.35)
A }/plo\/ 2 \/(nw3a)fpp + W, +02)

where subscript A indicates adjustment because of covariates (see Konstantopoulos, 2008b)

and

2 2 2 2
Wy = @gry [ 070 W, =T [T, (3.36)

that is, W, indicates the proportion of the variance at the second level that is still

unexplained, and W; indicates the proportion of the treatment by level-3 unit variance at
the third level that is still unexplained. We assume the coefficient of the treatment does not
change after adding covariates at the second and third level (y,,, =7, ), Which is
reasonable since in experimental designs the treatment (Tj;) should be independent of any
covariates (observed or unobserved). Then the non-centrality parameter 4, of the t-test in

equation (3.35) simplifies to

2 + Z_Z
A = /MZ” ES |— 2w T (3.37)
nWsa)rpp + WZTpp + o,

The power of a two-tailed t-test for a specified significance level a is defined as

ps=1-H [c(a /2, M-g-1), (M-g-1), Aa] + H [-c(a. /2, M-g-1), (M-g-1), /a], (3.38)
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where @ is the number of covariates at the third level. As mentioned previously one could

use an F-test instead.

Ilustrative Examples
Cluster Randomized Design: A Linear Growth Model
To illustrate the applicability of the methods to assess consequences of study duration,
sample sizes (students and schools), and covariates on power, we firstly utilized the data
from a large scale experiment that was conducted in Indiana. This experiment employed a
CRD, where students were nested within schools, and schools were nested within treatment
and control groups. Random assignment took place at the school level, that is, schools were
randomly assigned to treatment and control conditions. Schools in the treatment group
adopted specific diagnostic assessment tools to measure student learning a few times
during the 2009-2010 school year and to provide diagnostic information to teachers to
improve ongoing instruction. The study incorporated a longitudinal component and thus
student mathematics and reading achievement were measured three times in the spring of
2010, 2011, and 2012 (see Konstantopoulos, Miller, & van der Ploeg, 2013 for a more
detailed introduction on this experiment). The total number of participating schools was 50
with 32 schools in the treatment group. Overall, nearly 20,000 students participated in the
study during the 2009-2010 school year.
The outcome is standardized student mathematics achievement. Because the study
duration was only 3 years, we used a linear rate of change model at level-1 (repeated

measures), namely
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2
Math; = ay;Coq + @yiCyy +U i~N(@, ¢)),

gij’ ugl

where Math; is student mathematics achievement in year g, Cy =(1 1 1) and
Cy = (-1, 0, 1) at g =1, 2, 3 in accord with the orthogonal polynomials in equation (3.6).
This model defines &;; as the mean mathematics achievement for student i in cluster j, and

ay;; is the average rate of linear change of mathematics achievement for student i in school

The second level model (student level) is

Ay = Buoj + Sipr oy ~ N(O, 7o)

= Puoj + &y &y ~ N(O, ),

where fy; is the mean mathematics achievement in school j, and f,,; is the average

growth rate in school j.

The third level model (school level) is

Booi=V oot Vool +ojs Moo ™ N (0, 6050)

Broi =V V10aT +hojs Thoj ~ N(O, o),
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where Jqis the grand mean, 7y, is the main effect of treatment for the mean, T; is a
binary indicator coded as one for treatment schools and zero for control schools, 7y is

the average rate of change, and };, is the main effect of treatment for the rate of change,
which is my primary interest. We estimates of the relevant variances are
o’ =0.00092, 77,=0.00091, e = 0.00012.

To calculate power, we assumed a standardized effect size of 0.40 and a significance
level of 0.05. We also assumed the sample size as m = 10 and N = 20, which indicates 10
schools in the treatment group (20 schools in total) and 20 students in each treatment or
control school.

According to equation (3.8) and equation (3.9) with G = 3, p =1 and k1 = 1, first |
calculate

» 12-0.00092

o = 0.00046 .
4.3.2

Then, | calculate the non-centrality parameter of the t-test based on equation (3.17), namely

2 + 2 ]
. [mN £S Zopp zr,,p _ 10 20.0.4.\/ 0.00012 +0.00091 2.090.
2 Ne? +75 +0° 2 300-0.00012 +0.00091+ 0.00046

Then, | compute the critical value of the test using the t-distribution with (2x10) - 2 = 18

degrees of freedom as ¢(0.25, 48) =~ 2.101. To compute power | use equation (3.18) as

p=1-HI[2.101, 18, 2.090] + H [-2.101, 18, 2.090] ~ 0.508.
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Tables 3.1 to 3.3 and Figure 3.1 to 3.3 show how variations of study duration and
sample sizes affect power to detect the treatment effect for the linear rate of change in
cluster designs, assuming two-tailed t-tests at the 0.05 significance level and effect size as
0.40. Table 3.1 and Figure 3.1 provide power estimates for designs that vary the study
duration (D) and the number of schools (M), holding the number of students (N) in each
school constant at 20. The estimate of power from above was 0.508 (see Table 3.1, row 2,
column 2). As the study duration or number of schools increase, power increases. When
the study duration is three and the number of schools is 40, power reaches to 0.80 (i.e.,
0.822). Note that, power increases significantly as study duration increases from two to
three, but then power only changes marginally. This suggests that for a fixed number of
students, increasing the study duration beyond a certain point has only a small effect on
powers. In addition, the number of schools has bigger effects on powers compared to the
study duration. For example, when study duration is tripled from two to six, powers are
less than doubled; while number of schools tripled from 10 to 30, powers are more than
doubled.

Table 3.2 and Figure 3.2 provide power estimates for designs that vary the duration of
study (D) and the number of students (N) in each school, holding the number of schools
(M) constant at 20. As the study duration or the number of students grows, power becomes
larger. In particular, power changes significantly when the study duration increases from
two to three, and then powers does not change much as the study duration becomes longer.
Similarly, increasing the number of students increases power to a specific number of
students per school and beyond that number power does not change much. It is noteworthy

that increasing the number of students is not an effective way of boosting power. For
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Table 3.1: Effect of Study Duration (D) and Number of Schools (M) on Power Holding Number
of Students (N) in Each School Constant at 20: CRD, Linear Rate of Change

M
10 20 30 40 50 60 70 80 90 100

0.201 0.395 0562 0.693 0.791 0.861 0.910 0.942 0.964 0.977
0.257 0.508 0.696 0.822 0.900 0.945 0.971 0.985 0.992 0.996
0.273 0538 0.728 0.849 0.920 0.959 0.980 0.990 0.995 0.998
0.279 0549 0.740 0.858 0.926 0.963 0.982 0.992 0.996 0.998
0.282 0.554 0.745 0.862 0.929 0.965 0.983 0.992 0.996 0.998
0.283 0.556 0.747 0.864 0.931 0.966 0.984 0.992 0.997 0.998
0.284 0558 0.748 0.865 0.931 0.966 0.984 0.993 0.997 0.998
Note. Effect size is 0.4 with a significance level of 0.05.

o ~N~No o~ wnN| O

1
b
J |
4
d |

L

»
L
L 4

[ ]

5 6 7 8
Study Duration

-
w
I

—e— M=20 —¢— M=40
—h— M=60 —=»— M=80

Figure 3.1: Effect of Study Duration (D) and Number of Schools (M) on Power, Holding Number
of Students (N) in Each School Constant at 20: CRD, Linear Rate of Change
Note. Effect size is 0.4 with a significance level of 0.05
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Table 3.2: Effect of Study Duration (D) and Number of Students (N) on Power Holding Number
of Schools (M) Constant at 20: CRD, Linear Rate of Change

N
10 20 30 40 50 60 70 80 90 100

0.277 0395 0.463 0507 0537 0559 0576 058 0.600 0.609
0.396 0508 0.560 0590 0.609 0623 0.633 0640 0.646 0.651
0.434 0538 0584 0609 0.626 0637 0.645 0651 0.656 0.660
0449 0549 0592 0616 0.631 0642 0.649 0.655 0.660 0.663
0.455 0554 059 0619 0.634 0644 0.651 0.657 0.661 0.665
0.459 0556 0.598 0620 0.635 0645 0.652 0.658 0.662 0.665
0461 0558 0599 0621 0.636 0645 0.653 0.658 0.662 0.666
Note. Effect size is 0.4 with a significance level of 0.05.

o ~N~Nooh~wn| O

*PF B

¢ F N
*PF N

3 4 5 5} T 8
Study Duration

—e— N=20 —&®— N=60
—A&— N=100 —=— N=1000

Figure 3.2: Effect of Study Duration (D) and Number of Students (N) on Power Holding Number
of Schools (M) Constant at 20: CRD, Linear Rate of Change
Note. Effect size is 0.4 with a significance level of 0.05.
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Table 3.3: Effects of Number of Schools (M) and Number of Students (N) on Power Holding

Study Duration (D) Constant at 3: CRD, Linear Rate of Change

N
M 10 20 30 40 50 60 70 80 90 100
10 0.201 0.257 028 0302 0314 0322 0.328 0333 0.337 0.340
20 0.396 0.508 0.560 0.590 0.609 0.623 0.633 0.640 0.646 0.651
30 0563 069 0.751 0.780 0.798 0810 0.819 0826 0.831 0.835
40 0.694 0822 0867 0890 0903 0911 0917 0922 0.925 0.928
50 0.792 0900 0933 0947 0956 0961 0.964 0967 0.969 0.970
60 0.862 0945 0967 0976 0981 0983 0.985 0987 0.988 0.988
70 0.910 0971 0984 0989 0.992 0993 0.994 0995 0.995 0.996
80 0943 098 0993 0995 0997 0997 0.998 0998 0.998 0.998
90 0964 0992 0997 0998 0999 0999 0.999 0999 0.999 0.999
100 0977 0996 0999 0999 0999 1000 1.000 1000 1.000 1.000

Note. Effect size is 0.4 with a significance level of 0.05.
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Figure 3.3: Effects of Number of Schools (M) and Number of Students (N) on Power Holding

Study Duration (D) Constant at 3: CRD, Linear Rate of Change

Note. Effect size is 0.4 with a significance level of 0.05.
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example, as shown in Figure 3.2, power is still less than 0.70 even if the number of students
per school reaches to 1000.

Table 3.3 and Figure 3.3 provides power estimates for designs that vary the number of
students (N) in each school and the number of schools (M), holding study duration constant
at three. As the number of students per school or the number of schools increases, power
increases initially and then does not change much. Power reaches to 0.80 with various
combinations of the number of schools and the number of students per schools (e.g., M =
30and N =60, M =40 and N = 20, and M = 60 and N = 10). It also should be noted that
the number of schools affects power more significantly than the number of students in each
school, holding the study duration fixed. For example, power is at least about tripled when
the number of schools increases from ten to 100; while power less than doubled when the
number of students increases from ten to 100.

Covariates also influence powers assuming they explain a certain proportion of
variances at the second or the third level. Table 3.4 and Figure 3.4 shows how power varies
as the proportion of the unexplained variances at the second and third levels vary for a
design with M = 20 (or m = 10), N = 20, D = 3, and ES = 0.40. The degrees of freedom
decrease when | add covariates at the third level. Assuming that five covariates are added
at the third (g = 5), the degrees of freedom reduce to (2x10) - 5 - 2 = 13. As the unexplained
variance decreases because of covariates, power increases. For example, when ws=0.9 and
w2 = 0.9, which indicates the proportion of the unexplained variance at the second and the
third level are 90% (or the covariates explain 10% of the variances at the second and the
third level), the power is 0.526, which is larger than the power without covariates (0.508).

In addition, covariates at the third level affect power significantly more than covariates at
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Table 3.4: Effect of Covariates on Power: CRD, Linear Rate of Change

W2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0988 0979 0967 0953 0937 0919 0900 0.881 0.861
0.2 0.958 0943 0925 0.907 0.888 0868 0.848 0.828 0.808
0.3 0914 0895 0875 0.855 083 0815 0795 0.775 0.756
0.4 0.862 0.842 0822 0.802 0.782 0.763 0.744 0.726 0.708
0.5 0809 0790 0770 0.751 0.733 0.715 0.697 0.681 0.665
0.6 0.758 0.739 0.721 0.704 0.687 0.670 0.655 0.639 0.625
0.7 0.710 0.693 0.676 0.660 0.645 0.630 0.616 0.602 0.589
0.8 0.666 0.650 0.635 0.621 0.607 0593 0.580 0.568 0.556
0.9 0.626 0.612 0598 0.585 0572 0560 0.549 0.537 0.526
Note. The study duration is 3 with 20 schools and 20 students in each school; significance
level is 0.05.

W3

Power

W3

—— W2=01 —— W2=03
—aA— W2=05 —®»— W2=07

Figure 3.4: Effect of Covariates on Power: CRD, Linear Rate of Change
Note. The study duration is 3 with 20 schools and 20 students in each school; significance level
is 0.05.
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the second level, which is mainly because the ratio between variance of level-2 random

effect and variance of level-3 random effect (77 /@) is small. For example, as the

proportion of the unexplained variances at the second level (w2) decreases from 0.9 to 0.1
with wz = 0.9, power increases slightly from 0.526 to 0.626. However, as the proportion of
the unexplained variance at the third level (ws) decreases from 0.9 to 0.1 with wz = 0.9,
power increases significantly from 0.526 to 0.861.

To compare the powers between design with and without covariates, | also compute
power estimates for designs that vary the number of students (N) in each school and the
number of schools (M), assuming 40% of variances explained at the second and the third
level (w2 = ws=0.6), holding study duration constant at three, which are presented by Table
3.5and Figure 3.5. In general, power increases when covariates explain a certain proportion
of variance at the second or the third level, comparing the power estimates in Table 3.3.
There are only three exceptions (i.e., M =10and N =10, M =10 and N = 20, and M = 10
and N = 30), where power decreases when covariates were added. That is because degrees
of freedom decreases as | assume five covariates added at the third level.

Block Randomized Design: A Linear Growth Model

The second example utilized data from Project STAR (Student-Teacher Achievement
Ratio) in Tennessee (e.g., Finn & Achilles, 1990; Krueger, 1999; Nye, Hedges, &
Konstantopoulos, 2000). This experiment employed a block randomized design, where
within each school (the block) and grade, students and their teachers were randomly
assigned to one of three treatment conditions: small classes (13.17 students), regular-size
classes (22-25 students), and regular classes with a full-time teacher aide (22-25 students).

Project STAR was a longitudinal study that started in the 1985-1986 school year. The
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cohort of students who entered kindergarten in the 1985-1986 school year remained in the
experiment until their third grade. Students’ mathematics and reading achievement were
measured four times in the end of kindergarten, first grade, second grade, and third grade.
Overall, more than 11,000 students in 79 schools participated in the experiment over the
four-year period.

The sample included students in small classes or regular classes only to ensure a
balanced design. Students in regular classes with a full-time teacher aide were excluded
from the analysis. The outcome is standardized student mathematics achievement. A linear

rate of change was used at level-1 (repeated measures), namely

Math; = a;Coq + @yiCyy +U

~N(0, 0,5,

> Ygi
where Math; is student mathematics achievement in year g, C,, =(1 1 1 1) and
€, =(-1.5, -05, 05,15 at g = 1, 2, 3, 4 following equation (3.6). This model defines

a,;; as the mean mathematics achievement for student i in school j, and &;; is the average

linear rate of change of mathematics achievement for student i in school j.

The second level model (student level) is

Ui = Pooj + B Tiy + iy Soi ~ N (0, Z'go)
Ay = Puoj + Py Tyt G ~ N (0, 2'121)

where ﬁoo; is the mean mathematics achievement in school j, 4, ; is the average

difference of mathematics achievement between students in small classes and students in
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Table 3.5: Effects of Covariates, Number of Schools (M) and Number of Students (N) on Power
Holding Study Duration (D) Constant at 3, w2 = 0.6 and wz = 0.6: CRD, Linear Rate of Change

N
10 20 30 40 50 60 70 80 90 100
10 0.195 0.253 0.283 0.302 0.315 0.324 0.331 0.337 0.341 0.345
20 0.525 0.670 0.734 0.768 0.789 0.804 0.814 0.822 0.829 0.833
30 0.727 0.861 0.906 0.927 0.939 0946 0.952 0.955 0.958 0.960
40 0.851 0945 0970 0979 0.984 0987 0989 0.990 0.991 0.992
50 0.922 0980 0.991 0994 0.996 0.997 0.998 0.998 0.998 0.998
60 0.960 0.993 0.997 0999 0.999 0.999 1000 1.000 1.000 1.000
70 0.981 0.998 0.999 1000 1.000 1.000 1.000 1.000 1.000 1.000
80 0.991 0.999 1.000 1000 1.000 1.000 1.000 1.000 1.000 1.000
90 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 0.998 1.000 1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Note. Effect size is 0.4 with a significance level of 0.05.
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—a&— N=60 —®— N=80

Figure 3.5: Effects of Covariates, Number of Schools (M) and Number of Students (N) on Power
Holding Study Duration (D) Constant at 3, w2 = 0.6 and wz = 0.6: CRD, Linear Rate of Change
Note. Effect size is 0.4 with a significance level of 0.05.
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regular classes in school j, A, j Is the average linear growth rate in school j, and g, ;is the

average difference of linear growth rate between students in small classes and students in
regular classes in school j.

The third level model (school level) is

Boo =Vemn * Thoj» ooy ~ N0, @)
B 7o + oy Mgy ~ N(O, @fyy)
Buoi =710 + Thoj» Thej ~ N(O, ep)

Buay =10 + Mo My ~ N(O, @fy,)

where Y IS the grand mean, y,,, is the average treatment effect for all schools, 7 is the

average linear rate of change, and },, is the main effect of treatment for the linear change
rate, which is my primary interest. The variance estimates are
o? =0.30369, 7 =0.00753, ’,, = 0.02097

To calculate power, | assumed a standardized effect size of 0.40 and a significance
level of 0.05. I also assumed sample sizes M = 40 and N = 40, which indicates there were
20 students in the treatment or control condition (40 students in total) in each school and
there were 40 schools.

According to equation (3.8) and equation (3.9) with G = 4, p =1 and ki = 1, first |
compute

, 12-0.30369

o = 0.060738.
5.4.3

Then, | calculate the non-centrality parameter of the t-test based on equation (3.31)
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2 + 2 -
A= M”ES\/ Drpp + Tp :\/40 20‘0.4‘\/ 0.02097 + 0.00753 ~1.933

2 NW,@F, +W,72, + 0 2 150-0.02097 + 0.00753 + 0.060738

The critical value of the test using the t-distribution with 40 - 1 = 39 degrees of freedom is

¢(0.25, 39) = 2.022.Finally, I computed power as
P=1-H[2.022, 39, 1.933] + H[-2.22, 39, 1.933] =~ 0.471.

Table 3.6 to 3.8 and Figure 3.6 to 3.8 show how variations of study duration and
sample sizes affect the power to detect the treatment effect for the linear rate of change in
block designs, assuming two-tailed t-tests at the 0.05 significance level and effect size as
0.40. Table 3.6 and Figure 3.6 show how power changes as study duration (D) and the
number of schools (M) changes, holding the number of students (N) in each school constant
at 40. As the duration of study increases, the power of detecting a linear rate of change
increases slightly when the study duration increases from two to six, and remains virtually
unchanged as the study duration increases from six to eight. However, as the number of
schools increases, power increases significantly more. For example, when the number of
schools increases from 20 to 60, the power is more than doubled. In particular, when M =
80 and D =6, or M =90 and D = 4, power reaches to 0.80.

Table 3.7 and Figure 3.7 provides power estimates for designs that vary the duration
of study (D) and the number of students (N) in each school, holding the number of schools

(M) constant at 40. These results re-confirm that the power of detecting a linear rate of
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Table 3.6: Effect of Study Duration (D) and Number of Schools (M) on Power Holding Number
of Students (N) in Each School Constant at 40: BRD, Linear Rate of Change

D M
10 20 30 40 50 60 70 80 90 100
2 0.092 0.145 0.199 0.254 0.307 0.360 0.410 0.458 0.504 0.548
3 0.125 0.222 0.318 0.410 0.494 0.571 0.639 0.698 0.750 0.794
4 0.140 0.255 0.367 0.471 0563 0.644 0.713 0.771 0.818 0.857
5 0.146 0.269 0.387 0495 0591 0.672 0.741 0.797 0.842 0.878
6 0.149 0.275 0.396 0.507 0.603 0.685 0.753 0.808 0.852 0.887
7 0.150 0.278 0.401 0512 0609 0.691 0.759 0.814 0.857 0.892
8 0.151 0.280 0.404 0516 0.613 0.695 0.762 0.817 0.860 0.894
Note. Effect size is 0.4 with a significance level of 0.05
@ e —1 =
— - - .
o/
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Study Duration
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Figure 3.6: Effect of Study Duration (D) and Number of Schools (M) on Power Holding Number
of Students (N) in Each School Constant at 40: BRD, Linear Rate of Change

Note: Effect size is 0.4 with a significance level of 0.05.
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Table 3.7: Effect of Study Duration (D) and Number of Students (N) on Power Holding Number
of Schools (M) Constant at 40: BRD, Linear Rate of Change

N
D 20 40 60 80 100 120 140 160 180 200
2 0.177 0254 0304 0339 0365 038 0401 0413 0423 0.432
3 0.335 0410 0443 0462 0474 0483 0489 0494 0497 0.500
4 0.423 0471 0489 0498 0504 0508 0511 0514 0515 0.517
5 0.465 049 0506 0512 0515 0518 0519 0521 0.522 0.522
6 0.485 0507 0.514 0.518 0520 0.522 0523 0524 0.524 0.525
7 0.496 0512 0518 0.521 0523 0524 0525 0525 0.526 0.526
8 0.502 0516 0.520 0522 0.524 0525 0.525 0526 0.526 0.527

Note. Effect size is 0.4 with a significance level of 0.05

[ 'S
&

2 3 4 5 5} T 8
Study Duration

—e— N=40 —— N=120
—A&— N=200 —®— N=2000

Figure 3.7. Effect of Study Duration (D) and Number of Students (N) on Power Holding Number
of Schools (M) Constant at 40: BRD, Linear Rate of Change
Note: Effect size is 0.4 with a significance level of 0.05.
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Table 3.8: Effects of Number of Schools (M) and Number of Students (N) on Power Holding

Study Duration (D) Constant at 4. BRD, Linear Rate of Change

N
M 20 40 60 80 100 120 140 160 180 200
10 0.128 0.140 0.144 0.146 0.148 0149 0.150 0.150 0.151 0.151
20 0229 0255 0.265 0.270 0274 0276 0278 0279 0.280 0.281
30 0.329 0367 0382 0390 039 0398 0.400 0.402 0.404 0.405
40 0.423 0471 0489 0498 0504 0508 0511 0514 0515 0.517
50 0.510 0563 0.584 0594 0.601 0.605 0.608 0.611 0.612 0.614
60 0.588 0.644 0665 0.676 0.682 0.687 0.690 0.692 0.694 0.696
70 0.656 0.713 0.734 0744 0.750 0.755 0.758 0.760 0.762 0.763
80 0.716 0771 0.790 0.800 0.806 0.810 0.813 0.815 0.816 0.818
90 0.767 0818 0836 0.845 0850 0854 0.857 0.858 0.860 0.861
100 0.810 0857 0873 0881 088 0889 0.891 0.893 0.894 0.895

Note. Effect size is 0.4 with a significance level of 0.05

T T
40 60
Number of Schools

—&— N=40 —&— N=280
—&— N=120 —=— N=160

Figure 3.8: Effects of Number of Schools (M) and Number of Students (N) on Power Holding

Study Duration (D) Constant at 4: BRD, Linear Rate of Change

Note: Effect size is 0.4 with a significance level of 0.05.
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change does not increase consistently as study duration increases. In addition, when the
number of students in each school is small (e.g., 20), power is impacted more as study
duration increases from two to four, compared to the power estimates when the number of
students is large (e.g., 200). Similarly, power does not increase consistently as the number
of students increases, especially after a certain number of students. For example, the power
does not change much as the number of students increases from 160 to 200. What is more,
it is hardly to boost power through increasing the number of students per schools. For
example, as shown in Figure 3.7, even if there are 2000 students per school, powers are
still around 0.5.

Table 3.8 and Figure 3.8 provides power estimates for designs that vary the number of
students (N) in each school and the number of schools (M), holding study duration constant
at four. As the number of schools increases, power increases consistently. For example,
power increases approximately 0.1 as the number of schools changes from ten to 50, and
then powers increases around 0.06 for every ten school increase until they reach to 0.80.
When M = 80 schools and N = 80 students, power becomes 0.80. In addition, power
increases as the number of students increase from 20 to 80, but does not change much as
the number of students increases from 100 to 200. Such results indicate that to boost power
it is recommended to sample more schools rather than to sample more students per school.

Table 3.9 and Figure 3.9 shows how the power of detecting a linear rate of change is
influenced by the proportion of unexplained variance at the second and third levels when
M =40, N =40, D = 4, and ES = 0.40. | assume that five covariates are added at the third
level (g = 5) and thus the degrees of freedom reduce to 40 - 5 - 1 = 34. The results show

that power increases when covariates are added in the model, as expected. For example,
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Table 3.9: Effect of Covariates on Power: BRD, Linear Rate of Change

W2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.983 0982 0982 0981 0980 0980 0.979 0.978 0.977
0.2 0931 0929 0928 0927 0926 0925 0923 0.922 0.921
0.3 0.858 0857 0855 0854 0853 0.851 0.850 0.848 0.847
0.4 0.782 0781 0780 0.778 0.777 0776 0774 0773 0.772
0.5 0.712 0711 0710 0.709 0.707 0.706 0.705 0.704 0.703
0.6 0.650 0.649 0.648 0.647 0.646 0.645 0.644 0.643 0.642
0.7 0596 0595 0594 0593 0592 0591 0590 0.589 0.589
0.8 0549 0548 0547 0547 0546 0545 0544 0.543 0.543
0.9 0.508 0508 0.507 0.506 0.506 0.505 0.504 0.504 0.503
Note. The study duration is 4 with 40 schools and 40 students in each school; significance
level is 0.05

W3
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Figure 3.9: Effect of Covariates on Power: BRD, Linear Rate of Change
Note: The study duration is 4 with 40 schools and 40 students in each school; significance level
is 0.05.

93



Table 3.10: Effects of Covariates, Number of Schools (M) and Number of Students (N) on

Power Holding Study Duration (D) Constant at 4, w. = 0.6 and wz = 0.6: BRD, Linear Rate of

Change
M N
20 40 60 80 100 120 140 160 180 200

10 0.136 0.154 0.162 0.166 0.169 0.171 0.172 0.174 0.174 0.175
20 0302 0352 0374 038 0393 0.398 0.402 0.405 0.407 0.409
30 0443 0514 0542 0558 0568 0.574 0579 0.583 0.586 0.588
40 0.565 0.645 0.676 0.692 0.702 0.709 0.714 0717 0720 0.723
50 0666 0.746 0.776 0.791 0800 0.806 0.811 0.814 0.817 0.819
60 0.748 0823 0849 0861 0869 0874 0878 0.881 0.883 0.884
70 0812 0878 0900 0910 0916 0920 0.923 0.925 0.927 0.928
80 0.862 0918 0934 0942 0947 0950 0.952 0.954 0.955 0.956
90 0900 0945 0.958 0964 0967 0969 0971 0972 0973 0.973
100 0928 0964 0973 0977 0980 0981 0982 0.983 0.984 0.984

Note. Effect size is 0.4 with a significance level of 0.05

Figure 3.10: Effects of Covariates, Number of Schools (M) and Number of Students (N) on

T
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—®— N=160

Power Holding Study Duration (D) Constant at 4, w> = 0.6 and ws = 0.6: BRD, Linear Rate of
Change
Note. Effect size is 0.4 with a significance level of 0.05.
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when covariates explain 40% of the variance at both the second and third level (w3 =w>=
0.6), the power increases from 0.471 to 0.641. The power increase is much larger than that
when adding 20 schools or adding 160 students in each school. In addition, covariates at
the second level have little influence on power, while the covariates at the third level affect
power significantly more. Powers does not change much as the proportion of variances
explained at the second level increase from 10% to 90% regardless how much of the

variances at the third level are explained, which is mainly because the variance of the

treatment by school random effects (i.e., z;) only account for a small proportion of the
total variance.

Table 3.10 and Figure 3.10 provide power estimates for designs that vary the number
of students (N) in each school and the number of schools (M), assuming 40% of variances
explained at the second and the third level and holding study duration constant at four. In
general, power increases when covariates explain a certain proportion of variance at the
second or the third level, comparing the power estimates in Table 3.8. In particular, it
requires fewer schools or fewer students per school for power to reach to 0.80. For instance,
with N = 40, only 60 schools are need to boost power to 0.80, which is 30 schools fewer
comparing to the design without covariates included.

Block Randomized Design: A Quadratic Growth Model

I also used data from Project STAR to fit a model with quadratic rate of change at level

- 1 (repeated measures), namely

2
Mathgij = Qy;iCoq + i Chy Ay Cyy +U i~ N(0, 0.%),

gij’ ugl
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where Math; is student mathematics achievement in year g, Cy,=(1111) ,
€y =(-15 =05, 05, 15) and C, =(0.5 -05,-05 05) at g = 1, 2, 3, 4 following

equation (3.6). This model defines «,; as the average quadratic rate of change of

mathematics achievement for student i in school j. All the other terms has been defined
previously.

The second level model (student level) is

Aoij = ﬂoo;‘ "‘ﬂou 'Tij "‘fou’ é:Oij ~N(0, z'go)
= P+ Py T+ G ~ N (0, 2'121)
Ayij = ﬂzo;‘ +ﬁ21j ’Tij +*§2ij’ §2ij ~N(0, r222)

where /)’201- is the average quadratic growth rate in school j, and g, is the average

difference of quadratic growth rate between students in small classes and students in
regular classes in school j. All the other terms has been defined previously.

The third level model (school level) is

Boo; Ve + Thoj» Mooy ~ N0, @)
Bt =Toto +lesy o Ty ~ N0, @fyp)
Broi =710 +Thoj» Tho; ~ N(O, )

Bisy=ruo + Ty Ty ~ N(O, eo5y;)
Boo; =Va0 + Moy oy ~ N(O, o3)
Bt =Yoo + s Ty ~ N(O, 5y,
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where 7, 1S the average quadratic rate of change, and Y, is the main effect of treatment
for the quadratic change rate, which is my primary interest. The variance estimates are
ol =0.24239, 75,=0.00943, w?,, = 0.07524
To calculate power, | assumed a standardized effect size of 0.40 and a significance
level of 0.05. I also assumed sample sizes M = 40 and N = 40, which indicates there are 20

students in the treatment or control condition (40 students in total) in each school and there

are 40 schools.
According to equation (3.8) and equation (3.9) with G = 4, p =1 and k, =% , first |

compute

., 720-0.24239

o2 = = 0.24239.
6:5-4-3-2

Then, | calculate the non-centrality parameter of the t-test based on equation (3.31)

1= /mES Drop /40 40 J 0.07524 +0.00943 N
2 NWyeh, + W, 72 + 0% 150-0..07524 + 0.00943 + 0.24239

The critical value of the test using the t-distribution with 40 - 1 = 39 degrees of freedom is

c(0.25, 49) = 2.023.Finally, I computed power as

P=1-H[2.023, 39, 1.756] + H [-2.023, 39, 1.756] ~ 0.403.
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Table 3.11: Effect of Study Duration (D) and Number of Schools (M) on Power Holding Number

of Students (N) in Each School Constant at 40: BRD, Quadratic Rate of Change

D M

10 20 30 40 50 60 70 80 90 100
3 0.093 0.148 0.205 0.261 0.316 0.370 0422 0.471 0518 0.562
4 0.124 0.218 0.313 0403 0.486 0.562 0.630 0.689 0.741 0.785
5 0.132 0.237 0.341 0438 0527 0.606 0.675 0.734 0.784 0.825
6 0.134 0.243 0.349 0448 0538 0.618 0.687 0.745 0.795 0.836
7 0.135 0.244 0.351 0452 0542 0622 0691 0.749 0.798 0.839
8 0.135 0.245 0.353 0453 0544 0624 0692 0.751 0.800 0.840
9 0.135 0.245 0.353 0.454 0.544 0.624 0.693 0.752 0.801 0.841

Note. Effect size is 0.4 with a significance level of 0.05.
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Figure 3.11: Effect of Study Duration (D) and Number of Schools (M) on Power Holding
Number of Students (N) in Each School Constant at 40: BRD, Quadratic Rate of Change
Note. Effect size is 0.4 with a significance level of 0.05.
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Table 3.12: Effect of Study Duration (D) and Number of Students (N) on Power Holding Number
of Schools (M) Constant at 40: BRD, Quadratic Rate of Change

N
20 40 60 80 100 120 140 160 180 200

0.190 0.261 0.302 0.330 0.349 0363 0.374 0382 0.389 0.395
0.360 0403 0.419 0428 0.433 0437 0.440 0442 0.443 0.445
0.421 0438 0.444 0447 0.449 0450 0.451 0452 0.452 0.453
0.440 0448 0451 0.452 0453 0454 0.454 0454 0455 0.455
0.447 0452 0.453 0454 0.455 0455 0.455 0455 0.455 0.456
0.449 0453 0.454 0455 0.455 0455 0.456 0456 0.456 0.456
0451 0454 0455 0455 0455 0456 0.456 0.456 0.456 0.456
Note. Effect size is 0.4 with a significance level of 0.05.
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Figure 3.12: Effect of Study Duration (D) and Number of Students (N) on Power Holding
Number of Schools (M) Constant at 40: BRD, Quadratic Rate of Change
Note. Effect size is 0.4 with a significance level of 0.05.
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Table 3.13: Effects of Number of Schools (M) and Number of Students (N) on Power Holding
Study Duration (D) Constant at 4: BRD, Quadratic Rate of Change

N

M
20 40 60 80 100 120 140 160 180 200

10 0.114 0.124 0.127 0.129 0.131 0132 0.132 0.133 0.133 0.133
20 0.197 0218 0227 0232 0235 0237 0238 0239 0240 0.241
30 0280 0313 0326 0333 0337 0340 0342 0344 0345 0.346
40 0.360 0403 0.419 0.428 0433 0437 0440 0442 0443 0.445
50 0.437 0486 0505 0515 0521 0526 0529 0531 0533 0.534
60 0.508 0.562 0583 0.593 0.600 0.605 0.608 0.610 0.612 0.614
70 0572 0630 0651 0.662 0.669 0.673 0.677 0.679 0681 0.683
80 0631 0689 0710 0721 0728 0732 0736 0738 0740 0.741
90 0.683 0.741 0761 0.772 0778 0782 0.785 0.788 0.790 0.791
100 0730 0.785 0.805 0814 0820 0824 0.827 0.829 0.831 0.832

Note. Effect size is 0.4 with a significance level of 0.05.
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Figure 3.13: Effects of Number of Schools (M) and Number of Students (N) on Power Holding
Study Duration (D) Constant at 4: BRD, Quadratic Rate of Change
Note. Effect size is 0.4 with a significance level of 0.05.
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Table 3.11 to 3.13 and Figure 3.11 to 3.13 show how variations of study duration and
sample sizes affect the power to detect the treatment effect of the quadratic rate of change
in block designs, assuming two-tailed t-tests at the 0.05 significance level and effect size
as 0.40. Table 3.11 and Figure 3.11 show how power changes as study duration (D) and
the number of schools (M) changes, holding the number of students (N) in each school
constant at 40. Please note that there should be at least three repeated measures (D = 3) to
estimate a quadratic growth model. As the duration of study increases, the power of
detecting a quadratic rate of change increases slightly when the study duration increases
from three to six; and remains virtually unchanged as the study duration increases from six
to nine. However, as the number of schools increases, power increases significantly more.
It should be noted that it requires more schools and longer study duration for power to
reach to 0.80 comparing the results from linear growth model. That is mainly because the

ratio between the level-2 random effects and the variance of treatment by school random

effect (i.e., 72, / @?,,) in the quadratic growth model was smaller than the ratio between the
level-2 random effects and the variance of treatment by school random effect (i.e., 72 / @?,,)

and in the linear growth model. In particular, when M =90and D =8, or M =100 and D =
7, power reaches to 0.80.

Table 3.12 and Figure 3.12 provides power estimates for designs that vary the duration
of study (D) and the number of students (N) in each school, holding the number of schools
(M) at 40. The results were quite similar to those in Table 3.7. Both the study duration and
the number of students in each school have quite limited influence on the power, especially

when the study duration or the number of students in each school is beyond a certain
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Table 3.14: Effect of Covariates on Power: BRD, Quadratic Rate of Change

W3 W2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0950 0949 0949 0948 0948 0948 0.947 0947 0.946
0.2 0.865 0865 0864 0.864 0863 0.863 0.862 0.861 0.861
0.3 0.774 0774 0773 0773 0772 0772 0.771 0.770 0.770
0.4 0691 0691 0691 0.690 0690 0689 0.689 0.688 0.688
0.5 0.620 0620 0620 0.619 0619 0618 0.618 0.618 0.617
0.6 0.561 0560 0560 0.560 0559 0559 0.559 0.558 0.558
0.7 0.511 0510 0510 0510 0509 0509 0509 0.509 0.508
0.8 0.468 0.468 0.468 0.468 0.467 0.467 0.467 0.467 0.466
0.9 0432 0432 0432 0432 0432 0431 0431 0.431 0.431

Note. The study duration is 4 with 40 schools and 40 students in each school; significance
level is 0.05.

W3

—— W2=01 —— W2=03
—aA— W2=05 —®»— W2=07

Figure 3.14: Effect of Covariates on Power: BRD, Quadratic Rate of Change
Note. The study duration is 4 with 40 schools and 40 students in each school; significance
level is 0.05.

102



Table 3.15: Effects of Covariates, Number of Schools (M) and Number of Students (N)
on Power Holding Study Duration (D) Constant at 4, w. = 0.6 and wz = 0.6: BRD,
Quadratic Rate of Change

M N

20 40 60 80 100 120 140 160 180 200

10 0.120 0.135 0142 0.146 0.148 0.150 0.151 0.152 0.153 0.153
20 0254 0298 0317 0328 0335 0339 0343 0345 0347 0.349
30 0.373 0438 0465 0480 0489 049% 0500 0.504 0507 0.509
40 0481 0559 0590 0.607 0618 0625 0630 0.634 0637 0.640
50 0.576 0660 0692 0.710 0.720 0.727 0.732 0.736 0.739 0.742
60 0.658 0.742 0773 0789 0799 0805 0810 0813 0816 0.818
70 0.727 0807 083 0849 0858 083 0867 0870 0873 0.874
80 0.784 0857 0882 0.894 0901 0905 0909 0911 0913 0.915
90 0831 089% 0916 0926 0932 0935 0938 0940 0941 0.943
100 0.869 0924 0941 0949 0953 0.956 0.958 0.960 0.961 0.962

Note. Effect size is 0.4 with a significance level of 0.05.

T T
0 20 40 60 80 100
Mumber of Schools

—&— N=40 —&— N=280
—&— N=120 —=— N=160

Figure 3.15: Effects of Covariates, Number of Schools (M) and Number of Students (N) on
Power Holding Study Duration (D) Constant at 4, w2 = 0.6 and ws = 0.6: BRD, Quadratic
Rate of Change

Note. Effect size is 0.4 with a significance level of 0.05.
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number. Table 3.13 and Figure 3.13 provides power estimates for designs that vary the
number of students (N) in each school and the number of schools (M), holding study
duration constant at four. As the number of schools increases, power increases consistently
as expected. When M = 100 schools and N = 60 students, power becomes 0.80.

Table 3.14 and Figure 3.14, and Table 15 and Figure 15 show how the power of
detecting a quadratic rate of change is influenced by the proportion of unexplained variance
at the second and third levels when D = 4, ES = 0.40 and q = 5. The results are quite similar
to the results in Table 3.9 and Table 3.10. Power increases as the proportion of variances
explained increases at the second or the third level. In particular, fewer schools or fewer
students per school are needed for power to reach to 0.80. For instance, with N = 40, only
70 schools are need to boost power to 0.80, which is more than 30 schools fewer comparing
to the design without covariates included. In addition, covariates at the third level have

more impacts on power than covariates at the second level.

Conclusion
Multilevel experimental designs are becoming more common in education. Frequently
these designs assign individuals (e.g., students) or entire clusters such as schools randomly
to a treatment or a control group and follow them over time. In such designs, researchers
face the challenge of choosing study duration and sample sizes to ensure that treatment
effects will be detected. The present study extended previous work on power analysis for
two-level models in studies of polynomial change and presented methods for three-level

models.
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The power of the test of the treatment effect in studies of polynomial change with two-
levels of nesting is a function of the magnitude of the treatment effect, the study duration,
the sample size of individuals, the sample size of clusters, and the proportion of the
variances that covariates at the second or third levels explain.

Several findings emerged from this study that applies to both CRD and BRD. First,
power increases as the study duration, the number of students in each school, or the number
of schools increases. Other things being equal, the number of level-3 units (clusters)
influences power more than the number of level-2 units (individuals) or the duration of the
study. In particular, the number of students and the study duration have limited influence
on power. This indicates clearly that researchers should sample more schools rather than
students within schools to maximize power. Note that the number of schools impacts power
through the degrees of freedom of the t-test. It also should be noted that the higher order
polynomials a growth model includes, the longer the study duration is needed. For example,
to fit a linear rate of change model, the minimum study duration is two; to fit a quadratic
rate of change model, the study duration should be at least three.

Second, covariates that explain a proportion of variances at the second or third level
could increases powers and thus reduce the study duration or sample sizes needed to boost
power to a certain level. For instance, in the first illustrative example with a CRD, when
covariates could explain 40% of variances at both the second and the third level, the
required number of schools for power reaching to 0.80 drops from 30 to 20, holding the
number of students in each school constant at 60. Because the number of covariates at the

third level reduces the degrees of freedom for the t-test researchers should use a small
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number of third level covariates that are strongly related to the outcome, especially when
the number of schools is not large.

Third, the effects of covariates on powers depend on the ratio between the variance of
the random effects at the second and the third level. For instance, in my three illustrative
examples, since the ratio between the variance of the random effects at the second and the
third level is small, covariates at the third level affect powers more significantly than
covariates at the second level. In addition, comparing the results from the second and the
third illustrative sample, powers are larger in the second sample, which is mainly because
the ratio between the variance of the random effects at the second and the third level is

larger in the second example than that in the third example.
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Appendix A: Variable Description

Table A.1: Variable Names and Coding Methods using Data from TIMSS 2011

Variables:

Description (TIMSS Variable Name)

Student Variables

Mathematics Achievement

Female

Age

Speaking the Tested Language at Home

SES: Books in the Home

SES: Items in the Home

Positive Affect to Mathematics

Parents Asked What the Student was Learning in School
Student Talked about the Schoolwork with Parents
Parents Made Sure the Student Set Aside Time for the Homework
Parents Checked if the Student Did the Homework

Teacher/Classroom Variables

Class Size

Classroom SES: Books

Classroom SES: Items

Proportion Female

Average Students' Positive Affect to Mathematics
Teacher Experience in Years

Teacher Completing Post-Secondary Education
Female

Instruction Time

School Variables

Percent Disadvantaged Students

Percent of Students Having Tested Language as Native Language
Students Having Early Numeracy Skills

City Size

Income Level of the School's Immediate Area
Grade 4 Enrollment

Set of five overall mathematics score plausible value variables

Binary indicator for the student whose gender is female

Student age at the time of testing

Binary indicator for the student who spoke the tested language at home “always or almost always”

Number of books in the home

Sum of eleven wealth-related household possessions variables

Average of five self-reported student's affect to mathematics variables, with negatively-worded items reverse-coded
Binary indicator for the parents asking the student what he/she is learning in school every day or almost every day
Binary indicator for the student talking about the schoolwork with parents every day or almost every day

Binary indicator for the parents making sure that the student sets aside time for the homework every day or almost every day
Binary indicator for the parents checking if the student does the homework every day or almost every day

Number of students in the classroom

Average number of books in the home

Average number of items in the home

Proportion of female students in a class

Average self-reported student's affect to mathematics in a class

Teacher's year of teaching

Binary indicator for the teacher who completed post-secondary education
Binary indicator for the teacher who is female

Time spending teaching mathematics to the students in the class per week

Set of four indicators for categorical percentage of economically-disadvantaged students

Binary indicator for categorical percentage of the students having tested language as their native language more than 90%
Set of four indicators for categorical percentage of the students entering the primary grades with early numeracy skills
Set of six indicators for categorical city population (labels = 0-3,000, 3,001-15,000, 15,001-50,000, 50,001-100,000,
100,001-500,000, greater than 500,000)

Set of three indicators for the income level of the school's immediate area

Total enrollment of fourth graders in the school
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Appendix B: Control Function Approach for Quantile Regression

A quantile regression model with endogenous variables can be written as

y=xp(r)+2' y(z)+u

X=2'n(r,)+V B1)

where X is a vector of endogenous variables, and z=(z1, z2) are exogenous variables, and

our interest is to estimate 3(7) , the coefficients of x at z-th quantile.

There are three ways to estimate £(7) in quantile regression literature. Amemiya

(1982) and Powell (1983) first proposed a two-stage absolute value (2LAD) approach,
which specifically focused on the median and is quite similar to the 2SLS estimation
procedure. However, the required assumption for this approach is difficult to interpret and
thus it was not been used widely for empirical studies.

Chernozhukov and Hansen (2006) proposed an Instrumental variable quantile

regression (IVQREG) approach that assume Q,(z | z) =0, which means the z-th quantile

of u—one of the error terms in equation (A2.1) equals to zero, conditional on the other error
term (z) in in equation (A2.1).

Chernozhukov and Hansen (2008) developed inference procedures that are fully robust
to weak instruments based on the IVQREG estimator. However, there is only Matlab codes
available to their approach. In addition, it is not clear how to incorporate sampling weights
and how to adjust the clustering effects (e.g., students nested in schools) using their
methods.

Lee (2007) proposed a control function approach deal with the endogenous variables

in quantile regression. According to equation (B.1) we have
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Q,(zx2)=Q,(z|v,2). (B.2)
This approach assumes that the instrument variables z is independent of (u, v), therefore

we have
Q,(r|v,2)=Q,(7|v,z). (B.3)
Substitute equation (A2.3) to equation (A2.1), we have

Q,(zIxz,v)=x'B(z)+2',y(r) +Q,(r | z,v)

, , (8.3)
=X'B(z)+2,7() +Q,(z |v).
Therefore, to estimate £(7), we must knowQ,(z |v), which is a function of v. Since

v is not observed, we must estimate it through regressing x on z using OLS or quantile
regression. Also, we have no idea if the correlation between u and v is linear or non-linear,
Lee (2007) suggest using a series or kernel of v to better model the relationship between u
and v.

To sum up, Lee’s (2007) control function approach is also a two-stage estimation

approach: (1) regression x on z using OLS or quantile regression and get V= x—z'7(z,);

(2) regressy onx, z1, and a series or kernel of ¥ through quantile regression to get 5(7).
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Appendix C: Proof of Equation (3.6)

According to Randenbush and Liu (2001), Ygi is an outcome for person i (i=1, 2, ..., n)

S, Gx(1+G
at occasion g (g=1, 2, ..., G) and thus Zm:%). According to the equation (5) in
g=1

Randenbush and Liu (2001), the equation (2) in Randenbush and Liu (2001) could be
simplified as

Cy, =1

0g

Cy=9-20/G=g-9g
ZC o)L [ _g)z_(G+l)-G-(G—l):| cn

12-G
1 o G?2-1
_E{(g_g) 12 }

S 2
1 = 1 _ 3G -7 —
C3 | o U = S o :—|:(g_g)2_ (g_g):|

G
- gZ:;g 1+G
where g = c - >

C, =C2 -=— (C.2)
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When k, =1, k =1, kZ:%, andk :%,we have

3

Cog = éog x K,
C, =C,. xk _
¢ Tore,, =C,, xk, (C.3)
C,, =Cyy xk,
C,, =Cyy xkg

According to equation in page 30 of Fisher(1957) and equation (1) from Jennrich and

Sampson(1971), we have a recurrence formula:

épﬂ,g - Cv:lq 'épg —a,Cp
Cog =1 (C.4)
Clg =g _a
p*(G*-p%) : : :
where a, =m and g is number of occasions (g=1, 2, ...., G); p is the degree of

the orthogonal polynomial; and Cpm the orthogonal polynomial coefficient of degree p at

occasion g.
According to equation (C.4), we have

If p=1,

_ .~ 1(G*-1) _ -
:Clg'Clg_ﬂ'COQZClz_ :(g_g

C

29
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Cogzéogxkozéogxko

C, =C,, xk =C, xk 3 B
T T o C, =C,, xk, =C_ xk,
C,, =C,, xk, =C,, xKk,

Cyy =Cyy xky =Cyy xky
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Appendix D: Proof of Equation (3.9)

Based on the equation (2) from Jennrich and Sampson (1971), we have:

G G _ 202 2
> Ci=a,>.Ci,, wherea, _PG—p) - P)
g=1 g=1 ’ 4(4p _1)

iéozg =G
g=1

(D.1)

Therefore we have

S CRCE PR CEXRCR
S ., 4-(G*-4) (G+1)-G-(G-1)
' IO_Z’QZ_;CZ@’_4.(4-4—1)' 12
_(G+2)(G+1)-G-(G-1)(G-2)
N 180
" p:3iéz _9(G*-9) (G+2)(G+1)-G-(G-1)(G-2)
T 4.(4-9-0) 180
(G+3)(G+2)(G+1)-G-(G-1)(G-2)(G-3)
- 2800

1 1 G G _
Let ky =1, k =1, k2=§, andk3=g,wehave Z;Cﬁgzkﬁxz;Cf)g (p=12,3)
9= 9=

Also, according to equation (D.1), we have:

G _ 2 M 2 pZ) G _ pZ G
CZ — p ( . CZ — . GZ_ 2 X CZ
Z pg 4(4p2 _1) gZ:; p-19 4(4p2 —1) ( p ) ; p-19
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Zcig = 5p '(Gz_ pz)'zcrzklvg
=&, -(G+p)-(G-p)-&,,- [G+(pP-D]-[C —(p—l)]-zcﬁfz,g
=&, - (G+p)-(G-p)-&,, - [G+(P-D]-[G-(p-D]-..

& o [GH(P-Pp+D][G-(p- |0+1)]-Z<f§g
=&, &1 by (G4 P)-(G+P-1)-(G+ p-2)-G-(G-1)++(G-p)

Let H =& -& oo £, we have

=2 _y _(M+p)!
gg‘cpg_Hp M-p-1)i (D.2)

Also, Let K =H_ -k3, we have

G G _ G+p)! (G+p)!
C2 :XIZ . C2 :lz . H -(—: K e . D.3
gz_ll Pg P gz_; Pg P P (G—p—l)! P (G—p—l)! (0:3)

In addition, according to equation (8) in P. 104 of Plackett (1960), we have:

& s 2p+1 (G-p-Dt(2p+D)!

2% =12 (2p) 4
p (p1)? (B4)
(p)': _(G+P)

T @p)tEp+Y! (G-p-1)!

Therefore we can write

_ (e
(2p)*(2 p|+41)! (D5)
K =Kk2.__ (PY

P 2p)(2p+D)!
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