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ABSTRACT

ARIMA STATISTICAL MODELS OF TRANSIENT

HEAT CONDUCTION ERRORS FOR

AIKEN'S CONFIDENCE REGION

By

Irwin Perry Schisler

Parameter estimation is central to the scientific analysis of

data. When thermal properties are found from transient temperature

measurements, the thermal parameters are usually determined by a

parameter estimation procedure based on standard least squares. How-

ever, at the high sampling rates associated with minicomputers, the

model for the errors is important because the temperature residuals

display serial correlation and possible signatures. Hence, the usual

model for the errors of N(0,o2 I) is inadequate and the model N(p,o2 V)

is required.

The V matrix in the N(O,o2 V) model was represented by an

ARIMA model having zero mean. An ARIMA (1,0,1) model fit the residuals

better than other ARIMA (p,d,q) models. The best fitting ARIMA model

was determined by applying Akaike's information criterion to the

standard least squares residuals. The coefficients required in

Akaike's criterion were estimated from a rapid solution of the Yule-

Walker equations. A small-dominant parameter analysis was used to

bound the change in the estimated thermal parameters caused by the
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non-zero value of the p vector. A one small parameter model that

approximately fit the observed signatures in the residuals was used

to predict changes in the thermal parameters that could be neglected.

The confidence region for the thermal parameters in the non-

linear parameter estimation problem was approximated by an ellipse

typically used for linear estimation problems. The size of this

ellipse is related to the fractile. The fractile is computed from

the central F-distribution when the V matrix is known. It was found

that the fractile should be computed from the noncentral F-distribution

when the V matrix is estimated and the sample size is small. The

presence of ARIMA (1,0,1) errors is important in the statement of the

correct confidence ellipse. When the N(0,o2 V) model is correct, the

incorrect N(0,o2 1) model yielded a 95 percent confidence ellipse that

in reality is only a 15 percent confidence ellipse.

When the N(0,o2 V) model is true, the thermal parameters should

be estimated by Aitken's least squares. An iterative Aitken's least

squares estimator was implemented within an existing standard least

squares computer program for the heat conduction problem. The accu—

racy of this modified computer code was verified in a simulation study.

It was found that the effects of correlated errors for the

available dynamic measurements and associated models can be treated

without great difficulty. The parameter estimates using standard

least squares tend to be very close to the values computed by the

more powerful Aitken's least squares method. Hence the parameters

required in the covariance matrix, V, can be estimated accurately

and easily from the standard least squares residuals. The covariance
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matrix for the thermal parameters can be evaluated by a simple

recursive difference scheme rather than using the covariance matrix

V directly in the matrix product. Thus, Aitken's confidence region

and standard errors can be computed easily.
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CHAPTER I

DESCRIPTION OF THE PROBLEM

In Section 1.1 the importance to parameter estimation of modeling

the errors is discussed. In Section 1.2 three features are isolated

in modeling errors and in using the correct covariance matrix. The

literature on these three factors is reviewed in Section 1.3 for

simple physical models. This is extended in Section 1.4 to more

complicated physical models that more closely resemble nonlinear

estimation of the heat conduction problem. In Section 1.5 the problem

investigated in this dissertation is defined as being only one aspect

of ongoing parameter estimation studies at Michigan State University,

and in Section 1.6 the topics presented in subsequent chapters are

outlined.

1.1 Introduction
 

Mathematical modeling of physical phenomena is an important part

of engineering and science. In many cases either the physical model

is unknown or many of the associated constants are not known accu-

rately enough. In such cases it is imperative to perform experi-

ments and to take measurements. Parameter estimation is central to

the scientific analysis of such data to determine parameter values

and accuracies and also to provide insight for improving upon the

mathematical model of the physical phenomena.

1



In addition to modeling the physical phenomena it is necessary

to model the measurement errors to provide (1) the most accurate

parameter estimates, (2) accurate confidence regions, and (3) optimal

experiment designs. In dynamic experiments in which the variables

are being repeatedly measured, the common assumption of uncorrelated

measurements may not be valid. Heat conduction data can be used to

test the development of these worthwhile parameter estimation tech-

niques.

Currently optimal design in heat conduction is determined by

selecting boundary conditions, by determining the duration of the

experiments, and by choosing locations for the measurement sensors.

In addition to these conditions the optimal design depends on the

covariance matrix of the errors, denoted W. Different covariance

matrices are obtained as the time between measurements is changed

and there may be a best sampling rate. The W matrix can also be used

in discriminating between rival mathematical models and in maximum

a posteriori estimation.
 

Several examples can be given. Van Fossen (1973, Figure 4.2.9)

found that the presence of correlated errors prevented effective dis-

crimination between rival models describing the heating of a Bismuth-

Lead alloy, because no technique was available to determine the error

covariance matrix W. Beck (1975) cited as examples three heat con-

duction papers where correlated errors are undoubtedly present and

modeling these errors could improve the parameter estimates or confi-

dence regions. Clarke (1973) suggested using correlated error models

to improve the fit of hydrologic groundwater equations.



1.2 Nomenclature for Correlated Error Studies

The specific techniques considered in this dissertation involve

modeling errors in order to improve the estimation of thermal parame-

ters and the statement of confidence regions for these parameters.

Although finding thermal parameters requires nonlinear parameter

estimation it is easier to define the techniques by the following

linear model having additive errors: namely,

y = X B + w (1.1)

where y is an n by 1 vector of measurements, X is a known matrix,

B is the estimated k by 1 parameter vector, and w is an n by 1

vector of measurement errors. The standard assumption for w is

w ~ N(o,d2 I) (1.2)

which means that the errors have zero mean, constant identical

variance, and a normal distribution. The variance 02 is assumed

to be estimated, throughout this dissertation. A 100(1-a) percent

confidence ellipse for the parameter vector b is

(b - e)t xt x (b - e) s k 52 F(k,n-k,l-a) (1.3)

where b is the estimate of B, s2 is an estimate of 02, and F

is the fractile yielding probability a in the right tail of the

F-distribution. The confidence interval for the j-th parameter

is given by

+ _ _ 2 t -1 Q
bj _ t(n k,1 a) (S (X x)jj) (1.4)

where t is the fractile for the Student's t-distribution, and

(Xt X)3} is the j-th diagonal entry in the inverse of the Xt X

matrix. Some researchers such as Draper and Smith (1966, p. 65)

denote the estimated standard errors as
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_ 2 t -1 5

est. 5. e. (bj) — (s (X x)jj) (1.5)

The confidence interval in Equation (1.4) depends on two factors:

(1) the estimated standard errors, and (2) the fractile of the

Student's t-distribution.

Beck (1975) indicated that errors in heat conduction experi-

ments conducted at Michigan State University were not independent.

Thus, the model that should be used for the errors is

w ’6 N(O,oz V) (1.6)

where V is not equal to the identity matrix I. The presence of

the correlated errors was noticed when a minicomputer was used for

data acquisition. The correlation was noticed by plotting the

residuals, e = y - X b, and testing whether the number of sign

changes was abnormally small. In the statistical literature this

sign test is also called a run test or a Geary test. The analysis

by the sign test indicated that the errors are more correlated as the

sampling rate on the minicomputer is increased. Accurate data were

collected by Farnia (1976) using an IBM-1800 minicomputer data

acquisition system using a rate of three-tenths of a second between

measurements. I used these data to study the problems associated

with including the V matrix in the estimation and confidence region

equations. The data are undoubtedly representative of data from

dynamic experiments in other engineering problems so that the

analysis techniques developed also apply to these engineering

problems.



When the covariance matrix V in Equation (1.6) is known the

data and model can be transformed so that the errors satisfy Equa-

tion (1.2). Assuming that the V matrix can be factored as

v = L Lt (1.

then the transformations

-1
F = L y and z = L'1 x (1.8)

make the linear physical model in Equation (1.1) become

F = z e + L'1 w (1.9)

where

-1 n 2

L w ~ N(O,o I) (1.10)

Thus the transformed errors are distributed according to the

error model given by Equation (1.2). Hence the confidence

interval for the j-th parameter in Equation (1.9) is

b. i t(n-k,1-a) (52
t -1 %

J (2 213.3. ) (1

where the estimated standard errors are given by

est. 5. e. (bj) = (52 (2t 2);} )i (1

Using Equation (1.8) it is clear that Equation (1.12.A) can also

be written as

est. 5. e. (b.) = (52 (xt v" X)" )i (1
J 33

which clearly shows that Equation (1.12) depends on the V matrix.

When the V matrix is known, the standard errors are given by

Equation (1.12) rather than the incorrect Equation (1.5).

When the V matrix is estimated, Theil (1971, p. 246) used

the expression asymptotic standard errors since the asymptotic

.11)

.12.A)

.12.B)



estimates of the standard errors are based on the asymptotic

approximation to the sampling distribution. Thus the confidence

interval given by Equation (1.11) should be written as

bj i G(l-a) (est. 5. e. (bj) ) (1.13)

where Equation (1.12) is used to estimate the standard errors.

The more accurate the estimate of the V matrix, the better is

the approximation that G(1-a) is t(n-k,l-a).

In terms of the above presentation the need for an error model

given by Equation (1.6) instead of by Equation (1.2) has three fea-

tures. First, the coefficients in the V matrix in Equation (1.6)

must be estimated. Second, although less obvious than the first

feature, the structure of the V matrix in terms of the L matrix in

Equation (1.10) must be modelled. Third, an adequate approximation

of G(1-a) in Equation (1.13) must be proposed.

1.3 Review of Correlated Error Studies
 

Three features of the correlated error problems were isolated

in Section 1.2. In this section these three features will be dis-

cussed for simple physical models.

1.3.1 Estimation Using a Covariance Matrix

The first feature of the correlated error problems is estimat-

ing the standard errors. In order to compute the standard errors a

computation scheme must be available to estimate the ARIMA parame-

ters in the V matrix in Equation (1.7).

Maximum likelihood estimators are preferred when the physical

parameters are estimated and the errors are correlated. The maximum



likelihood procedure uses as the cost function the logarithm of the

probability density fML given by

fML(B) = (24)'*" (det u)’é exp( - e S)

where

s = (y - x 13)t w“ (y - x 5) (1.14.4)

with the error covariance matrix given by

W = 02 V.

The statistical assumptions for using fML are normally distributed

additive errors that have zero mean and are correlated. The covari-

ance matrix W is estimated but X is errorless and there is no prior

information. Beck and Arnold (1977) used a concise notation where

a string of eight numbers referred to tabulated assumptions so that

the above problem is denoted 11-01211 when the V matrix is estimated.

When the error covariance matrix is assumed to be known the

maximum likelihood estimator reduces to the Aitken's least squares

estimator which has the cost function

1

fALS(B) = (y - x e)t w’ (y - x 4) (1.14.8)

Aitken (1935) proved that the cost function fALS yields the

minimum variance estimator when W is known. The prefix A in

ALS is used throughout this dissertation to denote Aitken with

LS used to denote least squares.

For data acquired by a minicomputer the sample size can be

large, say n = 1000, or even larger. Thus, it could be difficult to

find the matrix W'1 even if the error covariance matrix W were known.

In previous research at MSU by Van Fossen (1973) solving the problem



of inverting the W matrix seemed to be impractical. Beck (1974)

approached the problem of inverting W by assuming the errors could

be modelled by certain classes of autoregressive integrated moving-

average (ARIMA) models, and found that the inverse for these models

was related to certain differences of the data and model values.

This occurs because the inverse itself is not needed; what is needed

is only the evaluation of a quadratic form in Equation (1.14) con-

taining the inverse of the error covariance matrix W.

For an autoregressive process with known coefficients, Beck

(1974) proposed using the differences

Zj(i) = ej(i) - ”lj ej(i-l) - . . . - gpj ej(i-p)

where the residuals are

ej(i) = yj(i) - Tj(i)

and the subscripts refer to the j-th thermocouple at the i-th time

for the data vector y and the temperature T predicted from the model.

The Aitken's least squares cost function for the differenced residuals

is

m n

fALS(B) = .5 .g Zj(i) Zj(i) (1.14.C)

j-l 1-1

where the limits on the summation is for m sensors and n measure-

ments per sensor.

The implementation of parameter estimation using the cost

function given by Equation (l.l4.C) is considered in this dissertation

when the Dj's are estimated. Deutsch (1965, p. 64) stated the exact

values for the elements of the error covariance matrix W are seldom



known. When the error covariance matrix is estimated, Dhrymes (1971),

extending the doctoral thesis at MSU by Ruble, showed that a particu-

lar computational scheme for iterative Aitken's least squares yielded

the same estimates as from the more complicated maximum likelihood

cost function. The iterative Aitken's least square procedure uses a

two step scheme. In the first step estimates for the physical

parameters are found using an error covariance matrix that is regarded

as the true error covariance matrix; in the second step estimates for

the error covariance matrix are found using the residuals from the

first step. The two step scheme is repeated until the parameter esti-

mates converge.

1.3.2 Developing ARIMA Error Models
 

A second feature of the correlated error problem is finding an

ARIMA model that is an accurate approximation to the errors. The

ARIMA (AutoRegressive Integrated Moving-Average) model determines

the V matrix in Equation (1.7) and Equation (1.6). Beck (1974) and

Beck (1975) have suggested that the V matrix in heat conduction is

not the identity matrix. Bard (1974, p. 248) stated that the estima-

tion of the V matrix when serial correlation is unknown is relatively

difficult. Apparently because replicated data are rarely available,

Bard (1974, pp. 63-66) only considered contemporaneous correlation

models, see Equation (2.10), when the V matrix is estimated.

It can be more effective to use a deterministic model rather than

to find an autocorrelated model for the V matrix. Carr (1972) showed

in a Cobb-Douglass model of Bell Telephone of Canada that the need
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for a nondiagonal V matrix can be eliminated by changing the speci-

fication of the physical model. The residuals in the initial speci-

fication of the model had one sign before the introduction of

automatic switching equipment and had the other sign after that time.

Thus, the residuals had a pattern or signature. By introducing a

binary variable for the effect of the introduction of the switching

equipment, Carr (1972) obtained residuals in the revised model that

had more sign changes and passed tests for independent errors. For

these independent errors the error covariance matrix depends on the

identity matrix I rather than on the nondiagonal matrix V. In engi-

neering problems the V matrix may be associated with small parameter

physical processes. Bard (1974, p. 202) stated:

"particularly in cases where data are very accurate

neglected effects outweigh random errors in measurement,

and consequently nonrandomness of residuals is the rule,

rather than the exception when models are fitted to good

data."

Hence, it may be necessary to find a model for the V matrix.

Since the book by Box and Jenkins (1970) has become well-known,

ARIMA(p,d,q) undels for errors have become popular. The three

order parameters indicate there are p autoregressive coefficients,

d differences, and q moving-average coefficients that must be deter-

mined in order to find the ARIMA(p,d,q) model that is the best fit.

Pandit (1973, pp. 17-49) gave an excellent historical review of the

work in 1938 by Wold that is the basis of the ARIMA model, and Pandit

(1973, pp. 170-184) interpreted ARIMA models in current mathematical

terminology.
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A discrimination criterion is required to find the order parame-

ters: p, d, and q. Beck and Arnold (1977, p. 473) discussed dis-

crimination procedures for the physical model but did not indicate a

discrimination procedure for the ARIMA order. Gallant and Goebel

(1976) stated that the referees of their paper recommended the final

prediction error procedure developed in 1969 by Akaike to specify the

order parameters. An improved version of this criterion was developed

by Akaike (1972) and seems to be the criterion accepted by investiga-

tors in the area for specifying the order parameters. The criterion

by Akaike (1972) was used in this dissertation.

To study the situation expected in real problems where close

but not exact identification is made for the orders p and q, Gallant

and Goebel (1976) estimated an ARIMA(2,0,0) model when the simulated

real model was either white noise, ARIMA(0,0,4), or ARIMA(1,0,0).

Schmidt (1970) also considered the sensitivity of the assumed order

to the actual order. Both a linear and distributed lag model were

considered by Schmidt (1970) with the linear model being

yi = B + a xk + wi. (1.15)

Schmidt (1970) was able to study both the effect of assuming auto-

correlation when it is absent, the effect of assuming independent

errors (white noise) when autocorrelation is present, and the

effect of assuming an insufficient number of terms in the auto-

correlation model. The three error models used were:

(1) independent errors or white noise

w. = a. (1.16)



12

(2) first order autoregressive errors

wi = P ”1.1 + 3° (1.17)1 s

and (3) second order autoregressive errors

wi = D] w]._1 + 02 wi_2 + a1 . (1.18)

The definition is introduced that the white noise vector satisfies

azNWfiZU. 04m

The system of equations based on the physical model in Equation

(1.15) with a set equal to zero, and the statistical model given

by Equation (1.17) will be used in example problems throughout

this dissertation.

The sampling statistics reported by Schmidt (1971) were the

variance of B and the bias of 02 because these quantities both occur

in the confidence region. The best choice was to assume second order

autoregressive errors when any of the three error models was true.

Schmidt (1970, p. 18) stated this is true for infinite samples since

any coefficient Dj that is zero is estimated consistently as being

zero, but this need not be true in finite (small) samples.

1.3.3 Generalized Standard Errors:

Monte Carlo Studies

 

 

This section discusses recent Monte Carlo studies that explored

the estimation of the standard errors and the accuracy of using the

usual t-distribution. Hence, these studies investigated two features

indicated in Section 1.2 for the correlated error problem.

Beck (1974) conducted and Beck and Arnold (1977, p. 318) inter-

preted a Monte Carlo study for correlated errors in a particular
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linear model given by Equation (1.15) with errors given by Equation

2 = l, and(1.17): parameter values used were a = 100, B = 0.1, o

a range of values of O = -l, -0.5, O, 0.5, l. The sample size was

n = 60 and t = 34 trials were used. Their results are presented

in Table 1.1 in terms of two sampling statistics: the bias (rows

3 and 5) and the estimated standard errors (rows 4 and 6). The

results of the study indicated that for positive values of 0 the

estimated standard error is underestimated because the average of

the maximum likelihood estimate of 0 is biased toward zero. The

estimates of the physical parameters (a and B) are good.

Goebel (1974) investigated the distribution G(1-a)where

G(1-a) is contained in Equation (1.13). They considered the non-

linear physical model that can be written as

y, = B] exn(82 xi) + w, . (1.20)

and conducted a Monte Carlo study with sample size n = 60 and

t = 200 trials. Three models were used for the errors: Equation

(1.16) with a2 = 0.25, Equation (1.17) with 02 = 0.25 and p = 0.735,

and the fourth order moving-average model denoted ARIMA(0,0,4)

wi = 1.5 ai + a1._1 + 0.85 a1._2 + 0.33 a1._3 + 0.5 a1._4 .

Goebel (1974) computed the t-distribution confidence coefficients

from a fifteen cell histogram and applied a chi-square goodness of

fit test to show that the distribution was not a t-distribution.

This is evident from the empirical fractile points for the five

(a = 95) and ninety-five (a = 0.05) percent confidence intervals

that were -2.28 and 1.99 compared to the true values of -1.67 and
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1.67, respectively. This flatness in G(1-a) at nine fractile points

was confirmed by Gallant and Goebel (1976) in a Monte Carlo study

involving Equation (1.20) with errors described by Equation (1.18).

The Monte Carlo studies described above used small sample

sizes while it is conventional wisdom in econometrics that for large

sample sizes the distribution is the same whether the statistical

parameters are known or estimated consistently. There are several

papers that allegedly show that the distribution is the same; e.g.,

Kmenta (1971, p. 507), Maddala (1971), Kmenta (1971, p. 529), and

Schmidt (1970, p. 5). However, Schmidt (1976, p. 69) constructed

a counter-example. This is for Equation (1.15) with 0 equal zero

and the particular V matrix given by

V.] = diag(19 Y9 Y2: . . . 9 Yn-l)

and the resulting distribution for the physical parameter is

n3 (b - B) : N(0,026). (1.21)

From Equation (1.21) it is clear that the estimate of B is the

same but the variance is increased by 6, when V is estimated.

When Y is unity, the asymptotic variance is increased by about

eight percent, in this counter-example. Schmidt (1976, p. 71)

suggested that his experience indicated the large sample variance

has 6 equal to unity when the errors are described by ARIMA models.

The standard errors can also be increased if Equation (1.5)

is used instead of Equation (1.12); i.e., if standard least squares

is used but is not valid. Magness and McGuire (1962) showed that

the increase in the standard errors depends on the particular

combination of X matrix from Equation (1.1) and V matrix from
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Equation (1.6). This dependency affects conclusions from a Monte

Carlo study since only specific combinations of X and V are used.

1.4 Review of Simulation Studies
 

The purpose of this section is to review the use of small trial

procedures to understand complicated physical models in contrast to
 

the procedures used for the simple physical models presented in

Section 1.3.

1.4.1 Standard Errors in Heat Conduction
 

In a Monte Carlo study, Beck and Arnold (1977, p. 401) made an

assessment of the effect of correlated errors on a heat conduction

problem. The physical model was heat conduction in a semi-infinite

solid subject to a step change in surface temperature. The tempera-

ture in the solid was given as

T(x,t) = To + (10° - To) erfc(x (4 a t)"" )

where the physical parameter is a the thermal diffusivity, the

temperature at the surface is maintained at value T0 and the tem-

perature infinitely far into the solid is Tm, t is time, and T(x,t)

is the temperature at position x and time t. In order to simu-

late actual heat conduction measurement conditions two sensors were

used (m = 2) and they were located at 0.125 and 0.250 inches from

the surface, and n = 28 measurements were generated for each sensor.

The error model was ARIMA(1,0,0) given in Equation (1.17) and three

values of the coefficient 0 were used: 0, 0.5 and 0.9. The esti-

mated standard error was given as
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est. 5. e.(a) = (s2 (x: v'] x1 + x; v" x2)'1 )3

where the subscripts 1 and 2 on the X vector indicate the two

measurement locations. The X vector is the partial derivative of

T with respect to a for both locations and for all the experimen-

ta1 times. In Table 1.2 ztz is defined by

t t -1 t -1
Z Z = X] V X] + X V X2.

The quantities calculated for Table 1.2 are related to the

problems for correlated errors isolated in Section 1.2. The results

for estimating the V matrix are that the standard errors are sensi-

tive to the true value of the autoregressive coefficient 0 with the

standard errors increasing by a factor of about seven as the true

autoregressive coefficient increased from 0 = 0 to 0 = 0.9. The

results for approximating G(l-0) are that in three out of five cases

the estimated value is within the standard deviation so that the dis-

tribution of the standard errors is consistent with a t-distribution.

1.4.2 Confidence Regions for

Nonlinear Parameter Estimates

 

 

In real engineering problems the models have nonlinear parameters

and a simulation study using these models can be expensive. Although

the distribution of G(1-a) in Equation (1.13) when the errors satisfy

white noise as in Equation (1.2) was shown by Ivanov (1972) and

Chambers and Ertel (1975) to be consistent and normal when the sample

size is large, a procedure is required for small samples. This was

investigated by Tierney (1971) for the standard least squares proce-

dure where B is estimated from the equation
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t -

(y-T) TB-o

which Tierney (1971, p. 115) approximates by a seven term series

6

2 A1 (a - b) = o (1.22)

i=0

that is solved for (B - b) in terms of the A 's by SNOBOL, a
i

symbolic manipulation computer language. From (6 - b) the moments

of the distribution was found for the nonlinear parameters and

hence the mean and variance of the probability distribution was

calculated. It is beyond the scope of this dissertation to inves-

tigate the probability distribution in this much detail, and there-

fore normal and F distributions will be used.

Not only is it difficult to determine the probability distri-

bution for nonlinear parameters using Equation (1.22) but also it

is difficult to obtain moments from a simulation study. A relevant

example is the nonlinear solid state physics model investigated by

both Pfeiffer and Lichtenwalner (1974) and by Chambers and Ertel

(1975) which is

- 82

1 + 4‘832(xi - s4)

 

yi = 81 2 + W'l

where the additive errors wi are white noise as in Equation (1.2).

Pfeiffer and Lichtenwalner (1974) used t = 400 trials to plot ordered

estimates of B3 on quantile paper to see whether the distribution is

consistent with a normal distribution. The t = 400 trial study was

"extremely expensive of computer time." Chambers and Ertel (1975)

repeated this study with t = 100 trials in order to find an analysis
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procedure adequate for small trials and they investigated: the quan-

tiles from the plotted ordered values, a linearized estimate as

Equation (1.5) and a quadratic estimate. Again it is beyond the scope

of this dissertation to investigate the probability distribution in

this much detail.

1.5 Problem Statement

The general emphasis of this research stems from Beck and

Arnold (1977, p. 289) who stated:

"In order to present meaningful confidence regions it is

necessary that the underlying assumptions are valid. Two

assumptions frequently violated in scientific work are

that the errors have zero mean and that the errors are

uncorrelated. Erroneously taking these assumptions to be

true has led many to present overly small confidence regions."

The implication of this statement is that the model considered for

the errors should be

w z N(u,02 V). (1.23)

This dissertation concentrates on the error model given by Equation

(1.6) which differs from Equation (1.23) by the assumption that

p = 0. The effect of a non-zero 0 created by a signature in the

residuals is not considered in detail.

Based on the three features of the correlated error problem

outlined in Section 1.2 and the review of the literature, the topics

that need to be investigated in the correlated error problem are as

follows. First, it is necessary to find simultaneous estimates of

both the physical and statistical (ARIMA) parameters; this will be

implemented by modifying an existing computer code (called PROPTY)

so that it computes iterative Aitken's least squares estimates.
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Second, the ARIMA model for the autocorrelated errors is found from

real data; the residuals from standard least squares estimation

with computer program PROPTY will be used to find the proper ARIMA

model. Third, the Aitken's least squares and standard least squares

confidence regions are constructed from real data and the accuracy

of using Equation (1.12) can be compared to using the incorrect

Equation (1.5); a Monte Carlo study is also conducted with t = 20

trials to gain insight into the effect of estimating the error covari-
 

ance matrix V.

The originality in this dissertation is (l) to isolate relevant

procedures primarily from the econometric literature in order to

present confidence regions when autocorrelated errors are present,

(2) to make improvements in the procedures so that they can be

implemented in a problem where heat conduction parameters are esti-

mated, and (3) to apply the procedures to available heat conduction

data in order to show how the procedures can be used.

The illustrative heat conduction problem is for the estimation

of thermal conductivity and specific heat in an Armco iron disk

using transient temperature and heat flux data. This analysis pro-

cedure is undoubtedly characteristic of many other related parameter

estimation problems in mechanical, agricultural, civil, and chemical

engineering.

In Section 1.1 and Section 1.2 the general importance of modeling

the covariance matrix is discussed. A more specific listing of fac-

tors in parameter estimation that are affected by the presence of a

covariance matrix is outlined in National Science Foundation (NSF)
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proposal GE-41495. This dissertation solves some but not all of the

problems suggested in NSF proposal GE-4l495. In this proposal to

NSF five modifications in computer program PROPTY were indicated:

(1) to extremize a maximum likelihood cost function that contains an

error covariance matrix, (2) to test the resulting computer routine

for numerical stability since the additional ARIMA coefficients are

estimated, (3) to incorporate sequential estimation, (4) to utilize

prior information about the error covariance matrix from previous

experiments, and (5) to replace the estimate of the standard errors

from PROPTY with an estimate of Aitken's (or maximum likelihood)

standard errors.

These five aspects are motivated in part by the desire to have

an estimator usable on a minicomputer data acquisition and analysis

system. It is reasonable to expect researchers to try using ARIMA

models for autocorrelated errors in data acquired by laboratory mini-

computers, because procedures were developed in the early 1960's to

handle ARIMA errors associated with tracking data processed by

spacecraft minicomputers. An explicit algorithm for spacecraft

minicomputer data was developed by Blum (1961) for sequential esti-

mation when the coefficients in the autoregressive model are known.

The third and fourth aspects are considered by Beck and Arnold

(1977) in computer program NLINA, but are not considered in this dis-

sertation for several reasons. Beck and Arnold (1977, p. 276) gave

equations for sequential estimation when the correlated errors are

known. However, there is a question of the usefulness of sequential

estimates when the goal is to construct a confidence region with
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unknown ARIMA parameters. Odell and Lewis (1971) found that

although autoregressive parameters could be estimated as part of a

recursive algorithm, the statistical properties of the estimated

parameters could not. The fourth aspect, which is including prior

information, creates two difficulties: as stated for aspect three

the residuals may not have the same statistical properties, and the

additional terms in the quadratic form for the standard errors alters

the statistical distribution of the quadratic form. Hence aspects

three and four are not considered in this dissertation.

This dissertation was written to explore the fifth aspect of

the research proposed in GK-41495 and indirectly the first and second

aspects are considered. The first aspect is achieved by using iter-

ated Aitken's least squares estimation which Dhrymes (1971) showed

converged to the maximum likelihood estimates. The second aspect is

not expected to be a problem because Goldstein and Swerling (1970)

found that two iterations of iterated Aitken's least squares yielded

estimates close to those obtained with a known covariance matrix V.

The fifth aspect (in its simplest form) merely requires using the

estimates from Aitken's least squares in Equation (1.12.8).

1.6 Plan of Investigation

The solution of the problem outlined in Section 1.5 proceeds

as follows. Chapter II describes some experimental data obtained at

Michigan State University that is analyzed to identify the proper

ARIMA model. Chapter III is a development of models for the confi-

dence regions and also a Monte Carlo study of the confidence region
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when the V matrix is estimated. Also in Chapter III confidence

regions for real heat conduction data are presented. Chapter IV

discusses additional aspects of the fitted ARIMA model. Chapter V

gives the major conclusions for the correlated error problem.



CHAPTER II

STATISTICAL ANALYSIS OF HEAT CONDUCTION DATA

This chapter develops autoregressive integrated moving-average

(ARIMA) models for the errors. In Section 2.1 a procedure is outlined

to obtain temperature residuals by estimating thermal parameters from

the experimental transient temperature data using standard least

squares. In Section 2.2 the residuals are plotted and a general

model for the errors is outlined. In Section 2.3 it is shown that

the residuals are not correlated contemporaneously, but are correlated

serially. In Section 2.4 an ARIMA(1,0,1) model for the residuals is

shown to have the best fit based on computed values of Akaike's Infor-

mation Criterion, and by the agreement of estimated and predicted

coefficients in the ARIMA(1,0,1) model when the sampling rate changes

from 0.3 to 0.6 seconds between measurements. In Section 2.5 addi-

tional comments about specifying the ARIMA model as ARIMA(1,0,1) are

given.

2.1 Description of Farnia's Transient Temperature Data

2.1.1 Heat Conduction Model

The conditions in the heat conduction experiments performed by

Farnia (1976) are described in this section. The specimen was

Armco Magnetic Ingot Iron for DC Applications. The shape of the

specimen is a disk 3 inches in diameter and 1 inch in thickness.

25
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This disk is insulated on one face (and on the edge) and is heated

on the other face. The total duration of a test was about 40 seconds.

A known constant heat flux was applied during a nominal 15.3 second

interval at the start of the experiment.

The physical model to describe these experimental conditions is

the heat conduction equation in one dimension

.2;[ -.§__ ELLE

C a ‘ a x (k a x ) (2'1)

subject to the conditions

T(xso) = To (2.2.A)

k §—§19431 = 0 (2.2.3)

k g—{JL—tl = q0 H(t) H(s - t) (2.3)

The thermal properties of Armco iron at T0 for a small temperature

rise are two parameters in the model: k the thermal conductivity,

and c the product of the density and the specific heat at constant

pressure. The reader is referred to Table 2.2 for typical numeri-

cal values of k and c for the range of conditions covered in the

ten experiments conducted by Farnia (1976). The density is constant

and is taken by Farnia (1976, p. 37) as 490.71 lbm ft’3.

The estimates of k and c in this section of the dissertation

are obtained by minimizing the standard least squares cost function

n
2

1 15] (T(xj.t.) - 13(xj.t.)) (2.4)f(k.C) =

3

"
M
a

where Te is the experimental temperature, T is the calculated

temperature, and there are m sensors at locations denoted by xj,
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and there are n measurements per sensor taken at times denoted

by ti' The procedure used to establish Te and q0 are discussed

in the following sections. The method used by Farnia (1976) to

obtain his estimates of k and c did not involve Equation (2.4).

2.1.2 Experimental Conditions
 

Thermocouple millivoltages were processed by Farnia (1976) in

the following manner. The millivoltages from each thermocouple were

amplified and sent to an IBM-1800 computer. The computer program

to convert voltages to temperatures was developed by Van Fossen

(1973), who removed 60 cycle noise by averaging a voltage at a

given time with another voltage one-hundred-twenty-th (1/120) of a

second later. This voltage and a similarly processed voltage from

a thermocouple 180° away on the same face of the disk provided the

average voltage of two thermocouples and is called the output from

one sensor. The sensor voltage is converted to a temperature value

using regression equations for a J-type thermocouple. Farnia (1976,

p. 48) used four thermocouples per face on each of the two sym-

metrically placed disks: that is, four thermocouples on each of the

four faces. By averaging these sixteen thermocouple readings,

eight sensor readings were available for analysis: four from sensors

on the heated surface and four from sensors on the insulated surface.

The experiments by Farnia (1976) can be thought of as a single

disk with four sensors on its heated face and four sensors on its

insulated face. A three-tenths of a second sampling rate was

selected for the IBM-1800, and 144 temperature values were recorded
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during the 43 seconds of the experiment and pre-experiment and

post-experiment times. The temperature of the disk was approxi-

mately uniform at both the start and at the end of the 43 second time

period. Using thermocouple response values by the IBM-1800 and these

values were punched on cards by the IBM-1800. The data on these

cards were processed by computer program COND to yield values that were

aligned at the start and end of the experiment; these values were

used as the experimental temperatures.

Farnia (1976) found it necessary to correct the temperature for

each sensor by computer program COND because the same temperature

was not measured by thermocouples at the same surface despite the

accuracy of the calibration. The regression model he used to line

up the temperature at the beginning and end of the experiment was:

T*I 0‘1 T 81 TI

T"'11 = 0‘2 T 82 TH

where T* is the corrected temperature, T is the temperature recorded

by the IBM-1800, and the subscripts are I for insulated surface and

H for heated surface. The regression constants a], B]. 02, and 82

are solutions of the system of four equations

i’(TIB + THB) = 0‘1 + 81 T13

“T113 1 THB) = 0‘2 1 B2 THB

*(TIF + THF) = 0‘1 + B1 TIF

5(TIF + THF) = 0‘2 + 82 THF

where the subscript 8 denotes initial time and F denotes final time.
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Computer program COND determines four sets of a's and 3'5 with

one set for each pair of thermocouples. Because they are in adja-

cent columns of the IBM-1800 punched data cards, the pairs are

taken in the order with thermocouple numbers (1,5), (2,6), (3,7),

and (4,8). Each pair has one thermocouple at the heated surface

and one thermocouple at the insulated surface. This arrangement

facilitates the estimation of k and c by the integral method to be

described in the next section since one estimate of k and c is

obtained from each pair of sensors with the average value used as

the final estimate. This alignment of the sensors affects the pre-

heat-flux residuals in Section 2.3.4.

The data obtained by Farnia (1976) are summarized in Table 2.1.

There were ten cases with starting temperatures ranging from 80 to

360 degrees Fahrenheit, and two levels of the applied heat flux.

These two levels of the applied heat flux produced respective tem-

perature rises of 15 and 30 degrees Fahrenheit.

2.1.3 Farnia's Estimates of

the Heat Flux

 

 

The heat flux q(t) was not recorded in detail by Farnia (1976)

because the parameters were estimated with a method requiring only

the total heat flux. The estimation method was developed by Beck

and Al-Araji (1974). It is useful to briefly indicate the equations

used in this method. Assume that the surface of the disk at x = L

is insulated and the surface at x = O has a heat flux q(t). The

total heat input 0 is given by

0=$4010
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is assumed to be known but the detailed flux q(t) is not necessarily

known. The known value of Q is computed from a scalar equation

written as

0 = v2 (2 R A)"

where V is the measured voltage drop and A is the known area of the

face of the disk. The resistance of the heater is modelled as a

linear regression on the average of the initial and final temperature

R T 0‘3 T B3(TIB T THB T TIF T THF) '

The conductivity and specific heat are estimated from

L Q

2 I; (T(0,t) - T(L,t) )dt (2'5°A)
k:

 

- all

c ‘ L (i(x.e) - T(x.0)i) ° (2-5-3)

Farnia (1976) applied the heat flux, q(t), by a thin electrical

heater confined between the two identical Armco iron disks. Each

disk was three inches in diameter and one inch thick. Half the heat

generated by the heater went into each disk. After some initial

sensor temperatures were recorded, a constant voltage was applied

by a 0.0. power supply to the heater for approximately 15.3 seconds.

The resulting nearly constant heat flux can be described mathe-

matically as

q(t) = 40 H<t - ta) ”(ta - t) (2.6)

where qo is a constant, t is time, H is the unit step function, and

tE and tB are the times the heat flux ends and begins, respectively.
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The constant qo is obtained from the known value of Q by the expression

40 = (tE - tB)" 0

The duration of this heat flux was determined by an electric timer.

However, neither tB nor tE was recorded, and these times do not

necessarily coincide with times that the temperatures were recorded.

In Farnia's analysis these times were not needed while in computer

program PROPTY, the times tB and tE are needed. An estimate of the

time the heat flux ends is obtained by noting the time when the tem-

perature at the heated surface ceases to increase. An estimate of

the starting time, tB, isobtained from tE and the nominal heater time

of 15.3 seconds. A closer estimate of tB is obtained by using the

average initial temperature and the fact that initially the tempera-

ture increases as the square root of time.

2.1.4 Estimates of the Thermal Parameters
 

Table 2.1 displays estimates of the thermal properties k and c

from computer program COND. Approximately two levels of the applied

heat flux were used in the experiments. The symbol T indicates
min

the initial temperature of the specimen before the heat flux was

applied. A range of initial temperatures was used so that the data

are not replicated data. T indicates the temperature rise caused
rise

by the heat flux; notice that it is proportional to the heat flux.

A nonlinear estimation computer program with a standard least

squares cost function was also used to estimate the physical (thermal)

properties. The estimates of the physical parameters are tabulated
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in Table 2.2, with the ten cases in this table arranged in the order

of increasing initial temperature, T Table 2.3 gives the start-
min‘

ing time tB and ending time tE for the heat flux that were not recorded

by Farnia (1976) and had to be assigned. The thermal conductivity k

and the specific heat c were estimated using computer program PROPTY

developed by Beck at MSU. Also given in Table 2.2 are the differences

between the estimates from COND and PROPTY divided by the estimate

from PROPTY. The differences are small, being less than 0.5 percent

for k and 2 percent for c. Hence if these levels of accuracy for the

method of analysis are satisfactory, the equations used in COND

(Equations [2.5.A] and [2.5.8]) might be preferred over the least

squares method. Note, however, that the method used in COND does not

have an established statistical basis so that confidence intervals

can not be found.

2.2 Description of the Covariance Matrix Problem

In Section 2.2.1 the residuals are presented. In Section 2.2.2

a model that accounts for both contemporaneous and serial correlation

is outlined. Contemporaneous correlation is correlation between

residuals from different sensors at a specified time. Serial cor-

relation is correlation between residuals at a given sensor at adja-

cent times.

2.2.l Computed Temperature Residuals

The temperature residuals computed from the ten sets of experi-

mental data collected by Farnia (1976) are plotted in Figures 2.1

through 2.10 for the insulated surface and in Figures 2.11 through 2.20
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for the heated surface. Specific features of these plots are dis-

cussed when the residuals are modelled. Table 2.3 also indicates

the quality of the residuals that are displayed in Figures 2.1 through

2.20. The magnitudes of the residuals are not of the same magnitude

in all ten cases with the spread in the magnitudes of the residuals

falling roughly into three groups: 0.8, 1.6, and 3.2 degrees Fahren-

heit. These magnitudes are the basis of the quality index denoted

A, B, and C. The residuals at the insulated surface are smaller in

general than those at the heated surface. The smaller of the two

heat fluxes is associated with the smaller residuals. The quality

of the residuals is used as a factor in selecting the ARIMA model in

a well-executed experiment in Table 2.8.

Table 2.3

Parameters Assigned by Studying the Residuals

 

d
-

 

B E F .

Case sec sec sec Qual1ty

O 3.45 18.6 30.0 B A = A

1 2.7 18.0 27.9 B B = B

2 6.3 21.6 31.5 A A = A

3 4.8 20.1 30.0 B C = C

4 5.1 20.4 30.3 A A = A

5 5.1 20.4 30.3 A C = C

6 4.62 19.96 29.7 B C = C

7 6.17 21.53 31.2 A B = A

8 5.26 20.51 30.3 B C = C

9 5.7 21.0 30.9 B B = B
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2.2.2 General Structure of the

Error Covariance Matrix

The purpose of this section is to identify the general form of

the matrix V*, the covariance matrix for the errors. In real problems

the error covariance is unknown. One way of proceeding involves

using the residuals produced using standard least squares. Draper and

Smith (1966, p. 79) have stated concisely that "in practical problems

it is often difficult to obtain specific information on the form of

V* at first, and for this reason it is sometimes necessary to make the

(known to be erroneous) assumption V* = I and then attempt to discover

something about the form of V* by examining the residuals." The

assumption V* = I implies that a standard least squares cost function,

such as Equation (2.4), is used when the residuals are calculated.

The structure of the V* matrix is related to a Pm matrix and an

A* matrix defined below. For the j-th sensor an additive error at time

i is denoted ng) and for each sensor can be written as an n component

column vector w‘j). The white noise consists of normal identically

independently distributed errors denoted agj) for the j-th sensor at

the i-th time, and the white noise for each sensor can be written as

(1')
an n component column vector a A practical ARIMA error model for

serial correlation relates the additive error vector w‘J) to the white

noise vector a‘J) as

NO) = ,0) a0') (2.7)

where P‘J) is a square matrix of dimension n.

Equation (2.7) is an essential equation used elsewhere in the

dissertation. Equation (1.10) given previously assumes that P‘J) can
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be defined, although the matrix P‘j) was denoted L. Equation (3.22)

given later is a computational P‘j) matrix for ARIMA errors, although

the matrix P‘j) will be denoted L M'T.

The particular ARIMA(p,d,g) model appropriate for the heat con-

duction residuals determines the particular form of the P‘j) matrix.

When there is more than one sensor there can be contemporaneous cor-

relations. For multisensor data with m sensors the convention used is

to stack the w‘J) vectors by sensor as

  

F “I T' T

w(1) an)

we) ,0)

w* = . and a* = .

(m) (m)

1-" .1 _a .1  
The model for serially correlated multisensor data is

w* = Pm a*
(2.8)

where Pm is a square matrix of dimension mn with the matrices

P‘J) as its diagonal components

PP(T) 0 . 0 _T

0 9(2) . 0

Pm = . . . 0

L0 0 . P‘mi‘  
The error covariance matrix is denoted W*, equals cov(w*), and

satisfies

_ t
w* - Pm A* Pm (2.9)
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The contemporaneous correlation defined as the correlation between

different sensors is written as

A* = E(a* a*t) (2.10.A)

The matrix A* is square and symmetric and has dimension mn.

The matrix A* has the general form

A11 A12 Alm

A21 A22 A2m
A* =

(2.10.8)

Am1 Am2 ° Amm
_ _  

with each component matrix Aij being a square matrix with dimension n.

Each component matrix A is diagonal because by definition white

13

noise is not serially correlated. It is convenient to assume that

the contemporaneous correlation has homoscedasticity defined as con-

stant variance for Aii' This is discussed further in Section 4.5.

Thus, in a given Aij the diagonal entries are all assumed to equal

the same constant.

In order to be practical, the combined model for serial and con-

temporaneous correlation must only involve a few parameters. Assum-

ing that each sensor obeys the same order ARIMA(p,d,q) process then

there are a total of (p + q) m + m + 5 (m2 - m) coefficients from

the ARIMA process in the matrix W*. This can be bounded by two con-

siderations. First, Box and Jenkins (1970) suggested that usually

the sum p + q is two or less. Second, Farnia's data only have eight

sensors, m = 8, although sixteen thermocouples were used. Thus there

can be as many as 52 different parameters in the matrix W*.
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2.3 Observed Structure of the Covariance Matrix

A reasonable approximation to the matrix W* was investigated as

follows. Whether the serial correlation coefficients are zero is

tested in Section 2.3.1 and whether they are unity is tested in

Section 2.3.2. Contemporaneous correlations are represented and

estimated for the pre-heat-flux data in Section 2.3.3. It is con-

cluded that the matrix W* is dominated by serial correlation and that

instead of the 52 different coefficients suggested in Section 2.2.2

only 3 different coefficients are needed.

In Section 2.3.4 a calibration problem related to the randomness

of the white noise is discussed.

2.3.1 Durbin-Watson and Schmidt Tests
 

The Durbin-Watson test statistic for the presence of serial cor-

relation discussed by Kmenta (1971) is

d=2(1‘¢])

where 0] is the coefficient in the ARIMA(1,0,0) model computed from

the Yule-Walker equations given as Equation (A.7). In a test of

the hypothesis of independent errors versus the alternative of posi-

tive first order autocorrelation (with n = 90 and the 0.01 level)

the rule is

(1) reject if d < d 1.47,
L

(2) do not reject if d > dU 1.56,

(3) do neither when dL< d < dU.

From Table 2.4 the average value of 0] was estimated to be 0.772.

Thus the statistic is
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d = 2 (1 - 0.772) = 0.456.

Since this value is less than 1.47 the hypothesis of independent

errors is rejected in favor of the hypothesis of first order autocor-

related errors. The hypothesis is also rejected for each of the

individual sensors since the largest value of d is 0.82.

A Durbin-Watson type procedure for second order autocorrelation--

i.e., ARIMA(2,0,0)--was developed by Schmidt (1972). The test uses

two statistics; one is

d1 = 2(1 - 0])

where 0] is the Yule-Walker estimator for the coefficient in the

ARIMA(1,0,0) process, and the other statistic is

42 = 2(1 - 42)

where 02 is the Yule-Walker estimator for the second coefficient in

the ARIMA(2,0,0) process. The test statistic used by Schmidt (1972)

implicitly assumes the coefficients have equal order of magnitudes

and it is

6=d1+d2

In a test of the hypothesis of independent errors versus the alterna-

tive of second order autocorrelation (with n = 90 and the 0.01 level

of significance) the rules are

(l) reject if 6 < dL = 3.18,

(2) do not reject if 6 > dU = 3.35,

(3) do neither when dL < 6 < d”.

From Table 2.4 the estimates of 0] and 02 are 0.772 and 0.306, respec-

tively. Hence the test statistic is
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6 = 2(1 - 0.772) + 2(1 - 0.306) = 1.844.

Thus, the hypothesis of independent errors is rejected and the

alternate hypothesis of second order autocorrelation is accepted.

The hypothesis of independent errors is also rejected for each sensor

because the largest value of 6 is 2.192.

Table 2.4

Yule-Walker Estimates for Case-0 Heat Conduction Residuals

 

ARIMA(1,0,0) Process ARIMA(2,0,0) Process
 
 

 

Sensor

0.613 0.0098 0.435 0.291 0.0089 1

0.834 0.0161 0.498 0.403 0.0135 2

0.918 0.0318 0.681 0.258 0.0297 3

0.696 0.0210 0.446 0.359 0.0183 4

0.782 0.0168 0.531 0.321 0.0151 5

0.919 0.0157 0.774 0.157 0.0153 6

0.590 0.0180 0.324 0.451 0.0144 7

0.831 0.0282 0.659 0.208 0.0270 8

Average Average

0.773 0.544 0.306

 

2.3.2 Cumulative Error Test
 

Cumulative errors are the special case of first order autoregres-

sive errors with 0 having the value of unity. When 0 is close to unity

the ARIMA(1,0,0) errors may be approximated as being cumulative errors.

Some authors advocate describing errors by cumulative error models

from considerations of the nature of the physical process and/or the

measuring device. Mandel (1957) postulated that an extent of reaction

for surcose measured on a fixed specimen has errors that are cumulative.
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Heuvel et a1. (1976) postulated that the integral number of counts in

an x-ray diffraction experiment are cumulative and used the procedure

proposed by Mandel (1957) and improved by Beck (1974).

Mandel (1964) suggested there are two types of errors: cumula-

tive errors associated with "process" errors and other "analytical"

errors. An examination of the least squares residuals could be used

to decide whether the process errors dominate so that a cumulative

error model is appropriate. However, the analysis by Anderson (1975,

p. 142) showed that when white noise analytical errors and cumulative

process errors are both present from more than one source the sum of

these errors is an ARIMA(p,d,q) process. Thus, unless process errors

are the only errors it is unlikely that the observed errors will be

simply cumulative. This is discussed further in Section 2.5.

A simple screening method to determine if cumulative errors

dominate is to use a hard limit estimator of the coefficient 0 in

an ARIMA(1,0,0) process. A hard limited process Z has two states

that are assigned numerical values 0 and 1. These are related to a

continuous valued wi-series by the rule:

(1) if wi is non-negative then Z1 1,

(2) if wi is negative then 2. 0.
1

For the ARIMA(1,0,0) process in Equation (1.17) Kedem (1976) derived

the hard limit estimator of 0 as

0 = sin(n(c - g) ) (2.11)

where
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2 i 1-] - 2 fig} 21 + Z.l + 2n + (n-l)

n - 1

Let an excursion of the w-series above the axis be called a hump.

For example, there are two humps in the series (01110110) and for

this series the first two terms in the numerator of the estimator of

c equals four. In general, the first two terms in the numerator is

twice the number of humps; thus, the parameter c can be estimated by

inspection of the plotted w-series. This evaluation procedure was

applied to the heat conduction residuals in Figures 2.1 and 2.11 from

Beck and Arnold (1977, p. 408). Because the sample size in these

plots is relatively large (n = 85), the hard limit estimator is in

close agreement with the Yule-Walker estimates from a numerical ver-

sion of the same data. The estimate of 0 is about 0.86 for both

estimators in Table 2.5. For this value of 0 the residuals can be

said to be neither independent nor cumulative. The estimates of 0

in Table 2.5 are somewhat larger than those in Table 2.4 because the

mean was assumed to be zero for the estimates in Table 2.5 while in

Table 2.4 it was estimated.

2.3.3 Contemporaneous Correlation Test

The general structure of the contemporaneous correlation matrix

A* is defined in Equation (2.10). In order to simplify the identi-

fication process several assumptions are made. First, in order to

obtain a simple model only the pre-heat-flux residuals are modelled.

Thus, the thermal model is the constant mean temperature which is
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Table 2.5

Hard Limit Estimates for Case-0 Heat Conduction Residuals

 

 

0 Number of 9

Sensor Yule-Walker Humps Hard-Limit

1 0.8602 4 0.9488

2 0.9291 6 0.9096

3 0.8033 11 0.7071

4 0.6748 12 0.6548

5 0.9421 8 0.8005

6 0.8987 7 0.8600

7 0.9425 2 0.9841

8 0.9230 3 0.9689

Average Average

0.8717 0.8543

 

described by Equation (1.15) with 0 equal to zero. Second, because

the sensors are identical, a common set of coefficients is used in

the contemporaneous correlation model. These common coefficients are

in a matrix denoted R that permits the contemporaneous correlation

matrix to be written as the following kronecker matrix product

_ 2
A* - 0 Rm # In. (2.12)

In Equation (2.12) the subscript on the matrix R indicates there are

m sensors, the subscript on the identity matrix I indicates there

are n measurements per sensor, and the special symbol # is used to

denote the kronecker matrix product whose properties are discussed

by Theil (1971).

,Two forms for the Rm matrix will be considered. First, the

matrix is assumed to depend on five coefficients with the matrix

written as
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a

c a symmetric

c c a

R = c c c a

8 d d d d b (2.13.A)

d d d d e b

d d d d e e b

d d d d e e e b

___ .4

For each experimental case, the R8 matrix represents the correlation

between the residuals of different sensors. The entries in the R8

matrix are ordered so that the first four are for thermocouples at

one face and the last four are at the other surface. Thus, the coef-

ficients have the following expected values

a = E( w§3‘ WSJ) ) for j = 1.2.3.4

b = E( wgJ‘ wa‘ ) for j = 5,6,7,8

c = E( wSJ) wfk‘ ) for j,k = 1.2.3.4 (2.13.8)

d = E( w13‘ wsk) ) for j = 1.2.3.4 and k = 5,6,7,8

e = E( WEJ) wgk‘ ) for j,k = 5.6.7.8

The sample means are used as estimators. Note that unlike serial

correlation they have expected values that only depend on the cur-

rent time index i. The ratios of these average values can be used

to define the contemporaneous correlation coefficients which can be

used to assess the importance of contemporaneous correlations.

Average values can be found from the values displayed in

Table 2.6. These values are a = 0.062, b = 0.064, c = -0.016,

d = -0.006, and e = -o.017. Because rd = d (a b)‘* this yields

rd = -0.0095 for the correlation between sensors on opposite sur-

faces. Because rC = c a"1 this yields rc = -0.25 for sensors
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located at the insulated surface. Because re = e b"1 this yields

re = -0.27 for sensor located at the heated surface. If there

were no contemporaneous correlation these r values would be zero.

If there were significant contemporaneous correlation these r values

would have absolute values near unity. Because the r values are

relatively small the contemporaneous correlation is not significant

and can be ignored.

The estimates of c. d, and e in Equation (2.13.A) may be small

because average values are computed and the elements are not neces-

sarily of the same sign. The proper signs can be found by consider-

ing the cross product estimator

n . .

= (1) (J)
5.. n 2 wk wk

where Si is the element in the i-th row and the j-th column of the

3

matrix S. The matrix S has the same dimension as the matrix Rm.

The matrix S is called a biased but good estimator by Theil (l97l.

p. 32l). Using this information about the signs. the second R8

matrix was written as

  

a ‘l

f a symmetric

-f -f a

_ f f -f a
R8 - 0 0 0 0 b (2.l3.B)

0 0 0 0 f b

0 0 0 0 -f -f b

0 0 0 0 f f -f b

Table 2.6 displays the estimates of the element f for the

ten cases. Because rf = f (a b)'3 this yields rf = 0.486 for an

upper bound on the contemporaneous correlation. Since rf is small
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the R8 matrix in Equation (2.12) is assumed to be the identity

matrix of dimension m; i.e.,

R = I . (2.13.0)

2.3.4 Normality Test
 

Not all numbers occur in the less significant digits of the

temperature measured by a given sensor. Thus, the initial residuals

do not appear to be from a normal distribution. It is customary to

have the vector a used in Equation (2.7) and in Equation (2.8) to

have a normal distribution.

An examination of the pre-heat-flux residuals, for instance.

for case 3 data indicated a displacement and alignment by thermo-

couple pairs by computer COND and a step-like pattern with occasional

flat spots in the residuals. This step-like pattern probably occurs

because the ten volt signal was digitized to an accuracy that yielded

temperature values of approximately 0.02 degrees Fahrenheit. Thus.

for a given sensor the processed data tend to have only either odd

or even digits in the hundredths place. This truncation occurred

in the analog to digital conversion of the measured temperature; i.e.,

as the thermocouple milli-voltage is converted to a numerical value

by the IBM-l800 computer for storage in the disk memory. Barballa

(1970) analyzed the mapping of an analog signal to a binary coded

word using a ladder transfer curve. Because there are limited

digits available in the ladder transfer curve, truncation occurs.

The residuals were tested for normality by the Kuiper test.

The Kuiper test statistics for the sample size twenty. n = 20,
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are given in Table 2.7. Using Louter and Koerts (l970). the criti-

cal point is 0.359 at the 0.01 level of significance. Thus the

hypothesis of normality is rejected for four thermocouples and

accepted for four thermocouples. The cases where the hypothesis is

rejected seem to have flat spots in the residuals. Hence the non-

normality might not exist if the temperatures were read more accu-

rately than 0.02 degrees Fahrenheit. The non-normality will be

considered as a calibration problem rather than as a problem of the

distribution being non-normal.

2.4 Serial ARIMA Models for the Covariance Matrix
 

In Section 2.3 it was shown that the model for the covariance

matrix of the errors. W*. can be approximated by considering only

the serial correlations. This section determines the values of the

order parameters p. d, and q in the ARIMA(p,d,q) model for the serial

correlation. These values are determined by a criterion denoted AIC

that has emerged by general consensus of the workers in the field as

the accepted identification criterion. The AIC criterion has replaced

the procedure of examining the pattern of the estimated autocorrela-

tion and partial autocorrelation and the associated Q-statistic used

by Box and Jenkins (1970, p. 291).

2.4.1 ARIMA Model Specification

by Akaike's Criterion
 

The criterion AIC was introduced by Akaike (l972) and is commonly

referred to as Akaike's Information Criterion. The AIC criterion

is based on Kullback discrimination that is advocated by Beck and
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Arnold (1977, p. 467). The form of the criterion depends on the

number of parameters that are estimated in the ARIMA model. When

the mean is estimated the criterion is written as

+ 2
a = n ln(o ) + 2 n (n - d).1 (p + q + 2) (2,14)

where n is the sample size. 02 is the white noise variance. and

the number of estimated parameters in the ARIMA(p,d,q) process is

p + q + 2. The numerical value two in the number of estimated

parameters is used because both the mean and variance are estimated.

The criterion a+ was used successfully by Akaike (l972) to identify

the order of four time series in the literature that are considered

to be test problems. and was also successfully used by Ozaki (l975)

for the test series given in Box and Jenkins (1970) as series-A

through series-F.

Because the criterion a+ is used for statistical time series,

the correct order is not identified for every realization of a

series generated from a known ARIMA(p,d,q) process. Shibata (l976)

investigated the random behavior of the values estimated for a+ in

finite samples by a Monte Carlo study. The results for a true

ARIMA(1,0,0) process with candidate processes having values of p

from zero through ten were that the order identified most often is

the true order. Thus, for the heat conduction data it is reasonable

to expect that the correct ARIMA process can be identified by

analyzing several realizations but might not be correctly identified

from one realization.

Two adjustments were made in Equation (2.l4) so that it would

perform well for the heat conduction residuals. First, the mean
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is zero in the ARIMA(p,d,q) model for the heat conduction residuals

specified by matrix Equation (2.8); therefore. the quantity p + q + 2

is changed to the quantity p + q + l. Second. Jones (l975) showed by

a Monte Carlo study that unless the estimator of 02 is unbiased too

high an order of the ARIMA(p,0,0) process is selected as best;

therefore, an adjustment factor is included since the estimator of

2
o in Appendix A is biased. Hence the AIC criterion used in this

dissertation is

n ln(n c 02) + 2 n (n - d)" (p + d + 1) (2.15)9
.
!

l
l

(
'
1

I
I

n - l - p - q

and where o2 is a biased estimator computed by the procedures in

Appendix A. Appendix A also contains algorithms for computing the

coefficients (the 0's and 8's) in the ARIMA models in order to

insure that the models ranked using Equation (2.l5) are both sta-

tionary and invertible. The tests for stationarity and inverti-

bility are based on seldom-used equations developed by Wise (l956).

When the candidate process did not have a moving-average component,

the coefficients were solved with an algorithm developed by Pagano

(l972) that reduces the round-off and truncation error. When the

candidate process had a moving-average component an analytical solu-

tion developed by the author as Equations (A.2l) and (A.22) was

used. An analytical solution is better than a numerical solution

procedure because the nonlinear equations can have more than one
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root and the roots are not necessarily real valued when the candi-

date process does not fit the data.

The AIC criterion was used on several groupings of the residuals:

by experiment. by surface. and by sensor. Table 2.8 displays esti-

mates of a++ computed to find the best ARIMA model by experiment; no

model is consistently best and the values of a++ are approximately

the same. Although the a++ criterion does not clearly identify the

best model. it does eliminate from consideration most of the forty-

five models considered as candidate models. Because the highest order

process considered is ARIMA(4.2.2) there are forty-five candidate

models. The elimination from consideration of most of the models is

illustrated by comparing the estimates of a++ in Table 2.8 with the

typical value for white noise of 600, and noting that several candi-

date models had a value of the a++ criterion less than that for white

noise. A best model does not emerge in the models displayed in

Table 2.9 for the 336 residuals at the insulated surface. nor does

one emerge in the models displayed in Table 2.l0 for the heated

surface.

In the data gathered by Farnia (l976) a single predetermined

sampling rate is used and for this single sampling rate the lack of

uniqueness in the best model in Tables 2.8 through 2.10 is good since

the most easily computed model in the top six can be used as the cor-

rect model. The estimates of the coefficients in the top six models

are not equally stable. as shown in Table 2.ll. The standard devia-

tions (s.d.) for the coefficients of 0 and e are smallest for the

ARIMA(l.0.l) and ARIMA(0,l.l) models. When the residuals are
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Table 2.8

Top Six ARIMA Models by Experiment

 

++

a

-2901.

-2895.

-2891.

-2887.

-2864.

-2860.

++

a

-2834.

-2830.

-2829.

-2816.

-2798.

-2764.

++

a

-2879.

-2874.

-2849.

-2825.

-28l9.

-2805.

Case 0

Case 4

Case 6
 

++

-2189.

-2185.

-2182.

-2182.

-2181.

-2180.

Case 8
 

++

a

~2208.

-2203.

-2203.

-2202

-2202

-2201

29

82

76

.92

.84

.83

 

 

 

 

 

Case l

a++ ARIMA

-2348.l3 2.0.2

-2233 82 1.0.1

-2228.29 1.0.2

-22l8.82 2.0.0

-2188.26 3.1.0

-2l80.33 0.1.1

Case 3

6H ARIMA

-2595.86 3,1,1

-2534.87 1.1.1

-2534.36 0,1,2

-2530.40 2.1.0

-2528.53 0.1.1

-2527.40 3.1.0

Case 5

61+ ARIMA

-2422.12 0.1.1

-24l8.25 2.1.1

-2414.03 1.1.1

-2413.95 0.1.2

-24l2.57 2.1.0

-2409.84 3.1.0

Case 7

61+ ARIMA

-236l.ll 2.1.1

-2290.4o 0.1.1

-2276.13 1.1.1

-2276 02 0.1.2

-2276.00 2.1.0

-2275.86 1.1.0

Case 9

a++ ARIMA

~2546.83 2.1.1

-253l.60 4.1.1

-25ll.28 2.1.2

-2503.65 0.1.1

-2475.27 3.1.1

-2460.07 1.1.1
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Table 2.9

Top Six ARIMA Models at Insulated Surface

Case 0 Case

a++ ARIMA a++ ARIMA

-1458.21 0.l.l -1362.03 2.1.1

-l453.33 l.0,l -l333.33 0,1,1

—1443.21 1.0.2 -l305.08 l,l,l

-1437.30 2,0,0 -1304.71 0.1.2

-l435.36 l,l,l -1294.40 l.l.2

-l434.75 0.1.2 -1285.85 3.1.0

Case 2 Case

a++ ARIMA a++ ARIMA

-1507.39 1.0.2 -1338.37 0,1,1

-1505.95 l.0,l -l330.85 3.1.0

-1450.74 2.0.0 -1326.76 l,l,l

-1446.96 l,l,l -l326.54 0.1.2

-l446.29 0,1,2 -1324.6l 2.1.0

-l430.47 3,190 '13]7.72 1,190

Case 4 Case

a++ ARIMA a++ ARIMA

-l467.84 l,l,l -l4l6.34 l.l.2

-l467.76 0.1.2 -1399.50 0,1,2

-l460.96 0.l.l -1372.19 3.1.0

-l458.55 2,1,1 -1357.93 2,1,0

'1433.80 39130 '1350.26 09],]

-l429.38 4,l.l -1339.49 1.0.2

Case 6 Case

a++ ARIMA 61+ ARIMA

-1413.91 l,l,l -1472.ll l.l.2

-l410.75 0.1.2 -l452.45 l,l,l

-1396.49 3.1.0 -l439.72 0,1,2

-l386.ll 0.l.l -1429.l6 3,1,0

-l381.93 2.1.0 -1410.68 2.1.0

-1366.69 4,l.l -1399.76 1,0,2

Case 8 Case

a++ ARIMA a++ ARIMA

‘1404.26 19192 '1447.61 0:191

-1399.99 2,1,2 -l428.80 2,1,1

-1390.18 3,1,0 -l405.34 l.l.2

-l383.12 2,1,0 -l403.15 l,l,l

-1374.64 0.l.l -l401.98 0.1.2

-1350.80 1,1,0 -1400.83 2.1.0
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Table 2.10

Top Six ARIMA Models at Heated Surface

 

 

 

 

 

 

Case 0

a++ ARIMA

-l481.96 l,l,l

-l469.60 0.1.2

-1462.10 1.1.2

-l456.ll 3.l.0

-l461.04 2.1.0

-l450.51 2,1,2

Case 2

a++ ARIMA

'1369.05 1’19]

-l367.61 0.1.2

-l357.00 2.1.1

-1340.66 1.0.1

-1338.24 3.1.0

-1336.93 2.1.0

Case 4

a++ ARIMA

-l447.07 1.1.1

-l440.01 0.1.2

-l420.67 l.l.2

~1412.25 3.1.0

-l407.4l 09],]

-l407.10 2.1.0

Case 6

a++ ARIMA

-98l.27 0.l.l

-980.45 1.1.0

-977.65 1.1.1

-977.65 0.1.2

-977.65 2.1.0

-974.87 l.l.2

’Case 8

a++ ARIMA

-1013.41 2.1.2

-997.73 0.1.2

”997.16 2:100

-994.38 l.l.2

-99l.30 0.l.l

-991.27 1.1.0

++

a

-1033.

-1032.

-1029.

-1029.

-1028.

-1027.

Case

Case
 

a

-1229.

-1228.

-1227.

-1227.

-1226.

-1225.

Case
 

++

a

-ll39.

-1133.

-ll30.

-ll30.

-1l30.

~1129.

Case
 

++

a

-1051.

-1051.

-1050.

-1047.

-1047.

-lO47.

++

a

-1151.

-1123.

-1122.

-1122.

-1121.

~1121.

Case
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Table 2.11

Stability of ARIMA Coefficients by Experiment for 0.3 Second Data

 

Case

0
4
0
k
O
C
D
V
C
h
m
-
w
a
—
‘
O

(
D
D
)

<

Case

Q
L
D
\
D
m
V
O
S
U
'
l
-
fi
a
w
N
—
‘
O

M
O
! <

Case

D
A
D
Q
m
V
O
S
U
'
l
-
w
a
-
H
O

m
m

<

0

.973

.979

.992

.985

.985

.990

.978

.965

.978

.984

.981

.008O
O
O
O
O
O
O
O
O
O
O
O

0.157

-0.005

-0.045

0.965

0.070

-0.050

-0.013

-0.170

-0.586

-0.138

-0.019

0.388

0

0.550

0.436

0.866

0.384

0.725

0.404

0.305

0.369

0.179

0.529

0.475

0.202

ARIMA(1,0,1)

0.

.413

.742

.292

.587

.343

.283

.353

.289

.529

.429

.152

ARIMA(1.1,1)

O
O
O
O
O
O
O
O
O
O
O

0
0
0
0
0
0
0
0
0
0
0
0

0

459

0

.723

.431

.827

.481

.803

.355

.293

.200

.412

.394

.0410

.3603

ARIMA(0.1,2)

92

.080

.002

.041

.036

.048

.021

0.0172

.0357

.0147

.0262

.0159

.0320

.0421

.0376

.0589

.0284

.0309

.01370
0
0
0
0
0
0
0
0
0
0

0.0161

.0374

.0139

.0218

.0130

.0261

.0370

.0322

.0359

.0244

O
O
O
O
O
O
O
O
O
O
O
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0
0
0
0
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0 N O
\

—
l
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U
1

0

0
1
0
1

<

0
.
4
.
0
s
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m
c
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w
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—
I
o

ARIMA(0,1,1)

2

0 O

473 0.0174

438 0.0373

N.V. N.V.

365 0.0221

632 0.0143

416 0.0259

307 0.0370

400 0.0316

199 0.0361

.609 0.0229

.4266 0.0272

.1362 0.0087

ARIMA(1,1,0)

10 02

.387 0.0183

.367 0.0385

.515 0.0180

.322 0.0224

.452 0.0159

.355 0.0266

.280 0.0373

.345 0.0323

.192 0.0361

.444 0.0252

.366 0.0271

.092 0.0085

ARIMA(1,0,0)

9 02

.898 0.0202

.933 0.0411

.838 0.0211

.969 0.0283

.895 0.0205

.976 0.0356

.956 0.0452

.910 0.0415

.953 0.0633

.918 0.0354

.925 0.0352

.041 0.0135O
O
O
O
O
O
O
O
O
O
O
O
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considered by sensor the number of trials is increased from ten to

eighty but the sample size per trial is reduced to eighty-four. For

the ten experiments with eight sensors per experiment the number of

trials is large enough to gain information by tabulating the frequency

that a particular ARIMA model is identified as being best. In

Table 2.12 the ARIMA(0.1.1) model occurs most frequently and is the

best model. although the estimates of the coefficients are somewhat

inaccurate because there are only eighty-four residuals per sensor.

Thus, to select the ARIMA(l.0.l) model as best involved not

only the AIC criterion but also the stability of the estimated coef-

ficients and the frequency the models are identified as best when

there are many time series. Combining the results from Tables 2.8

through 2.12 yields the best model as ARIMA(1,0,1) with the follow—

ing values for the coefficients: 0 = 0.981. e = 0.429, and 02 =

0.031.

2.4.2 SamplinggRate and

ARIMA Model Specification

 

 

The order of an ARIMA process varies with the sampling rate.

Wei (1977) and MacGregor (1977) showed that an ARIMA(p,d,q) model

becomes an ARIMA(p.d.q*) model when only every h-th value of the

original ARIMA(p,d,q) process is used. The change in the order of

the moving-average component is given by the integer part of a combi-

nation of the orders in the original model. This combination is

written as

q* = int(p + d + (q - p - d) h“) (2.16)
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If the original process. for example. is ARIMA(1,0,1) then the pro-

cess when every h-th point in the series is used remains ARIMA(1,0,1).

It is important to investigate the change in order of the

ARIMA(p,d,q) model with sampling rate because sampling rates other

than 0.3 seconds between measurements can be used on the IBM-1800

computer and data acquisition system. The best sampling rate depends

on the covariance matrix for the physical parameters which contains

the error covariance matrix W*. The matrix W* is determined by the

ARIMA(p,d,q) model and its coefficients.

The ARIMA models identified as best at a sampling rate of 0.3

seconds between measurements are shown in Table 2.12. and are based

on eighty-four measurements per sensor. The ARIMA models identified

as best at a sampling rate of 0.6 seconds between measurements are

shown in Table 2.13. and are based on forty-two measurements per

sensor. In both cases the residuals are from the standard least

squares estimates of the physical parameters k and c. The same time

period was analyzed in both studies with every other residual point

used in the 0.6 second study. As expected when the sampling rate

increases from 0.3 seconds to 0.6 seconds. more white noise models

are identified by Equation (2.15) as being best. In both tables the

most frequently selected model is ARIMA(0.1.1), which occurs nineteen

times out of eighty cases in Table 2.12 and thirty-one times out of

eighty cases in Table 2.13. Because an ARIMA(0.l.l) model remains an

ARIMA(0,l.l) model when the sampling rate changes. the ARIMA(0.l,l)

model is identified as having the best representation of the data.

Because the sample size is small for the analysis in both Table 2.12
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and Table 2.13. the ARIMA(0,l,l) model could be an ARIMA(1,0,1) model

with a value of the autoregressive coefficient 0 close to unity.

2.4.3 Sampling Rate and

ARIMA Coefficients

 

 

At both sampling rates considered in Section 2.4.2 the best

model was ARIMA(l.0.l). In this section the sampling rate is changed

and the associated change in the coefficients in the ARIMA(1,0,1)

model is investigated. The change with sampling rate of the

ARIMA(1,0,1) coefficients is predicted by Equation (2.18).

Equation (2.18) follows directly from Equations (A.6) and (A.7)

in MacGregor (1976) and Equation (3.4.7) in Box and Jenkins (1970).

The notation for the ARIMA(1,0,1) series when every point is used

- ~ 2
w. — D w1_] + a1 - 6 a1._1 where 81 ~ N(0,o )

while for the series sampled at every h-th point the notation used

for the ARIMA(1,0,1) model is

w. = 0h w.J J_] + aj - a aj_] where a. 2 N(0.82)

3

with h an exponent. The moving-average parameter and white noise

variance using every h-th value are found by equating the theoretical

autocovariance and are determined by the pair of equations

1 - Za 0“ + a 32 =1—200+0

1-02“ 1-07

 

2 2 2

o (2.18.A)

9h + a 0 - a 0 - a 2 = 0 +.fl 92 ' g g2 ' 9 02 (2.18.B)

1 - 0
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The reference values of e and 02 become the a and 32 values predicted

by Equation (2.18) while the reference value 0 becomes the predicted

value 0“.

Table 2.14 contains estimates of the coefficients in the

ARIMA(1,0,1) and ARIMA(0.l,1) models when the sampling rate is 0.6

seconds between measurements. Table 2.15 contains predicted coef-

ficients for the ARIMA(l.0.l) model for 0.6 seconds between measure-

ments that are obtained by using Equation (2.18) on the estimates

given in Table 2.11. The agreement between the estimated values in

Table 2.14 and the predicted values in Table 2.15 is good. This

gives additional support to the conclusion in Section 2.4.2 that the

best fitting model is ARIMA(1,0,1).

2.5 Investigation of the ARIMA(l.0.l)

Model and Residuals
 

The standard deviations in Table 2.11 are high for the

ARIMA(1,0,1) model, especially for the moving-average coefficient and

the white noise variance. In another problem. Beck and Arnold (1977.

p. 263) suggested that the variance may have a magnitude related to

the magnitude of the heat flux. Hence the ARIMA(1,0,1) coefficients

were averaged using the two levels of the heat flux recorded in

Table 2.1. At the low heat flux the parameter estimates are 0 =

0.980. e = 0.534 and o2 = 0.023 while at the high heat flux the

parameter estimates are 0 = 0.982, e = 0.324, and 02 = 0.039. Although

there are only a few experiments on which to base a conclusion. the

magnitude of 0 and 02 seems to depend on the applied heat flux while

0 does not.
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Table 2.14

Stability of ARIMA Coefficients by Experiment at 0.6 Seconds

 

 

 

ARIMA(l.0.l) ARIMA(0.1.1)

Case 0 0 02 Case 0 o

0 0.940 0.303 0.0229 0 0.402 0.0225

1 0.962 0.404 0.0599 1 0.507 0.0632

2 0.951 0.449 0.0191 2 0.503 0.0193

3 0.967 0.139 0.0408 3 0.252 0.0323

4 0.975 0.521 0.0198 4 0.667 0.0153

5 0.978 0.212 0.0508 5 0.319 0.0395

6 0.959 0.220 0.0677 6 0.273 0.0638

7 0.945 0.315 0.0510 7 0.336 0.0480

8 0.963 0.159 0.0678 8 0.687 0.0456

9 0.959 0.358 0.0409 9 0.433 0.0346

avg. 0.960 0.308 0.0437 avg. 0.438 0.0384

Table 2.15

Predicted ARIMA(1,0,1) Coefficients at 0.6 Seconds

 

 

Case 0 e 02

0 0.947 0.273 0.0191

1 0.958 0.211 0.0396

2 0.984 0.649 0.0159

3 0.970 0.036 0.0283

4 0.970 0.445 0.0176

5 0.980 0.114 0.0352

6 0.957 0.021 0.0452

7 0.931 0.124 0.0410

8 0.957 0.031 0.0634

9 0.968 0.369 0.0316

avg.* 0.962 0.234 0.0343

 

*The average is the predicted average.
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Anderson (1975) investigated whether the fitted ARIMA model can

be realized from a linear combination of ARIMA processes. This is

called the interpretation step in ARIMA modeling. If Equation (2.19)

is satisfied then an ARIMA(1,0,1) model with particular coefficients

can be viewed as being generated as the sum of values generated by

an ARIMA(1,0,0) process and the values generated by a white noise

process. The white noise process is an ARIMA(0,0,0) process. The

condition that all the variances in the component processes and the

sum of the component processes are positive) is used to obtain the

inequality given by Anderson (1975) as

0 s 0 0" S (1 + 02) (1 + 02)" (2.19)

Equation (2.19) is satisfied at both the low heat flux ARIMA(1,0,1)

model where 0 = 0.980 and 0 = 0.534 and at the high heat flux ARIMA

(l.0,l) model where 0 = 0.982 and e = 0.324. Therefore, one can

view the ARIMA(1,0,1) process as the sum of two processes that have

a physically reasonable interpretation. Before the heat flux is

applied. the measured temperature is a random fluctuation about the

constant mean temperature; hence. the residuals are white noise.

After the heat flux is applied. the temperature is sampled faster

than the duration of small factors "not-fully-accounted-for" that

can be described as ARIMA(l.0.0) processes. The use of an ARIMA

(0,1,0) model for the "not-fully-accounted-for" factors is discussed

in Section 2.3.2.

By analyzing the residuals from standard least squares. an

ARIMA(l.0.l) model was selected in Section 2.4 to represent the
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residuals. A short discussion is required for the fact that the

residuals almost always show serial correlation even when the true

errors possess none; see for example Bard (1974. p. 248) and Draper

and Smith (1966. p. 94).

It is easily shown that for the linear model with independent

errors

y = X B + w (2.20)

that the residuals

e = y _ X b
(2.21)

are related to the errors, w. by

e = M w (2.22)

where M is the idempotent matrix

M = I - x (xt x)"1 xt.

In Equation (2.21) b is the least squares estimator for B in

Equation (2.20). Because M is both idempotent and not the identity

matrix, M is singular. Therefore w can not be computed from a

knowledge of M and e. However. Theil (1971, p. 271) stated that M

is its own Moore-Penrose generalized inverse. Hence. to gain insight

on the relationship between the errors and the residuals for the heat

conduction problem a mapped residual vector w# is defined as

w# = M e. (2.23)

If the residuals e are not changed greatly under the idempotent

mapping in Equation (2.23). then it is reasonable to assume that

the errors mapped by Equation (2.22) are not changed greatly either.
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Typical residuals and mapped residuals from case-0 data are

shown in Figures 2.22 and 2.23. A subjective judgment is required

on whether the mapping has greatly changed the residuals. The shape

of the curve does seem to be shifted toward the zero axis. The

fluctuations along the curve seem to be unchanged. Based on Equa-

tion (2.11). these two observations indicate that if the errors are

ARIMA(l.0.l) then the residuals are also ARIMA(1,0,1) with the coef-

ficient 0 being smaller than its value for the errors. The effect

of mapping by Equation (2.23) and hence implicitly by Equation (2.22)

seems to be small enough. however, that the identification of the

pr0per ARIMA model is not affected by using residuals rather than by

using a more complicated procedure involving an estimate of the

errors .
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CHAPTER III

ESTABLISHING THE CONFIDENCE REGION

In this chapter statistically valid confidence regions are

established and Aitken's least squares estimators are obtained for

both the thermal parameters and for the confidence ellipses. In

Section 3.1 the confidence region is defined as a confidence ellipse

with particular forms given that are necessarily statistically valid.

In Section 3.2 the statistical validity of the central F distribution

is shown when the ARIMA coefficients are known. In Section 3.3 the

noncentral F distribution is proposed as a statistically valid

approximation when the ARIMA coefficients are estimated. In Section

3.4 Aitken's point estimators of the thermal and ARIMA parameters are

given and tested. In Section 3.5 the accuracy of the point estimates

of the thermal and ARIMA(1,0,1) parameters is investigated by a Monte

Carlo study. In Section 3.6 the several forms of the confidence

ellipse given in Section 3.1 are plotted and compared using estimates

from Section 3.5.

3.1 Estimators and Confidence Regions Considered

This section investigates three confidence regions. The linear

(or linearized) physical model under consideration is

y = X B + w (3.1.A)

89
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where the additive correlated errors have the distribution

w z N(0,W) (3.1.B)

The eight assumptions made in using this error model are stated

following Equation (l.l4.A). It is assumed that the error covari-

ance matrix is generated from an ARIMA model and can be written as

w = 02 v (3.2)

where 02 is estimated and V is not the identity matrix.

Two estimators are considered for the physical parameter vector

8. Equation (3.3) is the standard least squares estimator that can

be written as

bSLS = (xt )"1 xt y. (3.3)

Equation (3.4) is the Aitken's least squares estimator that can be

written as

t -1 -1 t -l
b = (X V X) X V y. (3.4)
ALS

In Equation (3.3) and (3.4) the subscripts on the vector b are

used to distinguish the standard least squares (SLS) from Aitken's

least squares (ALS).

The confidence region is assumed to be represented by an

ellipse. The test in Draper and Shaw (1974) to justify the use of

this linearized confidence region for a nonlinear parameter estima-

tion problem is beyond the scope of this dissertation. The ellipse

can be written as

(b - 8)t 0"1 (b - B) S k s2 G(l - a) (3.5)

where

2 0. (3.6)cov( b ) = o
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Note that the left hand side of Equation (3.5) is a quadratic form

involving the inverse of the covariance matrix for the physical

parameters given in Equation (3.6). The size of the ellipse in

Equation (3.5) is determined by the fractile G(l - a) for a given

confidence coefficient l-a. The value for the fractile is deter-

mined by the probability distribution 0. The meaning of Equation

(3.5) is that the probability is a that the ellipse centered at the

true value 8 will not contain a point estimate of b.

Three forms are considered for the 0 matrix in Equation (3.5).

The three cases are distinguished by subscripts SLS, ALS. and MLS

where MLS denotes mixed least squares. When it is incorrectly

assumed that V equals I in Equation (3.2) and Equation (3.3) is used

to estimate 8 then the 0 matrix is written as

t )-l
= (X (3.7)

QSLS

which is incorrect. When Equation (3.3) is used to estimate 8 but

the correct error covariance matrix is used to compute the parame-

ter covariance matrix then the 0 matrix is written as

QMLS = (xt x)" xt v X(xt x)" (3.8)

which is correct. When Equation (3.4) is used to estimate the

vector 8 then the 0 matrix is written as

(3.9)

which is correct provided V is known.

The distribution appropriate for G(l-a) in Equation (3.5)

is established in Sections 3.2 and 3.3. It is necessary to
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establish a statistically valid distribution in order to use

Equation (3.5) in a correct manner.

3.2 Confidence Region When the V Matrix Is Known

For the V matrix in Equation (3.2) two cases are considered:

V matrix known. and V matrix estimated. The case where the error

covariance matrix V is known is much more straightforward than the

case of an estimated V matrix discussed in the next section. How-

ever. even for this case, standard textbooks such as Theil (1971) do

not derive the probability distribution of G in Equation (3.5) for

all three covariance matrices given in Equations (3.7) through (3.9).

These three covariance matrices are used in Equation (3.5) to deter-

mine three confidence regions: Aitken's least squares (ALS). mixed

least squares (MLS). and standard least squares (SLS).

The steps in the derivation of the probability distributions

for these three confidence regions are given in Appendix B. The

derivation for the MLS problem was not found in the literature. The

assumptions needed for the ALS problem are stated more explicitly in

Appendix B than they are in derivations in the literature.

The left hand side of Equation (3.5) involves the ratio of two

quadratic forms in normal variates. For sake of discussion the

forms are denoted wt A w and wt 8 w and the probability distribution

of w is N(0,C). The derivation in Appendix 8 depends on three

theorems. A theorem by Shanbhag (1970) is used to show that wt A w

is distributed as chi-square if and only if

tr(A 0)2 = tr(A 0)3 = tr(A 0)4 (3.10.A)
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where tr denotes the trace of the matrix. (Khatri [1978] reviewed

other equivalent necessary and sufficient conditions.) A second

theorem by Shanbhag (1970) is used to show that the degrees of

freedom of the chi-square distribution of wt A w is the rank of A

which can be computed from the trace as

rank(A) = tr(A m2. (3.10.8)

The procedure represented by Equations (3.10) is used to determine

whether wt 8 w is chi-square also. The independence of the two

quadratic forms wt A W and wt 8 w is needed to show that their

ratio has an F distribution. The independence is tested by a

theorem stated by Carpenter (1950) that statistical independence

holds if and only if

A C B = 0 v (3.11)

The results obtained in Appendix B are that G in Equation (3.5)

has a central F distribution when either Equation (3.7) or Equation

(3.9) is used. The use of Equation (3.7) is still incorrect. how-

ever, when V is not the identity matrix because 0 is incorrect.

When Equation (3.8) is used the distribution of G in Equation (3.5)

could not be determined.

3.3 Confidence Region When the V Matrix Is Estimated
 

Few papers have been written on the problem of confidence

regions when the error covariance matrix V is estimated. A confi-

dence region was suggested by Glesser and Olkin (1972) for an esti-

mated error covariance matrix that has a completely unknown and

arbitrary structure. The error covariance matrix was estimated from
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replicated data with t replicas of the data vector denoted y(])

through y(t). and the sample cross product matrix S used. The

matrix S is computed from

S = E (y(i) - 7) (y(i) - 7)

i=1

The matrix S is related to the matrix W by E(S) = (t - l) W. One

confidence region suggested by Glesser and Olkin (1972) has the

form

2 1
t (b - 6)t xt s' x (b - B) s (1 + g) k F(k.t-n,l-a) (3.12)

Thus in Equation (3.12) the effect of estimating the error covari-

ance matrix is to multiply the usual fractile by a factor (1 + 9)

where

g = t (.‘v’ - x b)t S'1 (Y - x b). (3.13.A)

It appears that no model is given in the literature for the dis-

tribution of the error covariance matrix when it is estimated

from an ARIMA model. Hence, a reasonable approach is to use the

confidence region in Equation (3.12) but to treat the random sta-

tistic g in Equation (3.13.A) as an empirical parameter.

One approach to take in finding the empirical parameter 9

given in Equation (3.13.A) is as follows. Patnaik's approximation

to a non-central F distribution is

. -1

F (n].n2.X,l-a) = (l + X n1 ) F(m],n2,l-a)

where

m1 = (n1 + A)2 (n1 + 2 x)".
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If m1 is approximately equal to n1 then the Patnaik's approximation

merely multiplies the central F fractile by a factor (1 + X nil).

Alternately for Equation (3.12) a factor times a central F fractile

can be viewed as a non-central F which is useful because the non-

centrality parameter in the non-central F can be estimated. The

postulate to be tested is that the random parameter g in Equation

(3.12) can be related to the noncentrality parameter when the errors

come from an ARIMA model; i.e.,

l
g = X n; (3.13.B)

3.3.1 Confidence Coefficient Estimator

of Noncentrality Coefficient

 

 

In Section 3.3 a non-central F distribution is proposed for

G(l-a) in Equation (3.5). Some data are available in the litera-

ture to test the fit of the distribution. specifically the data by

Gallant and Goebel (1976). I analyzed these data in order to esti-

mate X from the empirical confidence coefficients at the percentiles

of a = 0.01. 0.05. 0.10. and 0.5 for the central F distribution.

The estimates of A at o = 0.1 were based on a fit in which the non-

central F was computed using the transformation suggested by Severo

and Zelen (1960) and reviewed by Tiku (1966).

The two parameter model used by Gallant and Goebel (1976) is

yi = B] exp(B2 x1) + "i (3.14)

where "i was assigned either second order autoregressive errors.

ARIMA(2,0,0). or white noise errors, ARIMA(0,0,0). For the white

noise errors. the results are shown in Table 3.1. The observed
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confidence coefficients agree with the assigned values from the

F distribution for the white noise errors which indicates that

t = 2000 trials is adequate to establish the empirical distribution

and that Equation (3.5) is valid for Equation (3.14) which is a non-

linear parameter estimation problem.

Table 3.1

Confidence Coefficients for ARIMA(0,0,0)

Compared to Central F Values

 

   

 

. . Observed Confidence Value for Assigned

A551gned Fractile Coefficient Fractile. X = 0

F(0) 81 82 1-01

7.09 0.990 0.990 0.99

4.00 0.948 0.95l 0.95

2.79 0.892 0.892 0.90

0.46 0.490 0.491 0.50

 

In the case when "i represents ARIMA(2,0,0) errors, the esti-

mation of the autoregressive coefficients causes the empirical dis-

tribution of the 8's to have thicker tail regions than when the

autoregressive coefficients are not estimated. This empirical dis-

tribution is postulated to be represented by a non-central F distri-

bution. The empirical percentiles at the ninety-five percent level

in the two tailed t-distribution were found by Gallant and Goebel

(1976, Table 2). The corresponding one tail central F-distribution

value is a = 0.1 which has the fractile value 5.712 for 81 and empiri-

cal fractile value 5.593 for 82. The noncentrality coefficient that
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yields a computed value of a = 0.1 are A = 1.242 for 31 and

A = l.l88 for 82. The agreement is good between the empirical and

computed confidence coefficients. as shown in Table 3.2. In Table 3.2

the average value was used for the noncentrality coefficient (A =

1.215). and the Severo and Zeren (1960) approximation was used in

computing the non-central F distribution.

Table 3.2

Confidence Coefficients for ARIMA(2,0,0)

Compared to Non-Central F Values

 

Observed Confidence Value for Assigned
Assigned Fractile

   

 

Coefficient Fractile. X = 1.215

F (a) B] 82 1-6

7.09 0.924 0.928 0.9383

5.712 0.90 N.V. 0.9020

5.593 N.V. 0.90 0.8979

4.00 0.843 0.842 0.8207

2.79 0.763 0.774 0.7185

0.46 0.389 0.397 0.2600

 

3.3.2 Trial Statistic Estimator of

the Noncentrality Coefficient

Because there were t = 2000 trials. the estimates of the parame-

ters were not presented in either Goebel (1974) or Gallant and Goebel

(1976). If they had been presented then an estimator of A could be

used that does not require the construction of an empirical distri-

bution used in Section 3.3.1. Pandey and Rahman (1971) derived a
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maximum likelihood estimator of A based on the statistic u. The

statistic u is defined as

-1 -2 -1
u = (b - 8)t xt v x (b - 8) s k (3.15)

where k is the number of physical parameters. The statistic in

Equation (3.15) can be obtained by substituting Equation (3.9)

into Equation (3.5) and solving for G(l-a). In a Monte Carlo study

all the terms in Equation (3.15) are either known or estimated so

that the value of u at the t-th trial is available and will be

denoted ut.

For Monte Carlo studies on a one parameter linear model and

on a two parameter heat conduction model we need the following

results from Pandey and Rahman (1971) valid for large sample size.

For a one parameter model the estimator of X is

U1 (2 x ui)‘* tanh( (2 x ui)if ) (3.16.A)(
'
0
’

ll

"
M
C
-
1
‘

i 1

For a model with two parameters an estimator for A is

t 2 ui I]( (2 x 0113 )
t = 2

i=1 (2 X 1.1.1503 (2 1 11.4" )

 (3.16.8)

Equation (3.16.A) is used in Section 3.3.3 and Equation (3.16.8)

is used in Section 3.5.3.

3.3.3 Monte Carlo Study

of a Linear Model

In this section parameters are estimated for the following

simple linear model
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yi = B + w. (3.17)
1

Equation (3.17) is Equation (1.15) with the coefficient a set to

zero. A Monte Carlo study was used by both Kmenta (1971, Table 8-5)

and by Beck (1974) to study the relative efficiency of maximum

likelihood to standard least squares estimator where relative effi-

ciency is defined in Section 1.3.3. The purpose of this section is

(l) to become familiar with the Monte Carlo method, (2) to determine

how accurately ARIMA parameters can be estimated. and (3) to test

the estimators of the noncentrality parameter discussed in Section

3.3.1 and Section 3.3.2.

Maximum likelihood estimates of the parameters in Equation (3.17)

at several combinations of parameter values are presented in Table

3.3. For a general parameter p the bias is denoted 6p and the sample

variance is denoted yp. The bias is computed from the estimator

-1

t (pl ' p#)

"
M
t
-
1
'

6p =

and the sample variance is computed from the estimator

I
I

I
I
M
f
“

fl A U

_
I

I

'
U

YP

where the true value of the parameter p is p# and the estimate or

parameter p at the i-th trial is p1. and there are t trials. The

results in Table 3.3 indicate that the variance ya and the bias as

both increase as the autoregressive coefficient 0 approaches unity.

The Monte Carlo study in Table 3.3 contains 4600 trials and

the computation of the estimates for the table required 830 central
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processor unit seconds on the Control Data Corporation 6500 computer

system.

The Monte Carlo study reported in Table 3.3 required nonlinear

parameter estimation because 0 was estimated simultaneously with 8

using maximum likelihood estimation. The low cost in terms of cen—

tral processor time for this study was achieved by the simplicity

of Equation (3.17) and the effectiveness of the Newton-Raphson esti-

mator. The Newton-Raphson estimator used in the study is

u(1+1) = u(1) _ h R 9

where i is the iteration index, 8 is the vector of parameters. h is

the step size, R is a positive definite approximation to the inverse

of the Hessian matrix. and g is the gradient vector. The matrix R

was obtained by finding the eigenvalues and vectors of the Hessian

matrix by the 0L method in Martin et al. (1968) and Dubrulle (1970),

and a modified R matrix formed by scaled decomposition and Newton-

Greenstadt replacement of the eigenvalues as suggested by Bard (1974.

p. 307). The 0L method solved the eigenproblem in Rosser et a1.

(1951) while the Jacobi method in Boothroyd (1968) that was used

initially did not. The step size adjustment used was one additional

try version-b in Bard (1970). Bard (1974. p. 114) stated a conver-

gence criterion as

abs(u(1+]) - 8(1)) 5 v abs(u(‘) + 6) (3.18)

which insures that the search terminates when each parameter ceases

to change value. The convergence constants are Y = 10'5 and

6 = 10'4.
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The estimation of the noncentrality parameter associated with

Equation (3.17) was considered for the parameter values 8 = 0.

8 = 0.94. 02 = 1, n = 180. and t = 1000 trials. The estimator used

is Equation (3.16.A) and the estimate is A = 0.3. Although only 1000

trials were available instead of the 10,000 trials suggested by Dickey

and Fuller (1976). empirical percentiles were computed by ordering the

estimates of ”i computed by Equation (3.15). These percentiles

yielded good agreement with the confidence coefficients when X = 0.985

as shown in Table 3.4. Perhaps an estimator of A given in Pandey and

Rahman (1971) valid for small sample sizes should have been used.

Table 3.4

Confidence Coefficients for Equation (3.17)

 

Predicted Confidence

 
  

 

Confidence Coefficient Empirical . .
. Coeff1c1ent at

of Interest Percentile Empirical Percentile

1-a F(l-o) X = 0.985 X = 0

0.1 0.0329 0.079 0.168

0.5 0.662 0.367 0.578

0.9 4.304 0.868 0.963

0.95 6.879 0.950 0.991

0.975 9.68 0.981 0.998

0.99 14.19 0.995 0.9997

 

3.4 Aitken's Least Squares Estimator

The purpose of this section is to demonstrate that Aitken's

least squares can be implemented within a computer code written to

compute standard least squares estimates.
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There are advantages in using an existing standard least squares

(denoted SLS) computer code rather than programming a new computer

code for Aitken's least squares (denoted ALS). First, an existing

SLS called PROPTY was available at Michigan State University that

estimates thermal parameters in the heat conduction problem. Second,

PROPTY was already programmed to provide information that is useful

to understand the parameter estimation problem; namely. at each

measurement time it prints the two sensitivity coefficients evaluated

at the estimated physical parameters. the running difference between

the estimates of the physical parameters based on all the measurements

and their value using only data up to the current measurement time.

and the value of a design criterion in Equation (4.1). Third, PROPTY

uses a solution technique and minimization routine that is effective

for the heat conduction problem; e.g., it uses special rules for the

Gauss step size.

3.4.1 Adjustment of SLS Computer

Code to Obtain ALS Estimates

 

 

The essential features of computer code PROPTY are the SL3

cost function and the Gauss procedure for minimizing the cost

function.

The SLS cost function for computer program PROPTY is given in

Beck (1964) as

m n 2

film) = j; 12:3] Aj (T(xj,t1) - Te(xj.t1) ) (3.19.11)

In Equation (3.19.A), the temperature computed by the Crank-Nicolson

finite difference scheme is denoted T(x,t), the measured temperature
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discussed in Section 2.1.2 is denoted Te(x,t), and the temperatures

are both computed and measured at locations Xi and at times t1. The

residuals are defined by

e1j) = T(xj,t1) - Te(xj,t1) (3.20.A)

where the vector e is obtained by stacking as was done for Equa-

tion (2.8). An abbreviation is introduced for the double summation

used in Equation (3.19.A) so that Equation (3.19.A) can be written

compactly as

f(k.c) = (e.e) (3.19.B)

which implies that the product of the two quantities enclosed in

the parentheses on the right hand side of Equation (3.19.B) are

multiplied at corresponding times and sensors and the sum computed.

The Gauss procedure used in PROPTY is well-known. In the Gauss

procedure Equation (3.19) is minimized by calculating the thermal

parameters by the iterative scheme written as

(1+1) (1') -1 ._

k k 1(1k.1k) (1k.1c) (1k.e)

= + h (3.21)

c c (1km (15¢) (1c.e)
  

In Equation (3.20) the notation defined in Equation (3.19.B) is used.

The superscripts denote the i-th and (i+l)-th iteration. The two

partial derivatives of the temperature are called sensitivity coef-

ficients. The rules for the step size h are as follows. Rules on

the step size h were introduced to improve the convergence rate of

Equation (3.21). The step size is unity unless the percentage change
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in the parameter value is too large. The two alternate step sizes

when the change in the parameter values in an iteration is too large

are: (1) h = 0.6 k (abs 6k).1 when either k'l 6k exceeds 1.6 with

6k positive or k'1 6k exceeds 0.6 with 6k negative. and (2) h = 0.6 c

(abs <5c)"1 when c'1 6c exceeds 1.6 and 6c is positive. The starting

values of kand c are computed from a table of temperature versus

thermal properties supplied by the user of computer code PROPTY. The

convergence criterion is Equation (3.18) with v = 0.01 and 6 = 0.

After the convergence criterion is satisfied one more iteration is

performed so that the useful information discussed in Section 3.2 can

be printed.

In order to use the ALS procedure two computational procedures

are required: (1) a procedure to convert estimation with a SLS

cost function given by Equation (3.19.A) to one with an ALS cost

function given by Equation (1.14.8), and (2) a procedure to estimate

the transformation matrix P. Estimation of the P matrix will be

discussed in Section 3.4.2 for a test problem. The conversion of

the SL5 code in PROPTY to an ALS code will be considered next.

For convenience in notation consider a linear model written

as

y = X B + P a (3.22)

where y is the vector of measurements. X is a known matrix, B is

the estimated parameter vector. a is a vector of white noise. and

P is a matrix presented in Equation (2.7). Comparing Equation (3.22)

with Equation (3.1.A) we make the association

w = P a. (3.23)
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By definition

a z N(o.o2 I) (3.24)

which implies

2 t
cov (w) = E(P a at Pt) = o P P . (3.25.A)

By defining a matrix V, Equation (3.25.A) can be written as

cov (w) = 02 V (3.25.B)

where

v = P Pt. (3.26)

Hence, the covariance matrix of the additive errors can be

written as

w = 02 P Pt . (3.25.0)

Equation (3.25.0) contains the covariance matrix that should be

used in Equation (1.14.8) to yield Aitken's least squares esti-

mates.

Hence, the quadratic form that should be minimized is

-2

(fALS(8) = o y - x 8)t (P P")'1 (y - x 8) . (3 26 41

But Equation (3.26.A) can be factored and written as

- -2 -1 t -1

fALS(B) ' 0 (P (y - X B) ) (P (y - X 8) ) (3.26.8)

For the linear model the quantity corresponding to the residuals

in Equation (3.20) is the residual written as

e = y - X b (3.20.8)

Hence, Equation (3.26.B) can be written as

fALS(B) = 6’2 (P'1 e)t (P'1 e). (3.26.C)
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while it is clear that for a linear model like Equation (3.22)

it is possible to have Equation (3.19.A) written as

f(8) = A] e e. (3.19.0)

Thus. the cost function in computer code PROPTY given by Equa-

tion (3.19.0) can be used to compute the Aitken's least squares

cost function given by Equation (3.26.C) by merely replacing the

residual vector e in PROPTY by the transformed residual P-1 e.

This transformation was indicated but not stated explicitly in

obtaining Equation (1.14.0).

In converting computer code PROPTY into a procedure to obtain

Aitken's least squares estimates, the changes in the computer code

are made for the Gauss minimization procedure given as Equation

(3.21) rather than for the cost function given as Equation (3.19).

Using Equation (3.20.8). the transformed residuals can be written as

P.1 e = P'1 1y - P' X b. (3.27)

For the linear model in Equation (3.22). the sensitivity coefficient

is the X matrix. In Equation (3.27) three quantities are trans-

formed: the residuals (e). the measurements (y). and the sensitivity

coefficient (X). However. for the Gauss scheme in Equation (3.21)

that is used by computer code PROPTY it is only necessary to adjust

two quantities: the residuals (e) and the sensitivity coefficients

for each parameter (Tk and Tc)‘
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3.4.2 Demonstration of ALS

Estimation for ARIMA(1,0,0) Errors

For real problems the error covariance matrix is unknown; thus.

a procedure is needed for estimating the P matrix used in Section

3.4.1. This section considers Aitken's estimation with a particu-

lar P matrix.

The P matrix for ARIMA(1,0,0) errors can be written as

P“ = I - 8 K (3.28)

where the non-zero entries of the matrix K satisfy

U013. =1 1f 1: .j '1' 19 (3.29)

where 0 is the autoregressive coefficient, and I is the identity

matrix. For this P matrix the Yule-Walker estimator given as

Equation (A.23) can be written as

( (K e)t K e)-] et K e (3.30.A)

02 (m n)'] (P'1 e)t P'1 e. (3.30.B)

0

Because the matrix P depends on the coefficient 0. in each itera-

tion of the ALS procedure the estimate of P is updated.

The feasibility of converting computer code PROPTY to a code

yielding ALS estimates was investigated for ARIMA(1,0,0) errors.

A subroutine was written to estimate the coefficients in the ARIMA

(1.0.0) model using Equations (3.30). Within the subroutine a con-

vergence criterion based on Equation (3.18) was used so that overall

convergence in PROPTY can only occur after the estimates of the

ARIMA(1,0,0) coefficients 0 and 02 have converged. Call statements

were inserted within PROPTY so that this subroutine was called
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immediately after either the residuals (e) or the sensitivity coeffi-

cients (Tk) and (Tc) are computed. The subroutine resets these quan-

tities according to Equation (3.27) and returns the reset value to

PROPTY; the subroutine also uses the residuals before they are reset

to estimate the ARIMA(1,0,0) coefficients using Equation (3.30).

The estimates obtained by the above scheme for case-0 data are

shown in Table 3.5. In three iterations the thermal parameters k

and c satisfied the convergence criterion set at v = 0.01 in Equa-

tion (3.18). However, there were additional iterations because the

parameter 0 has not converged. The convergence criterion for 0 was

set at Y = 0.0001 in Equation (3.18) and this relatively tight cri-

terion was used in order to examine the parameter estimation routine.

Clearly, a larger value of Y can be used for 0 in the estimation

routine. The convergence shown in Table 3.5 clearly demonstrated

the feasibility of an ALS estimation procedure.

Table 3.5

Convergence of Aitken's Estimator for Case-0 Data

 

 

Iteration E] _] E3 _1 9 a:

Btu hr ft F Btu ft F F

0 42.00000 55.00000 0.0000 N.A.

1 43.31882 55.65817 0.9233 0.01962

2 42.97964 55.73655 0.9057 0.01958

3 43.05785 55.79758 0.9061 0.01959

4 43.05245 55.84707 0.9058 0.01959

5 43.05034 55.88694 0.9059 0.01959

6 43.04751 55.91910 0.9060 0.01955

SLS 43.35722 55.66701 0.8982 0.02022
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The last row of Table 3.5 gives the standard least squares

estimates for this same case-0 data. The parameter values are in

close agreement: the difference in estimates divided by the ALS

estimates are k'] 6k = 0.0072 and 0'] 60 = 0.0045. Also the estimates

for the ARIMA(1,0,0) coefficient are given. These were calculated

from the SL5 residuals and also are in close agreement with 0-] 60 =

0.0086.

3.4.3 Aitken's Least Sguares

with ARIMA Errors

 

 

The estimation procedure demonstrated in Section 3.4.2 for an

ARIMA(1,0,0) model can be generalized to estimation with an ARIMA

(p.d,q) model. The basic requirement is to define the P matrix in

the representation of the errors in Equation (2.7); i.e., w = P 8.

Basically the same equations for this representation were obtained

by Beck and Arnold (1974) and Pagan (1974). The equations in Pagan

(1974) were attributed to an unpublished paper in 1966 by Phillips.

The general form of the transformation matrix P will be con-

sidered for an ARIMA(s.0.0) and ARIMA(0,0,s) process in order to show

the symmetry between the autoregressive and the moving-average pro-

cess. Also by considering both models together the space required to

present the notation is also shortened. After the notation is defined

the transformation matrix P for the ARIMA(p.0,q) model will be stated.

Consider the ARIMA(s,0.0) process which can be written as

w. = v] w. + .+...+ .+.

1-1 Y2 w1-2 Ys w a

and also consider the ARIMA(0,0,s) process that can be written as
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Wo=ao-Y]ai_-l-...

1 1 ' Ys ai-s '

For a sample of size n. the following vectors are defined as

tw (wi.w2.....wn).

a = (3]: 62, . . - a a

that have the initial values

-* 'k * *t

)w = (wo, w], . . . , wS . and

*- * 'k *t

a - (a0. a], . . . , as)

where in the initial values

*

w_] w] for 0 S i. and

I
A* o

a_] a1 for 0 1.

In the matrix notation the ARIMA(s,0.0) process can be written

_'I **

0 w - 0 w = a,

and for the ARIMA(0,0,s) process the model can be written

-1 * *

w = D a - D a .

In both equations the matrix 0'] is an n by n lower band matrix

  

written as

1

-Y]

'12 '11 1

0'1 = ,

'Ys 'Ys-l . . . 1

0 'Ys . . . l

1__p ’15 'Y] 1—
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*

and D is an n by 5 matrix containing a band triangular structure

written as

1’1 1(2 Y3 Y5

Y2 Y3 Y5 0

Y3

*

D =

Ys

0

0 . . . 0

L— —J  
In indicial notation the n by n matrix D'] has non-zero elements

given by

-1 = _ < . _ . <

(0 )ij Yi-j for 0 - 1 J - s.

where

Y0 = -19

*

while the n by 5 matrix D has non-zero elements given by

= o o- <

(0 )-- Yi+j-l for J + 1 l - s.

The notation for the D and 0* matrices displays the symmetry between

the ARIMA(s.0,0) and ARIMA(0,0,s) models.

A notation where the difference between the ARIMA(s,0.0) model

and the ARIMA(0,0,s) models is as follows. For the ARIMA(p.0.0)

process replace v by D, D by L. and 0* by L* so that the process is

written as

-1 **

L w = L w + a.
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*

For the ARIMA(0,0,q) process replace y by e. D by M. and 0* by M

so that the process is written as

-1
*1k

w = M a - M a .

It is easy to show that the ARIMA(p,0.q) process is written as

-1 * - *

L w - L* w = M 1 a - M* a (3.31)

Equation (3.31) is the matrix definition of the ARIMA(p.0.q) pro-

cess.

Two forms of Equation (3.31) will be considered. The remainder

of this section will discuss the case when both w* and a* are set to

zero. Section 3.4.4 will discuss the form when both w* and a* are

estimated.

* *

When w and a are zero. Equation (3.31) can be written as

L'1 w = u" a (3.32)

Equation (3.32) can be rearranged and written as

w = L M" a (3.33)

By introducing the definition

P = L M“1 (3.34)

Equation (3.33) has the form of Equation (3.23) as required for

adjustment of PROPTY to obtain ALS estimates as was shown in

Section 3.4.1. Equation (3.33) was stated in both Pagan (1974)

and Beck and Arnold (1974).

In order to obtain a numerical algorithm. recall that both

transformed residuals and sensitivity coefficients are used in the

ALS computer code. Consider the residuals being transformed into

a vector denoted 2 according to the relation
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Z = P e (3.35.A)

Using Equation (3.34), Equation (3.35.A) can be written as

2 = M L’1 e. (3.35.8)

For evaluation by a computer. it was convenient to convert Equa-

tion (3.35) to a two stage recursive relation. This relation can

be written as

(M 2). = e. - 81 e1._1 - . . . - 8 e. (3.36.A)
'l 1

_ -1 -1 -1
21 - (M Z).i + 61(M Z)i-] - o o o - eq (M Z).i-qo (3.36.8)

Equation (3.36) clearly reduces to the transformation used in

Equation (1.14.0) for ARIMA(p,0,0) errors when M becomes I and

all the 0's are zero.

3.4.4 Approximatinngaximum

Likelihood_by Aitken's Estimator

 

 

It is more difficult to implement the maximum likelihood esti-

mator for which w* and a* are estimated rather than being set to

zero. Newbold (1974) presented a clear computational procedure for

the ARIMA(1,0,1) process and maximum likelihood estimation.

The positive log-likelihood function can be written as

t
F(8.e.62.w0.ao) = 3 n ln(02) + ; det(I + B B) + e

where

2
t a + 3 o" 6e = i 0-2 a

The initial values of the wi-series is wo, and the initial value

of the ai-series is a0. The n by 2 matrix B has components written as
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(e - 8) 8i-1(3)11

(311.2 - 8 (e - 8) (1 - 82)"2 6""

The n components of the vector a can be written as

a1 = A1 + (30 0 ' g wo) 61-]

where Zi is computed from a two stage recursive relation of the

form of Equation (3.36.A) and (3.36.8). This relation can be writ-

ten as

(M'1 Z). = w- - 8 w. for 2 s i (3.37.4)
1 1 1-1

2 = (W1 Z) + 8 (M'1 2) (3 37 8)
1 i 1-1 ° '

with the initial values

The scalar 6 arising from the initial conditions is

6 = as + (1 - 82) (8 - 0)2 (we - a012 .

The values of a0 and w0 are estimated in terms of a two component

vector 0 that can be written as

c = (I + 8t 8)’1 8t M L" w (3.38)

with the estimates written as

- c]. and (3.39.A)
a0

w0

This model reduces correctly since a0 and w0 equal to zero implies

c1 - c2 (8 - 8) (1 - 82)'%. (3.39.8)

both 6 and c are zero and hence B is zero.
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Equation (3.39) was computed for case-0 data in order to gain

insight into the magnitudes of a0 and wo. The vector 0 in Equation

(3.38) used w from the vector of standard least squares residuals,

and used matrices B. M, and L evaluated using the parameter esti-

mates obtained in Table 2.11. The use of the standard least squares

residuals for the w vector is a reasonable first approximation. The

resulting estimates for the eight sensors in the case-0 heat conduc-

tion data are shown in Table 3.6. The initial values a0 and w0 can

be set to zero. because each w0 is close to the first value of wi

for the corresponding sensor plotted in Figures 2.1 and 2.11 and

because the value of a0 is small with respect to the estimate of 0

equal 0.13 given in Table 2.13. Hence Aitken's least squares can be

used instead of maximum likelihood.

Table 3.6

Estimates of ARIMA(1,0,1) Starting Values

 

 

Sensor "0 a0

1 -0.0032 -0.000291

2 -0.3996 -0.036076

3 -0.1319 -0.011910

4 -0.0029 -0.000266

5 0.1329 -0.000291

6 0.0644 0.005811

7 0.2163 0.019524

8 0.4605 0.041574
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3.5 Aitken's Least Squares Simulation Study

The purpose of this section is to display and interpret the

results of a twenty trial Monte Carlo study the author made on

Aitken's estimates for simulated heat conduction data. This study

investigates the first and fifth aspect of the correlated error

problem stated in Section 1.5; namely, estimation of the ARIMA coef-

ficients and the modeling of the probability distribution of the

confidence ellipse.

With good starting values for k and 0. computer program PROPTY

converges in usually two iterations and at most three iterations.

The central processor time per iteration is quite large since the

heat conduction equation is solved numerically. A close approxima-

tion to the central processor time in seconds as a function of the

number of iterations I is

t = 13.9 + 6.3 I.

The minimum central processor time is for one iteration or twenty

seconds per trial instead of the 0.18 seconds per trial required in

the simple linear study reported in Section 3.3.2. Hence it is

impractical to have a detailed study of the statistical properties

because there is a one hundred-fold increase in the computer time.

The simulation study that was conducted is as follows. The

simulation of the experimental data is discussed in Appendix C. The

conditions used in the study approximated the conditions estimated

for case—0 data in Table 2.1. The conditions are: k 43 Btu hr-

’1 '1 3 F". 8 = 0.98. 0 = 0.45. 02 0.016 F2.

2 -l
n = 89. m = 8, q = 2.67 Btu ft" sec . and tE - tB = 15.3 seconds.

1

ft F . c = 55 Btu ft'
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Although only twenty trials were used, approximately 727

central processor seconds were required to estimate the parameters

on the Control Data Corporation 6500 computer system. A Monte Carlo

study with ten times as many trials would have been prohibitively

expensive. Yet the state-of-the-art is such that Chambers and Ertel

(1975) used one hundred trials and Pfeiffer and Lichtenwalner (1974)

used four hundred trials. Hence the essence of the Monte Carlo prob-

lem is to determine whether small trial procedures can yield infor-

mation on the estimates of the coefficients and the probability dis-

tribution for the fractile that determines the confidence ellipse.

3.5.1 Estimates of Thermal

and ARIMA Parameters

 

 

The quantities computed for Table 3.7 are obvious. In Table 3.16

the averages<rfthe physical parameters estimates are both remarkably

close to the true values of the thermal parameters. The estimate of

8 is only slightly biased downward. The estimate of e is also biased

toward zero, but is approximately thirteen percent in error. The

agreement of the estimated parameters displayed in Table 3.7 is

acceptable.

The last column in Table 3.7 is discussed in Section 3.5.3.

3.5.2 Estimates of the

Information Matrix

 

 

Equation (1.21) showed that in some cases the estimation of the

V matrix can increase the estimates of the variance of the physical

parameters even for large sample sizes. Kenward (1976) proved that

the asymptotic variance matrix has the information matrix as a limit
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when the errors are ARIMA. The information matrix for the positive

log-likelihood function f(8.0.8,02) denoted f(u) can be written as

J = ”-1 32 f(u)

aui 3uj

Kenward (1976) used a central limit theorem for dependent random

variables to establish that the distribution about the true value

of u denoted u# is given as

1 (u - u#) = N(0.J']n 1. (3-40)

The information matrix J can be written as

  

‘0 0 0 0 ‘1

J = 0 F E 0

o E 1 o (3.41)

-4
o 0 o
L 3K.

For the linear model with ARIMA(p.0,q) errors in Equation (3.22)

and with the explicit form for the P matrix given in Equation (3.33)

the 0 matrix in Equation (3.41) can be written as

0 = n'1 0'2 (L'1 x)t Mt M L" x . (3.42)

Pierce (1971) stated consistent estimators for the p by p matrix F,

the q by q matrix T. and the q by p matrix E in Equation (3.41) in

terms of autocovariances and cross covariances but they are not

considered in this dissertation.

Estimates are shown in Table 3.8 for the component of the 0

matrix from the estimates at each trial based on Equation (3.42).

The last row in Table 3.8 has the evaluation of Equation (3.42) at

the true parameter values used in the Monte Carlo study. Note that



121

the components of the 0 matrix are used to define the standard

errors in Equation (1.12). The average value of 022 is appreciably

larger than the true value which implies a conservative estimate is

obtained for the standard error of the thermal conductivity when

ALS estimation is used.

The last column in Table 3.8 is discussed in Section 4.4.

Table 3.8

Heat Conduction Study Information Matrix and Sensor Weights

 

 

Trial 0]] 022 g 012 Range/Mean

1 0.001618 0.004136 0.0005291 0.731

2 0.002127 0.005618 0.0007133 0.523

3 0.001938 0.004937 0.0006442 0.766

4 0.003976 0.010637 0.0013622 0.270

5 0.003185 0.009945 0.0011455 0.707

6 0.001218 0.002679 0.0003817 0.421

7 0.001493 0.003222 0.0004634 0.496

8 0.001999 0.005361 0.0006813 0.572

9 0.001834 0.005490 0.0006367 0.764

10 0.001969 0.004906 0.0006419 0.867

11 0.000964 0.002159 0.0003051 0.749

12 0.001309 0.002374 0.0003904 0.663

13 0.001317 0.003872 0.0004518 0.474

14 0.002524 0.009031 0.0009665 0.631

15 0.001762 0.004130 0.0005677 0.777

16 0.001736 0.005922 0.0006376 0.505

17 0.001877 0.005474 0.0006569 0.809

18 0.001855 0.004735 0.0006152 0.329

19 0.001425 0.004062 0.0004930 0.643

20 0.001488 0.005079 0.0005435 0.637

Mean 0.001882 0.005188 0.0006414 0.617

true 0.001663 0.003443 0.0006559

s.d. 0.000693 0.002300 0.000257 0.164
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3.5.3 Estimates of the

Noncentrality Coefficient

 

The equations used to study the noncentrality coefficient were

developed in Section 3.3.

In Table 3.7 the value of the u statistic defined by Equation

(3.15) was displayed. If the noncentrality coefficient were equal to

zero in Equation (3.16.8). then the average value of u is unity. The

estimated average value of 1.1 is close to unity. Support for the

noncentrality coefficient being zero is also given from the estimates

obtained using Equation (3.16.A) that are also displayed in Table 3.9

with sequential estimation used to find A because the number of trials

is small. Computer program NLINA was used for the sequential esti-

mation.

Because the number of trials is small. the adequacy of the twenty

trials is explored by testing for normality of the uk and uc values

using Kuiper statistics given by Louter and Koerts (1970). Because

the statistics in Table 3.9 are accepted as being normal and the

estimates of X are close to zero. the noncentrality coefficientJXis

assumed to be zero. Hence, the central F distribution will be used

for G(l-a) in Equation (3.5).

3.6 Calculation of the Confidence Ellipses

In Section 3.5. it was shown that the results in Section 3.2 for

the V matrix known were a good approximation even though the V matrix

was estimated. Specifically, the estimated ARIMA(1,0,1) parameters

that define the V matrix are close to the true values and the dis-

tribution of G(l-o) in Equation (3.9) is approximated well by a
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central F-distribution. In this section the matrix C in Equation

(3.42) for case-0 data is used to compute confidence ellipses. The

matrix 0 is computed in the modification to computer code PROPTY

that makes it yield Aitken's estimates.

Confidence ellipses for the parameter covariance matrices in

Equations (3.7) through (3.9) are calculated and plotted for case-0

data. The confidence regions are plotted using the ninety-five

percent level. Typically. at ninety-five percent the advantage of

being more definite about the parameter value counterbalances the

advantage of being more sure about the parameter value.

3.6.1 ALS and SLS Confidence Ellipses

The standard least squares (SLS) and Aitken's least squares (ALS)

ellipses at the ninety-five percent level are plotted in Figure 3.1.

The confidence ellipse is based on an ARIMA(1,0,1) model for the

errors. The numerical estimates for the case-0 data are statistical

parameters 8 = 0.9741. 8 = 0.4431. 02 = 0.01602 and thermal parameters

k = 43.00712 and c = 55.73395.

The values in Table 3.10 are obtained from the values of the

0 matrix in Equation (3.9) computed by modified computer program

PROPTY, and the values in Table 3.11 were obtained from values of

the 0 matrix in Equation (3.7) computed in the subroutine called by

PROPTY that computed the statistical parameters. Specifically,

d1 and d2 are computed from Equation (3.45). v is the angle d1 makes

with the k-axis. 52 is the estimate of oz. a1 and a2 are the
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semi-length of the ellipse computed from Equation (3.44). The values

in Table 3.10 and 3.11 are used to compute the values in Table 3.12.

Table 3.10

Aitken's ARIMA(1,0,1) Ellipse Statistics

Case 01 d2 0 s2 a] a2

0 0.0172 0.0413 -15.9 0.0172 2.44 1.58

1 0.0525 0.1111 -23.4 0.0357 2.02 1.39

2 0.0166 0.0323 -49.6 0.0147 2.31 1.65

3 0.0402 0.0792 -40.7 0.0262 1.98 1.41

4 0.0168 0.0323 -49.8 0.0159 2.38 1.72

5 0.0356 0.0774 -52.8 0.0320 2.32 1.57

6 0.0536 0.0992 -47.4 0.0421 2.17 1.60

7 0.0244 0.0423 -42.5 0.0376 3.04 2.31

8 0.0526 0.1032 -54.5 0.0589 2.59 1.85

9 0.0140 0.0319 -61.2 0.0284 3.49 2.31

Table 3.11

Standard Least Squares Ellipse Statistics

Case d1 d2 0 52 a] a2

0 3.34 11.35 -10.3 0.1025 0.429 0.233

1 12.94 38.40 -12.7 0.3109 0.380 0.220

2 4.55 10.90 -l7.l 0.0724 0.309 0.199

3 15.46 36.53 -l7.6 0.4488 0.417 0.272

4 4.90 9.58 -26.0 0.1005 0.351 0.251

5 16.92 35.04 -22.6 0.7051 0.500 0.347

6 18.63 34.51 -30.7 0.5094 0.405 0.298

7 4.95 8.89 -35.4 0.2424 0.542 0.404

8 19.22 34.04 -40.5 0.7014 0.468 0.352

9 4.87 8.70 -45.8 0.2136 0.513 0.384
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Table 3.12

Correct SLS Confidence Coefficients

 

 

Case F(2.670.1-a#) 1-a#

0 0.0778 0.083

1 0.0893 0.093

2 0.0484 0.056

3 0.122 0.119

4 0.0646 0.072

5 0.1429 0.136

6 0.1043 0.105

7 0.0935 0.096

8 0.1031 0.104

9 0.0733 0.079

avg. 0.094

 

A numerical comparison of the differences between the Aitken's

and standard least squares confidence ellipses is shown in Table 3.12.

The conclusion drawn from Table 3.12 is that an SLS confidence

ellipse assumed to contain ninety-five percent of the estimates only

contains at most fourteen percent and on the average nine percent

of the estimates. The importance of the research suggested in Sec-

tion 1.2 is confirmed since the overly small size of the confidence

region when the standard assumptions in Equation (1.5) are used is

a serious understatement of the parameter's accuracy.

The computational equations are as follows. Because the area

of the confidence ellipse is proportional to the fractile. the

correct confidence coefficient a# for the standard least squares

ellipse is defined by

F(k,n-k,l-a#) = (a1 a2)SLS (a1 a2);ls F(k,n-k.l-a) (3.43)
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where the area of each ellipse is proportional to the product of

the lengths of the two semi-axes. In Equation (3.43) the length

of each semi-axis is computed from the relation

a- = (k s2 d}] G(l-a) )3 (3.44)

where the i-th eigenvalue is denoted d1 and the corresponding

i-th eigenvector used in Equation (3.45) is denoted e1. The eigen

decomposition of the 0 matrix in Equations (3.7) through (3.9) is

written as

_ t t

The distribution G(1-o) = F(k.n-k,l-a) is used to compute the

fractiles for the ellipse and the confidence coefficient used is

1-a = 0.95.

3.6.2 MLS and SLS Confidence Ellipses

The standard least squares (SLS) and mixed least squares (MLS)

ellipses at the ninety-five percent level are plotted in Figure 3.2.

The confidence ellipse in Figure 3.2 assumed the errors are for the

ARIMA(1,0,0) model. This error model is simple to work with and is

as appropriate as a more accurate ARIMA(p,d,q) model for the errors

since Equation (8.3) showed that the distribution of the quadratic

form for MLS is only approximately central F. A central F was used

to compute fractile for the confidence ellipse.

Computational expressions developed by Beck and Arnold (1977.

t
p. 306) facilitated the numerical evaluation of X V X in Equation

(3.8). For the MLS confidence ellipse in Figure 3.2 the coefficients
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in the ARIMA(1,0,0) model are 8 = 0.906 and 02 = 0.0186 with sample

size n = 712. The MLS confidence ellipse is clearly larger. While

by comparing Figure 3.2 and Figure 3.1 it is clear that the Aitken's

confidence region is only slightly larger than the MLS region.

Thus. as a first approximation the standard least squares estimator

with coefficients obtained from the residuals could be used. The

reasonable nature of the approximation suggests that a central F dis-

tribution is reasonable for MLS in Equation (8.3).

A more detailed comparison can be made from the coefficients

tabulated in Table 3.13 through Table 3.15 for the plotted ellipses

and ellipses calculated using every h-th residual. The tabulated

values imply the following behavior: (1) the orientation of all

ellipses are independent of both the 0 matrix and the sample size,

(2) the only change in the relative shapes of the ellipses is that the

SLS axes vary inversely with the square root of the sample size as

expected from theory while the MLS axes vary inversely with what

appears to be the eighth-root of the sample size. The inconsistent

value at n = 232 in Table 3.14 is probably an artifact of the non-

even integer value of the sampling interval h on the fitted ARIMA

(1,0,0) model rather than being an optimum sampling rate.
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Table 3.13

Confidence Ellipse Data SLS and MLS

 

 

 

 

 

 

  

 

d1 d2 v s2 n

SLS

1.38 3.33 79.7 0.1026 712

5.64 1.66 79.6 0.0997 352

3.73 1.11 79.4 0.1030 232

2.86 0.84 79.8 0.0968 176

MLS

0.115 0.0338 80.2 0.0186 712

0.0994 0.0305 80.0 0.0221 352

0.0806 0.0260 79.4 0.0234 232

0.1027 0.0328 79.8 0.0270 176

Table 3.14

Ninety-Five Percent Ellipse Coefficients

SLS MLS

n Major Minor Major Minor

Axis Axis Axis Axis

712 0.430 0.232 1.817 0.985

352 0.600 0.326 2.085 1.155

232 0.746 0.407 2.324 1.319

176 0.834 0.451 2.222 1.256
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Table 3.15

Comparison of Ellipse Coefficients

 

Ratio of Axes

 

Reduction of Axes

 

 

Major Minor SLS MLS

712 4.226 4.245 0.515 0.805

352 3.475 3.543 0.720 0.932

232 3.115 3.240 0.897 1.048

176 2.664 2.780 1.000 1.000

 



CHAPTER IV

FURTHER INVESTIGATION OF THE COVARIANCE MATRIX

In Section 4.1 a brief analysis of real data is given that

investigated the effect of the covariance matrix on the optimal

duration of the experiment which was suggested in Section 1.1. Recall

that in Chapter II the residuals were represented as ARIMA processes

rather than as signatures. In Section 4.2 a temperature signature is

used to investigate bias in estimates of thermal properties, while

in Section 4.3 a heat flux signature is calculated from the residuals

and this signature could be fit to an ARIMA model. In Section 4.4

calculations from computer program PROPTY are used to examine the use

of the same coefficients in ARIMA models for all eight sensors. In

Section 4.5 a discussion is given of possible alternatives to con-

stant ARIMA coefficients. In Section 4.6 ways are suggested to

improve the poor ARIMA model discrimination that was observed when

Akaike's Information Criterion was used in Chapter II.

4.1 Optimum Experiment Design

The autocorrelation of the errors not only affects the confidence

regions discussed in Section 3.6 but also affects the design of the

Optimum experiment. Beck and Arnold (1977. Equation 8.3.4) related

'the criterion for the design of the optimum experiment to the covari-

lance matrix for the parameters. The author considered the situation
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where the X matrix is specified and the optimum duration of the

experiment is found. When standard least squares is incorrectly used

the design criterion related to Equation (3.7) can be written as

_ --2

SLS"

t
D X X (4.1)

For Aitken's least squares the design criterion related to Equa-

tion (3.9) can be written as

1-2 t -1
D = X V X . (4.2)
ALS

In both Equation (4.1) and (4.2) the X matrix has variable row

dimension i rather than fixed dimension n used previously. The

column dimension of X is two because there are two parameters. k

and c.

The optimum duration of the experiment is found by increasing

the number of rows in the X matrix until the criterion D reaches a

maximum. The value of i at this maximum and the known sampling

rate in the experiment were used to compute the corresponding opti-

mum duration of the experiment in seconds. The optimum durations

for the conditions used in the simulation study are as follows: for

Equation (4.1) the duration is 25.8 seconds. and for Equation (4.2)

the duration is 16.8 seconds. Thus. for ARIMA(1,0,1) errors the

experiment should end shortly after the imposed heat flux ends rather

than having the experiment end at twice the duration of the imposed

heat flux.

In Section 2.4.3 the coefficients in the ARIMA(1,0,1) model were

shown to change with a change in sampling rate. Thus. the optimum

duration of the experiment computed using Equation (4.2) depends
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on the sampling rate. A sampling rate of 0.3 seconds between

measurements was used in the simulation experiment reported in Sec-

tion 3.5, although the IBM-1800 minicomputer system is capable of

sampling at other rates.

4.2 Signature in the Residuals at the Heated Surface

As emphasized in Section 1.5. the errors in scientific work

may have non-zero mean; i.e., the error model can be written as

w z N(u.w)

The assumption that 8 equals zero yields a model for the error

vector w that is convenient for use in constructing confidence

regions. However, the residuals at the heated surface (e.g.,

Figure 2.19) seem to have a signature that can be represented by

the following model

u.(i) = 01]) H(1° - '18) + 012) H(1° -1'J J E) (4.3)

where uj(1) is the element in the u vector for the j-th sensor at

the i-th time. H is the unit step function, and 011) and 012) are

coefficients appropriate for the j-th sensor.

Perhaps the signature represented by Equation (4.3) could be

removed as Carr (1972) did for a problem in econometrics. Chen

and Danh (1976) showed that with a step heat flux there is a cavity

effect that produced a temperature bias that goes from zero to a

steady value in dimensionless time t* = 0.5. which is close to

the dimensionless time between 0.35 and 0.45 that the imposed heat

flux ends in Farnia's data. An alternate explanation was offered
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by Van Fossen (1973, p. 96) that the correlated residuals can be

explained as a non-uniform heat flux across the surface that causes

three dimensional effects.

A possible bias in the estimate of the thermal parameters is

undoubtedly the most serious consequence of assuming 8 is zero when

it is non-zero. The combined dominant-small parameter analysis by

Beck (1970) can be used to estimate the bias in the theraml parame-

ters caused by the non-zero value of u. By inspecting the residuals

plotted in Figures 2.1 through 2.20. it is clear that both 01]) and

012) are zero when j corresponds to a thermocouple at the insulated

surface and they have the values shown in Table 4.1 when j corres-

ponds to a thermocouple at the heated surface. Note that the coef-

ficients in Table 4.1 are dependent on the maximum absolute value of

the residuals which is measured by the quality factor defined in

 

 

Table 2.3.

Table 4.1

Initial Estimates of the Non-Zero Mean

. (1) (1) (2) (2)
Quality 05 V6 v5 V6

A 0 4 0.0 0 0 -0.4

B l 0 -0.2 -0 2 -0.6

C l 2 -0.8 0 0 -0.4

 



137

An approximation to Equation (4.3) can be written as

ufi1=tvhfifi+e501 (40

where e5 and e6 are the residuals at the heated surface at the i-th

time. Equation (4.4) has only one parameter 0 which is near unity.

The temperature measured at the heated surface can be written as

T(k,c.u) = T(k.C) + u (4.5)

where p is given by Equation (4.4) and T(k.c) is the temperature

calculated from Equation (2.1). The analysis in Beck (1970) for the

two dominant thermal parameters k and c. and the one small parameter

0 is as follows. The equations can be written as

k 5k ‘ (C11 C22 ' c12 C12) (C11 C22 ' C12 C12

C 5C = (C12 C11 ' c11 C12) (C11 C22 ' C12 C12

where

012 = (8.0 T0) (4.6.A)

CH = (k Tk’ k Tk) (4.6.8)

022 = (0 Tc’ 0 Tc) (4.6.0)

C12 = (k Tk, 0 TC) (4.6.0)

with the notation developed for Equation (3.19) used for Equations

(4.6).

Case-3 data shown in Figure 2.14 have a pronounced signature at

the heated surface. The results of a dominant-small parameter analy-

sis for these data yielded the estimates k"1 6k equals -0.016 while

0"1 60 equals 0.011. The maximum bias in the thermal parameters is
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approximately one percent. This represents only a small shift in

the ellipses plotted in Figure 3.1 and will be neglected.

4.3 Signature in the Heat Flux at the Insulated Surface

The residuals near the end of the experiment seem to exhibit a

pattern of being negative. Negative residuals imply the calculated

temperature is greater than the experimental temperature. One pos-

sible cause for this apparent pattern is a heat loss from the disk.

This could occur because the insulated surface is insulated by an

air layer. The signature in case-l data shown in Figure 2.2 was

analyzed by estimating the heat flux at the insulated surface. The

estimated heat flux shown in Figure 4.2 has a maximum magnitude that

is approximately ten percent of the applied heat flux. No heat flux

signature was found.

The estimated heat flux in Figure 4.1 was modeled. The best

fitting model was ARIMA(1,0,1) that can be written as

21 = 0.879 zi_] + a1 - 0.747 a1_]; 21 = "i - w1_] .

The temperature residuals at the same insulated surface had as the

best fit the ARIMA(1,0,1) model given by

ei = 0.974 ei_] + a1 ' 0.513 ai_] o

The 21 component of the wi series for the heat flux and the e1 series

for the residuals have similar order and coefficients. This is an

interesting apparent connection. because randomness was investigated

previously for the heat flux by Ahamadi (1974) and Vakhaniya (1967).

The method used to estimate the heat flux will be outlined.

Beck (1968) pr0posed an integral method for computing the heat flux
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so that small time steps could be used and noted that as the time

steps are made smaller the calculated heat flux will oscillate due

not to instability in the computation procedure but due to errors

in the measured temperatures. Thus, the procedure is accurate enough

to relate the random residuals to a random heat flux.

Computer program CONTL. developed by Van Fossen (1973), was

used to estimate the heat flux at the alleged insulated surface.

Program CONTL requires two surface temperatures and one interior

temperature. In the input to CONTL the average measured temperature

at the surface that is insulated in Farnia's data is used at the

alleged heated surface. The average measured temperature at the

surface that is heated in Farnia's data is used to create an insu-

lated surface by assigning this temperature as the temperature for

both the other surface and the adjacent interior temperature.

4.4 Same ARIMA Coefficients for All Sensors

The white noise variance and the other ARIMA(l.0.0) parameters

are assumed to have the same numerical value for all sensor loca-

tions; namely, Equation (A.24) is used. The effect of unequal series

variances can be investigated by examining the weights Aj computed

by computer program PROPTY. The weights are computed from

_2 -2
AJ - Ow oj

2_-1" .
oJ — n E ej(1) eJ(1)

111

GS = m-] 2 0?

i=13
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where ej(i) is the residual for the j-th sensor and i-th time defined

in Equation (3.20.A).

The range divided by the mean for the weights Aj for case-0

data is 0.706 which is close to the average value of 0.617 computed

in Table 3.8 where the coefficients are all the same because they

are fixed in the simulation study. Thus. a common set of ARIMA coef-

ficients for all the sensors is not unreasonable.

The change in the estimates of k and c when the weights Aj are

used is also computed by computer program PROPTY. The correction

for the thermal conductivity is 6k equal 0.122 and 60 equal -0.016.

This uncertainty in the thermal parameters can be viewed as an insig-

nificant shift in the ellipse plotted in Figure 3.1.

4.5 More Detailed ARIMA Coefficients

There are several models for non-constant values of the coeffi-

cient 0 in the ARIMA(1,0,0) model. Beck and Arnold (1977. p. 320)

displayed an ARIMA(2,0,0) process where the autoregressive coeffi-

cients can depend on the time index. This general form for the

coefficients is computationally feasible when the coefficients 0 are

known. Computation with a variable 0 was also considered by Blum

(1961). Dutsch (1965. p. 125) cited spacecraft data as a case where

the autoregressive coefficients are known functions of the time index.

Autoregressive coefficients that change with the time index

would seem to be appropriate for the heat conduction residuals. In

the heat conduction problem stated in Equation (2.3) the heat flux

is only non-zero for a time period less than the time period that
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the data are acquired. It is observed that the errors before the

heat flux is applied are independent. It is expected that the errors

are also independent after the solid reaches a new uniform tempera-

ture. While the heat flux is applied the errors are ARIMA(1,0,0).

Thus the value of the parameter 8 must be zero shortly before the heat

flux begins and is again zero shortly after the experiment ends.

Therefore, a model with a constant value of 0 is only an approxima-

tion.

Only a few papers have considered estimating the 0 coefficient

when it is not constant. Subba-Rao (1969) estimated the ARIMA(1,0,0)

parameter 0 is known to have either an exponential or a gaussian

dependency on time. Box and Jenkins (1970. Table 8.4) were early

investigators of shifts in the coefficients. and showed that an

ARIMA(O.1.1) model with shifts in the coefficients had a smaller

Q-statistic and hence a better fit than a constant coefficient model

for IBM stock prices. Ozaki and Tong (1975) used Akaike's informa-

tion criterion to divide a series into intervals within which the

coefficients are constant. Hsu (1973) used a block procedure with

fifty points per block to detect changes of 0.1 in the autoregressive

coefficient in the ARIMA(1,0,0) model.

Non-constant coefficients models are used in this dissertation

for the white noise variance; see Equation (2.10.8) and Equation

(A.24.B). The model assumed the following relation

Aij = o I.
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Beck (1974) listed three models for the Aij matrix: homoscedastic.

heteroscedastic. and steady-state. The homoscedastic model given

above could be compared to the heteroscedastic model by using a

range/mean plot suggested by Anderson (1976).

4.6 Improved ARIMA Order Specification

To establish the order of the ARIMA(p,d,q) model the author

used the Akaike information criterion. There are other criteria

which include the final prediction error, the criterion for auto-

regressive transfer function. The study by Landers and Lacross (1977)

showed that each criterion was comparable and each selected the same

model. Chan et a1. (1975) found these criteria were insensitive when

the sample size is large. They developed a criterion that is useful

for large samples. with the criterion depending on both the estimate

of the white noise variance used in the previous criteria and on the

Hessian matrix from the Newton-Raphson estimation procedure.

It is possible that the effect of sample size occurred in the

poor discrimination in Tables 2.8 through 2.10 where the sample size

is large and the better discrimination in Tables 2.12 through 2.13

where the sample size is small.

The insensitivity of the criterion in Equation (2.14) and in

Equation (2.15) in large sample sizes is that the criterion can be

written approximately as

+ 2
a = n ln(o ). (4.7)



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

In Section 5.1 the major conclusions stated throughout the

dissertation are collected and restated. Also some recommendations

for implementing Aitken's least square are made. A subjective evalua-

tion of the importance of these conclusions is given in Section 5.2

for engineering design and in Section 5.3 for parameter estimation.

5.1 Feasibility of Aitken's Least Sguares Estimation

In Chapter II, the model of the error covariance matrix was

shown to correspond to serial correlation. The procedure recommended

in the literature to select the best ARIMA(p,d,q) model for the serial

correlation is based on computation of a numerical criterion called

Akaike's Information Criterion. However. it was concluded that addi-

tional considerations are required to select the best model because

several different ARIMA(p,d,q) models gave a good fit to the residuals.

Hence. three considerations were recommended which confirmed the

choice of the ARIMA(1,0,1) model as best: (1) in Table 2.10 the

ARIMA(1,0,1) model is identified as best more often than the other

candidate models. (2) in Table 2.11 the coefficients in the ARIMA

(l.0,l) model are more stable than those for the other models. and

1 (3) in Table 2.15 good agreement is shown between the predicted and
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observed change in coefficients in the ARIMA(1,0,1) model when the

sampling rate changes.

In Chapter III, the parameter estimates were computed quite

simply by the Aitken's least square procedure. The results displayed

in Table 3.8 show that both the physical parameters (the thermal con-

ductivity and specific heat) and the statistical parameters (0. e.

and oz) have estimated values close to their true values. The

results displayed in Table 3.10 show that the estimated covariance

matrix for the thermal parameters is reasonably close to its true

value. I made a Monte Carlo study and presented the results in

Table 3.5. and I analyzed data presented by Gallant and Goebel (1976)

and presented the results in Table 3.2. The results of this analysis

indicate that the distribution should be noncentral F when the ARIMA

coefficients are estimated. The results of a simulation study on the

heat conduction model indicated that the noncentrality parameter is

close to zero. Hence. the use of the central F-distribution to com-

pute the fractile for the confidence ellipse is recommended.

The plotted confidence regions in Figure 3.1 show that the

effect of neglecting the presence of correlated errors is significant.

However, developing all the necessary computer code to model and

estimate the physical and statistical parameters by Aitken's least

squares is time consuming. Hence. a recommended procedure to make a

preliminary investigation of the effect of serially correlated errors

on the estimated parameters and their standard errors is as follows.

For the model given as Equation (1.1) the procedure is to make compu-

tations in six steps:
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(1) Compute the estimate of b by Equation (5.1) where

b=(flxfxty (5D

to obtain the residuals

e = y - X b, (5-2)

(2) Estimate the coefficient 0 for an ARIMA(1,0,0) model using

Equation (2.11) which only involves examining the shape of

the plotted residuals from Equation (5.2).

(3) Compute the standard least squares confidence interval

using Equation (1.5).

(4) Define the vectors F and 2 using Equation (1.8) where the

l = 1 - 8 K and K is defined in Equation (3 29).matrix L-

(5) Compute the estimate of b using Equation (5.3) where

b = (2t 2)"1 zt F

and also obtain the residuals given by

e = F - 2 b. (5.4)

(6) Compute the modified confidence interval using Equation

(1.11).

The significance of the correlated errors on the estimates of the

physical parameters is the difference in the estimates from steps

(1) and (5) while the significance of the correlated errors on the

confidence interval is the difference in the estimates from steps

(3) and (6). If the results are significant then the procedures in

Section 2.4 may be necessary unless the estimate of 0 is zero when

step (2) is repeated on the residuals in Equation (5.4).
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This six step procedure is essentially equivalent to the pro-

cedure used to obtain the confidence ellipses plotted as Figure 3.2

which is in good agreement with the statistically valid and more

complicated to obtain ellipses plotted in Figure 3.1.

5.2 EngineeringDesign Implications

The presence of ARIMA(1,0,1) errors does not significantly affect

engineering design calculations for Armco iron based on a solution of

the heat conduction equation. Equation (2.1). Although the Aitken's

least squares confidence ellipse displayed in Figure 3.1 is large.

the values contained within the ellipse are still within the :5 percent

typically used in engineering design calculations. However. materials

other than Armco iron are of interest to engineers since the heat

conduction equation is used with a wide range of materials encountered

in the academic disciplines of mechanical engineering. agricultural

engineering. chemical engineering, petroleum engineering. and so forth.

For some of these materials the size of the Aitken's confidence ellipse

may be larger than the accuracy assumed for the physical properties in

engineering design calculations.

5.3 Parameter Estimation Implications

It is shown in Figure 3.1 that the Aitken's confidence ellipse

is larger than the standard least squares confidence ellipse. There-

fore, the presence of ARIMA(1,0,1) errors should be accounted for by

the Aitken's estimation procedure in order to make accurate statements

of the confidence ellipse and of standard errors. The limited results
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displayed in Table 4.1 suggest that the duration of the optimum

experiment is less when there are ARIMA(1,0,1) errors. Thus. inves-

tigators in parameter estimation certainly need to use models of

autocorrelated errors when designing experiments and stating confi-

dence regions.
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APPENDIX A

COMPUTATION OF AKAIKE'S CRITERION

The purpose of this section is to present computational methods

to evaluate the Akaike's criterion in Equation (2.15).

A.l Stationarity and Invertibility Tests
 

Because the sample size can be large. the computations are

simplified when the ARIMA models are both stationary and invertible.

Therefore. tests are given to insure that the models are simul-

taneously stationary and invertible.

The backward shift operator. 8. is defined as B 2i = 21-].

Using this shift operator notation the ARIMA(p,d,q) process can be

written as

(1 - 81 B - ... - 8p BP) 21. = (1 - a] B - ... - e Bq) a1 (A.1)
q

The stationarity condition is that in the autoregressive represen-

tation of the ARIMA process; i.e., if the process is written as

21 = 8"(B) 0(8) a1

the variance, 03. of the z-series is finite. The invertibility con-

dition is that in the moving-average representation; i.e., if the

process is written as

a1 = 8'l(B) 8(8) 21
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the present value of a1 only depends on 21 at prior times. The

test is that the roots of the 8'1(B) 6(8) and 8'](B) 8(8) poly-

nomials lie within the unit circle. Any finite moving-average

process is stationary and any finite autoregressive process is

invertible. The reader is referred to Box and Jenkins (1970, p. 49)

for additional information.

Recent researchers do not give tests for stationarity and

invertibility when the values of p and q are greater than two.

However, Wise (1956) developed conditions for orders up to ten and

explicitly stated conditions for orders up to four. Either the

autoregressive or the moving-average component of Equation (A.1)

can be written as

x"+e]x""+...+a=o (A.2)

where x = B'1 and a is either 8 or 6. A direct test on the roots

would be to solve Equation (A.2) in order to verify that each x1

in Equation (A.3) is less than unity where

(x - x1) (x - x2) . . . (x - xn) = O. (A.3)

An equivalent and more easily computed test is based on the 0's

in Equation (A.2). The conditions on the o's are necessary and

sufficient.

For n equal one. the single condition is

osu+efi(1-%YL (AM

For n equal two. the two conditions are
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0 5 2(1 - 0.2) (1 - a] - C.2)'1, and (A.5.A)

05(1+61+%)u-wh+eg. «68)

For n equal three and n equal four. the reader is referred to the

rather lengthy expressions given in Wise (1956). I verified the

expressions given in Wise (1956) for orders up to and including

four and I programmed them into my computer code.

A.2 Computation Method with MA Absent

The autoregressive process can be written as

a.. (A.6)
2' 3 D1 zi-l + 82 zi-2 + ' ‘ ' + pp zi-p + 11

The procedure used to estimate the 8's utilized the Yule-Walker

equations. These equations are obtained by multiplying Equation (A.6)

by zi-j for the smallest j values satisfying p S j. taking expecta-

tions with E(ai 21_j) = O, and using the estimates of cj in Equation

(A.8) for the non-zero expectations. The objective is to estimate

the 8 and 02 values in Equation (A.6) using the system of Equations

(A.7) and (A.16). Matrix Equation (A.7) is the Yule-Walker equation

r = R 8 (A.7)

where

8t = (8]. 82. . . . . 8p)

rt = (r1, r2, . . . . rp)

and
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r0 '1 r2 r'p-1

R _ 11 r0 r1 "p-2

pr-l rp-2 rp-3 r0

‘1 n-j (A 8cj - n iEl aizi-j . )

rj = C3 / cO (A.9)

Because the matrix R is symmetric. there are a number of well-

known methods for solving Equation (A.7). A convenient method to

solve the system of equations is the Choleski deconposition method

stated as FORTRAN code in Healy (1968) with the code corrected by

Farebrother and Berry (1974). An estimate of the white noise

variance uses the r and 8 values computed above and is given in

Box and Jenkins (1970. Equation 3.2.8) as

02 = (1 - 8tr) c0.

However. to reduce the computational error. an algorithm suggested

by Pagano (1972) was used to compute the estimate of 02.

The algorithm developed by Pagano (1972) computed 02 without

computing the vector 8. Define a square matrix R+ as the R matrix

in Equation (A.7) with dimension (p + 1)instead of p; this matrix

can be written as

R J r
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where the J matrix is a matrix with ones on the reverse diagonal.

The matrix J is related to the usual identity matrix I by

Jik = Iij where k = n + l - j. (A.10)

The determinant of the R+ matrix satisfies

det(R+) = (1 - rt J R" a r) det(R). (A.11)

Because R'1 is centrosymmetric. it satisfies

J R" J = R']. (A.12)

Substituting Equations (A.12) into Equation (A.11) yields

det(R+) = (1 - rt 8" r) det(R). (A.13)

The Yule-Walker equations (A.7) can be written as

R'1 r = 8

and when substituted into Equation (A.13) yields

det(R+) = (1 - rt 8) det(R). (A.14)

Taking the ratio of Equation (A.14) and Equation (A.10) yields

the more computationally efficient estimate of the white noise

variance

02 = c0 det(R+) / det(R). (A.15)

In order to use Equation (A.15) we need to compute both R and R+

and methods for doing this will now be considered. The R matrix

has the Choleski decomposition

R = L 0 Lt

where L is lower triangular with ones on the diagonal and D is

diagonal. Because the determinant of a product is the product of
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the determinants, the determinant of the matrix L is one. and

det R+ = det 0+ and det R = det 0.

Therefore, the estimator in Equation (A.15) reduces to

2
g d

(A.16)
‘ C0 p+1

where dp+1 is the entry in the (p+l) position in the 0 matrix

which is diagonal.

A.3 Computation Method with MA Present
 

The estimates in Equations (A.7) and (A.16) are only valid

when there is no moving-average component. Chow (1972) proposed

a set of equations when there is a moving-average component. I

developed a solution for the equations presented by Chow (1972)

that involves a persymmetric transformation and symmetric decom-

position to find the autoregressive coefficients. and an analytical

solution to find the moving-average coefficients and the white

noise.

The mixed ARIMA process can be written as

21:0]Zi_]+...+flp2. +ai-eai_1'... (A.17)Pp ~0qa1_q.

Chow (1972) used a slightly different notation for his ARIMA model

but the conversion of the equations is quite straightforward. A

1 set of equations for the autoregressive parameter vector 8 is

obtained by multiplying Equation (A.17) by zi-j for the smallest j

value satisfying (q+l) S j. noting that E(ai zi-j) = O. and using

the estimates of cj in Equation (A.8) for the non-zero expectations.
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The resulting set of equations can be written as

r = R 8 (A.18)

where

t _ t

r - (rq+]. rQ+2, . . . . rq+p) ,

t _ t

g - (9]: n2, . o . , ¢p) and

F“ __.

rq rq_1 rq_2 . . . rq+l-p

rq+1 . rq rq"1 . . . rq+2flp

  
Y' Y‘ 1‘ .

+ -1 + -2 + -3 ' °
__9 P 9 P q P q _J

Because 1 S q, the matrix R is not symmetric and the Choleski decom-

position solution procedure can not be used directly. However.

because R is persymmetric the matrix R J is symmetric. By using the

identity I = J J. an algorithm by Rutishauser (1963) for symmetric

but not necessarily positive definite matrices can be used to solve

r = R J J 8

for J 8. The desired autoregressive parameter vector 8 is then

computed from the vector solution J 8 by left multiplying by J since

8 = J J 8.

Having found the autoregressive parameters. a system of equations

for estimating both the moving-average parameters and the white noise

variance is obtained by the three step procedure of writing the

ARIMA model at two base times, multiplying corresponding sides. and
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taking expectations. In matrix form the system of equations

obtained by this procedure can be written as

02 B 8 = - y (A.19)

where the y vector depends on the estimated autoregressive parameter

vector computed by Equation (A.18). The components of the system of

equations in (A.19) are as follows:

t
e = (1, - 0], - 02. . - eq)

8 0q 0 O

0 89-1 q 0 o

B:

-1 61 02 eq

L_ 4  
and

t

y =(y0’y]’---ayq)

The components of the y vector are given by

P P

y = X Z 8. 8

5 i=0 j=0 ‘

j cq-s+i-j (A.20)

where the definition 80 = -l was used in Equation (A.20).

Chow (1972) does not indicate how Equation (A.19) is to be

solved for the coefficient vector 0.

I found explicit solutions of Equation (A.19) when the order

of the moving-average process is small. For q equal one the solu-

tion can be written as
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Q

ll §(y] + (y? - r yg)i ), and (A.21.A)

01 = - yo 0

Because Equation (A.19) is nonlinear in 0. there are multiple solu-

tions. The proper solution in Equation (A.21) has the positive

radical; this choice was also used by Nelson (1974) because it makes

02 large and 61 small. For q equal two the solution can be written

as

2 2 2
(wpz=um+2yor02+882+60-883L (AHA)

o = ;(y] e (y? — 4y0 02 81)* ) (o 01)-], and (A.22.B)

a = - y 0’2 (A 22 0)2 0 O O 0

By evaluating Equations (A.22) in the order A through 0, a non-

iterative solution is obtained. There are multiple solutions

with the correct solution obtained by testing the sign for 61

so that the following relation is satisfied

2 -
O (02 - 0]) - y1 , (A.22.D)

and by selecting the sign on the radicals that makes 02 large

and 61 and 02 small in absolute value.

A.4 Verification of the ngano-Chow Algorithm

The solution procedure hiEquations (A.7) and (A.15) is due to

Pagano (1972) while the procedure in Equations (A.18) and (A.19) is

based on Chow (1972). Hence, the resulting procedure will be

called the Pagano-Chow algorithm. This algorithm was used because
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it resulted in calculation. at reasonable cost, of the Akaike's

criterion in Equation (2.15) for the forty-five candidate models

shown in Tables 2.12 and 2.13. The accuracy of the Pagano-Chow

algorithm was verified by comparing estimates with those reported

by Ozaki (1975) for Series-A in Box and Jenkins (1970). The agree-

ment shown in Table A.1 is good: there is a similar ranking of the

top six models and similar coefficients. Both procedures selected

the ARIMA(1,0,1) model as best which validates the Pagano-Chow

 

 

 

 

algorithm.

Table A.1

ARIMA Model Discrimination for Series A

ARIMA ‘ + .
Model Estimated a ARIMA Coeffic1ents

Estimates by Pagano-Chow Procedure

l.0,l -448.754 8 = 0. 868; e = 0.480

2.0.0 -445.127 8 = O. 427. 0.252

1.0.2 -444.079 8 = 0.803; 0 = 0. 395. -0. 058

3.0.0 -444.049 8 = O. 637. 0.223. 0.068

1.0.0 -434.219 8 = 0.570

0.1.1 -432.639 6 = 0.528

Ozaki's Estimates by Least Squares*

1.0.1 -448.03 8 = 0.88; a = 0.52

1.0.2 -446.79 8 = 0.92; e = 0.54. 0.07

2.0.0 -445.13 8 = 0.43. 0.25

0,19] -444-7] 6 = 0.70

3.0.0 -444.05 8 = O. 41. 0. 22. 0. 07

1.0.0 -434.22 . 8 = 0.57

 

*Source: Ozaki (1975).
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A.5 Autocovariance for Multisensor Data

The heat conduction residuals (shown in Figures 2.1 through

2.20) came from experiments with four sensors at each of two surfaces

of the disk. Each set of residuals yields a series which can be

used to compute separate estimates of the coefficients of the ARIMA

(1,0,0) model and other ARIMA(p,d,q) models. Also an overall esti-

mate of 8 could be computed using all the residuals at one time.

The average of the individual estimates of 8 is not the same as the

overall estimate.

Consider an ARIMA(1,0,0) model where there are two coefficients

8 and 02. Equation (A.7) yields an estimate for the j-th sensor that

can be written as

 

t

83- = (K "1); "’ . and (A.23.A)

(K w) K w

03 = n'1 (P'1 w)t P“ w (A.23.B)

where there are n measurements at the j-th sensor. w is the vector

of residuals. and the matrices K and P are defined in Equations

(3.29 and (3.28). The average of the individual estimates is

obviously written. for m sensors, as

(A.24)

s

u

a

1
1
M
B

'
8

The overall estimates of the parameters in the ARIMA(l.0.0) model

can be written. from Equation (A.7). as
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*t *

8 = 1 (I # 51tw1 "* . (A.25.A)

( (I # K) w ) (I # x) w

02 = m" n'1 ( (I # P“) w*)t (I # P'l) w* (A.25.B)

where w* is a vector of dimension mn obtained by stacking the

m residual vectors w, one from each sensor. The special symbol #

denotes the kronecker matrix product discussed in Theil (1971).

In general the estimate from Equation (A.24) is not the same

as the estimate obtained from Equation (A.25.A). It is fairly

clear to see that the estimators in Equation (A.25) are based on

the average of the autocovariances defined in Equation (A.8). The

estimates in Tables 2.8 through 2.11 are those obtained by using

the averaging of the autocovariances from the appr0priate sensors.
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APPENDIX B

DERIVATION 0F DISTRIBUTION FOR PERCENTILES

WHEN V IS KNOWN

In this appendix the percentiles for the confidence regions in

Section 3.2 are derived. The probability distributions involved are

expressed in terms of ratios of quadratic forms in normal variates.

The derivation is for the physical model in Equation (1.1) and the

statistical model in Equation (1.6) which satisfies the eight assump-

tions listed in connection with Equation (l.l4.A). For notational

convenience. the same symbols (b and s2) are used, although they are

defined differently in Sections 8.1 through 8.3. This is reasonable

because only Equations (8.3) and (8.5) are used elsewhere in the

dissertation.

8.1 ALS Confidence Ellipse

The Aitken's least squares (ALS) estimators of 8 and 02 can be

written as

b = (xt v" X)'1 xt v"1 y, and

s2 = (n - k)" et v" e

where the residual vector e is written as

e = y - X b.

From Theil (1971. p. 238) the covariance matrix for the parameter

vector b can be written as

164
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cov(b) = 62 QALS

where the following definition of QALS is introduced

t ’1 X)-].

The quadratic form of interest can be written as

‘01 _(b'8)

-2 -1
b -

(b _ B)t (X N. 0 QALS ( B) .

-1 0-2 et v-l e

 

Thus the quadratic form involves the ratios of two quadratic forms

that can be expressed in normal variates.

The numerator quadratic form can be expressed in normal variates

by substituting Equation (1.1) into the estimator of b to find (b - 8)

and this substitution yields

1
t N w' w(b - Blt 0-2 QAES (b - B) = W

where the following definition of N has been introduced

N = v”1 x (xt v" X)‘1 xt.

The conditions given by Theil (1971. p. 82) to establish whether this

satisfies the conditions for the quadratic form to be chi-square do

not apply. However. Shanbhag's theorem given as Equation (3.10.A)

applies by noting that the variance of the vector w is the matrix W.

and making the associations 0 = W and A = N W-]. Because A 0 equals

N and N is idempotent (A C)2 = (A 0)3 = (A C)4. Hence the quadratic

form has a central chi-square distribution. The number of degrees

of freedom in this distribution is found from Equation (3.10.8) as

l -1 t

tr N = tr v" x (xt v' X) x = tr (xt v'1 X)(xt v'1 x)"1
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Clearly tr N equals k the column dimension of the X matrix. Hence

the numerator quadratic form is chi-square with k degrees of freedom.

The denominator quadratic form is related to the residual

vector e which can be written as

e = y‘- x b = (I - x (xt v" X)’1 xt v") y.

Using the definition of the N matrix yie1ds

e = (I - Nt) w

where w is a normal variate. The denominator quadratic form satisfies

the following identity

t 0'2 V'1 e = et W'] ee

which can be expressed as a quadratic form in w as

et w" e = wt (I -,N) w" (I - Mt) w

or equivalently as

t 1
e W- e = wt (W-l - N W-]) w. (8.1)

Noting that the variance of the normal vector w is W, Shanbhag's

theorem applies with the association A = (I - N) W'1 and C = W.

Because

A C = I - N

which is idempotent. Equation (3.10.A) can be used to show that

the denominator quadratic form is central chi-square. The number

of degrees of freedom is computed from Equation (3.10.8) as

tr(I - w" x (xt V"1 X)" xt)tr(I - N)

tr In - tr (xt v"1 X)(xt v"1 X)".
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Hence the denominator quadratic form is distributed as 02 times

a central chi-square with (n - k) degrees of freedom. The esti-

mator of the white noise variance can be written as

-l
'1 et v e (8.2)s2 = (n - k)

is unbiased since the expected value of the chi-square distribution

that the quadratic form in Equation (8.1) satisfies is (n - k).

The distribution of the quadratic form that is used for the ALS

confidence ellipse can be written as

(b - 8)t s'2 4,315 (6 - s) = mail *2“)
X (n-k)

where X2(p) denotes a chi-square with p degrees of freedom.

Because the appropriate covariance matrix is W. the test in

Equation (3.11) for independence of these chi-square distributions

is whether the following is zero,

1 1
(N w'l) w (w'1 - N u") = N w" - N N w' .

This is zero because N is idempotent. Thus the chi-square distri-

butions in the numerator and in the denominator are independent.

Hence. as stated by Beck and Arnold (1977. p. 300). the ALS confidence

ellipse is described by a central F distribution; namely,

- 2

(b - 8)t QAES (b - e) e k s F(k.n-k,l-a).

For comparison with G(l-a) used in Equation (3.5) note that the

following identification can be made

GALS(1 - a) = F(k,n-k,l-a). (8.3)
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8.2 MLS Confidence Ellipse

The mixed least squares estimators of B and 02 from Theil

(1971. p. 240) can be written as

6 = (xt X)'1 xt y, and

s2 (n - k)'l et V-1 e.

From Theil (1971, p. 247) the covariance matrix for the parameter

vector b can be written as

2

cov(b) = o QMLS

where the following definition of QMLS is introduced

QMLS = (xt x)’1 (xt v X) (Xt x)‘1.

The quadratic form of interest can be written as

(b-mt%L(b-m

l
(b-mtfixlfiwxr‘fx(b-m= 4 t-

(n - k) e V e

 

The derivation proceeds as in Section 8.1. Substituting Equation

(1.1) into the estimator for b yields

6 - 8 = (xt X)‘1 xt w

so that the numerator quadratic form can be written as

(6 - B)t 0,7115 (6 - 8) = 02 wt x (xt 14 X)'1 xt w.

Noting that W is the covariance matrix of the normal vector w and

making the associations A = X (Xt W X)'] Xt and C = W. Shanbhag's

theorem in Equation (3.10.A) can be applied. By direct evaluation

(A C)2 = A C, so that the distribution appropriate for the numerator

quadratic form is central chi-square. Because
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A 0 = x (xt w X)-] xt v

the number of degrees of freedom can be found using Equation

(3.10.8) as

tr x (Xt w X)”1 xt w = tr (xt w x)’1 (xt w x) .

Hence the numerator MLS quadratic form is distributed as central

chi-square with k degrees of freedom.

The MLS denominator quadratic form is the same as the ALS

denominator quadratic form given as Equation (8.1). This was shown

to be chi-square with (n - k) degrees of freedom.

Therefore, the distribution of the quadratic form used for the

MLS confidence ellipse can be written as

 

2
t -2 -1 ~ (n - k) X (k)

b - B b - 8) ~ - (3-4)
1 1 5 QMLS ( X2(n-k)

Because the covariance matrix is W. the test for independence of

the numerator and denominator chi-square distributions is that the

following matrix product is zero; namely.

02 (X (xt w x)’1 ) w (w'1 - N w").

This can be rearranged as

x (xt v X)" xt - x (xt v x)’1 xt x (xt v'1 x)" xt v"

which is orthogonal to X and is zero when V equals the identity

matrix. Because the test in Equation (3.11) for independence was

not passed. it is unclear what distribution GMLS(1-a) has.
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8.3 SLS Confidence Ellipse

In standard least squares the V matrix equals the identity

matrix which is not correct when Equation (1.6) applies instead of

Equation (1.2). The standard least squares estimators of B and 02

can be written as

6 (xt X)'1 xt y, and

2
s (n - k).1 et e.

From Theil (1971, p. 112) the covariance matrix for the parameter

vector b can be written as

_ 2

where the following definition of QSLS has been introduced

QSL5 = (xt x)“.

The quadratic form of interest can be written as

t -l
b - b -(b _ B). 0.2 xt x (B _ B) = ( 8) Q§%S : 8) .

(n - k) e e

 

The derivation is given in Theil (1971, p. 129) and by others but

will be sketched here briefly for completeness. The derivation

proceeds as in Section 8.1 and 8.2.

The numerator quadratic form can be written as

t -l t t -l t

(6 - B) QSLS (b - B) - w x (x x) x w.

By making the associations A = X (Xt X).1 Xt and C = I. Shanbhag's

theorem in Equation (3.10.A) can be applied to show that the dis-

tribution appropriate for the numerator quadratic form is chi-squared
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8.3 SLS Confidence Ellipse

In standard least squares the V matrix equals the identity

matrix which is not correct when Equation (1.6) applies instead of

Equation (1.2). The standard least squares estimators of 8 and 02

can be written as

6 (xt X)"1 xt y. and

2
S te.(n - k).1 e

From Theil (1971. p. 112) the covariance matrix for the parameter

vector b can be written as

cov(b) = 02 QSLS

where the following definition of QSLS has been introduced

QSLS = (xt X)".

The quadratic form of interest can be written as

w-BNQaSw-B)
)t 0-2

(n - k)-1 et e

xt x (B - 8) = (b - B

The derivation is given in Theil (1971. p. 129) and by others but

will be sketched here briefly for completeness. The derivation

proceeds as in Section 8.1 and 8.2.

The numerator quadratic form can be written as

t -1 t t -l t

(b ' B) QSLS (b ' B) ' W x (x X) x W.

By making the associations A = X (Xt X).1 Xt and C = I. Shanbhag's

theorem in Equation (3.10.A) can be applied to show that the dis-

tribution appr0priate for the numerator quadratic form is chi-squared
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since by direct evaluation (A C)2 = A 0. The number of degrees of

freedom is easily shown to be k. The denominator quadratic form can

be written as

et e = wt M w

where the following definition of the matrix M has been introduced

M = I - x (xt x)’1 xt.

Again Shanbhag's theorem can be applied to the denominator quadratic

form to show that et e is chi-square with (n-k) degrees of freedom.

Because M X = 0. the chi-square distributions are independent and

this can be shown by applying Equation (3.11). Hence, the SLS con-

fidence ellipse is described by a central F distribution; namely,

t -1 ~ 2
(b - B) QSLS (b - 8) ~ k s F(k,n-k,l-a) . (8.5)

Comparing Equation (8.5) with Equation (3.5) yields the following

identification

GSLS(1-a) = F(k,n-k,1-a). (B.6)

Equation (8.5) is correct only when the standard assumptions are

valid including the assumption that the V matrix is the identity

matrix.

8.4 Computation of Percentiles

A simple FORTRAN program by Selvin and Wong (1975) was used to

compute the probabilities for the F distribution. In calculating the

confidence ellipses. the eigenproblem was solved using the algorithm

by Boothroyd (1968). The F percentiles were computed using the
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Kelley-and-Arnold equation recommended by Sahai and Thompson (1974)

with the required normal fractiles computed by an algorithm stated

by Odeh and Evans (1974).
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APPENDIX C

SIMULATION OF HEAT CONDUCTION DATA

In this appendix the method used to generate the data analyzed

in the simulation study in Section 3.5 is discussed.

0.1 Analytical Solution for Temperature
 

The theoretical temperature simulated is an analytical solution

of the problem of a heat pulse of duration tE-tB acting on one face

of an insulated disk. The solution can be written as

where u(x.t) is a solution of the following problem

2

t ax

subject to the conditions

u(x.0) = 0 (0.3)

" _(_._131“ 0 t = 0 (0.4)

g :(L,t1 = q H(t).
(C.5)

The analytical solutions haEquation (0.2) subject to the initial

and boundary conditions in Equations (0.3) through (0.5) were

given by Gautschi (1962) as follows. The solution at the heated

surface can be written as

174
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u(L,t) = q L k" (a t L'2 + 3" 83(0) t .2 L'Z) ). (0.6)

The solution at the insulated surface can be written as

2
u(o.t) = q L k" (a t L‘ - 6" 04(6 t "2 L'z) ). (0.7)

As their argument increases from zero to infinity both the func-

tion 03 and 04 increase monotonically from zero to unity. Formal

analytical solutions for either large times or for small times are

also given in standard references, such as Carslaw and Jaeger (1947.

p. 112).

However. the numerical evaluation of the formal analytical

solutions is not stated as an algorithm in standard references.

Frank (1962) tried to develop approximate expressions. valid for all

times. that could be used in an algorithm; however. I found that

these expansions of the Laplace integral transform solutions are not

accurate at the insulated surface. Gautschi (1962) obtained approxi-

mate solutions to the theta function solutions given in Equations

(0.6) and (0.7). I used these approximations and the series solutions

also stated by Gautschi (1962) to obtain the set of solutions stated

in Table 0.1. The set of solutions in Table 0.1 can be used as an

algorithm to compute the solution of Equation (0.2).

0.2 Generation of Normal Variates

The simulated data used in Section 3.5 involved both the

theoretical temperature computed using Equation (0.1) and additive

errors. The additive errors were described by an ARIMA(1,0,1) process.

The simulated temperature data. denoted Te(x,t), are computed from
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Te1x’ti) = T(x,ti) + wi

where the ARIMA(1,0,1) errors are computed from

wi = 8 w1_] + 0 vi - o 0 vi_]. (0.8)

The unit normal variates. Vi’ are generated numerically.

Several methods are commonly used to generate the unit normal

variates. Gallant and Goebel (1976) generated uniform variates

with computer program RANDU and transformed these to normal vari-

ates by a Box-Muller procedure. The transformation in the Box-

and—Muller procedure was stated by Muller (1959) in the following

form

<

11 (- 2 ln(u]) ).1 cos(2 n uz). and (0.9.A)

v2 (- 2 ln(u]) )1 sin(2 n 02). (0.9.8)

The u-variates are uniform on the interval (0.1) and the v-variates

are unit normal.

As discussed by Niederreiter (1976) pseudo-random uniform

variates can be generated from a recursive integer equation

R1 = K R1._1 MODULO(M)

which can be used to obtain uniform variates given by

'1 R.. (0.10)

15 and M = 247. TheIn this generator I used the values K = 5

values were generated on a Control Data Corporation 6500 series

computer.
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Although the transformation in Equation (0.9) is exact. the

v-variates may not pass tests for normality when the u-variates

are pseudo-random numbers. I computed the v-variates using a

form of Equation (0.9) stated by Ahrens and Dieter (1972) that

avoids the evaluation of the trigonometric terms. I found that

the resulting generator of the v-variates had an overall goodness

of fit of 954 compared to a value of 915 for the single generator

used by Golder and Settle (1976); in this test the expected goodness

of fit was set at 990.
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