
CONTINUOUS USER AUTHENTICATION AND IDENTIFICATION USING USER
INTERFACE INTERACTIONS ON MOBILE DEVICES

By

Vaibhav Bhushan Sharma

A THESIS

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computer Science - Master of Science

2015



ABSTRACT

CONTINUOUS USER AUTHENTICATION AND IDENTIFICATION FROM USER
INTERFACE INTERACTIONS ON MOBILE DEVICES

By

Vaibhav Bhushan Sharma

We investigate whether a mobile application can continuously and unobtrusively authen-

ticate and identify its users based on only their interactions with the User Interface of the

application. A unique advantage that this modality provides over currently explored implicit

modalities on mobile devices is that every user who uses the mobile application is automati-

cally enrolled into the classification system. Every user must interact with the User Interface

of an application in order to use it and therefore this modality is always guaranteed to have

sufficient number of inputs for training and testing purposes. Using different types of input

controls available on the Android platform, we collected interactions from 42 users in five

different sessions. We created base classifiers from each type of input control and combine

them into an ensemble classifier in order to authenticate and identify users. We find Support

Vector Machine based ensemble classifier achieves a mean equal error rate of 5% in case

of authentication and a mean accuracy of 90% in case of identification. We find Support

Vector Machine based ensemble classifiers outperform other techniques in both cases. While

the ensemble classifier performance for authentication and identification is not found to be

sufficient for it to replace current primary authentication mechanisms used in mobile ap-

plications, its truly continuous nature provides motivation for it to be used in combination

with primary mechanisms.
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Chapter 1

Introduction

With the widespread use of mobile devices, a large number of mobile users use their

devices for accessing sensitive information. Mobile devices which have been compromised

can cause theft of such critical information and be harmful to the mobile user’s wellbeing.

Examples of such information include usage of mobile banking applications, critical infor-

mation saved into email accounts and private contact information stored for friends and

family. In order to prevent attackers from getting access to such information, mobile device

manufacturers typically program devices to explicitly authenticate the mobile user before

allowing access to the device.

1.1 Explicit Authentication

Typically used explicit authentication mechanisms include asking the user the setup

a pass code or a pattern on first boot of the device. However, a variety of issues manifest

themselves in these authentication schemes. Users must remember the pass codes or patterns

at all times. This form of explicit authentication also diverts the user’s attention away from

the purpose he wishes to use the device for. However, the most critical issue with such

authentication schemes is that these schemes provide all or nothing access to the device. In

other words, the user either gets access to all the applications on the mobile device or gets no

access at all. In the context of a convenience vs. security tradeoff, such schemes compromise

heavily on user convenience. A critical assumption made by such schemes is that only the
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legitimate user will use the device after having unlocked it and the device will be locked again

after the usage session. However, mobile users often encounter situations when the device

has to be put away for a brief period of time due to another situation requiring their urgent

attention leaving the device vulnerable to attackers. As reported by Lookout Security[21],

one in 10 mobile users in the United States are victims of mobile theft which can lead to

further information theft. Such scenarios necessitate other authentication schemes[19] which

are less obtrusive, more continuous while remaining accurate enough to be useful in practical

situations.

1.2 Implicit Authentication

Implicit Authentication(IA) schemes have been an active area of research in the past

few years. The general idea when doing implicit authentication is to only use inputs which

are given by users indirectly and make a decision on whether any such input or group of

inputs were provided by a legitimate user that we have previously seen or an unknown user.

Investigation has been carried out to check if modalities derived from implicit input contain

information which is discriminant enough to distinguish between a known user and a set

of unknown users. It has been found that users are surprisingly receptive[12] to using such

non-intrusive schemes for authentication even though IA schemes continue to have security

limitations. The criteria which makes IA more desirable is that it is strictly non-intrusive

and continuous providing users a feeling of security and at the same time, not creating any

barriers from providing desirable functionality to users. Some of the IA modalities that have

been explored are described briefly in the next section.

1.2.1 Explored Implicit Authentication Schemes

1.2.1.1 Touch-based Authentication

The most prominent form of capturing the user’s implicit inputs to a mobile device

would be via the touch screen since all of a user’s interactions with the mobile device occur

via the touch screen. An example of such a modality would be touch-based authentication[8]
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wherein the authors gathered vertical and horizontal fling gestures performed by 41 users

while using different mobile phone applications. However, this modality requires users to

provide scroll gestures as inputs to the device, thereby creating a limitation of the modality

not getting inputs fast enough on devices with larger screens.

1.2.1.2 Keystroke-based Authentication

Feng et al.[5] explored the possibly of authenticating users via their behavior observed

when they used the soft keyboard available on mobile devices. While this modality has the

advantage of being resilient to attack, it is limited to being useful only when attackers are

forced to use the soft keyboard for their purposes. In scenarios when malicious tasks can be

accomplished without providing any keystrokes, this modality has limited value.

1.2.1.3 Sensor-based Authentication

Kayacik et al.[15] devised a sensor-based authentication mechanism which created a

user profile from sensor data during the mobile device’s usage, measured profile stability and

switched to a authentication phase once a user profile stabilized. However, this technique

requires invasive access to a user’s private information such as location inferred from cell tow-

ers several times a day, access to wifi signals and accelerometer readings. In situations where

a user may not be entirely comfortable with sharing this information with a authentication

mechanism, this technique would have limited value.

1.2.2 UI Interaction-based Authentication

In this report, we propose a new modality for implicitly authenticating users to their

mobile devices. Every mobile application will always have a User Interface(UI) to interact

with its users. We observe user behavior as seen through interactions with the application’s

UI and use it for not only authenticating, but also identifying users. This technique has the

advantage of being available on every mobile device regardless of screen size. Every popular

mobile application will have a UI which users will interact with and thereby provide implicit

inputs for this modality. These inputs can be captured in a non-obtrusive manner and do

not impose any specific requirements on the application such as requiring the application
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to gather inputs from the user via a soft keyboard. Also, this modality can capture inputs

without requiring invasive access to the mobile device’s sensors. Thus, this modality is

almost always guaranteed inputs regardless of the sensors present on the device.

As part of this investigation, we use every available form of UI interaction in the

Android OS[10] to authenticate users based on their UI interactions during application

usage sessions. We propose that it is possible to use a combination of all kinds of available

input controls on the Android OS to perform implicit authentication and identification on

an Android device.

We hypothesize that an interaction of a user with the UI of a mobile application contains

some distinguishing information which when put together with every piece of information

extracted from UI interactions in the same app usage session can help determine the identity

of the user. The intuition behind this hypotheses is illustrated in Figure 1.1. This figure

shows the coordinates where two different users touched in order to bring the keyboard’s

focus to the edittext. It can be seen clearly that these two users focused on different parts of

the edittext and therefore shows how the edittext input control is able to capture discriminant

information from these two users. Figure 1.2 demonstrates the separability between touch

features extracted between two different users when they were interacting with radiobuttons.

It shows how the features naturally lend themselves to a clear classification and also how

feature values for different users occupy different spaces in the feature space. The objective

of this study is to evaluate if such UI interactions are discriminant enough to provide an

implicit form of user authentication instead of explicit forms such as secret pins or passwords.

1.3 Implicit User Identification

While modalities providing authentication mechanisms help determine if a test input

belongs to the legitimate user or not, the problem of user identification assigns every test
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Figure 1.1: Touch gestures on Android EditText for two users. It can be seen that these two
users focused on two different parts of the EditText input control to bring keyboard focus
to it.
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Figure 1.2: Radiobutton usage for two users from our data collection show separability. It
can be seen that these two users exerted different finger pressures when attempting to select
a Radiobutton for the first time.

input to one user in a set of already known users. Thus being able to not only authenti-

cate but also identify a user based on his test inputs provides a stronger guarantee on the

classification of a test input.

1.3.1 Sensor-based Implicit User Identification

Shi et al.[23] makes use of voice, location, touch and accelerometer sensor inputs for

establishing user identity and triggers explicit authentication when user identity is found to

have changed. A major limitation of this approach is its dependence on multiple sensors

being available on the mobile device.
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1.3.2 UI Interaction-based Implicit User Identification

We hypothesize that a user’s interactions with the UI of a mobile application are dis-

criminant enough to establish the user’s identity. We collect UI interaction data from 42

users by asking volunteers to use 5 mobile applications with the same UI. We then train on

4 app usage sessions for every user and try to classify the 5th app usage session as belonging

to 1 of the 42 known users. Being able to identify users in this manner has the advantage

of not imposing the requirement of having multiple sensors available on the mobile device

while also not having to invasively capture any of the user’s private information via any

other sensors apart from its touchscreen.

The remainder of this report details a literature survey of this research area, provides a

description of the data collection performed and classification framework used and provides

an evaluation of the classification framework. We discuss some limitations of this technique

and provide concluding remarks on this modality.
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Chapter 2

Related Work

The hypotheses stated above lies in the general area of implicit authentication on

mobile devices. The general idea of implicit authentication is to authenticate the user based

on a modality or a combination of different modalities for which the user provides samples

in an implicit way, e.g. gestures that the user performs on the screen of a mobile device.

Different schemes make different assumptions about the mobile device, e.g. Shi et al.[23]

assume the accessibility of four sensor modalities including voice, location, multitouch and

locomotion.

Frank et al.[8] extracted features from scrolling gestures performed by users during

interaction with their data collection applications and showed users ’touch interactions

to be a practical modality for authenticating users. However, this modality makes

use of an assumption that the mobile applications that the user or attacker uses will

provide sufficient inputs to this technique. Shahzad et al[22] demonstrate explicit touch ges-

tures performed by users as another possible modality that can be used to authenticate users.

Feng et al.[4] demonstrate another touch-based modality and evaluate it on a large

data set of test users. These techniques suggest authentication mechanisms that capture

data from the entire device irrespective of the application being used. However, both Feng

et al. and Frank et al. suggest that taking application context may improve the overall au-
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thentication accuracy. Khan et al.[18] argue for a more application-centric approach and use

the same touch-based classification methods on datasets collected from the same application.

A framework named Itus for doing app-centric implicit authentication has also been

proposed by Khan et al.[17]. This framework proposes greater flexibility, extensibility

and control be provided to mobile application developers for performing implicit authen-

tication. Other proposed implicit authentication techniques include using sensor-based

modalities[14],[26], recognizing users from their gait[7] and using the device picking-up mo-

tion as a modality for user authentication[6]. Since the most recent work in this area has been

in the direction of making implicit authentication more app-centric, the next logical step

seemed to be to try to use app-specific User Interface interactions for authenticating the user.

The most comprehensive evaluation of different authentication schemes has been done

by Khan et al.[16]. Six different IA schemes were evaluated against four independently

available data sets containing data for over 300 participants. However since none of the

existing techniques had performed authentication using only the UI of a mobile application,

there were no publicly available datasets on this modality, thereby prompting us to collect

a dataset of our own.

One proposed authentication scheme most similar to ours would be LatentGesture[20].

However, this scheme uses only a subset of the input controls[1] available on the Android

OS. The evaluation of this scheme for both authentication and identification is done on a

much smaller set of users than our evaluation. In this study, the users were chosen on the

basis of their prior experience with the mobile device and were also given the opportunity to

test the applications before the data collection procedure was begun. This method of data

collection contrasts heavily with our data collection procedure wherein we did not select

users based on any criteria, apart from asking them to volunteer their time for our data
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collection and did not offer users any opportunity to get trained to interact with our data

collection applications. We think this method of data collection closely mimics a practical

attack scenario wherein an attacker may not have been previously trained to interact with

the mobile application but would still be able to successfully interact with the applications.
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Chapter 3

General Idea and Goals

In this section, we provide intuition for using UI interactions as a unique modality and

describe how we modeled this modality for our investigative purposes.

3.1 Motivation

Several existing approaches to IA have demonstrated that every user behaves differently

while interacting with a mobile device. The overall performance of an IA scheme depends on

how well the scheme extracts discriminant features from its modality and the classification

algorithm used to authenticate and identify test inputs. The intuition behind this modality

can be summarized as follows : As long as the User Interface for a mobile application remains

consistent, user behavior while interacting with the User Interface also remains consistent.

For example, the way a user types email into the text box of an email application is different

than the way a user types the password into a mobile banking application. Such observations

motivated an investigation into checking if this behavior is consistent enough for one user

while also being discriminant enough to distinguish among different users. We divided this

investigation into two separate problems described in the following subsections.

3.1.1 Authentication

This problem can be phrased as follows :

Given a training set containing samples for a legitimate user and a set of impos-

tors, classify UI interactions extracted from every app usage session as belonging
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to the legitimate user or an imposter.

3.1.2 Identification

This problem can be phrased as follows :

Given a training set containing samples for a set of enrolled users, classify UI

interactions extracted from every app usage session as belonging to a user among

the set of enrolled users.

3.2 User Interface Design using Android Input Con-

trols

Android considers all UI elements that allow users to interact with them while dynami-

cally providing visible feedback to users as input controls [1]. For the purposes of this study,

nine different types of input controls were used to capture interactions with users.

As shown in Figure 3.1, nine different types of input controls were used for this study.

These along with their corresponding interactions recorded for each user are shown in Table

3.1.

Input Control Functionality of Input Control

button tap to start next activity
checkbox tap to select value

radiobutton tap to select value
switch tap or horizontal fling from

left to right to toggle
togglebutton tap to toggle value

picker vertical fling to pick a value
edittext tap to bring keyboard focus

spinner item tap to select item
spinner button tap to show drop down

Table 3.1: Android Input Controls used for data collection

As shown by Table 3.1, three different kinds of button controls were used viz. but-

ton(shown as the Next button in Figure 3.1), togglebutton and the spinner button used to

initiate the spinner drop down. The Next button’s function was to suspend the current
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Figure 3.1: Android Input Controls used for data collection

Activity [9] of the app and start the successive Activity, the togglebutton was used to change

a value from True to False and vice versa, the spinner button was used to trigger a drop
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down menu from which the user could select a value. Since all these three controls performed

three different functions, all interactions performed with these three types of buttons were

treated separately.

3.3 Continuous Authentication and Identification us-

ing UI Interactions

The general idea behind verifying UI interactions for authenticating and identifying

users as a new modality is to train on a user’s behavior with the UI of an application during

the initial sessions when the application is being used and then during later usage sessions,

authenticate or identify the user.

3.3.1 Enrollment Phase

During this phase, all interactions of a user with any element that is part of the UI of

an applications are logged. As many features that can be derived from every interaction

are logged. The number of features that can be derived from every interaction depends

on the API exposed by the underlying operating system. Most of the features we logged

for every interaction could be derived from the Android GestureDetector[11] class. The

number of usage sessions to be used for enrollment can be determined by the application

developer. In Section 7, we will discuss the effect of changing the number of input controls

on authentication and identification accuracy.

3.3.2 Authentication / Identification Phase

During this phase, every interaction of a user with any element of the UI is classified.

The classification task depends on whether the final decision is one of authentication or

identification. At this stage one critical assumption is made : Every interaction performed

during the same session of usage of an application must have been performed by the same

user. Hence, all interactions performed during the same session can be combined to get one

final classification decision. In case of authentication, the entire session is classified as having

been performed by either the legitimate user or the imposter. In case of identification, the

13



entire session is classified as having been performed by one user among the set of known

users.
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Chapter 4

Data Acquisition

In this section, we describe the data acquisition procotol followed when collecting data

for UI interactions.

4.1 MSU SIRB Approval for Data Collection

The protocol followed for collecting data for this study can be found in the documents

approved by the Michigan State University - Social Science Behavioral/Education Institu-

tional Review Board (SIRB) for IRB# 15-277. The data collection for this study began

on April 23, 2015 and ended on May 22, 2015. As part of this protocol, users were first

asked if they wished to volunteer for this data collection procedure. Willing volunteers were

then explained the data collection procedure and the three levels of authorization. The data

collection as stated in Section 4.3 was then performed from every consenting volunteer. One

of the objectives of the design of the data collection applications was to prevent anyone with

access to the data from identifying any of the volunteers who participated in this study.

4.2 Design of Android Application for Data Collection

An Android device was chosen for this data collection exercise. Given the nine types of

input controls shown in Table 3.1, it was determined that every user should interact with 15-

20 instances of each type of input control during every application usage session. In addition,

it was determined that data from five such usage session should be obtained from every user.
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This value of collecting data for five sessions was set to find the right balance between

obtaining sufficient training and test data and keeping user frustration within reasonable

limits. The questions were created in a manner which prevented any personal or private

information being entered by the users while still provoking some thought in users before an

interaction with an input control was begun. For example, one of the questions asked was

: “Does March precede April ?”. These design principles were used to closely mimic usage

in practical scenarios wherein users will typically stay aware of their interactions with the

UI of an application. An attempt was made to keep the type of questions similar in every

Activity of the application in order to reduce the time required to complete each session of

data collection.

4.2.1 Intra-session Consistency of User Interface

Users interacted with 15-20 instances of the nine different types of input controls during

every app usage session. An attempt was made to maintain consistency in user interactions

with every type of input control.

For every input control, an attempt was made to keep all instances of the same input control

vertically aligned. Also, all instances of input controls of the same type were kept of the

same length and breadth to provide the same amount of area for each user to interact with

the input control. We describe the design decisions made to maintain consistency among all

interactions with the same type of input control.

• Edittext : We captured the touch interaction done by each user to bring keyboard focus

to it.

• Button: The only button instances were recorded from the Next button shown in the

bottom right corner of Figure 3.1.

• Checkbox : As shown in Figure 3.1, instances of both Checkbox were placed in two

columns. In order to collect data from both placements of Checkbox instances, equal
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number of correct answers were placed in both the columns.

• Radiobutton: Radiobutton instances would allow only have one possible selection in

their group. Two instances of Radiobutton were included in each group and equal num-

ber of correct answers were placed in both the 1st and the 2nd Radiobutton instance

in each group.

• Spinner : Placement similar to Radiobutton was used when designing the Activity

containing instances of Spinner. Instances of Spinner were created to simulate the

functionality provided by Spinner in order to collect data not only from the Spinner

item selection but also from the initial button click to initiate the Spinner drop down

menu.

• Togglebutton: Togglebuttons are different from other input controls because they can

have only two possible values, one of which will be set as the default value in the

Togglebutton instance. We needed to make users interact with Togglebutton instances

in a natural way instead of simply changing the state of every Togglebutton instance.

For this purpose, we created a set of 20 questions for which the answers were either

True or False. 10 of these questions had a correct answer of True and the remaining

10 had a correct answer of False. We manipulated the Togglebutton instances such

that 13 of the 20 Togglebutton instances required the users to change the state of the

instance when attempting to answer correctly.

• Switch: We attempted to limit users to toggle the switch from left to right during the

first interaction. Switches can be toggled by either tapping anywhere within the visible

area of the Switch or by sliding the Switch to the intended state using horizontal fling

gestures. While most users started by toggling switches using horizontal fling gestures,

many of them resorted to using tap gestures with switches in the later app usage

sessions.
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• Picker : Every user was asked to pick a value from a given set of values by doing vertical

flings but the set of picker values would circle back to the 1st value after the last value

was flinged through. However, every picker would have an initial value set before the

user’s interaction. The target value was intentionally kept equidistant from the initial

selected value in the picker.

4.2.2 Inter-session Consistency of User Interface

Among the five applications used for data collection, questions were designed for the

only the first application. The order of the questions was changed in order to create the

remaining four applications. This design decision was take primarily to keep the UI of all the

applications consistent and to prevent users from memorizing answers to the questions they

were being asked by the data collection applications. This design of the data collection app

made users think at least momentarily before interacting with the questions’s corresponding

input control for providing an answer. Since most input controls were vertically aligned,

changing the order of the questions changed the applications enough to prevent memorized

interactions without changing the UI of the applications.

4.3 Data Collection Procedure

The questions were intentionally made simple to answer to keep the level of frustration

low among volunteers but at the same time the questions were thought provoking enough

to prevent users from memorizing an answer without reading the complete question. This

procedure also helped make the data collection applications more realistic since during real

Android application usage, users generally read and think before touching on any part of

the screen. No private questions were asked as part of the data collection exercise. An

example of a question asked: “Which letter comes after the letter a ?” Every user was

identified by a subject number written in the consent form.

For every touch action performed on an input control instance, features from only
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the user’s first interaction with that input control instance were extracted and used, e.g.

While answering a question, if a user selected the 1st checkbox on a page of an application

and later changed their mind and deselected that checkbox, features from only the 1st

interaction were extracted. The data collection procedure started with getting the user’s

written consent, then the users were asked to answer the questions in the data collection

applications one after the other. Every touch interaction performed by the user with the

data collection applications was logged. The only instruction given to each user before

beginning the data collection procedure was to use the applications as normally as they

could. This method of data collection helped capture variance in user behavior since some

users changed sitting positions after the first two usage sessions, some users would stop

switching the finger being used to interact with the application. The actual answers being

given by each user were ignored and only touch interactions performed by each user with

each input control were logged. After every app usage session, users were asked to hand

over the mobile device back to us and the next app usage session would begin after a

couple of minutes. Thus, users had a chance to reorient themselves to the mobile device

at the beginning of every session which helped capture inter-session variance in user behavior.

4.4 Data Statistics

Table 4.1 shows some statistics on the total amount of data collected for this exercise.

The number of touch events for buttons is much higher than other input controls because

button touch events were obtained from users in two ways

1. Users were asked to touch a button on the bottom right corner of every page of the

application to move to the next page and each application usage session consisted of

11 such “next buttons”.

2. Users had to touch a “spinner button” in order to cause every spinner drop down to

show up and each application usage session consisted of 20 spinners.
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Input Control Number of Samples Avg. samples per usage session
button 2306 11

checkbox 4849 23
radiobutton 4265 20
togglebutton 2880 14

switch 3416 16
edittext 3926 19
spinner 4357 21

spinner-button 4461 21
picker 3352 16
Total 33812

Table 4.1: Data Set collected from 42 users

4.5 Data Collection Device

All data collection was done on a single Android device - the Google Nexus 7(2012)

running Android 4.4.3.
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Chapter 5

Classification Framework

5.1 Ensemble Classification

The presence of multiple instances of nine different types of interactions during each

application usage session motivated the use of nine different classifiers. In addition, regard-

less of whether the problem of authentication or identification is being addressed, the final

classification decision should be the same for the entire session given the assumption of the

same user performing all the interactions seen during a session, thus further motivating the

use of an ensemble classifier. These two decisions for taking an ensemble in order to classify

every session for both the authentication and identification problems were done as follows.

• An interaction with every instance of an input control type was first classified by the

corresponding input control classifier, e.g. interactions with instances of checkbox were

classified by a checkbox classifier, interactions with instances of button were classified

by a button classifier.

• All interactions belonging to the same session were combined by each input control

classifier. In case of the authentication problem, a threshold value was used with every

input control classifier to chose a final prediction. In case of the identification problem,

the predicted class with the most number of votes for the entire session was chosen by

every input control classifier.
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• The most frequently predicted class among the set of predictions from the input control

classifiers was chosen as the final prediction for both the authentication and identifi-

cation problems

The design of the ensemble classifier can be summarized in Figure 5.1.

Figure 5.1: Ensemble Classification framework for user authentication and identification
using Android input controls

The classification framework detailed below makes use of a key assumption: All the in-

teractions being performed during an app usage session are being performed by the same user.

This assumption leads to robustness in the ensemble classifier because all the interactions

have to be ultimately classified as belonging to the same class. Hence, all classifications

performed on all input control interactions have to be ultimately classified as belonging

to the same class and hence can be combined into a single final decision. This ensemble

classification was performed differently for authentication and identification.
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5.1.1 Authentication

Every input control classifier classifies every interaction as belonging to either the legit-

imate user or an imposter. An assumption made during this evaluation is that there will be

only one legitimate user for the device and all other users are assumed to be impostors. Since

all test interactions coming from the same app usage session must belong to the same class,

the number of classifications for all test interactions derived from the same type of input

control and from the same session is calculated and compared against a threshold parameter.

If this number falls below the threshold, then the input control classifier choses to predict

the legitimate class for the entire session, else it choses to predict the imposter class for the

entire session. Finally, the predicted class from every input control classifier from the same

app usage session are combined to predict a final predicted class by finding the first most

frequently occurring element(mode) for every app usage session.

5.1.2 Identification

Every input control classifier first classifies every interaction as belonging to one of

42 classes by creating 861((42*41)/2) classifiers, running all test interactions through the

561 classifiers and adding up votes for every test interaction. In addition, since all test

interactions coming from the same app usage session must belong to these same class, the

votes for every test interaction belonging to the same session are added up. At this stage,

instead of choosing only a single class with the most votes, the top K classes are chosen as

the most probable classes as predicted classes for all the test interactions coming from the

same app usage session. This procedure is done for every set of test interactions performed

on the same input control. Thus, with nine different types of input controls, we get the

top K classes from each of the nine input control classifiers. Finally, the top K classes for

every set of interactions from the same app usage session are combined to predict a final

predicted class by finding the first most frequently occurring element(mode) for every app

usage session. This classification framework is also illustrated in Figure 5.1.

23



5.2 Feature Set

The feature set explored for every touch interaction is as follows.

1. x coordinate of touch gesture start

2. y coordinate of touch gesture start

3. finger pressure at touch gesture start as reported by Android

4. finger size at touch gesture start as reported by Android

5. distance travelled by the finger along the x axis between touch gesture start and touch

gesture end

6. distance travelled by the finger along the y axis between touch gesture start and touch

gesture end

7. difference between finger pressure between touch gesture start and touch gesture end

8. difference between finger size between touch gesture start and touch gesture end

9. euclidean distance travelled between touch gesture start and touch gesture end

10. direction travelled in between touch gesture start and touch gesture end

11. time lapse between touch gesture start and touch gesture end

Table 5.1 captures the feature subset found to be most useful for classification. The

columns indicate the classifier associated with each input control type, rows indicate if the

feature was used by the classifier or not.

Feature selection was done by using Sequential Forward Selection. As can be concluded

from Table 5.1 the difference in coordinates, distance, finger pressure, finger size and direc-

tion of touch were not found to be particularly useful. The x coordinate was particularly

discriminant for all users and so was the amount of time each user spent in touching the
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Feature button checkbox spinner-button radiobutton togglebutton edittext spinner-item switch picker
x coordinate 3 3 3 3 3 3 3 3 3

y coordinate 3 3 3 3 3 3 3

finger pressure 3 3 3 3 3 3 3 3 3

finger size 3 3 3 3 3

delta-x
delta-y 3

delta-pressure
delta-size

euclidean distance
direction 3

delta-time 3 3 3 3 3 3 3 3 3

Table 5.1: Feature subset used for different input control classifiers

screen. All feature values were reported by the Android GestureListener except for time.

Time was logged in milliseconds when a touch gesture start was reported and logged again

when a touch gesture end was reported on the same input control. This difference was cap-

tured for every touch interaction and used. The y coordinate not being found to be useful

in case of the edittext input control can be intuitively explained by the fact that when most

users touch an instance of an edittext in order to bring keyboard focus to it, the width of

the edittext instance was much more than the height of the instance thereby providing users

a bigger range to target in the width than the height. In case of the switch input control,

the delta-y feature being found to be useful can be explained by the fact that users were

required to tap or fling the switch horizontally from left to right. These two different ways

of interacting with the switch input control resulted in different users moving it in different

ways along the height of the switch instance. Similar insight can be applied in case of the

picker input control wherein the direction of the fling turns out to be useful.

While scrolls and keystrokes performed by users were also captured as part of this data col-

lection process, classification based on scrolls and keystrokes on mobile devices are already

explored techniques and hence were not used in classification by input controls.

5.3 Evaluation Methodology

The evaluation of the ensemble classifier for authentication was done in an entirely

different manner than that for identification. We discuss both evaluations in the following two
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sections. All Support Vector Machine[3] based classifiers were implemented using LibSVM[2].

5.3.1 Evaluation for Authentication

When authenticating a user to a device, we had data from 42 users, each user providing

data from five application usage sessions. In order to correctly evaluate the performance of

the ensemble classifier for authentication, we had to provide each of the 42 users a chance

to be the legitimate user and allow the remaining users to attack the ensemble classifier.

However, we also had to divide the imposter user set into training and test impostors. In

addition to this, the threshold parameter value also affects the performance of the ensemble

classifier. In order to accommodate all these factors into evaluating the ensemble classifier

for authentication, we calculated the mean False Acceptance Rate(FAR) and False Rejection

Rate(FRR) for every possible value of threshold, test usage session, legitimate user, training

impostors and test impostors. Three different base one-class classifiers were tried for the

ensemble classification task. We explain these in the following three sections. In all three

base classification algorithms, any impostors who were used for training were not used for

testing. This method of choosing impostors during the test phase closely resembles the real

world scenario wherein unknown attackers on whom the ensemble classifier has not been

previously trained may try to attack the application. The results from this evaluation are

reported in Section 6.1.

5.3.1.1 Support Vector Data Descriptor

The Support Vector Data Descriptor(SVDD)[24] tries to fit a hypersphere in feature

space around the training data provided for the legitimate user while also minimizing the

volume of this hypersphere. Parameters for this classifier were found by doing 4-fold cross

validation since training data was from four app usage sessions.

5.3.1.2 One Class Support Vector Machine

The One Class SVM-based classifier tries to create a hyperplane in feature space allowing

all the training points to lie on one side of the hyperplane. Parameters for this classifier were

found by doing 4-fold cross validation.
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5.3.1.3 Two Class Support Vector Machine

The standard Support Vector Machine[3] based classifier was used wherein four usage

sessions of the legitimate user were chosen to create training set for the legitimate class.

Training data for the imposter class was created by choosing one usage session from four

impostors. Thus equal number of samples for both the classes were used during training.

For testing, the remaining usage session from the legitimate was used and all the remaining

users who were not part of the imposter class during training were used for testing.

5.3.2 Evaluation for Identification

The performance of the ensemble classifier for multi-user identification can simply be

considered to be the accuracy of the classifier when classifying each of the 42 test application

usage sessions. Since data was collected from five application usage sessions, there are five

possible test usage sessions which could be used. Considering each of the five application test

usages one at a time, the remaining four app usage sessions were used for training and the

mean accuracy of the classifier was calculated. three different base classification algorithms

were used to test the performance of the ensemble classifier. In all three cases, the same

base algorithm was used for all the nine input control classifiers and the 1-vs-1 multi class

classification algorithm was used for all the three base classification algorithms. The results

from this evaluation are reported in Section 6.2.

5.3.2.1 Support Vector Machine-based classifier

A Support Vector Machine-based classifier[3] was used to distinguish between samples

of two classes. The Radial-Basis Function was used as the kernel function and parameters

for the base classifier were found by doing 4-fold cross validation since training data was

collected from four different usage sessions.

5.3.2.2 Gaussian Discriminant Analysis-based classifier

A Gaussian Discriminant Analysis-based classifier was created by estimating the pa-

rameters - mean and covariance - from the training data. No cross validation was required
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for this base classifier. This classification technique had the advantage of not having to store

the training data after the initial parameter estimation and was found to be faster than the

SVM and 3NN based ensemble classifier.

5.3.2.3 3-Nearest Neighbor-based classifier

A 3-Nearest Neighbor-based classifier was tried as the base classifier for the ensemble.

No training and cross validation phase was required but this technique has the disadvantage

of having to store the training data at the time of classification. The ensemble classifier using

only this technique was found to be the slowest of the three ensemble classification techniques.

5.4 Ensemble Parameters

An ensemble of the candidate input control classifiers was required for the authentication

and identification problems. We discuss here the parameters introduced to achieve this

ensemble. Parameters which were required for the base classification algorithms are discussed

in Section 6. One parameter which influences the accuracy of the ensemble classifier for both

authentication and identification is the number of interactions from the same session available

per input control classifier.

5.4.1 Authentication

Every candidate input control classifier combines classifications for interactions from

the same session into one predicted class which can be either legitimate or imposter. The

total number of classifications for the legitimate class are summed up and compared against

a threshold parameter. A plot showing the change in False Acceptance Rate(FAR) and True

Acceptance Rate(TAR) is shown in Section 6.1. This is the only parameter which is required

for the entire ensemble classifier.

5.4.2 Identification

The most important parameter for this classification framework is the value chosen for

K. Choosing a large value of K causes too many incorrect predictions to be included in the
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final ensemble classification while choosing too small a value requires the candidate input

control classifiers to be very accurate in reporting their predictions. Another parameter

which influences the accuracy of the test app usage session is the number of test samples

available per input control in the test app usage session. We evaluate the influence of both

these parameters in Section 6.2.
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Chapter 6

Experimental Results

We evaluate the ensemble classifier for authentication and identification problems and

present our results in the following sections.

6.1 Authentication

We evaluated the performance of the ensemble classifier using three different base clas-

sifiers - SVDD, One Class SVM and Two Class SVM. Every usage session of an assumed

legitimate user was tested on once while the impostor class was tested on impostor data

not seen during training. Figure 6.1 shows the mean True Acceptance Rate(TAR) plotted

against the mean False Acceptance Rate(FAR) seen while varying the threshold parameter

value from 0 to 40 for the ensemble classifier based on the three base classifiers. For every

technique, all interactions available from the test usage session are used to reach a final

predicted class. It can be seen that the Two Class SVM technique gives us the best overall

performance while SVDD has the worst performance among the 3. However, all the three

techniques perform better than a random guess at the final predicted class demonstrating

that the level of discriminant information presented by this modality. Figure 6.1 can be used

by application developers to strike the balance between the number of impostors that may

successfully attack the ensemble classifier vs. the number of times a legitimate user will get

rejected by the ensemble classifier. An example of such a balance can be seen at the value

of FAR being 5%, a TAR of 76% is obtained. In other words, the authentication framework
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incorrectly admits only 5% of all impostors while still admitting the legitimate user 76% of

the time.
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Figure 6.1: ROC curve comparing the ensemble classifier when using SVDD, One Class SVM
and Two Class SVM as base classifiers

A metric which indicates true performance of the classification scheme is called the

Equal Error Rate(EER). This value for the accuracy of the classifier is the value at which

the probability of a legitimate user being rejected equals the probability of an imposter

being accepted by the ensemble classifier. Figure 6.2 shows the mean FAR and FRR seen at

different values of the threshold parameter for the ensemble classifier based on the three base

classification algorithms - SVDD, One Class SVM and Two Class SVM. It can be seen that

the ensemble classifier using Two Class SVM as a base classifier achieves the lowest EER of

7%, with the ensemble classifier using One Class SVM coming 2nd at 16% and the SVDD-
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based ensemble classifier achieving an EER of 30%. It can also be seen that the EER for both

One Class SVM and Two Class SVM based approaches is reached at smaller threshold values

of three and six respectively whereas the EER for the SVDD-based approach is reached at a

threshold value of 14. The threshold parameter states how many interactions in the session

for the input control are allowed to be classified as the impostor before the input control

classifier changes its decision. Thus, Two Class SVM based ensemble classification works

best among the 3 techniques correctly classifying both legitimate users and impostors 93%

of the time.
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Figure 6.2: Equal Error Rate for the ensemble classifier when using SVDD, One Class SVM
and Two Class SVM as base classifiers
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6.2 Identification

We evaluated the accuracy of the ensemble classifier using three different base classifiers

- K-Nearest Neighbor, Support Vector Machines(SVM) using the RBF kernel and Gaussian

Discriminant Analysis(GDA) on the usage performed by 42 different users on these five

applications. Figure 6.3 shows the median and variance observed in the test error for

different kinds of classifiers when all five of the app usage sessions were used. It also shows

the median and variance in the test error when only the last three of the five app usage

sessions were used. When five app usage sessions were available, four of them were used for

training and one was used for testing. The test app usage session could be switched around

five times. When only three app usage sessions were available, the test app usage session

could be switched around three times. For K-Nearest Neighbors, a value of three was used

for the number of neighbors to be checked for every incoming test sample. In case of SVM,

a Radial Basis Kernel was used where the parameter values for C and γ were selected by

cross validating on one app usage session and training on the remaining app usage sessions,

e.g. When all five app usage sessions were used for evaluation, one session was selected as

the test session and of the remaining four sessions, three were used for training and one was

used for cross validation. It can be observed from Figure 6.3 that the SVM classifier and

GDA classifier reported the least error among the three classifiers. However, the accuracy

given by the SVM classifier is marginally better than the accuracy reported by the GDA

classifier. Further, Figure 6.3 also shows the variance in the test error for the GDA classifier

is less than SVM classifier in both cases (last three app sessions and all five app sessions).

The median test error reported for the 3-Nearest Neighbor(3NN) classifier is consistently

higher than both the GDA and SVM classifiers but it has the distinct advantage of being

simple to implement and use. Figure 6.3 also shows that the median error reported for the

last three app usage sessions was consistently less than the median error observed for all

five app usage sessions irrespective of the choice of the classifier. This observation shows

that user behavior had more variance during the first two app usage sessions than the last
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3. We can also observe the variance in test error for the 3NN classifier for five app usage

sessions being much more than the variance in test error for the last three app usage sessions.
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Figure 6.3: Box plot showing identification accuracy of the ensemble classifier based on
Gaussian Discriminant Analysis, Support Vector Machine and 3 Nearest Neighbor classifiers

Figure 6.4 shows how accuracy changes as the number of enrolled users is increased.

The minimum value of 11 users was used because the top seven predicted classes from each

candidate input control classifier were combined into the ensemble classification in case of

the 3NN classifier while the top three predicted classes from every candidate classifier were

used in case of GDA. The accuracy of GDA and 3NN classifiers is shown in Figure 6.4 as

the number of enrolled users changes from 11 to 42. It can be observed that the accuracy of

the ensemble does not vary much as the number of users increases. Figure 6.4 demonstrates

that the ensemble classifier is capable of correctly classifying a large number of users without

suffering a degradation in classifier accuracy even with a weak candidate classifier such as

34



3NN.

No. of enrolled users

15 20 25 30 35 40

C
o

rr
e

c
tl
y
 c

la
s
s
if
ie

d
 a

p
p

 u
s
a

g
e

 s
e

s
s
io

n
s
(%

)

0

10

20

30

40

50

60

70

80

90

100

GDA

3NN

Figure 6.4: Change in Identification accuracy of ensemble classifier with increasing number
of enrolled users. The ensemble classifier remains consistently accurate with change in user
count.

Nine candidate input control classifiers were used as part of the ensemble. From each

classifier the top K most probable classes for the app usage session were chosen. In order

to examine the effect of this parameter on the overall accuracy of the classifier, we plot the

number of misclassified app usage sessions vs. the chosen parameter value of K in Figure

6.5. This figure clearly shows that small values of K ranging from one to five are capable of

giving a good ensemble classification. However, as the value of K starts to increase, more

incorrect predictions from the candidate classifiers are used by the ensemble classifier in its

final prediction causing its accuracy to degrade. The total number of available users was 42

and therefore, the value of K was adjusted from 4 to 42.

In order to investigate how heavily the ensemble classifier relies on the number of avail-

able test samples per input control, we increased the number of test samples in an app usage
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Figure 6.5: Number of misclassified app usage sessions vs. top K predicted classes from
candidate classifiers

session from one up to 32 and measured the average test error reported by the ensemble

classifier when the top three classes(K=3) were provided as output by each of the candidate

classifiers. Figure 6.6 shows such a plot. It can be seen that even with a single interaction per

input control, when using Gaussian Discriminant Analysis, around 26 of the 42 app usage

sessions are still correctly classified.

6.3 Evaluation on Real-World Application

MSUPaths[25] is a mobile application available on both the iOS[13] and Android[10]

operating systems. This application allows users to navigate between any two buildings
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Figure 6.6: Input control interactions affect the number of misclassified sessions. Top three
most probable classes were taken from candidate input control classifiers, GDA and 3NN
classifiers were used, all five app usage sessions were used to get the average test error

on the Michigan State University campus. The user can select a building from a list of

buildings loaded in the application and the application loads a set of directions from the

user’s current location to the building selected by the user. We modified the application to

listen for gestures on four different input controls part of the MSUPaths user interface and

asked users to navigate to 20 different buildings. Users were provided detailed instructions on
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how MSUPaths is to be used for navigation and data was collected from 10 volunteers. The

average data collection time was found to be 10 minutes. We used the first 19 navigations

for training and the last navigation for testing and found the identification accuracy to be

100%.

38



Chapter 7

Discussion

Ethical Implications during Data Collection

An advantage of this modality is that it is impossible for any user to escape from their

interactions being captured by the mobile application. Every user must interact with the

User Interface of an application in order to use it. Thus, every application becomes fully

capable of capturing user data at all times regardless of which device it is being used on.

Application developers who chose to use this modality will be required to sufficiently disclose

this data collection to their users either at the time of app installation or the first app usage

session during which the data collection is begun.

Influence of Input Control Type

Nine different types of input control classifiers were used in this investigation for both

training and testing purposes. This decision was taken primarily to know if the largest avail-

able set of input controls is useful for this modality or not. However, different subsets of these

input control types are used by mobile application developers in the UI of their applications.

It would be useful to know which input controls offer more discriminant information than

others so that a usability vs. security tradeoff can be reached by application developers.
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Influence of Parameters during Ensemble Classification

Both authentication and identification ensemble classifiers had their own set of param-

eters which required further fine tuning. Further investigation can be performed along the

lines of finding which parameter values are more suited to different type of applications, e.g.

a mobile banking application may prefer to allow only a small fraction of impostors which

choosing to reject the legitimate user more often. This tradeoff depends on the functionality

being provided by the mobile application.

Influence of Placement of Input Controls in the User

Interface

During this investigation, we attempted to uniformly place input controls that were

of the same type to ensure user interactions were not affected. For example, all Checkbox

instances were vertically aligned to prevent the user’s finger from traveling in the horizontal

direction between interactions with different Checkbox instances. It should be further in-

vestigated if instances placed in a certain way provided more discriminant information when

interacted with by the user.

Influence of Mobile Device

The same mobile device was used for the entire data collection exercise and the same

instructor was involved in collecting data from all users. It needs to be further investigated

if similar performance of the ensemble classifier for both authentication and identification

is seen on other mobile devices as well. In addition, it also needs to be checked if any

similarities in user behavior are seen in UI interactions across different devices.

Influence of Classification Algorithms

The same classification algorithm was used for all the nine input control classifiers

when creating an ensemble classifier for both the authentication and identification classifiers.

However, different combinations of base algorithms may improve the performance of the
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ensemble classifier.
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Chapter 8

Conclusion

A new modality for authenticating and identifying users from their usage of a mobile

device was explored. Every available input control type on the Android OS was used to

create base classifiers which were then used in an ensemble classifier. Data was collected

from 42 users for this modality from five applications which had the same User Interface.

Three different base classification algorithms were used for the ensemble classifier for both

the authentication and identification problems. The best performance for authentication

was found to have been achieved by a SVM-based ensemble classifier with a mean Equal

Error Rate(EER) of 5%. Similarly, for identification, the best mean accuracy of 90% was

reported by a SVM-based ensemble classifier. In case of identification, the SVM-based

ensemble classifier was found to be robust when the number of enrolled users was increased

and also when the number of available interactions per input control was varied.

In summary, this work provides a basic framework for authenticating and identifying

users in a truly implicit and continuous way on mobile devices. While we find UI interactions

to be useful for both authentication and identification, several avenues of further research for

this modality still exist. This study does not make use of any UI interactions seen in other

swipe-based and keystroke-based modalities so it would be interesting to integrate those

techniques also into a bigger ensemble framework. Such a framework would truly integrate

every possible interaction made by a user with a mobile application.
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