THERMAL RADIATION AND MACNETIC FIELD ElFFECTS ON THE FLOW VARIABLES NEAR A STAGNATION POINT

Thesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSSTY WENDELIN SCHMIDT 1968

LIBRARY Michigan State University

This is to certify that the
thesis entitled

THERMAL RADIATION AND MAGNETIC FIELD

 EFFECTS ON THE FLOW VARIABLES

 EFFECTS ON THE FLOW VARIABLES
 NEAR A STAGNATION POINT

presented by

Wendelin Schmidt

has been accepted towards fulfillment
of the requirements for
Ph.D._degree in Mech. Eng.

$$
\frac{M_{1} Z . v_{1} / \text { friguw lelevíi }}{\text { Major professor }}
$$

Date July 8, 1968.

ABSTRACT

THERMAL RADIATION AND MAGNETIC FIELD EFFECTS ON THE FLOW VARIABLES
NEAR A STAGNATION POINT

by Wendelin Schmidt

In this investigation the equations connecting the flow variables with the geometric parameters of the streamlines in three dimensional, inviscid and viscous radiation magnetohydrodynamic gas llow were derived. A simplified mathematical model governing the flew variablea distribution near a stagnation point in radiation magnotohydrodynamic 110% was developed and used to estimate the combined effects of various physical phenomena on the flow Iield variables. Specifically we consider the combined effeots of thermal radiation, magnetic field, viscosity, heat conduetivity and compressibility on the temperature, preseure, electron density, and electric conductivity distribution near a stagnation point.

The first order results obtained fron the numerical solutions of the governing equations indicated that the effects of thermal radiation, magnetic field, and

Wendelin Schmidt

[^0]
THERMAL RADIATION AND MAGNETIC FIELD EFFECTS ON THE FLOW VARIABLES
 NEAR A STAGNATION POINT

By

Wendelin Schmidt

A THRSIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Mechanical Engineering

ACKNOWLEDGMENTS

The anthor expresses his appreciation to Professor M. Z.von Krzywoblocki for his assistance in the formulation and analysis of the problen under conalderation here; and to Professor J.E. Lay, G.E. Mase, and N.L. Hills for serving on the Guidance Comattee.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS 11
LIST OF FIGURES Vi
NOMENCLATURE Viil

1. INTRODUCTION 1
PART I: INVISCID RADIATION MAGNETOHYDRODYNAMICS
2. INVISCID GOVERNING SYSTEM OF EQUATIONS
2.1. Fundamental Equations 5
2.2. Reformulation. 6
2.3. Tensor Form 7
3. DYNAMIC AND KINEMATIC RELATIONS
3.1. Basic Decomposition 9
3.2. Variation of Pressure along and Perpendicular to the Streamlines. 12
3.3. Vortioity Components 17
3.4. Variation of Energy along the Streamlines 22
4. GOVERNING EQUATIONS IN CYLINDRICAL COORDINATES
4.1. General Cylindrical Coordinates 23
4.2. Ardally Symmetric Case 25
4.3. Incompressible case 27
4.4. Alternate Axially Symetric Case 28
5. THERMAL RADIATION AND IONIZATION
5.1. The Equation of Transfer 33
5.2. Radiation Flux and Pressure 35
5.3. Ionization and Electric Con- ductivity 37
6. SPECIAL CASE OF $\nabla(r), w(z)$ ONLY
6.1. Equation of the Streanlines 42
6.2. Temperature and Pressure Dis- tribution along streanines. 46
PART II: VISCOUS RADIATION MAGNETOHYDRODYNAMICS
7. GOVERNING EQUATIONS OF VISCOUS PLOW
7.1. Fundamental Equations 50
7.2. Transformation to Streamlines Coordinates. 52
7.3. Streamine Pressure Variation, Curvature and Torsion 53
7.4. Vorticity 56
7.5. General Cylindrical Coordinates. 58
7.6. Axially Symmetric Cane. 59
8. GEOMETRIC PARAMETERS OP STREAMLINES IN AXIAL SYMMETRY
8.1. Streamlines of the Form $z=f(r)$ 65
8.2. Streamine Curvature k for the Strearfunction $\psi=P(s, r)$ 67
PART III: NUMERICAL SOLUTIONS AND RESULTS
9. INVISCID, INCOMPRESSIBLE FLOW RESULTS 9.1. Phyaical Streanlines and Paraneters 68

Page
9.2. Pressure Distribution along and Normal to Streamlines 69
9.3. Temperature, Electron Deneity and Electric Conductivity Distribution. 71
9.4. Velooity Distribution 72
10. VISCOUS, COMPRESSIBLE FLOW RESULTS 10.1. Temperature, Pressure, and Density. Distribution 74
10.2. Electron Density and Electric Con- ductivity Distribution. 80
10.3. Sumery of Results and Conclusions. 80
APPENDIX Typical Fortran Progran and Results. 98
BI BLI OGRAPHY 105
LIST OF FIGURES
Figure Page
III- 1. Streamline Pattern for Flow Against a Disk 82
III- 2. Streamline Curvature k along Streamines $\boldsymbol{\psi}$. 83
III- 3. Pressure Gradient Variation Normal to Streanlines \mathcal{Y} 84
III- 4. Effect of Magnetic Field on Presaure Distribution along Streamines (Incompressible) 85
III- 5. Temperature Distribution along Streamine W_{2} (Incompressible) 86
III- 6. Electron Density Distribution along Stream- line ψ_{1} (Incompressible) 87
III- 7. Electron Conductivity Distribution along Streamline \boldsymbol{Y}_{1} (Incompressible) 88
III- 8. Comparison of Temperature Distribution along W_{1} and Y_{2} (Incompressible) 89
III- 9. Comparison of Electron Density Distribution along ψ_{1} and ψ_{2} (Incompresible) 90
III-10. Comparison of Electron Conductivity Distribution along ψ_{1} and ψ_{2} (Incompreseible) 91
III-11. Velocity Distribution along Streamlines \mathcal{F}.. 92
III-12. Density Distribution along Streamines W... 93
III-13. Pressure Distribution along Streamines \mathcal{W} (Compressible) 94
Figure Page
III-14. Effect of Thermal Radiation Cooling on Temperature Distribution 95
III-15. Effect of Thermal Radiation Cooling on Electron Density Distribution 96
III-16. Effect of Thermal Radiation Cooling on Electric Conductivity Distribution 97
nomenclature

V flow velocity, m/sec
ρ fluid density, $\mathrm{kg} / \mathrm{m}^{3}$
$p \quad$ fluid static pressure, n / m^{2}
$p_{R} \quad$ radiation pressure, n / \mathbf{m}^{2}
$J \quad$ electric current density, $\operatorname{amp} \cdot / m^{2}$
magnetic field intensity, amp./n
magnetic permeability, vebers/amp.-m
$u \quad$ internal energy of fluid, $n-m / k g$
Q energy input, $\quad n-m / \mathbf{k g}$
R universal gas constant, $\mathbf{m}-\mathrm{m} / \mathrm{kg}-{ }^{0} \mathrm{~K}$
T fluid temperature, ${ }^{\mathbf{o}_{K}}$
$\mathbf{P} \quad=\mathbf{p}+\mathbf{p}_{\mathbf{R}}$
E electric field intensity, $n /$ coup.
P_{e} excess electric charge density, coul./m ${ }^{3}$
ϵ electric permittivity of free space, col. ${ }^{2} / \mathrm{n}-\mathbf{m}^{2}$
ठ electric conductivity, mohs/m
t time, sec.
$\eta=(3 \mu)^{-1}$ magnetic diffusivity, $m^{2} /$ sec
$p_{m}=\frac{1}{2} \mathrm{pH}^{2}$ magnetic pressure, n / m^{2}
$P_{t} \quad=\left(p+p_{R}+p_{m}\right)$, total scalar pressure, n / m^{2}
\bullet
n
b
arc length along streamline, arc length along normal to streamline, m arc length along binormal to streamlines, m
k streamline curvature, $1 / m$
T torsion of streamline, $1 / E$
x^{i} rectangular coordinates, $(1=1,2,3), x, y, z$.
z cylindrical coordinate
r cylindrical coordinate
0 cylindrical coordinate
h^{1} component of unit vector, Eq.(3.1.2)
$I \quad=\left(u+P / \rho+\frac{1}{2} v^{2}\right)$
$G_{1 j}$ metric tensor
M Mach number
Wk vorticity vector
$e_{\text {jfk }}$ alternating unit tensor

- enthalpy of fluid, m-m/kg

B a pH magnetic ileld webers /m ${ }^{2}$
∇, w components of fluid velocity, \quad /sec
${ }^{\circ}$ r specific heat at constant volume, n-m/kg ${ }^{0} \mathbf{K}$
0_{p} specific heat at constant pressure, $n-m / \mathbf{k g}^{\mathbf{0} K}$
\vec{Q}_{R} radiative heat lux vector, $n-m / m^{2}$-sec
c Velocity of light, m/sec

K_{R} Rosseland mean absorption coefficient, $1 / m$
\mathbf{K}_{P} Planck mean absorption coefficient, $1 / \mathbf{m}$
ψ etreamiunction
$a \quad=\psi / b, \quad b=$ constant, Eq.(6.1.2)
A_{M}, A_{R} constants given by Eq. $(6.1 .21)$
$T^{i j}$ viscous stress tensor, Eq.(7.1.2), n / m^{2}
$\bar{\mu}$ fluid viscosity, $\mathrm{kg} / \mathrm{m}-\mathrm{sec}$
$K_{t} \quad$ thermal conductivity, $n-m / m-s e c-{ }^{0} K$
$\bar{\mu} \phi \quad$ Viscous dissipation function, Eq.(7.1.3), $n-m / s e c-m^{3}$
ne electron number density, \#/em ${ }^{3}$

1. INTRODUCTION

The great interest in hypersonic flow around blunt vehicles has been stimulated in the last decade by the intercontinental ballistic missile, the satellite and the deep pace programs. Among the phenomena that can be observed during hypersonic atmospheric ontry of a rehicle are the thermal radiation emitted by the hot gas flowing around it and the reflection of miorowares by the ionized gas envelope surrounding the vehicle. It is well known that this ionized gas or plasma envelope is the cause of radio, and other communications blackout during atmospheric rementry. (1, 2, 3, 4)

The influence of the eleotrons in the ionized gas around the vehicle is lelt not only on electromagnetic signal attenuation through radio blackout, but also on aerodynamic quantities such as drag and heat transfer, and on physical quantities such as transport, radiative enission, and absorption properties. From the comunioations problem point of view the olectons are undesirable and should be eliminated. However, the llight magnetohydrodymanics point of view considers the lonized gas as a phenomenon to be capitalized on by applying a strong magnetic field in such a way so as to provide a re-ontry rohicle with braking and other maneuvering capability. (5 to 17).

A solution to the hypersonio blunt-body problem that
combines the adrantages of minimum computational difficulty with maximum acouracy of results has been sought for more than a decade. The problen under conelderation Is that of determining the 110 w fleld properties (i.e. pressure, tomperature, density etc.) around a bluntnosed configuration traveling through a uniform gas at a Ilight Mach number greater than unity. In general, the flow field about the body may be divided into two regions based on the macnitude of the local $110 w$ Mach number with respect to unity. In the region near the etagnation point of the body the flow Mach number is lese thon unity and the flow field is therefore subsonic. Nuch of the effort expended on the blunt-body problem has been confined to the subsonic region since the solution to this region provides the starting data for the well known oharacteristic method ol supersonic flow caloulations downstrean of the stagnation point. The determination of the fluid properties in the subsonic flow field over the blunt body also provides the necessary data for the subsequent evaluation of the radiant heat trangier as woll as for initiating boundary layer caloulations to determine wall shear and convective heat transfer to the nose of the body.

Fron the aerodynamies point of view the main problem associated with the reantry of apace vehiole is that of convective and radiative heating, and aerodynanic drag.

Since the gas around the vehicle is in a plasma state and, therefore, electrically conducting, the possibility of utilizing an applied magnetic field to roduce aurface shear stress and heat transfer has beon proposed by a number of authors. (5 to 8). The general approach to the problen consists of dividing the flow field into a viscous boundary layer and an outer inviscid flow. The solution to the boundary layer part of the problem requires a knowledge of the edge of the boundary layer flow conditions whioh are obtained from the solution to the outer inviscid part of the flow field. Part I of this thesis is directed towaris the determination of the combined thermal radiation and magetic field offects on the inviscid flow field variables near atagnation point.

The division of the flow field into an inviscid flow region and a boundary layer is only posaible for Ilight altitudes below which the ratio of the vehicle radius to mean free path of the gas molecules is greater than about 75. 1.0., $\mathrm{Rb} / \lambda>$ 75. For altitudes such that the ratio of vehicle radius to mean free path is between about 75 and 1 , such a divieion of the flow field is not possible and elther the full or a simplified form of the Navier-Stokes equations muet be used as a flow model. (54). In Part II of this thesis we investigate the combined effects of thermal radiation, magnetic field, viscosity and heat conduotivity on the 110w field variables.

The central problen under consideration oonsists of the derivation of a mathematical model which allows us to prediot the effects of various physical phenomena on the flow field parameters under given conditions. An exact mathematical description of the flow field including thermal radiation, magnetic ileld, Fiscoaity, and heat conductivity effects, requires a complioated set of non-linear partial differential equatione whioh are very difficult to solve for a given rehicle configuration. Becanse of this diffioulty, many simplified, appresimate mathematical models have been proposed which hold under various conditions. One such simplified approach to the calculation of the flow ileld parameters was proposed by several authors indepondently and consists of calculating the parameters along flow atreanlines under an assumed flow field pressure distribution (49 to 52). The method was used for dissociating, invisold, nonheatconducting, non-radiating flow without the magnetic field effect, and was found to be quite amenable to parametric study of very complex flow ilelds.

We shall use the streamine approach in the present investigation with a modilication whioh oonelsts of using an approximate velooity distribution.

PART I: INVISCID RADIATION MAGNETOHYDRODYNAMICS
2. INVISCID GOVERNING SYSTEM OF EQUATIONS

2.1. Fundamental Equations

We consider an inviscid, non-heat-conducting steady flow of an ionized perfect gas in an electro-magnetio field including thermal radiation. The governing hydrodymanical system of equations consists of the mathematical formulation of the phyaical lawe of conservation of mase, momentum, onergy, and the equation of state of the gas;

$$
\begin{align*}
& \nabla \cdot(\rho \vec{v})=0, \tag{2.1.1}\\
& \vec{v} \cdot \nabla \vec{v}=-\rho^{-1} \nabla P+\rho^{-1}(\vec{J} \times \mu \vec{H}), \tag{2.1.2}\\
& d u+\operatorname{Pd}\left(\rho^{-1}\right)-d Q=0, \tag{2.1.3}\\
& p=\rho R T . \tag{2.1.4}
\end{align*}
$$

The energy equation (2.1.3) may be used in an integrated form along a streanline to be denoted as the generalised Bormoulli equation.

The equations governing the electromagnetic field are Maswell's equations and Ohm's law; $(55,58)$

$$
\begin{array}{ll}
\nabla \cdot \overrightarrow{\mathrm{E}}=\mathrm{P} / E ; & \nabla \times \overrightarrow{\mathrm{E}}=0, \\
\nabla \cdot \overrightarrow{\mathrm{H}}=0 ; & \nabla \times \overrightarrow{\mathrm{H}}=\vec{J}, \\
\vec{J}=\delta(\overrightarrow{\mathrm{E}}+\boldsymbol{\mathrm { J }} \times \overrightarrow{\mathrm{H}}) . \tag{2.1.7}
\end{array}
$$

2.2. Reformulation

The above system of equations may be reformulated $s 0$ as to be more suitable for the present analysis. Substituting for from Eq. (2.1.6) into the equation of motion (2.1.2) we get;

$$
\begin{equation*}
\vec{\nabla} \cdot \nabla \vec{\nabla}=-\rho^{-1} \nabla\left(p+p_{R}+\frac{1}{2} p H^{2}\right)+\rho^{-1} p \vec{H} \cdot \nabla \vec{H} \tag{2.2.1}
\end{equation*}
$$

The energy equation suitable for the present analysis may be obtained by starting with Eq.(2.1.3.) as follows;

$$
\begin{align*}
d Q & =d u+P d(1 / \rho)=d(u+P / \rho)-\rho^{-1} d P, \\
\text { or } \quad \frac{d Q}{d t} & =\vec{V} \cdot \nabla(u+P / \rho)-\rho^{\prime} \nabla \cdot \nabla P . \tag{2.2.2}
\end{align*}
$$

By expanding the left hand aide of the equation of motion (2.1.2) and taking the scalar product with ∇ we get,
$\vec{\nabla} \cdot \nabla\left(\frac{1}{2} \nabla^{2}\right)-\vec{\nabla} \cdot(\vec{\nabla} \times(\nabla \times \vec{\nabla}))=-\rho \vec{\nabla} \cdot \nabla P+\vec{\nabla} \cdot(\vec{J} \times \vec{H})$,
Using this last result to eliminate $-\rho^{-1} \nabla_{\nabla} \nabla \mathrm{P}$ in Eq. (2.2.2) we get,

$$
\begin{equation*}
\nabla \cdot \nabla\left(u+P / \rho+\frac{1}{2} v^{2}\right)=\frac{d \rho}{d t}+\rho^{-1} \nabla \cdot(J \times \mu \stackrel{\rightharpoonup}{H}) . \tag{2.2.3}
\end{equation*}
$$

CQ is the heat input from all sources per unit mass, which in our case consists of the Joule heat and the radiation heat flux. Thus we have,

$$
\frac{d 0}{d t}=\rho^{-1}\left(\mathrm{~J}^{2} / \delta\right)+\rho^{-1} \nabla \cdot \vec{Q} .
$$

Uaing this last result to eliminate $\frac{d O}{d t}$ in（2．2．3）and substituting（2．1．6）for \vec{J} and expanding $J \times \mu$ ，we got；

$$
\begin{array}{r}
* \cdot \nabla\left(u+P / \rho+\frac{1}{2} \nabla^{2}\right)=\rho^{-1}(\nabla \times \vec{H}) *(\nabla \times \vec{H}) / \delta+\rho_{\mu}^{-1} \nabla^{*}(\vec{H} \cdot \nabla \vec{H})- \\
\mu^{*} \nabla^{*} \nabla\left(\frac{1}{3} H^{2}\right)+\rho^{-1} \nabla^{*} \vec{Q}, \tag{2.2.4}
\end{array}
$$

which is the energy equation in the required form．
From Maxwell＇s equations and Ohn＇s law we develop the following ；solving for E from Eq．（2．1．7）and subetituting for $\boldsymbol{J}=\nabla \times$ 宜 we get，

$$
\mathrm{E}=1 / 3 \nabla \times \mathrm{H}-\mathrm{p}_{\mathrm{V}} \times \text { 亩; }
$$

taking the ourl of this last result and accounting for Eq．（2．1．5）we have，

$$
(1 / \mu z) \nabla \times(\nabla \times \vec{H})-\nabla \times\left(\frac{\nabla}{V} \times \frac{\text { 亩 }}{}\right)=0 \text {. }
$$

Expanding this last result and uaing（2．1．6）and re－ placing $\eta=1 / \mu z$ we get，

$$
\begin{equation*}
\eta \nabla^{2} \vec{H}=\vec{\nabla} * \nabla \vec{H}-\vec{H} * \nabla *+\vec{H}(\nabla * \vec{\nabla}) . \tag{2.2.5}
\end{equation*}
$$

2．3．Tensor For

The governing system of equations will be recast in Cartesign tensor form．In this form the equation of continuity becomes，

$$
\begin{equation*}
\frac{\partial}{\partial x^{1}}\left(\rho v^{1}\right)=0 . \tag{2.3.1}
\end{equation*}
$$

The momentum equation（2．2．1）becomes，

$$
\begin{equation*}
\rho w^{j} \frac{\partial v^{i}}{\partial x^{j}}+g^{i j} \frac{\partial^{P} t}{\partial x^{j}}-\mu H^{j} \frac{\partial H^{i}}{\partial x^{j}}=0, \tag{2.3.2}
\end{equation*}
$$

where $P_{t}=\left(p+p_{R}+\frac{1}{2} \mu H^{2}\right)$.
The equation of energy (2.2.4) gives,

$$
\begin{align*}
& \rho V^{j} \frac{\partial I}{\partial x^{j}}=\delta^{-1}\left(g^{j r} \frac{\partial H^{k}}{\partial x^{r}} \frac{\partial^{H} A^{I}}{\partial x^{Z}}-e^{j r} \frac{\partial H^{k}}{\partial x^{r}} \frac{\partial^{H}}{\partial x^{j}}\right)+ \\
& \mu \nabla^{J} H^{i} \frac{\partial^{H}}{\partial x^{I}}-v^{j} \frac{\partial^{P}}{\partial x^{j}}+\frac{\partial Q^{i}}{\partial x^{I}}, \tag{2.3.3}
\end{align*}
$$

where $I=\left(u+P / \rho+\frac{1}{2} v^{2}\right) ; \quad p_{m}=\frac{1}{2} \mu H^{2}$.
The electromagnetic equations (2.2.5) and (2.1.6) become,

$$
\begin{gather*}
\frac{j}{\partial x^{j}}-H^{j} \frac{\partial v^{i}}{\partial x^{j}}+H^{i} \frac{\partial v^{j}}{\partial x^{j}}=\eta \frac{\partial}{\partial x^{j}}\left(g^{j k} \frac{\partial H^{i}}{\partial x^{k}}\right), \tag{2.3.4}\\
\frac{\partial H^{i}}{\partial x^{I}}=0 . \tag{2.3.5}
\end{gather*}
$$

To complete the system of equations we add the equation of state of the gas

$$
\begin{equation*}
p \equiv \rho_{\mathrm{RT}} \tag{2.3.6}
\end{equation*}
$$

The unknown quantities consist of three scalars and two vectors; i.e., p, ρ, T, F, and 宜. The three scalar equations required are Eqs. (2.3.1), (2.3.3), and (2.3.6). The two veotor equations are Eqs. (2.3.2) and (2.3.4).
3. DYNAMIC AND KINEMATIC RELATIONS

3.1. Basic Decomposition

The equations (2.3.1) to (2.3.5) will be transformed into a ooordinate system s^{1}, n^{i}, b^{1}, where the aymbols used denote the components of the unit tangent vector (s^{i}), principal normal ($\mathrm{n}^{\mathbf{1}}$), and binormal ($\mathrm{b}^{\mathbf{1}}$) vectors with respect to a streanline at any point in the flow field. Denoting the magnitudes of the velocity and magnotic field vectors as V, H, respectively we get,

$$
\begin{equation*}
\frac{v^{1}}{v}=e^{1} \tag{3.1.1}
\end{equation*}
$$

where denotes are length measured along the streamlines in the direction of the flow.

For the magnetic field we have,

$$
\begin{equation*}
\frac{\mathrm{H}^{1}}{\mathrm{H}}=\mathrm{h}^{1}, \tag{3.1.2}
\end{equation*}
$$

where h^{i} is a constant unit vector.
A set of relations involving the three unit vectors s^{1}, n^{1}, b^{1}, is given by the well known Frenet-Serret formulas of differential geometry
$\frac{d s^{1}}{d s}=k n^{1}, \quad \frac{d b^{1}}{d s}=-T n^{1}, \quad \frac{d n^{1}}{d s}=T b^{1}-k s^{1}$,
where k is the curvature and τ the torsion of the streamlines.

Substituting Eqs. (3.1.1), (3.1.2) 1nto the appropriate Eqs. (2.3.1) to (2.3.5) the system of equations becomes,

$$
\begin{aligned}
& \frac{\partial}{\partial x^{1}}\left(\rho \boldsymbol{v}^{1}\right)=0, \\
& \rho V_{s} \frac{\partial\left(V_{s}^{1}\right)}{\partial x^{\mathbf{j}}}+g^{1 j} \frac{\partial^{P} t}{\partial x^{j}}-\mu_{H h} \frac{\partial\left(\text { Ha }^{1}\right)}{\partial x^{j}}=0,
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial\left(\mathrm{mh}^{1}\right)}{\partial x^{1}}=0,
\end{aligned}
$$

Expanding Eq. (3.1.4) and using $\frac{1}{\partial x^{I}}=\frac{f}{\partial=}$ we get,

$$
\begin{equation*}
\frac{\partial s^{1}}{\partial x^{1}}+\frac{\partial}{\partial x}(\ln \rho v)=0 . \tag{3.1.9}
\end{equation*}
$$

Expandiag Eq. (3.1.7) we get,

$$
\begin{equation*}
\frac{\partial H}{\partial K}=0 \text {. } \tag{3.1.10}
\end{equation*}
$$

Expanding Eq. (3.1.5) and using $s^{1} \frac{\partial}{\partial x^{I}}=\frac{\partial}{\partial B}$,
$h^{1} \frac{\partial}{\partial x^{I}}=\frac{\partial}{\partial h}$, we get,

Using Eqs. (3.1.3) and (3.1.10), Eq.(3.1.11) becomes,
$\rho v \frac{\partial v}{\partial \varepsilon^{2}} s^{1}+\rho v^{2} \mathrm{kn}^{1}+g^{1 j} \frac{\partial^{P} t}{\partial x^{j}}=0$.

Expanding Eq. (3.1.8) we get,

or
$\left(\frac{\partial(E V)}{\partial s}+H V \frac{\partial s^{j}}{\partial x^{j}}-\eta \frac{\partial}{\partial x^{j}}\left(g^{j x} \frac{\partial H}{\partial x^{k}}\right)\right) h^{i}-E-\frac{\partial V^{1}}{\partial h}=0$.
Expanding Eq.(3.1.6) we get,

$$
\begin{align*}
& \mu V \mathbb{E}^{j} \frac{\partial}{\partial I^{2}}\left(\mathrm{Hh}_{j}\right)-\nabla \frac{\partial^{p}{ }_{m}}{\partial z}+\frac{\partial Q^{i}}{\partial x^{I}} . \tag{3.1.15}
\end{align*}
$$

Using Eq.(3.1.10), equation (3.1.15) reduces to,

$$
\begin{equation*}
\rho \nabla \frac{\partial I}{\partial s}=-\delta^{-1}\left(\varepsilon^{j r} \frac{\partial H}{\partial x^{r}} \frac{\partial H}{\partial x^{J}}\right)-\nabla-\frac{\partial^{P}}{\partial s}+\frac{\partial Q^{I}}{\partial x^{I}} . \tag{3.1.16}
\end{equation*}
$$

3.2. Variation of Pressure Along and Perpendicular to

the Streamlines

To determine the variation of the total pressure P_{t} along the tangent, principal normal, and binormal directions of the streamlines, we take the scalar product of Eq. (3.1.12) with $g_{i k^{s}} \mathbf{k}^{k}, g_{i k^{2}} n^{k}, g_{i k^{b}} b^{k}$, respectively and get,

$$
\begin{equation*}
\rho V-\frac{\partial v}{\partial s^{1}} g_{i k} s^{k}+\rho V^{2} k^{i} g_{i k} s^{k}+g^{1 j_{g}} \varepsilon_{i k} \frac{\partial)_{t}}{\partial x^{J}}=0 \tag{3.2.1}
\end{equation*}
$$

$$
\begin{equation*}
\rho V-\frac{\partial}{\partial B^{1}} g_{1 k^{n}}+\rho \nabla^{2} m^{1} g_{1 k^{n}} k+g^{1 j} g_{1 k^{n}} \frac{\partial^{P_{t}}}{\partial z^{J}}=0 \tag{3.2.2}
\end{equation*}
$$

$$
\begin{equation*}
\rho V-\frac{\partial V}{\partial s^{1}} g_{1 k} b^{k}+\rho V^{2} \operatorname{ma}^{1} g_{i k} b^{k}+g^{1 j} g_{1 k} b^{k} \frac{\partial^{P} t}{\partial z^{J}}=0 \tag{3.2.3}
\end{equation*}
$$

Making use of the orthogonal properties of $\mathrm{s}^{1}, \mathrm{n}^{1}, \mathrm{~b}^{1}$, and $g^{1 j} g_{i k}=\delta_{i}^{j}, \quad a^{j} \frac{\partial}{\partial x^{j}}=\frac{\partial}{\partial s}, n^{j} \frac{\partial}{\partial x^{j}}=\frac{\partial}{\partial n}$, etc.
we get from Eqs. (3.2.1) to (3.2.3),

$$
\begin{align*}
& \rho V \frac{\partial V}{\partial s}+\frac{\partial^{P} t}{\partial s}=0 \tag{3.2.4}\\
& \rho V^{2} k+\frac{\partial^{2} t}{\partial n}=0 \tag{3.2.5}\\
& \frac{\partial^{P} t}{\partial D^{2}}=0 \tag{3.2.6}
\end{align*}
$$

where $\quad P_{t}=\left(p+p_{R}+p_{\text {I }}\right)$.

From the result of Eq. (3.2.6) we note that the total pressure remains constant along the binormal direction of the streamilines.

From the result of Eq. (3.2.5) we obtain an exprescion for the curvature k of the streamines as a function of the fluid density ρ, the velocity V, and the normal pressure gradient as,

$$
\begin{equation*}
k=-\left(\rho v^{2}\right)^{-1} \frac{\partial^{P_{t}}}{\partial n} \tag{3.2.7}
\end{equation*}
$$

To obtain a relation for the normal vector of the streamlines n^{i} as a function of k, ρ, V, and the velooity and total pressure gradients along the streanlines we solve Eq. (3.\&.12) for n^{1} and get,

$$
\begin{equation*}
n^{1}=-\left(\rho \nabla^{2} k\right)^{-1}\left(\rho \nabla-\frac{\partial V}{\partial v^{2}} s^{1}+g^{1 j} \frac{\partial^{P_{t}}}{\partial x^{j}}\right) \tag{3.2.8}
\end{equation*}
$$

Multiplying the last term of Eq.(3.2.8) by the scalar product of s^{1} we get,

$$
\begin{equation*}
\left(s^{1} g_{1 k} s^{k}\right) g^{1 j} \frac{\partial^{P_{t}}}{\partial x^{j}}=s^{1} \frac{\partial^{P_{t}}}{\partial g} \tag{3.2.9}
\end{equation*}
$$

Substituting Eq. (3.2.9) for the last term of (3.2.8) and uaing Eq. (3.1.1) we get from (3.2.8),

$$
\begin{equation*}
n^{1}=-\left(\rho \nabla^{3} t\right)^{-1}\left(\rho \nabla \frac{\partial V}{\partial s}+\frac{\partial^{P} t}{\partial s}\right) V^{1} \tag{3.2.10}
\end{equation*}
$$

We next obtain a relation for the binornal vector of the streanlines by starting from the definition of $b^{\mathbf{1}}$,

$$
\begin{equation*}
b^{1}=e^{i j k_{g}}{ }_{j p} g_{k q}{ }^{p_{n} q} \tag{3.2.11}
\end{equation*}
$$

From Eq.(3.1.12) we have,

$$
\begin{equation*}
n^{q}=-\left(\rho V^{2} k\right)^{-1}\left(\rho \nabla \frac{\partial V}{\partial s} s^{q}+g^{q r} \frac{\partial P_{t}}{\partial x^{\mathbf{r}}}\right) \tag{3.2.12}
\end{equation*}
$$

Substituting Eq.(3.2.12) into (3.2.11) we get, $b^{1}=-\left(\rho v^{2} k\right)^{-1}\left(\rho v-\frac{\partial v^{1}}{\partial s} e^{i j k} g_{j p} g_{k q}{ }^{p} s^{q}+e^{i j k} g_{j p} g_{k q}{ }^{p} g^{q r} \frac{\partial^{p} t}{\partial x^{r}}\right)$.
 we get the binormal vector as a function of the flow field parameters,

$$
\begin{equation*}
b^{1}=-\left(\rho v^{3} k\right)^{-1}\left(e^{i j k^{k}} v_{j} \frac{\partial^{P} t}{\partial x^{I}}\right) \tag{3.2.14}
\end{equation*}
$$

Streanline Toraion

To obtain a relation connecting the torsion τ, of the streanlines with the flow field parameters we make use of the Frenet formula Eq. (3.1.3) which is,

$$
\begin{equation*}
-T a^{1}=\frac{d b^{1}}{d s} . \tag{3.2.15}
\end{equation*}
$$

Differentiating Eq.(3.2.14) along a streanine we get,

$$
\begin{equation*}
\frac{d b^{1}}{d s}=-e^{1 j k \frac{d}{d s}\left(\left(\rho v^{3} k\right)^{-1} v_{j} \frac{\partial^{P} t}{\partial x^{k}}\right)} \tag{3.2.16}
\end{equation*}
$$

Expanding Eq.(3.2.16) and substituting the reault into Eq.(3.2.15) we get for the torsion of the streamilies,

$$
\begin{align*}
-T n^{1}= & e^{1 j k}\left(\rho v^{3} k\right)^{-2} v_{j} \frac{\partial^{P_{t}}}{\partial x^{2}} \delta_{\delta}\left(\rho v^{3} k\right)- \\
& \left(\rho v^{3} k\right)^{-1}\left(\frac{\partial^{P_{t}}}{\partial x^{2}} \frac{\partial^{V_{t}}}{\partial s}+V_{j} \frac{\partial}{\partial s}\left(\frac{\partial^{P_{t}}}{\partial x^{R}}\right)\right) \tag{3.2.17}
\end{align*}
$$

We next determine the static lluid preseure-gradient along a atreamline as a function of the Mach number M and the other four variables and their gradients along a streamine; i.e., ρ, V, T, H, and their gradients. Prom Eq. (3.1.9) we have,

$$
\begin{equation*}
\frac{\partial s^{1}}{\partial x^{1}}+v^{-1} \frac{\partial v}{\partial s}+\rho^{-1} \frac{\partial \rho}{\partial s}=0 \tag{3.2.18}
\end{equation*}
$$

Solving Eq. 3.2 .4) for $\frac{f V}{\partial S}$ and substituting it into Eq.(3.2.18) we get,

$$
\begin{equation*}
-\nabla^{2} \rho \frac{\partial s^{1}}{\partial x^{I}}-v^{2} \frac{\partial \rho}{\partial s}+\frac{\partial p_{1}}{\partial s}+\frac{\partial^{p_{R}}}{\partial s}+\frac{\partial)^{p_{n}}}{\partial s}=0 \tag{3.2.19}
\end{equation*}
$$

The velocity of sound is delined by $a^{2}=\frac{\partial p}{\partial \rho}$, or

$$
\begin{equation*}
a^{-2} \frac{\partial p}{\partial s}=\frac{\partial \rho}{\partial s} . \tag{3.2.20}
\end{equation*}
$$

Subatituting (3.2.20) inte (3.2.19) we get,

$$
\begin{equation*}
\frac{\partial p}{\partial s}=\left(\mu^{2}-1\right)^{-1}\left(\frac{\partial^{p}}{\partial s}+\frac{\partial^{p_{R}}}{\partial s}-\rho v^{2} \frac{\partial s^{1}}{\partial x^{1}}\right) \tag{3.2.21}
\end{equation*}
$$

Substituting for $-\frac{\partial s^{1}}{\partial x^{I}}$ by using (3.2.18), Eq. (3.2.21) becomes,

$$
\frac{\partial \rho}{\partial B}=\left(M^{2}-1\right)^{-1}\left(\mu H-\frac{\partial H}{\partial s}+\frac{\partial^{p_{R}}}{\partial s}+\rho V-\frac{\partial V}{\partial E}+v^{2} \frac{\partial \rho}{\partial B}\right) \text {. } \quad \text { (3.2.22) }
$$

Equation (3.2.22) indicates the influence that each variable has upon the fluid presmure variation along a streamine.

Expanding Eq.(3.2.5) and solving for the fluid pressure variation in the normal direction to the etreanlines we get,

$$
\begin{equation*}
\frac{\partial p}{\partial n}=-\left(\mu H-\frac{\partial}{\partial n}+\frac{\partial^{p_{R}}}{\partial n}+\rho v^{2} x\right) . \tag{3.2.23}
\end{equation*}
$$

From equation (3.2.6) we obtain the following expresaion for the pressure variation in the binormal direction to the atreamines

$$
\begin{equation*}
\frac{\partial p}{\partial b}=-\left(\mu \mathrm{H}-\frac{\partial \mathrm{B}}{\partial b}+\frac{\partial^{p_{R}}}{\partial b}\right) . \tag{3.2.24}
\end{equation*}
$$

3.3. Vorticity Components

The vorticity components are defined as,

$$
\begin{equation*}
w_{k}=e_{k i j} g^{j r} \frac{\partial v^{i}}{\partial x^{r}} \tag{3.3.1}
\end{equation*}
$$

Substituting $\mathbf{V}^{i}=\mathrm{Vs}^{i}$ and expanding we get,

$$
\begin{equation*}
w_{k}=V e_{k i j} g^{j r} \frac{\partial s^{i}}{\partial x^{r}}+s_{i}^{i} e_{k i j} g^{j r} \frac{\partial v}{\partial x^{r}} . \tag{3.3.2}
\end{equation*}
$$

Taking the scalar product of Eq.(3.3.2) with $\mathbf{e}^{\mathbf{k}}, \mathrm{n}^{k}, \mathbf{b}^{\mathbf{k}}$, respectively and recalling the crose-product relations

$$
\begin{align*}
e_{k i j} s^{1} s^{k}= & 0, e_{k i j} s^{1} k^{k}=b_{j}, e_{k i j} s^{1} b^{k}=-n_{j} \text {, we get, } \\
w_{k} s^{k} & =V\left(e_{k i j} s^{k} g^{j r} \frac{\partial s^{i}}{\partial x^{r}}\right), \tag{3.3.3}\\
w_{k} n^{k} & =V\left(e_{k i j} n^{k} g^{j r} \frac{\partial s^{i}}{\partial x^{r}}\right)+\frac{\partial V}{\partial b}, \\
w_{k} b^{k} & =V\left(e_{k i j} b^{k} g^{j r} \frac{\partial s^{1}}{\partial x^{r}}\right)-\frac{\partial V}{\partial n} . \tag{3.3.5}
\end{align*}
$$

In order to obtain the term $\frac{\partial s^{i}}{\partial x^{r}}$ as a linear combination of $g_{r p} g^{p}, g_{r p} \mathbf{n}^{p}, g_{r p} b^{p}$, we make use of the following identities,

$$
s^{r} \frac{\partial s^{i}}{\partial x^{r}}=\frac{\partial s^{i}}{\partial s}, \quad n^{r} \frac{\partial s^{i}}{\partial x^{r}}=\frac{\partial s^{i}}{\partial r^{1}}, \quad b^{r} \frac{\partial s^{i}}{\partial x^{r}}=\frac{\partial s^{i}}{\partial b}, \quad \text { (3.3.6) }
$$

Each identity of Eq. (3.3.6) is the solar product of $\frac{\partial s^{i}}{\partial x^{r}}$ with s^{r}, n^{r}, b^{r}, respectively and since the later are orthogonal we have,
$\frac{\partial s^{1}}{\partial x^{r}}=\frac{\partial s^{1}}{\partial s_{r p} s^{p}+\frac{\partial s^{1}}{\partial n} g_{r p} n^{p}+\frac{\partial s^{1}}{\partial b} g_{r p} p^{p} .}$

Multiplying this last result by $g^{j r}$ and using $g^{j r_{g}}=\delta_{p}^{j}$ we get,

$$
\begin{equation*}
s^{j r} \frac{\partial s^{i}}{\partial x^{r}}=\frac{\partial s^{i}}{\partial s^{j}} a^{j}+\frac{\partial s^{i}}{\partial n^{n}} n^{j}+\frac{\partial s^{i}}{\partial b} j \tag{3.3.8}
\end{equation*}
$$

Substituting (3.3.8) into the Eq. (3.3.3) to (3.3.5)
we get from the later,

(3.3.10)

Taking account of the orose-product relations in equations (3.3.9) to (3.3.11) we get the following results,
$W_{k} \mathbf{s}^{k}=V\left(g_{i r^{b}} \frac{\partial s^{i}}{\partial n}-g_{i r^{n}}{ }^{r} \frac{\partial s^{i}}{\partial b}\right)$,
$w_{k} b^{k}=v_{k}-\frac{\partial v}{\partial z}$.

We note again that each equation (3.3.12) to (3.3.14) is the scalar product of w_{k} with e^{k}, n^{k}, b^{k}, and thus we get the vorticity components as,

$$
\begin{align*}
& w_{k}=\nabla\left(g_{i r}{ }^{b^{r}} \frac{\partial s^{1}}{\partial n}-g_{i r^{n}}{ }^{r}-\frac{\partial s^{1}}{\partial b}\right) g_{k p}{ }^{p}{ }^{p}+\left(\frac{\partial \nabla}{\partial b}\right) g_{k p} n^{p}+ \\
& \left(V_{k}-\frac{\partial V}{\partial n}\right)_{g_{k p}} \mathbf{b}^{p} . \tag{3.3.15}
\end{align*}
$$

Multiplying this last result by $g^{j k}$ and using $g^{j k} w_{k}=w^{j}$ $\boldsymbol{c}^{j k} \mathbf{g}_{\mathrm{kp}}=\delta_{p}^{j}$, we get
$w^{j}=V\left(g_{1 r} b^{r} \frac{\partial s^{1}}{\partial n}-g_{i r^{n}} n^{r} \frac{\partial s^{i}}{\partial b}\right) a^{i}+n^{j} \frac{\partial V}{\partial b}+\left(V_{k}-\frac{\partial v}{\partial n^{2}}\right) b^{j}$.

Using the identity developed in Eq. (3.3.8) on V we get,

$$
\begin{equation*}
g^{1 r} \frac{\partial V}{\partial x^{r}}=\frac{\partial V_{s}^{i}}{\partial s^{i}}+\frac{\partial V_{n}}{\partial n^{i}}+\frac{\partial \nabla_{b} i}{\partial b^{2}} \tag{3.3.17}
\end{equation*}
$$

Multiplying this last result by V and solving for $v \frac{\partial V}{\partial s} e^{i}$ we get,

$$
\begin{equation*}
\rho v \frac{\partial V_{s}}{\partial s} s^{1}=\rho v^{1 r} \frac{\partial V}{\partial x^{r}}-\rho V\left(\frac{\partial V_{n}}{\partial n^{1}}+\frac{\partial V_{b}}{\partial b^{1}}\right) . \tag{3.3.18}
\end{equation*}
$$

Substituting Bq.(3.3.18) into Eq.(3.1.12) we get from the later,

$$
\begin{equation*}
\frac{1}{2} \rho g^{i r} \frac{\partial v^{2}}{\partial x^{r}}-\rho v\left(\frac{\partial V_{n}^{1}}{\partial n^{1}}+\frac{\partial V_{b}^{i}}{\partial b}\right)+\rho v^{2} \mathrm{~km}^{1}+g^{i r} \frac{\partial P_{t}}{\partial x^{r}}=0 \tag{3.3.19}
\end{equation*}
$$

Adding and subtracting $\frac{1}{2} v^{2} g^{1 r} \frac{\partial \rho}{\partial x^{r}}$ from Eq.(3.3.19) and rearraging we get,

$$
\begin{gather*}
-\rho^{-1} g^{1 r} \frac{\partial}{\partial x^{r}}\left(p+p_{R}+\frac{1}{2} \rho v^{2}+p_{m}\right)+\frac{1}{2} \rho^{-1} v^{2} g^{1 r} \frac{\partial \rho}{\partial x^{r}}= \\
\left.v(v)-\frac{\partial v}{\partial n}\right) n^{i}-v-\frac{\partial V_{b}}{\partial b^{1}} . \tag{3.3.20}
\end{gather*}
$$

Introducing a function \bar{B} defined by

$$
\begin{equation*}
g^{i r} \frac{\partial B}{\partial x^{r}}=-\rho^{1} g^{1 r} \frac{\partial}{\partial x^{r}}\left(p+p_{R}+p_{m}+\frac{1}{2} \rho v^{2}\right)+\frac{1}{2} \rho^{1} g^{1 r} \frac{\partial \rho}{\partial x^{r}} \tag{3.3.21}
\end{equation*}
$$

With this last result equation (3.3.20) becomes,

$$
\begin{equation*}
g^{1 r} \frac{\partial B}{\partial x^{r}}=V\left(V_{k}-\frac{\partial V}{\partial n}\right) n^{i}-V \frac{\partial V_{b}}{\partial b^{i}} \tag{3.3.22}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial B}{\partial X^{j}}=V\left(V k-\frac{\partial V}{\partial n^{n}}\right) g_{j 1} n^{i}-v-\frac{\partial V}{\partial b_{j i}} g^{b^{1}} \tag{3.3.23}
\end{equation*}
$$

Equation (3.3.23) is a vector normal to the surfaces $\bar{B}=$ constant, and if we let its magnitude be $\left|\frac{d \bar{B}}{d N}\right|$ we get from Eq.(3.3.23),

$$
\begin{equation*}
\left|\frac{d \bar{B}}{d \bar{N}}\right|=\left(v^{2}\left(\frac{\partial v}{\partial b}\right)^{2}+v^{2}\left(v k-\frac{\partial V}{\partial n}\right)^{2}\right)^{\frac{1}{2}} . \tag{3.3.24}
\end{equation*}
$$

Taking the scalar product of equation (3.3.23) with Eq. (3.3.16) we get,
$w^{j} \frac{\partial B}{\partial x^{j}}=V\left(V_{k}-\frac{\partial V}{\partial n}\right)-\frac{\partial V}{\partial b} g_{j 1} n^{i} n^{j}-V\left(V k-\frac{\partial V}{\partial n}\right) \frac{\partial V}{\partial b} E_{j i} b^{\mathbf{i}} b^{j}=0$.
$(3.3 .25)$

Also, taking the scalar product of equation (3.3.23) with \mathbf{s}^{j} we get,

$$
\begin{equation*}
s^{j} \frac{\partial \bar{B}}{\partial x^{j}}=0 \tag{3.3.26}
\end{equation*}
$$

Thus, equations (3.3.25) and (3.3.26) imply that the surfaces $\bar{B}=$ constant contain both the streamines and the vortex lines.

3.4. Variation of Energy Along the Streamines

Substituting the identity $\underset{f^{p}}{p_{m}}=\rho\left(\frac{f}{\partial s}\left(p_{m} \rho^{-1}\right)-p_{m} \frac{\partial \rho^{-1}}{\partial E}\right)$
into equation (3.1.16) we get,

$$
\begin{equation*}
\rho V \frac{\partial I}{\partial \delta}+\rho V \frac{\partial}{\partial s}\left(p_{m} \rho^{-1}\right)=-\partial^{-1}\left(g^{j x} \frac{\partial H}{\partial x^{2}} \frac{\partial H}{\partial x^{j}}\right)+\rho V p_{m} \frac{\partial \rho^{-1}}{\partial \delta^{-1}}+\frac{\partial Q^{i}}{\partial x^{1}} \tag{3.4.1}
\end{equation*}
$$

Dividing (3.4.1) by ($P V$) and combining the two terms on the left we get,
$\frac{\partial^{I} t}{\partial \delta^{8}}=-\delta^{-1}\left(\varepsilon^{j r} \frac{\partial H}{\partial x^{I}} \frac{\partial H}{\partial x^{J}}\right)(\rho V)^{-1}+p^{\frac{\partial \rho^{-1}}{\partial 8}}+(\rho V)^{-1} \frac{\partial Q^{1}}{\partial x^{I}}$, (3.4.2.)
where $I_{t}=\left(u+p \rho^{-1}+p_{R} \rho^{-1}+p_{m} P^{-1}+\frac{1}{2} \nabla^{2}\right)$.
Since $\mathrm{g}_{\mathrm{jr}} \boldsymbol{m}^{\mathbf{r}}=1$, we get for the firat term on the right of Eq. (3.4.2)

$$
3^{-1}\left(g_{j r} s^{r} g^{j} \frac{\partial r}{\partial x^{r}} \frac{\partial H}{\partial x^{j}}\right)=3^{-1}\left(\frac{\partial H}{\partial s}\right)^{2} \cdot(3.4 .3)
$$

Using the idintity developed in Eq. 3.3 .8) on Q_{i} and substituting the result together with Eq. (3.4.3) into Eq. (3.4.2) we get,

$$
\begin{align*}
& \frac{\partial^{I} t}{\partial B}=-\partial^{-1}\left(\frac{\partial H}{\partial B}\right)^{2}(\rho V)^{-1}+p_{m} \frac{\partial \rho^{-1}}{\partial B^{2}}+ \\
&(\rho V)^{-1}\left(\frac{\partial Q 1}{\partial B^{1}}+\frac{\partial^{Q_{1}} n^{1}}{\partial n^{2}}+\frac{\partial^{Q_{1}} b^{1}}{\partial b}\right) . \tag{3.4.4}
\end{align*}
$$

Equation (3.4.4) shows that the change of total energy por unit mass, per anit distance along the etreamines depends on: (1) the Joule heat generated, (2) the work of compression done by the magnetie preseure, and (3) the variation of the heat flux vector along and perpendicular to the streamlines.
4. GOVERNING EQUATIONS IN CYLINDRICAL COORDINATES

In this section we formulate the equations of section 2. in cylindrical coordinates for later application to a specific flow problem.

4.1. General Cylindrical Coordinates

Introducing cylindrical coordinates ($r, 0, z$), we get from Eq.(2.1.1),

$$
\begin{equation*}
\frac{\partial\left(\rho^{V_{r}}\right)}{\partial r}+\frac{\left(\rho^{V_{r}}\right)}{r}+\frac{\partial\left(\rho^{V_{0}}\right)}{r} \partial_{0}+\frac{\partial\left(\rho_{z} \mathbf{V}_{z}\right)}{\partial z}=0 \tag{4.1.1}
\end{equation*}
$$

and from equation (2.1.2) we have

$$
\begin{aligned}
& \rho\left(\nabla_{r} \frac{\partial^{\nabla_{r}}}{\partial r}+\frac{\left.v_{0}\right)^{\nabla_{r}}}{r \partial \theta}-\frac{\nabla_{0}^{2}}{r}+\nabla_{z} \frac{\partial^{v_{r}}}{\partial r_{z}}\right)=-\frac{\partial(P)}{\partial r}+\left(J_{0} B_{z}-J_{z} B_{Q}\right) \\
& \text { (4.1.2) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4.1.3) }
\end{aligned}
$$

The energy equation becomes,

$$
\begin{align*}
& \rho\left(v_{r} \frac{\rho_{e}}{\partial r}+\frac{v_{0} \partial_{e}}{r}+\nabla_{z} \frac{\partial_{e}}{\partial z}\right)=\left(v_{r} \frac{\partial p}{\partial r}+\frac{\nabla_{Q} \partial p}{r} \frac{\partial \theta}{\partial \theta}+v_{z} \frac{\partial p}{\partial z}\right)+ \\
& \frac{\partial^{2}}{\partial}+\left(-\frac{\partial^{Q_{r}}}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial Q_{0}}{r \int \partial}+\frac{\partial^{Q} Z_{z}}{\partial z}\right), \tag{4.1.5}
\end{align*}
$$

where $P=\left(p+p_{R}\right), \quad e=(u+P / P), \quad J^{2}=J_{r}^{2}+J_{0}^{2}+J_{z}^{2}$.
From Eq. (2.1.5) we get

$$
\begin{align*}
& \left(\frac{\partial^{E_{z}}}{\partial Q}-\frac{\partial^{E_{Q}}}{\partial Z}\right)=0, \tag{4.1.6}\\
& \left(\frac{\partial^{E_{r}}}{\partial Z}-\frac{\partial^{E_{z}}}{\partial r}\right)=0, \tag{4.1.7}\\
& \left(\frac{\partial^{E_{Q}}}{\partial r}-\frac{\partial^{E_{r}}}{r}\right)=0, \tag{4.1.8}
\end{align*}
$$

and from Eq. (2.1.6) we have,

$$
\begin{align*}
& \frac{\partial^{B} r}{\partial r}+\frac{B_{r}}{r}+\frac{\partial^{B_{Q}}}{r} \partial^{\partial}+\frac{\partial^{B} z}{\partial_{z}}=0, \tag{4.1.9}\\
& \left(\frac{\rho^{B} z}{r \partial^{\theta}}-\frac{\partial^{B} \theta}{\partial^{\delta}}\right)=J_{t} f^{n}, \tag{4.1.10}\\
& \left(\frac{\partial^{B} r}{\partial z}-\frac{\partial^{B}{ }_{z}}{\partial r}\right)=J_{\rho} f^{\mu}, \tag{4.1.11}\\
& \left(\frac{\partial^{B_{Q}}}{\partial r}-\frac{\partial^{B} r}{r \partial \theta}\right)=J_{2} \mu^{\mu} \text {, } \tag{4.1.12}
\end{align*}
$$

and by Eq. (2.1.7)

$$
\begin{align*}
& J_{r}=\delta\left(E_{r}+\left(V_{Q} B_{z}-V_{z} B_{Q}\right)\right), \tag{4.1.13}\\
& J_{Q}=\partial\left(E_{Q}+\left(V_{z} B_{r}-V_{r} B_{z}\right)\right), \tag{4.1.14}\\
& J_{z}=\delta\left(E_{z}+\left(V_{r} B_{Q}-V_{Q} B_{r}\right)\right), \tag{4.1.15}
\end{align*}
$$

The above equations (4.1.1) to (4.1.15) are a set of relations for the following unknown quantities,

4.2. Axially Symmetric Case

In this section we consider ERE. (4.1.1) to (4.1.15) in axial symmetry for which we have the conditions,
$\frac{\rho}{\partial 0}=0, v_{0}=0, B_{0}=0$, and we set $v=V_{r}, \quad v=V_{2}$.
Introducing the above conditions into the Eqs. (4.1.1) to (4.1.15) we get from (4.1.10) and (4.1.12)

$$
\begin{equation*}
J_{r}=J_{z}=0 \tag{4.2.1}
\end{equation*}
$$

from Eqs.(4.1.13) and (4.1.15)

$$
\begin{equation*}
J_{r}=\partial E_{r}, \quad J_{z}=\partial E_{z}, \tag{4.2.2}
\end{equation*}
$$

thus, by (4.2.1) we find that

$$
\begin{equation*}
\mathbf{E}_{\mathbf{r}}=\mathbf{E}_{\mathbf{z}}=0, \tag{4.2.3}
\end{equation*}
$$

and by Eq. (4.1.6) to (4.1.8) we find

$$
\frac{\partial_{0}^{E_{0}}}{\partial r}=0, \quad \frac{\partial_{0}^{E_{0}}}{\partial z}=0, \text { so the } E_{0}=00 \operatorname{antant} .
$$

From Eq. (4.1.14) we find that $J_{0}=0$, for $V=W=0$, so that $\mathrm{E}_{0}=0$, and therefore it is zero everywhere in the flew field, since it is a constant.

The system of equations (4.1.1) to (4.1.15) now reduce to the foll ewing,

$$
\begin{equation*}
\frac{\partial\left(\rho_{v}\right)}{\partial r}+\frac{\left(\rho_{v}\right)}{r}+\frac{\partial\left(\rho_{w}\right)}{\partial z}=0, \tag{4.2.4}
\end{equation*}
$$

$$
\begin{align*}
& \left(\nabla-\frac{\partial r}{\partial r}+v-\frac{\partial v}{\partial z}\right)=-\frac{\partial P}{\partial r}+\partial\left(w B_{r}-\nabla B_{z}\right) B_{z}, \tag{4.2.5}\\
& \left(\nabla-\frac{\partial \mathbf{w}}{\partial r}+\tau-\frac{\partial \mathbf{w}}{\partial z}\right)=-\frac{\partial P}{\partial z}-\delta\left(\nabla B_{r}-\nabla B_{z}\right) B_{r}, \tag{4.2.6}\\
& \left(\nabla-\frac{\partial e}{\partial r}+v-\frac{\partial \theta}{\partial z}\right)=\left(\nabla-\frac{\partial P}{\partial r}+v-\frac{\partial P}{\partial z}\right)+\delta\left(w B_{r}-\nabla B_{z}\right)^{2}+ \\
& \left(\frac{\partial^{Q_{r}}}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial^{Q_{B}}}{\partial z}\right),(4.2 .7)
\end{align*}
$$

where we have used \mathbf{J}_{0} from Eq. (4.1.14).
Bquations (4.1.9) and (4.1.11) now become by using (4.1.14),

$$
\begin{align*}
& \frac{\partial^{B} r}{\partial r}+\frac{B_{r}}{r}+\frac{\partial^{B} z}{\partial z}=0, \tag{4.2.8}\\
& \left(\frac{\partial^{B} r}{\partial z}-\frac{\partial^{B} z_{z}}{\partial r}\right)=\mu \partial\left(w_{r}^{B_{r}}-\nabla_{z}\right) . \tag{4.2.9}
\end{align*}
$$

The equations (4.2.4) to (4.2.9) together with the equation of state $p=R T$, are seven equation for the seven unknown quantities; i.e., $\mathrm{p}, \mathrm{\rho}, \mathrm{~T}, \mathrm{\nabla}, \mathrm{w}, \mathrm{B}_{\mathrm{r}}, \mathrm{B}_{\mathrm{z}}$. The above quantities are functions of z and r, only.
4.3. Incompressible Case

If the fluid density can be considered as remaining essentially constant in some flow region, the byetem of equations (4.2.4) to (4.2.9) reduces to the following;

$$
\begin{aligned}
& \frac{\partial v}{\partial r}+\frac{v}{r}+\frac{\partial w}{\partial z}=0, \\
& \text { (4.3.1) } \\
& \rho\left(v-\frac{\partial v}{\partial r}+w-\frac{\partial v}{\partial z}\right)+\frac{\partial P}{\partial r}-3 B_{z}\left(w B_{r}-\nabla B_{z}\right)=0, \\
& \text { (4.3.2) } \\
& \rho\left(v-\frac{\partial w}{\partial r}+w-\frac{\partial w}{\partial z}\right)+\frac{\partial p}{\partial z}+\delta B_{r}\left(w B_{r}-v B_{z}\right)=0, \quad \text { (4.3.3) } \\
& \rho_{C_{V}}\left(\nabla \frac{\partial T}{\partial r}+w \frac{\partial T}{\partial z}\right)-\partial\left(w B_{r}-\nabla B_{z}\right)^{2}-\left(\frac{\partial Q_{r}}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial^{Q_{z}}}{\partial z}\right)=0, \\
& \text { (4.3.4) } \\
& \frac{\partial^{B_{r}}}{\partial r}+\frac{B_{r}}{r}+\frac{\partial^{B} z_{z}}{\partial z}=0, \\
& \text { (4.3.5) } \\
& \left(\frac{\partial^{B} r}{\partial z}-\frac{\partial^{B} z}{\partial r}\right)-\mu \delta\left(w_{r} B_{r}-\nabla B_{z}\right)=0 \text {. (4.3.6) }
\end{aligned}
$$

Equations (4.3.1) to (4.3.6) are six equations for the six unknowns $1,0 ., p, T, V, w, B_{r}, B_{g}, \rho=$ constant.

4.4. Alternate Axially Symmetric Case

In this section we consider equations (4.1.1) to (4.1.15) in axial symmetry for which we have the following conditions;
$\frac{\partial}{\partial U}=0, V_{0}=0, J_{0}=0$, and we set $V=V_{Y}, w=V_{z}$. In steady flow the electric ileld \vec{E} may be taken as constant or in the case of no applied electric field it may be taken as zero, (55).

Introducing the above conditions into the Eqs.(4.1.1) to (4.1.15) we get from (4.1.1),

$$
\begin{equation*}
\frac{\partial\left(\rho_{V}\right)}{\partial r}+\frac{\rho_{r}}{r}+\frac{\partial\left(\rho_{W}\right)}{\partial Z}=0, \tag{4.4.1}
\end{equation*}
$$

Prom (4.1.2)

$$
\begin{equation*}
\rho\left(\nabla \frac{\partial \nabla}{\partial r}+v-\frac{\partial v}{\partial z}\right)=-\frac{\partial P}{\partial r}-J_{z} B_{0}, \tag{4.4.2}
\end{equation*}
$$

Prom (4.1.4)

$$
\begin{equation*}
\rho\left(v \frac{\partial w}{\partial r}+w \frac{\partial w}{\partial z}\right)=-\frac{\partial P}{\partial z}+J_{r} B_{Q} \tag{4.4.3}
\end{equation*}
$$

Prom (4.1.5)

$$
\rho\left(\nabla \frac{\partial e}{\partial r}+v-\frac{\partial e}{\partial z}\right)=\left(\nabla-\frac{\partial P}{\partial r}+\tau-\frac{\partial P}{\partial z}\right)+\frac{J^{2}}{\delta}+\left(\frac{\partial^{Q} r}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial^{Q_{z}}}{\partial z}\right),
$$

Prom (4.1.13)

$$
\begin{equation*}
J_{r}=-\delta W_{0}, \tag{4.4.5}
\end{equation*}
$$

from (4.1.15)

$$
\begin{equation*}
J_{z}=3 \nabla B_{0}, \tag{4.4.6}
\end{equation*}
$$

from (4.1.10) and (4.1.12)

$$
\begin{equation*}
\frac{\partial^{B} 0}{\partial z}=-J_{r}{ }^{\mu}, \quad \frac{\partial^{B} 0}{\partial r}=J_{2} \mu \tag{4.4.7}
\end{equation*}
$$

Eliminating the ourrent density J from Eqs. (4.4.2) to (4.4.4) by using (4.4.5) to (4.4.7) we get,
from (4.4.2)

$$
\begin{equation*}
\rho\left(v-\frac{\partial v}{\partial r}+w-\frac{\partial v}{\partial z}\right)=-\frac{\partial P}{\partial r}-R^{-1} \frac{\partial^{B} Q_{B}}{\partial r} B_{0}, \tag{4.4.8}
\end{equation*}
$$

from (4.4.3)

$$
\begin{equation*}
\rho\left(\nabla-\frac{\partial w}{\partial r}+w-\frac{\partial w}{\partial z}\right)=-\frac{\partial P}{\partial z}-p^{-1} \frac{\partial^{B} \Theta_{0}}{\partial z} B_{0} \text {, } \tag{4.4.9}
\end{equation*}
$$

from (4.4.4)

$$
\rho\left(v-\frac{\partial \theta}{\partial r}+w-\frac{\partial \theta}{\partial z}\right)=\left(v-\frac{\partial P}{\partial r}+w-\frac{\partial P}{\partial z}\right)+B_{\phi}^{2}\left(\nabla^{2}+w^{2}\right)+
$$

$$
\left(\frac{\partial^{Q_{r}}}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial^{Q_{z}}}{\partial Z}\right) . \quad(4.4 .10)
$$

Adding the components of (4.4.7) and aubstituting (4.4.5) and (4.4.6) for the current density we get,

$$
\begin{equation*}
\frac{\partial^{B} O}{\partial r}+\frac{\partial^{B} O}{\partial z}=\mu \delta_{0}^{B}(v+w) \tag{4.4.11}
\end{equation*}
$$

Equations (4.4.8) and (4.4.9) may be writton as

$$
\begin{align*}
& \rho\left(v-\frac{\partial v}{\partial r}+v-\frac{\partial v}{\partial z}\right)+\frac{\partial P}{\partial r}+\frac{\partial}{\partial r}\left(\frac{B_{0}^{2}}{2 \mu}\right)=0, \tag{4.4.12}\\
& \rho\left(\nabla-\frac{\partial w}{\partial r}+v-\frac{\partial w}{\partial z}\right)+\frac{\partial P}{\partial z}+\frac{\partial}{\partial z}\left(\frac{B_{Q}^{2}}{2 \mu}\right)=0, \tag{4.4.13}
\end{align*}
$$

To complete the system of equations we add the equation of state of the gas and the equation of continuity,

$$
\begin{gather*}
p=\rho_{R T} \tag{4.4.14}\\
\frac{\partial(\rho \nabla)}{\partial r}+\frac{\rho_{V}}{\mathbf{r}}+\frac{\partial\left(\rho_{\mathbf{W}}\right)}{\partial z}=0 . \tag{4.4.15}
\end{gather*}
$$

Equations (4.4.10) to (4.4.15) are six equations for the six unknom quantities p, ρ, T, V, w, and B_{0}.

We will now integrate the equations of motion and energy along a streamline. Thus, multiplying (4.4.12) by $d r$, (4.4.13) by $d z$, and (4.4.10) by $d z$ and using (4.3.13) for the streamlines we get,

$$
\begin{align*}
& \rho\left(v-\frac{\partial \bar{r}}{\partial \mathbf{r}} d r+v-\frac{\partial \bar{r}}{\partial z} d x\right)+\frac{\partial P_{r}}{\partial r} d r+\frac{\partial}{\partial r}\left(\frac{B^{2}}{2 \mu}\right) d r=0, \tag{4.4.16}\\
& \rho\left(w-\frac{\partial w}{\partial r} d r+w-\frac{\partial w}{\partial z} d z\right)+\frac{\partial P}{\partial z} d z+\frac{\partial}{\partial z}\left(\frac{B^{2}}{2 \mu^{2}}\right) d z=0, \tag{4.4.17}\\
& \rho\left(w-\frac{\partial e}{\partial r} d r+w-\frac{\partial e}{\partial z} d z\right)=\left(w-\frac{\partial P}{\partial r} d r+w-\frac{\partial P}{\partial z} d z\right)+3 B^{2}\left(v^{2}+w^{2}\right) d z+ \\
& \left(\frac{\partial^{Q_{r}}}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial^{Q_{z}}}{\partial z}\right) \mathrm{dz}, \quad(4.4 .18)
\end{align*}
$$

Factoring v, and w, and noting that $d v=\frac{\partial v}{\partial r} d r+\frac{\partial v}{\partial z} d z$ etc. we get,

$$
\begin{align*}
& \rho v d v+\frac{\partial P^{\prime}}{\partial \mathbf{r}} d r+\frac{\partial}{\partial r}\left(\frac{B^{2}}{2 \mu}\right) d r=0, \tag{4.4.19}\\
& \rho \mathbf{w d v}+\frac{\partial P^{2}}{\partial z} d z+\frac{\partial}{\partial z}\left(\frac{B^{2}}{2 \mu}\right) d z=0, \tag{4.4.20}
\end{align*}
$$

ρ wide $=w d P+3 B^{2}\left(v^{2}+w^{2}\right) d z+\left(\frac{\partial^{Q} r}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial^{Q_{z}}}{\partial z}\right) d z,(4,4,21)$
adding equations (4.4.19) and (4.4.20) wo get,

$$
\begin{equation*}
d\left(\frac{1}{2} v^{2}+\frac{1}{2} w^{2}\right)+d P+d\left(\frac{B^{2}}{2 p}\right)=0 . \tag{4.4.22}
\end{equation*}
$$

Dividing Eq. (4.4.22) by the fluid density and integrating we get,

$$
\begin{equation*}
\frac{1}{2} \nabla^{2}+\frac{1}{2} \nabla^{2}+\int \frac{d P}{\rho}+\int \frac{d\left(\frac{B^{2}}{2 n}\right)}{\rho}=\text { constant. } \tag{4.4.23}
\end{equation*}
$$

For constant fluid density we get from (4.4.23) by integration from some reference point,
$\left(\frac{1}{2} \rho \nabla^{2}+\frac{1}{2} \rho v^{2}\right)-\left(\frac{1}{2} \rho \nabla_{0}^{2}+\frac{1}{2} \rho w_{0}^{2}\right)+\left(P-P_{0}\right)+\left(\frac{B^{2}}{2 \mu}-\frac{B_{0}^{2}}{2 \mu}\right)=0$.

Solving equation (4.4.24) for the fluid static pressure p, we get

$$
p=P_{0}+\frac{B_{0}^{2}}{2 \mu}+\frac{1}{2} \rho\left(\nabla_{0}^{2}+w_{0}^{2}\right)-\frac{1}{2} \rho\left(\nabla^{2}+w^{2}\right)-p_{R}-\frac{B^{2}}{2 \mu} \cdot(4.4 .25)
$$

We note that equation (4.4.25) reduces to the classical Bernoulli equation for the non-radiating, nonmagnetic case.
From equation (4.4.21) we get with $e=o_{p} T$,

$$
\left.\frac{d T}{d z}\right|_{Y=00 n E t .}=\left(\rho_{C}\right)^{-1} \frac{d P}{d r}+\frac{3 B^{2}}{\rho C_{p}{ }^{w}}\left(\nabla^{2}+w^{2}\right)+\left(\rho_{O_{P}} w\right)^{-1}\left(\frac{\partial Q_{r}}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial^{Q_{z}}}{\partial z}\right) .
$$

For the incompressible case $\rho=$ constant we get from equation (4.4.21)

$$
\begin{aligned}
& \rho w d\left(c_{v} T+P / \rho\right)=\rho w d\left(c_{v} T\right)+w d P \\
&=w d P+\partial B^{2}\left(v^{2}+w^{2}\right) d z+\left(\frac{\partial^{Q_{r}}}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial Q_{z}}{\partial z}\right) d z . \\
&(4.4 .27)
\end{aligned}
$$

Upon cancelling wd and dividing by $P_{\text {wo }}$ we get from equation (4.4.27)
$\left.\frac{d T}{d z}\right|_{V=\text { cons }}=\frac{\partial B^{2}}{\rho Q^{w}}\left(\nabla^{2}+w^{2}\right)+\left(\rho \rho_{\nabla} w\right)^{-1}\left(\frac{\partial^{Q} r}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial^{Q} Q_{z}}{\partial z}\right) . \quad$ (4.4.28)

We will return to the above equations in section 6., after we establish the general fluid flow conditions and the fluid properties.
5. THERMAL RADIATION AND IONIZATION

In this section we give brief outline of the governing equations of radiative transfer, and develop the equations for calculating ionisation and eleotric conductivity of the gas.

5.1. The Equation of Transfor

A high temperature gas onits radiation onergy as a reault of rotational, vibrational, and electronic transitions from exited energy levels to lower energy levels. The enitted radiant energy correapending to these transitions is distributed over a wide wave length region. The total radiant intenaity omitted from a volume of gas is obtained by sumang the radiant intensities from the individual energy transitions. For gas dynanic caloulations the simplest approach to the determination of the radiative intonaity of gases is to determine orerall onissivities as a function of pressure and temperature of the gas.

The fundamental quantity sought in radiative transier of onergy through an absorbing, emitting, and eoattering medium is the specific intensity I_{2} delined by,

$$
\begin{equation*}
\frac{d E_{v}}{\text { coscandwdvat }}=I_{v}, \tag{5.1.1}
\end{equation*}
$$

where deyis the amount of energy transinitted in the Irequency interval $(\nu, \nu+d \nu)$, through $d A$ in time dt, in a direction making an angle 0 with the normal to dA, and lying within the solid angle dw.

The distribution of the intensity I_{ν} in the radiation field is governed by a conservation equation called the radiative transfer equation. This equation, as given by Chandrasekhar and Kourganoff, is $(36,37)$

$$
\begin{equation*}
-\frac{d I_{\nu}}{d s}=\rho k_{\nu} I_{\nu}-\rho J_{\nu}, \tag{5.1.2}
\end{equation*}
$$

where,

$$
\begin{aligned}
& \rho=\text { lluid density } \\
& \mathbf{k}_{\nu}=\text { absorption coeffiolent } \\
& j_{\nu}=\text { emission coeflioient }
\end{aligned}
$$

The omisaion coefficient j_{ν} for the case in which both scattering and absorption and emission are present, is given by Kourganoff as (36),

$$
\begin{equation*}
J_{\nu}=k_{\nu} \bar{W}_{0} I+\left(1-\bar{W}_{0}\right) k_{\nu} B_{\nu}(T) \tag{5.1.3}
\end{equation*}
$$

where \bar{W}_{0} represents the iraction of energy less due to scattering and is called the albedo for single scattering, and $B_{y}(T)$ is the Planck function given by,

$$
\begin{equation*}
B_{2}(T)=2 h \nu_{c}^{3}-2\left(\exp \left(\frac{h}{E T}\right)-1\right)^{-1} \tag{5.1.4}
\end{equation*}
$$

where k and h are the Boltamann and Planck constants respectively.

The two special cases of local thermodynanic equilibrium and perfect isotropic seattering are obtained from Eq. (5.1.3) by letting $\bar{W}_{0}=0$, and $\bar{W}_{0}=1$, respectively.

Substituting Eq. (5.1.3) into (5.1.2) and dividing by $\rho_{k_{\nu}}$ we get,

$$
\begin{align*}
& -\frac{d I_{\nu}}{\rho I_{\nu} d s}=I_{\nu}-\left(\bar{w}_{0} I_{\nu}+\left(1-\bar{w}_{0}\right) B_{\nu}(T)\right), \tag{5.1.5}\\
& I_{\nu}=\frac{1}{2} \int_{-1}^{+1} I_{\nu} d \mu_{0}, \quad\left(P_{0}=\cos \theta\right) .
\end{align*}
$$

where

For local thermodynamic equilibrium $\bar{W}_{0}=0$, and Eq. (5.1.5) becomes,

$$
\begin{equation*}
-\frac{d I_{\nu}}{\rho I_{\nu} d_{E}}=I_{\nu}-B_{\nu}(T) . \tag{5.1.6}
\end{equation*}
$$

For isotropic catering $\overline{\mathbf{w}}_{0}=1$, and Eq. (5.1.5) gives,

$$
\begin{equation*}
-\frac{d I_{\nu}}{\rho I_{\nu} d^{s}}=I_{\nu}-I_{\nu} \tag{5.1.7}
\end{equation*}
$$

The optical thickness of the medium between the points s^{\prime} and s is defined by,

$$
\begin{equation*}
T_{0}\left(s^{\prime}, s\right)=\int_{s^{\prime}}^{s} \rho_{x_{\nu}} d s, \tag{5.1.8}
\end{equation*}
$$

so that

$$
\begin{equation*}
d T_{0}=k \nu \rho d s \tag{5.1.9}
\end{equation*}
$$

5.2. Radiation Flux and Pressure

In the general case equation (5.1.5) must be solved for the specific intensity I_{V}. The heat flux vector $\overrightarrow{\mathbf{Q}}_{R}$ is then obtained by integration as,

$$
\begin{equation*}
\vec{Q}_{R}=\int_{0}^{\infty} \int_{0}^{2 \pi} \int_{0}^{\pi} I_{\nu} s i n \theta \cos \theta d \theta d \phi d \nu, \tag{5.2.1}
\end{equation*}
$$

and the radiation pressure is given by,

$$
\begin{equation*}
p_{R}=2 \pi c^{-1} \int_{-1}^{+1} I_{\nu f_{0}^{2}}^{2} d \mu_{0} \tag{5.2.2}
\end{equation*}
$$

Since the fluid dynamic equations of motion and energy in which the above two terms appear are a set of differential equations, it is desireable to obtain the expressions for \vec{Q}_{R} and p_{R} as a function of the fluid properties or their derivatives. this is possible if local thermodynamic equilibrium may be assumed such that a local fluid temperature T may be defined at each point in the flow field. In such a case the governing equation for the intensity I_{ν} is Eq. (5.1.6), and for the optically thick case a solution may be obtained by a Taylor series expansion of I_{ν} about $B_{\nu}(T)$. The expressions for $\overrightarrow{\mathbf{Q}}_{\mathrm{R}}$ and p_{R} as obtained by Zhiguler (18), Goulard (20), Scala and Sampson (31), and Pal (38), are

$$
\begin{gather*}
p_{R}=4 / 3\left(\frac{\delta_{0}}{c}\right) T^{4}, \tag{5.2.3}\\
\nabla \cdot \vec{Q}_{R}=-4{\delta_{B} K_{P} T^{4}, \quad \text { optically thin gas, }}^{\vec{Q}_{R}=} 16 / 3\left(\frac{\partial_{B} T^{3}}{Y_{R}}\right) \nabla T, \text { optically thick gas, } \tag{5.2.4}
\end{gather*}
$$

where X_{p} 1: the Planck mean absorption coefficient defined by,

$$
K_{P}=B(T)^{-1} \int_{0}^{\infty} k_{\nu} B_{\nu}(T) d, \quad B(T)=\int_{0}^{\infty} B_{\nu}(T) d \nu=\frac{\sigma_{2} T^{4}}{\pi},(5.2 .6)
$$

and X_{R} is the Rosseland mean absorption coefficient
defined by,

$$
\begin{equation*}
1 / \mathbf{K}_{R}=\frac{\int_{0}^{\infty} \frac{d B_{\nu}}{\sigma_{\nu} d r^{2} d \nu}}{\int_{0}^{\infty} \frac{d B_{\nu}}{d T^{2} d \nu}} . \tag{5.2.7}
\end{equation*}
$$

The Rosseland mean absorption coefficient X_{R} as given by Scala and Sampson (31) for air as a function of temperature and pressure is,

$$
\begin{equation*}
K_{R}=\left(4.52 \times 10^{-7}\right) p^{1.31} \exp \left(5.18 \times 10^{-4} \mathrm{~T}-7.13 \times 10^{-9} \mathrm{~T}^{2}\right), \tag{5.2.8}
\end{equation*}
$$

where K_{R} is expressed in om^{-1}, the pressure p in atmospheres, and the temperature T in ${ }^{0} K$.

The Planck mean absorption coefficiont X_{P} for air was alse given as,

$$
\begin{equation*}
K_{P}=8.3 K_{R} . \tag{5.2.9}
\end{equation*}
$$

5.3. Ionization and Electric Conductivity

One of the most important tranaport properties in magnotogasdynamics is the electric comductivity of the gas which in part depende on the number of free electrons present or the degree of ionization of the gas. The ionization occuring in high temperature gases, such as that surrounding the apace vehicle, is referred to as thermal ionization which is a general term applied to the
ionizing action of moleoular collisions, radiation, and electron collisions.

To deternine the degree of ionization we consider a gas mixture of neutral particles, poaitive ions, and eleotrons which produce partial pressures and are related to the total gas prescure by,

$$
\begin{equation*}
p=p_{n}+p_{i}+p_{e} \tag{5.3.1}
\end{equation*}
$$

The pressure p is related to the temperature T by,

$$
\begin{equation*}
p=n k_{0} T, \quad N / m^{2} \tag{5.3.2}
\end{equation*}
$$

where n is the number of nolecules per unit volume and k_{0} is the gas constant per molecule or the Boltzmann constant. If we define the degree of ionization as

$$
\begin{equation*}
x=\frac{n_{e}}{n}=\frac{n_{1}}{n}, \tag{5.3.3}
\end{equation*}
$$

where $n_{e}=n_{i}$ are the number of electrons and ions per unit volume, and $n=n_{n}+n_{e}$, then the relation developed by Saha is (48)

$$
\begin{equation*}
\frac{x^{2}}{1-x^{2}}=\left(3.158 \times 10^{-7}\right) \frac{T^{5 / 2}}{P_{a}} \times x p\left(-\frac{q}{K_{0}^{T}}\right), \tag{5.3.4}
\end{equation*}
$$

where, $p_{a}=$ total pressure in atmospheres, $q=$ ionisation onergy in joules, $T=$ temperature in ${ }^{\circ}{ }^{\mathbf{K}}$, $\mathbf{k}_{0}=$ Boltzmann constant in joula/ ${ }^{\circ} \mathrm{K}$.

Substituting $p_{a}=p /\left(1.013 \times 10^{5}\right)$ into Eq. (5.3.4)

$$
\begin{equation*}
\frac{x^{2}}{1-x^{2}}=\left(.032 T^{5 / 2} p^{-1}\right) \exp \left(-\frac{q}{F_{0}^{T}}\right)=K(T, p), \tag{5.3.5}
\end{equation*}
$$

where p is in Newtons per \mathbf{m}^{2}.
Solving Eq.(5.3.5) for the degree of ionization x we get,

$$
\begin{equation*}
x=\frac{n_{e}}{n^{\prime}}=\left(\frac{K(P, P)}{1+K(T, P)}\right)^{\frac{1}{2}} . \tag{5.3.6}
\end{equation*}
$$

Substituting Eq.(5.3.2) for n into (5.3.6) we get the electron number density as a function of temperature and pressure of the gas,

$$
\begin{equation*}
n_{e}=\frac{p}{F_{0}^{T}}\left(\frac{X(T, p)}{1+K(T, p)}\right)^{\frac{1}{2}} . \tag{5.3.7}
\end{equation*}
$$

The number of neutral partioles may be obtained from

$$
\begin{equation*}
n_{n}=n-n_{e} \tag{5.3.8}
\end{equation*}
$$

Using Eqs. (5.3.2) and (5.3.7) we get the neutral particles as a function of temperature and pressure of the gas,

$$
\begin{equation*}
n_{n}=\frac{p}{F_{0} T}\left(1-\left(\frac{K(T, p)}{1+X(T, p)}\right)^{\frac{1}{2}} .\right. \tag{5.3.9}
\end{equation*}
$$

We note that in the limit as the temperature T becomes large the quantity containing $K(T, p)$ in Eq. (5.3.9) approaches unity so that $n_{n} \rightarrow 0$, and we have a fully ionised gas, and as T becomes mall the quantity approaohes zero and we have a neutral gas.

An equation for the electrical conductivity of a partially $10 n i z e d$ gas which was found to agree very well with experiment is (41)

$$
\begin{equation*}
\partial=\frac{n_{e}\left(e^{2}\right)}{m_{e} \bar{\nabla}\left(n_{n} \bar{Q}_{e n}+n_{1} \bar{Q}_{e 1}\right)}, \quad \text { mons } \tag{5.3.10}
\end{equation*}
$$

Where, $m_{e}=$ electron rest mass, kg,
e = electron charge, coulomb,

$$
\bar{\nabla}=\text { mean thermal velocity of an electron, m/sec, }
$$

$$
\tau_{e n}=\text { electron-atom mean collision cross section, } \mathbf{m}^{2}
$$

$$
Z_{e 1}=\text { electron-ion mean collision cross section, } \mathbf{m}^{2}
$$

The mean electron thermal velocity $\overline{\mathrm{V}}$ is given as a function of temperature by,

$$
\begin{equation*}
\bar{\nabla}=\left(\frac{8 k_{0}^{T}}{m_{e}}\right)^{\frac{1}{2}} \tag{5.3.11}
\end{equation*}
$$

Substituting this last result into Eq. (5.3.10) we get,

$$
\begin{equation*}
\partial=\left(\frac{e^{4}}{8 K_{0}^{2 m}}\right)^{\frac{1}{2}}\left(\frac{n_{e}}{n_{n} \bar{Q}_{e n}+n_{i} \bar{Q}_{e 1}}\right) \tag{5.3.12}
\end{equation*}
$$

From equation (5.3.8) we get by using (5.3.6),

$$
\begin{equation*}
\frac{n_{n}}{n_{e}}=\frac{n}{n_{e}}-1=\left(1+x^{-1}\right)^{\frac{1}{2}}-1 \tag{5.3.13}
\end{equation*}
$$

From Eq. (5.3.5) we have,

$$
\begin{equation*}
k^{-1}=\frac{\operatorname{pexp}\left(g / k_{0}^{T}\right)}{.032 T^{5} / 2} \tag{5.3.14}
\end{equation*}
$$

Substituting Eq.(5.3.14) into (5.3.13)we get,

$$
\begin{equation*}
\frac{n_{n}}{n_{e}}=\left(1+\frac{p \operatorname{xpp}\left(q / k_{0} T\right)}{.032 T 5 / 2}\right)-1 \tag{5.3.15}
\end{equation*}
$$

Since in our case $n_{e}=n_{i}$ we get from Eq.(5.3.12) by dividing top and bottom of the last term by n_{e} and using Eq. (5.3.13)

$$
\begin{equation*}
\delta=\left(\frac{e^{4}}{8 K_{0} e^{T}}\right)^{\frac{1}{2}}\left(\left(\left(1+K^{-1}\right)-1\right) \bar{Q}_{e n}+\bar{Q}_{01}\right)^{-1} \tag{5.3.16}
\end{equation*}
$$

The mean electron-ion collision cress section $\bar{Q}_{e i}$ is (41)

$$
\begin{equation*}
\bar{Q}_{o 1}=\frac{1.714\left(10^{-10}\right)}{.5816 T^{2}} \ln \left(\frac{1.241\left(10^{4}\right) T^{2}}{\left(n_{e} T\right)^{\frac{1}{2}}(2)^{\frac{1}{2}}}\right) . \quad m^{2} \tag{5.3.17}
\end{equation*}
$$

from Eqs. (5.3.7) and (5.3.14) we have (n. in \#/om ${ }^{3}$)

$$
\begin{equation*}
\left(n_{e}\right)^{\frac{1}{2}}=10^{-3}\left(\frac{\left(p / k_{0}\right)^{2}}{1+K^{-1}}\right)^{\frac{1}{4}} \tag{5.3.18}
\end{equation*}
$$

Substituting (5.3.18) into (5.3.17) we get the collision croses section as a function of temperature and pressure, $Z_{e 1}=\frac{2.95\left(10^{-10}\right)}{T^{2}} \ln \left(\frac{8.8\left(10^{6}\right) T^{2}}{\left(\frac{\left(p / k_{0}\right)^{2}}{1+K^{-1}}\right)^{\frac{1}{4}}}\right)$.

Equation (5.3.16) together with (5.3.19) gives the eleotrical conduotivity of a partially ionized gas as a function of temperature and pressure of the gas. ($\bar{Q}_{\text {en }}=$ constant).

6. SPECIAL CASE OF $v(r), w(\Omega)$, ONLY

In this section wo consider a solution to the equations along etreanlines as obtained in section 4.4., by choosing the form of the streamines so that $V(r)$ only and $w(z)$ only.
6.1. Equation of the Streanlines

Introducing a streamiunction such that,

$$
\begin{equation*}
\nabla=\frac{\partial \psi}{r \partial z}, \quad-w=\frac{\partial \psi}{r \partial r} . \tag{6.1.1}
\end{equation*}
$$

and the equation of continuity $(4.3 .7)$ is automatically satisfied. If we let

$$
\begin{equation*}
v=b r, \quad w=-2 b z, \tag{6.1.2}
\end{equation*}
$$

where b is a costant, we have by Eq.(6.1.1),

$$
\begin{equation*}
\frac{\partial \psi}{r}=b r, \quad \frac{\partial \psi}{r}=2 b z \tag{6.1.3}
\end{equation*}
$$

From this last result we find that

$$
\begin{equation*}
\psi=b x^{2} z \tag{6.1.4}
\end{equation*}
$$

which is the required streanfunction.
It is readily verified that Eq. (6.1.4) eatisfies the Laplaoe equation

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial r^{2}}-\frac{\partial \psi}{r}+\frac{\partial^{2 \psi}}{\partial z^{2}}=0 \tag{6.1.5}
\end{equation*}
$$

From equation (6.1.4) we find that for $\psi=0$, either $r=0$, or $z=0$, so that the z-axis is the stagnation streanline and at $\varepsilon=0$, we have the r-plane through that point. For $\psi=\mathcal{Y}_{i}=$ constant we get from Bq. (6.1.4)

$$
\begin{equation*}
==\frac{\psi_{1}}{b} r^{-2}, \tag{6.1.6}
\end{equation*}
$$

which is the equation of the streamines and represents flow against a disk. To obtain a partioular set of atreanlines it is necessary to evaluate the constant "b" in Eq. (6.1.6). For this purpose we use the definition of the Stekes streamfunction; i.e., $2 \pi \mathcal{Y}_{\text {is }}$ equal to the volume flow rate between any two streamlines for coastant denaity flow. Thus, at any point z upstrean of the wall the volune flow rate between the stagnation atreanline and any otherstreamine r distance away from it is given by

$$
\begin{equation*}
2 \pi \psi=\left(\pi r^{2}\right) v \tag{6.1.7}
\end{equation*}
$$

where V is the fluid velocity of the oncoming strean. Thus, by Eq. (6.1.7) and (6.1.4) we have

$$
\begin{equation*}
\psi=\frac{1}{2} \nabla r^{2}=b r^{2} z \tag{6.1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
b=\frac{1}{2} v / z . \tag{6.1.9}
\end{equation*}
$$

Now if the velooity V is known at some point $z=z_{1}$ upstream from the wall; $1 . \bullet .$, at $z=\varepsilon_{1}, V=\nabla_{1}$, and we have by Eq. (6.1.9)

$$
\begin{equation*}
b=\frac{1}{2} v_{1} / s_{1} \tag{6.1.10}
\end{equation*}
$$

Substituting the result of Eq.(6.1.10) into (6.1.4) we get,

$$
\begin{equation*}
\psi=\left(\frac{1}{2} v_{1} / r_{1}\right) r^{2} z . \tag{6.1.11}
\end{equation*}
$$

Solving (6.1.11) for r we get,

$$
\begin{equation*}
r=\left(\frac{\psi}{\left(\frac{1}{2} V_{1} / z_{1}\right)_{2}}\right)^{\frac{1}{2}}, \quad \psi>0 . \tag{6.1.12}
\end{equation*}
$$

We may now obtain explioit expressions for the pressure and temperature distribution along the streanlines given by Eq.(6.1.12).

From Eq.(6.1.2) we have

$$
\begin{equation*}
v^{2}+v^{2}=b^{2}\left(r^{2}+4 z^{2}\right) . \tag{6.1.13}
\end{equation*}
$$

Substituting Eqs.(6.1.13) and (5.2.3) into (4.4.25) and noting that $v^{2}=\nabla^{2}+w^{2}$ we get,

$$
\begin{equation*}
p=P_{1}+\frac{B_{1}^{2}}{2 \mu}+\frac{1}{2} \rho v_{1}^{2}-\frac{1}{2} \rho p_{b}^{2}\left(\frac{\psi}{b z}+4 z^{2}\right)-\frac{4 B_{B} T^{4}}{3 c}-\frac{B^{2}}{2 \mu}, \tag{6.1.14}
\end{equation*}
$$

where we have also used (6.1.12) te elininate r.
We next obtain the expression for the temperature distribution along the streamines from Eq.(4.4.28) by using Eqs. (5.2.4), (6.1.2), (6.1.12) and (6.1.13),

$$
\begin{equation*}
\left.\frac{d T}{d z}\right|_{\psi}=\frac{-\partial B^{2} b^{2}}{\rho_{V} \rho^{2} b z}\left(\frac{\psi}{b z}+4 z^{2}\right)+\frac{4 \partial_{B} K_{p} T^{4}}{\rho \sigma_{V} b^{2} z} . \tag{6.1.15}
\end{equation*}
$$

Equations (6.1.14) and (6.1.15) are two equation for the two unknown p and T along the streamlines given by (6.1.12).

We now consider the magnetic field of the following form

$$
\begin{equation*}
B=\frac{B_{1} r_{1}^{2}}{r^{2}} \tag{6.1.16}
\end{equation*}
$$

Introducing

$$
\begin{equation*}
a=(y / b) \tag{6.1.17}
\end{equation*}
$$

and using Eq.(6.1.12) to eliminate r in (6.1.16) we got

$$
\begin{equation*}
B=\frac{B_{1} r_{1}^{2} z}{a} . \tag{6.1.18}
\end{equation*}
$$

Substituting (6.1.18) into (6.1.14) and (6.1.15) we get, $p=P_{1}+p_{m}+\frac{1}{2} \rho \nabla_{1}^{2}-\frac{1}{2} \rho_{b}^{2}\left(a / z+4 z^{2}\right)-p_{R}-\frac{B_{1}^{2} r_{1}^{A} z^{2}}{2 \mu a^{2}},(6.1 .19)$
$\left.\frac{d T}{d z}\right|_{V}=A_{R} T^{4} / z-A_{A}\left(1 / a+\frac{4 z^{3}}{a^{2}}\right)$,
Where

$$
\begin{equation*}
A_{R}=\frac{2 \partial_{B} K_{p}}{\rho \sigma_{V}^{b}}, \quad \text { and } \quad A_{M}=\frac{3^{b}\left(B_{1}^{2} r_{1}^{4}\right)}{\rho^{2} c_{V}} . \tag{6.1.21}
\end{equation*}
$$

6.2. Temperature and Pressure Distribution Along Streanines.

The pressure distribution is given by Eq.(6.1.19) which can be evaluated once the temperature dietribution is known. The temperature distribution is given by (6.1.20) which is a first ordor non-linear ordinary differential equation of the following general form,

$$
\begin{equation*}
\frac{d T}{d z}=P(z, T), \tag{6.2.1}
\end{equation*}
$$

with the condition of $T=T_{1}$, at $=z_{1}$.
We propose a solution of Eq. (6.1.20) by a mothod of successive approximation. A proper development of this method is given by Coddington (57). The auccesive approximate solutions to Eq.(6.2.1) are defined to be the functions $T_{1}, T_{2}, T_{3}, \cdots \cdots$, given recuraively by the formulas,

$$
\begin{align*}
& T_{1}\left(z_{1}\right)=T_{1} \quad \text { (initial condition) } \\
& T_{2}(z)=T_{1}+\int_{z_{1}}^{z} f\left(z, T_{1}\right) d z, \\
& T_{3}(z)=T_{1}+\int_{z_{1}}^{z} f\left(z, T_{1}(z)\right) d z, \\
& T_{n+1}(z)=T_{1}+\int_{z_{1}}^{z} I\left(z, T_{n}(z)\right) d z, \tag{6.2.2}
\end{align*}
$$

where

$$
n=1,2,3, \cdots \cdots \cdots
$$

It may be noted that the more nearly correct a particular approximation $F_{n}(s) 1 s$, the better will be its successor $\mathrm{T}_{\mathrm{n}+1}(\mathrm{z})$. In our case we will obtain a good first approxnation by integrating Eq. (6.1.20) with the magnetic term neglected. Thus, by neglecting the magnetic term in Eq. (6.1.20) and integrating by separation of variables we get for our first approximation,

$$
\begin{equation*}
T_{2}=\left(c_{1}-3 A_{R^{1 n z}}\right)^{-1 / 3} \tag{6.2.3}
\end{equation*}
$$

whore c_{1} is obtained from the initial condition $T=T_{1}$, at $z=z_{1}$, as

$$
\begin{equation*}
c_{1}=F_{1}^{-3}+3 A_{R} \ln \varepsilon_{1} \tag{6.2.4}
\end{equation*}
$$

To obtain the second approximation we substitute Eq.(6.2.3) into (6.1.20) and (6.2.2), which gives

$$
T_{3}=T_{1}+\int_{z_{1}}^{A_{R}} \frac{A_{R}}{z}\left(c_{1}-3 A_{R} 1 n z\right)^{-4 / 3} d z-\frac{A_{M}}{2} \int_{z_{1}}^{z}\left(1+4 z^{3} / a\right) d z .(6.2 .5)
$$

Integrating and using (6.2.4) for c_{1} we get from (6.2.5)

$$
T_{3}=\left(T_{1}^{-3}-3 A_{R^{1 n}}\left(\varepsilon / z_{1}\right)\right)^{-1 / 3}+\frac{A_{M}}{2}\left(z_{1}-\varepsilon\right)+\frac{A_{M}}{a^{2}}\left(z_{1}^{4}+z^{4}\right) .(6.2 .6)
$$

We note that for $a=z_{1}, T_{3}=T_{1}$ as required by the initial condition, and as $z \rightarrow 0, T_{3} \rightarrow\left(A_{M^{2}} 1 / a+A_{M^{2}} 1 / a^{2}\right)$.

A higher approximation may be obtained by ro-aubstituting Eq. $(6.2 .6)$ into (6.2.2) which gives,

$$
T_{4}=T_{1}+\frac{A_{M}}{a}\left(z_{1}-z\right)+\frac{A_{M}}{a^{2}}\left(z_{1}^{4}-z^{4}\right)+
$$

$$
\begin{equation*}
\int_{z_{1}}^{m} \frac{A_{R}}{2}\left[\left(a_{1}-3 A_{R} 1 n z\right)^{-1 / 3}+\frac{A_{M}}{a^{2}}\left(z_{1}-z\right)+\frac{A_{M}}{a^{2}}\left(z_{1}^{4}-2^{4}\right)\right]^{4} d z^{4} \tag{6.2.7}
\end{equation*}
$$

Prom Eq. (6.2.7) it is apparent that the formal integration process beoomes more and more complicated for higher approximations se that mamerical prooese would have to be used mooner or later in order to obtain the nth order of approximation. Therofore, we propose a piecowise application of our cecend order approximation (6.2.6) over a number of maller intervale by dividing the range of integration into a finite number of amaller intervals. Thus, dropping the aubsoript 3 in Eq. (6.2.6) which denoted the 2nd approximation, we may use Eq. (6.2.6) to compute the temperature in the range $\varepsilon_{2} \leq \varepsilon \leq \varepsilon_{1}$ where z_{2} may be taken as close to z_{1} as deaired to obtain the neceseary accuracy. After computing the temperature at \mathbf{z}_{2} we may conaider this point as our initial condition and apply Eq. (6.2.6) orer the next interval $z_{3} \leq s=z_{2}$ with z_{2} playing the role of ξ_{1}. We may continue in this manner until the ontire range of interest is corered.

In general we may write Eq.(6.2.6) in the following form,

$$
T_{1+1}=\left(T_{i}^{-3}-3 A_{R^{\prime}} \ln \left(z / z_{i}\right)\right)^{-1 / 3}+\frac{A_{M}}{a^{2}}\left(z_{i}-z\right)+\frac{A_{M}}{a^{2}}\left(x_{i}^{4}-x^{4}\right),(6.2 .8)
$$

where T_{i+1} is the temperature at any point in the interval $z_{i+1} \leq z_{i} \leq z_{i}$ and T_{i} is the temperature at the point $\varepsilon_{1} ; i=1,2,3, \cdots \cdots \cdots$, represents the number of intervals under consideration. Thus, we consider equation (6.2.8) as the solution to the temperature distribution over the entire range of interest.

PART II: VISCOUS RADIATION MAGNETOHYDRODYNAMICS
7. GOVERNING EQUATIONS OF VISCOUS FLOW
7.1. Fundamental Equations

We consider a viscous, heat-conducting, steady flow of an ionized gas in an electromagnetic field with thermal radiation. The governing equations for the present case may be obtained by modifying the system of equations derived in section 2.3 . The modification consists of adding the viscous tress terms to the equations of momentum (2.3.2), and the viscous dissipation term to the equation of energy (2.3.3). The heat flux vector \bar{Q} is also modified to account for the heat conductivity of the gas.

The viscous stress term is given by, (56)

$$
\begin{equation*}
\frac{\partial T^{i j}}{\partial x^{j}} \tag{7.1.1}
\end{equation*}
$$

where $\mathcal{T}^{\text {jj }}$ are the components of the stress tensor given by

$$
\begin{equation*}
T^{i j}=\bar{\mu}\left(\frac{\partial v^{i}}{\partial x^{j}}+\frac{\partial v^{j}}{\partial x^{I}}\right)-\frac{2 \cdots}{3 \bar{p}^{-}} \frac{\partial v^{k}}{\partial x^{I I}} \delta^{i j} . \tag{7.1.2}
\end{equation*}
$$

The viscous dissipation function is obtained as,

$$
\begin{equation*}
\bar{\mu} \phi=g_{k i} \mathcal{T}^{i j} \frac{\partial v^{1}}{\partial x^{3}} \tag{7.1.3}
\end{equation*}
$$

The heat flux vectors now become from (5.2.4) and (5.2.5)
$\vec{Q}=\left(K_{t}+\frac{16 \delta_{B} \mathrm{R}^{3}}{3 \mathrm{~K}_{\mathrm{R}}}\right) \nabla \mathrm{T}, \quad$ optically thick gas,
$\nabla \cdot \vec{Q}=\nabla \cdot\left(K_{t} \nabla T\right)-4 K_{p} \delta_{B} T^{4}$, optically thin gas,

The system of equations now become, continuity,

$$
\begin{equation*}
\frac{\partial}{\partial x^{I}}\left(\rho v^{i}\right)=0, \tag{7.1.6}
\end{equation*}
$$

momentum,
$\rho \nabla^{j} \frac{\partial Y^{i}}{\partial x^{j}}+g^{i j} \frac{\partial^{P} t}{\partial x^{j}}-\mu H^{j} \frac{\partial H^{i}}{\partial x^{j}}-\frac{\partial T^{j j}}{\partial x^{j}}=0$,
energy,
$\rho V^{j} \frac{\partial I}{\partial x^{j}}=\partial^{-1}\left(e^{j r} \frac{\partial H^{k} \partial^{H} j}{\partial x^{r} \partial x^{k}}-\varepsilon^{j r} \frac{\partial H^{k} \partial^{H}}{\partial x^{r} \partial x^{j}}\right)+$

$$
\begin{equation*}
\mu \nabla^{j} \mathbf{H}^{1} \frac{\partial^{H} f}{\partial x^{1}}-\nabla^{j} \frac{\partial^{P_{m}}}{\partial x^{J}}+\frac{\partial Q^{I}}{\partial x^{I}}+\bar{\mu} \phi . \tag{7.1.8}
\end{equation*}
$$

magnetic field Eq.
$\nabla^{j} \frac{\partial H^{i}}{\partial x^{j}}-H^{j} \frac{\partial V^{i}}{\partial x^{j}}+H^{i} \frac{\partial V^{j}}{\partial x^{j}}=\eta \frac{\partial}{\partial x^{j}}\left(\varepsilon^{j k} \frac{\partial H^{i}}{\partial x^{I}}\right)$,
and the equation of state, $\quad \mathrm{p}=\rho \mathrm{RT}$.

We note that the above system of equations are conaiderably more complex than the classical Navier-Stokes equations of classical fluid dynamics.
7.2. Transformation to Streanline Coordinates

The transformation of equations (7.1.6) and (7.1.9) was given in section 3. and will not be repeated here. By introducing the velocity and magnetic ileld components from (3.1.1), (3.1.2), into the equations of momentum (7.1.7) and the equation of energy (7.1.8) we get,

$$
\begin{aligned}
& \rho V s^{j} \frac{\partial\left(V s^{i}\right)}{\partial x^{j}}+g^{1 j} \frac{\partial^{P} t}{\partial x^{j}}-\mu H h^{j} \frac{\partial\left(H h^{i}\right)}{\partial x^{j}}-\frac{\partial y^{i j}}{\partial x^{j}}=0, \quad \text { (7.2.1) }
\end{aligned}
$$

Expanding (7.2.1) and using $s^{1} \frac{\partial}{\partial x^{I}}=\frac{\partial}{\partial s}$ etc., and also (3.1.3) and (3.1.11) we get

$$
\begin{equation*}
\rho \nabla \frac{\partial V_{8}^{1}}{\partial s^{1}}+\rho V^{2} k n^{1}+g^{1 j} \frac{\partial^{P} t}{\partial x^{j}}-\frac{\partial T^{i j}}{\partial x^{j}}=0 \tag{7.2.3}
\end{equation*}
$$

Expanding equation (7.2.2) and uaing (3.1.11) we get,
7.3. Streamline-Pressure Variation, Curvature and Torsion

The variation of the total pressure P_{t} along the tangent, principal normal, and binermal directions of the streamlines may be obtained by taking the scalar product

$\rho V-\frac{\partial V}{\partial \delta^{1}} g^{i} g_{i k} n^{k}+\rho V^{2} k^{1} g_{i k} n^{k}+g^{1 j} g_{i k} n^{k} \frac{\partial^{P} t}{\partial x^{j}}-g_{1 k^{n}} \frac{\partial \mathcal{T}^{1 j}}{\partial x^{j}}=0$,

Making use of the orthogonal properties of $\mathrm{c}^{1}, \mathrm{n}^{1}, \mathrm{~b}^{1}$, and $g^{1 j} g_{i k}=\delta_{z^{\prime}}^{j}, \quad e^{j} \frac{\partial}{\partial x^{j}}=\frac{\partial}{\partial \varepsilon}, \quad n^{j} \frac{\partial}{\partial x^{j}}=\frac{\partial}{\partial n}$, etc., we get from (7.3.1) to (7.3.3),

$$
\begin{align*}
& \rho V-\frac{\partial V}{\partial z}+\frac{\partial^{P_{t}}}{\partial s}-g_{i k}{ }^{k} \frac{\partial T^{i j}}{\partial x^{J}}=0, \tag{7.3.4}\\
& \rho \nabla^{2} k+\frac{\partial^{P} t}{\partial J^{n}}-g_{i k} n^{n^{k}} \frac{\partial \mathcal{T}^{j J}}{\partial x^{J}}=0, \tag{7.3.5}\\
& \frac{\partial^{P} t}{\partial b}-g_{i k} b^{k} \frac{\partial T^{i j}}{\partial x^{j}}=0, \tag{7.3.6}
\end{align*}
$$

where the total pressure $\mathbf{P}_{\mathbf{t}}=\left(\mathbf{p}+\mathbf{p}_{\mathbf{m}}+\mathbf{p}_{\mathbf{R}}\right)$.

From Eq. (7.3.4) we find that the pressure variation along the streamlines deponds on the momentum ohange as well as on the viscous stresses. The same holds true for the pressure variation in the normal direotion of the streanlines. From Eq. (7.3.6) we see that the pressure is no longer constant in the binormal direction of the streanlines for the viscous case under consideration here.

Streamline Curvature

An expression for the curvature k of the streamlines may be obtained in terms of the fluid donsity ρ, the velooity V, the normal pressure gradient $\frac{\delta^{P_{t}}}{\partial n}$, and the viscous stress term by solving Eq. (7.3.5) for k,

$$
\begin{equation*}
k=\left(\rho v^{2}\right)^{-1}\left(g_{i k} n^{k} \frac{\partial T^{1 J}}{\partial x^{J}}-\frac{\partial^{P} t}{\partial n}\right) \tag{7.3.7}
\end{equation*}
$$

Torsion

To develop an expression for the tersion of the streanlines as a function of the flow field parameters we begin with the Frenet formula

$$
\begin{equation*}
-\tau_{n^{1}}=\frac{d b^{i}}{d s} \tag{7.3.8}
\end{equation*}
$$

The unit binornal vector in Eq.(7.3.8) is by definition

$$
\begin{equation*}
b^{i}=e^{i j k_{g_{j p}} g_{k q} p_{n} q} \tag{7.3.9}
\end{equation*}
$$

An expression for the mormal vector n^{q} may be obtained by solving Eq.(7.2.3) as,

$$
n^{q}=\left(\rho v^{2} z\right)^{-1}\left(-\rho v \frac{\partial v_{8}}{\partial s^{q}}-\varepsilon^{q r} \frac{\partial^{P} t}{\partial x^{r}}+\frac{\partial T^{q r}}{\partial x^{r}}\right)
$$

Substituting Eq.(7.3.10) into (7.3.8) and making use of the following identities,
we get the binormal rector as a function of the flow field parameters,

$$
b^{1}=\left(\rho v^{3} k\right)^{-1} \rho^{i j k}\left(v_{j} E_{k q} \frac{\partial q^{q}}{\partial x^{r}}-v_{j} \frac{\partial^{P} t}{\partial x^{1}}\right)
$$

differentiating (7.3.11) along a streanline and aubstituting into (7.3.8) we get the following expression for the torsion of the streamlines,

7.4. Vorticity

Substituting Eq. (3.3.18) into (7.2.3) we get
$-\rho V\left(\frac{\partial V_{n}}{\partial n^{1}}+\frac{\partial \nabla_{b}}{\partial b} b^{1}\right)+\rho V^{2} \mathrm{kn}^{i}+V g^{i r} \frac{\partial V}{\partial x^{r}}+g^{i r} \frac{\partial^{P} t}{\partial x^{r}}-\frac{\partial T^{j j}}{\partial x^{j}}=0$.

Adding and subtracting $\frac{1}{2} v^{2} g^{i r} \frac{\partial \rho}{\partial x^{r}}$ from Eq. (7.4.1) we get,

$$
\begin{align*}
& \left(\rho V^{2} k-\rho V \frac{\partial V}{\partial a^{2}}\right) n^{1}-\rho V-\frac{\partial V_{b}}{\partial b^{1}}+g^{1 r} \frac{\partial\left(\frac{1}{\rho} \rho V^{2}\right)}{\partial x^{r}}+g^{1 r} \frac{\partial^{P} P_{t}}{\partial x^{r}}- \\
& \frac{\partial \mu^{i r}}{\partial x^{r}}-\frac{1}{2} v^{2} g^{i r} \frac{\partial \rho}{\partial x^{r}}=0 . \tag{7.4.2}
\end{align*}
$$

Dividing (7.4.2) by P and transposing some ter me we get,

$$
\begin{gather*}
-\rho^{-1} g^{1 r} \frac{\partial}{\partial x^{r}}\left(P_{t}+\frac{1}{2} \rho v^{2}\right)+\frac{1}{\frac{1}{\rho} \rho^{-1} v^{2} g^{1 r} \frac{\partial \rho}{\partial x^{r}}+\frac{\partial T^{1 r}}{\partial x^{r}} \rho^{-1}=} \begin{array}{c}
\left(v^{2} k-v \frac{\partial v}{\partial n}\right) n^{i}-v \frac{\partial V_{b}}{\partial b}
\end{array} .
\end{gather*}
$$

Introducing a function \bar{B} defined by,

$$
\begin{equation*}
g^{1 r} \frac{\partial \bar{B}}{\partial x^{r}}=-\rho^{-1} \varepsilon^{1 r} \frac{\partial}{\partial x^{r}}\left(P_{t}+\frac{1}{2} \rho v^{2}\right)+\frac{1}{1} \rho^{-1} v^{2} g^{1 r} \frac{\partial \rho}{\partial x^{r}}+\rho^{-1} \frac{\partial \tau^{1 r}}{\partial x^{r}}, \tag{7.4.4}
\end{equation*}
$$

equation (7.4.3) becomes,

$$
\begin{equation*}
g^{1 r} \frac{\partial B}{\partial x^{r}}=\left(v^{2} z-v \frac{\partial V}{\partial n}\right) n^{1}-v \frac{\partial V_{b}}{\partial b^{1}} \tag{7.4.5}
\end{equation*}
$$

Multiplying equation (7.4.5) by g_{ji} we get,

$$
\begin{equation*}
\frac{\partial \bar{B}}{\partial x^{J}}=\left(v^{2} k-v \frac{\partial V}{\partial \pi}\right) g_{j 1} n^{1}-v \frac{\partial V}{\partial b_{j 1}} b^{1} \tag{7.4.6}
\end{equation*}
$$

Taking the soalar product of Eq. (7.4.6) with (3.3.16) we get,

$$
\begin{equation*}
w^{J} \frac{\partial \bar{B}}{\partial x}=0 . \tag{7.4.7}
\end{equation*}
$$

Taking the scalar product of Eq. $(7.4 .6)$ with $\mathbf{g}^{\mathbf{j}}$,we get

$$
\begin{equation*}
\frac{\partial \partial^{J}}{\partial X^{J}}=0 \tag{7.4.8}
\end{equation*}
$$

Thus, equations (7.4.7) and (7.4.8) imply that the surfaces $\bar{B}=$ constant contain both the streamlines and the vortex lines.
7.5. General Cylindrical Coordinates

The governing equations of viscous, radiation magnetohydrodynamics in cylindrical coordinates are as follows,

$$
\begin{align*}
& \frac{\partial}{\partial r}\left(\rho v_{r}\right)+\frac{\rho V_{r}}{r}+\frac{\partial}{r}\left(\rho v_{0}\right)+\frac{\partial}{\partial z}\left(\rho v_{z}\right)=0, \\
& \rho\left(v_{r} \frac{\partial^{v_{r}}}{\partial r}+\frac{v_{0} \partial^{v_{r}}}{r \partial \theta}-\frac{v_{0}^{2}}{r}+v_{z} \frac{\partial^{v_{r}}}{\partial z}\right)= \\
& \frac{\partial P}{\partial r}+\left(J_{0} B_{z}-J_{z} B_{\theta}\right)-\left(\frac{\partial}{r \partial r}\left(r T_{r r}\right)+\frac{\partial T_{r 0}}{r \partial}-\frac{T_{00}}{r}+\frac{\partial T_{r z}}{\partial z}\right), \\
& \rho\left(v_{r} \frac{\partial^{\nabla_{0}}}{\partial r}+\frac{v_{0} \partial_{0}}{r} \frac{\nabla_{0}}{\partial \nabla_{r} \nabla_{0}} \frac{\nabla_{z}}{r} \frac{\partial_{0} \nabla_{0}}{\partial^{z}}\right)= \tag{7.5.2}\\
& -\frac{\partial p}{r \partial \theta}+\left(J_{z} B_{r}-J_{r} B_{z}\right)-\left(\frac{\partial}{r^{2} \partial r}\left(r^{2} T_{r 0}\right)+\frac{\partial T_{00}}{r \partial \theta}+\frac{\partial T_{0 z}}{\partial z}\right), \\
& \rho\left(v_{r} \frac{\partial^{V_{z}}}{\partial r}+\frac{v_{0}}{r} \frac{\partial V_{z}}{\partial \theta}+v_{z} \frac{\partial V_{z}}{\partial z}\right)= \\
& -\frac{\partial P}{\partial z}+\left(J_{r} B_{Q}-J_{0} B_{r}\right)-\left(\frac{\partial}{r} \frac{\partial r}{}\left(r T_{r z}\right)+\frac{\partial T_{0 z}}{r \partial \theta}+\frac{\partial T_{z z}}{\partial z}\right),(7.5 .4) \\
& \rho\left(V_{r} \frac{\partial \theta}{\partial r}+\frac{V_{\theta} \partial_{\theta}}{r \partial \theta}+V_{z} \frac{\partial \theta}{\partial z}\right)=\left(V_{r} \frac{\partial P}{\partial r}+\frac{\left.V_{0}\right) P P}{r}+V_{z} \frac{\partial P}{\partial z}\right)+ \\
& \frac{J^{2}}{\delta}+\bar{\mu} \phi+\left(\frac{\partial^{Q_{r}}}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial^{Q_{0}}}{r} \frac{\partial \theta}{\partial \theta}+\frac{\partial^{Q_{z}}}{\partial Z_{z}}\right), \quad \text { (7.5.5) }
\end{align*}
$$

where $P=p+p_{R}, \quad=(u+P / \rho), J^{2}=J_{0}^{2}+J_{r}^{2}+J_{z}^{2}$,
and $\bar{\mu} \phi=T_{r r}\left(\frac{\partial^{v_{r}}}{\partial r}\right)+T_{00}\left(\frac{\partial)_{0}}{V_{0}}+\frac{v_{r}}{r}\right)+T_{z z}\left(\frac{\partial V_{z}}{\partial z}\right)+$

$$
\tau_{r \theta}\left(r-\frac{\partial}{\partial r}\left(\frac{v_{0}}{r}\right)+\frac{\partial^{v_{r}}}{r \partial \theta}\right)+T_{\theta z}\left(\frac{\partial^{v_{z}}}{\partial \theta}+\frac{\partial^{v_{0}}}{\partial z}\right)+
$$

$$
\begin{equation*}
T_{r z}\left(\frac{\partial \mathbf{V}_{z}}{\partial r}+\frac{\partial^{V_{r}}}{\partial z}\right) \tag{7.5.6}
\end{equation*}
$$

7.6. Axially Symmetric Case

The governing equations (7.5.1) to (7.5.6) may be ceaciderably simplified for the axially aymetric case for which we have the following conditions;

$$
\begin{equation*}
\frac{\partial}{\partial 0}=0, \quad v_{0}=0, \quad J_{0}=0, \quad \tau_{10}=T_{01}=0 \tag{7.6.1}
\end{equation*}
$$

We also let $V_{r}=V$, and $V_{z}=W$, and get by introducing these conditions into (7.5.1) to (7.5.6),

$$
\begin{align*}
& \frac{\partial}{\partial r}\left(\rho_{V}\right)+\frac{\rho_{V}}{r}+\frac{\partial}{\partial z}\left(\rho_{w}\right)=0, \tag{7.6.2}\\
& \rho\left(\nabla-\frac{\partial r}{\partial r}+w \frac{\partial v}{\partial z}\right)=-\frac{\partial P}{\partial r}-J_{z} B_{0}-\left(\frac{\partial}{r} \frac{\partial r}{}\left(r T_{r r}\right)+\frac{\partial T_{r z}}{\partial z}\right),(7.6 .3) \\
& \rho\left(v-\frac{\partial w}{\partial r}+v-\frac{\partial w}{\partial z}\right)=-\frac{\partial p}{\partial z}+J_{r} B_{0}-\left(\frac{\partial}{r} \frac{\partial r}{\partial z}\left(r T_{r z}\right)+\frac{\partial T_{z z}}{\partial z}\right),(7.6 .4) \\
& P\left(v-\frac{\partial e}{\partial r}+v-\frac{\partial e}{\partial z}\right)=\left(v-\frac{\partial p}{\partial r}+v-\frac{\partial P}{\partial z}\right)+\frac{J^{2}}{\delta}+\bar{\mu} \phi+ \\
& \left(\frac{\partial Q_{r}}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial^{Q_{Z}}}{\partial z}\right), \tag{7.6.5}
\end{align*}
$$

where,

$$
\begin{equation*}
\bar{\mu} \phi=T_{r r}\left(\frac{\partial v}{\partial r}\right)+T_{z z}\left(\frac{\partial w}{\partial z}\right)+T_{r z}\left(\frac{\partial w}{\partial r}+\frac{\partial v}{\partial z}\right) . \tag{7.6.6}
\end{equation*}
$$

From Eqs. (4.4.5), (4.4.6) we have,

$$
\begin{equation*}
J_{r}=-8 w B_{0}, \quad J_{z}=-3 \nabla A_{\theta} \tag{7.6.7}
\end{equation*}
$$

We now have $J^{2}=J_{r^{+}}^{2} J_{z}^{2}=\sigma^{2} B_{0}^{2}\left(\nabla^{2}+w^{2}\right)$.

The current density in (7.6.3) to (7.6.5) may now be eliminated by using (7.6.7) and (7.6.8) as follows,

$$
\begin{gather*}
\rho\left(v \frac{\partial v}{\partial r}+w \frac{\partial v}{\partial z}\right)=-\frac{\partial P}{\partial r}-\partial v B_{0}^{2}-\left(\frac{\partial}{r}\left(r T_{r r}\right)+\frac{\partial T_{r z}}{\partial z}\right),(7.6 .9) \\
\rho\left(v \frac{\partial w}{\partial r}+w-\frac{\partial w}{\partial z}\right)=-\frac{\partial P}{\partial z}-\partial w B_{0}^{2}-\left(\frac{\partial}{r}\left(r T_{r z}\right)+\frac{\partial T_{z z}}{\partial z}\right),(7.6 .10) \\
\rho\left(v \frac{\partial e}{\partial r}+w \frac{\partial e}{\partial z}\right)=\left(v-\frac{\partial P}{\partial r}+w-\frac{\partial P}{\partial z}\right)+\partial B_{\theta}^{2}\left(v^{2}+w^{2}\right)+ \\
\bar{\mu} \phi+\left(\frac{\partial^{Q} Q_{r}}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial Q_{z}}{\partial z}\right) . \tag{7.6.11}
\end{gather*}
$$

The above equations (7.6.9) to (7.6.11) may be integrated along a streamline by multiplying Eq. (7.6.9) by dr and (7.6.10), (7.6.11) by dz and using the equation of the atreanine war $=$ viz and noting that

$$
d v=\frac{\partial \mathbf{v}^{\prime}}{\partial r}+\frac{\partial \mathbf{v}^{2}}{\partial \mathrm{~d}} \text { etc. we get, }
$$

$$
\begin{align*}
& P_{V d V}+\frac{\partial P_{r}}{\partial r} d r+\partial V B_{\theta}^{2} d r+\left(\frac{\partial}{r}\left(r T_{r r}\right)+\frac{\partial T_{r z}}{\partial z}\right) d r=0, \quad(7.6 .12) \\
& \rho w d w+\frac{\partial P_{2}}{\partial z} d z+\delta w B_{0}^{2} d z+\left(\frac{\partial}{r} \frac{\partial r}{}\left(r T_{r z}\right)+\frac{\partial T_{z z}}{\partial z}\right) d z=0, \quad(7.6 .13) \\
& \rho \text { wde }=w d P+\partial B_{0}^{2}\left(\nabla^{2}+w^{2}\right) d z+\bar{\mu} \phi d z+\left(\frac{\partial^{Q} r}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial Q_{z}}{\partial z}\right) d z . \tag{7.6.14}
\end{align*}
$$

Adding Eqs. (7.6.12) and (7.6.13) we get,

$$
\begin{align*}
& d\left(\frac{1}{2} r^{2}+\frac{1}{z} w^{2}\right)+d P+\partial B_{Q}^{2}(v d r+w d z)+ \\
& \quad\left(\frac{\partial}{r} \frac{\partial}{r}\left(r T_{r r}\right)+\frac{\partial T_{r z}}{\partial z}\right) d r+\left(\frac{\partial}{r \partial r}\left(r T_{r z}\right)+\frac{\partial T_{z z}}{\partial z}\right) d z=0 \tag{7.6.15}
\end{align*}
$$

We now let V be the fluid velooity along the etreamines and noting that $v d r+w d z=\frac{(d r)^{2}}{d t}+\frac{(d z)^{2}}{d t}=\frac{(d s)^{2}}{d t}=V d s$ we get from (7.6.15)

$$
\begin{equation*}
\rho d\left(\frac{1}{2} v^{2}\right)+d P+3 V B_{0}^{2} d s+T_{s}=0 \tag{7.6.16}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } \\
& T_{s}=\left(\frac{\partial}{r} \frac{\partial r}{}\left(r T_{r r}\right)+\frac{\partial T_{r z}}{\partial z}\right) d r+\left(\frac{\partial}{r_{r}}\left(r T_{r z}\right)+\frac{\partial T_{z z}}{\partial z}\right) d z \cdot(7.6 .17) \\
& \text { Noting that } w=d z / d t \text { we get from Eq. }(7.6 .14) \\
& (d z / d t) d e=(d z / d t) d P+\delta B_{0}^{2}\left(v^{2}\right) d z+\bar{\mu} \phi d z+Q_{g} d z, \quad(7.6 .18)
\end{aligned}
$$

where, $\quad Q_{g}=\left(\frac{\partial^{Q_{r}}}{\partial r}+\frac{Q_{r}}{r}+\frac{\partial^{Q_{I}}}{\partial z}\right)$.

Dividing Eq.(7.6.18) by dz and multiplying by de and noting that $d s / d t=V$ we get,
$P V d e=V d P+Z B_{0}^{2} v^{2} d s+F \phi d s+Q_{s} d s$,
or $\rho v^{d \theta}=\frac{d P}{d \delta}+\partial B_{0}^{2} V^{2}+\bar{\mu} \phi+Q_{B}$.

To complete the system of equations we add the equations of contimuity and iluid state along a stream1ine

$$
\begin{equation*}
\frac{d}{d s}(\rho V)=0 \tag{7.6.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d p}{d s}=R\left(\rho \frac{d T}{d s}+T \frac{d \rho}{d s}\right) \tag{7.6.23}
\end{equation*}
$$

Eqs. (7.6.16), (7.6.21), (7.6.22), and (7.6.23) are four differential equations along atreamines for the four quantities P, ρ, T, and V.

The four equations (7.6.16), (7.6.21) to (7.6.23) may be solved for the fluid variable gradients along a etreanline as follows; from (7.6.16) we have,

$$
\begin{equation*}
\rho V \frac{d V}{d B}+\frac{d P}{d E}+3 V B^{2}+\frac{T E}{d s}=0 \tag{7.6.24}
\end{equation*}
$$

and frem (7.6.22) $\frac{d \rho}{d s}=-\frac{\rho}{V} \frac{d V}{d s}$.

Multiplying (7.6.24) by V and adding the reanlt to (7.6.21) we get from the later,
$\rho v_{\frac{d e}{d s}}+\rho v^{2 d V} \frac{d s}{d s}-Q_{s}+\frac{\nabla T_{s}}{d s}=0$.

The velocity gradient may be eliminated from (7.6.26) and (7.6.24) by using (7.6.25); thus,
$P V_{0} \frac{d T}{d s}-V^{3} \frac{d \rho}{d s}-\bar{\mu} \phi-Q_{s}+\frac{V T}{d s}=0$,
$-v^{2} \frac{d \rho}{d s}+\frac{d p}{d s}+\frac{d^{p} p_{R}}{d s}+3 v^{2}+\frac{T s}{d s}=0$.

The fluid pressure gradient may be eliminated from (7.6.28) by using (7.6.23) and using (5.2.3) for p_{R} we get,
$\left(R P+\frac{16 \delta_{B} T^{3}}{3 c}\right) \frac{d T}{d s}+\left(R T-v^{2}\right) \frac{d P}{d B}+3 V B^{2}+\frac{T}{d s}=0$,
Solving (7.6.27) for $d \rho / d s$ we get,
$\frac{d \rho}{d s}=\nabla^{2}\left(\rho_{c_{p}} \frac{d T}{d s}-\left(\frac{\overline{(})+Q_{s}}{V}\right)+\frac{T_{s}}{d \bar{s}}\right)$.

Eliminating $d \rho / d s$ from (7.6.29) by using (7.6.30) and solving the result for the temperature gradient we get,

$$
\begin{equation*}
\frac{d T}{d s}=\frac{\left(\frac{R T}{V^{2}}-1\right)\left(\frac{\bar{L} \phi+Q_{B}}{V}\right)-\left(\frac{R T}{V^{2}}\right)\left(\frac{T}{d B}\right)-\partial V_{B}^{2}}{\frac{16 Z_{B} T^{3}}{30}+R P+c_{p} \rho\left(\frac{R T}{V^{2}}-1\right)} . \tag{7.6.31}
\end{equation*}
$$

Introducing $c_{p}=\frac{R \gamma}{\gamma-1}$ and $R T=p / \rho$ equation (7.6.31) becomes

$$
\begin{equation*}
\frac{d T}{d s}=\frac{\left(\frac{R T}{V^{2}}-1\right)\left(\frac{\bar{R} \phi+Q_{B}}{V}\right)-\left(\frac{R T}{V^{2}}\right)\left(\frac{T_{B}}{d B}\right)-2 V B^{2}}{\frac{16 \delta_{B} T^{3}}{30}+\frac{P_{T}}{2}\left(1+\frac{\gamma}{\gamma-1}\left(\frac{R T}{V^{2}}-1\right)\right)}=1_{1} . \tag{7.6.32}
\end{equation*}
$$

The temperature gradient may now be ellminated from Eq. (7.6.30) by using (7.6.32) which gives.

$$
\begin{equation*}
\frac{d p}{d B}=\nabla^{2}\left(\frac{p}{\Gamma}\left(\frac{\gamma}{\gamma-1}\right) f_{1}-\left(\frac{\bar{r} \gamma+Q_{B}}{V}\right)+\frac{T}{d B}\right)=\nabla^{-2} r_{2} . \tag{7.6.33}
\end{equation*}
$$

The velocity gradient may now be obtained by aubstituting (7.6.33) into (7.6.25) whioh gives

$$
\begin{equation*}
\frac{d V}{d s}=-\frac{1}{V p}\left(\frac{p}{T}\left(\frac{\gamma}{\gamma-1}\right) r_{1}-\left(\frac{\bar{\nu} \gamma+Q_{s}}{V}\right)+\frac{T_{s}}{d \delta}\right)=-\frac{p_{2}}{\rho V} . \tag{7.6.34}
\end{equation*}
$$

The pressure gradient may now be obtained by aubstituting (7.6.32) and (7.6.33) into (7.6.23) whioh gives,

$$
\begin{equation*}
\frac{d p}{d s}=\left(\frac{p}{T}\right) f_{1}+\left(\frac{R T}{V^{2}}\right) f_{2} \tag{7.6.35}
\end{equation*}
$$

The fluid variables p, ρ, T, and V may be obtained by simultaneous solution of equations (7.6.32) to (7.6.35).
8. GEOMETRIC PARAMETERS OF STREAMLINES IN AXIAL SYMMETRY

$$
\text { 8.1. Streanlines of the Forn } z=f(r)
$$

In this section we derive a set of relations for the geometric parameters $\stackrel{\rightharpoonup}{s}, \vec{n}, \vec{b}, k$, and τ of the streamlines which are expressed by an equation of the form $z=f(r)$, where z is the axis of symetry.

The poaition vector $\frac{\hat{k}}{}$ of any point on the atreamine is given by,

$$
\begin{equation*}
\mathrm{t}=\mathrm{ri}+\mathrm{zj}, \tag{8.1.1}
\end{equation*}
$$

where i and j are unit vectors in the r and z direotions respectively.

A vector tangent to the atreamline is given by,

$$
\begin{equation*}
\frac{d \hat{R}}{d r}=1+\frac{d z}{d r}, \tag{8.1.2}
\end{equation*}
$$

and the unit tangent vector $\stackrel{\rightharpoonup}{s}$ is obtained as

$$
\begin{equation*}
\vec{B}=\frac{d \vec{R}}{d r} /\left|\frac{d \vec{R}}{d r}\right|=\left(1+\frac{d z}{d r} j\right)\left(1+\left(\frac{d z}{d r}\right)^{2}\right)^{-\frac{1}{2}} \tag{8.1.3}
\end{equation*}
$$

Since $\vec{s} \cdot \overrightarrow{\mathrm{~s}}=1$, we have $\overrightarrow{\mathrm{s}} \cdot \frac{\mathrm{d} \overrightarrow{\mathrm{s}}}{\mathrm{d}}=0$, so that $\frac{\mathrm{d} \overrightarrow{\mathrm{s}}}{\mathrm{d}}$ is a vector in the direction normal to E, and the magnitude of this vector is the curvature k of the ourve. Difforentiating Eq.(8.1.3) with respect to r we have,

$$
\frac{d \vec{B}}{d r}=-\left(i+\frac{d z}{d r} j\right)\left(1+\left(\frac{d z}{d r}\right)^{2}\right)^{-3 / 2}\left(\frac{d z}{d r} \frac{d^{2} z}{d r^{2}}+\left(1+\left(\frac{d z}{d r}\right)^{2}\right)^{-\frac{1}{2}} \frac{d^{2} z}{d r^{2}} j \cdot(8.1 .4)\right.
$$

We also have

$$
\begin{equation*}
\frac{d \vec{s}}{d s}=\frac{d \vec{E}}{d r} \frac{d r}{d s}=\frac{d \vec{s}}{d \vec{r}} / \frac{d s}{d r}=\frac{d \vec{e}}{d r} /\left|\frac{d \vec{t}}{d \vec{r}}\right| . \tag{8.1.5}
\end{equation*}
$$

Using (8.1.2) and (8.1.4) in (8.1.5) we get

$$
\begin{equation*}
\frac{d \stackrel{d}{s}}{d z}=\frac{d^{2} z}{d r^{2}}\left(j-\frac{d z}{d r} 1\right)\left(1+\left(\frac{d z}{d r}\right)^{2}\right)^{-2} \tag{8.1.6}
\end{equation*}
$$

The curvature k of the streamine is now obtaine as,

$$
\begin{equation*}
k=\left|\frac{d \stackrel{\rightharpoonup}{s}}{d s}\right|=\frac{d^{2} z}{d r^{2}}\left(1+\left(\frac{d z}{d r}\right)^{2}\right)^{-3 / 2} . \tag{8.1.7}
\end{equation*}
$$

The unit vector normal to the streamine may be obtained from the Frenet formula as,

$$
\begin{equation*}
\vec{n}=k^{-1} \frac{d \stackrel{\rightharpoonup}{s}}{d s}=\left(j-\frac{d z}{d r} i\right)\left(1+\left(\frac{d z}{d r}\right)^{2}\right)^{-\frac{1}{2}} \tag{8.1.8}
\end{equation*}
$$

The unit binormal vector of the atreamline is given by,

$$
\begin{equation*}
\vec{b}=\stackrel{\rightharpoonup}{\mathrm{E}} \times \overrightarrow{\mathrm{A}} . \tag{8.1.9}
\end{equation*}
$$

Substituting Eqs.(8.1.3) and (8.1.8) into (8.1.9) we get,

$$
\begin{equation*}
t=\left(t+\left(\frac{d z}{d r}\right)^{2}\right)\left(1+\left(\frac{d z}{d r}\right)^{2}\right)^{-1}=t ; \tag{8.1.10}
\end{equation*}
$$

thus, \vec{b} is a constant unit vector in the direction of θ and perpendicular to both $\stackrel{\rightharpoonup}{z}$ and \hat{n}.

From the Preset formula for the torsion of the streamline we get by taking the dot product,

$$
\begin{equation*}
-\tau=\vec{m} \cdot \frac{d \vec{b}}{d s} \tag{8.1.11}
\end{equation*}
$$

Since \vec{b} is a constant unit vector we have $\frac{d \vec{b}}{d \boldsymbol{b}}=0$, and by Eq. $(8.1 .11)$ we find that the torsion of the streamlines is zero. Hence, the streamlines are plain curves.
8.2. Streamline Curvature k for $Y=f(\Sigma, r)$

For the special case of the atreamfunction of (6.1.4)
we have

$$
\begin{equation*}
\psi=b r^{2} z, \tag{8.2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
z=(Y / b) \mathbf{r}^{-2} \tag{8.2.2}
\end{equation*}
$$

Differentiating (8.2.2) with respect to r we get,
$\frac{d z}{d r}=-(\psi / b) r^{-3}, \quad \frac{d^{2} z}{d r^{2}}=6(\psi / b) r^{-4}$.
Substituting (8.2.3) into (8.1.7) we get,

$$
\begin{equation*}
k=6(Y / b) r^{-4}\left(1+4(Y / b)^{2} r^{-6}\right)^{-3 / 2} \tag{8.2.4}
\end{equation*}
$$

Using Eq. (8.2.2) in (8.2.4) wo get

$$
k=6 z^{2}(\psi / b)^{-1}\left(1+4(\psi / b)^{-1} z^{3}\right)^{-3 / 2} \text {, for } \psi / 0,(8.2 .5)
$$

We also have for arc length, $(d s)^{2}=(d z)^{2}+(d r)^{2},(8.2 .6)$ so that

$$
\begin{equation*}
\frac{d s}{d z}=\left(1+\frac{(Y / b)_{z}-3}{4}\right)^{\frac{1}{2}} . \tag{8.2.7}
\end{equation*}
$$

PART III: NUMERICAL SOLUTIONS AND RESULTS

9. INVISCID INCOMPRESSIBLE FLOW RESULTS

The general purpose of Part III is to investigate numerically the effects of various physical phenomena on the flow field variables. Specifically, we are interested in evaluating the effects of the geometrie streanline parameters, such as the ourrature, the effects of the magnetic ifeld, and the oembined effeots of thermal radiation and Joule heating on the temperature, electren density, and electric condnctivity distribution along streamilnes. The procedure consists of numerically ovaluating the governing gystem of equations which were developed in Parts I and II.
9.1. Physical Streanlines and Parameters.

The atreamines to be considered in this investigam tion are those developed in section (6.1) and are given by Eq. (6.1.12) for various values of $\mathcal{F}=\mathcal{Y}_{i}=$ constant >0. By ming Eq. (6.1.8) for varions values of \mathcal{F} we obtain the syetem of Etreamilmes shown in Figure III-1. since the streamines are aymetric about the z-azis, only those on the positiver aide are shown. We note that the streanlines approach both axes as we move in an increaning direction of z and r. The streamines may be considered to be those of a fluid flowing in the
negative z - direction againat a disk of radius r located at $2=0$. Our main comcern here will be to calculate the flow field variables along these streamIines and determine the combined effects of the streamIine curvature k, magnetic field etrength B, thermal radiation and Joule heating.

We begin by computing the treanline curvature variation along the atreanlines by using Eq. (8.2.5). The resnlt is shown in Figure III-2, as a funotion of distance z iren the anrface of the disk. From the figure we note that the etreamine curvature for all the atreamlines approaches zero very rapidly with distance from the wall. As we approach the wall aloag some atroanline the curvature increases rapidly and then drops to zero again near the wall. It is also noted that the curvature of the atreamines increases more rapidly for those that are closest to the $z-a x i s, s o$ that the streanline Ψ_{1} has the largest curvature increase.
9.2. Presgure Distribution Along and Normal to Streamines

In this section we evaluate the offect of the streanline curvature k, the magnetic field B, and the thermal radiation pressure p_{R}, on the fluid presaure gradient normal to the streanlines and on the pressure variation along the streamilnes.

By solving Eq.(3.2.5) for the normal pressure gradient we get,

$$
\begin{equation*}
\frac{d p}{d n}=-\rho v^{2} k-\frac{d p_{m}}{d n}-\frac{d p_{R}}{d n}, \tag{9.2.1}
\end{equation*}
$$

where k is geven by Eq. (8.2.5), p_{R} by Eq. (5.2.3), and

$$
\frac{d p_{n}}{d n}=\frac{d p_{m}}{d r}\left(\frac{d r}{d n}\right)=-\frac{2\left(B_{1} r_{1}^{2}\right)^{2}}{\mu(Y / b z)^{5 / 2}\left(1+4 z^{3}(Y / b)^{-2}\right)^{\frac{t_{2}^{2}}{2}}}(9.2 .2)
$$

where we have used Eqs. (6.1.12), (6.1.16).
The normal pressure gradient given by (9.2.1) ovaluated aloag streamines is shown in Figure III-3 as a function of diatance z frem the wall. From the analyais the following was found:

1. The effect of the radiation prescure gradient is negligible.
2. The effect of the magnetic prescure gradieat is mall.
3. The effect of the streanline eurvature is largest in the region of higher fluid velocity.

The fluid pressure distribution along the streanlines was obtained by ovaluating Eq. $(6.1 .19)$ and the result is shown in Figure III - 4 as a function of distance from the wall. We briefly note the following reaults:

1. The offect of the radiation pressure p_{R} is negligible.
2. The offect of the magnetic field B is considerable as indicated for the pressure distribution along the streamline .
3. The pressure increases and decreases with the curvatures of the atreamines.

9.3. Temperature, Electron Density and Electrio Conductivity Distribution

In this section we consider the effect of thernal radiation and magnetic field on the temperature, electron density, and electric conductivity distribution along the streanlines. The temperature distribution is obtained by using Eq. (6.2.8), and the electron density and electric conductivity distribation is computed by using Eqs. (5.3.7) and (5.3.16) reapeotively.

The results for various values of the magnetic field strength B are shown in Figures III -5 to III - 7 for the streamline $\mathcal{F}_{\text {a }}$ a function of distance from the wall z . We note from Figure III - 5 that the temperature decreases continuously due to radiation oooling for the case of zero magnetic field B. The offect of an increase in magnetic field strength B is to increase the temperature for a short distance after which it drops more rapidly due to radiation cooling. Thus, we see that the two phenomena oreate opposing offects.

By uaing the Planck mean absorption coofficient K_{p} as a parameter we see from Pigure III - 5 that a greater decrease in temperature oceures for amall increases in values of K_{p}. The ame remarks apply to the electron density and electric conductivity distribution shown in Figures III - 6 and III - 7 respectively.

In order to determine the effect of different etreamlines on the flow variables distribution, two solutions are shown for streamlines Ψ_{1} and \mathcal{T}_{2} in Figures III - 8 to III - 10. We note that the magnetic ileld effect is not nearly as great for streamline $\mathbb{2}$ as it is for \mathbb{W}. This behavior may be explained through the fact that the magnetic field B was taken to be inversely proportional to r^{2} as given by Eq. (6.1.16), so that the magnetic field decreases as we nove away fron the z-axis.

Finally, it may be noted that the temperature, electron density, and electric conductivity variation along the streamlines is considerable and therefore, is an indication of the importance of considering thermal radiation and magnetic ileld effects in high temperature MHD flow field calculations.
9.4. Velooity Distribution

The velocity distribution along the etreamlines is obtained by solving Eqa. (6.1.13), (6.1.12). The result is shown in Figure III - 11 as a function of distance z fron the wall. We note the following results;

1. The relocity decreases almost linearly with E for all streanlines at a distance greater than about 20 cm.
2. The velocity at each point along the streamines increases as the distance of the streamines from the z - axis increases.
3. The minimum velocity along each streamine occurs very closely at the point of maximum curvature of the streanline as may be seen by inspection of Figure III - 2 , and III-11.

It was assumed that at $z=40$ om the magnitude of the velocity V for all atreanlines was the ame.

10. VISCOUS, COMPRESSIBLE FLOW RESULTS

In section 9 we investigated the variation of the flow field parameters along the streamlines under the simplifying assumption of constant density flow; i.e. $\rho=$ constant. The principal purpese of the present section is to deternine the effect of variable density on the flow field parameters distribution along the streamines including viscous, heat conduction, radiation and magnetic field effects.
10.1. Temperature, Prescure, and Density Distribution

The temperature T, pressure p, and density ρ, variation along the streanlines is obtained by simultaneous solution of EqE. (6.1.19), (7.6.23), and (7.6.32) respectively. The velocity distribution contained in these equations is taken as a first approximation as that given by Eq. (6.1.13) for the incompressible case. We also require an expression for $\bar{\mu} \phi, T_{s} / d_{s}$, and Q_{g}, which we ovaluate as follows:

The viscous stress tensor components given by Eq. (7.1.2) in oylindrical coordinates for the axially aymetric oase are,

$$
\begin{aligned}
& T_{r r}=\bar{\mu}\left(2-\frac{\partial v}{\partial r}-2 / 3\left(\frac{\partial v}{\partial r}+\frac{v}{r}+\frac{\partial v}{\partial z}\right)\right. \\
& T_{z z}=\bar{\mu}\left(2-\frac{\partial w}{\partial z}-2 / 3\left(\frac{\partial v}{\partial r}+\frac{v}{r}+\frac{\partial w}{\partial z}\right)\right. \\
& T_{r z}=T_{z r}=\bar{\mu}\left(\frac{\partial w}{\partial r}+\frac{\partial v}{\partial z}\right) .
\end{aligned}
$$

By using Eq.(6.1.2) the stress components become,

$$
\begin{aligned}
& T_{T r}=\bar{\mu}(2 b-2 / 3(b+b-2 b))=2 \bar{\mu} b \\
& T_{22}=\bar{\mu}(-4 b-2 / 3(b+b-2 b))=-4 \bar{\mu} b \\
& T_{r 2}=T_{2 r}=0
\end{aligned}
$$

By using Eqs.(10.1.1) in (7.6.17) we get

$$
\begin{equation*}
T_{s}=\left(\frac{2 \bar{u} b}{r}\right) d r, \quad \text { or } \quad \frac{T_{s}}{d s}=\left(\frac{2 \overline{\bar{p}} \bar{r}}{r}\right)\left(\frac{d r}{d s}\right) \tag{10.1.2}
\end{equation*}
$$

By using Eqs.(8.2.2), (8.2.3), and (8.2.6) in (10.1.2)
ve get

$$
\begin{equation*}
\frac{T \mathrm{~B}}{d z}=2 \bar{\mu} b\left(\frac{Y / b}{2}+4 z^{2}\right)^{-\frac{1}{2}} \tag{10.1.3}
\end{equation*}
$$

By uaing (10.1.1) in (7.6.6) we get,

$$
\bar{\mu} \phi=T_{r r}\left(\frac{\partial v}{\partial r}\right)+T_{z z}\left(\frac{\partial)_{w}}{\partial z}\right)=(2 \bar{\mu} b) b+(4 \bar{\mu} b)(2 b)=10 \bar{\mu} b ? \quad(10.1 .4)
$$

From Eq.(7.1.5) we have

$$
\begin{equation*}
Q_{B}=K_{t} \frac{d^{2} T}{d s^{2}}-4 K_{p} \delta_{B} T^{4} \tag{10.1.5}
\end{equation*}
$$

The viacosity \bar{p} and thermal conductivity K_{t} are given by, (53)

$$
\begin{align*}
& \bar{\mu}=1.462\left(10^{-6}\right) r^{3 / 2}\left(1+\frac{112}{T}\right)^{-1} \frac{k g}{-8 e c}, \\
& K_{t}=1.994\left(10^{-3}\right) r^{3 / 2}\left(1+\frac{112}{T}\right)^{-1} \frac{n-n}{m-8 e 0^{0} 0_{K}} \tag{10.1.6}
\end{align*}
$$

The solution to the syaten of equations for ρ, p, and T was obtained by using a modified Runge-Kutta stop-by-step integration process. The modification to the atandard fourth-order process was made to allow integration in the deoreasing direction of z . The modified process was tested by comparing the solutions obtained with the standard and modified process when applied te a differential equation. The sare solution was obtained with both processes.

The well known standard fourth-order Runge-Kutta integration process is as follows;

$$
\begin{align*}
y_{n+1} & =y_{n}+1 / 6\left(b_{1}+2 b_{2}+2 b_{3}+b_{4}\right), \\
b_{1} & =h f\left(z_{n}, y_{n}\right), \\
b_{2} & =h f\left(z_{n}+\frac{1}{1} n, y_{n}+\frac{1}{2} b_{1}\right), \\
b_{3} & =h f\left(z_{n}+\frac{1}{8} h, y_{n}+\frac{1}{2} b_{2}\right), \\
b_{4} & =h f\left(z_{n}+h, y_{n}+b_{3}\right), \tag{10.1.7}
\end{align*}
$$

where h is the step-size and $\frac{d y}{d z}=f(z, y)$.
To allow integration in the decreasing direction
of the independent variable z the standard process given in (10.1.7) was modified to the following form;

$$
\begin{align*}
y_{n+1} & =y_{n}-1 / 6\left(b_{1}+2 b_{2}+2 b_{3}+b_{4}\right), \\
b_{1} & =h f\left(z_{n}, y_{n}\right), \\
b_{2} & =h f\left(z_{n}-\frac{1}{8} h, y_{n}-\frac{1}{8} b_{1}\right), \\
b_{3} & =\operatorname{hf}\left(z_{n}-\frac{1}{8} h, y_{n}-\frac{1}{8} b_{2}\right), \\
b_{4} & =h f\left(z_{n}-h, y_{n}-b_{3}\right), \tag{10.1.8}
\end{align*}
$$

where h is the atep-sise and $\frac{d y}{d z}=f(x, y)$ as before.
The numerical computation e were performed on an IBM 1620 digital computer at the General Motors Institute computing laboratory with the following initial values;

$$
\begin{align*}
V_{1} & =2000 \mathrm{~m} / \mathrm{sec}, \\
\mathrm{z}_{1} & =40 \quad \mathrm{am}, \\
\mathrm{~T}_{1} & =20,000 \quad 0 \mathrm{~K}, \\
\rho_{1} & =.04429 \quad \mathrm{~kg} / \mathrm{m}^{3}, \\
\mathrm{P}_{1} & =\rho_{1} \mathrm{RT} T_{1}=2.542246\left(10^{5}\right) \mathrm{n} / \mathrm{m}^{2}, \\
\mathrm{R} & =287 \quad \mathrm{n}-\mathrm{m} / \mathrm{kg}-{ }^{0} \mathrm{~K}, \tag{10.1.9}\\
\gamma & =1.4 \\
\mathrm{~B}_{1} & =0, .2, \text { or } .4 \quad \text { webers } / \mathrm{m}^{2} .
\end{align*}
$$

The step-aize used in the computations was $h=.01$.

Inasmuch as each step in the caloulations is the same, we will briefly desoribe and show the results for a single step away from the initial conditions along etreamiline \mathcal{F}_{2}.

We note fron Eq. (10.1.8) that each stop in the solution for the dependent variable y ($y=\mathrm{I}$ in our case) requires four evaluations of the differential equation to be iategrated. In our case the temperature distribution is given by $\mathrm{Eq} .(7.6 .32)$ where the right hand side is evaluated by using the initial conditions given in (10.1.9) together with Eqs. (10.1.3) to (10.1.6) and the electrical conductivity is evaluated Irom Eq. (5.3.20). Thus, the temperature T may now be calculated one step away from the initial conditions. i.e., at $z=.39$ meters. By using the just caloulated temperature we may obtain the pressure at this point by evaluating Eq. (6.1.19) and the denaity is now obtained from the equation of atate of the gas $\rho=p / R T$. The process may now be repeated for the next step.

The reaults for the first step are shown below: $\Sigma=.39000000 \mathrm{E}+00 \mathrm{~T}=.19864611 \mathrm{E}+05 \mathrm{P}=.25422460 \mathrm{R}+06$ $\rho=.45366864 \mathrm{E}-01 \quad n_{e}=.74155286 \mathrm{E}+18 \quad \delta=.12683507 \mathrm{E}+05$

The deneity distribution $\rho(x, \mathcal{F})$ is shown in Fig. (III-12). We note the following results:

1. The density increases and then decreases as we approach the wall for all streanlines $\psi_{\text {, }}$ shown.
2. The increase in density is less for etreanlines located farther away from the z - axds.

The pressure distribution $p(x, \gamma)$ is shown in Fig (III-13) and indicates the following results:

1. The pressure increases and then decreases as we appreach the wall just as in the inoompressible case.
2. A comparison of the compressible, Fig.(III-13), and the incompressible pressure distribution, Fig. (III-4), shows that the results are qualitatively the same, but differ considerably on a quantitative bases.
3. The compressible pressures are higher than those given by the incompressible flow model for all streamines shown.

A direct comparison of the compressible and incompressible temperature distribution $T(x, \mathcal{Y})$ for two neighboring streanlines is shown in Fig. (III-14) from which we note the following results:

1. The temperature distribution is qualitatively the same for the compressible and incompresible flow model.
2. From a quantitative point of view the compressible flow model yields a higher temperature at all pointa along the streamlines.
3. The offect of radiation cooling is to deorease the temperature considerably.
10.2. Electron Density and Eleotric Conductivity Distribution

Having obtained the compreseible pressure and temperature distribution it is now possible to calculate the electron number dencity and the electric conduotivity dietribution by using Eqs. (5.3.7) and (5.3.16) respectively.

A direct comparison of the reaults obtained from the oompressible and incompressible flow models is shown in Fige. (III-15) and (III-16).

From the two figures we note the following results: 1. Both the electron density $n_{e}(x, \psi)$, and electric conductivity $\partial(z, \psi)$ distribution show a qualitative similarity to the incompresaible case.
2. From a quantitative point of view we note higher values for both n_{e} and \boldsymbol{Z} in the compressible case.
3. The effect of radiation cooling is to decrease both the electron number density as well as the electric conductivity.
10.3. Sumery of Rosults and Conclusions

The primary objective of this investigation was to determine the combined effects of thermal radiation and magnetic fields on the ilow variables dietribution near a atagnation point of a blunt vohicle moving through a gas at hypersonic velocity. Inasmuoh as atreanline approach was chosen to carry out this investigation it seened appropriate to consider the general three dimensional
dynamic and kinematic relations conmecting the flow variables with the geometric parameters of the streamlines as a secondary objective.

The general relations for the tangent, principal normal, and binormal rectors and the curvature and torsion of the streanlines were derived in term of the flow field variables for both the invisoid and viscous radiation magnetohydrodynam case in Parts I and II respeotively. We also found that for the inviscid case the total pressure P_{t}, remains constant in the binermal direction of the streamines, but not in the viscous case.

From the numerical results obtained in Part III, which are plotted in Figures III-1 to III-16, we find that the physical phonomena of thermal radiation, magnetic field, and compressibility have a considerable effect on the llow field variables, whereas the viscosity and heat coaductivity effeots were found to be very mall in the case under comeideration here.

A typical example of the caloulations made in this inveatigation is shown in the Appendix, page 98, together with the Fortran progran for the IBM 1620 computer.

Figure III-15. Effect of Thermal Radiation Cooling on Electron Density Distribution

APPENDIX

Typioal Fortran Program and Results

This progran integrates the differential equation for the temperature distribution by the modified mangeKutta method taking account of variable viscosity, heat conductivity, electron-ion collision cross-sections, and electric conductivity. At the same time the progran calculatea the pressure, density, velocity, electron density, and electric conductivity dietribution along the streamines. Inasmuch as all flow variables are calculated as a function $0 f z$ and \mathcal{F} along the streamines we also obtain the coordinates r as function of z and \mathcal{Y} $s 0$ that the final results may be interpreted as having the flow variables distribution given as a function of the two coordinates r and z. Thus, by choosing as many streanlines as desired it is possible to obtain the flow variables distribution throughout the flow field under consideration as a function of the field coordinates, r and 2.

FORTRAN PROGRAM FOR IBM 1620

C
C
C
C
C
C
C
C

VISCOUS COMPRESSIBLE FLOW PROGRAM FOR THE CALCULATION OF THE FLOW VARIABLES DISTRIBUTION NEAR A STAGNATION POINT

RSESTREAMLINE ENTRANCE RADIUS AT Z $=40 \mathrm{CM}$
Z=COORDINATE NORMAL TO DISK
RZ $=C O O R D I N A T E$ PARALLEL TO DISK
TmFLUID TEMPERATURE
PaFLUID PRESSURE
ROEFLUID DENSITY
ECC=ELECTRON NUMBER DENSITY
C=ELECTRIC CONDUCTIVITY OF THE FLUID
V=FLUID VELOCITY
QNEELECTRON-ATOM COLLISION CROSS SECTION
QI=ELECTRON-ION COLLISION CROSS SECTION
RS․ 01
D0 $200 I=1,5$
PUNCH 2,RS
2 FORMAT(40HSTREAMLINE ENTRANCE RADIUS IN METERS RSEE14.8)

$$
T=20000
$$

RO=.000086*515.
R=287.
P=RO*R*T
$Z=.4$

```
    PUNCH 13,Z,T,P,RO
    H=.01
    ZL=.01
    C=10000.
    QTK=0.
5 K=0
    GO TO 100
10 AK1=FZ*H
    FZO=FZ
    Z1=Z
    T1=T
    Z=Z1-H/2.
    TmT1-AK1/2.
    GO TO 100
15 AK2=PZ*H
    TmT1-AK2/2.
    GO TO 100
20 AK3=FZ*H
    Z=Z1-H
    T=T1-AK3
    GO TO 100
25 AK4=FZ*H
    FZ1=FZ
    T=T1-(AK1+2.*AK2+2.*AK3+AK4)/6.
    Z=Z1-H
    RZ=(RS*RS*22/Z)**.5
```

30 TK=.00199*T**.5/(1.*112./T)
31 QTK=TK*(FZ1-FZO)/H
PONCH 13,Z,T,P,RO
13 FORMAT (5H Z=E14.8,5H T=E14.8,5H P=E14.8,5H R0=E14.8)
ELECTRIC CONDUCTIVITY PROGRAM NEXT
$T 2=T$
$P 2=P / 47.88$
QN=1./(10.**19)
$U I=166000$.
Y
$Y=(47.88 * P 2 * 10 . * * 23) /(1.38 * T 2)$
$E=Y * \operatorname{SQRTF}(X /(1 .+X))$
EN=Y-E
BCC=E/(10.**6)
QI=(2.95/(T2**2*10.**10))*LOGF (8780.*T2**1.5/SQRTF(ECC))
$G=(20.5 / T 2) * * .5 /(10 . * * 12)$
$C=(G * E) /(E N * Q N+E * Q I)$
PUNCH 65, BCC, C, V, RZ
65 FORMAT (5H ECC=E14.8,5H C=E14.8,5 V=E14.8,5H RZ=E14.8)
IF (2L-Z $) 5,110,110$
$100 \mathrm{~B}=287$.
$G A=1.4$
STB=5.67/10.**8
CL=16./(9.*10.**8)
CR=STB*CL*T**3
W=2000.

```
\(22=.4\)
SI1 \(=W\) *RS*RS/2.
B1=. 2
R1=. 01
BS=B1*R1*R1/RS**2
B2=BS*Z/Z2
PBS=(BS*BS*10.**7)/(8.*3.14)
PVS=.5*RO*W*W
PV=.5*R0*(W/(2.*Z2))**2*(BS*RS*Z2/Z + 4.*Z*Z)
\(\mathrm{PB}=\mathrm{B}_{2} * \mathrm{~B} 2 * 10 . * * 7 /(8 . * 3.14)\)
P1=254224. 6
\(P \equiv P 1+P B S+P V S-P V-P B\)
\(\mathrm{RO}=\mathrm{P} /\left(\mathrm{R}^{*} \mathrm{~T}\right)\)
\(V=(W * W * Z * Z /(Z 2 * Z 2)+S I 1 * W /(2 . * Z 2 * Z)) * * .5\)
\(C V=R * T /(V * V)\)
\(B 0=.2\)
\(\mathrm{B}=(\mathrm{BO} / 10\). **4) *Z/(RS*RS*Z2)
PK=. 06
QRe-4.*PK*STB*T**
ZSm(1. + RS*RS*Z2/(4.*Z**3))**. 5
C VISCOUS PROGRAM NEXT
101 WZ=W/Z2
\(\mathrm{U}=.000001462 * \mathrm{~T}^{2 * *} .5 /(1 .+112 . / T)\)
U0=2.5*U*WZ*WZ
STRES=U*WZ/(RS*RS*Z2/Z + 4.*Z*Z)**. 5
\(Q V=(Q R+D 0+Q T K) / \nabla\)
```

```
102 DTN =2S*(CV-1.)*QV + 2S*C*V*B*B-ZS*CV*STRES
    DTD=CR + (P/T)*(1.t(GA/(GA-1.))*(CV-1.))
    FZ=-DIN/DTD
    KmK+1
    GO TO (10,15,20,25),K
1 1 0 ~ C O N T I N U E ~
200 RS=RS*2.
    END
```

Typical progran printout for calculations along streanine Ψ_{2}; only intermittent results are show.

STREAMLINE ENTRANCE RADIUS IN METERS RS= . 20000000E-01

BIBLIOGRAPHY

1. Huber,P.W.; and Sime, T.E.: The Entry-Comunications Problen. Astronaut. Aero., vol.2,no.10,0ct.1964,30-40.
2. Lehnert, R.; and Rosenbaum, B.: Plama Effects on Apol10 Re-entry Communication. NASA TN D-2732, 1965.
3. Gold, R.R.: Analysis of Electromagnetic Ware Propagation Through Magnetoactive Plasias. Phys. Pluids 7, 1964, 446.
4. Gold, R.R.; and Cashen, J.F.: Communication Through Plasmas Bounding Slender Entry Vehicles. AIAA J. vol.5,no.5, May 1967, 917-922.
5. Resler, E.L.,Jr.; and Sears, W. R.: The Prospects for Magneto-Aerodynamics. J. dero. Sci., April 1958, 235-245.
6. Sears, W. R.: Magnetohydrodynanio Effects in Aerodynamic Flowis. ARS J. June 1959, 397-405.
7. Neuringer, J.L.; and MoIlroy, W.: Incompressible TWo-Dimensional Stagnation Point Flow of an Electrically conducting Viscous Fluid in the Presence of Magnetic Field. J. Aero. Soi. March 1958, 194-198.
8. Rossow, V.J.: Magnetohydrodynanic Analyais of Heat Transfer Near a Stagnation Point. J. Aero. Sci. May 1958, 334-335.
9. Shercliff, J.A.: Magnetogasdynanios and Its Poseible Aeronautical Applications. J. Royal Aero. Soolety, Sept. 1959, 518-521.
10. Kemp, N.H.; and Petschek, H.E.: Two-Dimensional Incompressible Magnetohydrodynanic Flow Acrose an Elifptical Solenoid. J. Fluid Mech. \&, 1958, 553-584.
11. Phillips, R.L.: Effeots of Magnetic Drac on Reanntry Body Heating. ARS J. 1961, 672-674.
12. Levy, R.H.; and Petschek, H.E.: Magnetohydrodynamically Supported Hypersonic Shook Layer. Phys. Pluids, 6, 1963, 946-961.
13. LeVy, R.H.; Gierasch, P.J.; and Henderson, D.B.: Hypersonic Magnetohydrodynamios With or Without a Blunt Body. AIM J. Dec. 1964, 2091-2099.
14. Hooks, L.E.: Simplified Magnetoaerodymanio Flow Relations for Axisymetric Blunt Bodies, AIAA J. April 1967, 644-650.
15. Porter, R.W.; and Cambel, A.B.: Magmetic Coupling in Filght Magnetoaerodynanics. AIAA J. April 1967, 803-805.
16. Porter, R.W.; and Cambel, A.B.: Hall Blfect in Flight Magnetogasdynamics. AIM J. Dec. 1967, 2208-2213.
17. Seemann, G.B.; and Cambel, A.B.: Observations Concerning Magnetoaerodynanic Drag and Shook Standoff Distance. Proc. Nat. Aea. Soi. vol. 55. no.3, March 1966. 457-465.
18. Zhigulev, V.N.; Romisherekil, Te.A.; and Vertushkin, V.K.: Role of Radiation in Modern Gasdynanics. AIAA J. June 1963, 1473-1485.
19. Kivel, B.: Badiation from Hot Air and Its Effeots on Stagnation-Point Heating. J. Aoro. Soie. February 1961, 96-101.
20. Goulard, R.; and M.: One -Dimensional Energy Transfer in Radiant Modia. Int. J. Heat and Mass Transfer, rol.1. 1960, 81-91.
21. Gille, J.; and Goody, R.: Convection in a Radiating Gas. J. Fluid Mech. Vol. 20, part 1, 1964, 47-79.
22. Gruszozynski, J.S.; and Warren, W.R.: Study of Equilibriú Air Total Radiation. AIM J. March 1967, 517-525.
23. Yoshikawa, K.K.; and Wick, B.H.: Radiative Heat Transfor During Atmosphere Entry at Parabolic Velocity. NASA TN D-1074,1961.
24. Fay, J.A.; Molfatt, W.C.; and Probstein, R.F.: An Analytical Study of Meteor Entry. AIAA J. May 1964, 845-853.
25. Goulard, R.: The Coupling of Radiation and Conrection In Detachod Shook Layers. J. Quant. Spectroscopy and Rad. Trans. Vol.1, Dec. 1961, 249-257.
26. Yoshikawa, K.Y.; and Chapman, D.R.: Radiatire Heat Transfer and Absorption Bohind a Hypersonic Normal Shook Wave. NASA IT D-1424, 1962.
27. Viskanta, R. ; and Grosh, R.J.: Boundary Layer in Thermal Radiation Absorbing and Emitting Media. Int. J. Heat and Mass Trancfer, vol.5, Sept. 1962, 795-806.
28. Koh, J.C.Y.; and DeSilva, C.N,: Interaction Between Radiation and conrection in the Hypersonic Boundary Layer on a Flat Plate. ARS J. May 1962, 739-743.
29. Koh, J.C.Y.: Radiation From Nonisothermal Gases to the Stagnation Point of a Hypersonic Blunt Body. ARS J. Sept. 1962, 1374-1377.
30. Goulard, R.: Radiation Transfer Regimes in Hypersonic Flight. Supersonio Flow, Chem. Processes and Radiative Tranafor, edited by D.B.01fe and V. Zakkay, Pergamon Press, N.Y., 1964, 307-317.
31. Scala, S.M.; and Sampson, D.H.: Heat Transfer in Hypersonic Flow with Radiation and Chemical Beaotion. Supersonic Flow, Chem. Processes and Radiative Transfer, ed. by D.B. Olfe and V. Zakkay, Perg. Press, H.Y., 1964.
32. Thomas, P.D.: Transparency Assumption in Hypersonic Radiative Gas Dynamice. AIAM J. Amgust 1965, 1401-1407.
33. Cohen, I.M.: Couette Flow of a Radiating Pluid: Optically Thick Medium. AIAA J. Jan. 1967, 78-83.
34. Cohen, I.M.: Strengly Badiating Eypernonic Plow over a Sphere: An ABymptotic Sketoh. AIAA J. March, 1967, 501-506.
35. Hoshizaki, H. ; and Wilson, K.H.: Convective and Radiative Heat Transfer During Superorbital Entry. AIMA J. Jan. 1967, 25-35.
36. Kourganof1, V.: Basic Methods in Transfer Probleme. Dover Pub. Inc. New York, 1963.
37. Chandrasekhar, S.: Radiative Transfer. Dover Pub. Inc. Hew York, 1960.
38. Pai, S.I.: Radiation Gas Dynamios. Springer-Verlag, New York Inc. 1966.
39. Cohen, R.S.; Spitzer, L., Jr.; and Routley, P.MCR.: The Blectrical conduetivity of an Ionized Cas. Phys. Rev., vol. 80, 0et. 1950, 230-238.
40. Spitzer, L., Jr.; and Härn, R.: Transpert Phenomena In a Completely Ionized Gas. Phys. Rev., Vol.89, March 1953, 977-981.
41. Viegas, J.R.; and Peng, T.C.: Electrical Conductivity of Ionized Air in Thermodynanic Equilibrium. ARS J. May 1961, 654-657.
42. Kerrebrook, J.L.: Nonequilibriun Ionization Due to Eleotron Heating: I. Theory. AIAM J. June 1964, 1072-1080.
43. Kerrebrock, J.L.; and Hoffman, M.A.: Nonequilibrium Ionization Due to Electron Heating: II. Experiment. AIA J. June 1964, 1080-1087.
44. Zukoski, E.E.; Cool, T.A.; and Gibson, E.G.: Experiments Concerning Nonequilibrium Conductivity in a Seoded Plama. AIAM J. Ang. 1964, 1410-1417.
45. Reilly, J.P.: Stagnation Point Heating in Ionized Monatemio Gases. Phys. Pluide, vol. 7, Dee. 1964, 1905-1912.
46. Schwaitger, S.; and Mitchner, M.: Bleotrical Conductivity of Partially Ionised Gases. AIAA J. June 1966, 1012-1019.
47. Maecker, H. ; and Peters, Th.: Binheitliohe Dynanik und Thermodynamik des Thermischen Plasmas. Z.fur Phyait, Bd.144, 1956, 586-611.
48. Samaras, D.G.: Theory of Ion Plow Dymanics. PrenticeHall, Englewood Cliffs, N.J., 1962.
49. Bloon, M.H.; Steiger, M.H.: Invisoid Flow with Nonequilibrium Molecular Dissociation for Pressure Distributions Encountered in Hypersonic Flight. J. Aerospace So1. Nov. 1960, 821-835.
50. Lin, S.C.; and Teare, J.D.: A Streamtube Approzimation for Cal oulation of Reaction Rates in the Invisold Plow Pleld of Hypersonic Objects. Sixth Syap. Ballistic Misilc and Aeroapace Teoh., 1961.
51. Masion, S.H.: Inviscid Hypersonic Plow Past Srooth Symetric Bodies. AIM J. June 1964, 1055-1061.
52. Perimi, L.L.; and Melnik, W.L.: Nonequilibritin Hypersonic Plow Past Smooth Symmetric Bodies. J. Spaceoraft, March 1968, 309-313.
53. Hansen, C.F.: Approximations for the Thermodynamic and Transport Properties of High-Temperature Air. NASA TR. R-50. 1959.
54. Adans, M.C.; and Probstein, R.P.: On the Validity of Continuum Theory for Sateliite and Eypersonic Flight Problems at High Altitudes. Jet Propulaion, Feb. 1958. 86-89.
55. Sutton, G.W.; and Sherman, A.: Engineering Magnetohydrodynanios. McGraw-Hill Book Co. N.Y. 1965.
56. Schliohting, H.: Boundary Layer Theory, McGrav-Hill Book Co. N. Y. 1960.
57. Coddington, E.E.; and Levinson, N. : Theory of Ordinary Differential Equations. McGrav-Hill Book Co. N.Y. 1955.
58. Carson, D.R.; and Lorrain, P.: Introduction to Electromagnetio Fields and Waves. W.H. Freeman and Company, San Francisco, 1962.
59. Belotserkevakii, O.M.; and Chushkin, P.I.: The Numerioal Solution of Problems in Gas Dynanics. "Basic Developments in Fluid Dynanios ", ed. by M. Holt, Academic Press, N.Y. 1965, 1-126.

[^0]: compressibility on the flow field variables are considerable, whereas the effects of viscosity and heat conductivity were found to be very amall in the case under consideration here.

