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ABSTRACT

THERMAL RADIATION AND MAGNETIC FIELD
EFFECTS ON THE FLOW VARIABLES
NEAR A STAGNATION POINT

by Wendelin Schmidt

In this investigation the equations connecting the
flow variables with the geometric parameters of the
streamlines in three dimensional, inviscid and viscous
radiation magnetohydrodynamic gas flow were derived. A
simplified mathematical model goverming the flow variables
distribution near a stagnatian point in radiation magneto-
hydrodynamic flow was developed and used to estimate the
combined effects of various physical phenomena on the flow
field variables. Specifically we consider the combined
effects of thermal radiation, magnetic field, viscosity,
heat comdueotivity andAeo-prOlaibility on the temperature,
pressure, eleciron density, and electric conductivity

distribution near a stagnation point.

The first order results obtained from the numerical
solutions of the governing equations indicated that the
effects of thermal radiation, magnetic field, and
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compressibility on the flow field variables are considerable,
whereas the effects of viscosity and heat conductivity

were found to be very small in the case under considera-

tien here.
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NOMENCLATURE

flow velocity, m/sec
fluid density, kg/n3

fluid static pressure, n/-2
radiation pressure, n/'-2

electric current density, anp./-2
magnetic field intensity, amp./m
magnetic permeability, webers/amp.-m
internal energy of fluid, n-m/kg
energy input, n-m/kg

universal gas constant, n-m/kg-°k

fluid temperature, K

=p +Ppg
electric field intensity, n/coul,

excess electric charge density, conl./'-3

electric permittivity of free space, coul.z/n-

electric conductivity, mohs/m

time, sec.

= (B p)'1 magnetic diffusivity, -2/000

= ipnz magnetic pressure, n/'n2

= (p + py + p,), total scalar pressure, n/l2
arc length along streamline, =

arc length along normal to streamline, =m

arc length along binormal to streamlines, m
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streamline curvature, 1/m

torsion of streamline, 1/m

rectangular coordinates, (i=1,2,3), x,y,Z.
cylindrical coordinate

oylindrical coordinate

cylindrical coordinate

component of unit vecter, Eq.(3.1.2)

= (u+Pp + 3v®)

metric tensor

Mach number

vortiocity vector

alternating unit tensor

enthalpy of fluid, n-m/kg

=pH magnetic field webers/m?

components of fluid velocity, m/sec
specific heat at constant volume, n-m/kg°k
specific heat at constant pressure, n-m/kg’k
radiative heat flux vector, n-/ng-loo
velocity of light, m/sec

Stefan-Boltzmann constant, n-m/sec.-m>-°Kk
Rosseland mean absorption coefficient, 1/m
Planck mean absorption coeffiocient, 1/m

streamfunction
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a -‘773, b = constant, Eq.(6.1.2)

Ay Ay constants given by Eq.(6.1.21)

7 viseous stress tensor, Eq.(7.1.2), n/'n2

R fluid viscosity, kg/m-sec

K, thermal conductivity, n-m/m-sec-k

) viscous dissipation functien, Eq.(7.1.3), n--n/uo---3

n, electron number density, #/e-3



i. INTRODUCTION

The great interest in hypersonic flow around blunt
vehicles has been stimulated in the last decade by the
intercontinental ballistic missile, the satellite and
the deep space programs. Among the phenomena that can
be observed during hypersonic atmospheric entry of a
vehicle are the thermal radiation emitted by the hot
gas flowing around it and the reflection of miocrowaves
by the ionized gas envelope surrounding the vehicle.

It is well known that this ionized gas or plasma envelope
is the cause of radio, and other communications black-

out during atmospheric re-entry. (1, 2, 3, 4)

The influence of the electrons in the ionized gas
around the vehicle is felt not only on electromagnetic
signal attenuation through radio blackout, but also on
aerodynamic quantities such as drag and heat transfer,
and on physical quantities such as transport, radiative
emission, and absorption properties. From the communioca-
tions problem point of view the electons are uﬁdosirable
and should be eliminated. However, the flight magneto-
hydrodynamics point of view considers the ionized gas
as a phenomenon to be capitalized on by applying a strong
magnetic field in such a way so as to provide a re-entry
vehicle with braking and other maneuvering capability.

(5 to 17).

A solution to the hypersonio blunt-body problem that
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combines the advantages of minimum computational dif-
ficulty with maximum accuracy of results has been sought
for more than a decade. The problem under consideration
is that of determining the flow field properties (i.e.
pressure, temperature, density etc.) around a blunt-
nosed configuration traveling through a uniform gas at

a flight Mach number greater than unity. In general,
the flow field about the dody may be divided into two
regions based on the magnitude of the local flow Mach
number with respect to unity. Imn the regien near the
stagnation point of the body the flow Mach number is less
then unity and the flow field is therefore subsonic.
Much of the effort expended on the blunt-body problem has
been confined to the subsoanioc region since the solution
to this region provides the starting data for the well
known characteristic method of supersonic flow caloula-
tions downstream of the stagnation poeint. The deter-
mination of the fluid properties in the subsonic flow
field over the blunt body also provides the necessary
data for the subsequent evaluation of the radiant heat
transfer as well as for initiating boundary layer cal-
culations to determine wall shear and convective heat

transfer to the nose of the body.

From the aerodynamies point of view the main problem
associated with the re-entry of a space vehicle is that
ef convective and radiative heating, and aerodynamic drag.
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Since the gas around the vehicle is in a plasma state

and, therefore, electrically conducting, the possibility
of utilizing an applied magnetic field to reduce surface
shear stress and heat transfer has beem proposed by a
number of authors. (5 to 8). The ;onorai approach to the
problem consists of dividing the flow field into a viscous
boundary layer and an outer inviscid flow. The solution
to the boundary layer part of the problem requires a
knowledge of the edge of the boundary layer flow condi-
tions which are obtained from the solution to the outer
inviseid part of the flow field, Part I of this thesis
is directed towards the determination of the cembined
thermal radiation and magnetic field effects on the in-
viscid flow field variables near a stagnation point.

The division of the flow field into an inviscid
flow region and a boundary layer is only possible for
flight altitudes below which the ratio of the vehiocle
radius to mean free path of the gas molecules is greater
than about 75. i.e., Rb/j > 75. For altitudes such
that the ratio of vehicle radius to mean free path is be-
tween about 75 and 1, such a division of the flew field
is not possible and either the full or a simplified
form of the Navier-Stokes equations must be used as a
flow model. (54). In Part II of this thesis we in-
vestigate the combined effeots of thermal radiation,
magnetic field, viscosity and heat conductivity on the
flow field variables.
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The central problem under oconsideratien consists
of the derivation of a mathematical model which allows
us to predict the effects of various physical phenomena
on the flow field parameters under given conditions.
An exact mathematical description of the flow field in-
eluding thermal radiation, magnetic field, viscosity,
and heat conductivity effects, requires a complicated
set of non-linear partial differential equations which
are very difficult to solve for a given vehicle con-
figuration. Because of this diffioulty, many simplified,
approximate mathematical models have been proposed which
hold under various conditions. One such simplified
approach to the calculation of the flow field parameters
was proposed by several authors independently and consists
of calculating the parameters along flow streamlines
under an assumed flow field pressure distribution (49 to 52).
The method was used for dissociating, inviscid, non-
heatcenducting, non-radiating flow without the magnetio
field effect, and was found to be quite amenable to para-

metrie study of very complex flow fields.

We shall use the streamline approach in the present
investigation with a modification which consists of
using an approximate veloocity distribution.



PART I: INVISCID RADIATION MAGNETOHYDRODYNAMICS

2. INVISCID GOVERNING SYSTEM OF EQUATIONS

2.1. Fundamental Equations
We consider an inviscid, non-heat-conducting steady

flow of an ionized perfect gas in an electro-magnetic
field including thermal radiation. The governing hydro-
dynamical system of equations consists of the mathematical
formulation of the physical laws of conservation of mass,

momentum, energy, and the equation of state of the gas;

V(fV) = o, (2.1.1)
VUV = -f 7P « £1G x pH), (2.1.2)
du « Pa(f"') - dQ = 0, (2.1.3)
p = FPRT, (2.1.%)

The energy equation (2.1.3) may be used in an integrated
form along a streamline to be denoted as the generalized
Bermoulli equatien.

The equations governing the electromagnetioc field
are Maxwell's equations and Ohm's law; (55,58)

V'E .g/e H Y x Es o, (2.1.5)
V'ﬁ = 0 ; Vx Ha ‘5, (2.1.6)
J =g(E + pV x H). (2.1.7)

5



2.2, Reformulation

The above system of equations may be reformulated
80 as to be more suitable for the preseant analysis.
Substituting for J from Eq. (2.1.6) into the equation
of motion (2.1.2) we get; |

VvV a-fV(p + pp+ tpE%) «fpRvl.  (2.2.1)

The energy equation suitable for the present analysis

may be obtained by starting with Eq.(z.i.S.) as follows;
4Q = du + Pa(!p) = a(u + B/p ) - f e,
or B=V"V@aerp)-F'Vve. (2.2.2)

By expanding the left hand side of the equation of motion
(2.1.2) and taking the scalar product with ¥ we get,

VYr@Eve) - ¥V x (v ") = -fVVr . V-Oml),

Using this last result to eliminate -F‘V‘VP in Bq.(2.2.2)

we get,

VeV(u+fp + #V2) = J§ 77V x pit). (2.2.3)

dQ is the heat input from all sources per unit mass,
which in our case consists of the Joule heat and the

radiation heat flux. Thus we have,

B =70%) LI
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Using this last result to eliminate g-% in (2.2.3) and
substituting (2.1.6) for J and expanding J x pH, we get;

V-V(u + P + 1v2) -F-'(V x B)»(vx 3)/3 -o-f_'pV*(ﬁ'Vﬁ) -
phy(38%) + 0, (2.2.4)
which is the energy equation in the required form.
From Maxwell's equations and Ohm's law we develop the
following ; solving for E from Eq.(2.1.7) and substituting
for 3 aVx R wve get,

= 1éVxﬁ-pVxﬁ;
taking the ocurl of this last result and accounting for
Eq.(2.1.5) ve h.",

(1/p2)Vx (VxB) -vx (VxH) = 0.

Expanding this last result and using (2.1.6) and re-
placing '7- 1/p3 we get,

N = Vvl - Bep? . RV ). (2.2.5)

2.5. Tensor Form
The governing system of equations will be recast
in Cartesidn tensor form. In this form the equation of

continuity becomes,

ﬁ-f(fv‘) - 0. (2.3.1)

The momentum equation (2.2.1) becomes,

fvdg% . ‘1.13% - Fajg% = 0, (2.3.2)
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vhere P, = (p + Pg + fh\ﬂz).

The equation of energy (2.2.4) gives,

va-gI: -d (;”-‘L—-ﬂ-;} s‘" -93
pvjni-g—:* - v-’-g-%'- * -3-9; ’ (2.3.3)

where I = (u + PP + «}vz); Py = ipﬂz.

The electromagnetic equations (2.2.5) and (2.1.6) become,

g aovt, pavd x Jnl
“*3—,: n-g-;- n-g;, "(-Bl;(si ), (2.3.4)
_g.n;..o, (2.3.5)

To complete the system of equations we add the equation

of state of the gas

p = PRT, (2.3.6)
The unknown quantities consist of three scalars and
two vectors; i.e., p, f,T, V, and B. fThe three scalar
equations required are Egqs. (2.3.1), (2.3.3), and (2.3.6).
The two veotor equations are Eqs. (2.3.2) and (2.3.4).



3. DYNAMIC AND KINEMATIC RELATIONS

3.1. Basic Decomposition

The equations (2.3.1) to (2.3.5) will be transformed
into a coordinate systenm 31, ni, bi, where the symbols
used denote the components of the unit tangent vector (.1),
principal normal (ni), and binormal (bi) vectors with
respect to a streamline at any point in the flow field.
Denoting the magnitudes of the velocity and magnetic field

vectors as V, H, respectively we get,
;1_ = o, (3.1.1)

where s denotes are length measured along the stream-
lines in the direction of the flow.
For the magnetioc field we have,
gt 1
r = 9 (30102)

where h1 is a constant unit vector.

A set of relations involving the three unit vectors
ci, ni, bi, is given by the well known Frenet-Serret
formulas of differential geometry

i i i
where k 1is the ocurvature and 7~ the torsion of the

streamlines.
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Substituting Eqs. (3.1.1), (3.1.2) into the appro-
priate Eqs. (2.3.1) to (2.3.5) the system of equations

becomes,

2 (pvst) = 0, | (3.1.4)
ox

vel 13 9% _ .3 9(mnt)
fv.’-g-i:,—l + 8 -g;- pHb -3-13—1 o, (3.1.5)
301 m¥) 9(and) _ me) (), |
PVs -3;» - 3"(;31‘.3.&_). .3.&_). ‘Jr_r&l.i}_l .3.&_1)
1 Hh Pa  §
}lVOjﬁh -}i'i—u - V.J"a%' + ‘)% N (301.6)

) ( 1!
n = o, (30107)
0

X

A gl Q) gt A gy IR,

(3.1.8)
Expanding Eq. (3.1.4) and using 01-3?— = -3-; we get,

-gi;- + -3;(1nfv) = 0. (3.1.9)

Expanding EBq. (3.1.7) we get,

-g% = 0, (3.1.10)
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Expanding Eq. (3.1.5) and using 81‘3?' = ‘3; ’
i
h -a-;t = —3-5 s W6 get,

prgit o predel L 0t ndhi Lo G

Using Eqs. (3.1.3) and (3.1.10), Eq.(3.1.11) becomes,

fv-?,%a‘ + PVoknl . 5“-3% = 0. (3.1.12)

Expanding Eq. (3.1.8) we get,

v-g-‘;’n1 - H—%oi - HV-S-El- . n(-ﬁ% + V-g—:;')hi -7—3;(;3"-3“?)#,

(3.1.13)

or
(.ﬁ.gw. . nv-g'j, - 7-33(34“ an ))nt - 5-3# = 0. (3.1.14)

Expanding Bq.(3.1.6) we get,

fv-g_ 3 Jr k r J ‘)x k.in_hk
P““J'%E‘m';) - V-S.—. + -g% . (3.1.15)

Using Eq.(3.1.10), equation (3.1.15) reduces to,

fv-g—- A j—;) V-g— -‘)-9-{ (3.1.16)
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3.2. Variation of Pressure Along and Perpendicular to

the Streamlines
To determine the variation of the total pressure Pt
along the tangent, principal normal, and binormal directions

of the streamlines, we take the scalar preduct of Eq.

k

(3.1.12) with 8ix8 » giknk, gikbk, respectively and get,

fV gikl + fvzkn gikak + g“gik k-g% =0, (3.2.1)

P
j’v—ﬁ‘%‘ignnk + j’vznigunk + gijgiknk-gj;; = 0, (3.2.2)

P
pv-Riste vF 4 pviimig, »* 4 gl bk-‘);t» =0, (3.2.3)
"'3?‘ 1k 1k "y

Mnking use of the orthogoenal properties of s ’ n", bi,

ana glg, =41, -J-Q;f -3-,n3-d;- -3—,oto.

we get from Egs. (3.2.1) to (3.2.3),

ped o 4ot oo, (3.2.)

FVok + -3-;1 = 0, (3.2.5)

-3;1 R (3.2.6)

where P, = (p +pp + P_).
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From the result of Eq. (3.2.6) we note that the
total pressure remains constant along the bimermal
direction of the streamlines.

From the result of Bq. (3.2.5) we obtain an
expression for the curvature k of the ofreanlinoo as a
function of the fluid density £ , the velocity V, and

the normal pressure gradient as,

P
To obtain a relation for the normal vector of the stream-

1ines n! as a funotion of k,f, V, and the velocity and

total pressure gradients along the streamlines we solve

Eq. (3.8.12) for ni

al w o fﬁ)“(fv-ﬁ%-‘ R ;‘J-g%). (3.2.8)

Multiplying the last term of Eq.(3.2.8) by the scalar

product of .i wve get,

(als“lk)zi"-g-pﬁ = li-g?. (3.2.9)

Substituting Eq.(3.2.9) for the last term of (3.2.8) and

and get,

using Eq.(3.1.1) ve get from (3.2.8),

nl . o(p v:"k)‘i(fv-S% . -sg)v‘. (3.2.10)
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We next obtain a relation for the binormal vector of
the streamlines by starting from the definition of bi,

i ijk
bl = otd gjpgkqapnq. (3.2.11)

From Eq.(3.1.12) we have,

9, -(fvzk)“(fv-g%oq + g‘“’-g:x-;‘,- . (3.2.12)

Substituting Eq.(3.2.12) into (3.2.11) we get,

= -(fvzk)"‘(fv-g-o"kszt osPsl 4 ol :”c -’sq'-L)
(3.2.13)

1jk

Since, o gjpgkqop-q = 0, gkngr - 8: , gjpap - vbv”‘,

we get the binormal vector as a function of thé flow field

parameters,

. -(fv3x)"1(.“"vj-3%). (3.2.14)

Streamline Torsion

To obtain a relation conmecting the torsion T, of
the streamlines with the flow field parameters we make use
of the Frenet formula Eq.(3.1.3) which is,

1
-male -, (3.2.15)
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Differentiating Eq.(3.2.14) along a streamline we get,

i 2P
g:_. - _.1Jk_g=((ﬂ3k)-1vj ﬁ). (3.2.16)

Expanding Eq.(3.2.16) and substituting the result into
Eq.(3.2.15) we get for the torsion of the streamlines,

P
-Tnl . o1JK (]’V’k)’2V.1 -3-;; 3;(}’\!31:) -

ot 4 vdad ) (3.2.17)

We next determine the static fluid pressure-gradient
along a streamline as a function of the Mach number M
and the other four variables and their gradients along
a streamline; i.e., £, V, T, H, and their gradients. From
Eq. (3.1.9) we have,

-3—:{-;- + v“-sr— + f"-?,é = o0, (3.2.18)

Solving Eq.(3.2.4) for V and substituting it into
3.
Eq.(3.2.18) we get,

| 1
-vzf_‘d).:f - v‘«’.ﬁg R -3-5 . _31.’_11 . -ﬁ! = 0. (3.2.19)
The velocity of sound is defined by az = -ﬁﬁ s Or

a"-ﬂ% = -g-g . (3.2.20)
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Substituting (3.2.20) inte (3.2.19) we get,

-3'5 = (Mz-i)-i(-ﬁ-l:2 + -5-:3 - pVE ‘);1). (3.2.21)

1
Substituting for -—341- by using (3.2.18), Eq. (3.2.21)
b 4

becomes,

-35 = (u2-1)"(pn-3-‘.3 + -3-:-‘! + fv-g-‘.l + vz-sf). (3.2.22)

Equation (3.2.22) indicates the influence that each
variable has upon the fluid pressure variation along a
streamline.

Expanding Eq.(3.2.5) and solving for the fluid
pressure variation in the normal direction to the

streamlines we get,

-ﬁ% = -(pﬂ-ﬁ% + -3-;5 + fvzk). (3.2.23)

From equation (3.2.6) we obtain the following expression
for the pressure variation in the binormal direction teo

the streamlines

- -(uedE o °R), (3.2.24)
oo - 42
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3.3. Yorticity Components

The vorticity components are defined as,

vi
'k = ekijsjr-?.x? . (30301)
Substituting V1 = Vhi and expanding we get,
1
k = VOki.,‘Jr a;r + 8 ‘kijr‘r-L (30302)

Taking the scalar produot of Eq.(3.3.2) with ok, ak, hk,

respectively and recalling the cross-proeduct relations

ik ik i,k
ekiJl s = 0, Okijl n = bJ, 'kij. b = -nJ s WO get,

k

1

-‘:"-3—;;). (3.3.3)
1

vknk - v(onj.,k‘Jr_gi?) + -SE ’ (3.3.4)
1

'kbk = V(anbksjr'éL;r-) - "3% . (30305)

st
In order to obtain the term dx? as a linear combination

ot g_ 8P bP, we make use of the following

P
rp "rpn’grp
identities,

Or_gi; = —3-:—1 ’ nr.g_;; = -3-:-{, br_g_;_i = -3#, (3.3.6)



18

Each identity of Eq. (3.3.6) is the scalar product of

a-l r .r ,.r
) = with s, n, b", respectively and since the later
x

are orthogonal we have,

i i i i
_é_r - -3-:—;rpup + -Si'-‘nnp + -g%-grpbp . (3.3.7)

Multiplying this last result by g% and using g - 83

we get,

,Jr;d__ e -3——n¢ -3;-»’ (3.3.8)

Substituting (3.3.8) inte the Eqs. (3.3.3) to (3.3.5)

we get from the later,

i i i
k. V(-s-:—onjtkaj + -%%nnjsknj + -3%0“13%3),(3.3.9)
i i i
v, k. V(-S:—«k:l.:'nko'1 + -gz—okijn'hj + -%onjnkbj) + -3%’

(3.3.10)

k- V('ﬁ':-i’m""" + '3':'1‘1:13"‘"1 + -3-23-“;""") - '3%.

(3.3.11)

Taking account of the oross-product relations in equations

(3.3.9) to (3.3.11) we get the following results,



v, s = V(g r-s-— - &0 -31,—). (3.3.12)
vknk = V(-gir b nix + 0+ 8 8 -5#) + -3% = -3% sy (3.3.13)

wkbk - Vk - -3% . (3.3.14)

We note again that each equation (3.3.12) to (3.3.14) is

the scalar product of w,_ with s*, n¥, b*, and thus we

get the vorticity components as,

= V(g '—3— g0 -ﬁr)xkp-’ + (-ﬁ-g)skpn’
(Vx - -ﬁ%)c,‘pb’ . (3.3.15)

Multiplying this last result by gjk and using gjhvk - vJ

‘Jk‘kp = 8*; , We get

W oa V(girbr-sﬁi - girnr-%g-i-)ai + nJ-S-E + (Vk - -3%)13‘1.

(3.3.16)
Using the identity developed in Eq.(3.3.8) on V we get,

1r_L 1 _3_..1 _3"1 (3.3.17)

Multiplying this last result by V and solving for

V-S%ci we get,
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pv-4%st pv;ir_r)_ fV(-g—n" -3.501 (3.3.18)

Substituting Bq.(3.3.18) into Eq.(3.1.12) we get from

the later,

3 1r_,)_ ( 1 1y pvimt 1r_L
a f’V'ﬁ"“ -3#’ ! S ox' (3.3.19)

Adding and subtracting }v"’;‘r—% from Eq.(3.3.19) and

rearraging we get,

- f"sir-g-x—,(p spp+ 4V 4 p) + }f“v’g"-g-f; -

v(vk - -3;"):1‘ - v-ﬁ{b‘ . (3.3.20)

Introducing a function B defined by

sir-g—z; = -Fis"-g;;(p + pp + By + $V) + A it TAL

o’
(3.3.21)
With this last result equation (3.3.20) becomes,
B
7% o vom - Gt - v, (3.3.22)

or

%5. - V(& - 4T)g,,nt - v4ie, vt (3.3.23)



21

Equation (3.3.23) is a vector normal to the surfaces
B = constant, and 1f we let its magnitude be ,%E‘wo get
from Eq.(3.3.23),

,g" (Vz(‘%)z + V(WK - -3-,‘;')2)i . (3.3.24)

Taking the scalar product of equation (3.3.23) with
Eq. (305.16) we get,

'J-g% = Vi - ‘%"% g5qn'nd - V(v - '3‘3)‘3%‘11"1"1 =0

(3.3.25)

Also, takimg the scalar product of equation (3.3.23)
with nJ we get,

J B = 0, «3.26
a—g;{ 0 (3.3.26)

Thus, equations (3.3.25) and (3.3.26) imply that the
surfaces B = constant contain both the streamlines

and the vortex lines.
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5.4, Variation of Energy Along the Streamlines
a sp 3 1
Substituting the identity .n - f( .(p.f'i ) -p 4k )

into equation (3.1.16) we get,

P prdtnt) e L L S

(3.4.1)

Dividing (3.4.1) by (PV) and combining the two terms on
the left we get,

1 . - 1 P ls
_3_.1. 2 1(5'"'3‘2? _3_1_:3_)(”) 1, p._g.g- + (PV) —3& y (3.4.2,)

wvhere I, = (u + pf'i + pnf"'i + p.f'i + }Vz).

Since ngcroJ = 1, we got for the first term on the right

of Eq.(3.4.2)
3-1“”';-.3‘.11”% -:)%') -3 GD% (503)

Using thé idintity developed in Eq.(3.3.8) on Q, and substituting
the result together with Eq. (3.4.3) into Eq.(3.4.2) we get,

-3-? = 371 4HEevt . p_gg:h
(P42t o -3:—‘# . -g?r‘ai). (3.4.4)

Equation (3.4.A) shews that the change of total emergy
per unit mass, per unit distance aleng the streamlines
depends on: (1) the Jeule heat generated, (2) the work

of compression done by the magnetic pressure, and (3)
the variation of the heat flux vector along and perpendiocular
to the streamlines.
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4, GOVERNING EQUATIONS IN CYLINDRICAL COORDINATES

In this section we formulate the equations of section
2. in oylindrical coordinates for later application to a
specific flow problem,

4.1. General Cylindrical Coordinates

Introducing oylindrical coordinates (r,0,z), we get
from Eq.(2.1.1),

.%ﬂz‘l+iﬂ;z‘l,.ei§:ﬂ+-ﬂﬂ£‘1’—l.o, (8.1.1)

and from equation (2.1.2) we have

V. V.V v2 v
F(vr's'i-z + 'r_og'br_ = ;_0_ + vz'sis) .- .ﬁ.l(.ﬂ + (JgB I Bg)

(4.1.2)
\'A A/ \'/ \ A 4 A
P4+ 2000 L IR L v 48 L B a5, u,,)
(4.1.3)

V. V..V \ 4
P('r‘s'f-! + ;2-33-’- + vz-g-il-) - - —j% + (3 By=JgB.). (4.1.4)

The energy equation becomes,

F(Vr-s-:-, + :—0-3-3- + Vz-s-:—-) = (V;ﬁ% + ;‘-3% + Vz-s%) +
3—2 + (-3% + g-{ + 3%32 + -3-:5), (4.1.5)
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2 2 2 2
-Jr*J *Jzo

where P = (p + pn), e=(us+Pp) J o

From Bq. (2.1.5) we get

(F%E% - .3?) =0, (4.1.6)
(.3_ T) = 0, (4.1.7)

(_3;! - ;0.%'.‘) =0, (4.1.8)

and from Eq. (2.1.6) we have,

—3-?,£+-:-£+;d-%-‘+-3§:—’-0, (4.1.9)
(}();.g_ - .3.:2) = J.p (4.1.10)
(_3.:_1' - .3%) = Jgp, (8.1.11)

(-3— -75-—) - Jgp (4.1.12)

and by Eq.(2.1.7)

J.=3(E . + (VgB_~ V_By)), (4.1.13)
I ‘3("0 + (vznr- vrnz)), (a.1.14)
J, = 3(E; + (V By= VgB)), (4.1.15)

The above equations (4.1.1) to (4.1.15) are a set of
relatiens for the following unknown quantities,

P,Po T, V r’ vbo vio B Boo Bz’ Er, Eoo Ez’ Jrv ng ch
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4.2, Axially Symmetric Case

In this section we consider Eqs. (4.1.1) to (4.1.15)
in axial symmetry for which we have the conditions,

-3-‘ = 0, V0 = 0, Bo = 0, and we set v-Vr, v-V‘.

Intreducing the above conditions into the Egs. (4.1.1) to
(4.1.15) we got from (4.1.10) and (4.1.12)

J.=Jd =0, (4.2.1)

from Eqs.(4.1.13) and (4.1.15)
J, =3E,, Jg =3E,, (8.2.2)

thus, by (4.2.1) we find that
Er-Ezn o, (4.2.3)

and by Eqs. (4.1.6) to (4.1.8) we find

Eo Eo
-3-!_— = 0, -3-2— =0, so the Eouoonotant.

From Eq.(4.1.14) we find that Jo =0, for vaws0, so
that E° = 0, and therefore it is zero everywhere in the

flow field, since it is a constant.

The system of equations (4.1.1) to (4.1.15) now
reduee to the follewing,

giPv) , (7)) , gifw) o, (h.2.4)
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(7-3% . 1-3%) - - -3-5 + 3(wB_-vB_)B,_, (4.2.5)
("'3'5 R ..3;) - - -3% - 3(wB~vB_)B_, (4.2.6)

(v-s-% + '-3%) = (v-g-ll-), + v—3§) +3(wBr-vB’)z +
(_3;1_' . .gz . -3.22), (4.2.7)

where we have used Jg from Eq. (h.1.14),

Bquations (4.1.9) and (4.1.11) now become by using (4.1.14),

-3-;! + _:_r 4—3% = 0, (4.2.8)
Br Bz
(.3.’_ - .31__) = pJ (wB_-vB,). (4.2.9)

The equations (4.2.4) to (4.2.9) together with the
equation of state p= RT, are seven equation for the
seven unknown quantities; i.e., p, P2, T, v, w, B., Bg.

The above quantities are functions of £ and r, only.
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4.3. Incompressible Case

If the fluid density c¢an be considered as remaining
essentially constant in some flow region, the system of

equations (4.2.4) to (4.2.9) reduces to the following;

_3% s X -3§ -0, (%.3.1)
P(-4¥ + wqt) + 4E _ 38 (wB,~vB,) = 0, (4.3.2)
P(v-4¥ + wd¥) + 4L 4 3B (wB,~vB,) = O, (x.3.3)
pog(v-4% + w4T) - 3(wn, -va,)? - (-3.35 . -3-:—’) - 0,

(4.3.4)

B B B
.3?; e 3N .s.z.z - 0, (4.3.5)
B, By

Equations (4.3.1) to (4.3.6) are six equations for the

.1: mm.; 1’.0’ p’ T, " " B B" P. cﬂn.tlllt.

r’



4.4, Alternate Axially Symmetric Case

In this section we consider equations (4.1.1) to
(4.1.15) in axial symmetry for which we have the following

conditions;
‘3-‘-0, VO-O, Joao, and we set v-Vr, v-Vz.

In steady flow the electric field E may be taken as
constant or in the case 0of no applied eleoctric field it

may be taken as zero, (55).

Introducing the above conditions into the Eqs.(4.1.1)
to (4.1.15) we get from (4.1.1),

_3..1(.&1,;&,_35&1.0, (4.4.1)
from (4.1.2)
f('_S% . '.3_:.) - - % - 3By (4.4.2)

from (4.1.4)

f(v—ﬁ% + '"3%) - - -3% + J By, (4.4.3)

from (4.1.5)

pode s w2« (BB o wdl) + £ 1 (Bn o T 4,

from (4.1.13) (4.4.4)

Jr = -a'BO 9 (*0&05)
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from (4.1.15)
Jz aaVBo ’ (2.4.6)

from (4.1.10) and (4.1.12)

.3.:2 =-Jp, -3? = J_p. (4.4.7)

Eliminating the current density J from Eqs. (4.4.2) to
(4.4.4) by using (4.4.5) to (4.4.7) we get,
from (4.4.2)

P("S';' . '.3.}) - - .3§ - ,;‘1-3-:230 »  (4.4.8)

from (4.4.3)

POrg¥ o wg¥) « - Q2 p"‘-g-:—‘no » (%.8.9)

from (4.4.4)

f(v-ﬁ% 'Y '-3—:-) = (v-S% + r-g-::) + Bg(v2 + '2) +
(-3-3% + -g-’i + -322). (4.4.10)

Adding the compenents of (4.4.7) and substituting (4.4.5)
and (4.4.6) for the current density we got,

-3? + -3—:2 = pgno(v + W), (4.4.11)

Equations (4.4.8) and (4.4.9) may be written as

2
P(v4E + w4T) + 42 , '3?(;,%) -0, (%.4.12)
Pt o wdt) + B2+ B w0, (ras3)
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To complete the system of equations we add the

equation of state of the gas and the equation of continuity,

P -FRT, (“.Q.iﬁ)

_3_1('&). B, _S.zﬁ&'l - 0. (4.4.15)

Equations (4.4.10) to (4.4.15) are six equations for the
six unknown quantities p,f, T, v, w, and By -

We will now integrate the equations of motion and
energy aleng a streamline. Thus, multiplying (4.4.12) by
dr, (4.4.13) by dz, and (4.%4.10) by dz and using
(4.3.13) for the streamlines we get,

f(vdlar + v-4%as) + JEar & -3;(%2;)‘1: =0, (4.4.16)

Poeear + wd¥az) + 4Eas -g-;(g-;)a. -0, (4.4.17)

P(q2ar + w24z) » (w4Ear + wdfax) +582(v? + wP)as o
(.g.fg e2X -3%)«!:. (h.h.18)

Factoring v, and v, and noting that dv = -3-;1!1- + -3%4: eto.

we get,

pPvav + -3%::- + -3;(%2)“ = 0, (4.4.19)

Pwaw + -S-Eds + -3;(-2;)4: - 0, (4.4.20)
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2,.2 .2 X% 9 Q
Pwde = waP + 3B°(v° + w")dz + (-ﬁ-r— + -3-'—)(!:,(4.&.21)
Adding equations (4.4.19) and (4.4.20) we get,
a(3v2 + 3v2) + AP + d(g;) = 0, (a.4.22)

Dividing Eq. (4.4.22) by the fluid demsity and integrating

B2
FOL U L f%: . fﬂ?i) = constant. (4.4.23)

For constant fluid density we get from (4.4.23) by

we get,

integration from some reference peint,

2 g2
(@fv® + $p%) - (3fvG + Q) + (P-P,) + (B5 - g2) = O
(4.4.24)
Solving equation (4.4.24) for the fluid static pressure p,

wve get

B 2
ps= Po + T;‘ + i’f('g + 'g) - *ﬂ'z + '2) - PR - Bﬁ 0(&0&025)
We mote that equation (4.4.25) reduces to the classical
Bernoulli equation for the non-radiating, non-magnetic

case.

From equation (4.4.21) we got with e = opr,

2
g—g = (Pe)~1 g-f: * fc—:;(vz + w2) 4 (fopw)'1(-3-3§ + _g_r + -3%).

Y=censt.

(4.4.26)
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For the incompressible case f = eonstant we get from

fwd(ov'r + P/f) = fwd(cv'r) + wdP
= wdP +232(v2 + wz)dz +(-3§£ + -?,3- + -£3)dz.
(4.4.27)

Upon cancelling wdP and dividing by fwo' we get from
equation (4.4.27)

g% = 730_3;('2 + wz) + (Pe'v)"‘(-g—:z + % + -31:5). (4.4.28)

r-oonlt .

We will return to the above equations in seetion 6.,
after we establish the general fluid flow conditions
and the fluid properties.
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5. THERMAL RADIATION AND IONIZATION

In this section we give a brief outline of the
governing equations of radiative tramsfer, and develop
the equations for calculating ionigation and electric

conductivity of the gas.

5.1. The Equation of Transfer
A high temperature gas emits radiation energy as

a result of rotational, vibratienal, and electronic
transitions from exited energy levels to lower energy
levels. The emitted radiant energy ocorresponding to these
transitions is distributed over a wide wave length region.
The total radiant intensity emitted from a volume of gas

is obtained by summing the radiant intensities from the
individual energy transitions. For gas dynamic caloculations
the simplest approach to the determination of the radiative
intensity of gases is to determine overall emissivities

as a funection of pressure and temperature of the gas.

The fundamental quantity sought in radiative transfer
of energy through an absorbing, emitting, and scattering
medium is the specific intensity I, defined by,

— “:’ = Iy, (5.1.1)
where dE, is the ameunt of energy transmitted im the
frequency interval (z, 2/+dz), through dA in time dt,
in a direetion making an angle 0 with the normal to dA,
and lying within the solid angle dw,
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The distribution of the intensity I, in the radiation
field is governed by a conservation equation called the
radiative transfer equation. This equation, as given by

Chandrasekhar and Kourganoff, is (36,37)

- g—:z = fkylz/ - PJV [} (5-1.2)
where, f = fluid density
k, = absorption coefficient

Jy = emission coefficient

The emission coefficient J,, for the case in which both
scattering and absorption and emission are present, is

given by Kourganoff as (36),

Jy= ST & (1 ¥ )iB,(T), (5.1.3)

w
here 'o

scattering and is called the albedo for single scattering,

represents the fraction of energy loss due to

and By(T) is the Planck function given by,
BAT) = 2nz'e 2 (exp(fy) -1)71 (5.1.4)

where k and h are the Boltzmann and Planck constants
respectively.

The two special cases of local thermodynamic equilibrium
and perfect isotropic scattering are obtained from Eq.
(5.1.3) by letting W= 0, and ¥ = 1, respectively.
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Substituting Eq. (5.1.3) into (5.1.2) and dividing by
£ky; we get,
ar,, _
- = v - BT e (1 -F)BUM),  (5.1.5)

+
where I, = }[I,,d}lo ’ (p= cos ).

For local thermodynamic equilibrium 90- 0, and Egq.
(5.1.5) becomes,

az,,
- m = 17 - BV(T)° (5-1.6)
For isotropic scattering ¥ = 1, and Eq. (5.1.5) gives,

aI,,

- m = 17/ - T,, (5.1.7)

The optieal thiokness of the medium between the points

s' and s is defined by,

s
T(s,s) :ffk,, ds, (5.1.8)

Sl
so that a7 = k,f ds. (5.1.9)

5.2. Radiation Flux and Pressure

In the general case equation (5.1.5) must be solved
for the specific intensity I,/ . The heat flux vector 33
is then obtained by integration as,

7
[ f f f L,s1n0cos6ded¢dy , (5.2.1)
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and the radiation pressure is given by,
+)

pg =2t [ Lplap . (5.2.2)
Since the fluid dynamic equations of motion and

energy in which the above two terms appear are a set of
differential equations, it is desireable to obtain the
expressions for 33 and PR 88 a function of the fluid
properties er their derivatives. this is possible if
local thermodynamioc equilibrium may be assumed such that
a local fluid temperature T may be defined at each
point in the flow field. In such a case the geverning
equation for the intemsity I, is Eq. (5.1.6), and for
the optically thick case a solution may be obtained by
a Taylor series expansien of I, about B,(T). The
expressions for 33 and p, as obtained by Zhigulev (18),
Goulard (20), Scala and Sampson (31), and Pai (38), are

Pg = &/3(339)1". (5.2.3)
Vo'ﬁn - - &J,KPT“, optically thin gas, (5.2.4)
331'3

G- 16/3(-:;—)7‘1', optically thick gas, (5.2.5)

where KP is the Planck mean absorption coefficient defimned
by,

(74 @ %
K, = B('r)"fx,,n,,(r)d ,  B(1) = [ B(T)are ZL, (5.2.6)
o

(4

and Kn is the Rosseland mean absorption coefficient
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defined by,

(5.2.7)

The Rosseland mean absorption coefficient xn
as given by Scala and Sampson (31) for air as a funotion

of temperature and pressure is,

K, = (4.52 x 1077 )p!*7 exp(5.18 x 10~%r-7.13 x 10°91%),

(5.2.8)

1, the pressure p in

where K is expressed in om~
atmospheres, and the temperature T in %.
The Planck mean absorption coefficient KP for

air was alse given as,

X, = 8.3Kp. (5.2.9)

5.3. lonization and Electric Conductivity

One of the most important transport properties in
magnetogasdynamiocs is the eleotric cemductivity of the
gas vhich in part depends en the number of free electrens
present or the degree of ionization of the gas. The
ionization occuring in high temperature gases, such as
that surrounding the space vehicle, is referred to as

thermal ionization which is a general term applied to the
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ionizing action of moleocular collisions, radiation, and
electron collisions.

To determine the degree of ionization we consider
a gas mixture of neutral particles, positive ions, and
electrons which produce partial pressures and are related

to the total gas pressure by,

P=p,+P; +Pg - (5.5.1)
The pressure p 18 related to the temperature T by,

P = nkT, N/n? (5.3.2)

where n is the number of molecules per unit volume
and k° is the gas constant per molecule or the Boltzmann

constant. If we define the degree of ionization as

ﬂ'ﬂ
¥y

9 (50303)

n
x:iic
where n_ = n1 are the number of electrons and ions

per unit volume, and n = n, + 0, then the relation

developed by Saha is (48)

2 R4
-;-f—x! = (3.158 x 10 )'—p.—QQ(‘ Eg'!), (503.*)

where, P total pressure in atmospheres,
q = ionization energy in joules,
T = temperature in °K,

k,= Boltzmann constant in jouls/ °k.
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Substituting p, = p/(1.013 x 10°) into Eq. (5.3.4)

52
= (. 0321521 )oxp (- ¢ ) = x(r,p). (5.3.5)

1=-x o

where p 1is in Newtons per -2.

Solving Bq.(5.3.5) for the degree of ionization x we get,

x =g = (KR, (5.3.6)

Substituting Eq.(5.3.2) for n into (5.3.6) we get the
electron number density as a function of temperature and
pressure of the gas,

K(T,
(Typ) )i

= n (T<x0r57 (5.3.7)

The number of neutral particles may be obtained from

n,=n-n, . (5.3.8)

Using Eqs. (5.3.2) and (5.3.7) we get the meutral particles

as a function of temperature and pressure of the gas,

K(T,p) )i.

- E'T( 1 - (3-—111-—7 (5.3.9)

We note that in the limit as the temperature T becomes
large the quantity comtaining K(T,p) 1in Eq.(5.3.9)
approaches unity so that n, ->» 0, and we have a fully
ionized gas, and as T becomes small the quantity approa-

ches zero and we have a neutral gas.
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An equation for the electrical conductivity of a
partially ionized gas which was found to agree very well
with experiment is (41)
)

n‘(o , mohs
';7(nnaon + niﬁQi) m (5.3.10)

g =

Where, n, = electron rest mass, kg,
e = electron charge, coulomb,
V = mean thermal velocity of an electron, m/sec,
uen = electron-atom mean collision cross section, -2,

5;1 = electron-ion mean collision cross section, -2,

The mean electron thermal velocity V is given as a

function of temperature by,

8k, T
V= (-%:)* . (5.3.11)

Substituting this last result into Eq.(5.3.10) we get,

&
= (gf;ﬁ;:)*( Ze ) . (5.3.12)

2,%n * 1303
From equation (5.3.8) we get by using (5.3.6),

’n = :— -1=(1+ x"‘)i -1, (5.3.13)
e e

From Eq.(5.3.5) we have,

k T
! . 2exRlago ) (5.3.14)
.032



41

Substituting Eq.(5.3.14) into (5.3.13) we get,

n pexp(q/k T)

l-l: = (1 + W) -1, (5.3.15)

Since in our case n =n, we get from Eq.(5.3.12) by

dividing top and bottom of the last term by n, and
using Eq.(5.3.13)

4
3= et ) - 07, « T (5.3.16)

The mean electron-ion collision cross section 3;1 is (41)

1.714(10~10 1.281(10%)72 2
3,1 = —'L—S-'I——l 1‘((n‘T) (2) )o n (503017)

.5816 T

from Eqs.(5.3.7) and (5.3.14) we have (n, im #/on’)

(p/x,)% 4

-3
(n.T)* = 10 (-;-:j;:r) . (5.3.18)

Substituting (5.3.18) into (5.3.17) we get the collision

eross seotion as a function of temperature and pressure,

-10 6142
T, = —22&,-—-1’- 10 1n (828410 . (5.3.19)
el n( (P/kg))*)

(—=

Equation (5.3.16) together with (5.3.19) gives the eleoc-
trical conduotivity of a partially ienized gas as a function

of temperature and pressure of the gas. (ﬁ;n- constant).
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6. SPECIAL CASE OF v(r), w(s), ONLY

In this section we consider a solution to the
equations along streamlines as obtained in section 4.4.,
by choosing the form of the streamlines so that v(r) only

and w(z) only.

6.1. Equation of the Streamlines

Introducing a streamfunction such that,

Vs ;a%, - = ;i)% , (6.1.1)

and the equation of continuity (4.3.7) is autematically
satisfied., If we let

Ve br, W = -Bbl, (60102)

where b is a costant, we have by Eq.(6.1.1),

.l_ﬁ%. = br, ;"}é = 2bz, (6.1.3)

From this last result we find that

YV « bris, (6.1.4)

which is the required streamfunction.
It is readily verified that Eq.(6.1.4) satisfies the

Laplace equatiea

_gf}_’, - ;_s_rl . _gf.;’./_ = 0. (6.1.5)
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From equation (6.1.4) we find that for Y = 0,

either r = 0, or 2 = 0, so that the z-axis is the
stagnation streamline and at =0, we have the r-plane
through that point. For 'V = ?f- eonstant we get from
Bq.(6.1.4)

- ;%3"2 , (6.1.6)
which is the equation of the streamlines and represents
flow against a disk. To ebtain a particular set of stream-
lines it is necessary to evaluate the constant ‘D 1m
Eq. (6.1.6). For this purpose we use the definitien of
the Stekes streamfunction; i.e., 2T Y is equal to the
volume flow rate between any two streamlines for comnstant
density flow. Thus, at any point £ upstream of the wall
the volume flow rate between the stagnatien streamline
and any otherstreamline r distance avay from it is
given by

2r¥ = (M), (6.1.7)
where V 1s the fluid velocity of the oncoming stream.
Thus, by BEq.(6.1.7) and (6.1.4) we have

Y= $vr? = bris, (6.1.8)
and b = $V/z. (6.1.9)
Now if the veloocity V 1is kmown at soeme point z = s,

upstream from the wall; 1.e., at 2z = 549 Ve Vi, and

we have by Eq.(6.1.9)

b = }vi/:1 . (6.1.10)
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Substituting the result of Eq.(6.1.10) into (6.1.4) we
get,
V= (}V1 zi)rzz . (6.1.11)

Solving (6.1.11) for r we get,
i d
r -(W)*’ ¥>o. (6.1.12)

We may now obtain explieit expressions for the pressure
and temperature distributiom aleng the streamlines given by
Eq.(6.1.12).

From Eq.(6.1.2) we have

v2 e wla bz(r2 + lnzz). (6.1.13)

Substituting Eqs.(6.1.13) and (5.2.3) into (4.4.25) and

noting that v2 = '2 + ¥v° we get,

B2 o Y g, 431 o
P = P1 + !F— + *fo - 4pp (B; + 4z°) - o - EF, (6.1.14)
where we have also used (6.1.12) to eliminate r.
We next obtain the expression for the temperature

distribution along the streamlines from Eq.(4.4.28) by
using Eqs.(5.2.4), (6.1.2), (6.1.12) and (6.1.13),

_25%? oK,
g—:-l- -—0-'%%3’—(5‘3& + &zz) + 7&; . (6.1.15)

1[' =const.
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Equations (6.1.14) and (6.1.15) are two equation for the
two unknowns p and T alemg the streamlines given by (6.1.12).

We now consider the magnetic field of the following

form B r2

B = -:.1-1' . (6.1016)
Introducing

a= (Yn) (6.1.17)

and using Eq.(6.1.12) to eliminate r 1im (6.1.16) we

got
2
Biriz
a (]

B = (6.1.18)

Substituting (6.1.18) into (6.1.14) amd (6.1.15) we get,
Bzr‘z2
P =Py +p, + V) - 4f1%(a/z + 42?) - py - 2;.; » (6.1.19)

== A/ - Ay(1/a + %3). (6.1.20)
VY =oconst. *
vhere 255K av(85ry)

AB = ?-.:sn , and AH = 7?—0——- . (6.1.21)

v
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6.2. Temperature and Pressure Distribution Along Streamlines.

The pressure distribution is given by Eq.(6.1.19)
which can be evaluated once the temperature distribution
is known. The temperature distribution is given by (6.1.20)
wvhich is a first order non-linear ordinary differential

equation of the following general form,

& = 2(s,1), (6.2.1)

with the condition of T = 11 y At 5 = z,.
We propose a solution of Eq.(6.1.20) by a method of
successive approximation. A proper development of this
method is given by Coddington (57). The successive
approximate solutions to Eq.(6.2.1) are defined to be
the functions ri, Tz, T3’ *ecc*, given recursively by

the formulas,

'1'1(:1) =T, (initial eondition)
g
‘1'2(3) = T, +}t(z,‘!‘1)d:,
%1
z
‘1'3(:) =T, 4]1(:, !1(3))43,
21
z
Tn-.-:l(')' T, +fr(:, 'l‘n(s))d:, (6.2.2)
=
1

where n = 1,2’3’00000000.
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It may be noted that the more nearly correct a partioular
approximation !h(s) is, the better will be its successor
Tn’i(z). In our case we will obtain a good first approxi-
mation by integrating Eq.(6.1.20) with the magnetic term
neglected. Thus, by neglecting the magnetic term in Eq.
(6.1.20) and integrating by separation of variables we

get for our first approximation,

T, = (0, - 3Anlnz)'1/3, (6.2.3)

where e, is obtained from the initial condition

Tsw Ti, at £ = 2,0 &8

oy = T + SAging,. (6.2.4)
To obtain the second approximation we substitute

Eq.(6.2.3) into (6.1.20) and (6.2.2), which gives
z =

Ay

T3 =T, ¢ :;E(ci - 3Anlnz)"l’/3dz - (1 » sz/a)dz.(6.2.5)
1 %y

Integrating and using (6.2.4) for o, we get from (6.2.5)
T, = (70-3a51n(s/5,))"Y/3 & ;A-'!(sl-:) . ;‘%(z'; + 5%). (6.2.6)

We note that for 3 = Zyy T, = T1 as required by the
initial condition, and as z - O, Ty > (‘M‘i/a + A1‘131/52)
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A higher approximation may be obtained by re-sub-
stituting Eq.(6.2.6) into (6.2.2) which gives,

My a

=Ty +-A§-(z -z)-o--z(z -z

&
f [ -3A lnz)':l/3 + -A!(z -z) + —5 AH -z?) az. (6.2.7)
a2

From Eq.(6.2.7) it is appareat that the formal

h) .

integration process becomes more and more complicated
for higher approximations so that a numerical proocess
would have teo be used sooner or later im order to obtain
the nth order of approximation. Therefore, we propose

a plecewise application of our secend order approximation
(6.2.6) over a number of smaller intervals by dividing the
range of integration into a finite number of smaller
intervals. Thus, dropping the subscript 3 in Eq.(6.2.6)
which denoted the 2nd approximation , we may use Eq.
(6.2.6) to compute the temperature in the range :2sz$:1
where z, may be taken as close teo 3, as desired to
obtain the necessary accuracy. After computing the
temperature at 3, ve may oonsider this point as our
initial condition and apply Eq.(6.2.6) over the next
interval 33$ s fsz with 2, playing the role of %
We may continue in this manner until the entire range of

interest is covered.
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In general we may write Eq.(6.2.6) in the following

form,

T, = (T3-3a1n(s/2,))"3 & ;‘2‘-(:1-.) . ?‘5(2:-:“), (6.2.8)

where T1+1 is the temperature at any point in the
-
interval zhf—-z:sz1 and T1 is the temperature at

the point 23 i=1,2,3,°°°°**°, represents the number
of intervals under consideration. Thus, we consider
equation (6.2.8) as the solution to the temperature
distribution over the entire range of interest.



PART II: VISCOUS RADIATION MAGNETOHYDRODYNAMICS

7. GOVERNING EQUATIONS OF VISCOUS FLOW

7.1, Fundamental Equations
We consider a viscous, heat-conducting, steady flow

of an ienized gas in an electro-magnetic field with thermal
radiation, The governing equations for the present case may
be obtained by modifying the system of equations derived

in section 2.3. The modification consists of adding the
viscous stress terms to the equations of momentum (2.3.2),
and the viscous dissipation term to the equation of energy
(2.3.3). The heat flux veotor Q 1is also modified to

account for the heat conductivity of the gas.

The viscous stress term is given by, (56)

J
14 7-1.1
-‘!S—a ( )

where ‘TiJ are the components of the stress tensor given

by
. F(—SS- + -g-g-) - %p'-ggg‘-‘ . (7.1.2)

The viscous dissipation function is obtained as,

F$ = gnr"i—g-x";. (7.1.3)

50
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The heat flux vectors now become from (5.2.4) and (5.2.5)

16351°
q= (Ky + —g—)VT, optically thick gas,
R

Ved aVe(kVT) - AprB'r", optically thin gas,

The system of equations now become,

coantinuity,
-3;;(?#) - o,
mementum,
vi
fvd-g;; + c“-'g—:]t- - P“J"g% - "3'5’1 =0
energy,

iy g
pvdn4-g§} - Vd-ggs + -gg;'+ F‘.

magnetic field Eq.

v 031 - ni_gs + n‘-ﬁ% -"l—g—;(g‘“ ‘)ni),

and the equation of state, p = fRT,

(7.1.4)

(7.1.5)

(7.1.6)

(7.1.7)

(7.1.8)

(7.1.9)

(7.1.10)

We note that the above system of equations are con-

siderably more complex than the classical Navier-Stokes

equations of classical fluid dynamios.
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7.2. Transformation to Streamline Coordinates

The transformation of equations (7.1.6) and (7.1.9)
was given im section 3, and will net be repeated here,
By introducing the velocity and magnetic field components
from (3.1.1), (3.1.2), into the equations of momentum (7.1.7)
and the equation of energy (7.1.8) we get,

Pv-J-g-Slll + gi-‘_g% - pﬂh‘-g-glil - -ggi =0, (7.2.1)
el s A A _ ) P
pvedmnl -Q-i;—-‘l - v-J-l%'. -0-&- . gn‘l‘u-‘)—b—l (7.2.2)

Expanding (7.2.1) and using sl-g—f = -3; etc., and also
x

(3.1.3) and (3.1.11) we get

fv-gxa + PVt o g“-g%- - -gS-J- = 0. (7.2.3)

Expanding equation (7.2.2) and using (3.1.11) we get,

fV-g%- = _&-1(‘,11' ()21‘ an ) - 7-3-:! + -3-5- + gki‘r’kj—g-ijvil.

(7.2.4)
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7.3. Streamline-Pressure Variation, Curvature and Torsion

The variation of the tetal pressure Pt along the
tangent, principal normal, and bimormal directions of the
streamlines may be obtained by taking the scalar product
of (7.2.3) with g, s k

» €0 &4 b"» Tespectively,
Vi, ko2 4 k. 43  k Pe k oI
V438 B3x® +f Eix® + & &4y ) -&1x® 3 o,

(7.3.1)
V"S‘" 311:‘ + f"z"‘“u‘ + ‘n _d.;. —&3x" “"5'

(7.3.2)
fV l gikbk + fvzlmig“bk + gi"gnbk-gg- -gikbk-ﬁ:’- =0

(7.3.3)

Making use of the orthogenal properties of oi,ni,bi,

and 8“811: - £, .J-gj = _3: , nJ-g; - -33 , oto.,

we get from (7.3.1) to (7.3.3),

Prgt + Gt - eyl o, (7.3.8)
Pv’k + -3-;! - siknk-ggi = 0, (7.3.5)

P
.352 - gikp'LgE;i.. 0, (7.3.6)

where the total pressure P, = (p + Py *+ pa).
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From Eq. (7.3.4) we find that the pressure variation
along the streamlines depends orn the momentum change as
well as on the viscous stresses. The same holds true
for the pressure variation in the normal direction of
the streamlines. From Eq. (7.3.6) we see that the
pressure is no longer constant in the binormal direction
of the streamlines for the viscous case under consideration

here.

Streamline Curvature

An expression for the curvature k of the stream-
lines may be obtained in terms of the fluid demsity £ ,
the velooity V, the normal pressure gradient -3;3 ’
and the viscous stress term by solving Eq.(7.3.5) for k,

P
k= (pvﬂ)-i(‘“..k)a.'sl % (7.3.7)

Torsion

To develop an expression for the tersion of the
streamlines as a function of the flow field parameters

we begin with the Frenet formula

i
-Tal - §. (7.3.8)

The unit binormal vector in Eq.(7.3.8) is by definition

bl . oijkgjpgkqopnq. (7.3.9)
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An expression for the mormal vector n9 may be obtained

by solving Eq.(7.2.3) as,

a? = (Pv2R)(-pv-gled - c"’-g’—x; +'-3U;—’). (7.3.10)

Substituting Eq.(7.3.10) into (7.3.8) and making use of
the following identities,

o“kgjl’gkqop:q = 0, gkngr - 6:’ gjpnp - V,V",

we get the binormal vector as a function of the flow field

parameters,

P
vl . (fvsk)-ioijk(V3¢k'Ji:2: - vbag;i). (7.3.11)

q 3!?

differentiating (7.3.11) along a streamline and sub-
stituting into (7.3.8) we get the following expression

for the torsion of the streamlines,

P
Tl a .131:_3; {("3*)'1"3(&(35: - .3_:;)} (7.3.12)
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7.4, Vorticity

Substituting Eq.(3.3.18) into (7.2.3) we get

P J
-fv(-%ni + %1) +fv%xnt! & Vgir-g—z-x-, + gir-g?t - ) =0.

(7.4.1)

Adding and subtracting }Vzgir-g-ﬁr from Eq. (7.4.1) we get,
x

P
(?Vzk-ﬂ-siv-)ni - Pv-ggbi + s"-g-g-@ + z"-g-;:: -

AT e ardf
gy $ve g 0. (7.4.2)

Dividing (7.4.2) by f and transposing some terms we get,

-Pe Ly ¢ 370 o riveindl AT,

IxF IxF
(v3k - V—S%)ni - v-g{bi. (7.4.3)

Introducing a function B defined by,

ir 9B _ _o-1.4rQ 1.2 1x Jf 1. 973"
€T "¢ ax,(Pt+iFV2)+iF'V85- ax,.+f' pea

(7.4.4)

equation (7.4.3) becomes,
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11'd§ Vi 1 v, 1
g ‘)xr = (vzk - “‘}n')n - -ssb (] (70*05)
Multiplying equation (7.4.5) by gy Ve get,

-3%5 = (vzk - v=5¥)33131 - vhsgfjibi . (7.4.6)

Taking the scalar product of Eq.(7.4.6) with (3.3.16)

we get,

'J-g% = 0. (70&.7)

Taking the scalar product of Eq.(7.4.6) with oj,wo get

J n- T X
.-33 0. (7.4.8)

Thus, equations (7.4.7) and (7.4.8) imply that the
surfaces B = censtant contain both the streamlines and

the vortex lines.
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7.5. General Cylindrical Coordinates

The governing equations of viscous, radiation magneto-

hydrodynamics in cylindrical coordinates are as follows,

v« B2 —3—,(%) + 4(PV,) = o, (7.5.1)
it o 245 - 2 -
~E o (0g8,-,80) - (e T + g - 1804 4T,

(7.5.2)

AV -g_ -—3-5- L9,y -3—-) -

- 795 + (0,8,9.B,) -(;,-g;(r“"!;,) . ;-3-15"- . -3;@: i

Py, 4= o 0QE v 48y o -

- 4P 4 (3,Bg=3gB,) ~(795(rTy,) » ;—43-5@ T2, (7.5.0)

PSS + 1530 4 v,42) - (v,4E . 09F , v dP)
Lofpe (e Eo i o 40, (75.5)

where P = p + pg , o-(u-rP/p), J2-Jg+d
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md i = ol Se) + Taolrde + 250 + T (42
7;0("3?(:_0) + ,—3:5) *7;,(;.-3-:-5 + -3;9) +
1;2(-3-;5 + -3;5). (7.5.6)

7.6. Axially Symmetric Case

The governing equations (7.5.1) to (7.5.6) may be
considerably simplified for the axially symmetric case

for which we have the following cenditions;

—33 = 0, Vo = 0, J0 = 0, 1:0 = T;i = 0, (7.6.1)

We also let Vr = Vv, and V;-w, and get by introducing
these conditions into (7.5.1) te (7.5.6),

=(pv) + £+ o(pv) = 0, (7.6.2)
PrST + wdD) = - 42 - 5y (4 (rT,) + 42EE), (7.6.3)
Prg¥ o wd¥) « - 42 4 g 5, -(,—3;<r1”>+-3-—) (7.6.4)
Pv-42 + wg2) . (v—3§+w—3-§)+%2-+;-:§+

L P L (7.6.5)
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where,

Fb = Tor(9E) T (45) + Tr, (9% + 97). (7.6.6)

From Eqs. (4.4.5), (4.4.6) we have,
Jp = =3wBy, I, = -JdVh,. (7.6.7)
We now have J° a J2+ J2 = 32 (v * vz) (7.6.8)

The ourrent density in (7.6.3) to (7.6.5) may now be
eliminated by using (7.6.7) and (7.6.8) as follows,

ArdL « wdT) = - 92 - ave - (4:(rTy,) + 42, (7.6.9)
f('—j% + "3-:-) s - -3-!‘: -3'33 -(r r(r‘l;.'z) + '31—52)9 (7.6.10)

f(v-s—q-v-s—)- ('-3- '-3—) +JB (v +v)+
pé + (-5-1_—1' + ;l-' + -5-'3). (7.6.11)

The above equations (7.6.9) to (7.6.11) may be
integrated along a streamline by multiplying Eq. (7.6.9)
by dr and (7.6.10), (7.6.11) by ds and using the equation
of the streamline wdr = vdz and moeting that

dv = -Q%dr + -3{1!3 etc, we get,
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pvav «+ —gfp.dr +JvB§dr + (?-3;(1'1;1‘) + -ggtrl)dr =0, (7.6.12)

pwdw + -3—542 +JvB§dz + (;—3;(1‘1;) + ?’)ds =0, (7.6.13)

fwde = wdP +ang(v2 + w2)as + pedaz + (-3-:1 + -g,! + -3—:—3-)“.
(7.6.14)

Adding Eqs. (7.6.12) and (7.6.13) we get,

a(3vZ + 3v?) + ar +JBg(vdr + wds) +

(?g?(r'];r) + _3;;1)(];- + (Ts?(r'&) + -3—:-;—2)013 =0, (7.6.15)

We now let V be the fluid velocity along the streamlines
dr 2 dz 2 ds 2
and noting that vdr + wdz = -(ﬂ)— + "IT)_ = '(HTL = Vds

we get from (7.6.15)
Pa(t v2) + aP +3VBZas « T; = 0, (7.6.16)

where

T = (95T + $iar o (92(rTo) + 9TEE)as. (7.6.47)

Noting that w = dz/dt we get from Eq.(7.6.14)

(dz/at)de = (dz/at)aP +3BG(V?)as + figdz + Q a3, (7.6.18)

where, Q, = (—3—3; + -:£ + -3-2—’). (7.6.19)
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Dividing Eq.(7.6.18) by dz and multiplying by ds and
noting that ds/dt = V we get,

PVde = VAP + 3 Bgvzds + fleds + qds, (7.6.20)
or VIS = VEE 4+ IBVE 4 Fp 4 q, . (7.6.21)

To complete the system of equations we add the
equations of continuity and fluid state along a stream-

line

&5(PV) = o, (7.6.22)

and

- 2(p§S + 155). (7.6.23)

Eqs. (7.6.16), (7.6.21), (7.6.22), and (7.6.23) are four
differential equations along streamlines fer the four

quantities P, f, T, and V.

The four equations (7.6.16), (7.6.21) to (7.6.23)
may be solved for the fluid variable gradiemts along a
streamline as follows; from (7.6.16) we have,

fvg% + g% +2VBZ &4 g% = 0, (7.6.24)
and frem (7.6.22) g_g - - 4’% . (7.6.25)

Multiplying (7.6.24) by V and adding the result to
(7.6.21) we get from the later,
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fvﬂ-:- + fvzg-} ~-P$-Q, ¢ V11_E_ = 0. (7.6.26)

The velocity gradient may be elimimated from (7.6.26)
and (7.6.24) by using (7.6.25); thus,

ﬂcﬁ% - v""%g - ﬁ; -Q, + 711% = 0, (7.6.27)
-vza-f -o-ZVB + g-: = 0, (7.6.28)

The fluid pressure gradient may be eliminated from (7.6.28)
by using (7.6.23) and using (5.2.3) for Py e get,

1641 ar v2)d 2 T
(RP + _3-6—)“ + (RT - )H-E + VB « Y. T et o, (7.6.29)

Solving (7.6.27) tor af/ds we get,

§€- vipo i - Byl ) (7.6.30)

Eliminating df/ds from (7.6.29) by using (7.6.30)

and solving the result for the temperature gradient we get,

B -)EG) - EEE) - on?

= . .6,
16};!'3 - (7.6.31)
- — + RP o ch(? -1

a3

R
Intreducing cp = Y_-ﬁ- and RT = p/p equation (7.6.31)

becomes
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4)(1‘-*—,,—) - Egd -on?

= =z
162 '!'
—3-—— 5(1 + Y[f(? - 1))

ol

1. (7.6.32)

The temperature gradient may now be eliminated from Eq.

(7.6.30) by using (7.6.32) which gives.

o eghon, - B vt e

The velocity gradient may now be obtained by substituting
(7.6.33) inte (7.6.25) which gives

- b 4
L I PR XA T ) i SR XY

The pressure gradient may now be obtained by substituting
(7.6.32) and (7.6.33) into (7.6.23) whioh gives,

PG, . (%):2. (7.6.35)

The fluid variables p, £, T, and V may be obtained
by simmltaneous selutiom of equations (7.6.32) to (7.6.35).
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8. GEOMETRIC PARAMETERS OF STREAMLINES IN AXIAL SYMMETRY

8.1. Streamlines of the Form 2z = f(r)

In this section we derive a set of relations for
the geometric parameters :, ﬁ} 5} k, and T ot the
streamlines which are expressed by an equation of the

form 2z = f£(r), where z is the axis of symmetry.

The position vector R of any point on the streamline
is given by,

where 1 and jJ are unit vectors in the r and £ directions
respectively.

A vector tangent to the streamline is given by,

g =195, (8.1.2)

and the unit tangent vector S 1s obtained as

Ly PR VPRI L (8.1.3)
Since §°% = i, we have :-g = 0, so that g is a

vector in the direction normal to ?, and the magnitude
of this vector is the curvature k of the ocurve.

Differentiating Eq.(8.1.3) with respect to r we have,
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ds

2 2
= e EDEED YIS @D 4. 1)

We also have

g_:..‘a‘.:,g.::.g-;/"a%.g-;/ﬁ%,. (8.1.5)

Using (8.1.2) and (8.1.4) in (8.1.5) we get

-~ 2
gs 36 - £1)(1 + ()52 (8.1.6)

The curvature k of the streamline is now obtaine as,

s 2
k .E-:-,. :‘::’2‘-(1 + (%_::)2)-3/2 . (8.1.7)

The unit vector normal to the streamline may be obtained

from the Frenet formula as,

o

Baxi82. (- . @Y (8.1.8)
The unit binormal vector of the streamline is given by,

P=38xn. (8.1.9)

Substituting Eqs.(8.1.3) and (8.1.8) into (8.1.9) we get,

B=@+ @&+ E 5 %Wd;  (s.1.10)
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thus, b 1s a constant unit vector in the directionm

of © and perpendicular to both & and n.

From the Frenet formula for the torsion of the

streamline we get by taking the det produect,
~ db
-T- ‘On ° (8.1011)

Since D is a constant unit vector we have gg'- o,

and by Eq.(8.1.11) we find that the tersion of the
streamlines is zero. Hence, the streamlines are plain
ocurves.

8.2, Streamline Curvature k for /' = f(z,r

For the special case of the streamfunction ef (6.1.4)

we have V= vrs, (8.2.1)
or z = (¥/0)r 2. (8.2.2)
Differentiating (8.2.2) with respect to r we get,
& . - Vi3, :—jg- = 6(¥/b)r™ . (8.2.3)
Substituting (8.2.3) into (8.1.7) we get,

k = 6(¥/m)r(1 + a(Wp)2:-6)-3/2 (8.2.4)
Using Eq.(8.2.2) in (8.2.4) we get

k = 6s2(¥/p)"1(1 + 4(?7b)'1s3)'3/2’ tor ¥4 0, (8.2.5)

We also have for arc length, (d-)2 = (d:)2 + (dr)z, (8.2.6)

25 a (14 -‘Z{ﬂz")*. (8.2.7)

so that



PART II1I: NUMERICAL SOLUTIONS AND RESULTS

9. INVISCID INCOMPRESSIBLE FLOW RESULTS

The general purpose of Part III is to investigate
numerically the effects of various physical phenomena
on the flow field variables. Specifically, we are
interested in evaluating the effects of the geometrie
streamline parameters, such as the ourvature, the effects
of the magnetic field, and the combined effects of
thermal radiation and Joule heating on the temperature,
electren density, and electrie conductivity distribution
along streamlines, The procedure consists of numeriecally
evaluating the geverning system of equations which were

developed in Parts I and II.

9.1. Physical Streamlines and Parameters.

The streamlines to be considered in this investiga-
tion are those developed in section (6.1) and are givea
by Eq. (6.1.12) for various values of = ¥ = constant
> 0. By using Eq. (6.1.8) for various values of ¥ we
obtain the system of streamlines shown in Figure III-1,
Since the streamlines are symmetric about the Z -axis,
only those on the positive r side are shown, We note that
the streamlines approach both axes as we move in an
increasing direction of Zz and r, The streamlines may

be considered to be those of a fluid flowing in the

68
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negative z - direction against a disk of radius r
located at z = 0, Our main concern here will be to
calculate the flow field variables along these stream-
lines and determine the combined effects of the stream-
line curvature k, magnetic field strength B, thermal
radiation and Joule heating.

We begin by computing the streamline ocurvature
variation along the streamlines by using Eq. (8.2.5).
‘The resalt is shown in Figure I1I-2, as a funotion of
distance z from the surface of the disk. From the figure
we note that the streamline curvature for all the stream-
lines approaches zero very rapidly with distance from the
wall. As we approach the wall along some streamline the
curvature increases rapidly and then drops to zero again
near the wall., It is also noted that the curvature of
the streamlines increases more rapidly for those that
are closest to the z - axis, so that the streamline VK

has the largest curvature inocrease.

9.2. Pressure Distribution Along and Normal to Streamlines

In this section we evaluate the effect of the stream-
line curvature k, the magnetic field B, and the thermal
radiation pressure PR » OB the fluid pressure gradieat
normal to the streamlines and on the pressure variation

along the streamlines.

By solving Eq.(3.2.5) for the normal pressure gradient

we get,
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d a
9, _pvi . g2 B, (9.2.1)

where k 1is geven by Eq. (8.2.5), Py by Eq. (5.2.3), and

4Py  9Pgar, 2(P474)?2 ,
W T @ " )G . e EE )

where we have used Eqs. (6.1.12), (6.1.16).

The normal pressure gradient given by (9.2.1) evaluated

along streamlines is shown in Figure III-3 as a function

of distance z frem the wall. From the analysis the

following was found:

1. The effect of the radiatien pressure gradient is
negligible.,

2. The effect of the magnetic pressure gradieant is small.

3. The effect of the streamline curvature is largest in

the region of higher fluid velocity.

The fluid pressure distribution along the streamlines
was obtained by evaluating Eq. (6.1.19) and the result is
showa in Figure III - 4 as a function of distance from the
wall, VWe briefly mote the following results:

i, The effect of the radiation pressure Pr is negligible.
2. The effect of the magnetic field B is considerable
as indicated for the pressure distribution along the
streamline .
3. The pressure increases and decreases with the ocurva-

tures of the streamlines.
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9.3, Temperature, Electron Density and Electrioc
Conductivity Distribution

In this section we consider the effect of thermal
radiation and magnetic field omn the temperature, electron
density, and electric conductivity distribution along
the streamlines. The temperature distribution is ob-
tained by using Eq. (6.2.8), and the electron density and
electric conductivity distribution is computed by using
Eqs. (5.3.7) and (5.3.16) respectively.

The results for various values of the magnetic field
strength B are shewn in Figures III -5 to III - 7 for
the .troallino‘k’ as a function of distance from the wall
2 . We note from Figure III - 5 that the temperature
decoreases continuously due to radiatiean o¢ooling for
the case of zero magnetic field B, The effect of an imcrease
in magnetic field strength B is to inorease the tempera-
ture for a short distance after which it drops more
rapidly due to radiation cooling. Thus, we see that the

two phenomena create opposing effects.
By using the Planck mean absorption coefficient KP

as a parameter we see from Figure 1II - 5 that a greater
deocrease in temperature oceures for small increases in
values of KP. The same remarks apply to the electron
density and electric conductivity distribution shown in
Figures III - 6 and III - 7 respectively.
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In order to determime the effect of different stream-
lines on the flow variables distribution, two solutions
are shown for streamlines ’?{md ’,’_ in Figures III - 8 to
III - 10. Ve note that the magnetic field effect is not
nearly as great for streamline 7{” it is for ?’. This
behavior may be explained through the fact that the
magnetic field B was taken to be inversely proportional

2

to r“ as given by Eq. (6.1.16), so that the magnetic

field decreases as we move away from the z - axis,

Finally, it may be noted that the temperature,
electron density, and electric conductivity variation
along the streamlines is considerable and therefore, is
an indication of the importance of considering thermal
radiation and magnetic field effects in high temperature
MHD flow field calculations.

9.4, Velocity Distribution

The veloecity distribution along the streamlines is
obtained by solving Eqs. (6.1.13), (6.1.12). The result
is shown in Figure III - 11 as a function of distance =z
from the wall. We note the following results;

1. The velocity decreases almost linearly with z for all
streamlines at a distance greater than about 20 om.

2. The velocity at each point along the streamlines
inoreases as the distance of the streamlines from the

2 - axis increases.
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3. The minimum velocity along each streamline occurs
very closely at the point of maximum curvature
of the streamline as may be seen by inspection of

Figure III -2 , and III - 11.

It wvas assumed that at z = 40 om the magnitude of

the veloeity V for all streamlines was the same,



74

10, VISCOUS, COMPRESSIBLE FLOW RESULTS

In section 9 we investigated the variation of the
flow field parameters along the st:eanlino- under the
simplifying assumption of constant density flow; i.e.fs=
constant. The principal purpese of the present section
is to determine the effect of variable density on the
flowv field parameters distribution along the streamlines
ineluding viscous, heat conduction, radiation and magnetic

field effects.

10.1., Temperature, Pressure, and Density Distribution

The temperature T, pressure p, and density f ,

variation along the streamlines is obtained by simul-
taneous solution of Eqs. (6.1.19), (7.6.23), and (7.6.32)
respectively. The velocity distribution contained in
these equations is taken as a first approximation as that
given by Eq. (6.1.13) for the incompressible case. We also
require an expression for p¢, Ts/ds, and Q.+ which we

evaluate as follows:

The viscous stress tensor components given by Eq. (7.1.2)

in oylindrical ecoordinates for the axially symmetric ocase

Toy = F(2-9F - 2/3(-4% +
Typ = F(2-4% - 2/3(4Y +
Trs = 1;r = F('3¥”'f£5) .

are,

ld =l<
+
“l}
~
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By using Eq.(6.1.2) the stress components become,
Ter = p(2b - 2/3(b + b - 2b)) = 2Fb,
Toz = F(-hb - 2/3(b + b -2b)) = -4pb (10.1.1)
Toa = Tar = O

By using Eqs.(10.1.1) in (7.6.17) we get

T = (E)ar, or 18 . (2)dr) (10.1.2)

By using Egs.(8.2.2), (8.2.3), and (8.2.6) in (10.1.2)

we geot

-;’-E- - ﬁb(!zﬂ + 4s2)-t | (10.1.3)

By using (10.1.1) in (7.6.6) we get,
B = T (90) « T5,(-9%) = (20)b o (4Fb)(2b) = 1007 (10.1.4)
From Eq.(7.1.5) we have
2
Q, = xt-E-.-g - axpan'r". (10.1.5)

The viscosity p and thermal conductivity K, are
given by, (53)
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B o= 1.462(2076)1%/2(1 o 442)-1  _kE

m-sec '’
(10.1.6)
K, = 1.994(10°3)1%/2(1 )1 a=_

--'ooox

The solution to the system of equatiems for f£, p,
and T was obtained by using a modified Runge-Kutta step-
by-step integration process. The modification to the standard
fourth-order process wvas made to allow integration in the
deoreasing direction of =. The modified process was tested
by comparing the solutions obtained with the standard and
modified process when applied to a differential equation.

The same solution was obtained with both processes.

The well known standard fourth-order Runge-Kutta

integration process is as follows;
Ynes * Yn * 1/6(b1 + 2b, + 2b3 * bb)’
b, = ht(s,,y,),
b, = ht(z. + $h, Yo *+ ibi),
b3 = ht(zn + 4h, Yo ¢ }bz),
by = ht(z, + b, y, + by), (10.1.7)
where h is the step-size and %% = 1(2,y).

To allow integration in the decreasing direction
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of the independent variable z the standard process given
in (10.1.7) was modified to the following form;

Ynet1 = n - 1/'6(b1 + 2b, + 2b3 * bk)’

-2
"

hf(znoyn)v

ht(z, - ¢h, y, - #b,),

)
|

ht(z, - th, v, - #b,),

W
]

b, = hf(zn -h, y, - b,), (10.1.8)

where h 1is the step-sise and &% = £(s,y) as before.

The numerical computations were performed on an
IBM 1620 digital computer at the General Motors Imstitute
computing laboratory with the following initial values;

V, = 2000 m/sec,

1
T, = 20,000 %%,

f, = 04429 kg/m’,
P, = §,BT, = 2.542246(10°) n/u’,

R = 287 n-m/kg-°kK, (10.1.9)
Y =1.4
B, = 0, .2, Or .4 vebcrq/lz.

The step-size used in the computations was h = ,01.
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Inasmuch as each step in the calculations is the
same, we will briefly describe and show the results for
a single step awvay from the initial conditions along
streamline '?;.

We note from Eq. (10.1.8) that each step in the solution
for the dependent variable y (y = T in our case) requires
four evaluations of the differential equation to be imte-
grated. Imn eur case the temperature distributiom is given
by Bq. (7.6.32) where the right hand side is evaluated by
using the initial conditioms given in (10.1.9) together
with Eqs. (10.1.3) to (10.1.6) and the electrical con-
ductivity is evaluated from Eq. (5.3.20). Thus, the
temperature T may now be calculated one step away from the
initial conditions. 1.e., at z = .39 meters. By using the
Just caloulated temperature we may obtain the pressure at
this point by evaluating Eq. (6.1.19) and the density 1is
now obtained from the equation of state of the gas j’- p/RT.

The process may now be repeated for the mext step.

The results for the first step are shown below:
2 = ,39000000E4+00 T = .19864611E+05 p = .25422460E+06
P = .45366864E-01 n,= .74155286E+18 23 = .12683507E+05

The density distribution f(z,‘V) is shown in Fig.(III-12).
We note the following results:
1. The density increases and then decreases as we approach

the wall for all streamlines ¥, shewn.
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2. The inocrease in density is less for streamlines located

farther avay from the z - axis.

The pressure distribution p (3, )) is shown in

Fig «(II1I-13) and indicates the following results:

i. The pressure increases and then decreases as we appreach
the wall just as in the inocompressible case.

2. A comparison of the compressible, Fig.(III-13), and
the incompressible pressure distribution, Fig. (III-&),
shows that the results are qualitatively the same, but
differ considerably on a quantitative bases.

3. The compressible pressures are higher than those given
by the incompressible flow model for all streamlines

shown,

A direot comparison of the compressible and incompres-
sible temperature distribution T(z,?V) for two neighboring
streamlines is shown in Fig. (III-14) from which we note
the following results:

i. The temperature distribution is gqualitatively the same
for the compressible and incompressible flow model.

2. From a quantitative point of view the compressible
flow model yields a higher temperature at all points
along the streamlines.

3. The effeet of radiation cooling is to decrease the

temperature considerably.
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10.2. Electron Density and Electric Conductivity Distribution
Having obtained the compressible pressure and temp-

erature distribution it is now possible to calculate the
electron number density and the electrie conductivity

distribution by using Eqs.(5.3.7) and (5.3.16) respectively.

A direct comparison of the results obtained froa the
compressible and incompressible flow moedels is shown in

Figs.(III-15) and (III-16).

From the two figures we note the following results:

1, Both the electron density ne(z,ﬁy), and eleotric
conductivity >(z, ¥) distribution show a qualitative
similarity to the incompressible case.

2. From a quantitative point of view we note higher values
for both n . and 2 in the compressible case.

3. The effect of radiation cooling is to decrease both
the electron number density as well as the electric

conductivity.

10.3. Summery of Results and Conclusions

The primary objective of this investigation was to
determine the combined effects of thermal radiation and
magnetic fields on the flow variables distribution near a
stagnation point of a blunt vehicle moving through a
gas at hypersonic veloeity. Inasmuch as a streamline
approach was chosen to carry out this investigation it

seemed appropriate to consider the general three dimensional
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dynamic and kinematic relations cenmecting the flow variables
with the geometric parameters of the streamlines as a

secondary objecotive.

The general relations for the tangent, principal normal,
and binormal vectors and the curvature and torsion of the
streamlines were derived in terms of the flow field variables
for both the inviscid and viscous radiation magneto-
hydrodynamie¢ case in Parts 1 and II respectively. VWe also
found that for the inviscid case the total pressure Pt’
remains constant in the binermal direction of the streamlines,

but not in the viscous case.

From the numerical results obtained imn Part I1I, which
are plotted in Figures III-1 to III-16, we find that the
physical phenomena of thermal radiation, magnetic field,
and compressibility have a considerable effect on the flow
field variables, whereas the viscosity and heat comnductivity
effeots were found to be very small in the case under

consideration here.

A typical example of the caloulations made in this
investigation is shown in the Appendix, page 98, together
with the Fortran program for the IBM 1620 computer.
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APPENDIX

Typical Fortran Program and Results

This program integrates the differential equation
for the temperature distribution by the modified Runge-
Kutta method taking account of variable viscosity, heat
conductivity, electron-ion collision cross-sections, and
electric conductivity. At the same time the program
calculates the pressure, density, veloocity, electron
density, and electric conductivity distribution along the
.troailines. Inasmuch as all flow variables are cal-
culated as a function of z and ?Valong the streamlines
we also obtain the coordinates r as a function of z and WV
8o that the final results may be interpreted as having
the flow variables distribution given as a function of
the two coordinates r and £. Thus, by choosing as many
streamlines as desired it is possible to obtain the flow
variables distribution throughout the flow field under
consideration as a function of the field coordinates,

r and =z,

98



QO OO O O 0 O O o O o 0 a o O

99

FORTRAN PROGRAM FOR IBM 1620

VISCOUS COMPRESSIBLE FLOW PROGRAM FOR THE
CALCULATION OF THE FLOW VARIABLES DISTRIBUTION
NEAR A STAGNATION POINT

RS«STREAMLINE ENTRANCE RADIUS AT Z =40 CM
Z=COORDINATE NORMAL TO DISK

RZ=COORDINATE PARALLEL TO DISK

TwFLUID TEMPERATURE

P=FLUID PRESSURE

RO=FLUID DENSITY

ECC=ELECTRON NUMBER DENSITY

C=ELECTRIC CONDUCTIVITY OF THE FLUID

VaFLUID VELOCITY

QN=ELECTRON-ATOM COLLISION CROSS SECTION
QI=ELECTRON~-ION COLLISION CROSS SECTION

RSa=.01

DO 200 Ix1,5

PUNCH 2,RS

FORMAT( 4OHSTREAMLINE ENTRANCE RADIUS IN METERS RS=E14.8)

T=20000.
RO=,000086%*515 .,
R=287.
P=RO*R*T

Z=.4



100

PUNCH 13,Z,T,P,RO
He.01
ZL=.01
C=10000.
QTK=O0.
5 K=0

GO TO 100

10 AKi=FZ*H
FZ0=F2Z
21=Z
Ti=T
Z=Z1-H/2,
TaT1-AK1/2.
G0 TO 100

15 AK2=FZ*H
T=T1-AK2/2,
GO TO 100

20 AK3=FZ*H
Z=Z1-H
T=T1-AK3
GO TO 100

25 AK4=FZ*H
FZ1=FZ
TaTi-(AK142.%AK2+2.*AK3+AK4 )/6.
Z=Z1-H
RZ=( RS*RS*22/Z )%+ 5
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30 TK=.00199%T*#,5/(1.4112./T)
31 QTK=TK*(FZ1-FZ0)/H
PUNCH 13,Z,T,P,RO
13 FORMAT (5B Z=E14.8,5H T=E14.8,5H P=E14.8,5H RO=E14.8)
ELECTRIC CONDUCTIVITY PROGRAM NEXT
T2aT
P2=P/A7.88
QN=1./(10.%%*19)
UI=166000.
X=(.032#T2##2,5)/(47.88*P2*EXPF(UI/T2))
Y=(47.88%P2#10,.%%23)/(1.38%T2)
EzY*SQRTF(X/(1.4X))
EN=Y-E
ECC=E/(10.%*6)
QI=(2.95/(T2#*2%10,#%10) ) *LOGF(8780.*T2%*1,5/SQRTF(ECC))
G=(20.5/T2)**,5/(10.%+%12)
C=(G*E)/(EN*QN + E*QI)
PUNCH 65,ECC,C,V,RZ
65 FORMAT (5H ECC=E14.8,5H C=E14.8,5H V=E14.8,5H RZ=E14.8)
1IF(ZL-2)5,110,110
100 R=287.
GA=1.4
STBa5.67/10,%%8
CL=16./(9.%10.%¥8)
CRaSTB#*CL*T##3
W=2000,
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22=.4
SI1=W*RS*RS/2.,
Bi=.2
Ri=.01
BS=B1*R1%*R1/RS**2
B2=BS*Z/22
PBS=(BS*BS*10.%%7)/(8.%3.14)
PVS= ,5*RO*WHW
PVs . 5%RO*(W/(2.%#22) ) *#2%( RS*RS*Z2/Z + 4.%*Z*Z)
PB=B2%B2%10,%%7/(8.%3.14)
P1=254224.6
P=P1+PBS+PVS-PV-PB
RO=P/(R*T)
Va(WHWHZ#Z/(Z2%22) + ST1%W/(2.%Z2%Z))#* 5
CVaR*T/(V*V)
BO=.2
B=(BO/10,%%4 )*Z/( RS*RS*Z2 )
PK=.06
QR4 , *PK*STB*T#*4
2Su(1. + RS*RS*Z2/(&4,%Z¥%3))u# 5
VISCOUS PROGRAM NEXT

101 WZaW/22
U=,000001462%T#%,5/(1,.4112,./T)
U0=2.5*U*WZH¥WZ
STRES=U*WZ/(RS*RS*Z2/Z + & *Z%Z)%#* 5
QV=(QR+U0+QTK )/V
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102 DTN =ZS*(CV-1,)*QV 4 ZS*C*V*B*B-ZS*CV*STRES

DTD=CR + (P/T)*(1.+(GA/(GA-1.))*(CV-1.))
FZ=-DTN/DTD

K=K+1

GO TO (1
110 CONTINUE
200 RS=RS*2,

END

0,15,20,25),K

Typical program printout for calculations along

streamline ’7’2; only intermittent results are shown.

STREAMLINE ENTRANCE RADIUS IN METERS RS=

Z=,40000000E+00

Z=.39000000E+00
ECC=.74155286E+18
Z=,35000000E+00
ECC=.75311657E+18
Z=,30000000E+00
ECC=.74016460E+18

®© 00 0000600000000 00

T=.20000000E+05

T=.19864611E+05
C=.12683507E+05
T=.19287799E+05
C=,12279440E+05
T=.18529958E+05
C=.11665416E+05

0 000000 06000000

P=,.25422460E+06

P=,.25864267E+06
V=.19506569E+04
P=,27761739E+06
V=,17508155E4+04
P=.30401610E+06
V=.15011105E+04

« 20000000E~-01

RO= . 44290000E-01

RO= . 45366864E-01
RZ=,20254787E-01
RO=,.50151164E-01
RZ=,21380899E-01
RO=,57165924E-01
RZ=,.23094012E-01

000000060000 OOGONPGOIS



Z=.25000000E+00
ECC=.69753902E+18
Z= . 20000000E+00
ECC=.63172579E+18
Z=.15000000E%00
ECC=.54957608E+18
Z=.10000000E+00
ECC=.45384093E+18
Z=.50000000E-01
ECCs.33847680E+18
Z=.10000000E-01
ECC=.19624103E+18
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T=.17785594E+05
C=.10972201E+05
T=.17064096E+05
C=.10219858E+05
T=.16347266E+05
C=.94057760E+04
T=.15589313E+05
C=.84905995E+04
T=.14667850E+05
C=.73309736E+04
T=.13332793E+05
C=.56150074E+04

V=.12515987E+04
P=.36563279E+06
V=.10024968E+04
P=.39987440E+06
Va,75443113E4+03
P=.43542470E+06
P=.47285149E+06
V=,28722804E+403
P=,50944799E+06
V=.32015619E+03

RO=,65326054E-01
RZ=,25298223E-01
RO=.74657600E-01
RZ=,.28284271E-01
RO=.85229311E-01
RZ=,32659862E-01
R0=.97317954E-01
RZ=,.40000001E-01
RO=.11231728E+00
RZ=.56568544E-01
RO=.13294087E+00
RZ=.12649111E+00
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