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ABSTRACT

THERMAL RADIATION AND MAGNETIC.FIELD

EFFECTS ON THE FLOW VARIABLES

NEAR A STAGNATION POINT

by Wendelin Schmidt

In this investigation the equations connecting the

flow variables with the geonetric paraneters of the

streanlines in three dinensional, inviscid and viscous

radiation negnetohydrodynanic gas flow were derived. A

sinplified nathcnatical nodel governing the flow variables

distribution near a stagnation point in radiation nagneto-

hydrodynanio flow was deve10ped and used to eetinate the

eonbined effects of various physical phenonena on the flow

field variables. Specifically we consider the combined

effects of thermal radiation, nagnctic field, viscosity,

heat conductivity and conpreesibility on the tenperature,

pressure, electron density, and electric conductivity

distribution near a stagnation point.

The first order results obtained frcn the nunerical

solutions of the governing equations indicated that the

effects of thernal radiation, nagnetic field, and
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cclpressibility on the flow field variables are considerable,

whereas the effects of viscosity and heat conductivity

were found to be very enall in the case under considera-

tion here.
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1. INTRODUCTION

The great interest in hypersonic flow around blunt

vehicles has been stimulated in the last decade by the

intercontinental ballistic missile, the satellite and

the deep space programs. Among the phenomena that can

be observed during hypersonic atmospheric entry of a

vehicle are the thermal radiation emitted by the hot

gas flowing around it and the reflection of microwaves

by the ionized gas envelope surrounding the vehicle.

It is well known that this ionized gas or plasma envelope

is the cause of radio, and other communications black-

out during atmospheric re-entry. (l, 2, 3, h)

The influence of the electrons in the ionized gas

around the vehicle is felt not only on electromagnetic

signal attenuation through radio blackout, but also on

aerodynamic quantities such as drag and heat transfer,

and on physical quantities such as transport, radiative

emission, and absorption properties. From the communica-

tions problem point of view the electons are undesirable

and should be eliminated. However, the flight magneto-

hydrodynamics point of view considers the ionized gas

as a phenomenon to be capitalized on by applying a strong

magnetic field in such a nay so as to provide a re-entry

vehicle with braking and other maneuvering capability.

(5 to 17).

A solution to the hypersonic blunt-body problem that
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combines the advantages of minimum computational dif-

ficulty with maximum accuracy of results has been sought

for more than a decade. The problem under consideration

is that of determining the flow field properties (1.e.

pressure, temperature, density etc.) around a blunt-

nosed configuration traveling through a uniform gas at

a flight Mach number greater than unity. In general,

the flow field about the body may be divided into two

regions based on the magnitude of the local flow Mach

number with respect to unity. In the region near the

stagnation point of the body the flow Mach number is less

than unity and the flow field is therefore subsonic.

Much of the effort expended on the blunt-body problem has

been confined to the subsonic region since the solution

to this region provides the starting data for the well

known characteristic method of supersonic flow calcula-

tions downstream of the stagnation point. The deter-

mination of the fluid properties in the subsonic flow

field over the blunt body also provides the necessary

data for the subsequent evaluation of the radiant heat

transfer as well as for initiating boundary layer cal-

culations to determine wall shear and convective heat

transfer to the nose of the body.

From the aerodynamics point of view the main problem

associated with the re-entry of a space vehicle is that

of convective and radiative heating, and aerodynamic drag.
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Since the gas around the vehicle is in a plasma state

and, therefore, electrically conducting, the possibility

of utilizing an applied magnetic field to reduce surface

shear stress and heat transfer has been proposed by a

number of authors. (5 to 8). The general approach to the

problem consists of dividing the flow field into a viscous

boundary layer and an outer inviscid flow. The solution

to the boundary layer part of the problem requires a

knowledge of the edge of the boundary layer flow condi-

tions which are obtained from the solution to the outer

inviscid part of the flow field. Part I of this thesis

is directed towards the determination of the combined

thermal radiation and magnetic field effects on the in-

viscid flow field variables near a stagnation point.

The division of the flow field into an inviscid

flow region and a boundary layer is only possible for

flight altitudes below which the ratio of the vehicle

radius to mean free path of the gas molecules is greater

than about 75. i.e., lib/A > 75. For altitudes such

that the ratio of vehicle radius to mean free path is be—

tween about 75 and i, such a division of the flow field

is not possible and either the full or a simplified

form of the Nevier-Stokes equations must be used as a

flow model. (54). In Part II of this thesis we in-

vestigate the combined effects of thermal radiation,

magnetic field, viscosity and heat conductivity on the

flow field variables.
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The central problem under consideration consists

of the derivation of a mathematical model which allows

us to predict the effects of various physical phenomena

on the flow field parameters under given conditions.

An exact mathematical description of the flow field in-

cluding thermal radiation, magnetic field, viscosity,

and heat conductivity effects, requires a complicated

set of non-linear partial differential equations which

are very difficult to solve for a given vehicle con-

figuration. Because cf this difficulty, many simplified,

approximate mathematical models have been proposed which

held under various conditions. One such simplified

approach to the calculation of the flow field parameters

‘was proposed by several authors independently and consists

of calculating the parameters along flow streamlines

under an assumed flow field pressure distribution (49 to 52).

The method was used for dissociating, inviscid, non-

beatcenducting, non-radiating flow without the magnetic

field effect, and was found to be quite amenable to para-

metric study of very complex flow fields.

He shall use the streamline approach in the present

investigation with a modification which consists of

using an approximate velocity distribution.



PART I: INVISCID RADIATION MAGNETOHYDRODYNAMICS

2. INVISCID GOVERNING SYSTEM OF EQUATIONS

2.1. Fundamental Equations

We consider an inviscid, non-heat-conducting steady

flow of an ionized perfect gas in an electroqmagnetic

field including thermal radiation. The governing hydro-

dynamical systen of equations consists of the mathematical

formulation of the physical laws of conservation of mass,

momentum, energy, and the equation of state of the gas;

V‘U’?) . 0, (2.1.1)

V'V‘t? a -f’Vr . 1"(3 x p‘fi), (2.1.2)

du . Piaf") - dQ m o, > (2.1.3)

p as far. (2.1.1.)

The energy equation (2.1.3) may be used in an integrated

form along a streamline to be denoted as the generalized

Bernoulli equation.

The equations governing the electromagnetic field

are Maxwell's equations and Ohm's lav; (55.58)

V'E mg/E ; V x E m 0, (2.1.5)

Vs-fi m 0 ; V! E m .3, (2.1.6)

3 -J(E + pV 2B). (2.1.7)

5



2.2. Reformulation

The above system of equations may be reformulated

so as to be more suitable for the present analysis.

Substituting for 3 from Eq. (2.1.6) into the equation

of motion (2.1.2) we get; 1

M7? . -r’v(p . pR . m2) . ”pd-v3. (2.2.1)

The energy equation suitable for the present analysis

may be obtained by starting with Eq.(2.i.3.) as follows;

dQ . dll . rd(’/p) . d(u . P/f ) -f"’dr,

or 3-2 .- V-V (u + P/f ) -f’V-V P. (2.2.2)

By expanding the left hand side of the equation of motion

(2.1.2) and taking the scalar product with V we get,

two”) - NV 2 (V2 V» - J‘V-w . mass).

Using this last result to elininate .p‘wp in Eq.(2.2.2)

we get,

v-wu . P/f . we) . 3.3 .r“'t.(3 x pH). (2.2.3)

M; is the heat input from all sources per unit mass,

which in our case consists of the Joule heat and the

radiation heat flux. Thus we have,

5-2 .f'uz/a) MYER-
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Using this last result to eliminate §§ in (2.2.3) and

substituting (2.1.6) for 3 and expanding 3 x FR, we get;

V-V(u . P/f . Ha) .F’w x H)*(Vx 3% .r’hqd-vfi) -

FWVGH”) +f"V*‘5. (2.2.2)

which is the energy equation in the required form.

Prom.Maxwell'e equations and Ohm's law we develop the

following ; solving for'E fron Eq.(2.1.7) and substituting

for 3 er R we get,

EII/aVXE-PVXE;

taking the curl of this last result and accounting for

Eq.(2.1.5) we have,

(1/P3)VI (v: s) -Vx (V x E) - 0.

Expanding this last result and using (2.1.6) and re-

placing 7]. i/pa we get,

7W3 . Vevfi - ewv . 3(7 43). (2.2.5)

2-3- We.

The governing system of equations will be recast

in Cartesian tensor form. In this form the equation of

continuity becomes,

491(va . 0. (2.3.1)
¢ix

The momentum equation (2.2.1) becomes,

vav‘ 11Pt_ 131., ..1° 33+s & P53: 0 (232)
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2
‘where Pt I (p + pn + 1P3 )-

The equation of energy (2.2.t) gives,

(“3'3 - 5"(sjr-317—33-s‘fig—gg)

pvdfli-g—E} - “Lg—:3.- e #3::- , (2.3.3)

I

where I a (u + P/f 4 five); p. e {1132.

The electromagnetic equations (2.2.3) and (2.1.6) become,

31 _ J v1 + i v5 c k 31
V315: H ‘3: H -3': ”('3346 “3-3), (2030‘)

.32; . 0, (2.3.5)
I

To complete the system of equations we add the equation

of state of the gas

p efRT. (2.3.6)

The unknown quantities consist of three scalars and

two vectors; i.e., p,f,T, V, and R. Il'he three scalar

equations required are Eqs. (2.3.1), (2.3.3), and (2.3.6).

The two vector equations are Eqs. (2.3.2) and (2.3.h).



3. DYNAMIC AND KINEMATIC RELATIONS

3.1. Basic Decomposition

The equations (2.3.1) to (2.3.5) will be transformed

into a coordinate systen s1, hi, hi, where the symbols

used denote the components of the unit tangent vector (s1),

principal normal (hi), and binormal (b1) vectors with

respect to a streamline at any point in the flow field.

Denoting the magnitudes of the velocity and magnetic field

vectors as v, B, respectively we get,

$1. . .1, (3e1e1)

where s denotes arc length measured along the stream-

lines in the direction of the flow.

Per the magnetic field we have,

E1- . 11‘, (3.1.2)

where h1 is a constant unit vector.

A set of relations involving the three unit vectors

s1, n1, b1, is given by the well known Prenet-Serret

formulas of differential geometry

1 1 1
ds 1 d: . -Tn1, dn 1

31"“. as"
'rb‘ - ks , (3.1.3)

where k is the curvature and 7* the torsion of the

streamlines.
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Substituting Eqs. (3.1.1), (3.1.2) into the appro-

priate Eqs. (2.3.1) to (2.3.5) the system of equations

becomes,

“L'f(fv.1) ' 09 I (3.1.5)

ax.

,1 its1 11 Pt _ J an1 .
fVI #1 4- g ‘3: FEB '35—! 09 (3.1.5)

.1 I .. mik an _ mi" a”: +

rv- 2’:- “$44324 ”-3171 1.24
1 Rh p. i

flVIJHh II3-iI-u - VlJ‘gj 1? 'gfi' s (3s1.6)

N 12

a C 0, (3e1e7)

aX

“Lg-322 .. 311.1% + uni-$.21 4-3-3413 9 “1 )s

(3.1.8)

Expanding Eq. (3.1.e) and using .1.-3: .- .37 we get,

-3% e ~370an :- 0. (3.1.9)

Expanding Eq. (3.1.7) we get,

fig . 0. (3.1.10)
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Expanding Eq. (3.1.5) and using sing): a: .3; ,

hi—g—x-f a ‘3? , we get,

fv-s—Eel + fvz-S-‘g- + 813-33 - pit-3%} :- 0. (3.1.11)

Using Eqs. (3.1.3) and (3.1.10), Eq.(3.i.11) becomes,

)t’v-g-gs1 e fv’m‘ + 83-3-3» .. 0. (3.1.12)

Expanding Eq. (3.1.8) we get,

wage:l - (93%} - HIV-3i: e 803% e vfih‘ 4‘33““ ()3 )b‘,

(3.1.13)

or

(W + mag—3’- - '713315‘“ ()3 ))h1 - H-fi-Ei- a '0. (3.1.14)

Expanding Eq.(3.1.6) we get,

"3% .34(‘Jrhk all? J r)H _ erhk 31:13] an ) +

pVHsJ-QEGhJ) - V-S-E-E e jg . (3.1.15)

Using Eq.(3.1.10), equation (3.1.15) reduces to,

p. 1
fv-gé . -5-'(g3’.§.:.r. .313) - “'37 4» %. (3.1.16)
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3.2. Variation of Pressure Alon and Pe endicular to

 

the Streamlines

To determine the variation of the total pressure Pt

along the tangent, principal normal, and binormal directions

of the streamlines, we take the scalar product of Eq.

k
(3.1.12) with 31k. , giknk, gikbk, respectively and get,

P

iv :Hgiks e fvzknigiksk + gugikssk-gfi m 0. (3.2.1)

P

j’v-3%s1g1rnk e j’vzknj’giknk + Quaint-3;; m 0, (3.2.2)

r

flag-151w. fvzkn‘gub .g‘Jgubk-gj» . 0. (3.2.3)

Makingiuse of the orthogonal properties of s1, n1, b1,

and ghit-5k, “-33. -3-,nJ-d:-me-33,etc.

we get from Eqs. (3.2.1) to (3.2.3).

”-3-: + .3;1 m 0, (3.2.11)

fvzk + 6:3 s 0, (3.2.3)

.3? . 0, (3.2.6)

where Pt e (p tpR e 1).).
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From the result of Eq. (3.2.6) we note that the

total pressure remains constant along the binormal

direction of the streamlines.

Pron the result of Eq. (3.2.5) we obtain an

expression for the curvature k of the streamlines as a

function of the fluid density P , the velocity v, and

the nornal pressure gradient as,

r . -(pv2)-1.3.;i, (3.2.7)

To obtain a relation for the normal vector of the stream-

lines 11: as a function of k, f, v, and the velocity and

total pressure gradients along the streamlines we solve

Eq. (3.8.12) for n1

n1 - -(PV2K)'1(PV-3-z41 + til-33'). (3.2.8)

and get,

Multiplying the last term of Eq.(3.2.8) by the scalar

product of s1 we get,

(lieu-521L33- - 01%;. (3.2.9)

Substituting Eq.(3.2.9) for the last term of (3.2.8) and

using Eq.(3.1.1) we get from (3.2.8),

n1 . -(fv3r)’1(fv-3% . -3-?-)v‘. (3.2.10)
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we next obtain a relation for the binormal vector of

the streamlines by starting from the definition of hi,

b1 n e1Jngpgkqspnq. , (3.2.11)

From Eq.(3.1.12) we have,

 .9 . -(fv2k)‘1(fV-3%sq . g" :1"). (5.2.12)
xr

Substituting Eq.(3.2.12) into (3.2.11) we get,

2

b1 - ~(PV2k)'1(fV-3-‘,Ie”ksjpskqopoq + ouksjpskqo‘qu-gfi).

(3.2.13)

°13k
Since, nggkqspsq - 0. ‘kqsqr II 8: s SJPBP - VJV-is

we get the binormal vector as a function of the flow field

parameters,

b1 . ~(fv3k)-1(e1kaJ-g%). (3.2.14)

Streamline Torsion

To obtain a relation connecting the torsionHT; of

the streamlines with the flow field parameters we make use

of the Prenst formula Eq.(3.1.3) which is,

1

~121- §-}-. (3.2.15)
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Differentiating Eq.(3.2.1h) along a streamline we get,

i . 2
(31'3" . _.1Jk_§;((Pv3k)-ivj 433‘)- (3.2.16)

Expanding Eq.(3.2.16) and substituting the result into

Eq.(3.2.15) we get for the torsion of the streamlines,

-'l"n1 m e135 (1%"):de .3; 37(fv3k) .-

(Modes); 5:1 + ”137%?” . (3.2.17)

We next determine the static fluid pressure-gradient

along a streamline as a function of the Mach number M

and the other four variables and their gradients along

a streamline; i.e.,F, V, T, B, and their gradients. From

Eq. (3.1.9) we have,

fi + v‘1-3-‘J— . r16; . 0. (3.2.18)

Solving Eq.(3.2.§) for v and substituting it into

3s

Eq.(3.2.18) we get,

A i
-vzf-g—il- - 172-3; 4- -35 e -3;-2 + -3-:5 m 0. (3.2.19)

The velocity of sound is defined by a2 a -35-, or

a'a-g-E .- -3-§ . (3.2.20)
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Substitutins (3.2.20) into (3.2.19) we get,

'3'; . (52-1)‘1(-3-:3 , .3? .pv“ a5). (3.2.21)

1

Substituting for “—33-!- by usins (3.2.18), Eq. (3.2.21)

x

becomes,

{3% . (M2-1)'1(pB-3% . '3'? . ”'3': . lie-3;). (3.2.22)

Equation (3.2.22) indicates the influence that each

variable has upon the fluid pressure variation along a

streamline.

Expanding Eq.(3.2.5) and solving for the fluid

pressure variation in the normal direction to the

streamlines we get,

fit; . Jpn-3% . 3:3 . flak). (3.2.23)

From equation (3.2.6) we obtain the following expression

for the pressure variation in the binormal direction to

the streamlines

fig . Nun-3% . 5-153). (3.2.211)
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3.3. vorticitngonponents

The vorticity components are defined as,

wk . ,nJ‘JrJfi A (3.3.1)

ax” '

Substituting v1 a Va1 and expanding we get,

1

wk . Vekung-gi-f . '1'213‘Jr'gir . (3.3.2)

k k k
Taking the scalar product of Eq.(3.3.2) with s , n , b ,

respectively and recalling the cross-product relations

eujsisk .- 0, ekusi’nk 1. ha, eanib" s --nJ , we get,

«ksk . v(oms"r”-§i;). (3.3.3)

wknk s “chunky-3%) + {g . ' (3.3.5)

wkbk . v(eukag‘lr-g-;-:=) - a; . (3.3.5)

.22:In order to obtain the term. a r as a linear combination

x

of grpsp, grpnp, grpbp, we make use of the following

identities,

Irfi; m —3¥:1 , nrfi; . dag-1n, brfi; In fig, (3.3.6)
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Each identity of Eq. (3.3.6) is the scalar product of

gel r r r
0 r with s , n , b , respectively and since the later

x

are orthogonal we have,

1 1 1 1

.1? .- -3—:--grpsp + -3%—grpnp + $111.9 . (3.3.7)

Multiplying this last result by ng and using gJ rrp‘ 1s 8-1

we get,

s’EJ}-- 3 +~3—-nJ. 'girbj- (3.3.8)

Substitutins (3.3.3) into the Eqs. (3.3.3) to (3.3.3)

we get from the later,

1 1 1 ‘

k 1s V(-3-:—ekusksJ + -3-;—ekusknJ e -3-£-0quka)1(3.3.9)

k as v(-§%1ok:unks'1 + -3-:T1-ekunknj e -3-Eienjnkbj) + '3';

(3.3.10)

1 1 1

k 11 V(-3-:—~ek“bksJ e -3-l-:-ok:l_3bkn"I e ~3la-ekubkbj) - -3-§.

(3.3.11)

Taking account of the cross-product relations in equations

(3.3.9) to (3.3.11) we get the following results,
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1 1

wksk m V(g1rbr-3€— - girnr-3%-), (3.3.12)

1

wknk m V(-g1rbrn1k e O + first-3%.) e -3% m -3% , (3.3.13)

wkbk . v11 — «3% . (3.3.111)

We note again that each equation (3.3.12) to (3.3.1h) is

the scalar product of wk with ex, nk, bk, and thus we

get the vorticity components as,

1 1

wt - v(g1rbr-fi-§- - glrnr-fi-g—kkpsp 4- (-3-E)gkpnp +

(Vk "' '3%)8kpbp e (303e15)

Multiplying this last result by at and using pubsk .- IvJ

EJkSkp ' 8:) s '0 5“

w‘1 as V(g1rbr—37:1 - girnr-Swfiihi e njcstg + (V): - -£%)b'1.

(3.3.16)

Using the identity developed in Eq.(3.3.8) on v we get,

Sir-3i; I -3-§s1 + $111 + -3§b1. (3.3.17)

Multiplying this last result by v and solving for

v :s“ we get,
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fV-g-Esin PVgir-glxr-r- - fV(-3iv-n1 e figbi). (3.3.18)

Substituting Eq.(3.3.18) into Eq.(3.1.12) we get from

the later,

i v2 v1 v1 1 i I’t
ifs”-(‘};;-fV(-3;n +-3-5b).fv22n +gr-§;;.0.

(3.3.19)

Adding and subtracting «waft-345,- from Eq.(3.3.19) and

rearraging we get,

-f-1‘1r_.3_.x?(p 4. DR 4- {W2 .,. p.) * *rlvisilzgff _

vm: - -3§)n1 — vggbi . (3.3.20)

Introducing a function U’defined by

sir-3%; - -F121r-3-;;(p + Pa + p. + 1W2) + WASH-di-

ax” ’

(3.3.21)

With this last result equation (3.3.20) becomes,

1r '5’ v i v i
g -3—x? I V(Vk - -3;)n - V , (3.3.22)

or

3%. . v(vu - -3%)g11n1 - v-ggnbi. (3.3.23)
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Equation (3.3.23) is a vector normal to the surfaces

'5 as constant, and if we let its magnitude be %’we get

11'0‘ qu(3e3e23)’

[3% . (may + vzm - £922 . (3.3.21)

Taking the scalar product of equation (3.3.23) with

Eq. (3.3.16) we get,

111.3% . v(vr - '3%)‘3'E gnninJ - vm: - flag-Rubin1 m 0.

(3.3.25)

Also, taking the scalar product of equation (3.3.23)

with sJ we get,

J F. I . I . . 68—3: 0 (332)

Thus, equations (3.3.25) and (3.3.26) imply that the

surfaces 3’: constant contain both the streamlines

and the vortex lines.
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3.§. variation of Energy Along the Streamlines

d 31’ 3 1Substituting the i entity .m . f( .(P.F1) _p- . )

into equation (3.1.16) we get,

_ ' 1 i

fV-S-I; +PV-3;(p_r‘) - -a war-35. 13%) + m3? «33 .

(3.11.1)

Dividins (3.11.1) by (W) and combining the two terms on

the left we get,

I _ _ 21 - 1

33%- -a ‘(si’fie ‘fiJHPW 1 + 3.431; + (m 13.3,, (3......)

where It I (u e pF'1 + prI e p-f’1 + iv”).

Since ngsrsJ .- 1, we get for the first term on the right

of Eq.(3.§.2)

34(83r'rs38‘1r-3-E’: ‘38:.) . &-1('3%)2~(3°3'3)

Usingthc itintity developed in Eq.(3.3.8) on Q1 and substituting

the result together with Eq. (3.11.3) into Eq.(3.‘i.2) we get,

{7‘- = -a"(‘3%)2(mr)" + 11,-315114

(PV)‘1(-fi-§-‘-1 + $221 + 132-129. (3.1.1)

Equation (3.4.h) shows that the change of total energy

per unit mass, per unit distance along the streamlines

depends on: (i) the Joule heat generated, (2) the work

of compression done by the magnetic pressure, and (3)

the variation of the heat flux vector along and perpendicular

to the streamlines.
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h. GOVERNING EQUATIONS IN CYLINDRICAL COORDINATES

In this section we formulate the equations of section

2. in cylindrical coordinates for later application to a

specific flow problem.

5.1. General Cylindrical Coordinates

Introducing cylindrical coordinates (r,0,z), we get

from Eq.(2.1.1),

W.S¢l..§§:fl.1§gfl.o, (5.1.1)

and from equation (2.1.2) we have

v v v v2 v

F(vr'3'i‘£ "' P233!— " P9- " vz'37£) ' ' .3121 3 ”0324230)

(§.1.2)

V V V V V V

f(vr-g-i,3 e Peg; e —:?-°- 4- V2332) - - 33-; +(JzBr—JrBz)

(11.1.3)

v v v v

P(V,.-3-;.3 + é—flgl + V5373). - - 33-5 + (JrBO'JOBr)' (11.1.11)

The energy equation becomes,

20.1); + #83 + 243:4 - ”243% - 93 + 243%) *

g?- + (‘3? + :5 ‘9ng2 T's-:1), (“01-5)
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2 2 2
where Pe(p+pn), eas(u+P/f), -J eJr+J°+Jz

From Eq. (2.1.5) we get

(705-; - fl?) . 0, o (t.

('32-- T) I 0. (b. .

Egg-:9 - {ff-g) =0. (e. .

and from Eq. (2.1.6) we have,

££+§E+;£33e-3;£-0, (‘h-

(}‘);%"'3;2) '- €1.31. ('1.

2

1.6)

1.10)

n s

933—" .. 8-5.2) . Jo!" A (4.1.11)

@322- T) - J2)! . (01.1.12)

and by Eq.(2.1.7)

Jr 135(Er . (v03; vzaon, (4.1.13)

Jo .3010 . (vznr- vrezn, (11.1.15)

.12 3 3(2' . (er0- Year”; (11.1.15)

The above equations (4.1.1) to (5.1.13) are a set of

relations for the following unknown quantities,

p’f’ T’vr9 v0, vz’ Br, Bo, Dz, gr, 80’ 82’ Jr, J0, J2.
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e.2. Axiallz Syngetric Case

In this section we consider Eqs. (5.1.1) to (h.1.15)

in axial symmetry for which we have the conditions,

-3-5 s 0, v0 11 0, Bo as O, and we set v-vr, w-v‘.

Introducing the above conditions into the Eqs. (h.1.1) to

(1.1.15) we get from (5.1.10) and (1.1.12)

Jr m JI a 0, (2.2.1)

from Eqs.('i.1.13) and (11.1.15)

Jr sasr, a, sas', (11.2.2)

thus, by (5.2.1) we find that

hrsnz. 0, (t.2.3)

and by Eqs. (4.1.6) to (1.1.8) we find

1‘30 Ea
«3;- . O, '32- 110, so the Roi-constant.

Prom Eq.(&.1.1§) we find that JO :0, for vow-O, so

that Ed 8 O, and therefore it is zero everywhere in the

flow field, since it is a constant.

The system of equations (1.1.1) to (1.1.15) now

reduce to the following,

.3411!)- . 93'.)- . fifll . o, (4.2.1.)
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(fig-‘5 + «~39 - - {3% + a(vB,-vB,)B,. (4.2.3)

0-3; «1 r39 = - -3§ -a(wBr-vB')Br,I (5.2.6)

(v-s-g + F3%) is (V‘s-11': + tbs-E) 123(wBr-sz)2 +

03;! e :5 + -3-33), (5.2.7)

where we have used J° from Eq. (5.1.15).

Equations (5.1.9) and (5.1.11) now become by using (5.1.15),

-3-:—11 e :5 4—3-31- . 0, (302-3)

Br Bz
(.3;— - ‘3'?) m ,1; (wBr-vB‘). (11.2.9)

The equations (11.2.11) to (5.2.9) together with the

equation of state p- RT, are seven equation for the

seven unknown quantities; i.e., p,f, T, v, w, Br’ 8‘.

The above quantities are functions of z and r, only.
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5.3. Incompressible Case

If the fluid density can be considered as remaining

essentially constant in some flow region, the system of

equations (5.2.5) to (5.2.9) reduces to the followinl:

8.; . g, . £3; 1. 0, (11.3.1)

fur-3% e "3%) 5 fig ’532('3r"‘?g) s 0, (11.3.2)

fur-3; e *3!!!) «0- fig +&Br(VBr-'B,) .- 0, (11.3.3)

P°.('-3'f= . w 3) -a(wBr-vnz)2 - (.335! . :5 . $.22) . 0,

(11.3.4)

B B -

.3—:£ q. I“! 4- &3 I 0, (#0305)

Dr B!
(-I$- s- Ile-) - Pa ('Br-sz) 3 0e (Q0306)

Equations (5.3.1) to (5.3.6) are six equations for the

six unknowns; i,e., p, T, v, w, B 8', fs constant.
r,



5.5. Alternate Axiallz Syngetric Case

In this section we consider equations (5.1.1) to

(5.1.15) in axial symmetry for which we have the following

conditions;

In steady flow the electric field E' may be taken as

constant or in the case of no applied electric field it

may be taken as zero, (55).

Introducing the above conditions into the Eqs.(5.i.1)

to (5.1.15) we get from (5.1.1),

Srsfiv) + g + sip“ . o , (5.5.1)

from (5.1.2)

f('._3_;_ + fissi) . .. .3; .. .1230 , (5.5.2)

from (5.1.5)

f(v-fi + v-s-E) e - -3§ e JrBO’ (5.5.3)

from (5.1.5)

r++++e+—+

from (5.1.13)

(5.5.5)

Jr I «II-3'30 , (5.2.5)
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from (5.1.15)

Jz 83730 , (§.~s6)

from (5.1.10) and (5.1.12)

.3222 . .. er, —3—:£ . Jz'i. ~ (5.5.7)

Eliminating the current density J from Eqs. (5.5.2) to

(5.5.5) by using (5.5.5) to (5.5.7) we get,

from (5.5.2)

90-3;- + ”3%) .. - $3, - lid-3:330 , (5.5.8)

from (5.5.3)

?('-3-',-'. + '83,!) - - -3-E - ind-5:98., . (1.5.9)

from (5.5.5)

fives-g e w-fi) e (tr-3% + w—S—E) e B:(v2 + '2) +

@3135 + :33 + £31). (5.5.10)

Adding the components of (5.5.7) and substituting (5.5.5)

and (5.5.6) for the current density we get,

3;: + -3-:£ .- P330“ 4- I). (’5-‘1-11)

Equations (5.5.8) and (5.5.9) may be written as

2

Phi-I.- + 11-3—5) 4- fi; + 43%;!!!) s 0, (11.11.12)

f(v-gll'. + "'33) + ‘3'; + fitfi) .- 0, (4.5.13)
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To complete the system of equations we add the

equation of state of the gas and the equation of continuity,

p IFRT, (11.5.15)

.3422 g g! 1 .3122). . 0. (4.5.15)

Equations (5.5.10) to (5.5.15) are six equations for the

six unknown quantities p,f, T, v, w, and Bo .

We will now integrate the equations of motion and

energy along a streamline. Thus, multiplying (5.5.12) by

dr, (5.5.13) by dz, and (11.11.10) by ds and using

(5.3.13) for the streamlines we get,

f(v-S—Islr . v E z) . $.11- . 33(5):)" . 0, (1.1.16)

f(w-S-gdr . “3.541) . $.11 . flights . 0. ‘ (1.1.17)

gnu-37:4: . 2.35.12) . (v-fidr . 11-31;“) +22%2 . .12)“ .

(3.31 . gs . .33.)“.11.)

Factoring v, and w, and noting that dv 1s fidr + 73%" etc.

we get,

fvdv e -3-:<ir + -37(%2)dr a: 0, (5.5.19)

fwdw «- «35512 e aibgékz m 0, (5.5.20)
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fwde - de +332(v2 + w2)dz 4» (£5 + :3:- + -3-.Q-z-Ms,(5.5.21)

Adding equations (5.5.19) and (5.5.20) we get,

d(‘}\r2 + big) + (11’ + dbgé) - 0. (5.5.22)

Dividing Eq. (5.5.22) by the tluid density and integrating

‘we get, 2

B

five 4- fwz + [9; e [91%)- . constant. (5.5.23)

For constant fluid density we get from (5.5.23) by

integration from acne reference point,

2 32

(m2 + W) - (m: + mfi) + (24,) + (g; - ,3) . 0.

(5.5.25)

Solving equation (5.5.25) for the fluid static pressure p,

we get

I 2

p 8 Po +‘:§-+ ivafi + wg) - iva2 + '2) - pR -1%F .(5.5.25)

We note that equation (5.5.25) reduces to the classical

Bernoulli equation for the non-radiating, non-magnetic

case.

From equation (5.5.21) we get with e a opt,

2 Q Q Q

a; 3 (Ford 3% + fi-Efivz + w2) + (fopw)"'1(-$-i,£ + 5,!- + .833).

y-oenst .

(5.5.26)
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For the incompressible case f a: constant we get from

equation (5.5.21)

fwd(ov'l' + P/f) a fwd(cv'1‘) e de

a de +aBz(v2 + w2)dz 4-3-3!- + :3: 4- -3—zQ-'-)dz.

(5.5.27)

Upon cancelling de and dividing by five' we get from

equation (5.5.27)

‘31; 8 ghz 4. '2) + (Fc'w)’1(_3;£ + :5 4- £5). (5.5.28)

rheonst.

He will return to the above equations in section 6.,

after we establish the general fluid flow conditions

and the fluid properties.
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5. THERMAL RADIATION AND IONIZATION

In this section we give a brief outline of the

governing equations of radiative transfer, and develop

the equations for calculating ionisation and electric

conductivity of the gas.

5.1. The Equation of Transfer

A high temperature gas omits radiation energy as

a result of rotational, vibrational, and electronic

transitions from exited energy levels to lower energy

levels. The emitted radiant energy corresponding to these

transitions is distributed over a wide wave length region.

The total radiant intensity emitted from a volume of gas

is obtained by sunning the radiant intensities from the

individual energy transitions. For gas dynamic calculations

the simplest approach to the determination of the radiative

intensity of gases is to determine overall emissivities

as a function of pressure and temperature of the gas.

The fundamental quantity sought in radiative transfer

of energy through an absorbing, emitting, and scattering

medium is the specific intensity 1,,defined by,

as,

no. ' I Iv, (5e1e1)

‘whore «8,1. the amount of energy transmitted in the

frequency interval (1!, 71+ 42/), through dA in time dt,

in a direction making an angle 0 ‘with the normal to dA,

and lying within the solid angle dw.
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The distribution of the intensity' 1,)in the radiation

field is governed by a conservation equation called the

radiative transfer equation. This equation, as given by

Chandrasekhar and Kourganoff, is (36,37)

d
- 3%! . 19:71,, - my . (5.1.2)

where, P a fluid density

k,)s absorption coefficient

3,,- emission coefficient

The emission coefficient 1,,for the case in which both

scattering and absorption and emission are present, is

given by Kourganoff as (36),

J,,- xivpr' + (i -‘§§)hphy(T). (5.1.3)

where i; represents the fraction of energy loss due to

scattering and is called the albedo for single scattering,

and 37(T) is the Planck function given by,

321'”) - 2h7’30'2(oxp(%g)
--1)~"'1

(5.1.5)

where k and h are the Boltzmann and Planck constants

respectively.

The two special cases of local thermodynamic equilibrium

and perfect isotropic scattering are obtained from Eq.

(5.1.3) by letting 37°. 0, and so. 1, respectively.
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Substituting Eq. (5.1.3) into (5.1.2) and dividing by

Pky we get,

«11,, ..
..W a 17’ - (vol-7+ (1 - V°)BV(T))9 (5.1.5)

+1

where L, m 5£17dyo , (poa- cos 0).

For local thermodynamic equilibrium ‘fio- 0, and Eq.

(5.1.5) becomes,

My
- ma;- m IV - 32/(1'). (5.1.6)

For isotropic scattering ‘F‘. i, and Eq. (5.1.5) gives,

d1),

-m. I7, - I, (5.1.7)

The optical thickness of the medium between the points

s' and s is defined by,

71.5.) mffky (is, (5.1.8)

5!

so that :17: . swans. (5.1.9)

5.2. Radiation Flux and Pressure

In the general case equation (5.1.5) must be solved

for the specific intensity 1,). The heat flux vector ‘fih

is then obtained by integration as,

292”

'63 a [flysinecosededtdz/ , (5.2.1)

o o a
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and the radiation pressure is given by,

+)

2%"1 I 2 d

-) . .

Since the fluid dynamic equations of motion and

energy in which the above two terms appear are a set of

differential equations, it is desireable to obtain the

expressions for ‘5h and pR as a function of the fluid

properties or their derivatives. this is possible if

local thermodynamic equilibrium may be assumed such that

a local fluid temperature T may be defined at each

point in the flow field. In such a case the governing

equation.for the intensity I,.is Eq. (5.1.6), and for

the optically thick case a solution may be obtained by

a Taylor series expansion of 1,. about 37(T). The

expressions for '5h and p8 as obtained by Zhigulev (18),

Goulard (20), Scale and Sampson (31), and Pai (3e), are

pa 3 #3032905", (5.2.3)

v.3n . - 54x13", optically thin gas. (5.2.4)

3

3R - 16/3(é%§-)VT, optically thick gas, (5.2.5)

where XP is the Planck mean absorption coefficient defined

371

0

w a Q

KP . 3(T)-{jrkvny(r)d , B(T) - 27(T)dvu £§§Lw (5.2.6)

o

and In is the Rosseland mean absorption coefficient
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defined by,

@

dd”

. E 3" 7?
1/K3 8 fdfly V . (5.2.7)

The Rosseland mean absorption coefficient KR

as given by Scale and Sampson (31) for air as a function

of temperature and pressure is,

K8,: (4.52 x 10"7)p1‘31 exp(5.18 x 1o“r-7.13 x 10’922),

(5.2.8)

1, the pressure p in'where Kn is expressed in cm'

atmospheres, and the temperature T in °K.

The Planck mean absorption coefficient KP for

air was also given as,

XP 8 3.3xn. (5.2.9)

5.3. Ionization and Electric Conductivity

One of the most important transport properties in

magnetogasdynamics is the electric conductivity of the

gas which in part depends on the number of free electrons

present or the degree of ionisation of the gas. The

ionization occuring in high temperature gases, such as

that surrounding the space vehicle, is referred to as

thermal ionisation which is a general term applied to the
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ionizing action of molecular collisions, radiation, and

electron collisions.

To determine the degree of ionization we consider

a gas mixture of neutral particles, positive ions, and

electrons which produce partial pressures and are related

to the total gas pressure by,

p a pn + p, + p° - (5.5.1)

The pressure p is related to the temperature T by,

p . nor. N/n? (5.3.2)

where n is the number of molecules per unit volume

and he is the gas constant per molecule or the Boltzmann

constant. If we define the degree of ionization as

5

3
'
5

5
.
1
.

x: . , ' (5.3.3)

where n m 111 are the number of electrons and ions

e

per unit volume, and n 8 :1n + no, then the relation

developed by Saha is (58)

x2 -7 15/2
T? . (3.158 x 10 )7?pr 5:1). (5.3.5)

where, pas total pressure in atmospheres,

q u ionisation energy in Joules,

T 3 temperature in °K,

ho: Boltzmann constant in Jouls/ ° .
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Substituting pa 8 p/(1.013 x 105) into Eq. (5.3.5)

2

fir m (.032T5/2p'1)e1p(- :2!) I “799). (5.3.5)

2
where p is in Newtons per m .

Solving Eq.(5.3.5) for the degree of ionization x 'we get,

x 8 2'2 . (%)* c (50306)

Substituting Eq.(5.3.2) for n into (5.3.6) we get the

electron number density as a function of temperature and

pressure of the gas,

I T,( P) )1

- n (W (5.3.7)

The number of neutral particles may be obtained from

uh I! n - n. . (Se’ee)

Using Eqs. (5.3.2) and (5.3.7) we get the neutral particles

as a function of temperature and pressure of the gas,

“(9P) )*.

85-m( 1 - (--g11r-7' (3.3.9)

we note that in the limit as the temperature T becomes

large the quantity containing X(T,p) in Eq.(5.3.9)

approaches unity so that nn -9- 0, and we have a fully

ionized gas, and as T becomes small the quantity approa-

ches zero and we have a neutral gas.
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An equation for the electrical conductivity of a

partially ionized gas which was found to agree very well

with experiment is (51)

2)
 

n.(e ’ mobs

'e-V-(nnfien 4- n15“) m (5.3.10)

‘3 m
 

Where, me m electron rest mass, kg,

e a electron charge, coulomb,

?' I mean thermal velocity of an electron, m/sec,

'6“ :- electron-atom mean collision cross section, m2,

§;1 m electron-ion mean collision cross section, mg,

The mean electron thermal velocity V'is given as a

function of temperature by,

 

8kT

)* . ’ (5.3.11)

 

5

3' (fi)*( n. ) . (5.3.12)

From equation (5.3.8) we get by using (5.3.6),

=£)m %-’- 1 m (1 + K.1)* -1. (5.3.13)

0 C

From Eq.(5.3.5) we have,

k T

[-1 I Law-'2 a (SeSelk)

.032 T
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Substituting Eq.(5.3.i5) into (5.3.13) we get,

an poxp(q/koT)
a: - (1 4W) - 1. b (Se3e15)

Since in our case noun1 we get from Bq.(5.3.12) by

dividing top and bottom of the last term by ne and

“.1“; EQe(503013)

5

a . (WWW . x") .. 1Y6“I . “r1. (5.3.16)

The mean electron-ion collision cross section ‘5.1 is (51)

1. 15 10'1° 1.211 10“ 22 2
6.1 I —J-—-(T——l ln((n.T) (2) ). I (5.3.1.7)

.5816 T

from Eqs.(5.3.7) and (5.3.15) we have (n. im_ {/cn3)

(P/ko)2)§
-3

(“.')* ' 1° ( 1 + x' . (5.3.18)

Substituting (5.3.18) into (5.3.17) we got the collision

cross section as a function of temperature and pressure,

-10 6 T2

6 m 2' 10 1 (8.8 10 . (503-19)
ei "22£§"'-l n (p/k¢))*)

(1+ K'I

Equation (5.3.16) together with (5.3.19) gives the elec-

trical conductivity of a partially ionized gas as a function

of temperature and pressure of the gas. (fi;nm constant).
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6. SPECIAL CASE or v(r), w(z), ONLY

In this section we consider a solution to the

equations along streamlines as obtained in section 5.5.,

by choosing the form of the streamlines so that v(r) only

and w(z) only.

6.1. E nation of the Streamlines

 

Introducing a streamfunction such that,

v m 31%, -w a: 19% , (6.1.1)

and the equation of continuity (5.3.7) is automatically

satisfied. If we let

7 8 hr, V 8 -2b‘, (6e1e2)

where b is a costant, we have by Eq.(6.i.i),

5,331;- . br, fig . 2bz. (6.1.3)

From this last result we find that

7)’ . 111-22, (6.1.5)

which is the required streamfunction.

It is readily verified that Eq.(6.1.5) satisfies the

Laplace equation

fi_r3_lz+_g.2_¥.. 0, (6.1.5)
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From equation (6.1.5) we find that for 'V- 0,

either r m 0, or z a 0, so that the z-axis is the

stagnation streamline and at z-O, we have the r-plane

through that point. For 7” a 7f!- oonstant we get from

Eq.(6.1.5)

‘ ' 363"}! , (6.1.6)

which is the equation of the streamlines and represents

flow against a disk. To obtain a particular set of stream-

lines it is necessary to evaluate the constant “b' in

Eq. (6.1.6). For this purpose we use the definition of

the Stokes streamfunction; i.e., 217‘Y is equal to the

volume flow rate between any two streamlines for constant

density flow. Thus, at any point z upstream of the wall

the volume flow rate between the stagnation streamline

and any otherstreamline r distance away from it is

given by

221/. (fl’r2)V, , (6.1.7)

where V is the fluid velocity of the oncoming stream.

Thus, by Eq.(6.1.7) and (6.1.5) we have

V. §Vr2 c bras, (6.1.8)

and b I *V/z. (6e1e9)

Now if the velocity V is known at some point z m z1

upstream from the wall; i.e., at z m z1, V m V1, and

we have by Eq.(6.1.9)

b I iv1/I1 . (6.1.10)
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Substituting the result .1 Eq.(6.1.10) into (6.1.5) we

83t9

)V-=(1V, 21)r21 . (6.1.11)

Solving (6.1.11) for r we get,

’9’
r m(W)*, (V70. (6.1.12)

we may now obtain explicit expressions for the pressure

and temperature distribution along the streamlines given by

Eq.(6.1.12).

Prom Bq.(6.i.2) we have

v2 + w2 a b2(r2 4- 5z2). (6.1.13)

Substituting sq..(6.1.13) and (5.2.3) into (5.5.25) and

noting that V2 a v2 + w we get,

of 2 1y 2 5gg1“ B2
me1+§F-+}?Vf-}fb(fi+5£)--F-§F, (5.1.15)

where we have also used (6.1.12) to eliminate r.

We next obtain the expression for the temperature

distribution along the streamlines from Bq.(5.5.28) by

using sq..(5.2.5), (6.1.2), (6.1.12) and (6.1.13),

_ 2,,2 528 2"

gg-l. Tv-é-g-fi—(tg— + 522) + fiz- . (6.1.13)

1” acoust.
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Equations (6.1.15) and (6.1.15) are two equation for the

two unknowns p and T along the streamlines given by (6.1.12).

We now consider the magnetic field of the following

form B 1.2

B I -:"T1' o (6o1o16)

Introducing

a g (Vb)
(6o1o17)

and using Bq.(6.1.12) to eliminate r in (6.1.16) we

got

2
B1r1z

a . (6.1.18)33 

Substituting (6.1.18) 1nt6 (6.1.15) and (6.1.15) we get,

Bzraz2

p . p1 . p_ . mi - 1962(1/5 . 5.3) - pa - 2,1"; , (6.1.19) 

 

g . 11R?" z - A'(i/a + 333-), (6.1.20)

Y accnst. ‘

whore 225K 3') ( 3ft: )

‘3 m W , and A" 3 WT— . (6.1.21)

7
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6.2. Temperature and Pressure Distribution Along Streamlines.
 

The pressure distribution is given by Eq.(6.i.i9)

which can be evaluated once the tenperature distribution

1. known. The temperature distribution 1. given by (6.1.20)

which is a first order non-linear ordinary differential

equation of the following general form,

§§|m f(z,T), (6.2.1)

with the condition of T m T , at s m z1.
1

We propose a solution of Eq.(6.i.20) by a method of

successive approximation. A.proper development of this

method is given by Coddington (57). The successive

approximate solutions to Eq.(6.2.i) are defined to be

the functions T1, T2, T3, ”“‘, given recursively by

the formulas,

T1(z1) a T1 (initial condition)

2

T2(z) a: T1 +ff(z,T1)dz,

'1
z

T3(z) m T1 +jf(s, T1(z))dz,

21

z

T.*1(z)- T1 +djrf(s, Th(z))dz, (6.2.2)

z
1

where n - i,2,3,°'°’°°°'.
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It may be noted that the more nearly correct a particular

approximation Tn(z) is, the better will be its successor

Tn*1(z). In our case we will obtain a good first approxi-

mation by integrating Eq.(6.i.20) with the magnetic term

neglected. Thus, by neglecting the magnetic term in Eq.

(6.1.20) and integrating by separation of variables we

get for our first approximation,

T2 3 (c1 - SAalnl)-1/3’
(6.2.3)

whore c1 is obtained from the initial condition

01 I T;3 ‘f 32.811121. ‘6e2ob’

To obtain the second approximation we substitute

Eq.(6.2.3) into (6.1.20) and (6.2.2), which gives

s s

‘11
‘1'3 m T1 1» '32“1 - 3ARlnz)'&/3dz - 3— (i + 5z3/a)dz.(6.2.5)

1 ‘1

Integrating and using (6.2.5) for c1 we get from (6.2.5)

T3 3 (T‘;‘3--3ARln(s/z1))"1/3 + £50514) 4- 3%“: + z"). (6.2.6)

We note that for z 3 z1, T3 m T1 as required by the

initial condition, and as 2 ->- 0, T3 -> (‘H’i/a + AM‘i/az).
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A higher approximation may be obtained by re-sub-

stituting Eq.(6.2.6) into (6.2.2) which gives,

~IT1+2(21-2)+-‘§(8:-2§)+

5

TL...[01-3A31n2)-1/3 ... ¥(z1-g) a A”(21-4" dz. (6.2.7)

8

Prom Bq.(6.2.7) it is apparent that the formal

integration process becomes more and more complicated

for higher approximations so that a numerical process

would have to be used sooner or later in order to obtain

the nth order of approximation. Therefore, we propose

a piecewise application of our second order approximation

(6.2.6) over a number of smaller intervals by dividing the

range of integration into a finite number of smaller

intervals. Thus, dropping the subscript 3 in Bq.(6.2.6)

which denoted the 2nd approximation , we may use Eq.

(6.2.6) to conpute the tenperature in the range zzszsz1

where z2 may be taken as close to 21 as desired to

obtain the necessary accuracy. After computing the

temperature at z2 we may consider this point as our

initial condition and apply Eq.(6.2.6) over the next

interval s3£ s fizz with z2 playing the role of 21.

We may continue in this manner until the entire range of

interest is covered.
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In general we may write Eq.(6.2.6) in the following

form,

T,”1 m (T'1"3--3Anln(z/z,))"1/3 .1;!(.1-.) +13%(z:-z3), (6.2.8)

where T1+1 is the temperature at any point in the

interval z1 Sz521 and T1 is the temperature at
+1

the point zi; i a i,2,3,°""", represents the number

of intervals under consideration. Thus, we consider

equation (6.2.8) as the solution to the temperature

distribution over the entire range of interest.

i,e., 0< s25 z1.



PART II: VISCOUS RADIATION HAGNETOHYDRODYNAMICS

7. GOVERNING EQUATIONS OP VISCOUS FLOW

7.1. Fundamental Equations

We consider a viscous, heat-conducting, steady flow

of an ionized gas in an eloctro-magnetic field with thermal

radiation. The governing equations for the present case may

be obtained by modifying the system of equations derived

in section 2.3. The modification consists of adding the

viscous stress terms to the equations of momentum (2.3.2),

and the viscous dissipation term to the equation of energy

(2.3.3). The heat flux vector '5 is also modified to

account for the heat conductivity of the gas.

The viscous stress term is given by, (56)

IEEJ

9 (7.1.1)

c)

where 7“” are the components of the stress tensor given

by

1‘" _ F533 , 3L3) - $53 . (7.1.2)

The viscous dissipation function is obtained as,

Ft . gnflJ—g-S. (7.1.3)

50
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The heat flux vectors now become from (5.2.5) and (5.2.5)

6 . (Kt + UTE-)7" optically thick gas,

v.3 .V-(KtVT) - 5KPJBT3, optically thin gas,

The system of equations now become,

I...ntu,

fVJ-g—S- + 313-33» - raj-351- - {ES-J- :- 0.

energy,

51—51—23 »
pNJBfi-§§}7- VJ-ggsi+ A§E;'+'—+.

magnetic field Eq.

VJ 3H1 . 3.1.3.3. + Eli-351- sql-g-lj-(g‘n (’31).

and the equation of state, p m fBT.

continuity,

(7.1

(7.1.

(7.1

(7.1

(7.1.

(7.1

(7.1

We note that the above system of equations are con-

siderably more complex than the classical NavierbStokes

equations of classical fluid dynamics.

.5)

5)

.6)

.7)

8)

.9)

.10)
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7.2. Transformation to Streamline Coordinates

The transformation of equations (7.1.6) and (7.1.9)

was given in section 3. and will not be repeated here.

By introducing the velocity and magnetic field components

from (3.1.1), (3.1.2), into the equations of momentum (7.1.7)

and the equation of energy (7.1.8) we get,

PchgS-‘il . 213$ - prJ-g-g-‘fl - €51 . 0, (7.2.1)

fv-J-gi-J- sedan-WE“a Fh - SHWJ‘F‘a an]: ) +

pvflnnigig-11 — 77.3.2.3,35- + gn'ru-g-SLI. (7. 2. 2)

Enanding (7.2.1) and using si-g—f :- -3-.- etc., and also

x

(3.1.3) “4 (3.1.11) we get

fv-gls . Pvzn + 213-33 - 23131 .- 0. (7.2.3)

Expanding equation (7.2.2) and nuns (3.1.11) we get,

fv_3!l- . _&-1(‘Jr air an ) _ $3.22 + '3; + gki’r‘kJ-g-b-v-‘h.

(7.2.5)
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7.3. Stream inc-Pressure variation Curvature and Torsion

 

The variation of the total pressure Pt along the

tangent, principal normal, and binormal directions of the

streamlines may be obtained by taking the scalar product

.1 (7.2.3) with giksk k, ‘ikn , gikbk, respectively,

P J37'1 k 1 k 11 k d t 5.453
f7 s 51k. 4- szkn ‘ik’ 4- g 51k. a -g1ks a 0

(7.3.1)

.2..1.2...wéwe}
(7.3.2)

P J

fv I.1g1kbk + fvzkn‘gnb" 4- gugikbk-g-j- 4195-33— .0

(7.3.3)

Making use of the orthogonal properties of s1,n1,b1,

and 1

83811-82");4.)— n43;-4......

we get from (7.3.1) to (7.3.3).

P

“'3'; * '31: ' 612L351 ' 0’ ”'3'”

szt O '33" " Sikn ‘fi’ . 09 (70305)

P

'55; - Inglis—a‘1 . 0, (7.3.6)

where the total pressure Pt I (p 4 p-'+ pa).
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From Eq. (7.3.4) we find that the pressure variation

along the streamlines depends on the momentum change as

well as on the viscous stresses. The same holds true

for the pressure variation in the normal direction of

the streamlines. From Eq. (7.3.6) we see that the

pressure is no longer constant in the binormal direction

of the streamlines for the viscous case under consideration

here.

Streamline Curvature

An expression for the curvature k of the stream-

lines may be obtained in terms of the fluid density f ,

the velocity V, the normal pressure gradient -3-:-t- ,

and the viscous stress term by solving Eq.(7.3.5) tor k,

P A

k . (Fv9)'1(giknk_313'1 - .331). * (7.3.-n

Torsion

To develop an expression for the torsion of the

streamlines as a function of the flow field parameters

we begin with the Frenet formula

1

-'I'n1 - 3%. (7.3.8)

The_unit binormal vector in Eq.(7.3.8) is by definition

b1 . eijkgjpgkqspnq. (7.3.9)
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An expression for the normal vector 11‘1 may be obtained

by solving Eq.(7.2.3) as,

n‘1 s: (fvzh)’1(-?V-3l;sq - gar-35;:- +-313;). (7.3.10)

Substituting Eq.(7.3.10) into (7.3.8) and making use of

the following identities,

eungpgkqsps‘l m o, gkngr e 6:, ngsp a VJV'1,

we get the binormal vector as a function of the flow field

parameters,

p

b1 . (f’v3k)’1.13"(vJ¢kfl - vJ-g-it). (7.3.11)
'1 ax?

differentiatinx (7.3.11) along a streamline and sub-

stituting into (7.3.8) we get the following eqression

for the torsion of the streamlines,

P
-111 . .133-3;{(W3k)"vj(skq-3§: - fig. (7.3.12)
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7 . ll . Vorti01tz

Substituting Eq.(3.3.18) into (7.2.3) we set

-PV(-3-l¥n1 + -3-E01)+?V2m1+ Vgir-g-I—r- + Sir-3'2}- a Jm0.

(7.4.1)

Adding and subtracting ivzgir-gé from Eq. (7.11.1) we get,

x

‘Ffi'msiv'hi " "'31?“ * “RM3; ” “1&3?-

421'2- .2 v.11.()xr {- g ()1, 0. (7.11.2)

Dividing (7.5.2) by P and transposing some terms we get,

-Fsir-31$? + if’V2) + if1V2¢1r-3-£;++-§L:—-
xr

(v21: — v-gh‘ - VHS-£9. (7.41.3)

Introducing a function 5 defined by,

F r

sir-3:; - -P'1e"-g;;(l’t + 1}sz ) + iF‘stikg-E; +f'1-g-3n

(7.k.a)

equation (7.4.3) becomes,
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Big-E; . (v21: - “3%)“1 - $39.1. (7.a.5)

Multiplying equation (7.&.5) by 531' we get,

333;. . (v21: - V—ghfini - v-S‘Ygufi . (7.11.6)

Taking the scalar product of Eq.(7.4.6) with (3.3.16)

we get,

"1.3% . o. (7.1..7)

Taking the scalar product of Eq.(7.4.6) with sJ,we get

.13.. ' ..I-g-Jv 0 (7&8)

Thus, equations (7.h.7) and (7.§.8) imply that the

surfaces ‘3'. cenetant contain both the streamlines and

the vortex lines.



58

7 . 5 . General Cylindrica11__Coordinates

The governing equations of viscous, radiation magneto-

hydrodynanics in cylindrical coordinates are as follows,

‘Sfifvg + £1.55 + F33<Fv0) + ‘3'i(7vz) . 0, (7.5.1)

—‘3% e (JOBz’JzBO) - (EL-37(r’cr) 4. F3432 _ If; 4_ ‘SE‘E'Eb

(7.5.2)

fivr.3.§.;9—3.X£.3£;2.vz-3;2).

- 73; . (gar-nag -(;—,—§;<r21;,) + 73-159- + g; 3)

mfg—:2 . :9—32? + 33;!) .' . .

- 3% + (“x-3.4.3.) -<. Art-z) + 73:51 + ‘3?!" "-5-”

fur-3.; . éfi‘ . 193%) . (Vr% + git-3% + Vz-fi) +

53.37.. (££.-§£.;a;§—.-3§l). (7.5.5)

where Pep+pR, ee(u+P/p), J2-Jgle,+J:,
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and 7+ - 7:..(43?) dw.-3:2 + é) + 1:423?) +

1:90-35?) + 17$?) *fisfi’Q‘X‘g 4- £2) +

RPS; 4- 3%). (7.5.6)

6. Axiallz Symmetric Case

The governing equations (7.5.1) to (7.5.6) may be

considerably simplified for the axially symmetric case

for which we have the following cenditions;

.33 . 0, v0 3 o, .10 a 0, 1:0 - 1:1 .- 0. (7.6.1)

We also let Vr a v, and View, and get by introducing

these conditions into (7.5.1) to (7.3.6),

53‘?" . 2.;- . {HM - 0. (7.6.2)

an}. fig» . .. ‘32 - Jzno--(;137(r7;r) . 1;”).(7.6.3)

(«v-31 49.47.”. -<;-3-,=<r1;,>+‘3_-—). (7.“)

f(v—3%+v-3-§) - (v—3%+-$%)+%E+F++

($1? . 3°}: . 523).. (7.6.5)
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whore ,

7+ - uni-E) +7zz<fl¥> + W-fi + 431%" ”'6'“

From Eqs. (6.6.5), (4.6.6) we have,

we now have J2 a J2+ J2 a: 323%(v2 + wz). (7.6.8)

The current density in (7.6.3) to (7.6.5) may now be

eliminated by usinz (7.6.7) and (7.6.8) as follows,

Fer-3% + w z) . - 1}; -mg - (.- rmg.) + #Lfifie)

f(v—S-‘I': + “5%) e - .333: ‘3'”: -(r r(r1;s) «I» #L (7.6.10)

f(v-5-°-+w-3—) I (“3“ "3?) ‘33332" 4"2)

i“ + (.33; .,. Eq.-E + $5). (7.5.11)

The above equations (7.6.9) to (7.6.11) may be

integrated along a streamline by multiplying Eq. (7.6.9)

by dr and (7.6.10), (7.6.11) by ds and using the equation

of the streamline wdr - vds and noting that

dv e fidr 4- «Sid: etc. we get,
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fvdv e ~£dr +évB£dr + (F's-f(rtr) «I» #Mr .0. (7.6.12)

Pwdw 4- £612 +JwBfids + («r-Sfirtz) + 1;!)41 .0, (7.6.13)

fwds :- de +JB:(v2 + V2)dx + )7de 4- (-3-:—1-. e :3:- + 621”“

(7.6.14)

Adding Eqs. (7.6.12) and (7.6.13) we get,

d(‘}v2 + #2) + d? +28%(vdr 4 wds) +

(737(rfir) 4- #Mr 4» (3:3?(rt') «o- -3-1:E)dz :60. (7.6.15)

We now let V be the fluid velocity along the streanlines

dr 2 dz 2 ds 2
and noting that vdr 4- wds m «(a-{L + 5T6)— . La?)— 8 Vds

we get from (7.6.15)

you v2) . dP .avngd. . 1; . 0, (7.6.16)

whore

6.: 6+1;6m+616th

Noting that w :- ds/dt we get from Eq.(7.6.i§)

(dz/dt)de a: (dz/dt)dP .éngwans . i462 . (2.62, (7.6.18)

Q Q Q

where, Q. e 933,; + 3:!- + 37,-). (7.6.19)



62

Dividing Eq.(7.6.18) by dz and multiplying by do and

noting that ds/dt a V we got,

five. . var . a nfivzd. + fid- . (1.e., (7.6.20)

or fig; . v‘a‘l} . anfivz . F1 . Q. . (7.6.21)

To complete the system of equations we add the

equations of continuity and fluid state along a stream-

line

§;(pv) . 0, (7.6.22)

and

. Mfg-1.1%). (7.6.23)

Eqs. (7.6.16), (7.6.21), (7.6.22), and (7.6.23) are four

differential equations along streamlines for the four

quantities P,f’, T, and V.

The four equations (7.6.16), (7.6.21) to (7.6.23)

may be solved for the fluid variable gradients along a

streamline as follows; fron (7.6.16) we have,

and from (7.6.22) g; . _ 79%; . (7.6.25)

Multiplyins (7.6.24) by v and adding the result to

(7.6.21) we get from the later,
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Pvfi’; + (”Veg-X- - F) - Q, + 331% =- 0. (7.6.26)

The velocity gradient may be eliminated from (7.6.26)

and (7.6.24) by using (7.6.25); thus,

flops-:- - V35; - F6 - Q! + ya? u 0, (7.6.27)

-V2§-§«1-(al£+dpRa—-2+3VB + g: a 0. (7.6.28)

The fluid pressure gradient may be eliminated from (7.6.28)

by using (7.6.23) and using (5.2.3) for pH we get,

16313T3 dT V2 6 2 '73
(Rfd- T)“ 4- (RT - )a-‘f +3VB 4- a; m 0, (7.6.29)

Solvins (7.6.27) for des we got,

31’- r2696“: -(P—‘—6—)+"§>. , (7.6.30)

Eliminating dF/ds from (7.6.29) by usins (7.6.30)

and solving the result for the temperature gradient we get,

- Q
n (g; «xv—$4) - (fix-I5) -av62

3'5 " ———31635T“
. (7.6.31)

-3;—+RF +cp?(%§-1

 

R
Introducing cp a 5,5- and RT as p/f equation (7.6.31)

becomes
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(3% «(51—639) - (33x3?) -.ama2

r=-—3;
. 1633’ ( RT

T*§1*y§(;2'1”

- 1 

1 . (7.6.32)

The temperature gradient may now be eliminated from Eq.

(7.6.30) by using (7.6.32) which gives.

g; . v72(§(7§f)11 - (El-$31) . g) a r212 . (7.6.33)

The velocity gradient may now be obtained by substituting

(7.6.33) into (7.6.25) which gives

—. f

3% . _ 77(“79‘1 - (2.1.1.32) . g) .. 7,2, . (7.6.34)

The pressure gradient may now be obtained by substituting

(7.6.32) and (7.6.33) into (7.6.23) which gives,

The fluid variables p, f’ , T, and V may be obtained

by simultaneous solution of equations (7.6.32) to (7.6.35).
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8. GEOMETRIC PARAMETERS 0F STREAMLINES IN AXIAL SYMMETRY

8.1. Streamlines of the Form a - f(r)

In this section we derive a set of relations for

the geometric parameters '3, 5', 6, k, and ref the

streamlines which are expressed by an equation of the

form n a f(r), where s is the axis of symmetry.

The position vector ‘2 of any point on the streamline

is given by,

Ti . ri . 2,1, (8.1.1)

where i and J are unit vectors in the r and s directions

respectively.

A.vector tangent to the streamline is given by,

g . 1 . g-fg , (8.1.2)

and the unit tangent vector 3' is obtained as

. fl-g/[g' . (1 . a! )(1 + ($32)“) . (8.1.3)

Since 33's. :- 1, we have 3%; e 0, so that a; is a

vector in the direction normal to '3, and the magnitude

of this vector is the curvature k of the curve.

Differentiating Eq.(8.i.3) with respect to r'we have,
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.. 2

g; - -(1. g1)(1.(§;)2)-3/2(§-;—):;(145—:Mr’—-§1..<e 1.1)

we also have

11" (arr/.11:
a; . 332.32:a; . 3.5/5. 33:13.). (1.1.5)

Using (8.1.2) and (8.1.11) in (8.1.5) we get

i» 2

5.: . if,“ - §§1)(1 1 ($954. (8.1.6)

The curvature k of the streamline is now cbtaine as,

k .‘g'. fin + (5%)2Y3/2 . (8.1.7)

The unit vector normal to the streamline may be obtained

from the Frenet formula as,

‘1? .1 rig 11 (J -. 5%1)(1+ (g—’1‘,.)”)"} (8.1.8)

The unit binormal vector of the streamline is given by,

3.?xn. «4&)

Substituting Eqs.(8.i.3) and (8.1.8) into (8.1.9) we get,

5 1 (3 1 (%)%)(1 1 (392)“. 8 3 ' (8.1.10)
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thus, S is a constant unit vector 111 the direction

of O and perpendicular to both '3 and '5.

From the Frenet formula for the torsion of the

streamline we get by taking the dot product,

a1dE’
-T’- "a; . (8.1.11)

Since 3 is a constant unit vector we have ‘31-? u 0,

and by Eq.(8.i.ii) we find that the tersion of the

streamlines is zero. Hence, the streamlines are plain

curves.

8.2. Streamline Curvature k for a f s r

For the special case of the streamfunction of (6.1.e)

'° h‘" 7’. 1112:, (8.2.1)

°’ 2 . (271)1-2. * (3.2.2)

Differentiating (8.2.2) with respect to r we get,

a— m -- (V/b)r'3 , if; m 6(V/b)r"h e (8.2.3)

r

Substituting (8.2.3) into (8.1.7) we get,

k . 6(Wb)r"’(1 + I1(')‘,€’b)"’1-"5)"3/2 . (8.2.11)

Using Eq.(8.2.2) in (8.2.11) we get

k 11 622('I’/b)’1(i + h(Wb)'183)'3/2, forVfl 0, (8.2.5)

We also have for arc length, (ds)2 1- (ds)2 4- (dr)2, (8.2.6)

‘33—; - (1 + mdfi. (3.2.7)

so that



PART III: NUMERICAL SOLUTIONS AND RESULTS

9. INVISCID INCOMPRESSIBLE FLOW RESULTS

The general purpose of Part III is to investigate

numerically the effects of various physical phenomena

on the flow field variables. Specifically, we are

interested in evaluating the effects of the geometric

streamline parameters, such as the curvature, the effects

of the magnetic field, and the combined effects of

thermal radiation and Joule heating on the temperature,

electron density, and electric conductivity distribution

along streamlines. The procedure consists of numerically

evaluating the governing systen of equations which were

developed in Parts I and II.

9.1. Physical Streamlines and Parameters-

The streamlines to be considered in this investiga-

tion are those developed in section (6.1) and are given

by Eq. (6.1.12) for various values of V11 '93: constant

70. By using Eq. (6.1.8) for various values of Vwe

obtain the system of streamlines shown in Figure Ill-i.

Since. the streamlines are symmetric about thez-axis,

only those on the positiverside are shown. We note that

the streallines approach both axes as we move in an

increasing direction of z and r. The streamlines may

be considered to be those of a fluid flowing in the

68
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negative 2 - direction against a disk of radius r

located at z a 0. Our nain concern here will be to

calculate the flow field variables along these stream-

lines and determine the combined effects of the streaa-

line curvature k, magnetic field strength B, thermal

radiation and Joule heating.

We begin by computing the streamline curvature

variation along the urea-11h.- by 11.111; Eq. (8.2.5).

'The result is shown in Figure Ill-2, as a function of

distance 2 from the surface of the disk. Bron the figure

‘we note that the streamline curvature for all the stream_

lines approaches zero very rapidly with distance from the

‘wall. As we approach the wall along some streanline the

curvature increases rapidly and then drops to zero again

near the wall. It is also noted that the curvature of

the streamlines increases more rapidly for those that

are closest to the z - axis, so that the streamline W?

has the largest curvature increase.

9.2. Pressure Distribution Along and Normal to Streamlines

In this section we evaluate the effect of the stream-

line curvature k, the nagnetic field B, and the thermal

radiation pressure pa , on the fluid pressure gradient

normal to the streamlines and on the pressure variation

along the streanlincs.

By solving Eq.(3.2.5) for the nornal pressure gradient

we get,
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§§.—pv2h-a§5-3:—n. (9.2.1)

where k is geven by Eq. (8.2.5). pH by Eq. (5.2.3), and

4’. dpn dr _ 2 air: 2 ,

a" F‘“) p<V/11)57%<1+113(7/1)'5)* ‘9'“)

where we have used Eqs. (6.1.12), (6.1.16).

The normal pressure gradient given by (9.2.1) evaluated

along streamlines is shown in Figure III-3 as a function

of distance 2 from the wall. From the analysis the

following was found:

1. The effect of the radiatien pressure gradient is

negligible.

2. The effect of the aagnetic pressure gradient is small.

3. The effect of the streamline curvature is largest in

the region of higher fluid velocity.

The fluid pressure distribution along the streamlines

was obtained by evaluating Eq. (6.1.19) and the result 1.

shown in Figure 111 - h as a function of distance fron the

wall. We briefly note the following results:

i. The effect of the radiation pressure pH is negligible.

2. The effect of the magnetic field B is considerable

as indicated for the pressure distribution along the

streamline .

3. The pressure increases and decreases with the curva-

tures of the streamlines.
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9.3. Temperature, Electron Density and Electric

Conductivity Distribution

In this section we consider the effect of thermal

 

radiation and magnetic field on the temperature, electron

density, and electric conductivity distribution along

the stroallines. The temperature distribution is ob-

tained by using Eq. (6.2.8), and the electron density and

electric conductivity distribution is computed by using

Eqs. (5.3.7) and (5.3.16) respectively.

The results for various values of the nagnetic field

strength 8 are shown in Figures III -5 to III - 7 for

the streamline k, as a function of distance from the wall

a . We note from Figure III - 5 that the tenperature

decreases continuously due to radiation accoling for

the case of zero nagnetic field B. The effect of an increase

'in magnetic field strength B is to increase the tenpera-

ture for a short distance after which it drops nore

rapidly due to radiation cooling. Thus, we see that the

two phenomena create opposing effects.

By using the Planck nean absorption coefficient KP

as a parameter we see from Figure III - 5 that a greater

decrease in temperature oecures for small increases in

values of KP. The same remarks apply to the electron

density and electric conductivity distribution shown in

Figures III - 6 and III - 7 respectively.
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In order to determine the effect of different stream-

lines on the flow variables distribution, two solutions

are shown for streamlines Wand K in Figures III - 8 to

III - 10. We note that the magnetic field effect is not

nearly as great for streamline 7%.. it is for Z". This

behavior may be explained through the fact that the

magnetic field B was taken to be inversely proportional

to r2 as given by Eq. (6.1.16), so that the magnetic

field decreases as we move away from the s - axis.

Finally, it may be noted that the temperature,

electron density, and electric conductivity variation

along the streamlines is considerable and therefore, is

an indication of the importance of considering thermal

radiation and magnetic field effects in high temperature

MED flow field calculations.

9.§. Velocity Distribution

The velocity distribution along the streamlines is

obtained by solving Eqs. (6.1.13), (6.1.12). The result

is shown in Figure III - 11 as a function of distance 2

from the wall. we note the following results;

i. The velocity decreases almost linearly with s for all

streanlines at a distance greater than about 20 cm.

2. The velocity at each point along the streamlines

increases as the distance of the streamlines from the

z - axis increases.
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3. The ninimum velocity along each streamline occurs

very closely at the point of maximum curvature

of the streamline as may be seen by inspection of

Figure III -2 , and III - 11.

It was assumed that at s m to cm the magnitude of

the velocity V for all streanlines was the same.
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10. VISCOUS, COMPRESSIBLE FLOW RESULTS

In section 9‘we investigated the variation of the

flow field parameters along the streamlines under the

simplifying assumption of constant density flow; i.e.f’.

constant. The principal purpose of the present section

is to deternine the effect of variable density on the

flow field parameters distribution along the streamlines

including viscous, heat conduction, radiation and magnetic

field effects.

 

10.1. Temperature, Pressure, and Density Distribution

The temperature T, pressure p, and density f ,

variation along the streamlines is obtained by simul-

taneous solution of s... (6.1.19), (7.6.23), and (7.6.32)

respectively. The velocity distribution contained in

these equations is taken as a first approximation as that

given by Eq. (6.1.13) for the incompressible case. He also

require an expression for fie, fi/ds, and Q., which we

evaluate as follows:

The viscous stress tensor components given by Eq. (7.1.2)

in cylindrical coordinates for the axially symmetric case

1;} - F(2r3%}- 2/31-3¥}+

1;, - i( z - 2/30fEE-t

are,

“
1
'
4

"
i
l
fl

+

“
I
:

V
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By using Eq.(6.1.2) the stress components become,

1;, . §(2h - 2/3(b . b - 2b)) . 2Fh,

1;z . F(-hb - 2/3(b . b -2b)) - -hfih (10.1.1)

3.2.3,...

By using Eqs.(10.1.i) in (7.6.17) we get

7; 11 (@Mr, or at]; :- (22:2)(§§)° (10.1.2)

By using Eqs.(8.2.2), (8.2.3). and (8.2.6) in (10.1.2)

we got

37.}. . 2W1?! . .112)“ . (10.113)

By using (10.1.1) in (7.6.6) we get,

5:. . 7:1(‘3'3’ . 3263;) . (2Fb)b . (.fihxzh) . 10;»? (10.1.1)

From Eq.(7.i.5) we have

Q .x-sz"-txar" (1015). ta. B C O O

The viscosity' fi' and thermal conductivity Kt are

given by, (53)
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i . 1.1162(10‘6)'r3/2(1 . 1&3)“ J‘—
m-sec ’

(10.1.6)

Kt . 1.991(10‘3)r3/2(1 .3113)"1 -£=!L-.

m-secoK

The solution to the system of equatiens for f, p,

and T was- obtained by using a modified Bunge-Kutta step-

by-step integration process. The modification to the standard

fourth-order process was made to allow integration in the

decreasing direction of s. The modified process was tested

by comparing the solutions obtained with the standard and

modified process when applied to a differential equation.

The same solution was obtained with both processes.

The well known standard fourth—order Runge-Kutta

integration process is as follows;

+ 2b e b“),. yn . 1/6(b1 . 2112 3
yn+1

ht(zn + in. r, + tbz).

u

I

h, . ht(zn . h, yn . b3), (10.1.7)

where h is the step-size and %§1- f(s,y).

To allow integration in the decreasing direction
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of the independent variable 2 the standard process given

in (10.1.7) was modified to the following form;

yn+1 . yn - 1/'6(h1 . 2h2 . 2h3 . b“),

b1 ' hf(zn9yn)s

2 ‘ h1(zn ‘ Th: ya ' Th1):

b3 - 111(2n - th. V, - ibg).

bk 8 h1(zn - h, In - ”3” (10.1.8)

where h is the step-sine and 15%». f(s,y) as before.

The numerical computations were performed on an

IBM 1620 digital computer at the General Motors Institute

computing laboratory with the following initial values;

1-

1-

?; '

2000 m/sec,

50 cm,

20,000 9x,

.oet29 hg/h’,

p1 . 91221 . 2.5122t6(105) n/na,

R.

3'.

B1 c

287 n-m/kg-ox, (10.1.9)

1.§

0, .2, 0r .k webers/mz.

The step-size used in the computations was h a .01.
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Inasmuch as each step in the calculations is the

same, we will briefly describe and show the results for

a single step away from the initial conditions along

streamline '7;.

We note from Eq. (10.1.8) that each step in the solution

for the dependent variable y (y s T in our case) requires

four evaluations of the differential equation to be inte-

grated. In eur case the temperature distribution is given

by Eq. (7.6.32) where the right hand side is evaluated by

using the initial conditions given in (10.1.9) together

with Eqs. (10.1.3) to (10.1.6) and the electrical con-

ductivity is evaluated from Eq. (5.3.20). Thus, the

temperature T may now be calculated one step away from the

initial conditions. i.e., at z =3 .39 meters. By using the

Just calculated temperature we may obtain the pressure at

this point by evaluating Eq. (6.1.19) and the density is

now obtained from the equation of state of the gas 1’- p/BT.

The process may now be repeated for the next stop.

The results for the first step are shown below:

a s .39000000E+00 T s .1986h6iiE+05 p s .25h22t608+06

P :- .11536686118-01 no. .711155286811-18 & .- .12683507E+05

The density distribution f(z,’f’) is shown in Fig.(III-i2).

we note the following results:

i. The density increases and then decreases as we approach

the wall for all streamlines 7’, shown.
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2. The increase in density is less for streamlines located

farther away from the z - axis.

The pressure distribution p (2,1?) is shown in

Fig-(III-i3) and indicates the following results:

i. The pressure increases and then decreases as we approach

the wall just as in the incompressible case.

2. .A comparison of the compressible, Fig.(III-13). and

the incompressible pressure distribution, Fig. (III-h),

shows that the results are qualitatively the same, but

differ considerably on a quantitative bases.

3. The compressible pressures are higher than those given

by the incompressible flow model for all streamlines

Show“ e

A.direct comparison of the compressible and incompres-

.sible temperature distribution T(s,1V) for two neighboring

streamlines is shown in Fig. (III-15) from which we note

the following results:

i. The temperature distribution is qualitatively the same

for the compressible and incompressible flow model.

2. From a quantitative point of view the compressible

flow model yields a higher temperature at all points

along the streamlines.

3. The effect of radiation cooling is to decrease the

temperature considerably.
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10.2. Electron Densitzfand Electric Conductivity Distribution

Having obtained the compressible pressure and temp-

erature distribution it is now possible to calculate the

electron number density and the electric conductivity

distribution by using Eqs.(5.3.7) and (5.3.16) respectively.

A.direct comparison of the results obtained from the

compressible and incompressible flow models is shown in

Figs.(III-15) and (111-16).

From the two figures we note the following results:

1. Both the electron density ne(s,1V), and electric

conductivity &(s, 3") distribution show a qualitative

similarity to the incompressible case.

2. From a quantitative point of viaw we note higher values

for both no. and a in the compressible case.

3. The effect of radiation cooling is tchecreaso both

the electron number density as well as the electric

conductivity.

10.3. Summery of Results and Conclusions

The primary objective of this investigation was to

determine the combined effects of thermal radiation and

magnetic fields on the flow variables distribution near a

stagnation point of a blunt vehicle moving through a

gas at hypersonic velocity. Inasmuch as a streamline

approach was chosen to carry out this investigation it

seemed appropriate to consider the general three dimensional
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dynamic and kinematic relations connecting the flow variables

with the geometric parameters of the streamlines as a

secondary objective.

The general relations for the tangent, principal normal,

and binormal vectors and the curvature and torsion of the

streamlines were derived in terms of the flow field variables

for both the inviscid and viscous radiation magneto-

hydrodynamie case in Parts I and II respectively. We also

found that for the inviscid case the total pressure Pt’

remains constant in the binormal direction of the streamlines,

but not in the viscous case.

From the numerical results obtained in Part III, which

are plotted in.Figures III-i to III-16, we find that the

physical phenomena of thermal radiation, magnetic field,

and compressibility have a considerable effect on the flow

field variables, whereas the viscosity and heat conductivity

effects were found to be very small in the case under

consideration here.

A typical example of the calculations made in this

investigation is shown in the Appendix, page 98, together

with the Fortran program for the IBM 1620 computer.
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APPENDIX

Typical Fortran Program and Results

This program integrates the differential equation

for the temperature distribution by the modified Bunge-

Kutta method taking account of variable viscosity, heat

conductivity, electron-ion collision cross-sections, and

electric conductivity. At the same time the program

calculates the pressure, density, velocity, electron

density, and electric conductivity distribution along the

streamlines. Inasmuch as all flow variables are cal-

culated as a function of a and Ivalong the streamlines

we also obtain the coordinates r as a function of a and‘?’

so that the final results may be interpreted as having

the flow variables distribution given as a function of

the two coordinates r and n. Thus, by choosing as many

streamlines as desired it is possible to obtain the flow

variables distribution throughout the flow field under

consideration as a function of the field coordinates,

r and a.
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FORTRAN PROGRAM FOR IBM 1620

VISCOUS COMPRESSIBLE PLON PROGRAM FOR THE

CALCULATION OP TEE PLow VARIABLES DISTRIBUTION

NEAR A STAONATION POINT

RS-STREAMLINE ENTRANCE RADIUS AT 2 .10 CM

ZaCCOBDINATE NORMAL T0 DISK

RZ=COORDINATE PARALLEL T0 DISK

TaFLUID TEMPERATURE

PaFLUID PRESSURE

ROaFLUID DENSITY

ECO-ELECTRON NUMBER DENSITY

c.ELECTRIC CONDUCTIVITY OF THE PLUID

VsFLUID VELOCITY _

QN-ELECTRDN-ATOM COLLISION CROSS SECTION

QI-ELECTBDN-ION COLLISION CROSS SECTION

Rs..01

D0 200 1.1.5

PUNCH 2,Rs

PORMAT(10BSTREAMLINE ENTRANCE RADIUS IN METERS RS-B11.8)

1.20000.

R0=.000086*515.

Rs287.

PaRO*B*T

z..A



100

PUNCH i3,Z,T,P,BO

Rs.01

ZLa.Oi

c.10000.

QTK-O.

5 xso

GO TO 100

10 AKi-FZ*H

onsrz

z1oz

TisT

2.21-E/2.

TsT1-AK1/2.

GO TO 100

15 AK2-FZ*R

TsT1-AK2/2.

GO TO 100

20 AK3=FZ*H

zsz1-n

TaTi-AK5

GO TO 100

25 AKhaFZ*H

Pz1st

TaTi-(AK1+2.*AK2+2.*AK3+AK§)/6.

ZmZi-R

RZ=(RS*RS*22/Z)**.5
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30 TK-.00199*T**.5/(1..112./T)

31 QTK-TK*(FZi-FZO)/B

PUNCH i3,Z,T,P,RO

13 FORMAT (5n z.E11.8,5H TsE1t.8,5H P-E11.8,5H RO.E11.8)

ELECTRIC CONDUCTIVITY PROGRAM NEXT

T2-T

P2-P/A7.88

QNai./(10.**19)

UI=166000.

xs(.032*T2**2.5)/(17.88*P2*EXPP(UI/T2))

Ys(e7.88*P2*10.**23)/(1.38*T2)

E=Y*SQRTP(x/(1.+x))

ENaY-E

ECO:E/(10.**6)

QIa(2.95/(T2**2*10.**10))*LOGF(8780.*T2**1.S/SQRTF(ECC))

Gs(20.5/T2)**.5/(10.**12)

Cs(G*E)/(EN*QN . E*QI)

PUNCH 65,Ecc,c,v,Rz

65 FORMAT (5H ECC-E1t.8,5H CsEi§.8,5H VsEih.8,5B stE11.8)

IP(2L-z)5,110,110

100 R3287.

oA-1.A

STB-5.67/iO.**8

CLs16./(9.*10.**8)

CBaSTB*CL*T**3

v.2000.
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223.4

SIisW*RS*RS/2.

818.2

R1-.O1

BSeBi*Ri*Ri/BS**2

B2-BS*Z/Z2

PBS.(BS*Bs*1O.**7)/(8.*3.1A)

PVS-.5*B0*V*W

va.5*RO*(w/(2.*zz))**2*(RS*RS*z2/z . 1.*z*z)

PB.82*82*10.**7/(8.*3.1e)

P1s254221.6

PaPi+PBS+PVS~PVAPB

RDaP/(R*T)

vs(w*w*z*z/(22*zz) . 811*w/(2.*22*z))**.5

CV.R*T/(V*v)

80:.2

Ba(BQ/iO.**§)*&/(RS*RS*22)

Px-.06

QBa-k.*PK*STB*T**§

zss(1. . RS*RS*22/(4.*Z**3))**.5

VISCOUS PROGRAM NEXT

101 wzsw/z2

U-.000001t62*T**.5/(1..112./T)

00.2.5*U*wz*wz

STRESmU*H&/(RS*BS*22/Z . t.*z*z)**.5

qu(QR.UO.QTx)/v
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102 DTN azsr(cv;1.)*ov . ZS*C*V*B*B-ZS*CV*STRES

DTDaCR + (P/T)*(1..(oA/(CA.1.))*(Cv;1.))

Pz=-DTN/DTD

KsK+i

GO TO (1

110 CONTINUE

200 BSsBS*2.

END

0,15,20,25),x

Typical program printout for calculations along

streamline‘yé; only intermittent results are shown.

STREAMLINE ENTRANCE RADIUS IN METERS RS:

Zm.§OOOOOOOE+OO

Zm.39000OOOE+OO

ECC=.7§1552SGE+18

Zs.3SOOOOOOE+OO

ECC=.75311557E+18

Za.)OOOOOOOE+OO

ECC:.7&O16§60E+18

Tm.2000OOOOE+O§

TI.1986§611E+O5

Ts.19287799E+05

Cm.12279§§OE+05

Cm.11665§16E+05

Vi.19506569E+Oh

Pm.27761759E+06

Vh.175081553+04

P-.30Q01610E+06

Vh.15011105E+04

.2000OOOOE-Ol

ROm.#§29000OE-01

RO-.4536686#E-01

RZ:.2025§787E-01

ROm.5015116§E-01

RZ=.21380899E-01

RO=.57165924E-01

RZ:.23094012E-01

OOOOOOOOOOOOOOOO



Zm.25000000E+OO

ECO-.69753902E+18

Zm.2000OOOOE+OO

ECCm.63172579E+18

23.150000003b00

ECC-.5§9576OSE+18

Z:.1000OOOOE+OO

ECCm.§5385093E+18

Za.SOOOOOOOE-O1

ECO-.338k7680E+18

Za.10000OOOE-O1

ECC=.1962§103E+18

104

08.109722013+05

T8.1706§0963+05

CI.102198583405

Ts,163472663+05

C=.9§057760E+O§

Ta.15589513E+05

Ca.8§9059953+0§

TI.1§5678503+05

C=.733097363+0§

Tm.15332793E+05

C:.5615007§E+0§

Vi.12515987E+O§

Pa.36563279E+O6

Vi.iOO2§968E+O§

P-.39937§§OE+06

Vh.75§53113E+03

Pa.§35&2k7OE+06

Vé.2872280§E+03

Ps.509§&799E+06

Vb.32015619E+03

RO-.65326054E-01

RZm.25298223E-01

Bos.746576OOE-Oi

RZm.282S§271E-01

ROm.85229311E-01

RZm.32659862E-01

B0=.9731795§E-01

RZa.kOOOOOOiE-01

ROm.11231728E+OO

RZm.565685§&E-01

RO=.1329&OS7E+OO

RZ=.126§9111E+OO
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