

THS

This is to certify that the

thesis entitled

A Method for Dating
Dating Quaternary Basalts from Hawaii

presented by

Susan C. Schock

has been accepted towards fulfillment of the requirements for

Masters degree in Geology

Date May 5, 1981

O-7639

OVERDUE FINES:

25¢ per day per item

RETURNING LIBRARY MATERIALS:
Place in book return to remove charge from circulation records

A METHOD FOR DATING QUATERNARY BASALTS FROM HAWAII

Ву

Susan C. Schock

A THESIS

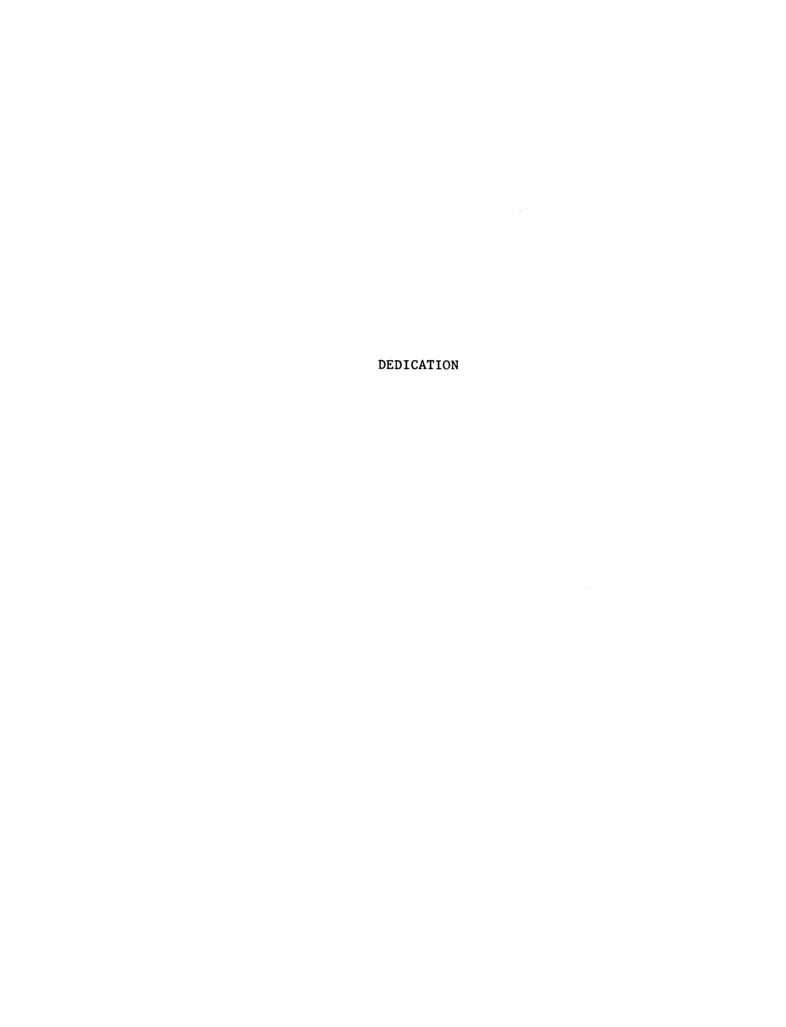
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Department of Geology

1981

ABSTRACT


A METHOD FOR DATING QUATERNARY BASALTS FROM HAWAII

Вy

Susan C. Schock

Uranium-thorium disequilibrium systematics have been used to do quaternary geochronology with speleothems, carbonates and ore bodies. Presently available techniques for chronology, such as K-Ar, cannot give ages for complicated stratigraphic sequences. The islands of Hawaii offered a site where rocks of complicated stratigraphy were uncontaminated by continental rocks. These rocks were excellent candidates upon which to test the application of the uranium-thorium method for basaltic rocks.

In attempting to apply the principles of the method to basaltic lavas, problems arose with incomplete silicate dissolution and iron concentrations, which interfered with the isolation of the uranium and thorium. Yields of both elements were low, which proved to be devastating when dealing with rocks with very small initial concentrations of uranium and thorium. More complete dissolutions are necessary and solvent extractions to overcome the interferences to the method are suggested.

ACKNOWLEDGEMENTS

I would like to thank the members of my committee for their review and advice, Dr. Thomas Vogel, Dr. John Wilband, Dr. William Cambray. I acknowledge Dr. Russell Harmon whose grant funds partially supported this project.

Special thanks go the other members of my research group, James Baranowski and Richard Lively, for their constant help and encouragement throughout the project. Further thanks to Dr. Carl Seyfert who introduced me to the world of Geology and Dr. John Murtaugh whose interest, friendship and advice kept me in graduate school when I wanted to give up.

Thank you to Debra Brock for typing, retyping, and retyping the manuscript.

Last, but never least, my appreciation to my friends Art Hammonds, Cynthia Sonich, Mona Zirkes, Lenore McNeal and to my husband, Michael, who never let me quit and were always there when I needed them.

TABLE OF CONTENTS

INTRODUCTION			•	•	•	•	•]
U/TH SYSTEMATICS			•	•		•	•	4
GEOLOGIC SETTING			•	•		•	•	8
THE GEOCHEMISTRY OF URANIUM AND THORIUM IN IGN	EOUS	ROCKS	•	•	•		•	13
SAMPLE COLLECTION AND PREPARATION			•	•	•	•	•	17
URANIUM AND THORIUM ISOLATION			•	•	•	•	•	23
ALPHA COUNTING PROCEDURE					•	•	•	36
PROBLEMS OF DATA RESULTS AND CONSIDERATION			•		•	•	•	4(
REFERENCES					•		•	55
APPENDICES								

LIST OF TABLES

Table	1	-	Location Data	18
Table	2	-	Elemental Analyses of Samples Used for Dating by Weight Percent	20
Table	3	_	Regression Data for Rock 31-8 Phases	49

LIST OF FIGURES

Figure	1	-	Decay Scheme of the Major Uranium Isotopes	3
Figure	2	-	Typical Isochron Plot	6
Figure	3	-	Map of Collection Area	9
Figure	4	_	Classification of Volcanic Rocks	12
Figure	5	-	Ion Exchange Column Arrangement	26
Figure	6	-	Flow Chart of Analysis I	32
Figure	7	-	Uranium Procedure II	33
Figure	8	_	Thorium Procedure III	34
Figure	9	-	Plating Procedure IV	35
Figure	10	-	Schematic Diagram of α Spectrometer	37
Figure	11	-	Plot of Magnetite Point for Rock 31-8	42
Figure	12	-	Plot of Magnetite Points for Rock 31-8	43
Figure	13	-	Plot of Plagioclase Points for Rock 31-8	44
Figure	14	-	Plot of Pyroxene Point for Rock 31-8	45
Figure	15	-	Plot of Whole Rock Points for Rock 31-8	46
Figure	16	-	Plot of Phases for Aliquot 1	50
Figure	17	-	Plot of Phases for Aliquot 2	51
Figure	18	-	Plot of Phases for Aliquot 3	52
Figure	19	_	Plot of Phases for Aliquot 4	53

INTRODUCTION

In the study of young rock systems, such as Quaternary basalts, available geochronologic techniques have been unable to help sort out complicated stratigraphic sequences. The potassium-argon dating methods for dating young rocks have been found to have large errors due to small amounts of excess Argon (Damon, 1969; Dalrymple and Lanphere, 1969; Funkhouser, Barnes, and Naughton, 1966). Also, problems of necessary analytical accuracy due to the great length of the half-life of ⁴⁰K and low ⁴⁰Ar (rad) factors can cause Quaternary rocks of widely varying ages to appear contemporary (McDougall, 1961; Ku, 1976).

 ^{14}C dates are limited to occurrences of carbonaceous materials such as wood or charcoal, ashfall or tuff in rocks younger than 40,000 years. The correlation of K-Ar dates with ^{14}C dates have not helped with these problems.

The purpose of this study, therefore, was to determine if uranium-thorium disequilibrium systematics can be used to date Quaternary basaltic rocks. The method has been used successfully for sediments, speleothems, and ore bodies. It has been used for silicic, volcanic rocks by Baranowski (1977) in Long Valley, California. The uranium-thorium systematics method is useable for rocks up to 300,000 years old. Previous work by Baranowski (1977) and Lively (1978) indicate that the most reliable answers are obtained from those rocks which are between 10,000

and 200,000 years old. Basaltic rocks, especially those composed mainly of ferromagnesium minerals, were expected to present greater problems due to the fact that their initial content of uranium and thorium would not be as great as that of the silicic rocks. This proved to be true.

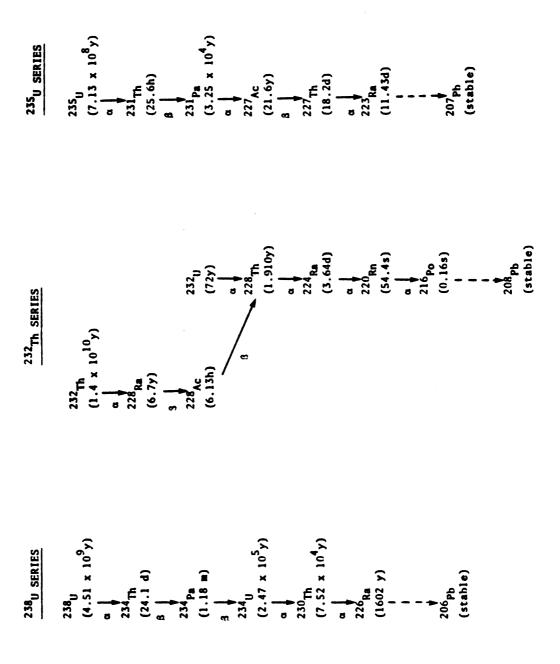
In order to test the validity of this idea, the youngest of the Hawaiian islands, Hawaii itself, was chosen. The rocks of this island are uncontaminated with continental rocks. Continental rock sequences would be more complex in composition since they are accumulated, deposited and accreted from a wide variety of sources. They tend to contain many more silicic minerals. The partitioning of uranium into lighter, more silicic rocks is preferable (Cherdyntsev and Senina, 1970; 1973; Nishimura, 1970). A small amount of contamination from uranium enriched continental rock would therefore further complicate the chemical processing of the rock samples. Since rocks which were not subject to this problem were available in Hawaii, it was the logical choice. Furthermore, the rocks fall into the chronologic range of the chosen method. Lastly, the flows chosen for sampling were thick enough that we were able to sample deeply enough to avoid extensive weathering.

The Kohala volcano, the oldest of the five volcanoes in Hawaii was chosen for sampling since it has volcanic series which occur within the range of the uranium-thorium method based on K-Ar dates. These series have been sampled by Rodd May of the United States Geologic Survey (USGS), who supplied us with explicit cite information for duplication and K-Ar comparison dates.

CHAPTER I

U/Th SYSTEMATICS THEORY

For chronologic uses, there are three uranium-thorium decay series; the 238 U series, the 235 U series, and the 232 Th series. (See Figure 1). The 238 U series is mainly of interest for this study. In a closed quaternary volcanic system, an initial disequilibrium exists between the daughter 230 Th and its parent 238 U. The activity of the thorium gradually returns to secular equilibrium with the activity of the parent uranium. The activity change of 230 Th relative to 238 U is as follows:


$$230_{\text{Th}_{\text{activity}}} = 230_{\text{Th}_{\text{initial}}} (\exp(-\lambda_{230_{\text{Th}}} t)) +$$

$$238_{\text{U}_{\text{activity}}} \left[1 - (\exp(-\lambda_{230_{\text{Th}}} t)) + \left(\frac{238_{\text{U}_{\text{activity}}}}{234_{\text{U}_{\text{activity}}}} - 1 \right) \right] \times \left(\frac{238_{\text{U}_{\text{activity}}}}{234_{\text{U}_{\text{activity}}}} - 1 \right) \times \left($$

$$\left(\frac{\lambda_{230_{\text{Th}}}}{\lambda_{230_{\text{Th}}} - \lambda_{234_{\text{U}}}}\right) (1 - (\exp(-\lambda_{230_{\text{Th}}} - \lambda_{234_{\text{U}}})t)) \right]$$

where λ = decay constant

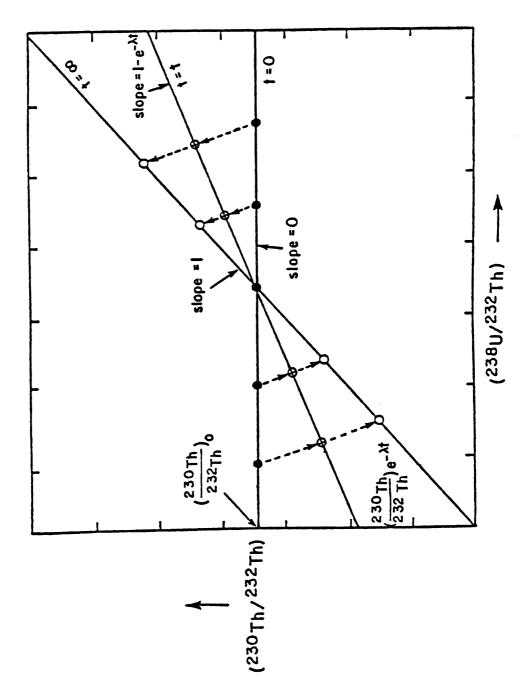
t = age of the rock

Decay Scheme of the Major Uranium Isotopes
Figure 1

When little or no fractionation of 234 U relative to 238 U occurs, as is the case in the closed magma system (Somayajulu, et al, 1966), the equation simplifies to:

$$230_{Th} = 230_{Th_{initial}} (exp(-\lambda_{230_{Th}} t + 238_{U} (1 - (exp(-\lambda_{230_{Th}} t)))))$$

Dividing through by 232_{Th} :


$$\frac{230_{\rm Th}}{232_{\rm Th}} = \left(\frac{230_{\rm Th}}{232_{\rm Th}}\right) \left(\exp(-\lambda_{230_{\rm Th}}t)\right) + \frac{238_{\rm U}}{232_{\rm Th}}(1 - (\exp(-\lambda_{230_{\rm Th}}t)))$$

Following the method of Allegre (1968, 1976; Condimines, 1976) these $(^{230}\text{Th}/^{232}\text{Th})$ and $^{238}\text{U}/^{232}\text{Th})$ are the ratios used to plot the isochron line to calculate the dates. The $^{230}\text{Th}/^{232}\text{Th}$ ratio is the y coordinate. The y axis is essentially a range of the possible values of initial isotopes of thorium found for this rock.

The ²³⁸U/²³²Th ratio is the x coordinate. The x axis is the range of partitioning found for this rock. By plotting the ratios found for the phases of this rock sample, an isochron line is determined. It's slope is calculated and then substituted into the equation:

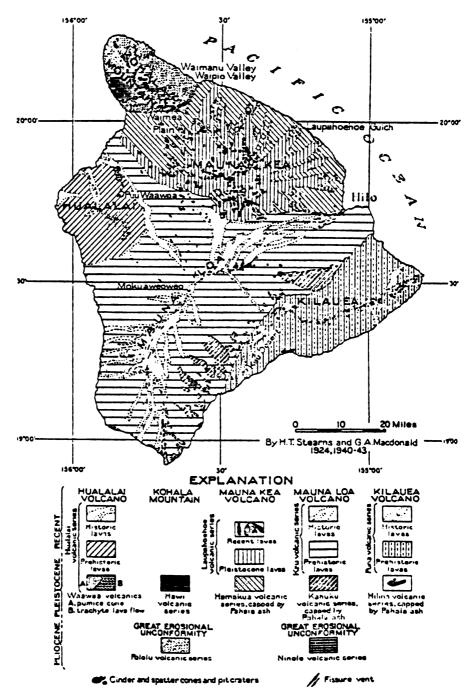
slope = 1 -
$$\exp(-\lambda_{230_{Th}} t)$$

The slope will vary from 0 to 1 as a function of time. (See Figure 2). The line with a slope of 0, a horizontal line, represents the initial ratio of 230Th/232Th. The line with a slope of 1 represents equilibrium. The isochron should fall somewhere between the initial and equilibrium. By solving for t as shown above, the age of the rock is obtained.

Typical Isochron Plot Figure 2

The major phases of the rocks were separated and the ratios found each one. The assumption is made that the initial 230 Th/ 232 Th ratios for the phases are the same since the phases are formed at relatively the same time and the system has remained closed with respect to uranium and thorium (Taddeuchi et al, 1967). The 238 U/ 232 Th ratio is effectively that of the levels U/Th since neither isotope is produced by decay within the range of the method, and therefore the ratio is set by the partitioning of these elements in the original system (Hurley, 1957).

CHAPTER II


GEOLOGIC SETTING

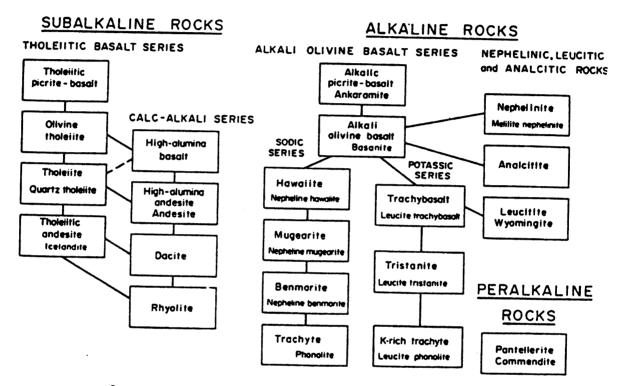
The Hawaiian Islands are located in the central Pacific Ocean at the southeastern end of a submarine ridge which begins near Midway Island to the northwest and stretches in a relatively straight line to the southeast. The ridge is an example of midplate volcanism, both submarine and subareal, resulting from the movement of the Pacific Plate over a stationary hot spot or mantle plume.

The Island of Hawaii, the focus of this study is the largest island of the Hawaiian chain. It is comprised of five volcanoes, Kohala, Mauna Kea, Hualalai, Mauna Loa, and Kilauea (See Figure 3).

These volcanoes, as well as the others of the chain, are typically shield volcanoes with summit craters built on fissure systems. The volcanism here is generally mild eruptions of very fluid, hot basalt. Such basalt is characteristically of low viscosity and flows easily, allowing degassing to occur at a reasonably constant rate (Stearns, 1946).

Hawaiian volcanism generally follows a four stage pattern. Not all of the volcanoes of the chain have gone through the complete pattern. The first step is the extrusion of highly fluid picritic basalt to form a shield. All of the volcanoes of Hawaii seem to have gone through this

Map of the Collection Area


Figure 3

stage. Second, a caldera is formed and grabens and cliffs develop along the rift zones. These cliffs and grabens usually form during a rapid succession of flows. The Kilauea and Mauna Loa volcanoes are presently in this stage. Both are still visibly active volcanoes. Third, the calderas and grabens are filled by a succession of less frequent flows of a similar basalt. The older volcanoes, Mauna Kea and Kohala, have gone through this phase and are now dormant or extinct. Hualalai had entered this phase before its apparent extinction within historic time. Last, there is a long period of erosion when the activity ceases and then is replaced by an onset of more nephelinic flow (Macdonald and Katsura, 1964). No volcanoes on Hawaii have yet reached this terminal stage of development.

Initially it was the intent of this study to process a suite of basalts encompassing the major rock types found on Hawaii. These samples were collected on two visits in 1977, but analytical difficulties precluded work on all but the Kohala samples. Kohala Mountain is the oldest of the five volcanoes on Hawaii, comprising the northernmost part of the island. Its surface is dotted with a large number of cinder cones from its last period of activity. The rocks of Kohala occur in two volcanic series, both olivine basalts. The oldest series is the Pololu which is composed of basaltic flows, each from five to twenty feet thick. They range in composition from tholeitic basalt to alkalic basalt (Turner and Verhoogan, 1960). These occur in thinly bedded, highly vesicular flows which weather to a rusty, reddish-brown (Stearns and Macdonald, 1948). This series extends from the floor of the sea to as much as 2000 feet above sea level in some places. There is very little ash

found within this series. The Hawi volcanic series is separated from older underlying Pololu series by an erosional unconformity representing a period of little or no volcanic activity. It is more massive than the Pololu series and weathers to greyish soils (Stearns and Macdonald, 1948). Compositionally, the Hawi series is mainly mugearite, an alkali olivine basalt, and a small amount of trachyte (Turner and Verhoogan, 1960). See Figure 4 for a graphic representation of these rock types. There is more ash found in this series than in the Pololu which helps to differentiate them in the field and correlate them stratigraphically. The last flows of the Hawi are interfingered with and overflown by the volcanics of Mauna Kea to the southeast. This interfingering is one of the stratigraphic problems which could be later addressed if the uranium-thorium disequilibrium dating method shows itself to be viable for basalts.

The older Pololu series is considered to be of Pliocene age, which probably began to build up about 0.7 million years ago. The Hawi is considered to be Pleistocene in age. It probably ceased erupting about 0.06 million years ago (Turner and Verhoogan, 1960). These estimates are based mainly on K-Ar dates and stratigraphy.

after the Canadian Journal of Earth Science

General Classification of Volcanic Rocks

Figure 4

CHAPTER III

THE GEOCHEMISTRY OF URANIUM AND THORIUM IN IGNEOUS ROCKS

Uranium and thorium are radioactive elements of the actinide series which have isotopes with long enough half lives that they are still abundant in nature. 238 Uranium, the parent of one of the series of interest in this study, has a half-life of 4.51 x 9 years (Attree et al, 1962). 232 Thorium has a half-life of 1.4 x 1010 years. 235 Uranium, which is not of special relevance in this study, has a half-life of 7.13 x 108 years (Friedlander, Kennedy, Miller, 1955).

Uranium and thorium exhibit very similar geochemical behavior. The similarities are due to their outer electron shell configuations. The ions are similar in size and in the tetravalent form have the same coordination with oxygen. Unfilled second shells in the configurations of hexavalent uranium, called uranyl ion, and tetravalent thorium allow their easy participation in chemical reactions. These reactions are commonly oxidation reactions. The shape of the hexavalent uranyl ion (UO₂²⁺) changes to elongate from the spherical tetravalent form. This ellipsoid with oxygens on the ends is a more soluble form. The properties of uranium which differ from those of thorium are due to its inner unfilled electron shell which can act as valence electrons along with those the outer shell. This situation in uranium allows it to attain the hexavalent state by oxidation (Seaborg and Katz, 1954).

Thorium occurs naturally as 232 Th. This major radioisotope has an extremely long half life. It is the parent isotope in the decay series whose final product is 208 Pb (see Figure 1). This series undergoes decay so slowly that for the purposes of Pleistocene chronology, we often consider 232 Th as constant.

 230 Th, also known as ionium, is a daughter product of the 238 U series whose end member is 206 Pb (see Figure 1). It results from the decay of 234 U which is in turn a decay product of 238 U. 234 U can fractionate from 238 U during weathering (Cherdyntsev, 1967) due to the easy mobilization of the easily oxidized hexavalent form of uranium. 230 Th has a short half-life (7.52 x 104 years) making it useful for the uranium-thorium disequilibrium chronology method.

As described above, the thorium isotopes are tetravalent and relatively insoluble ions. This property makes it possible to assume that the abundance of thorium found in igneous rocks is nearly that of the initial rock (Cherdyntsev, 1968).

The geochemistry of thorium is similar to that of potassium and frequently thorium occurs in association with potassium in silicic igneous rocks (Holland, 1954). The compounds formed in such rocks can more easily migrate towards the surface during crystallization, taking the thorium with them. Therefore magmas held in high chambers in the upper mantle may be enriched upward with respect to thorium (Tatsumoto et al, 1965).

Uranium occurs naturally as three isotopes, 238 U with a half-size of 4.49 x 109 years. 235 U with a half-life of 7.1 x 109 years, and 234 U with

a half-life of 2.48 x 10^5 years (see Figure 1).

 238 U is the most common radioisotope and along with 235 U accounts for more than ninety-nine percent of all naturally occurring uranium. The third, much shorter half-lived isotope, 234 U, is an intermediate decay product in the 238 U series (Ku, 1976).

Uranium occurs in both tetravelent and hexavalent ion forms. The tetravalent ion easily oxidizes to hexavalent form is very soluble and therefore very mobile. This transition from +4 to +6 state occurs easily under the conditions of the geologic surface or near surface environment (Kaufman et al, 1964). Due to the mobility of the hexavalent uranium, it is difficult to determine the original abundance of uranium in heavily weathered rocks or those which have been acted upon for long periods of time by solutions. The uranyl ions are very large and will accumulate during weathering rather than combining quickly into compounds (Tieh et al, 1980). These accumulations are often found as ore bodies.

Uranium and thorium occur in all three major rock types. Their abundance increases as the rocks become more silicic. The range of variations of uranium abundances is very large. The average abundance in continental rocks is approximately 2 ppm. Thorium abundances for granitic continental rocks can be as high as 10-20 ppm, but decreases in the intermediate rocks to 2-5 ppm and is only about 0.05 to 2.2 ppm in the very basic continental rocks (Whitfield, 1958).

The average thorium to uranium ratio for igneous rocks is 3.5 (Rankama, 1954). This is the average of a very large range. Oceanic rocks, basic rocks, have a low thorium to uranium ratio as stated above.

c h h w a a B Re

th

al

Continental, acidic, rocks can have abundances as great as 8 ppm thorium and 2 ppm uranium (Cherdyntsev, 1968).

Oceanic crust is usually assumed to be primitive material which approximates the upper mantle. Its thorium to uranium ratio is about 2. This ratio results from the fractional melting of basaltic lava in the upper mantle without fractionating uranium and thorium between the solid and liquid phases (Rogers and Adams, 1957). This means that abundances of uranium and thorium do not represent radiogenic components and are true initial abundances before weathering (Nishamura, 1970).

Accessory minerals such as zircon and sphene are usually the carriers of uranium and thorium. The early forming accessories seldom have a ratio of 3.5. Their ratio is often about 1. However, in magmas where accessory minerals have not crystallized, the ratio is found to be about 3.5, which indicates that the process of formation of accessory minerals allows for this change in distribution (Adams, Osmond and Rogers, 1969) to this study that rocks without accessory minerals be used to determine chronology. The formation of olivine is not a problem with respect to this situation, since olivine incorporates almost no thorium There is no evidence that any mineral forms from a basic and uranium. magma which draws significantly from the original concentrations of thorium and uranium so that we find a relatively uniform distribution of these minerals in all the constituent members of the resultant rocks in intrusive suites. In extrusive rocks, the rapid cooling of the lava allows the major phases to contain the uranium and thorium.

CHAPTER IV

SAMPLE COLLECTION AND PREPARATION

Samples were collected from the Hawi and Pololu series of the Kohala mountain volcano. Specific locations are described in Table 1. As often as possible, an effort was made to correlate samples with those previously collected by Dr. Rodd May of the USGS Geochemical Division, presently at Menlo Park, California. His samples were collected for thermoluminescence work and K-Ar dating two to three years before the collections for this study. For several reasons, many more samples were collected than were used, primarily to ensure that weathering-free samples were collected at each site. The weathering could be more clearly discerned after thin sections were made. Also, samples from the four other volcanoes on the island were collected in case further studies on the "younger" volcanoes became desirable. At each site collections were made of fresh 10-15 kg. samples, as free of weathering as possible in order that the loss of uranium to the weathering process be minimized. Since uranium is easily oxidized to the +6 state and mobilized during weathering, this problem was avoided as much as possible. unweathered samples are needed for processing to obtain mineral phases so that phase isolation will yield as true a representative of the original as can be obtained. Thin sections were again used to determine what

Table 1 LOCATION DATA

Details of locations are noted here in the event that someone wishes to resample at a duplicated site. I was very grateful to Dr. Rodd May, USGS for this kind of information.

Sample Number	Series and Rock Type	Field Location
761231-8	Pololu series tholeiitic basalt	Mahukona Quadrangle 1 mile north of Mahukona point on old highway 27 on the right roadcut going north
761231-10	Hawi Mugearite	Mahukona Quadrangle in a roadcut 3.8 miles north of Mahukona point on old highway 27 on right side going north
761231-12	Hawi Mugearite	Mahukona Quadrangle in a road at 6.7 miles north of Mahukona point on the right side of old highway 27 going north. This member appears as a sill about 3 feet above the road level
761231-13	Hawi Mugearite	Kamuela Quadrangle on highway 27 in the first roadcut north of Waiaka

phases were present and if any weathering products might interfere with their isolation.

After the collected rocks were returned to the laboratory, hand specimens were taken of the samples, and thin sections were made. Most of the remaining rock was then crushed and pulverized with a Chipmunk Crusher Pulverizer at McMaster University, Ontario, Canada, then milled to less than 200 mesh size with a ball mill.

Five grams of whole rock powder in each case were sent to Dr. Robert McNutt of McMaster University to be analyzed for major elements by x-ray fluorescence (XRF). This was done both to demonstrate the similarity to Dr. Mays' samples, and to check the optical analyses.

Thirty grams of each sample powder were sent to Dr. Hugh Millard of the USGS, Denver for total uranium and thorium abundance analysis by XRF. The results of these analyses appear in Table 2. The results were used to help estimate the amount of sample needed to be processed to get reasonable counts, and to loosely check the components of the rocks as determined by thin section analysis.

About 200 grams of whole rock material were set aside for whole rock analysis. A portion of the remaining powder was cleansed of clay-size particles by gravity settling after washing it with water, allowing the clay particles to remain in suspension and the larger particles to settle out. Centrifuging was not necessary with these rocks because the phases were reasonably discreet and of varied enough densities as to allow them to be separable without it. The clay-size particles were then decanted. The removal of the clay-size particles was necessary since they inter-

Table 2

ELEMENTAL ANALYSES OF SAMPLES USED FOR DATING BY WEIGHT %

	<u>#761231-8</u>	<u>#761231-10</u>	<u>#761231-12</u>	<u>#761231-13</u>
sio ₂	49.01	44.75	49.49	53.94
A1 ₂ 0 ₃	13.96	8.88	16.65	17.14
Fe ₂ 0 ₃	14.63	17.45	11.85	10.54
MgO	5.21	17.23	4.40	3.48
Ca0	10.00	7.31	10.42	6.38
Na ₂ O	2.74	1.54	3.09	4.24
к ₂ 0	0.80	0.54	0.95	1.85
TiO ₂	3.40	1.87	2.92	2.13
MnO	0.20	0.20	0.18	0.20
P ₂ O ₅	0.04	0.22	0.05	0.10
	analyses by Dr.	Robert McNutt,	McMaster Univer	sity, Canada
ppmTh	0.58	0.00	1.64	3.79
ppmU	0.68	0.41	0.59	2.00
Th/U	0.85	0.00	2.62	1.89

analyses by Dr. High Millard, USGS, Denver, Colorado

ferred with mineral phase separation by clogging the Frantz Isodynamic Separator and rendering it useless. The large particle fraction was dried in a drying oven.

Magnetite was separated from the large particles by repeated hand magnet removal. The product of this removal was washed, settled and dried again for further purification.

The rest of the large particle fraction was run through the Frantz Isodynamic Separator several times to isolate the pyroxene, and then the plagioclase. The pyroxene was magnetic and the plagioclase, which was virtually non-magnetic, dropped out. The Frantz settings used are listed in Appendix B.

The separated pyroxene and plagioclase were washed, settled and dried several more times to remove impurities. The resulting products were examined optically to insure eighty percent purity or greater. The only exception to the purity was possibly the plagioclase, which was frequently so finely grained that it retained microscopic particles of other mineral phases. Other phases were much freer of contamination. The mineral separates were then dried and weighed. It was decided that ten gram splits would be analyzed for uranium and thorium. This was decided because the trial runs of up to 100 grams required prohibitively large volumes of residue to form during dissolution. Since the mathematics of the method deal with the isotope ratios within each phase, it is not necessary to be strictly quantitative with the separations. The optimization of yields is therefore more important than large volumes of total material processed, as long as accurate weighing of the final amount

was done. The yield is the percent of the actual amount of isotope which is extracted from a given phase by the chemical processing. The way in which the yield is determined is through the use of a spike of a known amount of an isotope which is not contained in the sample. The spike is discussed in Appendix A. After their determination by counting, yields were normalized to one hundred percent.

CHAPTER V

URANIUM AND THORIUM ISOLATION

The final chemical processing of the prepared powders to isolate uranium and thorium evolved through trials and adjustments. The original method was patterned after that of Peter Thompson (1973a, 1973b). As the work proceeded and problems arose, alternatives were sought. A flow chart of the final process appears in Figures 6-9 at the end of this section.

The magnetite phase was taken into solution with about 100 mL of hydrochloric acid (HCl) on a stirrer overnight. The result was complete dissolution. The solution was then taken to dryness on a hotplate and then redissolved in concentrated nitric acid (HNO₃) and diluted with enough deionized water to make a 4N solution.

Ten to fifteen grams of whole rock sample or silicate mineral separate was digested with 50 mL of concentrated hydrofluoric acid (HF). Sample and acid were fumed on a hot plate in a covered 250 mL teflon beaker for twelve hours. Due to the residues which formed about the lip of the beaker and the rim of the cover plate, it was feared that uranium was being lost as a volatile fluoride compound. The probability was confirmed by discussions with members of the Chemistry faculty.

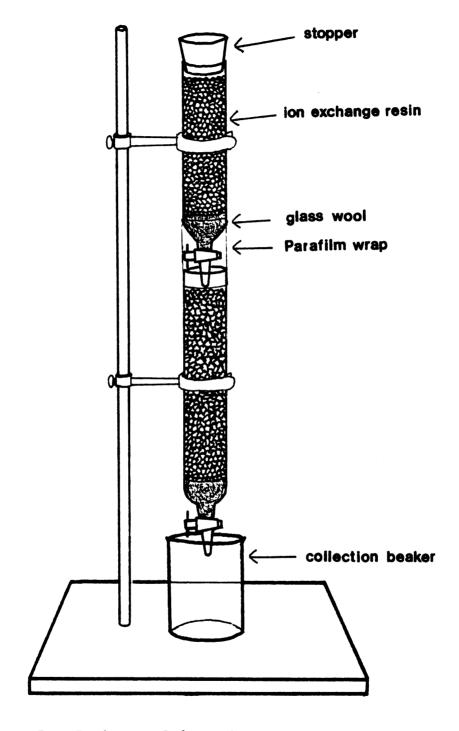
Consequently, a fusion with sodium carbonate flux was done. The sample powder was ground to less than 200 mesh, mixed with ten parts flux to one part sample, and then divided into ten gram splits and placed in

platinum crucibles in a muffle oven at 850°C for eight to twelve hours.

The fusions should have produced an easily dissolved product. This was not the case, however, and insoluble residues recurred over the course of two to three refusions. These residues were finally subjected to hydrofluoric acid fuming. After the dissolution had been achieved, the solution was taken to dryness on the hotplate while still in the teflon beaker. The resulting product was taken into solution with 4N nitric acid. If residues were left behind, as they often were, they were filtered or centrifuged off, dried and fused once again. The solution was then added to the original dissolution volume in a 4000 mL pyrex beaker.

After the sample was totally in solution, 2 mLs of a dilute spike of known uranium and thorium isotopic content was added. The spike is discussed in Appendix A. The volume of dissolved sample at this point was usually slightly less than 2000 mL. The volume was raised to 2000 mL with 4N nitric acid. Also added at this point were forty mL of a solution of 250 mg lanthanum oxide, 5 mL HClO₄ and 5 mL HNO₃, whose purpose it was to carry the thorium with it through a later step, preventing it from combining into insoluble products.

The spike and lanthanum oxide were stirred into the sample solution and allowed to equilibrate for at least 24 hours. The use of magnetic stirring equipment shortened the time necessary for equilibration to about twelve hours.


After equilibration was achieved, concentrated ammonium hydroxide (NH4OH) was added, slowly, through a glass funnel while stirring

with a magnetic stirrer. This caused the precipitation of iron hydroxide at precisely the point when a pH of 7 was reached. This reaction was extremely exothermic, and the addition of the NH₄OH had to be done slowly or spattering and even breakage of the container could take place. The precipitated iron hydroxide carried the uranium and thorium with it. Unfortunately aluminum and manganese were also carried along. These elements complicated later steps.

In an attempt to remove the aluminum, a hot sodium hydroxide wash was done (Kaufman, 1964). Uranium loss caused the abandonment of this step.

In a later ion exchange step to overcome the aluminum problem, longer columns of greater diameter, and therefore greater resin capacity were used. The individual columns available were not long enough to allow the alumnimum to be taken up by the resin and still to have sites left for the uranium. To overcome this problem, two columns were mounted, one above the other, and the solution not taken up by the first was allowed to pass directly into the second below it. (See Figure 5).

After the iron hydroxide precipitation step, the precipitate was next dissolved in 9N hydrochloric acid (HC1) (after Thompson, 1973) and the resulting solution purged of iron by extraction with isopropyl ether. This was done by putting 75-100 mL of sample solution and an equal volume of isopropyl ether into a 250 mL separatory funnel and vigorously shaking them for several minutes being careful to aspirate the pressure created by agitating the mixture, at 30-60 second intervals. The iron was reduced and taken in the ether, which was then allowed to stand for several seconds to gravity separate from the solution. The ether and iron were

Ion Exchange Column Arrangement
Figure 5

then discarded. This procedure was repeated until the ether no longer took on a yellow color after agitation or until no further change of color to the sample indicated that no more iron was being extracted. It did not mean, however, that there was no more iron in the sample solution. In basic rocks, like the Hawaiian basalts, later steps yielded enough iron to interfere with the alpha counting process. Since this iron was not available for reduction in the ether extraction step, it must not have been existing as free ion in solution, and therefore could not be reduced and extracted.

After ether extraction, the sample was gently heated on a hotplate to drive off the remaining ether. Then the solution was fed onto an anion exchange column of Dowex AG1-X8 Resin which had already been conditioned to the chloride form with 9N HC1. The column was then rinsed with about 30 mL of 9N HC1. The uranium remained on the resin column at that time. The fluid that passed through the column contained the thorium and was, therefore, retained in a vycor beaker. Vycor was used for this part of the procedure since it is made of a high silica glass and the uranium and thorium were less likely to be lost to adsorption on the beaker.

At this point it was important to note the time when the uranium was separated from the thorium. Thorium 228 is produced in both the decay of uranium 232 and thorium 232 . Therefore, it is necessary to include a correction for the change in the thorium 228 contributing factors after separation when doing subsequent calculations.

Uranium was eluted from the ion exchange column with 100 mL of 0.1N HCl into a separate vycor beaker.

The thorium bearing fluid was fed onto an anion exchange column which had been conditioned to the nitrate form with 8N HNO3. The thorium was taken onto the resin column. After rinsing with 30 mL of 8N HNO3, the waste was discarded and the thorium eluted with 100 mL of 0.1 N HNO3 into a vycor beaker. There was discoloration of the resin and loss of flow through the column.

An anion exchange column, conditioned with a solution of 5 mL of 5N HNO3 and 45 mL of methanol was used to isolate the thorium after Tera et al. (1961). The fluid left behind after the separation of the uranium was evaporated to dryness on a hotplate and then brought back up in 5 mL of 5N HNO3. It was added to 45 mL of methanol. This solution was immediately fed onto the HNO3-methanol column. After rinsing with another 30 mL of 90% methanol solution and discarding the passed fluid, the thorium was eluted with 100 mL of 0.1 N HNO3. The resultant thorium yields were not high, but were better than those previously obtained. The interference from elements or complexes not removed in earlier steps caused the resin sites to be occupied before the thorium was taken up completely. Prohibitively large amounts of resin would have been needed to correct this problem, if indeed it could be corrected. The use of consecutive columns, as used before, still did not alleviate the situation.

Personal communication with Dr. Allegre and Dr. Condomines from Paris, France led to another change which is described here and was incorporated into the final process. The early steps of the adapted Thompson method remain the same until the filtering of the iron hydroxide precipitate. At that time a plastic funnel was substituted for the glass

one for filtration. The precipitate was then dissolved with 100 mL of concentrated hydrofluoric acid into a teflon beaker. This solution contained the uranium and iron. The white residue left behind in the filter paper contained the thorium and lanthanum. Again, the time of the separation of the uranium and thorium was noted in order to correct the thorium²²⁸ value.

The uranium bearing hydrofluoric acid solution in a covered teflon beaker was evaporated to half its original volume. About a teaspoon of boric acid powder was added and the solution raised to 100 mL with concentrated nitric acid, thereby yielding soluble nitrates rather than insoluble fluorides. This solution was evaporated to dryness on a hotplate. The residues that were left were wetted with a few drops of concentrated nitric acid and once again evaporated to dryness. This step was repeated twice more to insure that all the residues were in a soluble form.

Next, the residue was taken into solution with 9N HCl and this solution extracted for iron as previously described. Once the iron had been removed and the ether driven off, the uranium bearing solution was run on a 9N HCl anion exchange column and eluted as described before. The final uranium bearing solution was evaporated to dryness in a vycor beaker, covered and set aside until the final steps were performed. The amount of occurring uranium isotopes were not changed with respect to each other over the time they were held. The thorium on the other hand, was subject to change, making it important to process it first.

The thorium bearing residue left behind in the filter paper in the plastic funnel was treated with concentrated nitric acid to liberate the thorium. After this acid drained into a teflon beaker, the residue was rinsed again with 5N HNO3 into the same beaker to free any remaining thorium. The gel remaining in the filter paper was discarded after it was found to be mainly aluminum by XRF analysis. The acid containing the thorium was evaporated to dryness, then the residue brought up in 5 mL of 5N HNO3, and added to 45 mL of methanol. This solution was processed on a 90% methanol column as described before. The resulting elutate was evaporated to dryness in a vycor beaker.

The thorium was brought back up in a small amount of 8N HNO3 and reevaporated. Then about 2 mL of 0.1N HNO3 acid were added. The pH of this solution was checked to determine if it was 1.2. If not, it was adjusted using more 0.1N HNO3 or dilute NH4OH as needed. The method available for this check was pH paper, which was a source of gross error. The acid was then transferred to a test tube and 2 mL of triethylenetetraamine (TTA) and benzene solution added to it. These liquids were mixed on a test tube mixer for several minutes to extract the thorium into the organic phase. The tube was centrifuged briefly to separate the acid and organic phases. Then the organic upper layer was carefully drawn off with a disposable pipette, being careful not to take up any of the acid phase. The organic phase was placed in a 10 mL beaker. This extraction step was repeated several times to assure complete extraction. The organic phase was then evaporated to a small volume (about 1 mL) and drawn up into a warmed, clean disposable pipette and evaporated a drop at a time onto the center of a stainless steel planchette. The planchette was then heated to a dull red over a Bunsen burner flame to drive off the organics and any interferring U^{235} which may have been present. After it was cool, the disc was counted as described in the next section. Thorium discs were counted first beginning as few minutes as possible after separation from uranium to minimize the Th^{228} correction needed. The uranium residue was raised in 0.1N HNO3, as was the thorium, but the pH was adjusted with dilute NH4OH to 3.4. The acid was then transferred to a test tube and 2 mL. of TTA and benzene added. The same procedure used before was followed here except at the higher pH with several extractions, evaporation and transferral to the stainless steel planchete.

Anywhere along the way in the process after the first ether extraction, if there appeared to be a great deal of iron in the sample, it was possible to take the solution to dryness, raise it in 9N HCl and ether extract again, then pick up the procedure at the point it had reached when the iron had become apparent.

All evaporations, precipitations and platings were done in fume hoods to prevent the inhalation of fumes.

A flow chart of the procedure appears in Figures 6-9.

FLOW CHART OF ANALYSIS I

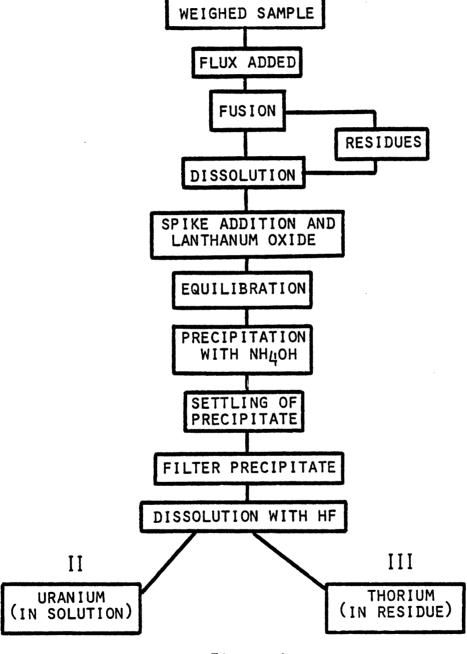


Figure 6

URANIUM PROCEDURE II

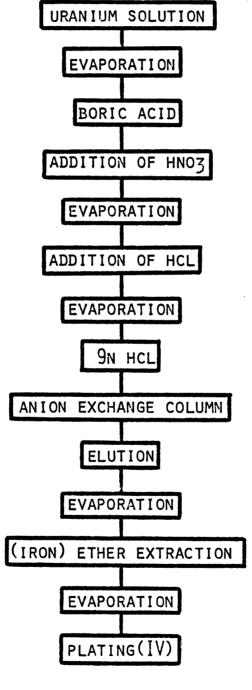


Figure 7

THORIUM PROCEDURE III

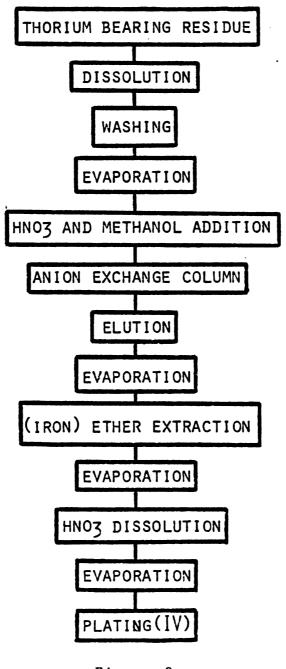
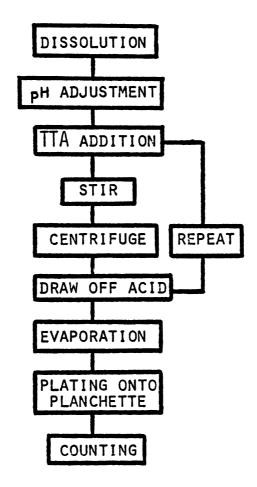
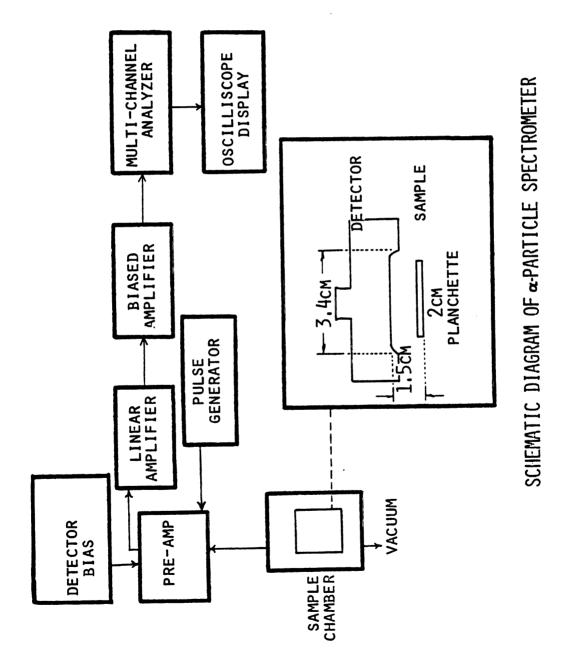


Figure 8

PLATING PROCEDURE IV




Figure 9

CHAPTER VI

ALPHA COUNTING PROCEDURE

Once the stainless steel planchettes were prepared, they were counted on an ORTEC Ca-070-950-100 spectrometer. (See Figure 10). This is a surface-barrier semi-conductor detector which is a solid state instrument which affords high resolution. The spectrometer provides a 0-10 volt linear signal which is sent to the vacuum chamber containing the sample. The sample planchette is mounted on a holder inside the detector. It is important that the area of the planchette containing the sample be centered as well as possible on the holder to optimize the geometry. The detection chamber is cooled with dry ice to maintain low backgrounds which are due to buildup of contaminants from alpha recoil nucleii. As was mentioned before, background was measured throughout the data acquisition period by counting blank planchettes over the same channels as had been determined for the isotopes of interest.

The signal from the detector is passed through a pre-amplifier and an amplifier and then onto a multichannel analyzer (MCA). After at least twenty four hours, the spectrum gathered for a planchette was counted over the channels corresponding to the various isotopes of interest. The raw counts, time and correlated background values were then entered into data sheets to be used with the computer program in Appendix E.

Thorium planchettes which contained the much shorter half life isotopes, were counted as soon as possible after their plating. The corresponding uranium - that is, the one from the same aliquot of sample was counted after the thorium.

The data sheets for each sample appear in Appendix F. The count rates for the isotopes are very low in most cases. This occurs for several reasons. First, the content of total uranium and total thorium in these samples was extremely low. Even if a high yield of the elements had been obtained, it would have been necessary to count the samples for much longer periods of time in order to achieve the high counts (approximately 1000) which yield good counting statistics. The unfortunate situation was that the work load and schedule of the research group allowed only a short time for the completion of the counting before the removal of the equipment took place. For this reason, every time a planchette was put in the detector, the spectrum acquisition was viewed for several minutes to half an hour. If no decays appeared during that time, the final steps of the plating were repeated on the undisturbed containers and the new The chemical interferences discussed in the planchettes counted. previous chapter attenuated the decays almost completely in some cases. The procedure should have been suspended and redone from the beginning at this point, but time constraints made this option impossible so the counts were done on the samples at hand in hopes that some data might be obtained.

The intention of this thesis was to determine whether this method could be applied to basic volcanic rocks to obtain chronology informa-

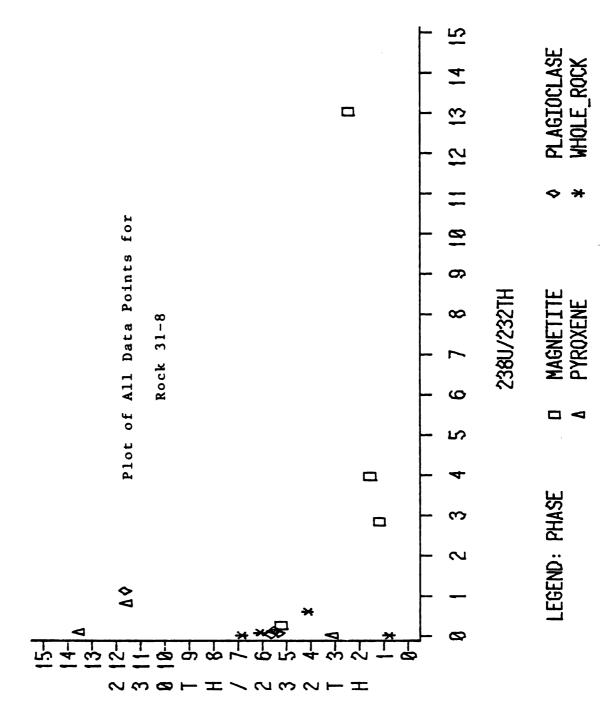
tion. Under the conditions of this work, the answer to that question seems to be that it cannot. However, I feel that complete fusions and solvent extraction could provide good data.

Fusions with an alternate flux, potassium flouride (KF), have been used (Sill, 1977) in processing thorium for alpha spectrometry. This may be a viable alternative.

CHAPTER VII

PROBLEMS OF DATA RESULTS AND CONSIDERATIONS

After counting samples for at least twenty-four hours, the data were entered into a computer program and run on an IBM 370 computer to calculate the $^{238}\text{U}/^{232}\text{Th}$ ratio, the $^{230}\text{Th}/^{232}\text{Th}$ ratio, and the errors in each of these ratios. The computer program, as used, appears in Appendix E.


The calculations take the following general pattern. The raw counts for the isotope of interest are divided by the counting time for that isotope. Background counts for the corresponding channels, divided by its count time are substracted from the raw counts per minute. If correction factors are to be applied to the particular isotope, they are done at this point. Finally, the corrected amount is divided through by the yield for the element being treated.

Ratios of yield corrected values are determined next and the errors for each value calculated in double precision. The exact equations used to do each of these steps are laid out in the program in Appendix E.

The results of the first runs of the data showed very clearly that there were significant problems. These were mainly that the data points plotted far from the region of the diagram where they were expected to plot. Figure 11 is a plot of the data points found for repeated analyses

of each of the four phases of rock number 31-8. The points cluster along the y axis in all but 3 cases. A more pronounced pattern emerged when each phase is plotted separately, as in Figures 12, 13, 14 and 15. Figure 12 shows that the magnetite points are reasonably distributed closer to the 45 degree 'equiline' and the x-axis closer to where they should fall. The plagioclase points, on Figure 13, cluster close to the y axis, as do the pyroxene (Figure 14) and whole rock points (Figure 15). Each phase can be found in an area of the graph progressively higher on the y axis and each may be related to a similarly progressively worse problem in the dissolution chemistry.

The magnetite (Fe₃0₄), a simple iron oxide rather than a silicate, was easier to take into solution than the other phases. It was possible to take each aliquot of this phase into solution in hydrochloric acid overnight. However, the predominance of the iron in the solution, once attained, was so overwhelming that repeated isopropyl ether extractions throughout the procedure could not remove it. Enough excess iron came off onto the ion exchange columns in the later steps of the process after several extractions to 'clog' the columns. This demonstrated that not all of the iron had been extractable into the ether and remained as an iron complex rather than as free, extractable iron ion. At the final planchette plating step, the iron remaining was once more ether extracted and when absolutely no more could be removed, plating was done. An iron residue formed during the evaporation of the final drops of solution. This residue was thick enough to attenuate the alpha counts severely.

Plot of All Data Points for Bock 31-8
Figure 11

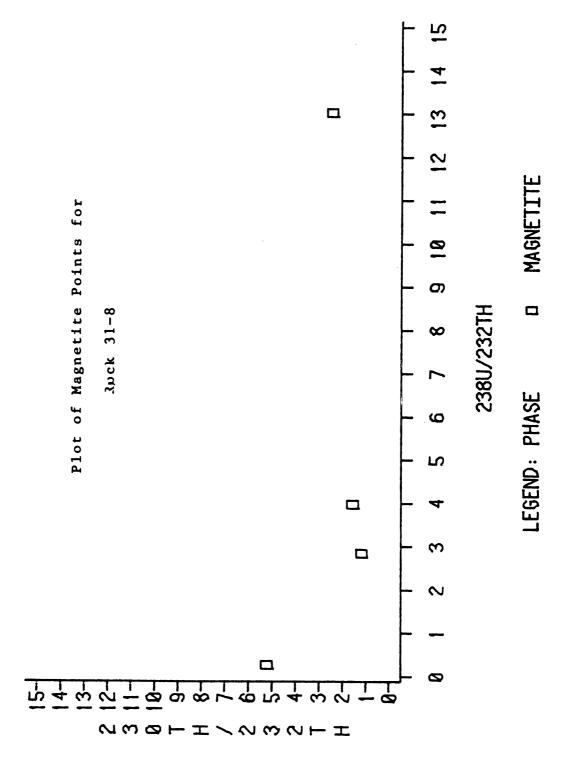


Figure 12

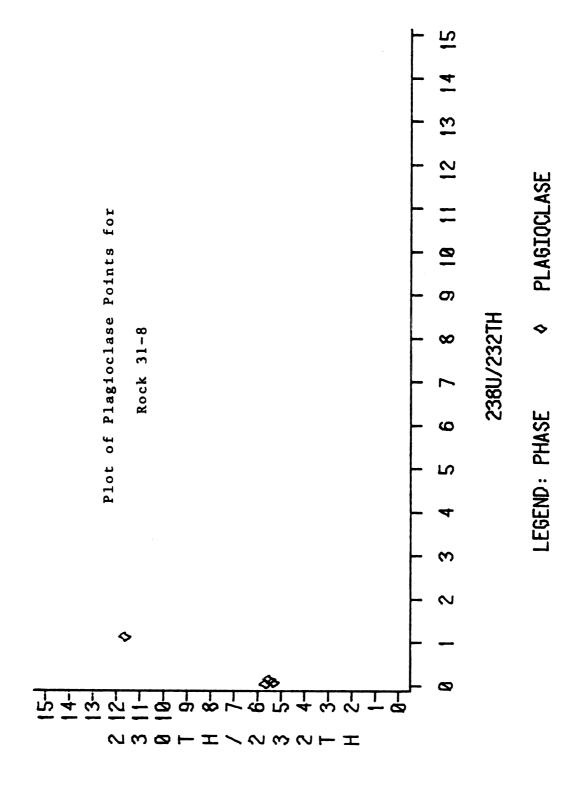


Figure 13

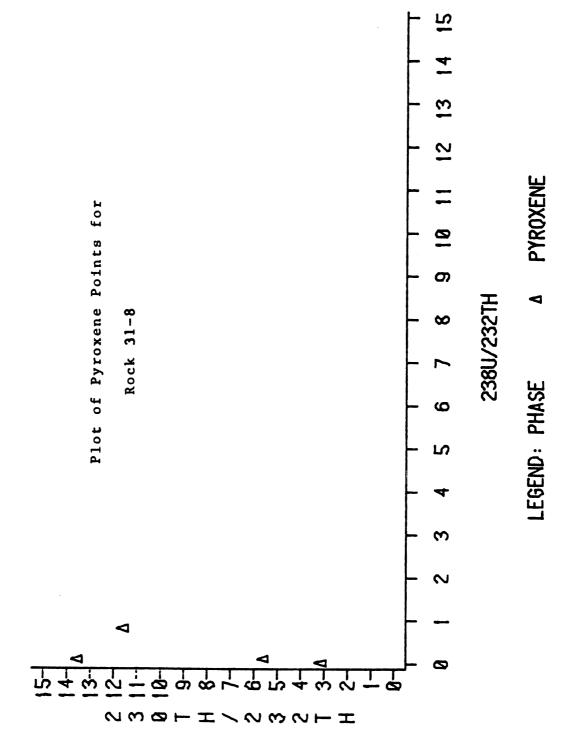


Figure 14

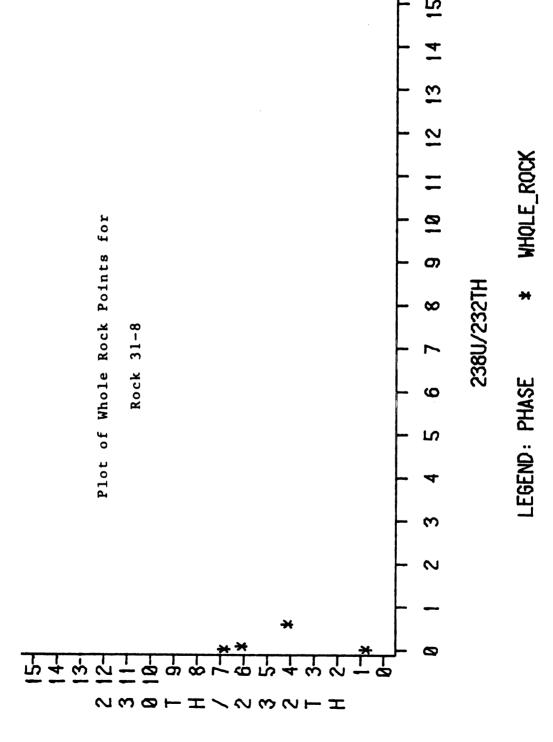


Figure 15

This problem of excess iron was not a problem in the work done on speleothems or light rocks since the iron content of those materials is proportionally so much lower than that of magnetite that the problem had not been seen in this magnitude before during the work of this research group. In fact, iron was added in processing those kinds of rock in order to facillitate the iron hydroxide precipitation step.

The other phases of the rock; plagioclase, pyroxene and whole rock, in addition to their iron content are silicates. This fact is the other of the two most serious problems faced in the chemistry which produced this data. After the initial attempt to take each phase into solution with hydrofluoric acid and perchloric acid followed by nitric acid, the residue which was left behind clearly required more intensive treatment. To this end, a fusion with sodium bicarbonate was attempted. The other available flux material was lithium metaborate. In discussions with the head of the research team it was decided that the lithium in the flux would interfere with the carriage of the thorium through the procedure. Therefore, the fusions were done with the sodium bicarbonate. According to the texts on fusions, the optimum temperature for fusion of these phases was 850°C. The recommended flux-to-phase proportions ranged from 4:1 to 10:1. Experimental trials with whole rock were run since whole rock was the one phase which needed the least processing and virtually Successive trials with different unlimited amounts were available. combinations of flux, time, and temperature were run. When any combination which involved a temperature greater the 850°C was tried, a black, pastey looking, insoluble coating, probably iron, formed around the edge of the crucible and on the underside of the cover. A temperature of lower than 850°C produced no noticeable change in the powder at all, even if left for longer than 10 to 12 hours.

Flux proportions lower than 8:1 produced little if any noticeable change in the powder and no improvement in the total amount of residue left behind after the dissolution. The final combination was the one which produced the best results with the fewest problems. That combination was 10:1 flux to sample heated to 850°C for 4 hours for phases like plagioclase and pyroxene and for six hours for whole rock.

The results of the fusions never reached the glass bead stage about which I had read, but all attempts to better them with the materials available resulted in no better products. Never was it possible to reduce the residues appreciably. The clustering of the silicate phases along the y-axis, may possibly be explained by their compositions. The inability to breakdown the phases, coupled with the loss of uranium in the fuming hydrofluoric acid step could account for the extreme vertical displacement of the points. The thorium loss, as well as additional uranium loss, during the many times solutions were taken to dryness and redissolved could account for the horizontal displacement and further vertical displacement of the points on the graph. Since attempts to mathematically correct the values back to 100 percent yields were relatively unsuccessful and the use of weighted linear regression techniques only increased the problem, (Table 3 and Figures 16-19) chemical interferences were the reasonable causes.

Table 3

REGRESSION DATA FOR 31-8 PHASES

<u>Phase</u>	Y Intercept	Slope	R Square
Magnetite	2.935590	-0.49	0.07487
Plagioclase	5.072947	16.58	0.98920
Whole Rock	4.52390	-0.13	0.00530
Pyroxene	8.39158	0.60	0.10582

PHASE DATA

Lab Number	Th/Th Ratio	Error	<u>U/Th</u>	Ratio
MSU251	1.1897	0.371	2.8435	0.451
MSU252	1.5590	0.688	3.9705	1.034
MSU253	5.2106	0.162	0.2597	0.034
MSU256	2.4733	0.133	13.0218	0.658
MSU255	11.6556	0.422	1.1170	0.061
MSU292	5.4999	0.056	0.1355	0.011
MSU293	5.3464	0.025	0.0610	0.003
MSU294	5.6379	0.017	0.0224	0.002
MSU261	6.0872	0.046	0.0775	0.006
MSU267	0.7885	0.006	0.0063	0.003
MSU268	6.8489	0.021	0.0112	0.001
MSU269	4.1110	0.320	0.5970	0.099
MSU257	13.5426	0.153	0.092	0.009
MSU258	3.1521	0.013	0.0197	0.002
MSU259	11.6146	0.040	0.8095	0.005
MSU295	5.5927	0.104	0.1042	0.021

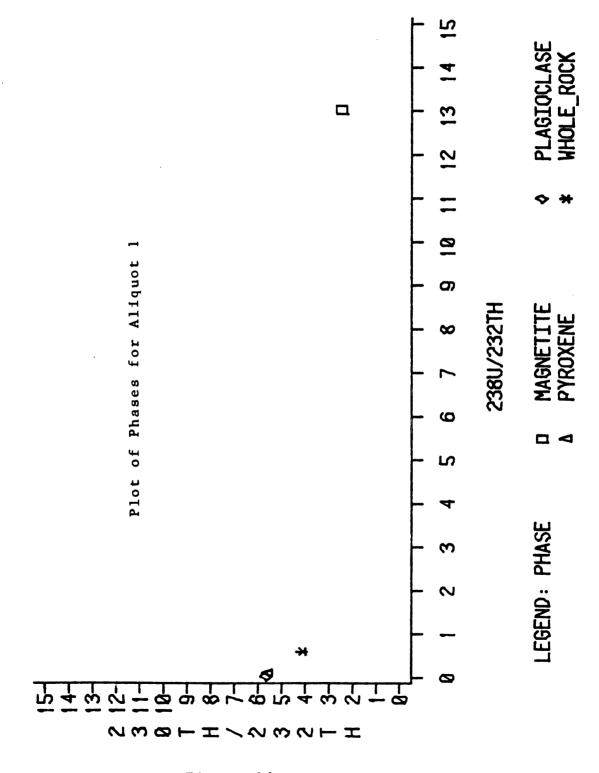


Figure 16

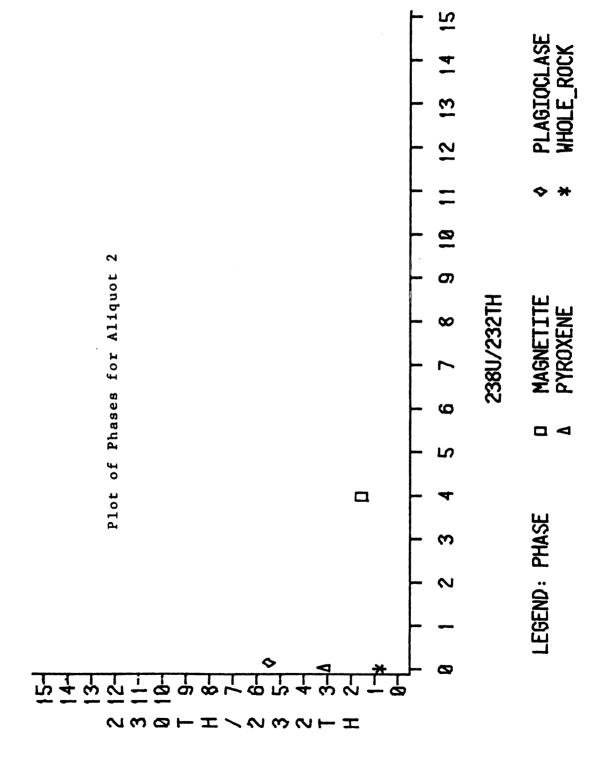


Figure 17

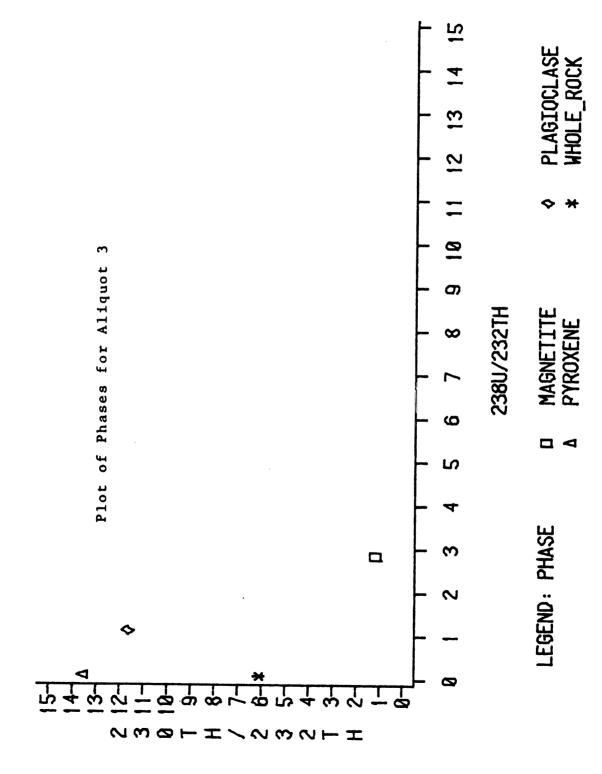


Figure 18

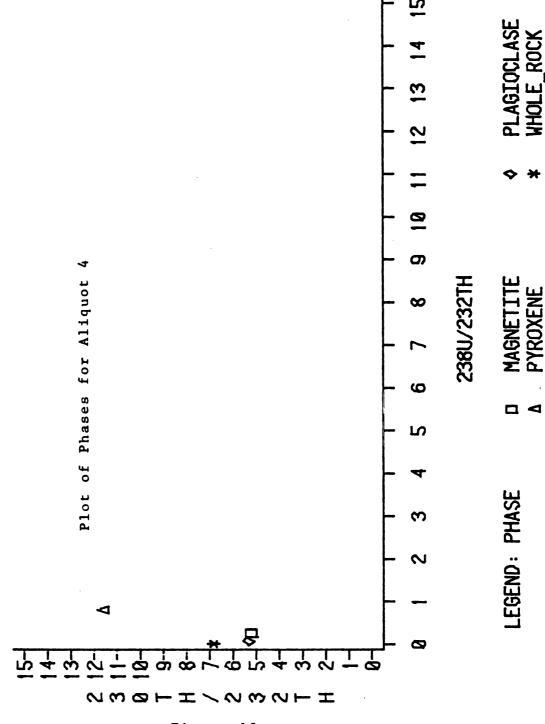
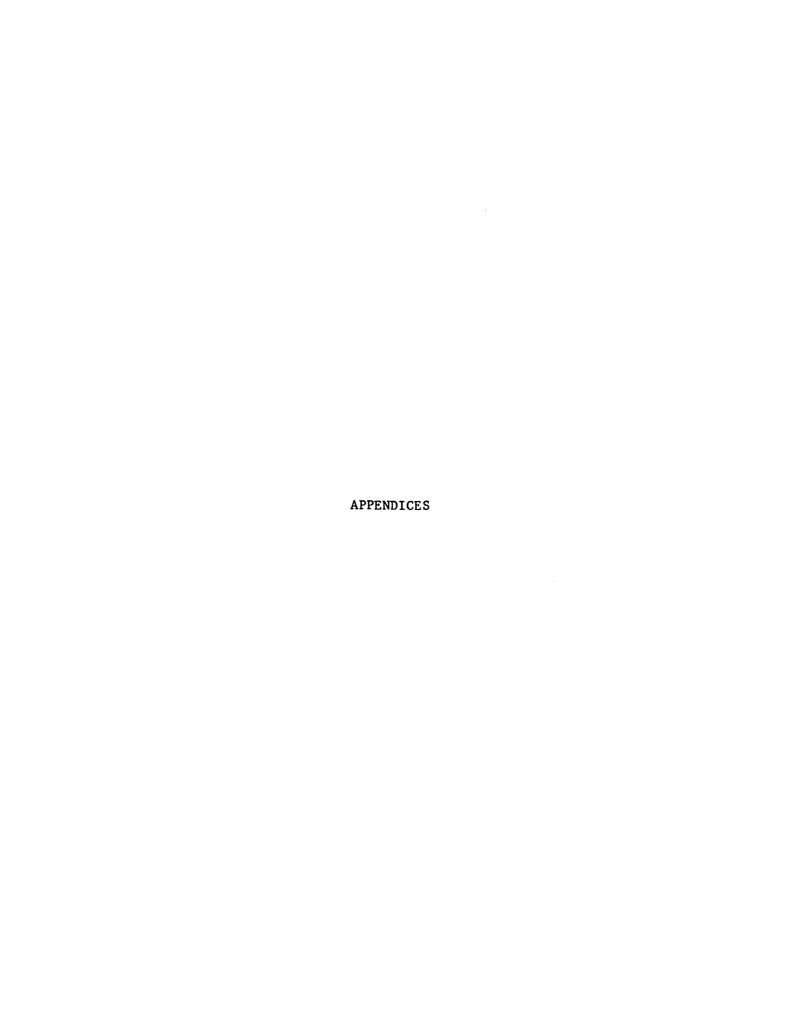


Figure 19

In the general sense, it seems unreasonable to take a rock into solution, even given that dissolution is complete, and then to remove everything except a minute portion, in order to analyze that portion. It would seem to be much more reasonable to remove the trace elements of interest by some method, such as solvent extraction, early in the processing, leaving all the rest behind.

A type of solvent extraction was tried at one point in this work. Several telephone conversations with the chemists at one of Atlantic Richfield's Research and Development Laboratories yielded samples of four quaternary amines which are commonly used in industrial uranium solvent extraction. Attempts to facilitate solvent extractions in the laboratory were failures. The equipment necessary could not by synthesized and the technique was too cumbersome to miniaturize with no real understanding of the procedure and no guidance aside from phone conversations with some very well meaning scientists. It remains my conviction that the technique of solvent extraction is the way to proceed if this approach to basic volcanic rocks is to be used. Work by Gunyon, 1975; Jenkins 1969, and others seem to show the viability of this approach.


Whatever method is used, however, primary dissolution is necessary. Fusions or pressure bombs to break down the silicates must be successfully carried out in order to assure the release of the extremely small fractions or uranium and thorium from the rock or phase.

References

- Adams, J.A.S., J.F.Osmond, J.J.W.Rogers, 1969 The Natural Radiation Environment Wiley and Sons, New York.
- Allegre, C.J., and M. Condimines, 1976 Fine chronology of volcanic processes using ²³⁸U ²³⁰Th systematics. Earth & Planet. Sci. Lett. v.28, p.395.
- Allegre, C.J., 1968 ²³⁰Th date of volcanic rocks: a comment. Earth & Plant. Sci. Letter. v.5, p.209.
- Attree, R.W., M.J. Cabell, R.L. Cushing, and J.J. Pieron, 1962 A colorimetric determination of the half-life of ²³⁰Th and consequent revision of its neutron capture cross section. Can.J. Phys., v. 40, p.194.
- Baranowski, James 1977 ²³⁸U/²³⁰Th isotope systematics of rhyolites from Long Valley California. unpublished MS thesis, Michigan State University.
- Cherdyntsev, V.V., G.I.Kislitsina, V.L.Zverev, 1967 Isotopic composition of uranium and thorium in rocks and products of active volcanism. Akad. Nauk SSSR Doklady, V.172, p.177.
- Cherdyntsev, V.V., G.I.Kislitsina, V.M.Kuptsov, E.A.Kuzina, V.L.Zverev, 1967 Radioactivity and absolute age of young volcanic rocks. Geochim. Int. v.4, p.639.
- Cherdyntsev, V.V., V.M.Kuptsov, E.A.Kuzima, V.L.Zverev, 1968 Radioisotope and proctactinium age of neovolcanic rocks of the Caucasus. Geochim. Int. v.5, p.56.
- Cherdyntsev, V.V., and N.A. Senina, 1970 Radioactivity of young volcanic rocks of three Pacific Islands. Geochim. Int. v.8, p.652.
- Cherdyntsev, V.V. and N.A. Senina, 1973 On the behavior of uranium-234 in volcanic processes. Geochim. Int., v.10, p.18.
- Condimines, M., M. Bernat, and C.J. Allegre, 1976 Evidence for contamination of recent Hawaiian lavas from ²³⁰Th ²³⁸U data. Earth & Plant. Sci. Lett. v.33, p.122.
- Dalrymple, G.G., and M.A. Lanphere, 1969 K-Ar Dating W.H. Freeman, New York.
- Damon, P.E., A.W. Lauglin, J.K. Percious, 1969 Problem of excess argon-40 in volcanic rocks, in Proceedings of a symposium on radioactive dating and methods of low level counting. IAEA, March 1969, p.463.
- Freidlander, Gerhart, J.W.Kennedy, and J.M.Miller, 1955 <u>Nuclear and Radio-</u>chemistry John Wiley and Sons, New York.

- Funkhouser, J.G., I.L. Barnes, and J.J. Naughton, 1966 Probelms in the dating of volcanic rocks by the potassium-argon method. Bull Volcan, v.29, p.709.
- Guyon, J.C., and B. Madison, 1975 Studies on the solvent extraction of thorium, Mikrochim. Acta v.1, p.133.
- Holland, H.D., and L.Kulp, 1954 The transport and deposition of uranium, ionium, and radium in rivers, oceans, and ocean sediments. Geochim. Cosmo. Acta, v.5, p.197.
- Hurley, J., and R. Fairbairn, 1957 Partioning of uranium and thorium.
- Jenkins, I.L., Dallas E.Lidington, and A.G. Wain, 1969 Separation of small amounts of ²²⁹Th from large quantities of ²³³U. J.Appl.Chem. v.19, p.213.
- Kaufman, A., 1964 234U/230Th dating of carbonates from Lakes Lahontan and Bonneville. Ph.D. Dissertation, Columbia University, New York.
- Ku,T.L., 1976 The u-series methods of age determination. Ann. Rev. of Earth and Planet. Sci., v.4, p.347.
- Lively, Richard, 1978 Uranium Series Disequilibrium: Investigations of three surficial uranium deposits. unpublished thesis. Michigan State University.
- MacDonald, G.A., 1949 Hawaiian petrographic province. Geol. Soc. Amer. Bull Soc. 60.
- MacDonald, G.A., and T. Katsura, 1964. Chemical composition of Hawaiian Lavas: J. Pet., v.5, p.82.
- McDougall, I., 1961 Potassium-argon ages from lavas of the Hawaiian Islands Geol. Soc. Am. Bull. 75, p.107.
- Nishamura, S., 1970 Disequilibrium of the ²³⁸U series in recent volcanic rocks. Earth Planet. Sci. Letters, v.8, p.239.
- Rankama, K., 1954 Isotope Geology Pergamon Press, London.
- Rogers, J.J.W., and J.A.S.Adams, 1957 Autoradiography of volcanic rocks of Mount Lassen, Science v.125, 1150.
- Seaborg, G.T., and J.J.Katz, 1954 The Actinide Elements National Nuclear Energy Series, McGraw-Hill, New York.
- Sill, C.W., 1977 Determination of thorium and uranium isotopes in ores and mill tailings by alpha spectrometry. Anal. Chem. v.49, p.618.
- Stearns, H.T., 1946 Geology of the Hawaiian Islands. Hawaii Div. Hydrog. Bull. 8.
- Stearns, H.T., and G.A. MacDonald, 1948 Geology and groundwater resources of the Island of Hawaii. Hawaii Div. of Hydrog. Bull. 9.

- Somayajulu, B.L.K., M. Tatsumoto, J.N. Rosholt, and R.J. Knight, 1966 Disequilibrium of the ²³⁸U Series in basalt. Earth & Planet. Sci. Lett. v.1, p.387.
- Taddeuchi, A., W.S. Broecher, D.L. Thurber, 1967 230 Th dating of volcanic rocks. Earth & Planet. Sci. Lett. v.3, p.338.
- Tatsumoto, M., C.E. Hedge, and A.E. Engel, 1965 ²³⁰Th dating of volcanic rocks. Earth & Planet. Sci. Lett. v.3, p.338.
- Tatsumoto, M., C.E. Hedge, and A.E. Engel, 1965 K, Rb, Sr, Th, U, and the SR⁸⁷/SR⁸⁶ ratio in oceanic tholeiltic basalt. Science. v.150, p.886.
- Tera, F., J.Korkisch, and F.Hecht, 1961 The distribution of thorium between alcohol-nitric acid solutions and the strongly basic anion exchanger Dowex-1. Separation of thorium from uranium. J.Inorg. Nvc. Chem., v.16, p.345.
- Tieh, T.T., E.B. Ledger, and M.W. Rowe, 1980 Release of uranium from granitic rocks during in situ weathering and initial erosion (central Texas). Chem. Geol., v.29, p.227.
- Thompson, P., 1973a A method of analysis of uranium and thorium for paleoclimatology. unpublished thesis. McMaster University.
- Thompson, P., 1973b Extraction and isotopic analysis of tract amounts of uranium and thorium from speleothems. McMaster Univ. Tech. Memo. 73.
- Turner, F., and J. Verhoogan, 1960 Igneous and Metamorphic Petrology McGraw Hill Book Company, New York.
- Whitfield, J.M., 1958 Uranium and thorium content of some granitic rocks. Unpublished Ph.D. Thesis The Rice Institute.

APPENDIX A
228_{Th}/232_{U SPIKE}

$228_{Th}/232_{U}$ SPIKE

In order to quantitatively evaluate the yields of the uranium and thorium, a spike of ²²⁸Th and ²³²U in known quantity was added to the dissolved samples. These isotopes were best used since they were relatively non-existent in the system considered. Small corrections were made for the presence of both in the calculation of the age.

 228 Th is a short lived daughter product of 232 U and therefore the two are reasonably considered to be at equilibrium in a closed system such as this.

It was also advantageous to use these isotopes because their energies fall into an easily used part of the spectrum for counting purposes.

Since known quantities of spike were used, the percent yield could be determined from the samples. Therefore, a normalized value would give the abundance of uranium and thorium in the original rocks.

The concentrated spike was diluted with 6N HCl to prevent it from adsorbing into the glass of the storage recepticle. Exactly 10.0 mL of concentrated spike was pipetted into a solution composed of 10 mL of concentrated HCl and 500 mL of concentrated HNO3 contained in a 1-liter volumetric flask. This solution was then brought to volume with distilled water. A 5.0 mL aliquot of this solution at a time was then diluted to one liter with distilled water in a pyrex beaker. This was called the "dilute

spike" and was stored in a dark brown pyrex glass bottle, refrigerated.

When using a spike of ²²⁸Th, it becomes necessary to correct for the unsupported ²²⁸Th decay with a half-life of 1.90 years. This correction is made by the following equation:

$$^{228}\text{Th}_{corr} = c_{pm} ^{228}\text{Th} - (^{232}\text{U} \times .055) \exp(\lambda_{228} \times DECT)$$

where:

²²⁸Th_{corr} = activity corrected for unsupported decay

²²⁸Th_{meas} = measured activity

 λ = decay constant for ²²⁸Th (9.927 x 10⁻⁴) yrs

DECT = the time which elapses between the chemical separation of uranium from thorium and when the actual counting beings

cpm = counts per minute corrected for background

The spike was periodically analyzed to determine the change of isotopic ratios in it and its activity.

APPENDIX B USE OF FRANTZ ISODYNAMIC SEPARATOR

USE OF FRANTZ ISODYNAMIC SEPARATOR

Whole rock samples, crushed to less than 200 mesh size and cleansed of clay size particles, were dried and then passed through the Frantz Isodynamic Separator at the following settings:

Range: always set on low for mafic rocks

Side-side angle: approximately 18 degrees

Front-back angle: approximately 27 degrees

Mineral	Amps	Vibrator Setting
Magnetite	.025	4-6
Pyroxene	.08-1.0	6-7
Plagioclase	two runs at 1.0	5-6
	two runs at 1.5	5-6

If the rock was relatively free of altered minerals, several runs at each setting removed the discreet grains of more magnetically susceptible minerals. Then a setting of 1.5 amps cleared the remaining plagioclase of grains which were amalgams of mafic and non-mafic minerals. Glass, if present, could be removed by heavy liquids or water-gravity settling. For the Hawaiian basalts, water washes were at least as successful as heavy liquids separations. For obvious reasons, water separations were preferred.

APPENDIX C

REAGENTS

REAGENTS

I. Water was distilled and deionized.

II. Prepared reagents:

	Reagent	Strength	Ingredients
Α.	Nitric Acid	8N	510 mL conc. to 1 L w/ $\mathrm{H}_2\mathrm{O}$
		0.1N	$6.4~\mathrm{mL}$ conc. to $1~\mathrm{L}$ w/ $\mathrm{H}_2\mathrm{O}$
		5N	320 mL conc. to 1 L w/ $\rm H_2O$
	measured with gradu	ated cyli	nders or class A pipettes
В.	Hydrochloric Acid	9N	710 mL conc. to 1 L w/ $\rm H_2O$
		0.1N	8.6 mL conc. to 1 L w/ $\mathrm{H}_2\mathrm{O}$
c.	Ammonium Hydroxide	0.3N	20 mL conc. to 1 L w/ H ₂ O
D.	TTA Solution		25 gms + 500 mL benzene
	all stocks were rea	gent grade	2

III. Spike:

from: Radiochemical Centre

Amersham, England

APPENDIX D CLEANING OF GLASSWARE

CLEANING OF GLASSWARE

All glassware was scrubbed with phosphate free detergent and hot water. Next it was rinsed with tap water, then scrubbed with 8N HNO3. It was then rinsed with tap and finally with distilled water.

Centrifuge tubes, test tubes, and 10 mL beakers were rinsed with acetone, detergent scrubbed and tap water rinsed. Next they were scrubbed with 8N HNO3, rinsed with tap water and then rinsed with distilled water. An acetone rinse and final distilled water rinse followed.

Vycor beakers and teflon beakers were soaked overnight in 2:1 HNO3:H₂O before washing.

APPENDIX E

COMPUTER PROGRAMS USED TO PROCESS THE DATA AND TO CALCULATE THE ERRORS

COMPUTER PROGRAMS USED TO PROCESS THE DATA AND TO CALCULATE THE ERRORS

```
THIS PROGRAM CORRECTS RAW COUNT RATE DATA AND COMPUTES U-238/TH-232,
C
C
         U-234/U-238 AND TH-230/TH-232 ISOTOPE RATIOS. YIELDS OF U AND TH ARE
C
         CALCULATED AND THE ERRORS IN THE RATIOS CALCULATED.
C
         N1=U-238 COUNT RATE
C
         N2=U-234 COUNT RATE
C
         N3=U-232 COUNT RATE
C
         N4=TH-232 COUNT RATE
C
         N5=TH-230 COUNT RATE
C
         N6=TH-228 COUNT RATE
C
         N7=RA-224 COUNT RATE
C
         CN1=CORRECTED U-238 COUNT RATE YIELD CORRECTED
C
         CN2=CORRECTED U-234 COUNT RATE YIELD CORRECTED
C
         CN3=CORRECTED U-232 COUNT RATE YIELD CORRECTED
C
         CN4=CORRECTED TH-232 COUNT RATE YIELD CORRECTED
C
         CN5=CORRECTED TH-230 COUNT RATE YIELD CORRECTED
С
         CN6=CORRECTED TH-228 COUNT RATE YIELD CORRECTED
C
         CNTU = ACCUMULATION TIME FOR U SPECTRUM (MINS)
C
         CNTT = ACCUMULATION TIME FOR TH SPECTRUM (MINS)
C
         CNBD = ACCUMULATION TIME FOR BLANK DISC (MIN)
C
         SAR=ACTIVITY OF 1.0 ML U-232/TH-232
С
         WT=WEIGHT OF SAMPLE USED
         SPIKE=TH-228/U-232 ACTIVITY RATIO IN SPIKE
C
C
         THALF8=THE DECAY CONSTANT FOR TH-228=9.94E-04
C
         DECT=DELAY BETWEEN COUNTING TH228 AND SEPARATION FROM U
C
         B1=COUNTER BACKGROUND CORRECTION FOR U-238
C
         B2=COUNTER BACKGROUND CORRECTION FOR U-234
C
         B3=COUNTER BACKGROUND CORRECTION FOR U-232
C
         B4=COUNTER BACKGROUND CORRECTION FOR TH-232
C
         B5=COUNTER BACKGROUND CORRECTION FOR TH-230
         B6=COUNTER BACKGROUND CORRECTION FOR TH-228
      DOUBLE PRECISION N1, N2, N3, N4, N5, N6, N7, CN1, CN2, CN3, CN4, CN5, CN6,
         CNTU, CNTT, CNBD, SAR, SAU, SAT, B1, B2, B3, B4, B5, B6, DECT, ML, WT, YU,
     3
         YT,R21,R14,R54,YUP,YTP,PPMU,ER1,ER2,ER4,ER5,ER14,ER54,ER21,YI,
         YII, THALF8, Y2, Y3, Y4, Y5, Y6, Y7
      DIMENSION TITLE(10)
```

```
100
      READ(5,101,END=999) TITLE, CNTU, CNTT, SPIKE, DECT, ML, WT
101
      FORMAT(10A1.6E10.4)
      WRITE(6,1000)TITLE, CNTU, CNTT, DECT, ML, WT
1000
      FORMAT(1X,10A1,2X,2(1PE20.10),/,13X,3(1PE20.10))
102
      READ(5,103)N1,N2,N3,N4,N5,N6,N7
103
      FORMAT(7F10.4)
      WRITE(6,103)N1,N2,N3,N4,N5,N6,N7
104
      READ(5,105)B1,B2,B3,B4,B5,B6,CNBD
105
      FORMAT(7F10.4)
      WRITE(6,105)B1,B2,B3,B4,B5,B6,CNBD
      THALF8=9.94E-04
      SAU=25.39
      SAT = 22.62
      SAR=SAU/SAT
      WRITE(6,140)SAR
140
      FORMAT(2X, 'SAR=', 1PE20.10)
      CORRECT FOR BACKGROUND, CALCULATE COUNTS PER MINUTE AND NORMALIZE
      YU = (((N3/CNTU) - (B3/CNBD))/(SAU*.2))
       Y2=N6/CNTT
       Y3=B6/CNBD
       Y4 = Y2 - Y3
       Y5=N7/CNTT
       Y6=B6/CNBD
       Y7 = (Y5 - Y6) * .055
       YI=(Y4-Y7)
      YII=YI*(YI*DEXP(THALF8*DECT))
      YT=(YII/(SAT*.2))
      WRITE(6,6000)YI
6000 FORMAT(2X, 'YI=', 1PE20.10)
      WRITE(6,6001)YII
6001
      FORMAT(2X,'YII=',1PE20.10)
      CORRECT COUNTS FOR BACKGROUND AND PEAK TAILING AND YIELD CORRECT
      CN1 = ((N1/CNTU) - (B1/CNBD))/YU
      CN2=(((N2/CNTU)-(B2/CNBD))/YU)-(CN1/21.7)
      CN3=((N3/CNTU)-(B3/CNBD))/YU
      CN4=((N4/CNTT)-(B4/CNBD))/YT
      CN5=((N5/CNTT)-(B5/CNBD))/YT
      CN6=(YII)/YT
С
        CALCULATION OF ISOTOPE RATIOS AND ERRORS IN THESE RATIOS
С
         DUE TO STATISTICAL ERRORS IN THE COUNT RATE
С
      R21=U234/U238
С
      R14=U238/TH232
С
      R54=TH230/TH232
      R21=CN2/CN1
      R14=(CN1/CN4)
      R54=CN5/CN4
С
           CORRECTED COUNTS IN ORDER 1-6
125
      WRITE(6,126)CN1,CN2,CN3,CN4,CN5,CN6
      FORMAT(2X, 'CN1=', 1PE20.10, 2X, 'CN2=', 1PE20.10, 2X, 'CN3=', 1PE20.10, /,
126
     1 2X, 'CN4=', 1PE20.10, 2X, 'CN5=', 1PE20.10, 2X, 'CN6=', 1PE20.10)
```

```
YUP=YU*100
117
      WRITE(6,118)YUP
118
      FORMAT(10X, 'YU= ', 1PE10.2, 'PERCENT')
      PPMU = ((.2)*(CN1)*(304.93))/(CN3*WT)
      WRITE(6,251)PPMU
251
      FORMAT(' PPMU= ',1PE10.2)
      CALCULATION OF THE ERROR IN THE RATIOS
C
С
         ER = TOTAL ERROR IN U-TH COUNT RATES DERIVED FROM U-TH COUNT RATES
С
          , BLANK DISC COUNT RATE FOR U-TH COUNT TIMES
          , BLANK DISC COUNT RATE FOR BLANK DISC COUNT TIMES
      ER1=DSQRT((CN1/CNTU)+(B1/CNBD)+(B1/CNTU))
      WRITE(6,5000)ER1
5000
      FORMAT(2X, 'ERROR IN CN1=', 1PE20.10)
      ER2=DSQRT((CN2/CNTU)+(B2/CNBD)+(B2/CNTU))
      WRITE(6,5001)ER2
5001 FORMAT(2X, 'ERROR IN CN2=', 1PE20.10)
      ER4=DSORT((CN4/CNTT)+(B4/CNBD)+(B4/CNTT))
      WRITE(6,5002)ER4
5002
      FORMAT(2X, 'ERROR IN CN4=', 1PE20.10)
      ER5=DSQRT((CN5/CNTT)+(B5/CNBD)+(B5/CNTT))
      ER14=(CN1/CN4)*DSQRT(ER1*ER1/(CN1*CN1)+ER4*ER4/(CN4*CN4))
      WRITE(6,5003)ER5
      FORMAT(2X, 'ERROR IN CN5=', 1PE20.10)
5003
      ER21=(CN2/CN1)*DSORT(ER2*ER2/(CN2*CN2)+ER1*ER1/(CN1*CN1))
      ER54=(CN5/CN4)*DSQRT(ER5*ER5/(CN5*CN5)+ER4*ER4/(CN4*CN4))
      YTP=YT*100
119
      WRITE(6,120)YTP
120
      FORMAT(10X, 'YT= ',1PE10.2, 'PERCENT')
106
      WRITE(6,107)R14
131
      WRITE(6,132)ER14
108
      WRITE(6,109)R54
133
      WRITE(6,134)ER54
      FORMAT(10X, 'U238/TH232=', 1PE20.10)
107
      FORMAT(10X, 'TH230/TH232=', 1PE20.10)
109
110
      WRITE(6,111)R21
135
      WRITE(6,136)ER21
      FORMAT(10X, 'U234/U238=', 1PE20.10)
111
      FORMAT(2X, 'ERROR U238/TH232= ',1PE20.10)
FORMAT(2X, 'ERROR TH230/TH232= ',1PE20.10)
132
134
      FORMAT(2X, 'ERROR U234/U238=', 1PE20.10, //)
136
      WRITE(6,7000)TITLE,R54,ER54,R41,ER41
7000
      FORMAT(2X,2A4,2X,4(1PE20.10,2X,//)
      GO TO 100
999
      STOP
      END
```

MSU251	1328.8	1382.53	0.99	3.977	00.2	10.0
235.0	226.0	493.0	499.0	644.0	1990.0	236.0
9.0	31.0	6.0	6.0	32.0	20.0	682.97
MSU252	1494.95	1534.63	0.99	1.826	00.2	15.0
48.0	94.0	92.0	163.0	305.0	1558.0	235.0
9.0	31.0	6.0	6.0	32.0	20.0	682.97
MSU253	2456.43	3104.0	0.99	4.388	00.2	10.0
183.0	305.0	658.0	41.0	153.0	220.0	109.0
23.0	61.0	21.0	18.0	62.0	40.0	1627.43
MSU255	1336.0	1577.8	0.99	31.038	00.2	10.0
128.0	159.0	236.0	60.0	670.0	420.0	170.0
11.0	23.0	16.0	7.0	6.0	23.0	4065.65
MSU256	1516.12	2899.33	0.99	3.216	00.2	10.0
1121.0	1565.0	326.0	110.0	264.0	1032.0	220.0
11.0	23.0	16.0	7.0	6.0	23.0	4065.65
MSU257	2685.05	1809.02	0.99	38.213	00.2	10.0
267.0	319.0	1548.0	12.0	123.0	98.0	31.0
11.0	23.0	16.0	7.0	6.0	23.0	4065.65
MSU258	1585.2	1430.18	0.99	8.994	00.2	10.0
105.0	139.0	465.0	24.0	70.0	59.0	36.03
11.0	23.0	16.0	7.0	6.0	23.0	4065.65
MSU259	1315.93	2607.35	0.99	11.01	00.2	10.0
336.0	432.0	54.0	20.0	184.0	82.0	54.0
11.0	23.0	16.0	7.0	6.0	23.0	4065.65
MSU261	1275.93	1594.0	0.99	5.001	00.2	10.0
28.0	61.0	92.0	27.0	150.0	108.0	45.0
11.0	23.0	16.0	7.0	6.0	23.0	4065.65
MSU267	1205.03	1262.0	0.99	14.111	00.2	10.0
25.0	232.0	500.0	275.0	217.0	244.0	515.0
11.0	23.0	16.0	7.0	6.0	23.0	4065.65
MSU268	1473.0	1393.3	0.99	40.01	00.2	10.0
79.0	109.0	391.0	24.0	150.0	48.0	36.0
11.0	23.0	16.0	7.0	6.0	23.0	4065.65
MSU269	1553.83	1427.35	0.99	19.021	00.2	10.0
160.0	210.0	1166.0	36.0	140.0	444.0	92.0
11.0	23.0	16.0	7.0	6.0	23.0	4065.65
MSU292	1431.18	2439.0	0.99	19.078	00.2	10.0
55.0	102.0	208.0	27.0	129.0	177.0	45.0
11.0	23.0	16.0	7.0		23.0	4065.65
MSU293		2957.48		6.0		
	2819.3		0.99	27.949	00.2	10.0
43.0	107.0	128.0	66.0	330.0	198.0	87.0
11.0	23.0	16.0	7.0	6.0	23.0	4065.65
MSU295	1393.1	1880.88	0.99	9.360	00.2	2.5
128.0	204.0	1223.0	36.0	186.0	249.0	60.0
11.0	23.0	16.0	7.0	6.0	23.0	4065.65
MSU294	1342.68	3007.88	0.99	26.08	00.2	10.0
16.0	62.0	64.0	20.0	88.0	82.0	33.0
11.0	23.0	16.0	7.0	6.0	23.0	4065.65

APPENDIX F DATA SHEETS FROM THE LABORATORY RESULTS

DATA:	ory Number <u>252</u>	Sample Numb	er <u>31-8 Ma</u>	g. Sample W	eight <u>15 gm</u>	s
Sample :	Identification _	Magnetite fr	rom Pololu	Basalt		
Date Pro	eparation Began	9/11/77	Date & T	ime of U/Th Se	paration <u>9/</u>	16/77
Amount	of Tracer 2 ml.	<u> </u>			<u>15</u>	25
Date & 1	Time of Completi	on <u>9/18/77</u>				
	DE	CT 1.8799		Method of Di	ssolution _	нс1
ASSAY:				U	T	h
Date & '	Time of Chemical	Extraction	10/21/77	1150	9/18/77	1136
	Begin	Count Time	10/21/77	1250	9/18/77	1232
	End	Count Time	10/22/77	1350	9/19/77	1412
	Actual Count	Time (min)	1494.95		1534.63	
	Channels	Counts		Channels	Count	<u>s</u>
238 _U	123-223	48	232 _{Th}	92-193	163	
235 _U	-		230 _{Th}	194-316	305	
234 _U	224-324	94	228 _{Th}	317-446	1558	
232 _U	325-435	92	224 _{Ra}	447-494	235	

DATA:	Sample Numb	Ar 01 0	Sample I	Joight	
Laboratory Number 292		•	J	J	ns
Sample Identification					
Date Preparation Began <u>1</u>		Date & T	ime of U/Th Se	eparation <u>10</u> /	21/77
Amount of Tracer 2 ml.				_11	155
Date & Time of Completion	n <u>10/27/77</u>			fu	sion
DEC	r <u>19.078</u>		Method of D	issolution &	HNO3
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
ASSAY:			U	т	h
Date & Time of Chemical 1	Extraction	11/3/77	1155	11/6/77	2003
Begin	Count Time	11/3/77	1348	11/7/77	2108
End	Count Time	11/4/77	1343	11/9/77	1347
Actual Count	Time (min)	1431.18		2439.0	
Channels	Counts		Channels	Count	
229		232 _{Th}			<u> </u>
124-224	55		_70-188	27	
235 _U		²³⁰ Th	189-307	129	
²³⁴ U <u>225-326</u>	_102	228 _{Th}	_308-436		
²³² U 327-425	_208	224 _{Ra}	_437-493	45	

DATA:						
Laboratory Number 259 Sample Nu	umber 31-8 py	roxl Sample	Weight 10 gms.			
Sample Identificationpyroxene_	Sample Identification pyroxene (1) from Pololu Basalt					
Date Preparation Began 9/15/77	Date & T	ime of U/Th S	Separation <u>9/28/77</u>			
Amount of Tracer 2 ml.			1530			
Date & Time of Completion 10/9/7	7					
DECT 12.238	8	Method of I	fusion Dissolution <u>& HNO3</u>			
ASSAY:		U	Th			
Date & Time of Chemical Extraction	on <u>11/12/77</u>	1430	10/10/77 194			
Begin Count Tim	me <u>11/14/77</u>	1559	10/10/77 2044			
End Count Tim	me <u>11/15/77</u>	1400	10/12/77 162			
Actual Count Time (min	n) <u>1315.93</u>		2607.35			
<u>Channels</u> <u>Counts</u>	<u>s</u>	Channels	Counts			
238 _U 127-227 336	232 _{Th}	70-189	20			
235 _U	230 _{Th}	190-307	184			
234 _{U 228-328 432}	228 _{Th}	308-441	82			
232 _U 329-429 54	224 _{Ra}	442-490	54			
	•					

DATA: Laboratory Number 261 Sample Number 31-8 WR1 Sample West	ight 10 gms.
Sample Identification Whole Rock Pololu Basalt	
Date Preparation Began 9/22/77 Date & Time of U/Th Sepa	aration <u>9/29/77</u>
Amount of Tracer 2 ml.	1345
Date & Time of Completion 10/3/77 DECT 36.001 Method of Disa	fusion solution <u>& HNO3</u>
ASSAY:	Th
Date & Time of Chemical Extraction 11/4/77 1250	11/4/77 1250
Begin Count Time 11/5/77 1626	11/4/77 1347
End Count Time 11/6/77 1342	11/5/77 1621
Actual Count Time (min) 1275.93	1594.0
Channels Counts Channels	Counts
238 _U 121-221 28 232 _{Th} 69-189	27
235 _U 230 _{Th} 190-307	150
234 _U 222-324 61 228 _{Th} 308-448	108
232 _U 325-425 92 224 _{Ra} 439-490	45

DATA: Laboratory Number 253 Sample Number	er <u>31-8 mag2</u> Sample We	ight 10 gms.
Sample Identification Magnetite (2)		
Date Preparation Began 9/15/77		earation <u>9/23/77</u>
Amount of Tracer 2 ml.		1105
Date & Time of Completion 9/27/77		
DECT6_202	Method of Dis	solution HCl
ASSAY:	υ	Th
Date & Time of Chemical Extraction _	10/26/77 1358	9/28/77 1638
Begin Count Time _	10/26/77 1455	9/29/77 1556
End Count Time	10/28/77 937	9/30/77 2112
Actual Count Time (min) _	2546.43	3104.0
<u>Channels</u> <u>Counts</u>	Channels	Counts
238 _U _123=227 183	232 _{Th} 72-193	31
235 _U	230 _{Th} 194-316	153
234 _U _228-324305	228 _{Th} _317-442	220
232 _U 325-431 658	224 _{Ra} 443-496	109

COMMENTS: Thorium was re-extracted and replated for counting due to a problem in the electronics of the counter which caused the element to need changing; and the count to be restarted.

DATA: Laboratory Number 203 Sample Number	31-8 plag? Sample	Weight 10 oms			
Laboratory Number 293 Sample Number 31-8 plag2 Sample Weight 10 gms. Sample Identification plagioclase (2) from Pololu Basalt					
-		Co			
-	Date & Time of U/Th	-			
Amount of Tracer 2 ml.	•	1300			
Date & Time of Completion 10/25/77		fusion			
DECT _27.012	Method of	Dissolution & HNO3			
ASSAY:	U	Th			
Date & Time of Chemical Extraction 11/	/23/77 1145	11/18/77 1045			
Begin Count Time 11	/23/77 1446	11/18/77 1147			
End Count Time _28	819.3	2957.48			
Actual Count Time (min) 28	819.3	2957.48			
<u>Channels</u> <u>Counts</u>	Channels	Counts			
²³⁸ U 124-224 43	²³² Th <u>70-188</u>	66			
235 _U	230 _{Th} 189-307	330			
234 _U 225-324 107	228 _{Th} 308-436	198			
²³² U 325-425 128	224 _{Ra 437-495}	87			

DATA:			,		
Laboratory Number 257	Sample Numbe	er 31.8 pyro	x2 Sample W	eight 10 gms	s
Sample Identification	Pyroxene (2)	from Pololu	Basalt		
Date Preparation Bega	n 9/15/77	Date & Tin	ne of U/Th Se	paration 9/23	3/77
Amount of Tracer 2 ml				1115	<u> </u>
Date & Time of Comple	etion <u>10/1/77</u>				
	DECT 38.213		Method of Di	ssolution HF	& HNO
	· · ·				
ASSAY:		τ	J	Th	
Date & Time of Chemic	al Extraction _	10/22/77	1256	10/31/77	1532
Вед	gin Count Time _	10/22/77	1358	10/31/77	1622
F	End Count Time _	10/23/77	1055	11/1/77	1325
Actual Cou	unt Time (min) _	2685.05		1809.02	
	0		<u>.</u>	0	
<u>Channels</u>	Counts	222	Channels	Counts	
238 _U 128-228	267	²³² Th _	75-193	12	
235 _U		_ ²³⁰ Th -	194-315	123	
234 _U 229-329	319	²²⁸ Th -	316-440	98	
232 _U 330-429	1548	224 _{Ra}	441-495	31	

Laboratory Number 268 Sample	Number 31-8WR2 Sample	e Weight 10 gms.
Sample Identification Whole Ro	-	
Date Preparation Began 9/18/7	•	Separation 10/9/77
Amount of Tracer 2 ml.		1130
Date & Time of Completion 10/16		fusion Dissolution & HNO3
ASSAY:	U	Th
Date & Time of Chemical Extract	ion 11/15/77 1325	11/8/77 1130
Begin Count T	ime 11/17/77 1102	11/8/77 1355
End Count T	ime 11/18/77 1133	11/9/77 1308
Actual Count Time (m	in) 1473.27	1393.93
Channels Coun	ts Channels	Counts
238 _U 123-223 79	232 _{Th} 72-186	24
235 _U	230 _{Th} 187-308	150
234 _U 224-325 109	228 _{Th} _309-441	48
232 _U	224 _{Ra 442-494}	36

Laboratory Number <u>256</u> Sample Numb	oer 31-8 mag3 Sam	ple Weight <u>10 gms.</u>
Sample Identification Magnetite Re	plicate (3) from Po	lolu Basalt
Date Preparation Began 9/15/77	Date & Time of U/	Th Separation <u>9/23/77</u>
Amount of Tracer 2 ml.		_1110
Date & Time of Completion9/26/	77	
DECT _3.216	Method	of Dissolution <u>HCl</u>
ASSAY:		
	Ŭ	Th
Date & Time of Chemical Extraction	10/28/77 1330	9/26/77 1545
Begin Count Time	10/30/77 1445	9/26/77 1621
End Count Time	10/31/77 1605	9/28/77 1658
Actual Count Time (min)	1516.12	2899.33
Channels Counts	Channe	ls Counts
220	222	
238 _U 121.221 1121	²³² Th75-193	110
235 _U	230 _{Th} 194-315	264
234 _U 222-325 1565	228 _{Th} 316-445	1032
²³² U 326-426 326	224 _{Ra 446-493}	220

DATA: Laboratory Number <u>294</u> Sample Nu	mber 31-8 pl	ao3 Sample W	Weight 10 oms				
Sample Identification Plagioclase (3) from Pololu Basalt Date Preparation Began 10/15/77 Date & Time of U/Th Separation 10/25/77							
Date & Time of Completion $10/28/7$	77		_				
DECT 26.08		Method of Di	fus ssolution &	ion HNO3			
ASSAY:		U	Th				
Date & Time of Chemical Extractio	n <u>11/23/77</u>	1130	11/20/77	1215			
Begin Count Tim	e <u>11/28/77</u>	1310	11/20/77	1325			
End Count Tim	ne <u>11/28/77</u>	1337	11/22/77	1541			
Actual Count Time (min	1342.68		3007.88	<u>.</u>			
Channels Counts	1	Channels	Counts				
238 _U 124-224 16	232 _{Th}	72-186	20				
235 _U	230 _{Th}	187-308	88				
²³⁴ U 225-325 62	228 _{Th}	309-440	82				
<u> </u>							

DATA:								
Laboratory Number 258 Sample Number 31-8 pyrox3 Sample Weight 10 gms. Sample Identification Pyroxene (3) from Pololu Basalt								
Amount of Tracer 2 ml. 1330								
Date & Time of Completion 10/1/77								
DECT 8.994	Method of	Dissolution HF & HNO						
ASSAY:	U	Th						
Date & Time of Chemical Extraction	-	10/2/77 1230						
Begin Count Time	10/28/77 945	10/2/77 1321						
End Count Time	10/29/77 1226	10/3/77 1551						
Actual Count Time (min)	1585.2	1430.18						
Channels Counts	Channels	Counts						
238 _U 125-225 105	232 _{Th} 71-190	24						
235 _U	230 _{Th} 191-308	70						
234 _U 226-324 139	228 _{Th} 309-438	59						
232 _U 325-425 465	224 _{Ra} 439-490	36						

								
DATA: Laboratory Number 269 Sample Number 31-8WR3 Sample Weight 10 gms.								
Sample Identification Whole Rock (3) Pololu Basalt								
Date Preparation Began 9/18/77	_ Date &	Time of U/Th So	eparation <u>10/</u>	4/77				
Amount of Tracer 2 ml.		1530						
Date & Time of Completion 10/16/77			£.	ısion				
DECT 19.816	Method of Dissolution & HNO3							
	·			,				
ASSAY:	U		Th	Th				
Date & Time of Chemical Extraction	11/2/77	1030	10/23/77	1630				
Begin Count Time	11/2/77	1135	10/24/77	1100				
End Count Time	11/3/77	1343	10/25/77	1105				
Actual Count Time (min)	_1553.83		1427.35					
<u>Channels</u> <u>Counts</u>		Channels	Counts	<u>1</u>				
238 _U 122-223 160	232 _{Th}	70-189	36					
235 _U	230 _{Th}	190-307	140	·				
234 _U 224-325 210	228 _{Th}	308-441	444					
232 _U 326-428 1166	224 _{Ra}	442-491	92					
	•							

