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ABSTRACT

CAPACITY ASSURANCE IN HOSTILE NETWORKS

By

Jian Li

Linear network coding provides a new communication diagram to significantly increase the

network capacity by allowing the relay nodes to encode the incoming messages. However,

this communication diagram is fragile to communication errors and pollution attacks. How

to combat errors while maintaining the network efficiency is a challenging research problem.

In this dissertation, we study how to combat the attacks in both fixed network coding and

random network coding.

For fixed network coding, we provide a novel methodology to characterize linear network

coding through error control coding. We propose to map each linear network coding to

an error control coding. Under this mapping, these two codes are essentially identical in

algebraic aspects. Meanwhile, we propose a novel methodology to characterize a linear

network coding through a series of cascaded linear error control codes, and to develop network

coding schemes that can combat node compromising attacks.

For random network coding, we propose a new error-detection and error-correction (EDEC)

scheme to detect and remove malicious attacks. The proposed EDEC scheme can maintain

throughput unchanged when moderate network pollution exists with only a slight increase

in computational overhead. Then we propose an improved LEDEC scheme by integrating

the low-density parity check (LDPC) decoding. Our theoretical analysis, performance evalu-

ation and simulation results using ns-2 simulator demonstrate that the LEDEC scheme can

guarantee a high throughput even for heavily polluted network environment.

Distributed storage is a natural application of network coding. It plays a crucial role in

the current cloud computing framework in that it can provide a design trade-off between secu-

rity management and storage. Regenerating code based approach attracted unique attention



because it can achieve the minimum storage regeneration (MSR) point and minimum band-

width regeneration (MBR) point for distributed storage. Since then, Reed-Solomon code

based regenerating codes (RS-MSR code and RS-MBR code) were developed. They can also

maintain the MDS (maximum distance separable) property in code reconstruction. However,

in the hostile network where the storage nodes can be compromised and the packets can be

tampered with, the storage capacity of the network can be significantly affected. In this

dissertation, we propose a Hermitian code based minimum storage regenerating (H-MSR)

code and a Hermitian code based minimum bandwidth regenerating (H-MBR) code. We first

prove that they can achieve the theoretical MSR bound and MBR bound respectively. We

then propose data regeneration and reconstruction algorithms for the H-MSR code and the

H-MBR code in both error-free networks and hostile networks. Theoretical evaluation shows

that our proposed schemes can detect the erroneous decodings and correct more errors in

the hostile network than the RS-MSR/RS-MBR code with the same code rate respectively.

Inspired by the novel construction of Hermitian code based regenerating codes, a natural

question is how to construct optimal regenerating codes based on the layered structure like

Hermitian code in distributed storage. Compared to the Hermitian based code, these codes

have simpler structures and are easier to understand and implement. We propose two optimal

constructions of MSR codes through rate-matching in hostile networks: 2-layer rate-matched

MSR code and m-layer rate-matched MSR code. For the 2-layer code, we can achieve the

optimal storage efficiency for given system requirements. Our comprehensive analysis shows

that our code can detect and correct malicious nodes with higher storage efficiency compared

to the RS-MSR code. Then we propose the m-layer code by extending the 2-layer code and

achieve the optimal error correction efficiency by matching the code rate of each layer’s MSR

code. We also demonstrate that the optimized parameter can achieve the maximum storage

capacity under the same constraint. Compared to the RS-MSR code, our code can achieve

much higher error correction efficiency. The optimized m-layer code also has better error

correction capability than the H-MSR code.
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CHAPTER 1

INTRODUCTION

In this dissertation, we have done researches on ensuring the network capacity in two hot

research areas: network coding and distributed storage.

1.1 Combating Pollution Attacks in Network Coding

Network coding is a new communication diagram that is designed to improve the throughput

and robustness in network environment. The core notation of network coding is that it

allows the participating nodes to encode incoming packets at intermediate network nodes in

a way that when a sink receives the packets, it can recover the original message. Network

coding provides a trade-off between maximum multicast flow rate in directed networks and

computational complexity. However, in the context of network coding, all participating

nodes must encode the incoming packets according to a fixed coding algorithm. If a packet

from an intermediate relay node is corrupted or being tampered, the entire communications

may be disrupted. One main purpose of this dissertation is to develop schemes that can

combat network pollution and malicious attacks from the network nodes based on error

control coding.

1.1.1 Brief Review of Network Coding

Network coding was first introduced in the seminal paper by [1]. [2] formulated the multicast

problem in network coding as the max-flow from the source to each receiving node. They

proved that linear coding is sufficient to achieve the optimum. This work made the network

coding simpler and more practical. [3] have shown that linear codes are sufficient to achieve

the multicast capacity by coding on a large enough field. [4] have shown that using of random
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Figure 1.1 A simple example of network coding

linear network coding is a more practical way to design linear codes. [5] have applied the

principles of random network coding to the context of peer-to-peer (P2P) content distribu-

tion, and have shown that file downloading times can be reduced. Since it has been proved

that linear network codes are sufficient to achieve the multicast capacity, we will focus our

discussion on linear network coding in this dissertation.

The main idea of network coding can be illustrated through Figure 1.1. Assume the

capacity of all the edges is C, the capacity of this network is 2C according to the max-flow

min-cut theorem. Only by encoding the incoming packet symbols x1, x2 at node 3, this

network can achieve the maximum capacity.

1.1.2 Security Problems of Network Coding

For network coding to achieve the expected benefits, all the participating nodes in the

network should be free of network pollution and malicious attacks. Suppose under the linear

network coding, the sink node receives m packet symbols y1, . . . , ym. It decodes the original

message symbols x1, . . . , xl by solving a set of linear equations:

Bx =



β11 β12 . . . β1l

β21 β22 . . . β2l
...

...
. . .

...

βm1 βm2 . . . βml





x1

x2
...

xl


=



y1

y2
...

ym


. (1.1)
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If all the relay nodes encode correctly and m ≥ l, we can decode all the message symbols

successfully. However, if there are adversaries in the network that can modify the contents

of the messages and send them to the succeeding relay nodes, the equations above may not

be solved successfully. So the communication fails. In addition, for a large scale network, a

small error occurring at the beginning of relay may diffuse to most of the messages in the

end. This can cause a significant waste of network resources and sometimes can even ruin

the whole network communication. This kind of attack is called pollution attack.

1.1.3 Existing work on Combating Pollution Attacks in Network Coding

Existing work on pollution elimination can largely be divided into error-detection based

schemes and error-correction based schemes. For error-detection based schemes, the errors

are normally detected at the intermediate forward nodes, while for error-correction based

schemes, the errors are generally corrected at the sink node. While the error-correction

based schemes seem to be more appealing, the complexity for encoding and decoding is

relatively high. It also comes with a relatively higher computational overhead. In [6–8],

classic network error correction codes were studied following the work of [9]. The existence

and construction of MDS network error correction codes were also studied in [10–19]. In [20],

the authors proposed to use network error correction code to locate the malicious attackers.

The decoding of network error correction code was studied in [21]. Another type of error-

correction based schemes use rank metric codes to correct the errors in the sink nodes: [22–27].

In [28], Jaggi et al. developed a two-part rate-region for their codes based on BEC channel

codes. [29–31] studied the theoretical network capacity under pollution attacks.

The error-detection based schemes are attractive in some network scenarios where the net-

work topology is unknown. In [32], Zhen et al. proposed a probabilistic key pre-distribution

and message authentication codes based scheme against pollution attacks. Their scheme

is efficient in the XOR network coding environments. Krohn et al. proposed to use homo-

morphic hash functions [33] to guarantee the correctness of network flow. The main idea is
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that each intermediate node will check the correctness of the packets. If a packet fails at an

intermediate node verification, it will be discarded. This approach can reduce the commu-

nication overhead and can be used in random network coding. However, the computational

complexity is still very high. When the network scale is large, computing too many hash

values also creates high delay. Similarly, [34] used the cryptographic idea to capture and

discard the corrupted packets. Other error-detection based schemes were studied in [35–43].

To address the computational limitations, [44] developed a simple error-detection based Null

Key scheme. The main idea is to partition the n-dimensional linear space over GF (qn) into

two orthogonal subspaces of dimension k (symbol subspace) and n − k (null key space).

Comparing to the homomorphic hash function, the Null Key scheme is much more efficient

and has virtually no message delay. For all these schemes above, all corrupted packets will

be discarded. In packetized networks, a large message is divided into small packets. If a

malicious node can corrupt one fragment (packet) in the whole message, according to the

approaches described in the error-detection based schemes, this fragment will be discarded.

In this way, the net transmission efficiency can be close to zero.

There are also other approaches to improve the error resilience in network coding [45–

53], including designing secure protocols, combining network codes with other codes and

implementing secure network codes in specific scenarios.

1.1.4 Summary of the Limitations of existing work on Combating Pollution
Attacks in Network Coding

Error-correction based schemes for fixed networks

• High complexity for encoding and decoding.

• High computational overhead.

Error-detection based schemes for random networks:

• High computational overhead and communication delay for some schemes.
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Figure 1.2 Diagram of distributed storage

• Low transmission efficiency if a malicious node continues to corrupt one message packet.

1.2 Distributed Storage in Hostile Networks

Distributed storage is an on-demand network data storage and access paradigm. The dis-

tributed data storage architecture model (in Figure 1.2) distributes the database to multiple

servers in many locations across the participating network in the storage cloud. Under this

model, protected data is distributed on servers in many locations across the participating

network. Each location is directly plugged into the Internet. These distributed servers may

even be untrusted and unreliable. If an attack is made on the data in one location, or try to

jam the communications, only a small amount of backed up data is impacted. In addition,

since the potential storage is dispersed to many locations, access to data does not come

under the same bandwidth constraints since each location has its own pipe to the Internet.

The decentralization also shrinks the footprint for data attacks, since a breach of one data

center does not expose all backed up data to the attacker.

1.2.1 Brief Review of Current Algorithms for Distributed Storage

To ensure accessibility of remotely stored data at any time, a typical solution is to store

the data across multiple servers or clouds, often in a replicated fashion. Data replication

not only lacks flexibility in data recovery, but also requires secure data management for the

stored data.
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It is well known that security data management is generally very costly and very hard to

defend against compromising attacks. Distributed data storage provides an elegant tradeoff

between the costly secure data management task and the cheap storage media. The main

idea is instead of storing the entire data in one server, we can split the data into n data

components. The original data can be recovered only when the required (threshold) number

of components, say k, are collected. The original data is information theoretically secure

for anyone who can access either an individual component or multiple components when

the number of components combined is less than the threshold k. In this case, when the

individual components are stored distributively across multiple cloud storage servers, each

cloud storage server only needs to assure data integrity and data availability. The costly data

encryption and secure key management may no longer be needed any more. The distributed

cloud storage can also increase data availability while reducing network congestion that

leads to increased resiliency. A popular approach is to employ an (n, k) maximum distance

separable (MDS) code such as an Reed-Solomon (RS) code [54,55]. For RS code, the data is

stored in n storage nodes in the network. The data collector (DC) can reconstruct the data

by connecting to any k healthy nodes.

While RS code works perfect in reconstructing the data, it lacks scalability in repairing

or regenerating a failed node. To deal with this issue, the concept of regenerating code

was introduced in [56]. The main idea of the regenerating code is to allow a replacement

node to connect to some individual nodes directly and regenerate a substitute of the failed

node, instead of first recovering the original data then regenerating the failed component.

In this way, the recovery problem of the distributed storage can be viewed as a multicasting

problem which can be solved using network coding. Network coding becomes the base of the

regenerating code.

Compared to the RS code, regenerating code achieves an optimal tradeoff between band-

width and storage within the minimum storage regeneration (MSR) and the minimum band-

width regeneration (MBR) points. RS code based MSR (RS-MSR) code and MBR (RS-
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MBR) code [57] have been explicitly constructed. However, the existing research either has

no error detection capability, or has the error correction capability limited by the RS code.

Moreover, the schemes with error correction capability are unable to determine whether the

error correction is successful.

1.2.2 Existing Work on Distributed Storage

When a storage node in the distributed storage network that employing the conventional

(n, k) RS code (such as OceanStore [54] and Total Recall [55]) fails, the replacement node

connects to k nodes and downloads the whole file to recover the symbols stored in the failed

node. This approach is a waste of bandwidth because the whole file has to be downloaded

to recover a fraction of it. To overcome this drawback, Dimakis et al. [56] introduced the

conception of {n, k, d, α, β, B} regenerating code based on the network coding. In the con-

text of regenerating code, the contents stored in a failed node can be regenerated by the

replacement node through downloading γ help symbols from d helper nodes. The band-

width consumption for the failed node regeneration could be far less than the whole file. A

data collector (DC) can reconstruct the original file stored in the network by downloading α

symbols from each of the k storage nodes. In [56], the authors proved that there is a tradeoff

between bandwidth γ and per node storage α. They find two optimal points: minimum

storage regeneration (MSR) and minimum bandwidth regeneration (MBR) points. Cur-

rently there are many literatures focusing on the optimal regenerating codes design: [58–69].

In [70,71] the implementation of the regenerating code were studied.

The regenerating code can be divided into functional regeneration and exact regeneration.

In the functional regeneration, the replacement node regenerates a new component that can

functionally replace the failed component instead of being the same as the original stored

component. [72] formulated the data regeneration as a multicast network coding problem and

constructed functional regenerating codes. [73] implemented a random linear regenerating

codes for distributed storage systems. [74] proved that by allowing data exchange among the

7



replacement nodes, a better tradeoff between repair bandwidth γ and per node storage α can

be achieved. In the exact regeneration, the replacement node regenerates the exact symbols

of a failed node. [75] proposed to reduce the regeneration bandwidth through algebraic

alignment. [76] provided a code structure for exact regeneration using interference alignment

technique. [57] presented optimal exact constructions of MBR codes and MSR codes under

product-matrix framework. This is the first work that allows independent selection of the

nodes number n in the network.

1.2.3 Existing Work on Distributed Storage in Hostile Networks

None of these works in Section 1.2.2 considered code regeneration under node corruption

or adversarial manipulation attacks in hostile networks. In fact, all these schemes will fail

in both regeneration and reconstruction if there are nodes in the storage cloud sending out

incorrect responses to the regeneration and reconstruction requests.

In [77], the Byzantine fault tolerance of regenerating codes were studied. In [78], the

authors discussed the amount of information that can be safely stored against passive eaves-

dropping and active adversarial attacks based on the regeneration structure. In [79], the

authors proposed to add CRC codes in the regenerating code to check the integrity of the

data in hostile networks. Unfortunately, the CRC checks can also be manipulated by the

malicious nodes, resulting in the failure of the regeneration and reconstruction. In [80], the

authors proposed to add data integrity protection in distributed storage. In [81], the authors

proposed an erasure-coded distributed storage based on threshold cryptography. In [82], the

authors analyzed the verification cost for both the client read and write operation in work-

loads with idle periods. In [83], the authors analyzed the error resilience of the RS code

based regenerating code in the network with errors and erasures. They provided the the-

oretical error correction capability. Their result is an extension of the MDS code to the

regenerating code and their scheme is unable to determine whether the errors in the network

are successfully corrected.
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1.2.4 Limitations of Existing Work on Distributed Storage in Hostile Networks

Existing Work on Distributed Storage in Hostile Networks has the following limitations:

• The error detection/correction capability is fixed. If there are a few errors, there will

be a waste of bandwidth. If there are too many errors, the error correcting process will

fail without being detected.

• The error correction capability is limited by the error correction capability of the MDS

codes.

1.2.5 Difference with Existing Work on Secure Network Communication

It is worthwhile to point out that although there are strong connections between regenerating

code in distributed storage and general network communication of which security problems

have been well studied, our proposed H-MSR/H-MBR codes are different from these security

studies of network communication e.g. [84–86] in both principles and scopes. First, unlike

all the studies above, the nice error correction capability of the proposed H-MSR/H-MBR

codes is due to the underlying Hermitian code [87]. Second, the regenerating codes studied in

this work and the general network communication are fundamentally different in that besides

the overall data reconstruction the regenerating codes also emphasize the repair of corrupted

code components (regeneration), while general network communication only focuses on data

reconstruction. None of the researches of general secure network communication studies the

regeneration problem. The scope of this work is different from that of those researches.

1.3 Proposed Research Directions

1.3.1 Directions for Combating Pollution Attacks in Network Coding

For fixed networks, instead of designing the network codes with error correction capability,

we focus on the characterizing of the network coding so that network coding can be viewed
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from the perspective of error control coding. In particular, we will analyze the relationship

between the network coding and the error control coding in both unicast and multicast cases.

We find the algebraic aspects for these two cases are essentially identical.

After we have proven that each network coding can be transferred into an error control

code in a bipartite graph by ignoring the structure of the underlying error control coding,

we then transfer a network coding scheme into a series of cascaded error control codes

by exploring the inner structure of network coding. This mapping enables us to identify

the minimum number of independent error pattern in the corresponding network level and

identify the malicious network nodes.

For random networks, we propose a new scheme that combines error-detection and error-

correcting (EDEC) to combat network pollution attacks. Original message symbols are first

encoded using an (n, k) code then sent out in packets. When an intermediate node detects

an error, instead of discarding the packet, the intermediate node will continue to forward it.

As long as the errors are within the decoding capability, the sink nodes will be able to recover

the corrupted packet.In our LDPC based EDEC (LEDEC) scheme, we treat the packets as

LDPC codes at sink nodes and use the belief propagation algorithm (BPA) to decode the

LDPC code. In this case, the LEDEC scheme can maintain the throughput unchanged for

moderate network pollution. It can also guarantee a high network throughput even for a

heavily polluted network environment, while the throughput becomes very low for all error-

detection based schemes in this case. In the analyses, we mainly focus on the throughput

impact brought by different strategies (discard vs. keep) towards corrupted packets.

1.3.2 Directions for Distributed Storage in Hostile Networks

For distributed storage, we propose Hermitian code based regenerating codes: H-MSR code

and H-MBR code. We construct the H-MSR code by combining the Hermitian code and

regenerating code at the MSR point, then we construct the H-MBR code by combining the

Hermitian code and regenerating code at the MBR point. Then we prove that these codes
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can achieve the theoretical MSR bound and MBR bound respectively. We also propose data

regeneration and reconstruction algorithms for the H-MSR code and the H-MBR code in

both error-free networks and hostile networks.

Moreover, inspired by the nice performance of Hermitian code based regenerating codes,

we step forward to further construct optimal regenerating codes which have similar layered

structure like Hermitian code in distributed storage. We first propose a simple optimal

construction of 2-layer rate-matched MSR code. We conduct both theoretical analysis and

performance evaluation to show that this code can achieve the optimal storage efficiency.

Then we propose an optimal construction of m-layer rate-matched MSR code. The m-layer

code can achieve the optimal error correction efficiency.

1.4 Overview of the dissertation

1.4.1 Major Contributions

The major contributions of this dissertation are as follows:

• Combating pollution attacks in fixed network coding.

1. We provide a comprehensive analysis and theoretical results on the relationships

between the network coding and the error control coding.

2. We propose a methodology to design efficient network coding schemes that can

combat network errors and network pollution.

3. We develop a methodology to map each network coding into a series of cascaded

error control codes.

4. We provide a novel approach to design efficient network coding schemes that can

combat pollution attacks and locate the malicious nodes by utilizing the inner

structure of the network code.
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• Combating pollution attacks in random network coding.

1. Our proposed EDEC scheme and the LEDEC scheme can maintain the throughput

unimpacted for network environment with moderate malicious attacks with only

a slight increase in computational overhead.

2. The proposed scheme can guarantee a high throughput even for a heavily polluted

network environment.

3. We provide comprehensive throughput analysis of the proposed EDEC scheme

and the LEDEC scheme.

4. We conduct extensive simulations using ns-2 to evaluate the performance of

the proposed schemes and compare our schemes with the error-detection based

schemes.

• Distributed storage in hostile networks — Hermitian code based regenerating codes

1. Theoretical evaluation shows that our proposed schemes can detect the erroneous

decodings while other existing work cannot.

2. Our proposed schemes can correct more errors in the hostile network than the

RS-MSR/RS-MBR codes with the same code rates.

3. Our analysis also demonstrates that the proposed H-MSR/H-MBR codes have

lower complexity than the RS-MSR/RS-MBR codes in both codes regeneration

and codes reconstruction.

• Distributed storage in hostile networks — Optimal construction of regenerating codes

through rate-matching

1. Our proposed optimal construction of 2-layer rate-matched MSR code can achieve

the optimal storage efficiency, which is higher than the RS-MSR code proposed

in [83].
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2. Our proposed optimal construction ofm-layer rate-matched MSR code can achieve

the optimal error correction efficiency, which is higher than the code proposed

in [83] and the H-MSR code proposed in [88]. Furthermore, the m-layered code

is easier to understand and has more flexibility than the H-MSR code.

1.4.2 Structure

The dissertation is structured as follows.

Chapter 2 introduces the preliminary for this dissertation. Some basic concepts and

properties of network coding, error control coding, regenerating code and hermitian code are

presented.

Chapter 3 is mainly about combating pollution attacks for fixed networks. The first

section studies the relationship between network coding and error control coding. The second

section characterizes network coding using cascaded error control coding.

Chapter 4 is mainly about combating pollution attacks for random networks. The

system/adversarial models and assumptions are presented in the first section. The proposed

EDEC scheme and performance analysis are described in the second section. The third

section presents the LDPC decoding and analysis of the LEDEC scheme.

Chapter 5 is mainly about the Hermitian code based regenerating codes in distributed

storage in hostile networks. After the system/adversarial models and assumptions are pre-

sented, our proposed H-MSR code is described and analyzed in the second section. The

proposed H-MBR code is described and analyzed in the third section. Performance analysis

is conducted in the fourth section.

Chapter 6 is mainly about the optimal construction of regenerating code through rate-

matching. The first section presents the system/adversarial models and assumptions. The

second section proposes two component codes for the rate-matched MSR codes. The third

section proposes and analyzes the 2-layer rate-matched MSR code. Then the fourth section

proposes and analyzes the m-layer rate-matched MSR code.
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Chapter 7 summarizes the dissertation.
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CHAPTER 2

PRELIMINARY

In this chapter, we will present some basic concepts and properties of network coding, error

control coding, regenerating code and hermitian code.

2.1 Network Coding

In this dissertation, we adopt the notations of [3]. A network is equivalent to a directed

graph G = (V,E), where V represents the set of vertices corresponding to the network nodes

(source nodes, relay nodes and sink nodes) and E represents all the directed edges between

vertices corresponding to the communication link. The start vertex v of an edge e is called

the tail of e and written as v = tail(e), while the end vertex u of an edge e is called the

head of of e and written as u = head(e). We define the capacity of an edge as the number

of bits that can be transmitted through the edge in one time unit. So the capacity should

be non-negative integers. In this dissertation, we normalize the capacity of one edge to 1.

If a channel between two nodes has capacity C larger than 1, we model this channel as C

multiple edges each with capacity 1. We assume the network is delay-free [3], that is all the

edges in the graph have zero delay. And the network is acyclic, that is all the vertices in the

graph can be organized in an ancestral ordering.

For a source node u, there is a set of discrete random processes to be sent. Each of the

random process can be represented by a binary vector of length m, that is every symbol

sequence of the random process is from the finite field F2m . We write the set of the pro-

cesses as X (u) = {X(u, 1), X(u, 2), · · · , X(u, µ(u))}, in which µ(u) is the number of random

processes in node u. Since we normalize the capacity of each edge to 1, it is reasonable to

normalize the rate of the random process X(u, i) (1 ≤ i ≤ µ(u)) to 1.
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We can write a link e between r1 and r2 as e = (r1, r2). The random process Y (e) on the

link e is the function of all the Y (e′) from links e′ (such that head(e′) = r1) and the random

processes X (r1) from node r1. In F2m linear network coding [2], Y (e) can be written as:

Y (e) =

µ(r1)∑
l=1

αl,eX(v, l) +
∑

e′:head(e′)=r1

βe′,eY (e′), (2.1)

in which the encoding coefficients αl,e, βe′,e ∈ F2m .

For a sink node v, there is also a set of discrete random processes to be observed. We

write the set of the processes as Z(v) = {Z(v, 1), Z(v, 2), · · · , Z(v, λ(v))}, in which λ(v) is

the number of random processes observed in node v. In linear network coding, Z(v, j) can

be written as:

Z(v, j) =
∑

e′:head(e′)=v
γe′,jY (e′), (2.2)

in which the encoding coefficients γe′,j ∈ F2m .

A connection between a source node u and a sink node v can be written as C =

(u, v,X (u)). From the assumptions and deductions above, the rate of this connection R(C)

is equal to |X (u)|, where |x| is the cardinality of the set x. As long as we can retrieve X (u)

from Z(v), we say that this connection is possible. Because we apply the linear encoding

in the network, we can find the system transfer matrix M between input x and output z.

If we write x = (X(u, 1), X(u, 2), · · · , X(u, µ(u))) and z = (Z(v, 1), Z(v, 2), · · · , Z(v, λ(v))),

we have z = xM .

In this dissertation, since we are only concerned about this relationship in each single

encoding period, we simply write the random processes X(u, i), Y (e), Z(v, j) as random

numbers xu,i, ye, zv,j .

2.2 Error Control Coding

In this section, we present the preliminary for error detection, which is the base of the Null

Key scheme and the proposed EDEC scheme. Error correction, which is also the base of the
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proposed EDEC scheme, is also presented.

2.2.1 Error Detection

Suppose the original message symbols are in the k-dimensional linear space over GF (2k).

After we encode the symbols using a generating matrix Gk×n from an (n, k) block code, the

encoded codewords will form a linear subspace over GF (2n) of dimension k. So there will

be another n − k dimensional subspace over the n dimensional space, which is orthogonal

to the codewords subspace. If we denote a valid codeword by c and the bases for the n− k

dimensional subspace by h1, . . . ,hn−k, we have < c,hi >= 0, 1 ≤ i ≤ n− k, where < ·, · >

represents the inner product.

Let H(n−k)×n = [h1, . . . ,hn−k]T , then H forms the parity-check matrix of the codewords

and we have

c ·HT = 0. (2.3)

Suppose r = c + e is a received codeword, where e is an n-tuple error generated by a

malicious node. For the received word r, according to equation (2.3), c is orthogonal to H,

therefore, we have:

r ·HT = (c + e) ·HT = c ·HT + e ·HT = e ·HT . (2.4)

For a received word r, there are two possibilities: (i) e is a codeword generated by G but

different from the original codeword. In this case, though r contains error, however, because

r ·HT = 0, the error is undetectable using conventional error control coding techniques; (ii)

e contains a nonzero projection to the orthogonal parity check subspace, then r ·HT 6= 0.

In this case, we can detect that the received word contains error.

In network coding, suppose c1, . . . , ci are valid codewords, c =
∑
j cj · bj is a linear

combination of the codewords c1, . . . , ci, where bj is the network encoding coefficients and
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has the value 0 or 1. It can be easily verified that

c ·HT =
∑
j

cj ·HT · bj = 0. (2.5)

Equation (2.5) is the theoretical foundation for error control coding to be used in network

coding. The rows of H are called Null Keys in [44]. By checking packet symbols at every

node, there is a high probability that the Null Key scheme can detect the polluted packets

after a few hops of transmission. However, the ‘check-and-dump’ strategy may result in a

very low communication efficiency under continuous network pollution and packet corruption

attacks.

2.2.2 Error Correction

Equation (2.4) is called the syndrome of error pattern e, denoted as s. It is clear that r is

a codeword if and only if s = 0. The task of maximum likelihood decoding is to find the

minimum weight error pattern e such that r ·HT = e ·HT . In this case, the received r is

corrected to r + e = c.

In linear network coding, although the packet symbols are not the original ones sent from

source nodes, we can still perform error correction using equation (2.4).

Suppose r1, . . . , ri are the received codewords from i incoming edges, e is the error vector

added to the network coding r =
∑
j rj · bj . If the error is within the correction capability of

the (n, k) code, the syndrome will still be r·HT = e·HT+
∑
j rj ·HT · bj = e·HT+0 = e·HT .

Then we can correct the error using syndrome decoding.

In the proposed EDEC scheme, the corrupted packets detected at the intermediate nodes

will not be dumped. Both the intact and corrupted packets will be gathered by the sink

nodes. The sink nodes can correct the corrupted packets and have a higher communication

efficiency than the error-detection based schemes.
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2.2.3 Some Properties of Error Control Codes

The error detection and correction capabilities are decided by the (n, k) code structure. We

can adopt appropriate error control codes according to the pollution levels of the network.

In this section, some properties of error control codes will be presented.

Theorem 2.1. (Singleton bound [89] ) For an (n, k) block code with the minimum distance

d, the following relationship holds: k + d ≥ n+ 1.

The minimum distance d is defined as the minimum hamming distance for any two distinct

codewords x and y of C: dmin = min {d(x,y)|∀x,y ∈ C}, where d(x,y) is the number of

positions at which the corresponding bits are different between x and y. For an (n, k) block

code with minimum distance d, if we delete the first d − 1 bits of every codewords, all the

codewords are still distinct. So there are at most 2n−(d−1) codewords. The total number of

original message symbols is at most 2k and it can not be bigger than the number of possible

codewords: 2k ≤ 2n−(d−1).

Theorem 2.2. ( [89]) For an (n, k) block code with the minimum distance d, it can detect

all the d− 1 or less errors, or it can correct all the
⌊
d−1
2

⌋
or less errors.

According to the definition of minimum hamming distance, all codewords within the

distance d − 1 or shorter of a valid codeword are invalid. So all the d − 1 or less errors

can be detected. Suppose x and y are two valid codewords with the minimum hamming

distance and z is a corrupted version of codeword x with t errors. That is d(x, z) = t. If we

want to correct z to x, we must have d(y, z) > t. By using the triangle inequity, we have

d(y, z) ≥ d(x,y)− d(x, z) = d− t. We can ensure d(y, z) > t by making d− t > t. That is

2t < d, tmax =
⌊
d−1
2

⌋
.

Theorem 2.3. ( [89])A linear code is capable of correcting λ or fewer errors and simulta-

neously detecting τ (τ > λ) or fewer errors if its minimum distance dmin ≥ λ+ τ + 1.
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Proof. Since τ > λ, we have dmin ≥ λ+ τ + 1 > 2λ+ 1, λ <
⌊
d−1
2

⌋
. So we can correct λ or

fewer errors. Suppose x and y are two valid codewords with the minimum hamming distance

dmin and z is a corrupted version of codeword x with τ errors. In order to avoid the wrong

correction, we must make sure that d(y, z) > λ. According to the triangle inequity, we have

d(y, z) ≥ d(x,y)− d(x, z) = dmin − τ . We can ensure d(y, z) > λ by making dmin − τ > λ.

That is dmin ≥ τ + λ+ 1.

2.3 Regenerating Code

Regenerating code introduced in [56] is a linear code over GFq with a set of parameters

{n, k, d, α, β,B}. A file of size B is stored in n storage nodes, each of which stores α

symbols. A replacement node can regenerate the contents of a failed node by downloading β

symbols from each of d randomly selected storage nodes. So the total bandwidth needed to

regenerate a failed node is γ = dβ. The data collector (DC) can reconstruct the whole file by

downloading α symbols from each of k ≤ d randomly selected storage nodes. An illustration

of regenerating code is shown in Figure 2.1.
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In [56], the following theoretical bound was derived:

B ≤
k−1∑
i=0

min{α, (d− i)β}. (2.6)

From equation (2.6), a tradeoff between the regeneration bandwidth γ and the storage re-

quirement α was derived. γ and α cannot be decreased at the same time. There are two

special cases: minimum storage regeneration (MSR) point in which the storage parameter α

is minimized;

(αMSR, γMSR) =

(
B

k
,

Bd

k(d− k + 1)

)
, (2.7)

and minimum bandwidth regeneration (MBR) point in which the bandwidth γ is minimized:

(αMBR, γMBR) =

(
2Bd

2kd− k2 + k
,

2Bd

2kd− k2 + k

)
. (2.8)

2.4 Hermitian Code

A Hermitian curve H(q) over GF (q2) in affine coordinates is defined by:

H(q) : yq + y = xq+1. (2.9)

The genus ofH(q) is % = (q2−q)/2 and there are q3 points that satisfy equation (2.9), denoted

as P0,0, · · · , P0,q−1, · · · , Pq2−1,0, · · · , Pq2−1,q−1 (See Table 2.1), where θ0, θ1, · · · , θq−1 are

the q solutions to yq + y = 0 and φ is a primitive element in GF (q2). L(mQ) is defined as:

L(mQ) = {f0(x) + yf1(x) + · · ·+ yq−1fq−1(x)|

deg fj(x) < κ(j), j = 0, 1, · · · , q − 1}, (2.10)

where

κ(j) = max{t|tq + j(q + 1) ≤ m}+ 1, (2.11)

form ≥ q2−1. A codeword of the Hermitian code [87]Hm is defined as (%(P0,0), · · · , %(P0,q−1),

· · · , %(P
q2−1,0), · · · , %(P

q2−1,q−1)), where % ∈ L(mQ). The dimension of the message be-

fore encoding can be calculated as dim(Hm) =
∑j=q−1
j=0 (deg fj(x) + 1). A soft-decision list
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decoding algorithm for Hermitian codes was proposed in [90]. In [87], a novel approach

for decoding Hermitian codes with burst errors was proposed. Some good properties of

Hermitian codes were studied in [91].
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Table 2.1 qˆ3 rational points of the Hermitian curve

P0,0 = (0, θ0) P1,0 = (1, φ+ θ0) · · · P
q2−1,0 = (φq

2−2, φ(q
2−2)(q+1)+1 + θ0)

P0,1 = (0, θ1) P1,1 = (1, φ+ θ1) · · · P
q2−1,1 = (φq

2−2, φ(q
2−2)(q+1)+1 + θ1)

...
...

. . .
...

P0,q−1 = (0, θq−1) P1,q−1 = (1, φ+ θq−1) · · · P
q2−1,q−1 = (φq

2−2, φ(q
2−2)(q+1)+1 + θq−1)
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CHAPTER 3

COMBATING POLLUTION ATTACKS FOR FIXED NETWORKS

In this chapter, We find that network coding and error control coding are essentially identical

in algebraic aspects. We will provide a novel methodology to characterize linear network

coding through error control coding for fixed network coding. Our main idea is to represent

each linear network coding with an error control coding. We will provide comprehensive

theoretical analysis on the relationships between linear network coding and error control

coding in both unicast and multicast scenarios.

Meanwhile, our research provides a new approach to understand network coding schemes

and a novel methodology to develop network coding schemes that can combat node compro-

mising attacks and locate the malicious nodes. We will characterize a linear network coding

through a series of cascaded linear error control codes. This representation enables us to

determine the independent source of errors in the cascaded network level. It could lead to

a successful decoding of the original message and could help locating the malicious network

nodes. We will provide comprehensive theoretical analysis on network coding in both unicast

and multicast scenarios.

3.1 Characterization of Linear Network Coding for Pollution At-
tacks

3.1.1 Models and Assumptions

In this section, our main idea is to characterize and classify network coding according to the

underlying error control coding. We only need to limit our consideration to linear network

codes in F2, which makes the corresponding error control codes simple binary block codes.

In this case the encoding coefficients can only be 0 or 1 and the addition operation equals
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exclusive or.

3.1.2 An Illustrative Example

In this section, we will illustrate our main idea using the classic example [1] shown in Fig-

ure 3.1. In this example, source node 1 multicasts two symbols x1,1, x1,2 to sink nodes 6 and

7. By encoding at node 4, both nodes 6 and 7 can retrieve the two symbols successfully. To

explain our main idea, we will only focus on the communication between node 1 and node

6 (the shaded area in Figure 3.1). The analysis is similar to the communication between

node 1 and node 7. In this communication, symbol x1,1 is passed directly through the path

e1 − e5. So we can merge the edges e1 and e5 together in Figure 3.2(a): node 1 send x1,1

directly to node 6 in the equivalent bipartite graph. Meanwhile, in Figure 3.2(b), x1,1 and

x1,2 are passed separately to node 4 through e1 − e3 and e2 − e4, then x1,1 + x1,2 is passed

through e6 − e8 after being encoded at node 4. So we can merge the edges e1, e3 together,

e2, e4 together and e6, e8 together in the first step of Figure 3.2(b): node 1 sends x1,1, x1,2

directly to node 4 and node 4 sends x1,1+x1,2 directly to node 6. In the second step, we can

ignore node 4 and put the operation x1,1 + x1,2 in node 6: node 1 sends x1,1, x1,2 directly

to node 6 and node 6 adds the two symbols together in the equivalent bipartite graph.

Using the processes shown in Figure 3.2, we transfer this network coding problem into a

bipartite graph shown in Figure 3.3. In this way we can get the explicit relationship between

symbols of node 1 and symbols of node 6. If we view x1,1, x1,2 as original message and

z1,1, z1,2 as the codeword in an error control code, we can view this network code as a (2, 2)

error control code with the generator matrix

1 1

0 1

 .
Although in this example, there is no redundancy in the (2, 2) error control code and

this code cannot detect or correct errors, it is sufficient to show that network code can be

characterized using error control code.

In the examples below, we will show that network codes with redundancies can be trans-
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ferred into error control codes. Meanwhile, the redundancies of network codes can be added

according to the error control codes. And we can characterize network coding using error

control coding.

3.1.3 Relationship between Network Coding and Error Control Coding in Point-
to-Point Communication

In this part, we will formally state the relationship between network coding and error con-

trol coding in the point-to-point communication. The sufficiency is studied first then the

necessity.

3.1.3.1 The Sufficiency

Theorem 3.1. Every network code scheme can be represented by an error control code.

Proof. All the nodes in network coding can be categorized into three types: simple forward,

multicast and code then forward (shown in Figure 3.4). So we can transfer the graph

representing the network coding using three operations accordingly:

1. Simple forward: These nodes do not encode the incoming symbols. They simply
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forward whatever message they have received. In this situation, we can replace the

nodes with direct links.

2. Multicast: Like simple forward, these nodes do not encode the incoming symbols

either. They simply multicast the message that they have received. In this situation,

we can replace the nodes with multiple direct links.

3. Code then forward: These nodes produce the linear combination of the incoming

symbols x1, x2, · · · , xk. According to the encoding coefficients, m out of k received

symbols will be added together to form the new symbol xl1 + xl2 + · · · + xlm to be

forwarded. We can view this kind of node as m parallel nodes vl1 , vl2 , · · · , vlm , each of

which has only one input. The symbols xl1 , xl2 , · · · , xlm will be directly forwarded to

the sink node u. And the sink node will complete the addition operation. Therefore we

can transfer code then forward nodes by splitting multiple inputs into multiple simple

forward nodes. Then we can further simplify the multiple simple forward nodes as in

’1)’.

Because the network coding is linear, the three operations are commutative and have the

superposition property. We can always perform the operations to all of the intermediate

nodes in the network and replace the nodes with simple links. At last we can get a bipartite

graph consisting of only symbols in the source node and encoded symbols in the sink node,

which can be represented using an error control code corresponding to the bipartite graph.

Take the network code in Figure 3.5 as an example. The source node 1 transmits three

symbols x1,1, x1,2, x1,3 to sink node 4 in this network code. And sink node 4 can receive

6 encoded symbols, which indicates that there are redundancies in this network coding.

Following the operations mentioned in the proof of Theorem 3.1, we can get the corresponding

bipartite graph shown in Figure 3.6, which indicates this is a (6, 3) error control code. The
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generator matrix is:

G =


1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

 . (3.1)

This code has a minimum hamming distance 3. So it can detect and correct 1 bit error.

The sufficiency can also be validated by the system transfer matrix M . To show this,

we will still use the network topology shown in Figure 3.5, but with different encoding
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coefficients. The symbols on each edge can be written as:

ye1 = α1,e1x1,1 + α2,e1x1,2 + α3,e1x1,3

ye2 = α1,e2x1,1 + α2,e2x1,2 + α3,e2x1,3

ye3 = α1,e3x1,1 + α2,e3x1,2 + α3,e3x1,3

ye4 = α1,e4x1,1 + α2,e4x1,2 + α3,e4x1,3

ye5 = βe3,e5ye3 + βe4,e5ye4

ye6 = βe1,e6ye1 + βe2,e6ye2 + βe5,e6ye5 (3.2)

ye7 = βe1,e7ye1 + βe2,e7ye2 + βe5,e7ye5

ye8 = βe1,e8ye1 + βe2,e8ye2 + βe5,e8ye5

ye9 = βe1,e9ye1 + βe2,e9ye2 + βe5,e9ye5

ye10 = βe3,e10ye3 + βe4,e10ye4

ye11 = βe3,e11ye3 + βe4,e11ye4 .

The symbols at the sink node can be written as:

z4,j =
i=11∑
i=6

γei,jyei , (1 ≤ j ≤ 6). (3.3)

Define matrices A,B as in [3]:

A =


α1,e1 α1,e2 α1,e3 α1,e4

α2,e1 α2,e2 α2,e3 α2,e4

α3,e1 α3,e2 α3,e3 α3,e4

 , (3.4)

B =


γ1,e1 · · · γ1,e6

...
. . .

...

γ6,e1 · · · γ6,e6

 . (3.5)
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We also define a matrix

Γ =



β1,6 β1,7 β1,8 β1,9 0 0

β2,6 β2,7 β2,8 β2,9 0 0

β5,6β3,5 β5,7β3,5 β5,8β3,5 β5,9β3,5 β3,10 β3,11

β5,6β4,5 β5,7β4,5 β5,8β4,5 β5,9β4,5 β4,10 β4,11


, (3.6)

here βei,ej is written as βi,j for short. Then the system matrix is:

M = A · Γ ·BT . (3.7)

In this example, the sizes of matrices A,B are 3 × 4 and 6 × 6. Thus the size of transfer

matrix is 3 × 6. The original symbols x1,1, x1,1, x1,3 can be seen as an original message of

length 3. And the received symbols at sink node can be seen as a codeword of length 6. It

is appropriate that we identify the 3× 6 transfer matrix M with the generator matrix G of

a (6, 3) error control code. Hence Theorem 3.1 is verified from the perspective of transfer

matrix.

3.1.3.2 The Necessity

We have proved that any network code can be viewed as an error control code, now we will

consider the reverse problem. For a point-to-point communication, a network code is feasible

only if it can successfully deliver all the desired symbols from the source node to the sink

node. Theorem 3.2 shows the criterion of a feasible network code.

Theorem 3.2. For a linear network with source node u, sink node v and a desired connection

C = (u, v,X (u)), the point-to-point connection C is possible if and only if the determinant

of the R(C)×R(C) transfer matrix M is nonzero.

The proof of this theorem can be found in [3].

Since there are no redundancies in the network code in Theorem 3.2, the dimension of

symbols in source node is R(C) = |X (u))|, and the dimension of received symbols in sink

node is also exactly R(C). Therefore, the size of the transfer matrix M is R(C)×R(C).
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Theorem 3.3. For a linear network with source node u, sink node v and a desired connection

C = (u, v,X (u)), A (n,k) error control code with the k × n generator matrix G can be seen

as a feasible network code in the point-to-point connection C if we have the relationship:

k ≥ R(C).

Proof. If the theorem is true for k = R(C), it will also work for k > R(C). It is straightfor-

ward that a network code can successfully complete the point-to-point connection of which

the rate is lower than the code’s maximum capacity. So we only need to prove the case when

k = R(C).

From the statements in preliminary section, we have k ≤ n for a (n, k) error control code.

For a message sequences (x1, x2, · · · , xk), we have encode it as follows:

(z1, z2, · · · , zn) = (x1, x2, · · · , xk)G. (3.8)

Because k ≤ n, we can choose k independent columns (l1, l2, · · · , lk) from G to form a new

matrix G′, which has the relationship

(zl1 , zl2 , · · · , zlk) = (x1, x2, · · · , xk)G′. (3.9)

In this case, G′ is a k×k full rank matrix with nonzero determinant. If we view (x1, x2, · · · , xk)

as symbols at source node u with the rate R(C) = k and (zl1 , zl2 , · · · , zlk) as symbols re-

ceived at sink node v, then G′ is the transfer matrix of the network code. According to

Theorem 3.2, this point-to-point connection C with rate R(C) = k is possible. So in this

case, the (n, k) error control code can be seen as a feasible network code.

In the case that the size of transfer matrix is larger than R(C)× R(C), the represented

error control code will have redundancies which can be used to control errors. However,

based on our analysis, we can add redundancies appropriately so that the network code is

capable of detecting and correcting errors. This can be done in two steps:
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1. According to the communication channel and the design requirements (number of errors

to detect or correct, bit error rate, etc.), determine an appropriate code rate k/n and

the type of the error control code (Hamming code, Cyclic code, etc).

2. According to the source rate R(C), choose proper k such that k ≥ R(C) and n, and

derive the corresponding generator matrix G. Then apply the generator matrix G as

the system transfer matrix to the network coding.

3.1.3.3 Application in Combating pollution attacks

For example, in a linear network shown in Figure 3.7, the source node is going to send 4

symbols x1, x2, · · · , x4 to sink node. According to Theorem 3.3, we can apply the (7, 4)

Hamming code with generator matrix

G =



1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 1 0 1 0 1 0


. (3.10)

The corresponding network code is also shown in Figure 3.7. Because the minimum distance

of the code is 3, this network code can correct 1 bit error. Suppose the source node sends 4

symbols (1, 0, 1, 0), the expected received symbols will be (1, 0, 1, 0, 0, 0, 0). However, because

the malicious node M changes the symbol, the received symbols will be s = (1, 0, 1, 0, 1, 0, 0).

Sink node can decode the received symbol using the syndrome-decoding method. The parity-

check matrix in sink node is

H =


1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

 . (3.11)

With the syndrome of the received symbols calculated as s ·HT = (0, 0, 1), the sink node can

find the error pattern (0, 0, 0, 0, 1, 0, 0) and correct the erroneous symbol. From the location

33



S
x 1

x3

x
4

x
2

S

x1

x
1

             x3

      
      

x4

x1

x1+x3+x4

x
3

x1+x2

x2+x3

x 4

        
      x3

        
      x3

x1

x2

             x3

x2

           x4

x2

R

R

R

R

R

R

R

M

R

R

R

S Source Node

R

S

Relay Node

Sink Node

               x4
x2+

x4
M Malicious Node

Figure 3.7 Implement the (7, 4) Hamming code in network coding

of the erroneous symbol, the sink node can also find the malicious node from which x1 + x2

is transmitted.

From this example, we can see that with proper design of error control code, we can make

the corresponding network code capable of detecting and correcting errors then finding the

malicious nodes.

3.1.4 Multicast Case

In previous section, we study the relationship between network coding and error control

coding in point-to-point communication case. We can derive similar results for the multicast

case, where the network consists of one source node u and several sink nodes v1, v2, · · · , vN .

The network code for multicasting is feasible if and only if all the sink nodes can receive all

symbols X (u) sent from source node u.

3.1.4.1 The Sufficiency

Theorem 3.1 still holds in multicast case because we do not specify whether the communi-

cation is unicast or multicast in the proof of the theorem, which indicates the proof of the

theorem is independent of the type of the communications.
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3.1.4.2 The Necessity

The multicast problem can be divided into N unicast problems:

C = (C1, C2, · · · , CN ) = ((u, v1,X (u)), (u, v2,X (u)), · · · , (u, vN ,X (u))). (3.12)

If we write all the received symbols together:

z = (z1, z2, · · · , zN ) = (Z(v1, 1), · · · , Z(v1, λ(v1)), · · · , Z(vN , λ(vN ))), (3.13)

we can obtain the system transfer equation for the whole network: z = xM , in which M is

a matrix defined as

M = |X (u)| ×
i=N∑
i=1

λ(vi). (3.14)

It is obvious that

M =

[
M1 | M2 | · · · | MN

]
, (3.15)

in which M1,M2, · · · ,MN are the system transfer matrixes for each unicast C1, C2, · · · , CN .

Theorem 3.4. For a linear network with source node u, sink node v1, v2, · · · , vN and desired

connections Ci = (u, vi,X (u))(1 ≤ i ≤ N), A concatenation of N error control codes with

the k×ni generator matrix Gi can be seen as a feasible network code in the multicast problem

C = (C1, C2, · · · , CN ) if we have the relationship: k ≥ R(Ci).

Proof. This theorem is a natural extension of Theorem 3.3. If k ≥ R(Ci), all the generator

matrix Gi can be seen as feasible network codes in unicast problem Ci. So the concatenation

of Gi can be seen as a feasible network code in multicast problem C.

3.2 A Cascaded Error Control Coding Approach

3.2.1 Models and Assumptions

If a relay node r is compromised, the symbols transmitted on each edge e such that head(e) =

r will be modified. The nodes after node r will be polluted because of the network encoding.
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Eventually the sink node will receive more erroneous symbols than those originally brought

by the malicious node. In this section, we try to explore the inner structure of the network

code to correct the errors and locate the malicious node. We will partition the network into

several cascaded levels and explore the inner structure of the network code, thus we must be

able to correctly access the outputs of all the relay nodes. To realize this, we add a special

monitor node in the network. This node can collect the output encoded messages from all

the relay nodes and can never be compromised.

3.2.2 An Illustrative Example

Let us examine the classic example [1] again shown in Figure 3.1. By encoding at node

4, both nodes 6 and 7 can retrieve the two symbols x1,1, x1,2 successfully. In Section 3.1,

we merged the intermediate nodes and paths and transferred the the network code into a

bipartite graph. While in this section, we try to explore the network code to exhibit the

inner structure of the network code. To explain our main idea, we will only focus on the

communication between node 1 and node 6 (the shaded area in Figure 3.1). The analysis is

similar to the communication between node 1 and node 7. In this communication, symbol

x1,1 is passed to node 2, node 4, node 5 and node 6 through one hop, two hops, three hops

and two hops respectively, and symbol x1,2 is passed to node 3, node 4, node 5 and node 6

through one hop, two hops, three hops and four hops respectively. As shown in Figure 3.8, if

we add two virtual nodes v1 and v2 on edge e5, we can make x1,1 passed to node 6 through

four hops, thus turn all of the intermediate nodes into 3 cascaded levels. Each of the level

can be seen as a single network code, so we can represent each level using the bipartite

graph shown in Figure 3.9 according to [92]. In this way, we explore the inner structure

of the original network code, which is determined by the network topology. The original

network code can be viewed as 3 cascaded error control codes with the generator matrices
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Figure 3.9 The corresponding bipartite graphs of 3 cascaded levels in Figure 3.8
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Although in this example, there is no redundancy in the three error control codes, the

corresponding network code cannot detect or correct errors, it is sufficient to show that

network code can be expanded to cascaded error control codes.

In the rest of Section 3.2, we will show that network codes can be transferred into cascaded

error control codes. In this way, we can characterize and design network codes based on the

underlying cascaded error control codes for error detection/correction and malicious nodes

locating.
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3.2.3 Characterization of Network Coding using Cascaded Error Control Cod-
ing in Point-to-Point Communication

Here we will formally state the relationship between network coding and cascaded error

control coding in the point-to-point communication. The sufficiency is studied first then the

necessity.

3.2.3.1 The Sufficiency

Theorem 3.5. Every network code scheme can be expanded to a series of cascaded error

control codes.

Proof. To prove this, we will first show that the network code can be partitioned into several

cascaded levels of one hop network codes. For each of the nodes that have multiple incoming

edges in the network, we add some virtual nodes on these edges as shown in Figure 3.10. For

each of the incoming edges, there may be several paths through which messages are passed

from the source node to node u including the edge. Among all the paths, we find the longest

one and calculate its number of hops. After calculating the hop values h1, . . . , hm for all the

incoming edges, we choose the maximum value hmax. For each of the incoming edge i, we

add hmax−hi virtual nodes on it, making all the paths from source to node u have the same

count of hops. The virtual nodes simply forward the messages passed on the corresponding

edges.
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After the operation in Figure 3.10 is performed in all the nodes having multiple incoming

edges, since all the paths from source node to the same the relay node have the same hop

counts and the sink node itself must have multiple incoming edges, every path from the source

node to the sink node has the same number of hops, thus the same number of intermediate

nodes, including the relay nodes and the virtual nodes. We can put the nodes having the

same hop counts together as a level as shown in Figure 3.11. Every single level can be viewed

as one hop network code determined by the connections from nodes of the previous level. So

every network code can be partitioned into several cascaded levels of one hop network code.

According to Theorem 3.1, these one hop network codes can be represented by error

control codes. So the cascaded network codes can be represented by concatenating the

corresponding error control codes together. We can expand any network code to a series of

cascaded error control codes.

Taking the network code in Figure 3.5 as an example. The source node 1 transmits three

symbols x1,1, x1,2, x1,3 to sink node 4 in this network code. And sink node 4 can receive

6 encoded symbols, which indicates that there are redundancies in this network coding. In

Section 3.1, we analyze the same code and transfer it into a (6, 3) error control code which

can correct 1 error. Here we will show this code can be transferred into a series of cascaded

error control codes. Following the operations mentioned in the proof of Theorem 3.5, we

can get the corresponding cascaded network codes and cascaded error control codes shown
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in Figure 3.12. Nodes v1 and v2 are added as virtual nodes to partition the original network

code. The first level error control code is a (5, 3) code and the second level code is a (6, 5)

code.

If an error occurs on edge e1, node 2 will receive wrong x1,1. The error will propagate to

the succeeding nodes, thus there will be two erroneous x1,1 and x1,1 + x1,3 in the sink node,

which is beyond the error correction capability of the (6, 3) error control code. The errors

cannot be dealt using the transforming methods in Section 3.1. However, if the monitor

node can collect the output symbols of the first level (5, 3) code, it can correct the erroneous

symbol x1,1 in node 2. So the error propagation is eliminated from the beginning. By

exploring the inner structure of the network code, we can make better use of the redundancy

in the network.

If node 3 is an malicious node and send out corrupted messages, there will be 3 errors

in the output of both the first level error control code and the second level. The error is

beyond the capability of the cascaded error control codes, so we cannot correct errors or
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locate the malicious node. We will show that we can design network codes corresponding

to proper cascaded error control codes to correct errors and locate malicious nodes in the

sections below.

3.2.3.2 The Necessity

We have proved that any network code can be viewed as a series of cascaded error control

codes, now we will consider the reverse problem. For a point-to-point communication, a

network code is feasible only if it can successfully deliver all the desired symbols from the

source node to the sink node.

Theorem 3.6. For a linear network and a desired connection C = (u, v,X (u)), A series of

cascaded error control codes with parameters (n1, n0), (n2, n1), . . . , (nm, nm−1), can be seen

as a feasible network code in the connection C if we have the relationship: n0 ≥ R(C).

Proof. Suppose the original message is x = (x1, . . . , xk), the output encoded message for

each level of the cascaded error control codes is yi = (yi,1, . . . , yi,ni)(1 ≤ i ≤ m) and the

generator matrix for each of the cascaded error control codes is Gi(1 ≤ i ≤ m) of the size

ni−1 × ni. yi for each level can be written as:

y1 = x ·G1, y2 = y1 ·G2, . . . , ym = ym−1 ·Gm. (3.16)

So the entire encoding equation for the cascaded error control codes can be written as

ym = x ·G1 ·G2 · · · · ·Gm = x ·G. (3.17)

If we view the cascaded error control codes as an error control code with the genera-

tor matrix G of the size n0 × nm, the parameter for the code is (nm, n0). According to

Theorem 3.3, if n0 ≥ R(C), the network code is feasible.

Based on the analysis, by implementing the error control code for each level of the

cascaded error control codes, we can add appropriate redundancies into the network code to

control errors and locate malicious nodes. This can be done in two steps:
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1. According to the network topology, determine the number of levels of the cascaded

codes. According to the design requirements (number of errors to detect or correct,

number of malicious nodes to locate), determine an appropriate code rate and the type

of the error control code for each level.

2. According to the source rate R(C), choose a proper n0 such that n0 ≥ R(C), and derive

the rest of the ni(1 ≤ i ≤ m) based on the code rate for each level of the error control

codes. Generate the generator matrices G1, . . . , Gm according to the code types and

apply them as the system transfer matrices to each level of the network codes.

3.2.3.3 Application in Combating pollution attacks

Theorem 3.7. Suppose di, di+1 > 2 are the minimum distances of 2 adjacent levels (Li, Li+1)

of the cascaded network code. If 2di + 1 > di+1, then errors in Li+1 spread by a single error

in Li is uncorrectable by the Li+1’s error control code. However, they can be corrected by

the Li’s error control code.

Proof. According to [89], one symbol in the source message is related to at least dmin symbols

in the encoded codeword. So one error in Li can become at least di errors in Li+1. If

2di + 1 > di+1, these errors are beyond the capability of the error control code. However,

the single error can be corrected at Li because di > 2. Then the errors in Li+1 can be

corrected accordingly.

Let us analyze the linear network shown in Figure 3.13, the source node 1 is going to

send 3 symbols x1, x2, x3 to sink node 12. This network can be partitioned into 2 levels.

Nodes 2, 3, 4, 5 form the first level and nodes 6, 7, 8, 9, 10, 11 form the second level. In order

to get the best error control capability, we implement two systematic RS codes in the two

levels. They are (7, 3, 5) code for level 1 and (11, 7, 5) code for level 2. The minimum

distances of the two codes are both 5, thus both of them can correct 2 errors. Because the

errors occurring next to the source node are more sensitive. They may propagate to the
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subsequent nodes causing much more errors. We put the lower rate code that has stronger

error control capability at the first level.

When there is no error in the network, we have (yi,1, yi,2, yi,3) = (x1, x2, x3), i = 1, 2.

It is easy for the sink node to decode the messages. If node 6 is a malicious node and it

sends out erroneous y2,1, y2,2, the monitor node can correct these 2 errors using the sec-

ond level RS code and find out this malicious node according to the network topology. If

node 2 is a malicious node and it sends out erroneous y1,1, y1,2, the errors will propagate

to y2,1, y2,2, y2,8, y2,9, y2,10, y2,11, which prevents the second level code from correcting the

errors. In the corresponding cascaded bipartite graph Figure 3.14, the errors are marked

with grey color. It is clear that 2 errors from level 1 spread to 6 errors in level 2. Even if we

transfer the network code into one (11, 3, 9) RS code which is capable of correcting 4 errors

according to Section 3.1, the errors are still too many to correct. However, based on the fact

that the errors are burst and correlated, after the monitor node collects the outputs of the

first level, it can correct the 2 errors occurring in node 2 using the first level RS code, find

out the malicious node based on the network topology and correct the 6 errors in the second

level. Our cascaded RS code can correct at most 6 errors by exploring the inner structure

of the code and is more powerful than regular RS codes.

With proper design of each level of the cascaded error control codes, we can make the

corresponding network code capable of detecting and correcting errors then locating the

malicious nodes.

3.2.4 Multicast Case

Because in point-to-point communication case, our proofs for the relationship (written as

Rnc,cec) between network code and cascaded error control codes are solely depended on

the proofs for the relationship (written as Rnc,ec) between network code and error control

code in Section 3.1 (Theorem 3.1 and Theorem 3.3) and this kind of dependence has no

relationship with the specific communication case, we can prove that Rnc,cec in the multicast
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case is similar to that in the point-to-point communication case, based on the fact that in

Section 3.1 Rnc,ec stays the same in both point-to-point and multicast cases.
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CHAPTER 4

COMBATING POLLUTION ATTACKS FOR RANDOM NETWORKS

In this chapter, we will propose a new error-detection and error-correction (EDEC) scheme

to detect and remove the malicious attacks for random network coding. The proposed EDEC

scheme is similar in structure to the existing error control based schemes. However, it can

maintain throughput unchanged when moderate network pollution exists with only a slight

increase in computational overhead. Then we propose an improved LEDEC scheme by

integrating the low-density parity check (LDPC) decoding. Our theoretical analysis demon-

strates that the LEDEC scheme can guarantee a high throughput even for heavily polluted

network environment. We also provide extensive performance evaluation and simulation

results to validate our theoretical results using ns-2 network simulator.

4.1 System/Adversarial Models and Assumptions

In this chapter, we will study combating pollution attacks for the encoding for random

networks, where it is difficult to design efficient error correction network codes without the

knowledge of the network topology. In this case, all the encoding coefficients αl,e, βe′,e and

γe′,j will be chosen randomly.

In this chapter, we will use some simplified notations of Section 2.1. For a source node

u, there is a set of symbols X (u) = (x1, . . . , xl) to be sent. For a link e between relay nodes

r1 and r2, written as e = (r1, r2), the symbol ye transmitted on it is the function of all the

ye′ such that head(e′) = r1. And ye can be written as:

ye =
∑

e′:head(e′)=r1

βe′,e · ye′ =
l∑

i=1

βe,ixi = βex, (4.1)

where βe′,e is the local network encoding coefficient, βe,i is the global network encoding
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coefficient for symbol ye and βe =
[
βe,1, βe,2, . . . , βe,l

]
is the network encoding vector. For

a sink node v, there is a set of incoming symbols ye′ (e′ : tail(e′) = v) to be decoded.

As we mentioned above, if adversaries can modify the contents of the packets and send

them to the succeeding relay nodes, the communication will fail and the capacity will be

reduced. In addition, for a large scale network, a small error occurring at an intermediate

relay node may diffuse to many packets at the sink node. This can cause a significant waste

of network resources and sometimes can even ruin the whole network communication.

In this dissertation, the malicious node can add random errors to the symbols in the

received packets then send the corrupted packets out to pollute the network. We adopt this

simple adversarial model because we mainly focus on the throughput impact brought by

different strategies (discard vs. keep) towards corrupted packets in this research.

4.2 Proposed EDEC Scheme

The basic idea of the proposed EDEC scheme in Figure 4.1 is that the source nodes encode

the original messages using an error control code before sending them out. The properties

of the error control code keep unchanged during the linear network coding.

As we mentioned in Section 1.1.3, the error-detection based schemes mainly focus on

detecting the corrupt packets. When a corrupt packet is identified through syndromes, it

will be discarded. So if an adversary continues to corrupt certain packets, these packets will

be continuously dropped and the communication may never succeed. Therefore, we need to
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develop techniques that can improve the throughput for these situations.

4.2.1 EDEC Scheme

Similar to the Null Key scheme, our approach also utilizes the error control code, but we

use both the error detection and error correction properties. When a corrupted packet is

detected, we do not drop it. Instead we collect the corrupted packet to the sink node to

correct the errors. However, the corrupted packet will not participate in network coding in

the subsequent relay nodes once it is identified to be corrupted.

4.2.1.1 Limitations of Error Control Code

A linear error-correcting code encodes the original k bits message symbol m to an n bits

codeword c using a generating matrix Gk×n. So the code rate is r = k/n. Suppose the

minimum distance is d, according to the results in the Preliminary, the maximum number

of errors we can correct is
⌊
d−1
2

⌋
. If the number of errors is more than this amount, we may

correct the corrupted codeword into a false one, as illustrated in Figure 4.2.

4.2.1.2 Modified Error Control Code

The conventional error control code may have undetected decoding errors. This is an inherent

nature. No matter how low we set the code rate, these undetected errors may exist. The
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decoding errors can only be detected using mechanisms other than a stand-alone error-

correcting code.

Therefore, we propose to apply modified error-control code to both message symbols and

network coding coefficients in equation (4.1). In this section, we will use the message symbol

as an example. The original message symbol m is first mapped to a t bit value h using a

homomorphic MAC algorithm like [33]. The t bits will be appended to m to form a new k+t

bits message symbol and to get the final codeword by encoding this new message symbol. So

the code becomes an (n, k + t) code. By adding the extra bits, we can mitigate limitations

of the conventional error-control code. Figure. 4.3 illustrates the modified encoding scheme.

Upon a successful decoding, the decoded message symbol is first split into two parts

m′ and h′. Then we calculate the mapping of m′: h′′. If h′′ does not equal to h′, we

can detect a decoding error. Our modification is equivalent to choose 2k message symbols

from 2k+t symbols. Other message symbols in the 2k+t symbol space are considered to be

illegal. However, the decoding algorithm only guarantees that the decoded codeword is in

the k+ t dimensional subspace. So if the corrected codeword belongs to the 2k+t− 2k illegal

symbol space, we know the decoding contains error. Figure 4.4 illustrates the corresponding

modified decoding scheme.

Theorem 4.1. Suppose a decoding error occurs, the wrong codeword will be any codeword

in the 2k+t symbol space. So the probability of detecting an erroneous decoding is:

p =
2k+t − 2k

2k+t
=

2t − 1

2t
= 1− 1

2t
. (4.2)
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Table 4.1 Four cases of decoded codewords in modified error control code

Case k bits original symbol t bits mapping value Results

1 Decoded right Obey mapping rule Successfully

2 Decoded right Violate mapping rule False alarm

3 Decoded wrong Obey mapping rule Miss detect

4 Decoded wrong Violate mapping rule Successfully

As an example, when t = 4, p = 15
16 , the probability for 3 consecutive erroneous decodings

to be detected is 1−
(

1
16

)3
≈ 0.9998. Therefore, we only need to add a very small overhead

to detect erroneous decodings.

4.2.1.3 Performance of Modified Error Control Code

In this section, we will select a cyclic code with n = 15, t = 4 to demonstrate our proposed

scheme. We first add some errors to the encoded symbols, then decode these symbols as

described in Figure 4.4. We evaluate the performance by checking the numbers of decoded

codewords in four different cases. The results are summarized in Table 4.1.

Code with k = 6 In this simulation, we use a (15, 10) code for the evaluation. From the

results (see Figure 4.5) we can see: (i) This code (with minimum hamming distance 4) can

detect and correct all the 1 bit error and part of the two bits errors. (ii) We can successfully

detect most of the decoding errors when the number of errors is more than 2. In fact,
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Figure 4.5 Performance of modified error control code in EDEC scheme when k = 6

the detection probability is larger than 0.8 most of the time except for 14 errors, in which

the probability is about 0.6. (iii) False alarm cannot be distinguished from the successful

detection. In fact, the false alarm is also caused by the errors beyond the correcting ability.

The only difference is that the t bits appendix part of the symbol is decoded wrong. However,

the false alarm is neglectable according to the results.

Code with k = 4 In this simulation (see Figure 4.6), we use a (15, 8) code to do the

evaluation. The only difference is that this code is able to correct more errors because the

code rate is relatively lower. From the results of the two different code rates, we can see that

adding 4 extra check bits is enough to detect erroneous correction.

4.2.1.4 Algorithms for EDEC Scheme

The proposed EDEC scheme is divided into two phases: initialization phase and transmission

phase. The initialization phase is for null key and security parameter distribution while data

symbols are transmitted through network coding in the transmission phase.
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Figure 4.6 Performance of modified error control code in EDEC scheme when k = 4

Initialization Phase In initialization phase, the source node will first distribute the row

vectors of the parity check matrix corresponding to G in Algorithm 4.1 (null keys) to all

the relay nodes similar to [44] using homomorphic hashes. Unlike normal linear network

coding in which the network encoding vectors will be attached to the start or the end of

the packets, we propose to insert the encoding vectors to a predetermined secret location in

the packets. The source node will send the location information to all the sink nodes during

initialization phase through a secure transmission protocol such as TLS [93]. This will

prevent the malicious nodes from corrupting the encoding vector, which is essential for the

data decoding. Moreover, the source node will also send the encoding matrix Gc for network

encoding vectors and G for data symbols to all the sink nodes. Once the initialization phase

is done, the source nodes can multicast any number of packets to sink nodes. The overhead

of the initialization phase is negligible.
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Transmission Phase In the transmission phase, the source nodes, relay nodes and sink

nodes will perform the proposed EDEC scheme according to Algorithm 4.1, 4.2 and 4.3.

Algorithm 4.1 EDEC Algorithm for Source Nodes

for packet i do
//Encode network encoding vector βi in equation (4.1) using the modified error-control

code (Figure. 4.3)
hc ← map(βi)
uc ← (βi|hc)
Encoded network encoding vector ← uc ·Gc

for every symbol m of the packet do
//Encode m using the modified error-control code (Figure. 4.3)

h← map(m)
u← (m|h)
Encoded symbol ← u ·G

end for
Send out the encoded encoding vector and symbols

end for

In algorithm 4.1, the source node will encode the network encoding vector βi using the

modified error-control code with a much longer appendix and lower code rate, compared to

the encoding of data symbols. This can improve the error resistance and detection proba-

bility for erroneous decodings to guarantee the correctness of encoding vectors used for data

decoding. Since there is only one encoding vector in each packet, the overhead brought by

this higher security level is negligible.

Algorithm 4.2 presents the EDEC algorithm for relay nodes. Since the null keys (row vec-

tors of the parity check matrix corresponding to G in algorithm 4.1) are already distributed

in initialization phase, the relay nodes can check whether a packet is intact.

Algorithm 4.3 presents the EDEC algorithm for sink nodes. Since the sink node has

already received the encoding matrix Gc and G in Algorithm 4.1 in initialization phase, it

can perform the error-control code decoding and detection for erroneous decoding. Then it

can derive the original data symbols through decoding of network coding.
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Algorithm 4.2 EDEC Algorithm for Relay Nodes

if every symbol in the received packet is intact then
if the packet is independent then

Save the packet
if x (a predetermined number) packets are collected then

repeat
Generate x randomly, linearly combined packets using the saved packets (network
coding)

until the x new packets are independent
Send out the x packets

end if
end if

else
if the packet is independent from all the previous packets then

Mark the packet as corrupted and send it out
end if

end if

Algorithm 4.3 EDEC Algorithm for Sink Nodes

A packet is received
Decode the network encoding vector and every symbol in the packet using the decoding
algorithm for the modified error-control code (Figure. 4.4)
if the network encoding vector and all symbols are decoded correctly then

if the packet is independent then
Save the packet
if l (in equation (1.1)) independent packets are saved then

Solve the network coding equations
end if

end if
end if

4.2.2 Simulation in ns-2

In this section, the simulation platform for EDEC scheme in ns-2 [94] is first presented. Then

we will compare the EDEC scheme and the error-detection based schemes. In the simulation,

we implement the Null Key scheme to represent the error-detection based schemes.
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4.2.2.1 Simulation Platform

ns-2 is a discrete event simulator that provides comprehensive support for simulation of

network protocols. It is ideal for the simulation of EDEC scheme. The scenario is set as a

grid network with one source node, a number of relay nodes and sink nodes. All the nodes are

set as wireless nodes using wireless physical layer, 802.11 MAC protocol and AODV routing

protocol. The wireless channel is set to TwoRayGround. The nodes transmit packets using

broadcasting. Once a node receives a packet, it will start the corresponding operations

depending on its type (source, relay, malicious, sink) and the packet content.

Figure 4.7 shows the topology of the simulated network. The source node is located

at the lower left corner and 19 sink nodes lie at the upper right. The rest nodes are all

intermediate nodes that can relay packets. In the simulation, we randomly pick a number

of intermediate nodes as malicious nodes to perform pollution attacks. These nodes can add

certain errors to received packets before sending the packets out to pollute the network. We

can change the number of malicious nodes to evaluate performance of the algorithms under

different network conditions. As an example, in Figure 4.7, we randomly pick 50 nodes out of

209 intermediate nodes to be malicious nodes. The malicious ratio is about 50/209 = 24%.

The rest of the intermediate nodes act as relay nodes. After receiving a packet, they will

first conduct the pollution detection. In the error-detection based schemes, if the packet is

corrupted, it will be dropped. While in the EDEC scheme, we will forward these packets.

However, these packets will not participate in network coding. The nodes behaviors will be

detailed in the next section.

Because the packets are transmitted through broadcasting, although the MAC protocol is

IEEE 802.11, we will still have packets collisions that will eventually influent the simulation

results. In this dissertation, we only focus on network layer protocols. Thus after considering

the transmission range of the single node, adjacent nodes are assigned different time slots

(see Figure 4.8) to avoid packets collisions. There are 9 time slots in total and the duration
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Figure 4.7 Simulation scenario
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Figure 4.8 9 time slots to avoid packets collisions

of each time slot is 100ms. The nodes are allowed to send packets only if they are in their

own slots. If not, they will have to wait until their next slots. In Figure 4.8, we give an

example for nodes that belong to time slot 2 to simultaneously transmit without packets

collisions.
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4.2.2.2 Nodes Design

After setting up the simulation platform, we can fairly evaluate the algorithms without con-

sidering other facts. Four types of nodes are designed according to the algorithms described

above.

Source Node In the simulation, the source node will multicast a 352-symbol message,

which is fragmented into 32 packets of 11 symbols. Each symbol has the size k = 512

bits. In the whole network there will be 32 linearly independent packets. That is l = 32 in

equation (1.1). After initializing the network, the source node will encode each data symbol

using the modified error-control code presented in Figure. 4.3 with t = 16. The encoding

vector βi will also be encoded using the modified error-control code with t = 32. According

to Theorem 4.1, the probability of detecting an erroneous decoding for the encoding vector

is about 1 − 2−10, which means once the decoded encoding vector pass the verification in

Figure. 4.4, we can view the encoding vector as intact. Then the source node will insert

encoded network encoding vector into the predetermined location in each packet and send

out the packet.

Relay Nodes Relay nodes will perform EDEC scheme according to algorithm 4.2. Because

the network is collision free and all the transmitted packets can be received, each packet only

needs to be transmitted once. So if a newly received valid packet is linearly dependent of

previous transmitted packets, it will be discarded. Since there are 32 linearly independent

packets in total, if a relay node does not transmit packets until all the 32 packets have been

received, the time delay will be huge. Moreover, a relay node may never be able to collect

all the 32 valid packets due to malicious attacks. To use network coding efficiently while

minimizing the time delay, relay nodes will perform network encoding once they collect 4

independent valid packets.
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Malicious Nodes Similar to the relay nodes, malicious nodes only send out independent

packets. However, we assume that the malicious nodes will not perform network encoding

in this case. They only pollute packets and send out corrupted packets.

Sink Nodes Sink nodes will decoding both the network coding and the underling modified

error-control code according to algorithm 4.3. After the original symbols are successfully

retrieved, all the packets received afterwards will be ignored.

4.2.2.3 Simulation Results

We conducted simulations under different percentages of the malicious relay nodes. To make

the results more clear, we first fix the number of bits that the malicious nodes can corrupt

for each symbol. Then we make this number random according to our adversary model.

Small Number of Errors When the number of bits that malicious nodes can corrupt

for each symbol is within the capability of error control codes, the throughput comparison

between the EDEC scheme and the error-detection based schemes is shown in Figure 4.9.

In the figure we can see that: (i) When the percentage of malicious nodes is less than

10%, the performance of the two schemes are almost the same. (ii) With the increasing of

the malicious nodes, the performance of error-detection based schemes degrade significantly.

While the throughout of the EDEC scheme remains unchanged. (iii) When the percentage

of the malicious nodes is larger than 65%, the error-detection based schemes do not work at

all because too many corrupted packets have been dumped. However, the throughput for the

EDEC scheme still remains unchanged because the EDEC scheme can successfully recover

all of the message symbols from the corrupted packets. This scenario will remain true as

long as the corrupted packet symbols are within the capability of the error control codes. In

this case, the EDEC scheme surpasses the error-detection based schemes in throughput.
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Figure 4.9 Throughput comparison between EDEC scheme and the error-detection schemes
based on the number of bit corrupted in each symbol — for small number of errors

Large Number of Errors When the number of bits corrupted in each symbol of the re-

ceived packets is beyond the capability of the error control codes, the throughput comparison

between the EDEC scheme and the error-detection based schemes is shown in Figure 4.10.

From the results we can see that the performance of the two schemes are almost the same.

This is because the corrupted packets that cannot be recovered by the EDEC scheme have

already been dumped by the error-detection based schemes.

Random Number of Errors When the malicious nodes adds random errors to the sym-

bols in the received packets, the performance of the EDEC scheme is comparable with

the error-detection based schemes. This is because that while some of the symbols in the

corrupted packets can be corrected, but some are beyond the decoding capability of the

error control code, which makes the packet unusable with result similar to the packet being

dumped in the error-detection based schemes.
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Figure 4.10 Throughput comparison between EDEC scheme and the error-detection
schemes based on the number of bit corrupted in each symbol — for large number of errors

4.3 LDPC Decoding and LEDEC Scheme

In the EDEC scheme, only linearly independent packets participate in the network decoding

at the sink nodes. Corrupted or linearly dependent packets will not be used. In this sec-

tion, we will explore utilizing these packets to recover more message symbols using LDPC

decoding.

4.3.1 LDPC Code

Low density parity check (LDPC) linear block code was first introduced by Gallager in

1962 [95]. One of the important characteristic of LDPC code is its sparse parity check

matrix. By using iterative decoding, LDPC code can achieve error-correction performance

close to Shannon bounds [96]. The advantages of LDPC code were discussed in [97, 98].

Some new classes of asymptotically good LDPC codes were studied in [99–101]. And some

decoding algorithms of LDPC codes were presented in [102–105].

LDPC codes can be categorized as the regular LDPC code, of which the parity check
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Figure 4.11 An illustrative example of parity check matrix and Tanner graph

matrix H has fixed number of 1’s per column and per row, and the irregular LDPC code [106],

of which the parity check matrix may have different number of 1’s in each column and each

row. In this dissertation, we will formulate the network coding to the irregular LDPC code.

4.3.2 Decoding of LDPC Code

The iterative decoding algorithm, known as belief propagation algorithm (BPA), is generally

used to decode the LDPC code. The BPA is a soft-decision algorithm studied in [107–109].

For a binary erasure channel (BEC), the bits in the codewords are received as 0’s, 1’s or

x’s (erasures). The BPA can be described over the Tanner graph [110], which is a bipartite

graph. In a Tanner graph, there are two types of nodes: the symbol nodes (corresponding

to the received bits), and the check nodes (corresponding to the rows of the parity check

matrix).An illustrative example of the parity check matrix and its Tanner graph is shown

in Figure 4.11. In the parity check matrix, every row represents a parity check equation.

The symbol nodes, which correspond to the bits equal to 1’s in a row of the parity check

matrix, are connected to the check node which corresponds to the same row. These nodes

and edges in the Tanner graph express the parity check equation of that row.In Figure 4.11,

node h1 represents the first row of the parity check matrix. And the first, the second and

third elements of the first row in parity check matrix are 1’s, so symbol nodes d1, d2 and d3

are connected to h1 in the Tanner graph.

The decoding algorithm can be described through the following algorithm:
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Algorithm 4.4 BPA Decoding Algorithm for BEC

while There are check nodes connected to only one unknown symbol node do
for Each of these check nodes do

The unknown symbol node ← xor (All of the other symbol nodes connected to the
check node)

end for
end while
if All the unknown symbol nodes are recovered then

Decode successfully
end if

4.3.3 Relationship Between Linear Network Code and LDPC Code

In linear network coding, packets are linearly combined at the intermediate nodes. The

packets that are received at the sink nodes satisfy equation (1.1). In the network code

decoding part of the EDEC algorithm, only independent valid packets are used. However,

there is also helpful information in the linearly dependent packets or corrupted packets. If

we can exploit and use these packets, we can improve the system performance. Denote the

received encoding vector as ai = (a1,i, · · · , al,i)T , where 1 ≤ i ≤ m and m is the number of

received packets. Then the generation matrix of the block code can be defined as:

G = [a1 · · · al, al+1 · · · am] = [P1, P2], (4.3)

where the matrix P1 can be made as a l× l full rank matrix through column exchange after

l independent packets are received, and P2 is a l × (m− l) matrix.

As an example, suppose there is only one bit xi in every original packet in the source

node (1 ≤ i ≤ l). Define x = (x1, . . . , xl). In this case, there is also only one bit yj in every

received packet in the sink nodes (1 ≤ j ≤ m). Denote all the m received packets as a vector

y. We have the following encoding equation:

y = x ·G. (4.4)

The corresponding parity check matrix H can be derived as follows.

61



Define the generating matrix as

G = P−11 · [Il, P−11 P2], (4.5)

and the parity-check matrix as

H = [(P−11 P2)T , Im−l]. (4.6)

We can verify the correctness of H by verifying the follow equation:

G ·HT = P−11 · [Il, P−11 P2] · [(P−11 P2)T , Im−l]
T = 0. (4.7)

After deriving the corresponding parity check matrix H, we can decode the linear network

code using the BPA algorithm. The linear network code can be viewed as a rateless LDPC

code, and has the property of error control codes.

Although linear network codes can be seen as rateless LDPC codes, the BPA algorithm

cannot be used to decode a network code if the network code is derived after a normal

error control encode, because we cannot find the incorrect decodings which can be viewed

as erasures. However, for the modified error control codes in the EDEC scheme, we can

determine the erroneous decodings and mark the corresponding bits as erasures. Therefore,

we can decode the linear network code using the BPA.

4.3.4 LEDEC Scheme Using BPA

In the LEDEC scheme, we use the linearly dependent packets and the corrupted packets and

decode the linear network code using BPA algorithm. Figure 4.12 illustrates this main idea

of the decoding algorithm.

4.3.5 Theoretical Analysis

When the number of errors is partially beyond the decoding capability of the error control

code, the LEDEC scheme can get additional benefits from decoding of the LDPC codes.
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Figure 4.12 Main idea of the LEDEC scheme

Here we use a (31, 15) cyclic code with generation polynomial x16 + x14 + x10 + x9 +

x8 + x7 + x5 + x4 + x3 + x2 + x + 1 as an illustrative example. It is easy to calculate that

there are only 17515 entries for the 4-bit errors in the syndrome table, while the number

for all the 4-bit errors is
(31
4

)
= 31465. It means only 17515 distinct 4-bit errors can be

successfully corrected. In this situation, 4-bit errors are considered to be partially beyond

the decoding capability of the (31, 15) code. The successful error correction probability is

about 17515/31465 = 0.5567. Because we use the modified error-control code, which can

detect the erroneous decodings, the failed error corrections can be seen as erasures with

erasure probability Pe = 1− 0.5567 = 0.4433.

Consider the worst case in which almost all the packets are corrupted by the malicious

nodes. The error-detection based schemes do not work at all because all of the packets

are dumped. The EDEC scheme does not work either because with erasure probability

Pe = 0.4433 there will not be enough correctable packets to solve the network coding equa-

tion (1.1).

For the LEDEC scheme, let λd denote the probability that an edge from a check node

is connected to a symbol node of degree d, and ρd denote the probability that an edge

from a symbol node is connected to a check node of degree d in the Tanner graph of the

corresponding LDPC code. The generating functions for an LDPC code is defined as: λ(x) =
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∑
d λdx

d−1, ρ(x) =
∑
d ρdx

d−1. According to [111], the maximal fraction of erasures that

a random LDPC code with given generating functions can correct is bounded by Pmax =

min{ x
λ(1−ρ(1−x))} (0 < x < 1) with probability at least 1−O(l−3/4), where l is the length

of the code. For the throughput of the LEDEC scheme, we have the following theorem:

Theorem 4.2. The throughput of the LEDEC scheme is

F =

bN ·Pmaxc∑
i=0

(
N

i

)
P ie(1− Pe)N−i,

where Pmax = min{ x
λ(1−ρ(1−x))} (0 < x < 1), Pe is the erasure probability, N is the number

of packets a sink node received and b·c is the floor function.

Proof. Suppose a sink node receives N packets and the erasures in the packets are indepen-

dent, the distribution of the number of erasures i in every N received packet symbols is a

binomial distribution with Pr(i) =
(N
i

)
P ie(1 − Pe)N−i, 0 ≤ i ≤ N as the probability mass

function (PMF).

The proposed scheme can combat all erasures up to N ·Pmax with probability at least 1−

O(N−3/4), which is close to 1. Thus the throughput can be written as F =
∑bN ·Pmaxc
i=0 Pr(i).

4.3.6 Performance Analysis and Simulation

In this section, we provide simulation results of the LEDEC scheme on the simulation plat-

form presented in Section 4.2.2. All the settings and parameter are the same as Section 4.2.2.

4.3.6.1 Nodes Design

For the LEDEC scheme, the source node, relay nodes and malicious nodes are the same as

those in Section 4.2.2. However, the decoding process in the sink nodes is different. All pack-

ets received will be used, but the BPA decoding will not start until the sink nodes collect all
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the l = 32 independent packets. After receiving l = 32 independent packets, theoretically,

we can use the BPA algorithm to decode whenever a new packet arrives. However, there is

a trade-off in determining when to start the BPA algorithm. When it is used too frequently,

it may result in a high computational overhead. On the other side, if we do not start the

BPA decoding until we have collected a large number of packets, the communication delay

may be too high. To balance these two conflicting issues, the sink nodes will trigger the BPA

decoding upon receiving of every 10 new packets. This process will continue until all the

message symbols have been successfully decoded. While the BPA decoding is more powerful

than the linear-equation-solving hard-decision decoding method described in Section 4.2.2,

the computational overhead of the BPA scheme is relatively higher. To optimize the advan-

tages of the two algorithms, in our scheme, when a sink node receives 32 independent and

intact packets, we will directly solve the equations and decode the packets using the scheme

described in Section 4.2.2. The flowchart of the LEDEC algorithm that is implemented in

the sink nodes is shown in Figure 4.13.

4.3.6.2 Simulation Results

Same as in Section 4.2.2.3, the simulations in this section are carried out under different

percentage of malicious relay nodes. And the number of bits that the malicious nodes can

corrupt in each symbol is fixed first then set to be random. One example of the parity check

matrix generated in the linear network coding is shown in Figure 4.14. In this example, the

sink node receives 90 packets and decodes the linear network code using the BPA algorithm.

The size of the matrix is 58× 90. In the figure, white squares represent 0 and black squares

represent 1. We can see that this matrix is a sparse matrix.

1. Small Number and Large Number of Errors

Remark 1. When the number of bits that the malicious nodes can corrupt in each

symbol is either within or entirely beyond the capability of the error control code and

65



Check the correctness of 
decoding results

A packet received

Check independence
of the encoding vector among 
successfully decoded packets

Yes

Yes

The number of independent 
packets == 32

Yes

Solve the network coding equations

end

No

Decode every symbols (figure 5)

Successfully retrieve the 
original message?

No

Yes

No

No

Assign probabilities to symbols 
according to the check results

Receive 32 independent 
packets?

Yes

newly received packet counter 
== 10 ?

SPA decoding

Reset newly received packet counter

Yes
Update the newly 

received packet counter

No

No

Figure 4.13 Flowchart of the LEDEC algorithm implemented in the sink nodes
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Figure 4.14 An example of the parity check matrix in network coding
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Figure 4.15 Performance comparison for small number of malicious nodes

the network code, the performance of the LEDEC scheme is the same as that of the

EDEC scheme shown in Figure 4.9 and Figure 4.10.

2. Medium Number of Errors

When the number of errors is partially beyond the capability of error control code

and network code, the performance of the LEDEC scheme is shown in Figure 4.15,

Figure 4.16 and Figure 4.17.

Remark 2. When the percentage of the malicious nodes is less than 20%, the perfor-

mance of the LEDEC scheme is slightly better than the EDEC and the error-detection

based schemes. This is because the sink node can successfully decode the corrupted

packets using only the intact packets.

Remark 3. When the percentage of malicious nodes is between 20% and 60%, the

performance of the LEDEC scheme is about 15% better than the EDEC and the error-

detection based schemes. This is because the sink nodes can recover extra information

from the corrupted packets.
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Figure 4.16 Performance comparison for medium number of malicious nodes

When the percentage of malicious nodes becomes more than 65%, the average generat-

ing functions for the random parity-check matrix are: λ(x) = 0.001x18 + 0.0013x17 +

0.0003x16 + 0.0008x15 + 0.0048x14 + 0.0098x13 + 0.0116x12 + 0.028x11 + 0.0404x10 +

0.0369x9+0.0644x8+0.129x7+0.0902x6+0.076x5+0.1318x4+0.2119x3+0.1364x2+

0.0255x, ρ(x) = 0.8397x9 + 0.1575x7 + 0.0027x5, Pmax = min{ x
λ(1−ρ(1−x))} ≈ 0.3812.

In this worst case, every sink node will receive about N = 90 packets according to

the topology, and at most about N · Pmax = 0.3812 × 90 ≈ 34 erasures in every 90

packet symbols can be recovered. The parameters for the binomial distribution is N =

90, Pe = 0.44. So the throughput can be calculated as F (34) =
∑K=34
K=0 Pr(K) ≈ 0.1.

This result is very close to our simulation, which is summarized in the Remark 4.

Remark 4. When percentage of the malicious nodes becomes more than 65%, the

error-detection based schemes and the EDEC scheme do not work because the number

of the corrupted packets has exceeded the decoding capacity of the network codes. How-

ever, the LEDEC scheme can still maintain a throughput around 8% due to the partial

information available from the corrupted packets.
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Figure 4.17 Performance comparison for large number of malicious nodes

3. Random Number of Errors Here we study the case when the malicious nodes adds

random number of errors to the symbols in the received packets. The number of errors

may vary from small number of errors to large number of errors.

Remark 5. For random errors, although some symbols in the corrupted message cannot

be corrected, the LEDEC scheme can still recover symbols using the LDPC decoding

from the correctable symbols in corrupted packets. From Figure. 4.18 we can see that

while the percentage of malicious nodes is between 30% and 60%, the performance of

the LEDEC scheme is about 4% better than the EDEC and the error-detection based

schemes on average.
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Figure 4.18 Performance comparison based on medium number of malicious nodes (random
number of errors)
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CHAPTER 5

DISTRIBUTED STORAGE IN HOSTILE NETWORKS — HERMITIAN
CODE BASED REGENERATING CODES APPROACH

In this chapter, we will propose Hermitian code based regenerating codes: H-MSR code

and H-MBR code. Theoretical evaluation shows that our proposed schemes can detect the

erroneous decodings and correct more errors in the hostile network than the RS-MSR code

and the RS-MBR code with the same code rate respectively. We will construct the H-MSR

code by combining the Hermitian code and regenerating code at the MSR point, then we

will construct the H-MBR code by combining the Hermitian code and regenerating code at

the MBR point. We will prove that these codes can achieve the theoretical MSR bound

and MBR bound respectively. We will also propose data regeneration and reconstruction

algorithms for the H-MSR code and the H-MBR code in both error-free networks and hostile

networks. Then we will compare their performance with RS code based regenerating codes.

5.1 System/Adversarial Models and Assumptions

In this chapter, we assume there is a secure server that is responsible for encoding and

distributing the data to storage nodes. Replacement nodes will also be initialized by the

secure server. DC and the secure server can be implemented in the same computer and can

never be compromised. We also assume that DC keeps the encoding matrix as a secret and

each storage node only knows its own encoding vector.

We assume some storage nodes can be corrupted due to hardware failure or communi-

cation errors, and/or be compromised by malicious users. As a result, upon request, these

nodes may send out incorrect response to disrupt the data regeneration and reconstruction.

For malicious users, they can take full control of τ (τ ≤ n) storage nodes and collude to

perform attacks.
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We will refer these symbols as bogus symbols without making distinction between the

corrupted symbols and compromised symbols. We will also use corrupted nodes, malicious

nodes and compromised nodes interchangeably without making any distinction.

5.2 An Illustrative Example

In this section, we will show an example in distributed storage using pure RS code and

Hermitian code to show the starting point of this research: the Hermitian code can correct

more errors than the RS code under the same code rate.

5.2.1 RS Code in Distributed Storage

Suppose we have data

m = ( 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0,

0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0,

1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0,

0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0,

0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1,

1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,

0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1,

1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0 ),

(5.1)

to be distributively stored in the distribute storage network. If we view m as composed of

elements from F
26

, thenm can be represented as 32 symbols, each symbol can be represented

using 6 bits: (1, 1, 1, 0, 0, 1), (1, 1, 1, 1, 0, 1), . . . , (0, 0, 1, 0, 0, 0). Let F
26

be generated through
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field expansion with the primitive polynomial f(x) = x6 + x+ 1 over F2 by adding the root

α of f(x) to F
26

. In this way, we have GF (26) = {0, 1, α, α2, α3, α4, α5, α6 = α + 1, α7 =

α2 + α, α8 = α3 + α2, α9 = α4 + α3, α10 = α5 + α4, α11 = α5 + α + 1, α12 = α2 + 1, α13 =

α3 + α, α14 = α4 + α2, α15 = α5 + α3, α16 = α4 + α + 1, α17 = α5 + α2 + α, α18 =

α3+α2+α1+1, α19 = α4+α3+α2+α, α20 = α5+α4+α3+α2, α21 = α5+α4+α3+α+1, α22 =

α5 + α4 + α2 + 1, α23 = α5 + α3 + 1, α24 = α4 + 1, α25 = α5 + α, α26 = α2 + α + 1, α27 =

α3 +α2 +α, α28 = α4 +α3 +α2, α29 = α5 +α4 +α3, α30 = α5 +α4 +α+ 1, α31 = α5 +α2 +

1, α32 = α3 + 1, α33 = α4 + α, α34 = α5 + α2, α35 = α3 + α + 1, α36 = α4 + α2 + α, α37 =

α5 + α3 + α2, α38 = α4 + α3 + α + 1, α39 = α5 + α4 + α2 + α, α40 = α5 + α3 + α2 + α +

1, α41 = α4 + α3 + α2 + 1, α42 = α5 + α4 + α3 + α, α43 = α5 + α4 + α2 + α + 1, α44 =

α5 + α3 + α2 + 1, α45 = α4 + α3 + 1, α46 = α5 + α4 + α, α47 = α5 + α2 + α + 1, α48 =

α3 + α2 + 1, α49 = α4 + α3 + α, α50 = α5 + α4 + α2, α51 = α5 + α3 + α + 1, α52 =

α4 + α2 + 1, α53 = α5 + α3 + α, α54 = α4 + α2 + α + 1, α55 = α5 + α3 + α2 + 1, α56 =

α4 + α3 + α2 + α+ 1, α57 = α5 + α4 + α3 + α2 + α, α58 = α5 + α4 + α3 + α2 + α+ 1, α59 =

α5+α4+α3+α2+1, α60 = α5+α4+α3+1, α61 = α5+α4+1, α62 = α5+1}, and m can be

represented asm = (α5+α4+α3+1, α5+α4+α3+α2+1, α5+α+1, α3, α3+1, α4, α5+α4+

α2+1, α4, α5+α4+α2, α3+α2+α+1, α5+α4+α3+α+1, α4+α2+α, α3+α2, α4, α5+α2+

α+1, α4+α3+α2+α, α4+α2+α, α5+α4+α2+1, α5+α2+1, α5+α+1, α5+α4+α3+α, α4+

α, α5 +α4, α5 +α4, α4 +α3, α5 +α2, α2, α+ 1, α5 + 1, α5 +α4 + 1, α5 +α4 +α3 +α+ 1, α3).

Define g(x) = α5+α4+α3+1+(α5+α4+α3+α2+1)x+(α5+α+1)x2+α3x3+(α3+1)x4+

α4x5+(α5+α4+α2+1)x6+α4x7+(α5+α4+α2)x8+(α3+α2+α+1)x9+(α5+α4+α3+

α+1)x10+(α4+α2+α)x11+(α3+α2)x12+α4x13+(α5+α2+α+1)x14+(α4+α3+α2+

α)x15+(α4+α2+α)x16+(α5+α4+α2+1)x17+(α5+α2+1)x18+(α5+α+1)x19+(α5+

α4+α3+α)x20+(α4+α)x21+(α5+α4)x22+(α5+α4)x23+(α4+α3)x24+(α5+α2)x25+

α2x26 + (α+ 1)x27 + (α5 + 1)x28 + (α5 + α4 + 1)x29 + (α5 + α4 + α3 + α+ 1)x30 + α3x31.
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Then using Reed-Solomon code, we can encode m to c as follows:

c = (g(0), g(1), g(α), . . . , g(α62))

= (α5 + α4 + α3 + 1, α5 + α4 + α2 + 1, α3 + α2 + 1, α2 + α, α5 + α4 + α2 + α + 1,

α5 + α2 + α, α2, α3 + α + 1, α5 + α2, α5 + α3 + α2 + 1, α3 + α2 + α,

α5 + α4 + α2 + 1, α4 + α2 + α + 1, α4 + α2 + α + 1, α4 + α3 + α + 1, 0, α2 + α,

α4 + α2 + α, α3 + 1, α5 + 1, α5 + α + 1, α4 + α3 + α2 + α + 1, α3, α2 + α + 1,

α5 + α4 + α3, α4 + α + 1, α5 + α3 + α2, α4 + α3 + α2 + α + 1, α3 + α2 + 1,

α2 + α + 1, α5 + α2 + α, α4 + α3 + 1, α4 + α3 + α2 + α + 1, α3 + α2 + α,

α5 + α3 + α + 1, 1, α4 + α + 1, α5 + α3 + α + 1, α5 + α4 + α3 + α2 + α + 1,

α3 + α2 + α, α5 + 1, α2 + α, α4 + α, α5 + α4 + α + 1, α4 + α3 + α2, α5 + α + 1,

α5 + α4 + α2 + 1, α5 + α4 + α + 1, α5 + α4 + α3 + α2 + α + 1, α4 + α3 + α2 + α,

α5 + α3 + α2 + α + 1, α5 + α4 + α + 1, α5 + α3 + α2, α5 + α4 + α3 + α2, α2,

α5 + α4 + α2, α5 + α, 1, α5 + α4 + α3 + α2, α3 + 1, α2, α3 + α2 + α, α5 + α2 + α,

α5 + α4 + α3 + α2).

(5.2)

This code has parameter (64, 32, 33), which means the code can correct 32 erasures, or 16

errors. The code ratio is 32/64 = 1/2. If we split the code c into 8 groups so that each group

contains 8 symbols, say {g(0), g(1), g(α), g(α2), g(α3), g(α4), g(α5), g(α6)}, {g(α7), g(α8), g(α9),

g(α10), g(α11), g(α12), g(α13), g(α14)}, {g(α15), g(α16), g(α17), g(α18), g(α19), g(α20), g(α21),

g(α22)}, {g(α23), g(α24), g(α25), g(α26), g(α27), g(α28), g(α29), g(α30)}, {g(α31), g(α32), g(α33),
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g(α34), g(α35), g(α36), g(α37), g(α38)}, {g(α39), g(α40), g(α41), g(α42), g(α43), g(α44),

g(α45), g(α46)}, {g(α47), g(α48), g(α49), g(α50), g(α51), g(α52), g(α53), g(α54)}, {g(α55),

g(α56), g(α57), g(α58), g(α59), g(α60), g(α61), g(α62)}, then using Lagrange interpolation, we

can recover the entire data from any 4 groups if all the individual piece are available without

corrupted. However, when more than 2 groups are corrupted, the message is no longer recov-

erable even if Reed-Solomon error-decoding algorithm is used. In other words, the corruption

level cannot be higher than 2/8 = 1/4.

5.2.2 Hermitian Code in Distributed Storage

In our preliminary research, we have developed a decoding algorithm for Hermitian code,

which is designed on the curve y4 + y = x5 over the finite field GF (24). Our decoding

algorithm can correct erasures as well as errors, however, it can correct more errors than

the Reed-Solomon code in the aforementioned scenario, while maintaining the existing code

ratio. We will first explain Hermitian code using the notation introduced in the previous

example.

Let

Gj =
{(

(yjfj)(R0), (yjfj)(R1), · · · , (yjfj)(Rq3−1)
)}
, (5.3)

where k(j) = max{t | 4t+ 5j ≤ 32}+ 1. Ri runs through (η, η5y0 +βj), for η ∈ GF (q2) and

βj = 0, · · · , q − 1 are the solutions to the equation xq + x = 0.

Define

Hm = G0 ⊕ G1 ⊕ G2 ⊕ · · · ⊕ Gq−1, (5.4)

then we can prove that the parameter of the above defined code is (64, 32). However, we can

correct more than (n − k)/2 = (64 − 32)/2 = 16 errors due to the special structure of the

code.

In the following, we will present a scheme that can correct 24 errors. Since the solutions

to y4 + y = 0 are β0 = 0, β1 = 1, β2 = α5, β3 = α10, and (1, α) is in the curve, the Ri’s can
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be represented through the following Pi,j ’s:

P0,j = (0, βj), Pi,j = (αi−1, α(i−1)(q+1)+1 + βj), i = 1, 2, · · · , 15, j = 0, 1, 2, 3. (5.5)

Consider a received vector u = (0, 0, 0, 0, α, α2, α4, α5, α7, α9, α8, α6, 0, · · · , 0, α5, α10, α4, α,

α11, α13, α, α8, α6, α5, α10, α7, α14, α2, α3, 1, 0, 0, 0, 0), where α4 = α + 1. The decoding will

first break u into four Reed-Solomon code:

r3 = (0, α4, α3, 0, · · · , 0, 0, α2, α5, α2, 0),

r2 = (0, α14, α12, 0, · · · , 0, α4, α12, α12, α4, 0),

r1 = (0, α5, α13, 0, · · · , 0, α, α7, α2, α5, 0),

r0 = (0, α10, α11, 0, · · · , 0, α12, α12, α3, α4, 0)

. (5.6)

Decode r3 in using the decoding algorithm of Reed-Solomon codes [89], we find the error

vector

e3 = (0, α4, α3, 0, · · · , 0, 0, α2, α5, α2, 0) (5.7)

for r3, Therefore, the error locations are E2, E3, E13, E14, E15.

Replace the locations E2, E3, E13, E14, E15 in r2 with erasures, marked as “⊗”, we get

the vector: (0,⊗,⊗, 0, · · · , 0, α,⊗,⊗,⊗, 0).

Decode this vector and we find the error vector

e2 = (0, α14, α12, 0, · · · , 0, α4, α12, α12, α4, 0) (5.8)

with a new error location E12.

Decode r1 and r0, We can find the error vectors

e1 = (0, α5, α13, 0, · · · , 0, α, α7, α2, α5, 0), (5.9)

e0 = (0, α10, α11, 0, · · · , 0, α12, α12, α3, α4, 0). (5.10)
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Now we can reconstruct the entire error vector as:

e = (0, 0, 0, 0, α, α2, α4, α5, α7, α9, α8, α6, 0, · · · , 0, α5, α10, α4, α,

α11, α13, α, α8, α6, α5, α10, α7, α14, α2, α3, 1, 0, 0, 0, 0). (5.11)

Therefore the transmitted codeword is

u = (0, 0, 0, · · · , 0, 0). (5.12)

For this code scheme, if we represent the bits using symbols over GF (24), the entire

message can be represented using 64 symbols. If we split the 64 symbols into groups so that

each group contains 8 symbols, then when no more than 3 groups are corrupted, we can

fix the corrupted groups while fixing the entire message. Therefore, we have the following

claim.

Claim 1. The error correction ratio for Hermitian code is 24/64 = 3/8, which is higher

than the Reed-Solomon code error correction ratio 1/4 for the coding ratio 1/2.

5.2.3 Inspiration from this example

From this example, we find that the Hermitian code can correct more errors than the RS

code under the same code rate. However, directly applying Hermitian code into distributed

storage is a naive approach like directly applying the RS code. Thus we propose to combine

the advantages of the Hermitian code and the regenerating code for distritbuted storage in

the following sections.

5.3 Hermitian Code Based MSR Regenerating Code (H-MSR Code)

5.3.1 Encoding H-MSR Code

In this section, we will analyze the H-MSR code based on the MSR point with d = 2k− 2 =

2α. The code based on the MSR point with d > 2k−2 can be derived the same way through
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S0,j (1 ≤ j ≤ 10) S1,j (1 ≤ j ≤ 12) S2,j (1 ≤ j ≤ 15) S3,j (1 ≤ j ≤ 20)

Figure 5.1 An example illustration of matrix S

truncating operations.

Let α0, · · · , αq−1 be a strictly decreasing integer sequence satisfying 0 < αi ≤ κ(i), 0 ≤

i ≤ q − 1, where αi is the parameter α for the underlying regenerating code. The least

common multiple of α0, · · · , αq−1 is A. Suppose the data contains B = A
∑q−1
i=0 (αi + 1)

message symbols from the finite field GF (q2). In practice, if the size of the actual data

is larger than B symbols, we can fragment it into blocks of size B and process each block

individually.

We arrange the B symbols into two matrices S, T as below:

S =



S0

S1

...

Sq−1


, T =



T0

T1

...

Tq−1


, (5.13)

where

Si = [Si,1, Si,2, · · · , Si,A/αi ],

Ti = [Ti,1, Ti,2, · · · , Ti,A/αi ]. (5.14)
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Si,j , 0 ≤ i ≤ q − 1, 1 ≤ j ≤ A/αi, is a symmetric matrix of size αi × αi with the upper-

triangular entries filled by data symbols. Thus Si,j contains αi(αi + 1)/2 symbols. The

number of columns of each submatrix Si, 0 ≤ i ≤ q−1, is the same: αi ·A/αi = A. The size

of matrix S is (
∑q−1
i=0 αi)×A. So it contains

∑q−1
i=0 (αi(αi+1)/2)A/αi = (A

∑q−1
i=0 (αi+1))/2

data symbols. Figure 5.1 shows an example of matrix S for q = 4, α0 = 6, α1 = 5, α2 =

4, α3 = 3. In figure 5.1, the submatrix Si,j is represented by the square in the corresponding

position with the size representing the size of the submatrix.

Ti,j (0 ≤ i ≤ q − 1, 1 ≤ j ≤ A/αi) is constructed the same as Si,j . So T has the same

structure as S and contains the other (A ·
∑q−1
i=0 (αi + 1))/2 data symbols.

Definition 1. For a Hermitian code Hm over GF (q2), we encode matrix Mdim(Hm)×A =

[M1,M2 · · · ,MA] by encoding each column Mi, i = 1, 2, · · · , A, individually using Hm. The

codeword matrix is defined as

Hm(M) = [Hm(M1),Hm(M2), · · · ,Hm(MA)], (5.15)

where Hm(Mi) has the following form (% ∈ L(mQ)):

[%(P0,0), · · · , %(P0,q−1), · · · , %(P
q2−1,0), · · · , %(P

q2−1,q−1)]T , (5.16)

and the elements of Mi are viewed as the coefficients of the polynomials f0(x), · · · , fq−1(x)

in % when Mi is encoded.

Let

Φi =



1 0 0 · · · 0

1 1 1 · · · 1

1 φ φ2 · · · φαi−1

...
...

...
. . .

...

1 φq
2−2 (φq

2−2)2 · · · (φq
2−2)αi−1



(5.17)
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be a Vandermonde matrix, where φ is the primitive element in GF (q2) mentioned in sec-

tion 2.4 and 0 ≤ i ≤ q − 1.

Define

∆ =



λ0 0 · · · 0

0 λ1 · · · 0

...
...

. . .
...

0 0 · · · λ
q2−1


(5.18)

to be a diagonal matrix comprised of q2 elements, where λi, 0 ≤ i ≤ q2 − 1, is chosen using

the following two criteria: (i) λi 6= λj , ∀i 6= j, 0 ≤ i, j ≤ q2 − 1. (ii) Any di = 2αi rows of

the matrix [Φi,∆ · Φi], 0 ≤ i ≤ q − 1, are linearly independent.

We also define

Λi = λiI (5.19)

to be a q × q diagonal matrix for 0 ≤ i ≤ q2 − 1, where I is the q × q identical matrix. And

Γ =



Λ0 0 · · · 0

0 Λ1 · · · 0

...
...

. . .
...

0 0 · · · Λ
q2−1


(5.20)

is a q3 × q3 diagonal matrix formed by q2 diagonal submatrices Λ0, · · · ,Λq2−1.

For distributed storage, we encode each pair of matrices (S, T ) using Algorithm 5.1. We

will name this encoding scheme as Hermitian-MSR code encoding, or H-MSR code encoding.

For H-MSR coding encoding, we have the following theorem.
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Algorithm 5.1 Encoding H-MSR Code

Step 1: Encode the data matrices S, T defined in equation (5.13) using a Hermitian code
Hm over GF (q2) with parameters κ(j) (0 ≤ j ≤ q−1) and m (m ≥ q2−1). Denote
the generated q3 × A codeword matrices as Hm(S) and Hm(T ).

Step 2: Compute the q3 × A codeword matrix Y = Hm(S) + ΓHm(T ).

Step 3: Divide Y into q2 submatrices Y0, · · · , Yq2−1 of size q×A and store each submatrix

in a storage node as shown in Figure. 5.2.

Storage 
Node 0

Storage 
Node 1

Storage 
Node q2-1

...

Y =

Y0

Y1

Yq -12
...

Figure 5.2 Illustration of storing the codeword matrices in distributed storage nodes

Theorem 5.1. The H-MSR code encoding described in Algorithm 5.1 can achieve the MSR

point in distributed storage.

Proof. We first study the structure of the codeword matrix Hm(S). Since every column

of the matrix is an independent Hermitian codeword, we can decode the first column h =

[h0,0, · · · , h0,q−1, · · · , hq2−1,0, · · · , hq2−1,q−1]T as an example without loss of generality. We

arrange the q3 rational points of the Hermitian curve following the order in Table 2.1. In the

table, we can find that for each i, i = 0, 1, · · · , q2−1, the rational points Pi,0, Pi,1, · · · , Pi,q−1

all have the same first coordinate.

Suppose % ∈ L(mQ): %(Pi,l) = f0(Pi,l)+y(Pi,l)f1(Pi,l)+ · · ·+(y(Pi,l))
q−1fq−1(Pi,l), 0 ≤

i ≤ q2 − 1, 0 ≤ l ≤ q − 1, deg fj(x) = αj − 1 for 0 ≤ j ≤ q − 1. Since Pi,0, Pi,1, · · · , Pi,q−1

all have the same first coordinate and fj(Pi,l) is only applied to the first coordinate of Pi,l,

we have fj(Pi,l) = fj(φ
si), s0 = −∞, si = i− 1, for i ≥ 1, φ−∞ = 0, which does not depend
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on l. Therefore, we can derive q2 sets of equations for 0 ≤ i ≤ q2 − 1:

f0(φsi) + y(Pi,0)f1(φsi) + · · ·+ (y(Pi,0))q−1fq−1(φsi) = hi,0

f0(φsi) + y(Pi,1)f1(φsi) + · · ·+ (y(Pi,1))q−1fq−1(φsi) = hi,1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

f0(φsi) + y(Pi,q−1)f1(φsi) + · · ·+ (y(Pi,q−1))q−1fq−1(φsi) = hi,q−1

. (5.21)

If we store the codeword matrix in storage nodes according to Figure. 5.2, each set of the

equations corresponds to a storage node. As we mentioned above, the set of equations in

equation (5.21) can be derived in storage node i.

Since the coefficient matrix Bi is a Vandermonde matrix:

Bi =



1 y(Pi,0) · · · y(Pi,0)q−1

1 y(Pi,1) · · · y(Pi,1)q−1

...
...

. . .
...

1 y(Pi,q−1) · · · y(Pi,q−1)q−1


. (5.22)

we can solve ui = [f0(φsi), f1(φsi), · · · , fq−1(φsi)]T from

ui = B−1i hi, (5.23)

where hi = [hi,0, hi,1, · · · , hi,q−1]T .

From all the q2 storage nodes, we can get vectors Fi = [fi(0), fi(1), · · · , fi(φq
2−2)]T ,

i = 0, · · · , q − 1, which can be viewed as extended Reed-Solomon codes.

Now consider all the columns of Hm(S), we can get the following equation:

ΦiSi,j = Fi,j , (5.24)
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where Fi,j = [F (1)
i , · · · ,F (αi)

i ], 0 ≤ i ≤ q − 1, 1 ≤ j ≤ A/αi, and F (l)
i corresponds to the

lth column of the submatrix Si,j .

Next we will consider the structure of the codeword matrixHm(T ). Because the encoding

process for Hm(T ) is the same as that of Hm(S), for ΓHm(T ), we can derive

∆ΦiTi,j = ∆Ei,j , (5.25)

where Ei = [ei(0), ei(1), · · · , ei(φq
2−2)]T , Ei,j = [E(1)i , · · · , E(αi)i ], 0 ≤ i ≤ q − 1, 1 ≤ j ≤

A/αi, and E(l)i corresponds to the lth column of the submatrix Ti,j .

Thirdly, we will study the optimality of the code in the sense of the MSR point. For

ΦiSi,j + ∆ΦiTi,j , 0 ≤ i ≤ q − 1, 1 ≤ j ≤ A/αi, since Si,j , Ti,j are symmetric and satisfy

the requirements for MSR point according to [57] with parameters d = 2αi, k = αi + 1, α =

αi, β = 1, B = αi · (αi + 1). By encoding S, T using Hm(S) + ΓHm(T ) and distributing

Y0, · · · , Yq2−1 into q2 storage nodes, each row of the matrix ΦiSi,j + ∆ΦiTi,j , 0 ≤ i ≤

q−1, 1 ≤ j ≤ A/αi, can be derived in a corresponding storage node. Because ΦiSi,j+∆ΦiTi,j

achieves the MSR point, data related to matrices Si,j , Ti,j , 0 ≤ i ≤ q−1, 1 ≤ j ≤ A/αi, can

be regenerated at the MSR point. Therefore, Algorithm 5.1 can achieve the MSR point.

5.3.2 Regeneration of the H-MSR Code in the Error-free Network

In this section, we will discuss the regeneration for the H-MSR code in the error-free network.

Let vi = [e0(φ(si)), e1(φ(si)), · · · , eq−1(φ(si))]T , then

ui + Λivi = B−1i yi = [f0(φsi) + λie0(φsi), · · · , fq−1(φsi) + λieq−1(φsi)]T , (5.26)

for every column yi of Yi.

The main idea of the regeneration algorithms is to regenerate fl(φ
si)+λiel(φ

si), 0 ≤ l ≤

q−1, by downloading help symbols from dl = 2αl nodes, where dl represents the regeneration

parameter d for fl(φ
si) + λiel(φ

si) in the H-MSR code regeneration.
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Suppose node z fails, we devise Algorithm 5.2 in the network to regenerate the exact

H-MSR code symbols of node z in a replacement node z′. For convenience, we suppose

dq = 2αq = 0 and define

Vi,j,l =



νi,l

νi+1,l

...

νj,l


, (5.27)

where νt,l, i ≤ t ≤ j, is the tth row of [Φl,∆Φl]. Each node i, 0 ≤ i ≤ q2 − 1, only stores its

own encoding vector νi,l, 0 ≤ l ≤ q − 1.

First, replacement node z′ will send requests to helper nodes for regeneration: z′ sends

the integer j to dj − dj+1 helper nodes, to which z′ has not sent requests before, for every

j from q − 1 to 0 in descending order.

Upon receiving the request integer j, helper node i will calculate and send the help

symbols as follows: node i will first calculate Ỹi = B−1i Yi to remove the coefficient matrix

Bi from the codeword matrix. Since the (l + 1)th row of Ỹi corresponds to the symbols

related to fl(φ
si) + λiel(φ

si), for 0 ≤ l ≤ j, node i will divide the (l + 1)th row of Ỹi into

A/αl row vectors of the size 1 × αl: [ỹi,l,1, ỹi,l,2, · · · , ỹi,l,A/αl ]. Then for every 0 ≤ l ≤ j

and 1 ≤ t ≤ A/αl, node i will calculate the help symbol p̃i,l,t = ỹi,l,tµ
T
z,l, where µz,l is the

zth row of the encoding matrix Φl defined in equation (6.2). At last, node i will send out all

the calculated symbols p̃i,l,t. Here j indicates that z′ is requesting symbols p̃i,l,t, 0 ≤ l ≤ j

and 1 ≤ t ≤ A/αl, calculated by [f0(φsi) + λie0(φsi), · · · , fj(φsi) + λiej(φ
si)]T

Since dl1 > dl2 for l1 < l2, for efficiency consideration, only dq−1 helper nodes need

to send out symbols p̃i,l,t, 0 ≤ l ≤ q − 1 and 1 ≤ t ≤ A/αl, calculated by [f0(φsi) +

λie0(φsi), f1(φsi) + λie1(φsi), · · · , fq−1(φsi) + λieq−1(φsi)]T . Then dj − dj+1 nodes only

need to send out symbols p̃i,l,t, 0 ≤ l ≤ j and 1 ≤ t ≤ A/αl, calculated by [f0(φsi) +
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λie0(φsi), f1(φsi) + λie1(φsi), · · · , fj(φsi) + λiej(φ
si)]T for 0 ≤ j ≤ q − 2. In this way,

the total number of helper nodes that send out symbols p̃i,l,t, 1 ≤ t ≤ A/αl, calculated by

fl(φ
si) + λiel(φ

si) is dq−1 +
∑q−2
j=l (dj − dj+1) = dl.

When the replacement node z′ receives all the requested symbols, it can regenerate the

symbols stored in the failed node z using the following algorithm:

Algorithm 5.2 z′ Regenerates Symbols of the Failed Node z

Step 1: For every 0 ≤ l ≤ q − 1 and 1 ≤ t ≤ A/αl, calculate the regenerated symbols
related to the help symbols p̃i,l,t from dl helper nodes. Without loss of generality,
we assume 0 ≤ i ≤ dl − 1:

Step 1.1: Let p = [p̃0,l,t, p̃1,l,t, · · · , p̃dl−1,l,t]
T , solve the equation: V0,dl−1,lx = p.

Step 1.2: Since x =

Sl,t
Tl,t

µTz,l and Sl,t, Tl,t are symmetric, we can calculate

xT = [µz,lSl,t, µz,lTl,t].

Step 1.3: Compute ỹz,l,t = µz,lSl,t + λzµz,lTl,t = νz,l

Sl,t
Tl,t

.

Step 2: Let Ỹz be a q ×A matrix with the lth row defined as [ỹz,l,1, · · · , ỹz,l,A/αl ], 0 ≤ l ≤
q − 1.

Step 3: Calculate the regenerated symbols of the failed node z: Yz′ = Yz = BzỸz.

From Algorithm 5.2, we can derive the equivalent storage parameters for each symbol

block of size Bj = A(αj + 1): d = 2αj , k = αj + 1, α = A, β = A/αj , 0 ≤ j ≤ q − 1 and

equation (2.7) of the MSR point holds for these parameters. Theorem 5.1 guarantees that

Algorithm 5.2 can achieve the MSR point for data regeneration of the H-MSR code.

5.3.3 Regeneration of the H-MSR Code in the Hostile Network

In hostile network, Algorithm 5.2 may not be able to regenerate the failed node due to

possible bogus symbols received from the responses. In fact, even if the replacement node
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z′ can derive the symbol matrix Yz′ using Algorithm 5.2, it cannot verify the correctness of

the result.

There are two modes for the helper nodes to regenerate the contents of a failed storage

node in hostile network. One mode is the detection mode, in which no error has been found

in the symbols received from the helper nodes. Once errors are detected, the recovery mode

will be used to correct the errors and locate the malicious nodes.

5.3.3.1 Detection Mode

In the detection mode, the replacement node z′ will send requests in the way similar to that

of the error-free network in Section 5.3.2. The only difference is that when j = q − 1, z′

sends requests to dq−1− dq + 1 nodes instead of dq−1− dq nodes. Helper nodes will still use

the way similar to that of the error-free network in Section 5.3.2 to send the help symbols.

The regeneration algorithm is described in Algorithm 5.3 with the detection probability

characterized in Theorem 5.2.

Lemma 1. Suppose e0, · · · , edl are the dl + 1 errors e0,l,t, · · · , edl,l,t in Algorithm 5.3, x̂1 =

V−10,dl−1,l
· [e0, · · · , edl−1]T and x̂2 = V−11,dl,l

· [e1, · · · , edl ]
T . When the number of malicious

nodes in the dl + 1 helper nodes of Algorithm 5.3 is less than dl + 1, the probability that

x̂1 = x̂2 is at most 1/q2.

Proof. Since V0,dl−1,l and V1,dl,l
are full rank matrices, we can get their corresponding

inverse matrices. x̂1 = x̂2 is equivalent to V0,dl−1,l · x̂1 = V0,dl−1,l · x̂2.

First, we have

V0,dl−1,l · x̂1 = [e0, e1, · · · , edl−1]T . (5.28)
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Algorithm 5.3 [Detection Mode] z′ Regenerates Symbols of the Failed Node z in Hostile
Network

Step 1: For every 0 ≤ l ≤ q−1 and 1 ≤ t ≤ A/αl, we can calculate the regenerated symbols
which are related to the help symbols p̃′i,l,t from dl helper nodes. p̃′i,l,t = p̃i,l,t+ei,l,t

is the response from the ith helper node. If p̃i,l,t has been modified by the malicious

node i, we have ei,l,t ∈ GF (q2)\{0}. Otherwise we have ei,l,t = 0. To detect
whether there are errors, we will calculate symbols from two sets of helper nodes
then compare the results. (Without loss of generality, we assume 0 ≤ i ≤ dl.)

Step 1.1: Let p1
′ = [p̃′0,l,t, p̃

′
1,l,t, · · · , p̃

′
dl−1,l,t

]T , where the symbols are collected

from node 0 to node dl − 1, solve the equation V0,dl−1,lx1 = p1
′.

Step 1.2: Let p2
′ = [p̃′1,l,t, p̃

′
2,l,t, · · · , p̃

′
dl,l,t

]T , where the symbols are collected from

node 1 to node dl, solve the equation V1,dl,l
x2 = p2

′.

Step 1.3: Compare x1 with x2. If they are the same, compute ỹz,l,t = µz,lSl,t +
λzµz,lTl,t as described in Algorithm 5.2. Otherwise, errors are detected in the help
symbols. Exit the algorithm and switch to recovery regeneration mode.

Step 2: No error has been detected for the calculating of the regeneration so far. Let Ỹz be
a q × A matrix with the lth row defined as [ỹz,l,1, · · · , ỹz,l,A/αl ], 0 ≤ l ≤ q − 1.

Step 3: Calculate the regenerated symbols of the failed node z: Yz′ = Yz = BzỸz.

Suppose V−11,dl,l
= [η0, η1, · · · , ηdl−1], then we have:

νr,l · ηs =


1, r = s+ 1

0, r 6= s+ 1

, 1 ≤ r ≤ dl, 0 ≤ s ≤ dl − 1. (5.29)

V0,dl−1,l · x̂2 = V0,dl−1,l ·V
−1
1,dl,l

· [e1, e2, · · · , edl ]
T

= V0,dl−1,l · [η0, η1, · · · , ηdl−1] · [e1, e2, · · · , edl ]
T (5.30)

= [x2,0, e1, · · · , edl−1]T .

To calculate x2,0, we first derive the expression of ν0,l. Because ν1,l, ν2,l, · · · , νdl,l are

linearly independent, they can be viewed as a set of bases of the dl dimensional linear space.
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So we have

ν0,l =

r=dl∑
r=1

ζr · νr,l, (5.31)

where ζr 6= 0, r = 1, · · · , dl, because any dl vectors out of ν0,l, ν1,l, · · · , νdl,l are linearly

independent. Then

x2,0 =

r=dl∑
r=1

ζr · νr,l

 [η0, η1, · · · , ηdl−1][e1, e2, · · · , edl ]
T

=

r=dl∑
r=1

ζr · er. (5.32)

If

e0 =

r=dl∑
r=1

ζr · er, (5.33)

then V0,dl−1,l · x̂1 = V0,dl−1,l · x̂2 and x̂1 = x̂2.

When only one element of e0, e1, · · · , edl is nonzero, since ζ1, · · · , ζdl are all nonzero,

equation (5.33) will never hold. In this case, the probability is 0. When there are more than

one nonzero elements, it means there are more than one malicious nodes. If the number of

malicious nodes is less than dl + 1, they will not be able to collude to solve the coefficients

ζr in (5.31). The probability that equation (5.33) holds will be 1/q2.

Theorem 5.2. When the number of malicious nodes in the dl + 1 helper nodes of Algo-

rithm 5.3 is less than dl + 1, the probability for the bogus symbols sent from the malicious

nodes to be detected is at least 1− 1/q2.

Proof. Since V0,dl−1,l and V1,dl,l
are full rank matrices, x1 can be calculated by (For con-

venience, use ei to represent ei,l,t):

x1 = V−10,dl−1,l
·

[
p̃0,l,t + e0, · · · , p̃dl−1,l,t + edl−1

]T
= x + V−10,dl−1,l

· [e0, e1, · · · , edl−1]T

= x + x̂1. (5.34)
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x2 can be calculated the same way:

x2 = x + V−11,dl,l
· [e1, e2, · · · , edl ]

T = x + x̂2. (5.35)

If x̂1 = x̂2, Algorithm 5.3 will fail to detect the errors. So we will focus on the relationship

between x̂1 and x̂2. According to Lemma 1, when the number of malicious nodes in the

dl + 1 helper nodes is less than dl + 1, the probability that x̂1 = x̂2 is at most 1/q2. So the

probability that x1 6= x2, equivalently the detection probability, is at least 1− 1/q2.

5.3.3.2 Recovery Mode

Once the replacement node z′ detects errors using Algorithm 5.3, it will send integer j = q−1

to all the other q2−1 nodes in the network requesting help symbols. Helper node i will send

help symbols similar to Section 5.3.2. z′ can regenerate symbols using Algorithm 5.4.

5.3.4 Reconstruction of the H-MSR Code in the Error-free Network

Here we will discuss the reconstruction of the H-MSR code in the error-free network. The

main idea of the reconstruction algorithms is to reconstruct fl(φ
si)+λiel(φ

si), 0 ≤ l ≤ q−1,

by downloading help symbols from kl = αl + 1 nodes, where kl is used to represent the

reconstruction parameter k for fl(φ
si) + λiel(φ

si) in the H-MSR code reconstruction. We

devise Algorithm 5.5 in the network for the data collector DC to reconstruct the original

file. For convenience, we suppose αq = 0.

First, DC will send requests to the storage nodes for reconstruction: DC sends integer j

to kj − kj+1 helper nodes, to which DC has not sent requests before, for every j from q − 1

to 0 in descending order.

Upon receiving the request integer j, node i will calculate and send symbols as follows:

first node i will calculate Ỹi = B−1i Yi to remove the coefficient matrix Bi from the codeword

matrix. Since the (l+1)th row of Ỹi corresponds to the symbols related to fl(φ
si)+λiel(φ

si),

for 0 ≤ l ≤ j, node i will send out the (l + 1)th row of Ỹi: ỹi,l. Here j indicates that DC
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Algorithm 5.4 [Recovery Mode] z′ Regenerates Symbols of the Failed Node z in Hostile
Network

Step 1: For every q − 1 ≥ l ≥ 0 in descending order and 1 ≤ t ≤ A/αl in ascending order,
we can regenerate the symbols when the errors in the received help symbols p̃′i,l,t
from q2 − 1 helper nodes can be corrected. Without loss of generality, we assume
0 ≤ i ≤ q2 − 2.

Step 1.1: Let p′ = [p̃′0,l,t, p̃
′
1,l,t, · · · , p̃

′
q2−2,l,t

]T . Since V
0,q2−2,l ·x = p′, p′ can be

viewed as an MDS code with parameters (q2 − 1, dl, q
2 − dl).

Step 1.2: Substitute p̃′i,l,t in p′ with the symbol ⊗ representing an erasure if node

i has been detected to be corrupted in the previous loops (previous values of l, t).

Step 1.3: If the number of erasures in p′ is larger than min{q2−dl−1, b(q2−dq−1−
1)/2c}, then the number of errors have exceeded the error correction capability. So
here we will flag the decoding failure and exit the algorithm.

Step 1.4: Since the number of errors is within the error correction capability of
the MDS code, decode p′ to p′cw and solve x.

Step 1.5: If the ith position symbols of p′cw and p′ are different, mark node i as
corrupted.

Step 1.6: Compute ỹz,l,t = µz,l ·Sl,t+λz ·µz,l ·Tl,t as described in Algorithm 5.2.

Step 2: Let Ỹz be a q ×A matrix with the lth row defined as [ỹz,l,1, · · · , ỹz,l,A/αl ], 0 ≤ l ≤
q − 1.

Step 3: Calculate the regenerated symbols of the failed node z: Yz′ = Yz = BzỸz.

is requesting symbols of ỹi,l, 0 ≤ l ≤ j, calculated by [f0(φsi) + λie0(φsi), · · · , fj(φsi) +

λiej(φ
si)]T .

Since kl1 > kl2 for l1 < l2, for efficiency consideration, only kq−1 helper nodes need

to send out symbols of ỹi,l, 0 ≤ l ≤ q − 1, calculated by [f0(φsi) + λie0(φsi), f1(φsi) +

λie1(φsi), · · · , fq−1(φsi) + λieq−1(φsi)]T . Then kj − kj+1 nodes only need to send out

symbols of ỹi,l, 0 ≤ l ≤ j, calculated by [f0(φsi)+λie0(φsi), f1(φsi)+λie1(φsi), · · · , fj(φsi)+

λiej(φ
si)]T for 0 ≤ j ≤ q − 2. In this way, the total number of helper nodes that send out

symbols of ỹi,l calculated by fl(φ
si) + λiel(φ

si) is kq−1 +
∑q−2
j=l (kj − kj+1) = kl.

When DC receives all the requested symbols, it can reconstruct the original file using the
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following algorithm:

Algorithm 5.5 DC Reconstructs the Original File

Step 1: For every 0 ≤ l ≤ q − 1 , divide the response symbol vector ỹi,l from the ith node
into A/αl equal row vectors: [ỹi,l,1, ỹi,l,2, · · · , ỹi,l,A/αl ], 0 ≤ i ≤ kl − 1.

Step 2: For every 0 ≤ l ≤ q− 1 and 1 ≤ t ≤ A/αl, DC reconstructs the matrices related to
the original file:

Step 2.1: Let R = [ỹT0,l,t, ỹ
T
1,l,t, · · · , ỹ

T
kl−1,l,t

]T , we have the equation: V0,kl−1,l ·Sl,t
Tl,t

 = R according to the encoding algorithm.

Step 2.2: DC reconstructs Sl,t, Tl,t using techniques similar to [57].

Step 3: DC reconstructs the original file from all the matrices Sl,t, Tl,t, 0 ≤ l ≤ q − 1 and
1 ≤ t ≤ A/αl.

5.3.5 Reconstruction of the H-MSR Code in the Hostile Network

Similar to the regeneration algorithms, the reconstruction algorithms in error-free network

do not work in hostile network. Even if the data collecter can calculate the symbol matrices

S, T using Algorithm 5.5, it cannot verify whether the result is correct or not. There are two

modes for the original file to be reconstructed in hostile network. One mode is the detection

mode, in which no error has been found in the symbols received from the storage nodes.

Once errors are detected in the detection mode, the recovery mode will be used to correct

the errors and locate the malicious nodes.

5.3.5.1 Detection Mode

In the detection mode, DC will send requests in the way similar to that for the error-free

network in Section 5.3.4. The only difference is that when j = q−1, DC will send requests to

kq−1−kq+1 nodes instead of kq−1−kq nodes. Storage nodes will still use the way similar to
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that for the error-free network in Section 5.3.4 to send symbols. The reconstruction algorithm

is described in Algorithm 5.6 with the detection probability described in Theorem 5.3.

Algorithm 5.6 [Detection mode] DC Reconstructs the Original File in Hostile Network

Step 1: For every 0 ≤ l ≤ q − 1 , we can divide the symbol vector ỹ′i,l into A/αl equal

row vectors: [ỹ′i,l,1, ỹ
′
i,l,2, · · · , ỹ

′
i,l,A/αl

]. ỹ′i,l = ỹi,l + ei,l is the response from

the ith storage node. If ỹi,l has been modified by the malicious node i, we have

ei,l ∈ (GF (q2))A\{0}. To detect whether there are errors, we will reconstruct the
original file from two sets of storage nodes then compare the results. (Without loss
of generality, we assume 0 ≤ i ≤ kl.)

Step 2: For every 0 ≤ l ≤ q− 1 and 1 ≤ t ≤ A/αl, DC can reconstruct the matrices related
to the original file:

Step 2.1: Let R′ = [ỹ′T0,l,t, ỹ
′T
1,l,t, · · · , ỹ

′T
kl,l,t

]T .

Step 2.2: Let R1
′ = [ỹ′T0,l,t, ỹ

′T
1,l,t, · · · , ỹ

′T
αl,l,t

]T , which are the symbols collected

from node 0 to node kl − 1 = αl, then we have V0,αl,l
·

S1
T1

 = R1
′. Solve S1, T1

using the method same to algorithm 5.5.

Step 2.3: Let R2
′ = [ỹ′T0,l,t, · · · , ỹ

′T
αl−1,l,t

, ỹ′Tαl+1,l,t]
T , which are the symbols col-

lected from node 0 to node kl = αl+1 except node αl, and ΨDC2 =


ν0,l

...

ναl−1,l

ναl+1,l

, then

we have ΨDC2 ·

S2
T2

 = R2
′. Solve S2, T2 using the method same to algorithm 5.5.

Step 2.4: Compare [S1, T1] with [S2, T2]. If they are the same, let [Sl,t, Tl,t] =
[S1, T1]. Otherwise, errors are detected in the received symbols. Exit the algorithm
and switch to recovery reconstruction mode.

Step 3: No error has been detected for the calculating of the reconstruction so far. So DC
can reconstruct the original file from all the matrices Sl,t, Tl,t, 0 ≤ l ≤ q − 1 and
1 ≤ t ≤ A/αl.
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Theorem 5.3. When the number of malicious nodes in the kl + 1 nodes of Algorithm 5.6

is less than kl + 1, the probability for the bogus symbols sent from the malicious nodes to be

detected is at least 1− (1/q2)2(αl−2).

Proof. We arrange this proof as follows. We will first study the requirements for S1 =

S2, T1 = T2 in Algorithm 5.6 which will lead to the failure of the Algorithm when there

are bogus symbols. Then we will study the corresponding failure probabilities depending on

different values of λi of the matrix ∆ defined in section 5.3.1.

For convenience we write ei,l,t as ei in the proof. ei ∈ [GF (q2)]αl for 0 ≤ i ≤ αl + 1. We

also write ΨDC = [ΦDC ,∆DC · ΦDC ], where ΦDC =



µ0

µ1

...

µkl−1


and µi represents µi,l which

is the ith row of the encoding matrix Φl defined in section 5.3.1.

Step 1. Derive the requirements For R1
′ = R1 +W1 in Algorithm 5.6, we have:

ΦDC1S1ΦTDC1 + ∆DC1ΦDC1T1ΦTDC1 = R1ΦTDC1 +W1ΦTDC1, (5.36)

where ΦDC1 =



µ0

µ1

...

µαl


, W1 =



e0

e1

...

eαl


. Suppose C1 = ΦDC1S1ΦTDC1, D1 = ΦDC1T1ΦTDC1,

we can write equation (5.36) as:

C1 + ∆DC1D1 = R1ΦTDC1 +W1ΦTDC1 = R̂1 + Ŵ1. (5.37)
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It is easy to see that C1 and D1 are symmetric, so we have
C1,i,j + λi ·D1,i,j = R̂1,i,j + Ŵ1,i,j

C1,i,j + λj ·D1,i,j = R̂1,j,i + Ŵ1,j,i

, (5.38)

where C1,i,j , D1,i,j , R̂1,i,j , Ŵ1,i,j are the elements in the ith row, jth column of C1, D1, R̂1, Ŵ1

respectively. Solve equation (5.38) for all the i, j (i 6= j, 0 ≤ i ≤ αl, 0 ≤ j ≤ αl − 1), we can

get the corresponding C1,i,j , D1,i,j . Because the structure of C1 and D1 are the same, we will

only focus on C1 (corresponding to S1) in the proof. The calculation for D1 (corresponding

to T1) is the same.

ΦDC1S1ΦTDC1 =



µ0

µ1

...

µαl


· S1 · [µT0 , µ

T
1 , · · · , µ

T
αl

] = C1. (5.39)

So the elements of the ith row of C1 (except the element in the diagonal position) can be

written as:

µi · S1 · [µT0 , · · · , µ
T
i−1, µ

T
i+1 · · · , µ

T
αl

] = [C1,i,0, · · · , C1,i,i−1, C1,i,i+1, · · · , C1,i,αl
]. (5.40)
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Let Ω =



µ0

µ1

...

µαl−1


, then Ω is an αl × αl full rank matrix, and we can derive S1 from

Ω · S1 =



[C1,0,1, C1,0,2, · · · , C1,0,αl
][µT1 , µ

T
2 , · · · , µ

T
αl

]−1

[C1,1,0, C1,1,2, · · · , C1,1,αl
][µT0 , µ

T
2 , · · · , µ

T
αl

]−1

· · ·

[C1,αl−1,0, C1,αl−1,1, · · · , C1,αl−1,αl ][µ
T
0 , µ

T
1 , · · · , µ

T
αl

]−1


. (5.41)

For R2
′ = R2 +W2 in Algorithm 5.6, we can get Ω · S2 the same way. If Ω · S1 = Ω · S2,

Algorithm 5.6 will fail to detect the errors. This will happen if all the rows of Ω · S1 and

Ω · S2 are the same. So we will focus on the ith row of Ω · S1 and Ω · S2.

Step 2. Calculate the failure probabilities Depending on the values of λi, we discuss

two cases:

(a) If none of the λi (0 ≤ i ≤ αl) equals to 0, we can solve C1,i,j in equation (5.38):

C1,i,j =
λj · R̂1,i,j − λi · R̂1,j,i

λi · λj
+

ei · µTj
λi

−
ej · µTi
λj

= N1,i,j +Q1,i,j . (5.42)

In equation (5.42), N1,i,j represents the original solution without errors, while Q1,i,j repre-
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sents the impact of the errors. So the ith row of Ω · S1 can be written as:

[C1,i,0, · · · , C1,i,i−1, C1,i,i+1, · · · , C1,i,αl
] · Π−11,i

= [N1,i,0, · · · , N1,i,i−1, N1,i,i+1, · · · , N1,i,αl
] · Π−11,i

+[Q1,i,0, · · · , Q1,i,i−1, Q1,i,i+1, · · · , Q1,i,αl
] · Π−11,i (5.43)

= ξi + δ1,i,

where Π1,i = [µT0 , · · · , µ
T
i−1, µ

T
i+1, · · · , µ

T
αl

]. ξi corresponds to the part independent of the

errors. δ1,i is the error part and can be further expanded as:

δ1,i =

[
ei · µT0
λi

, · · · ,
ei · µTi−1

λi
,
ei · µTi+1

λi
, · · · ,

ei · µTαl
λi

]
· Π−11,i

−

[
e0 · µTi
λ0

, · · · ,
ei−1 · µTi
λi−1

,
ei+1 · µTi
λi+1

, · · · ,
eαl · µ

T
i

λαl

]
· Π−11,i . (5.44)

The first part of equation (5.44) can be reduced as follows:[
ei · µT0
λi

, · · · ,
ei · µTi−1

λi
,
ei · µTi+1

λi
, · · · ,

ei · µTαl
λi

]
· Π−11,i

=
ei
λi
·
[
µT0 , · · · , µ

T
i−1, µ

T
i+1, · · · , µ

T
αl

]
· Π−11,i (5.45)

=
ei
λi
.

So we have:

δ1,i =
ei
λi
−

[
e0 · µTi
λ0

, · · · ,
ei−1 · µTi
λi−1

,
ei+1 · µTi
λi+1

, · · · ,
eαl · µ

T
i

λαl

]
· Π−11,i

=
ei
λi
− ρ1,i. (5.46)

For R2
′ = R2 + W2 in Algorithm 5.6 where W2 =



e0

...

eαl−1

eαl+1


, we can derive C2,i,j , then
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Ω · S2 the same way. The ith row of Ω · S2 can be written as:

ξi + δ2,i = ξi +
ei
λi
− ρ2,i, (5.47)

where ρ2,i =

[
e0·µTi
λ0

, · · · ,
ei−1·µTi
λi−1

,
ei+1·µTi
λi+1

, · · · ,
eαl−1·µ

T
i

λαl−1
,
eαl+1·µTi
λαl+1

]
·Π−12,i , Π2,i = [µT0 , · · · , µ

T
i−1, µ

T
i+1,

· · · , µTαl−1, µ
T
αl+1].

Because Π1,i is a full rank matrix, ρ1,i = ρ2,i is equivalent to ρ1,i · Π1,i = ρ2,i · Π1,i.

Similar to the proof of Lemma 1, suppose Π−12,i =



η0

...

ηαl−1

ηαl+1


, we have ηs ·µTr =


1 r = s

0 r 6= s

. So

ρ1,i · Π1,i =

[
· · · ,

ei−1 · µTi
λi−1

,
ei+1 · µTi
λi+1

, · · · ,
eαl−1 · µ

T
i

λαl−1
,
eαl · µ

T
i

λαl

]
, (5.48)

ρ2,i · Π1,i =

[
· · · ,

ei−1 · µTi
λi−1

,
ei+1 · µTi
λi+1

, · · · ,
eαl−1 · µ

T
i

λαl−1
, x2,αl

]
. (5.49)

Because µT0 , · · · , µ
T
i−1, µ

T
i+1, · · · , µ

T
αl−1

, µTαl+1 are linearly independent, they can be viewed

as a set of bases of the αl dimensional linear space. So we have

µTαl
=

r=αl+1∑
r=0,r 6=i,αl

ζr · µTr . (5.50)

Thus

x2,αl =

[
· · · ,

ei−1 · µTi
λi−1

,
ei+1 · µTi
λi+1

, · · · ,
eαl−1 · µ

T
i

λαl−1
,
eαl+1 · µTi
λαl+1

]
· Π−12,i ·

 r=αl+1∑
r=0,r 6=i,αl

ζr · µTr


=

 r=αl+1∑
r=0,r 6=i,αl

ζr ·
er · µTi
λr

 . (5.51)

If

eαl · µ
T
i

λαl
=

r=αl+1∑
r=0,r 6=i,αl

ζr ·
er · µTi
λr

(0 ≤ i ≤ αl − 1), (5.52)
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ρ1,i and ρ2,i will be equal, so are Ω · S1 and Ω · S2. Therefore, Algorithm 5.6 will fail.

For the error ei (0 ≤ i ≤ αl + 1), the following equation holds:

ei · [µT0 , µ
T
1 , · · · , µ

T
αl−1

] = [êi,0, êi,1, · · · , êi,αl−1] = êi. (5.53)

Because [µT0 , µ
T
1 , · · · , µ

T
αl−1

] is a full rank matrix, there is a one-to-one mapping between ei

and êi. Equation (5.52) can be written as:

êαl,i

λαl
=

r=αl+1∑
r=0,r 6=i,αl

ζr ·
êr,i
λr

(0 ≤ i ≤ αl − 1). (5.54)

When the number of malicious nodes in the kl + 1 nodes is less than kl + 1, the malicious

nodes can collude to satisfy equation (5.54) for at most one particular i. So the probability

that equation (5.54) holds is 1/q2 for at least αl − 1 out of αl i
′s between 0 and αl − 1.

If we consider equation (5.54) for all the i′s simultaneously, the probability will be at most

(1/q2)αl−1. As we have mentioned above, the probability for T1 = T2 will be at most

(1/q2)αl−1. In this case, the detection probability is at least 1− (1/q2)2(αl−1).

(b) If one of the λi (0 ≤ i ≤ αl) equals to 0, we can assume λ0 = 0 without loss of

generality. When i = 0, the solution for equation (5.38) is:

C1,0,j = R̂1,0,j + e0 · µTj = N1,0,j +Q1,0,j . (5.55)

Similar to equations (5.43), (5.44) and (5.45), we have δ1,0 = e0. For R2
′ = R2 + W2, it is

easy to see that δ2,0 = e0. So the first rows of Ω ·S1 and Ω ·S2 are the same no matter what

the error vector e0 is.

When i > 0, j = 0, the solution for equation (5.38) is:

C1,i,0 = R̂1,i,0 + 0 · µT0 + e0 · µTi = N1,i,0 +Q1,i,0, (5.56)

where 0 is a zero row vector. When i > 0, j > 0, the solution has the same expression as

equation (5.42). In this case, for the ith (i > 0) row of Ω ·S1, equation (5.44) can be written
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as:

δ1,i =

[
0, · · · ,

ei · µTi−1
λi

,
ei · µTi+1

λi
, · · · ,

ei · µTαl
λi

]
· Π−11,i

−

[
−e0 · µTi , · · · ,

ei−1 · µTi
λi−1

,
ei+1 · µTi
λi+1

, · · · ,
eαl · µ

T
i

λαl

]
· Π−11,i . (5.57)

The first part of equation (5.57) can be divided into two parts:[
ei · µT0
λi

, · · · ,
ei · µTi−1

λi
,
ei · µTi+1

λi
, · · · ,

ei · µTαl
λi

]
· Π−11,i −

[
ei · µT0
λi

,0, · · · ,0

]
· Π−11,i

=
ei
λi
− ei
λi
· [µT0 ,0, · · · ,0] · Π−11,i . (5.58)

So equation (5.57) can be further written as:

δ1,i =
ei
λi
−

[
ei · µT0
λi

− e0 · µTi , · · · ,
ei−1 · µTi
λi−1

,
ei+1 · µTi
λi+1

, · · · ,
eαl · µ

T
i

λαl

]
· Π−11,i

=
ei
λi
− ρ1,i. (5.59)

By employing the same derivation in case (a), for 1 ≤ i ≤ αl − 1, ρ1,i and ρ2,i will be

equal if

eαl · µ
T
i

λαl
=

r=αl+1∑
r=1,r 6=i,αl

ζr ·
er · µTi
λr

− ζ0 · e0 · µTi + ζ0 ·
ei · µT0
λi

, (5.60)

êαl,i

λαl
=

r=αl+1∑
r=1,r 6=i,αl

ζr ·
êr,i
λr
− ζ0 · ê0,i + ζ0 ·

êi,0
λi
. (5.61)

When the number of malicious nodes in the kl+1 nodes is less than kl+1, for the same reason

as in case (a), the probability that equation (5.61) holds is 1/q2 for at least αl−2 out of αl−1

i′s between 1 and αl − 1. If we consider equation (5.61) for all the i′s simultaneously, the

probability will be at most (1/q2)αl−2. Here the probability for T1 = T2 will be (1/q2)αl−2.

In this case, the detection probability is 1− (1/q2)2(αl−2).

Combining both cases, the detection probability is at least 1− (1/q2)2(αl−2).
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5.3.5.2 Recovery Mode

Once DC detects errors using Algorithm 5.6, it will send integer j = q − 1 to all the q2

nodes in the network requesting symbols. Storage nodes will still use the way similar to that

of the error-free network in Section 5.3.4 to send symbols. The reconstruct procedures are

described in Algorithm 5.7.

Algorithm 5.7 [Recovery Mode] DC Reconstructs the Original File in Hostile Network

Step 1: For every 0 ≤ l ≤ q−1 , we divide the symbol vector ỹ′i,l intoA/αl equal row vectors:

[ỹ′i,l,1, ỹ
′
i,l,2, · · · , ỹ

′
i,l,A/αl

]. (Without loss of generality, we assume 0 ≤ i ≤ q2 − 1.)

Step 2: For every q − 1 ≥ l ≥ 0 in descending order and 1 ≤ t ≤ A/αl in ascending order,
DC can reconstruct the matrices related to the original file when the errors in the
received symbol vectors ỹ′i,l,t from q2 storage nodes can be corrected:

Step 2.1: Let R′ = [ỹ′T0,l,t, ỹ
′T
1,l,t, · · · , ỹ

′T
q2−1,l,t

]T .

Step 2.2: If the number of corrupted nodes detected is larger than min{q2 −
kl, b(q2 − kq−1)/2c}, then the number of errors have exceeded the error correction
capability. We will flag the decoding failure and exit the algorithm.

Step 2.3: Since the number of errors is within the error correction capability of
the H-MSR code, substitute ỹ′i,l,t in R′ with the symbol ⊗ representing an erasure

vector if node i has been detected to be corrupted in the previous loops (previous
values of l, t).

Step 2.4: Solve Sl,t, Tl,t using the method described in section 5.3.6. If symbols
from node i are detected to be erroneous during the calculation, mark node i as
corrupted.

Step 3: DC reconstructs the original file from all the matrices Sl,t, Tl,t, 0 ≤ l ≤ q − 1 and
1 ≤ t ≤ A/αl.

5.3.6 Recover Matrices Sl,t, Tl,t from qˆ2 Storage Nodes

When there are bogus symbols p̃′i,l,t sent by the corrupted nodes for certain l, t, we can

recover the matrices Sl,t, Tl,t as follows:
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For R′ in Algorithm 5.7, we have ΨDC ·


S′

T ′

 = R′, and

ΦDCS
′ΦTDC + ∆DCΦDCT

′ΦTDC = R′ΦTDC , (5.62)

where ΨDC = [ΦDC ,∆DC · ΦDC ], ΦDC =



µ0

µ1

...

µ
q2−1


and µi represents µi,l which is the ith

row of the encoding matrix Φl in the proof of Theorem 5.1.

Let C = ΦDCS
′ΦTDC , D = ΦDCT

′ΦTDC , and R̂′ = R′ΦTDC , then

C + ∆DCD = R̂′. (5.63)

Since C,D are both symmetric, we can solve the non-diagonal elements of them as follows:
Ci,j + λi ·Di,j = R̂′i,j

Ci,j + λj ·Di,j = R̂′j,i

. (5.64)

Because matrices C and D have the same structure, here we only focus on C (corresponding

to S′). It is straightforward to see that if node i is malicious and there are errors in the ith

row of R′, there will be errors in the ith row of R̂′. Furthermore, there will be errors in the

ith row and ith column of C. Define S′ΦTDC = Ŝ′, we have

ΦDC Ŝ
′ = C. (5.65)

Here we can view each column of C as a (q2 − 1, αl, q
2 − αl) MDS code because ΦDC is a

Vandermonde matrix. The length of the code is q2 − 1 since the diagonal elements of C is
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unknown. Suppose node j is uncorrupted. If the number of erasures σ (corresponding to the

previously detected corrupted nodes) and the number of the corrupted nodes τ that have

not been detected satisfy:

σ + 2τ + 1 ≤ q2 − αl, (5.66)

then the jth column of C can be recovered and the error locations (corresponding to the

corrupted nodes) can be pinpointed. The non-diagonal elements of C can be recovered. So

DC can reconstruct Sl,t using the method similar to [57]. For Tl,t, the recovering process is

similar.

5.4 Hermitian Code Based MBR Regenerating Code (H-MBR
Code)

5.4.1 Encoding H-MBR Code

In this section, we will analyze the H-MBR code based on the MBR point with β = 1.

According to equation (2.8), we have d = α.

Let α0, · · · , αq−1 be a strictly decreasing integer sequence satisfying 0 < αi ≤ κ(i), 0 ≤

i ≤ q − 1. The least common multiple of α0, · · · , αq−1 is A. Let k0, · · · , kq−1 be a integer

sequence satisfying 0 < ki ≤ αi, 0 ≤ i ≤ q − 1. Suppose the data contains B = A ·∑q−1
i=0 (ki(2αi − ki + 1)/(2αi)) message symbols from the finite field GF (q2). In practice, if

the size of the actual data is larger than B symbols, we can fragment it into blocks of size

B and process each block individually.
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M0,j (1 ≤ j ≤ 10) M1,j (1 ≤ j ≤ 12) M2,j (1 ≤ j ≤ 15) M3,j (1 ≤ j ≤ 20)

Figure 5.3 An example illustration of matrix M

We arrange the B symbols into matrix M as below:

M =



M0

M1

...

Mq−1


, (5.67)

where

Mi = [Mi,1,Mi,2, · · · ,Mi,A/αi
] (5.68)

and

Mi,j =


Si,j Ti,j

TTi,j 0.

 (5.69)

Si,j , 0 ≤ i ≤ q − 1, 1 ≤ j ≤ A/αi is a symmetric matrix of size ki × ki with the upper-

triangular entries filled by data symbols. Ti,j is a ki × (αi − ki) matrix. Thus Mi,j contains

ki(2αi−ki+1)/2 symbols, Mi contains A ·ki(2αi−ki+1)/(2αi) symbols and M contains B

symbols. Figure 5.3 shows an example of matrix M for q = 4, α0 = 6, α1 = 5, α2 = 4, α3 = 3.
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In figure 5.3, the submatrix Mi,j is represented by the square in the corresponding position

with the size representing the size of the submatrix.

For distributed storage, we encode M using Algorithm 5.8:

Algorithm 5.8 Encoding H-MBR Code

Step 1: First we encode the data matrices M defined above using a Hermitian code Hm
over GF (q2) with parameters κ(j) (0 ≤ j ≤ q−1) and m (m ≥ q2−1). The q3×A
codeword matrix can be written as Y = Hm(M).

Step 2: Then we divide the codeword matrix Y into q2 submatrices Y0, · · · , Yq2−1 of the

size q × A and store one submatrix in each of the q2 storage nodes as shown in
Figure. 5.2.

Then we have the following theorem:

Theorem 5.4. By processing the data symbols using Algorithm 5.8, we can achieve the MBR

point in distributed storage.

Proof. Similar to the proof of Theorem 5.1, we can get the following equation considering

all the columns of Hm(M):

Φi ·Mi,j = Gi,j , (5.70)

where Gi,j = [G(1)i , · · · ,G(αi)i ], 0 ≤ i ≤ q − 1, 1 ≤ j ≤ A/αi. G
(l)
i corresponds to the lth

column of the submatrix Mi,j and each element of Gi = [gi(0), gi(1), · · · , gi(φq
2−2)]T can be

derived from a distinct storage node. Φi is defined in equation (6.2).

Next we will study the optimality of the code in the sense of the MBR point. For

Φi ·Mi,j , 0 ≤ i ≤ q − 1, 1 ≤ j ≤ A/αi, Mi,j is symmetric and satisfies the requirements

for MBR point according to [57] with parameters d = αi, k = ki, α = αi, β = 1, B =

ki(2αi − ki + 1)/2. By encoding M using Hm(M) and distributing Y0, · · · , Yq2−1 into q2

storage nodes, each row of the matrix Φi ·Mi,j , 0 ≤ i ≤ q− 1, 1 ≤ j ≤ A/αi, can be derived

in a corresponding storage node. Because Φi ·Mi,j achieves the MBR point, data related
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to matrices Mi,j , 0 ≤ i ≤ q − 1, 1 ≤ j ≤ A/αi, can be regenerated at the MBR point.

Therefore, Algorithm 5.8 can achieve the MBR point.

5.4.2 Regeneration of the H-MBR Code in the Error-free Network

In this section, we will discuss the regeneration for the H-MBR code in the error-free network.

Let wi = [g0(φ(si)), g1(φ(si)), · · · , gq−1(φ(si))]T , then wi = B−1i ·yi = [g0(φsi), · · · , gq−1(φsi)]T ,

for every column yi of Yi.

The main idea of the regeneration algorithms is similar to that of the H-MSR code:

regenerate gl(φ(si)), 0 ≤ l ≤ q − 1, by downloading help symbols from dl = αl nodes, where

dl is the regeneration parameter d for gl(φ(si)) in the H-MBR code regeneration.

Suppose node z fails, we use Algorithm 5.9 to regenerate the exact H-MBR code symbols

of node z. For convenience, we suppose dq = αq = 0 and define

Wi,j,l =



µi,l

µi+1,l

...

µj,l


, (5.71)

where µt,l, i ≤ t ≤ j, is the tth row of Φl.

Similar to the H-MSR code, replacement node z′ will send requests to helper nodes in

the way same to that in Section 5.3.2. Upon receiving the request integer j, helper node i

will calculate and send the help symbols similar to that of Section 5.3.2.

When the replacement node z′ receives all the requested symbols, it can regenerate the

symbols stored in the failed node z using the following algorithm:

For Algorithm 5.9 we can derive the equivalent storage parameters for each symbol block

of size Bj = Akj(2αj − kj + 1)/(2αj) : d = αj , k = kj , α = A, β = A/αj , 0 ≤ j ≤ q − 1 and
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Algorithm 5.9 z′ Regenerates Symbols of the Failed Node z

Step 1: For every 0 ≤ l ≤ q−1 and 1 ≤ t ≤ A/αl, we can calculate the regenerated symbols
which are related to the help symbols p̃i,l,t from dl helper nodes: (Without loss of
generality, we assume 0 ≤ i ≤ dl − 1.)

Step 1.1: Let p = [p̃0,l,t, p̃1,l,t, · · · , p̃dl−1,l,t]
T , solve the equation: W0,dl−1,l · x =

p.

Step 1.2: Since x = Ml,t · µTz,l and Ml,t is symmetric, we can calculate ỹz,l,t =

xT = µz,l ·Ml,t.

Step 2: Let Ỹz be a q ×A matrix with the lth row defined as [ỹz,l,1, · · · , ỹz,l,A/αl ], 0 ≤ l ≤
q − 1.

Step 3: Calculate the regenerated symbols of the failed node z: Yz′ = Yz = Bz · Ỹz.

equation (2.8) of the MBR point holds for these parameters. Theorem 5.4 guarantees that

Algorithm 5.9 can achieve the MBR point for data regeneration of the H-MBR code.

5.4.3 Regeneration of the H-MBR Code in the Hostile Network

In hostile network, Algorithm 5.9 may be unable to regenerate the failed node due to the

possible bogus symbols received from the responses. In fact, even if the replacement node

z′ can derive the symbol matrix Yz′ using Algorithm 5.9, it cannot verify the correctness of

the result.

Similar to the H-MSR code, there are two modes for the helper nodes to regenerate the

H-MBR code of a failed storage node in hostile network. One mode is the detection mode,

in which no error has been found in the symbols received from the helper nodes. Once errors

are detected, the recovery mode will be used to correct the errors and locate the malicious

nodes.
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5.4.3.1 Detection Mode

In the detection mode, the replacement node z′ will send requests in the way similar to that

of the error-free network in Section 5.4.2. The only difference is that when j = q − 1, z′

sends requests to dq−1− dq + 1 nodes instead of dq−1− dq nodes. Helper nodes will still use

the way similar to that of the error-free network in Section 5.4.2 to send the help symbols.

The regeneration algorithm is described in Algorithm 5.10 with the detection probability

characterized in Theorem 5.5.

Algorithm 5.10 [Detection Mode] z′ Regenerates Symbols of the Failed Node z in Hostile
Network

Step 1: For every 0 ≤ l ≤ q−1 and 1 ≤ t ≤ A/αl, we can calculate the regenerated symbols
which are related to the help symbols p̃′i,l,t from dl helper nodes. p̃′i,l,t = p̃i,l,t+ei,l,t

is the response from the ith helper node. If p̃i,l,t has been modified by the malicious

node i, we have ei,l,t ∈ GF (q2)\{0}. To detect whether there are errors, we will
calculate symbols from two sets of helper nodes then compare the results. (Without
loss of generality, we assume 0 ≤ i ≤ dl.)

Step 1.1: Let p1
′ = [p̃′0,l,t, p̃

′
1,l,t, · · · , p̃

′
dl−1,l,t

]T , where the symbols are collected

from node 0 to node dl − 1, solve the equation W0,dl−1,l · x1 = p1
′.

Step 1.2: Let p2
′ = [p̃′1,l,t, p̃

′
2,l,t, · · · , p̃

′
dl,l,t

]T , where the symbols are collected from

node 1 to node dl, solve the equation W1,dl,l
· x2 = p2

′.

Step 1.3: If x1 = x2, compute ỹz,l,t = µz,l ·Ml,t as described in Algorithm 5.9.
Otherwise, errors are detected in the help symbols. Exit the algorithm and switch
to recovery regeneration mode.

Step 2: No error has been detected for the calculating of the regeneration so far. Let Ỹz be
a q × A matrix with the lth row defined as [ỹz,l,1, · · · , ỹz,l,A/αl ], 0 ≤ l ≤ q − 1.

Step 3: Calculate the regenerated symbols of the failed node z: Yz′ = Yz = Bz · Ỹz.

Theorem 5.5. When the number of malicious nodes in the dl + 1 helper nodes of Algo-

rithm 5.10 is less than dl + 1, the probability for the bogus symbols sent from the malicious

nodes to be detected is at least 1− 1/q2.
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Proof. Similar to the proof of Theorem 5.2, we can write

x1 = x + W−1
0,dl−1,l

· [e0, · · · , edl−1]T = x + x̂1, (5.72)

x2 = x + W−1
1,dl,l

· [e1, · · · , edl ]
T = x + x̂2. (5.73)

Since W0,dl−1,l,W1,dl,l
are full rank matrices like the matrices V0,dl−1,l,V1,dl,l

in the

proof of Lemma 1 and any dl vectors out of µ0,l, µ1,l, · · · , µdl,l are linearly independent, the

rest of this proof is similar to that of Lemma 1. When the number of malicious nodes in the

dl+1 helper nodes is less than dl+1, the probability for x̂1 = x̂2 is at most 1/q2. Therefore,

the detection probability is at least 1− 1/q2.

5.4.3.2 Recovery Mode

Once the replacement node z′ detects errors using Algorithm 5.10, it will send integer j = q−1

to all the other q2 − 1 nodes in the network requesting help symbols. Helper nodes will still

use the way similar to that of the error-free network in Section 5.4.2 to send the help symbols.

z′ can regenerate symbols using Algorithm 5.11.

5.4.4 Reconstruction of the H-MBR code in the Error-free Network

In this section, we will discuss the reconstruction of the H-MBR code in the error-free

network. The main idea of the reconstruction algorithms is similar to that of the H-MSR

code: reconstruct gl(φ(si)), 0 ≤ l ≤ q − 1, by downloading help symbols from kl nodes,

where kl represents the reconstruction parameter k for gl(φ(si)) in the H-MBR code. We

use Algorithm 5.12 in the network for the data collector DC to reconstruct the original file.

For convenience, we suppose kq = 0.

Similar to the H-MSR code described in Section 5.3.4, DC will send requests to storage

nodes. Upon receiving the request integer j, node i will calculate and send symbols. When

DC receives all the requested symbols, it can reconstruct the original file using the following

algorithm:
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Algorithm 5.11 [Recovery Mode] z′ Regenerates Symbols of the Failed Node z in Hostile
Network

Step 1: For every q − 1 ≥ l ≥ 0 in descending order and 1 ≤ t ≤ A/αl in ascending order,
we can regenerate the symbols when the errors in the received help symbols p̃′i,l,t
from q2 − 1 helper nodes can be corrected. Without loss of generality, we assume
0 ≤ i ≤ q2 − 2.

Step 1.1: Let p′ = [p̃′0,l,t, p̃
′
1,l,t, · · · , p̃

′
q2−2,l,t

]T . Since W
0,q2−2,l · x = p′, p′ can

be viewed as an MDS code with parameters (q2 − 1, dl, q
2 − dl).

Step 1.2: Substitute p̃′i,l,t in p′ with the symbol ⊗ representing an erasure if node

i has been detected to be corrupted in the previous loops (previous values of l, t).

Step 1.3: If the number of erasures in p′ is larger than min{q2−dl−1, b(q2−dq−1−
1)/2c}, then the number of errors have exceeded the error correction capability. We
will flag the decoding failure and exit the algorithm.

Step 1.4: Since the number of errors is within the error correction capability of
the MDS code, decode p′ to p′cw and solve x.

Step 1.5: If the ith position symbols of p′cw and p′ are different, mark node i as
corrupted.

Step 1.6: Compute ỹz,l,t = µz,l ·Ml,t as described in Algorithm 5.9.

Step 2: Let Ỹz be a q ×A matrix with the lth row defined as [ỹz,l,1, · · · , ỹz,l,A/αl ], 0 ≤ l ≤
q − 1.

Step 3: Calculate the regenerated symbols of the failed node z: Yz′ = Yz = Bz · Ỹz.

Algorithm 5.12 DC Reconstructs the Original File

Step 1: For every 0 ≤ l ≤ q − 1, divide the symbol vector ỹi,l into A/αl equal row vectors:

[ỹi,l,1, ỹi,l,2, · · · , ỹi,l,A/αl ]. ( ỹi,l is the response from the ith node and we assume

0 ≤ i ≤ kl − 1 without loss of generality.)

Step 2: For every 0 ≤ l ≤ q− 1 and 1 ≤ t ≤ A/αl, DC reconstructs the matrices related to
the original file:

Step 2.1: Let R = [ỹT0,l,t, ỹ
T
1,l,t, · · · , ỹ

T
kl−1,l,t

]T , we have the equation: W0,kl−1,l ·
Ml,t = R according to the encoding algorithm.

Step 2.2: DC reconstructs Ml,t using techniques similar to that of [57].

Step 3: DC reconstructs the original file from all the matrices Ml,t, 0 ≤ l ≤ q − 1 and
1 ≤ t ≤ A/αl.
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5.4.5 Reconstruction of the H-MBR code in the Hostile Network

Similar to the H-MSR code, the reconstruction algorithms for H-MBR code in error-free

network do not work in hostile network. Even if the data collecter can calculate the symbol

matrices M using Algorithm 5.12, it cannot verify whether the result is correct or not. There

are two modes for the original file to be reconstructed in hostile network. One mode is the

detection mode, in which no error has been found in the symbols received from the storage

nodes. Once errors are detected in the detection mode, the recovery mode will be used to

correct the errors and locate the malicious nodes.

5.4.5.1 Detection Mode

In the detection mode, DC will send requests in the way similar to that of the error-free

network in Section 5.4.4. The only difference is that when j = q − 1, DC will send requests

to kq−1 − kq + 1 nodes instead of kq−1 − kq nodes. Storage nodes will send symbols similar

to that of the error-free network in Section 5.4.4. The reconstruction algorithm is described

in Algorithm 5.13 with the detection probability described in Theorem 5.6.

Theorem 5.6. When the number of malicious nodes in the kl + 1 nodes of Algorithm 5.13

is less than kl + 1, the probability for the bogus symbols sent from the malicious nodes to be

detected is at least 1− 1/q2αl .

Proof. For convenience, we write ei,l,t as ei in the proof. ei ∈ [GF (q2)]αl for 0 ≤ i ≤ kl.

In Algorithm 5.13, R1
′ = R1 + Q1 where Q1 =



e0

e1

...

ekl−1


. Let W0,kl−1,l = [ΩDC1,∆DC1],
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Algorithm 5.13 [Detection Mode] DC Reconstructs the Original File in Hostile Network

Step 1: For every 0 ≤ l ≤ q − 1 , we can divide the symbol vector ỹ′i,l into A/αl equal

row vectors: [ỹ′i,l,1, ỹ
′
i,l,2, · · · , ỹ

′
i,l,A/αl

]. ỹ′i,l = ỹi,l + ei,l is the response from

the ith storage node. If ỹi,l has been modified by the malicious node i, we have

ei,l ∈ (GF (q2))A\{0}. To detect whether there are errors, we will reconstruct the
original file from two sets of storage nodes then compare the results. (Without loss
of generality, we assume 0 ≤ i ≤ kl.)

Step 2: For every 0 ≤ l ≤ q− 1 and 1 ≤ t ≤ A/αl, DC can reconstruct the matrices related
to the original file:

Step 2.1: Let R′ = [ỹ′T0,l,t, ỹ
′T
1,l,t, · · · , ỹ

′T
kl,l,t

]T .

Step 2.2: Let R1
′ = [ỹ′T0,l,t, · · · , ỹ

′T
kl−1,l,t

]T , which are the symbols collected from

node 0 to node kl − 1, then we have W0,kl−1,l ·M1 = R1
′. Solve M1 using the

method same to algorithm 5.12.

Step 2.3: Let R2
′ = [ỹ′T1,l,t, · · · , ỹ

′T
kl,l,t

]T , which are the symbols collected from

node 1 to node kl, then we have W1,kl,l
·M2 = R2

′. Solve M2 using the method

same to algorithm 5.12.

Step 2.4: Compare M1 with M2. If they are the same, let Ml,t = M1. Otherwise,
errors are detected in the received symbols. Exit the algorithm and switch to
recovery reconstruction mode.

Step 3: No error has been detected for the calculating of the reconstruction so far. So DC
can reconstruct the original file from all the matrices Ml,t, 0 ≤ l ≤ q − 1 and
1 ≤ t ≤ A/αl.

R1 = [R1,1, R1,2] and Q1 = [Q1,1, Q1,2], where ΩDC1, R1,1, Q1,1 are kl×kl submatrices and

∆DC1, R1,2, Q1,2 are kl × (αl − kl) submatrices.

According to equation (5.69), we have

W0,kl−1,l ·M1 = [ΩDC1S1 + ∆DC1T
T
1 ,ΩDC1T1]

= [R1,1 +Q1,1, R1,2 +Q1,2]. (5.74)
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Since ΩDC1 is a submatrix of a Vandermonde matrix, it is a full rank matrix. So we have

T1 = Ω−1DC1R1,2 + Ω−1DC1Q1,2 = T + T̂1, (5.75)

S1 = Ω−1DC1(R1,1 +Q1,1 −∆DC1T
T
1 )

= Ω−1DC1(R1,1 −∆DC1T
T ) + Ω−1DC1(Q1,1 −∆DC1T̂

T
1 )

= S + Ω−1DC1(Q1,1 −∆DC1T̂
T
1 ) = S + Ŝ1. (5.76)

For R2
′ = R2 + Q2 in Algorithm 5.13, Let R2 = [R2,1, R2,2], Q2 = [Q2,1, Q2,2] and

W1,kl,l
= [ΩDC2,∆DC2], where R2,1, Q2,1, ΩDC2 are kl × kl submatrices and R2,2, Q2,2,

∆DC2 are kl × (αl − kl) submatrices. Similarly, we have

T2 = Ω−1DC2R2,2 + Ω−1DC2Q2,2 = T + T̂2, (5.77)

S2 = S + Ω−1DC2(Q2,1 −∆DC2T̂
T
2 ) = S + Ŝ2. (5.78)

If T̂1 = T̂2 and Ŝ1 = Ŝ2, Algorithm 5.13 will fail to detect the bogus symbols. So we will

focus on T̂1, T̂2 and Ŝ1, Ŝ2.

Suppose Π1,j = [e0, · · · , ekl−1]T ,Π2,j = [e1, · · · , ekl ]
T are the jth, 1 ≤ j ≤ αl − kl,

columns of Q1,2 and Q2,2 respectively, where ei ∈ GF (q2). Since ΩDC1 and ΩDC2 are

Vandermonde matrices and have the same relationship as that between V0,dl−1,l and V1,dl,l
,

similar as the proof of Lemma 1, we can prove that when the number of malicious nodes in

the kl + 1 nodes is less than kl + 1, the probability of Ω−1DC1Π1,j = Ω−1DC2Π2,j is at most

1/q2. Thus the probability for T̂1 = T̂2 is at most 1/q2(αl−kl). Through the same procedure,

we can derive that the probability of Ŝ1 = Ŝ2 is at most 1/q2kl . The probability for both

Ŝ1 = Ŝ2 and T̂1 = T̂2 is at most 1/q2αl . So the detection probability is at least 1−1/q2αl .

5.4.5.2 Recovery Mode

Once DC detects errors using Algorithm 5.13, it will send integer j = q − 1 to all the q2

nodes in the network requesting symbols. Storage node i will use the way similar to that
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of the error-free network in Section 5.4.4 to send symbols. The reconstruct procedures are

described in Algorithm 5.14.

Algorithm 5.14 [Recovery Mode] DC Reconstructs the Original File in Hostile Network

Step 1: For every 0 ≤ l ≤ q− 1 , divide the symbol vector ỹ′i,l into A/αl equal row vectors:

[ỹ′i,l,1, ỹ
′
i,l,2, · · · , ỹ

′
i,l,A/αl

]. (Without loss of generality, we assume 0 ≤ i ≤ q2− 1.)

Step 2: For every q − 1 ≥ l ≥ 0 in descending order and 1 ≤ t ≤ A/αl in ascending order,
DC reconstructs the matrices related to the original file when the errors in the
received symbol vectors ỹ′i,l,t from q2 storage nodes can be corrected:

Step 2.1: Let R′ = [ỹ′T0,l,t, ỹ
′T
1,l,t, · · · , ỹ

′T
q2−1,l,t

]T .

Step 2.2: If the number of corrupted nodes detected is larger than min{q2 −
kl, b(q2 − kq−1)/2c}, then the number of errors have exceeded the error correction
capability. So here we will flag the decoding failure and exit the algorithm.

Step 2.3: Since the number of errors is within the error correction capability of
the H-MBR code, substitute ỹ′i,l,t in R′ with the symbol ⊗ representing an erasure

vector if node i has been detected to be corrupted in the previous loops (previous
values of l, t).

Step 2.4: Solve Ml,t using the method in section 5.4.6. If symbols from node i are
detected to be erroneous during the calculation, mark node i as corrupted.

Step 3: DC reconstructs the original file from all the matrices Ml,t, 0 ≤ l ≤ q − 1 and
1 ≤ t ≤ A/αl.

5.4.6 Recover Matrices Mαl,t
from qˆ2 Storage Nodes

When there are bogus symbols p̃′i,l,t sent by the corrupted nodes for certain l, t, we can

recover the matrices Mαl,t
as follows:

ForR′ in Algorithm 5.14, we have ΦDC ·M ′ = R′, where ΦDC = W
0,q2−1,l = [ΩDC ,∆DC ],

R′ = [R′1, R
′
2]. ΩDC , R′1 are q2×kl submatrices and ∆DC , R′2 are q2×(αl−kl) submatrices.

According to equation (5.69), we have

ΦDC ·M ′ = [ΩDCS
′ + ∆DCT

′T ,ΩDCT
′] = [R′1, R

′
2]. (5.79)
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For R′2 = ΩDCT
′, we can view each column of R′2 as a (q2, kl, q

2 − kl + 1) MDS code

because ΦDC is a Vandermonde matrix. If the number of erasures σ (corresponding to the

previously detected corrupted nodes) and the number of corrupted nodes τ that have not

been detected satisfy:

σ + 2τ ≤ q2 − kl, (5.80)

then all the columns of T ′ can be recovered and the error locations (corresponding to the

corrupted nodes) can be pinpointed. After T ′ has been recovered, we can recover S′ following

the same process because ΩDCS
′ = R′1 −∆DCT

′T . So DC can reconstruct Mαl,t
.

5.5 Performance Analysis

In this section, we analyze the performance of the H-MSR code and compare it with the

performance of the RS-MSR code. We will first analyze their error correction capability then

their complexity.

The comparison results between the H-MBR code and the RS-MBR code are the same

since the error correction capability and the complexity of the H-MSR code and the H-MBR

code are similar while these performance parameters of the RS-MSR code and the RS-MBR

code are similar.

5.5.1 Scalable Error Correction

5.5.1.1 Error correction for data regeneration

The RS-MSR code in [83] can correct up to τ errors by downloading symbols from d + 2τ

nodes. However, the number of errors may vary in the symbols sent by helper nodes. When

there is no error or the number of errors is far less than τ , downloading symbols from extra

nodes will be a waste of bandwidth. When the number of errors is larger than τ , the decoding

process will fail without being detected. In this case, the symbols stored in the replacement
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node will be erroneous. If this erroneous node becomes a helper node later, the errors will

propagate to other nodes.

The H-MSR code can detect the erroneous decodings using Algorithm 5.3. If no error

is detected, regeneration of H-MSR only needs to download symbols from one more node

than the regeneration in error-free network, while the extra cost for the RS-MSR code is 2τ .

If errors are detected in the symbols received from the helper nodes, the H-MSR code can

correct the errors using Algorithm 5.4. Moreover, the algorithm can determine whether the

decoding is successful, while the RS-MSR code is unable to provide such information.

5.5.1.2 Error correction for data reconstruction

The evaluation result is similar to the data regeneration. The RS-MSR code can correct up

to τ errors with support from 2τ additional helper nodes. The H-MSR code is more flexible.

For error detection, it only requires symbols from one additional node using Algorithm 5.6.

The errors can then be corrected using Algorithm 5.7. The algorithm can also determine

whether the decoding is successful.

5.5.2 Error Correction Capability

For data regeneration described in Algorithm 5.4, H-MSR code can be viewed as q MDS codes

with parameters (q2 − 1, dl, q
2 − dl), l = 0, · · · , q − 1. Since αl ≤ κ(l) and κ(l) is strictly

decreasing, we can choose the sequence αl to be strictly decreasing. So dl is also strictly

decreasing. For the q MDS codes, the minimum distance of the (q2 − 1, dq−1, q2 − dq−1)

code is the largest. In Algorithm 5.4, this code is decoded first and it can correct up to

τq−1 =
⌊
(q2 − dq−1 − 1)/2

⌋
errors, where bxc is the floor function of x. Then the code

(q2 − 1, dl, q
2 − dl), l = q − 2, · · · , 0, will be decoded sequentially. The (q2 − 1, dl, q

2 − dl)

code can correct at most τl = τq−1 errors when q2 − d0 − 1 ≥ τq−1. Thus, the total

numbers errors that the H-MSR code can correct is τH−MSR = q · τq−1. While the (q3 −
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q,
∑q−1
l=0 dl, q

3− q−
∑q−1
l=0 dl + 1) RS-MSR code with the same rate can correct τRS−MSR =

b(q3 − q −
∑q−1
l=0 dl)/2c errors. Therefore, we have the following theorem.

Theorem 5.7. For data regeneration, the number of errors that the H-MSR code and the

RS-MSR code can correct satisfy τH−MSR > τRS−MSR when q ≥ 3.

Proof. For τRS−MSR, we have

τRS−MSR =

q3 − q − q−1∑
l=0

dl

 /2

 (5.81)

≤
⌊
(q3 − q − q · dq−1 −

q

2
(q − 1))/2

⌋
=

⌊
q · (q2 − dq−1 − 1)/2− q(q − 1)

4

⌋
≤ q · (q2 − dq−1 − 1)/2− q(q − 1)

4
.

For τH−MSR, we have

τH−MSR = q · b(q2 − dq−1 − 1)/2c. (5.82)

When q = 3, it is easy to verify that τH−MSR > τRS−MSR.

When q > 3, We can rewrite equation (5.82) as

τH−MSR ≥ q · (q2 − dq−1 − 1)/2− q/2. (5.83)

The gap between τH−MSR and τRS−MSR is at least

q(q − 1)

4
− q

2
=
q2 − 3q

4
> 0 , q > 3, (5.84)

so we have τH−MSR > τRS−MSR.

Example 1. Suppose q = 4 and m = 37, the Hermitian curve is defined by y4 + y = x5

over GF (42). From the previous discussion, we have κ(0) = 10, κ(1) = 9, κ(2) = 7, κ(3) = 6.

Choose α0 = 6, α1 = 5, α2 = 4, α3 = 3. So d0 = 12, d1 = 10, d2 = 8, d3 = 6. According to

the analysis above, we have τH−MSR = 4 · τ3 = 4 · b(15 − 6)/2c = 16, which is larger than

τRS−MSR = b(60− 36)/2c = 12.
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Figure 5.4 Comparison of error correction capability between the H-MSR code and the
RS-MSR code

We also show the maximum number of malicious nodes from which the errors can be

corrected by the H-MSR code in Figure. 5.4. Here we set the parameter q of the Hermitian

code from 4 to 16 with a step of 2. In the figure, the performance of the RS-MSR code

with the same code rates as the H-MSR code is also plotted. The comparison result fur-

ther demonstrates that for data regeneration the H-MSR code has better error correction

capability than the RS-MSR code.

For data reconstruction Algorithm 5.7, H-MSR code can be viewed as q MDS codes with

parameters (q2−1, kl−1, q2−kl+1). The decoding for the reconstruction is performed from

the code with the largest minimum distance to the code with the smallest minimum distance

as in the data regeneration case. Similarly, we can conclude that for data reconstruction the

H-MSR code has better error correction capability than the RS-MSR code under the same

code rate.

5.5.3 Complexity Discussion

For the complexity of the H-MSR code, we consider two scenarios.
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5.5.3.1 H-MSR regeneration

For the H-MSR regeneration, compared with RS-MSR code, the H-MSR code will slightly

increase the complexity of the helper nodes. For each helper node, the extra operation is

a matrix multiplication between B−1i and Yi. The complexity is O(q2) = O((n1/3)2) =

O(n2/3). Similar to [87], for a replacement node, from Algorithm 5.2 and Algorithm 5.3,

we can derive that the complexity to regenerate symbols for RS-MSR is O(n2), while the

complexity for H-MSR is only O(n5/3). Likewise, for Algorithm 5.4, the complexity to

recover the H-MSR code is O(n5/3), and O(n2) for RS-MSR code.

5.5.3.2 H-MSR reconstruction

For the reconstruction, compared with RS-MSR code, the additional complexity of the H-

MSR code for each storage node is O(q2), which is O(n2/3). The computational complexity

for DC to reconstruct the data is O(n5/3) for the H-MSR code and O(n2) for the RS-MSR

code.
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CHAPTER 6

DISTRIBUTED STORAGE IN HOSTILE NETWORKS — OPTIMAL
CONSTRUCTION OF REGENERATING CODES THROUGH

RATE-MATCHING APPROACH

Inspired by the nice performance of Hermitian code based regenerating codes, we will step

forward in this chapter to further construct optimal regenerating codes which have similar

layered structure like Hermitian code in distributed storage. Compared to the Hermitian

based code, these codes have simpler structure and are easier to understand and implement.

We will propose two optimal constructions of MSR codes through rate-matching in hostile

networks: 2-layer rate-matched MSR code and m-layer rate-matched MSR code. For the

2-layer code, we can achieve the optimal storage efficiency for given system requirements.

Our comprehensive analysis shows that our code can detect and correct malicious nodes

with higher storage efficiency compared to the RS-MSR code. Then we will propose the m-

layer code by extending the 2-layer code and achieve the optimal error correction efficiency

by matching the code rate of each layer’s MSR code. We will also demonstrate that the

optimized parameter can achieve the maximum storage capacity under the same constraint.

Compared to the RS-MSR code, our code can achieve much higher error correction efficiency.

The optimized m-layer code also has better error correction capability than the H-MSR code.

6.1 System/Adversarial Models and Assumptions

The system/adversarial models and assumptions in this chapter are the same with Chapter 5.

We use the notation CH to refer to either the full rate MSR code or a codeword of the full

rate MSR code. The exact meaning can be discriminated clearly according to the context.
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6.2 Component Codes of Rate-matched MSR Code

In this section, we will introduce two different component codes for rate-matched MSR code

on the MSR point with d = 2k − 2. The code based on the MSR point with d > 2k − 2 can

be derived the same way through truncating operations. In the rate-matched MSR code,

there are two types of MSR codes with different code rates: full rate code and fractional rate

code.

6.2.1 Full Rate Code

6.2.1.1 Encoding

The full rate code is encoded based on the product-matrix code framework in [57]. According

to equation (2.7), we have αH = d/2, βH = 1 for one block of data with the size BH =

(α+1)α. The data will be arranged into two α×α symmetric matrices S1, S2, each of which

will contain BH/2 data. The codeword CH is defined as

CH = [Φ ΛΦ]


S1

S2

 = ΨSH , (6.1)

where

Φ =



1 1 1 . . . 1

1 φ φ2 . . . φα−1

...
...

...
. . .

...

1 φn−1 (φn−1)2 . . . (φn−1)α−1


(6.2)

is a Vandermonde matrix and Λ = diag[λ1, λ2, · · · , λα] such that λi 6= λj for 1 ≤ i, j ≤

α, i 6= j, where λi ∈ GFq for 1 ≤ i ≤ α, φ is a primitive element in GFq, and any d rows of
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Ψ are linear independent. Then each row chi, 0 ≤ i < n, of the codeword matrix CH will

be stored in storage node i, in which the encoding vector νi is the ith row of Ψ.

6.2.1.2 Regeneration

Suppose node z fails, the replacement node z′ will send regeneration requests to the rest of

n − 1 helper nodes. Upon receiving the regeneration request, helper node i will calculate

and send out the help symbol pi = chiµ
T
z , where µz is the zth row of Φ. z′ will perform

Algorithm 6.1 to regenerate the contents of the failed node z. For convenience, we define

Vi,j =

[
νTi , ν

T
i+1 · · · , ν

T
j

]T
, where νt, i ≤ t ≤ j, is the tth row of Ψ and x(j) is the vector

containing the first j symbols of SHµ
T
z .

Algorithm 6.1 z′ Regenerates Symbols of the Failed Node z

Suppose p′i = pi + ei is the response from the ith helper node. If pi has been modified by the
malicious node i, we have ei ∈ GFq\{0}. We can successfully regenerate the symbols in node
z when the errors in the received help symbols pi

′ from n− 1 helper nodes can be corrected.
Without loss of generality, we assume 0 ≤ i ≤ n− 2.

Step 1: Decode p′ to pcw, where p′ = [p′0, p
′
1, · · · , p

′
n−2]T can be viewed as an MDS code

with parameters (n− 1, d, n− d) since V0,n−2 · x(n−1) = p′.

Step 2: Solve V0,n−2 ·x(n−1) = pcw and compute chz = µzS1+λzµzS2 as described in [57].

6.2.1.3 Reconstruction

When DC needs to reconstruct the original file, it will send reconstruction requests to n

storage nodes. Upon receiving the request, node i will send out the symbol vector ci.

Suppose c′i = ci + ei is the response from the ith storage node. If ci has been modified by

the malicious node i, we have ei ∈ (GFq)
α\{0}.

Then DC will reconstruct the file as follows: Let R′ = [ch′0
T
, ch′1

T
, · · · , ch′n−1

T
]T , we
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have

ΨDC


S′1

S′2

 = [ΦDC ΛDCΦDC ]


S′1

S′2

 = V0,n−1


S′1

S′2

 = R′,

ΦDCS
′
1ΦTDC + ∆DCΦDCS

′
2ΦTDC = R′ΦTDC . (6.3)

Let C = ΦDCS
′
1ΦTDC , D = ΦDCS

′
2ΦTDC , and R̂′ = R′ΦTDC , then

C + ∆DCD = R̂′. (6.4)

Since C,D are both symmetric, we can solve the non-diagonal elements of C,D as follows:
Ci,j + λi ·Di,j = R̂′i,j

Ci,j + λj ·Di,j = R̂′j,i.

(6.5)

Because matrices C and D have the same structure, here we only focus on C (corresponding

to S′1). It is straightforward to see that if node i is malicious and there are errors in the ith

row of R′, there will be errors in the ith row of R̂′. Furthermore, there will be errors in the

ith row and ith column of C. Define S′1ΦTDC = Ŝ′1, we have ΦDC Ŝ
′
1 = C. Here we can view

each column of C as an (n− 1, α, n−α) MDS code because ΦDC is a Vandermonde matrix.

The length of the code is n−1 since the diagonal elements of C is unknown. Suppose node j

is a legitimate node, we can decode the MDS code to recover the jth column of C and locate

the malicious nodes. Eventually C can be recovered. So DC can reconstructs S1 using the

method similar to [57]. For S2, the recovering process is similar.
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6.2.2 Fractional Rate Code

6.2.2.1 Encoding

For the fractional rate code, we also have αL = d/2, βL = 1 for one block of data with the

size

BL=


xd(1 + xd)/2, x ∈ (0, 0.5]

α(α+1)/2+(x−0.5)d(1+(x−0.5)d), x ∈(0.5,1]

, (6.6)

where x is the match factor of the rate-matched MSR code. It is easy to see that the fractional

rate code will become the full rate code with x = 1. The data m = [m1,m2, . . . ,mBL
] ∈

GF
BL
q will be processed as follows:

When x ≤ 0.5, the data will be arranged into a symmetric matrix S1 of the size α× α:

S1 =



m1 m2 . . . mxd 0 . . . 0

m2 mxd+1 . . . m2xd−1 0 . . . 0

...
...

. . .
...

...
. . .

...

mxd m2xd−1 . . . mBL/2
0 . . . 0

0 0 . . . 0 0 . . . 0

...
...

. . .
...

...
. . .

...

0 0 . . . 0 0 . . . 0



. (6.7)

The codeword CL is defined as

CL = [Φ ΛΦ]


S1

0

 = ΨSL, (6.8)
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where 0 is the α× α zero matrix and Φ,Λ,Ψ are the same as the full rate code.

When x > 0.5, the first α(α + 1)/2 data will be arranged into an α × α symmetric

matrix S1. The rest of the data mα(α+1)/2+1, . . . ,mBL
will be arranged into another α×α

symmetric matrix S2:

S2 =



mα(α+1)/2+1 . . . mα(α+1)/2+xd 0 . . . 0

mα(α+1)/2+2 . . . mα(α+1)/2+2xd−1 0 . . . 0

...
. . .

...
...

. . .
...

mα(α+1)/2+xd . . . mBL/2
0 . . . 0

0 . . . 0 0 . . . 0

...
. . .

...
...

. . .
...

0 . . . 0 0 . . . 0



. (6.9)

The codeword CL is defined the same as equation (6.1) with the same parameters Φ,Λ and

Ψ.

Then each row cli, 0 ≤ i < n, of the codeword matrix CL will be stored in storage node

i respectively, in which the encoding vector νi is the ith row of Ψ.

6.2.2.2 Regeneration

The regeneration for the fractional rate code is the same as the regeneration for the full rate

code described in Section 6.2.1.2 with only a minor difference. If we define x(j) as the vector

containing the first j symbols of SLµ
T
z , there will be only xd nonzero elements in the vector.

According to V0,n−2 ·x(n−1) = p′, the received symbol vector p′ for the fractional rate code

in Step 1 of Algorithm 6.1 can be viewed as an (n− 1, xd, n− xd) MDS code. Since x < 1,
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we can detect and correct more errors in data regeneration using the fractional rate code

than using the full rate code.

6.2.2.3 Reconstruction

The reconstruction for the fractional rate code is similar to that for the full rate code de-

scribed in Section 6.2.1.3. Let R′ = [cl′0
T
, cl′1

T
, · · · , cl′n−1

T
]T .

When the match factor x > 0.5, reconstruction for the fractional rate code is the same

to that for the full rate code.

When x ≤ 0.5, equation (6.3) can be written as:

ΦDCS
′
1 = R′. (6.10)

So we can view each column of R′ as an (n, xd, n− xd+ 1) MDS code. After decoding R′ to

Rcw, we can recover the data matrix S1 by solving the equation ΦDCS1 = Rcw. Meanwhile,

if the ith rows of R′ and Rcw are different, we can mark node i as corrupted.

6.3 2-Layer Rate-matched MSR Code

In this section, we will show our first optimization of the rate-matched MSR code: 2-layer

rate-matched MSR code. In the code design, we utilize two layers of the MSR code: the

fractional rate code for one layer and the full rate code for the other. The purpose of

the fractional rate code is to correct the erroneous symbols sent by malicious nodes and

locate the corresponding malicious nodes. Then we can treat the errors in the received

symbols as erasures when regenerating with the full rate code. However, the rates of the

two codes must match to achieve an optimal performance. Here we mainly focus on the

rate-matching for data regeneration. We can see in the later analysis that the performance

of data reconstruction can also be improved with this design criterion.
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The main idea of this optimization is: first fixing the error correction capabilities of the

fractional rate code and the full rate code by making their rate matched, then optimizing

the data storage efficiency by adjusting the number of data blocks of different codes.

6.3.1 Rate Matching

From the analysis above, we know that during regeneration the fractional rate code can

correct up to b(n− xd− 1)/2c errors, which are more than b(n− d− 1)/2c errors that the

full rate code can correct. In the 2-layer rate-matched MSR code design, our goal is to match

the fractional rate code with the full rate code. The main task for the fractional rate code

is to detect and correct errors, while the main task for the full rate code is to maintain the

storage efficiency. So if the fractional rate code can locate all the malicious nodes, the full

rate code can simply treat the symbols sent from these malicious nodes as erasures, which

requires the minimum redundancy for the full rate code. The full rate code can correct up

to n− d− 1 erasures. Thus we have the following optimal rate-matching equation:

b(n− xd− 1)/2c = n− d− 1, (6.11)

from which we can derive the match factor x.

6.3.2 Encoding

To encode a file with size BF using the 2-layer rate-matched MSR code, the file will first

be divided into θH blocks of data with the size BH and θL blocks of data with the size BL,

where the parameters should satisfy

BF = θHBH + θLBL. (6.12)

Then the θH blocks of data will be encoded into code matrices CH1, . . . , CHθH
using the

full rate code and the θL blocks of data will be encoded into code matrices CL1, . . . , CLθL

using the fractional rate code. To prevent the malicious nodes from corrupting the fractional
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rate code only, the secure server will randomly concatenate all the matrices together to form

the final n× α(θH + θL) codeword matrix:

CM = [Perm(CH1, . . . , CHθH
, CL1, . . . , CLθL

)], (6.13)

where Perm(·) is the random matrices permutation operation. The secure sever will also

record the order of the permutation for future code regeneration and reconstruction. Then

each row ci = [Perm(ch1,i, . . . , chθH ,i
, cl1,i, . . . , clθL ,i

)], 0 ≤ i ≤ n − 1, of the codeword

matrix CM will be stored in storage node i, where chj,i
is the ith row of CHj , 1 ≤ j ≤ θH ,

and clj,i is the ith row of CLj , 1 ≤ j ≤ θL. The encoding vector νi for storage node i is the

ith row of Ψ in equation (6.1).

6.3.3 Regeneration

Suppose node z fails, the security server will initialize a replacement node z′ with the order

information of the fractional rate code and the full rate code in the 2-layer rate-matched

MSR code. Then the replacement node z′ will send regeneration requests to the rest of n−1

helper nodes. Upon receiving the regeneration request, helper node i will calculate and send

out the help symbol pi = ciµ
T
z . z′ will perform Algorithm 6.2 to regenerate the contents of

the failed node z. After the regeneration is finished, z′ will erase the order information. So

even if z′ was compromised later, the adversary would not get the permutation order of the

fractional rate code and the full rate code.

Algorithm 6.2 z′ Regenerates Symbols of the Failed Node z for the 2-layer Rate-matched
MSR Code

Step 1: According to the order information, regenerate all the symbols related to the θL
data blocks encoded by the fractional rate code, using Algorithm 6.1. If errors are
detected in the symbols sent by node i, it will be marked as a malicious node.

Step 2: Regenerate all the symbols related to the θH data blocks encoded by the full rate
code, using Algorithm 6.1. During the regeneration, all the symbols sent from nodes
marked as malicious nodes will be replaced by erasures

⊗
.
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It is easy to see that Algorithm 6.2 can correct errors and locate malicious node using

the fractional rate code while achieve high storage efficiency using the full rate code.

6.3.4 Parameters Optimization

We have the following design requirements for a given distributed storage system applying

the 2-layer rate-matched MSR code:

• The maximum number of malicious nodes M that the system can detect and locate

using the fractional rate code. We have

b(n− xd− 1)/2c = M. (6.14)

• The probability Pdet that the system can detect all the malicious nodes. The detection

will be successful if each malicious node modifies at least one help symbol corresponding

to the fractional rate code and sends it to the replacement node. Suppose the malicious

nodes modify each help symbol to be sent to the replacement node with probability

P , we have

(1− (1− P )θL)M ≥ Pdet. (6.15)

So there is a trade-off between θL and θH : the number of data blocks encoded by the

fractional rate code and the number of data blocks encoded by the full rate code. If we encode

using too much full rate code, we may not meet the detection probability Pdet requirement.

If too much fractional rate code is used, the redundancy may be too high.

The storage efficiency is defined as the ratio between the actual size of data to be stored

and the total storage space needed by the encoded data:

δS =
θHBH + θLBL
(θH + θL)nα

=
BF

(θH + θL)nα
. (6.16)

Thus we can calculate the optimized parameters x, d, θH , θL by maximizing equation (6.16)

under the constraints defined by equations (6.11), (6.12), (6.14), (6.15).
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d and x can be determined by equation (6.11) and (6.14):

d = n−M − 1, (6.17)

x = (n− 2M − 1)/(n−M − 1). (6.18)

Since BF is constant, to maximize δS is equal to minimize θH + θL. So we can rewrite the

optimization problem as follows:

Minimize θH + θL, subject to (6.12) and (6.15). (6.19)

This is a simple linear programming problem. Here we will show the optimization results

directly:

θL = log(1−P )(1− P
1/M
det ), (6.20)

θH = (BF − θLBL)/BH . (6.21)

We assume that we are storing large files, which means BF > θLBL. So an optimal solution

for the 2-layer rate-matched MSR code can always be found. We have the following theorem:

Theorem 6.1. When the number of blocks of the fractional rate code θL equals to log(1−P )(1−

P
1/M
det ) and the number of blocks of the full rate code θH equals to (BF − θLBL)/BH , the

2-layer rate-matched MSR code can achieve the optimal storage efficiency.

6.3.5 Reconstruction

When DC needs to reconstruct the original file, it will send reconstruction requests to n

storage nodes. Upon receiving the request, node i will send out the symbol vector ci.

Suppose c′i = ci + ei is the response from the ith storage node. If ci has been modified

by the malicious node i, we have ei ∈ (GFq)
α(θL+θH )\{0}. Since DC has the permutation

information of the fractional rate code and the full rate code, similar to the regeneration of

the 2-layer rate-matched MSR code, DC will perform the reconstruction using Algorithm 6.3.
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Algorithm 6.3 DC Reconstructs the Original File for the 2-layer Rate-matched MSR Code

Step 1: According to the order information, reconstruct each of the θL data blocks encoded
by the fractional rate code and locate the malicious nodes.

Step 2: Reconstruct each of the data blocks encoded by the full rate code. During the re-
construction, all the symbols sent from malicious nodes will be replaced by erasures⊗

.

6.3.5.1 Optimized Parameters

In Section 6.3.4, we optimized the parameters for the data regeneration, considering the

trade-off between the successful malicious node detection probability and the storage effi-

ciency. Here we will show that the same parameters can guarantee that the same constraints

be satisfied for the data reconstruction.

• The maximum number of malicious nodes can be detected for the data reconstruc-

tion is no smaller that M : if x > 0.5, the number is b(n− α− 1)/2c. We have

b(n− α− 1)/2c ≥ b(n− xd− 1)/2c = M . If x ≤ 0.5, the number is b(n− xd)/2c. We

have b(n− xd)/2c ≥ b(n− xd− 1)/2c = M

• The successful malicious node detection probability for the data reconstruction is larger

than Pdet: the probability is (1 − (1 − P )αθL)M , so we have (1 − (1 − P )αθL)M >

(1− (1− P )θL)M ≥ Pdet.

Although the rate-matching equation (6.11) does not apply to the data reconstruction,

the reconstruction strategy in Algorithm 6.3 can still benefit from the different rates of the

two codes. When x ≤ 0.5, the fractional rate code can detect and correct b(n− xd)/2c

malicious nodes, which are more than b(n− d/2− 1)/2c malicious nodes the full rate code

can detect. When x > 0.5, the full rate code and the fractional rate code can detect and

correct the same number of malicious nodes: b(n− α− 1)/2c.
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Figure 6.1 The number of fractional/full rate code blocks for different Pdet

From the analysis above we can see that the same optimized parameters, which are ob-

tained for the data regeneration, can maintain the optimized trade-off between the malicious

node detection and storage efficiency for the data reconstruction.

6.3.6 Performance Evaluation

From the analysis above, we know that for a distributed storage system with n storage

nodes out of which at most M nodes are malicious, the 2-layer rate-matched MSR code can

guarantee detection and correction of the malicious nodes during the data regeneration and

reconstruction with the probability at least Pdet.

For a distributed storage system with n = 30, M = 11 and P = 0.2, suppose we have

a file with the size BF = 14000M symbols to be stored in the system. The number of the

fractional rate code blocks θL and the number of the full rate code blocks θH for different

detection probabilities Pdet are shown in Figure. 6.1. From the figure we can see that the

number of fractional rate code blocks will increase when the detection probability becomes

larger. Accordingly, the number of full rate code blocks will decrease.

For the RS-MSR code constructed in [83], the efficiency of the code with the same re-
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generation performance as the 2-layer rate-matched MSR code is defined as

δ′S =
α′(α′ + 1)

α′n
=
α′ + 1

n
=
xd/2 + 1

n
. (6.22)

In Figure. 6.2 we will show the efficiency ratios η = δS/δ
′
S between the 2-layer rate-matched

MSR code and the RS-MSR code under different detection probabilities Pdet. From the

figure we can see that the 2-layer rate-matched MSR code has higher efficiency than the

RS-MSR code. When the successful malicious nodes detection probability is 0.999999, the

efficiency of the 2-layer rate-matched MSR code is about 70% higher.

6.4 m-Layer Rate-matched MSR Code

In this section, we will show our second optimization of the rate-matched MSR code: m-layer

rate-matched MSR code. In the code design, we extend the design concept of the 2-layer

rate-matched MSR code. Instead of encoding the data using two MSR codes with different

match factors, we utilize m layers of the full rate MSR codes with different parameter d,

written as di for layer Li, 1 ≤ i ≤ m, which satisfy

di ≤ dj , ∀1 ≤ i ≤ j ≤ m. (6.23)
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The data will be divided into m parts and each part will be encoded by a distinct full rate

MSR code. According to the analysis above, the code with a lower code rate has better error

correction capability.

The codewords will be decoded layer by layer in the order from layer L1 to layer Lm.

That is, the codewords encoded by the full rate MSR code with a lower d will be decoded

prior to those encoded by the full rate MSR code with a higher d. If errors were found by the

full rate MSR code with a lower d, the corresponding nodes would be marked as malicious.

The symbols sent from these nodes would be treated as erasures in the subsequent decoding

of the full rate MSR codes with higher d’s. The purpose of this arrangement is to try to

correct as many as erroneous symbols sent by malicious nodes and locate the corresponding

malicious nodes using the full rate MSR code with a lower rate. However, the rates of the

m full rate MSR codes must match to achieve an optimal performance. Here we mainly

focus on the rate-matching for data regeneration. We can see in the later analysis that the

performance of data reconstruction can also be improved with this design criterion.

The main idea of this optimization is to optimize the overall error correction capability

by matching the code rates of different full rate MSR codes.

6.4.1 Rate Matching and Parameters Optimization

According to Section 6.2.1.2, the full rate MSR code CHi for layer Li can be viewed as an

(n− 1, di, n− di) MDS code for 1 ≤ i ≤ m. During the optimization, we set the summation

of the d’s of all the layers to a constant d:

m∑
i=1

di = d. (6.24)

Here we will show the optimization through an illustrative example first. Then we will

present the general result.
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6.4.1.1 Optimization for m = 3

There are three layers of full rate MSR codes for m = 3: CH1, CH2 and CH3.

The first layer code CH1 can correct t1 errors:

t1 = b(n− d1 − 1)/2c = (n− d1 − 1− ε1)/2, (6.25)

where ε1 = 0 or 1 depending on whether (n− d1 − 1)/2 is even or odd.

By regarding the symbols from the t1 nodes where errors are found by CH1 as erasures,

the second layer code CH2 can correct t2 errors:

t2 = b(n− d2 − 1− t1)/2c+ t1

= (n− d2 − 1− t1 − ε2)/2 + t1

= (2(n− d2) + n− d1 − 2ε2 − ε1 − 3)/4,

(6.26)

where ε2 = 0 or 1, with the restriction that n− d2 − 1 ≥ t1, which can be written as:

−d1 + 2d2 ≤ n+ ε1 − 1. (6.27)

The third layer code CH3 also treat the symbols from the t2 nodes as erasures. CH3 can

correct t3 errors:

t3 = b(n− d3 − 1− t2)/2c+ t2

= (n− d3 − 1− t2 − ε2)/2 + t2 (6.28)

= (4(n− d3) + 2(n− d2) + n− d1−4ε3−2ε2−ε1−7)/8,

where ε3 = 0 or 1, with the restriction that n− d3 − 1 ≥ t2, which can be written as:

−d1 − 2d2 + 4d3 ≤ n+ ε1 + 2ε2 − 1. (6.29)

According to the analysis above, the d’s of the three layers satisfy:

d1 − d2 ≤ 0, (6.30)

d2 − d3 ≤ 0. (6.31)
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And we can rewrite equation (6.24) as:

d1 + d2 + d3 ≤ d, (6.32)

−d1 − d2 − d3 ≤ −d. (6.33)

To maximize the error correction capability of the m-layer rate-matched MSR code for

m = 3, we have to maximize t3, the number of errors that the third layer code CH3 can

correct, since t3 has included all the malicious nodes from which errors are found by the

codes of first two layers. With all the constraints listed above, the optimization problem can

written as:

Maximize t3 in (6.28),

subject to (6.27), (6.29), (6.30), (6.31), (6.32), (6.33).

(6.34)

Now we have changed this optimization problem into a typical linear programming prob-

lem. After verifying this linear programming problem has a feasible solution, we solve it

using the SIMPLEX algorithm [112]. When d1 = d2 = d3 = Round(d/3) = d̃, the m-layer

rate-matched MSR code can correct errors from at most

t̃3 = (7n− 7d̃− 4ε3 − 2ε2 − ε1 − 7)/8

≥ (7n− 7d̃− 14)/8 (worst case) (6.35)

malicious nodes, where Round(·) is the rounding operation.

6.4.1.2 Evaluation of the Optimization for m = 3

Similar to the storage efficiency δS defined in Section 6.3, here we can define the error

correction efficiency δC of the m-layer rate-matched MSR code as the ratio between the

maximum number of malicious nodes that can be found and the total number of storage

nodes in the network:

δC = (7n− 7d̃− 14)/(8n). (6.36)
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Figure 6.3 Comparison of the error correction capability between m-layer rate-matched
MSR code for m = 3 and RS-MSR code

The RS-MSR code with the same code rate can be viewed as an (n− 1, d̃, n− d̃) MDS code

which can correct errors from at most (n− d̃−1)/2 malicious nodes (best case). So the error

correction efficiency δ′C is

δ′C = (n− d̃− 1)/(2n). (6.37)

The comparison of the error correction capability between m-layer rate-matched MSR code

for m = 3 and RS-MSR code is shown in Figure. 6.3. In this comparison, we set the number

of storage nodes in the network n = 30. From the figure we can see that the m-layer

rate-matched MSR code for m = 3 improves the error correction efficiency more than 50%.

6.4.1.3 General Optimization Result

For the general m-layer rate-matched MSR code, the optimization process is similar.

The first layer code CH1 can correct t1 errors as in equation (6.25). By regarding the

symbols from the ti−1 nodes where errors are found by CHi−1 as erasures, the ith layer code
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can correct ti errors for 2 ≤ i ≤ m:

ti = b(n− di − 1− ti−1)/2c+ ti−1

= (n− di − 1− ti−1 − εi)/2 + ti−1

= (
∑i
j=1 2j−1(n− dj)−

∑i
j=1 2j−1εj − 2i + 1)/2i,

(6.38)

where εi = 0 or 1, with the restriction that n− di − 1 ≥ ti−1, which can be written as:

−
i−1∑
j=1

2j−1dj + 2i−1di ≤ n+
i−1∑
j=1

2j−1εj − 1. (6.39)

Similarly, the parameter d of the ith layer for 2 ≤ i ≤ m must satisfy

di−1 − di ≤ 0. (6.40)

And equation (6.24) can be written as:

m∑
j=1

dj ≤ d, (6.41)

−
m∑
j=1

dj ≤ −d. (6.42)

We can maximize the error correction capability of the m-layer rate-matched MSR code

by maximizing tm. With all the constrains listed above, the optimization problem can be

written as:

Maximize ti for i = m in (6.38),

subject to (6.39) and (6.40) for 2 ≤ i ≤ m, (6.41), (6.42).

(6.43)

After verifying that this linear programming problem has a feasible solution, we can use

the SIMPLEX algorithm to solve it. The optimization result can be summarized as follows:

Theorem 6.2. For the m-layer rate-matched MSR code, when

di = Round(d/m) = d̃ for 1 ≤ i ≤ m, (6.44)
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it can correct errors from at most

t̃m = ((2m − 1)(n− d̃)−
m∑
j=1

2j−1εj − 2m + 1)/2m

≥ ((2m−1)(n−d̃)−2m+1+2)/2m (worst case). (6.45)

malicious nodes.

The error correction efficiency for the m-layer rate-matched MSR code is

δC = ((2m − 1)(n− d̃)− 2m+1 + 2)/(2mn). (6.46)

This is a monotonically increasing function for m, so we have:

Corollary 1. The error correction efficiency of the m-layer rate-matched MSR code in-

creases with m, which is the number of layers.

Remark 6. During the optimization, we set the code rate of the rate-matched MSR code to a

constant value and maximize the error correction capability. To optimizing the rate-matched

MSR code, we can also set the error correction capability ti for i = m in (6.38) to a constant

value

tm = t̄ (6.47)

and maximize the code rate. The problem can be written as:

Maximize
∑m
j=1 dj

subject to (6.39) and (6.40) for 2 ≤ i ≤ m, (6.47).

(6.48)

The optimization result is the same as that of (6.43): when all the d′is for 1 ≤ i ≤ m are the

same, the code rate is maximized. di, 1 ≤ i ≤ m, satisfies the following equation:

di ≥ n− 2mt̄+ 2m+1 − 2

2m − 1
(worst case). (6.49)
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Figure 6.4 Comparison of error correction capability between the m-layer rate matched
MSR code and the H-MSR code

6.4.1.4 Evaluation of the Optimization

Although at the beginning of this section we propose to decode the code with a lower rate

first in the m-layer rate-matched MSR code, equation (6.44) shows that we can get the

optimized error correction capability when all the rates of the codes in the m-layer code are

equal. However, this result is not in conflict with our assumption in equation (6.23).

Comparison with the Hermitian code based MSR code in [88] The Hermitian

code based MSR code (H-MSR code) in [88] has better error correction capability than

the RS-MSR code. However, because the structure of the underlying Hermitian code is

predetermined, the error correction capability might not be optimal. In figure 6.4, the

maximum number of malicious nodes from which the errors can be corrected by the H-MSR

code is shown. Here we set the parameter q of the Hermitian code [87] from 4 to 16 with a

step of 2. In the figure, we also plot the performance of the m-layer rate-matched MSR code

with the same code rates as the H-MSR code. The comparison result demonstrates that

the rate-matched MSR code has better error correction capability than the H-MSR code.

Moreover, the rate-matched code is easier to understand and has more flexibility than the

H-MSR code.
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Figure 6.5 The optimal error correction efficiency of the m-layer rate-matched MSR code
under different m for 2 ≤ m ≤ 16

Relationship between the no. of layers and error correction efficiency Since we

have seen the advantage of the rate-matched MSR code over the RS-MSR code in Sec-

tion 6.4.1.2, here we will mainly discuss how the number of layers can affect the error

correction efficiency. The error correction efficiency of the m-layer rate-matched MSR code

is shown is Figure. 6.5, where we set n = 30 and d = 50. We also plot the error correction

efficiency δ′C of the RS-MSR code with same code rates for comparison. From the figure

we can see that when n and d are fixed, the optimal error correction efficiency will increase

with the number of layers m as in Corollary 1.

Optimized storage capacity Moreover, the optimization condition in equation (6.44)

also leads to maximum storage capacity besides the optimal error correction capability. We

have the following theorem:

Theorem 6.3. The m-layer rate-matched MSR code can achieve the maximum storage ca-

pacity if the parameter d’s of all the layers are the same, under the constraint in equa-

tion (6.24).

Proof. The code of the ith layer can store one block of data with the size Bi = αi(αi + 1) =

(di/2)(di/2+1). So the m-layer code can store data with the size B =
∑m
i=1(di/2)(di/2+1).
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Our goal here is to maximize B under the constraint in equation (6.24).

We can use Lagrange multipliers to find the point of maximum B. Let

ΛL(d1, . . . , dm, λ) =
m∑
i=1

(di/2)(di/2 + 1) + λ(
m∑
i=1

di − d). (6.50)

We can find the maximum value of B by setting the partial derivatives of this equation to

zero:

∂ΛL
∂di

=
di + 1

2
− λ = 0, ∀1 ≤ i ≤ m. (6.51)

Here we can see that when all the parameter d’s of all the layers are the same, we can get

the maximum storage capacity B. This maximization condition coincides with the optimiza-

tion condition for achieving the goal of this section: optimizing the overall error correction

capability of the rate-matched MSR code.

6.4.2 Practical Consideration of the Optimization

So far, we implicitly presume that there is only one data block of the size Bi = αi(αi + 1)

for each layer i. In practical distributed storage, it is the parameter di that is fixed instead

of d, the summation of di. However, as long as we use m layers of MSR codes with the same

parameter d = d̃, we will still get the optimal solution for d = md̃. In fact, the m-layer

rate-matched MSR code here becomes a single full rate MSR code with parameter d = d̃ and

m data blocks. And based on the dependent decoding idea we describe at the beginning of

Section 6.4, we can achieve the optimal performance.

So when the file size BF is larger than one data block size B̃ of the single full rate MSR

code with parameter d = d̃, we will divide the file into dBF /B̃e data blocks and encode

them separately. If we decode these data blocks dependently, we can get the optimal error

correction efficiency.
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Figure 6.6 The optimal error correction efficiency for 2 ≤ m ≤ 16

6.4.2.1 Evaluation of the Optimal Error Correction Efficiency

In the practical case, d̃ in equation (6.46) is fixed. So here we will study the relationship be-

tween the number of dependently decoding data blocks m and the error correction efficiency

δC , which is shown in Figure. 6.6. We set n = 30 and d̃ = 5, 10. From the figure we can

see that although δC will become higher with the increasing of dependently decoding data

blocks m, the efficiency improvement will be negligible for m ≥ 8. Actually when m = 7 the

efficiency has already become 99% of the upper bound of δC .

On the other hand, there exist parallel algorithms for fast MDS code decoding [113]. We

can decode blocks of MDS codewords parallel in a pipeline fashion to accelerate the overall

decoding speed. The more blocks of codewords we decode parallel, the faster we will finish

the whole decoding process. For large files that could be divided into a large amount of data

blocks (θ blocks), we can get a trade-off between the optimal error correction efficiency and

the decoding speed by setting the number of dependently decoding data blocks m and the

number of parallel decoding data blocks ρ under the constraint θ = mρ.

6.4.3 Encoding

From the analysis above we know that to encode a file with size BF using the optimal m-layer

rate-matched MSR code is to encode the file using a full rate MSR code with predetermined
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parameter d = 2α = d̃. First the file will be divided into θ blocks of data with size B̃, where

θ = dBF /B̃e . Then the θ blocks of data will be encoded into code matrices CH1, . . . , CHθ

and form the final n × αθ codeword matrix: CM = [CH1, . . . , CHθ]. Each row ci =

[ch1,i, . . . , chθ,i], 0 ≤ i ≤ n− 1, of the codeword matrix CM will be stored in storage node

i, where chj,i
is the ith row of CHj , 1 ≤ j ≤ θ. The encoding vector νi for storage node i is

the ith row of Ψ in equation (6.1).

6.4.4 Regeneration

Suppose node z fails, the replacement node z′ will send regeneration requests to the rest of

n − 1 helper nodes. Upon receiving the regeneration request, helper node i will calculate

and send out the help symbol pi = ciµ
T
z .

As we discuss above, combining both dependent decoding and parallel decoding can

achieve the trade-off between optimal error correction efficiency and decoding speed. Al-

though all θ blocks of data are encoded with the same MSR code, z′ will place the received

help symbols into a 2-dimension lattice with size m × ρ as shown in Figure. 6.7. In each
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grid of the lattice there are n − 1 help symbols corresponding to one data block, received

from n − 1 helper nodes. We can view each row of the lattice as related to a layer of an

m-layer rate-matched MSR code with ρ blocks of data, which will be decoded parallel. We

also view each column of the lattice as related to m layers of an m-layer rate-matched MSR

code with one block of data each layer, which will be decoded dependently. z′ will perform

Algorithm 6.4 to regenerate the contents of the failed node z.

Algorithm 6.4 z′ Regenerates Symbols of the Failed Node z for the m-layer Rate-matched
MSR Code
Arrange the received help symbols according to Figure. 6.7. Repeat the following steps from
Layer 1 to Layer m:

Step 1: For a certain grid, if errors are detected in the symbols sent by node i in previous
layers of the same column, replace the symbol sent from node i by an erasure

⊗
.

Step 2: Parallel regenerate all the symbols related to ρ data blocks using the algorithm
similar to Algorithm 6.1 with only one difference: parallel decode all the ρ MDS
codes in Step 1 of Algorithm 6.1.

6.4.5 Reconstruction

When DC needs to reconstruct the original file, it will send reconstruction requests to n

storage nodes. Upon receiving the request, node i will send out the symbol vector ci.

Suppose c′i = ci + ei is the response from the ith storage node. If ci has been modified

by the malicious node i, we have ei ∈ (GFq)
αθ\{0}. The strategy of combining dependent

decoding and parallel decoding for reconstruction is similar to that for regeneration. DC will

place the received symbols into a 2-dimension lattice with size m × ρ. The only difference

is that in a grid of the lattice there are n symbol vectors chj
′
,0
, . . . , chj

′
,n−1 corresponding

to data block j, received from n storage nodes. DC will perform the reconstruction using

Algorithm 6.5.
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Algorithm 6.5 DC Reconstructs the Original File for the m-layer Rate-matched MSR Code

Arrange the received symbols similar to Figure. 6.7. Here we place received codeword matrix
CH ′j into grid j instead of help symbols received from n-1 help nodes. Repeat the following
steps from Layer 1 to Layer m:

Step 1: For a certain grid, if errors are detected in the symbols sent by node i in previous
layers of the same column, replace symbols sent from node i by erasures

⊗
.

Step 2: Parallel reconstruct all the symbols of the ρ data blocks using the algorithm similar
to Section 6.2.1.3 with only one difference: parallel decode all the MDS codes in
Section 6.2.1.3.

6.4.5.1 Optimized Parameters

From Section 6.4.1 we know that for regeneration of an optimal m-layer rate-matched MSR

code, the parameter d’s of all the layers are the same, which implies the parameter α’s of

all layers are also the same. Since the optimization of regeneration is derived based on the

decoding of (n−1, d, n−d) MDS codes and in reconstruction we have to decode (n−1, α, n−α)

MDS codes, if the parameter α’s of all the layers are the same, we can achieve the same

optimization results for reconstruction.
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CHAPTER 7

CONCLUSIONS

In this dissertation, we study the secure problems in network coding and distributed storage.

We propose and analysis schemes for combating pollution attacks in network coding and

combating malicious attacks in distributed storage.

For combating pollution attacks in fixed network coding, we analyze the relationship be-

tween the error control coding and the network coding in unicast case and prove that the two

codes are essentially correlated. Furthermore, we extend this correlation to multicast case.

This research provides a methodology to design efficient network coding scheme based on

the communication channel and error control coding schemes to combat the communication

errors and node compromising attacks.

At the same time, we analyze the relationship between the cascaded error control codes

and the network code in unicast case and prove that the two codes are essentially correlated.

Then we extend this correlation to multicast case. This research provides a new methodology

that can combat the communication errors and node compromising attacks by designing

efficient network coding scheme based on cascaded error control codes and fully utilizing the

inner structure of network codes.

For combating pollution attacks in random network coding, our purpose is to guarantee

a minimum throughput even for heavily polluted network environments. We first intro-

duced an error detection and error correction (EDEC) scheme. By utilizing the information

available in the corrupted packets, the network throughput can be maintained with only a

slight increase of the computational overhead when moderate pollution attacks present. To

deal with network environment with heavy pollution, we introduced LEDEC scheme that

enables channel information be exploited and belief propagation algorithm (BPA) be used

for the packet symbol recovery. This scheme can guarantee the throughput under the heavy
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pollution. We formulated the throughput of the LEDEC scheme through both theoretical

analysis and comprehensive evaluation. Our extensive simulation results derived in ns-2

platform show that the theoretical results are achievable in practical environments.

For combating malicious attacks in distributed storage, we develop a Hermitian code

based minimum storage regeneration (H-MSR) code and a Hermitian code based minimum

bandwidth regeneration (H-MBR) code for distributed storage. Due to the structure of

Hermitian code, our proposed codes can significantly improve the performance of the regen-

erating code under malicious attacks. In particular, these codes can deal with errors beyond

the maximum distance separable (MDS) code. Our theoretical analyses demonstrate that

the H-MSR/H-MBR codes have lower complexity than the Reed-Solomon based minimum

storage regeneration (RS-MSR) code and the Reed-Solomon based minimum bandwidth re-

generation (RS-MBR) code in both regeneration and reconstruction.

We also develop two rate-matched minimum storage regeneration (MSR) codes for mali-

cious nodes detection and correction in hostile networks: 2-layer rate-matched MSR code and

m-layer rate-matched MSR code. We propose the encoding, regeneration and reconstruction

algorithms for both codes. For the 2-layer rate-matched code, we optimize the parameters

for the data regeneration, considering the trade-off between the malicious nodes detection

probability and the storage efficiency. Theoretical analysis shows that the code can success-

fully detect and correct malicious nodes using the optimized parameters. Our analysis also

shows that the code has higher storage efficiency compared to the RS-MSR code (70% higher

for the detection probability 0.999999). Then we extend the 2-layer code to m-layer code

and optimize the overall error correction efficiency by matching the code rate of each layer’s

MSR code. Theoretical analysis shows that the optimized parameter could also achieve the

maximum storage capacity under the same constraint. Furthermore, analysis shows that

compared to the RS-MSR code, our code can improve the error correction efficiency more

than 50%.
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