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ABSTRACT

PROPERTIES AND FUNCTIONS OF THREE BACTERIAL KINASES
PART I: A HEXOKINASE SPECIFIC FOR D-MANNOSE AND

D-FRUCTOSE FROM LEUCONOSTOC MESENTEROIDES

PART II: 1-PHOSPHOFRUCTOKINASE AND 6-PHOSPHOFRUCTO-
KINASE FROM AEROBACTER AEROGENES
By
Virginia L., Sapico

Part I describes a hexokinase (adenosine 5'-tri-
phosphate:hexose 6-phosphotransferase) specific for D-
mannose and D-fructose. The enzyme was purified to
apparent homogenelity from extracts of Leuconostoc

mesenteroides. D-Mannose and D-fructose were phosphory-

lated at equal rates, whereas D-glucose and 29 other
sugars and sugar derivatives tested were not phosphory-
lated and did not inhibit the enzyme. The apparent Kp
value for either hexose or adenosine 5!'-triphosphate
(ATP) varied with pH, but was independent of the concen-
tration of the other. D-lMannose was a competitive
inhibitor of D-fructose. Product inhibition occurred
with adenosine 5'-diphosphate (ADP) (competitive with
ATP) but not with D-fructose 6-phosphate. The pH-activ.
ity curves were different for the two hexoses, with the
D-mannokinase to D~fructokinase ratios being about 1,0

at pH 6.9, 0.5 at pH 8.5, and 0.3 at pH 8.9. The enzyme
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had a molecular weight estimated at 47,000. The products
of the phosphorylation of D-mannose and D-fructose were
identified as D-mannose 6-phosphate and D-fructose 6-
phosphate, respectively. The basis for the unusual
specificity of the enzyme can be rationalized from an
inspection of molecular models of the preferred conforma-
tions of a-D-mannopyranose and B-D-fructofuranose.
Although one of the models consists of a six-membered
ring and the other a five-membered ring, the positions
of equivalent atoms on the two models are superimposable,
Such topological similarity is not mimicked by D-glucose
or any of the other sugars tested as possible substrates,

Part II describes the functions, properties, and
control mechanisms of l-phosphofructokinase and 6-phos-

phofructokinase from Aerobacter aerogenes. Analysis of

mutants lacking 6-phosphofructokinase and fructose
1,6-diphosphatase indicated that D-fructose metabolism
in this organism is primarily through D-fructose l-phos
phate rather than D-fructose 6-phosphate,
6-Phosphofructokinase was purified six-fold from
extracts of A. aerogenes PRL-R3. 1-Phosphofructokinase
was purified 315-fold from extracts of a 6-phosphofructo.
kinaseless mutant. Comparative studies on the two enzymes
indicated that they are governed by different control
mechanisms, 6-Phosphofructokinase exhibited a sigmoidal
dependence of rate on D-fructose-6-P concentration,

whereas l-phosphofructokinase exhibited hyperbolic
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dependence of rate on D-fructose-1-P concentration. ATP
inhibited both enzymes under conditions of Mg++ to ATP
ratios below 2:1. Inhibition of 6-phosphofructokinase
by ATP was relieved by Mg*t, D-fructose-6-P, ADP, and
various other nucleoside dilphosphates. 1In contrast,
only Mgttt was found to relieve inhibition of l-phospho-
fructokinase activity by ATP. Both enzymes showed a
sigmoidal dependence of rate on Mg++ concentration.
Increased levels of D-fructose-6-P shifted the 6-phos-
phofructokinase curve from sigmoidal to hyperbolic,
whereas D-fructose-1-P had no effect on a similar plot
for l-phosphofructokinase, Other nucleoside triphos-
phates were used as phosphoryl donors by both enzymes,
and inhibited activity under conditions of Mgtt to
nucleotide ratios below 2:1, In contrast with the
result with ATP, the inhibition of 6-phosphofructokinase
by other nucleoside triphosphates could not be relieved
by D-fructose-6-P, Citrate, D-fructose 1,6-diphosphate,
and D-fructose-6-P inhibited the l-phosphofructokinase
reaction competitively with D-fructose-1-P, suggesting
possible 1n vivo control of activity. The data indicated
that whereas 6-phosphofructokinase exhibits allosteric
properties and a regulatory pattern typical of 6-phos-
phofructokinases from a variety of organisms, l-phospho-
fructokinase behaves more llke a non-allosteric kinase,
The molecular weight of 6-phosphofructokinase was esti-
mated as 100,000, and that of l-phosphofructokinase as
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75,000, The apparent Ky of l-phosphofructokinase for
either substrate did not vary with the concentration of
the other. This finding is consistent with a sequential

mechanism of substrate binding to the enzyme.
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PART I

A HEXOKINASE SPECIFIC FOR D-MANNOSE AND D~-FRUCTOSE
FROM LEUCONOSTOC MESENTERQIDES

INTRODUCTION

Heterofermentative lactic acid bacteria of the

genera Leuconostoc and Lactobacillus ferment hexoses

through a hexose monophosphate (phosphoketolase) path-
way (1, 2)., Although a constitutive hexokinase (ATP:
hexose phosphotransferase) has been implicated in initi-
ating the pathway (3, 4), other investigators have
reported D-glucokinase activity in extracts to be weak
or undetectable (5, 6). Preliminary investigations in
this laboratory of possible alternative phosphorylating
mechanlisms involving phosphoryl donors other than ATP
revealed instead high levels of kinase activity for
D-glucose, D-mannose, and D-fructose in fresh extracts of

Leuconostoc mesenteroides., Storage of the extracts at

0-2°C for 24 hours, however, invariably caused a dis-
appearance of D-glucokinase activity without affecting
the kinase activity for D-mannose or D-fructose. This
observation substantiated previous indications (6)
that more than one enzyme was involved in the phos-

phorylation of the three hexoses, and suggested that
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previous fallures to detect D-glucokinase actlivity were
due to the lability of the enzyme rather than to 1ts
absence from the organism. Cifferi, Blakley, and Simpson
(6) have pointed out that it was unknown whether the
apparent phosphorylation of D-mannose and D-fructose in
L. mesenteroides was mediated by a single kinase, by two
specific kinases, or by a kinase specific for elther
D-mannose or D-fructose in conjunction with an 1isomerase
which interconverted the two hexoses. Because D-mannose
lsomerase (7, 8) and specific kinases which phosphorylate
either D-mannose (9-11) or D-fructose (9-12) at carbon
atom 6 have been found in a variety of organisms, the
latter two possibilities seemed likely. However, evi-
dence presented in this part of the thesls indicates
that the phosphorylation of D-mannose and D-fructose in

L. mesenteroldes 1s effected by a single enzyme with a

unique speciflicity, and that an isomerase which inter-
converts the two hexoses 1s not involved. These conclu-
sions are based on an investigation of the properties of
the mannofructokinase (ATP:hexose 6-phosphotransferase
specific for D-mannose and D-fructose) after its purifi-
cation to apparent homogenelity.

The findings described in this part of the thesis
have been published (13), The common identity of the
D-mannokinase and D-fructoklinase activities and the
instabllity of the D-glucokinase activity of L. mesen-

teroldes have recently been confirmed by DeMoss (14).






MATERTALS AND METHODS

Source and Confirmation of Identity
of L. Nesenteroldes

The strain of L. mesenteroides (designated LM)

used in this investigation was obtained from Dr. W. A,
Wood. Records denoting the original source of this
strain were not available. Its identity was confirmed
by the following observatioﬁs: colonies on sucrose agar
plates were large and mucoid, indicating the synthesis
and deposition of dextran around the cells; growth in
glucose broth was accompanied by gas production; and
cells viewed by phase contrast microscopy appeared as
chains of spheres or short rods.

Growth of Cells and Preparation
of Extracts

The organlism was grown and maintalned in IBS
medium (15) as modified by Costilow, Etchells, and
Anderson (16). The medium contalned per liter of broth:
10 g of trypticase, 5 g of yeast extract, 6 g of KHZPOM'
2 g of ammonium citrate, 1 g of monosorbitan oleate com-
plex (trade name, Tween 80; purchased from E. H. Sargent
Co.), 20.5 g of anhydrous sodium acetate, 0.6 g of Mgsou’
0.1 g of MnSOu, 0.03 g of FeS0y, and 20 g of D-glucose
(autoclaved separately). The cells were grown Without
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agitation in 20-1liter carboys at 30°C. The inoculum was
1 1liter of a 24-nhr culture in the same medium. The cells
were harvested with a Sharples centrifuge approximately
30 hr after lnoculation and were washed once with dis-
tilled water. The yield was about 2 g (wet welght) of
cells per liter,

Extracts were prepared from washed cell suspen-
sions in distilled water by treatment for 12 to 15 minutes
in a Raytheon 250-watt, 10-kc sonlc oscillator circulated
with lce water. The supernatant obtalned after centrifu-
gation of the broken cell suspension at 16,300 X g was

used as the crude extract.
Chemicals

Horseradish peroxidase (Grade C; A403/A275 >1.5)
and twice-recrystallized rabbit muscle lactic dehydrogen-
ase (containing pyruvic kinase) were from Worthington
Blochemical Corp., Freehold, N. J. Glucose-6-P isomerase
(A grade, Boehringer) had <0.01% of contaminating activ-
ities of 6-phosphogluconate dehydrogenase, phosphogluco-
mutase, 6-phosphofructokinase, and glucose reductase,
Glucose~6-P dehydrogenase (Boehringer) contained the fol-
lowing nominal impurities: glucose reductase, <0.05%;
hexokinase, <0.2%; and 6-phosphogluconate dehydrogenase,
<0.01%. Crystalline yeast hexokinase (substantially free
of ATPase, adenylate kinase, glucose-6-P dehydrogenase,

and 6f-phosphogluconate dehydrogenase) was from Sigma







Chemical Co., St. Louis, Mo.
D-Mannose-6-P isomerase was purified from D-glu-

cose-grown Aerobacter aerogenes PRL-R3 (17). An extract

was prepared by treatment of washed cells in 0.05 M
sodium phosphate buffer (pH 7.0) for 5 to 7 min in a
sonic oscillator, followed by centrifugation of the
resulting broken cell suspension. Solid (NH4)2804 was

added to the crude extract to a final concentration of

0.1 M, and nucleic acids were precipitated by the slow
addition of 20% by volume of a 2% aqueous solution of
protamine sulfate. Solid (NH,),S0, was added to 50%
saturation to the supernatant from the protamine sul-

fate step. The precipitate was dissolved in 3 ml of

0.05 M sodium phosphate buffer (pH 7.0) and the solution ‘
obtained was passed through a Sephadex G-100 column (40 |
X 2.9 cm) equilibrated with 0.05 M sodium phosphate buf-
fer (pH 7.0) and eluted with the same buffer. Fractions

of 4 ml1 each were collected. Fraction 22 was 10-fold

purified over the extract and was free (< 0.1% of D-
mannose-6-P isomerase) from 6-phosphogluconate dehydro-
genase, glucose-6-P isomerase, and glucose-6-P dehydro-
genase,

D-Fructose was from Pfanstiehl Lab., Waukegan,
I11., D-fructose-6-P from Schwarz Bloresearch, D-fructose-
1-P and PEP from Calbiochem, and D-mannose-1-P from Sigma,

L-Mannose, L-glucose, L-ribulose, D-allose, D-altrose,
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D- and L-galactose, and D- and L-Xylulose were obtained
as described by Kamel, Allison, and Anderson (17).
L-Fructose was the preparation described by Mayo and
Anderson (18). D-Mannose (c.p. grade) was recrystal-
1lized twice (19) to reduce the contaminating D-glucose
to 0.07%, as determined with a stereospecific D-gluco-
kinase (20). D-Mannose-6-P free from D-fructose-6-P and
D-glucose-6-P was prepared enzymically in a reaction
mixture containing 3 mmoles of ATP, 3 mmoles of MgCly,
3 mmoles of twice-recrystallized D-mannose, and crystal-
line yeast hexokinase. The pH of the mixture was main-
tained at pH 7.5 by titration with 4,1 N NH)0H with the
use of a Sargent recording pH stat. The D-mannose-6-P
formed was isolated as described for L-ribulose-5-P (21),

Pyridine nucleotides and nucleoside di- and tri-
phosphates were from P-L Blochemicals, Milwaukee, Wis,
The nominal impurities of the latter were as follows:
ITP, <4% IDP; UTP <4% UDP; GTP <4% GDP; ATP, <4% ADP;
CTP, <4% CDP; ADP, <4% each of ATP and AMP; IDP, <4% ITP;
and TTP, <4% TDP.

All other chemicals were from standard chemical

sources,

Mannofructokinase Assays

Two types of assay were employed: a non-specific

pyruvate kinase-lactate dehydrogenase-linked assay and a
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specific glucose-6-P dehydrogenase-linked assay. Both
were done in microcuvettes with a l-cm light path and
were monitored at 340 nm with a Gilford multiple sample
absorbance-recording spectrophotometer thermostated at
25°C. The units of the coupling enzymes used in the
assays refer to the number of umoles of product formed
per minute at pH 6.9 and 25°C. The pyruvate kinase-
lactate dehydrogenase-linked assay contained in a volume
of 0.15 ml: 8 umoles of glycylglycine buffer (pH 6.9),
0.5 umole of ATP, 1.0 umole of NMgCly, 0.4 umole of PEP,
0.05 umole of NADH, 0.26 unit of lactate dehydrogenase,
0.03 unit of pyruvate kinase, 1.0 umole of hexose sub-
strate, and limiting amounts of mannofructokinase, Con-
trols to correct for NADH oxidase and ATPase activities
contained all components of the reaction mixture except
the hexose substrate, This procedure was used for rou=-
tine assays during purification of the enzyme and for
determination of K; values, pH optimum, sugar specificity,
and inhibition by D-fructose-6-P.

The glucose-6-P dehydrogenase-linked assay con-
tained in a volume of 0.15 ml: 8 umoles of glycylglycine
buffer (pH 6.9), 0.5 umole of ATP, 1.0 umole of MgCl,,
0.1 pmole of NADP, 0.08 unit of glucose-6-P dehydrogen-
ase, 0,31 unit of glucose-6-P isomerase, 1.0 uméle of
D-fructose or 1.0 umole of D-mannose plus 0.005 unit of

mannose~6-P isomerase, and limiting amounts of mannofruc-
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tokinase. Thlis assay was used for determining nucleo=
tide specificity, for testing inhibition by compounds
other than D-fructose-6-P, for determining the K; for
ADP, and for identifying the product,

Identical rates were obtained with botb assays.
The rates were linear with time for 12 to 15 min and
were directly proportional to the amount of mannofruc-
tokinase present., A unit was defined as the amount of
enzyme that catalyzed the phosphorylation of 1 umole of

D-mennose or D-fructose per minute at pH 6.9 and 25°cC,

Specific actlivity was defined as the number of units

per milligram of protein,

Other Enzyme Assays

Peroxidase was determined by measuring 460 nm
absorbance increase of a reaction mixture consisting
of 0.15 ml of 0,003% Hp0, in 0.01 M sodium phosphate
buffer (pH 6.0), 2 ul of 1,0% o-dianisidine in methanol,
and 1 ul of peroxidase solution of an appropriate dilu-
tion,

Several enzyme activities were measured by adap-
tations of the glucose-6~P dehydrogenase-linked assay
for mannofructokinase., The assay for 6-phosphogluconate
dehydrogenase contained 1.0 umole of 6-phosphogluconate
in place of hexose and ATP. Assays for phosphofructo-
mutase and phosphomannomutase contained 1,0 umole of

D-fructose-1~P or D-mannose~1-P, respectively, in place







9
of D-fructose plus ATP or D-mannose plus ATP. The assay
for adenylate kinase contained ADP in place of ATP.
6-Phosphofructokinase was measured in the pyruvate
kinase-lactate dehydrogenase-linked assay with D-fructose-

6-P as the substrate.

Protein Measurements

Protein was estimated spectrophotometrically at 280
and 260 nm with the aid of a nomograph based on the data

of Warburg and Christian (22).

Disc Gel Electrophoresis

This was performed in polyacrylamide gels at pH
8.6 according to directions supplied by Canalco (Rockville,
Md.), The lower gel contained 7.5% acrylamide, one-half
the standard amount of N,N,N',N!'-tetramethylethylenediamine,
and no KaFe(CN)é. Ferricyanide was omitted because it
inactivated mannofructokinase, When assays were to be
made on the electrophoresed protein, the lower gel was

sliced lengthwise prior to staining.

Sucrose Density Gradient Centrifugation

This employed a 3-ml linear gradient of 5 to 20%
sucrose in 0.2 M (NH)),50, (pH 7.0). The gradient was
carefully layered with a mixture of 25 pl (50 ug of pro-
tein) of the concentrated Sephadex G-75 fractlon and 20

Ml (10 pug of protein) of peroxidase. The centrifugation
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was run for 14 hr at 39,000 rpm in a Spinco model L cen-
trifuge. At the end of the run, the bottom of the tube

was punctured and 5-drop fractions were collected.

Cellulose Acetate Electrophoresis

The cellulose acetate paper strips (2.5 x 12 cm,
trade name: Sepraphore III) were from the Gelman Instru-
ment Co. The barbital-acetate buffer contained 5 g of
sodium barbital and 2.3 g of anhydrous sodium acetate
per liter of solution. The pH of the buffer was adjusted
with HC1 to pH 6.0, 7.4, or 8.6, Seven ul (40 ug of pro-
tein) of the kinase preparation were applied on each
paper strip. The runs were conducted at LOC for 2 hours
with a current of 1 ma per strip. Protein bands were
developed by dipping the strips in 0.2% nigrosine (bac-
teriological stain, Allied Chemical) solution for 1 min,
and immersing in 5% trichloroacetic acid. The proteins
from the unstained strips corresponding to the protein

bands were eluted with 0.2 M (NHy)S0.







RESULTS

Phosphorylation of Hexoses With ATP

by L., m3senteroides Cell Extracts

As shown in Table I, fresh extracts of L. mesen-
teroides exhibited kinase activity on D-glucose, D-fruc-
tose, and D-mannose at nearly equal rates, Storage of
the crude extracts for 24 hr at 0-2°C, however, resulted
In a complete loss of the D-glucokinase activity but had
no effect on the kinase activity for either D-mannose or
D-fructose. The D-glucokinase activity could not be pro-
tected from inactivation by 4 mM reduced glutathione or
2-mercaptoethanol.

Sonic osclllation of cell suspensions for varying
time periods (5 to 20 minutes) or freezing of the cells
.for 48 nhr prior to preparation of the extracts had no
slgnificant effect on the phosphorylating capacity for

any of the three hexoses,

Requirements for D-Mannose and D-Fructose

Phosph at
for 24 Hours at 0-2°C

Table II shows an agreement of results obtaineg

from the pyruvate kinase-lactate dehydrogenase-linked
and the glucose-6-P dehydrogenase-linked assays for

kinase activity. The specificity for the corresponding

11
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TABLE II

Requirements for D-mannose and D-fructose phosphorylation
in cell extracts after 24-hr storage at 0-2°C

Activity on Activity on

D-mannose D-fructose
units*/mg units*/mg
Complete pyruvate kinase-
lactate dehydrogenase~linked
assay mixture 0.36 0.45
minus ATP 0,006 0.006
minus hexose 0.01 0,01
minus PEP 0.006 0,008
Complete glucose=6-P
dehydrogenase-linked assay
nixture 0.36 0.45
minus hexose 0 0
minus mannose-6-P isomerase,
glucose-6-P isomerase, and
glucose-6~P dehydrogenase 0 0

minus mannose-6-P isomerase 0 0,45

*Units: micromoles of substrate phosphorylated per minute
at 25°C and pH 6.9.
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hexose-6-P of the coupling enzymes in the glucose-6-P
dehydrogenase-linked assay suggested that the principal
products of D-mannose and D-fructose phosphorylation
were D-mannose-6-P and D-fructose-6-P, respectively.,

The lack of NADP reduction in the absence of
mannose-6-P isomerase in the glucose-6~P dehydrogenase-
linked assay for mannokinase indicated the absence of
both mannose isomerase and mannose-6-P isomerase in the

crude extracts under the assay conditions employed.

Purification of Mannofructokinase

Unless otherwise stated, all operations were per=
formed at 0-4°C, A summary of the purification 1is given
in Table III. Disc electrophoretic patterns of fractlons

from the latter stages of purification are shown in Fig, 1.

IInCl, Fractionation

HnClZ (1 M) was added with stirring to the crude
extract (13 mg protein per ml) to give a final concentra-
tion of 0,05 M. The resulting precipitate was removed by

centrifugation and discarded.

First Ammonium Sulfate Fractionation

Solid ammonium sulfate was added slowly with stir-

ring to the above fraction., The protein precipitating

between 40 and 70% saturation was collected by centrifu-

gation and dissolved in water. This solution contained
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Figure 1:
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Disc gel electrophoretic patterns of
fractions obtained from the latter stages
of purification. A, calcium phosphate
gel supernatant; B, DEAE-cellulose Frac-
tions 36-56; C, Sephadex G-75 Fractions
47 to 49; D, enzyme obtained by eluting
the region corresponding to the darker
band in C. The direction of migration

was down.,

Figure 1
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considerable salt because of the occluded ammonium sul-

fate in the precipitated protein.

Heat Treatment

The above fraction was held at 50°C for 3 minutes
in an 80°C water bath and cooled rapidly on ice. The

precipitate was removed by centrifugation and discarded.
Second Ammonium Sulfate Fractionation

Three volumes of saturated ammonium sulfate solu-
tion (pH 7) were added with stirring to two volumes of
the above fraction. The preclpltate was centrifuged down

and dissolved in 20 ml of water.

Calcium Phosphate Gel Treatment

Calcium phosphate gel (Sigma, 11% solids) was
added to the above fraction at a ratio of 0.04 ml of gel
rer ml of enzyme solution. The gel was centrifuged down
and discarded., The supernatant was passed through a
Sephadex G=25 column equilibrated with 0.05 M sodium
phosphate buffer (pE 7.0). Fractions (5 ml each) were
eluted with the same buffer, and those that had the high-

est mannofructokinase activity were combined,

DEAE-~Cellulose Chromatography

The Sephadex fractlion was passed through a column

(1.5 x 23 cm) of DEAE-cellulose (Sigma, exchange capacity
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= 0.9 meq per g) equilibrated with 0.05 M sodium phos-

phate buffer (pH 7.0). Fractions (3 ml) were eluted
with 225 ml1 of the same buffer containing ammonium sul-
fate in a linear gradient from 0 to 0.4 M. Fractions

36 to 56, which had the highest specific activity, were
combined, As shown in Table III, an apparent signifi-
cant loss 1In specific activity resulted from this step.
Disc gel electrophoresis (Fig. 1B), however, showed that
contaminating proteins had been removed., Moreover, the

DEAE step increased the Ag,:Aycq Tratio from 1.1 to 1.6.

Sephadex Chromatography

The above fractlion was concentrated by precipitat-
ing with solid ammonlum sulfate and dissolving the
centrifuged precipitate in 3.5 ml of water. This solu-
tion was then passed through a column (2.7 x 38 cm) of
Sephadex G-100 equilibrated with 0.2 M ammonium sulfate
(pH 7.0). Fractions (1.5 ml) were eluted with neutral
0.2 M ammonium sulfate (Fig. 2). Substitution of the
ammonium sulfate as eluent with either water or 0.05 M
glycylglycine buffer (pH 7.0) led to a considerable loss
in enzyme activity, indicating that the enzyme requires
a relatively high lonic strength for maximum stability.
It was not established whether ammonium or sulfate ions
were actually required. Fractions 46 to 55 (50-fold
purified, 5% recovery) were combined, concentrated by

ammonium sulfate precipitation, and passed through a









Figure 2:
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Top graph, chromatography of DEAE-

cellulose Fractions 36 to 56 on Sephadex

G-100; bottom graph, chromatography of

Sephadex G-100 Fractions 46 to 55 on

n the

Sephadex G-75. Details are glven i

text.
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Sephadex G-50 column equilibrated with 0.2 M ammonium
sulfate (pH 7.0). No further increase in specific
activity was attained. The peak fractions were combined,
concentrated, and passed through a Sephadex G=-75 column,
Again, there was no increase in specific activity (Fig.
2), Fractions 47 to 49 were combined and concentrated
by ammonium sulfate precipitation. Disc gel electro-
phoresis at this stage showed that the enzyme contained
one minor protein impurity (Fig. 1C).

The kinase activities on D-mannose and D-fructose
were consistently present at a ratio of approximately

1:1 throughout the purification described above.

Further Attempts to Separate the Two Kinase Activities

Disc Gel Electrophoresis

A sample (0.1 ml) of the Sephadex G-75 fraction
(2 mg protein per ml) was examined for homogeneity by
disc gel electrophoresis using premixed gel solutions
from Canalco, The portions of the unstained gel corres-
ponding to the protein bands of the stained half were
eluted with 0.2 M ammonium sulfate (pH 7.0) and assayed.
No mannofructokinase activity was detected in any of the
eluted solutions. Tests on the effect of each gel com-
ponent on the enzyme showed that K3Fe(CN)6 inactivated
the enzyme, Lower gel A was therefore prepared without

KBFe(CN)6 and, to prevent a too rapid polymerization of
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the acrylamide, the volume of TEMED was reduced to half
of the standard amount. The enzyme remained active in
the gel minus K3Fe(CN)6 and the number and position of
the bands in the gel remained identical to those obtained
from the premixed gel solutions. The section correspond-
ing to the darker band (Fig. 1C) exhibited activity on
D-mannose and D-fructose in a 1:1 ratio at pH 6.9.

Homogeneity was attained by eluting the mannofruc-
tokinase band (about 680 ug of protein) with 0,2 M ammon-
ium sulfate (pH 7.0), and using the solution obtained for
a second disc electrophoresis run. The single band from

the second run (Fig. 1D) also exhibited equal activities

on D-mannose and D-fructose at pH 6.9. The specific
activity of the band could not be ascertained because the
amount of eluted protein was too small for an acourate

determination.

Cellulose Acetate Electrophoresis

No sharp resolution of proteins was obtained in
any of the runs made at pH 8.6, 7.4, and 6.0. However,
at pH 8.6, mannofructokinase activity was eluted from
only a thin portion (about 5 mm) of the protein band.
The kinase activities on D-mannose and D-fructose were
approximately equal in all the slices that had manno-

fructokinase activity.
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Sucrose Density Gradient Centrifugation

Fig. 3 shows the sedimentation pattern of manno-
fructokinase and horseradish peroxidase on a sucrose
density gradient. Each fraction which had D-mannokinase

activity had an equal D-fructokinase activity at pH 6.9.

Thermal Inactivation at 60°C

Table IV shows the rates of thermal inactivation
of the two kinase activities at 60°C. The rate of inac-
tivation of D-mannokinase activity paralleled that of D=

fructokinase activity at pH 6.9, 8.5, and 8.9.

Properties of Mannofructokinase

Stability

The enzyme preparation obtained after concentrat-
ing the peak fractions from the Sephadex G-75 step was
stable for over 6 months when stored at 0-2°C in the
presence of 0.2 M (NHQ)ZSOQ. The ratios of activity at

pH 6.9, 8.5, and 8.9 remained constant throughout storage,

Phosphoryl Acceptor Specificity

Of 32 sugars and sugar derivatives tested at a
concentration of 70 mdM, only D-mannose and D-fructose
were phosphorylated. With 0,016 unit of purified manno-

fructokinase in the pyruvate kinase-lactate dehydrogenase-









Figure 3:
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Sedimentation pattern of mannofructo-
kinase and peroxidase standard (molecu-
lar weight = 40,000) in a sucrose density
gradient. The kinase fractions had equal
activities on D-mannose and D-fructose.

Details are given in the text.
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linked assay, phosphorylation of the following compounds
could not be detected (<3% of the rate on D-fructose):
D- and L-glucose, 2-deoxXy-D-mannose, L-mannose, L-fruc-
tose, D-altrose, D-allose, D- and L-galactose, L-sorbose,
D-lyxose, D- and L-xylose, D- and L-arabinose, D-ribose,
D~ and L-ribulose, D- and L-xylulose, L-rhamnose, D-glu-
conate, D=glucuronate, D-galacturonate, D-glucitol,
D-mannitol, D- and L-arabitol, ribitol, and xylitol. By
using a larger amount of the kinase in this assay, it
was determined that D-glucose was not phosphorylated even

at a level of 0.04% of the rate with D-fructose. With

the glucose-6-P dehydrogenase-linked assay none of the

above compounds (70 mM) inhibited the phosphorylation of
0.56 mM D-fructose, indicating that possible phosphory-
lation was considerably less than the 3% maximum estab-

lished with the other assay.

Phosphoryl Donor Specificity

The relative rates of phosphorylation of D-fruc-
tose in the presence of various nucleotides (3.3 mM) are

given in Table V,

Effect of pH

Kinase activity as a function of pH is shown in
Fig. 4, 1In different experiments, D-fructokinase activ-
ity at pH 6.9 varied from 90 to 100% of D-mannokinase

activity for the same enzyme preparation. The activity
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TABLE V

Phosphoryl donor specificity
of mannofructokinase

The nucleotides were tested at a concentration of
3.3 mM. The glucose-6-P dehydrogenase-linked assay for
D-fructokinase activity was used.

Nucleotide Percent relative activity
ATP 100
ITP 75
TTP 62
GTP 9
UTP 9
CTP <L
IDP <lh

ADP <y










Figure U:
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pH optima of mannofructokinase. Buf-
fers (0.053 M) used were: cacodylate,
pH 6.0 to 6.53 glycylglycine, pH 6.9
to 8.0; and glycine, PE 8.5 to 8.9.
The pyruvate kinase-lactate gehydrogen-
ase-linked assay Was used for both

pH range shown e
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hexoses throughout the

Activity on D-fructose throw
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on D-mannose dropped considerably around pH 8, while that
on D=fructose increased slightly and reached a peak
around pH 8 to 8.5. The rate of phosphorylation of D=
mannose was about 54% of that of D-fructose at pH 8.5
and about 32% at pH 8.9. The enzyme was saturated with
hexose and ATP at all pH values. Identical curves were
obtained for D-fructokinase activity from pH 6.9 to 8.9
with the pyruvate kinase-lactate dehydrogenase-linked
and the glucose-6-P dehydrogenase-linked assays. Adeny-
late kinase and 6-phosphofructokinase activities could
not be detected at pH values of 6.9, 7.5, and 8.5 in
either the kinase fraction or the coupling enzymes., No
oxidation of NADH or reduction of NAD could be detected
with D=fructose, D-mannose, D-mannose-6-P, or D-fructose-
6-P as substrates in the pyruvate kinase-lactate dehydro-
genase-linked assay mixture minus ATP at the same three
pH values, Likewlse, no oxidation of NADPH or reduction
of NADP could be detected with these substrates in the
glucose-6-P dehydrogenase-linked assay mixture minus ATP
at any pH.‘ This indicates that the observed pH-activity
profiles were an expression of the kinase activitlies and
that the differences on D-mannose and D-fructose were not
the result of contamination with other enzymes that might
contribute to oxidation or reduction of pyridine nucleo-
tides.,

The D-mannokinase to D-fructokinase activity ratios

at pH 6.9, 8.5, and 8.9 remalned constant at various stages
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of purification, including the fraction that was homogen=-
eous on disc electrophoresis.
Determination of K, for D-Mannose
and D-Fructose

Because of the different effects of pH on the maxi-
mal velocity with the two hexose substrates, it became of
interest to determine whether pH would significantly
affect the Ky for D-mannose or D-fructose. The Ky for
D-mannose (0.4 mM) was the same at pH 6.9 and 8.9, while
that fbor D-fructose was 0.4 mM at pH 6.9 and 0.7 mM at
pH 8.9 (Fig. 5). Concentrations of ATP ranging from 0,2
to 4 mM did not affect the apparent Ky for either hexose
at pH 6.9 and 8.9. The curves obtained in a Lineweaver-
Burk plot all converged at a common point on the 1/sub-

strate axis (Fig. 6).

Determination of X, for ATP

With D-mannose as the substrate, the Km for ATP
was O.4 mM at pH 6,9 and 2 mM at pH 8.9 (Fig. 7). With
D-fructose as the substrate, the K for ATP was 0.1 mM
at pH 6,9 and 1 mM at pH 8,9 (Fig., 7). Concentrations
of D-mannose and D-fructose ranging from 0.2 to 3.3 mM
had no effect on the apparent Ky for ATP at pH 6.9 and
8.9 (Fig. 8).










Figure 5:
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Lineweaver-Burk plots for determining
the Km values for D-mannose and D-fruc-
tose., The pyruvate kinase-lactate
dehydrogenase-1inked assay was used
except that the pH and hexose concen-

trations were varied as indicated.
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Figure 6:
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Lineweaver-Burk plots showing the rela-
tionship of reaction velocity to D-man-
nose and D-fructose concentrations in

the presence of varying concentrations

of ATP at pH 6.9 and 8.9. The pyruvate
kinase-lactate dehydrogenase-linked

assay was used except that the pH and

ATP and hexose concentrations were varied
as indicated. The numbers along the
curves represent the ATP concentration
(in mM). The Mg*t to ATP ratio was main-
tained at 2:1. A,plot of 1/v vs 1/mM
D-fructose at pH 8.9; B, plot of 1/v Vs
1/mM D-fructose at pH 6.9; C, plot of 1/V
vs 1/mM D-mannose at pH 8.9; D, plot of

1/v vs 1/mM D-mannose at pH 6.9.
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Figure 7:

38

Lineweaver-Burk plots for determining
the K, values for ATP. The pyruvate
kinase-lactate dehydrogenase-linked
assay was used except that the pH and
ATP concentration were varied as indi-
cated. The Mg**:ATP ratio was main-

tained at 2:1,
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Figure 8:

Lo

Lineweaver-Burk plots showing the rela-
tionshlip of reaction velocity to ATP con-
centration in the presence of varying
concentrations of D-mannose and D=fruc-
tose at pH 6.9 and 8.9. The routine
pyruvate kinase-lactate dehydrogenase-
linked assay was used except that the pH
and ATP and hexose concentrations were
varied as indicated. The numbers along
the curves represent the concentration
(in mM) of the hexose substrate., The
Mg++:ATP ratio was maintained at 2:1.

A, plot of 1/v vs 1/mM ATP at pH 8.9
wilth D-mannose as the substrate; B, plot
of 1/v vs 1/mM ATP at pH 6.9 with D-man-
nose as the substrate; C, plot of 1/v vs
1/mM ATP at pH 8.9 with D-fructose as the
substrate; D, plot of 1/v vs 1/mM ATP at
pH 6.9 with D-fructose as the substrate.
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Inhibit f D-
ctivity by D-Mannose

The rates of phosphorylation of D-mannose and D-

fructose were found to be competitive, rather than addi-
tive, at pH 6.9, 8.5, and 8.9. A Lineweaver-Burk plot
(Fig. 9) shows the inhibition of D-fructose phosphoryla-
tion by D-mannose at pH 6.9. From the kinetic plot
shown in Flg. 10, the Ky for D-mannose was determined

to be 0.4 mM, which is the same as 1ts K, as a substrate
(Fig. 5).

Product Inhibition

Inhibition of D-fructose phosphorylation by ADP
was tested at pH 6.9 and was found to be competitive
with ATP (Fig. 11). From a kinetic plot (Fig. 12), the
Ky for ADP was estimated to be 0.3 mM. D-Fructose-6-P,
at concentrations up to 15 mM, did not inhibit the phos-

phorylation of D-fructose at either pH 6.9 or pH 8.9.

Estimation of Molecular Weight

Data for the sedimentation of mannofructokinase
in a sucrose density gradient are shown in Fig. 3. Tak-
ing 3.5 S as-the sedimentation coefficient of the peroxi-
dase standard (23), the sedimentation coefficient of

mannofructokinase was calculated by the equation S, X

distance; = S, x distance, (24) to be 4.1 S. Assuming
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Figure 9:

L3

Lineweaver-Burk plot showing the relation-

ship of reactlion velocity to D-fructose
concentration in the presence and absehce
of D-mannose. The glucose-6-P dehydro-
genase=-l1linked assay for D-fructoklnase
activity was used except that D-fructose
and D-mannose were varied as indicated.

The pH was 6.9.
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ks

Kinetic plot for determining the K,
for D-mannose, The data are taken

from the experiment described in

Figure 9,
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Figure 11:

b7

Lineweaver-Burk plots showing the rela-
tionship of reaction velocity to ATP
concentration in the presence of vari-
ous concentrations of ADP. The glucose-
6-P dehydrogenase-linked assay was used
except that ATP and ADP were varied as
indicated. The Mg“’ concentration was
maintained at twice the total concentra-

tion of ATP plus ADP. The pH was 6.9.

Figure




Figure 11
[ ==l S R
| &
< — 0
e
o
rela-
T o
ari-
1C0Se= X
 used &
d 85
s E
o i
entré- 3]
=4
6.9
— N |
: \
= Es
[
- O
L 1
S G P | [ [P (AP
© =¥ o 0 [ © =
I N «Q - -
"'|:>'4










Figure 12:

Kinetic plot for determining the Ky
for ADP. The data are taken from the

experiment described in Figure 11,
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Figure 12
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that the mannofructokinase molecule is roughly spherical,
its molecular weight was estimated with the aid of a plot
of log S versus log molecular weight, using the data of
Tanford (25). This method gives a molecular weight of
approximately 47,000 for the experimentally determined

sedimentation coefficient of 4,1 S,
Product Identification

The products of the mannofructokinase-catalyzed
reactions were prepared by incubating in a microcuvette:
5 ul (0.06 unit) of the homogeneous enzyme preparation
obtained from disc electrophoresis, 0,02 umole of sub-
strate (D-fructose or D-mannose), 0,5 pmole of ATP, 1.0
umole of MgClp, 0.1 pmole of NADP, 8.0 umoles of glycyl-
glycine buffer (pH 6.9), and water to a final volume of
0.15 ml, After incubation at 25°C for one hour, the
addition of excess glucose-6-P dehydrogenase (0,078 unit)
caused no increase in absorbance at 340 nm. With D-fruc-
tose as the substrate, the further addition of 0.31 unit
of glucose-6-P isomerase resulted in an absorbance
increase at 340 nm equivalent to the oxidation of 0,022
umole of D-glucose-6-P; no change was noted in the cuvette
with D-mannose as the substrate. The further addition of
0.0048 unit of mannose-6-P isomerase caused no change in
the cuvette with D-fructose but resulted in a 340 nm
absorbance increase in the cuvette with D-mannose equiva-

lent to the oxidation of 0,021 umole of D-glucose-6-P,
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Assays for possible contaminating 6-phosphogluconate
dehydrogenase, phosphofructomutase, or phosphomannomutase
in the kinase preparation and in the coupling enzymes were
negative. These results indicate that the products of the
phosphorylation of D-fructose and D-mannose were D-fruc-

tose-6-P and D-mannose-6-P, respectively.
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DISCUSSION

Previously reported hexokinases active on D-man-
nose or D-fructose at carbon atom 6 also phosphorylate
D-glucose and often several other sugars with varying
efficiencies (26-35), or are specific for a single
hexose (9-12), The hexokinase described here is differ-
ent in that it is equally active on two hexoses, one of
which is an aldose (D-mannose) and the other a ketose
(D-fructose), but has no detectable activity on many
other sugars (<0.04% in the case of D-glucose). The
basis for this specificity is not apparent from struc-
tural formulas but can be rationalized from an inspec=-
tion of molecular models. D-Fructose in solution occurs
31.6% in the furanose form (36) and is generally con-
sidered to be the B anomer (37), presumably on the assump-
tion that the a and B anomers would differ significantly
in their optical rotations. D-Mannose in solution is 69%
a-D-mannopyranose (38). Molecular models of the pre-
ferred conformations of a-D-mannopyranose and B-D-fruc-
tofuranose are depicted in Fig. 13. It can be seen that
the positions of the oxygen and hydrogen atoms on the two
models are superimposable, although the positions on one
model are skewed somewhat relative to the other. This

positional correspondence of equivalent atoms holds even
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though one of the models consists of a five-membered ring
and the other a six-membered ring. Viewed in this way,
D-mannose and D-fructose bear a close structural similar-
ity which is not mimicked by D-glucose or any of the other
sugars tested as possible substrates. Thus, although the
enzyme has strict requirements for binding at the sub-
strate site, 1t can be seen how these condlitions may be
met by both D-mannose and D-fructose to the exclusion of
other sugars,

Moore and O'Kane (11) presented evidence that
Streptococcus faecails, a homofermentative lactic acid
bacterium, contains a specific D-mannokinase and a
specific D-fructokinase in addition to a nonspecific
hexokinase active on D-glucose, D-mannose, and D=-fructose.
Kinases obtained from other sources which catalyze the
6-phosphorylation of D-mannose or D-fructose but not
D=glucose also seem to be specific for one hexose or the
other (9-12)., Thus, it is important to review the evi-
dence that a single enzyme from L. mesenteroides 1is
responsible for the phosphorylation of both D-mannose and
D-fructose, particularly since the pH-activity profiles
for the two hexoses are different. The enzyme has been
purified to apparent homogenelty (determined by disc gel
electrophoresis) with no significant change in the ratio
of the two activities throughout the purification. No
separation was achleved by electrophoresis on cellulose

acetate strips or by sucrose density gradient centrifuga-
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tion. Thermal inactivation rates assayed at three pH
values were identical for the two activities. And fin-
ally, the phosphorylation of the two hexoses was competi-
tive rather than additive, with the XK; for D-mannose being
the same as its Ky as a substrate.

The differential pH-activity profiles for D-mannose
and D-fructose are of interest and at first led me to sus-~
pect that two enzymes were involved. However, it should
be noted that several other enzymes are known which exhi-
bit different pH optima for different substrates, for
example, fructose diphosphatase (39), glutamate dehydro-
genase (40), and hexokinase from Aspergillus parasiticus
(28).

The common identity of the D-mannokinase and D~
fructokinase activities and the instability of D=-gluco-

kinase of L. mesenteroides were recently corroborated by

data presented by DelMoss (14). He attributed the labil-
ity of D-glucokinase observed by us to the low ilonic
strength of our cell extracts, His enzyme preparation
in 0,1 M potassium phosphate buffer (pH 7.5) was stable
for months at -20°C and for days at 0°C (14).

Although the reaction mechanism of this mannofruc-
tokinase has not been studied in detail, the inability
of one substrate (hexose or ATP) to affect the apparent
Km of the other is consistent with a sequential mechanism

of substrate binding (41), as for yeast hexokinase (42-44),
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E. coll galactokinase (45), and rat muscle hexokinase
type II (46), rather than with the "ping-pong" type (41),
as 1s characteristic of nucleoside diphosphate kinase
(47, 48) and rat muscle hexokinase type I (49). Earlier
studies on particulate (50) and solubilized (51) brain
hexokinase suggested that these enzymes exhibit a "ping-
pong" mechanism of action., Recent data, however, indi-
cate that the above mechanism is incorrect, and that the

mechanism appears to be sequential (52, 53).







SUMMARY

An adenosine 5'-triphosphate:hexose 6-phospho-
transferase specific for D-mannose and D-fructose (manno-
fructokinase) was purified to apparent homogeneity from

extracts of Leuconostoc mesenteroides. D-mannose and

D-fructose were phosphorylated by the enzyme at equal
rates, whereas D-glucose, 2-deoxy-D-mannose, and 28

other sugars and sugar derlvatives were not phosphory-
lated and did not inhibit the enzyme. The pH-activity
curves were different for D-mannose and D-fructose, with
the D-mannokinase activity to D-fructokinase activity
ratios being about 1.0 at pH 6.9, 0.5 at pH 8.5, and 0.3
at pH 8.9. The enzyme was further characterized with
regard to phosphoryl donor specificity, kinetic constants,
inhibition constants, and molecular weight. The products
of the phosphorylation of D-mannose and D-fructose were
identified as D-mannose-6-P and D-fructose-6-P, respec-
tively.

To explain the unique specificlity of this kinase,
it was postulated that a-D-mannopyranose and g-D-fructo-
furanose are the molecular specles that serve as sub-
strates, It was shown with molecular models that equiva-
lent functional groups of the preferred conformations of

the two species occupy nearly ldentical spatial positions,
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even though one of the molecules consists of a five-
membered ring and the other a six-membered ring. Viewed
in this way, D-mannose and D-fructose bear a close struc=-
tural similarity which is not mimicked by D-glucose or
any of the other sugars tested as possible substrates.
Thus, although the enzyme has strict requirements for
binding at the substrate site, it can be seen how these
conditions may be met by both D-mannose and D-fructose

to the exclusion of other sugars.
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PART II

1-PHOSPHOFRUCTOKINASE AND 6-PHOSPHOFRUCTOKINASE
FROM AEROBACTER AEROGENES

INTRODUCTION

]

The discovery 1in 1966 of an inducible kinase

specific for D-fructose l-phosphate in Aerobacter

'm?i-i~ T

aerogenes PRL-R3 (54) suggested a previously unrecog-
nized pathway of D-fructose metabolism. More recently,
a four-component PEP:fructose l-phosphotransferase sys-
tem from thls organism was characterlized and genetilc
evidence was presented for the requirement of the
enzyme system for normal growth on D-fructose (55).
This work thus establlished the pathway for D-fructose
metabolism to be the following:

PEP systen 1-PFK
D-Fructose —y D-fructose-l -P—————e3 FDP

In addition to the PEP system and 1-PFK, A.
aerogenes PRL-R3 has also an inducible D-fructokinase
(ATP:D=fructose 6-phosphotransferase) and a constitutive
6-PFK. An alternate route,

D-fructokinase 6-PFK
D-fructose —> D-fructose-6-P ————y FDP,

may therefore be operative in this organism. Section A
of this part of the thesis assesses the relative impor-

61
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tance of these two pathways during growth on D-fructose.
Analysis of mutents lacking 6-PFK and FDPase corroborate
the view that D-fructose is metabolized via the D-fruc-
tose-1-P pathway and establishes that 6-PFK is functional
in the metabolism of D-glucose but not D-fructose, This
work has been published recently (56).

The presence in A. aerogenes of two phosphofructo-
kinases with different roles makes it of interest to
study the two enzymes and compare their control mechan-
isms, FDP, the product of the 6-PFK reaction, can be

converted back to D-fructose-6-P by FDPase:

ATP ADP
6-PFK
D-fructose-6-P FDP
FDPase

Py Hy0

The D-fructose-6-P~FDP cycle functions as a net ATPase
if not controlled; hence it has been termed a "futile"
cycle (57). 1-PFK, on the other hand, is not known to
participate in such a cycle. It is therefore to be
expected that 6-PFK would be subject to more complex
control mechanisms than would 1-PFK. 6-PFK from a
variety of organisms is being intensively studied with
respect to its regulation (see Review of Literature in
Part II, Section B). 1-PFK, on the other hand, which

1s now known also to occur in Bacteroides symbiosus (58)

and Escherichia coli (59), has not previously been sub-
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jected to kinetlic analysis. The last portion of this
thesis (Part II, Section B) presents evidence that the
6-PFK from A. aerogenes, like those from most other
organisms, displays sigmoidal kinetics and is modified
by several effectors, whereas the 1-PFK exhibits regu-
lar Michaelis-Menten kinetics and more closely resembles

other non-allosteric kinases.
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SECTION A

DETERMINATION OF THE REIATIVE SIGNIFICANCE OF
D-FRUCTOSE-1-P AND D-FRUCTOSE-6-P PATHWAYS IN
A, AEROGENES BY ANALYSIS OF MUTANTS
LACKING 6-PHOSPHOFRUCTOKINASE
AND D-FRUCTOSE 1 ,6-DIPHOSPHATASE

MATERIALS AND METHODS
Bacteria

The parental stralns used in this investigation

were Aerobacter aerogenes PRL-R3 and a uracll auxotroph,

PRL-R3(U~), derived from it. The uracll auxotroph was
glven to us by Dr. Robert P. Mortlock of the University
of Massachussetts., Mutant 012, derived from strain
PRL-R3, was isolated by T. E. Hanson (56); mutant A9-1,
derived from strain PRL-R3(U~), was isolated by Dr. R,
L. Anderson (56).

Culture Media

The basal mineral medium used for strain PRL-R3
and mutant 012 consisted of 0.71% NayEPO, , 0.15% KHpPO,,,
0.3% (NHy)2S50,, 0.009% MgSOy, and 0.0005% FeSOy*7H,0.
This medium was supplemented with 0.005% uracil for the
growth of strain PRL-R3(U”) and mutant A9-1, Sugars
were autoclaved separately and added to the basal mineral
medium at a concentration of 0.5%.
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Growth of Cells and Preparation

of Extracts

The growth curves were done in 18 X 50 mm culture
tubes containing 7.0 ml of medium. The inoculum was 0.1
ml of an overnight culture on D-glucose (except for
mutant A9-1, which was on D-fructose). The tubes were
slanted at an angle of 55° and were agitated on a water
bath reciprocal shaker at 148 cycles per min at 30°C.

For enzyme studies, the cells were grown in 500

| Eadt ™ T

ml of medium in Pernbach flasks on a rotary shaker at
32°C. The cells were harvested by centrifugation during
the late log phase of growth, suspended in distilled
water, and broken by sonication for 10 mlnutes as des-

cribed in Part I.
Chemicals

FDP and crystalline a-glycerophosphate dehydro-
genase-triose phosphate 1somerase were from Sigma. D-
fructose-6-P was from Boehringer. D-fructose-1-P, yeast
glucose-6-P dehydrogenase (A grade), rabbit muscle FDP
aldolase (A grade), and crystalline rabbit muscle glu-
cose-6-P isomerase (A grade) were from Calbiochem. All

other chemicals were obtained as described in Part I.

Enzxge Assays

All assays involved the oxldation or reduction of

pyridine nucleotide coenzymes and were monitored at 340 nm
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with a Gilford automatic absorbance-recording spectro-
photometer thermostated at 25°C, The reactions were
carried out in 0.15-ml volumes in microcuvettes with a
l-cm light path., 1In all cases, the amount of extract
assayed was limiting, so that the rates were propor-
tional to the enzyme concentration. Specific activity
was defined as the number of umoles of substrate uti-
lized per minute per milligram of protein.

The assays for 1-PFK and 6-PFK contained 1.0
umole of ATP; 2,0 pmoles of MgClys 0.05 umole of NADH;
1,0 umole of D-fructose-1-P or D-fructose-6-P; excess
FDP aldolase, triose phosphate isomerase, and a-glycero-
phosphate dehydrogenase; and 10.0 umoles of buffer
[glycylglycine (pH 7.5) for 1-PFK, and glycine (pH 8.2)
for 6-PFK]. The control assays contained all components
of the reaction mixture except ATP.

The assay for FDPase contained 1.0 umole of FDP,
1.0 umole of MgClz, 0.2 umole of EDTA, 0.1 umole of NADP,
excess glucose-6-P isomerase and glucose-6-P dehydrogen-
ase, and 10,0 umoles of glycylglycine buffer (pH 7.5).

The assay for D-fructokinase activity contained
1.0 ymole of D-fructose, 0.5 umole of ATP, 1.0 umole of
MgCly, 0.1 umole of NADP, excess phosphoglucose isomerase
and glucose~6-P dehydrogenase, and 10,0 umoles of glycyl-
8lycine buffer (pH 7.5).

The assay for D-glucokinase, as described by

Kamel, Allison, and Anderson (17), contained 1.0 umole
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of D-glucose, 0.5 umole of ATP, 1.0 umole of MgCly, 0.1
umole of NADP, excess glucose-6-P dehydrogenase, and

10.0 umoles of glycylglycine buffer (pH 7.5).
Protein Determination

Protein was estimated as described in Part I.







RESULTS

Growth Pattern

Growth characteristics of the parental strain
(PRL-R3) and the two mutants (A9-1 and 012) on D-glucose,
D-fructose, and glycerol are shown in Fig, 14, Strain
PRL-R3 grew well on all three substrates. Mutant A9-1
mimicked the parent on D-fructose and glycerol, but
grew only slowly on D-glucose. Mutant 012 grew well on
D-glucose but failed to grow on D-fructose or glycerol;
after 24 hr, slight growth occurred occasionally on D-

fructose but not on glycerol.

Enzyme Activities in Cell Extracts

The data in Table VI show that all strains con-
tained similar levels of D-glucokinase, whereas mutant
012 was missing FDPase and mutant A9-1 was missing 6-PFK.
D-Fructokinase activity was low in all extracts, but was
consistently higher in cells grown on D-fructose than on
D-glucose. This apparent D-fructokinase activity has
not been purified, so it has not been established that
the observed activity in crude cell extracts is the
result of a single enzyme possessing ATP:D-fructose 6-
phosphotransferase activity., The presence, however, of
a phosphofructomutase in the extract and the coupling

68
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Figure 14: Growth characteristics of strain PRL-R3
and mutants 012 and A9-1 on D-glucose,
D-fructose, and glycerol. The growth

pattern of PRL-R3(U~) (not shown) was

the same as that for PRL-R3. An optlcal
density of 0.35 was equivalent to a

viable count of 8.2 x 108 cells per ml.
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Figure 14
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enzymes under the assay conditions was ruled out since
the replacement of D-fructose plus ATP with 1.0 umole
of D-fructose-1-P in the assay gave no detectable reac-
tion; thus the product of the D-fructokinase reaction
was shown to be D-fructose-6-P,

1-PFK was found only in extracts of cells grown
on D-fructose (Table VI), The inability of mutant 012
to grow on D-fructose precluded a measurement of 1-PFK

in this strain under conditions which induced the enzyme

-

n the other strains, However, partial induction was
achieved by incubating D-glucose-grown cells in 0.25%
D-glucose plus 0.25% D-fructose in mineral medium for a
period of time sufficient to allow complete utilization
of the D-glucose. Under these conditions, the specific
activities in extracts were 0.12 in strain PRL-R3 and
0,013 in mutant 012, When the cells were harvested and
extracts prepared before D-glucose utilization was com-
plete, 1-PFK activity remained undetectable, indicating
repression in the presence of D-glucose. The partial
induction observed in mutant 012 probably occurred in
the short period of growth just before or immediately
after the D-glucose was exhausted and D-glucose repres-
sion was relieved. A further attempt was made to
induce 1-PFK in mutant 012 under conditions in which
D-glucose repression would be absent by exposing D=
glucose-grown cells to 0.25% D-fructose in nutrient

broth (0.5% Difco peptone plus 0.3% Difco beef extract,
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pH 7.0). 1-PFK activity remained undetectable in mutant
012, although a normal level of activity was induced in
strain PRL-R3. This lack of induction in mutant 012
may be attributed to catabolite repression, which 1is
known to be enhanced during catabolism under nongrowing
conditions (60, 61); mutant 012 does not grow on nutri-
ent broth, which is consistent with its lack of FDPase,

FDPase activity as a function of assay pH 1is
shown in Figure 15. The extract from mutant 012 exhibited
some activity at low pH values, but no activity at pH
7.5, which was the pH optimum for FDPase activity in
extracts of strain PRL-R3 and mutant A9-1, The activity
at low pH values 1s belleved to be due to a nonspecific

acid hexose phosphatase (62).










Figure 15:

7l

pH=Activity profile of FDPase. The
standard assay was used except that
the buffer composition and pH were
varied, Buffers (10 umoles) used
were: cacodylate, pH 5.0 to 6.5;
glycylglycine, pH 7.0 to 8.0; and
glycine, pH 8.5. The profile for
A9-1 (not shown) was the same as

that shown for PRL-R3.
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DISCUSSION

The possible common pathways for the metabolism
of D-glucose, D-fructose, and glycerol in A. aerogenes
are as summarized in the scheme shown in Fig., 16, The

metabolism of D-glucose through the Embden-Meyerhof path-

way requires 6-PFK. If D-fructose were metabolized via
D-fructose-6-P, then it follows that 6-PFK would also

be reqﬁired for normal growth on this substrate, On the
other hand, if it were metabolized through D-fructose-

1-P, then the 6-PFK-catalyzed reaction would be bypassed.

In the latter case, normal growth on D-fructose would
require FDPase to make D-fructose-6-P for biosynthetic
reactions. Normal growth on glycerol would likewise
require FDPase.

Mutent A9-1, missing 6-PFK, grows on D-fructose
or glycerol as well as does the parental strain, PRL-R3
(U~), but grows only slowly on D-glucose., This is con-
sistent with the metabolism of D-fructose through D-
fructose-1-P, If fructose were metabolized through D-
fructose-6-P rather than D-fructose-1-P, this mutant
would still be expected to grow well on glycerol, but
no better on D-fructose than on D-glucose. The residual
growth on D-glucose by this mutant could indicate that

the defective 6-PFK is partially functioning in the
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Figure 16:

77

Pathways for the metabolism of
D-glucose, D-fructose, and

glycerol in A. aerogenes.
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intact cell, but 1s more likely due to the metabolism
of D=glucose through the hexose monophosphate shunt.
Mutant 012, missing FDPase, grows well on D-
glucose but not on D-fructose or glycerol. This, too,
is consistent with D-fructose belng metabolized in the
wild type primarily through D-fructose-1-P rather than
D-fructose-6-P. If the pathway through D-fructose-6-P
were of major significance, a FDPase-negative mutant

would be expected to grow on both D-glucose and D-fruc-

1 s e st e ----—~'~1

tose,

Similar mutant analysis has recently been carried
out on §. coll to assess the relative importance of the
D-fructose-1-P and the D-fructose-6-P pathways in D-
fructose metabolism of this organism (59, 62, 63).
Although an earlier paper indicated that the metabolism
éoes through D-fructose-6-P (62), more recent results
(59) indicate that the D-fructose-1-P pathway occurs
also in E. coll. However, some mutants of this organism
deficient in 6-PFK activity falled to grow normally on
D-fructose, suggesting that 6-PFK may have some role in
D-fructose metabolism (63). The identification of a
PEP:D-fructose l-phosphotransferase system and a 1-PFK
in this organism provides support for the D-fructose-1-P

pathway (59).
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SECTION B

PURIFICATION, PROPERTIES, AND REGULATION OF
6-PHOSPHOFRUCTOKINASE AND 1-PHOSPHOFRUCTOKINASE

REVIEW OF LITERATURE

The central role of 6-PFK in the control of gly-
colysis is well recognized (57, 64-67). 1In vivo experi-
ments determining metabolite flux during glycolysis have
indicated that the main rate-controlling step is the
6-PFK-catalyzed production of FDP from D-fructose-6-p
(68, 69). Studies of the kinetic properties of the
enzyme provide important information on the possible
mechanism for its control. Table VII gives a summary
of most of these studies. Although some results varied
with the system under investigation, it seems clear
that the enzyme 1s subject to a number of complex con-
trol mechanisms. In all cases [except with the 6-PFK

from Dictyostelium discoideum (91)], the enzyme is

inhibited by high levels of ATP. In some studies, how-
ever, it is not certain whether the inhibition is a
function of the amount of ATP per se or to the lack of
sufficient Mg** to bind all the ATP molecules in a
MgATP complex (84, 89, 90), which is the real substrate
of the reaction (113). With several mammalian 6-PFKs
significant ATP inhibition was detected under conditions
80
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of excess Mg**t (71-75, 80-83, 92-94), indicating that the
MgATP complex can bind to a regulatory site and inhibit
the reaction. Equilibrium binding studies by Kemp and
Krebs (98) on skeletal muscle 6-PFK have indicated that
three moles of ATP are bound per 90,000 g of the enzyme,
which is probably the molecular weight of the protomer
(77). E. coli 6-PFK is inhibited by ATP only when the
Mg** to ATP ratio falls below 2:1 (95, 96). Blangy et
al (97) failed to detect ATP inhibition at a constant
Mg** to ATP ratio of 10:1.

Increased levels of D-fructose-6-P generally
relieve ATP inhibition (70-74, 78, 80, 82, 83, 86, 88-90,
92-96). Exceptions are the 6-PFKs from cockroach (85)
and calf lens (84). The rates of most 6-PFKs studied
(71-74, 78, 80, 82, 83, 86, 88-90, 92-96) show a sigmoldal
dependence on the D-fructose-6-P concentration. E. coli
6-PFK also shows a sigmoidal dependence of rate on the
Mg++ concentration; increasing the D-fructose-6-P con-
centration from 1.2 mM to 4.8 mM serves to convert the
sigmoidal curve to a hyperbolic one (95).

6-PFK is generally non-specific with regard to
its phosphoryl donor (71, 72, 78, 88, 91-95). Further,
several mammalian 6-PFKs are inhibited by other nucleo-
side triphosphates (71, 73, 78) in a manner similar to
ATP inhibition. In yeast (92-94) and E. coli (95),

however, other nucleoside triphosphates either inhibit
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the enzyme very slightly or not at all even at low Mgtt
concentrations,

Mammalian 6-PFKs in general have more positive
effectors than those from plants or bacteria, AMP and
cyclic AMP, which can relleve ATP inhilbition of many
mammalian 6-PFKs (71-75, 78, 80-82, 84) either have no
effect (90-97) or even inhibit activity (88-90) of the
enzyme from several plants and bacteria. ADP relieves
ATP inhibition to various degrees in mammalian (71, 72,
74, 78, 80, 81, 84) and bacterial (90, 95, 96) 6-PFKs
but was found to inhibit the enzyme from several plants
(88-90).

Some mammalian 6-PFKs have been reported to be
subject to control by pH. Calf lens (84) and rabbit
muscle (73, 75) 6-PFKs are considerably inhibited at
pH values near 7, but are inhibited very slightly or
not at all at pH 9. In a similar manner, the enzyme
from rat dilaphragm (99) is more susceptible to ATP
inhibition at pH 7.1 than at pH 7.6. Sheep heart 6-PFK
exhibits regular Michaelis-Menten kinetics at pH 8.2
with respect to ATP, Mgtt, or D-fructose-6-P, but shows
sigmoidal kinetics with respect to D-fructose-6-P at
pH 6.9 (72). Increased concentrations of D-fructose-6-P
shift the pH optimum of frog muscle 6-PFK towards the
acid side, and this effect 1s further enhanced by the
presence of AMP (100).
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The only 6-PFK reported so far in the literature
” to exhibit non-sigmoidal klnetics 1s that from Dictyostelium

discoideum (91). This enzyme is not inhibited by ATP,
and 1s not activated by D-fructose-6-P, AMP, or Pj.
ADP, PP;, and FDP inhibit activity.

In addition to A. aerogenes, 1-PFK has now been
reported to occur in Bacteroides symblosus (58) and
E. coli (59). However, no kinetic studies of this enzyme

have yet been published.






MATERIALS AND METHODS
Bacterila

The organism used for most of the studies on 6-
PFK is the wild-type Aerobacter aerogenes PRL-R3.
Mutant DD31, lacking 1-PFK activity, was used for the
inhibition study with D-fructose-1-P; this mutant was
derived from the wild-type straln and was isolated by
T. E. Hanson by the same procedure as for mutant 012
(56). Mutant A9-1, lacking 6-PFK activity, was used as
the source of 1-PFK; thils mutant was derived from the
parental strain PRL-R3(U~) and was isolated by Dr. R. L.
Anderson (56).

Growth of Cells and
Preparation of Extracts

The components of the mineral salts medium are
as described in Part II, Section A. Strains PRL-R3 and
DD31 were grown in 500 ml of glucose-mineral salts
medium in Pernbach flasks on a rotary shaker at 32°cC,
The cells were harvested by centrifugation at 16,300 X
g in a Servall refrigerated centrifuge.

Mutant A9-1 was grown 1ﬁ 100 liters of D-fructose-
mineral salts medium supplemented with 0,005% uracil in

a New Brunswick Model 130 Fermacell fermenter at 30°C

100
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with an aeration rate of 6 cubic feet per minute and an
agltation speed of 300 rpm. Dow Corning antifoam B
(0.02%, sterilized separately) was added. The inoculum
was 2 liters of an overnight culture in D-fructose-
uracil-mineral salts medium. The cells were harvested
with a Sharples AS-12 centrifuge 8 hr after inoculation.
The yield was about 7.5 g (wet weight) of cells per
liter.

Cells were washed once with 0.01 M Tris-HC1-0.03 M

NaCl (pH 7.3) and centrifuged at 16,300 x g. Mutant A9-1
was taken up in water, while strain PRL-R3 and mutant
DD31 were taken up in 0.05 M phosphate buffer (pH 7.5)
containing 0.001 M EDTA (for the reason for the use of
phosphate buffer and EDTA, see Properties, section on
Stability). The resulting suspension was subjected to

sonic oscillation for 10 min as described in Part I,
Chemicals

Crystalline a-glycerophosphate dehydrogenase and

triose phosphate isomerase were from Calbiochem. Pig

heart malic dehydrogenase and twice crystallized yeast
alcohol dehydrogenase were from Worthington. D-Fructose-
1-P, D-glucose-1-P, D-glucose-6-P, horse heart cytochrome
¢, and all nucleotides (except ATP) were from Sigma,
L-Fructose-1-P was the preparation described by Mayo and
Anderson (101). .Calcium phosphate gel was prepared by

D. P, Allison of this laboratory accbrding to the method
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described by O. Levin (102), All other chemicals were

obtained as described in Part I or Part II, Section A.

Enzyme Assays

The routine assay for 6-PFK was as described in
Part II, Sectlon A, except that glycylglycine buffer
(pH 8.0) was used. The aldolase-linked assay for 1-PFK
was as described in Part II, Sectlon A. The pyruvate
kinase-lactate dehydrogenase-linked assay for 1-PFK was
used for substrate specificity and FDP inhibition
studies, The reaction mixture (0.15 ml) contalned:

1.0 pmole of D-fructose-1~P, 0.5 umole of ATP, 1.0 umole
of MgCl,, 0.4 umole of PEP,0.05 umole of NADH, 10,0 umoles
of glycylglycine buffer (pH 7.5), excess lactate dehydro-
genase and pyruvate kinase, and limiting amounts of

1-PFK. The assays were done in microcuvettes with a

l-cm light path, The rate of oxidation' of NADH was
measured at 340 nm in a Gilford multiple sample absorbance-
recording spectrophotometer thermostated at 25°C,

In all cases, the rates were directly proportional
to the enzyme concentration. The rate of NADH oxidation
With the aldolase-linked assay for 1-PFK was double that
obtained with the pyruvate kinase-lactate dehydrogenase-
linked assay. A unit of activity was defined as the
number of umoles of substrate phosphorylated per minute,

Specific activity was defined as the number of units per

milligram of protein.
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The assay for mannitol-l1-P dehydrogenase was the
same as the routine assay for 6-PFK, except that ATP was
omitted from the reaction mixture. The assay for FDPase
was as described in Part II, Section A, The assay for
adenylate kinase was the same as the aldolase-linked
assay for 6-PFK or 1-PFK, except that ATP was replaced
with 1.0 umole of ADP.

The assays for malic dehydrogenase and alcohol
dehydrogenase were done in microcuvettes with a l-cm
light path and monitored at 340 nm with a Gilford spec=-
trophotometer. The reaction mixture for alcohol dehydro-
genase contained, in a volume of 0.15 ml: 10 umoles of
ethanol, 0.1 pmole of NAD, 10.0 unmoles of glycylglycine
buffer (pH 7.5), and limiting amounts of alcohol dehydro-
genase., The reaction mixture for malic dehydrogenase
contained, in a volume of 0,15 ml: 1.0 umole of oxalo-
acetate (neutralized to pH 7.0), 0.05 pmole of NADH,

10.0 umoles of glycylglycine buffer (pH 7.5), and 1limit-

ing amounts of malic dehydrogenase.

Protein Determination

Total protein was estimated as described in Part I,

Cytochrome ¢ was determined by measuring absorbance at

550 nm.







RESULTS

Purification of 6-Phosphofructokinase

All operations were performed at 0-4°C. A sum-
mary of the purification procedure is given in Table

VIII.

Protamine Sulfate Precipitation

The protein concentration of the crude extract
was adjusted to 14 mg per ml. After the addition of
s0lid ammonium sulfate to a final concentration of 0.2 M,
the nuclelc acids were preclpitated by the slow addition
of 20% by volume of a 2% aqueous solution of protamine
sulfate (pH 7.0). The precipitate obtained by centrifuga-

tion was discarded.

Ammonium Sulfate Fractionation

S0lid ammonium sulfate was added slowly with
stirring to the above fraction. The precipitate that
formed between 0 and 60% saturation was collected by
centrifugation and dissolved in 0.05 M sodium phosphate
buffer-0,001 M EDTA (pH 7.5).

Sephadex G-200 Chromatography

A 1-ml aliquot of the ammonium sulfate fraction

104
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was placed on a 23,5 x 1,2-cm column of Sephadex G-200
equilibrated with 0.05 M sodium phosphate buffer-0.001 M
EDTA-0.1 M ammonium sulfate (pH 7.5). Fractions (15
drops) were eluted with the same solutlion and collected
in a Gilson Medical Electronics linear fraction collector.
The elution pattern is shown in Fig. 17. Fractions 42 to
55, which had the highest specific actlivity, were com-
bined. The 6-PFK activity in the combined fraction was
6-fold purified over the crude extract.

Attempts to purify the enzyme further by DEAE=-
cellulose column chromatography, calcium phosphate gel
adsorption, and pH fractionation led to a considerable
loss of 6-PFK activity. The Sephadex fraction had con-
taminating activities of adenylate kinase (0.25 unit/mg),
mannitol-1-P dehydrogenase (0.12 unit/mg), 1-PFK (0,06
unit/mg), and FDPase (0.27 unit/mg).

Purification of 1-Phosphofructokinase

The procedure described here for the purification
of 1-PFK is a modificatlion and extension of the proce-
dure of Hanson and Anderson (54). All operations were
performed at 0-4°C. A summary of the purification is
gilven in Table IX,

Protamine Sulfate Precipitation

The protein concentration of the crude extract

was adjusted to 8 mg per ml. Nucleic acids were precipi-









Figure 17:
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Elution pattern of 6-PFK on Sephadex
G-200 column., Detalls are given in

the text.
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tated by the slow addition, with constant stirring, of
20% by volume of 2% agueous solution of protamine sul-
fate (pH 7). The precipitate obtained by centrifugation

was discarded.

Ammonium Sulfate Fractionation

Solld (NH4)2804 was added slowly with stirring
to the protamine sulfate supernatant and the precipitate
which formed between 0 and 30% saturation was removed by
centrifugation and discarded. The fractlion preclpitat-
ing between 30 and 604 saturation was collected by cen-

trifugation and dissolved in glass-distilled water,

Sephadex G-200 Chromatography

Sixteen ml of the above fraction was layered on a
column (45 x 4,5 cm) of Sephadex G-200 equilibrated with
0.02 M sodium phosphate buffer (pH 7.5). The same buffer
solution was used to elute 400-drop fractions, which were
collected on a Gilson Medical Electronics fraction col=-
lector. The elution profile is shown in Fig. 18.
Fractions 43 to 52, containing the highest 1-PFK specific

activity, were combined.

Calcium Phosphate Gel Adsorption
and Elution

The combined Sephadex fraction (1.2 mg protein per
ml) was treated with 10% by volume of calcium phosphate
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Figure 18: Elution pattern of 1-PFK on a Sephadex
G-200 column., Details are given in

the text.
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Figure 18
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gel containing 62 mg solids per ml., The suspension was
stirred well for 5 minutes and centrifuged. The gel
solids were washed with 0.02 M sodium phosphate buffer
(pH 7.5), and treated twice (10 min per treatment) with
0.075 M sodium phosphate buffer (pH 7.5). The superna-
tant from each treatment was discarded., 1-PFK activity
was eluted by mixing the gel solids well with 0,15 M
sodium phosphate buffer (pH 7.5) for 15 min., The elu-
tion was repeated to recover about 80% of the adsorbed

1-PFK. The two eluates were combined.

Ammonium Sulfate Precipitation

The combined eluate was concentrated by precipi-
tation with solid ammonium sulfate (70% saturation) and

dissolving the preciplitate in glass-distilled water,

pH Fractionation

The concentrated gel eluate (10 mg protein per ml)
was diluted two-fold with glass-distilled water, The pH
of the solution was carefully adjusted, with constant
stirring, to pH 4.6 with 7.5% acetic acid, The superna-
tant obtained upon centrifugation was treated with 0.1 M
NaOH to pH 7.5. 1-PFK activity in this preparation was
approximately 315-fold purified over the crude extract.
and was essentially free from adenylate kinase (¢(0,0003

unit/mg), mannitol-1-P dehydrogenase (<0,0007 unit/mg),
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and FDPase (€0,0003 unit/mg).

Properties and Regulation of
6-Phosphofructokinase and 1-Phosphofructokinase

Stability

6-PFK readily lost activity in crude extracts pre-
pared in water, but was stable at -20°C for approximately
1-2 weeks in 0,05 M sodium phosphate buffer-0.001 M EDTA
(pH 7.5). The Sephadex G-200 fraction [in 0,05 M sodium
phosphate buffer-0.001 M EDTA-0.1 M (NH,),SO, (pH 7.5)]
was stable at -20°C for about two months,

1-PFK was stable for weeks at -20°C in crude
extracts prepared in water., The 315-fo0ld purified enzyme
preparation (pH 4.6 supernatant) in 0.1 M (NHL),SO, (pH
7.5) was stable for at least 8 months at -20°C if not

repeatedly thawed and frozen.

ATP Inhibition

At 0.33 mM D-fructose-6-P and 2.0 mM Mg'*, 6-PFK
was inhibited by ATP at concentrations above 1,0 mM. The
inhibition became undetectable when the Mg*t to ATP ratio
was maintained at 2:1 from 0.6 mM to 3.3 mM ATP (Fig.

19 A & B)., Raising the concentration of D-fructose=6-P
to 3.3 mM while keepinmg the Mg** constant at 2,0 mM also
served to reverse the previously observed inhibition by

ATP (Fig. 19B).






Figure 19:
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Inhibition of 6-PFK by ATP in the presence
of various concentrations of Mg++ and
D-fructose-6-P. Mgt* and ATP were varied
as Indicated in the plots. A, Effect of
ATP in the presence of 0.33 mM D-fructose-
6P. B, Effect of ATP in the presence of
3.3 mM D-fructose-6-P., The amount of

enzyme in all assays was 0,0015 unit.
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ATP at concentrations above 1.7 mM inhibited 1-PFK
when the Mgtt and D-fructose-1-P concentrations were mailn-
tained at 3.3 mM and 0.27 mM, respectively (Fig. 204),
As observed with 6-PFK, the inhibition was prevented by
the addition of Mg't at twice the concentration of ATP
in the assay throughout the range of A?P concentrations
tested. However, ralsing the level of D-fructose-1-P
from 0.27 mM to 6.7 mM and keeping the Mg*t constant at
3.3 mM had no effect on the inhibition of ATP at concen-
trations above 1.7 mM (Fig. 20B).

Interaction of Hexose Phosphate Substrate
a7

A plot for 6-PFK of rate vs D-fructose-6-P concen-

tration (Fig. 21A) gave a sigﬁoidal curve, which became
more marked as the Mg*f concentration was decreased while
ATP was maintained at 2 mM. The increase in the sigmoidal
character of the curve at lowered Mg++ concentrations
irdicates a weakened affinity of the enzyme for D-fruc-
tose~6~P, As shown in the plot, the apparent K, values
for D-fructose-6-P depended on the Mgtt to ATP ratio and
were approximately 0.3 mM at a ratio of 2:1, 0.6 mM af a
ratio of 1,4:1, and 1.4 mM at a ratio of 0.7:1. Increased
levels of D-fructose-6-P relieved ATP inhibition, with
more D-fructose-6-P being required at low Mg++_concentra-
tions, The shapes of the curves suggest a cooperative

interaction between Mg¥* and D-fructose-6-P (103).










Figure 20:
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Inhibition of 1-PFK by ATP in the presence
of various concentrations of Mg“' and

D-fructose-1-P. Mg'” and ATP were varied
as indicated. The amount of enzyme in all
assays was 0,0011 unit., A, Effect of ATP
in the presence of 0.27 mM D-fructose-1-P.
B, Effect of ATP in the presence of 6.7 mll

D-fructose-1-P.



119
2 .
Figume £0 (NIW/STIOWN) qEWHOd ddd

0 o "

o o a

1N T |

-
o
in the presem: ;';
)
o ++ F—

f Kg" and §
: =t
TP were varlel gj
. :
f enzyme In sl A
Effect of i —  F
o~
D-fructose-i- <3
gence of 6,72 a

Mgtt/ATP = 2

A) 0.27 mM D-FRUCTOSE-1-P

Qo
W\

150—
10%

(NIN/STIONd) CIWHOL dad




) TS .

Figure 21
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Dependence of initial veloclity on the
hexose phosphate concentration under
conditions of varying Mgtt to ATP
ratios. ATP was maintained at 2 mM
throughout the determination, Mg++
was varied as indicated. A, Plot of
rate vs D-fructose-6-P concentration
for the 6-PFK reaction. The amount of
enzZyme in all assays was 0,0018 unit.
B, Plot of rate vs D-fructose-1-P con-
centration for the 1-PFK reaction.

The amount of enzyme in all assays was

0.0016 unit.
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On the other hand, a plot of rate vs D-fructose=-
1-P concentration with 1-PFK (Fig. 21B) shows a hyper-
bolic dependence of initial velocity on D-fructose-1-P
concentration under conditions of varying Mgtt and a
constant ATP level of 2 mM. The apparent Ky of 1-PFK
remained constant at about 0.7 mM with varying amounts
of Mg++ in the assays. The absence of sigmoidicity in
the Michaelis-lenten plot for 1-PFK suggested the
inability of D-fructose-1-P at the concentrations
tested to relieve ATP inhibition.

The Kp of 1-PFK for D-fructose-1-P (0.75 mM)
did not vary with ATP concentration (Fig. 22), D-Fruc-
tose-1-P concentration had no effect on the K for ATP,

which remained constant at approximately 0.7 mM (Fig. 23).

Effect of Mgt

Fig. 24A shows that with 6-PFK, a sigmoidal curve
of rate vs Mg*t concentration was obtained at a low
D-fructose-6-P concentration (0.33 mM). An increase in
the D-fructose-6-P level to 1.33 mM led to a shift from
a sigmoidal to a regular hyperbolic curve, indicating
that increased D-fructose-6-P concentrations could decrease
the requirement of the reaction for M5++.

A similar plot for 1-PFK also shows a sigmoidal
dependence of rate on the Mgt concentration (Fig. 24B).

++
However, D-fructose-1-P could not substitute for Ng'", as










Figure 22:
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Lineweaver-Burk plot for the determina-
tion of the Kp of 1-PFK for D-fructose-
1-P in the presence of various ATP con-
centrations. ATP and D-fructose-1-P

were varied as indicated, and Mg++ was
meintained at twice the ATP concentra-
tion throughout the determination. Tﬁer
amount of enzyme in all assays was 0.001

unit.
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Figure 23: Lineweaver-Burk plot for determining the
Kp of 1-PFK for ATP in the presence of
various concentrations of D-fructose-1-P.
ATP and D-fructose-1-P were varied as
indicated, and NMgtt was maintained at
twice the ATP concentration. The amount

of enzyme in all assays was 0,001 unit.
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Figure 24: Dependence of initial velocity on Mgtt
concentration in the presence of vari-
ous concentrations of the hexose phos-
phate substrate., ATP was maintained
at 4 mM, and Mg*t and hexose phosphate
concentrations were varied as indicated.
A, Plot of rate of the 6-PFK reaction
vs Mg++ concentration., The amount of
enzyme in all assays was 0,0015 unit,
B, Plot of rate of the 1-PFK reaction
vs Mg++ concentration, Ihe amount of

enzyme in all assays was 0.0013 unit,
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shown by the absence of a shift from a sigmoidal to a
hyperbolic curve when the D-fructose-1-P level was

raised from 0.6 mM to 6.7 mM.

Effect of Other Nucleoside Triphosphates

6-PFK 1s non-specific with regard to its phos-
phoryl donor (Table X). The purine nucleotides, GTP
and ITP, seem to be better donors than the pyrimidine
nucleotides, CTP, UTP, and TTP., The enzyme showed a
hyperbolic dependence of rate on D-fructose-6-P con-
centration with all the nucleoside triphosphates
tested (Fig. 25A). At a Mgt to nucleotide ratio of
0.7:1, the apparent K, for D-fructose-6-P with all the
nucleoside triphosphates tested was approximately 0.3
mM, which is the same as that with ATP as a phosphoryl
donor at a Mgtt to ATP ratio of 2:1.

CTP inhibited the activity when the Mg*t to CTP
ratio was less than 2:1, and failed to do so when the
ug*t was present at twice the concentration of CTP
(Fig., 26 A & B). D-Fructose-6-P, when increased from
0.33 mM to 3.3 mM, falled to substitute for Mg*t (Fig.
26B)., This is in contrast with the finding with ATP as
a phosphoryl donor (Fig. 19 A & B), in which a high
concentration of D-fructose-6-P relieved ATP inhibition
at a Mgtt to ATP ratio below 2:1, All the other nucleo-

side triphosphates gave results similar to those obtained

with CTP.
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TABLE X

Phosphoryl donor specificity of
6-phosphofructokinase and 1-phosphofructokinase

Nucleoside Relative Relative
triphosphate 6-PFK activity 1-PFK activity
% %
ATP 100 100
ITP 93 43
GTP 85.5 5L
uTP 57 3.9
CTP 50 9.8
TTP 50 8.8

All nucleoside triphosphates were tested at a con-
centration of 3.3 mi.










Figure 25:
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Dependence of initial velocity on the
concentration of the hexose phosphate
substrate with other nucleoside triphos-
phates as phosphoryl donors. Mg‘H’ and
nucleoside triphosphate were maintained
at 1.33 mM and 2 mM, respectively, and
the hexose phosphates were varled as
indicated. A, Plot of the rate of the
6-PFK reaction vs D-fructose-6-P concen-
tration with ITP, GTP, UTP, TTP, and CTP
as phosphoryl donors. The amount of
enzyme in all assays was 0.,0015 unit.

B, Plot of rate of the 1-PFK reaction
vs D-fructose-1-P' concentration with GIP
and ITP as phosphoryl donors. The amount

of enzyme in all assays was 0,022 unit.
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Figure 26:
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Inhibition of 6-PFK by CTP under condi-
tions of varying D-fructose-6-P and Mg++
concentrations. CTP and Mg¥t were

varied as indicated. The amount of

enzyme in all assays was 0,0015 unit.

A, CTP inhibition in the presence of

0.33 mM D-fructose-6-P, B, CTP inhibi-
tion in the presence of 3.3 mM D-fructose-

6-P )
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GTP and ITP served as substrates for the 1-PFK
reaction at 354 and 43%, respectively, of the rate
observed with ATP as the phosphoryl donor (Table X).
Only a slight activity ({10% of the rate with ATP) was
observed when ATP was replaced with CTP, TTP, or UTP,
As with ATP, the rate showed a hyperbolic dependence
on D-fructose-1-P concentration with GTP or ITP as phos-
phoryl donor at a Mg*t to nucleotide ratio of 0.7:1
(Fig. 25B).

Effect of Nucleoside Diphosphates

At a Mg**t to ATP ratio of 0.7:1, all of the
nucleoside diphosphates tested at 1.0 mM shifted to the
left the sigmoldal curve for 6-PFK of rate vs D-fruc-
tose-6-P concentration (Fig. 27). The curves with ADP,
IDP, and GDP were more hyperbolic than those with CDP
and UDP; therefore the purine nucleotlides seem to be
more effective in relieving ATP inhibition at low D-
fructose-6-P poncentrations. None of the nucleotides
inhibited or activated the enzyme at concentrations of
D=fructose-6-P sufficient to give maximal rate.

None of the nucleoside diphosphates (3.3 mM)
exhlbited any effect on 1-PFK activity when the Mg*+
concentration was malntained at twice the total concen-
tration of the nucleotldes in the assay. No relief of
ATP. inhibition was observed at 2.0 mM ATP, 1.34 mM Mg*t,
and 0,2 mM D-fructose-1-P,






Figure 27:
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Dependence of the rate of the 6-PFK
reaction on D-fructose-6-P concentra-
tion in the presence of various nucleo-
tides, All the nucleotides were tested
at a concentration of 1.0 mM., Mg++ and
ATP were maintained at 1.3 mM and 2 mM,
respectively, and D-fructose-6-P was
varied as indicated. The amount. of

enzyme in all assays was 0.0017 unit.
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Effect of Nucleoside Monophosphates

AMP was found to relieve ATP inhibition of 6-PFK
(Pig. 27). However, due to the presence of a consider-
able adenylate kinase activity in the partilally purified
enzyme preparation, it 1s not certain whether AMP 1itself
or ADP was the compound responsible for reversing the
1nh1b1tion. Atkinson and Walton (95) reported a similar
reversal of ATP inhibition in E. coli 6-PFK by both ADP
and AMP; however, 1t was later established (96) that,
with an adenylate kinase-free enzyme preparation, only
ADP was effective., Therefore, the previously observed
effect of AMP was actually an artifact due to the conver-
sion of AMP to ADP catalyzed by the adenylate kinase con-
taminant in the partially purified E. coll preparation.

The effect of other nucleoside monophosphates
(cyclic AMP, CMP, GMP, IMP, and UMP) on 6-PFK was tested
under different conditions., At inhibilting ATP levels
(0.4 mM D-fructose-6-P, 1.3 mM Mg**, and 2.0 mM ATP),
none of the above nucleotides, when tested at 3.3 mM,
released ATP inhibition. With a non-inhibiting ATP
level of 0,67 mM, nelther inhibition ﬂor activation was
detected.

None of the above nucleoside monophosphates,
when tested at 3.3 mM, had any effect on 1-PFK activity
when the Mg** concentration was maintalned at twice the

total concentration of the nucleotides in the assay., A
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slight apparent enhancement of ATP inhibltlon was detected

under conditions of inhibiting ATP level (1.3 mM Mgtt,

2,0 mM ATP, and 0.2 mM D-fructose-1-P), This effect was
likely due to the unavailability of some of the Mg**+ for
the formation of MgATP complex since Mg*+ can also form

a complex with other nucleotides.

Substrate Specificlty

The non-specific pyruvate kinase-lactate dehydro-
genase-linked assay for 1-PFK was used to test for pos-
sible phosphorylation of D-fructose and several sugar
phosphates other than D-fructose-i1-P., With 0.0056 unit
of 1-PFK, no phosphorylation (0.03% of the rate with

D-fructose-1-P) was observed with the following compounds;’
D-fructose, L-fructose-1-P, D-mannose-6-P, D-fructose-6-P,
D-glucose-6-P, and D-glucose-1-P, L-Fructose-1-P was
tested at a concentration of 10 mM, while the rest were
tested at 33.4 mM.
The specific aldolase-linked assay was used to
test for inhibition of phosphorylation of 0.53 mM D-
fructose-1~P, The following compounds, when added at 33,4
mM, did not inhibit: D-mannose-6-P, D-glucose-6-P, D-
glucose-1-P, and D-fructose, No inhibition was observed
with 10 mM L-fructose-1-P. A concentration of 33,4 mM
D-fructose-6-P, however, totally inhibited the reaction.
The 6-PFK preparation had not been purified
enough to permit meaningful substrate specificity studies

to be conducted.
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Test for Inhibition of 6-PFK by
D=Fructose=-1-P

Mutant DD31, lacking 1-PFK activity, was employed
to test for possible inhibition of D-fructose-6-P phos-
phorylation by D-fructose-1-P. The mutant was grown on
D-glucose, and 6-PFK was purified 6-fold as described
for the wild type. D-Fructose-1-P at 6.7 mM did not
inhibit the phosphorylation of 0.33 mM D-fructose-6-P
in an aldolase-linked assay.

Inhibition. of 1-PFK by
D-Fructose-6-P

The specific aldolase-linked assay was used to
test for inhibition of the phosphorylation of D-fructose-
1-P by D-fructose-6-P. The inhibition was competitive
with D-fructose-1-P (Fig.' 28) and the K4 for D-fructose-
6P, as determined from a kinetic plot (Fig. 29), is

approximately 1.5 mM.

FDP Inhibition

The pyruvate kinase-lactate dehydrogenase-linked
assay for 1-PFK was used for the inhibition study with
FDP, As shown in Fig. 30, FDP competitively inhibited
D-fructose-1-P phosphorylation. The Kj for FDP was
approximately 7 mM (Fig. 31).

The presence of FDPase contaminant in the 6-PFK

preparation precluded the determination of the effect of

FDP on 6-PFK activity.







Figure 28:
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Lineweaver-Burk plot showing the rela-
tionshlp of D-fructose-1-P concentra-
tion to 1-PFK reaction velocity in the
presence of various concentrations of
D-fructose-6-P., The routine aldolase-
linked assay was used, except that D-
fructose-1-P and D-fructose-6-P were
varied as indicated. The amount of

enzyme in all assays was 0.001 unit.
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Flgure 28
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Figure 29:
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Kinetic plot for the determination of
the Ky of L-PFK for D-fructose-6-P.
The data are taken from the experi-

ment described in Figure 28.
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Figure 30:
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Lineweaver-Burk plot showing the rela-

tionship of D-fructose-1-P concentration
to 1-PFK reaction velocity in the
presence of various concentrations of
FDP. The routine pyruvate kinase-lactate
dehydrogenase-linked assay was used,
except that D-fructose-1-P and FDP were
varied as indicated in the plot. The
amount of enzyme in all assays was 0,001

unit.
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Figure 30
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Figure 31: Kinetic plot for the determination of

the Ky of 1-PFK for FDP. The data are
taken from the experiment described in

Figure 30.
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Effect of P,

Py at 2,6 mM did not relieve ATP inhibition of
6-PFK when the Mgtt to ATP ratio was 0.7:1; neither
inhibition nor activation could be detected when the
Mg++ concentration was twice the ATP concentration.

P; had no effect also on 1-PFK activity when
tested at 2,7 mM under conditions of inhibiting or non-

inhibiting ATP levels.

Effect of Citrate

Citrate at 6.7 mM had no effect on 6-PFK activ-
ity under conditions of limiting ATP and D-fructose-6-P
(0.67 mM ATP, 0,67 mM D-fructose-6-P, and 1.3 mM Mg**),

In contrast, citrate was found to be a competi-
tive inhibitor of D-fructose-1-P in the 1~-PFK reaction
(Fig. 32). The K; for citrate was approximately 0.85

mM (Fig. 33).

Effect of pH

A pH-activity profile of 6-PFK (Fig. 34A) gave a
broad curve, with optimum activity at about pH 8. No
deviation from sigmoidal kinetics was observed over a
pH range from pH 7 to pH 9 (Fig. 35). There was no
apparent increase in ATP inhibition at low pH values,
and the effectivity of D-fructose-6-P in relieving ATP
inhibition did not seem to be affected by the pH of the

reaction.







Figure 323
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Lineweaver-Burk plot showing the rela-
tionship of D-fructose-1-P concentration
to 1-PFK reaction veloclty in the pres-
ence of various concentrations of citrate.
The routine aldolase-linked assay was
used, except that D-fructose-1-P and
citrate were varied as indicated. The
amount of enzyme in all assays was

0.0018 unit,
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Figure 33:
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Kinetic plot for the determination of
the K; of 1-PFK for citrate. The data
are taken from the experiment described

in Figure 32,
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Figure 33
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Figure 34: pH-activity profiles of 6-PFK and 1-PFK,
The buffers (0,067 M) used were cacodylate,
pH 6.0 to 7.0, glycylglycine, pH 7.0 to
8.0, and glycine, pH 8.5 and 9.0. pH
measurements were made in duplicate reac-
tion mixtures. A, pH-actlvity profile of
6-PFK. B, pH-activity profile of 1-PFK.
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Figure 35:

156

Dependence of rate of the 6-PFK reac-
tion on D-fructose-6-P concentration
at different pH values. The buffers
(0,067 M) used were glycylglycine, pH
7.0 to 8.0, and glycine, pH 8.5. ATP
and Mg"’"’ were maintained at 2 mM and

2,7 mM, respectively.
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Figure 35
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A pH-activity profile of 1-PFK (Flg. 34B) showed
that the pH optimum of the reaction is pH 7.5. No shift
in the pH curve was observed when the D-fructose-1-P
concentration was varied in the range of 0.2 mM to 6.7

mM,.

Molecular Welght Determination

The molecular weights of 6-PFK and 1-PFK were
estimated by Sephadex G-100 chromatography as described
by P. Andrews (104), Pig heart malic dehydrogenase
(MW 70,000) (105), yeast alcohol dehydrogenase (MW
150,000) (106, 107), and horse heart cytochrome c
(MW 12,400) (108) were used as molecular weight standards.
Sodium phosphate buffer (0,02 M, pH 7.5) was used to
equllibrate the column (25 x 1.2 cm) of Sephadex G-100
and to elute 20-drop fractions., The elution pattern of
the proteins is shown in Fig. 36, From a plot of elu-
tion volume, Vg, versus log MW of the standards (Fig. 37),
the molecular weight of 6-PFK was estimated to be approx-
imately 100,000 and that of 1-PFK to be approximately
75,000,






Figure 36:

159

Elution profile of 1-PFK, 6-PFK, malic
dehydrogenase, alcohol dehydrogenase,
and cytochrome ¢ on a Sephadex G-100

column, Details are as described in

the text.
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Figure 37:

161

Plot of elution volume Ve vs log MW of
the standards for the estimation of the

molecular weights of 1-PFK and 6-PFK,
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DISCUSSION

6-PFK functions in D-glucose metabolism of A.
aerogenes presumably in a manner similar to that of
analogous 6-PFKs from a variety of sources. A con-
stitutive FDPase hydrolyzes the product back to D-
fructose-6-P. For this reason, the D-fructose-6-P-FDP
cycle may function as a net ATPase if not controlled
(57). If properly controlled, the cycle can regulate
both glycolytic and gluconeogenic rates and maintaln
the delicate balance of nucleotides within the cell.
It 1s therefore necessary for the 6-PFK reaction to be
regulated, On the other hand, the inducible 1-PFK,

which functions in D-fructose metabolism of A. aerogenes,

18 not known to participate in such a "futile" cycle.

It 1s therefore highly probable that 1-PFK is not regu-
lated by the mechanisms governing 6-PFK activity. The
present studies were conducted to characterize 1-PFK

and to compare 1its properties and control mechanisms
with those of 6-PFK from the same organism. Since 6-PFKs
from a number of organisms have already been purified
and characterized, an extensive purification of the

enzyme from A, aerogenes was not attempted.

The findings described in thils investigation are

consistent with the central role played by 6-PFK in
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glycolytic control and in maintaining the delicate balance
of nucleotides within the cell. More important, this
thesis establishes that 1-PFK has kinetic propertles very
different from those of 6-PFK.

ATP inhibits both enzymes when the Mg++ to ATP ratlo
in the assay falls below 2:1. The reaction rate with
6-PFK, like that of the enzyme from E. coli (95), exhibits
a sigmoldal dependence on D-fructose-6-P concentration
which becomes more pronounced as the Mg** to ATP ratio 1is
decreased. The apparent K, for D-fructose-6-P is depen-
dent on the relative amounts of Mg*t and ATP in the assay.
On the other hand, 1-PFK exhibits hyperbolic kinetics with
respect to the D-fructose-1-P concentration even under
conditions of inhibiting ATP levels, and the apparent Kn
for D-fructose-1-P remains constant with varying ATP and

Mg+*

concentrations.,

A sigmoldal curve of rate vs Mg++ concentration is
obtained with both enzymes. Increased concentrations of
D-fructose-6-P shift the curve of the 6-PFK reaction from
a sigmoidal to a hyperbolic one, whereas, in the 1-PFK
reaction, increased D-fructose-1-P levels have no effect
on the sigmoidal character of the curve or on the apparent
Kp for Mg*t., Since Mg** and ATP form a MgATP complex,
which 1s the real substrate of the reaction (113), it is
not certain whether the relief of ATP inhibition by Mg*t
in the 1-PFK reactlion is due to the formation of the com-

plex or to the binding of Mg** to a separate site.
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Nelther enzyme is strictly specific for ATP as

phosphoryl donor. 6-PFK utilizes ITP, GTP, CTP, UTP,
and TTP, while 1-PFK utllizes GTP and ITP. The mechan-
ism of inhibition of the nucleoside triphosphates seem
to be similar for both enzymes. In this respect A,
aerogenes 6-PFK behaves differently from those from
mammalian sources, where inhiblition by other nucleoside

triphosphates exhibits a pattern simlilar to ATP inhibi-

tion (71, 73, 78). 1In yeast (92-94) and E. coli (95),
other nucleoside triphosphates elther inhibit the activ-
ity very slightly or not at all even at low Mg++ concen-
trations,

Both AMP and ADP were found to relieve ATP inhibi-
tion of 6-PFK, but since a considerable amount of adenylate
kinase activity was present as a contaminant in the par-
tially purified preparation, it 1s not clear whether both
compounds are in fact effective. A similar relief of ATP
inhibition by other nucleoslide diphosphates and the
absence of any effect with othgr nucleoside monophos-
phates suggest that ADP, rather than AMP, 1s the active
compound. The absence of any effect on 6-PFK with cyclic
AMP and other nucleoside monophosphates is in agreement
Wwith the results obtained with the enzyme from yeast
(92-94) and E. coli (95, 97). Mammalian 6-PFKs are
generally not affected by most nucleoside monophosphates

(71, 73, 78); cyclic AMP, however, is known to be very

effective in relieving ATP inhibition (71-75, 78, 81, 84),
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ADP, AMP, cyclic AMP, and various other nucleoside
mono- and diphosphates have no effect on the 1-PFK reac-
tion when the Mg++ to total nucleotide ratio in the assay
is maintained at 2:1. In some cases, a slight inhibition
is observed at lower ratios; this effect may be due to
ATP alone, rather than to enhancement of ATP inhibition
by the other nucleotides.

PH has no effect on the extent of ATP inhibition

of 6-PFK or on the sigmoidicity of the curve of rate vs x
D-fructose-é-P concentration. This finding is in con- ;
trast with those for several mammalian 6-PFKs (72, 73, 75,
84, 99, 100). To my knowledge, no studies have as yet
been reported on the effect of pH on 6-PFKs from yeast
and other bacteria.
According to Monod, Wyman, and Changeaux (103),
allosteric proteins may be classified into elther the K
system or the V system. In the K system, both substrate
and effector have differential affinities for the two
states of the protein, and the presence of one will
modify the apparent affinity of the protein for the
other, In the V system, the substrate has the same
affinity for the two states, while the effector has
differential affinities. The two states of the protein
differ in their catalytic activity. The effector will
therefore act as an inhibitor if it has maximum affinity

for the inactive state, or as an activator if it has

maximum affinity for the active state. The effect of

e —
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and various nucleoside diphosphates on the Ky of 6-PFK

ngtt

for D-fructose-6-P and the constancy of the maximal
veloclty suggest that A. aerogenes 6-PFK belongs to the K
system type of allosteric proteins,

Aside from A. aerogenes 1-PFK, Dictyostelium

discoideum 6-PFK is the only PFK known to deviate from

the general regulatory pattern of a typical 6-PFK (91).
Previous investigations on thlis organism have revealed
that proteins and amino acids are the primary energy
sources for growth (109-111), and that the main role of
D-glucose seems to be to supply hexose units for cell wall
synthesis (112), It was suggested, therefore, that the
unusual regulatory pattern of the 6-PFK from this organism
may reflect an altered physiological function, that 1s, as
an enzyme in a supplementary energy-ylelding metabollism
under conditions of high glycogen and excess D-glucose
(91).

Although A. aerogenes 1-PFK 1s not controlled by
mechanisms similar to those operative for 6-PFK, the

observed in vitro inhibition of the former enzyme by

D-fructose-6-P, citrate, and, to some extent, FDP, may
suggest possible in vivo control. Citrate, which is an
intermediate in the tricarboxylic acid cycle, is a feed-
back inhibitor of the enzyme, Although the inhibition
seems to be competitive with D-fructose-1-P, it is diffi-
cult to visualize citrate as binding to the D-fructose-1-P

site, since its structural formula 1is very different from
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that of D-fructose-1-P. Further studies are needed to
elucldate the real mechanism of citrate inhibition., FDP
inhibits competitively with D-fructose-1-P, but the
rather high Kj of approximately 7 mM suggests that the
Inhibition may not be of major physiological significance.
D-Fructose-6-P, the product of the FDPase reaction, is a
more potent (K3 = 1.5 mM) inhibitor of 1-PFK activity.

A, aerogenes 6-PFK, like that from E. coll, was
not inhibited by citrate., 6-PFKs from various organisms
are known to be inhibited by citrate (70, 80-84, 88, 89),
The inhibition of sheep brain (80) and rat heart 6-PFKs
(83) is competitive with D-fructose-6-P.

It is not known at this time whether the 1-PFK
reaction 1s a rate-controlling step in D-fructose metabo-
lism of A. aerogenes. But if it 1s, its control mechan-
isms are very different from those of 6-PFK from the same
organism,

The K of A, aerogenes 1-PFK for either substrate
is not affected by the concentration of the other sub-
strate, Such kinetics are consistent with a sequential
mechanism of substrate binding (41). Similar findings
have been reported for sheep brain 6-PFK at pH 8 (71).

In contrast, Dictyostelium discoideum 6-PFK (91) exhibits

parallel kinetics characteristic of the so-called ping-

pong mechanism of substrate binding (41).







SUMMARY OF PART II

The relative significance of the D=-fructose-1-P
and D-fructose-6-P pathways in D-fructose metabolism of

A. aerogenes PRL-R3 was assessed by mutant analysis,

Mutant A9-1, which grew well on both D-fructose and
glycerol but not on D-glucose, lacked 6-PFK activity
but showed normal levels of 1-PFK and FDPase activities,
On the other hand, mutant 012, which grew well on D-glu-
cose but not on D-fructose or glycerol, lacked FDPase
but had a normal level of 6-PFK activity. The data thus
indicate that the pathway of D-fructose metabolism 1s
primarily through D-fructose-1-P, and that the D-fructose-
6-P pathway 1s operational in D-glucose metabolism.
Comparative studles on the properties and regula-
tion of partially purified 6-PFK and 1-PFK from A,

aerogenes were conducted. A plot of rate vs substrate

concentration revealed that 6-PFK exhibits a sigmoidal
dependence of rate on D-fructose-6-P concentration,
whereas 1-PFK shows a hyperbolic dependence of rate on
D-fructose-1~P concentration. ATP inhibited both enzymes
under conditions of Mg++ to ATP ratilos below 2:1, The
inhibition of 6-PFK was relieved by Mg**, D-fructose-6-p,
ADP, and various other nucleoside diphosphates. In con-

trast, the inhibition of 1-PFK could be relleved by Mg**
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only. Both enzymes showed a sigmoldal dependence of rate
on Mg++ concentration. Increased levels of D-fructose-6-P
shifted the 6-PFK curve from sigmoidal to hyperbolic,
whereas D-fructose-1-P had no effect on a similar plot for
1-PFK. Other nucleoside triphosphates were used as phos-
phoryl donors by both enzymes, and inhibited activity
when the Mgtt to ATP ratio was below 2:1, In contrast
with the finding with ATP, the inhibition of 6-PFK by
other nucleoside triphosphates was not relieved by D-
fructose-6-P, and the rate of the reaction exhibited
hyperbolic dependence on D-fructose-6~P concentration,
Citrate, FDP, and D-fructose-6-P inhibited the 1-PFK reac-
tion competitively with D-fructose-1-P, suggesting possible
in vivo control of actlivity. The data indicated that
whereas 6-PFK exhibits allosteric properties and a regu-
latory pattern typical of 6-PFKs from a variety of organ-
isms, 1-PFK behaves more like a non-allosteric kinase,
The two enzymes were further characterized with respect
to substrate specificity, pH optimum, and molecular
welght. The Kp of 1-PFK for either substrate did not
vary with the concentration of the other, This finding
18 consistent with a sequential mechanism of substrate

binding to the enzyme,






9.

10.

11,

12,

13.

14,
15.

REFERENCES

DeMoss, R, D., Bard, R. C., and Gunsalus, i. Ce.,
J. Bacteriol., 62, 499 (1951).

Gunsalus, I. C., and Gibbs, M., J. Blol. Chem,,
194, 871 (1952).

DeMoss, R. D., J. Cell. Comp. Physiol., 41, Suppl.
1, 207 (1953).

Busse, M., Kindel, P. K., and Gibbs, M., J. Blol.
Chem.. 236, 2850 (1961)

Eltz, R, W., and Vandemark, P, J., J. Bacteriol.,
79, 763 (1960).

Cifferi, 0., Blakley, E. R., and Simpson, F. J.,
Can. J. Microbiol., 5, 277 (1959).

Palleroni, N. J., and Doudoroff, M., J. Blol. Chem.,
218 535 (1956)0

Anderson, R. L., and Allison, D. P., J. Biol. Chem.,
240, 2367 (1965)

Bueding, E.. and MacKinnon, J. A., J. Biol. Chem.,
215, 495 (1955).

Agosin, M., and Aravena, L., Blochim. Blophys. Acta,
34, 90 (1959).

Moore, D., and O'Kane, D, J., J. Bacteriol., 86,
766 (1963).

Medina, A., and Sols, A,, Biochim. Biophys. Acta, 19,
378 (1956). - E—

Sapico, V., and Anderson, R. L., J. Bilol. Chem., 242,
5086 (1967).

DeMoss, R. D., J. Bacteriol., 93, 1692 (1968).

Rogosa, M.. Mitchell, J. A., and Wiseman, R. F.,
J. Bacteriol., 62, 132 (1951).

171






16.

17.

18.

190

20.

21,

22,

23,

24,

25.

26,

27,

28,
29,

30.

31.

32,

172

Costilow, R. N,, Etchells, J. L., and Anderson, T, E.,
Appl., Microbiol., 12, 539 (1964),

Kamel, M. Y., Allison, D. P., and Anderson, R. L.,
J. Biol. Chem., 241, 690 (1966).

Mayo, J. W., and Anderson, R, L., Carbohyd. Res., 8,
(1968).

Isbell, H. S., and Frush, H. L., in R, L. Whistler
and M. L., Wolfrom (Editors). Methods in Carbohydrate
Chemistry, Vol. I, Academic Press, N. Y., 1962, p.
146,

 Kamel, M. Y., Hart, R. R., and Anderson, R. L.,

Anal. Blochem., 18, 270 (1967).

- Anderson, R. L., In S. P, Colowick and N, O, Kaplan

(Editors), Methods in Enzymology, Vol. 9, Academic
Press, N. Y., 1966, Pe %)

Warburg, O., and Christian, W., Biochem. Z., 310,
384 (1941).

Cecil, R., and Ogston, A, G., Bilochem. J., _2, 105
(1951)

Martin, R. G., and Ames, B, N., J. Biol. Chem., 236,
1372 (1961).

Tanford, C., Physical Chemistry of Macromolecules,
John w1ley and Sons, Inc., N. Y., 1961, p. 3%81.

Sols, A,, and Crane, B. Kep, Jo Biol. Chem., 210, 581
(1954).

Sols, A., de la Fuente, G., Villar-Palasi, C,, and
Asencio, C., Blochim. Biophys. Acta, 30, 92 (1958).

Davidson, E., A.,, J. Biol. Chem., 235, 23 (1960),

Seed, J. R., and Baquero, M. A,, J. Protozool., 12,
427 (1965).

Salas, J., Salas, M., Vinuela E., and Sols, A.,
J. Biol. Chem., 240, 1014 (1965)

Parry, M. J., and Walker, D, G., Blochem. J., 99,
266 (1966).

Grossbard, L., and Schimke, R. T., J. Blol. Chem.,
241, 3546 (1966). ‘







33.

34,

35.

36.

37.

38.

39.

Bo,

L1,
42,
13,
L,
bs.
L6,
w7,
48,

49.

173

Reeves, R. E., Montalvo, F., and Sillero, A.,
Biochemistry, 6, 1752 (1967).

Sebastian, J., and Asencio, C., Blochem. Biophys.
Res., Commun., 28, 197 (1967).

Crane, R. K., 1n P. D, Boyer, H. Lardy, and K.
Myrback (Editors), The Enzymes, Vol. 6, Academic
Press, N. Y., 1962, p. 47,

Andersen, B., and Degn, H., Acta Chem. Scand., 16,
215 (1962)

Eliel, Eo L." Allinger, No Lo, Angyal, Sa Jo, and.
Morrison, G. A., Conformational Analysis, Interscience
Publishers, N. Y., 1965, p. 405,

Isbell, H. S., and Pigman, W, W., J. Bes. Natl.
Bur. Stand., 18, 141 (1937).

Pontremoli, S., Luppis, B., Wood, W. A., Traniello,
S., and Horecker B. L., J. Biol. Chem, , 240, 3464
(1965).

Bitensky, M. W., Yielding, K. L., and Tompkins, G., M.,
J. Biol. Chem., 240, 663 (1965).

Cleland, W. W., Biochim. Biophys. Acta, 67, 104
(1963)

Fromm, H. J., and Zewe, V., J° Biol. Chem., 237,
3027 (1962)

Zewe, V., Fromm, H., J., and Fablano, R., J. Blol.
Chem.. 239, 1625 (1964)

Fromm, H. Je, Silverstein, E., and Boyer, P. D.,
J. Biol. Chem., 239, 3645 (1964).

Gulbinsky, J. S., and Cleland, W. W., Biochemistry,
7, 566 (1968).

Hanson, T. L., and Fromm, H. J., J. Blol. Chem.,
242 501 (1967) .

Mourad, N., and Parks, R. E., Jr., Biochem. Blophys.
Res, Commun., 19, 312 (1965).

Garces, E., and Cleland, W, W,, Biochemistry, 8,
633 (1969).

Henson, T. L., and Fromm, H. J., J. Biol. Chem.,
2h0, 4133 (1965).







50.

51,

52,

53
5k,

55

564

57,

58,

59
60.

61.
62,

63.

64,

65

66.

174

Fromm, H, J., and Zewe, V,, J. Biol. Chem., 237,
1661 (1962),

Copley, M., and Fromm, H., J., Biochemistry, 6, 3503
(1967).

Fromm, H. J., Biochem, Biophys. Res. Commun., 32,
672 (1968)s

Fromm, H, J., Fed. Proc., 28, 852 (1969).

Hanson, T. E., and Anderson, R. L., J. Blol. Chem.,
2#1, 1644 (1966).

Hanson, T. E., and Anderson, R. L., Proc. Natl.
Acad. Sci. U. S., 61, 269 (1968).

Sapico, V., Hanson T E., Walter, R. W., and
Anderson, R. L., g. Bacteriol., 6. 51 (1968).

Serutton, M. C., and Utter, M. F., in P, D. Boyer
(Editor), Ann. Rev., Biochem., Vol. , Annual
Review, Inc,, Palo Alto, Calif., 1968, p. 249,

Reeves, R. E., Warren, L. G., and Hsu, D. S.,
J. Blol. Chem., 241, 1257 (1966).

Fraenkel, D. G., J. Biol. Chem., 243, 6458 (1968).

Magasanik, B., Cold Spring Harbor Symp. Quant,., Biol.,
26, 249 (1961)

Neidhart, F. C., J. Bacteriol., 80, 536 (1960).

Fraenkel, D, G., and Horecker, B, L., J. Bacterlol.,
90, 837 (1965). -

Morrissey, A. T. E., and Fraenkel, D. G., Blochen.,
Biophys. Res. Commun., 32, 467 (1968),

Wood, W, A., In P, D. Boyer (Editor), Ann. Rev.
Blochem., Vol. 35, Annual Review, Inc,, S, Palo Alto,
Callf., 19656, p. 521,

Atkinson, D. E., in P, D, Boyer (Editor), Ann. Rev.
Blochem., Vol. 35, Annual Review, Inc., Palo 1o Alto,
aaIiz.. 1933-: Pe 85.

Stadtman, E. R., in F, F, Nord (Editor), Advances
in Enzx%olosz. Vol. 28, Interscience Publishers,
No o9 9 '} po Elo



67.

68.

69,

70.
71.
72,
73.
7h.
75.
76.
7.

78.
79.
80.

81.

82.

83.

‘242, 2035 (1967).

175

caputto, R., Barra, H. S., and Cumar, F. A., in
P. D. Boyer (Editor), Ann. Rev. Biochem., Vol. 36,
Ammual Review, Inc., Palo Alto, Calif., 1967, p. 211,

Lowry, O. H., Passonneau, J. V., Hasselberger, F., X.,
and Schulz, D. W., J. Biol. Chem., 239, 18 (1964).

Williamson, Je R., in B. Chance, R. W. Estabrook,
and J, R. Williamson (Editors), Control of Energy
Metabolism, Academic Press, N. Y., 1965, DP. 333

Passonneau, J. V., and Lowry, O. H., Biochem. Biophys.
Res, Commun., 13, 372 (1963).

lowry, O, H., and Passonneau, J. V., J. Blol. Chem.,
241, 2268 (1966).

Mansour, T. E., and Ahlfors, C. E., J. Biol. Chem.,
243, 2523 (1968).

Uy&da, K., and RaCkeI‘, Eo, _ﬁ_I_O BiOl. Chemog 2“’0' 4682
(1965).

Passonneau, J. V., and Lowry, O. H., Blochem. Blophys.
Res. Commun., 7, 10 (1962).

Parmeggiani, A., Luft, J. H., Love, D, S., and Krebs,
Ee Gey Jo Biol. Chem., 241, 4625 (1966),

Paetkau, V. E,, and Lardy, H., A., J. Biol, Chem.,

Paetkau, V. E., Younathan, E. S., and Lardy, H. A.,
_J_.o. Mol. BiO:Lo, 22, 721 (1968)0

Mansour, T. E., J. Biol. Chem., 238, 2285 (1963).

Mansour, T, E., J. Biol, Chem., 240, 2165 (1965).

Underwood, A, H., and Newsholme, E. A., Biochem, J.,
104, 296 (1967). T

Denton, R, M., and Randle, P. J., Blochem. J., 100,
420 (1966). o .

Underwood, A. H., and Newsholme, E. A,, Blochem. J.
95, 868 (1965). e T

Pogson, C. I,, and Randle, P. J., Blochem, J.,
5o (1566). R ochem, J., 100,







84,

85.

86.

87.

88.

89.

90.

91.

92.

9k,

95.

96.

97,

98.

99.
100,

101,

176

Lou, M. F., and Kinoshita, J. H., Biochim. Biophx
Acta, 141, 547 (1967).

Grasso, A., and Natalizi, G. M., Comp. Biochem,
Physiol., 26, 979 (1968).

Mansour, T. E., and Mansour, J. M., J. Biol. Chem.,
237, 629 (1962)

Stone, D. B., and Mansour, T. E., Mol. Pharmacol.,

3, 177 (1967).

Dennis, D. T., and Coultate, T. P., Blochim. Blophys.
Acta, 146, 129 (1967).

Dennis, D, T., and Coultate, T. P., Biochem. Biophys.
Res., Commun., 25, 187 (1966).

Lowry, 0. H., and Passonneau, J. V., Arch, Expt.
Path. Pharmak., 248, 185 (1964).

Baumann, P., and Wright, B. E., Biochemistry, 7,
3653 (1968)

Ramaiah, A., Hathaway, J. A., and Atkinson, D. E.,
Je Biol. Chem., 239, 3619 (1964),

Vinuela, E.,, Salas, M. L., and Sols, A., Biochem,
Biophys. Res. Commun., 12, 140 (1963).

Lindell, T. J., and Stellwagen, E., J. Blol. Chem.,
243 90? (1968),

Atkinson, D. E., and Walton, G. M., J. Biol. Chem.,
240, 757 (1965).

Griffin, C. E., Houck, B. N.,, and Brand, L., Biochem.
Biophys. Res. Commun., 27, 287 (1967).

Blangy, D., Buc, H., and Monod, J., J. Mol. Biol.,
31, 13 (1968). —

Kemp, R. G., and Krebs, E, G., Biochemistry, 6, 423
(1967).

Ui, M., Biochim. Blophys. Acta, 124, 310 (1966).

Trivedi, B., and Danforth, W. H., J. Biol. Chen.,
241, 4110 (1966).

Ma yo, J. W., and Anderson, R. L., J. Biol. Chem.,
243, 6330 (1968).







102,

103.

104,
105.

106.

107.

108,
109.

110.

111,

112,

113,

177

Levin, 0., in S. P. Colowick and N. O. Kaplan (Editors),
Methods in Enzymology, Vol. V, Academic Press, N. Y.,

1962, p. 27.

Monod, J., Wyman, J., and Changeux, J. P., J. Mol.
BiOIQ’ !—_g. 88 (1965)‘

Andrews, P., Biochem. J., 96, 595 (1965).

Thorne, C. J. R., and Kaplan, N. 0., J. Biol. Chem.,
238, 1861 (1963).

Kagi, J. H. R., and Vallee, B., J. Biol. Chem., 235,
3188 (1960).

Hayes, J. E., and Velick, S, F., J. Biol. Chem., 207,
225 (1954),

Margoliash, E., J. Biol. Chem., 237, 2161 (1962),

Sussman, M., and Bradley, S. G., Arch. Biochen.
Biophys., 51, 428 (1954).

Gezelius, K., ggysiol. Plantarﬁm, 15, 587 (1962).

Wright, B. E., Bacteriol. Rev., 27, 273 (1963).

Pannbacker, B, G., and Wright, B. E., in M. Florkin
and B, T. Scheer (Editors), Chemical Zoology, Vol. 1,
Academic Press, N. Y., 1967, p. 610.

lardy, H, A., and Parks, R. E., Jr., in O. H. Gaebler
(Editor), Enzymes: Units of Biological Structure and
Function, Academic Press, N. Y., 1956, p. 584.



















e
‘UU:

i
3 129

UNIVERSITY LIBRARIES
WL
03169 5327

il
3




