INVESTIGATION OF MULTIPLE STELLAR POPULATIONS IN GLOBULAR CLUSTERS WITH THE SLOAN DIGITAL SKY SURVEY By Jason P. Smolinski A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Astrophysics and Astronomy 2011 ABSTRACT INVESTIGATION OF MULTIPLE STELLAR POPULATIONS IN GLOBULAR CLUSTERS WITH THE SLOAN DIGITAL SKY SURVEY By Jason P. Smolinski This dissertation describes the study of abundance variations among stars in Galactic globular clusters using the large set of spectroscopic data collected by the Sloan Digital Sky Survey (SDSS). Globular clusters have typically been considered to be simple stellar populations – groups of stars that are coeval and chemically homogeneous. Observations within the last forty years have shed light on the possibility that they are not so simple after all by revealing the presence of star-to-star variations in light-element abundances. Additionally, several globular clusters are known to harbor multiple populations of stars by the presence of multiple sequences on a color-magnitude diagram. In this study, the procedure for membership selection is first described. Stars are selected from the vast data set available from SDSS Data Release 7 and several cuts are made to reduce the sample down to only those stars that are members of the globular clusters in this sample. This procedure is also performed on three open clusters as well and is further used to validate the current SEGUE Stellar Parameter Pipeline. CN and CH molecular absorption indices are then measured for all globular cluster member stars and their distributions are analyzed. Bimodal distributions in CN are seen on the red giant branch in all clusters with [Fe/H] > −2.1, and hints of bimodality are seen for two metal-poor clusters as well. CN-CH anticorrelations are also seen and the implications are discussed. The observed distributions of CN absorption bandstrengths are examined and compared to theoretical predictions from two-population models. These results are combined with radial distributions and positions on the color-magnitude diagram as evidence for the presence of multiple populations of stars within the clusters in this sample. COPYRIGHT Copyright c by Jason P. Smolinski 2011 DEDICATION To Ashley, who was there in the beginning; to my parents, who watched it all play out. iv ACKNOWLEDGMENT I would like to thank all those who supported me during my time in graduate school – my parents, sisters, and friends who kept me going and knew I could do it. Your encouragement was, and is still, much appreciated. I would of course like to thank my advisor, Timothy Beers, for taking a chance on me, giving constant words of affirmation, and being patient with me as I learned how to write scientific journal papers. Thanks also to Sarah Martell for the insightful and helpful discussions and collaboration. Finally, I would like to acknowledge the efforts of my little MacBook, which did far more work than it ever could have anticipated. Certainly more than any Windows machine could have done. v TABLE OF CONTENTS List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction 1.1 Overview and History of Observations 1.2 Proposed Explanations . . . . . . . . . 1.3 The Sloan Digital Sky Survey . . . . . 1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 SDSS, the SEGUE Stellar Parameter Pipeline, and the Sample 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 The Extended Validation Sample . . . . . . . . . . . . . . . . . . . . . . . 2.3 Cluster Membership Selection . . . . . . . . . . . . . . . . . . . . . . . . . 2.3.1 Likely Member Star Selection . . . . . . . . . . . . . . . . . . . . . 2.3.2 Selection of Adopted True Members . . . . . . . . . . . . . . . . . . 2.4 Determination of Overall Metallicities and Radial Velocities of the Clusters 2.5 Individual Cluster Discussion and Comparison with Previous Studies . . . 2.5.1 M92 (NGC 6341) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2 NGC 5053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.3 M53 (NGC 5024) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.4 M3 (NGC 5272) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.5 M71 (NGC 6838) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.6 NGC 2158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.7 M35 (NGC 2168) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.8 NGC 6791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 CN 3.1 3.2 3.3 and CH Absorption Bandstrengths in SDSS Globular Clusters Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Observational Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CN Bandstrength Distribution . . . . . . . . . . . . . . . . . . . . . . . 3.3.1 CN Absorption on the Red Giant Branch . . . . . . . . . . . . . 3.3.2 CN Absorption on the Subgiant Branch and Main Sequence . . 3.3.3 Hidden Substructure in Generalized Histograms . . . . . . . . . 3.4 CH Bandstrength Distribution . . . . . . . . . . . . . . . . . . . . . . . 3.4.1 CH Behavior at Low Metallicity . . . . . . . . . . . . . . . . . . 3.5 Correlations with Cluster Parameters . . . . . . . . . . . . . . . . . . . 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi . . . . . . . . . . . . . . . . . . . . ix . . . . 1 1 3 7 8 . . . . . . . . . . . . . . . . 10 10 11 15 15 25 26 41 41 42 42 43 44 44 45 46 46 . . . . . . . . . . 56 56 57 60 60 72 75 83 85 90 96 4 Evidence for Multiple Populations 4.1 Introduction . . . . . . . . . . . . 4.2 The Data Set . . . . . . . . . . . 4.3 CMD distributions . . . . . . . . 4.4 Radial Distributions . . . . . . . 4.5 Summary . . . . . . . . . . . . . in SDSS Globular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 99 101 103 111 118 5 Conclusions and Future Work 119 5.1 Results of this Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.2 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 A Atmospheric Properties of Adopted True Member Stars 123 A.1 Atmospheric Parameters Data Table . . . . . . . . . . . . . . . . . . . . . . 123 A.2 Photometric Parameters Data Table . . . . . . . . . . . . . . . . . . . . . . . 222 B CN, δCN, and CH Line Indices of True Member Stars 271 B.1 Spectroscopic Line Indices Data Table . . . . . . . . . . . . . . . . . . . . . 271 Bibliography 328 vii LIST OF TABLES 1.1 Reaction Chains in the CNO Cycle . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Cluster Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Cluster Photometric Properties . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Cluster Spectroscopic and Physical Properties . . . . . . . . . . . . . . . . . 14 2.4 Metallicities and Radial Velocities of Globular and Open Clusters . . . . . . 25 2.5 Residuals from Linear Regression on Metallicity . . . . . . . . . . . . . . . . 27 3.1 Individual Cluster RGB CN Number Ratios . . . . . . . . . . . . . . . . . . 93 3.2 Literature CN Number Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . 96 A.1 Atmospheric Properties of Adopted True Member Stars . . . . . . . . . . . . 123 A.2 Atmospheric Uncertainties of Adopted True Member Stars . . . . . . . . . . 173 A.3 Photometric Properties of Adopted True Member Stars . . . . . . . . . . . . 223 B.1 Line Indices of Adopted True Member Stars . . . . . . . . . . . . . . . . . . 271 B.2 Line Index Uncertainties of Adopted True Member Stars . . . . . . . . . . . 299 viii LIST OF FIGURES 1.1 Example Color-Magnitude Diagram, with labels . . . . . . . . . . . . . . . . 5 2.1 Stellar fields for validation clusters and first-cut radii . . . . . . . . . . . . . 17 2.2 CMDs for M92 and NGC 5053 and second-cut grids . . . . . . . . . . . . . . 19 2.3 CMDs for M53 and M3 and second-cut grids . . . . . . . . . . . . . . . . . . 20 2.4 CMDs for NGC 2158 and NGC 6791 and second-cut grids . . . . . . . . . . 21 2.5 CMDs for M35 and M71 and second-cut fiducial sequences . . . . . . . . . . 22 2.6 Likely member CMDs for M92, NGC 5053, M53, and M3 . . . . . . . . . . . 23 2.7 Likely member CMDs for NGC 2158, M35, and NGC 6791 . . . . . . . . . . 24 2.8 [Fe/H] and RV distributions for M92 and final-cut fits . . . . . . . . . . . . . 28 2.9 [Fe/H] and RV distributions for NGC 5053 and final-cut fits . . . . . . . . . 29 2.10 [Fe/H] and RV distributions for M53 and final-cut fits . . . . . . . . . . . . . 30 2.11 [Fe/H] and RV distributions for M3 and final-cut fits . . . . . . . . . . . . . 31 2.12 [Fe/H] and RV distributions for M71 and final-cut fits . . . . . . . . . . . . . 32 2.13 [Fe/H] and RV distributions for NGC 2158 and final-cut fits . . . . . . . . . 33 2.14 [Fe/H] and RV distributions for M35 and final-cut fits . . . . . . . . . . . . . 34 2.15 [Fe/H] and RV distributions for NGC 6791 and final-cut fits . . . . . . . . . 35 ix 2.16 [Fe/H] distributions versus (g − r)0 and S/N for true globular cluster member stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.17 [Fe/H] distributions versus (g − r)0 and S/N for true open cluster member stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.18 [Fe/H] distributions versus log g for true globular cluster member stars . . . 38 2.19 [Fe/H] distributions versus log g for true open cluster member stars . . . . . 39 2.20 CMD for true member stars of M92 . . . . . . . . . . . . . . . . . . . . . . . 48 2.21 CMD for true member stars of NGC 5053 . . . . . . . . . . . . . . . . . . . 49 2.22 CMD for true member stars of M53 . . . . . . . . . . . . . . . . . . . . . . . 50 2.23 CMD for true member stars of M3 . . . . . . . . . . . . . . . . . . . . . . . 51 2.24 CMD for true member stars of M71 . . . . . . . . . . . . . . . . . . . . . . . 52 2.25 CMD for true member stars of NGC 2158 . . . . . . . . . . . . . . . . . . . 53 2.26 CMD for true member stars of M35 . . . . . . . . . . . . . . . . . . . . . . . 54 2.27 CMD for true member stars of NGC 6791 . . . . . . . . . . . . . . . . . . . 55 3.1 CMDs for globular clusters with [Fe/H] < −2.0 . . . . . . . . . . . . . . . . 58 3.2 CMDs for globular clusters with [Fe/H] > −2.0 . . . . . . . . . . . . . . . . 59 3.3 Representative spectra for CN-weak and CN-strong stars . . . . . . . . . . . 61 3.4 Generalized histograms of δCNN distributions of RGB stars . . . . . . . . . 63 3.5 Raw CNN values versus absolute g-magnitude, binned by [Fe/H] . . . . . . . 65 3.6 Distributions of δCNN for RGB and SGB stars in each individual cluster . . 66 3.7 Generalized δCNN histogram for M53, combined with data from Martell et al. (2008b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.8 Comparison of metal-poor cluster RGB δCNN values with a pure Gaussian . 71 3.9 Distributions of δCNH for SGB and MS stars in each individual cluster . . . 74 x 3.10 Comparison of MS δCNH values with a pure Gaussian . . . . . . . . . . . . 76 3.11 Comparison of SGB δCNN values with a pure Gaussian . . . . . . . . . . . . 77 3.12 δCN values divided by CMD region for M92 . . . . . . . . . . . . . . . . . . 79 3.13 δCN values divided by CMD region for M15 . . . . . . . . . . . . . . . . . . 80 3.14 δCN values divided by CMD region for M2 . . . . . . . . . . . . . . . . . . . 81 3.15 δCN values divided by CMD region for M13 . . . . . . . . . . . . . . . . . . 82 3.16 Representative RGB spectrum comparing four popular CH line index definitions 84 3.17 CN-CH anticorrelation for cluster RGB stars, plotted as CH-vs-δCN . . . . . 86 3.18 CN-CH anticorrelation for cluster RGB stars, plotted as CH-vs-Mg 87 . . . . . 3.19 CH distribution versus luminosity for metal-poor cluster giants and subgiants 89 3.20 CH distribution versus luminosity for cluster subgiants and dwarfs . . . . . . 91 3.21 CN number ratio as a function of various cluster parameters . . . . . . . . . 92 3.22 CN number ratio as a function of cluster mass and luminosity . . . . . . . . 95 4.1 u0 vs. (u − g)0 CMD for M92, M15, NGC 5053, and M53 . . . . . . . . . . . 102 4.2 u0 vs. (u − g)0 CMD for M2, M13, M3, and M71 . . . . . . . . . . . . . . . 104 4.3 Cumulative distributions of (u − g)0 colors in CN groups in M15 . . . . . . . 106 4.4 Cumulative distributions of (u − g)0 colors in CN groups in M13 . . . . . . . 107 4.5 Cumulative distributions of (u − g)0 colors in CN groups in M3 . . . . . . . 108 4.6 u0 vs. (u − g)0 CMD for SGB stars in M92, M15, M2, and M13 . . . . . . . 109 4.7 CN number ratios for M13 RGB stars . . . . . . . . . . . . . . . . . . . . . . 110 4.8 CN number ratios for M3 RGB stars . . . . . . . . . . . . . . . . . . . . . . 112 4.9 RGB and SGB radial distributions . . . . . . . . . . . . . . . . . . . . . . . 114 4.10 Cumulative radial distributions, scaled to rt . . . . . . . . . . . . . . . . . . 116 xi 4.11 Cumulative radial distributions, scaled to rh . . . . . . . . . . . . . . . . . . 117 xii Chapter 1: Introduction 1.1 Overview and History of Observations Characterized by high central stellar densities and overall spheroidal shape, globular clusters (GCs) are the most massive single collections of stars in the Galaxy. Containing ∼106 stars, GCs have long been held up as the canonical example of a simple stellar population – a population of stars that is chemically homogeneous and coeval. Color-magnitude diagrams (CMDs) constructed from photometric data for GCs seemed to reveal populations each with a single age (e.g. Arp & Johnson, 1955). As individual objects, they are typically treated as isolated laboratories that provide ideal environments for the study of stellar dynamics and evolution. As a system, the ∼150 known Milky Way GCs surround the Galaxy and act as a record of the chemical conditions present during its formation, while also providing a means of estimating the age of the Milky Way as well as a minimum age for the Universe. Standard models for the formation of Galactic GCs have long held that they should display little star-to-star variation in their observed atmospheric elemental abundances. These models assume that the entire population of stars within a GC formed in one single epoch of star formation, appearing out of the collapsed remnants of an extremely massive molecular gas cloud. The gas clouds that form individual GCs are expected to be internally chemically homogeneous – and indeed, observations of iron abundances among stars within a given GC typically reveal a remarkably narrow distribution with a dispersion that is often smaller than the measurement uncertainties. When iron abundance is measured, it is typically measured with respect to that of the Sun and given the term metallicity. 1 Quantitatively, it takes the form [Fe/H] = log NFe − log NH star NFe . NH Sun (1.1) Metallicity is a quantity of interest because it is often used as a tracer of age. As massive stars evolve, they proceed to fuse atoms heavier than hydrogen in their cores, producing increasingly heavier elements. Once these stars explode as supernovae (SNe) or, in the case of their less massive relatives, become planetary nebulae, in both cases dispersing the products of nucleosynthesis out into the interstellar medium, subsequent generations of stars may form from this chemically enriched material and contribute to further enrichment. This implies that stars that have higher metallicities are younger than more metal-poor stars. In the case of stars within a GC, their relative uniformity in [Fe/H] has significantly contributed to the idea of a single epoch of star formation producing the entire population. While stars within a GC generally show little to no metallicity spread, with a few notable exceptions including ω Cen (e.g. Freeman & Rodgers, 1975; Butler et al., 1978; Norris & Da Costa, 1995), M54 (e.g. Carretta et al., 2010b,c), NGC 1851 (Carretta et al., 2010d) and possibly NGC 2419 (Cohen et al., 2010), observations over the past forty years (beginning with Osborn, 1971) have repeatedly shown that light elements often display a broad range of abundances. For all clusters of moderate to high metallicity ([Fe/H] > −2.0), significant scatter in light-element abundances has been observed on the red giant branch (RGB; e.g. Norris & Freeman, 1979; Suntzeff, 1981). Variations in carbon and nitrogen abundances are among the most commonly studied, typically through the strengths of the 3883 ˚ CN and A 4300 ˚ CH molecular absorption bands. A The observed surface variations in carbon and nitrogen abundances are part of a larger light-element pattern that involves enrichment in N, Na, and Mg along with depletion in C, O, and Al, and are often studied in correlated or anticorrelated abundance pairs (C-N, O-N, Mg-Al, Na-O, etc.). These patterns seem to indicate enhancement in nuclear processing along certain chains. For example, in the CNO cycle carbon acts as a catalyst for a chain 2 Table 1.1. Reaction Chains in the CNO Cycle Primary Chain 12 C + 1H 13 N 13 C + 1 H 14 N + 1 H 15 O 15 N + 1 H → → → → → → Secondary Chain 13 N 12 C +γ 13 C + e+ + ν 14 N + γ 15 O + γ 15 N + e+ + ν 12 C + 4 He 13 C 14 N 15 N 16 O 17 O + 1H 13 N + 1H + 1H 15 O + 1H + 1H 17 F + 1H → → → → → → → → → 13 N +γ + e+ + ν 14 N + γ 15 O + γ 15 N + e+ + ν 16 O + γ 17 F + γ 17 O + e+ + ν 14 N + 4 He 13 C Note. — Primary and secondary reaction chains in the CNO cycle. The secondary chain occurs about 4 times in 103 . of reactions that ultimately fuses four hydrogen atoms into one helium atom. Table 1.1 details the major components of the CNO cycle. When the cycle is run to equilibrium in the core, 14 N becomes the most abundant species, regardless of initial composition, via the 13 C(p, γ)14 N reaction. This is due to the comparatively long timescale of the subsequent proton-capture onto 14 N that forms 15 O. However, no mechanism is known that would bring this 14 N-enriched material from the core to the surface prior to a star’s evolution on the RGB. While these abundance variations have been observed on the RGBs of all clusters with [Fe/H] > −2.0, more recent observations have seen the same signatures on the subgiant branch (SGB) as well (e.g. Carretta et al., 2005; Cohen et al., 2005a), and in some cases even down to the main sequence (MS; e.g. Cannon et al., 1998; Harbeck et al., 2003a; Briley et al., 2004). Gratton et al. (2004) reviews a number of these studies, and Carretta et al. (2009b) dramatically increased the number of cluster stars surveyed for these variations. 3 1.2 Proposed Explanations Initial theories that were put forward to explain the observed surface enhancement in nitrogen and depletion in carbon typically involved additional mixing mechanisms that brought CNO-processed materials from the stellar interior to the surface. Meridional circulation (Sweigart & Mengel, 1979; McClure, 1979), primordial cloud inhomogeneity (Cohen, 1978; Peterson, 1980), and surface pollution (D’Antona et al., 1983) were among the original hypotheses. Currently, the progressive abundance changes on the RGB are believed to be the result of deep mixing within individual stars (Sweigart & Mengel, 1979; Charbonnel, 1994; Denissenkov & VandenBerg, 2003), beginning at the “bump” in the RGB luminosity function (Fusi Pecci et al., 1990; Shetrone, 2003). As a main sequence (see Figure 1.1) star’s core exhausts its supply of hydrogen fuel, the inert helium core begins to contract (having no radiation source to support itself against gravity) and hydrogen fusion continues in a shell surrounding the core. This fusion (via the CNO cycle) produces more energy than core fusion had, thus causing the outer stellar envelope to expand. At the same time, the initially shallow temperature gradient from the shell to the surface allows the convective envelope to penetrate deeper into the partially CNO-processed interior, driving a deep circulation referred to as first dredge-up, as the star moves onto and up the RGB. The precise location on the CMD where this occurs depends on the mass of the star, with more massive stars experiencing it lower on the RGB, but for a one-solar-mass star (1 M⊙ ) this occurs at luminosities on the RGB slightly below the horizontal branch (HB) (Carroll & Ostlie, 1996). Eventually, the temperature gradient steepens enough that the convective envelope retreats back toward the surface. Subsequently, the hydrogen-burning shell proceeds outward as a star evolves along the RGB, eventually (for masses up to M ∼ 2M⊙ ; Girardi et al., 2000; VandenBerg et al., 2006) encountering the molecular-weight discontinuity left behind by the inward reach of the convective envelope during first dredge-up (Thomas, 1967; Iben, 1968). When this occurs, the shell’s progress is delayed as its fusion rate adjusts to the new chemical abundances, 4 Figure 1.1 The color-magnitude diagram of M3. The main sequence and horizontal branch are labeled. Also shown are the main sequence turnoff (MSTO), the subgiant branch (SGB), the red giant branch (RGB), and the asymptotic giant branch (AGB). The temperature scale increases to the left. Axis values are approximate. 5 causing a concomitant small (∼ 0.1 mag) decrease in the star’s luminosity as it evolves along the RGB (see, e.g., Fig. 6 of Yi et al., 2001). In a population of coeval stars, this produces an enhancement in the differential luminosity function at the point on the RGB where this loop occurs (the RGB “bump”). Once the shell begins to proceed outward again, the molecular-weight gradient it experiences is lower, and a nonconvective process of deep mixing (Denissenkov & VandenBerg, 2003) begins to operate, transporting material between the hydrogen-burning shell and the surface and continuously adjusting surface carbon and nitrogen abundances. The notion of additional deep mixing is useful for explaining some observations of abundance variations, but not all. There are two independent modes of variation in GC lightelement abundances: a steady decline in [C/Fe] and increase in [N/Fe] as stars evolve along the RGB, and star-to-star variations in the light-element abundances at a fixed luminosity, at all evolutionary phases. The presence of these abundance variations at all evolutionary phases implies some form of unexpected enrichment within individual clusters prior to, or shortly after, their formation. Some researchers have suggested that the primordial gas cloud from which a given cluster formed may have initially been chemically inhomogeneous (e.g. Cohen, 1978; Peterson, 1980). A variation on this hypothesis appeals to cluster “selfenrichment.” Rather than assuming all stars in a given cluster are co-eval, it is assumed that an additional population(s) of stars formed, with compositions affected by the gas expelled by supernovae and/or strong stellar winds from intermediate-mass asymptotic giant branch (AGB) stars. While each hypothesis has its merits and weaknesses (see Gratton et al., 2004, for a complete review), no single model accounts for the full set of observed light-element abundance variations in GCs, though it remains possible that each may play a role (e.g. Martell et al., 2008c; Decressin et al., 2009). Early studies of star-to-star light-element abundance variations (e.g. Suntzeff, 1981; Langer, 1985) suggested that deep mixing might be responsible for the C-N variations at fixed luminosity as well as the progressive abundance changes along the RGB. However, 6 variations in Na, Mg and Al are difficult to explain as a result of mixing within RGB stars since they require higher temperatures than are reached in the hydrogen-burning shell. Internal mixing is also not a good explanation for light-element abundance variations in main sequence stars, since they do not have the ability to conduct high-temperature fusion, nor mass transport between their cores and surfaces. One of the strongest constraints on the proposed scenarios is the fact that, in the majority of moderate- to high-metallicity GCs, the CN abundance distribution is bimodal. The selfenrichment scenario accommodates this observation most naturally, with the CN-weak and CN-strong groups representing the first and second populations of stars to have formed in the cluster, respectively. This idea has received increasing support recently as improved photometric measurements have revealed the presence of multiple SGBs and MSs in a few GCs (Bedin et al., 2004; Piotto et al., 2007). Spectroscopic abundance analyses have also begun to reveal distinct sequences on the RGBs of some clusters (Marino et al., 2008a). In addition, studies of the spatial distributions of stars in clusters with accurate photometry have revealed the presence of correlated differences in U − B colors (Carretta et al., 2010a; Kravtsov et al., 2011), which also suggests variations in chemical composition within the cluster. 1.3 The Sloan Digital Sky Survey Whereas past studies have generally implemented a star-by-star approach to data collection, using a spectrograph targeting one star at a time, modern studies of stellar abundances in clusters typically require large sample sizes, making large survey data sets desirable. The Sloan Digital Sky Survey (SDSS; York et al., 2000) is an ambitious survey of the northern sky over southern New Mexico using the 2.5-meter telescope at Apache Point Observatory. It utilizes a 3◦ field of view and a drift-scan imaging camera (Gunn et al., 1998) with 30 CCD chips imaging in five u,g,r,i,z filters (Fukugita et al., 1996). In addition, it also utilizes 7 a pair of multi-object spectrographs, each with 640 optical fibers. The entire photometric survey, now in its eighth data release (DR8; Aihara et al., 2011) as part of SDSS-III, has covered more than 14,500 deg2 on the sky, producing a catalog of nearly half a billion distinct objects, including several hundred million stars. The spectroscopic data collected in this survey constitutes approximately 1.8 million objects. Photometric brightnesses are typically expressed in units of magnitudes, where the apparent magnitude (that is, how bright a star appears from Earth) in a particular filter (effectively a wavelength range) is given by m = −2.5 log(F) + Z, where F is the flux in that filter and Z is a zero-point correction that depends on such things as the optical system utilized and the magnitude system used. Inspection of this equation reveals that the brighter an object appears, the lower the value of its apparent magnitude. Corrections can be made to an object’s apparent magnitude to arrive at its absolute magnitude, which is a direct indicator of luminosity. The difference between magnitudes in two different filters produces a color index. In the color indices used in this study, such as (g − r)0 , lower values indicate a bluer color, while higher values indicate a redder color. Physically, bluer colors correspond to higher temperatures, while red colors correspond to cool temperatures. The first installation of the Sloan Extension for Galactic Understanding and Exploration (SEGUE-1; Yanny et al., 2009), one of three sub-surveys that collectively formed SDSS-II, obtained ugriz imaging of some 3500 deg2 of sky outside of the SDSS-I footprint (Fukugita et al., 1996; Gunn et al., 1998, 2006; Stoughton et al., 2002; Abazajian et al., 2003, 2004, 2005, 2009; Pier et al., 2003; Adelman-McCarthy et al., 2006, 2007, 2008), with special attention being given to scans of lower Galactic latitudes (|b| < 35◦ ) in order to better probe the disk/halo interface of the Milky Way. SEGUE also obtained R ≃ 2000 spectroscopy over the wavelength range 3800−9200 ˚ for some 240,000 stars in 200 selected areas of A the celestial sphere. When combined with stars observed during SDSS-I, and the recently completed SEGUE-2 project within SDSS-III, a total of nearly 500,000 stars exploring the thin-disk, thick-disk, and halo populations of the Galaxy now have spectroscopic data. 8 While SDSS is no longer the only survey instrument dedicated to gathering large amounts of data in multi-object mode (the FLAMES multi-object spectrograph at the ESO VLT being another), SDSS/SEGUE has provided one of the first large spectroscopic data sets. Combining its voluminous data acquisition with an automatic software pipeline that is capable of deriving stellar atmospheric parameters (see Section 2.1) from relatively lowresolution spectra gives us a powerful way to quickly and comprehensively study cluster abundances in revolutionary ways, and this is utilized in this Dissertation. 1.4 Summary This Dissertation is an investigation of CN and CH bandstrengths in stars at all evolutionary stages among eight GCs observed by the Sloan Digital Sky Survey. Chapter 2 describes the membership selection process used in obtaining true member stars for the clusters in this sample (Reproduced by permission of the AAS from Smolinski et al., 2011a). The procedure implements a series of cuts to pare down the full data set to only those stars one can confidently claim are true cluster members. Chapter 3 is a study of the CN and CH molecular absorption bandstrengths of those stars that passed the cuts made in Chapter 2 (Reproduced by permission of the AAS from Smolinski et al., 2011b). I demonstrate that all clusters with [Fe/H] > −2.1 show signs of CN variation all along the RGB, including evidence for CN variation on the SGB in several clusters. Finally, Chapter 4 examines the CN results in terms of the self-enrichment scenario, investigating evidence of multiple populations of stars in the clusters in this sample. I find evidence that corroborates previous studies, though this sample suffers from some limitations, which are discussed. The results suggest overall that light-element abundance variations within cluster stars do seem to support the hypothesis that a second generation of stars formed from enriched gas within GCs shortly after formation of the first generation. Full details of Chapter 4 will be published at a later date by J. P. Smolinski et al. (2011, in preparation). 9 Chapter 2: SDSS, the SEGUE Stellar Parameter Pipeline, and the Sample 2.1 Introduction The SEGUE Stellar Parameter Pipeline (SSPP; Lee et al., 2008a,b; Allende Prieto et al., 2008) processes the wavelength- and flux-calibrated spectra generated by the standard SDSS spectroscopic reduction pipeline (Stoughton et al., 2002), obtains equivalent widths and/or line indices for 85 atomic or molecular absorption lines, and estimates Teff , log g, and [Fe/H], along with radial velocities (RVs), through the application of a number of approaches (see Lee et al., 2008a, for a detailed discussion of the techniques employed by the SSPP). An earlier validation paper by Lee et al. (2008b) demonstrated, on the basis of comparisons with a sample of three Galactic globular clusters (GCs) and two open clusters (OCs), that the SSPP provides sufficiently accurate estimates of stellar parameters for use in the analysis of Galactic kinematics and chemistry, at least over the ranges in parameter space covered by these clusters (in particular, for the metallicity range −2.4 < [Fe/H] < 0.0). However, it was noted in that paper that the largest outliers in SSPP-derived metallicities were found for clusters near the extrema of this range. The team of researchers working on the SSPP have, in the time since publication of the original validation paper, endeavored to improve the performance of the SSPP near these extremes. As part of this effort, which led to the production of a version of the SSPP suitable for application to the DR8 release 10 (including the ∼120,000 stars observed during SEGUE-2), I have assembled SDSS photometry and spectroscopy for an additional sample of five GCs (including two with [Fe/H] ∼ −2.3: M92 and NGC 5053; and one intermediate-metallicity cluster with [Fe/H] ∼ −0.7: M71), and three OCs, one of which has been shown in the literature to exhibit a super-solar metallicity, [Fe/H] ≈ +0.3 (NGC 6791). 2.2 The Extended Validation Sample I selected five Galactic GCs (M92, NGC 5053, M53, M3, and M71) and three OCs (NGC 2158, M35, and NGC 6791) which had already been observed by SDSS and processed for further validation of the SSPP. A number of other clusters were considered but ultimately had to be rejected due to difficulties obtaining adequately reduced spectra from fields that were either too crowded or too heavily reddened. Because the default PHOTO pipeline (Lupton et al., 2001) was not designed to accurately deal with crowded fields such as those in the central regions of globular clusters, crowded-field photometric measurements were obtained using the DAOPHOT/ALLFRAME software package (Stetson, 1987, 1994) for M92, NGC 5053, M53, M3, M71, and NGC 6791 (An et al., 2008). For the remaining clusters (NGC 2158 and M35) the same procedures were followed as in An et al. (2008) to obtain crowded-field photometry. Combining the SDSS photometry of the full field with the crowded-field photometry of the inner cluster regions, corrected for reddening and extinction using values listed in Tables 2.1 and 2.2, resulted in a nearly complete catalog of ugriz photometry for the stars in each cluster region. Tables 2.1 – 2.3 summarize the properties of each cluster included in this study, as well as those from (Lee et al., 2008b). Metallicity values from the compilation of Harris (1996)1 are tabulated as well as values from the recalibrated metallicity scale of Carretta et al. (2009a). The spectroscopic data were obtained for stars targeted for spectroscopic follow-up se1 All references to Harris (1996) refer to the 2010 update on his web page: http://www.physics.mcmaster.ca/∼harris/mwgc.dat. 11 Table 2.1. Cluster Coordinates Cluster NGC NGC NGC NGC NGC NGC NGC NGC 6341 7078 5053 5024 7089 6205 5272 6838 RA (J2000) Dec (J2000) M92 M15 M53 M2 M13 M3 M71 NGC 2158 NGC 2168 M35 NGC 6791 (l, b) 17:17:07.39 21:29:58.33 13:16:27.09 13:12:55.25 21:33:27.02 16:41:41.24 13:42:11.62 19:53:46.49 +43:08:09.4 +12:10:01.2 +17:42:00.9 +18:10:05.4 −00:49:23.7 +36:27:35.5 +28:22:38.2 +18:46:45.1 (68.3, +34.9) (65.0, −27.3) (335.7, +78.9) (333.0, +79.8) (58.4, −35.8) (59.0, +40.9) (42.2, +78.7) (56.7, −4.6) 06:07:25 06:08:54 19:20:53 +24:05:48 +24:20:00 +37:46:18 (186.6, +1.8) (186.6, +2.2) (70.0, +10.9) Note. — Coordinates of the clusters in our sample as drawn from the literature. 12 Table 2.2. Cluster Photometric Properties Cluster (m − M)a 0 E(B − V )b ra t (arcmin) M92 M15 NGC 5053 M53 M2 M13 M3 M71 14.64 15.37 16.12 16.25 15.49 14.48 14.95 12.86 0.023 0.110 0.017 0.021 0.045 0.017 0.013 0.275c 15.17 21.50 13.67 21.75 21.45 25.18 38.19 8.96 NGC 2158 M35 NGC 6791 12.80d 9.80g 12.95h 0.44e 0.20g 0.117f 2.5f 20.0f 5.0f Note. — Photometric properties of the clusters in our sample as drawn from the literature. The parameter rt is the tidal radius in arcminutes. The listed distance modulus (m−M)0 is extinction corrected. Note that the Harris values (except rt ) have been drawn from the 2010 update which includes new determinations of globular cluster centers from an HST ACS survey by Goldsbury et al. (2010). Values for rt are drawn from the 2003 update to the original 1996 catalog. References: a Harris (1996); b Schlegel et al. (1998); c Grundahl et al. (2002); d Carraro et al. (2002); e Twarog et al. (1997); f Dias et al. (2002); g Kalirai et al. (2003); h An et al. (2009). 13 Table 2.3. Cluster Spectroscopic and Physical Properties Cluster [Fe/H]a [Fe/H]C (km s−1 ) M92 M15 NGC 5053 M53 M2 M13 M3 M71 −2.31 −2.37 −2.27 −2.10 −1.65 −1.53 −1.50 −0.78 −2.35 −2.33 −2.30 −2.06 −1.66 −1.58 −1.50 −0.82 −120.0 −107.0 +44.0 −62.9 −5.3 −244.2 −147.6 −22.8 NGC 2158 M35 NGC 6791 −0.25d −0.16d +0.30e ··· ··· ··· M log( M ) Ra gc (dex) (kpc) 5.43b 5.84c 4.80b 5.65b 5.84b 5.57b 5.58b 4.29c Va r 9.6 10.4 17.8 18.4 10.4 8.4 12.0 6.7 ⊙ Ca σa εa (km s−1 ) 1.68 2.28 0.74 1.72 1.59 1.53 1.89 1.15 6.0 13.5 1.4 4.4 8.2 7.1 5.5 2.3 0.10 0.05 0.21 0.01 0.11 0.11 0.04 0.00 +28.0d −8.2d −57.0d Note. — Spectroscopic and physical properties of the clusters in our sample as drawn from the literature. The parameter [Fe/H]C is from the recalibrated globular cluster metallicity scale of Carretta et al. (2009). Distance from Galactic center Rgc calculated assuming R0 = 8.0 kpc. Central concentration C derived from a King model where C = log(rt /rc ). Note that the Harris values have been drawn from the 2010 update at http//www.physics.mcmaster.ca/∼harris/mwgc.dat. References: a Harris (1996); b McLaughlin & van der Marel (2005); c Mandushev et al. (1991); d Dias et al. (2002); d Boesgaard et al. (2009). 14 lected from a photometric CMD for each cluster. Stars located on the diagram in the regions of the main sequence turn-off (MSTO) and RGB were then selected as possible cluster members. Other stars in the field of each cluster were also selected by the default SEGUE target selection algorithm to fill each plug-plate, many of which ended up being cluster members themselves. Overall, SDSS spectroscopic data were obtained for 640 targets each in the regions of NGC 5053, M53, and M3, and 1280 targets each in the regions of M92, M71, NGC 2158, M35, and NGC 6791, including sky spectra and calibration objects. Some of these targets had low average signal-to-noise spectra; for consistency with Lee et al. (2008b), only those spectra with S/N > 10 (averaged over the entire spectrum) were considered for subsequent analysis. After processing by the SSPP some targets had no estimates for RV or [Fe/H]; these were excluded as well. After these cuts were made, there remained 775, 579, 579, 487, 1094, 495, 495, and 1087 stars considered for M92, NGC 5053, M53, M3, M71, NGC 2158, M35, and NGC 6791, respectively. 2.3 Cluster Membership Selection In this section I discuss how the adopted true members for each cluster were selected, based in part on their estimated metallicities and radial velocities. Lee et al. (2008a) has shown that the stellar spectra processed through the SSPP have typical uncertainties of 141 K, 0.23 dex, and 0.23 dex for Teff , log g, and [Fe/H], respectively. Uncertainties in the radial velocity depends on the spectral type and apparent magnitude and fall in the range 5-20 km s−1 ; for most of the cluster stars the error is usually much less than 10 km s−1 . 2.3.1 Likely Member Star Selection The procedure for determining the likely members of each cluster is the same as described by Lee et al. (2008b), adapted from Grillmair et al. (1995). Two procedures were designed for selecting likely true member stars, one for GCs and one for OCs. The difference is 15 primarily due to the lower number density of stars on the CMD of an OC compared to that of a GC. However, the techniques are sufficiently different that, due to the highly evolved nature of NGC 2158 and NGC 6791, the procedure for OCs could not be applied to these particular clusters because it relies on a function fit to the main stellar locus which, in these cases, would be double-valued around the MSTO. Hence, the procedure for GCs has been employed on the OCs NGC 2158 and NGC 6791, and specific reasons for having done so are described where applicable. Due to the limited number of stars with spectroscopic data, it was necessary to use the photometry to produce a well-defined CMD, over which the spectroscopic data were then plotted. The stars inside each cluster’s tidal radius (rt ), the point at which the cluster’s gravitational influence gives way to that of the Galaxy, were selected as the first cut of likely members, indicated by the green circles in Figure 2.1. Stars inside a concentric annulus (where possible) were selected as field stars, indicated by the black circles in this figure. CMDs of both regions were obtained, then divided into sub-grids 0.2 mag wide in g0 and 0.05 mag wide in (g − r)0 color. Note that the field region of M92 is offset from the cluster center due to its proximity to the edge of the photometric scan. This was necessary because an annular field region around this location would have been inadequately populated with stars. In each sub-grid, the signal-to-noise (s/n) was calculated using: s/n(i, j) = nc (i, j) − gnf (i, j) nc (i, j) + g 2 nf (i, j) , (2.1) where nc and nf refer to the number of stars counted in each sub-grid with color index i and magnitude index j within the cluster region and field region, respectively, and the parameter g is the ratio of the cluster area to the field area. These values were sorted in descending order in an array with index l, then star counts were obtained in increasingly larger sections of the array. The area in each section is defined as ak = kal , where al = 0.01 mag2 16 Figure 2.1 Stars with available photometry in the fields of M92, NGC 5053, M53, M3, M71, NGC 2158, M35, and NGC 6791. The black dots are stars from the crowded-field photometric analysis, the red dots are stars with photometry from the SDSS PHOTO pipeline, and the blue open circles are stars with SDSS spectroscopy. The green circle is the cluster’s tidal radius (taken here as the cluster region) and the annulus between the two black circles con′ ′ ′ ′ ′ ′ ′ stitutes the field region. The green circles are 15.17 , 13.67 , 21.75 , 38.19 , 4.0 , 6.0 , 20.0 , ′ and 7.0 in radius, respectively (Harris, 1996). In the case of M92, the cluster’s proximity to the edge of the scan prevented an adequate annular field region; it was taken adjacent to the cluster region. NGC 2158 and NGC 6791 are open clusters, but due to their evolved nature, they are treated the same as globular clusters for the identification of likely true members. A larger radius was used for these clusters than those listed by Dias et al. (2002), in order to include as many member stars as possible. For interpretation of the references to color in this and all other figures, the reader is referred to the electronic version of this dissertation. 17 represents the area of a single sub-grid; k is the number of sub-grids in the section. Then, the cumulative signal-to-noise ratio, S/N, as a function of ak , was calculated using: S/N(ak ) = Nc (ak ) − gNf (ak ) , (2.2) nf (l). (2.3) Nc (ak ) + g 2 Nf (ak ) where k Nc (ak ) = k nc (l), Nf (ak ) = l=1 l=1 Here, nc (l) represents the number of cluster stars within the ordered sub-grid array element l; nf (l) represents the same quantity for the field stars. A threshold value for s/n was adopted, based on the maximum value of S/N(ak ), to identify areas of the CMD where the ratio of cluster stars to field stars was high (rejecting single-star events). These areas were taken to be sub-grids of likely cluster members, and all sub-grids with s/n greater than this threshold were identified. These sub-grids are shown as boxes in Figures 2.2 – 2.4. The left-hand panels show the stars inside the tidal radius – the sub-grids with s/n greater than the threshold value are indicated as red squares. The right-hand panels show the stars from the field region with the same sub-grids, indicated in green. The procedures described in Lee et al. (2008b) handle OCs differently from GCs. Instead of determining sub-grid s/n ratios, a fiducial line is fit to the open cluster’s MS using a robust polynomial fitting routine, then a region is picked out by eye corresponding to the MS to represent the likely member stars. The interested reader is referred to Lee et al. (2008b) for further details on the OC member selection procedure. This procedure works well on young clusters, where no significant evolution off the MS has occurred. However, NGC 2158 and NGC 6791 are evolved (older) clusters, and exhibit a distinct MSTO and RGB (see Figure 2.4). This prevents polynomial fitting of the CMD from working properly since the function would be double valued at the MSTO/SGB, so in this study NGC 2158 and NGC 6791 are processed (for the purpose of member assignment) as if they are GCs. The usual OC 18 Figure 2.2 Color-Magnitude Diagrams of the stars from M92 (upper panels) and NGC 5053 (lower panels) inside the tidal radius (left-hand panels) and inside the field region (righthand panels). The small boxes represent the sub-grids that were selected in the first cut of the CMD mask algorithm, and contain the stars used the subsequent analysis. procedure was successfully implemented for M35 (Figure 2.5). The cleaned CMDs for this sample are shown in Figures 2.6 and 2.7. The black points are the likely members from the photometry, while the red open circles are the likely members from the spectroscopic sample. This part of the procedure could not be carried out for M71 due to difficulties encountered with the photometry values available for this cluster at the time of this analysis (see An et al., 2008). Therefore, a first cut was made based on the tidal radius of the stars, and those stars were passed on to the final step, as outlined in the following section. Figure 2.5 shows the first-cut CMD for M71. 19 Figure 2.3 Same as Fig. 2.2, but for M53 (upper panels) and M3 (lower panels). 20 Figure 2.4 Same as Fig. 2.2, but for NGC 2158 (upper panels) and NGC 6791 (lower panels). Due to the highly-evolved nature of these open clusters, they were treated in the member selection process as if they were globular clusters. 21 Figure 2.5 Same as Fig. 2.2, but for M35 (left-hand panel) and M71 (right-hand panel). The red line in M35 is the fiducial from a fourth-order polynomial fit, while the blue lines define +0.17 the offsets of −0.12 mag inside of which were selected stars regarded as likely members from the photometric data. Because of M35’s low Galactic latitude, the dense stripe of stars on the blue side of the main sequence is due to superposed disk stars. Member stars for M71 were selected strictly by radial velocity and metallicity cuts rather than by using the CMD first; no photometry was used for analysis of this cluster due to poor calibration. For this reason, the CMD for M71 is shown differently from the other globular clusters. 22 Figure 2.6 The Color-Magnitude Diagram following the second cut of likely member stars based on the sub-grid selection for M92 (upper-left panel), NGC 5053 (upper-right panel), M53 (lower-left panel), and M3 (lower-right panel). Black dots represent stars from the photometric sample, and the red open circles represent stars from the spectroscopic sample. 23 Figure 2.7 The Color-Magnitude Diagram following the second cut of likely member stars for NGC 2158 (upper-left panel), M35 (upper-right panel), and NGC 6791 (lower panel). Black dots represent stars from the photometric sample, and the red open circles represent stars from the spectroscopic sample. 24 Table 2.4. Metallicities and Radial Velocities of Globular and Open Clusters Cluster [Fe/H] M92 NGC 5053 M53 M3 M71 NGC 2158 M35 NGC 6791 −2.25 −2.26 −2.03 −1.55 −0.79 −0.26 −0.20 +0.31 σ([Fe/H]) σµ ([Fe/H]) (dex) (dex) 0.17 0.25 0.13 0.14 0.06 0.08 0.18 0.13 0.02 0.06 0.03 0.02 0.01 0.01 0.03 0.01 RV (km s−1 ) σ(RV) (km s−1 ) σµ (RV) (km s−1 ) N −116.5 +44.0 −59.6 −141.2 −16.9 +27.8 −5.0 −47.0 8.7 4.9 7.9 5.6 9.3 5.9 6.2 6.0 1.1 1.2 1.8 0.6 2.3 0.7 1.2 0.6 58 16 19 77 17 62 29 90 Note. — Columns 2 and 5 list the measured mean values of [Fe/H] and RV for each cluster, while columns 3 and 6 list the 1σ spread of each value. Columns 4 and 7 are the standard errors in the mean (σµ ) of the estimates. N lists the number of true member stars for each cluster determined by the final application of the 2σ range to the mean of the Gaussian fits on [Fe/H] and RV. 2.3.2 Selection of Adopted True Members The true member stars were then identified as a subset of the adopted likely member stars. Figure 2.8 shows the distributions of [Fe/H] (left-hand panel) and RV (right-hand panel) for stars in the field of M92 at each culling point in the procedure. The black lines indicate all 775 stars on the original spectroscopic plate (after removing stars with no parameter estimates from the SSPP or low spectral S/N), while the red lines indicate only those stars inside rt , and the green lines indicate those stars that passed the cut using the individual sub-grid s/n and cumulative S/N calculations. A Gaussian fit was then performed on the highest peak of the distribution of this final subset (blue line) and estimates were obtained of the mean and standard deviation of [Fe/H] and RV. Finally, outliers were rejected by applying a 2σ cut on both parameters: 25 [Fe/H] − 2σ[Fe/H] ≤ [Fe/H]⋆ ≤ [Fe/H] + 2σ[Fe/H] (2.4) RV − 2σRV ≤ RV⋆ ≤ RV + 2σRV . (2.5) [Fe/H]⋆ and RV⋆ correspond to the metallicity and radial velocity of each star in question. If a star passed both cuts then it was considered a true member star. The numbers of true member stars determined by this final cut for each cluster are listed in Table 2.4. 2.4 Determination of Overall Metallicities and Radial Velocities of the Clusters Once the true members were selected as described above, final estimates of the cluster metallicities and radial velocities were obtained. Figures 2.8–2.15 show the binned distributions of [Fe/H] and RV for each cluster, as described in Section 2.3.2. The adopted cluster values are listed in Table 2.4. This table also lists the standard error of the mean (σµ ) for the estimates of metallicity and radial velocity for each cluster; due to the large numbers of true members for each cluster, these are uniformly small. No strong trends appear to exist in estimates of [Fe/H] as a function of color or spectral quality, as shown in Figures 2.16 and 2.17. As a check, residuals of [Fe/H] were calculated with respect to the values adopted for each cluster from the literature, using: Res[Fe/H] = [Fe/H] − [Fe/H]lit , (2.6) and a linear regression on these values was performed as a function of (g − r)0 color and S/N using models of the form: 26 Table 2.5. Residuals from Linear Regression on Metallicity Cluster (1) N Parameter (2) (3) M92 58 NGC 5053 16 M53 19 M3 77 M71 17 NGC 2158 62 M35 29 NGC 6791 90 (g − r)0 S/N (g − r)0 S/N (g − r)0 S/N (g − r)0 S/N (g − r)0 S/N (g − r)0 S/N (g − r)0 S/N (g − r)0 S/N X (4) σX (5) Y (6) σY (7) R2 (8) −0.347 −0.001 −0.585 −0.007 +0.166 −0.005 −0.219 +0.001 +0.017 −0.001 +0.017 +0.002 −0.289 +0.006 +0.276 +0.003 0.145 0.002 0.164 0.005 0.138 0.006 0.056 0.001 0.177 0.001 0.047 0.001 0.062 0.001 0.077 0.001 +0.229 +0.135 +0.347 +0.333 +0.027 +0.192 +0.059 −0.085 +0.089 +0.140 −0.008 −0.099 +0.121 −0.451 −0.191 −0.110 0.053 0.051 0.090 0.182 0.066 0.132 0.032 0.044 0.116 0.078 0.019 0.036 0.044 0.084 0.058 0.040 0.093 0.004 0.475 0.133 0.078 0.048 0.071 0.022 0.001 0.018 0.002 0.110 0.445 0.468 0.128 0.103 Note. — The variables X and Y are the slope and zero-points, respectively, of a linear regression on the residuals in our measured [Fe/H] values and those adopted from the literature, along with the corresponding uncertainties from the regression. The parameter R2 indicates the fraction of the variance accounted for by the correlations in the variables (g − r)0 and S/N for each cluster. Res[Fe/H] = X · (g − r)0 + Y (2.7) Res[Fe/H] = X · S/N + Y. (2.8) The results of the linear regressions are listed in Table 2.5. Column (2) lists the number of true member stars used in the fit, Columns (4) and (6) list the slope and zero-point of the fit, respectively, while Columns (5) and (7) list the corresponding uncertainties. Finally, 27 Figure 2.8 Distributions of [Fe/H] and radial velocity for stars in the field of M92. The black dot-dashed line corresponds to all the stars on the plate, the red dashed line corresponds to the stars inside the tidal radius, and the green solid line corresponds to the stars that were identified as likely members by the sub-grid s/n procedure described in Section 2.3.1. The blue solid line is a Gaussian fit indicating the region of each distribution in which the true members are located, as described in Section 2.3.2. 28 Figure 2.9 Same as Fig. 2.8, but for NGC 5053. 29 Figure 2.10 Same as Fig. 2.8, but for M53. 30 Figure 2.11 Same as Fig. 2.8, but for M3. 31 Figure 2.12 Same as Fig. 2.8, but for M71. 32 Figure 2.13 Same as Fig. 2.8, but for NGC 2158. 33 Figure 2.14 Same as Fig. 2.8, but for M35. 34 Figure 2.15 Same as Fig. 2.8, but for NGC 6791. 35 Figure 2.16 Distribution of [Fe/H] as a function of (g − r)0 (left-hand column) and average signal-to-noise (right-hand column) for selected true member stars of the globular clusters M92, NGC 5053, M53, M3, and M71, ordered from top to bottom in increasing metallicity. The red solid line in each panel represents the adopted value of [Fe/H] for each cluster from the Harris (1996) catalog, the black dot-dashed line is [Fe/H] from the Carretta et al. (2009a) recalibration, and the dashed blue line represents the mean measured value of each cluster. 36 Figure 2.17 Same as Fig. 2.16, but for the open clusters NGC 2158, M35, and NGC 6791, ordered from top to bottom in increasing metallicity. 37 Figure 2.18 Distribution of [Fe/H] as a function of estimated log g for the selected true member stars of the globular clusters M92, NGC 5053, M53, M3, and M71, ordered from top to bottom on increasing metallicity. As in Fig. 2.16, the red solid line corresponds to the adopted value for [Fe/H] for each cluster from Harris (1996), the black dot-dashed is [Fe/H] from the recalibrated metallicity scale of Carretta et al. (2009a), and the dashed blue is the mean measured value. 38 Figure 2.19 Distribution of [Fe/H] as a function of estimated log g for the selected true member stars of the open clusters NGC 2158, M35, and NGC 6791, ordered from top to bottom on increasing metallicity. As in Fig. 2.16, the red solid line corresponds to the adopted literature value for [Fe/H] for each cluster, while the dashed blue is the mean measured value. 39 Column (8) lists the R2 value, which indicates the amount of scatter in the data that can be accommodated by the regression. Values of R2 close to zero indicate little dependence on the independent variable (the desired goal), whereas values of R2 close to one indicate a large dependence on the independent variable. There are two clusters (NGC 5053 and M35) for which the R2 values are somewhat high. These appear to have been influenced by stars at the extrema of the color ranges, but still do not rise to the level of strong statistical significance. The fits for the rest of the clusters have sufficiently low values of R2 that the correlations are not statistically significant; Figures 2.18 and 2.19 show the distribution of metallicity estimates as a function of the estimated surface gravity (log g). No significant trends are observed, supporting the conclusion of Lee et al. (2008b) that the SSPP is robust and reliable over large ranges in surface gravity (luminosity) and color, even for spectra with less-than-optimal S/N. The SSPP-estimated temperatures and surface gravities for true member stars are plotted in Figures 2.20–2.27 over the cleaned CMDs of the likely member stars from the photometric sample that passed the s/n cut. The spectroscopic data points are plotted in different colors, in temperature steps of 500 K and log g steps of 0.5 dex. Stars at the top of the MS and on the MSTO have generally lower S/N than those on the RGB and HB, so the fact that some non-uniformity is observed in the distribution of Teff and log g in stars near the MSTO is not unexpected. Table ?? lists the SSPP-derived properties for all stars selected as true cluster members from each cluster, and the extinction-corrected ugriz magnitudes and errors for the photometry employed are given in Table A.3. These tables contain data for the clusters in this chapter as well as the clusters included in Lee et al. (2008b), in order of increasing metallicity, thus encompassing the entire sample of clusters used in validation of the SSPP. 40 2.5 Individual Cluster Discussion and Comparison with Previous Studies Here previous studies of these clusters are examined and how well the SSPP-derived estimates for cluster metallicity and radial velocity compare with the values reported in the literature is assessed. This section is not intended to be a comprehensive review, but rather concentrates on high-resolution spectroscopic results from studies that have been published within the past decade, expected ab initio to produce more accurate results than our moderate-resolution spectra. Due to the relative paucity of radial velocities for some clusters, older studies are cited where needed. The globular clusters are considered first, followed by the open clusters, ordered from low metallicity to high metallicity. 2.5.1 M92 (NGC 6341) Two spectroscopic plug-plate observations of this cluster yielded 58 true cluster members. The estimated mean metallicity, [Fe/H] = −2.25 ±0.17, is within 1σ of the values given by Harris (1996, −2.28) and Carretta et al. (2009a, −2.35). While King et al. (1998) obtained a much lower metallicity estimate from only Fe I lines of 6 subgiant stars in their sample ([Fe/H] = −2.52), examining the 17 subgiant member stars from this cluster in this sample reveals a mean metallicity of −2.27, in agreement with the measured overall mean metallicity as well as with the metallicities adopted by the Harris and Carretta et al. compilations. King et al. (1998) acknowledge that their low signal-to-noise spectra and limited spectral coverage, along with the metal-poor nature of M92 and an uncertain reddening correction, resulted in a degeneracy between their estimates of Teff and microturbulence that may have produced a lower value for [Fe/H]. In their analysis of literature data, Kraft & Ivans (2003) report abundances from Fe I and Fe II lines of −2.50 and −2.38, respectively; both are lower than my result but consistent with King et al. (1998). The SSPP-derived estimate for the radial velocity, RV = −116.5 ± 8.7 km s−1 , is 41 within 1σ of that provided by Harris (1996; −120.3 km s−1 ). A recent study by Drukier et al. (2007) reported a radial velocity of RV = −121.2 km s−1 , based on a sample of 306 cluster members, which is also in agreement with my value. 2.5.2 NGC 5053 NGC 5053 is known to be metal-poor, but has otherwise not been widely studied. One spectroscopic plug-plate observation produced only 16 true member stars, with less than optimal coverage inside rt (see Figure 2.1). The estimate of the mean metallicity, [Fe/H] = −2.25 ± 0.25, is within 1σ of that reported by Harris (1996, −2.29). The recalibration by Carretta et al. (2009a) reports a value of −2.30, with which this study is also consistent. The mean radial velocity, RV = +44.0±4.9 km s−1 , is identical to that given by Harris (1996, +44.0 km s−1 ). 2.5.3 M53 (NGC 5024) M53 is located at the edge of the plug-plates for observations of NGC 5053, resulting in just 50 fibers being placed inside the tidal radius. As a result, only 19 stars were selected as true members. The measured mean metallicity, [Fe/H] = −2.03 ± 0.13, is in agreement with Harris (1996; −1.99) and Carretta et al. (2009; −2.06), as well as with most earlier photometric and spectroscopic abundance studies that indicated a metallicity lower than −1.8 (e.g. Pilachowski et al., 1983). More recently, a moderate-resolution spectroscopic analysis of member stars from M53 by Lane et al. (2010) provided a metallicity estimate of [Fe/H] = −1.99, with which my result agrees nicely. Although a recent photometric study by D´k´ny & Kov´cs (2009) exhibited a discrepancy in [Fe/H] between HB (variable) e a a stars and stars on the RGB, my sample shows no statistically significant difference between the mean metallicity on the HB versus the RGB for this cluster ( [Fe/H] HB = −2.11 ± 0.09; [Fe/H] RGB = −1.96 ± 0.12). My derived mean metallicity is within 1σ of their giant branch mean metallicity of −2.12. 42 Radial velocity measurements reported in the literature for this cluster are a bit more scattered. Harris (1996) reported a value of −79.1 km s−1 , whereas a more recent mediumresolution spectroscopic study by Lane et al. (2009), using 180 giant stars, resulted in a mean value of −62.8 km s−1 . My value, RV = −59.6 ± 7.9 km s−1 , from 19 RGB and HB stars, is consistent with the Lane et al. (2009) result. 2.5.4 M3 (NGC 5272) One spectroscopic plug-plate observation for this cluster produced 77 true member stars. My measured value of [Fe/H] = −1.55 ± 0.13 is well within 1σ of that reported by Harris (1996; −1.57) and the recalibrated scale by Carretta et al. (2009; −1.50). A high-resolution spectroscopic study by Cavallo & Nagar (2000) of 6 giants at the tip of the RGB produced an estimate of [Fe/H] = −1.54, and an analysis of literature data performed by Kraft & Ivans (2003) yielded metallicity estimates from both Fe I and Fe II lines of −1.58 and −1.50, respectively. Furthermore, a recent study of 23 RGB stars using high-resolution spectroscopy from the Keck telescope yielded [Fe/H] = −1.58 from Fe II lines (Sneden et al., 2004). Finally, while my value is only barely within 1σ of the estimated iron abundance for M3 from Cohen & Mel´ndez (2005), who obtained a somewhat higher value of [Fe/H] e = −1.39 based on Keck/HIRES spectroscopy, it should be kept in mind that recent results from Cohen and collaborators adopt a temperature scale that is several hundred Kelvin warmer than most other researchers, which could easily accomodate the 0.16 dex offset with respect to their reported value of metallicity. Thus, the SSPP-derived estimate for [Fe/H] is in excellent agreement with all of these previous studies, while spanning the entire length of the RGB, including stars on the HB as well. The estimate of the cluster’s mean radial velocity, RV = −141.2±5.6 km s−1 , is slightly different from those of Harris (1996) and Cohen & Mel´ndez (2005), who both report the e same value (−147.6 km s−1 ), and Sneden et al. (2004), who reported a mean radial velocity of −149.4 km s−1 . However, it is only just beyond 1σ of these values; when accounting for 43 the uncertainty in the literature values the difference is not significant. 2.5.5 M71 (NGC 6838) M71 is an important cluster for validation of the SSPP, due to its intermediate metallicity ([Fe/H] ∼ −0.8), a regime that was not represented by previously considered clusters. Unfortunately, a total of 155 fibers inside the adopted radius of 4.0 arcmin resulted in just 17 true member stars. Literature values from Harris (1996, −0.73) and a Keck/HIRES study by Boesgaard et al. (2005, −0.80) are both consistent with my value of the mean metallicity, [Fe/H] = −0.79 ± 0.06, at the 1σ level, as is that from Carretta et al. (2009a, −0.82). In an in-depth analyis using Keck/HIRES spectroscopy of 25 stars from the turnoff to the RHB, Ram´ ırez et al. (2001) measured iron abundances from Fe I and Fe II lines individually, and compared them against each other for various regions of the CMD. Their values range from −0.64 to −0.86, with an error-weighted mean of −0.71, in agreement with my value at the 1.5σ level. Finally, Kraft & Ivans (2003) also report consistent abundances from Fe I and Fe II lines of −0.82 and −0.81, respectively. The mean radial velocity determination, RV = −16.9 ± 9.3 km s−1 , is within 1σ of that reported by Harris (1996, −22.8 km s−1 ). Keck/HIRES data from Cohen et al. (2001) produced a mean radial velocity of −21.7 km s−1 , which is also consistent with my observation. 2.5.6 NGC 2158 A total of 109 fibers located inside the adopted radius for this open cluster (6.0 arcmin) resulted in a relatively high yield of 62 true member stars. With this sample, a mean metallicity of [Fe/H] = −0.26 ± 0.08 was measured. While this is in agreement with the values from Dias et al. (2002, −0.25), a high-resolution spectroscopic study of one giant star by Jacobson et al. (2009) produced a nearly solar mean metallicity of −0.03 ± 0.14. However, a more recent follow-up study using WIYN Hydra spectroscopy at R ∼ 21, 000 for 44 15 stars in NGC 2158 produced a metallicity of [Fe/H] = −0.28 ± 0.05 (H. Jacobson et al. 2011, in preparation), a value that is consistent not only with prior studies of this cluster, but with my study as well. Using moderate-resolution spectroscopy, Scott et al. (1995) reported a mean radial velocity for NGC 2158 of +28.1 km s−1 . This and the value reported by Dias et al. (2002) of +28.0 are both consistent with my measurement of +27.8 ± 5.9 km s−1 . 2.5.7 M35 (NGC 2168) This open cluster is located at the edge of the plug-plates from the spectroscopic observations and was not heavily targeted with fibers. As a result, only 72 fibers were located inside the adopted radius, yielding 29 true members. The adopted radius is less than the tidal radius due to its proximity to NGC 2158. The field region of NGC 2158 does overlap with the tidal radius of M35, but this was not problematic for several reasons. First, stars included in a field region were never considered for membership so no M35 stars would have been picked up and included in NGC 2158 as potential members. Secondly, the rather different radial velocities of the two clusters would have ensured that even if some NGC 2158 stars were considered for membership in M35, they would have been dropped during the RV cut, if not previously. Finally, due to their differing positions on the CMD, any potential M35 stars included in the field region of NGC 2158 would only have served to reduce the s/n in those sub-grid boxes on the CMD of the cluster region of NGC 2158. These being sufficiently far from the main locus, this would not cause any complications to the member selection for NGC 2158. The measured mean metallicity for this cluster, [Fe/H] = −0.20 ± 0.18, is consistent with that from Dias et al. (2002, −0.16), as well as with the study of Barrado y Navascu´s e et al. (2001), who obtained [Fe/H] = −0.21 from a high-resolution spectroscopic analysis of 39 probable cluster members. Barrado y Navascu´s et al. (2001) measured a mean radial velocity from their sample of e 45 RV = −8.0 km s−1 , a value consistent with my observation (−5.0 ± 6.2 km s−1 ). While my value of RV is slightly higher, compared to both their sample and the value from Dias et al. (2002, −8.2), it is still within 1σ, and therefore can be considered reliable. A more recent study by Geller et al. (2010) produced a radial velocity of RV = −8.16 km s−1 based on high-resolution spectroscopy. 2.5.8 NGC 6791 NGC 6791 is another important cluster for this validation exercise because it explores the super-solar metallicity region. This is another regime that was not considered with previously observed clusters; it is the most metal-rich cluster (to date) for which I was able to obtain successful spectroscopic reductions. There were two spectroscopic plug-plate observations for the region surrounding this cluster, which yielded a total of 90 true members. While the mean metallicity estimate, [Fe/H] = +0.31 ± 0.13, is statistically consistent with that given by Dias et al. (2002, +0.11) at the 2σ level, their reported value is significantly lower than that reported by other studies. It is known that NGC 6791 is a metal-rich open cluster, with some estimates from high-resolution spectroscopy as high as +0.47 (Gratton et al., 2006). A study of 24 giant stars with medium-resolution spectroscopy yielded a metallicity estimate of [Fe/H] = +0.32 (Worthey & Jowett, 2003), while Origlia et al. (2006) used medium-high resolution Keck/NIRSPEC spectroscopy to obtain an iron abundance of +0.35. Most recently, a high-resolution spectroscopic study of two MSTO stars by Boesgaard et al. (2009) yielded a value of [Fe/H] = +0.30. It is clear that my estimate is in better agreement with these recent high-resolution observations. The measured value of the mean radial velocity, RV = −47.0 ± 6.0 km s−1 , is consistent with that reported by Dias et al. (2002, −57 km s−1 ) at the 1.5σ level, as well as with that found by Origlia et al. (2006, −52 km s−1 ). 46 2.6 Summary Spectroscopic and photometric data from SDSS-I and SDSS-II/SEGUE were used to determine mean metallicities and radial velocities for five Galactic GCs, M92, NGC 5053, M53, M3, and M71, as well as for three OCs, NGC 2158, M35, and NGC 6791. The data were run through the current version of the SSPP and true member stars were selected from each cluster. The derived [Fe/H] and RV for the true members were then compared to the cluster properties reported in the literature. The mean values of [Fe/H] and RV for each cluster from the SSPP are in good agreement with those values reported in previous studies. Nearly all of the SSPP estimates are within 1σ of the adopted literature values, with nearly all exceptions falling within 2σ. The mean internal uncertainties of the SSPP-determined metallicities and radial velocities for true members in this sample are σ[Fe/H] = 0.05 dex and σRV = 3.0 km s−1 , respectively, while the scatter about the mean residuals compared to the adopted literature values are σ[Fe/H] = 0.11 dex and σRV = 5.2 km s−1 , demonstrating good internal and external consistency, and indicating that estimates of the atmospheric parameters and radial velocities for SDSS/SEGUE stellar data are sufficiently accurate for use in studies of the chemical compositions and kinematics of stellar populations in the Galaxy. 47 Figure 2.20 Color-Magnitude Diagram of the selected true member stars of M92. The lefthand panel shows the distribution of effective temperatures, while the right-hand panel shows the distribution of surface gravity, both based on the spectroscopic sample. The black dots are the likely member stars from the photometric sample. Each color represents a temperature step of width 500 K and a log g step of 0.5 dex, respectively. 48 Figure 2.21 Same as Fig. 2.20, but for NGC 5053. 49 Figure 2.22 Same as Fig. 2.20, but for M53. 50 Figure 2.23 Same as Fig. 2.20, but for M3. 51 Figure 2.24 Same as Fig. 2.20, but for M71. 52 Figure 2.25 Same as Fig. 2.20, but for NGC 2158. 53 Figure 2.26 Same as Fig. 2.20, but for M35. 54 Figure 2.27 Same as Fig. 2.20, but for NGC 6791. 55 Chapter 3: CN and CH Absorption Bandstrengths in SDSS Globular Clusters 3.1 Introduction In this chapter, photometric and spectroscopic data from the member stars of GCs selected in Chapter 2 and in Lee et al. (2008b) are used to examine the CN and CH bandstrength distributions for stars in eight GCs, including stars from the upper RGB to, in some cases, 1–2 magnitudes below the main sequence turnoff (MSTO). I show that there exists a clear bimodal distribution in CN bandstrengths for clusters with [Fe/H] ≥ −2.0. Other interesting CN bandstrength variations are suggested to exist among the three clusters in this sample with [Fe/H] < −2.1. This chapter is organized as follows. Section 3.2 briefly reviews the sample. In Section 3.3 the adopted CN and CH indices are defined for stars in various stages of evolution. The derived CN and CH distributions are then compared in Section 3.4. In Section 3.5 any correlations between these distributions with the global cluster parameters are sought. Finally, the results and implications are discussed in Section 3.6. 56 3.2 Observational Data Tables 2.1 – 2.3 list the photometric, spectroscopic, and physical properties of the eight GCs in this sample. The SSPP produces estimates of Teff , log g, [Fe/H], and radial velocities (RVs), along with the equivalent widths and/or line indices for 85 atomic and molecular absorption lines, by processing the calibrated spectra generated by the standard SDSS spectroscopic reduction pipeline (Stoughton et al., 2002). See Lee et al. (2008a) for a detailed discussion of the approaches used by the SSPP; Smolinski et al. (2011a) provides details on the most recent updates to this pipeline, along with additional validations. Membership selection for the clusters was based on the color-magnitude diagram (CMD) mask algorithm described by Grillmair et al. (1995). Details on the application of this method to these specific clusters are described by Lee et al. (2008b) and Smolinski et al. (2011a), and will only be briefly summarized here. The procedure involved a series of cuts, reducing the overall sample to include only those stars for which one can reasonably claim true membership. First, all stars within the tidal radius of the GC were selected. Stars with available spectra but with S/N < 10 (averaged over the entire spectrum), or that lacked estimates of [Fe/H] or RV, were excluded. A CMD was then constructed of the remaining stars, along with a CMD of stars in a concentric annulus designated to represent the field. A measure of the effective signal-to-noise in regions of the CMD was obtained, where the “signal” in this case constituted those stars within the tidal radius and the “noise” constituted those stars within the field region. Cluster-region stars within segments of the CMD above a threshold signal-to-noise were then selected. Finally, Gaussian fits to the highest peaks in the [Fe/H] and RV distributions of those stars (expected to represent the cluster) were obtained, and stars within 2σ of the mean in both [Fe/H] and RV were considered true member stars. This procedure resulted in the following numbers of true member stars: M92 (58), M15 (98), NGC 5053 (16), M53 (19), M2 (71), M13 (293), M3 (77), and M71 (8). Figures 3.1 and 3.2 show the final CMDs for these eight globular clusters. Membership selection for M71 was complicated due to difficulties encountered with the 57 Figure 3.1 Color-magnitude diagrams for the four globular clusters in our sample with [Fe/H] < −2.0: M92, M15, NGC 5053, and M53. The black points represent photometric data for likely cluster members that passed the tidal radius and CMD mask algorithm cuts. The red points correspond to spectroscopic data for the selected true cluster members. 58 Figure 3.2 Same as Figure 3.1, but for the four globular clusters in this sample with [Fe/H] > −2.0: M2, M13, M3, and M71. Membership selection for M71 was slightly different, as described in Section 3.2, thus more photometric data is present in the CMD for this cluster. The black points for this cluster do not all represent likely cluster members. 59 photometry values available for this cluster at the time of this analysis (see An et al., 2008; Smolinski et al., 2011a). This made the CMD mask algorithm less reliable for selecting likely spectroscopic members. Therefore, stars inside the tidal radius were selected and passed on to the final [Fe/H] and RV cuts, with those stars that had questionable photometry excluded from consideration. As a result, only eight stars with available spectroscopy made it through the final cut for this cluster. 3.3 CN Bandstrength Distribution A common approach for investigation of the star-to-star light element abundance variations within GCs is measurement of the 3883 ˚ CN molecular absorption band (Norris & Freeman, A 1979; Norris et al., 1981; Smith et al., 1996; Harbeck et al., 2003a,b; Pancino et al., 2010). This measurement does not require high-resolution spectroscopy, making it ideal for lowresolution spectroscopic surveys such as SDSS. The feature is typically measured using a spectral index defined as the magnitude difference between the integrated flux within a wavelength window containing the absorption band and the integrated flux within a sideband representing the continuum. However, the precise definition of this spectral index often varies according to the luminosity class of the stars under consideration due to the presence of other temperature-dependent absorption lines, such as Hζ at 3889 ˚, that can A potentially interfere with the adopted continuum window. In this section, I describe the CN spectral indices used for each region of the CMD and their observed distributions. 3.3.1 CN Absorption on the Red Giant Branch I measured the strength of the CN absorption band at 3883 ˚ in RGB stars using the A spectral index S(3839) defined by Norris et al. (1981): S(3839)N = −2.5 log 60 3883 3846 Iλ dλ , 3916 3883 Iλ dλ (3.1) Figure 3.3 Representative blue SDSS spectra of CN-weak (red thin line; fiber 2475-53845160) and CN-strong (black thick line; fiber 2475-53845-489) RGB stars in M3. The areas between the dashed vertical lines indicate the portions of the spectrum used in measuring S(3839)N . Other prominent spectral features are labeled. where Iλ is the measured intensity, and the subscript N indicates it is from the Norris et al. (1981) definition. Figure 3.3 shows the blue regions of SDSS spectra for two RGB stars in M3. The line-band and comparison-band windows are indicated. These two stars were selected because they have similar effective temperatures and apparent g-band magnitudes (indicating similar luminosities on the RGB), as well as nearly identical Ca II and CH Gband strengths (indicating similar metallicities and carbonicities). Despite these similarities, they exhibit clear differences in their CN 3883 ˚ absorption strengths. A The formation efficiency of the CN molecule is temperature dependent, where cooler 61 effective temperatures allow increased molecular formation. When one looks at a population of stars, one therefore sees an increased ability for molecular formation moving up the RGB. While the majority of MS stars (aside from the coolest ones) have effective temperatures too high for significant molecular formation, the ability for this molecule to form on the SGB and RGB increases with luminosity as the star expands and its surface temperature drops. As a result, one expects to see increased CN absorption on the RGB when compared to the SGB, and this effect must be accounted for in the analysis prior to inferring any abundance differences. Furthermore, for clusters of moderate metallicity, when the CN aborption strengths are plotted as a function of luminosity or temperature, two groups generally appear – one CN-weak (sometimes referred to as CN-normal), the other CNstrong (enriched). A linear relationship is then fit to the CN-weak locus, and the vertical difference in S(3839)N between each point and the baseline is measured, as illustrated for M3 in the bottom-left panel of Figure 3.4. This vertical difference is denoted as δS(3839) N , and is taken to be a temperature-corrected measure of CN absorption. The other panels in this figure are generalized histograms of this temperature-corrected index for this sample of clusters, discussed in detail below. The raw and corrected values are listed for each cluster in Table ??. The slope of the relationship between CN bandstrength and luminosity is metallicity dependent, so each cluster must be corrected individually prior to constructing comparisons across the sample. Figure 3.5 shows this relationship between the CN slope and [Fe/H], obtained by dividing the entire sample into 0.1-dex wide metallicity bins and fitting a line to the CN-weak locus of each metallicity bin (as opposed to fitting to the blue data points, which represent stars identified as CN-weak within their individual clusters). Note the trend of decreasing CN slope with decreasing [Fe/H], which is similar to the trend for field giants from DR7 reported by Martell & Grebel (2010). When the slope of each panel in their Figure 6 is plotted as a function of metallicity, one obtains a linear relationship for field giants: 62 Figure 3.4 Generalized histograms of the δS(3839)N distributions of RGB stars within each globular cluster. The bottom-left panel shows an example of the way δS(3839)N was determined, as described in Section 3.3, where the baseline against which δS(3839)N was measured is shown as a solid line. 63 CN Slopefield = −0.17 − 0.08[Fe/H]. (3.2) The expression obtained for this sample of cluster RGB stars is: CN Slopecluster = −0.18 − 0.07[Fe/H], (3.3) and is statistically equivalent to the field giant relationship (σslope = 0.04, σintercept = 0.07). The data point corresponding to [Fe/H]= −1.40 has been omitted from this linear fit as an outlier. It is difficult to draw a direct comparison between the two samples due to their differing mass functions. The cluster giants are all exclusively old and span a relatively small range in mass at any given value of Mg , whereas the field giants from the Martell & Grebel (2010) sample potentially span a much broader range of mass and age.1 Similarities between these relationships may hint at a common origin (see Martell & Grebel, 2010, for further discussion). Figure 3.6 shows the distribution of δS(3839)N as a function of absolute g-magnitude. Values for both RGB and SGB stars are shown, calculated using the CN index definition of Norris et al. (1981). Blue triangles represent SGB stars, while red circles represent RGB stars, with filled and open symbols indicating CN-strong and CN-weak stars, respectively. While a small amount of scatter exists for the most metal-poor clusters (M92, M15, and NGC 5053), no separation that would indicate a bimodal distribution is obvious, consistent with Figure 3.4. For the remaining five clusters at higher metallicity, starting with M53 at a metallicity of [Fe/H]= −2.06, two distinct populations of stars in δS(3839)N-space are apparent. 1 Figure 6 in Martell & Grebel (2010) plots CN versus absolute M , whereas I use absolute r Mg . Because these are all RGB stars with the same (g − r)0 ∼ 0.5, converting Mr to Mg should only produce an essentially uniform shift of all stars in each plot, not affecting the slopes significantly. 64 Figure 3.5 Raw S(3839)N values versus absolute g-magnitude for seven 0.1-dex-wide metallicity bins for the cluster RGB stars in this sample. The top number in the upper-left corner of each panel indicates the maximum metallicity for each bin, while the bottom number indicates the slope of the fit to the stars that appeared to be CN-weak within each [Fe/H] bin (as opposed to the blue data points only, which were identified as CN-weak stars within each cluster ). Red points indicate stars that were identified as CN-strong within their respective clusters. 65 Figure 3.6 The distributions of δS(3839)N as a function of absolute g-magnitude for RGB and SGB stars, using the CN index definition from Norris et al. (1981). Blue triangles represent SGB stars and red circles indicate RGB stars. CN strong stars are shown using filled symbols, while the open symbols represent CN weak stars. The black points in M3 are AGB stars. Typical uncertainties are indicated by the vertical line in the upper right corner. Clusters are arranged in order of increasing [Fe/H]. 66 For M3, a small number of possible AGB stars are noted in the figure with black symbols. The majority of these stars appear CN-weak, with only one CN-strong AGB star. This result is similar to the observations reported by Campbell et al. (2010), who found that, in a sample of nine Galactic GCs, all showed either a total lack of CN-strong AGB stars or a significant depletion of CN-strong AGB stars compared to those present on the RGB. These authors noted that no current explanation exists in standard stellar evolution theory as to why stars on the AGB should have reduced CN abundances compared to the RGB, particularly because the low effective temperatures should be suitable for similarly efficient molecular CN formation. In principle, increased mixing both on the RGB and at the beginning of AGB ascent should contribute more N (and thus stronger CN) to the stellar envelope, which should be apparent in surface abundance measurements. Such a discrepancy has been noted for a long time; two possible explanations were proposed by Norris et al. (1981). First, if two chemically distinct populations in the cluster existed after star formation ceased, one of which was helium-rich and evolved to populate the blue end of the horizontal branch (HB), but never ascended to the AGB, this might lead to the deficiency of CN-strong stars. The second explanation hypothesized that increased mixing in some stars produced increased CN abundances, but also led to increased mass loss at the RGB tip, producing stars populating the blue end of the HB that never ascended the AGB. The problem remains unsolved, and requires additional work. Adopting the corrected values obtained from the above procedure, we produced a generalized histogram of the δS(3839)N distribution for each cluster, shown in Figure 3.4. This was accomplished by representing each point as a Gaussian, centered on δS(3839)N with a FWHM equal to the uncertainty of that particular δS(3839)N measurement, and then adding the individual Gaussians together. The uncertainty for each S(3839)N measurement was determined as in Martell & Grebel (2010), using a Monte Carlo approach. Each pixel in the error vector produced by the SDSS spectroscopic reduction pipeline was multiplied by a factor between 0 and 1, drawn from a normalized distribution. This new vector was then 67 added to the data vector and the indices were remeasured. This process was repeated 100 times and the standard deviation was taken to be the uncertainty. Naturally, the resultant uncertainties are related to the S/N of the spectra; uncertainties for the high-S/N spectra were much lower than the typical uncertainties found in the literature. For this reason, recent studies have sometimes smoothed their histograms to make them more directly comparable to past studies. Smoothing the histogram also helps eliminate any artificial substructure in the distribution created by small number statistics, while additionally accounting for unidentified sources of uncertainty. In Figure 3.4, the clusters are arranged in order of increasing metallicity, from left to right, top to bottom, and represent the δS(3839)N distribution on the RGB for each cluster. Many of these clusters have been studied previously, so comparisons can be made with the present observations. Suntzeff (1981) reported a bimodal distribution in CN indices in M3 and M13 on the upper RGB (stars more luminous than the HB). This observation for M3 was confirmed on the upper RGB by Smith et al. (1996) and Lee (1999), and on the lower RGB of M3 by Norris & Smith (1984). Smith et al. (1996) also report CN bimodality among M13 RGB stars, and the proportions of CN-strong stars I observe in these two clusters agree well with those reported by Suntzeff (1981). M2 was studied by Smith & Mateo (1990) and shown to have a bimodal CN distribution, also matching in proportion to that seen in this sample. Studies of M71 by Smith & Norris (1982), Lee (2005), and Alves-Brito et al. (2008) all report CN bimodality on the RGB. Evidence for bimodality is found in my data as well, at the same level as observed for 47 Tuc (Norris & Freeman, 1979), which is of comparable metallicity to M71. It is interesting that Alves-Brito et al. (2008) have claimed the existence of CN-strong AGB stars in their sample. As mentioned above, nearly all CN observations of AGB stars have demonstrated a depletion in CN, which makes their observation unique. It is possible that M71 is so metal-rich compared to other GCs studied to date that this encourages additional CN enrichment on the AGB, in spite of whatever mechanism might 68 Figure 3.7 Generalized histogram for the combined (solid black line) δS(3839)N data sets for RGB stars in M53 from this sample (red dashed line) and that of Martell et al. (2008b) (blue dotted line). This distribution suggests that while there is a prominent CN-weak group, a group of CN-strong stars also exists in this cluster. be causing the depletions in other cluster AGB stars. However, if this were the case, one might expect some manifestation on the RGB as well, in the form of a higher ratio of CNstrong to CN-weak stars. Yet, in the Alves-Brito et al. (2008) sample the ratio is only ∼ 0.3. Further investigation of AGB stars in M71 would be of interest to determine whether their observations are representative of the cluster. Note that Mallia (1978) reported a large fraction of CN-strong AGB stars in 47 Tuc, so one might expect to find a similar fraction in M71. Moving to the [Fe/H] ≤ −2.0 regime, M53 has not been extensively studied. Martell et al. (2008b) reported a broad but not strongly bimodal distribution of CN absorption 69 strengths in their sample of upper RGB stars (brighter than the RGB bump), where deep mixing is expected to have altered the stellar surface abundances. Their Figure 6 shows a generalized histogram for M53 that is similar to mine, shown in Figure 3.4, but theirs appears slightly narrower and smoother (though in fact my histogram has been smoothed by a larger factor than their distribution). When my δS(3839)N values are combined with theirs, producing a sample spanning nearly the entire RGB, a KMM test of bimodality (Ashman et al., 1994) indicates that the hypothesis that the observations are drawn from a single Gaussian parent population can be rejected at high statistical confidence (p = 0.05). The generalized histogram for this combined data set is shown in Figure 3.7, where the individual data sets are also indicated. The distribution clearly indicates the presence of a CN-strong component, with a ratio of CN-strong to CN-weak stars of 0.61, suggesting a population of CN-strong stars in the cluster with a range of enrichment levels. I now consider the other very metal-poor clusters in this sample: M92, M15, and NGC 5053. Carbon abundance depletion and nitrogen enhancement have been observed before on the RGB and SGB of M92 (Carbon et al., 1982; Langer et al., 1986; Bellman et al., 2001) and RGB of M15 (Trefzger et al., 1983), with a progressive decline in [C/Fe] moving to higher luminosities. While significant CN bimodality has not been seen in either cluster, a handful of stars that exhibit CN-enhancement relative to the cluster majority have been observed (Langer et al., 1992; Lee, 2000). Additionally, indications of CN-CH anticorrelation have been observed at the base of the RGB in M15 (Cohen et al., 2005b), providing evidence that low-metallicity GCs do harbor the same light-element variations as their higher-metallicity relatives. A recent study by Shetrone et al. (2010) of NGC 5466 ([Fe/H] ≃ −2.2) suggested the possible presence of two CN groups, with a small mean separation of only 0.055. They noted that the generalized histogram of their RGB stars was not well-described by a single Gaussian fit. In a similar fashion, I examined the generalized histograms for RGB stars in the very metal-poor clusters M92, M15, and NGC 5053. Figure 3.8 shows the histograms 70 Figure 3.8 Generalized histograms for RGB stars in the very metal-poor clusters M92, M15, and NGC 5053, along with NGC 5466 ([Fe/H] = −2.2), taken from Shetrone et al. (2010). The blue solid line is the data, while the black dashed line represents the single Gaussian that best fit the distribution. The inset shows the residual between this best-fit curve and the data; the double-peaked nature of the residual may suggest that the data may be best represented by two overlapping Gaussian distributions. 71 for these clusters, as well as that of NGC 5466 from Shetrone et al. (2010), fit with a single Gaussian; residuals are plotted in the insets in each panel. The residuals from the fits to the three very metal-poor clusters are somewhat larger than those of NGC 5466, suggesting that the data also may not be well-described by a single Gaussian population. However, a KMM test for each cluster (including NGC 5466) cannot reject the null hypothesis that a single population well-describes the observed data, indicating that hints of the non-Gaussian distributions in these data may simply be due to small-n statistics. If these clusters possess multiple CN behaviors, they may not be discernible within the present measurement uncertainties. Due to the fact that double-metal molecules like CN are particularly difficult to observe at low [Fe/H], this problem could be solved by measuring individual element abundances rather than molecular bandstrengths. 3.3.2 CN Absorption on the Subgiant Branch and Main Sequence Perhaps the most intriguing observations of the CN bimodality phenomenon are to be found among stars in the relatively unevolved regions of cluster CMDs. Contrary to predictions of standard stellar evolutionary models, significant variations in CN bandstrengths have been reported for stars prior to their undergoing first dredge-up (e.g. Briley et al., 2002; Cohen et al., 2002), even down to the main sequence in 47 Tuc (Cannon et al., 1998; Harbeck et al., 2003a). However, searches within other cluster MS stars have produced mixed results. Cohen (1999a) reported no significant CN variation for MS/MSTO stars belonging to M13, although the CN features in their spectra were shown to be too weak for reliable measurement (Briley & Cohen, 2001). Carbon and nitrogen abundance analyses of these stars by Briley et al. (2004) showed that this was likely due to the fact that there is very little change in bandstrength for a given change in abundance at luminosities near the turnoff, where effective temperatures are relatively high compared to MS and giant stars (see their Figure 2). Main sequence stars in M71 have been claimed to exhibit CN 72 bimodality at a level larger than the measurement uncertainty, as well as an anticorrelation between CN and CH (Cohen, 1999b). Follow-up analysis of the data further showed that the variation is at the same level as that observed for RGB stars in that cluster, leading the authors to claim that no significant mixing is occurring on the RGB (although this could also simply mean that first dredge-up did not significantly affect the surface carbon and nitrogen abundances), and that the abundance variations were in place at the time the stars formed (Briley & Cohen, 2001). In their sample of eight GCs, Kayser et al. (2008) found no statistically significant variation in CN abundance for stars on the MS and SGB, but they again attributed that to low S/N spectra producing relatively large measurement uncertainties. Finally, Pancino et al. (2010) reported CN bimodality for MS stars in four of their most metal-rich clusters among a sample of 12 clusters. Clearly, minimizing measurement uncertainty plays a vital role in addressing the question of CN abundance variations on the MS, and further observations of larger samples of MS stars are needed for improved statistical certainty. In this section, I report on the MS/SGB stars observed for four clusters in our sample. I measured the strength of the CN absorption band at 3883 ˚ on the main sequence A using the spectral index S(3839) defined by Harbeck et al. (2003a) for MS stars: S(3839)H = −2.5 log 3884 3861 Iλ dλ . 3910 3894 Iλ dλ (3.4) Uncertainties and δS(3839)H values were calculated the same way as described in Section 3.3.1. Figure 3.9 shows the distribution of δS(3839)H values for the four clusters that have SEGUE spectra for stars on the MS – M92, M15, M2, and M13 (in order of increasing [Fe/H]). A large amount of scatter is apparent, but not when compared to the typical uncertainty indicated by the error bars shown in the upper right corner of each panel. Furthermore, inset in each panel is the distribution of δS(3839)H as a function of S/N , which shows that the source of this scatter may lie in the relatively low S/N of the spectra for these faint stars. The decrease in CN strength near Mg ≈ 4 is not unexpected, since this 73 Figure 3.9 Distribution of δS(3839)H as a function of absolute g-magnitude for MS and SGB stars from clusters with SEGUE spectra on the MS, using the CN index definition from Harbeck et al. (2003a). Blue open circles represent SGB stars and red filled circles represent MS stars. Plotted as insets for each cluster are the distributions of δS(3839)H as a function of S/N . This is done to demonstrate that the large scatter of CN absorption strength on the MS may simply be due to low S/N. Typical uncertainties are indicated by the vertical line in the upper right corner. Clusters are arranged in order of increasing [Fe/H]. 74 corresponds to the turnoff where the effective temperatures are the highest (and thus CN molecular formation is at its lowest), but one would expect that CN bandstrengths should essentially all increase for luminosities below this point again, as it does for luminosities higher than this point, rather than simply increasing in dispersion. Generalized histograms of the δS(3839)H values for these four clusters are shown in Figure 3.10. No indications of bimodality are seen, suggesting that when the relatively larger uncertainties are taken into account, nothing statistically significant stands out. Although the residuals (see inset panels) are asymmetric and, in the cases of M92 and M13, double-peaked, we see nothing indicating the presence of two populations of stars. It seems more likely that the asymmetries in the figures are simply due to finite sampling from a single Gaussian distribution. A KMM test fails to reject the hypothesis that these data were drawn from a single Gaussian parent population. Further observations with smaller uncertainties are needed to determine whether the observed distributions’ asymmetries are due to the presence of two distinct populations or not. The Norris et al. (1981) definition for the CN index was used for stars located on the SGB, although the Harbeck et al. (2003a) definition could also have been used. Figure 3.11 shows the distributions of δS(3839)N abundances on the SGB for the same four clusters as in Figure 3.10. The histograms for M92, M2, and M13 appear to provide evidence of independent CN groups. The solid blue lines and dashed black lines are as before, while the red dotted curves provide the generalized histograms for the proposed CN groups on the SGBs of each cluster. Insets in each panel again show the differences between the data and the superposed single Gaussian curve. Cohen (1999a) looked for CN variations on the upper MS/MSTO region of M13 and reported nothing significant; however it appears that the data does indicate the presence of CN variation on the SGB of this cluster. These observations indicate that, for very metal-poor clusters such as M92, as well as for clusters with moderate metallicity such as M2 and M13, there appear to be signs of enhanced N enrichment well before the point of first dredge-up. These issues are explored further below. 75 Figure 3.10 Generalized histograms for the δS(3839)H distributions of MS stars within each globular cluster for which SEGUE spectra exist on the MS. δS(3839)H on the MS is calculated in the same way as for RGB stars. No indication of bimodality is apparent. 76 Figure 3.11 Generalized histograms for the δS(3839)N distributions of SGB stars within each globular cluster for which SEGUE spectra exist on the SGB. The solid blue curves are the generalized histograms for each cluster. A simple Gaussian fit to the distribution is overplotted as a dashed black line, and the red dotted curves are generalized histograms for the groups one might presume to be CN-strong and CN-weak, taken separately. The inset box shows the difference between the blue generalized histogram for the entire sample of SGB stars and the simple Gaussian fit. The small bump on the CN-strong side represents one star and cannot be confidently assigned to any presumed CN-strong group. 77 3.3.3 Hidden Substructure in Generalized Histograms While generalized histograms are a more natural representation of the distribution of data than binned histograms, it is important to consider the impact of any adopted smoothing factors. Smoothing factors are sometimes used to produce a histogram that more closely resembles those of past studies by multiplying the uncertainties of each data point by some appropriate factor. This is also done to account for any sources of uncertainty that may have been overlooked. One may choose to adopt a smoothing factor which produces a distribution that is comparable to past studies, but choosing a smoothing factor that is too high may wash out important details in the data. To study the potential impact of smoothing on the generalized histograms of my clusters, I divided up the CMDs for the four GCs with full CMD coverage into several regions – RGB above the bump (where the RGB bump was identified), RGB, SGB/MSTO, and MS. I then looked at the δS(3839) indices for stars in each region and produced two generalized histograms, one smoothed to match the claimed observational uncertainties of previous studies (solid black line) and one unsmoothed (dashed red line), shown in Figures 3.12 – 3.15. Because measurement errors from previous studies are typically ∼ 0.05, when the typical Monte Carlo-calculated uncertainties were smaller than this they were amplified (smoothed) by an integer factor (shown in each panel) to approximate the errors from previous studies. Naturally, the unsmoothed lines exhibit more potential substructure, but one must still determine what level of substructure is meaningful. This can be qualitatively estimated as a function of the number of stars in the bin and the relative peak sizes. For example, while the RGB of M92 (Figure 3.12) appears to exhibit substructure in the unsmoothed histogram, the paucity of stars in this region of the CMD obviates this claim (the CN-strong peak only has one star). As mentioned above, for very metal-poor clusters such as M92 and M15, it is expected that the difference between CN-strong and CN-weak groups should be smaller when measuring the S(3839) index. At the metallicity of M92, this difference is expected 78 Figure 3.12 Region divisions for the color-magnitude diagram of M92 are shown in the left panel, while the right panel shows the generalized histograms of the δS(3839) distribution within each unshaded region. The solid black lines in the histograms represent the smoothed distribution, with the smoothing factor given in the upper-left corner, while the dashed red lines represent the unsmoothed distribution. The multipliers listed in the upper left corner of the right-hand set of panels indicate the amount of smoothing employed (see text). The HB stars were not included in the analysis. 79 Figure 3.13 Same as Figure 3.12 but for M15. 80 Figure 3.14 Same as Figure 3.12 but for M2. 81 Figure 3.15 Same as Figure 3.12 but for M13. This cluster had data sampled above the RGB bump, shown in panel (a) of the right-hand set of panels. More than the other clusters, M13 shows a steady progression of increasing CN richness as one moves up the RGB. The small bump at δS(3839) ≈ 0.0 in the top unsmoothed histogram corresponds to an AGB star, identified later as such by its u − g color. 82 to be ∼0.1, suggesting that if more data were available one might be able to determine whether the apparent substructure is real or merely an artifact of small number statistics. From inspection of the RGB of M15 (Figure 3.13), one again sees possible asymmetries in the upper regions that may be associated with substructure. However, a KMM test for this portion is again unable to reject a single Gaussian parent population. At more moderate metallicities, M2 (Figure 3.14) and M13 (Figure 3.15) exhibit very clear signs of CN variation on the RGB. The uppermost region of M13 is at a luminosity above the RGB bump, suggesting that the increase in CN is likely due at least in part to the deep mixing thought to occur at that point. Figure 3.15 depicts the expected appearance of stronger CN bandstrengths as stars evolve up the RGB, although a group of CN-weak stars always remains present. It is also worth noting that initial variations first appear on the SGB, as seen in the right-hand panel (c). 3.4 CH Bandstrength Distribution While investigation of CN bandstrengths can provide some insight into possible chemical inhomogeneities within cluster stars, CH absorption strength is also typically considered as a means of distinguishing between nitrogen abundance behavior and carbon abundance behavior. This is generally done by measuring the absorption strength of the 4300 ˚ CH A G-band and comparing with the CN bandstrengths. Previous studies of cluster giants have shown that, at a given luminosity, the CN-strong stars tend to have weak CH G-bands, implying nitrogen enhancement. Additionally, Gratton et al. (2000) demonstrated that the general behavior in clusters is that the CH bandstrength decreases with increasing luminosity, while the summed ratio [(C+N+O)/Fe] remains constant – again indicating the presence of nitrogen enhancement as stars move up the RGB. However, these abundances are not predicted by standard stellar evolution models to change significantly along the RGB between first dredge-up and helium flash (Iben, 1964), at least without the assumption of 83 additional mixing. Many definitions of indices that measure the CH G-band have been employed (Norris et al., 1981; Trefzger et al., 1983; Briley & Smith, 1993; Lee, 1999; Harbeck et al., 2003a,b; Martell et al., 2008b) and proposed (Martell et al., 2008a) in the past; these differ primarily because they were developed for use with stars of specific metallicity or luminosity ranges. Figure 3.16 shows the linebands and sidebands used by four common definitions. While the use of different CH bandstrength indices complicates quantitative comparison with literature studies, qualitative comparisons can still be useful. Inspection of Figure 3.16 reveals the presence of the Hγ and Hδ Balmer lines that can interfere with the continuum sidebands in the Norris et al. (1981) and Martell et al. (2008b) index definitions. These two definitions were developed using samples of the most luminous, and therefore the coolest, red giants in their clusters of interest, where Balmer absorption has minimal impact. Of the two that remain, the Briley & Smith (1993) definition only includes the blue side of the continuum, which can potentially cause artificially depressed values for cooler stars where the continuum is more strongly sloped. Therefore, the Lee (1999) definition was adopted for this study: CH(4300)L = −2.5 log 1 2 4320 4270 Iλ dλ 4260 4420 4230 Iλ dλ + 4390 Iλ dλ . (3.5) This definition has the advantage that it has been used for clusters covering a broad range of metallicities, from M15 (−2.33; Lee, 2000) to M71 (−0.82; Lee, 2005), and it also avoids the influence of Balmer lines that appear in hotter stars. In addition, it samples the continuum on both sides of the CH G-band, thus providing a more accurate representation of the “expected” continuum at the location of the line band, regardless of the slope of the continuum in this region. The resulting indices are also tabulated in Table ??. Figure 3.17 shows the CH index versus δS(3839)N for this cluster sample, ordered from low to high metallicity. From inspection of this figure, CN-weak stars are typically also CHstrong, while those stars that are CN-strong are typically CH-weak, with a few exceptions. 84 Figure 3.16 CH bandstrength measurement windows for four popular index definitions, shown for a typical M3 red giant spectrum (fiber 2475-53845-489). The blue line on each spectrum indicates the line band while the red lines indicate the continuum windows used for comparison. The CH G-band is indicated, along with two hydrogen Balmer lines for reference. 85 Figure 3.17 CH absorption strength versus δS(3839)N for RGB stars in this sample. Red filled circles are CN-strong stars and black open circles are CN-weak stars. In most clusters, a trend from CH-strong/CN-weak to CH-weak/CN-strong is seen. The subscript ‘L’ indicates the Lee (1999) definition. 86 Figure 3.18 is a similar set of plots, but here the CH-index is plotted against absolute gmagnitude. The RGB stars within each cluster exhibit the strongest CH absorption when they are CN-weak, and vice versa. SGB stars are included as well for the two clusters in our study where they are also available. My results are consistent with previous studies of giants in M2 (Smith & Mateo, 1990), M13 (Suntzeff, 1981; Briley & Smith, 1993; Smith et al., 1996), M3 (Suntzeff, 1981; Smith et al., 1996), and M71 (Smith & Norris, 1982; Lee, 2005; Alves-Brito et al., 2008). Interestingly, M53 does not exhibit this anticorrelation in this sample or that of Martell et al. (2008b). 3.4.1 CH Behavior at Low Metallicity Examination of the CH-CN anticorrelation for low-metallicity clusters is challenging, due in part to the decreased abundances of all metals in the stellar atmospheres. This phenomenon has been demonstrated before with synthetic spectra spanning a range of N abundances at low metallicity (Martell et al., 2008b). This suggests a possible low-metallicity observational cutoff, below which bimodality is either too difficult to detect with data of the quality SDSS was able to obtain or too difficult to measure due to the low levels of CN present. Shetrone et al. (2010) predicted that abundance variations should exist at all metallicities, even though bandstrength variations will become impossible to see at sufficiently low values of [Fe/H]. To investigate this, I now consider whether the CN-CH anticorrelation is observable in the very metal-poor clusters M92, M15, and NGC 5053. Following the approach of Shetrone et al. (2010), a line was fit to the raw S(3839)N values as a function of g-magnitude, then those above the line were labeled as CN-strong and those below the line as CN-weak. The results of this exercise for M92, M15, and NGC 5053 are shown in Figure 3.19, plotted against absolute g-magnitude for direct comparison. For the remainder of this dissertation these two groups will be used to distinguish those stars with slightly higher and slightly lower CN bandstrengths. At the lowest point on the RGB (still above the SGB), there is little difference in the CH bandstrengths between the CN-strong and 87 Figure 3.18 CH absorption strength as a function of luminosity, with blue triangles corresponding to SGB stars while red circles are RGB stars. Filled symbols represent CN-strong stars, while open symbols represent CN-weak stars. 88 CN-weak stars. However, as one moves up the RGB, an apparent anticorrelation sets in for RGB stars in M92 at Mg ≈ 1.5. Similar behavior is not seen in M15 and NGC 5053, however. If CN abundance variations are in place prior to a star’s evolution up the RGB, one might expect to see an anticorrelation between CN and CH on the SGB and MS. Although more difficult to observe, since higher temperatures would tend to break up the molecules, such anticorrelations have been reported previously for MS stars (Cannon et al., 1998; Cohen, 1999b; Harbeck et al., 2003a; Pancino et al., 2010). Figure 3.20 shows the relationship between CH and CN indices for MS and SGB stars in M92, M15, M2, and M13, with the CN indices derived using the Harbeck et al. (2003a) definition. As in Fig. 3.9, one sees a minimum in CH bandstrength for M13 at Mg ≈ 4, corresponding to the higher effective temperatures of the turnoff point (see Figure 2 from Briley et al., 2004). While an anticorrelation may exist on the upper SGBs of M2 and M13, which would be consistent with the signs of CN bimodality on the SGB of these clusters and consistent with Figure 3.18, no other anticorrelations are clearly seen. While further study is needed, previous studies suggest that follow-up observations of MS stars in these clusters will likely reveal the same types of bandstrength variations. 3.5 Correlations with Cluster Parameters The possibility that CN enrichment is linked in some way with various physical parameters of the parent cluster has been examined extensively in previous studies. For example, Norris (1987) identified a possible correlation between CN bandstrength and the apparent ellipticity of the cluster using data from 12 Galactic GCs. This suggested correlation was confirmed by Smith & Mateo (1990), who combined their observations of M2 with the set from Norris (1987), but was not seen by Kayser et al. (2008) using data from eight clusters (of which three were in common between the two studies). They concluded that the 89 Figure 3.19 Illustration of CH scatter on the RGBs of M92 (top), M15 (middle), and NGC 5053 (bottom). I have made a proposed CN-strong/weak cut at δS(3839)N=0.0, based on a simple linear fit to the raw RGB S(3839)N values, and have plotted the CH abundance of CN-strong (filled circles) and CN-weak (open circles) stars in each panel. The vertical dashed line is the location of the RGB bump, drawn from Fusi Pecci et al. (1990). 90 Figure 3.20 CH absorption strength versus Mg for MS and SGB stars. Approximate divisions are made to indicate those stars that are higher (filled symbols) and lower (open symbols) than the mean for CN absorption. No anticorrelation is seen. 91 Table 3.1. Individual Cluster RGB CN Number Ratios Cluster Ns Nw r M92 0 (12) 24 (12) 0.00 (1.00) M15 0 (23) 32 (9) 0.00 (2.56) NGC 5053 0 (9) 13 (4) 0.00 (2.25) M53 5 8 0.62 M2 21 6 3.50 M13 90 21 4.29 M3 22 28 0.79 M71 5 3 1.67 Note. — Number of CN-strong (Ns ) and CN-weak (Nw ) stars, and CN number ratios, for RGB stars from individual GCs in our sample. Values in parentheses for M92, M15, and NGC 5053 represent the groupings based on the proposed divisions detailed in Section 3.4.1. correlation with ellipticity is not as significant as initially believed. Smith & Mateo (1990) also reported a correlation between CN enrichment and cluster central velocity dispersion, which was again disputed by Kayser et al. (2008). The Smith & Mateo (1990) claim of a CN enrichment correlation with integrated cluster luminosity received moderate support from the observations of Kayser et al. (2008). Figure 3.21 shows the number ratio of CN-strong to CN-weak RGB stars for the clusters in this sample, denoted by r, plotted against various cluster parameters drawn from the Harris (1996) catalog.2 These values are tabulated in Table 3.1. The number ratio is useful because it reveals the relative population sizes of the individual CN groups, and provides a constraint on the chemical evolution of the cluster. M92, M15, and NGC 5053 were treated differently because they do not possess CN2 All references to Harris (1996) refer to the 2010 update on his web page: http//www.physics.mcmaster.ca/∼harris/mwgc.dat. 92 Figure 3.21 The number ratio of CN-strong to CN-weak stars (designated as r) plotted against various cluster parameters. The filled circles represent the adopted ratios for each cluster, while the open triangles representing M92 and M15 if one were to make the proposed divisions and identify relatively CN-strong and CN-weak stars in each. The Spearman rank correlation coefficients are given in the upper-left corners of each panel; the top numbers correspond to the correlation coefficient using the r values from the proposed M92 and M15 divisions (triangles), while the bottom numbers correspond to the distribution using r = 0 for M92 and M15. 93 strong stars, at least by the conventional definition, and hence would have an r value of zero. However, Figures 3.12 and 3.13 suggest the presence of stars that might be identifed as CN-strong (relative to the rest of the cluster). Therefore, an alternative method for adopting relatively CN-strong and CN-weak stars was described in Section 3.4.1 for M92, M15, and NGC 5053. Using this approach, I determined alternative r values for M92, M15, and NGC 5053, which are plotted in Figure 3.21 as open triangles. Spearman rank correlation coefficients were calculated for the distributions and are provided in the upperleft corner of each panel; the top and bottom numbers correspond to the sample with and without the second r quantity included, respectively, for M92, M15, and NGC 5053. Supporting the claims of Norris (1987) and Smith & Mateo (1990), I observe a moderate correlation between CN enrichment and cluster ellipticity. We also note a moderate correlation between CN enrichment and central velocity dispersion (Figure 3.22), in the same sense as Smith & Mateo (1990), with a Spearman coefficient of 0.52 when using the ratios for the proposed CN divisions in M92, M15, and NGC 5053, though no such correlation in these data is observed with cluster luminosity (see Figure 3.21). However, the range of cluster luminosities in this sample is not very broad. Only two clusters with absolute V -magnitude brighter than −8.0 were observed, one of which is metal-poor with no solidly identified CN-strong stars and the other having fewer than 10 stars with reliable spectroscopy. When this data set is combined with that of Kayser et al. (2008) and Smith & Mateo (1990), also shown in Figure 3.22, the overall trends become clearer; the largest fraction of CN-strong stars are found in the most luminous and massive clusters. This result is consistent with expectations from the self-enrichment scenario – the most massive clusters possess the deepest gravitational potentials, allowing them to retain the largest amount of chemically enriched gas expelled from evolving stars. While studies to date typically quote an average value of the r parameter from the clusters in their samples, it is not clear that this quantity is meaningful. Comparing the values directly is complicated by the fact that some studies only use RGB stars, while others 94 Figure 3.22 The number ratio of CN-strong to CN-weak stars plotted against central velocity dispersion, absolute V magnitude, and total cluster mass, combined with data from Kayser et al. (2008) (blue triangles) and Smith & Mateo (1990) (red squares). The Spearman rank correlation coefficients for the r-σ relation are given in the upper-left corners and correspond the same way as in Figure 3.21. A correlation is seen when using the CN division in M92 and M15. Absolute magnitudes are drawn from the 2010 revision of the Harris (1996) catalog, while masses are drawn from Mandushev et al. (1991) and McLaughlin & van der Marel (2005). Data points that correspond to the same clusters are connected with a dashed line. 95 Table 3.2. Literature CN Number Ratios Sample N MV Kayser et al. (2008) 8 −6.19 Pancino et al. (2010) 12 −7.84 This study 8 −8.12 Smith & Mateo (1990) 16 −8.21 r 0.61 0.82 1.36 1.72 Note. — Mean CN number ratios from four samples of GCs as a function of absolute integrated magnitude. N indicates the number of clusters included in each sample. include subgiants, dwarfs, and even AGB stars as well. Since dwarfs, with their hotter atmospheres, are less likely to show significant CN absorption, their inclusion may bias the value downward. The same holds true for the inclusion of AGB stars, since they are nearly always CN-weak (see Campbell et al., 2010, for further discussion). The study by Pancino et al. (2010), comprised entirely of MS dwarfs, reported an average of r = 0.82 ± 0.29, while the average of the r values reported by Kayser et al. (2008) for the giants in their sample is 0.61. Together, these results indicate that for the clusters in their samples, both of which span a large range of [Fe/H] and luminosity, the CN-strong stars are in the minority. However, studies of Na and O abundances in cluster giants by Carretta et al. (2009c,b) suggest that the ratio is much higher, with enriched stars comprising 50–70% of the total (r > 1). The compilation by Smith & Mateo (1990) of giants from 16 clusters gives an average ratio of 1.72, which agrees well with Carretta et al. (2009b,c). While it is puzzling that two samples of cluster giants would yield such discrepant results, this may result from a bias toward more luminous clusters, since their inclusion would artificially inflate the fraction of CN-strong stars in the sample. Table 3.2 lists the mean r values alongside the mean MV values for this sample and the three GCs from the literature. The increase in r with MV is apparent, indicating that conclusions drawn based upon the CN ratio must 96 account for any potential biases from including or excluding massive GCs in the sample. 3.6 Summary I have used low-resolution SEGUE spectra to confirm the presence of a bimodality in the CN distributions for stars in GCs with [Fe/H] > −2. In addition, I extend the metallicity limit for which CN bimodality has been observed to at least [Fe/H] ∼ −2.1, by adding M53 to the collection. Furthermore, I have presented evidence suggesting the presence of a much smaller division between CN-strong and CN-weak groups on the RGB of M92, down to luminosities corresponding to MV ∼ 1.8, which is in quantitative agreement with earlier studies suggesting carbon depletion setting in below the RGB bump. Evidence for two CN groups on the RGB of NGC 5053, with a similar metallicity as M92, also exists. Previous CN abundance studies of M92 have not shown strong evidence for bimodality, and NGC 5053 is reported on for the first time. I also confirm an overall anticorrelation between CN and CH bandstrengths on the RGB for M2, M13, and M3, for luminosities beyond the point of first dredge-up, while offering evidence that M92 may also display the same anticorrelation. The samples for M53 and M71 are too small to make strong claims for anticorrelations, although M53 appears to have CN and CH bandstrengths that are uncorrelated. Despite its chemical similarity to M92, no apparent CN-CH anticorrelation is present among M15 giants. Finally, NGC 5053 exhibits a remarkably uniform CH bandstrength along the RGB, in spite of the fact that this sample of stars straddles the RGB bump, where deep mixing is predicted to set in. My observations support a scenario in which evolved stars disperse enriched gas throughout the cluster that ultimately forms a second generation of stars. This results in two chemically disparate populations of stars. Such abundance variations are not observed among even the oldest and most massive open clusters (Jacobson et al., 2008; Martell & Smith, 2009), presumably due to their significantly lower gravitational potentials preventing them 97 from retaining enriched gas from evolved stars. Furthermore, current theoretical models of the origin of light-element abundance variations rely heavily on the high density environments of proto-globular clusters to facilitate enrichment of subsequent stellar populations. Since these chemically enriched stellar populations appear to form preferentially in GCs, this motivates the argument that the presence of CN-strong stars in the Galactic halo may have been stripped from GCs into the field, rather than being the result of in situ formation (Martell & Grebel, 2010). Additional studies of halo GCs should provide an opportunity to explore and quantify this contribution directly. 98 Chapter 4: Evidence for Multiple Populations in SDSS Globular Clusters 4.1 Introduction Globular clusters have long been considered the canonical example of a simple stellar population – a population of stars that is chemically homogeneous and coeval. Though all stars within a single globular cluster (GC) tend to share the same Fe abundance, it has become clear in recent years that this uniformity is not observed in lighter elements. The explanation that has gained favor recently proposes the appearance of a second population of stars within the first few Myr after the cluster’s formation. The material contributing to the genesis of this second population is predicted to be ejecta from massive first generation stars, with intermediate-mass AGB stars (Ventura & D’Antona, 2008) or fast-rotating massive stars (Decressin et al., 2007b,a) as likely candidates. These have been implicated because of the required chemical makeup of the enriched gas out of which the second generation of stars is thought to have formed. The hypothesis of an origin due to fast-rotating massive stars is relatively recent (Maeder & Meynet, 2006; Meynet et al., 2006; Decressin et al., 2007b) and as such is not without existing problems. In particular, for sufficiently deep rotational mixing to take place that brings CNO-processed material to the surface, models suggest the star must be rotating at or near the break-up velocity (Decressin et al., 2007b). Whether this is physically realistic has been drawn into question by observations of unenriched fast rotators in the Large Magellenic 99 Cloud by Hunter et al. (2008) which cast doubt on the efficiency of rotational mixing. In the scenario involving asymptotic giant branch (AGB) stars, they are required to be the most massive AGB stars processing material via the hot CNO cycle through hot bottom burning at the base of the convective envelope (Ventura et al., 2001). Temperatures must be high enough that the ON cycle operates to reduce the O abundance and boost the N abundance in the envelope prior to third dredge-up, producing the observed enrichment in the second generation of stars. This envelope is then blown off the star into the intracluster medium at sufficiently low speeds as to be retained in the cluster’s gravitational potential, provided that the cluster’s mass is sufficiently high. One recent study by Conroy & Spergel (2011) has identified a potential lower limit of ∼ 104 M⊙ , below which a cluster cannot retain gas against ram pressure from the local interstellar medium (ISM). In clusters more massive than this, modeling predicts that the gas should condense and form a cooling flow into the cluster core, where the second generation of stars is largely formed (D’Ercole et al., 2008). As a GC ages and evolves, it initially experiences mass loss as a result of dynamical relaxation due to the loss of supernova ejecta from the first generation of stars (Chernoff & Weinberg, 1990; Fukushige & Heggie, 1995; Goodwin, 1996). As the first generation stars migrate beyond the cluster’s tidal radius, they are stripped away, while the second generation stars remain roughly constant in number (D’Ercole et al., 2008). Therefore, the number ratio of enriched second generation stars to pristine first generation stars in a cluster should rise over time early in the cluster’s history. In fact, D’Ercole et al. (2008) demonstrated using N-body simulations that the initial mass loss is so drastic that the cluster that is left behind may ultimately be dominated by second generation stars. Subsequent relaxation due to two-body interactions within the cluster then proceeds to mix the two generations of stars over timescales much longer than the dynamical timescale (see Spitzer, 1987; Meylan & Heggie, 1997, and references therein), but with the rate of further mass loss significantly reduced. Any mass loss due to two-body relaxation ought to affect both generations of stars 100 roughly the same. Detections of differences in radial distributions between first and second generation stars in GCs have been reported previously for ω Cen (Pancino et al., 2003; Sollima et al., 2007; Villanova et al., 2007), NGC 1261 (Kravtsov et al., 2010b), NGC 1851 (Cassisi et al., 2008), NGC 3201 (Kravtsov et al., 2010a; Carretta et al., 2010a), NGC 6752 (Kravtsov et al., 2011), along with the collection of GCs by Lardo et al. (2011). These results were discovered using photometric data. In this chapter, evidence is investigated for multiple populations of stars within the GCs observed by the Sloan Digital Sky Survey using spectroscopic data. 4.2 The Data Set I obtained photometric data from the Data Release 7 (DR7; Abazajian et al., 2009) of SDSS for the fields of eight Galactic GCs (M92, M15, NGC 5053, M53, M2, M13, M3, and M71). In addition, spectroscopic data for the fields of these clusters were obtained from the dataset produced by the Sloan Extension for Galactic Understanding and Exploration (SEGUE; Yanny et al., 2009), one of three sub-surveys that together formed SDSS-II. True member stars were selected for these clusters using a variation of the color-magnitude diagram (CMD) mask algorithm described by Grillmair et al. (1995). Details on the application of this method to our specific clusters are described by Lee et al. (2008b) and Smolinski et al. (2011a) and will not be discussed here. The final data set of true member stars is also given in Lee et al. (2008b) and Smolinski et al. (2011a) and resulted in the following number of stars for each cluster: M92 (58), M15 (98), NGC 5053 (16), M53 (19), M2 (71), M13 (293), M3 (77), and M71 (8). Spectroscopic line index measurements of the 3883 ˚ CN and 4300 ˚ CH molecular abA A sorption bands were undertaken by Smolinski et al. (2011b) for these stars at all evolutionary stages using the Norris et al. (1981) S(3839) definition for RGB and SGB stars and that of Harbeck et al. (2003a) for MS stars. Smolinski et al. (2011b) identified CN bimodality 101 among globular cluster giants for all clusters with [Fe/H]> −2.1. Among the three GCs with metallicities below this (M92, M15, and NGC 5053), while it was more difficult to clearly demonstrate two distinct CN groups, suggestions of two groups did appear in M92 and NGC 5053. Figures 3.1 and 3.2 show the position of these sample stars on the reddeningcorrected g0 versus (g − r)0 CMD. I make use of the photometry for these member stars from Lee et al. (2008b) and Smolinski et al. (2011a) and the line index measurements from Smolinski et al. (2011b) in this chapter. 4.3 CMD distributions As discussed in Smolinski et al. (2011b), the CN groups in the three most metal-poor clusters (M92, M15, and NGC 5053) were difficult to distinguish and the adopted divisions on the RGB were identified by a linear fit to the total CN distribution (as done by Shetrone et al., 2010) and not via any clearly visible bimodality in a generalized histogram. However, these groups are more apparent in M15 and NGC 5053, as well as most other GCs in this sample, when one looks at the u0 versus (u − g)0 CMDs, shown in Figure 4.1 and 4.2. On the RGB, the CN-strong stars (red triangles) clearly fall on the red (right) side while the CN-weak stars (blue circles) populate the blue (left) side. While it is difficult to consider these figures beyond a visual inspection due to the relatively small sizes of one or both groups in many clusters, Figures 4.3 – 4.5 show cumulative distributions (and Kolmogorov-Smirnov (K-S) test p-values) of (u − g)0 color where the sample sizes were large enough and provided sufficiently broad color coverage for M15, M13, and M3. Applying a Kolmogorov-Smirnov (K-S) test, one can reject the null hypothesis (that the two distributions are drawn from the same sample) for M15 and M13 with high probability. In the case of M3, the null hypothesis cannot be rejected but, upon inspection of Figure 4.2, this may simply be due to the nonuniform color coverage of CN-weak stars at the blue (low values of u − g) end. The overall observation of a color dichotomy is not unexpected, as the enhanced presence of metals in 102 Figure 4.1 u0 vs. (u−g)0 CMDs for M92, M15, NGC 5053, and M53 from SDSS photometry. The spectroscopic data is plotted as colored points, divided by CN absorption strength where blue circles represent CN-weak stars and red triangles represent CN-strong stars. Other than M92, the two groups generally populate opposite sides of the RGB. 103 a stellar atmosphere is known to produce a redder spectrum due to increased absorption at blue wavelengths and has been seen before in spectroscopic analysis of elemental abundances in GC stars (e.g. Marino et al., 2008b; Milone et al., 2010). Additionally, Carretta et al. (2010a) showed a definitive spread in U − B color between first and second generations in the cluster NGC 3201. In earlier studies and this study, the dichotomy is visible even down to the base of the RGB in many clusters, indicating that the two abundance groups are present well before any mixing is expected to happen. Figure 4.6 demonstrates that this bandstrength dichotomy is even present on the SGBs of M92, M2, and M13, though the color differentiation is not seen in the same manner as on the RGB. This can also be demonstrated by examining the ratio of CN-strong stars to CN-weak stars along the length of the RGB. To do this effectively, it was necessary to have adequate sampling at all luminosities to provide for meaningful counting uncertainties. The RGBs of M13 and M3 provided ample numbers of stars for this test. Figures 4.7 and 4.8 show the results of this calculation. The stars on the RGB were divided up into bins containing equal numbers of stars (where the bin sizes are indicated by the vertical lines) and the Poisson errors were calculated for each CN ratio (indicated by the horizontal lines). Within the calculated uncertainties, there appears to be no indication that the CN ratio, and thus the chemical bimodality, is related to the evolutionary stage along the RGB. This procedure was done twice for each cluster using different numbers of bins, which produced similar results. One can therefore conclude that the distinct CN populations are present prior to any mixing that might happen and are not significantly impacted by evolution up the RGB. 104 Figure 4.2 Same as Figure 4.1 but for M2, M13, M3, and M71. 105 Figure 4.3 Cumulative distributions of (u − g)0 colors of CN-weak (dashed blue line) and CN-strong (solid red line) populations in M15. The Kolmogorov-Smirnov p-value is shown in the upper-left corner. 106 Figure 4.4 Same as Figure 4.3, but for M13. 107 Figure 4.5 Same as Figure 4.3, but for M3. 108 Figure 4.6 Same as Figure 4.1 but for SGB stars in M92, M15, M2, and M13. One sees indications of CN variations on the SGBs of three out of four clusters. 109 Figure 4.7 Ratio of CN-strong stars (red filled circles) to CN-weak stars (blue open triangles) along the RGB of M13. The left panel shows the distribution along the CMD, while the other panels show the CN ratio when divided into 3 (middle panel) and 4 (right panel) bins containing an equal number of stars. The vertical bars show the width of the bins, while the horizontal bars indicate the Poisson uncertainties associated with each ratio. 110 4.4 Radial Distributions Numerical simulations were done by D’Ercole et al. (2008) to study the dynamical evolution of the stellar population within a GC. The results of their simulations revealed that a substantial second generation of stars can form from gas expelled by AGB stars, forming a second generation of stars initially concentrated in the cluster core, and that the ratio of second generation to first generation stars changes over time in response to internal dynamical effects. Furthermore, they demonstrated that while two-body interactions over the course of a cluster’s lifetime do contribute to mass loss, the effect over a Hubble time is negligible and, instead, mass loss associated with supernova explosions is a significant factor in determining the initial ratio of second generation to first generation stars. This showed that the majority of stars that are lost by a cluster are first generation stars, an effect which is capable of producing a cluster that is ultimately dominated by second generation stars, and that two-body relaxation is capable of effectively mixing the two generations of stars that remain. If these simulations are correct, then one might expect to see indications of a centrallyconcentrated CN-enriched population. While dynamical studies by D’Ercole et al. (2008) and Decressin et al. (2010) demonstrate that a second generation of stars can potentially form in the cluster core, two-body relaxation is an important factor in determining what the GC will look like after ∼1010 years. The pertinent timescale is the two-body relaxation time, which measures the time required for deviations from a Maxwellian distribution to be significantly decreased (Spitzer, 1987). This timescale can be defined in several ways. A general definition from Spitzer (1987, Eq. 2-62) is 2 0.065 vm 3/2 , ρ m G2 ln Λ [vm (km/s)]3 = 3.4 × 109 years, [m/M⊙ ]2 n(pc−3 ) ln Λ trelax = 111 (4.1) Figure 4.8 Same as Fig. 4.7 but for M3. In this case, the RGB was divided into 3 (middle panel) and 2 (right panel) bins containing an equal number of stars. 112 2 where vm is the mass-weighted mean square velocity of the stars, ρ is the mass density, m is the mean stellar mass, and Λ ≈ N (Binney & Tremaine, 1987), where N is the number of stars in the cluster. Alternatively, theorists define a half-mass relaxation timescale 3/2 trelax,h = 0.138M 1/2rh m G1/2 ln Λ (4.2) [r (pc)]3/2N1/2 years = 1.7 × 105 h [m/M⊙ ]1/2 (Spitzer, 1987; Meylan & Heggie, 1997), where typical values range from 3 × 107 to 2 × 1010 years (Djorgovski & Meylan, 1993). The half-mass relaxation timescale depends less on the evolution of the cluster and the density within the adopted radius. Comparing these timescales with the current ages of known Galactic GCs of ∼1010 years, one arrives at the conclusion that a GC is typically well-described as a relaxed system and two-body interactions should have effectively mixed the stars. This is confirmed by the N-body simulations of D’Ercole et al. (2008) that show a flattening radial profile of the ratio of second generation to first generation stars over time (see their Fig. 18). Nevertheless, studies by Lardo et al. (2011) and Kravtsov et al. (2011) have provided observational evidence for the existence of a radial segregation between first and second generation populations. These conclusions are drawn indirectly using photometric data, utilizing u−g or U −B color spreads that have been previously correlated with light-element abundance variations. They found that the stars on the red side of the color spread along the RGB (which correlate with elemental abundance enhancement) tend to be more centrally concentrated. Using this data, one can directly probe the distributions of apparent CN abundances without requiring photometry. Figure 4.9 shows the radial distributions of CN-strong (filled symbols) and CN-weak (open symbols) RGB (red circles) and SGB (blue triangles) stars in this sample. Ideally, one would prefer uniform coverage over the full radial range with a 113 Figure 4.9 Radial distribution of RGB (red circles) and SGB (blue triangles) stars within each cluster, divided into CN-strong (filled symbols) and CN-weak (open symbols) groups. 114 large number of stars. For this reason, one cannot make a claim from this diagram for many of these clusters. However, M13 does appear to demonstrate a strong central concentration of CN-strong RGB stars. M2 also shows hints of a similar distribution, though the radial coverage is lacking. Unfortunately, when the radial axis is changed to units of the half-light radius rh , shown in Figure 4.11, it is clear that the radial scales probed by the D’Ercole et al. (2008) simulations are not represented in our sample, thereby making direct comparisons with simulation results difficult. One can gain a better sense of the statistical significance of these distributions by doing a K-S test and comparing the cumulative radial distributions, shown in Figure 4.10. For clusters such as NGC 5053, M53 and M71 where the sample sizes are small, these figures are less meaningful, but where the sample sizes are larger comparisons can be made. Shown with each pair of cumulative distributions is the K-S probability, where small values indicate that the two data sets are significantly different. The K-S probability for M13 indicates that one can reject the null hypothesis at high statistical confidence. In the cases of M92, M15, M2, and M3, one can only claim that the two groups are statistically similar. Contrasting Figure 4.10 with Figures 4.3 – 4.5 illustrates the quandary in distinguishing individual generations of stars in GCs separated in age by a cosmologically short amount of time (D’Ercole et al., 2008). Simulations suggest that relaxation should have sufficiently mixed the stellar populations over a Hubble time such that no central concentration ought to be apparent (D’Ercole et al., 2008), as appears to be the case in Figure 4.10, implying that color and compositional differences are the only way to detect them. Yet, Lardo et al. (2011) and Kravtsov et al. (2011) demonstrate significant central concentration in their identified second-generation stars. This is particularly interesting considering that the Lardo et al. (2011) study utilized SDSS photometric data for, among others, M92, M15, M53, M2, and M13, and showed them all to have UV-red stars (interpreted to be Naenriched and ostensibly second generation) that preferentially populate the cluster cores. The inconsistency between theory and observation, and in this specific case the inconsistency 115 Figure 4.10 Cumulative radial distribution of CN-strong (solid red line) and CN-weak (dashed blue line) stars in each cluster, in units of the tidal radius. The K-S probability is shown in the lower-right corner of each panel. 116 Figure 4.11 Cumulative radial distribution of CN-strong (solid red line) and CN-weak (dashed blue line) stars in each cluster, in units of the half-light radius. The K-S probability is again shown in the lower-right corner of each panel for reference. 117 between my spectroscopic and the Lardo et al. (2011) photometric samples, regarding radial distributions of the individual generations is currently still being debated and further study, particularly with larger spectroscopic samples providing more uniform and complete radial coverage, is needed before the question can be accurately addressed. 4.5 Summary Drawing from the work of Smolinski et al. (2011b), I have further investigated the spectroscopic and photometric analysis of member stars in my sample of eight Galactic GCs. I have demonstrated the existence of a color dichotomy related to CN bandstrength on the RGBs of every cluster except M92 and M71, and have shown that, in M13 and M3, the presence of two distinct groups is independent of evolutionary effects along the RGB. I have also investigated the radial distributions of the CN-rich and CN-weak groups. While the spatial sampling of stars in most of these clusters limits my ability to make any definitive claims, I do see evidence suggesting a centrally concentrated population of CNenriched stars in M13. It is worth noting, though, that the absence of central concentration is supported by the D’Ercole et al. (2008) simulations despite its incompatibility with the photometric observations of Lardo et al. (2011). Connecting my results with those in the literature, it appears that two different stellar populations may exist in most clusters in this sample, based on radial distributions in M13 and photometric (u − g)0 scatter along the RGB that is consistent with that reported previously in the literature (e.g. Marino et al., 2008b; Bragaglia et al., 2010; Carretta et al., 2010a; Lardo et al., 2011). While M71 suffers from a limited sample size and poor photometry, I am confident that further observations will reveal the same for this cluster as well. Further observations performed in a more spatially uniform manner are needed to determine whether one can use the observed radial dependence of the CN ratio to determine the mixing history of a cluster. 118 Chapter 5: Conclusions and Future Work 5.1 Results of this Study This Dissertation has presented the results of a spectroscopic and photometric investigation of globular cluster stars in the Sloan Digital Sky Survey. In Chapter 2, I have described the procedure used for identifying true member stars and have demonstrated that it produces [Fe/H] and RV measurements that are consistent with those published previously in the literature for these particular clusters, even at super-solar metallicities. I have also studied 3883 ˚ CN and 4300 ˚ CH molecular line absorption in all cluster A A members in this sample. Since molecular absorption has been observed in the past to show star-to-star variations among cluster members, it is of particular interest to determine the fundamental cause of this phenomenon. While abundance variations have been clearly observed in clusters with moderate metallicity, it has not yet been convincingly demonstrated in low-metallicity clusters ([Fe/H] < −2.1). In Chapter 3, I confirmed the presence of CN bimodality in all clusters with [Fe/H] > −2.1, adding M53 to the list of clusters with confirmed CN bimodality, but also provided evidence for low-metallicity CN variation on the RGB of M92 and NGC 5053. In addition, I showed indications of CN variations among SGB stars in M92, M2, and M13, thus confirming that surface abundance variations are not strictly a result of evolutionary processes but must have been present at the time the enriched stars formed. CN-CH anticorrelations were also shown which demonstrate that the enrichment is related to CNO-processing, the products of which are only accessible to subsequent generations of stars if they have been brought to the surface via physical 119 mixing mechanisms and, most likely, blown off of their original stars prior to having been incorporated into a second generation of stars. The observations of CN bimodality in GCs, as well as the observed light-element abundance variation patterns, are most easily explained by the formation of a second generation of stars shortly after the appearance of the first. In Chapter 4, I investigated further this hypothesis by looking for evidence that the CN-enriched group is likely to be a distinct population of stars. I showed that the the spectroscopic sample does appear to be dichotomous on the u0 vs. (u−g)0 CMD, with the CN-strong stars on the red side and the CN-weak stars on the blue side. Additionally, I showed the radial distributions of the two groups in each cluster and, though my sample sizes were limited, provided evidence that the CN-enriched group in M13 appears to be centrally concentrated with respect to the CN-weak group. 5.2 Implications These observations taken together support the scenario where enriched gas was ejected from an initial population of GC stars into the intracluster medium, whereupon it cooled and flowed in to the cluster core. This cooling flow then produced a second generation of stars which were enriched in light elements while maintaining typical cluster abundances in heavier elements, thus producing bimodal distributions of anticorrelated light element groups in the population as a whole. Subsequent two-body interactions allowed the cluster to relax, while mixing the two generations together, erasing much of the initial core concentration. 5.3 Future Work While the two-generation scenario appears to elegantly answer many questions we have about GCs in the Milky Way, it will be necessary to look outside the Galaxy for confirmation since it appears that there are no concrete examples of proto-GCs “caught in the act” of forming within our own Galaxy. However, galaxies like M31 and the LMC harbor large 120 numbers of young and intermediate-age GCs which, given the sufficient advancement of observing resolution and instrumentation (or the development of tools that allow us to identify CN bimodality from integrated light spectra), may provide insight about whether or not current formation conditions allow the development of CN bimodality. Additionally, studying low-mass, young extragalactic GCs can provide constraints on any lower mass limit to the efficient formation of a second generation of cluster stars. As noted in Chapter 3, measuring double-metal molecular line absorption is difficult in metal-poor clusters where the abundances of both species are significantly diminished. This makes detection of any signatures of bimodality extremely difficult. One way this problem could be alleviated is through detailed abundance analysis of stars in metal-poor GCs. Obtaining measurements of [C/Fe] and [N/Fe] for stars in metal-poor halo GCs can allow us to answer the question of whether or not there exists a low-metallicity cutoff for CN bimodality and light-element abundance variations. However, this would require a dedicated spectroscopic survey with the means of easily measuring spectra for large numbers of stars from the cluster core to the tidal radius, followed up by a software pipeline that could quickly and accurately perform detailed abundance analysis to derive the desired abundances. Finally, while we seem to be getting an idea of what the picture looks like, there are ∼150 GCs in the Milky Way Galaxy and these types of observations have been done for less than half, mostly in the Northern Hemisphere. Surveys of high-metallicity GCs near the Galactic bulge, additional low-metallicity GCs in the Galactic halo, and more Southern Hemisphere GCs may provide further data to help clarify the details. As for the clusters that have currently been observed, most reports of multiple generations of stars rely on photometric observations. Additional spectroscopic follow-up on larger numbers of stars (> 300) in each cluster will also help provide statistical certainty to the results they produce. 121 APPENDICES 122 Appendix A: Atmospheric Properties of Adopted True Member Stars A.1 Atmospheric Parameters Data Table Based on the membership selection procedure outlined in Chapter 2, I have prepared the following tables (Tables A.1 and A.2) of SSPP-derived atmospheric parameters for the adopted true member stars of the GCs and OCs in this sample and that of Lee et al. (2008b). Column 1 lists the spSpec name, which identifies the star on the spectral plate in the form of spectroscopic plug-plate number (four digits), Modified Julian Date (five digits), and fiber used (three digits). For details on how the uncertainties in these parameters are estimated, see Lee et al. (2008a). Values with an ellipsis were problematic and have been omitted. Table A.1: Atmospheric Properties of Adopted True Member Stars spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) M92 2247-54169-361 259.05270 43.17390 −115.1 9037 3.18 −2.09 2247-54169-362 259.04869 43.06008 −113.8 5461 3.06 −2.09 Continued on next page. . . 123 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2247-54169-364 259.08213 43.24025 −104.6 5391 3.27 −2.29 2247-54169-367 259.10185 43.19566 −112.0 5372 2.92 −2.13 2247-54169-379 259.22175 42.99835 −117.5 6474 3.56 −2.48 2247-54169-380 259.12453 43.10090 −109.5 5286 2.59 −2.34 2247-54169-404 259.14868 43.20253 −111.9 5364 2.28 −2.19 2247-54169-408 259.15160 43.11560 −120.0 5135 2.26 −2.42 2247-54169-409 259.18316 43.10430 −120.3 6301 3.97 −2.12 2247-54169-418 259.19255 43.08290 −119.6 5141 2.43 −2.19 2247-54169-444 259.17824 43.24650 −112.3 5311 2.35 −2.41 2247-54169-449 259.20122 43.17130 −116.5 5234 2.13 −2.26 2247-54169-451 259.26814 43.06960 −121.9 5355 2.83 −2.25 2247-54169-452 259.18977 43.22959 −121.4 5291 2.10 −2.38 2247-54169-458 259.20611 43.21507 −126.6 5734 2.99 −2.11 2247-54169-484 259.14905 42.94427 −115.0 5081 2.12 −2.43 2247-54169-504 259.34715 42.94880 −112.1 5124 2.11 −2.29 2247-54169-514 259.29469 42.90065 −111.3 5598 2.53 −2.38 2247-54169-516 259.32981 42.96344 −120.5 5742 2.20 −2.25 2247-54169-519 259.29888 42.91809 −120.6 5720 3.80 −2.23 2247-54169-529 259.24274 43.26023 −113.6 5445 3.24 −2.20 2247-54169-531 259.31297 43.26453 −115.2 5357 2.81 −2.22 2247-54169-538 259.34134 43.25804 −107.6 5899 2.69 −1.94 2247-54169-541 259.43884 43.03566 −129.2 5586 2.96 −2.03 Continued on next page. . . 124 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2247-54169-546 259.35424 43.02288 −117.7 5446 2.78 −2.33 2247-54169-561 259.34981 43.12020 −114.2 5354 2.78 −2.32 2247-54169-563 259.32958 43.21520 −111.7 5212 2.44 −2.34 2247-54169-573 259.32140 43.07420 −116.3 5414 2.77 −2.28 2247-54169-575 259.38118 43.24689 −111.4 5765 3.85 −2.33 2247-54169-581 259.39378 43.07110 −110.5 5357 2.17 −2.29 2247-54169-582 259.43614 43.09974 −123.2 7700 3.42 −1.99 2247-54169-584 259.48440 43.05953 −103.4 5613 2.58 −2.39 2247-54169-589 259.43215 43.06340 −114.7 5343 2.17 −2.38 2247-54169-608 259.45984 43.22947 −120.3 5150 2.44 −2.20 2247-54169-610 259.51967 43.17119 −117.2 5109 2.15 −2.23 2247-54169-616 259.39054 43.18959 −115.4 5749 2.71 −1.99 2247-54169-620 259.43737 43.13558 −103.9 5584 3.01 −2.10 2256-53859-411 259.06782 43.11078 −120.3 6407 3.52 −2.31 2256-53859-455 259.11098 43.06094 −108.6 6584 3.72 −2.14 2256-53859-485 259.15452 42.99086 −109.5 6573 3.76 −1.95 2256-53859-489 259.20858 42.99146 −128.5 6623 3.58 −2.22 2256-53859-501 259.37101 43.02222 −109.5 6623 4.16 −2.58 2256-53859-506 259.31541 43.02145 −111.1 6686 3.65 −2.04 2256-53859-513 259.29469 42.90065 −118.0 5604 2.55 −2.32 2256-53859-522 259.21141 43.23125 −116.7 6047 3.00 −2.40 2256-53859-530 259.36776 43.25074 −124.9 6550 3.73 −2.22 Continued on next page. . . 125 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2256-53859-535 259.31357 43.28081 −123.1 6412 3.94 −2.48 2256-53859-536 259.28945 43.28023 −127.9 6342 3.80 −2.17 2256-53859-537 259.42460 43.12058 −112.4 6149 3.67 −2.17 2256-53859-538 259.38004 43.21048 −120.7 5567 3.27 −2.34 2256-53859-539 259.34059 43.24915 −113.1 6427 2.27 −2.49 2256-53859-546 259.48196 43.01234 −124.7 6647 4.02 −2.49 2256-53859-566 259.38565 43.03733 −115.0 6699 4.06 −2.05 2256-53859-571 259.45784 43.06219 −122.9 6528 3.81 −2.29 2256-53859-575 259.44647 43.32046 −100.6 6587 2.90 −2.49 2256-53859-576 259.43562 43.17233 −109.1 6633 3.80 −2.25 2256-53859-579 259.39772 43.05123 −112.4 6665 3.50 −2.33 2256-53859-612 259.48383 43.20252 −115.4 6654 4.03 −2.31 M15 1960-53289-401 322.4521790 12.338844 −108.2 5227 2.36 −2.34 1960-53289-402 322.4679565 12.327691 −107.0 5050 2.06 −2.31 1960-53289-406 322.4168396 12.266688 −101.3 5059 1.71 −2.36 1960-53289-413 322.4143066 12.305798 −103.8 5160 1.98 −2.44 1960-53289-419 322.4579773 12.303373 −111.0 5064 2.23 −2.39 1960-53289-420 322.6591187 12.145007 −92.5 5961 3.57 −2.25 1960-53289-441 322.5975342 12.257596 −114.5 5427 2.42 −2.75 1960-53289-442 322.5028076 12.375646 −119.5 5170 2.32 −2.33 1960-53289-457 322.5315247 12.312680 −113.7 5568 2.47 −2.27 Continued on next page. . . 126 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 1960-53289-459 322.7053528 12.125361 −105.5 5222 2.12 −2.38 1960-53289-460 322.7267761 12.119604 −101.3 5343 2.62 −2.39 1960-53289-500 322.4296570 12.004886 −106.9 5457 2.64 −2.29 1960-53289-501 322.5649414 11.992488 −83.7 5732 2.61 −2.23 1960-53289-511 322.5564575 12.010468 −112.2 5364 2.24 −2.40 1960-53289-522 322.6466675 12.302749 −110.3 5387 2.01 −2.46 1960-53289-523 322.5946350 12.299892 −104.6 4930 1.93 −2.27 1960-53289-529 322.5634155 12.329430 −103.0 5110 1.91 −2.27 1960-53289-530 322.5755615 12.443088 −112.9 5351 1.96 −2.60 1962-53321-323 322.3222656 12.281335 −100.7 6024 3.19 −2.31 1962-53321-328 322.3479919 12.310190 −103.7 6482 4.04 −2.07 1962-53321-329 322.4080811 12.358446 −102.9 6244 3.58 −1.95 1962-53321-335 322.3918152 12.275231 −124.6 5898 3.41 −2.42 1962-53321-339 322.3828125 12.291987 −111.7 6673 3.38 −1.88 1962-53321-363 322.5025635 12.258308 −107.3 6555 3.62 −1.88 1962-53321-364 322.4689941 12.278071 −108.2 5476 2.95 −2.60 1962-53321-368 322.5046692 12.286249 −105.5 6132 3.08 −2.06 1962-53321-369 322.4819946 12.320425 −119.4 6191 2.76 −1.82 1962-53321-370 322.4340820 12.294349 −118.6 6141 3.71 −2.35 1962-53321-371 322.4648743 12.303191 −131.7 6075 3.52 −1.97 1962-53321-372 322.4102173 12.272476 −123.1 5885 2.99 −2.25 1962-53321-375 322.4530640 12.260857 −106.7 5508 2.77 −2.41 Continued on next page. . . 127 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 1962-53321-376 322.4066772 12.290338 −108.3 5420 3.14 −2.35 1962-53321-378 322.4337463 12.256533 −123.5 6614 4.02 −2.39 1962-53321-399 322.2647400 12.088030 −128.7 6636 3.58 −2.76 1962-53321-402 322.5315247 12.312680 −103.5 5452 3.00 −2.44 1962-53321-403 322.5715332 12.283740 −114.7 5586 2.92 −2.08 1962-53321-406 322.5553284 12.353999 −104.2 5627 3.14 −2.19 1962-53321-407 322.5682373 12.340600 −105.2 6184 3.56 −2.20 1962-53321-409 322.5322266 12.338534 −112.9 6752 3.82 −1.86 1962-53321-412 322.5373535 12.294172 −114.9 6461 3.46 −2.27 1962-53321-413 322.4278564 12.366820 −110.2 5435 2.59 −2.34 1962-53321-414 322.5430603 12.254919 −88.0 5981 2.89 −2.04 1962-53321-415 322.4989014 12.316244 −106.0 5494 2.74 −2.19 1962-53321-416 322.5141602 12.304797 −119.8 6338 2.71 −2.30 1962-53321-419 322.5576782 12.301801 −130.4 6528 3.74 −1.96 1962-53321-421 322.3530884 12.238419 −117.9 5662 2.76 −2.43 1962-53321-422 322.3055115 12.095261 −126.1 6421 2.74 −2.11 1962-53321-423 322.3211060 12.217339 −114.5 5546 2.48 −2.32 1962-53321-424 322.2882080 12.088967 −117.2 6589 3.61 −2.37 1962-53321-427 322.3056030 12.249682 −112.0 5453 2.46 −2.48 1962-53321-428 322.3019104 12.225344 −125.4 6560 3.85 −2.16 1962-53321-430 322.3014832 12.204044 −95.6 6419 3.09 −2.27 1962-53321-438 322.3101501 12.185511 −111.9 5309 2.73 −2.46 Continued on next page. . . 128 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 1962-53321-442 322.6037598 12.366948 −103.6 6275 3.16 −2.39 1962-53321-445 322.6427917 12.275240 −93.9 6515 3.72 −1.88 1962-53321-449 322.6358032 12.290989 −131.8 6313 2.99 −2.16 1962-53321-454 322.5975342 12.257596 −116.1 5452 2.00 −2.37 1962-53321-460 322.6270447 12.246479 −117.9 6459 3.73 −2.20 1962-53321-465 322.3361511 12.095001 −132.0 6662 3.48 −2.37 1962-53321-466 322.3733521 12.240548 −115.5 5356 3.04 −2.72 1962-53321-469 322.4008179 12.225221 −132.4 6200 3.20 −2.52 1962-53321-470 322.3207092 12.106877 −119.2 6432 3.86 −2.05 1962-53321-471 322.4016724 12.009658 −102.7 6515 3.90 −2.21 1962-53321-474 322.3290100 12.039521 −111.8 5425 2.77 −2.62 1962-53321-478 322.3526611 12.008277 −126.3 6108 2.90 −2.41 1962-53321-480 322.3417664 12.023521 −113.7 6242 3.06 −2.09 1962-53321-483 322.4589844 11.991854 −83.6 6743 3.19 −1.87 1962-53321-484 322.5236511 12.006750 −100.6 6618 3.80 −2.01 1962-53321-488 322.4795532 12.013686 −100.9 6439 3.78 −2.08 1962-53321-490 322.4822083 11.986870 −111.2 6458 3.92 −2.62 1962-53321-493 322.5000610 11.843804 −107.2 5749 2.88 −2.35 1962-53321-495 322.4521179 11.955274 −95.0 6463 3.65 −1.79 1962-53321-496 322.4375000 11.972004 −83.5 6514 3.97 −2.19 1962-53321-497 322.4447021 12.011971 −114.3 6443 4.12 −2.39 1962-53321-500 322.4923096 11.963464 −111.3 6286 4.32 −2.39 Continued on next page. . . 129 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 1962-53321-503 322.6179810 11.996145 −97.4 6715 3.72 −2.18 1962-53321-505 322.6524048 12.082651 −106.0 6450 3.87 −2.65 1962-53321-506 322.6019592 12.044020 −99.7 5420 2.74 −2.43 1962-53321-509 322.6124878 12.028808 −104.7 6584 4.07 −2.06 1962-53321-510 322.6307373 12.017861 −91.9 6155 3.44 −2.25 1962-53321-512 322.5454712 12.024155 −94.7 6286 3.17 −2.09 1962-53321-515 322.5826111 11.990081 −104.6 5466 2.74 −2.53 1962-53321-516 322.5649414 11.992488 −97.5 5712 3.19 −2.41 1962-53321-518 322.6694946 12.089317 −95.5 5695 3.22 −2.54 1962-53321-519 322.5717163 12.034966 −94.5 6693 3.68 −2.26 1962-53321-520 322.5625916 12.011796 −108.2 6234 3.47 −2.44 1962-53321-522 322.6928101 12.298704 −120.6 6638 3.79 −2.09 1962-53321-532 322.6614685 12.270009 −113.4 5471 2.39 −2.42 1962-53321-533 322.6655579 12.248962 −106.2 6273 3.28 −2.25 1962-53321-539 322.7539978 12.195694 −89.6 6595 4.01 −2.24 1962-53321-540 322.6919556 12.215733 −88.6 6420 3.37 −2.48 1962-53321-543 322.6426392 12.200052 −103.6 6434 3.55 −2.70 1962-53321-545 322.6738586 12.167021 −110.0 6688 3.75 −2.59 1962-53321-549 322.6310120 12.212295 −119.3 5904 3.36 −2.51 1962-53321-550 322.6591187 12.145007 −105.4 5890 2.99 −2.26 1962-53321-554 322.7246094 12.159374 −102.1 6825 3.75 −2.38 1962-53321-555 322.6697388 12.106344 −105.5 6495 3.63 −2.21 Continued on next page. . . 130 Table A.1 – Continued spSpec name α δ (deg) (deg) 1962-53321-558 322.6465759 12.128071 RV Teff log g [Fe/H] (km s−1 ) (K) −108.9 5925 3.97 −2.32 NGC 5053 2476-53826-486 199.04518 17.60554 46.8 5287 1.99 −2.41 2476-53826-488 199.09269 17.69851 42.5 4951 2.00 −2.14 2476-53826-490 199.07441 17.62914 37.0 8452 3.08 −2.10 2476-53826-497 199.08809 17.59394 36.2 5397 2.46 −1.90 2476-53826-501 199.16802 17.67369 43.4 4973 2.11 −2.56 2476-53826-505 199.19265 17.70156 46.8 5353 1.93 −2.37 2476-53826-506 199.15790 17.64537 46.8 8072 3.51 −1.76 2476-53826-507 199.18189 17.62503 37.7 5126 1.97 −2.26 2476-53826-508 199.18986 17.64430 43.0 5125 2.20 −2.32 2476-53826-519 199.10217 17.66400 45.6 4965 1.65 −2.01 2476-53826-527 199.01911 17.78386 45.5 5001 1.99 −2.17 2476-53826-531 199.06474 17.76097 46.3 9199 3.41 −2.15 2476-53826-573 199.19611 17.80532 43.9 5267 1.68 −2.17 2476-53826-575 199.17000 17.79282 44.3 4855 2.06 −2.43 2476-53826-577 199.23569 17.75812 49.4 5150 2.15 −2.43 2476-53826-578 199.14256 17.73152 42.7 4921 2.16 −2.26 M53 2476-53826-329 198.08194 18.01885 −74.3 5189 2.42 −1.87 2476-53826-361 198.27909 18.09230 −59.4 5006 2.25 −1.94 2476-53826-362 198.14897 18.08892 −56.1 6943 2.65 −1.93 Continued on next page. . . 131 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2476-53826-363 198.21748 18.06588 −58.2 8820 3.48 −1.92 2476-53826-369 198.17940 18.06809 −66.6 9007 3.58 −1.90 2476-53826-372 198.23916 18.03263 −53.5 5235 2.57 −2.16 2476-53826-375 198.27524 17.94161 −71.0 4997 1.97 −1.88 2476-53826-376 198.15708 18.05392 −48.9 9237 3.21 −1.78 2476-53826-378 198.19809 18.07094 −54.5 5069 1.76 −2.07 2476-53826-379 198.28341 17.88147 −57.5 9162 3.35 −2.10 2476-53826-401 198.40054 18.20061 −67.5 5140 2.51 −1.89 2476-53826-404 198.29193 18.10423 −64.0 4849 1.94 −2.00 2476-53826-405 198.43153 18.20371 −45.9 5297 3.11 −1.88 2476-53826-408 198.35774 18.13509 −69.5 8773 3.53 −1.86 2476-53826-409 198.35615 18.21558 −56.8 5133 2.22 −2.12 2476-53826-413 198.34337 18.12375 −69.7 5363 2.94 −1.82 2476-53826-418 198.39045 18.17497 −51.2 5511 2.04 −1.95 2476-53826-451 198.48345 18.06427 −65.0 4989 2.07 −1.89 2476-53826-452 198.48341 18.25271 −63.8 5181 1.95 −2.14 M2 1961-53299-124 323.2988892 −0.926583 −8.8 5063 2.38 −1.63 1961-53299-125 323.3046265 −0.900651 −1.4 5066 2.28 −1.56 1961-53299-131 323.4663696 −0.819519 6.5 5160 2.57 −1.58 1961-53299-134 323.4247131 −0.804700 −2.2 4937 2.00 −1.47 1961-53299-136 323.2869568 −0.885027 8.1 5165 2.72 −1.59 Continued on next page. . . 132 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 1961-53299-140 323.3161316 −0.936875 −5.0 5312 2.73 −1.61 1961-53299-144 323.4824524 −0.780800 6.8 5293 2.48 −1.64 1961-53299-152 323.5119629 −0.501376 3.4 5150 2.18 −1.76 1961-53299-159 323.5318298 −0.781852 3.1 5178 2.55 −1.72 1961-53299-194 323.1741943 −0.712977 −6.8 8973 3.22 −1.62 1961-53299-213 323.2510986 −0.805550 −6.4 5226 2.00 −1.81 1961-53299-215 323.2557068 −0.864036 3.6 5076 2.20 −1.84 1963-54331-041 323.5323486 −0.898565 −4.0 6214 3.34 −1.34 1963-54331-043 323.5525513 −0.890733 8.6 5594 3.13 −1.52 1963-54331-045 323.5656433 −0.907277 12.1 6325 2.84 −1.31 1963-54331-082 323.5061035 −0.865724 −22.2 6002 2.55 −1.68 1963-54331-083 323.5080261 −0.824424 −9.3 5612 2.97 −1.66 1963-54331-090 323.4566040 −0.765115 −8.8 5721 3.56 −1.66 1963-54331-091 323.4995117 −0.948989 9.6 5396 3.33 −1.64 1963-54331-096 323.4652710 −0.816831 −6.5 5914 3.47 −1.52 1963-54331-098 323.4837952 −0.832883 −5.1 5291 2.60 −1.75 1963-54331-100 323.4888306 −0.866385 −10.0 5928 3.78 −1.55 1963-54331-102 323.5220337 −0.778994 −11.4 6062 3.35 −1.60 1963-54331-114 323.5265503 −0.677912 1.4 6287 3.48 −1.88 1963-54331-121 323.2814026 −0.907666 0.5 5356 2.98 −1.61 1963-54331-123 323.3062134 −0.993524 1.9 5480 2.93 −1.56 1963-54331-124 323.2615051 −0.910594 −4.3 6127 3.05 −1.78 Continued on next page. . . 133 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 1963-54331-126 323.3119507 −0.933239 −1.8 5498 3.29 −1.49 1963-54331-128 323.2590942 −0.836635 −8.3 5412 3.27 −1.45 1963-54331-131 323.3119507 −0.911349 −1.7 5330 2.68 −1.65 1963-54331-137 323.3194885 −0.976572 −2.3 5389 3.19 −1.54 1963-54331-139 323.2646790 −0.864309 −5.7 5328 3.32 −1.61 1963-54331-143 323.4908142 −0.783230 2.3 5734 3.72 −1.46 1963-54331-144 323.4483032 −0.729351 −0.4 5341 3.04 −1.53 1963-54331-145 323.4632263 −0.724424 0.6 5761 4.05 −1.52 1963-54331-146 323.4815979 −0.809713 5.4 6374 4.20 −1.60 1963-54331-147 323.4628601 −0.750568 −23.8 6287 3.62 −1.54 1963-54331-148 323.4973755 −0.808784 −8.1 5725 3.50 −1.67 1963-54331-150 323.4602051 −0.679670 −6.4 5884 3.95 −1.61 1963-54331-154 323.4409485 −0.625550 10.4 6411 3.96 −1.47 1963-54331-156 323.4447327 −0.651404 −3.2 6456 3.40 −1.59 1963-54331-162 323.2671814 −0.670811 4.1 6257 3.62 −1.81 1963-54331-164 323.4361267 −0.765563 2.1 5404 2.96 −1.58 1963-54331-169 323.4208374 −0.698915 17.7 6141 2.18 −1.68 1963-54331-170 323.4298401 −0.733806 −10.4 6427 3.74 −1.34 1963-54331-178 323.4222717 −0.635959 −8.8 5310 3.17 −1.69 1963-54331-179 323.2658691 −0.708226 11.0 6335 3.06 −1.67 1963-54331-180 323.4226990 −0.714586 −1.9 5507 3.42 −1.68 1963-54331-181 323.2662964 −0.726436 0.2 6411 3.68 −1.33 Continued on next page. . . 134 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 1963-54331-184 323.2333374 −0.738061 −4.8 5592 3.30 −1.76 1963-54331-185 323.2148438 −0.726361 −3.7 6453 3.47 −1.74 1963-54331-186 323.2448730 −0.776209 −23.0 6325 3.08 −1.86 1963-54331-189 323.2506104 −0.651933 11.0 6381 3.24 −1.48 1963-54331-194 323.2321777 −0.758979 −3.5 6283 3.43 −1.61 1963-54331-196 323.2610779 −0.770765 −10.8 6284 3.84 −1.69 1963-54331-197 323.1915894 −0.710805 −14.1 6388 3.00 −1.63 1963-54331-200 323.2678223 −0.754401 −10.4 6448 3.46 −1.61 1963-54331-201 323.2361145 −0.796597 −16.9 5586 3.20 −1.46 1963-54331-204 323.2236633 −0.962825 −0.9 5351 2.96 −1.58 1963-54331-206 323.2539062 −0.973936 −17.2 6339 3.56 −1.49 1963-54331-207 323.2109985 −0.851545 15.2 6582 4.08 −1.54 1963-54331-208 323.2533569 −0.887787 −5.2 5337 2.95 −1.68 1963-54331-209 323.2061462 −0.803604 5.0 5476 3.33 −1.60 1963-54331-211 323.2515259 −0.853978 −11.8 5373 3.14 −1.55 1963-54331-212 323.1940918 −0.849611 8.5 5494 3.56 −1.55 1963-54331-217 323.2306213 −0.819139 −1.2 5423 3.10 −1.47 1963-54331-218 323.2166138 −0.902027 −8.3 5399 3.20 −1.63 1963-54331-220 323.1990967 −0.894439 7.5 6438 4.00 −1.77 1963-54331-222 323.2009888 −0.778871 −2.1 6343 3.24 −1.48 1963-54331-223 323.1011353 −0.693063 6.0 6302 3.59 −1.59 1963-54331-254 323.1844177 −0.806918 −1.8 6679 3.87 −1.72 Continued on next page. . . 135 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) M13 2174-53521-054 250.8113861 36.380367 −238.4 5637 3.25 −1.59 2174-53521-082 250.6566925 36.292824 −241.3 5083 2.39 −1.70 2174-53521-087 250.5986176 36.141987 −232.7 5480 3.22 −1.65 2174-53521-093 250.6486664 36.331833 −242.7 5048 2.32 −1.62 2174-53521-094 250.6187286 36.193378 −235.2 5432 3.31 −1.60 2174-53521-098 250.6272430 36.330879 −250.7 5062 2.39 −1.79 2174-53521-121 250.5334473 36.323925 −249.4 5298 2.62 −1.59 2174-53521-126 250.4946899 36.287205 −232.9 5336 2.95 −1.64 2174-53521-128 250.4741516 36.309807 −249.0 5374 3.24 −1.72 2174-53521-131 250.4893646 36.332115 −243.0 5059 3.37 −1.45 2174-53521-133 250.5125122 36.321091 −242.6 5338 3.10 −1.60 2174-53521-134 250.5464020 36.344273 −242.6 5472 3.31 −1.52 2174-53521-136 250.4905701 36.363522 −242.9 9332 3.20 −1.58 2174-53521-137 250.5240936 36.376110 −251.9 5240 2.44 −1.54 2174-53521-145 250.4505157 36.393330 −246.4 5036 2.15 −1.59 2174-53521-146 250.3612061 36.200855 −247.1 5562 3.09 −1.58 2174-53521-149 250.3400269 36.200890 −243.5 5560 3.42 −1.56 2174-53521-152 250.3966980 36.394932 −246.8 8934 3.23 −1.68 2174-53521-153 250.4664001 36.409313 −247.8 8477 3.25 −1.65 2174-53521-154 250.4661713 36.326332 −249.9 5041 2.26 −1.72 2174-53521-155 250.3851166 36.147091 −240.1 5279 2.82 −1.73 Continued on next page. . . 136 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2174-53521-156 250.3521576 36.409504 −239.7 5121 2.35 −1.76 2174-53521-157 250.4519958 36.301846 −247.2 9099 3.38 −1.64 2174-53521-158 250.4085236 36.303894 −243.9 5190 2.44 −1.58 2174-53521-159 250.3711243 36.398438 −237.3 5075 2.05 −1.54 2174-53521-160 250.3690338 36.363808 −255.3 5097 1.85 −1.64 2174-53521-166 250.2722931 36.365372 −237.3 5120 2.43 −1.72 2174-53521-167 250.2756042 36.422920 −246.5 5028 1.81 −1.60 2174-53521-168 250.2608337 36.437668 −244.0 5074 2.06 −1.70 2174-53521-171 250.3128967 36.398254 −247.0 4997 2.09 −1.66 2174-53521-172 250.3078461 36.417362 −247.8 5074 2.25 −1.67 2174-53521-174 250.1682281 36.190548 −250.9 5506 3.15 −1.86 2174-53521-175 250.3200226 36.326923 −235.7 8675 3.30 −1.43 2174-53521-176 250.3260651 36.347130 −240.3 5149 2.53 −1.64 2174-53521-215 250.0930939 36.313175 −242.3 5121 2.36 −1.77 2174-53521-368 250.1569672 36.596581 −254.1 5371 3.18 −1.56 2174-53521-376 250.1804047 36.558369 −247.4 5134 2.45 −1.76 2174-53521-402 250.2494965 36.627911 −252.8 5452 3.34 −1.58 2174-53521-403 250.2917633 36.632149 −258.6 5735 3.72 −1.57 2174-53521-406 250.2974548 36.656551 −249.8 5371 3.23 −1.83 2174-53521-407 250.2983246 36.606567 −251.3 5256 2.96 −1.53 2174-53521-410 250.2953033 36.564213 −237.8 5061 2.36 −1.74 2174-53521-412 250.2389069 36.587105 −242.8 5399 2.57 −1.62 Continued on next page. . . 137 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2174-53521-413 250.3145905 36.517387 −237.6 5107 2.20 −1.65 2174-53521-414 250.2673035 36.586380 −241.9 5349 2.71 −1.58 2174-53521-442 250.3338928 36.614479 −249.2 8514 3.24 −1.58 2174-53521-443 250.3404846 36.465477 −255.4 5109 2.19 −1.68 2174-53521-445 250.3153534 36.581833 −247.6 5629 3.18 −1.60 2174-53521-447 250.3488159 36.637089 −246.1 5545 3.15 −1.56 2174-53521-449 250.3311310 36.507713 −244.1 5069 2.36 −1.80 2174-53521-451 250.4059753 36.421410 −245.1 8466 3.22 −1.66 2174-53521-452 250.2902679 36.445755 −256.6 4997 2.45 −1.70 2174-53521-453 250.3791046 36.437355 −238.2 5107 2.47 −1.57 2174-53521-455 250.3236237 36.436779 −251.3 5053 2.34 −1.68 2174-53521-456 250.3559265 36.608372 −248.2 5402 3.01 −1.56 2174-53521-457 250.3617706 36.424606 −244.6 5062 2.27 −1.63 2174-53521-458 250.3153839 36.463863 −245.9 5069 2.32 −1.65 2174-53521-459 250.3159637 36.554893 −245.0 5118 2.52 −1.50 2174-53521-460 250.3238525 36.491585 −238.9 5030 1.96 −1.59 2174-53521-461 250.4161987 36.592712 −245.1 5415 3.30 −1.62 2174-53521-462 250.3755035 36.591190 −245.5 5006 2.41 −1.65 2174-53521-463 250.4506531 36.594818 −243.8 5102 2.38 −1.67 2174-53521-464 250.3977661 36.604618 −239.1 8616 3.21 −1.60 2174-53521-470 250.3885956 36.541203 −241.2 4991 2.13 −1.59 2174-53521-471 250.4050598 36.680744 −248.8 5166 2.75 −1.64 Continued on next page. . . 138 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2174-53521-472 250.4392548 36.430611 −243.1 7622 3.26 −1.34 2174-53521-474 250.4210815 36.630798 −237.7 5421 3.21 −1.77 2174-53521-475 250.4187622 36.526752 −239.4 5164 3.56 −1.86 2174-53521-476 250.4537811 36.534679 −249.7 5111 2.66 −1.55 2174-53521-477 250.4329834 36.411579 −240.9 5051 2.38 −1.51 2174-53521-478 250.4082642 36.497627 −234.4 5115 2.31 −1.62 2174-53521-480 250.3775940 36.560562 −244.9 5274 2.90 −1.52 2174-53521-481 250.4867401 36.625168 −246.3 5633 3.31 −1.54 2174-53521-483 250.5531464 36.489174 −254.5 5042 2.29 −1.65 2174-53521-484 250.5136871 36.465294 −255.2 5043 2.30 −1.51 2174-53521-485 250.5274811 36.482922 −251.1 5148 2.24 −1.65 2174-53521-488 250.5207062 36.526783 −246.1 5096 2.48 −1.61 2174-53521-489 250.5569153 36.554108 −246.5 5077 2.36 −1.64 2174-53521-490 250.4679413 36.425194 −234.5 8782 3.29 −1.71 2174-53521-491 250.5045319 36.562569 −249.7 9192 3.40 −1.73 2174-53521-493 250.4687042 36.450375 −247.9 5118 2.38 −1.65 2174-53521-494 250.4691467 36.473980 −234.9 5052 2.19 −1.65 2174-53521-495 250.5358582 36.516228 −250.3 5123 2.54 −1.62 2174-53521-497 250.5392151 36.566429 −240.3 5037 2.23 −1.65 2174-53521-498 250.5455017 36.409168 −240.7 5026 2.27 −1.68 2174-53521-499 250.5073700 36.389557 −242.0 5062 2.13 −1.69 2174-53521-500 250.4441376 36.501335 −249.6 5048 2.29 −1.62 Continued on next page. . . 139 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2174-53521-522 250.5714569 36.525883 −244.9 5095 2.42 −1.61 2174-53521-529 250.6122742 36.650723 −245.6 5277 2.98 −1.65 2174-53521-530 250.5795441 36.617588 −246.8 5048 2.34 −1.79 2174-53521-531 250.6083527 36.451302 −243.9 4992 2.34 −1.63 2174-53521-532 250.5847015 36.450947 −245.9 8734 3.29 −1.49 2174-53521-533 250.5825653 36.416344 −248.1 5424 2.71 −1.74 2174-53521-537 250.6071167 36.431816 −252.4 5158 2.61 −1.61 2174-53521-538 250.5686798 36.437107 −252.4 5008 2.25 −1.57 2174-53521-539 250.6033020 36.480679 −251.9 5293 3.11 −1.63 2174-53521-540 250.5608978 36.462700 −253.8 9017 3.33 −1.44 2174-53521-542 250.4867096 36.697521 −248.1 5050 2.36 −1.75 2174-53521-554 250.4524536 36.731075 −248.1 5148 2.40 −1.65 2174-53521-560 250.4494934 36.746979 −246.5 5282 2.80 −1.70 2174-53521-563 250.7275696 36.537083 −245.3 5213 2.82 −1.72 2174-53521-565 250.6674805 36.541718 −248.8 5582 3.06 −1.79 2174-53521-573 250.7793579 36.401161 −245.6 5545 3.54 −1.44 2174-53521-576 250.6557617 36.483734 −244.3 5466 3.28 −1.65 2174-53521-577 250.6542358 36.559769 −250.8 5474 2.86 −1.56 2185-53532-106 250.6608429 36.252338 −246.5 6083 4.08 −1.66 2185-53532-111 250.6518555 36.315819 −247.2 6306 3.42 −1.67 2185-53532-113 250.6327362 36.302673 −259.6 5995 3.31 −1.51 2185-53532-116 250.6650848 36.212494 −254.9 6198 3.59 −1.82 Continued on next page. . . 140 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2185-53532-120 250.6814728 36.301613 −232.7 6232 4.32 −1.52 2185-53532-141 250.5120239 36.217281 −239.5 6279 3.40 −1.71 2185-53532-143 250.5701752 36.201962 −233.4 6280 2.99 −1.65 2185-53532-146 250.5652161 36.224529 −236.1 6107 2.55 −1.58 2185-53532-148 250.6033325 36.234558 −245.2 6275 3.54 −1.85 2185-53532-150 250.6054077 36.200813 −242.3 6252 3.46 −1.70 2185-53532-151 250.5511475 36.331841 −227.3 6101 3.73 −1.75 2185-53532-152 250.6186066 36.331161 −237.1 6320 3.54 −1.82 2185-53532-153 250.5179138 36.306831 −244.2 5774 3.45 −1.73 2185-53532-154 250.5811462 36.316139 −234.2 6151 3.16 −1.77 2185-53532-156 250.5538483 36.304375 −242.3 6300 3.71 −1.66 2185-53532-158 250.5086365 36.321423 −243.9 6274 4.11 −1.71 2185-53532-160 250.5746155 36.340302 −239.3 6175 3.88 −1.82 2185-53532-161 250.4026489 36.216274 −240.0 6036 4.37 −1.68 2185-53532-167 250.3744202 36.210903 −249.9 6221 3.66 −1.78 2185-53532-169 250.3382111 36.202835 −237.3 6210 3.31 −1.55 2185-53532-171 250.4276733 36.282719 −243.5 6139 3.72 −1.53 2185-53532-172 250.4851227 36.205223 −248.2 6304 3.90 −1.50 2185-53532-175 250.4423218 36.258049 −253.5 6445 3.87 −1.54 2185-53532-176 250.4879761 36.319519 −238.0 6239 4.04 −1.62 2185-53532-177 250.4530029 36.298698 −249.3 6378 3.40 −1.66 2185-53532-178 250.4822845 36.300014 −245.6 6216 3.91 −1.70 Continued on next page. . . 141 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2185-53532-179 250.4799957 36.221458 −242.5 6268 3.39 −1.72 2185-53532-181 250.2265778 36.218925 −247.5 6293 3.23 −1.70 2185-53532-196 250.1731720 36.201431 −248.0 6261 3.98 −1.60 2185-53532-197 250.1752930 36.316170 −241.0 6253 3.12 −1.62 2185-53532-198 250.2095490 36.280247 −244.3 6257 4.13 −1.65 2185-53532-200 250.1689453 36.354950 −246.5 6108 3.54 −1.71 2185-53532-237 250.1001129 36.310001 −239.1 5920 3.23 −1.72 2185-53532-388 250.0598145 36.565910 −250.6 6251 3.64 −1.58 2185-53532-390 250.0875244 36.539959 −249.3 6173 4.51 −1.58 2185-53532-393 250.0617828 36.626545 −255.3 6119 3.49 −1.48 2185-53532-423 250.1191559 36.614777 −249.4 6330 3.72 −1.73 2185-53532-424 250.1623840 36.546970 −243.4 6202 4.12 −1.80 2185-53532-425 250.1024933 36.708916 −250.0 6206 3.78 −1.74 2185-53532-426 250.1142273 36.579521 −244.8 5792 3.51 −1.73 2185-53532-427 250.1687622 36.572681 −245.7 5791 3.54 −1.70 2185-53532-428 250.2005005 36.620838 −246.8 6120 4.18 −1.64 2185-53532-430 250.1428375 36.630520 −254.5 6135 3.65 −1.71 2185-53532-431 250.1810608 36.514454 −238.9 6053 3.98 −1.54 2185-53532-433 250.0788116 36.418709 −255.3 5716 3.23 −1.76 2185-53532-435 250.1384125 36.391571 −240.0 6248 3.80 −1.61 2185-53532-439 250.0806732 36.503437 −240.7 6065 3.44 −1.72 2185-53532-440 250.1068573 36.427521 −232.5 6083 3.88 −1.60 Continued on next page. . . 142 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2185-53532-461 250.3284149 36.700005 −241.4 6241 3.78 −1.65 2185-53532-462 250.2369232 36.717884 −248.1 6131 3.60 −1.72 2185-53532-464 250.2901764 36.685863 −236.5 6169 3.82 −1.63 2185-53532-466 250.2878876 36.725266 −245.5 6329 3.73 −1.48 2185-53532-469 250.2945404 36.606640 −246.2 6244 3.33 −1.71 2185-53532-473 250.2791901 36.576611 −238.6 6264 4.21 −1.54 2185-53532-475 250.2398529 36.588871 −249.1 6249 3.61 −1.69 2185-53532-476 250.2485657 36.574799 −244.4 6187 3.56 −1.77 2185-53532-477 250.2305450 36.610828 −244.1 6064 4.19 −1.72 2185-53532-478 250.2751617 36.618698 −243.6 6143 3.91 −1.73 2185-53532-479 250.2099609 36.532490 −251.3 6060 3.94 −1.71 2185-53532-480 250.2232056 36.626942 −243.0 6244 3.57 −1.64 2185-53532-481 250.3259277 36.655441 −244.6 6170 3.59 −1.62 2185-53532-482 250.4379120 36.601913 −233.6 5952 3.48 −1.75 2185-53532-483 250.4119263 36.610191 −252.1 6296 3.71 −1.50 2185-53532-485 250.3427429 36.637764 −248.3 6323 3.90 −1.77 2185-53532-486 250.3913116 36.619122 −259.7 6235 4.27 −1.68 2185-53532-487 250.3905029 36.591457 −242.1 6295 3.60 −1.60 2185-53532-488 250.3802643 36.661861 −239.6 6428 4.06 −1.78 2185-53532-489 250.3863983 36.711922 −244.6 6258 3.68 −1.64 2185-53532-490 250.4195862 36.592098 −242.2 6127 4.31 −1.58 2185-53532-492 250.3582611 36.607357 −240.5 6125 3.49 −1.70 Continued on next page. . . 143 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2185-53532-493 250.3370056 36.581230 −238.1 6245 3.84 −1.77 2185-53532-494 250.4333649 36.619698 −243.8 6144 3.44 −1.67 2185-53532-495 250.3131714 36.642708 −242.4 6284 3.47 −1.71 2185-53532-496 250.3283539 36.603851 −245.6 5989 3.64 −1.44 2185-53532-497 250.3796539 36.606239 −237.6 5952 4.07 −1.76 2185-53532-498 250.4183960 36.693439 −235.1 6306 3.72 −1.80 2185-53532-499 250.3423157 36.618721 −230.3 6278 3.73 −1.66 2185-53532-500 250.3634491 36.578873 −245.5 6318 4.25 −1.72 2185-53532-504 250.5587463 36.680569 −250.2 6325 3.75 −1.85 2185-53532-506 250.5240936 36.660801 −245.8 5845 3.47 −1.71 2185-53532-507 250.4723969 36.677731 −243.3 6098 3.32 −1.76 2185-53532-508 250.4435272 36.712978 −249.1 6463 3.95 −1.66 2185-53532-511 250.5202179 36.342960 −246.4 6106 4.44 −1.59 2185-53532-512 250.5370789 36.365250 −250.5 6233 3.70 −1.67 2185-53532-513 250.5628357 36.372688 −246.0 6231 3.49 −1.69 2185-53532-514 250.5161896 36.359978 −237.8 6252 3.82 −1.56 2185-53532-515 250.5661469 36.400230 −246.4 6288 3.79 −1.66 2185-53532-516 250.4558868 36.613400 −239.8 5977 3.73 −1.47 2185-53532-517 250.4772949 36.625591 −258.4 6020 3.73 −1.38 2185-53532-519 250.5725555 36.425186 −246.3 6300 4.20 −1.74 2185-53532-520 250.5612183 36.355461 −249.8 6245 3.14 −1.84 2185-53532-534 250.3009644 36.802814 −252.8 6281 3.65 −1.84 Continued on next page. . . 144 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2185-53532-537 250.4304962 36.822891 −241.4 6308 3.82 −1.69 2185-53532-539 250.3805847 36.807693 −250.8 6095 4.13 −1.90 2185-53532-540 250.3366394 36.751308 −232.9 6323 4.28 −1.74 2185-53532-541 250.6444855 36.637691 −226.9 5839 4.26 −1.62 2185-53532-542 250.6344757 36.460258 −237.9 5962 3.85 −1.91 2185-53532-543 250.6009674 36.613602 −252.6 6161 3.43 −1.69 2185-53532-544 250.6094360 36.447392 −247.7 6269 3.51 −1.55 2185-53532-545 250.6271667 36.714451 −242.1 6326 4.05 −1.55 2185-53532-546 250.6421814 36.477982 −255.6 5739 4.18 −1.65 2185-53532-547 250.6228180 36.621357 −256.3 5914 2.91 −1.78 2185-53532-548 250.6524048 36.419621 −253.1 6012 3.96 −1.52 2185-53532-549 250.5913239 36.461399 −235.9 5839 4.16 −1.47 2185-53532-550 250.6149445 36.501305 −236.0 6162 4.44 −1.87 2185-53532-551 250.5914764 36.413662 −233.6 5810 4.09 −1.62 2185-53532-552 250.6224670 36.431900 −257.2 6376 4.01 −1.79 2185-53532-553 250.6461029 36.350220 −246.2 5795 3.74 −1.76 2185-53532-554 250.6182556 36.410843 −246.9 6223 3.99 −1.77 2185-53532-555 250.6027374 36.400173 −244.6 6037 3.75 −1.74 2185-53532-556 250.6363068 36.383652 −246.2 6149 4.16 −1.70 2185-53532-557 250.6013031 36.364738 −244.7 6351 3.37 −1.91 2185-53532-558 250.5827942 36.475479 −250.0 6244 3.77 −1.61 2185-53532-559 250.6181030 36.472069 −243.7 6356 4.12 −1.60 Continued on next page. . . 145 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2185-53532-560 250.5843353 36.379768 −239.9 6282 3.61 −1.71 2185-53532-575 250.6388245 36.796120 −234.8 6018 2.70 −1.57 2185-53532-577 250.5796356 36.790611 −258.5 6206 3.87 −1.74 2185-53532-581 250.7305756 36.608727 −244.4 6173 4.14 −1.55 2185-53532-584 250.6747742 36.539852 −253.1 6195 3.21 −1.70 2185-53532-585 250.6607666 36.504436 −234.5 6115 3.84 −1.76 2185-53532-587 250.7492065 36.463837 −241.4 6054 4.29 −1.78 2185-53532-589 250.7702637 36.421120 −243.9 6281 3.32 −1.59 2185-53532-591 250.6871948 36.405094 −251.7 6362 3.58 −1.65 2185-53532-592 250.7585297 36.405731 −239.1 6131 2.60 −1.66 2185-53532-593 250.6662598 36.387859 −243.3 6312 4.10 −1.47 2185-53532-594 250.6430359 36.701591 −234.3 6109 3.92 −1.42 2185-53532-596 250.6537323 36.525860 −238.8 5816 3.16 −1.55 2185-53532-598 250.7378235 36.401535 −250.2 6239 4.30 −1.45 2185-53532-599 250.6560211 36.458805 −245.4 6211 3.96 −1.66 2185-53532-600 250.7173309 36.396912 −237.5 6022 3.94 −1.51 2255-53565-103 250.6466827 36.307610 −247.7 5747 3.32 −1.58 2255-53565-112 250.6490173 36.331844 −239.9 5005 2.35 −1.54 2255-53565-114 250.5359039 36.338322 −242.7 5421 3.17 −1.58 2255-53565-115 250.6161957 36.345905 −243.4 5729 3.33 −1.56 2255-53565-116 250.5545197 36.267830 −249.5 5268 2.85 −1.56 2255-53565-120 250.6273346 36.330883 −252.1 5115 2.45 −1.70 Continued on next page. . . 146 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2255-53565-143 250.5123444 36.306122 −229.4 5205 2.41 −1.70 2255-53565-144 250.4085236 36.303902 −246.9 5190 2.34 −1.56 2255-53565-147 250.4520111 36.301800 −249.1 9173 3.39 −1.53 2255-53565-148 250.4909821 36.308311 −241.8 5150 2.30 −1.73 2255-53565-153 250.4041443 36.351501 −249.1 5172 2.40 −1.68 2255-53565-157 250.4288635 36.330101 −245.4 5054 2.33 −1.56 2255-53565-171 250.3690338 36.363800 −255.4 5126 2.10 −1.61 2255-53565-173 250.3810425 36.249397 −236.2 5392 3.57 −1.73 2255-53565-174 250.3135834 36.387798 −246.1 8548 3.30 −1.62 2255-53565-175 250.3260651 36.347099 −242.6 5159 2.55 −1.50 2255-53565-177 250.3200226 36.326900 −236.2 8661 3.28 −1.60 2255-53565-192 250.1939392 36.281242 −240.1 8931 3.43 −1.74 2255-53565-423 250.1767273 36.542747 −249.4 8897 3.56 −1.63 2255-53565-424 250.3054199 36.463902 −251.1 5622 3.45 −1.57 2255-53565-425 250.2703552 36.638271 −256.3 5733 3.50 −1.39 2255-53565-426 250.3145905 36.517399 −244.4 5268 2.41 −1.42 2255-53565-432 250.2229156 36.471901 −251.6 5731 3.33 −1.57 2255-53565-436 250.3080750 36.417400 −241.8 5342 3.58 −1.52 2255-53565-437 250.2912445 36.512798 −253.3 5559 3.22 −1.64 2255-53565-443 250.2730255 36.837120 −254.7 9071 3.38 −1.47 2255-53565-465 250.4421692 36.429199 −245.7 8937 3.34 −1.47 2255-53565-466 250.8296051 36.382706 −257.7 5580 3.20 −1.57 Continued on next page. . . 147 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2255-53565-476 250.5411072 36.356194 −243.8 5476 3.15 −1.52 2255-53565-482 250.3339233 36.614510 −250.0 8553 3.30 −1.42 2255-53565-483 250.3755646 36.591225 −252.2 5186 2.56 −1.49 2255-53565-485 250.3701477 36.529301 −255.1 5251 2.42 −1.48 2255-53565-486 250.3162231 36.554901 −243.1 5199 2.29 −1.53 2255-53565-490 250.3626251 36.566055 −244.7 5463 3.10 −1.48 2255-53565-492 250.3980865 36.604641 −238.0 8615 3.39 −1.49 2255-53565-495 250.4893951 36.387501 −235.2 4948 1.97 −1.50 2255-53565-496 250.3888550 36.541199 −248.9 5092 2.43 −1.52 2255-53565-504 250.4202271 36.569801 −248.5 5035 2.35 −1.36 2255-53565-510 250.4507599 36.594837 −248.2 5276 2.43 −1.45 2255-53565-512 250.5457611 36.409199 −234.9 5225 2.54 −1.54 2255-53565-515 250.4537811 36.534698 −252.9 5280 2.68 −1.47 2255-53565-518 250.4944153 36.462898 −235.9 5228 2.80 −1.45 2255-53565-520 250.4719238 36.423100 −241.2 5268 2.42 −1.47 2255-53565-542 250.5714569 36.525902 −246.9 5273 2.37 −1.40 2255-53565-543 250.5569153 36.554100 −251.1 5248 2.47 −1.48 2255-53565-544 250.5413818 36.495499 −249.4 5008 2.13 −1.73 2255-53565-545 250.6348267 36.499401 −242.7 5328 2.36 −1.39 2255-53565-548 250.5392151 36.566399 −245.2 5240 2.50 −1.38 2255-53565-550 250.5207062 36.526798 −246.5 5252 2.61 −1.50 2255-53565-551 250.6084442 36.451298 −243.3 5170 2.59 −1.46 Continued on next page. . . 148 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2255-53565-552 250.5690155 36.416199 −241.4 5040 1.84 −1.42 2255-53565-553 250.5565186 36.476799 −239.5 5251 2.45 −1.44 2255-53565-556 250.5987854 36.482475 −247.3 5571 3.08 −1.51 2255-53565-557 250.5689240 36.437099 −239.6 5227 2.50 −1.44 2255-53565-559 250.5143433 36.505001 −258.8 5158 1.85 −1.54 2255-53565-586 250.5887756 36.564800 −237.3 5215 1.75 −1.56 2255-53565-589 250.5795441 36.617599 −245.9 5188 2.29 −1.53 2255-53565-597 250.6601868 36.517498 −253.1 5399 2.85 −1.45 M3 2475-53845-105 205.65282 28.32783 −145.0 6149 3.12 −1.42 2475-53845-114 205.73204 28.36875 −137.2 5457 2.18 −1.77 2475-53845-116 205.78650 28.20934 −140.9 4846 2.17 −1.66 2475-53845-118 205.86803 28.29956 −136.0 5455 2.82 −1.55 2475-53845-119 205.63819 28.31352 −145.2 5022 2.40 −1.54 2475-53845-120 205.65500 28.36429 −140.5 5110 2.64 −1.61 2475-53845-141 205.37022 28.08121 −137.0 4961 2.42 −1.45 2475-53845-142 205.53038 28.29455 −132.0 4946 2.13 −1.58 2475-53845-143 205.67828 28.22223 −141.6 5046 2.17 −1.69 2475-53845-144 205.59709 28.33082 −139.8 5047 2.81 −1.39 2475-53845-145 205.60485 28.35609 −143.5 5240 2.15 −1.55 2475-53845-150 205.60948 28.31341 −139.8 5007 2.15 −1.61 2475-53845-160 205.60966 28.08865 −140.9 5003 2.42 −1.65 Continued on next page. . . 149 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2475-53845-162 205.33562 28.19703 −139.7 5066 2.17 −1.50 2475-53845-166 205.53993 28.34023 −130.5 6927 3.26 −1.36 2475-53845-171 205.56812 28.30619 −141.7 4929 2.29 −1.59 2475-53845-173 205.58101 28.35808 −134.0 5110 2.11 −1.49 2475-53845-174 205.54022 28.30869 −142.7 5653 3.06 −1.68 2475-53845-176 205.56639 28.34351 −144.2 4853 2.02 −1.58 2475-53845-177 205.59311 28.30183 −142.0 4996 2.16 −1.82 2475-53845-178 205.49657 28.33273 −143.9 5004 2.13 −1.74 2475-53845-180 205.47751 28.33410 −141.4 5864 2.46 −1.71 2475-53845-183 205.49975 28.28083 −147.1 5084 2.35 −1.54 2475-53845-185 205.35177 28.31312 −141.8 5254 3.18 −1.45 2475-53845-186 205.51608 28.24446 −141.8 4912 2.19 −1.58 2475-53845-187 205.56002 28.16144 −144.6 8172 3.39 −1.40 2475-53845-190 205.39697 28.33059 −144.4 5533 3.07 −1.57 2475-53845-192 205.53319 28.16607 −138.1 5198 2.73 −1.56 2475-53845-193 205.36685 28.33505 −142.7 5716 2.91 −1.63 2475-53845-194 205.51430 28.30106 −130.8 6440 3.29 −1.50 2475-53845-196 205.52200 28.26799 −150.7 5039 2.29 −1.54 2475-53845-198 205.49830 28.31073 −145.0 4941 2.09 −1.46 2475-53845-199 205.45296 28.33409 −145.9 5051 1.88 −1.55 2475-53845-200 205.35902 28.28852 −136.9 5421 3.35 −1.52 2475-53845-421 205.34831 28.49451 −142.6 4771 1.85 −1.47 Continued on next page. . . 150 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2475-53845-430 205.20487 28.53187 −131.1 5244 2.91 −1.51 2475-53845-436 205.36178 28.39571 −142.6 4866 2.03 −1.52 2475-53845-440 205.31259 28.40336 −139.1 4921 2.08 −1.49 2475-53845-461 205.38832 28.38585 −142.6 4936 2.02 −1.70 2475-53845-462 205.42846 28.40494 −135.4 6229 2.88 −1.45 2475-53845-463 205.45607 28.35685 −143.8 5123 2.09 −1.56 2475-53845-466 205.43604 28.38609 −147.5 4898 1.96 −1.82 2475-53845-469 205.40194 28.46030 −137.0 5071 2.13 −1.67 2475-53845-471 205.53495 28.43178 −149.3 5203 2.06 −1.55 2475-53845-473 205.54987 28.42257 −141.7 4928 2.09 −1.54 2475-53845-475 205.43603 28.43912 −139.7 4921 1.99 −1.68 2475-53845-476 205.46535 28.43283 −144.7 5418 2.60 −1.67 2475-53845-479 205.48329 28.39330 −136.0 5053 2.16 −1.59 2475-53845-480 205.51179 28.40376 −140.8 4963 2.18 −1.61 2475-53845-481 205.56280 28.45170 −139.7 5813 2.79 −1.49 2475-53845-483 205.58224 28.37896 −138.7 4806 1.68 −1.32 2475-53845-485 205.40959 28.49847 −147.1 8511 3.29 −1.45 2475-53845-486 205.44677 28.49691 −145.8 4929 2.22 −1.47 2475-53845-487 205.47013 28.47360 −147.6 5200 3.67 −1.34 2475-53845-488 205.45635 28.52500 −146.4 4987 2.25 −1.66 2475-53845-489 205.60288 28.39129 −142.7 4955 2.06 −1.64 2475-53845-492 205.63534 28.39326 −147.2 5768 3.23 −1.52 Continued on next page. . . 151 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2475-53845-496 205.59949 28.41169 −138.7 4903 2.09 −1.60 2475-53845-497 205.64308 28.41689 −139.2 4892 2.14 −1.64 2475-53845-498 205.61218 28.43980 −142.7 4906 2.24 −1.55 2475-53845-501 205.74192 28.42850 −146.3 5063 2.53 −1.64 2475-53845-505 205.68053 28.47108 −142.8 8080 3.38 −1.37 2475-53845-506 205.71187 28.46612 −143.6 4915 1.96 −1.44 2475-53845-507 205.66435 28.49271 −139.4 5184 2.92 −1.72 2475-53845-509 205.63571 28.51821 −144.9 4957 2.31 −1.58 2475-53845-510 205.60747 28.47946 −142.6 6956 2.06 −1.37 2475-53845-511 205.64513 28.43755 −144.6 4995 2.22 −1.52 2475-53845-514 205.73093 28.38494 −143.4 5074 2.44 −1.57 2475-53845-515 205.68951 28.41266 −139.7 4955 2.25 −1.47 2475-53845-518 205.70525 28.39799 −143.8 4870 2.15 −1.41 2475-53845-519 205.60952 28.45819 −143.6 5003 2.53 −1.58 2475-53845-520 205.79730 28.38930 −138.1 4980 2.54 −1.69 2475-53845-550 205.54473 28.69427 −149.4 5043 2.82 −1.78 2475-53845-551 205.53566 28.55088 −138.2 4873 2.20 −1.75 2475-53845-557 205.46425 28.60144 −148.4 5075 2.09 −1.77 2475-53845-558 205.69384 28.53518 −150.7 5005 2.50 −1.62 2475-53845-559 205.60380 28.54704 −140.7 5002 2.39 −1.56 M71 2333-53682-077 298.59664 18.78314 Continued on next page. . . 152 −18.0 4643 2.54 −0.77 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2333-53682-105 298.56809 18.84816 −22.1 5214 2.86 −0.79 2333-53682-144 298.45706 18.84689 −16.8 4798 2.33 −0.65 2333-53682-153 298.48777 18.86018 −24.2 5233 3.63 −0.68 2333-53682-167 298.46309 18.76964 −23.2 5122 2.74 −0.81 2333-53682-176 298.51460 18.78293 −20.1 5227 2.90 −0.84 2333-53682-178 298.52807 18.76042 −22.0 5216 2.87 −0.77 2333-53682-183 298.43222 18.79267 −11.0 4676 2.56 −0.77 2333-53682-191 298.42406 18.81066 −22.8 4878 2.83 −0.79 2333-53682-193 298.35753 18.84261 −19.2 5198 2.68 −0.81 2333-53682-198 298.45609 18.72024 −19.7 4963 3.22 −0.75 2333-53682-228 298.43161 18.71046 −25.0 4982 2.87 −0.80 2333-53682-229 298.41520 18.69626 −21.0 4914 2.95 −0.78 2338-53683-142 298.51727 18.80103 −27.7 5131 3.17 −0.76 2338-53683-186 298.44616 18.70557 −23.1 5144 3.44 −0.86 2338-53683-199 298.36670 18.78481 −22.3 5260 3.73 −0.82 2338-53683-200 298.44854 18.76227 −20.7 4993 3.21 −0.84 NGC 2420 2078-53378-111 114.7337700 21.533043 77.4 5815 4.41 −0.36 2078-53378-114 114.7632300 21.450647 76.4 5976 4.22 −0.37 2078-53378-116 114.7709500 21.494594 79.6 4988 4.62 −0.51 2078-53378-118 114.7213000 21.550411 76.1 5230 4.70 −0.45 2078-53378-142 114.6714600 21.474437 73.9 5725 4.41 −0.40 Continued on next page. . . 153 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2078-53378-149 114.6430600 21.448729 74.1 6700 3.95 −0.35 2078-53378-150 114.6955000 21.390019 76.9 5836 4.37 −0.41 2078-53378-151 114.6724100 21.539542 76.9 6027 4.36 −0.34 2078-53378-152 114.6924200 21.552748 76.5 5161 4.51 −0.32 2078-53378-154 114.6604000 21.508270 74.1 5341 4.62 −0.32 2078-53378-156 114.7031100 21.515936 78.1 6005 4.36 −0.25 2078-53378-157 114.6541400 21.529307 73.9 5792 4.42 −0.27 2078-53378-158 114.6927300 21.469569 78.3 5210 4.62 −0.38 2078-53378-159 114.6708200 21.450686 75.6 6778 4.01 −0.31 2078-53378-161 114.5712400 21.543399 78.8 6759 3.88 −0.34 2078-53378-165 114.6024300 21.426910 76.3 5111 4.60 −0.43 2078-53378-166 114.5820400 21.519642 73.9 6561 4.27 −0.30 2078-53378-167 114.6017500 21.449791 73.4 5776 4.40 −0.38 2078-53378-168 114.6115600 21.318135 73.9 6512 4.12 −0.38 2078-53378-169 114.5819600 21.280654 78.6 6706 3.90 −0.29 2078-53378-170 114.6131300 21.505038 74.4 4963 4.35 −0.34 2078-53378-171 114.6198000 21.561135 75.2 5624 4.51 −0.38 2078-53378-172 114.5688700 21.504909 74.2 5664 4.49 −0.21 2078-53378-173 114.6418000 21.560445 80.0 5146 4.74 −0.23 2078-53378-174 114.6008000 21.527756 75.4 5450 4.59 −0.26 2078-53378-175 114.6295500 21.542134 78.5 5296 4.46 −0.28 2078-53378-176 114.6416800 21.603818 74.8 6735 4.23 −0.38 Continued on next page. . . 154 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2078-53378-177 114.6228200 21.586616 76.9 5399 4.60 −0.42 2078-53378-178 114.6506600 21.588241 78.6 5138 4.60 −0.46 2078-53378-179 114.5720900 21.569319 71.6 6756 4.04 −0.37 2078-53378-182 114.5458400 21.481654 78.0 6775 4.07 −0.33 2078-53378-186 114.5329300 21.496721 73.1 6866 3.94 −0.30 2078-53378-192 114.5202700 21.508390 73.9 5822 4.45 −0.31 2078-53378-194 114.4920900 21.528856 77.6 5462 4.47 −0.32 2078-53378-195 114.5080200 21.480667 73.3 6716 3.98 −0.29 2078-53378-197 114.5511100 21.571731 75.0 5783 4.44 −0.30 2078-53378-199 114.5634600 21.418985 75.1 6434 4.23 −0.31 2078-53378-200 114.5385000 21.543732 75.6 5307 4.59 −0.40 2078-53378-223 114.3904500 21.523255 71.4 6435 4.30 −0.31 2078-53378-224 114.4638600 21.543933 78.4 6775 3.92 −0.36 2078-53378-227 114.4512700 21.468901 74.7 5910 4.40 −0.22 2078-53378-232 114.4003400 21.434925 76.2 6762 3.99 −0.27 2078-53378-233 114.3611500 21.547221 78.7 5952 4.36 −0.36 2078-53378-235 114.4902200 21.548446 78.1 5731 4.20 −0.38 2078-53378-273 114.3406700 21.562316 76.3 5969 4.39 −0.38 2078-53378-422 114.4277900 21.642904 72.4 5450 4.53 −0.12 2078-53378-427 114.4302700 21.777520 73.9 5877 4.43 −0.18 2078-53378-431 114.4749200 21.663054 71.5 6748 3.92 −0.18 2078-53378-435 114.4620100 21.588031 74.0 5435 4.45 −0.24 Continued on next page. . . 155 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2078-53378-440 114.4428000 21.680481 73.5 5685 4.59 −0.14 2078-53378-462 114.5509900 21.740853 71.2 6316 4.38 −0.34 2078-53378-463 114.5498300 21.721819 72.4 6673 4.20 −0.17 2078-53378-464 114.5741000 21.872315 73.5 5811 4.10 −0.46 2078-53378-465 114.5717800 21.840559 74.4 5594 4.58 −0.28 2078-53378-466 114.5513800 21.821870 72.0 6779 4.14 −0.30 2078-53378-468 114.5113100 21.658002 74.2 5673 4.49 −0.26 2078-53378-469 114.5523900 21.648226 73.4 6639 3.73 −0.30 2078-53378-470 114.5214000 21.710367 73.8 5857 4.43 −0.36 2078-53378-471 114.5303200 21.614900 76.3 6321 4.37 −0.33 2078-53378-472 114.5822100 21.598426 74.8 6745 3.90 −0.33 2078-53378-473 114.5220800 21.600907 72.8 6191 4.33 −0.23 2078-53378-475 114.4970800 21.644300 72.3 5223 4.62 −0.34 2078-53378-476 114.5061000 21.610610 75.5 5397 4.55 −0.19 2078-53378-477 114.5529400 21.628851 76.6 5856 4.51 −0.19 2078-53378-478 114.5313000 21.647832 80.1 5602 4.65 −0.23 2078-53378-480 114.5518000 21.664013 74.1 5770 4.58 −0.36 2078-53378-481 114.5914200 21.674248 69.7 6411 4.31 −0.20 2078-53378-485 114.6053800 21.694122 79.0 5909 4.48 −0.29 2078-53378-491 114.6300500 21.615073 75.1 6706 4.18 −0.49 2078-53378-492 114.6291800 21.672440 74.5 5952 4.34 −0.19 2078-53378-493 114.5901700 21.628422 77.1 5457 4.65 −0.37 Continued on next page. . . 156 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2078-53378-496 114.6028900 21.614570 73.0 5954 4.47 −0.27 2078-53378-499 114.5844700 21.697393 76.4 5792 4.39 −0.22 2078-53378-503 114.6589000 21.779420 71.9 6767 3.98 −0.30 2078-53378-510 114.7120300 21.617662 64.1 5754 4.42 −0.42 2078-53378-511 114.6601500 21.613201 73.4 6838 4.21 −0.27 2078-53378-512 114.6719800 21.630064 72.4 6642 4.24 −0.36 2078-53378-513 114.6427400 21.634517 75.4 6089 4.52 −0.23 2078-53378-514 114.7189500 21.580207 72.9 5982 4.49 −0.33 2078-53378-515 114.7006500 21.605630 73.4 6105 4.26 −0.28 2078-53378-516 114.6420300 21.651564 72.1 6362 4.33 −0.27 2078-53378-517 114.6432900 21.728846 76.7 5631 4.48 −0.24 2078-53378-518 114.6788700 21.703910 67.3 6624 4.14 −0.23 2078-53378-519 114.7201400 21.600649 74.3 5726 4.49 −0.32 2078-53378-520 114.6900700 21.580940 74.5 6186 4.33 −0.38 2078-53378-548 114.7715200 21.684803 74.0 6851 4.03 −0.32 2078-53378-552 114.7907100 21.658454 81.6 5047 4.48 −0.33 2078-53378-553 114.7563200 21.637694 79.7 5289 4.54 −0.30 2078-53378-554 114.7373500 21.682465 71.5 6798 4.13 −0.30 2078-53378-557 114.7612200 21.602289 73.8 6443 4.29 −0.24 2078-53378-560 114.7902800 21.615337 76.7 5771 4.48 −0.25 2079-53379-071 114.8473500 21.432501 79.2 4885 4.56 −0.39 2079-53379-076 114.8654000 21.591274 77.7 4910 4.58 −0.35 Continued on next page. . . 157 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2079-53379-101 114.7611100 21.490309 73.9 4400 4.45 −0.26 2079-53379-102 114.7788500 21.400061 79.8 4442 4.32 −0.34 2079-53379-108 114.7754900 21.503532 78.2 4302 4.49 −0.31 2079-53379-113 114.7522800 21.451730 83.0 4297 4.46 −0.46 2079-53379-114 114.8108100 21.427293 62.0 4626 4.69 −0.21 2079-53379-119 114.7431700 21.578207 74.1 4389 4.22 −0.22 2079-53379-141 114.7252900 21.498738 75.3 4559 4.49 −0.24 2079-53379-148 114.6623700 21.491985 75.1 4577 4.47 −0.22 2079-53379-149 114.7246300 21.518278 76.6 4732 4.48 −0.41 2079-53379-152 114.7128300 21.469206 77.4 4561 4.54 −0.37 2079-53379-153 114.6333400 21.580304 68.5 4394 4.50 −0.21 2079-53379-156 114.7116500 21.534131 73.7 4857 4.55 −0.32 2079-53379-157 114.6400200 21.563115 74.3 4432 4.31 −0.24 2079-53379-158 114.6514700 21.519801 77.2 4506 4.53 −0.30 2079-53379-159 114.6842700 21.541289 80.4 4554 4.45 −0.32 2079-53379-160 114.6688400 21.578449 75.6 4678 4.52 −0.32 2079-53379-161 114.6037900 21.466938 75.2 4411 4.55 −0.09 2079-53379-162 114.6411300 21.466083 77.6 4905 4.59 −0.18 2079-53379-163 114.6339800 21.310769 71.7 4569 4.48 −0.53 2079-53379-164 114.5535900 21.543980 78.8 4719 4.37 −0.45 2079-53379-165 114.5703200 21.534152 73.3 4421 4.64 −0.31 2079-53379-166 114.5640000 21.557892 76.7 4922 4.65 −0.31 Continued on next page. . . 158 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2079-53379-167 114.6235500 21.455992 77.9 4280 4.06 −0.21 2079-53379-168 114.6708300 21.438009 76.0 4475 4.90 −0.09 2079-53379-169 114.5825700 21.549603 76.4 4911 4.60 −0.33 2079-53379-178 114.5719400 21.445641 76.6 4987 4.58 −0.21 2079-53379-181 114.5458400 21.481654 73.0 6765 4.01 −0.33 2079-53379-182 114.5021800 21.350065 79.8 4530 4.49 −0.25 2079-53379-185 114.5404100 21.421194 66.5 4249 4.25 −0.22 2079-53379-191 114.5309900 21.548797 81.0 4718 4.59 −0.47 2079-53379-192 114.5139700 21.403902 76.9 4884 4.49 −0.29 2079-53379-194 114.5345700 21.444081 75.2 4985 4.61 −0.37 2079-53379-195 114.5383800 21.459230 77.6 4777 4.57 −0.36 2079-53379-196 114.4932800 21.577397 74.7 4460 4.41 −0.09 2079-53379-198 114.5100600 21.580111 76.4 4947 4.61 −0.19 2079-53379-199 114.5401500 21.574061 76.7 4373 4.74 −0.32 2079-53379-200 114.5501800 21.515901 78.2 4719 4.60 −0.43 2079-53379-234 114.4902800 21.529356 73.3 4473 4.37 −0.10 2079-53379-237 114.3715100 21.576729 74.9 4618 4.58 −0.25 2079-53379-238 114.4818700 21.496135 74.3 4777 4.60 −0.22 2079-53379-270 114.3305500 21.473141 78.9 4690 4.43 −0.28 2079-53379-431 114.3533000 21.674222 72.5 4812 4.67 −0.15 2079-53379-434 114.3718200 21.656651 86.9 4687 4.40 −0.47 2079-53379-440 114.3739700 21.682238 78.6 4449 4.30 −0.14 Continued on next page. . . 159 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2079-53379-463 114.4646500 21.774120 80.8 4280 4.34 −0.16 2079-53379-466 114.4836000 21.728158 77.3 4508 4.71 −0.47 2079-53379-467 114.5359200 21.782800 78.4 4833 4.58 −0.22 2079-53379-474 114.4939800 21.612208 76.6 4419 4.38 −0.19 2079-53379-476 114.4833500 21.630688 73.9 4441 4.70 −0.24 2079-53379-477 114.5016300 21.681392 75.4 4835 4.62 −0.17 2079-53379-480 114.5439600 21.591729 72.2 4624 4.65 −0.45 2079-53379-482 114.6128000 21.662743 77.1 4420 4.38 −0.33 2079-53379-483 114.5822100 21.598426 68.3 6755 3.92 −0.34 2079-53379-487 114.6304000 21.655710 78.7 4492 4.59 −0.26 2079-53379-488 114.5538100 21.617337 77.3 4274 4.16 −0.43 2079-53379-490 114.5893300 21.713299 79.5 4398 4.27 −0.33 2079-53379-493 114.5601200 21.648805 76.3 4343 4.56 −0.18 2079-53379-495 114.5839200 21.631277 78.3 4811 4.58 −0.21 2079-53379-496 114.6000900 21.607352 78.2 4919 4.57 −0.21 2079-53379-498 114.6408400 21.609080 79.4 4795 4.68 −0.30 2079-53379-500 114.5563800 21.802400 78.5 4628 4.64 −0.26 2079-53379-502 114.6971800 21.661120 76.2 4703 4.62 −0.24 2079-53379-507 114.7510500 21.611731 81.5 4510 4.46 −0.48 2079-53379-510 114.7320600 21.659275 82.6 4296 3.93 −0.22 2079-53379-511 114.7137100 21.664611 76.6 4773 4.57 −0.36 2079-53379-512 114.6809200 21.718416 74.5 5044 4.56 −0.21 Continued on next page. . . 160 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2079-53379-514 114.6947400 21.611378 79.6 4353 4.41 −0.30 2079-53379-516 114.6617100 21.614836 74.9 4814 4.68 −0.19 2079-53379-519 114.6623800 21.765588 79.1 4609 4.46 −0.37 2079-53379-552 114.8454600 21.609291 61.9 4537 4.48 −0.39 2079-53379-558 114.7901800 21.681409 76.0 4947 4.63 −0.26 NGC 2158 2887-54521-416 91.77971 24.14997 27.1 5131 3.44 −0.17 2887-54521-442 91.89992 24.10639 28.7 6497 3.56 −0.17 2887-54521-445 91.85167 24.13172 25.8 6250 4.03 −0.33 2887-54521-446 91.85258 24.15344 25.2 6568 3.61 −0.29 2887-54521-447 91.87250 24.14558 25.4 5190 3.43 −0.21 2887-54521-451 91.88104 24.13031 25.8 6907 3.58 −0.22 2887-54521-452 91.92525 24.07644 26.7 6652 3.60 −0.24 2887-54521-460 91.88954 24.06314 25.8 7095 3.40 −0.17 2887-54521-511 91.83700 24.00167 25.6 6592 3.04 −0.31 2887-54521-531 91.88554 24.17808 20.1 5187 3.56 −0.16 2887-54521-532 91.91121 24.16419 27.3 4965 3.43 −0.22 2887-54521-547 91.92800 24.04764 26.7 5164 3.34 −0.30 2887-54521-552 91.92346 24.09833 27.7 5072 3.25 −0.26 2887-54521-559 91.94121 24.08608 29.1 5068 3.33 −0.26 2912-54499-409 91.79567 24.15931 30.6 7650 4.17 −0.23 2912-54499-416 91.80908 24.13578 28.3 7071 3.83 −0.25 Continued on next page. . . 161 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2912-54499-417 91.80938 24.17028 30.6 6912 4.17 −0.39 2912-54499-442 91.87000 24.15608 25.4 7467 4.19 −0.24 2912-54499-444 91.88554 24.16933 29.6 7167 4.12 −0.28 2912-54499-445 91.88062 24.18756 25.1 7100 3.94 −0.30 2912-54499-446 91.89346 24.15556 19.8 7116 4.26 −0.23 2912-54499-450 91.86475 24.17319 36.9 6915 3.82 −0.29 2912-54499-453 91.85146 24.14342 22.9 7099 4.38 −0.22 2912-54499-458 91.89862 24.17961 26.1 7093 4.04 −0.31 2912-54499-459 91.81154 24.15192 16.3 6656 4.24 −0.25 2912-54499-461 91.75933 24.10450 18.5 7595 4.28 −0.30 2912-54499-462 91.77433 24.04967 26.3 7298 4.31 −0.27 2912-54499-483 91.82025 24.05197 25.1 7558 3.97 −0.19 2912-54499-484 91.81408 24.06819 26.2 7532 4.03 −0.19 2912-54499-488 91.78896 24.14458 19.7 6799 4.00 −0.23 2912-54499-489 91.79008 24.11892 27.2 7341 3.94 −0.22 2912-54499-499 91.79063 24.03228 28.6 7343 4.26 −0.36 2912-54499-501 91.84150 24.10564 20.1 7218 4.31 −0.31 2912-54499-502 91.85879 24.11939 25.2 7498 4.17 −0.21 2912-54499-503 91.82617 24.11897 19.4 7442 4.03 −0.23 2912-54499-505 91.86846 24.13533 26.0 7567 4.28 −0.16 2912-54499-506 91.84617 24.08989 23.9 6525 4.13 −0.25 2912-54499-507 91.81417 24.10178 26.7 7963 4.28 −0.13 Continued on next page. . . 162 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2912-54499-509 91.82708 24.13514 31.1 7146 3.93 −0.30 2912-54499-510 91.88258 24.01472 27.7 6868 4.21 −0.37 2912-54499-511 91.86654 24.00914 32.5 6954 4.05 −0.27 2912-54499-514 91.83721 24.05189 30.6 7214 4.06 −0.23 2912-54499-515 91.83862 24.07103 30.0 7317 3.90 −0.31 2912-54499-516 91.82779 24.09117 24.5 7276 4.02 −0.15 2912-54499-518 91.85975 24.05356 30.8 7287 4.30 −0.28 2912-54499-519 91.85563 24.07247 26.8 7205 4.25 −0.25 2912-54499-531 91.93679 24.14572 28.8 6885 4.22 −0.24 2912-54499-534 91.93967 24.10997 34.4 6550 4.18 −0.18 2912-54499-539 91.91863 24.17281 19.1 7162 3.97 −0.31 2912-54499-540 91.91633 24.12875 32.4 6916 4.13 −0.28 2912-54499-542 91.90304 24.07997 24.6 6621 3.84 −0.37 2912-54499-543 91.89542 24.11381 26.0 6623 4.18 −0.29 2912-54499-544 91.88567 24.07508 23.4 6592 4.27 −0.38 2912-54499-545 91.88704 24.13492 30.0 7403 4.29 −0.18 2912-54499-547 91.87900 24.11878 30.3 6722 4.36 −0.29 2912-54499-549 91.88500 24.09136 24.5 7209 4.34 −0.15 2912-54499-552 91.89858 24.05819 25.7 7312 3.92 −0.26 2912-54499-553 91.89375 24.03914 26.6 7047 4.12 −0.28 2912-54499-556 91.87758 24.05083 27.8 7276 3.88 −0.11 2912-54499-558 91.92079 24.06769 25.3 7249 4.03 −0.19 Continued on next page. . . 163 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2912-54499-559 91.93942 24.06436 27.1 7027 4.32 −0.29 2912-54499-560 91.89983 24.02447 23.4 6784 4.08 −0.28 M35 2887-54521-528 92.12229 24.48356 −11.1 6167 4.12 −0.23 2887-54521-534 92.11242 24.43275 −10.1 7898 4.25 +0.08 2887-54521-561 92.19954 24.33650 −4.7 7415 4.27 −0.06 2887-54521-562 92.18996 24.48508 −8.1 7125 4.32 +0.09 2887-54521-566 92.21008 24.37531 −7.0 7073 4.24 −0.14 2887-54521-571 92.17171 24.26314 1.0 6436 4.22 −0.25 2887-54521-574 92.24525 24.33811 −4.2 6173 4.49 −0.14 2887-54521-575 92.18267 24.28672 −0.1 6399 4.34 −0.22 2887-54521-576 92.16121 24.28150 −3.5 6504 4.32 −0.26 2887-54521-577 92.12313 24.23586 −4.5 6579 4.33 −0.15 2887-54521-580 92.22917 24.28611 −6.7 6213 4.56 −0.21 2887-54521-602 92.29150 24.30103 −4.5 6306 4.39 −0.18 2887-54521-604 92.37287 24.35117 −5.7 6265 4.27 −0.08 2887-54521-606 92.34713 24.32714 −6.9 6315 4.30 −0.31 2887-54521-608 92.34037 24.28469 −4.9 6414 4.26 −0.07 2887-54521-611 92.38533 24.22036 −5.8 6967 4.33 −0.03 2887-54521-616 92.27704 24.23072 −1.5 6276 4.26 −0.11 2887-54521-620 92.33058 24.31908 −8.1 6213 4.53 −0.21 2912-54499-524 92.04133 24.36569 −6.9 4478 4.43 −0.52 Continued on next page. . . 164 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2912-54499-563 92.23489 24.45188 −3.0 4695 4.55 −0.26 2912-54499-564 92.15571 24.49417 −0.6 4496 4.61 −0.46 2912-54499-575 92.18929 24.21147 −0.7 4668 4.72 −0.16 2912-54499-576 92.27554 24.45567 −16.2 5158 3.75 −0.42 2912-54499-601 92.29767 24.42347 −7.0 4577 4.37 −0.46 2912-54499-604 92.36371 24.35142 −1.7 4347 3.33 −0.34 2912-54499-605 92.42192 24.38517 −10.6 4685 4.67 −0.14 2912-54499-611 92.31054 24.23417 −11.4 4714 4.73 −0.13 2912-54499-619 92.39379 24.39831 −7.2 4537 4.57 −0.40 2912-54499-620 92.38533 24.45678 −3.7 4378 4.59 −0.43 M67 2667-54142-361 132.6933300 11.871264 36.2 5446 4.60 +0.03 2667-54142-363 132.5890400 11.985747 33.2 5540 4.65 −0.03 2667-54142-364 132.6169200 11.913978 34.2 6004 4.47 −0.04 2667-54142-372 132.6952900 11.897903 33.5 5367 4.66 −0.04 2667-54142-378 132.6899800 11.926571 37.7 5034 4.68 +0.11 2667-54142-379 132.5899200 11.839747 36.4 5861 4.52 +0.08 2667-54142-402 132.7021700 12.014961 35.9 5525 4.66 +0.02 2667-54142-404 132.7532100 11.886464 34.6 5725 4.57 +0.03 2667-54142-406 132.7005000 11.913181 34.7 6016 4.39 +0.04 2667-54142-407 132.7347100 11.858081 36.0 6074 4.41 −0.06 2667-54142-408 132.7437500 11.994214 34.2 5927 4.50 +0.02 Continued on next page. . . 165 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2667-54142-409 132.7742500 11.886261 35.6 5551 4.64 −0.06 2667-54142-410 132.7377900 11.947350 32.7 5613 4.58 −0.02 2667-54142-411 132.8010300 11.787528 28.3 5524 4.63 +0.01 2667-54142-412 132.7361200 11.831808 34.5 5771 4.56 +0.01 2667-54142-413 132.7688200 11.862833 24.7 5901 4.46 −0.01 2667-54142-414 132.7769200 11.791894 38.6 4581 4.72 −0.11 2667-54142-415 132.7000800 11.828167 35.3 5801 4.54 +0.03 2667-54142-417 132.7567100 11.937789 34.4 5590 4.62 +0.05 2667-54142-418 132.7534700 11.814725 36.4 5810 4.56 −0.07 2667-54142-419 132.7431200 11.970697 32.4 5879 4.47 −0.02 2667-54142-420 132.7914300 11.771442 34.4 5822 4.40 −0.01 2667-54142-429 132.3948800 11.788092 34.6 5945 4.57 +0.01 2667-54142-441 132.8041200 11.950172 35.8 5866 4.50 +0.05 2667-54142-444 132.8395800 11.984572 31.1 6098 4.44 +0.09 2667-54142-445 132.7831700 11.981397 34.2 5725 4.53 +0.03 2667-54142-451 132.8012500 11.906319 35.3 6031 4.43 −0.02 2667-54142-452 132.7928000 12.025431 37.4 4902 4.81 −0.06 2667-54142-453 132.8423700 11.807839 23.2 5076 4.74 −0.02 2667-54142-454 132.8407700 11.861747 36.1 5957 4.49 −0.01 2667-54142-455 132.9283300 11.991872 33.2 6067 4.35 −0.03 2667-54142-457 132.9065800 11.945644 35.9 5851 4.53 +0.06 2667-54142-458 132.8022500 12.188075 34.8 5836 4.47 +0.05 Continued on next page. . . 166 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2667-54142-459 132.8128300 11.822606 33.9 6042 4.39 −0.01 2667-54142-460 132.7881300 11.950017 35.5 5805 4.56 +0.03 2667-54142-463 132.5035400 11.702733 34.9 5981 4.46 +0.04 2667-54142-466 132.6327000 11.502099 36.3 5146 4.70 −0.03 2667-54142-467 132.5376200 11.557281 36.3 6069 4.29 −0.07 2667-54142-469 132.6607100 11.776742 33.8 5290 4.72 +0.06 2667-54142-476 132.5400400 11.645006 34.8 5846 4.51 −0.01 2667-54142-477 132.7222900 11.727772 35.7 5746 4.55 +0.00 2667-54142-478 132.6963700 11.715228 33.8 6007 4.45 +0.02 2667-54142-479 132.7179200 11.750975 35.3 5810 4.58 −0.01 2667-54142-481 132.7949200 11.664139 39.4 5780 4.58 +0.02 2667-54142-485 132.7586500 11.755369 31.7 5597 4.60 +0.07 2667-54142-486 132.7528300 11.678155 36.7 5324 4.64 +0.07 2667-54142-487 132.7741000 11.729775 41.7 5741 4.59 −0.01 2667-54142-491 132.7797500 11.596875 35.4 6066 4.42 −0.13 2667-54142-492 132.7834200 11.640567 37.2 5864 4.50 −0.02 2667-54142-496 132.7887500 11.559197 35.3 5701 4.54 −0.01 2667-54142-500 132.7791300 11.697017 34.3 4987 4.62 −0.06 2667-54142-504 132.8498300 11.580686 37.3 5718 4.62 −0.06 2667-54142-505 132.8408200 11.734822 37.3 5869 4.42 −0.00 2667-54142-507 132.8529400 11.718478 35.9 5591 4.57 −0.04 2667-54142-508 132.8550400 11.637817 33.8 5441 4.67 −0.04 Continued on next page. . . 167 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2667-54142-516 132.8466200 11.654136 32.3 5635 4.66 +0.03 2667-54142-517 133.0788800 11.397178 35.0 5525 4.60 +0.04 2667-54142-518 133.0567100 11.393450 36.2 5805 4.57 −0.05 2667-54142-522 133.0017500 11.935228 38.4 5904 4.48 +0.06 2667-54142-531 132.9857500 11.790236 36.2 5836 4.52 +0.00 2667-54142-533 132.9950000 11.804089 34.2 5155 4.77 −0.04 2667-54142-537 132.9948800 11.833992 33.4 5881 4.49 −0.01 2667-54142-538 132.9619800 11.869030 34.3 5013 4.77 +0.10 2667-54142-539 133.0190000 11.980183 37.0 5075 4.74 −0.02 2667-54142-540 132.9941700 11.870869 32.8 5428 4.67 +0.06 2667-54142-541 133.1261300 11.714000 33.1 5904 4.40 −0.11 2667-54142-546 133.0400800 11.779472 35.6 6078 4.33 −0.08 2667-54142-547 133.1811700 11.610503 34.4 5487 4.70 +0.04 2667-54142-550 133.0475000 11.675556 33.4 5971 4.48 +0.05 2667-54142-551 132.9911100 11.762748 38.2 4958 4.63 −0.12 2667-54142-561 133.0414600 12.175214 34.4 6026 4.52 +0.01 2667-54142-566 133.2035400 12.046594 30.0 5586 4.55 −0.02 2667-54142-575 133.0644200 11.883697 34.3 5901 4.54 +0.03 2667-54142-576 133.0925800 11.817458 38.6 5569 4.55 −0.08 2667-54142-579 133.0659200 11.775536 35.3 5598 4.63 −0.03 NGC 6791 2800-54326-151 290.31055 37.77577 Continued on next page. . . 168 −47.7 4904 4.18 +0.41 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2800-54326-152 290.27792 37.80231 −45.8 5632 4.48 +0.42 2800-54326-154 290.25604 37.80142 −47.1 4542 3.89 +0.46 2800-54326-155 290.29071 37.76133 −54.5 5623 4.22 +0.42 2800-54326-156 290.28943 37.78397 −43.9 4810 4.07 +0.42 2800-54326-157 290.31383 37.79217 −41.4 5689 4.32 +0.35 2800-54326-159 290.27624 37.74988 −45.8 4535 3.53 +0.46 2800-54326-160 290.30839 37.75263 −47.2 4883 4.07 +0.42 2800-54326-161 290.26887 37.72120 −46.5 5111 4.12 +0.40 2800-54326-165 290.23537 37.77058 −55.5 5752 3.95 +0.15 2800-54326-169 290.24479 37.72029 −45.3 4481 3.01 +0.27 2800-54326-171 290.25504 37.73653 −56.4 5464 4.25 +0.18 2800-54326-172 290.20854 37.79775 −45.3 5376 4.37 +0.42 2800-54326-173 290.23082 37.79705 −47.9 4924 4.31 +0.40 2800-54326-174 290.25360 37.75939 −46.8 4414 3.40 +0.46 2800-54326-175 290.25360 37.77766 −49.5 4476 3.10 +0.46 2800-54326-176 290.23775 37.74739 −50.1 5457 4.32 +0.33 2800-54326-178 290.21406 37.77513 −48.7 4601 3.56 +0.46 2800-54326-180 290.22034 37.75919 −45.6 4526 3.22 +0.43 2800-54326-181 290.18823 37.74275 −49.6 4369 3.55 +0.30 2800-54326-182 290.13027 37.77522 −47.4 5451 4.12 +0.19 2800-54326-183 290.18888 37.78830 −52.4 4478 3.41 +0.46 2800-54326-184 290.12773 37.75476 −50.6 5540 4.11 +0.36 Continued on next page. . . 169 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2800-54326-185 290.16345 37.74368 −46.8 4483 3.16 +0.46 2800-54326-186 290.15705 37.72575 −49.4 4832 4.04 +0.42 2800-54326-189 290.16875 37.78517 −45.9 4930 4.23 +0.41 2800-54326-190 290.17674 37.76421 −46.4 4667 4.00 +0.46 2800-54326-194 290.17419 37.70602 −53.9 5599 4.07 +0.20 2800-54326-197 290.18075 37.72142 −46.7 4584 3.96 +0.34 2800-54326-199 290.16395 37.80132 −45.7 4280 2.77 +0.46 2800-54326-424 290.13763 37.82931 −46.4 5482 4.34 +0.24 2800-54326-462 290.18642 37.85478 −42.1 5627 4.43 +0.19 2800-54326-464 290.27438 37.82203 −43.7 5569 4.21 +0.36 2800-54326-465 290.24050 37.81700 −44.9 4481 3.82 +0.46 2800-54326-466 290.28500 37.83567 −41.7 5043 4.30 +0.44 2800-54326-469 290.23600 37.85450 −47.4 5549 4.38 +0.16 2800-54326-471 290.21029 37.83431 −46.3 5427 4.21 +0.44 2800-54326-473 290.25912 37.84825 −48.0 5592 4.08 +0.36 2800-54326-475 290.19271 37.81957 −43.2 4503 3.74 +0.45 2800-54326-476 290.18508 37.83414 −45.3 5702 4.41 +0.33 2800-54326-477 290.24383 37.83556 −44.4 4713 4.04 +0.28 2800-54326-479 290.16329 37.83461 −46.8 5513 4.46 +0.31 2800-54326-480 290.15792 37.81897 −44.4 5462 4.14 +0.32 2800-54326-497 290.30292 37.80739 −57.7 5606 4.28 +0.22 2821-54393-141 290.29286 37.73219 −46.8 5617 4.61 +0.21 Continued on next page. . . 170 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2821-54393-142 290.29538 37.78913 −40.9 5215 4.87 −0.08 2821-54393-145 290.31488 37.78708 −44.0 5635 4.67 +0.23 2821-54393-146 290.28602 37.71747 −43.9 5524 4.59 +0.38 2821-54393-149 290.29258 37.75206 −43.2 5802 4.56 +0.39 2821-54393-161 290.26746 37.73246 −48.6 5700 4.44 +0.19 2821-54393-165 290.16959 37.70742 −48.7 4911 4.72 +0.10 2821-54393-166 290.21646 37.79267 −43.8 5392 4.66 +0.19 2821-54393-167 290.25304 37.76144 −43.9 5312 4.58 +0.18 2821-54393-169 290.23571 37.74950 −43.6 5246 4.66 +0.21 2821-54393-172 290.23312 37.77947 −48.5 5383 4.65 +0.35 2821-54393-173 290.23404 37.72550 −46.5 5415 4.52 +0.16 2821-54393-174 290.27438 37.76821 −47.0 5495 4.69 +0.23 2821-54393-176 290.23888 37.79792 −42.4 5078 4.59 +0.28 2821-54393-177 290.25525 37.78111 −44.8 5360 4.55 +0.27 2821-54393-178 290.27083 37.79364 −47.9 5279 4.63 +0.26 2821-54393-179 290.23317 37.69495 −46.4 5641 4.40 +0.10 2821-54393-182 290.19167 37.75022 −45.0 5410 4.54 +0.10 2821-54393-183 290.16181 37.72236 −48.3 5499 4.36 +0.16 2821-54393-184 290.21133 37.69576 −37.0 5060 4.70 +0.25 2821-54393-185 290.16196 37.79569 −54.9 5571 4.63 +0.40 2821-54393-187 290.18507 37.73330 −49.3 5583 4.50 +0.19 2821-54393-188 290.16150 37.74609 −43.1 4903 4.56 +0.41 Continued on next page. . . 171 Table A.1 – Continued spSpec name α δ (deg) (deg) RV Teff log g [Fe/H] (km s−1 ) (K) 2821-54393-190 290.21180 37.71344 −43.1 4830 4.67 +0.06 2821-54393-191 290.16200 37.77697 −50.5 5297 4.51 −0.03 2821-54393-192 290.14174 37.74134 −57.2 4720 4.65 −0.03 2821-54393-193 290.14857 37.75947 −44.3 4973 4.53 −0.25 2821-54393-194 290.18383 37.77736 −45.6 5451 4.40 +0.34 2821-54393-195 290.20292 37.76702 −44.6 4897 4.66 +0.19 2821-54393-196 290.21350 37.74117 −48.7 5459 4.46 +0.28 2821-54393-197 290.14430 37.78641 −46.1 5585 4.49 +0.30 2821-54393-199 290.19034 37.71489 −48.1 4838 4.75 +0.22 2821-54393-235 290.12569 37.76434 −42.1 5503 4.31 +0.09 2821-54393-436 290.12584 37.81327 −44.3 5320 4.40 +0.08 2821-54393-438 290.14612 37.83670 −49.8 5509 4.29 +0.27 2821-54393-439 290.11927 37.79796 −44.2 5497 4.27 +0.11 2821-54393-440 290.15288 37.81589 −35.2 5354 4.40 +0.11 2821-54393-468 290.26379 37.84733 −49.7 4866 4.71 +0.25 2821-54393-469 290.28646 37.80753 −41.8 5226 4.52 +0.30 2821-54393-472 290.26775 37.82575 −45.5 5302 4.54 +0.33 2821-54393-473 290.18250 37.84431 −42.4 5215 4.42 +0.05 2821-54393-474 290.22450 37.83158 −46.9 5613 4.70 +0.24 2821-54393-475 290.20554 37.84583 −40.0 5207 4.63 +0.27 2821-54393-478 290.24763 37.83678 −48.9 5531 4.32 +0.26 2821-54393-479 290.23475 37.81458 −41.3 5029 4.62 +0.23 Continued on next page. . . 172 Table A.1 – Continued spSpec name α δ (deg) (deg) 2821-54393-480 290.23092 37.84886 RV Teff log g [Fe/H] (km s−1 ) (K) −44.3 5374 4.65 +0.39 Table A.2: Atmospheric Uncertainties of Adopted True Member Stars spSpec name σ(RV) (km s−1 ) σ(Teff ) σ(logg) σ([Fe/H]) S/N (K) (dex) (dex) M92 2247-54169-361 2.3 218 0.03 0.07 46.6 2247-54169-362 4.6 62 0.03 0.03 25.0 2247-54169-364 3.2 53 0.30 0.04 37.5 2247-54169-367 3.5 34 0.27 0.05 36.8 2247-54169-379 6.6 70 0.04 0.06 19.1 2247-54169-380 3.1 71 0.21 0.07 38.8 2247-54169-404 3.4 68 0.12 0.00 38.5 2247-54169-408 2.5 20 0.19 0.04 49.8 2247-54169-409 13.0 147 0.54 0.06 12.6 2247-54169-418 2.2 13 0.20 0.03 49.1 2247-54169-444 2.6 63 0.09 0.04 45.2 2247-54169-449 2.6 87 0.12 0.04 48.3 Continued on next page. . . 173 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2247-54169-451 3.0 32 0.26 0.04 42.4 2247-54169-452 2.9 36 0.07 0.03 44.3 2247-54169-458 7.1 56 0.18 0.05 19.9 2247-54169-484 2.1 94 0.22 0.04 51.4 2247-54169-504 2.2 37 0.19 0.03 50.6 2247-54169-514 5.7 69 0.29 0.06 23.1 2247-54169-516 6.8 23 0.56 0.07 19.9 2247-54169-519 6.3 22 0.27 0.01 18.6 2247-54169-529 4.1 15 0.23 0.03 28.6 2247-54169-531 3.0 59 0.17 0.04 38.4 2247-54169-538 8.0 88 0.53 0.05 16.4 2247-54169-541 6.2 31 0.22 0.04 21.5 2247-54169-546 4.3 57 0.24 0.06 28.7 2247-54169-561 3.2 55 0.18 0.04 37.7 2247-54169-563 2.3 26 0.23 0.03 48.6 2247-54169-573 3.2 34 0.23 0.04 43.7 2247-54169-575 9.1 111 0.43 0.07 15.3 2247-54169-581 3.3 67 0.26 0.03 37.5 2247-54169-582 2.1 138 0.30 0.02 50.2 2247-54169-584 6.4 155 0.61 0.05 18.9 2247-54169-589 4.5 78 0.29 0.02 30.0 2247-54169-608 2.4 19 0.18 0.04 48.2 Continued on next page. . . 174 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2247-54169-610 1.8 47 0.13 0.03 50.8 2247-54169-616 6.2 32 0.55 0.06 19.9 2247-54169-620 4.8 76 0.28 0.03 23.3 2256-53859-411 8.0 98 0.37 0.01 14.8 2256-53859-455 8.8 113 0.54 0.05 13.7 2256-53859-485 15.9 58 0.21 0.05 10.2 2256-53859-489 15.2 29 0.08 0.06 10.4 2256-53859-501 9.6 44 0.27 0.01 13.0 2256-53859-506 10.6 84 0.35 0.09 11.6 2256-53859-513 5.3 80 0.30 0.03 25.4 2256-53859-522 7.3 76 0.41 0.06 18.0 2256-53859-530 10.1 74 0.18 0.07 13.4 2256-53859-535 7.1 51 0.54 0.06 16.6 2256-53859-536 6.3 57 0.20 0.09 18.9 2256-53859-537 14.1 107 0.12 0.09 10.8 2256-53859-538 5.5 48 0.29 0.04 24.7 2256-53859-539 11.4 34 0.60 0.01 11.9 2256-53859-546 10.5 45 0.24 0.10 13.3 2256-53859-566 11.2 92 0.00 0.06 12.2 2256-53859-571 9.1 61 0.40 0.05 14.0 2256-53859-575 8.8 58 0.48 0.05 12.7 2256-53859-576 9.6 65 0.34 0.03 14.6 Continued on next page. . . 175 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2256-53859-579 10.8 50 0.52 0.07 12.0 2256-53859-612 9.9 58 0.26 0.04 12.7 M15 1960-53289-401 2.6 15 0.16 0.05 55.9 1960-53289-402 2.4 33 0.22 0.04 62.2 1960-53289-406 2.3 15 0.14 0.02 65.1 1960-53289-413 3.0 26 0.07 0.02 57.6 1960-53289-419 2.1 17 0.26 0.02 65.1 1960-53289-420 13.9 82 0.39 0.06 15.0 1960-53289-441 6.0 97 0.45 0.02 23.7 1960-53289-442 3.5 23 0.06 0.03 46.8 1960-53289-457 9.1 68 0.39 0.06 20.3 1960-53289-459 1.9 14 0.20 0.03 68.2 1960-53289-460 3.4 68 0.24 0.03 47.8 1960-53289-500 4.5 47 0.25 0.03 35.4 1960-53289-501 10.5 123 0.46 0.04 16.5 1960-53289-511 4.0 67 0.18 0.04 43.5 1960-53289-522 5.0 73 0.29 0.06 33.6 1960-53289-523 1.7 52 0.26 0.06 70.7 1960-53289-529 2.4 20 0.15 0.04 63.7 1960-53289-530 4.9 64 0.18 0.16 29.2 1962-53321-323 6.9 79 0.31 0.08 22.7 Continued on next page. . . 176 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 1962-53321-328 9.3 95 0.30 0.08 17.4 1962-53321-329 6.7 42 0.05 0.06 20.0 1962-53321-335 7.4 72 0.13 0.10 22.7 1962-53321-339 11.9 80 0.27 0.03 12.7 1962-53321-363 14.4 119 0.03 0.05 12.5 1962-53321-364 3.3 63 0.28 0.06 40.4 1962-53321-368 8.2 67 0.27 0.05 20.6 1962-53321-369 7.1 116 0.55 0.07 18.5 1962-53321-370 7.1 62 0.24 0.02 21.8 1962-53321-371 6.7 119 0.23 0.04 20.6 1962-53321-372 7.2 139 0.60 0.05 23.8 1962-53321-375 4.2 86 0.33 0.12 31.6 1962-53321-376 3.3 75 0.25 0.04 41.5 1962-53321-378 12.8 45 0.20 0.03 13.8 1962-53321-399 9.4 45 0.38 0.06 16.7 1962-53321-402 3.9 82 0.14 0.06 33.3 1962-53321-403 4.5 54 0.10 0.05 31.8 1962-53321-406 4.7 45 0.22 0.07 32.1 1962-53321-407 7.7 115 0.37 0.00 20.4 1962-53321-409 14.0 48 0.19 0.07 11.5 1962-53321-412 10.6 112 0.37 0.08 14.5 1962-53321-413 3.2 84 0.25 0.05 40.6 Continued on next page. . . 177 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 1962-53321-414 6.5 96 0.57 0.06 21.6 1962-53321-415 3.5 71 0.19 0.02 42.8 1962-53321-416 11.2 88 0.52 0.05 13.1 1962-53321-419 11.3 123 0.04 0.09 11.7 1962-53321-421 5.1 102 0.44 0.04 24.6 1962-53321-422 10.2 174 0.75 0.08 13.8 1962-53321-423 5.1 110 0.03 0.01 26.7 1962-53321-424 7.9 111 0.21 0.02 13.9 1962-53321-427 3.9 94 0.28 0.06 38.5 1962-53321-428 9.8 97 0.29 0.08 14.5 1962-53321-430 9.5 241 0.91 0.10 12.5 1962-53321-438 3.2 80 0.17 0.01 42.2 1962-53321-442 8.4 122 0.50 0.15 17.1 1962-53321-445 12.4 112 0.18 0.18 10.3 1962-53321-449 13.9 165 0.70 0.05 10.5 1962-53321-454 4.0 75 0.35 0.05 37.8 1962-53321-460 14.5 72 0.20 0.01 11.4 1962-53321-465 9.4 11 0.23 0.06 15.6 1962-53321-466 3.5 80 0.31 0.04 45.1 1962-53321-469 8.2 152 0.32 0.05 20.9 1962-53321-470 6.2 77 0.22 0.05 22.2 1962-53321-471 8.0 64 0.21 0.06 18.5 Continued on next page. . . 178 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 1962-53321-474 3.2 79 0.21 0.09 44.6 1962-53321-478 12.8 163 0.67 0.07 10.3 1962-53321-480 8.4 138 0.52 0.06 17.2 1962-53321-483 11.9 90 0.80 0.05 12.5 1962-53321-484 9.2 31 0.02 0.10 14.6 1962-53321-488 7.9 85 0.15 0.07 18.1 1962-53321-490 8.7 45 0.31 0.07 17.3 1962-53321-493 5.6 77 0.28 0.03 27.8 1962-53321-495 7.6 70 0.34 0.04 19.1 1962-53321-496 7.7 41 0.08 0.04 19.1 1962-53321-497 8.5 77 0.24 0.03 18.2 1962-53321-500 6.2 42 0.15 0.04 25.9 1962-53321-503 8.2 77 0.36 0.06 16.3 1962-53321-505 14.0 205 0.06 0.09 11.4 1962-53321-506 2.9 60 0.12 0.06 46.3 1962-53321-509 10.2 101 0.29 0.02 13.0 1962-53321-510 7.2 57 0.45 0.03 23.2 1962-53321-512 14.7 101 0.50 0.07 11.2 1962-53321-515 2.8 55 0.13 0.05 42.9 1962-53321-516 5.3 44 0.31 0.06 28.1 1962-53321-518 4.8 59 0.27 0.06 30.0 1962-53321-519 8.8 51 0.03 0.03 15.7 Continued on next page. . . 179 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 1962-53321-520 5.8 51 0.33 0.05 23.1 1962-53321-522 12.7 92 0.04 0.03 11.9 1962-53321-532 3.4 81 0.11 0.01 43.6 1962-53321-533 7.2 54 0.38 0.11 21.0 1962-53321-539 8.8 41 0.23 0.05 19.5 1962-53321-540 12.0 148 0.33 0.08 12.4 1962-53321-543 9.1 123 0.29 0.10 16.6 1962-53321-545 8.3 209 0.42 0.09 14.0 1962-53321-549 5.6 70 0.30 0.04 23.9 1962-53321-550 6.3 56 0.18 0.01 24.2 1962-53321-554 11.9 221 0.03 0.07 11.9 1962-53321-555 12.9 95 0.20 0.09 10.7 1962-53321-558 5.6 75 0.26 0.03 25.2 NGC 5053 2476-53826-486 6.4 101 0.47 0.04 17.5 2476-53826-488 2.2 87 0.21 0.06 49.1 2476-53826-490 4.3 171 0.28 0.03 30.0 2476-53826-497 9.8 87 0.10 0.08 12.4 2476-53826-501 2.6 52 0.25 0.07 48.4 2476-53826-505 3.3 63 0.28 0.04 39.6 2476-53826-506 5.0 116 0.23 0.08 29.4 2476-53826-507 4.2 65 0.20 0.06 30.6 Continued on next page. . . 180 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2476-53826-508 3.5 61 0.16 0.03 33.5 2476-53826-519 1.5 35 0.17 0.01 62.9 2476-53826-527 2.1 76 0.21 0.04 51.2 2476-53826-531 5.5 222 0.11 0.12 23.0 2476-53826-573 5.1 91 0.25 0.04 26.3 2476-53826-575 1.9 82 0.28 0.12 56.6 2476-53826-577 4.0 46 0.26 0.04 30.2 2476-53826-578 1.9 91 0.37 0.07 55.1 M53 2476-53826-329 7.0 193 0.38 0.10 12.8 2476-53826-361 4.0 108 0.19 0.09 26.1 2476-53826-362 6.5 154 0.32 0.11 18.6 2476-53826-363 7.6 130 0.11 0.07 17.1 2476-53826-369 7.2 142 0.23 0.04 18.6 2476-53826-372 5.1 64 0.32 0.04 25.8 2476-53826-375 6.9 82 0.23 0.04 17.7 2476-53826-376 8.7 313 0.29 0.08 15.7 2476-53826-378 3.0 70 0.17 0.03 36.9 2476-53826-379 7.9 301 0.45 0.01 16.6 2476-53826-401 5.2 23 0.17 0.06 20.4 2476-53826-404 2.0 89 0.22 0.04 47.5 2476-53826-405 9.2 19 0.43 0.10 12.1 Continued on next page. . . 181 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2476-53826-408 6.9 96 0.10 0.12 19.3 2476-53826-409 4.9 112 0.35 0.01 20.6 2476-53826-413 7.5 141 0.35 0.05 15.5 2476-53826-418 8.4 59 0.33 0.10 11.8 2476-53826-451 3.4 40 0.16 0.05 30.0 2476-53826-452 5.9 64 0.26 0.09 20.3 M2 1961-53299-124 1.5 60 0.01 0.13 51.9 1961-53299-125 1.6 54 0.10 0.06 52.6 1961-53299-131 1.9 46 0.19 0.02 43.6 1961-53299-134 1.1 72 0.09 0.09 60.8 1961-53299-136 2.4 4 0.06 0.05 39.1 1961-53299-140 2.9 43 0.10 0.05 34.1 1961-53299-144 2.7 69 0.28 0.05 37.5 1961-53299-152 2.0 51 0.04 0.04 44.1 1961-53299-159 2.4 2 0.20 0.06 39.5 1961-53299-194 2.4 197 0.13 0.01 46.0 1961-53299-213 3.3 114 0.36 0.06 33.2 1961-53299-215 2.0 92 0.16 0.01 48.2 1963-54331-041 16.4 77 0.39 0.11 10.5 1963-54331-043 5.9 58 0.23 0.03 19.6 1963-54331-045 12.8 25 0.26 0.05 11.2 Continued on next page. . . 182 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 1963-54331-082 15.6 179 0.63 0.07 10.8 1963-54331-083 8.6 65 0.32 0.04 17.1 1963-54331-090 5.9 63 0.09 0.06 18.6 1963-54331-091 4.1 53 0.15 0.05 23.5 1963-54331-096 6.9 41 0.22 0.01 16.6 1963-54331-098 2.6 29 0.18 0.03 40.5 1963-54331-100 6.8 91 0.13 0.06 16.8 1963-54331-102 9.4 62 0.20 0.08 15.4 1963-54331-114 9.2 40 0.36 0.04 13.0 1963-54331-121 2.5 44 0.09 0.04 40.3 1963-54331-123 5.2 56 0.19 0.02 20.4 1963-54331-124 9.0 74 0.42 0.04 14.9 1963-54331-126 3.8 82 0.16 0.03 27.1 1963-54331-128 3.6 57 0.10 0.04 27.7 1963-54331-131 3.7 58 0.06 0.04 28.2 1963-54331-137 3.0 42 0.07 0.03 33.4 1963-54331-139 3.2 18 0.14 0.04 33.8 1963-54331-143 6.1 60 0.35 0.06 19.0 1963-54331-144 2.3 11 0.10 0.05 38.8 1963-54331-145 6.2 26 0.39 0.09 17.6 1963-54331-146 10.3 126 0.15 0.04 13.4 1963-54331-147 11.1 132 0.30 0.03 13.5 Continued on next page. . . 183 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 1963-54331-148 7.4 61 0.05 0.03 17.8 1963-54331-150 7.7 61 0.27 0.04 16.9 1963-54331-154 10.9 58 0.24 0.09 10.5 1963-54331-156 9.8 105 0.33 0.06 11.6 1963-54331-162 12.3 96 0.20 0.00 10.7 1963-54331-164 3.6 119 0.14 0.09 26.7 1963-54331-169 10.6 112 0.70 0.04 10.7 1963-54331-170 10.8 209 0.37 0.02 11.6 1963-54331-178 4.0 5 0.19 0.06 25.0 1963-54331-179 9.2 60 0.64 0.04 14.0 1963-54331-180 4.8 52 0.03 0.05 22.0 1963-54331-181 8.5 58 0.27 0.04 14.6 1963-54331-184 4.5 67 0.13 0.06 22.3 1963-54331-185 11.6 96 0.35 0.10 10.9 1963-54331-186 13.8 155 0.31 0.18 10.3 1963-54331-189 9.3 81 0.28 0.04 12.7 1963-54331-194 8.7 55 0.28 0.04 14.3 1963-54331-196 9.8 107 0.21 0.03 13.3 1963-54331-197 10.5 130 0.75 0.09 10.7 1963-54331-200 12.8 93 0.42 0.05 10.8 1963-54331-201 5.0 41 0.13 0.05 22.3 1963-54331-204 2.7 58 0.08 0.05 34.2 Continued on next page. . . 184 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 1963-54331-206 11.6 62 0.29 0.06 12.6 1963-54331-207 11.6 116 0.24 0.02 10.8 1963-54331-208 2.8 22 0.13 0.05 36.5 1963-54331-209 4.0 28 0.12 0.01 27.6 1963-54331-211 4.1 32 0.17 0.02 27.6 1963-54331-212 5.2 50 0.21 0.02 22.1 1963-54331-217 3.2 27 0.13 0.02 33.1 1963-54331-218 3.1 19 0.14 0.04 33.3 1963-54331-220 10.4 99 0.29 0.08 13.1 1963-54331-222 8.8 85 0.17 0.04 13.0 1963-54331-223 11.3 24 0.19 0.03 13.2 1963-54331-254 8.1 172 0.19 0.03 13.3 M13 2174-53521-054 5.1 44 0.16 0.03 21.0 2174-53521-082 1.7 42 0.14 0.05 55.0 2174-53521-087 3.3 54 0.13 0.05 29.1 2174-53521-093 1.9 49 0.14 0.03 57.2 2174-53521-094 3.5 46 0.14 0.05 30.1 2174-53521-098 1.6 69 0.15 0.06 54.7 2174-53521-121 1.9 60 0.13 0.02 48.0 2174-53521-126 3.9 66 0.09 0.05 33.1 2174-53521-128 4.3 50 0.18 0.05 24.7 Continued on next page. . . 185 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2174-53521-131 2.0 39 0.47 0.08 58.2 2174-53521-133 3.4 56 0.10 0.03 37.8 2174-53521-134 3.2 64 0.10 0.04 30.0 2174-53521-136 2.0 312 0.16 0.26 54.4 2174-53521-137 1.8 64 0.13 0.06 55.6 2174-53521-145 1.6 72 0.13 0.02 60.1 2174-53521-146 4.4 33 0.23 0.04 23.4 2174-53521-149 4.8 49 0.12 0.05 20.9 2174-53521-152 1.8 202 0.12 0.11 56.1 2174-53521-153 1.8 155 0.13 0.06 56.7 2174-53521-154 1.6 50 0.09 0.07 59.1 2174-53521-155 2.4 45 0.15 0.03 41.8 2174-53521-156 1.7 54 0.15 0.04 53.6 2174-53521-157 2.1 216 0.15 0.01 53.7 2174-53521-158 1.6 49 0.14 0.05 54.1 2174-53521-159 1.4 50 0.08 0.04 58.9 2174-53521-160 1.7 59 0.19 0.07 56.9 2174-53521-166 1.9 63 0.16 0.02 54.1 2174-53521-167 1.4 52 0.15 0.07 60.1 2174-53521-168 1.4 49 0.03 0.06 57.3 2174-53521-171 1.5 72 0.12 0.04 60.2 2174-53521-172 1.5 59 0.12 0.06 57.6 Continued on next page. . . 186 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2174-53521-174 7.8 3 0.30 0.02 18.6 2174-53521-175 1.7 154 0.11 0.06 53.5 2174-53521-176 1.9 51 0.11 0.03 53.5 2174-53521-215 1.8 44 0.16 0.02 56.9 2174-53521-368 3.4 66 0.09 0.07 26.8 2174-53521-376 2.0 46 0.21 0.06 47.3 2174-53521-402 3.9 49 0.03 0.04 23.1 2174-53521-403 5.2 50 0.06 0.06 21.7 2174-53521-406 4.4 111 0.16 0.05 23.8 2174-53521-407 1.9 57 0.11 0.03 44.5 2174-53521-410 1.4 75 0.24 0.02 58.7 2174-53521-412 3.7 56 0.15 0.06 28.5 2174-53521-413 1.6 26 0.13 0.07 57.0 2174-53521-414 3.4 67 0.16 0.04 30.8 2174-53521-442 1.8 129 0.15 0.05 57.9 2174-53521-443 1.7 40 0.07 0.06 58.6 2174-53521-445 4.4 31 0.08 0.03 23.1 2174-53521-447 3.7 35 0.22 0.03 27.1 2174-53521-449 1.4 59 0.10 0.04 58.4 2174-53521-451 1.9 146 0.20 0.10 58.3 2174-53521-452 1.5 43 0.17 0.05 59.9 2174-53521-453 1.6 35 0.14 0.04 59.0 Continued on next page. . . 187 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2174-53521-455 1.3 41 0.14 0.06 58.6 2174-53521-456 2.9 31 0.16 0.03 32.0 2174-53521-457 1.3 40 0.15 0.03 59.8 2174-53521-458 1.7 63 0.20 0.07 60.4 2174-53521-459 1.3 25 0.15 0.06 59.6 2174-53521-460 1.4 60 0.17 0.09 61.7 2174-53521-461 2.9 29 0.17 0.02 29.8 2174-53521-462 1.5 42 0.14 0.04 59.7 2174-53521-463 1.8 46 0.15 0.06 55.6 2174-53521-464 1.8 166 0.11 0.00 58.2 2174-53521-470 1.5 59 0.16 0.06 61.6 2174-53521-471 1.9 46 0.13 0.05 48.5 2174-53521-472 1.6 81 0.15 0.04 59.5 2174-53521-474 4.0 44 0.26 0.04 27.3 2174-53521-475 1.3 159 0.44 0.04 61.1 2174-53521-476 2.0 32 0.14 0.11 53.6 2174-53521-477 1.5 39 0.14 0.03 59.6 2174-53521-478 1.6 44 0.11 0.04 58.1 2174-53521-480 2.5 18 0.16 0.02 39.3 2174-53521-481 5.3 34 0.22 0.05 20.4 2174-53521-483 1.3 35 0.16 0.03 59.7 2174-53521-484 1.3 50 0.14 0.01 59.8 Continued on next page. . . 188 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2174-53521-485 1.6 38 0.17 0.08 56.9 2174-53521-488 1.5 33 0.13 0.04 55.4 2174-53521-489 1.6 55 0.17 0.03 56.7 2174-53521-490 1.8 167 0.09 0.05 57.2 2174-53521-491 1.9 251 0.13 0.02 55.8 2174-53521-493 1.8 41 0.20 0.03 60.4 2174-53521-494 1.5 45 0.07 0.05 59.9 2174-53521-495 1.5 40 0.15 0.04 52.6 2174-53521-497 1.6 47 0.14 0.05 58.0 2174-53521-498 1.5 60 0.10 0.04 59.8 2174-53521-499 1.7 46 0.06 0.09 60.0 2174-53521-500 1.4 49 0.11 0.03 58.8 2174-53521-522 1.7 40 0.18 0.06 57.4 2174-53521-529 1.9 57 0.15 0.08 46.6 2174-53521-530 1.3 56 0.21 0.09 58.8 2174-53521-531 1.5 2 0.15 0.06 59.4 2174-53521-532 1.8 160 0.15 0.02 58.0 2174-53521-533 4.6 68 0.23 0.01 24.3 2174-53521-537 1.5 32 0.14 0.05 53.3 2174-53521-538 1.3 67 0.15 0.03 60.9 2174-53521-539 3.3 33 0.16 0.04 28.1 2174-53521-540 1.7 206 0.10 0.07 58.4 Continued on next page. . . 189 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2174-53521-542 1.4 61 0.18 0.03 58.7 2174-53521-554 1.6 49 0.13 0.04 54.0 2174-53521-560 3.6 36 0.19 0.03 30.2 2174-53521-563 1.9 32 0.20 0.07 44.0 2174-53521-565 4.5 75 0.20 0.03 23.5 2174-53521-573 5.3 59 0.14 0.04 22.9 2174-53521-576 3.6 49 0.14 0.06 28.3 2174-53521-577 4.0 45 0.12 0.05 24.3 2185-53532-106 8.2 96 0.33 0.03 13.1 2185-53532-111 4.9 46 0.26 0.02 25.2 2185-53532-113 11.7 82 0.39 0.02 10.9 2185-53532-116 8.0 107 0.29 0.06 16.5 2185-53532-120 6.3 52 0.10 0.04 18.4 2185-53532-141 4.0 52 0.38 0.03 31.4 2185-53532-143 5.0 27 0.03 0.03 27.9 2185-53532-146 10.9 43 0.49 0.09 11.5 2185-53532-148 5.8 45 0.29 0.03 21.6 2185-53532-150 5.5 46 0.29 0.04 24.6 2185-53532-151 7.0 42 0.38 0.03 16.1 2185-53532-152 5.5 49 0.47 0.01 24.6 2185-53532-153 2.8 21 0.12 0.02 40.7 2185-53532-154 9.4 140 0.38 0.01 13.6 Continued on next page. . . 190 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2185-53532-156 7.2 30 0.24 0.03 21.1 2185-53532-158 5.9 42 0.31 0.04 23.0 2185-53532-160 6.6 65 0.18 0.03 18.6 2185-53532-161 8.8 104 0.35 0.04 13.2 2185-53532-167 4.5 61 0.24 0.06 26.3 2185-53532-169 6.1 43 0.35 0.04 21.9 2185-53532-171 11.6 63 0.26 0.01 12.0 2185-53532-172 5.2 37 0.18 0.01 25.1 2185-53532-175 5.4 87 0.39 0.03 20.9 2185-53532-176 4.9 34 0.12 0.04 25.4 2185-53532-177 5.4 54 0.40 0.05 23.8 2185-53532-178 5.9 49 0.12 0.02 21.4 2185-53532-179 4.1 63 0.20 0.03 31.1 2185-53532-181 5.3 98 0.39 0.06 25.3 2185-53532-196 6.4 40 0.21 0.02 20.8 2185-53532-197 7.2 64 0.73 0.08 18.3 2185-53532-198 5.4 38 0.31 0.03 24.4 2185-53532-200 8.7 28 0.25 0.03 12.2 2185-53532-237 3.2 84 0.31 0.03 39.4 2185-53532-388 3.5 53 0.23 0.02 34.1 2185-53532-390 7.9 95 0.12 0.06 13.7 2185-53532-393 8.9 95 0.57 0.07 11.4 Continued on next page. . . 191 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2185-53532-423 5.2 80 0.28 0.06 24.7 2185-53532-424 4.7 55 0.41 0.06 25.6 2185-53532-425 3.3 32 0.20 0.05 36.1 2185-53532-426 2.7 26 0.07 0.03 41.7 2185-53532-427 2.7 30 0.14 0.05 42.6 2185-53532-428 5.8 32 0.22 0.06 19.8 2185-53532-430 8.5 66 0.32 0.05 14.0 2185-53532-431 9.4 63 0.21 0.05 12.4 2185-53532-433 9.4 44 0.20 0.09 12.4 2185-53532-435 5.7 46 0.25 0.01 22.1 2185-53532-439 2.7 58 0.15 0.04 40.1 2185-53532-440 9.0 68 0.32 0.05 13.1 2185-53532-461 3.6 41 0.21 0.03 34.0 2185-53532-462 2.7 40 0.17 0.04 38.6 2185-53532-464 8.7 34 0.26 0.03 16.9 2185-53532-466 5.2 49 0.13 0.04 23.1 2185-53532-469 5.8 50 0.01 0.08 20.0 2185-53532-473 6.2 40 0.26 0.03 19.6 2185-53532-475 4.1 44 0.22 0.05 30.2 2185-53532-476 5.8 69 0.21 0.07 22.1 2185-53532-477 7.2 25 0.28 0.04 15.2 2185-53532-478 5.3 62 0.20 0.02 24.0 Continued on next page. . . 192 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2185-53532-479 6.8 46 0.32 0.03 16.9 2185-53532-480 7.3 14 0.49 0.02 13.9 2185-53532-481 3.1 26 0.23 0.04 36.8 2185-53532-482 3.0 22 0.17 0.04 40.4 2185-53532-483 5.5 39 0.21 0.04 20.6 2185-53532-485 3.9 42 0.07 0.00 31.9 2185-53532-486 6.2 82 0.35 0.05 17.2 2185-53532-487 3.5 33 0.15 0.04 34.7 2185-53532-488 8.3 103 0.48 0.07 14.7 2185-53532-489 5.4 67 0.36 0.04 22.4 2185-53532-490 7.2 59 0.08 0.06 18.0 2185-53532-492 3.0 19 0.24 0.03 38.9 2185-53532-493 3.4 45 0.22 0.05 35.0 2185-53532-494 7.4 23 0.32 0.03 19.9 2185-53532-495 4.7 40 0.25 0.04 28.4 2185-53532-496 7.8 90 0.44 0.04 12.0 2185-53532-497 9.2 54 0.31 0.01 15.0 2185-53532-498 4.5 27 0.38 0.04 28.1 2185-53532-499 4.9 35 0.16 0.01 27.2 2185-53532-500 3.1 74 0.15 0.05 40.8 2185-53532-504 4.4 42 0.12 0.02 27.7 2185-53532-506 2.4 42 0.12 0.03 44.7 Continued on next page. . . 193 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2185-53532-507 5.5 34 0.15 0.01 20.9 2185-53532-508 4.5 164 0.14 0.05 23.6 2185-53532-511 7.2 106 0.07 0.06 16.4 2185-53532-512 3.4 35 0.16 0.02 37.8 2185-53532-513 4.8 37 0.25 0.03 25.6 2185-53532-514 5.1 49 0.37 0.05 21.0 2185-53532-515 5.2 63 0.20 0.03 24.4 2185-53532-516 9.3 68 0.26 0.06 12.6 2185-53532-517 9.6 171 0.17 0.09 12.2 2185-53532-519 5.0 48 0.11 0.05 25.6 2185-53532-520 3.3 34 0.31 0.03 34.9 2185-53532-534 4.3 48 0.17 0.05 29.9 2185-53532-537 4.9 38 0.20 0.03 27.0 2185-53532-539 6.8 63 0.25 0.04 16.0 2185-53532-540 6.8 59 0.26 0.05 19.2 2185-53532-541 11.4 34 0.32 0.04 12.2 2185-53532-542 6.9 89 0.08 0.07 17.5 2185-53532-543 3.4 52 0.24 0.02 36.7 2185-53532-544 5.2 28 0.24 0.04 24.0 2185-53532-545 5.7 51 0.14 0.07 21.3 2185-53532-546 8.9 4 0.27 0.06 13.1 2185-53532-547 8.6 121 0.70 0.10 12.4 Continued on next page. . . 194 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2185-53532-548 9.7 3 0.34 0.07 11.4 2185-53532-549 6.0 45 0.32 0.04 16.3 2185-53532-550 8.3 76 0.21 0.04 14.3 2185-53532-551 10.1 221 0.03 0.08 12.1 2185-53532-552 5.7 50 0.16 0.05 22.8 2185-53532-553 3.0 33 0.13 0.03 42.4 2185-53532-554 3.7 26 0.08 0.01 34.9 2185-53532-555 7.2 43 0.17 0.05 18.5 2185-53532-556 7.1 40 0.09 0.05 17.9 2185-53532-557 4.7 67 0.24 0.05 27.8 2185-53532-558 3.9 30 0.13 0.05 30.4 2185-53532-559 4.6 27 0.15 0.05 24.3 2185-53532-560 3.6 26 0.20 0.04 33.7 2185-53532-575 9.8 68 0.08 0.02 13.6 2185-53532-577 5.1 33 0.21 0.04 20.6 2185-53532-581 5.3 60 0.31 0.04 19.1 2185-53532-584 6.6 112 0.58 0.04 18.7 2185-53532-585 5.8 29 0.34 0.02 21.0 2185-53532-587 10.1 60 0.12 0.01 13.0 2185-53532-589 5.7 43 0.31 0.04 22.7 2185-53532-591 4.8 17 0.31 0.06 26.4 2185-53532-592 7.2 81 0.63 0.07 16.1 Continued on next page. . . 195 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2185-53532-593 4.9 51 0.35 0.02 24.2 2185-53532-594 8.3 42 0.32 0.09 15.5 2185-53532-596 8.5 196 0.35 0.09 12.5 2185-53532-598 7.6 64 0.16 0.06 16.8 2185-53532-599 6.3 61 0.27 0.06 17.0 2185-53532-600 8.5 108 0.23 0.05 12.3 2255-53565-103 5.4 52 0.16 0.03 22.1 2255-53565-112 4.1 93 0.12 0.05 20.6 2255-53565-114 3.0 40 0.08 0.05 37.2 2255-53565-115 4.7 33 0.17 0.02 24.5 2255-53565-116 1.8 61 0.13 0.03 52.2 2255-53565-120 1.7 60 0.14 0.02 61.8 2255-53565-143 3.2 52 0.08 0.06 57.5 2255-53565-144 1.6 33 0.17 0.04 60.4 2255-53565-147 1.7 191 0.13 0.22 61.3 2255-53565-148 1.7 44 0.05 0.05 58.9 2255-53565-153 1.5 53 0.10 0.05 60.0 2255-53565-157 1.5 58 0.12 0.02 65.9 2255-53565-171 1.4 48 0.14 0.05 63.7 2255-53565-173 4.1 83 0.14 0.05 28.3 2255-53565-174 1.7 132 0.12 0.06 58.6 2255-53565-175 1.7 38 0.11 0.03 57.4 Continued on next page. . . 196 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2255-53565-177 1.6 160 0.12 0.02 63.4 2255-53565-192 1.7 180 0.13 0.08 61.0 2255-53565-423 1.9 200 0.13 0.12 60.5 2255-53565-424 4.7 49 0.14 0.04 21.3 2255-53565-425 4.7 42 0.14 0.03 23.7 2255-53565-426 1.3 58 0.07 0.05 61.5 2255-53565-432 5.3 60 0.16 0.03 22.4 2255-53565-436 3.8 120 0.29 0.25 22.4 2255-53565-437 3.8 52 0.21 0.05 28.9 2255-53565-443 1.9 205 0.08 0.21 61.0 2255-53565-465 1.8 187 0.12 0.07 62.2 2255-53565-466 4.5 39 0.11 0.03 24.4 2255-53565-476 2.9 50 0.19 0.02 36.3 2255-53565-482 1.7 151 0.06 0.07 63.9 2255-53565-483 1.3 82 0.14 0.01 65.2 2255-53565-485 1.3 56 0.11 0.07 60.3 2255-53565-486 4.6 97 0.17 0.06 21.3 2255-53565-490 1.9 67 0.07 0.04 50.9 2255-53565-492 8.1 177 0.03 0.11 18.8 2255-53565-495 3.0 83 0.18 0.04 30.7 2255-53565-496 3.3 71 0.07 0.06 29.4 2255-53565-504 2.5 71 0.09 0.04 34.4 Continued on next page. . . 197 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2255-53565-510 1.6 70 0.13 0.05 59.7 2255-53565-512 4.3 90 0.06 0.05 22.2 2255-53565-515 1.4 77 0.09 0.13 58.6 2255-53565-518 3.1 69 0.22 0.04 27.9 2255-53565-520 3.7 87 0.16 0.07 26.5 2255-53565-542 1.3 77 0.08 0.06 62.4 2255-53565-543 1.3 85 0.17 0.06 62.1 2255-53565-544 4.5 88 0.13 0.06 23.5 2255-53565-545 1.4 66 0.12 0.03 61.6 2255-53565-548 1.5 93 0.21 0.05 63.4 2255-53565-550 1.6 70 0.13 0.02 59.5 2255-53565-551 1.4 89 0.14 0.02 65.3 2255-53565-552 2.6 65 0.12 0.02 34.5 2255-53565-553 1.5 58 0.12 0.05 64.2 2255-53565-556 2.9 63 0.10 0.05 36.8 2255-53565-557 3.2 105 0.13 0.08 26.3 2255-53565-559 3.2 87 0.15 0.06 33.1 2255-53565-586 3.1 90 0.15 0.02 32.2 2255-53565-589 1.4 80 0.14 0.05 64.7 2255-53565-597 1.9 56 0.09 0.03 49.2 0.27 0.07 34.6 M3 2475-53845-105 2.9 26 Continued on next page. . . 198 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2475-53845-114 2.9 61 0.39 0.04 35.8 2475-53845-116 1.3 106 0.13 0.06 58.6 2475-53845-118 8.0 53 0.34 0.09 13.8 2475-53845-119 2.4 47 0.15 0.04 37.2 2475-53845-120 3.0 41 0.18 0.03 32.6 2475-53845-141 1.9 67 0.21 0.08 46.2 2475-53845-142 1.7 92 0.10 0.06 48.4 2475-53845-143 2.3 80 0.16 0.04 41.4 2475-53845-144 2.5 87 0.02 0.04 36.5 2475-53845-145 1.8 72 0.14 0.04 52.5 2475-53845-150 1.5 41 0.16 0.02 58.8 2475-53845-160 2.2 79 0.19 0.02 44.2 2475-53845-162 1.6 61 0.18 0.03 54.2 2475-53845-166 3.0 119 0.08 0.03 37.5 2475-53845-171 1.9 86 0.08 0.03 45.7 2475-53845-173 1.6 108 0.06 0.03 51.1 2475-53845-174 2.9 77 0.02 0.05 35.3 2475-53845-176 1.4 93 0.15 0.03 65.7 2475-53845-177 2.1 98 0.04 0.11 41.3 2475-53845-178 2.4 65 0.09 0.03 41.5 2475-53845-180 2.7 69 0.38 0.06 38.6 2475-53845-183 3.0 82 0.03 0.04 29.0 Continued on next page. . . 199 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2475-53845-185 5.4 89 0.22 0.10 17.1 2475-53845-186 1.8 78 0.07 0.06 52.3 2475-53845-187 3.9 66 0.10 0.06 36.7 2475-53845-190 3.0 59 0.15 0.04 38.8 2475-53845-192 4.9 72 0.16 0.04 20.9 2475-53845-193 3.2 83 0.22 0.05 38.9 2475-53845-194 3.6 94 0.28 0.02 34.5 2475-53845-196 1.9 76 0.11 0.04 47.9 2475-53845-198 1.5 104 0.11 0.07 58.2 2475-53845-199 1.7 70 0.10 0.03 58.1 2475-53845-200 5.4 134 0.38 0.03 17.9 2475-53845-421 1.1 79 0.12 0.06 68.4 2475-53845-430 5.8 95 0.11 0.04 17.2 2475-53845-436 1.2 101 0.11 0.05 62.6 2475-53845-440 1.3 73 0.11 0.10 60.3 2475-53845-461 1.6 46 0.13 0.04 50.6 2475-53845-462 2.4 91 0.35 0.04 40.6 2475-53845-463 1.7 72 0.02 0.06 56.5 2475-53845-466 1.8 59 0.12 0.05 52.6 2475-53845-469 3.0 56 0.07 0.04 27.8 2475-53845-471 1.5 97 0.03 0.04 55.8 2475-53845-473 1.2 74 0.14 0.06 63.1 Continued on next page. . . 200 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2475-53845-475 1.7 95 0.14 0.06 50.2 2475-53845-476 2.3 79 0.16 0.03 44.6 2475-53845-479 1.5 39 0.13 0.02 60.2 2475-53845-480 1.7 84 0.13 0.04 53.3 2475-53845-481 3.0 96 0.37 0.03 35.3 2475-53845-483 1.0 120 0.13 0.07 71.2 2475-53845-485 3.6 162 0.15 0.13 38.0 2475-53845-486 1.1 89 0.27 0.05 69.9 2475-53845-487 7.1 222 0.15 0.09 12.7 2475-53845-488 2.0 32 0.14 0.05 45.8 2475-53845-489 1.4 82 0.09 0.07 55.2 2475-53845-492 2.8 63 0.19 0.04 36.7 2475-53845-496 1.5 73 0.10 0.04 58.2 2475-53845-497 1.2 63 0.11 0.07 59.0 2475-53845-498 1.6 53 0.09 0.06 54.0 2475-53845-501 2.7 24 0.15 0.02 34.1 2475-53845-505 3.3 104 0.20 0.06 43.1 2475-53845-506 1.3 61 0.12 0.03 65.8 2475-53845-507 4.9 44 0.16 0.06 21.3 2475-53845-509 1.6 45 0.11 0.04 50.4 2475-53845-510 2.8 234 0.12 0.06 36.0 2475-53845-511 1.6 34 0.10 0.03 58.9 Continued on next page. . . 201 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2475-53845-514 2.3 43 0.21 0.03 37.1 2475-53845-515 1.6 62 0.09 0.05 54.6 2475-53845-518 1.1 64 0.14 0.03 62.3 2475-53845-519 1.9 34 0.11 0.00 41.6 2475-53845-520 2.2 19 0.13 0.06 38.0 2475-53845-550 7.2 123 0.21 0.00 13.8 2475-53845-551 1.4 71 0.16 0.05 55.7 2475-53845-557 3.3 31 0.22 0.05 27.4 2475-53845-558 2.1 42 0.06 0.03 40.8 2475-53845-559 1.7 53 0.11 0.04 47.6 M71 2333-53682-077 0.8 186 0.21 0.05 79.6 2333-53682-105 1.1 98 0.20 0.03 63.3 2333-53682-144 1.3 116 0.10 0.08 84.5 2333-53682-153 2.5 181 0.29 0.05 29.8 2333-53682-167 1.2 58 0.16 0.05 65.8 2333-53682-176 1.2 65 0.10 0.05 66.0 2333-53682-178 1.3 114 0.18 0.05 64.1 2333-53682-183 1.0 128 0.15 0.05 84.6 2333-53682-191 1.5 132 0.11 0.01 62.3 2333-53682-193 1.4 112 0.08 0.05 60.8 2333-53682-198 1.6 83 0.07 0.02 52.0 Continued on next page. . . 202 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2333-53682-228 2.6 91 0.13 0.04 57.0 2333-53682-229 2.5 36 0.09 0.04 54.8 2338-53683-142 1.9 68 0.23 0.06 39.3 2338-53683-186 1.8 121 0.06 0.03 44.2 2338-53683-199 1.9 119 0.15 0.06 38.2 2338-53683-200 1.2 80 0.06 0.03 57.6 NGC 2420 2078-53378-111 1.8 39 0.07 0.03 34.1 2078-53378-114 1.8 29 0.08 0.01 41.4 2078-53378-116 3.1 54 0.03 0.08 18.1 2078-53378-118 2.6 41 0.08 0.05 21.8 2078-53378-142 2.0 41 0.06 0.01 32.6 2078-53378-149 1.1 23 0.08 0.03 62.9 2078-53378-150 1.9 16 0.06 0.02 37.0 2078-53378-151 1.8 55 0.05 0.02 41.8 2078-53378-152 2.0 66 0.08 0.04 23.1 2078-53378-154 2.2 24 0.05 0.03 24.4 2078-53378-156 1.9 57 0.05 0.02 40.9 2078-53378-157 1.7 44 0.08 0.01 35.7 2078-53378-158 2.4 57 0.07 0.05 23.9 2078-53378-159 1.3 34 0.12 0.03 60.9 2078-53378-161 1.2 52 0.15 0.03 63.2 Continued on next page. . . 203 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2078-53378-165 2.9 4 0.05 0.01 19.8 2078-53378-166 1.4 31 0.08 0.03 56.3 2078-53378-167 1.6 54 0.04 0.04 37.4 2078-53378-168 1.4 41 0.12 0.01 55.0 2078-53378-169 1.1 19 0.11 0.01 66.8 2078-53378-170 2.4 95 0.03 0.01 17.2 2078-53378-171 2.0 33 0.05 0.03 30.6 2078-53378-172 1.7 62 0.07 0.01 31.6 2078-53378-173 2.9 96 0.17 0.05 18.2 2078-53378-174 2.1 1 0.03 0.04 21.3 2078-53378-175 2.6 42 0.04 0.06 20.5 2078-53378-176 1.2 28 0.14 0.02 63.4 2078-53378-177 2.1 53 0.03 0.06 25.9 2078-53378-178 2.4 35 0.04 0.05 21.0 2078-53378-179 1.2 19 0.12 0.05 61.6 2078-53378-182 1.4 8 0.08 0.04 63.5 2078-53378-186 1.3 55 0.09 0.04 61.5 2078-53378-192 1.8 65 0.06 0.04 34.7 2078-53378-194 2.7 57 0.06 0.05 26.9 2078-53378-195 1.3 24 0.11 0.02 58.2 2078-53378-197 1.9 44 0.07 0.03 33.3 2078-53378-199 1.4 38 0.10 0.03 53.3 Continued on next page. . . 204 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2078-53378-200 2.2 33 0.05 0.05 22.8 2078-53378-223 1.5 29 0.09 0.01 53.3 2078-53378-224 1.2 21 0.07 0.03 65.4 2078-53378-227 1.7 46 0.07 0.02 37.4 2078-53378-232 1.3 30 0.10 0.04 61.4 2078-53378-233 1.8 50 0.06 0.04 41.5 2078-53378-235 1.7 85 0.10 0.05 33.2 2078-53378-273 3.0 95 0.08 0.05 18.2 2078-53378-422 1.7 28 0.05 0.03 27.1 2078-53378-427 1.6 45 0.06 0.01 38.7 2078-53378-431 1.1 30 0.10 0.04 67.1 2078-53378-435 1.7 32 0.02 0.04 28.1 2078-53378-440 1.5 15 0.06 0.03 32.5 2078-53378-462 1.4 42 0.06 0.02 50.2 2078-53378-463 1.1 28 0.13 0.04 60.7 2078-53378-464 1.4 108 0.17 0.04 40.6 2078-53378-465 1.6 36 0.07 0.04 30.9 2078-53378-466 1.2 32 0.09 0.05 62.2 2078-53378-468 1.6 40 0.07 0.04 31.9 2078-53378-469 1.0 52 0.08 0.06 67.0 2078-53378-470 1.5 81 0.05 0.05 36.1 2078-53378-471 1.3 39 0.05 0.03 49.4 Continued on next page. . . 205 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2078-53378-472 1.1 39 0.10 0.04 67.3 2078-53378-473 1.4 32 0.06 0.02 46.4 2078-53378-475 1.9 55 0.08 0.04 22.6 2078-53378-476 1.6 37 0.07 0.06 26.4 2078-53378-477 1.4 60 0.10 0.06 37.8 2078-53378-478 1.5 31 0.08 0.05 30.1 2078-53378-480 1.5 68 0.09 0.05 35.6 2078-53378-481 1.8 44 0.01 0.04 51.4 2078-53378-485 1.3 60 0.07 0.03 41.7 2078-53378-491 1.1 49 0.09 0.07 64.9 2078-53378-492 1.4 36 0.05 0.02 40.4 2078-53378-493 1.7 43 0.11 0.05 27.7 2078-53378-496 1.5 51 0.07 0.03 39.5 2078-53378-499 1.5 56 0.07 0.08 35.8 2078-53378-503 1.1 51 0.08 0.05 67.0 2078-53378-510 1.5 42 0.08 0.02 40.2 2078-53378-511 1.3 24 0.09 0.04 62.4 2078-53378-512 1.2 33 0.07 0.06 58.2 2078-53378-513 1.3 37 0.06 0.02 47.2 2078-53378-514 1.5 46 0.07 0.02 40.7 2078-53378-515 1.4 36 0.07 0.02 45.2 2078-53378-516 1.3 31 0.09 0.01 51.1 Continued on next page. . . 206 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2078-53378-517 1.4 52 0.08 0.06 32.0 2078-53378-518 1.2 36 0.10 0.00 57.7 2078-53378-519 1.4 63 0.09 0.04 36.9 2078-53378-520 1.3 38 0.03 0.04 46.8 2078-53378-548 1.2 43 0.10 0.02 64.4 2078-53378-552 2.4 60 0.03 0.09 17.3 2078-53378-553 1.8 79 0.07 0.03 23.5 2078-53378-554 1.2 20 0.10 0.06 64.7 2078-53378-557 1.3 40 0.06 0.02 52.8 2078-53378-560 1.6 63 0.06 0.00 34.8 2079-53379-071 1.6 70 0.09 0.06 26.6 2079-53379-076 1.4 50 0.14 0.05 28.5 2079-53379-101 2.7 65 0.22 0.05 17.4 2079-53379-102 2.1 44 0.18 0.04 18.7 2079-53379-108 2.9 49 0.08 0.06 14.1 2079-53379-113 3.2 50 0.15 0.10 12.8 2079-53379-114 2.1 16 0.11 0.06 18.1 2079-53379-119 2.9 11 0.15 0.05 15.4 2079-53379-141 1.9 33 0.06 0.00 20.5 2079-53379-148 2.0 16 0.03 0.01 21.7 2079-53379-149 1.7 41 0.13 0.06 24.6 2079-53379-152 2.0 94 0.06 0.05 20.7 Continued on next page. . . 207 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2079-53379-153 2.4 37 0.04 0.05 16.4 2079-53379-156 1.5 49 0.10 0.06 28.0 2079-53379-157 2.0 51 0.03 0.04 18.1 2079-53379-158 2.0 41 0.18 0.01 18.8 2079-53379-159 1.9 3 0.04 0.04 20.1 2079-53379-160 1.7 102 0.04 0.01 22.5 2079-53379-161 2.9 52 0.15 0.06 12.9 2079-53379-162 1.4 88 0.12 0.04 28.2 2079-53379-163 2.4 13 0.16 0.05 17.9 2079-53379-164 1.9 91 0.12 0.08 22.7 2079-53379-165 2.3 35 0.22 0.06 16.5 2079-53379-166 1.4 68 0.10 0.04 27.7 2079-53379-167 3.4 68 0.44 0.08 12.5 2079-53379-168 2.5 12 0.21 0.12 14.6 2079-53379-169 1.7 88 0.12 0.04 23.5 2079-53379-178 1.6 101 0.07 0.04 25.9 2079-53379-181 1.0 20 0.06 0.02 79.6 2079-53379-182 1.9 38 0.13 0.02 19.4 2079-53379-185 3.2 68 0.04 0.19 11.8 2079-53379-191 2.1 121 0.13 0.03 20.0 2079-53379-192 1.5 71 0.08 0.03 26.2 2079-53379-194 1.4 68 0.10 0.04 29.7 Continued on next page. . . 208 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2079-53379-195 1.7 88 0.13 0.06 23.7 2079-53379-196 2.3 51 0.02 0.07 16.3 2079-53379-198 1.6 62 0.04 0.01 29.3 2079-53379-199 2.3 37 0.23 0.04 15.9 2079-53379-200 1.8 70 0.10 0.03 21.9 2079-53379-234 2.0 20 0.02 0.06 18.6 2079-53379-237 1.8 28 0.14 0.03 21.1 2079-53379-238 1.7 51 0.08 0.07 24.8 2079-53379-270 1.7 49 0.09 0.07 23.9 2079-53379-431 1.3 86 0.10 0.01 26.5 2079-53379-434 1.6 62 0.08 0.02 25.2 2079-53379-440 2.1 32 0.04 0.04 17.7 2079-53379-463 3.1 111 0.06 0.11 12.3 2079-53379-466 2.1 95 0.16 0.04 18.3 2079-53379-467 1.5 76 0.10 0.06 24.2 2079-53379-474 2.3 45 0.02 0.06 18.6 2079-53379-476 2.5 1 0.23 0.06 15.4 2079-53379-477 1.5 87 0.11 0.05 25.2 2079-53379-480 1.5 21 0.05 0.01 24.1 2079-53379-482 2.1 34 0.02 0.09 19.2 2079-53379-483 1.0 41 0.10 0.03 82.4 2079-53379-487 2.0 77 0.15 0.04 19.7 Continued on next page. . . 209 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2079-53379-488 3.6 75 0.31 0.06 11.7 2079-53379-490 2.2 44 0.18 0.02 16.9 2079-53379-493 2.7 52 0.29 0.06 14.2 2079-53379-495 1.6 59 0.08 0.02 24.5 2079-53379-496 1.3 66 0.04 0.04 29.7 2079-53379-498 1.6 63 0.13 0.04 24.2 2079-53379-500 1.9 27 0.11 0.05 21.2 2079-53379-502 1.7 71 0.05 0.01 22.0 2079-53379-507 1.9 47 0.05 0.03 19.9 2079-53379-510 3.3 66 0.28 0.07 11.6 2079-53379-511 1.7 82 0.07 0.06 23.8 2079-53379-512 1.3 60 0.01 0.06 30.8 2079-53379-514 2.9 39 0.19 0.07 14.0 2079-53379-516 1.4 23 0.08 0.02 27.3 2079-53379-519 1.7 46 0.03 0.03 21.3 2079-53379-552 2.0 23 0.16 0.03 19.7 2079-53379-558 1.5 8 0.09 0.06 29.0 NGC 2158 2887-54521-416 1.4 135 0.38 0.04 68.9 2887-54521-442 1.5 197 0.17 0.06 52.1 2887-54521-445 1.6 61 0.16 0.04 54.3 2887-54521-446 2.6 129 0.11 0.05 46.2 Continued on next page. . . 210 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2887-54521-447 0.9 104 0.30 0.02 68.0 2887-54521-451 1.6 81 0.26 0.04 54.5 2887-54521-452 1.6 99 0.27 0.02 53.8 2887-54521-460 2.1 85 0.36 0.07 48.6 2887-54521-511 1.7 64 0.38 0.06 51.6 2887-54521-531 0.8 174 0.39 0.04 70.0 2887-54521-532 0.8 112 0.32 0.01 72.2 2887-54521-547 0.8 110 0.30 0.04 72.5 2887-54521-552 0.8 79 0.30 0.02 68.7 2887-54521-559 0.9 67 0.19 0.04 66.1 2912-54499-409 2.9 225 0.18 0.05 49.5 2912-54499-416 2.1 139 0.28 0.03 49.5 2912-54499-417 2.7 67 0.10 0.03 39.0 2912-54499-442 1.8 174 0.18 0.07 55.7 2912-54499-444 1.7 125 0.20 0.03 52.5 2912-54499-445 1.8 144 0.26 0.08 51.4 2912-54499-446 3.0 221 0.10 0.04 32.9 2912-54499-450 1.6 87 0.18 0.03 62.7 2912-54499-453 2.6 198 0.09 0.04 48.7 2912-54499-458 1.8 72 0.14 0.05 55.5 2912-54499-459 3.8 49 0.09 0.02 34.8 2912-54499-461 2.7 241 0.15 0.02 40.8 Continued on next page. . . 211 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2912-54499-462 2.4 147 0.11 0.02 44.6 2912-54499-483 1.6 188 0.27 0.06 60.2 2912-54499-484 1.9 208 0.24 0.05 56.6 2912-54499-488 2.4 57 0.03 0.04 43.8 2912-54499-489 1.7 156 0.20 0.04 58.8 2912-54499-499 2.5 163 0.11 0.04 46.8 2912-54499-501 3.1 172 0.09 0.01 40.0 2912-54499-502 2.3 241 0.19 0.04 49.6 2912-54499-503 1.8 208 0.24 0.06 56.4 2912-54499-505 1.7 174 0.14 0.04 55.2 2912-54499-506 3.1 53 0.15 0.03 30.3 2912-54499-507 2.5 224 0.14 0.03 54.9 2912-54499-509 2.1 187 0.02 0.04 59.2 2912-54499-510 2.7 80 0.16 0.05 40.1 2912-54499-511 2.6 57 0.18 0.04 41.8 2912-54499-514 1.7 167 0.15 0.04 59.6 2912-54499-515 2.4 158 0.22 0.02 49.9 2912-54499-516 1.8 177 0.05 0.03 57.5 2912-54499-518 2.0 166 0.10 0.06 48.6 2912-54499-519 2.3 172 0.21 0.03 43.5 2912-54499-531 2.1 67 0.10 0.03 46.8 2912-54499-534 3.3 99 0.20 0.03 26.5 Continued on next page. . . 212 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2912-54499-539 3.1 207 0.02 0.01 37.5 2912-54499-540 2.7 255 0.14 0.04 35.7 2912-54499-542 1.4 58 0.06 0.04 67.9 2912-54499-543 2.4 200 0.14 0.01 44.3 2912-54499-544 3.6 123 0.16 0.02 29.2 2912-54499-545 1.7 188 0.15 0.07 56.6 2912-54499-547 2.6 200 0.09 0.05 38.6 2912-54499-549 1.8 188 0.10 0.04 56.8 2912-54499-552 1.6 155 0.18 0.05 62.0 2912-54499-553 3.3 196 0.14 0.03 44.8 2912-54499-556 1.7 171 0.03 0.03 63.1 2912-54499-558 1.6 161 0.20 0.06 57.5 2912-54499-559 2.7 197 0.13 0.01 36.8 2912-54499-560 2.3 77 0.16 0.02 39.3 M35 2887-54521-528 1.1 79 0.09 0.09 72.7 2887-54521-534 1.1 344 0.15 0.01 76.9 2887-54521-561 1.2 247 0.15 0.04 75.6 2887-54521-562 1.2 181 0.10 0.03 77.2 2887-54521-566 1.2 217 0.11 0.03 74.6 2887-54521-571 1.2 37 0.03 0.01 73.3 2887-54521-574 1.1 72 0.14 0.01 69.1 Continued on next page. . . 213 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2887-54521-575 1.2 87 0.16 0.03 71.8 2887-54521-576 1.2 110 0.09 0.09 72.1 2887-54521-577 1.6 65 0.00 0.03 71.4 2887-54521-580 1.1 63 0.15 0.04 68.2 2887-54521-602 1.2 97 0.14 0.04 71.3 2887-54521-604 1.3 67 0.08 0.02 69.9 2887-54521-606 1.1 44 0.08 0.03 71.1 2887-54521-608 1.4 50 0.05 0.00 73.0 2887-54521-611 1.3 237 0.10 0.04 75.0 2887-54521-616 1.1 70 0.03 0.04 70.8 2887-54521-620 1.5 69 0.16 0.04 68.7 2912-54499-524 1.2 89 0.18 0.01 34.5 2912-54499-563 0.8 32 0.05 0.05 56.9 2912-54499-564 0.8 101 0.09 0.06 47.8 2912-54499-575 1.1 83 0.14 0.06 34.6 2912-54499-576 1.2 9 0.01 0.05 51.7 2912-54499-601 1.0 230 0.22 0.04 43.8 2912-54499-604 2.3 72 0.01 0.06 18.1 2912-54499-605 0.8 147 0.08 0.05 49.7 2912-54499-611 0.8 38 0.15 0.03 63.0 2912-54499-619 0.8 61 0.12 0.04 45.2 2912-54499-620 1.4 161 0.17 0.05 31.5 Continued on next page. . . 214 Table A.2 – Continued spSpec name σ(RV) (km s−1 ) σ(Teff ) σ(logg) σ([Fe/H]) S/N (K) (dex) (dex) M67 2667-54142-361 0.8 54 0.06 0.06 60.9 2667-54142-363 0.8 34 0.06 0.05 60.1 2667-54142-364 0.9 44 0.05 0.03 63.7 2667-54142-372 0.9 61 0.06 0.05 57.6 2667-54142-378 0.8 115 0.11 0.00 51.0 2667-54142-379 0.9 45 0.06 0.04 62.9 2667-54142-402 0.9 25 0.05 0.04 59.5 2667-54142-404 0.8 45 0.05 0.05 61.2 2667-54142-406 0.9 34 0.06 0.03 63.7 2667-54142-407 0.9 46 0.04 0.01 63.9 2667-54142-408 0.9 36 0.06 0.03 63.3 2667-54142-409 0.8 40 0.05 0.06 59.7 2667-54142-410 0.9 40 0.05 0.04 60.1 2667-54142-411 0.9 44 0.06 0.04 60.0 2667-54142-412 0.9 37 0.06 0.04 62.3 2667-54142-413 0.8 61 0.06 0.03 64.1 2667-54142-414 0.9 36 0.09 0.05 49.1 2667-54142-415 0.8 36 0.06 0.04 62.6 2667-54142-417 0.8 36 0.06 0.04 60.9 2667-54142-418 0.9 28 0.05 0.01 62.4 2667-54142-419 1.0 44 0.04 0.05 62.5 Continued on next page. . . 215 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2667-54142-420 0.9 37 0.07 0.04 62.5 2667-54142-429 0.9 44 0.07 0.03 63.0 2667-54142-441 0.9 21 0.04 0.03 62.0 2667-54142-444 1.0 56 0.05 0.04 63.3 2667-54142-445 0.8 38 0.06 0.03 60.8 2667-54142-451 0.9 67 0.05 0.05 63.5 2667-54142-452 0.9 103 0.09 0.05 50.6 2667-54142-453 0.8 77 0.08 0.04 55.3 2667-54142-454 1.0 52 0.06 0.02 63.8 2667-54142-455 1.0 49 0.04 0.05 63.6 2667-54142-457 0.9 33 0.05 0.04 62.5 2667-54142-458 0.8 39 0.05 0.05 62.0 2667-54142-459 0.9 48 0.04 0.02 63.5 2667-54142-460 0.9 32 0.05 0.04 61.9 2667-54142-463 0.9 49 0.04 0.03 63.9 2667-54142-466 0.8 67 0.08 0.07 56.5 2667-54142-467 1.0 43 0.09 0.03 63.9 2667-54142-469 0.9 67 0.07 0.03 58.2 2667-54142-476 1.0 44 0.05 0.04 63.1 2667-54142-477 0.9 51 0.06 0.04 63.5 2667-54142-478 0.9 45 0.04 0.03 63.8 2667-54142-479 0.8 40 0.05 0.04 62.6 Continued on next page. . . 216 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2667-54142-481 0.9 33 0.05 0.03 62.1 2667-54142-485 0.8 49 0.06 0.04 60.6 2667-54142-486 0.8 63 0.07 0.05 58.6 2667-54142-487 0.9 40 0.05 0.05 64.2 2667-54142-491 0.9 40 0.05 0.02 64.0 2667-54142-492 1.0 37 0.05 0.04 63.2 2667-54142-496 0.9 34 0.05 0.06 62.0 2667-54142-500 1.1 75 0.05 0.04 57.8 2667-54142-504 0.9 43 0.06 0.05 63.6 2667-54142-505 0.9 35 0.06 0.03 61.7 2667-54142-507 0.8 46 0.06 0.05 61.5 2667-54142-508 0.8 48 0.07 0.02 58.8 2667-54142-516 0.7 26 0.04 0.04 60.1 2667-54142-517 0.8 49 0.06 0.05 59.2 2667-54142-518 0.9 29 0.05 0.03 62.1 2667-54142-522 1.1 37 0.05 0.03 63.2 2667-54142-531 0.9 9 0.06 0.03 63.4 2667-54142-533 0.9 60 0.08 0.06 57.7 2667-54142-537 0.9 52 0.05 0.03 63.5 2667-54142-538 0.8 94 0.10 0.00 53.9 2667-54142-539 1.0 58 0.10 0.06 55.9 2667-54142-540 0.8 57 0.07 0.03 58.9 Continued on next page. . . 217 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2667-54142-541 1.5 22 0.05 0.01 38.4 2667-54142-546 1.0 43 0.03 0.04 63.7 2667-54142-547 0.8 47 0.06 0.05 58.1 2667-54142-550 0.9 38 0.05 0.02 63.3 2667-54142-551 0.8 60 0.07 0.07 57.4 2667-54142-561 0.9 29 0.05 0.02 62.9 2667-54142-566 0.8 34 0.04 0.05 61.2 2667-54142-575 0.9 55 0.06 0.03 62.6 2667-54142-576 1.0 45 0.04 0.05 60.7 2667-54142-579 0.8 41 0.05 0.06 61.1 NGC 6791 2800-54326-151 1.2 113 0.15 0.01 38.3 2800-54326-152 2.1 83 0.11 0.01 22.9 2800-54326-154 1.4 94 0.24 0.04 62.2 2800-54326-155 1.7 97 0.04 0.04 26.3 2800-54326-156 1.4 123 0.14 0.52 52.4 2800-54326-157 2.0 109 0.10 0.04 25.1 2800-54326-159 0.4 97 0.22 0.04 70.5 2800-54326-160 0.8 33 0.12 0.22 54.7 2800-54326-161 1.1 134 0.14 0.05 34.5 2800-54326-165 2.8 249 0.08 0.10 29.9 2800-54326-169 0.4 90 0.02 0.00 70.1 Continued on next page. . . 218 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2800-54326-171 1.8 53 0.07 0.06 24.5 2800-54326-172 1.6 80 0.04 0.26 31.8 2800-54326-173 1.1 86 0.07 0.02 34.0 2800-54326-174 0.5 80 0.27 0.04 71.1 2800-54326-175 0.6 113 0.01 0.04 73.3 2800-54326-176 1.1 58 0.05 0.06 40.7 2800-54326-178 0.5 124 0.16 0.04 71.3 2800-54326-180 0.6 99 0.01 0.01 70.3 2800-54326-181 0.4 86 0.23 0.08 68.5 2800-54326-182 2.3 210 0.04 0.07 28.7 2800-54326-183 0.6 96 0.21 0.04 69.8 2800-54326-184 1.8 7 0.13 0.04 29.9 2800-54326-185 0.6 101 0.28 0.04 68.6 2800-54326-186 0.8 25 0.12 0.21 53.6 2800-54326-189 0.9 3 0.12 0.02 43.7 2800-54326-190 1.0 135 0.17 0.04 57.7 2800-54326-194 1.5 194 0.20 0.06 31.5 2800-54326-197 1.3 63 0.03 0.12 53.4 2800-54326-199 1.5 88 0.03 0.04 70.2 2800-54326-424 1.6 74 0.08 0.09 28.1 2800-54326-462 1.5 48 0.11 0.08 33.7 2800-54326-464 1.2 56 0.07 0.04 40.6 Continued on next page. . . 219 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2800-54326-465 0.5 70 0.27 0.04 66.2 2800-54326-466 1.2 108 0.11 0.02 40.4 2800-54326-469 1.4 89 0.12 0.11 30.9 2800-54326-471 1.1 43 0.12 0.05 41.5 2800-54326-473 1.1 6 0.09 0.04 41.0 2800-54326-475 0.5 71 0.26 0.03 67.9 2800-54326-476 1.3 40 0.14 0.07 36.0 2800-54326-477 0.8 123 0.09 0.00 54.3 2800-54326-479 1.6 71 0.07 0.06 27.9 2800-54326-480 1.3 95 0.04 0.04 38.3 2800-54326-497 1.3 61 0.07 0.07 35.7 2821-54393-141 1.0 91 0.06 0.08 47.2 2821-54393-142 2.0 133 0.08 0.07 27.7 2821-54393-145 1.1 88 0.09 0.08 45.8 2821-54393-146 1.3 89 0.14 0.03 41.0 2821-54393-149 2.2 76 0.17 0.04 24.3 2821-54393-161 0.9 72 0.08 0.06 61.8 2821-54393-165 1.5 109 0.11 0.12 27.4 2821-54393-166 1.3 104 0.09 0.03 38.9 2821-54393-167 1.3 71 0.09 0.09 39.6 2821-54393-169 1.2 50 0.10 0.09 36.8 2821-54393-172 1.1 61 0.11 0.10 45.8 Continued on next page. . . 220 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (K) (dex) (dex) 2821-54393-173 1.2 44 0.07 0.09 39.4 2821-54393-174 1.2 127 0.12 0.05 37.1 2821-54393-176 1.3 146 0.18 0.06 28.7 2821-54393-177 1.1 1 0.05 0.01 39.9 2821-54393-178 1.2 83 0.09 0.09 35.4 2821-54393-179 0.9 60 0.07 0.07 67.3 2821-54393-182 1.1 76 0.13 0.06 47.4 2821-54393-183 0.9 66 0.08 0.08 57.6 2821-54393-184 1.6 84 0.08 0.04 28.7 2821-54393-185 1.0 6 0.09 0.03 42.2 2821-54393-187 1.0 44 0.10 0.06 60.4 2821-54393-188 1.6 57 0.11 0.02 27.0 2821-54393-190 2.6 121 0.19 0.03 19.6 2821-54393-191 1.2 68 0.07 0.09 40.8 2821-54393-192 1.8 107 0.10 0.09 23.0 2821-54393-193 1.8 24 0.13 0.06 34.8 2821-54393-194 1.0 79 0.07 0.03 48.3 2821-54393-195 1.4 99 0.09 0.03 27.5 2821-54393-196 1.0 64 0.08 0.07 47.3 2821-54393-197 1.0 53 0.08 0.05 56.7 2821-54393-199 1.9 67 0.16 0.03 24.9 2821-54393-235 1.1 56 0.09 0.10 63.0 Continued on next page. . . 221 Table A.2 – Continued spSpec name σ(RV) σ(Teff ) σ(logg) σ([Fe/H]) S/N (km s−1 ) (dex) (dex) 2821-54393-436 1.2 14 0.10 0.12 42.9 2821-54393-438 0.8 87 0.08 0.06 62.2 2821-54393-439 0.9 26 0.05 0.09 59.1 2821-54393-440 1.1 102 0.06 0.05 64.9 2821-54393-468 1.5 45 0.10 0.05 23.3 2821-54393-469 1.2 169 0.09 0.03 32.8 2821-54393-472 1.0 73 0.11 0.04 41.9 2821-54393-473 1.1 71 0.10 0.05 42.9 2821-54393-474 0.9 73 0.13 0.07 47.9 2821-54393-475 1.5 131 0.08 0.04 27.7 2821-54393-478 1.1 88 0.10 0.07 48.9 2821-54393-479 1.1 84 0.14 0.10 44.7 2821-54393-480 A.2 (K) 2.5 229 0.10 0.14 16.6 Photometric Parameters Data Table Additionally, I have prepared the following table (Table A.3) of SDSS photometry for the adopted true members of the GCs and OCs in this sample and that of Lee et al. (2008b). Again, Column 1 lists the spSpec name, which identifies the star on the spectral plate in the form of spectroscopic plug-plate number (four digits), Modified Julian Date (five digits), 222 and fiber used (three digits). The final column indicates whether photometric values were drawn from “Best” photometry (B), the “Uber calibration” (U), the CASJOBS database (C), or the DAOPHOT crowded-field reduction (D). Table A.3: Photometric Properties of Adopted True Member Stars spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag M92 2247-54169-361 16.420 0.025 15.265 0.009 15.503 0.025 15.718 0.014 15.819 0.013 D 2247-54169-362 18.388 0.024 17.343 0.011 16.902 0.014 16.730 0.013 16.679 0.015 C 2247-54169-364 17.646 0.013 16.533 0.015 16.077 0.027 15.897 0.025 15.823 0.014 D 2247-54169-367 17.645 0.010 16.519 0.009 16.080 0.016 15.877 0.015 15.783 0.013 D 2247-54169-379 18.536 0.018 17.638 0.011 17.449 0.011 17.397 0.013 17.430 0.014 D 2247-54169-380 17.282 0.021 16.093 0.010 15.609 0.011 15.389 0.017 15.289 0.017 D 2247-54169-404 17.648 0.017 16.503 0.010 16.048 0.016 15.847 0.017 15.757 0.012 D 2247-54169-408 16.637 0.016 15.333 0.010 14.812 0.009 14.589 0.017 14.471 0.015 D 2247-54169-409 21.366 0.130 20.443 0.022 20.129 0.026 20.031 0.036 20.019 0.090 D 2247-54169-418 16.771 0.010 15.524 0.008 14.997 0.009 14.780 0.012 14.679 0.010 D 2247-54169-444 17.165 0.011 16.006 0.011 15.539 0.031 15.309 0.018 15.229 0.014 D 2247-54169-449 16.792 0.007 15.490 0.006 15.011 0.021 14.736 0.010 14.643 0.014 D 2247-54169-451 17.363 0.011 16.188 0.008 15.716 0.013 15.492 0.011 15.410 0.014 D 2247-54169-452 17.203 0.011 15.985 0.009 15.505 0.018 15.273 0.012 15.188 0.011 D 2247-54169-458 18.866 0.021 17.845 0.010 17.480 0.017 17.321 0.011 17.283 0.019 D 2247-54169-484 16.464 0.018 15.117 0.011 14.516 0.015 14.272 0.015 14.143 0.016 C 2247-54169-504 16.461 0.013 15.125 0.011 14.607 0.030 14.335 0.015 14.255 0.016 D 2247-54169-514 18.694 0.019 17.645 0.021 17.273 0.017 17.117 0.017 17.072 0.021 D Continued on next page. . . 223 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2247-54169-516 18.847 0.022 17.860 0.016 17.497 0.013 17.346 0.014 17.323 0.021 D 2247-54169-519 18.793 0.025 17.809 0.018 17.430 0.014 17.257 0.017 17.205 0.018 D 2247-54169-529 18.246 0.018 17.182 0.008 16.742 0.019 16.560 0.016 16.491 0.013 D 2247-54169-531 17.650 0.010 16.488 0.007 16.045 0.005 15.842 0.007 15.730 0.007 D 2247-54169-538 18.888 0.023 17.966 0.007 17.660 0.007 17.518 0.008 17.453 0.014 D 2247-54169-541 18.758 0.032 17.691 0.009 17.304 0.013 17.146 0.016 17.124 0.023 D 2247-54169-546 18.187 0.015 17.107 0.007 16.699 0.010 16.512 0.010 16.439 0.012 D 2247-54169-561 17.658 0.014 16.490 0.010 16.011 0.009 15.812 0.014 15.726 0.016 D 2247-54169-563 16.759 0.016 15.492 0.007 14.959 0.013 14.754 0.015 14.623 0.011 D 2247-54169-573 17.098 0.010 16.016 0.013 15.569 0.009 15.375 0.010 15.290 0.011 D 2247-54169-575 18.868 0.023 17.882 0.006 17.522 0.006 17.372 0.005 17.298 0.012 D 2247-54169-581 17.578 0.018 16.373 0.007 15.916 0.012 15.704 0.010 15.607 0.014 D 2247-54169-582 16.251 0.009 15.061 0.004 15.119 0.005 15.186 0.004 15.205 0.005 D 2247-54169-584 18.768 0.021 17.789 0.006 17.422 0.006 17.251 0.006 17.155 0.015 D 2247-54169-589 18.123 0.027 17.007 0.010 16.550 0.014 16.371 0.011 16.279 0.020 D 2247-54169-608 16.631 0.007 15.383 0.003 14.852 0.006 14.612 0.004 14.483 0.007 D 2247-54169-610 16.497 0.006 15.198 0.004 14.660 0.005 14.405 0.004 14.272 0.006 D 2247-54169-616 18.879 0.026 17.890 0.008 17.524 0.005 17.369 0.008 17.293 0.012 D 2247-54169-620 18.511 0.019 17.503 0.005 17.098 0.005 16.918 0.006 16.834 0.012 D 2256-53859-411 19.329 0.034 18.413 0.012 18.173 0.015 18.119 0.015 18.131 0.023 C 2256-53859-455 19.483 0.044 18.576 0.014 18.371 0.012 18.312 0.011 18.346 0.032 D 2256-53859-485 19.940 0.051 19.103 0.018 18.912 0.018 18.874 0.016 18.855 0.042 D 2256-53859-489 19.707 0.040 18.749 0.011 18.567 0.013 18.514 0.015 18.567 0.030 D Continued on next page. . . 224 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2256-53859-501 19.581 0.037 18.751 0.010 18.562 0.013 18.496 0.014 18.533 0.030 D 2256-53859-506 19.655 0.034 18.794 0.016 18.587 0.021 18.526 0.016 18.568 0.037 D 2256-53859-513 18.694 0.019 17.645 0.021 17.273 0.017 17.117 0.017 17.072 0.021 D 2256-53859-522 19.044 0.025 18.084 0.012 17.814 0.017 17.703 0.016 17.682 0.018 D 2256-53859-530 19.559 0.041 18.682 0.008 18.482 0.010 18.426 0.009 18.407 0.031 D 2256-53859-535 19.290 0.033 18.349 0.009 18.145 0.008 18.068 0.008 18.038 0.022 D 2256-53859-536 19.267 0.033 18.395 0.013 18.170 0.018 18.096 0.020 18.060 0.026 D 2256-53859-537 19.977 0.058 19.293 0.012 19.082 0.014 19.002 0.015 18.949 0.038 D 2256-53859-538 18.751 0.022 17.762 0.006 17.376 0.006 17.214 0.007 17.144 0.012 D 2256-53859-539 19.607 0.039 18.874 0.009 18.664 0.011 18.546 0.013 18.492 0.027 D 2256-53859-546 19.386 0.038 18.505 0.017 18.309 0.015 18.212 0.016 18.170 0.026 C 2256-53859-566 19.714 0.031 18.824 0.012 18.593 0.015 18.546 0.015 18.592 0.033 D 2256-53859-571 19.431 0.039 18.654 0.008 18.455 0.009 18.406 0.010 18.407 0.029 D 2256-53859-575 19.464 0.034 18.591 0.009 18.429 0.008 18.371 0.010 18.381 0.030 D 2256-53859-576 19.378 0.034 18.548 0.009 18.358 0.008 18.306 0.011 18.286 0.023 D 2256-53859-579 19.787 0.045 18.810 0.014 18.600 0.013 18.544 0.011 18.557 0.030 D 2256-53859-612 19.290 0.030 18.499 0.008 18.314 0.010 18.232 0.009 18.239 0.024 D M15 1960-53289-401 17.228 0.019 16.078 0.008 15.593 0.008 15.374 0.012 15.268 0.012 D 1960-53289-402 16.719 0.015 15.391 0.008 14.839 0.010 14.584 0.011 14.469 0.015 D 1960-53289-406 16.692 0.013 15.393 0.007 14.841 0.006 14.594 0.007 14.490 0.015 D 1960-53289-413 16.892 0.012 15.687 0.007 15.179 0.008 14.945 0.009 14.839 0.016 D 1960-53289-419 16.707 0.016 15.433 0.008 14.891 0.011 14.646 0.008 14.537 0.013 D Continued on next page. . . 225 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 1960-53289-420 19.269 0.043 18.421 0.011 18.059 0.009 17.981 0.015 17.950 0.029 C 1960-53289-441 18.500 0.030 17.582 0.011 17.183 0.024 17.033 0.012 16.958 0.021 D 1960-53289-442 17.458 0.018 16.342 0.008 15.855 0.010 15.659 0.014 15.556 0.016 D 1960-53289-457 18.870 0.038 17.913 0.011 17.541 0.011 17.363 0.013 17.268 0.020 D 1960-53289-459 16.273 0.021 15.076 0.009 14.561 0.006 14.346 0.013 14.241 0.015 C 1960-53289-460 17.490 0.023 16.431 0.009 15.966 0.006 15.778 0.013 15.671 0.016 C 1960-53289-500 18.164 0.023 17.169 0.012 16.719 0.011 16.540 0.012 16.503 0.019 C 1960-53289-501 19.244 0.036 18.283 0.011 17.885 0.011 17.716 0.011 17.652 0.022 C 1960-53289-511 17.721 0.020 16.568 0.009 16.059 0.009 15.872 0.009 15.772 0.014 C 1960-53289-522 17.954 0.022 16.909 0.011 16.493 0.009 16.307 0.011 16.221 0.015 C 1960-53289-523 16.146 0.016 14.624 0.009 13.981 0.010 13.757 0.004 13.560 0.014 C 1960-53289-529 16.778 0.018 15.513 0.010 14.992 0.006 14.754 0.015 14.651 0.012 D 1960-53289-530 18.471 0.035 17.485 0.015 17.040 0.016 16.859 0.012 16.783 0.020 D 1962-53321-323 19.270 0.042 18.400 0.016 18.131 0.014 18.012 0.016 17.973 0.041 D 1962-53321-328 19.531 0.052 18.655 0.014 18.450 0.015 18.387 0.014 18.373 0.038 D 1962-53321-329 19.408 0.044 18.522 0.011 18.253 0.013 18.160 0.013 18.168 0.037 D 1962-53321-335 19.364 0.043 18.411 0.014 18.110 0.013 18.008 0.014 17.925 0.034 D 1962-53321-339 19.929 0.063 19.041 0.019 18.903 0.014 18.831 0.020 18.856 0.064 D 1962-53321-363 20.107 0.085 19.252 0.021 19.041 0.020 18.955 0.024 18.865 0.064 D 1962-53321-364 18.660 0.032 17.583 0.014 17.191 0.009 17.016 0.012 16.937 0.020 D 1962-53321-368 19.440 0.048 18.553 0.014 18.326 0.014 18.256 0.016 18.214 0.032 D 1962-53321-369 19.431 0.044 18.589 0.016 18.348 0.016 18.251 0.015 18.211 0.041 D 1962-53321-370 19.329 0.048 18.453 0.015 18.174 0.011 18.080 0.017 18.058 0.039 D Continued on next page. . . 226 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 1962-53321-371 19.446 0.043 18.507 0.017 18.253 0.013 18.136 0.016 18.084 0.028 D 1962-53321-372 19.296 0.046 18.371 0.012 18.086 0.011 17.956 0.012 17.927 0.032 D 1962-53321-375 18.807 0.036 17.758 0.008 17.365 0.010 17.208 0.011 17.149 0.022 D 1962-53321-376 18.521 0.029 17.515 0.009 17.119 0.012 16.938 0.010 16.858 0.020 D 1962-53321-378 19.945 0.057 19.052 0.016 18.861 0.019 18.800 0.021 18.830 0.049 D 1962-53321-399 19.711 0.060 18.831 0.017 18.635 0.019 18.648 0.020 18.559 0.044 C 1962-53321-402 18.870 0.038 17.913 0.011 17.541 0.011 17.363 0.013 17.268 0.020 D 1962-53321-403 18.913 0.038 17.887 0.011 17.504 0.011 17.343 0.012 17.277 0.023 D 1962-53321-406 18.929 0.038 17.944 0.014 17.561 0.010 17.405 0.012 17.339 0.023 D 1962-53321-407 19.343 0.053 18.444 0.013 18.218 0.015 18.122 0.018 18.106 0.038 D 1962-53321-409 20.065 0.072 19.145 0.015 18.991 0.018 18.995 0.026 18.863 0.064 D 1962-53321-412 19.790 0.060 18.872 0.016 18.698 0.016 18.639 0.018 18.588 0.046 D 1962-53321-413 18.649 0.032 17.556 0.011 17.172 0.012 16.966 0.023 16.902 0.020 D 1962-53321-414 19.336 0.049 18.472 0.017 18.197 0.015 18.084 0.019 18.055 0.041 D 1962-53321-415 18.443 0.020 17.419 0.014 17.025 0.010 16.879 0.013 16.788 0.016 D 1962-53321-416 19.987 0.068 19.081 0.018 18.921 0.020 18.868 0.024 18.803 0.053 D 1962-53321-419 20.169 0.107 19.268 0.017 19.087 0.018 19.005 0.025 19.220 0.075 D 1962-53321-421 19.266 0.051 18.371 0.015 18.033 0.011 17.891 0.015 17.848 0.033 D 1962-53321-422 19.850 0.066 19.094 0.021 18.866 0.023 18.836 0.025 18.764 0.052 C 1962-53321-423 19.203 0.039 18.205 0.013 17.842 0.011 17.684 0.013 17.599 0.024 C 1962-53321-424 19.619 0.056 18.952 0.018 18.782 0.019 18.783 0.021 18.854 0.055 C 1962-53321-427 18.649 0.029 17.643 0.013 17.249 0.010 17.089 0.012 16.993 0.020 C 1962-53321-428 19.856 0.061 18.951 0.015 18.786 0.014 18.695 0.018 18.695 0.047 C Continued on next page. . . 227 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 1962-53321-430 20.210 0.082 19.211 0.019 19.007 0.020 18.904 0.022 18.850 0.056 C 1962-53321-438 18.569 0.028 17.546 0.015 17.124 0.016 16.890 0.015 16.810 0.020 C 1962-53321-442 19.546 0.057 18.727 0.015 18.549 0.021 18.482 0.023 18.486 0.045 D 1962-53321-445 20.064 0.074 19.341 0.017 19.193 0.017 19.100 0.023 19.102 0.064 C 1962-53321-449 20.178 0.081 19.374 0.023 19.178 0.018 19.172 0.027 19.155 0.070 D 1962-53321-454 18.500 0.030 17.582 0.011 17.183 0.024 17.033 0.012 16.958 0.021 D 1962-53321-460 20.191 0.094 19.363 0.026 19.139 0.030 19.063 0.020 19.128 0.063 D 1962-53321-465 19.606 0.062 18.942 0.015 18.797 0.017 18.765 0.020 18.704 0.044 D 1962-53321-466 18.510 0.024 17.520 0.010 17.104 0.010 16.939 0.009 16.865 0.019 D 1962-53321-469 19.389 0.061 18.634 0.013 18.445 0.013 18.395 0.017 18.382 0.046 D 1962-53321-470 19.369 0.047 18.633 0.017 18.398 0.018 18.342 0.018 18.327 0.036 C 1962-53321-471 19.572 0.051 18.829 0.013 18.676 0.017 18.598 0.017 18.626 0.042 D 1962-53321-474 18.388 0.027 17.449 0.015 17.058 0.016 16.905 0.015 16.826 0.020 C 1962-53321-478 20.677 0.162 19.724 0.024 19.500 0.020 19.367 0.031 19.303 0.086 D 1962-53321-480 19.802 0.067 18.991 0.018 18.780 0.019 18.701 0.020 18.807 0.053 C 1962-53321-483 20.027 0.063 19.211 0.016 19.005 0.016 18.957 0.021 18.938 0.050 C 1962-53321-484 19.975 0.060 19.188 0.016 18.978 0.018 18.928 0.023 18.836 0.048 C 1962-53321-488 19.511 0.050 18.642 0.020 18.359 0.019 18.347 0.024 18.368 0.041 C 1962-53321-490 19.685 0.049 18.893 0.015 18.635 0.014 18.536 0.017 18.559 0.039 C 1962-53321-493 19.199 0.035 18.324 0.013 17.957 0.012 17.810 0.013 17.770 0.025 C 1962-53321-495 19.590 0.047 18.787 0.015 18.533 0.014 18.443 0.016 18.466 0.037 C 1962-53321-496 19.518 0.045 18.773 0.015 18.536 0.014 18.461 0.016 18.509 0.038 C 1962-53321-497 19.675 0.049 18.769 0.015 18.588 0.015 18.538 0.017 18.552 0.036 D Continued on next page. . . 228 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 1962-53321-500 19.216 0.036 18.396 0.013 18.140 0.012 18.047 0.014 18.060 0.029 C 1962-53321-503 19.756 0.050 18.961 0.014 18.764 0.014 18.721 0.017 18.765 0.044 C 1962-53321-505 20.398 0.112 19.488 0.016 19.327 0.021 19.290 0.026 19.316 0.076 D 1962-53321-506 18.395 0.029 17.378 0.009 16.962 0.009 16.758 0.014 16.667 0.013 D 1962-53321-509 19.962 0.057 19.260 0.015 19.006 0.015 18.974 0.019 18.948 0.051 C 1962-53321-510 19.520 0.043 18.529 0.012 18.238 0.011 18.144 0.013 18.102 0.028 C 1962-53321-512 20.338 0.077 19.508 0.017 19.260 0.017 19.248 0.023 19.225 0.063 C 1962-53321-515 18.529 0.026 17.568 0.010 17.125 0.010 16.929 0.010 16.839 0.016 C 1962-53321-516 19.244 0.036 18.283 0.011 17.885 0.011 17.716 0.011 17.652 0.022 C 1962-53321-518 19.113 0.039 18.253 0.011 17.892 0.008 17.763 0.015 17.724 0.025 C 1962-53321-519 19.883 0.059 19.058 0.016 18.896 0.016 18.858 0.022 18.841 0.054 D 1962-53321-520 19.482 0.042 18.619 0.013 18.343 0.083 18.261 0.014 18.219 0.030 C 1962-53321-522 19.946 0.067 19.128 0.016 18.973 0.015 18.953 0.021 18.868 0.053 C 1962-53321-532 18.485 0.027 17.487 0.012 17.105 0.010 16.935 0.012 16.828 0.017 C 1962-53321-533 19.484 0.053 18.638 0.012 18.363 0.010 18.317 0.017 18.369 0.038 C 1962-53321-539 19.750 0.061 18.815 0.013 18.621 0.011 18.574 0.018 18.508 0.040 C 1962-53321-540 20.279 0.091 19.401 0.016 19.207 0.016 19.165 0.024 19.160 0.069 C 1962-53321-543 19.782 0.059 18.916 0.013 18.642 0.012 18.612 0.018 18.695 0.049 C 1962-53321-545 19.868 0.065 19.107 0.014 18.808 0.012 18.815 0.019 18.836 0.053 C 1962-53321-549 19.235 0.037 18.326 0.028 18.030 0.026 17.878 0.010 17.778 0.026 D 1962-53321-550 19.269 0.043 18.421 0.011 18.059 0.009 17.981 0.015 17.950 0.029 C 1962-53321-554 20.191 0.083 19.385 0.016 19.211 0.015 19.149 0.023 19.090 0.064 C 1962-53321-555 20.361 0.090 19.532 0.017 19.274 0.016 19.276 0.025 19.398 0.083 C Continued on next page. . . 229 Table A.3 – Continued spSpec name u σ(u) g 1962-53321-558 19.248 0.040 18.344 σ(g) 0.010 r σ(r) i σ(i) z σ(z) Tag 18.055 0.016 17.925 0.018 17.912 0.029 D NGC 5053 2476-53826-486 18.887 0.022 17.746 0.009 17.284 0.009 17.078 0.012 16.978 0.020 D 2476-53826-488 17.349 0.013 15.780 0.017 15.094 0.007 14.797 0.011 14.656 0.011 D 2476-53826-490 17.806 0.013 16.483 0.015 16.631 0.009 16.782 0.008 16.835 0.016 D 2476-53826-497 19.352 0.031 18.201 0.011 17.750 0.015 17.562 0.011 17.483 0.019 D 2476-53826-501 17.417 0.010 15.988 0.008 15.356 0.005 15.073 0.012 14.942 0.011 D 2476-53826-505 17.522 0.015 16.302 0.009 15.817 0.008 15.600 0.015 15.520 0.015 D 2476-53826-506 17.793 0.019 16.589 0.012 16.693 0.008 16.745 0.013 16.830 0.022 D 2476-53826-507 18.181 0.018 16.939 0.009 16.409 0.007 16.161 0.018 16.049 0.015 D 2476-53826-508 18.104 0.019 16.803 0.009 16.271 0.010 16.013 0.014 15.892 0.012 D 2476-53826-519 17.003 0.012 15.223 0.011 14.436 0.014 14.144 0.010 13.966 0.014 D 2476-53826-527 17.419 0.011 15.862 0.023 15.211 0.007 14.923 0.009 14.769 0.011 D 2476-53826-531 17.934 0.015 16.801 0.014 17.055 0.007 17.254 0.014 17.364 0.020 D 2476-53826-573 18.464 0.022 17.197 0.012 16.668 0.005 16.457 0.014 16.365 0.017 D 2476-53826-575 17.130 0.012 15.518 0.007 14.794 0.037 14.507 0.015 14.368 0.058 D 2476-53826-577 18.115 0.013 16.942 0.028 16.396 0.008 16.177 0.020 16.064 0.024 D 2476-53826-578 17.210 0.012 15.602 0.015 14.904 0.005 14.608 0.010 14.465 0.008 D M53 2476-53826-329 19.252 0.039 17.999 0.027 17.496 0.018 17.318 0.013 17.181 0.026 C 2476-53826-361 18.269 0.035 16.908 0.018 16.270 0.022 16.061 0.015 15.912 0.019 C 2476-53826-362 17.904 0.024 16.733 0.026 16.695 0.018 16.698 0.012 16.725 0.025 C 2476-53826-363 18.093 0.035 17.029 0.018 17.209 0.022 17.425 0.015 17.533 0.023 C Continued on next page. . . 230 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2476-53826-369 18.084 0.035 17.048 0.018 17.257 0.022 17.455 0.015 17.564 0.024 C 2476-53826-372 18.082 0.034 16.868 0.018 16.322 0.022 16.152 0.015 16.021 0.019 C 2476-53826-375 18.504 0.037 17.094 0.018 16.550 0.022 16.344 0.015 16.190 0.019 C 2476-53826-376 18.136 0.035 17.234 0.018 17.489 0.022 17.732 0.016 17.827 0.026 C 2476-53826-378 17.589 0.033 16.225 0.018 15.607 0.022 15.377 0.015 15.249 0.019 C 2476-53826-379 18.129 0.025 17.160 0.025 17.445 0.018 17.642 0.025 17.799 0.024 C 2476-53826-401 18.768 0.028 17.438 0.017 16.907 0.012 16.670 0.015 16.570 0.020 C 2476-53826-404 17.501 0.033 15.836 0.018 15.087 0.022 14.831 0.015 14.665 0.018 C 2476-53826-405 19.218 0.033 18.055 0.017 17.561 0.013 17.344 0.015 17.259 0.022 C 2476-53826-408 18.090 0.024 16.925 0.016 17.108 0.012 17.269 0.015 17.410 0.023 C 2476-53826-409 18.679 0.027 17.321 0.017 16.813 0.012 16.586 0.015 16.466 0.020 C 2476-53826-413 19.025 0.030 17.791 0.017 17.256 0.012 17.034 0.015 16.942 0.021 C 2476-53826-418 19.327 0.034 18.063 0.017 17.559 0.013 17.344 0.015 17.272 0.022 C 2476-53826-451 18.175 0.029 16.775 0.019 16.173 0.021 15.932 0.017 15.786 0.022 C 2476-53826-452 18.600 0.026 17.369 0.017 16.866 0.012 16.626 0.015 16.463 0.020 C M2 1961-53299-124 17.533 0.014 16.087 0.020 15.489 0.009 15.219 0.040 15.106 0.019 D 1961-53299-125 17.543 0.014 15.997 0.006 15.405 0.008 15.160 0.016 15.041 0.007 D 1961-53299-131 18.042 0.016 16.680 0.008 16.125 0.009 15.911 0.008 15.804 0.021 D 1961-53299-134 16.957 0.018 15.105 0.015 14.404 0.012 14.100 0.017 13.935 0.027 D 1961-53299-136 18.214 0.017 16.913 0.011 16.384 0.012 16.180 0.030 16.060 0.010 D 1961-53299-140 18.555 0.019 17.276 0.019 16.805 0.015 16.574 0.024 16.519 0.017 D 1961-53299-144 18.300 0.015 16.940 0.008 16.470 0.013 16.235 0.014 16.155 0.016 D Continued on next page. . . 231 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 1961-53299-152 17.982 0.023 16.618 0.022 16.048 0.013 15.829 0.014 15.707 0.016 C 1961-53299-159 18.211 0.022 16.866 0.009 16.374 0.007 16.155 0.010 16.068 0.021 D 1961-53299-194 17.138 0.011 15.907 0.024 16.134 0.017 16.331 0.011 16.415 0.017 D 1961-53299-213 18.553 0.022 17.182 0.008 16.715 0.007 16.497 0.012 16.431 0.018 D 1961-53299-215 17.780 0.014 16.353 0.009 15.772 0.007 15.544 0.021 15.414 0.011 D 1963-54331-041 20.314 0.059 19.492 0.028 19.246 0.014 19.188 0.021 19.164 0.052 C 1963-54331-043 19.849 0.044 18.766 0.027 18.372 0.010 18.190 0.017 18.066 0.024 C 1963-54331-045 20.220 0.075 19.350 0.027 19.136 0.013 19.005 0.020 18.984 0.045 C 1963-54331-082 20.429 0.067 19.536 0.028 19.265 0.014 19.236 0.021 19.184 0.053 C 1963-54331-083 19.975 0.064 18.907 0.015 18.565 0.019 18.456 0.017 18.380 0.035 D 1963-54331-090 19.939 0.057 18.869 0.014 18.515 0.015 18.356 0.018 18.324 0.037 D 1963-54331-091 19.561 0.037 18.520 0.026 18.024 0.010 17.848 0.017 17.810 0.022 C 1963-54331-096 19.961 0.050 18.954 0.013 18.628 0.017 18.527 0.019 18.466 0.039 D 1963-54331-098 18.831 0.027 17.576 0.015 17.081 0.040 16.873 0.056 16.779 0.017 D 1963-54331-100 19.939 0.056 18.929 0.012 18.589 0.024 18.485 0.027 18.378 0.040 D 1963-54331-102 19.885 0.057 18.951 0.017 18.657 0.017 18.571 0.020 18.511 0.032 D 1963-54331-114 20.023 0.054 19.245 0.019 19.001 0.015 18.929 0.033 18.951 0.052 D 1963-54331-121 18.788 0.024 17.536 0.013 17.049 0.016 16.858 0.015 16.747 0.018 D 1963-54331-123 19.874 0.040 18.695 0.009 18.280 0.019 18.114 0.018 18.029 0.024 D 1963-54331-124 20.001 0.036 19.069 0.016 18.806 0.028 18.736 0.020 18.810 0.049 D 1963-54331-126 19.405 0.028 18.287 0.023 17.836 0.019 17.645 0.018 17.582 0.023 D 1963-54331-128 19.470 0.032 18.253 0.022 17.783 0.026 17.612 0.015 17.487 0.019 D 1963-54331-131 19.359 0.028 18.210 0.012 17.753 0.014 17.569 0.019 17.492 0.021 D Continued on next page. . . 232 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 1963-54331-137 19.067 0.024 17.895 0.008 17.420 0.019 17.236 0.016 17.177 0.018 D 1963-54331-139 19.056 0.029 17.919 0.008 17.436 0.013 17.254 0.015 17.163 0.018 D 1963-54331-143 19.885 0.055 18.808 0.016 18.456 0.018 18.302 0.018 18.266 0.028 D 1963-54331-144 18.892 0.023 17.663 0.016 17.192 0.019 17.008 0.019 16.878 0.017 D 1963-54331-145 19.866 0.047 18.911 0.015 18.536 0.014 18.394 0.018 18.276 0.035 D 1963-54331-146 20.231 0.077 19.186 0.013 18.955 0.019 18.876 0.025 18.850 0.054 D 1963-54331-147 20.105 0.069 19.252 0.017 19.041 0.018 18.992 0.024 18.934 0.053 D 1963-54331-148 19.890 0.064 18.896 0.014 18.516 0.016 18.373 0.020 18.355 0.045 D 1963-54331-150 19.881 0.046 18.980 0.015 18.678 0.016 18.574 0.015 18.492 0.041 D 1963-54331-154 20.492 0.082 19.588 0.023 19.364 0.024 19.316 0.028 19.313 0.083 D 1963-54331-156 20.465 0.096 19.443 0.020 19.232 0.019 19.189 0.034 19.218 0.065 D 1963-54331-162 20.546 0.080 19.585 0.022 19.385 0.028 19.291 0.022 19.255 0.058 D 1963-54331-164 19.624 0.050 18.434 0.022 18.000 0.018 17.845 0.016 17.738 0.025 D 1963-54331-169 20.482 0.073 19.599 0.018 19.366 0.043 19.286 0.030 19.315 0.072 D 1963-54331-170 20.430 0.064 19.483 0.017 19.317 0.020 19.244 0.022 19.261 0.055 D 1963-54331-178 19.588 0.038 18.477 0.016 18.054 0.014 17.891 0.015 17.836 0.023 D 1963-54331-179 20.041 0.058 19.219 0.016 18.985 0.019 18.919 0.019 18.931 0.057 D 1963-54331-180 19.789 0.047 18.721 0.013 18.306 0.021 18.182 0.016 18.023 0.023 D 1963-54331-181 20.111 0.061 19.174 0.015 18.973 0.023 18.885 0.025 18.866 0.054 D 1963-54331-184 19.721 0.041 18.640 0.012 18.226 0.014 18.052 0.020 17.979 0.017 D 1963-54331-185 20.309 0.062 19.507 0.018 19.306 0.024 19.239 0.029 19.220 0.064 D 1963-54331-186 20.556 0.087 19.654 0.022 19.466 0.020 19.370 0.029 19.376 0.060 D 1963-54331-189 20.213 0.061 19.273 0.017 19.058 0.017 18.997 0.023 19.116 0.056 D Continued on next page. . . 233 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 1963-54331-194 20.088 0.066 19.216 0.015 18.944 0.021 18.878 0.023 18.853 0.053 D 1963-54331-196 20.132 0.055 19.245 0.015 19.088 0.023 18.962 0.023 18.879 0.057 D 1963-54331-197 20.376 0.076 19.581 0.019 19.378 0.022 19.280 0.025 19.316 0.067 D 1963-54331-200 20.545 0.102 19.563 0.020 19.342 0.019 19.267 0.026 19.243 0.058 D 1963-54331-201 19.823 0.055 18.658 0.011 18.268 0.020 18.123 0.017 18.004 0.026 D 1963-54331-204 19.145 0.028 17.953 0.011 17.465 0.014 17.284 0.026 17.192 0.020 D 1963-54331-206 20.172 0.054 19.258 0.012 19.040 0.020 18.979 0.025 19.022 0.048 D 1963-54331-207 20.443 0.069 19.495 0.015 19.265 0.024 19.181 0.027 19.151 0.051 D 1963-54331-208 18.956 0.027 17.815 0.009 17.354 0.017 17.150 0.021 17.053 0.015 D 1963-54331-209 19.458 0.040 18.339 0.012 17.927 0.013 17.713 0.017 17.675 0.023 D 1963-54331-211 19.505 0.041 18.346 0.011 17.883 0.015 17.709 0.015 17.600 0.025 D 1963-54331-212 19.717 0.038 18.636 0.012 18.213 0.033 18.054 0.021 17.951 0.028 D 1963-54331-217 19.091 0.030 17.824 0.009 17.363 0.010 17.142 0.016 17.081 0.019 D 1963-54331-218 19.204 0.029 17.963 0.008 17.512 0.016 17.351 0.029 17.275 0.018 D 1963-54331-220 20.256 0.067 19.336 0.014 19.109 0.028 19.041 0.033 19.033 0.056 D 1963-54331-222 20.242 0.071 19.344 0.017 19.145 0.019 19.049 0.026 19.034 0.066 D 1963-54331-223 20.160 0.069 19.280 0.019 19.007 0.015 18.905 0.018 18.908 0.048 C 1963-54331-254 20.223 0.082 19.273 0.019 19.036 0.023 18.983 0.027 18.999 0.061 D M13 2174-53521-054 18.978 0.029 17.814 0.014 17.391 0.020 17.237 0.020 17.185 0.020 C 2174-53521-082 16.905 0.017 15.424 0.013 14.845 0.020 14.627 0.019 14.505 0.017 C 2174-53521-087 18.441 0.022 17.258 0.016 16.796 0.018 16.619 0.019 16.547 0.021 C 2174-53521-093 16.672 0.009 15.225 0.012 14.589 0.036 14.342 0.020 14.208 0.032 D Continued on next page. . . 234 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2174-53521-094 18.410 0.022 17.245 0.016 16.781 0.018 16.552 0.019 16.476 0.021 C 2174-53521-098 16.892 0.009 15.525 0.009 14.939 0.029 14.695 0.020 14.573 0.032 D 2174-53521-121 17.484 0.015 16.227 0.011 15.684 0.016 15.485 0.012 15.386 0.010 D 2174-53521-126 18.250 0.021 17.014 0.013 16.536 0.012 16.337 0.014 16.276 0.015 D 2174-53521-128 18.654 0.020 17.480 0.008 17.022 0.013 16.824 0.014 16.751 0.016 D 2174-53521-131 19.098 0.039 18.175 0.010 17.908 0.015 24.329 4.297 17.735 0.025 C 2174-53521-133 18.101 0.016 16.876 0.008 16.381 0.010 16.175 0.012 16.088 0.014 D 2174-53521-134 18.453 0.016 17.284 0.011 16.832 0.013 16.618 0.009 16.515 0.014 D 2174-53521-136 16.264 0.021 15.168 0.012 15.452 0.016 15.647 0.009 15.768 0.019 D 2174-53521-137 16.979 0.010 15.567 0.006 15.007 0.010 14.806 0.009 14.680 0.009 D 2174-53521-145 16.535 0.020 14.969 0.012 14.314 0.035 14.590 · · · 13.922 0.022 B 2174-53521-146 18.843 0.027 17.680 0.013 17.253 0.028 17.060 0.028 17.044 0.029 D 2174-53521-149 18.931 0.033 17.781 0.013 17.359 0.033 17.171 0.034 17.133 0.031 D 2174-53521-152 16.098 0.020 14.897 0.012 15.132 0.033 15.296 0.024 15.397 0.012 D 2174-53521-153 16.165 0.009 14.931 0.014 15.107 0.020 15.249 0.016 15.296 0.016 D 2174-53521-154 16.624 0.014 15.058 0.005 14.449 0.011 14.690 · · · 14.044 0.009 B 2174-53521-155 17.757 0.030 16.521 0.007 16.007 0.028 15.805 0.009 15.700 0.023 D 2174-53521-156 17.062 0.014 15.656 0.006 15.067 0.034 14.838 0.032 14.737 0.025 D 2174-53521-157 16.226 0.009 15.108 0.010 15.357 0.007 15.544 0.006 15.655 0.014 D 2174-53521-158 16.969 0.016 15.567 0.015 15.044 0.019 14.809 0.016 14.669 0.025 D 2174-53521-159 16.582 0.021 15.025 0.008 14.406 0.026 14.687 · · · 14.026 0.013 B 2174-53521-160 16.822 0.018 15.354 0.007 14.765 0.030 14.989 · · · 14.400 0.015 B 2174-53521-166 16.954 0.012 15.623 0.005 15.038 0.018 14.800 0.032 14.686 0.026 D Continued on next page. . . 235 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2174-53521-167 16.408 0.008 14.817 0.010 14.191 0.008 14.483 · · · 13.789 0.018 B 2174-53521-168 16.750 0.008 15.244 0.012 14.665 0.009 14.941 · · · 14.276 0.018 B 2174-53521-171 16.478 0.015 14.958 0.011 14.298 0.015 14.566 · · · 13.909 0.018 B 2174-53521-172 16.745 0.012 15.298 0.010 14.689 0.012 14.915 · · · 14.319 0.021 B 2174-53521-174 18.875 0.034 17.904 0.017 17.478 0.018 17.357 0.016 17.304 0.022 C 2174-53521-175 16.066 0.022 14.865 0.010 15.062 0.014 15.224 0.009 15.309 0.019 D 2174-53521-176 17.115 0.020 15.730 0.005 15.165 0.027 14.930 0.013 14.818 0.015 D 2174-53521-215 16.780 0.019 15.346 0.016 14.782 0.018 14.561 0.025 14.440 0.017 C 2174-53521-368 18.661 0.024 17.507 0.016 17.046 0.010 16.865 0.025 16.787 0.020 C 2174-53521-376 17.124 0.017 15.783 0.015 15.212 0.009 14.987 0.025 14.935 0.017 C 2174-53521-402 18.904 0.032 17.810 0.009 17.398 0.012 17.219 0.018 17.087 0.020 D 2174-53521-403 18.946 0.032 17.981 0.010 17.608 0.009 17.443 0.012 17.377 0.019 D 2174-53521-406 18.971 0.036 17.893 0.008 17.487 0.011 17.308 0.012 17.248 0.028 D 2174-53521-407 17.806 0.023 16.612 0.009 16.094 0.008 15.894 0.012 15.771 0.012 D 2174-53521-410 16.775 0.012 15.329 0.008 14.694 0.012 15.007 · · · 14.341 0.021 B 2174-53521-412 18.602 0.024 17.467 0.016 16.961 0.009 16.800 0.025 16.748 0.019 C 2174-53521-413 16.976 0.009 15.535 0.012 14.964 0.006 14.720 0.011 14.599 0.012 D 2174-53521-414 18.604 0.024 17.456 0.016 16.909 0.009 16.782 0.025 16.711 0.019 C 2174-53521-442 16.067 0.014 14.867 0.015 15.037 0.005 15.205 0.014 15.269 0.014 D 2174-53521-443 16.817 0.009 15.333 0.015 14.746 0.009 14.962 · · · 14.387 0.026 B 2174-53521-445 18.970 0.032 17.893 0.011 17.490 0.010 17.316 0.011 17.262 0.018 D 2174-53521-447 18.742 0.021 17.683 0.011 17.240 0.009 17.050 0.010 17.008 0.019 D 2174-53521-449 16.818 0.009 15.349 0.014 14.765 0.006 15.020 · · · 14.364 0.024 B Continued on next page. . . 236 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2174-53521-451 16.164 0.023 14.994 0.009 15.166 0.029 15.378 0.027 15.472 0.019 D 2174-53521-452 16.557 0.008 15.112 0.013 14.504 0.007 14.782 · · · 14.101 0.019 B 2174-53521-453 16.750 0.025 15.286 0.021 14.677 0.035 14.966 · · · 14.356 0.025 B 2174-53521-455 16.840 0.011 15.378 0.009 14.779 0.009 15.104 · · · 14.417 0.020 B 2174-53521-456 18.541 0.025 17.371 0.014 16.908 0.009 16.718 0.009 16.642 0.015 D 2174-53521-457 16.693 0.019 15.178 0.011 14.561 0.027 14.816 · · · 14.190 0.022 B 2174-53521-458 16.633 0.009 15.068 0.014 14.457 0.005 14.702 · · · 14.075 0.027 B 2174-53521-459 16.673 0.016 15.201 0.016 14.643 0.014 14.401 0.017 14.135 0.015 C 2174-53521-460 16.464 0.009 14.823 0.012 14.202 0.006 14.470 · · · 13.765 0.024 B 2174-53521-461 18.453 0.020 17.359 0.009 16.894 0.008 16.696 0.011 16.610 0.014 D 2174-53521-462 16.561 0.008 15.126 0.014 14.509 0.003 14.228 0.012 14.112 0.009 D 2174-53521-463 17.021 0.015 15.630 0.005 15.054 0.016 14.802 0.006 14.704 0.009 D 2174-53521-464 16.109 0.008 14.892 0.011 15.089 0.006 15.219 0.011 15.309 0.012 D 2174-53521-470 16.422 0.009 14.850 0.007 14.226 0.010 13.924 0.007 13.797 0.007 D 2174-53521-471 17.521 0.020 16.278 0.006 15.740 0.009 15.526 0.012 15.420 0.012 D 2174-53521-472 16.046 0.009 14.824 0.020 14.831 0.024 14.929 0.027 14.940 0.016 D 2174-53521-474 18.777 0.030 17.612 0.008 17.153 0.011 16.973 0.012 16.897 0.016 D 2174-53521-475 16.428 0.009 14.909 0.008 14.538 · · · 14.026 0.021 13.893 0.007 B 2174-53521-476 17.180 0.014 15.727 0.008 15.183 0.012 14.928 0.026 14.822 0.010 D 2174-53521-477 16.682 0.023 15.217 0.006 14.583 0.040 14.848 · · · 14.218 0.012 B 2174-53521-478 16.844 0.010 15.422 0.008 14.842 0.011 14.633 0.024 14.490 0.014 D 2174-53521-480 18.093 0.016 16.899 0.009 16.410 0.005 16.186 0.010 16.105 0.010 D 2174-53521-481 18.909 0.025 17.867 0.010 17.459 0.009 19.472 0.183 17.225 0.018 D Continued on next page. . . 237 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2174-53521-483 16.623 0.013 15.141 0.013 14.532 0.024 14.261 0.021 14.156 0.019 D 2174-53521-484 16.656 0.012 15.187 0.015 14.558 0.026 14.295 0.026 14.175 0.012 D 2174-53521-485 16.911 0.015 15.489 0.016 14.940 0.024 14.684 0.028 14.588 0.014 D 2174-53521-488 17.079 0.012 15.725 0.013 15.152 0.016 14.906 0.018 14.783 0.008 D 2174-53521-489 16.996 0.013 15.576 0.009 14.972 0.010 14.737 0.016 14.599 0.010 D 2174-53521-490 16.199 0.007 15.009 0.016 15.220 0.024 15.372 0.025 15.466 0.014 D 2174-53521-491 16.202 0.012 15.140 0.013 15.392 0.016 15.596 0.021 15.712 0.017 D 2174-53521-493 16.592 0.010 15.088 0.024 14.484 0.021 14.205 0.022 14.081 0.013 D 2174-53521-494 16.646 0.012 15.143 0.019 14.523 0.014 14.264 0.026 14.133 0.008 D 2174-53521-495 17.303 0.014 15.998 0.015 15.425 0.016 15.189 0.019 15.082 0.007 D 2174-53521-497 16.883 0.014 15.410 0.009 14.782 0.015 14.543 0.011 14.394 0.012 D 2174-53521-498 16.579 0.015 15.122 0.006 14.522 0.012 14.244 0.011 14.131 0.013 D 2174-53521-499 16.605 0.013 15.089 0.014 14.482 0.014 14.206 0.010 14.088 0.015 D 2174-53521-500 16.701 0.012 15.302 0.011 14.700 0.009 14.438 0.026 14.329 0.010 D 2174-53521-522 16.957 0.012 15.503 0.010 14.919 0.014 14.665 0.014 14.557 0.011 D 2174-53521-529 17.703 0.020 16.474 0.020 15.954 0.019 15.746 0.019 15.664 0.017 C 2174-53521-530 16.818 0.007 15.287 0.004 14.667 0.010 14.416 0.008 14.261 0.036 D 2174-53521-531 16.624 0.012 15.229 0.006 14.614 0.009 14.349 0.010 14.230 0.016 D 2174-53521-532 16.147 0.010 14.970 0.009 15.172 0.007 15.325 0.012 15.428 0.013 D 2174-53521-533 18.853 0.025 17.797 0.009 17.360 0.013 17.165 0.011 17.125 0.017 D 2174-53521-537 17.275 0.012 15.965 0.007 15.433 0.009 15.188 0.010 15.082 0.009 D 2174-53521-538 16.543 0.013 15.042 0.003 14.412 0.009 14.148 0.013 14.020 0.012 D 2174-53521-539 18.758 0.022 17.657 0.007 17.184 0.015 16.983 0.010 16.884 0.032 D Continued on next page. . . 238 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2174-53521-540 16.074 0.012 14.912 0.005 15.143 0.016 15.319 0.017 15.409 0.016 D 2174-53521-542 16.801 0.021 15.276 0.010 14.660 0.009 14.408 0.025 14.263 0.020 D 2174-53521-554 17.222 0.034 15.843 0.009 15.281 0.010 15.041 0.013 14.925 0.012 D 2174-53521-560 18.717 0.047 17.547 0.008 17.019 0.009 16.860 0.009 16.754 0.019 D 2174-53521-563 17.661 0.023 16.408 0.015 15.892 0.015 15.685 0.014 15.581 0.021 C 2174-53521-565 18.935 0.028 17.915 0.008 17.493 0.017 17.340 0.009 17.264 0.013 D 2174-53521-573 19.056 0.030 17.961 0.014 17.592 0.020 17.451 0.020 17.392 0.021 C 2174-53521-576 18.891 0.030 17.672 0.007 17.223 0.009 17.022 0.011 16.938 0.021 D 2174-53521-577 18.986 0.028 17.902 0.009 17.481 0.019 17.313 0.013 17.236 0.021 D 2185-53532-106 20.558 0.077 19.687 0.019 19.412 0.025 19.274 0.027 19.372 0.065 C 2185-53532-111 19.485 0.037 18.572 0.016 18.330 0.035 18.315 0.053 18.373 0.036 C 2185-53532-113 20.677 0.084 19.812 0.020 19.479 0.026 19.379 0.028 19.368 0.064 C 2185-53532-116 20.333 0.065 19.363 0.018 19.105 0.023 19.022 0.025 18.984 0.048 C 2185-53532-120 20.041 0.053 19.189 0.018 18.907 0.023 18.805 0.024 18.682 0.038 C 2185-53532-141 19.285 0.033 18.392 0.019 18.165 0.018 18.102 0.022 18.078 0.032 D 2185-53532-143 19.452 0.033 18.517 0.018 18.272 0.019 18.207 0.030 18.204 0.028 D 2185-53532-146 20.841 0.080 19.753 0.021 19.459 0.018 19.346 0.025 19.376 0.096 D 2185-53532-148 19.860 0.044 18.997 0.016 18.746 0.021 18.663 0.035 18.687 0.050 D 2185-53532-150 19.791 0.041 18.782 0.021 18.544 0.024 18.485 0.032 18.446 0.049 D 2185-53532-151 20.399 0.061 19.422 0.018 19.143 0.024 19.070 0.021 19.063 0.036 D 2185-53532-152 19.722 0.037 18.796 0.016 18.580 0.023 18.488 0.020 18.459 0.044 D 2185-53532-153 19.077 0.033 18.098 0.015 17.719 0.013 17.586 0.014 17.506 0.023 D 2185-53532-154 20.629 0.083 19.689 0.020 19.422 0.034 19.295 0.023 19.337 0.072 D Continued on next page. . . 239 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2185-53532-156 19.901 0.054 19.033 0.012 18.766 0.030 18.706 0.020 18.695 0.045 D 2185-53532-158 19.910 0.051 18.930 0.013 18.678 0.016 18.608 0.021 18.563 0.042 D 2185-53532-160 20.032 0.050 19.196 0.014 18.960 0.020 18.884 0.021 18.841 0.050 D 2185-53532-161 20.534 0.070 19.647 0.015 19.387 0.024 19.343 0.033 19.196 0.066 D 2185-53532-167 19.725 0.046 18.742 0.015 18.518 0.028 18.425 0.029 18.406 0.038 D 2185-53532-169 20.005 0.057 19.007 0.016 18.756 0.031 18.659 0.034 18.676 0.051 D 2185-53532-171 20.841 0.094 19.837 0.015 19.544 0.020 19.417 0.020 19.377 0.079 D 2185-53532-172 19.674 0.037 18.769 0.018 18.531 0.019 18.458 0.017 18.414 0.043 D 2185-53532-175 19.752 0.050 18.804 0.011 18.617 0.020 18.502 0.016 18.521 0.053 D 2185-53532-176 19.784 0.048 18.810 0.011 18.570 0.015 18.466 0.017 18.414 0.045 D 2185-53532-177 19.736 0.038 18.859 0.010 18.642 0.014 18.523 0.015 18.576 0.045 D 2185-53532-178 19.951 0.047 19.076 0.017 18.826 0.019 18.747 0.020 18.732 0.054 D 2185-53532-179 19.259 0.033 18.436 0.018 18.207 0.015 18.121 0.017 18.144 0.035 D 2185-53532-181 19.601 0.048 18.742 0.018 18.506 0.019 18.446 0.018 18.385 0.037 C 2185-53532-196 19.854 0.054 19.028 0.018 18.758 0.020 18.698 0.019 18.748 0.047 C 2185-53532-197 20.078 0.064 19.108 0.019 18.849 0.020 18.802 0.028 18.838 0.051 C 2185-53532-198 19.566 0.044 18.883 0.018 18.621 0.020 18.527 0.027 18.534 0.041 C 2185-53532-200 20.629 0.098 19.754 0.022 19.468 0.024 19.360 0.032 19.243 0.074 C 2185-53532-237 19.066 0.034 18.063 0.017 17.777 0.018 17.644 0.026 17.631 0.025 C 2185-53532-388 19.200 0.030 18.283 0.016 18.043 0.010 17.934 0.025 17.899 0.027 C 2185-53532-390 20.230 0.055 19.372 0.018 19.109 0.014 19.014 0.027 19.001 0.054 C 2185-53532-393 20.768 0.083 19.913 0.025 19.538 0.019 19.445 0.026 19.498 0.078 C 2185-53532-423 19.827 0.043 18.879 0.017 18.636 0.012 18.560 0.026 18.582 0.040 C Continued on next page. . . 240 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2185-53532-424 19.981 0.103 19.227 0.106 18.962 0.098 18.796 0.092 19.014 0.161 C 2185-53532-425 19.222 0.031 18.304 0.022 18.042 0.014 17.978 0.021 17.945 0.028 C 2185-53532-426 19.046 0.028 18.012 0.016 17.676 0.010 17.535 0.025 17.504 0.023 C 2185-53532-427 19.039 0.028 18.001 0.016 17.651 0.010 17.513 0.025 17.502 0.023 C 2185-53532-428 20.088 0.052 19.180 0.018 18.904 0.013 18.803 0.027 18.857 0.049 C 2185-53532-430 20.498 0.069 19.686 0.020 19.390 0.015 19.260 0.029 19.261 0.065 C 2185-53532-431 20.878 0.089 19.867 0.018 19.579 0.029 19.476 0.031 19.338 0.096 D 2185-53532-433 20.554 0.097 19.927 0.023 19.551 0.025 19.440 0.035 19.383 0.082 C 2185-53532-435 19.844 0.049 19.031 0.011 18.786 0.020 18.722 0.019 18.740 0.046 D 2185-53532-439 19.071 0.029 18.125 0.016 17.847 0.010 17.698 0.025 17.728 0.025 C 2185-53532-440 20.627 0.077 19.727 0.015 19.447 0.031 19.343 0.028 19.339 0.072 D 2185-53532-461 19.297 0.046 18.368 0.010 18.134 0.011 18.035 0.016 18.070 0.035 D 2185-53532-462 19.099 0.035 18.194 0.018 17.921 0.019 17.836 0.015 17.858 0.025 C 2185-53532-464 20.450 0.092 19.434 0.018 19.158 0.017 19.129 0.028 19.060 0.063 D 2185-53532-466 19.695 0.047 18.790 0.019 18.593 0.020 18.451 0.017 18.533 0.036 C 2185-53532-469 19.871 0.052 18.983 0.010 18.750 0.012 18.639 0.015 18.611 0.044 D 2185-53532-473 20.229 0.066 19.259 0.015 18.993 0.024 18.923 0.032 18.988 0.078 D 2185-53532-475 19.458 0.035 18.585 0.017 18.293 0.011 18.234 0.026 18.309 0.034 C 2185-53532-476 19.946 0.045 19.062 0.018 18.738 0.014 18.688 0.039 18.636 0.049 C 2185-53532-477 20.596 0.074 19.570 0.019 19.259 0.015 19.181 0.028 19.354 0.072 C 2185-53532-478 19.860 0.062 19.009 0.019 18.698 0.023 18.600 0.017 18.588 0.041 D 2185-53532-479 20.310 0.067 19.447 0.018 19.116 0.032 19.055 0.023 18.990 0.073 D 2185-53532-480 20.524 0.070 19.678 0.020 19.378 0.015 19.245 0.029 19.438 0.077 C Continued on next page. . . 241 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2185-53532-481 19.163 0.042 18.195 0.008 17.925 0.012 17.799 0.011 17.754 0.030 D 2185-53532-482 19.078 0.031 18.100 0.008 17.789 0.010 17.664 0.009 17.626 0.022 D 2185-53532-483 20.044 0.057 19.130 0.014 18.865 0.013 18.788 0.019 18.737 0.044 D 2185-53532-485 19.273 0.037 18.446 0.011 18.216 0.009 18.074 0.012 18.103 0.027 D 2185-53532-486 20.186 0.068 19.404 0.018 19.172 0.013 19.062 0.023 18.997 0.045 D 2185-53532-487 19.234 0.029 18.319 0.010 18.048 0.009 17.979 0.014 17.950 0.028 D 2185-53532-488 20.203 0.066 19.547 0.019 19.277 0.018 19.123 0.021 19.159 0.052 D 2185-53532-489 19.918 0.068 19.029 0.013 18.812 0.013 18.694 0.016 18.595 0.033 D 2185-53532-490 20.221 0.059 19.343 0.016 19.073 0.013 18.976 0.019 18.996 0.052 D 2185-53532-492 19.045 0.024 18.167 0.015 17.882 0.011 17.768 0.009 17.794 0.024 D 2185-53532-493 19.312 0.036 18.347 0.013 18.128 0.010 18.017 0.014 18.041 0.032 D 2185-53532-494 20.174 0.065 19.210 0.013 18.923 0.014 18.859 0.019 18.894 0.052 D 2185-53532-495 19.455 0.047 18.657 0.012 18.427 0.012 18.324 0.015 18.313 0.031 D 2185-53532-496 20.863 0.109 19.899 0.020 19.567 0.017 19.450 0.028 19.535 0.088 D 2185-53532-497 20.532 0.080 19.585 0.025 19.265 0.015 19.172 0.022 19.103 0.063 D 2185-53532-498 19.446 0.039 18.689 0.010 18.422 0.012 18.329 0.014 18.354 0.028 D 2185-53532-499 19.546 0.036 18.733 0.015 18.504 0.011 18.394 0.015 18.389 0.040 D 2185-53532-500 19.902 0.061 19.108 0.027 18.914 0.019 18.767 0.022 18.750 0.053 D 2185-53532-504 19.554 0.034 18.726 0.021 18.501 0.020 18.412 0.021 18.440 0.031 C 2185-53532-506 19.015 0.028 18.036 0.012 17.664 0.008 17.523 0.012 17.466 0.024 D 2185-53532-507 20.066 0.052 19.165 0.015 18.864 0.016 18.787 0.018 18.753 0.054 D 2185-53532-508 19.964 0.068 18.999 0.014 18.832 0.027 18.655 0.020 18.641 0.040 D 2185-53532-511 20.737 0.090 19.856 0.022 19.564 0.019 19.425 0.023 19.289 0.062 D Continued on next page. . . 242 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2185-53532-512 19.188 0.025 18.258 0.010 18.006 0.012 17.889 0.009 17.891 0.022 D 2185-53532-513 19.772 0.044 18.920 0.012 18.648 0.015 18.591 0.012 18.575 0.042 D 2185-53532-514 20.241 0.072 19.263 0.016 19.009 0.013 18.924 0.017 18.878 0.037 D 2185-53532-515 19.793 0.041 18.936 0.013 18.700 0.015 18.619 0.016 18.663 0.038 D 2185-53532-516 20.761 0.093 19.869 0.017 19.571 0.020 19.407 0.025 19.355 0.070 D 2185-53532-517 20.828 0.104 19.904 0.019 19.589 0.022 19.427 0.023 19.427 0.071 D 2185-53532-519 19.811 0.046 18.973 0.012 18.742 0.016 18.625 0.012 18.631 0.039 D 2185-53532-520 19.377 0.030 18.398 0.013 18.137 0.016 18.066 0.012 18.042 0.025 D 2185-53532-534 19.461 0.040 18.601 0.019 18.320 0.019 18.258 0.016 18.246 0.031 C 2185-53532-537 19.586 0.035 18.767 0.016 18.509 0.017 18.452 0.019 18.420 0.030 C 2185-53532-539 20.379 0.077 19.508 0.021 19.230 0.022 19.115 0.022 19.159 0.057 C 2185-53532-540 19.990 0.057 19.204 0.020 18.951 0.021 18.848 0.020 18.930 0.047 C 2185-53532-541 20.773 0.072 19.867 0.024 19.544 0.023 19.389 0.026 19.418 0.058 C 2185-53532-542 20.383 0.063 19.432 0.017 19.120 0.013 18.998 0.018 19.031 0.048 D 2185-53532-543 19.206 0.034 18.284 0.010 18.018 0.009 17.916 0.009 17.883 0.032 D 2185-53532-544 19.889 0.056 18.847 0.011 18.604 0.011 18.524 0.012 18.525 0.047 D 2185-53532-545 19.959 0.042 19.061 0.021 18.769 0.021 18.692 0.022 18.698 0.035 C 2185-53532-546 20.690 0.084 19.915 0.017 19.595 0.021 19.414 0.025 19.522 0.054 D 2185-53532-547 20.703 0.069 19.909 0.024 19.549 0.023 19.443 0.026 19.483 0.062 C 2185-53532-548 20.863 0.104 19.959 0.023 19.598 0.020 19.508 0.036 19.689 0.077 D 2185-53532-549 20.358 0.070 19.507 0.018 19.125 0.018 18.983 0.018 19.018 0.053 D 2185-53532-550 20.535 0.083 19.738 0.019 19.452 0.022 19.298 0.021 19.271 0.073 D 2185-53532-551 20.801 0.088 19.909 0.022 19.599 0.024 19.432 0.023 19.459 0.078 D Continued on next page. . . 243 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2185-53532-552 19.709 0.046 18.899 0.012 18.648 0.016 18.577 0.014 18.586 0.032 D 2185-53532-553 18.992 0.023 18.065 0.011 17.731 0.026 17.574 0.017 17.546 0.027 D 2185-53532-554 19.214 0.027 18.347 0.012 18.078 0.012 17.980 0.010 17.943 0.026 D 2185-53532-555 20.206 0.061 19.342 0.019 19.039 0.020 18.928 0.017 18.870 0.037 D 2185-53532-556 20.239 0.061 19.376 0.018 19.095 0.026 18.999 0.022 18.989 0.054 D 2185-53532-557 19.594 0.041 18.690 0.014 18.424 0.022 18.341 0.014 18.371 0.036 D 2185-53532-558 19.441 0.038 18.577 0.009 18.313 0.014 18.211 0.012 18.238 0.035 D 2185-53532-559 19.829 0.049 18.915 0.011 18.661 0.012 18.552 0.012 18.572 0.037 D 2185-53532-560 19.275 0.032 18.421 0.013 18.160 0.017 18.084 0.011 18.069 0.033 D 2185-53532-575 20.664 0.066 19.769 0.024 19.420 0.023 19.330 0.025 19.194 0.049 C 2185-53532-577 20.035 0.043 19.163 0.017 18.903 0.018 18.808 0.020 18.856 0.039 C 2185-53532-581 20.194 0.051 19.299 0.018 19.003 0.017 18.911 0.019 18.871 0.041 C 2185-53532-584 20.045 0.054 19.257 0.014 19.058 0.022 18.904 0.015 18.910 0.042 D 2185-53532-585 20.130 0.050 19.137 0.014 18.847 0.015 18.771 0.015 18.751 0.045 D 2185-53532-587 20.730 0.084 19.806 0.023 19.513 0.019 19.384 0.028 19.325 0.070 D 2185-53532-589 19.926 0.059 18.974 0.012 18.733 0.027 18.636 0.026 18.609 0.045 D 2185-53532-591 19.683 0.049 18.773 0.013 18.545 0.021 18.450 0.025 18.401 0.036 D 2185-53532-592 20.429 0.072 19.454 0.015 19.207 0.034 19.055 0.029 19.097 0.065 D 2185-53532-593 19.744 0.043 18.893 0.012 18.664 0.023 18.595 0.019 18.602 0.035 D 2185-53532-594 20.327 0.053 19.523 0.023 19.230 0.022 19.155 0.024 19.155 0.048 C 2185-53532-596 20.792 0.102 19.876 0.020 19.519 0.022 19.398 0.028 19.449 0.078 D 2185-53532-598 20.290 0.061 19.415 0.020 19.153 0.024 19.029 0.030 19.116 0.057 D 2185-53532-599 20.251 0.060 19.391 0.017 19.128 0.016 19.020 0.021 19.036 0.052 D Continued on next page. . . 244 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2185-53532-600 20.705 0.080 19.845 0.019 19.542 0.029 19.409 0.035 19.320 0.052 D 2255-53565-103 19.032 0.029 17.974 0.014 17.591 0.020 17.473 0.020 17.406 0.021 C 2255-53565-112 16.672 0.009 15.225 0.012 14.589 0.036 14.342 0.020 14.208 0.032 D 2255-53565-114 18.277 0.017 17.080 0.012 16.614 0.012 16.406 0.012 16.316 0.014 D 2255-53565-115 18.997 0.023 17.934 0.014 17.540 0.021 17.371 0.015 17.320 0.024 D 2255-53565-116 17.536 0.016 16.291 0.009 15.751 0.011 15.525 0.012 15.420 0.014 D 2255-53565-120 16.892 0.009 15.525 0.009 14.939 0.029 14.695 0.020 14.572 0.032 D 2255-53565-143 17.321 0.016 15.959 0.011 15.415 0.011 15.186 0.015 15.077 0.018 D 2255-53565-144 16.969 0.016 15.567 0.015 15.044 0.019 14.809 0.016 14.669 0.025 D 2255-53565-147 16.226 0.009 15.108 0.010 15.357 0.007 15.544 0.006 15.655 0.014 D 2255-53565-148 17.218 0.012 15.819 0.007 15.262 0.011 15.023 0.011 14.927 0.013 D 2255-53565-153 17.099 0.019 15.684 0.008 15.120 0.024 14.896 0.015 14.768 0.013 D 2255-53565-157 16.562 0.015 15.107 0.007 14.484 0.025 19.375 · · · 14.080 0.017 B 2255-53565-171 16.822 0.018 15.354 0.007 14.765 0.030 14.297 · · · 14.400 0.015 B 2255-53565-173 18.744 0.022 17.636 0.012 17.183 0.014 16.985 0.026 16.908 0.020 D 2255-53565-174 16.116 0.017 14.916 0.008 15.092 0.016 15.243 0.046 15.344 0.016 D 2255-53565-175 17.115 0.020 15.730 0.005 15.165 0.027 14.930 0.013 14.818 0.015 D 2255-53565-177 16.066 0.022 14.865 0.010 15.062 0.014 15.224 0.009 15.309 0.019 D 2255-53565-192 16.190 0.018 15.083 0.016 15.300 0.018 15.476 0.025 15.599 0.018 C 2255-53565-423 16.206 0.015 15.114 0.015 15.316 0.009 15.523 0.025 15.658 0.018 C 2255-53565-424 18.874 0.023 17.789 0.011 17.365 0.009 17.186 0.022 17.126 0.032 D 2255-53565-425 18.971 0.034 17.915 0.010 17.519 0.012 17.339 0.013 17.268 0.024 D 2255-53565-426 16.976 0.009 15.535 0.012 14.964 0.006 14.720 0.011 14.599 0.012 D Continued on next page. . . 245 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2255-53565-432 19.060 0.024 17.981 0.011 17.592 0.015 17.432 0.017 17.360 0.034 D 2255-53565-436 21.007 0.108 20.193 0.022 19.824 0.025 19.688 0.046 19.560 0.095 B 2255-53565-437 18.666 0.027 17.471 0.009 17.017 0.008 16.851 0.009 16.763 0.018 D 2255-53565-443 16.212 0.022 15.040 0.017 15.278 0.018 15.428 0.013 15.560 0.018 C 2255-53565-465 16.131 0.008 14.989 0.019 15.222 0.026 15.385 0.028 15.478 0.014 D 2255-53565-466 18.922 0.029 17.856 0.020 17.465 0.019 17.279 0.016 17.194 0.022 C 2255-53565-476 18.358 0.017 17.172 0.009 16.703 0.009 16.499 0.009 16.399 0.015 D 2255-53565-482 16.067 0.014 14.867 0.015 15.037 0.005 15.205 0.014 15.269 0.014 D 2255-53565-483 16.561 0.008 15.126 0.014 14.509 0.003 14.228 0.012 14.112 0.009 D 2255-53565-485 17.004 0.008 15.581 0.009 15.020 0.007 14.752 0.007 14.648 0.012 D 2255-53565-486 16.710 0.014 15.229 0.004 14.626 0.007 14.349 0.012 14.225 0.009 D 2255-53565-490 17.559 0.012 16.279 0.007 15.765 0.004 15.528 0.011 15.444 0.010 D 2255-53565-492 16.109 0.008 14.892 0.011 15.089 0.006 15.219 0.011 15.309 0.012 D 2255-53565-495 16.279 0.007 14.660 0.022 14.030 0.021 13.682 0.007 13.512 0.013 D 2255-53565-496 16.422 0.009 14.850 0.007 14.226 0.010 13.924 0.007 13.797 0.007 D 2255-53565-504 16.133 0.012 14.477 0.005 13.840 0.014 13.466 0.006 13.336 0.009 D 2255-53565-510 17.021 0.015 15.630 0.005 15.054 0.016 14.802 0.006 14.704 0.009 D 2255-53565-512 16.579 0.015 15.122 0.006 14.522 0.012 14.244 0.011 14.131 0.013 D 2255-53565-515 17.180 0.014 15.727 0.008 15.183 0.012 14.928 0.026 14.822 0.010 D 2255-53565-518 21.616 0.186 20.561 0.035 20.105 0.039 19.949 0.044 20.205 0.144 B 2255-53565-520 16.509 0.009 14.930 0.015 14.328 0.026 14.102 0.020 13.952 0.011 D 2255-53565-542 16.957 0.012 15.503 0.010 14.919 0.014 14.665 0.014 14.557 0.011 D 2255-53565-543 16.996 0.013 15.576 0.009 14.972 0.010 14.737 0.016 14.599 0.010 D Continued on next page. . . 246 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2255-53565-544 16.595 0.013 15.131 0.015 14.525 0.019 14.250 0.026 14.123 0.021 D 2255-53565-545 16.919 0.014 15.473 0.007 14.882 0.018 14.643 0.009 14.520 0.011 D 2255-53565-548 16.883 0.014 15.410 0.009 14.782 0.015 14.543 0.011 14.394 0.012 D 2255-53565-550 17.079 0.012 15.725 0.013 15.152 0.016 14.906 0.018 14.783 0.008 D 2255-53565-551 16.624 0.012 15.229 0.006 14.614 0.009 14.349 0.010 14.230 0.016 D 2255-53565-552 16.214 0.011 14.555 0.005 13.916 0.034 13.597 0.012 13.457 0.013 D 2255-53565-553 16.817 0.014 15.382 0.007 14.797 0.025 14.546 0.016 14.440 0.027 D 2255-53565-556 18.408 0.019 17.253 0.007 16.789 0.013 16.590 0.012 16.510 0.022 D 2255-53565-557 16.543 0.013 15.042 0.003 14.412 0.009 14.148 0.013 14.020 0.012 D 2255-53565-559 16.340 0.011 14.741 0.014 14.097 0.034 13.791 0.026 13.653 0.012 D 2255-53565-586 15.981 0.009 14.521 0.009 13.885 0.025 13.713 0.014 13.600 0.008 D 2255-53565-589 16.818 0.007 15.287 0.004 14.667 0.010 14.416 0.008 14.261 0.036 D 2255-53565-597 17.690 0.021 16.411 0.006 15.888 0.019 15.665 0.009 15.560 0.012 D M3 2475-53845-105 16.941 0.011 15.834 0.008 15.555 0.004 15.473 0.008 15.438 0.009 D 2475-53845-114 16.871 0.009 15.706 0.008 15.275 0.018 15.116 0.005 15.055 0.009 D 2475-53845-116 16.909 0.022 15.109 0.014 14.395 0.012 14.112 0.012 13.967 0.018 C 2475-53845-118 18.722 0.028 17.492 0.015 17.007 0.012 16.807 0.013 16.735 0.020 C 2475-53845-119 17.405 0.012 16.003 0.004 15.395 0.003 15.160 0.006 15.043 0.009 D 2475-53845-120 17.560 0.012 16.254 0.005 15.679 0.005 15.472 0.008 15.341 0.008 D 2475-53845-141 17.085 0.019 15.471 0.022 14.795 0.017 14.531 0.017 14.411 0.016 C 2475-53845-142 17.014 0.011 15.427 0.014 14.755 0.004 14.479 0.005 14.348 0.009 D 2475-53845-143 17.070 0.009 15.621 0.010 14.990 0.008 14.713 0.012 14.621 0.009 D Continued on next page. . . 247 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2475-53845-144 17.386 0.013 15.915 0.005 15.291 0.007 15.040 0.007 14.913 0.009 D 2475-53845-145 16.531 0.010 15.116 0.006 14.549 0.005 14.308 0.008 14.204 0.009 D 2475-53845-150 16.452 0.014 14.933 0.006 14.298 0.003 14.058 0.010 13.930 0.008 D 2475-53845-160 17.112 0.028 15.631 0.020 15.029 0.011 14.769 0.011 14.635 0.022 C 2475-53845-162 16.693 0.019 15.176 0.022 14.586 0.017 14.345 0.017 14.233 0.016 C 2475-53845-166 16.986 0.010 15.846 0.014 15.633 0.009 15.641 0.014 15.715 0.014 D 2475-53845-171 17.042 0.010 15.421 0.005 14.737 0.005 14.474 0.005 14.337 0.008 D 2475-53845-173 16.585 0.010 15.115 0.007 14.479 0.005 14.219 0.005 14.116 0.008 D 2475-53845-174 16.852 0.009 15.699 0.013 15.324 0.004 15.184 0.007 15.147 0.008 D 2475-53845-176 16.472 0.014 14.720 0.013 13.980 0.004 14.301 · · · 13.522 0.010 B 2475-53845-177 17.343 0.014 15.806 0.005 15.210 0.005 14.950 0.008 14.837 0.012 D 2475-53845-178 17.115 0.009 15.715 0.013 15.091 0.006 14.839 0.006 14.709 0.012 D 2475-53845-180 16.839 0.008 15.728 0.007 15.390 0.008 15.276 0.007 15.250 0.012 D 2475-53845-183 17.767 0.011 16.382 0.011 15.807 0.008 15.581 0.011 15.466 0.009 D 2475-53845-185 18.421 0.019 17.131 0.011 16.623 0.007 16.412 0.007 16.319 0.011 D 2475-53845-186 16.933 0.009 15.265 0.006 14.577 0.004 14.294 0.006 14.161 0.010 D 2475-53845-187 16.807 0.017 15.646 0.024 15.741 0.013 15.894 0.014 15.984 0.016 C 2475-53845-190 16.975 0.008 15.764 0.007 15.310 0.014 15.134 0.015 15.062 0.008 D 2475-53845-192 18.129 0.021 16.891 0.024 16.317 0.013 16.108 0.014 16.026 0.016 C 2475-53845-193 16.857 0.007 15.703 0.008 15.333 0.008 15.175 0.009 15.125 0.010 D 2475-53845-194 17.115 0.011 16.016 0.014 15.804 0.007 15.753 0.006 15.746 0.010 D 2475-53845-196 17.034 0.009 15.513 0.011 14.868 0.005 14.599 0.005 14.491 0.011 D 2475-53845-198 16.816 0.009 15.040 0.016 14.329 0.005 14.048 0.008 13.892 0.010 D Continued on next page. . . 248 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2475-53845-199 16.500 0.006 14.936 0.010 14.303 0.008 14.049 0.006 13.943 0.011 D 2475-53845-200 18.499 0.018 17.238 0.009 16.730 0.008 16.527 0.010 16.440 0.011 D 2475-53845-421 16.575 0.014 14.656 0.014 13.901 0.018 13.575 0.001 13.403 0.014 C 2475-53845-430 18.656 0.024 17.342 0.024 16.819 0.020 16.612 0.010 16.518 0.019 C 2475-53845-436 16.803 0.007 14.956 0.011 14.232 0.007 13.924 0.008 13.762 0.009 D 2475-53845-440 16.833 0.011 15.039 0.010 14.353 0.011 14.061 0.006 13.886 0.010 D 2475-53845-461 16.962 0.008 15.477 0.009 14.836 0.012 14.561 0.029 14.444 0.011 D 2475-53845-462 16.742 0.008 15.592 0.004 15.366 0.009 15.322 0.008 15.290 0.009 D 2475-53845-463 16.565 0.007 15.139 0.008 14.561 0.009 14.323 0.004 14.219 0.010 D 2475-53845-466 16.875 0.009 15.360 0.012 14.710 0.013 14.443 0.005 14.314 0.007 D 2475-53845-469 17.969 0.012 16.634 0.007 16.106 0.007 15.877 0.007 15.779 0.009 D 2475-53845-471 16.601 0.008 15.103 0.005 14.527 0.014 14.294 0.014 14.189 0.006 D 2475-53845-473 16.792 0.010 14.981 0.005 14.300 0.013 14.542 · · · 13.824 0.013 B 2475-53845-475 17.107 0.010 15.547 0.004 14.911 0.007 14.653 0.007 14.527 0.007 D 2475-53845-476 16.900 0.008 15.664 0.005 15.211 0.005 15.020 0.008 14.953 0.005 D 2475-53845-479 16.440 0.010 14.984 0.012 14.381 0.012 14.129 0.012 14.013 0.009 D 2475-53845-480 17.009 0.010 15.350 0.007 14.712 0.009 14.433 0.011 14.296 0.010 D 2475-53845-481 17.059 0.010 15.886 0.006 15.567 0.016 15.462 0.011 15.440 0.007 D 2475-53845-483 16.500 0.011 14.470 0.010 13.717 0.015 13.971 · · · 13.138 0.012 B 2475-53845-485 16.821 0.010 15.558 0.011 15.740 0.004 15.886 0.010 15.991 0.013 D 2475-53845-486 16.463 0.014 14.507 0.014 13.938 0.001 13.383 0.001 13.216 0.014 C 2475-53845-487 18.982 0.020 17.760 0.006 17.274 0.008 17.077 0.010 16.984 0.018 D 2475-53845-488 17.130 0.008 15.680 0.005 15.078 0.010 14.826 0.004 14.720 0.013 D Continued on next page. . . 249 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2475-53845-489 16.958 0.012 15.342 0.011 14.657 0.007 14.376 0.007 14.233 0.013 D 2475-53845-492 16.921 0.010 15.767 0.004 15.418 0.005 15.295 0.005 15.249 0.016 D 2475-53845-496 16.796 0.009 15.134 0.005 14.457 0.008 14.700 · · · 14.043 0.013 B 2475-53845-497 16.784 0.019 15.078 0.013 14.401 0.014 15.218 0.024 14.085 0.016 C 2475-53845-498 17.069 0.009 15.368 0.005 14.701 0.012 14.445 0.011 14.316 0.010 D 2475-53845-501 17.749 0.009 16.335 0.007 15.785 0.006 15.552 0.007 15.456 0.010 D 2475-53845-505 16.722 0.006 15.475 0.007 15.572 0.008 15.657 0.007 15.746 0.009 D 2475-53845-506 16.492 0.011 14.816 0.005 14.158 0.007 13.856 0.031 13.760 0.012 D 2475-53845-507 18.251 0.014 17.033 0.005 16.542 0.005 16.323 0.005 16.254 0.010 D 2475-53845-509 17.169 0.008 15.615 0.006 14.975 0.007 14.723 0.004 14.592 0.010 D 2475-53845-510 16.542 0.009 15.309 0.007 15.306 0.007 15.360 0.007 15.410 0.008 D 2475-53845-511 16.628 0.006 15.134 0.005 14.521 0.006 14.274 0.012 14.178 0.007 D 2475-53845-514 17.545 0.009 16.109 0.005 15.539 0.008 15.313 0.008 15.190 0.006 D 2475-53845-515 17.098 0.008 15.384 0.005 14.735 0.006 14.444 0.008 14.318 0.007 D 2475-53845-518 16.915 0.009 15.058 0.004 14.330 0.004 14.012 0.014 13.866 0.009 D 2475-53845-519 17.416 0.010 15.947 0.007 15.343 0.009 15.097 0.006 14.992 0.008 D 2475-53845-520 17.607 0.009 16.177 0.008 15.578 0.028 15.361 0.011 15.239 0.016 D 2475-53845-550 18.834 0.029 17.683 0.017 17.222 0.016 17.006 0.012 16.909 0.019 C 2475-53845-551 16.951 0.008 15.296 0.007 14.610 0.007 14.330 0.010 14.200 0.009 D 2475-53845-557 18.087 0.019 16.703 0.006 16.158 0.005 15.932 0.007 15.834 0.012 D 2475-53845-558 17.560 0.010 16.075 0.004 15.473 0.004 15.227 0.006 15.114 0.009 D 2475-53845-559 17.278 0.009 15.713 0.006 15.086 0.005 14.835 0.008 14.713 0.007 D M71 Continued on next page. . . 250 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2333-53682-077 15.381 · · · 13.164 ··· 12.379 · · · 12.079 · · · 11.943 · · · U 2333-53682-105 15.202 · · · 13.707 ··· 13.165 · · · 12.984 · · · 12.935 · · · U 2333-53682-144 12.320 · · · 11.746 ··· 10.977 · · · 11.174 · · · 11.341 · · · U 2333-53682-153 15.310 · · · 14.052 ··· 13.608 · · · 13.498 · · · 13.497 · · · U 2333-53682-167 13.241 · · · 12.889 ··· 12.343 · · · 12.541 · · · 12.708 · · · U 2333-53682-176 13.180 · · · 12.829 ··· 12.282 · · · 12.479 · · · 12.646 · · · U 2333-53682-178 15.328 · · · 13.874 ··· 13.329 · · · 13.164 · · · 13.121 · · · U 2333-53682-183 12.561 · · · 11.842 ··· 10.928 · · · 11.125 · · · 11.292 · · · U 2333-53682-191 16.326 0.017 14.282 0.007 13.512 0.007 13.135 0.008 13.016 0.012 D 2333-53682-193 15.844 0.012 14.170 0.006 13.556 0.007 13.301 0.007 13.234 0.009 D 2333-53682-198 16.303 0.014 14.494 0.006 13.850 0.008 13.579 0.010 13.505 0.014 D 2333-53682-228 16.190 0.014 14.357 0.007 13.699 0.013 13.446 0.007 13.381 0.012 D 2333-53682-229 16.287 0.013 14.488 0.004 13.831 0.007 13.576 0.011 13.512 0.011 D 2338-53683-142 17.103 · · · 15.298 ··· 2338-53683-186 16.876 0.016 15.236 0.005 14.608 0.010 14.350 0.013 14.289 0.013 D 2338-53683-199 17.108 0.014 15.533 0.005 14.905 0.008 14.614 0.010 14.567 0.010 D 2338-53683-200 16.294 0.012 14.561 0.013 13.912 0.008 13.646 0.008 13.577 0.010 D 14.693 · · · 14.557 · · · 14.591 · · · U NGC 2420 2078-53378-111 18.285 0.014 17.058 0.006 16.656 0.010 16.547 0.007 16.502 0.012 D 2078-53378-114 17.894 0.016 16.719 0.005 16.382 0.009 16.282 0.009 16.278 0.009 D 2078-53378-116 19.954 0.047 18.342 0.009 17.712 0.011 17.518 0.010 17.369 0.019 D 2078-53378-118 19.602 0.034 18.035 0.008 17.469 0.011 17.296 0.008 17.193 0.015 D 2078-53378-142 18.476 0.015 17.193 0.006 16.778 0.015 16.654 0.010 16.618 0.012 D Continued on next page. . . 251 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2078-53378-149 16.072 0.008 15.001 0.004 14.822 0.006 14.801 0.006 14.834 0.009 D 2078-53378-150 18.113 0.020 16.954 0.004 16.564 0.005 16.436 0.011 16.367 0.011 D 2078-53378-151 17.820 0.017 16.667 0.007 16.332 0.007 16.240 0.007 16.238 0.011 D 2078-53378-152 19.670 0.037 18.089 0.007 17.462 0.011 17.239 0.008 17.115 0.018 D 2078-53378-154 19.401 0.028 17.901 0.006 17.369 0.014 17.197 0.010 17.100 0.016 D 2078-53378-156 17.881 0.011 16.746 0.006 16.401 0.011 16.294 0.008 16.282 0.010 D 2078-53378-157 18.285 0.017 17.055 0.005 16.670 0.009 16.568 0.007 16.528 0.012 D 2078-53378-158 19.477 0.029 17.957 0.007 17.353 0.013 17.132 0.010 17.039 0.015 D 2078-53378-159 16.291 0.008 15.227 0.005 15.048 0.010 15.019 0.005 15.054 0.008 D 2078-53378-161 16.078 0.013 14.986 0.004 14.784 0.006 14.753 0.005 14.792 0.008 D 2078-53378-165 19.862 0.044 18.232 0.009 17.645 0.011 17.452 0.009 17.386 0.021 D 2078-53378-166 16.719 0.009 15.652 0.004 15.424 0.007 15.369 0.007 15.392 0.008 D 2078-53378-167 18.119 0.014 16.953 0.005 16.578 0.008 16.461 0.009 16.446 0.011 D 2078-53378-168 16.792 0.017 15.747 0.005 15.514 0.018 15.467 0.009 15.509 0.012 D 2078-53378-169 15.538 0.016 14.487 0.012 14.284 0.008 14.258 0.009 14.328 0.015 C 2078-53378-170 20.146 0.047 18.464 0.008 17.825 0.009 17.603 0.009 17.471 0.020 D 2078-53378-171 18.767 0.025 17.451 0.009 17.006 0.008 16.852 0.009 16.798 0.012 D 2078-53378-172 18.631 0.020 17.336 0.006 16.895 0.009 16.754 0.008 16.736 0.011 D 2078-53378-173 20.033 0.053 18.364 0.009 17.713 0.010 17.504 0.015 17.421 0.020 D 2078-53378-174 19.384 0.030 17.904 0.007 17.369 0.008 17.183 0.010 17.131 0.019 D 2078-53378-175 19.477 0.031 17.928 0.009 17.376 0.008 17.210 0.012 17.140 0.014 D 2078-53378-176 15.988 0.007 14.933 0.006 14.746 0.011 14.713 0.006 14.769 0.010 D 2078-53378-177 19.205 0.023 17.765 0.010 17.263 0.008 17.113 0.015 17.051 0.015 D Continued on next page. . . 252 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2078-53378-178 19.721 0.030 18.145 0.009 17.552 0.012 17.358 0.011 17.292 0.022 D 2078-53378-179 16.244 0.005 15.179 0.017 15.001 0.004 14.969 0.021 15.015 0.029 D 2078-53378-182 15.898 0.009 14.824 0.004 14.654 0.016 14.639 0.007 14.679 0.007 D 2078-53378-186 16.134 0.017 15.137 0.006 14.988 0.006 14.951 0.019 14.962 0.012 D 2078-53378-192 18.291 0.019 17.111 0.006 16.727 0.007 16.612 0.018 16.558 0.015 D 2078-53378-194 19.010 0.029 17.654 0.006 17.178 0.011 17.019 0.014 16.946 0.014 D 2078-53378-195 16.446 0.021 15.411 0.006 15.235 0.011 15.195 0.028 15.211 0.012 D 2078-53378-197 18.304 0.013 17.124 0.012 16.711 0.006 16.590 0.025 16.564 0.011 D 2078-53378-199 16.988 0.010 15.905 0.012 15.658 0.018 15.591 0.008 15.601 0.013 D 2078-53378-200 19.574 0.047 17.997 0.006 17.446 0.006 17.220 0.011 17.123 0.018 D 2078-53378-223 16.951 0.019 15.876 0.007 15.636 0.023 15.544 0.040 15.581 0.016 D 2078-53378-224 15.774 0.016 14.716 0.003 14.560 0.012 14.518 0.009 14.546 0.014 D 2078-53378-227 18.129 0.029 16.910 0.008 16.555 0.023 16.436 0.039 16.405 0.018 D 2078-53378-232 16.210 0.010 15.171 0.015 15.008 0.057 14.957 0.037 15.005 0.026 D 2078-53378-233 17.864 0.018 16.699 0.008 16.367 0.021 16.241 0.042 16.244 0.019 D 2078-53378-235 18.448 0.020 17.230 0.005 16.825 0.008 16.670 0.015 16.630 0.017 D 2078-53378-273 17.996 0.022 16.812 0.010 16.446 0.007 16.360 0.018 16.318 0.017 C 2078-53378-422 19.200 0.034 17.742 0.007 17.270 0.007 17.078 0.011 17.028 0.014 D 2078-53378-427 18.177 0.022 16.962 0.013 16.597 0.009 16.451 0.011 16.488 0.023 C 2078-53378-431 15.731 0.006 14.641 0.012 14.468 0.011 14.448 0.026 14.450 0.012 D 2078-53378-435 19.165 0.022 17.731 0.006 17.246 0.006 17.067 0.012 17.011 0.018 D 2078-53378-440 18.726 0.020 17.465 0.006 17.027 0.006 16.879 0.016 16.844 0.014 D 2078-53378-462 17.379 0.010 16.297 0.007 16.007 0.005 15.912 0.007 15.908 0.021 D Continued on next page. . . 253 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2078-53378-463 16.519 0.007 15.459 0.006 15.248 0.004 15.205 0.009 15.222 0.015 D 2078-53378-464 18.041 0.020 16.870 0.011 16.502 0.008 16.381 0.011 16.378 0.016 C 2078-53378-465 18.867 0.027 17.525 0.008 17.046 0.008 16.866 0.014 16.825 0.019 D 2078-53378-466 16.199 0.023 15.113 0.008 14.922 0.005 14.874 0.019 14.895 0.010 D 2078-53378-468 18.748 0.020 17.467 0.010 17.006 0.011 16.877 0.016 16.816 0.011 D 2078-53378-469 15.552 0.008 14.454 0.014 14.234 0.010 14.196 0.029 14.224 0.007 D 2078-53378-470 18.506 0.016 17.224 0.006 16.797 0.009 16.668 0.010 16.619 0.017 D 2078-53378-471 17.394 0.010 16.330 0.013 16.044 0.007 15.972 0.031 15.981 0.013 D 2078-53378-472 15.683 0.006 14.620 0.012 14.441 0.011 14.418 0.016 14.455 0.007 D 2078-53378-473 17.624 0.012 16.522 0.012 16.206 0.007 16.131 0.021 16.122 0.011 D 2078-53378-475 19.854 0.040 18.217 0.014 17.606 0.013 17.410 0.022 17.290 0.020 D 2078-53378-476 19.354 0.025 17.913 0.018 17.377 0.011 17.228 0.021 17.120 0.016 D 2078-53378-477 18.352 0.015 17.128 0.010 16.709 0.012 16.597 0.024 16.547 0.014 D 2078-53378-478 19.046 0.024 17.636 0.012 17.157 0.009 17.012 0.017 16.945 0.018 D 2078-53378-480 18.496 0.018 17.263 0.008 16.837 0.011 16.706 0.013 16.670 0.017 D 2078-53378-481 17.208 0.009 16.128 0.005 15.840 0.010 15.770 0.010 15.793 0.013 D 2078-53378-485 17.972 0.012 16.804 0.007 16.415 0.006 16.313 0.009 16.280 0.014 D 2078-53378-491 15.909 0.005 14.848 0.007 14.636 0.011 14.586 0.007 14.625 0.007 D 2078-53378-492 18.044 0.014 16.881 0.009 16.501 0.007 16.404 0.012 16.372 0.016 D 2078-53378-493 19.249 0.022 17.777 0.009 17.256 0.011 17.108 0.024 17.030 0.023 D 2078-53378-496 18.088 0.014 16.899 0.009 16.520 0.012 16.410 0.019 16.373 0.014 D 2078-53378-499 18.403 0.017 17.177 0.007 16.766 0.008 16.651 0.015 16.615 0.017 D 2078-53378-503 15.718 0.026 14.633 0.008 14.447 0.009 14.424 0.023 14.464 0.009 D Continued on next page. . . 254 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2078-53378-510 18.154 0.017 16.959 0.007 16.543 0.009 16.402 0.014 16.374 0.016 D 2078-53378-511 16.249 0.006 15.197 0.007 15.014 0.010 14.990 0.008 15.030 0.012 D 2078-53378-512 16.658 0.010 15.613 0.006 15.391 0.005 15.350 0.008 15.365 0.018 D 2078-53378-513 17.649 0.010 16.556 0.004 16.230 0.010 16.144 0.008 16.129 0.018 D 2078-53378-514 17.970 0.013 16.826 0.005 16.470 0.010 16.378 0.009 16.332 0.011 D 2078-53378-515 17.690 0.012 16.601 0.006 16.260 0.006 16.186 0.012 16.178 0.015 D 2078-53378-516 17.284 0.010 16.206 0.007 15.930 0.008 15.872 0.008 15.877 0.016 D 2078-53378-517 18.803 0.024 17.503 0.007 17.018 0.007 16.888 0.015 16.853 0.015 D 2078-53378-518 16.676 0.018 15.646 0.012 15.428 0.011 15.386 0.020 15.418 0.008 D 2078-53378-519 18.410 0.021 17.195 0.008 16.740 0.010 16.603 0.011 16.551 0.015 D 2078-53378-520 17.598 0.011 16.516 0.011 16.182 0.009 16.094 0.010 16.110 0.017 D 2078-53378-548 15.872 0.029 14.795 0.009 14.640 0.013 14.597 0.037 14.667 0.011 D 2078-53378-552 20.133 0.058 18.385 0.010 17.765 0.011 17.553 0.009 17.485 0.018 D 2078-53378-553 19.647 0.041 18.024 0.011 17.449 0.009 17.281 0.017 17.206 0.015 D 2078-53378-554 15.887 0.026 14.846 0.005 14.671 0.008 14.655 0.023 14.703 0.017 D 2078-53378-557 17.041 0.010 15.961 0.005 15.704 0.007 15.645 0.009 15.662 0.012 D 2078-53378-560 18.421 0.013 17.180 0.005 16.775 0.007 16.656 0.010 16.631 0.017 D 2079-53379-071 20.474 0.079 18.720 0.011 18.023 0.008 17.804 0.014 17.697 0.021 C 2079-53379-076 20.400 0.069 18.538 0.009 17.890 0.009 17.653 0.010 17.604 0.022 D 2079-53379-101 22.055 0.287 19.568 0.019 18.651 0.013 18.325 0.014 18.117 0.025 D 2079-53379-102 21.751 0.236 19.528 0.023 18.559 0.017 18.264 0.015 18.142 0.026 C 2079-53379-108 21.995 0.322 19.996 0.019 18.920 0.016 18.552 0.017 18.318 0.033 D 2079-53379-113 21.762 0.278 20.121 0.026 19.046 0.016 18.658 0.015 18.463 0.036 D Continued on next page. . . 255 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2079-53379-114 21.304 0.158 19.352 0.014 18.539 0.010 18.248 0.015 18.087 0.025 C 2079-53379-119 21.975 0.252 19.827 0.021 18.801 0.017 18.416 0.013 18.221 0.034 D 2079-53379-141 21.723 0.223 19.287 0.012 18.432 0.012 18.127 0.012 17.978 0.030 D 2079-53379-148 21.201 0.120 19.189 0.014 18.354 0.015 18.069 0.014 17.906 0.029 D 2079-53379-149 20.913 0.094 18.897 0.012 18.158 0.013 17.920 0.014 17.772 0.027 D 2079-53379-152 21.228 0.151 19.230 0.012 18.378 0.012 18.106 0.013 17.931 0.030 D 2079-53379-153 22.148 0.247 19.706 0.018 18.718 0.016 18.363 0.017 18.157 0.030 D 2079-53379-156 20.567 0.060 18.689 0.009 18.005 0.013 17.767 0.011 17.664 0.023 D 2079-53379-157 21.765 0.213 19.586 0.018 18.619 0.015 18.309 0.014 18.137 0.026 D 2079-53379-158 21.441 0.172 19.448 0.015 18.560 0.014 18.262 0.013 18.097 0.029 D 2079-53379-159 21.293 0.115 19.313 0.012 18.458 0.011 18.160 0.012 17.942 0.033 D 2079-53379-160 21.188 0.121 19.128 0.015 18.318 0.009 18.033 0.014 17.888 0.031 D 2079-53379-161 22.006 0.278 19.789 0.018 18.788 0.012 18.437 0.012 18.316 0.038 D 2079-53379-162 20.433 0.052 18.675 0.010 17.956 0.009 17.754 0.009 17.658 0.026 D 2079-53379-163 21.454 0.175 19.244 0.012 18.413 0.015 18.102 0.012 17.901 0.025 D 2079-53379-164 20.852 0.101 18.993 0.011 18.233 0.008 17.935 0.014 17.764 0.022 D 2079-53379-165 22.042 0.289 19.688 0.019 18.725 0.013 18.335 0.012 18.203 0.036 D 2079-53379-166 20.572 0.103 18.659 0.008 17.982 0.009 17.727 0.009 17.618 0.019 D 2079-53379-167 22.146 0.307 20.160 0.024 19.042 0.017 18.649 0.015 18.463 0.044 D 2079-53379-168 22.278 0.240 19.706 0.018 18.748 0.011 18.436 0.015 18.214 0.036 D 2079-53379-169 20.879 0.106 18.811 0.011 18.113 0.008 17.852 0.010 17.711 0.019 D 2079-53379-178 20.491 0.076 18.672 0.012 17.993 0.013 17.749 0.010 17.640 0.019 D 2079-53379-181 15.898 0.009 14.824 0.004 14.654 0.016 14.639 0.007 14.679 0.007 D Continued on next page. . . 256 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2079-53379-182 21.060 0.115 19.132 0.016 18.339 0.011 18.046 0.011 17.872 0.024 C 2079-53379-185 22.199 0.376 20.251 0.023 19.079 0.024 18.676 0.016 18.410 0.042 D 2079-53379-191 21.245 0.153 19.149 0.011 18.370 0.010 18.051 0.015 17.942 0.028 D 2079-53379-192 20.564 0.068 18.734 0.010 18.005 0.019 17.784 0.011 17.687 0.023 D 2079-53379-194 20.283 0.062 18.536 0.011 17.878 0.023 17.637 0.010 17.553 0.022 D 2079-53379-195 20.808 0.095 18.905 0.013 18.162 0.020 17.907 0.012 17.721 0.027 D 2079-53379-196 21.896 0.258 19.651 0.017 18.691 0.012 18.370 0.014 18.210 0.033 D 2079-53379-198 20.236 0.053 18.581 0.008 17.927 0.008 17.687 0.011 17.575 0.022 D 2079-53379-199 22.046 0.259 19.754 0.019 18.760 0.012 18.419 0.019 18.171 0.029 D 2079-53379-200 20.892 0.111 19.068 0.011 18.285 0.010 18.002 0.015 17.865 0.023 D 2079-53379-234 21.922 0.264 19.413 0.012 18.533 0.013 18.198 0.014 18.049 0.031 D 2079-53379-237 21.110 0.119 19.177 0.013 18.376 0.015 18.063 0.026 17.904 0.024 D 2079-53379-238 20.833 0.089 18.801 0.011 18.099 0.014 17.857 0.026 17.692 0.020 D 2079-53379-270 20.739 0.075 18.861 0.024 18.079 0.053 17.780 0.040 17.648 0.037 D 2079-53379-431 20.622 0.095 18.836 0.013 18.068 0.009 17.784 0.019 17.711 0.024 C 2079-53379-434 20.945 0.108 18.933 0.012 18.152 0.011 17.825 0.013 17.722 0.024 D 2079-53379-440 22.059 0.323 19.483 0.016 18.569 0.011 18.217 0.019 18.094 0.030 C 2079-53379-463 23.338 0.904 20.209 0.025 19.099 0.016 18.687 0.016 18.448 0.039 C 2079-53379-466 21.983 0.296 19.497 0.015 18.587 0.014 18.292 0.028 18.160 0.029 D 2079-53379-467 21.096 0.152 18.954 0.010 18.182 0.011 17.875 0.023 17.732 0.026 D 2079-53379-474 21.679 0.151 19.677 0.022 18.687 0.015 18.304 0.019 18.047 0.027 D 2079-53379-476 21.927 0.232 19.769 0.026 18.800 0.015 18.444 0.019 18.290 0.032 D 2079-53379-477 21.096 0.105 18.939 0.012 18.171 0.011 17.937 0.020 17.791 0.025 D Continued on next page. . . 257 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2079-53379-480 21.208 0.104 19.076 0.017 18.272 0.009 17.965 0.019 17.813 0.021 D 2079-53379-482 21.370 0.141 19.429 0.015 18.500 0.013 18.124 0.012 17.907 0.022 D 2079-53379-483 15.683 0.006 14.620 0.012 14.441 0.011 14.418 0.016 14.455 0.007 D 2079-53379-487 21.607 0.163 19.438 0.013 18.509 0.013 18.209 0.015 18.048 0.027 D 2079-53379-488 22.407 0.294 20.287 0.031 19.151 0.015 18.763 0.017 18.476 0.038 D 2079-53379-490 22.384 0.333 19.758 0.020 18.755 0.011 18.431 0.014 18.236 0.030 D 2079-53379-493 22.119 0.235 19.970 0.020 18.919 0.016 18.551 0.021 18.329 0.030 D 2079-53379-495 20.975 0.084 18.914 0.011 18.176 0.011 17.931 0.021 17.810 0.021 D 2079-53379-496 20.457 0.069 18.674 0.013 17.945 0.024 17.748 0.018 17.651 0.022 D 2079-53379-498 20.891 0.093 18.977 0.013 18.219 0.012 17.963 0.010 17.800 0.022 D 2079-53379-500 21.368 0.145 19.214 0.014 18.393 0.012 18.110 0.019 17.931 0.033 D 2079-53379-502 21.184 0.115 19.101 0.015 18.299 0.010 18.017 0.020 17.873 0.024 D 2079-53379-507 21.398 0.142 19.348 0.014 18.486 0.013 18.170 0.017 18.107 0.031 D 2079-53379-510 22.837 0.525 20.376 0.024 19.191 0.014 18.802 0.027 18.555 0.037 D 2079-53379-511 20.814 0.101 18.978 0.013 18.211 0.011 17.933 0.021 17.829 0.025 D 2079-53379-512 20.161 0.062 18.507 0.010 17.850 0.011 17.631 0.019 17.525 0.015 D 2079-53379-514 22.047 0.232 19.953 0.021 18.930 0.017 18.538 0.016 18.330 0.032 D 2079-53379-516 20.717 0.074 18.760 0.012 18.042 0.010 17.759 0.032 17.697 0.022 D 2079-53379-519 21.190 0.112 19.198 0.013 18.381 0.010 18.082 0.021 17.932 0.023 D 2079-53379-552 21.393 0.154 19.407 0.015 18.530 0.013 18.234 0.014 18.085 0.029 D 2079-53379-558 20.244 0.058 18.566 0.017 17.884 0.014 17.668 0.031 17.589 0.025 D NGC 2158 2887-54521-416 16.282 0.024 14.296 0.012 Continued on next page. . . 258 13.506 0.008 13.156 0.007 13.056 0.015 C Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2887-54521-442 16.025 0.020 15.023 0.005 14.648 0.007 14.572 0.007 14.568 0.012 C 2887-54521-445 15.721 · · · 15.321 ··· 2887-54521-446 16.164 0.025 15.135 0.007 14.979 0.010 14.916 0.009 14.951 0.016 C 2887-54521-447 15.997 0.020 14.192 0.019 13.437 0.016 15.498 0.089 13.071 0.015 C 2887-54521-451 15.782 0.019 14.809 0.005 14.602 0.007 14.616 0.007 14.658 0.012 C 2887-54521-452 16.017 0.023 15.098 0.008 14.668 0.007 14.609 0.007 14.623 0.013 C 2887-54521-460 16.112 · · · 15.711 ··· 15.420 · · · 16.213 · · · 16.480 · · · B 2887-54521-511 15.952 · · · 15.551 ··· 15.030 · · · 15.823 · · · 16.090 · · · B 2887-54521-531 15.761 0.023 13.912 0.007 13.318 0.008 13.069 0.006 12.978 0.015 C 2887-54521-532 15.808 0.019 13.818 0.005 13.033 0.007 15.253 0.010 12.656 0.012 C 2887-54521-547 15.667 0.019 14.036 0.005 13.279 0.007 15.157 0.009 12.933 0.012 C 2887-54521-552 16.300 0.022 14.450 0.005 13.636 0.007 15.007 0.009 13.235 0.012 C 2887-54521-559 16.438 0.023 14.711 0.005 13.861 0.007 14.448 0.011 13.452 0.012 C 2912-54499-409 17.219 0.033 16.096 0.008 15.818 0.008 15.730 0.006 15.755 0.016 C 2912-54499-416 17.231 0.034 16.068 0.016 15.912 0.019 15.847 0.007 15.883 0.017 C 2912-54499-417 17.411 0.036 16.393 0.008 16.183 0.008 16.096 0.007 16.176 0.017 C 2912-54499-442 16.790 0.027 15.875 0.013 15.620 0.030 15.648 0.082 15.700 0.015 C 2912-54499-444 16.719 0.026 15.777 0.007 15.692 0.008 15.724 0.009 15.810 0.016 C 2912-54499-445 16.825 0.029 15.852 0.007 15.754 0.008 15.732 0.006 15.795 0.016 C 2912-54499-446 17.804 0.046 16.870 0.009 16.608 0.008 16.586 0.008 16.649 0.018 C 2912-54499-450 16.321 0.025 15.327 0.007 15.234 0.008 15.193 0.006 15.264 0.015 C 2912-54499-453 17.123 · · · 16.722 ··· 2912-54499-458 16.725 0.026 15.716 0.006 14.909 · · · 15.702 · · · 15.969 · · · 16.400 · · · 17.192 · · · 17.460 · · · Continued on next page. . . 259 B B 15.580 0.007 15.578 0.007 15.651 0.013 C Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2912-54499-459 18.930 0.237 16.882 0.010 16.710 0.012 16.542 0.011 16.494 0.018 C 2912-54499-461 17.674 0.051 16.613 0.027 16.241 0.025 16.143 0.026 16.150 0.028 C 2912-54499-462 17.603 · · · 17.202 ··· 16.710 · · · 17.503 · · · 17.769 · · · B 2912-54499-483 16.563 · · · 16.162 ··· 15.810 · · · 16.603 · · · 16.869 · · · B 2912-54499-484 16.710 · · · 16.310 ··· 15.959 · · · 16.752 · · · 17.019 · · · B 2912-54499-488 17.353 0.034 16.269 0.013 2912-54499-489 16.779 · · · 16.379 ··· 15.998 · · · 16.791 · · · 17.058 · · · B 2912-54499-499 17.341 · · · 16.941 ··· 16.479 · · · 17.272 · · · 17.539 · · · B 2912-54499-501 17.793 · · · 17.392 ··· 17.040 · · · 17.833 · · · 18.100 · · · B 2912-54499-502 17.143 · · · 16.742 ··· 16.471 · · · 17.264 · · · 17.531 · · · B 2912-54499-503 16.810 · · · 16.409 ··· 16.089 · · · 16.881 · · · 17.149 · · · B 2912-54499-505 16.861 · · · 16.461 ··· 16.199 · · · 16.992 · · · 17.259 · · · B 2912-54499-506 18.350 · · · 17.950 ··· 17.549 · · · 18.341 · · · 18.609 · · · B 2912-54499-507 16.863 · · · 16.462 ··· 16.189 · · · 16.982 · · · 17.248 · · · B 2912-54499-509 16.821 · · · 16.420 ··· 16.069 · · · 16.863 · · · 17.130 · · · B 2912-54499-510 17.751 · · · 17.351 ··· 16.889 · · · 17.682 · · · 17.949 · · · B 2912-54499-511 17.669 · · · 17.269 ··· 16.768 · · · 17.561 · · · 17.828 · · · B 2912-54499-514 16.733 · · · 16.331 ··· 15.950 · · · 16.743 · · · 17.010 · · · B 2912-54499-515 17.174 · · · 16.772 ··· 16.420 · · · 17.213 · · · 17.479 · · · B 2912-54499-516 16.831 · · · 16.431 ··· 16.059 · · · 16.852 · · · 17.119 · · · B 2912-54499-518 17.250 · · · 16.850 ··· 16.509 · · · 17.302 · · · 17.569 · · · B 2912-54499-519 17.595 · · · 17.193 ··· 16.851 · · · 17.644 · · · 17.910 · · · B 2912-54499-531 17.091 0.031 16.252 0.007 Continued on next page. . . 260 15.983 0.009 15.820 0.008 15.896 0.017 C 16.068 0.008 16.101 0.008 16.185 0.016 C Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2912-54499-534 18.393 0.072 17.488 0.010 17.107 0.009 17.031 0.009 17.058 0.021 C 2912-54499-539 17.653 0.043 16.770 0.008 16.530 0.008 16.525 0.008 16.570 0.017 C 2912-54499-540 17.803 0.048 16.963 0.008 16.669 0.010 16.636 0.012 16.709 0.022 C 2912-54499-542 16.305 0.022 15.386 0.016 15.098 0.020 15.060 0.007 15.074 0.013 C 2912-54499-543 17.404 · · · 17.003 ··· 16.620 · · · 17.412 · · · 17.679 · · · B 2912-54499-544 18.191 · · · 17.790 ··· 17.339 · · · 18.132 · · · 18.399 · · · B 2912-54499-545 16.690 · · · 16.290 ··· 16.019 · · · 16.812 · · · 17.079 · · · B 2912-54499-547 17.780 · · · 17.380 ··· 16.999 · · · 17.792 · · · 18.060 · · · B 2912-54499-549 16.893 · · · 16.492 ··· 16.180 · · · 16.972 · · · 17.239 · · · B 2912-54499-552 16.443 · · · 16.042 ··· 15.730 · · · 16.522 · · · 16.789 · · · B 2912-54499-553 17.423 · · · 17.021 ··· 16.670 · · · 17.462 · · · 17.729 · · · B 2912-54499-556 16.560 · · · 16.160 ··· 15.839 · · · 16.632 · · · 16.900 · · · B 2912-54499-558 16.741 0.026 15.915 0.006 15.600 0.007 15.591 0.007 15.652 0.014 C 2912-54499-559 17.750 0.045 16.870 0.008 16.545 0.008 16.497 0.008 16.517 0.017 C 2912-54499-560 17.742 · · · 17.341 ··· 16.870 · · · 17.662 · · · 17.929 · · · B M35 2887-54521-528 15.182 0.014 14.084 0.008 13.603 0.001 13.548 0.008 13.533 0.012 C 2887-54521-534 13.998 0.013 13.012 0.008 12.769 0.002 12.762 0.001 12.873 0.012 C 2887-54521-561 14.391 0.013 13.412 0.008 13.043 0.001 13.049 0.008 13.094 0.012 C 2887-54521-562 14.114 0.014 13.069 0.008 12.840 0.001 12.807 0.001 12.889 0.014 C 2887-54521-566 14.710 0.014 13.612 0.008 13.191 0.001 13.148 0.008 13.157 0.012 C 2887-54521-571 14.659 0.012 13.647 0.010 13.362 0.011 15.795 0.010 13.318 0.010 C 2887-54521-574 15.553 0.013 14.400 0.010 13.999 0.011 13.836 0.001 13.872 0.011 C Continued on next page. . . 261 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2887-54521-575 15.085 0.013 13.977 0.010 13.621 0.011 15.741 0.025 13.501 0.011 C 2887-54521-576 14.787 0.012 13.770 0.010 13.466 0.011 16.380 0.014 13.413 0.010 C 2887-54521-577 14.785 0.219 13.682 0.014 13.379 0.010 15.369 0.178 13.366 0.118 C 2887-54521-580 15.594 0.013 14.412 0.010 14.006 0.011 16.271 0.088 13.842 0.011 C 2887-54521-602 15.126 0.013 14.009 0.010 13.680 0.011 16.041 0.014 13.574 0.010 C 2887-54521-604 15.425 0.014 14.271 0.009 13.874 0.006 16.108 0.015 13.751 0.013 C 2887-54521-606 15.303 0.014 14.134 0.009 13.802 0.006 16.146 0.017 13.669 0.013 C 2887-54521-608 14.904 0.013 13.800 0.010 13.517 0.011 15.227 0.010 13.461 0.010 C 2887-54521-611 14.520 0.013 13.452 0.009 13.163 0.001 13.111 0.001 13.178 0.013 C 2887-54521-616 15.370 0.013 14.226 0.010 13.856 0.011 15.514 0.016 13.729 0.011 C 2887-54521-620 15.638 0.014 14.414 0.009 14.006 0.006 15.972 0.021 13.824 0.013 C 2912-54499-524 20.207 0.094 17.847 0.011 16.717 0.006 16.306 0.010 16.061 0.016 C 2912-54499-563 19.271 0.056 17.114 0.123 16.199 0.162 15.899 0.141 15.983 0.209 C 2912-54499-564 19.953 0.077 17.492 0.013 16.364 0.010 15.970 0.012 15.728 0.015 C 2912-54499-575 20.797 0.189 17.994 0.009 16.848 0.007 16.429 0.008 16.218 0.012 C 2912-54499-576 18.894 0.036 16.985 0.009 16.133 0.007 15.759 0.010 15.617 0.015 C 2912-54499-601 19.290 0.048 17.370 0.010 16.411 0.008 16.028 0.010 15.876 0.015 C 2912-54499-604 20.451 1.916 18.978 0.014 17.578 0.010 17.018 0.010 16.693 0.015 D 2912-54499-605 19.114 0.064 16.940 0.008 16.002 0.009 15.655 0.007 15.428 0.010 D 2912-54499-611 18.502 0.029 16.452 0.008 15.559 0.005 15.259 0.005 15.098 0.012 D 2912-54499-619 19.207 0.049 16.977 0.009 16.026 0.006 15.718 0.009 15.546 0.013 D 2912-54499-620 20.183 0.094 17.863 0.015 16.776 0.007 16.347 0.009 16.078 0.019 C M67 Continued on next page. . . 262 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2667-54142-361 16.832 0.009 15.218 0.004 14.655 0.008 14.442 0.008 14.354 0.013 D 2667-54142-363 16.776 0.022 15.270 0.014 14.749 0.016 14.567 0.011 14.565 0.013 C 2667-54142-364 15.551 0.021 14.316 0.014 13.926 0.016 13.774 0.011 13.786 0.013 C 2667-54142-372 17.164 0.011 15.549 0.005 14.963 0.007 14.804 0.010 14.756 0.015 D 2667-54142-378 18.069 0.026 16.114 0.005 15.397 0.039 15.181 0.008 15.087 0.027 D 2667-54142-379 15.947 0.012 14.663 0.017 14.227 0.011 14.128 0.016 14.083 0.016 C 2667-54142-402 16.821 0.022 15.304 0.014 14.788 0.016 14.581 0.011 14.528 0.013 C 2667-54142-404 16.397 0.006 14.959 0.008 14.480 0.006 14.356 0.006 14.306 0.008 D 2667-54142-406 15.433 0.021 14.199 0.006 13.820 0.034 13.718 0.010 13.725 0.025 D 2667-54142-407 15.463 0.004 14.216 0.008 13.848 0.010 13.749 0.005 13.745 0.009 D 2667-54142-408 15.646 0.012 14.363 0.007 13.974 0.003 13.848 0.004 13.809 0.007 D 2667-54142-409 16.769 0.007 15.246 0.007 14.732 0.005 14.587 0.007 14.526 0.007 D 2667-54142-410 16.603 0.010 15.149 0.002 14.642 0.006 14.495 0.006 14.456 0.011 D 2667-54142-411 16.901 0.016 15.346 0.009 14.811 0.008 14.632 0.010 14.545 0.026 D 2667-54142-412 16.177 0.007 14.804 0.005 14.356 0.008 14.226 0.005 14.201 0.007 D 2667-54142-413 15.460 0.009 14.232 0.022 13.766 0.008 13.598 0.012 13.601 0.008 C 2667-54142-414 18.984 0.023 16.814 0.007 15.939 0.005 15.672 0.021 15.507 0.027 D 2667-54142-415 16.042 0.009 14.687 0.005 14.244 0.006 14.116 0.009 14.081 0.010 D 2667-54142-417 16.634 0.009 15.122 0.004 14.607 0.007 14.455 0.006 14.403 0.010 D 2667-54142-418 16.152 0.011 14.777 0.005 14.347 0.018 14.218 0.007 14.191 0.020 D 2667-54142-419 15.951 0.006 14.639 0.004 14.221 0.005 14.092 0.004 14.074 0.006 D 2667-54142-420 16.023 0.007 14.703 0.009 14.266 0.010 14.130 0.006 14.091 0.010 D 2667-54142-429 15.760 0.014 14.484 0.018 14.134 0.013 13.964 0.016 13.967 0.014 C Continued on next page. . . 263 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2667-54142-441 15.887 0.006 14.581 0.003 14.166 0.015 14.030 0.011 14.015 0.009 D 2667-54142-444 15.495 0.012 14.225 0.006 13.854 0.011 13.741 0.012 13.758 0.008 D 2667-54142-445 16.341 0.008 14.920 0.002 14.449 0.013 14.305 0.011 14.278 0.010 D 2667-54142-451 15.531 0.004 14.269 0.004 13.885 0.013 13.768 0.009 13.768 0.005 D 2667-54142-452 18.454 0.024 16.433 0.016 15.656 0.015 15.441 0.014 15.317 0.021 C 2667-54142-453 17.862 0.023 16.006 0.007 15.310 0.012 15.085 0.020 14.932 0.020 D 2667-54142-454 15.426 0.006 14.182 0.007 13.777 0.008 13.679 0.026 13.612 0.008 D 2667-54142-455 15.368 0.004 14.148 0.004 13.768 0.008 13.666 0.009 13.656 0.006 D 2667-54142-457 15.884 0.011 14.554 0.005 14.131 0.007 14.032 0.010 14.004 0.010 D 2667-54142-458 15.896 0.017 14.566 0.022 14.119 0.011 14.002 0.017 13.995 0.015 C 2667-54142-459 15.470 0.009 14.276 0.022 13.886 0.008 13.759 0.012 13.770 0.008 C 2667-54142-460 16.016 0.007 14.692 0.002 14.265 0.013 14.138 0.010 14.124 0.006 D 2667-54142-463 15.575 0.014 14.317 0.018 13.914 0.013 13.818 0.016 13.802 0.014 C 2667-54142-466 17.693 0.028 15.902 0.015 15.245 0.016 15.048 0.015 14.973 0.014 C 2667-54142-467 15.518 0.018 14.292 0.019 13.944 0.001 13.831 0.019 13.840 0.015 C 2667-54142-469 17.370 0.014 15.708 0.017 15.100 0.011 14.879 0.016 14.831 0.017 C 2667-54142-476 15.916 0.020 14.650 0.018 14.220 0.001 14.109 0.019 14.070 0.017 C 2667-54142-477 15.956 0.011 14.582 0.004 14.117 0.005 13.953 0.017 13.917 0.011 D 2667-54142-478 15.548 0.014 14.277 0.008 13.896 0.013 13.780 0.022 13.808 0.018 D 2667-54142-479 16.138 0.010 14.793 0.004 14.357 0.005 14.220 0.019 14.208 0.013 D 2667-54142-481 16.198 0.014 14.834 0.004 14.386 0.020 14.242 0.015 14.215 0.008 D 2667-54142-485 16.658 0.007 15.177 0.006 14.670 0.006 14.512 0.010 14.488 0.012 D 2667-54142-486 17.253 0.021 15.622 0.006 15.033 0.009 14.847 0.010 14.786 0.008 D Continued on next page. . . 264 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2667-54142-487 15.582 0.008 14.219 0.007 13.763 0.013 13.620 0.010 13.600 0.007 D 2667-54142-491 15.446 0.016 14.262 0.012 13.916 0.001 13.812 0.013 13.791 0.012 C 2667-54142-492 15.916 0.016 14.625 0.012 14.208 0.001 14.111 0.013 14.076 0.012 C 2667-54142-496 16.399 0.014 14.978 0.013 14.510 0.001 14.375 0.015 14.359 0.017 C 2667-54142-500 17.746 0.018 15.936 0.005 15.220 0.011 14.964 0.008 14.844 0.009 D 2667-54142-504 15.624 0.014 14.221 0.013 13.741 0.001 13.611 0.015 13.563 0.017 C 2667-54142-505 15.655 0.009 14.345 0.007 13.911 0.006 13.765 0.007 13.743 0.009 D 2667-54142-507 16.371 0.012 14.930 0.005 14.423 0.008 14.227 0.007 14.148 0.011 D 2667-54142-508 17.057 0.011 15.468 0.008 14.919 0.007 14.750 0.011 14.694 0.009 D 2667-54142-516 16.629 0.013 15.149 0.010 14.689 0.001 14.471 0.008 14.423 0.011 C 2667-54142-517 16.797 0.014 15.341 0.026 14.788 0.014 16.922 0.163 14.601 0.016 C 2667-54142-518 16.081 0.016 14.723 0.014 14.297 0.020 14.176 0.001 14.159 0.014 C 2667-54142-522 15.808 0.008 14.486 0.005 14.069 0.004 13.951 0.007 13.947 0.006 D 2667-54142-531 15.810 0.008 14.526 0.004 14.117 0.004 14.009 0.009 13.998 0.013 D 2667-54142-533 17.646 0.011 15.849 0.005 15.211 0.005 15.006 0.008 14.931 0.010 D 2667-54142-537 15.755 0.005 14.480 0.007 14.049 0.007 13.901 0.006 13.872 0.010 D 2667-54142-538 18.114 0.015 16.185 0.006 15.461 0.008 15.244 0.008 15.141 0.013 D 2667-54142-539 17.842 0.015 15.989 0.012 15.327 0.008 15.112 0.007 15.002 0.007 D 2667-54142-540 17.157 0.007 15.515 0.005 14.941 0.007 14.770 0.008 14.697 0.013 D 2667-54142-541 15.488 0.013 14.232 0.019 13.860 0.001 13.858 0.001 13.760 0.015 C 2667-54142-546 15.379 0.011 14.160 0.008 13.790 0.009 13.693 0.004 13.703 0.006 D 2667-54142-547 17.022 0.012 15.458 0.015 14.913 0.014 14.739 0.013 14.702 0.011 C 2667-54142-550 15.646 0.013 14.373 0.019 13.979 0.001 13.988 0.001 13.843 0.015 C Continued on next page. . . 265 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2667-54142-551 17.628 0.015 15.807 0.004 15.105 0.005 14.833 0.011 14.658 0.012 D 2667-54142-561 15.536 0.016 14.275 0.017 13.928 0.015 13.807 0.019 13.779 0.015 C 2667-54142-566 16.563 0.017 15.085 0.017 14.569 0.015 14.431 0.019 14.359 0.015 C 2667-54142-575 15.930 0.007 14.640 0.012 14.217 0.009 14.104 0.005 14.084 0.008 D 2667-54142-576 16.596 0.007 15.122 0.012 14.599 0.012 14.420 0.005 14.353 0.009 D 2667-54142-579 16.694 0.010 15.206 0.009 14.701 0.011 14.535 0.007 14.493 0.006 D NGC 6791 2800-54326-151 19.588 0.061 17.289 0.008 16.520 0.005 16.313 0.010 16.197 0.014 D 2800-54326-152 19.716 0.075 18.013 0.009 17.483 0.011 17.356 0.013 17.289 0.019 D 2800-54326-154 18.600 0.030 15.888 0.011 14.939 0.005 14.643 0.006 14.471 0.020 D 2800-54326-155 19.410 0.055 17.773 0.007 17.270 0.009 17.171 0.010 17.154 0.018 D 2800-54326-156 19.129 0.056 16.572 0.007 15.690 0.005 15.436 0.011 15.280 0.010 D 2800-54326-157 19.585 0.055 17.941 0.009 17.405 0.010 17.294 0.015 17.308 0.021 D 2800-54326-159 17.176 0.016 14.589 0.007 13.631 0.005 13.324 0.014 13.180 0.006 D 2800-54326-160 18.966 0.046 16.378 0.009 15.531 0.013 15.280 0.017 15.149 0.021 D 2800-54326-161 19.560 0.057 17.443 0.012 16.706 0.009 16.512 0.009 16.451 0.019 D 2800-54326-165 19.106 0.050 17.508 0.013 16.979 0.008 16.865 0.009 16.837 0.023 D 2800-54326-169 17.480 0.021 14.708 0.007 13.711 0.007 13.393 0.016 13.248 0.005 D 2800-54326-171 19.375 0.052 17.833 0.007 17.286 0.010 17.165 0.013 17.139 0.015 D 2800-54326-172 19.260 0.054 17.466 0.011 16.890 0.007 16.772 0.011 16.712 0.020 D 2800-54326-173 19.822 0.078 17.472 0.007 16.659 0.007 16.419 0.014 16.325 0.011 D 2800-54326-174 17.608 0.022 14.678 0.005 13.643 0.005 13.316 0.022 13.136 0.004 D 2800-54326-175 17.502 0.018 14.689 0.005 13.682 0.005 13.378 0.019 13.203 0.005 D Continued on next page. . . 266 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2800-54326-176 18.561 0.029 16.868 0.006 16.317 0.009 16.189 0.018 16.155 0.009 D 2800-54326-178 17.057 0.018 14.279 0.004 13.334 0.003 13.031 0.025 12.901 0.007 D 2800-54326-180 17.349 0.017 14.653 0.011 13.690 0.006 13.402 0.009 13.239 0.022 D 2800-54326-181 17.959 0.023 15.062 0.012 14.009 0.006 13.667 0.007 13.490 0.017 D 2800-54326-182 19.171 0.049 17.534 0.008 17.027 0.012 16.925 0.010 16.903 0.016 D 2800-54326-183 17.508 0.018 14.700 0.005 13.715 0.006 13.421 0.014 13.240 0.008 D 2800-54326-184 19.026 0.044 17.432 0.006 16.936 0.009 16.818 0.011 16.807 0.016 D 2800-54326-185 17.712 0.021 14.929 0.004 13.950 0.005 13.670 0.014 13.514 0.009 D 2800-54326-186 18.932 0.036 16.425 0.009 15.570 0.007 15.339 0.009 15.230 0.014 D 2800-54326-189 19.403 0.057 16.992 0.008 16.165 0.007 15.932 0.010 15.808 0.017 D 2800-54326-190 18.788 0.038 16.170 0.005 15.268 0.006 14.997 0.012 14.855 0.009 D 2800-54326-194 19.100 0.053 17.390 0.013 16.880 0.007 16.775 0.007 16.795 0.022 D 2800-54326-197 18.901 0.039 16.433 0.011 15.570 0.008 15.322 0.010 15.203 0.019 D 2800-54326-199 17.828 0.024 14.796 0.005 13.668 0.004 13.284 0.009 13.039 0.013 D 2800-54326-424 19.743 0.086 18.025 0.017 17.451 0.014 17.283 0.007 17.223 0.020 D 2800-54326-462 19.160 0.044 17.610 0.009 17.122 0.010 17.029 0.007 16.999 0.021 D 2800-54326-464 18.942 0.039 17.296 0.016 16.749 0.010 16.654 0.014 16.638 0.017 D 2800-54326-465 18.283 0.029 15.529 0.012 14.548 0.004 14.218 0.014 14.033 0.008 D 2800-54326-466 19.549 0.062 17.443 0.014 16.709 0.011 16.539 0.012 16.455 0.023 D 2800-54326-469 19.349 0.047 17.760 0.012 17.217 0.007 17.126 0.009 17.121 0.020 D 2800-54326-471 18.860 0.033 17.227 0.010 16.662 0.008 16.551 0.011 16.514 0.014 D 2800-54326-473 18.871 0.031 17.240 0.015 16.646 0.007 16.529 0.014 16.513 0.021 D 2800-54326-475 18.116 0.027 15.317 0.004 14.348 0.010 14.038 0.010 13.844 0.007 D Continued on next page. . . 267 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2800-54326-476 18.942 0.037 17.306 0.005 16.840 0.006 16.727 0.008 16.712 0.012 D 2800-54326-477 19.005 0.045 16.586 0.014 15.718 0.006 15.486 0.011 15.364 0.022 D 2800-54326-479 19.581 0.054 18.005 0.014 17.433 0.011 17.317 0.010 17.297 0.020 D 2800-54326-480 19.096 0.040 17.424 0.007 16.824 0.007 16.646 0.007 16.594 0.013 D 2800-54326-497 19.042 0.031 17.517 0.010 16.987 0.010 16.882 0.011 16.865 0.017 D 2821-54393-141 19.825 0.083 18.072 0.010 17.535 0.013 17.413 0.012 17.426 0.020 D 2821-54393-142 20.729 0.190 18.957 0.012 18.334 0.013 18.146 0.014 18.112 0.036 D 2821-54393-145 19.869 0.086 18.099 0.010 17.561 0.009 17.447 0.009 17.420 0.024 D 2821-54393-146 20.285 0.119 18.329 0.010 17.783 0.009 17.658 0.012 17.620 0.026 D 2821-54393-149 19.260 0.056 17.657 0.011 17.191 0.010 17.071 0.018 17.076 0.019 D 2821-54393-161 19.306 0.057 17.635 0.014 17.130 0.011 17.021 0.011 17.026 0.026 D 2821-54393-165 21.185 0.299 18.973 0.018 18.322 0.012 18.149 0.013 18.092 0.036 D 2821-54393-166 20.728 0.194 18.723 0.017 18.125 0.009 17.960 0.011 17.877 0.031 D 2821-54393-167 20.543 0.126 18.574 0.012 17.962 0.013 17.800 0.017 17.832 0.025 D 2821-54393-169 20.667 0.153 18.605 0.013 17.982 0.009 17.825 0.013 17.760 0.037 D 2821-54393-172 20.074 0.094 18.359 0.013 17.775 0.011 17.659 0.010 17.621 0.028 D 2821-54393-173 19.884 0.090 18.208 0.010 17.656 0.013 17.535 0.019 17.525 0.021 D 2821-54393-174 20.300 0.124 18.441 0.014 17.885 0.013 17.742 0.012 17.733 0.032 D 2821-54393-176 21.092 0.256 19.293 0.017 18.564 0.014 18.384 0.014 18.338 0.045 D 2821-54393-177 20.204 0.109 18.520 0.014 17.921 0.010 17.779 0.009 17.751 0.025 D 2821-54393-178 20.754 0.160 18.669 0.012 18.040 0.011 17.877 0.015 17.801 0.026 D 2821-54393-179 19.190 0.054 17.556 0.014 17.031 0.007 16.913 0.007 16.886 0.026 D 2821-54393-182 19.926 0.088 18.170 0.013 17.616 0.007 17.494 0.009 17.465 0.023 D Continued on next page. . . 268 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2821-54393-183 19.416 0.058 17.838 0.011 17.333 0.010 17.229 0.009 17.239 0.022 D 2821-54393-184 21.085 0.285 19.030 0.017 18.342 0.013 18.176 0.018 18.003 0.032 D 2821-54393-185 20.033 0.104 18.345 0.009 17.755 0.011 17.625 0.013 17.561 0.021 D 2821-54393-187 19.404 0.052 17.728 0.012 17.240 0.008 17.114 0.007 17.136 0.022 D 2821-54393-188 20.780 0.164 19.049 0.016 18.334 0.010 18.160 0.014 18.113 0.030 D 2821-54393-190 20.372 0.287 19.594 0.023 18.796 0.015 18.592 0.015 18.565 0.051 D 2821-54393-191 20.257 0.131 18.431 0.012 17.824 0.009 17.716 0.010 17.689 0.026 D 2821-54393-192 20.348 0.231 19.289 0.016 18.544 0.011 18.309 0.014 18.198 0.033 D 2821-54393-193 20.833 0.188 18.714 0.010 18.062 0.009 17.911 0.010 17.903 0.029 D 2821-54393-194 19.960 0.104 18.218 0.012 17.640 0.009 17.508 0.012 17.462 0.026 D 2821-54393-195 21.249 0.232 19.101 0.018 18.420 0.012 18.243 0.015 18.162 0.033 D 2821-54393-196 19.907 0.089 18.197 0.011 17.638 0.010 17.527 0.013 17.511 0.033 D 2821-54393-197 19.492 0.062 17.833 0.007 17.329 0.006 17.208 0.009 17.198 0.019 D 2821-54393-199 20.517 0.225 19.162 0.017 18.474 0.014 18.325 0.012 18.261 0.036 D 2821-54393-235 19.348 0.047 17.648 0.007 17.120 0.009 17.012 0.011 17.011 0.022 D 2821-54393-436 20.484 0.139 18.557 0.016 17.927 0.013 17.732 0.009 17.650 0.020 D 2821-54393-438 19.623 0.078 17.927 0.016 17.334 0.018 17.185 0.006 17.121 0.017 D 2821-54393-439 19.364 0.062 17.692 0.008 17.159 0.014 17.045 0.010 17.024 0.015 D 2821-54393-440 19.651 0.065 17.798 0.009 17.165 0.009 16.959 0.012 16.896 0.016 D 2821-54393-468 21.425 0.296 19.449 0.020 18.625 0.015 18.434 0.020 18.438 0.043 D 2821-54393-469 21.200 0.236 18.990 0.024 18.310 0.015 18.141 0.020 18.127 0.034 D 2821-54393-472 20.296 0.107 18.564 0.015 17.963 0.010 17.830 0.016 17.749 0.033 D 2821-54393-473 20.299 0.105 18.535 0.013 17.918 0.012 17.787 0.014 17.741 0.027 D Continued on next page. . . 269 Table A.3 – Continued spSpec name u σ(u) g σ(g) r σ(r) i σ(i) z σ(z) Tag 2821-54393-474 19.818 0.074 18.064 0.036 17.597 0.009 17.486 0.012 17.486 0.026 D 2821-54393-475 21.165 0.260 19.129 0.017 18.436 0.012 18.325 0.013 18.226 0.035 D 2821-54393-478 19.933 0.067 18.175 0.012 17.606 0.010 17.493 0.013 17.493 0.029 D 2821-54393-479 20.541 0.147 18.509 0.015 17.775 0.011 17.615 0.010 17.550 0.019 D 2821-54393-480 20.482 0.122 18.827 0.014 18.173 0.011 18.047 0.013 17.981 0.029 D 270 Appendix B: CN, δCN, and CH Line Indices of True Member Stars B.1 Spectroscopic Line Indices Data Table Having measured the S(3839) and CH(4300) line indices for all member stars in the eight GCs in this sample, I have tabulated the quantities below in Tables B.1 and B.2. Column 1 lists the spSpec name, which identifies the star on the spectral plate in the form of spectroscopic plug-plate number (four digits), Modified Julian Date (five digits), and fiber used (three digits), while (in Table B.1) Columns 2 and 3 list the (g − r)0 and g0 photometry. Column 4 lists the raw S(3839) CN index, which for AGB, RGB, and SGB stars was calculated using the definition from Norris et al. (1981) and for MS stars was calculated using the definition from Harbeck et al. (2003a), and column 5 gives the temperature-corrected CN index. Finally, column 6 lists the CH indices. Column 7 indicates the luminosity class. Table B.2 lists the uncertainties for the measured parameters. Table B.1: Line Indices of Adopted True Member Stars spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) M92 Continued on next page. . . 271 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) (5) 2247-54169-362 0.441 17.343 −0.172 0.022 −0.489 RGB 2247-54169-364 0.456 16.533 −0.196 −0.020 −0.466 RGB 2247-54169-367 0.439 16.519 −0.169 0.006 −0.460 RGB 2247-54169-380 0.484 16.093 −0.187 −0.021 −0.450 RGB 2247-54169-404 0.455 16.503 −0.165 0.010 −0.504 RGB 2247-54169-444 0.467 16.006 −0.184 −0.020 −0.453 RGB 2247-54169-451 0.472 16.188 −0.133 0.035 −0.479 RGB 2247-54169-452 0.480 15.985 −0.142 0.021 −0.497 RGB 2247-54169-529 0.440 17.182 −0.176 0.015 −0.483 RGB 2247-54169-531 0.443 16.488 −0.170 0.005 −0.459 RGB 2247-54169-546 0.408 17.107 −0.076 0.113 −0.492 RGB 2247-54169-561 0.479 16.490 −0.194 −0.020 −0.456 RGB 2247-54169-573 0.447 16.016 −0.189 −0.025 −0.441 RGB 2247-54169-581 0.457 16.373 −0.178 −0.006 −0.490 RGB 2247-54169-589 0.457 17.007 −0.200 −0.014 −0.478 RGB 2247-54169-620 0.405 17.503 −0.179 0.019 −0.494 RGB 2247-54169-408 0.521 15.333 −0.132 0.016 −0.473 RGB 2247-54169-418 0.527 15.524 −0.199 −0.046 −0.428 RGB 2247-54169-449 0.479 15.490 −0.111 0.040 −0.478 RGB 2247-54169-484 0.601 15.117 −0.117 0.026 −0.428 RGB 2247-54169-504 0.518 15.125 −0.134 0.009 −0.452 RGB 2247-54169-563 0.533 15.492 −0.148 0.003 −0.436 RGB Continued on next page. . . 272 δS(3839) CH(4300) Type (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 2247-54169-608 0.531 15.383 −0.215 −0.066 −0.421 RGB 2247-54169-610 0.538 15.198 −0.143 0.002 −0.417 RGB 2247-54169-379 0.189 17.638 −0.254 −0.053 −0.511 SGB 2247-54169-458 0.365 17.845 −0.209 −0.003 −0.494 SGB 2247-54169-514 0.372 17.645 −0.073 0.128 −0.507 SGB 2247-54169-516 0.363 17.860 −0.165 0.041 −0.523 SGB 2247-54169-519 0.379 17.809 −0.164 0.040 −0.465 SGB 2247-54169-538 0.306 17.966 −0.135 0.074 −0.521 SGB 2247-54169-541 0.387 17.691 −0.121 0.081 −0.514 SGB 2247-54169-575 0.360 17.882 −0.248 −0.042 −0.496 SGB 2247-54169-584 0.367 17.789 −0.275 −0.071 −0.529 SGB 2247-54169-616 0.366 17.890 −0.263 −0.057 −0.521 SGB 2256-53859-513 0.372 17.645 −0.142 0.059 −0.517 SGB 2256-53859-522 0.270 18.084 −0.228 −0.017 −0.550 SGB 2256-53859-535 0.204 18.349 −0.270 −0.053 −0.549 SGB 2256-53859-536 0.225 18.395 −0.255 −0.036 −0.531 SGB 2256-53859-538 0.386 17.762 −0.187 0.017 −0.490 SGB 2247-54169-409 0.314 20.443 −0.282 −0.016 −0.561 MS 2256-53859-411 0.240 18.413 −0.285 −0.066 −0.534 MS 2256-53859-455 0.205 18.576 −0.245 −0.022 −0.564 MS 2256-53859-485 0.191 19.103 −0.253 −0.018 −0.544 MS 2256-53859-489 0.182 18.749 −0.310 −0.084 −0.544 MS Continued on next page. . . 273 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) δS(3839) CH(4300) Type (1) (2) (3) (4) 2256-53859-501 0.189 18.751 −0.329 −0.102 −0.523 MS 2256-53859-506 0.207 18.794 −0.230 −0.003 −0.565 MS 2256-53859-530 0.200 18.682 −0.180 0.045 −0.518 MS 2256-53859-537 0.211 19.293 −0.277 −0.038 −0.563 MS 2256-53859-539 0.210 18.874 −0.174 0.056 −0.511 MS 2256-53859-546 0.196 18.505 −0.229 −0.008 −0.528 MS 2256-53859-566 0.231 18.824 −0.249 −0.021 −0.522 MS 2256-53859-571 0.199 18.654 −0.271 −0.047 −0.506 MS 2256-53859-575 0.162 18.591 −0.246 −0.023 −0.570 MS 2256-53859-576 0.190 18.548 −0.196 0.026 −0.557 MS 2256-53859-579 0.210 18.810 −0.303 −0.075 −0.532 MS 2256-53859-612 0.185 18.499 −0.242 −0.022 −0.528 MS (5) (6) (7) M15 1960-53289-441 0.399 17.582 −0.203 −0.009 −0.465 RGB 1960-53289-457 0.372 17.913 −0.206 −0.009 −0.472 RGB 1960-53289-500 0.450 17.169 −0.093 0.097 −0.481 RGB 1960-53289-522 0.416 16.909 −0.228 −0.041 −0.494 RGB 1960-53289-530 0.445 17.485 −0.211 −0.018 −0.393 RGB 1962-53321-364 0.392 17.583 −0.167 0.027 −0.489 RGB 1962-53321-375 0.393 17.758 −0.193 0.003 −0.497 RGB 1962-53321-376 0.396 17.515 −0.221 −0.027 −0.473 RGB 1962-53321-402 0.372 17.913 −0.264 −0.067 −0.481 RGB Continued on next page. . . 274 Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) (5) 1962-53321-403 0.383 17.887 −0.184 0.013 −0.488 RGB 1962-53321-406 0.383 17.944 −0.210 −0.012 −0.523 RGB 1962-53321-413 0.384 17.556 −0.183 0.010 −0.489 RGB 1962-53321-415 0.394 17.419 −0.155 0.038 −0.511 RGB 1962-53321-427 0.394 17.643 −0.179 0.016 −0.484 RGB 1962-53321-438 0.422 17.546 −0.186 0.008 −0.483 RGB 1962-53321-454 0.399 17.582 −0.196 −0.001 −0.485 RGB 1962-53321-466 0.416 17.520 −0.198 −0.005 −0.480 RGB 1962-53321-474 0.391 17.449 −0.194 −0.002 −0.485 RGB 1962-53321-506 0.416 17.378 −0.207 −0.015 −0.448 RGB 1962-53321-515 0.443 17.568 −0.219 −0.025 −0.474 RGB 1962-53321-532 0.382 17.487 −0.191 0.002 −0.510 RGB 1960-53289-401 0.485 16.078 −0.207 −0.028 −0.442 RGB 1960-53289-402 0.552 15.391 −0.113 0.059 −0.411 RGB 1960-53289-406 0.552 15.393 −0.153 0.020 −0.446 RGB 1960-53289-413 0.508 15.687 −0.186 −0.011 −0.464 RGB 1960-53289-419 0.542 15.433 −0.208 −0.035 −0.434 RGB 1960-53289-442 0.487 16.342 −0.238 −0.056 −0.437 RGB 1960-53289-459 0.515 15.076 −0.208 −0.039 −0.515 RGB 1960-53289-460 0.465 16.431 −0.221 −0.038 −0.471 RGB 1960-53289-511 0.509 16.568 −0.189 −0.005 −0.505 RGB 1960-53289-523 0.643 14.624 −0.159 0.005 −0.426 RGB Continued on next page. . . 275 δS(3839) CH(4300) Type (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) (5) 1960-53289-529 0.521 15.513 −0.130 0.043 −0.483 RGB 1960-53289-420 0.362 18.421 −0.201 0.002 −0.525 SGB 1960-53289-501 0.398 18.283 −0.215 −0.013 −0.553 SGB 1962-53321-323 0.269 18.400 −0.272 −0.070 −0.523 SGB 1962-53321-328 0.205 18.655 −0.271 −0.067 −0.530 SGB 1962-53321-329 0.269 18.522 −0.250 −0.047 −0.551 SGB 1962-53321-335 0.301 18.411 −0.274 −0.072 −0.516 SGB 1962-53321-368 0.227 18.553 −0.247 −0.043 −0.515 SGB 1962-53321-369 0.241 18.589 −0.300 −0.096 −0.543 SGB 1962-53321-370 0.279 18.453 −0.274 −0.071 −0.542 SGB 1962-53321-371 0.254 18.507 −0.234 −0.031 −0.522 SGB 1962-53321-372 0.285 18.371 −0.229 −0.027 −0.511 SGB 1962-53321-407 0.226 18.444 −0.260 −0.057 −0.526 SGB 1962-53321-414 0.275 18.472 −0.287 −0.084 −0.519 SGB 1962-53321-421 0.338 18.371 −0.266 −0.064 −0.473 SGB 1962-53321-423 0.363 18.205 −0.125 0.076 −0.466 SGB 1962-53321-442 0.178 18.727 −0.226 −0.020 −0.550 SGB 1962-53321-469 0.189 18.634 −0.258 −0.054 −0.531 SGB 1962-53321-470 0.235 18.633 −0.248 −0.044 −0.536 SGB 1962-53321-488 0.283 18.642 −0.256 −0.051 −0.530 SGB 1962-53321-493 0.367 18.324 −0.218 −0.016 −0.517 SGB 1962-53321-495 0.254 18.787 −0.300 −0.094 −0.523 SGB Continued on next page. . . 276 δS(3839) CH(4300) Type (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 1962-53321-496 0.237 18.773 −0.258 −0.052 −0.512 SGB 1962-53321-497 0.181 18.769 −0.248 −0.042 −0.539 SGB 1962-53321-500 0.256 18.396 −0.253 −0.051 −0.525 SGB 1962-53321-510 0.291 18.529 −0.246 −0.042 −0.522 SGB 1962-53321-516 0.398 18.283 −0.253 −0.052 −0.526 SGB 1962-53321-518 0.361 18.253 −0.239 −0.039 −0.504 SGB 1962-53321-520 0.276 18.619 −0.282 −0.077 −0.530 SGB 1962-53321-533 0.275 18.638 −0.279 −0.074 −0.517 SGB 1962-53321-549 0.296 18.326 −0.285 −0.083 −0.528 SGB 1962-53321-550 0.362 18.421 −0.282 −0.079 −0.530 SGB 1962-53321-558 0.289 18.344 −0.257 −0.056 −0.530 SGB 1962-53321-339 0.138 19.041 −0.330 −0.122 −0.550 MS 1962-53321-363 0.211 19.252 −0.204 0.007 −0.505 MS 1962-53321-378 0.191 19.052 −0.242 −0.033 −0.539 MS 1962-53321-399 0.196 18.831 −0.307 −0.100 −0.537 MS 1962-53321-409 0.154 19.145 −0.340 −0.130 −0.536 MS 1962-53321-412 0.174 18.872 −0.315 −0.108 −0.514 MS 1962-53321-416 0.160 19.081 −0.279 −0.070 −0.498 MS 1962-53321-419 0.181 19.268 −0.288 −0.077 −0.540 MS 1962-53321-422 0.228 19.094 −0.212 −0.003 −0.522 MS 1962-53321-424 0.170 18.952 −0.348 −0.140 −0.515 MS 1962-53321-428 0.165 18.951 −0.285 −0.077 −0.542 MS Continued on next page. . . 277 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 1962-53321-430 0.204 19.211 −0.279 −0.068 −0.521 MS 1962-53321-445 0.148 19.341 −0.201 0.011 −0.534 MS 1962-53321-449 0.196 19.374 −0.315 −0.103 −0.518 MS 1962-53321-460 0.224 19.363 −0.281 −0.069 −0.510 MS 1962-53321-465 0.145 18.942 −0.273 −0.066 −0.527 MS 1962-53321-471 0.153 18.829 −0.303 −0.096 −0.535 MS 1962-53321-478 0.224 19.724 −0.265 −0.049 −0.497 MS 1962-53321-480 0.211 18.991 −0.234 −0.026 −0.520 MS 1962-53321-483 0.206 19.211 −0.297 −0.086 −0.515 MS 1962-53321-484 0.210 19.188 −0.270 −0.060 −0.507 MS 1962-53321-490 0.258 18.893 −0.257 −0.050 −0.520 MS 1962-53321-503 0.197 18.961 −0.246 −0.038 −0.547 MS 1962-53321-505 0.161 19.488 −0.240 −0.027 −0.520 MS 1962-53321-509 0.254 19.260 −0.228 −0.017 −0.504 MS 1962-53321-512 0.248 19.508 −0.322 −0.108 −0.493 MS 1962-53321-519 0.162 19.058 −0.261 −0.052 −0.548 MS 1962-53321-522 0.155 19.128 −0.209 0.001 −0.568 MS 1962-53321-539 0.194 18.815 −0.289 −0.082 −0.516 MS 1962-53321-540 0.194 19.401 −0.281 −0.068 −0.520 MS 1962-53321-543 0.274 18.916 −0.216 −0.009 −0.532 MS 1962-53321-545 0.299 19.107 −0.332 −0.122 −0.530 MS 1962-53321-554 0.174 19.385 −0.236 −0.024 −0.482 MS Continued on next page. . . 278 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 1962-53321-555 0.258 19.532 −0.334 δS(3839) CH(4300) Type (5) (6) (7) −0.120 −0.519 MS NGC 5053 2476-53826-486 0.462 17.746 −0.126 0.058 −0.429 RGB 2476-53826-497 0.451 18.201 −0.098 0.098 −0.442 RGB 2476-53826-488 0.686 15.780 −0.119 0.017 −0.432 RGB 2476-53826-501 0.632 15.988 −0.182 −0.042 −0.443 RGB 2476-53826-505 0.485 16.302 −0.221 −0.072 −0.523 RGB 2476-53826-507 0.530 16.939 −0.101 0.063 −0.450 RGB 2476-53826-508 0.532 16.803 −0.131 0.030 −0.447 RGB 2476-53826-519 0.787 15.223 −0.104 0.018 −0.450 RGB 2476-53826-527 0.651 15.862 −0.115 0.023 −0.467 RGB 2476-53826-573 0.529 17.197 −0.169 0.002 −0.447 RGB 2476-53826-575 0.724 15.518 −0.160 −0.031 −0.432 RGB 2476-53826-577 0.546 16.942 −0.214 −0.050 −0.428 RGB 2476-53826-578 0.698 15.602 −0.111 0.020 −0.450 RGB M53 2476-53826-329 0.503 17.999 −0.258 −0.036 −0.429 RGB 2476-53826-405 0.494 18.055 −0.049 0.175 −0.377 RGB 2476-53826-413 0.535 17.791 −0.188 0.029 −0.444 RGB 2476-53826-418 0.504 18.063 −0.032 0.192 −0.465 RGB 2476-53826-361 0.638 16.908 −0.166 0.026 −0.359 RGB 2476-53826-372 0.546 16.868 −0.209 −0.017 −0.450 RGB Continued on next page. . . 279 Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) δS(3839) CH(4300) Type (1) (2) (3) (4) 2476-53826-375 0.544 17.094 0.041 0.239 −0.435 RGB 2476-53826-378 0.618 16.225 −0.159 0.016 −0.457 RGB 2476-53826-401 0.531 17.438 −0.154 0.053 −0.369 RGB 2476-53826-404 0.749 15.836 −0.011 0.153 −0.431 RGB 2476-53826-409 0.508 17.321 −0.052 0.152 −0.419 RGB 2476-53826-451 0.602 16.775 −0.257 −0.068 −0.367 RGB 2476-53826-452 0.503 17.369 −0.192 0.013 −0.387 RGB (5) (6) (7) M2 1961-53299-140 0.471 17.276 −0.037 0.207 −0.462 RGB 1961-53299-213 0.467 17.182 −0.032 0.206 −0.463 RGB 1963-54331-098 0.495 17.576 −0.065 0.199 −0.438 RGB 1963-54331-121 0.487 17.536 0.018 0.280 −0.453 RGB 1963-54331-126 0.451 18.287 −0.063 0.247 −0.449 RGB 1963-54331-128 0.470 18.253 −0.006 0.302 −0.422 RGB 1963-54331-131 0.457 18.210 −0.011 0.294 −0.441 RGB 1963-54331-137 0.475 17.895 −0.172 0.113 −0.413 RGB 1963-54331-139 0.483 17.919 −0.147 0.139 −0.414 RGB 1963-54331-144 0.471 17.663 −0.211 0.059 −0.393 RGB 1963-54331-164 0.434 18.434 −0.178 0.142 −0.432 RGB 1963-54331-178 0.423 18.477 −0.164 0.158 −0.408 RGB 1963-54331-204 0.488 17.953 −0.255 0.033 −0.394 RGB 1963-54331-208 0.461 17.815 −0.245 0.034 −0.418 RGB Continued on next page. . . 280 Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) (5) 1963-54331-209 0.412 18.339 −0.106 0.207 −0.450 RGB 1963-54331-211 0.463 18.346 −0.116 0.198 −0.430 RGB 1963-54331-217 0.461 17.824 −0.059 0.221 −0.456 RGB 1963-54331-218 0.451 17.963 −0.158 0.131 −0.444 RGB 1961-53299-124 0.598 16.087 −0.184 −0.017 −0.358 RGB 1961-53299-125 0.592 15.997 0.175 0.336 −0.378 RGB 1961-53299-131 0.555 16.680 −0.219 −0.014 −0.372 RGB 1961-53299-134 0.701 15.105 0.174 0.277 −0.397 RGB 1961-53299-136 0.529 16.913 −0.243 −0.022 −0.378 RGB 1961-53299-144 0.470 16.940 −0.003 0.219 −0.464 RGB 1961-53299-152 0.570 16.618 −0.037 0.164 −0.415 RGB 1961-53299-159 0.492 16.866 −0.028 0.189 −0.452 RGB 1961-53299-215 0.581 16.353 0.026 0.211 −0.392 RGB 1963-54331-043 0.394 18.766 −0.128 0.213 −0.496 SGB 1963-54331-083 0.342 18.907 −0.204 0.147 −0.514 SGB 1963-54331-090 0.354 18.869 −0.167 0.181 −0.466 SGB 1963-54331-091 0.496 18.520 −0.287 0.038 −0.422 SGB 1963-54331-096 0.326 18.954 −0.087 0.267 −0.504 SGB 1963-54331-100 0.340 18.929 −0.286 0.065 −0.441 SGB 1963-54331-102 0.294 18.951 −0.190 0.163 −0.506 SGB 1963-54331-114 0.244 19.245 −0.195 0.177 −0.543 SGB 1963-54331-123 0.415 18.695 −0.132 0.205 −0.452 SGB Continued on next page. . . 281 δS(3839) CH(4300) Type (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) (5) 1963-54331-124 0.263 19.069 −0.280 0.081 −0.571 SGB 1963-54331-143 0.352 18.808 −0.182 0.162 −0.473 SGB 1963-54331-145 0.375 18.911 −0.200 0.150 −0.453 SGB 1963-54331-146 0.231 19.186 −0.241 0.127 −0.518 SGB 1963-54331-147 0.211 19.252 −0.225 0.147 −0.516 SGB 1963-54331-148 0.380 18.896 −0.122 0.228 −0.459 SGB 1963-54331-150 0.302 18.980 −0.222 0.133 −0.555 SGB 1963-54331-179 0.234 19.219 −0.167 0.203 −0.494 SGB 1963-54331-180 0.415 18.721 −0.144 0.195 −0.490 SGB 1963-54331-181 0.201 19.174 −0.329 0.039 −0.511 SGB 1963-54331-184 0.414 18.640 −0.185 0.148 −0.478 SGB 1963-54331-189 0.215 19.273 −0.243 0.131 −0.535 SGB 1963-54331-194 0.272 19.216 −0.207 0.164 −0.552 SGB 1963-54331-196 0.157 19.245 −0.283 0.089 −0.528 SGB 1963-54331-201 0.390 18.658 −0.116 0.218 −0.481 SGB 1963-54331-206 0.218 19.258 −0.329 0.044 −0.523 SGB 1963-54331-212 0.423 18.636 −0.315 0.018 −0.441 SGB 1963-54331-223 0.273 19.280 −0.263 0.112 −0.508 SGB 1963-54331-254 0.237 19.273 −0.362 0.012 −0.536 SGB 1963-54331-041 0.246 19.492 −0.258 −0.126 −0.514 MS 1963-54331-045 0.214 19.350 −0.144 −0.022 −0.562 MS 1963-54331-082 0.271 19.536 −0.156 −0.022 −0.485 MS Continued on next page. . . 282 δS(3839) CH(4300) Type (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) δS(3839) CH(4300) Type (1) (2) (3) (4) 1963-54331-154 0.224 19.588 −0.226 −0.088 −0.554 MS 1963-54331-156 0.211 19.443 −0.239 −0.111 −0.564 MS 1963-54331-162 0.200 19.585 −0.161 −0.023 −0.537 MS 1963-54331-169 0.233 19.599 −0.181 −0.043 −0.558 MS 1963-54331-170 0.166 19.483 −0.252 −0.121 −0.563 MS 1963-54331-185 0.201 19.507 −0.329 −0.197 −0.527 MS 1963-54331-186 0.188 19.654 −0.238 −0.096 −0.509 MS 1963-54331-197 0.203 19.581 −0.183 −0.046 −0.553 MS 1963-54331-200 0.221 19.563 −0.274 −0.138 −0.537 MS 1963-54331-207 0.230 19.495 −0.187 −0.055 −0.558 MS 1963-54331-220 0.227 19.336 −0.287 −0.166 −0.506 MS 1963-54331-222 0.199 19.344 −0.233 −0.111 −0.508 MS (5) (6) (7) M13 2174-53521-087 0.462 17.258 −0.117 0.100 −0.431 RGB 2174-53521-094 0.464 17.245 −0.270 −0.053 −0.409 RGB 2174-53521-121 0.543 16.227 −0.031 0.167 −0.437 RGB 2174-53521-126 0.478 17.014 −0.048 0.164 −0.487 RGB 2174-53521-128 0.458 17.480 0.181 0.402 −0.445 RGB 2174-53521-133 0.495 16.876 −0.075 0.135 −0.424 RGB 2174-53521-134 0.452 17.284 −0.190 0.028 −0.422 RGB 2174-53521-155 0.514 16.521 −0.008 0.196 −0.431 RGB 2174-53521-407 0.518 16.612 −0.215 −0.010 −0.394 RGB Continued on next page. . . 283 Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) (5) 2174-53521-412 0.506 17.467 −0.051 0.169 −0.489 RGB 2174-53521-414 0.547 17.456 −0.091 0.129 −0.442 RGB 2174-53521-456 0.463 17.371 −0.075 0.144 −0.473 RGB 2174-53521-461 0.465 17.359 −0.216 0.003 −0.408 RGB 2174-53521-471 0.538 16.278 −0.113 0.086 −0.406 RGB 2174-53521-480 0.489 16.899 −0.124 0.086 −0.415 RGB 2174-53521-529 0.520 16.474 −0.216 −0.013 −0.381 RGB 2174-53521-563 0.516 16.408 −0.119 0.083 −0.397 RGB 2255-53565-114 0.466 17.080 −0.097 0.117 −0.467 RGB 2255-53565-116 0.540 16.291 −0.132 0.068 −0.396 RGB 2255-53565-437 0.454 17.471 −0.122 0.099 −0.467 RGB 2255-53565-476 0.469 17.172 −0.082 0.133 −0.426 RGB 2255-53565-490 0.514 16.279 −0.049 0.151 −0.429 RGB 2255-53565-556 0.464 17.253 −0.076 0.141 −0.462 RGB 2255-53565-597 0.523 16.411 −0.133 0.069 −0.391 RGB 2174-53521-082 0.579 15.424 0.066 0.250 −0.387 RGB 2174-53521-093 0.636 15.225 −0.167 0.014 −0.352 RGB 2174-53521-098 0.586 15.525 −0.191 −0.005 −0.372 RGB 2174-53521-137 0.560 15.567 0.054 0.241 −0.438 RGB 2174-53521-145 0.655 14.969 −0.011 0.165 −0.361 RGB 2174-53521-154 0.609 15.058 0.121 0.299 −0.386 RGB 2174-53521-156 0.589 15.656 0.029 0.217 −0.399 RGB Continued on next page. . . 284 δS(3839) CH(4300) Type (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 2174-53521-158 0.523 15.567 0.041 0.228 −0.395 RGB 2174-53521-159 0.619 15.025 0.132 0.309 −0.438 RGB 2174-53521-160 0.589 15.354 0.073 0.256 −0.434 RGB 2174-53521-166 0.585 15.623 −0.185 0.003 −0.361 RGB 2174-53521-167 0.626 14.817 0.144 0.317 −0.427 RGB 2174-53521-168 0.579 15.244 0.120 0.301 −0.420 RGB 2174-53521-171 0.660 14.958 −0.041 0.135 −0.353 RGB 2174-53521-172 0.609 15.298 0.088 0.269 −0.371 RGB 2174-53521-176 0.565 15.730 −0.079 0.110 −0.359 RGB 2174-53521-215 0.564 15.346 −0.059 0.124 −0.377 RGB 2174-53521-376 0.571 15.783 0.007 0.198 −0.429 RGB 2174-53521-410 0.635 15.329 0.053 0.235 −0.384 RGB 2174-53521-413 0.571 15.535 0.051 0.237 −0.452 RGB 2174-53521-443 0.587 15.333 0.087 0.269 −0.438 RGB 2174-53521-449 0.584 15.349 0.081 0.264 −0.406 RGB 2174-53521-452 0.608 15.112 −0.193 −0.015 −0.358 RGB 2174-53521-453 0.609 15.286 −0.155 0.027 −0.372 RGB 2174-53521-455 0.599 15.378 0.086 0.270 −0.388 RGB 2174-53521-457 0.617 15.178 0.065 0.245 −0.390 RGB 2174-53521-458 0.611 15.068 0.130 0.307 −0.414 RGB 2174-53521-459 0.558 15.201 0.047 0.227 −0.363 RGB 2174-53521-460 0.621 14.823 0.138 0.311 −0.443 RGB Continued on next page. . . 285 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 2174-53521-462 0.617 15.126 −0.194 −0.016 −0.351 RGB 2174-53521-463 0.576 15.630 0.076 0.264 −0.420 RGB 2174-53521-470 0.624 14.850 0.138 0.312 −0.403 RGB 2174-53521-476 0.544 15.727 0.334 0.523 −0.367 RGB 2174-53521-477 0.634 15.217 −0.153 0.027 −0.352 RGB 2174-53521-478 0.580 15.422 0.069 0.253 −0.430 RGB 2174-53521-483 0.609 15.141 0.077 0.256 −0.382 RGB 2174-53521-484 0.629 15.187 −0.018 0.162 −0.365 RGB 2174-53521-485 0.549 15.489 0.044 0.229 −0.449 RGB 2174-53521-488 0.573 15.725 −0.060 0.129 −0.373 RGB 2174-53521-489 0.604 15.576 0.083 0.270 −0.435 RGB 2174-53521-493 0.604 15.088 0.042 0.220 −0.407 RGB 2174-53521-494 0.620 15.143 0.092 0.271 −0.435 RGB 2174-53521-495 0.573 15.998 −0.110 0.085 −0.396 RGB 2174-53521-497 0.628 15.410 0.100 0.283 −0.422 RGB 2174-53521-498 0.600 15.122 0.023 0.202 −0.376 RGB 2174-53521-499 0.607 15.089 0.135 0.313 −0.416 RGB 2174-53521-500 0.602 15.302 −0.169 0.013 −0.365 RGB 2174-53521-522 0.584 15.503 0.083 0.269 −0.417 RGB 2174-53521-530 0.620 15.287 0.112 0.294 −0.393 RGB 2174-53521-531 0.615 15.229 −0.196 −0.016 −0.354 RGB 2174-53521-537 0.532 15.965 −0.033 0.161 −0.396 RGB Continued on next page. . . 286 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 2174-53521-538 0.630 15.042 0.079 0.256 −0.382 RGB 2174-53521-542 0.616 15.276 0.092 0.273 −0.383 RGB 2174-53521-554 0.562 15.843 −0.022 0.169 −0.409 RGB 2255-53565-112 0.636 15.225 −0.184 −0.003 −0.347 RGB 2255-53565-120 0.586 15.525 −0.175 0.010 −0.374 RGB 2255-53565-143 0.544 15.959 0.006 0.199 −0.415 RGB 2255-53565-144 0.523 15.567 0.019 0.206 −0.397 RGB 2255-53565-148 0.557 15.819 0.096 0.287 −0.412 RGB 2255-53565-153 0.564 15.684 0.050 0.238 −0.415 RGB 2255-53565-157 0.623 15.107 −0.188 −0.010 −0.347 RGB 2255-53565-171 0.589 15.354 0.074 0.257 −0.439 RGB 2255-53565-175 0.565 15.730 −0.065 0.124 −0.370 RGB 2255-53565-426 0.571 15.535 0.071 0.257 −0.444 RGB 2255-53565-483 0.617 15.126 −0.188 −0.010 −0.349 RGB 2255-53565-485 0.561 15.581 0.060 0.247 −0.430 RGB 2255-53565-486 0.603 15.229 0.104 0.284 −0.358 RGB 2255-53565-495 0.630 14.660 −0.160 0.010 −0.352 RGB 2255-53565-496 0.624 14.850 0.091 0.265 −0.400 RGB 2255-53565-504 0.637 14.477 −0.011 0.156 −0.378 RGB 2255-53565-510 0.576 15.630 0.065 0.253 −0.415 RGB 2255-53565-512 0.600 15.122 0.060 0.238 −0.382 RGB 2255-53565-515 0.544 15.727 0.314 0.504 −0.350 RGB Continued on next page. . . 287 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 2255-53565-520 0.602 14.930 0.019 0.194 −0.454 RGB 2255-53565-542 0.584 15.503 0.084 0.269 −0.418 RGB 2255-53565-543 0.604 15.576 0.069 0.256 −0.427 RGB 2255-53565-544 0.606 15.131 0.048 0.227 −0.427 RGB 2255-53565-545 0.591 15.473 0.073 0.258 −0.442 RGB 2255-53565-548 0.628 15.410 0.099 0.283 −0.421 RGB 2255-53565-550 0.573 15.725 −0.074 0.116 −0.372 RGB 2255-53565-551 0.615 15.229 −0.197 −0.016 −0.346 RGB 2255-53565-552 0.639 14.555 0.155 0.323 −0.412 RGB 2255-53565-553 0.585 15.382 0.091 0.274 −0.430 RGB 2255-53565-557 0.630 15.042 0.091 0.268 −0.389 RGB 2255-53565-559 0.644 14.741 0.037 0.209 −0.427 RGB 2255-53565-586 0.636 14.521 −0.173 −0.005 −0.453 RGB 2255-53565-589 0.620 15.287 0.104 0.286 −0.395 RGB 2174-53521-054 0.423 17.814 −0.249 −0.022 −0.515 SGB 2174-53521-131 0.267 18.175 −0.219 0.015 −0.347 SGB 2174-53521-146 0.427 17.680 −0.144 0.080 −0.479 SGB 2174-53521-149 0.422 17.781 −0.159 0.067 −0.466 SGB 2174-53521-174 0.426 17.904 −0.001 0.228 −0.474 SGB 2174-53521-368 0.461 17.507 −0.230 −0.009 −0.433 SGB 2174-53521-402 0.412 17.810 −0.193 0.034 −0.441 SGB 2174-53521-403 0.373 17.981 −0.142 0.088 −0.492 SGB Continued on next page. . . 288 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) (5) 2174-53521-406 0.406 17.893 −0.157 0.072 −0.465 SGB 2174-53521-445 0.403 17.893 −0.131 0.098 −0.500 SGB 2174-53521-447 0.443 17.683 −0.123 0.101 −0.477 SGB 2174-53521-474 0.459 17.612 −0.128 0.096 −0.452 SGB 2174-53521-481 0.408 17.867 −0.129 0.099 −0.462 SGB 2174-53521-533 0.437 17.797 −0.181 0.046 −0.465 SGB 2174-53521-539 0.473 17.657 −0.203 0.022 −0.399 SGB 2174-53521-560 0.528 17.547 −0.150 0.072 −0.445 SGB 2174-53521-565 0.422 17.915 −0.255 −0.026 −0.451 SGB 2174-53521-573 0.369 17.961 −0.254 −0.025 −0.427 SGB 2174-53521-576 0.449 17.672 −0.120 0.105 −0.428 SGB 2174-53521-577 0.421 17.902 −0.172 0.056 −0.447 SGB 2185-53532-141 0.227 18.392 −0.249 −0.012 −0.525 SGB 2185-53532-153 0.379 18.098 −0.241 −0.009 −0.494 SGB 2185-53532-237 0.286 18.063 −0.243 −0.011 −0.523 SGB 2185-53532-388 0.240 18.283 −0.270 −0.035 −0.524 SGB 2185-53532-425 0.262 18.304 −0.241 −0.005 −0.539 SGB 2185-53532-426 0.336 18.012 −0.192 0.038 −0.509 SGB 2185-53532-427 0.350 18.001 −0.178 0.052 −0.522 SGB 2185-53532-439 0.278 18.125 −0.232 0.001 −0.520 SGB 2185-53532-461 0.234 18.368 −0.241 −0.005 −0.546 SGB 2185-53532-462 0.273 18.194 −0.232 0.001 −0.519 SGB Continued on next page. . . 289 δS(3839) CH(4300) Type (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 2185-53532-481 0.270 18.195 −0.262 −0.028 −0.523 SGB 2185-53532-482 0.311 18.100 −0.236 −0.004 −0.514 SGB 2185-53532-487 0.271 18.319 −0.255 −0.019 −0.529 SGB 2185-53532-492 0.285 18.167 −0.263 −0.030 −0.520 SGB 2185-53532-493 0.219 18.347 −0.248 −0.011 −0.522 SGB 2185-53532-506 0.372 18.036 −0.184 0.047 −0.502 SGB 2185-53532-512 0.252 18.258 −0.254 −0.019 −0.515 SGB 2185-53532-520 0.261 18.398 −0.254 −0.016 −0.528 SGB 2185-53532-543 0.266 18.284 −0.216 0.020 −0.527 SGB 2185-53532-553 0.334 18.065 −0.214 0.018 −0.486 SGB 2185-53532-554 0.269 18.347 −0.249 −0.012 −0.533 SGB 2255-53565-103 0.383 17.974 −0.155 0.075 −0.509 SGB 2255-53565-115 0.394 17.934 −0.169 0.060 −0.506 SGB 2255-53565-173 0.453 17.636 −0.131 0.093 −0.428 SGB 2255-53565-424 0.424 17.789 −0.130 0.096 −0.429 SGB 2255-53565-425 0.396 17.915 −0.152 0.077 −0.433 SGB 2255-53565-432 0.389 17.981 −0.190 0.040 −0.451 SGB 2255-53565-466 0.391 17.856 −0.142 0.085 −0.482 SGB 2185-53532-106 0.275 19.687 −0.197 0.064 −0.494 MS 2185-53532-111 0.242 18.572 −0.259 −0.018 −0.541 MS 2185-53532-113 0.333 19.812 −0.193 0.070 −0.569 MS 2185-53532-116 0.258 19.363 −0.252 0.003 −0.506 MS Continued on next page. . . 290 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 2185-53532-120 0.282 19.189 −0.280 −0.028 −0.534 MS 2185-53532-143 0.245 18.517 −0.186 0.053 −0.520 MS 2185-53532-146 0.294 19.753 −0.386 −0.124 −0.544 MS 2185-53532-148 0.251 18.997 −0.262 −0.013 −0.538 MS 2185-53532-150 0.238 18.782 −0.260 −0.015 −0.537 MS 2185-53532-151 0.279 19.422 −0.158 0.098 −0.535 MS 2185-53532-152 0.216 18.796 −0.268 −0.023 −0.542 MS 2185-53532-154 0.267 19.689 −0.238 0.023 −0.510 MS 2185-53532-156 0.267 19.033 −0.250 −0.001 −0.527 MS 2185-53532-158 0.252 18.930 −0.257 −0.010 −0.558 MS 2185-53532-160 0.236 19.196 −0.259 −0.007 −0.545 MS 2185-53532-161 0.260 19.647 −0.286 −0.026 −0.471 MS 2185-53532-167 0.224 18.742 −0.251 −0.008 −0.531 MS 2185-53532-169 0.251 19.007 −0.305 −0.056 −0.541 MS 2185-53532-171 0.293 19.837 −0.017 0.246 −0.516 MS 2185-53532-172 0.238 18.769 −0.278 −0.034 −0.522 MS 2185-53532-175 0.187 18.804 −0.277 −0.032 −0.529 MS 2185-53532-176 0.240 18.810 −0.300 −0.055 −0.514 MS 2185-53532-177 0.217 18.859 −0.294 −0.048 −0.522 MS 2185-53532-178 0.250 19.076 −0.268 −0.019 −0.547 MS 2185-53532-179 0.229 18.436 −0.262 −0.024 −0.527 MS 2185-53532-181 0.236 18.742 −0.324 −0.080 −0.520 MS Continued on next page. . . 291 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 2185-53532-196 0.270 19.028 −0.258 −0.009 −0.522 MS 2185-53532-197 0.259 19.108 −0.282 −0.032 −0.534 MS 2185-53532-198 0.262 18.883 −0.276 −0.029 −0.523 MS 2185-53532-200 0.286 19.754 −0.174 0.088 −0.535 MS 2185-53532-390 0.263 19.372 −0.263 −0.008 −0.517 MS 2185-53532-393 0.375 19.913 −0.256 0.009 −0.514 MS 2185-53532-423 0.243 18.879 −0.278 −0.032 −0.534 MS 2185-53532-424 0.265 19.227 −0.259 −0.006 −0.540 MS 2185-53532-428 0.276 19.180 −0.235 0.016 −0.513 MS 2185-53532-430 0.296 19.686 −0.279 −0.019 −0.513 MS 2185-53532-431 0.288 19.867 −0.244 0.020 −0.505 MS 2185-53532-433 0.376 19.927 −0.260 0.005 −0.483 MS 2185-53532-435 0.245 19.031 −0.242 0.007 −0.519 MS 2185-53532-440 0.280 19.727 −0.269 −0.008 −0.507 MS 2185-53532-464 0.276 19.434 −0.261 −0.005 −0.523 MS 2185-53532-466 0.197 18.790 −0.219 0.025 −0.528 MS 2185-53532-469 0.233 18.983 −0.283 −0.035 −0.523 MS 2185-53532-473 0.266 19.259 −0.238 0.015 −0.535 MS 2185-53532-475 0.292 18.585 −0.257 −0.016 −0.515 MS 2185-53532-476 0.324 19.062 −0.210 0.040 −0.527 MS 2185-53532-477 0.311 19.570 −0.203 0.056 −0.503 MS 2185-53532-478 0.311 19.009 −0.193 0.056 −0.522 MS Continued on next page. . . 292 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 2185-53532-479 0.331 19.447 −0.259 −0.003 −0.535 MS 2185-53532-480 0.300 19.678 −0.170 0.091 −0.500 MS 2185-53532-483 0.265 19.130 −0.226 0.025 −0.526 MS 2185-53532-485 0.230 18.446 −0.284 −0.046 −0.528 MS 2185-53532-486 0.232 19.404 −0.242 0.013 −0.521 MS 2185-53532-488 0.270 19.547 −0.214 0.044 −0.535 MS 2185-53532-489 0.217 19.029 −0.214 0.034 −0.497 MS 2185-53532-490 0.270 19.343 −0.202 0.053 −0.520 MS 2185-53532-494 0.287 19.210 −0.247 0.005 −0.521 MS 2185-53532-495 0.230 18.657 −0.261 −0.019 −0.534 MS 2185-53532-496 0.332 19.899 −0.254 0.010 −0.485 MS 2185-53532-497 0.320 19.585 −0.193 0.066 −0.486 MS 2185-53532-498 0.267 18.689 −0.257 −0.015 −0.537 MS 2185-53532-499 0.229 18.733 −0.253 −0.009 −0.540 MS 2185-53532-500 0.194 19.108 −0.252 −0.002 −0.518 MS 2185-53532-504 0.225 18.726 −0.258 −0.014 −0.508 MS 2185-53532-507 0.301 19.165 −0.170 0.082 −0.533 MS 2185-53532-508 0.167 18.999 −0.190 0.058 −0.522 MS 2185-53532-511 0.292 19.856 −0.243 0.021 −0.456 MS 2185-53532-513 0.272 18.920 −0.252 −0.005 −0.508 MS 2185-53532-514 0.254 19.263 −0.250 0.003 −0.521 MS 2185-53532-515 0.236 18.936 −0.250 −0.003 −0.540 MS Continued on next page. . . 293 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) (5) 2185-53532-516 0.298 19.869 −0.226 0.038 −0.491 MS 2185-53532-517 0.315 19.904 −0.187 0.078 −0.469 MS 2185-53532-519 0.231 18.973 −0.203 0.045 −0.536 MS 2185-53532-534 0.281 18.601 −0.241 0.000 −0.525 MS 2185-53532-537 0.258 18.767 −0.228 0.016 −0.533 MS 2185-53532-539 0.278 19.508 −0.217 0.040 −0.494 MS 2185-53532-540 0.253 19.204 −0.257 −0.005 −0.518 MS 2185-53532-541 0.323 19.867 −0.196 0.068 −0.530 MS 2185-53532-542 0.312 19.432 −0.263 −0.007 −0.530 MS 2185-53532-544 0.243 18.847 −0.249 −0.003 −0.526 MS 2185-53532-545 0.292 19.061 −0.230 0.019 −0.513 MS 2185-53532-546 0.320 19.915 −0.247 0.018 −0.464 MS 2185-53532-547 0.360 19.909 −0.259 0.006 −0.483 MS 2185-53532-548 0.361 19.959 −0.124 0.142 −0.545 MS 2185-53532-549 0.382 19.507 −0.276 −0.018 −0.460 MS 2185-53532-550 0.286 19.738 −0.189 0.073 −0.486 MS 2185-53532-551 0.310 19.909 −0.143 0.122 −0.465 MS 2185-53532-552 0.251 18.899 −0.252 −0.005 −0.522 MS 2185-53532-555 0.303 19.342 −0.224 0.031 −0.515 MS 2185-53532-556 0.281 19.376 −0.238 0.017 −0.547 MS 2185-53532-557 0.266 18.690 −0.291 −0.048 −0.529 MS 2185-53532-558 0.264 18.577 −0.262 −0.022 −0.516 MS Continued on next page. . . 294 δS(3839) CH(4300) Type (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) δS(3839) CH(4300) Type (1) (2) (3) (4) 2185-53532-559 0.254 18.915 −0.277 −0.030 −0.518 MS 2185-53532-560 0.261 18.421 −0.256 −0.018 −0.535 MS 2185-53532-575 0.349 19.769 −0.209 0.053 −0.542 MS 2185-53532-577 0.260 19.163 −0.253 −0.002 −0.515 MS 2185-53532-581 0.296 19.299 −0.228 0.026 −0.515 MS 2185-53532-584 0.199 19.257 −0.196 0.057 −0.522 MS 2185-53532-585 0.290 19.137 −0.245 0.006 −0.501 MS 2185-53532-587 0.293 19.806 −0.163 0.100 −0.498 MS 2185-53532-589 0.241 18.974 −0.238 0.010 −0.529 MS 2185-53532-591 0.228 18.773 −0.245 −0.001 −0.526 MS 2185-53532-592 0.247 19.454 −0.284 −0.028 −0.515 MS 2185-53532-593 0.229 18.893 −0.248 −0.001 −0.525 MS 2185-53532-594 0.293 19.523 −0.188 0.070 −0.517 MS 2185-53532-596 0.357 19.876 −0.301 −0.036 −0.494 MS 2185-53532-598 0.262 19.415 −0.201 0.055 −0.528 MS 2185-53532-599 0.263 19.391 −0.180 0.075 −0.508 MS 2185-53532-600 0.303 19.845 −0.234 0.030 −0.471 MS 2255-53565-436 0.369 20.193 −0.018 0.251 −0.423 MS 2255-53565-518 0.456 20.561 −0.159 0.117 −0.370 MS (5) (6) (7) M3 2475-53845-145 0.567 15.116 −0.096 −0.032 −0.468 AGB 2475-53845-150 0.635 14.933 −0.156 −0.115 −0.425 AGB Continued on next page. . . 295 Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 2475-53845-162 0.590 15.176 −0.113 −0.042 −0.425 AGB 2475-53845-173 0.636 15.115 −0.125 −0.061 −0.409 AGB 2475-53845-199 0.633 14.936 −0.024 0.017 −0.434 AGB 2475-53845-463 0.578 15.139 −0.150 −0.083 −0.455 AGB 2475-53845-471 0.576 15.103 −0.071 −0.009 −0.471 AGB 2475-53845-479 0.603 14.984 −0.138 −0.091 −0.439 AGB 2475-53845-486 0.569 14.507 0.168 0.155 −0.349 AGB 2475-53845-506 0.658 14.816 −0.082 −0.056 −0.398 AGB 2475-53845-511 0.613 15.134 −0.136 −0.069 −0.408 AGB 2475-53845-118 0.485 17.492 −0.229 0.134 −0.443 RGB 2475-53845-183 0.575 16.382 −0.244 −0.021 −0.371 RGB 2475-53845-185 0.508 17.131 −0.101 0.217 −0.398 RGB 2475-53845-192 0.574 16.891 −0.162 0.126 −0.394 RGB 2475-53845-200 0.508 17.238 0.034 0.365 −0.385 RGB 2475-53845-430 0.523 17.342 0.003 0.347 −0.443 RGB 2475-53845-469 0.528 16.634 −0.017 0.238 −0.387 RGB 2475-53845-487 0.486 17.760 −0.256 0.141 −0.438 RGB 2475-53845-501 0.550 16.335 −0.063 0.154 −0.375 RGB 2475-53845-507 0.491 17.033 −0.129 0.177 −0.401 RGB 2475-53845-550 0.461 17.683 −0.163 0.224 −0.395 RGB 2475-53845-557 0.545 16.703 0.077 0.340 −0.397 RGB 2475-53845-116 0.714 15.109 −0.014 0.049 −0.331 RGB Continued on next page. . . 296 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) (1) (2) (3) (4) 2475-53845-119 0.608 16.003 −0.177 −0.002 −0.350 RGB 2475-53845-120 0.575 16.254 −0.221 −0.013 −0.361 RGB 2475-53845-141 0.676 15.471 −0.099 0.009 −0.332 RGB 2475-53845-142 0.672 15.427 −0.058 0.045 −0.335 RGB 2475-53845-143 0.631 15.621 −0.166 −0.038 −0.336 RGB 2475-53845-144 0.624 15.915 −0.169 −0.004 −0.339 RGB 2475-53845-160 0.602 15.631 −0.200 −0.071 −0.349 RGB 2475-53845-171 0.684 15.421 −0.076 0.027 −0.331 RGB 2475-53845-176 0.740 14.720 −0.089 −0.075 −0.353 RGB 2475-53845-177 0.596 15.806 0.129 0.280 −0.338 RGB 2475-53845-178 0.624 15.715 −0.191 −0.052 −0.347 RGB 2475-53845-186 0.688 15.265 −0.108 −0.025 −0.331 RGB 2475-53845-196 0.645 15.513 −0.125 −0.011 −0.342 RGB 2475-53845-198 0.711 15.040 0.270 0.324 −0.389 RGB 2475-53845-421 0.755 14.656 0.007 0.013 −0.348 RGB 2475-53845-436 0.724 14.956 0.314 0.357 −0.346 RGB 2475-53845-440 0.686 15.039 0.245 0.299 −0.380 RGB 2475-53845-461 0.641 15.477 −0.147 −0.037 −0.373 RGB 2475-53845-466 0.650 15.360 −0.127 −0.033 −0.379 RGB 2475-53845-473 0.681 14.981 0.202 0.249 −0.373 RGB 2475-53845-475 0.636 15.547 −0.085 0.033 −0.374 RGB 2475-53845-480 0.638 15.350 0.204 0.297 −0.393 RGB Continued on next page. . . 297 δS(3839) CH(4300) Type (5) (6) (7) Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) δS(3839) CH(4300) Type (1) (2) (3) (4) 2475-53845-483 0.753 14.470 0.300 0.282 −0.389 RGB 2475-53845-488 0.602 15.680 −0.138 −0.003 −0.360 RGB 2475-53845-489 0.685 15.342 0.274 0.366 −0.368 RGB 2475-53845-496 0.677 15.134 −0.075 −0.009 −0.362 RGB 2475-53845-497 0.677 15.078 −0.043 0.016 −0.345 RGB 2475-53845-498 0.667 15.368 0.178 0.273 −0.377 RGB 2475-53845-509 0.640 15.615 −0.119 0.008 −0.345 RGB 2475-53845-514 0.570 16.109 0.017 0.206 −0.350 RGB 2475-53845-515 0.649 15.384 0.216 0.313 −0.394 RGB 2475-53845-518 0.728 15.058 0.020 0.076 −0.334 RGB 2475-53845-519 0.604 15.947 −0.186 −0.017 −0.354 RGB 2475-53845-520 0.599 16.177 −0.184 0.014 −0.344 RGB 2475-53845-551 0.686 15.296 −0.082 0.005 −0.351 RGB 2475-53845-558 0.602 16.075 −0.155 0.030 −0.368 RGB 2475-53845-559 0.627 15.713 −0.128 0.011 −0.353 RGB (5) (6) (7) M71 2338-53683-186 0.628 15.236 −0.206 −0.018 −0.307 RGB 2338-53683-199 0.628 15.533 −0.062 0.191 −0.312 RGB 2333-53682-191 0.770 14.282 −0.046 −0.067 −0.302 RGB 2333-53682-193 0.614 14.170 0.198 0.152 −0.380 RGB 2333-53682-198 0.644 14.494 0.376 0.401 −0.334 RGB 2333-53682-228 0.658 14.357 0.200 0.196 −0.354 RGB Continued on next page. . . 298 Table B.1 – Continued spSpec name (g − r)0 g0 S(3839) δS(3839) CH(4300) Type (1) (2) (3) (4) 2333-53682-229 0.657 14.488 0.160 0.184 −0.338 RGB 2338-53683-200 0.649 14.561 −0.003 0.037 −0.319 RGB (5) (6) Table B.2: Line Index Uncertainties of Adopted True Member Stars spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) M92 2247-54169-362 0.011 0.031 0.013 2247-54169-364 0.015 0.015 0.008 2247-54169-367 0.009 0.018 0.008 2247-54169-380 0.010 0.016 0.008 2247-54169-404 0.010 0.016 0.009 2247-54169-444 0.011 0.010 0.006 2247-54169-451 0.008 0.013 0.007 2247-54169-452 0.009 0.014 0.006 2247-54169-529 0.008 0.028 0.010 2247-54169-531 0.007 0.019 0.008 2247-54169-546 0.007 0.025 0.011 Continued on next page. . . 299 (7) Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2247-54169-561 0.010 0.020 0.007 2247-54169-573 0.013 0.012 0.006 2247-54169-581 0.007 0.018 0.009 2247-54169-589 0.010 0.025 0.012 2247-54169-620 0.005 0.033 0.013 2247-54169-408 0.010 0.009 0.005 2247-54169-418 0.008 0.009 0.004 2247-54169-449 0.006 0.010 0.006 2247-54169-484 0.011 0.008 0.005 2247-54169-504 0.011 0.010 0.005 2247-54169-563 0.007 0.009 0.005 2247-54169-608 0.003 0.011 0.006 2247-54169-610 0.004 0.009 0.005 2247-54169-379 0.011 0.033 0.013 2247-54169-458 0.010 0.035 0.016 2247-54169-514 0.021 0.029 0.013 2247-54169-516 0.016 0.033 0.015 2247-54169-519 0.018 0.043 0.018 2247-54169-538 0.007 0.044 0.021 2247-54169-541 0.009 0.035 0.016 2247-54169-575 0.006 0.047 0.021 2247-54169-584 0.006 0.043 0.016 Continued on next page. . . 300 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2247-54169-616 0.008 0.040 0.016 2256-53859-513 0.021 0.021 0.011 2256-53859-522 0.012 0.031 0.014 2256-53859-535 0.009 0.032 0.014 2256-53859-536 0.013 0.027 0.015 2256-53859-538 0.006 0.022 0.011 2247-54169-409 0.022 0.045 0.022 2256-53859-411 0.012 0.037 0.016 2256-53859-455 0.014 0.033 0.017 2256-53859-485 0.018 0.057 0.023 2256-53859-489 0.011 0.059 0.026 2256-53859-501 0.010 0.042 0.016 2256-53859-506 0.016 0.044 0.020 2256-53859-530 0.008 0.039 0.020 2256-53859-537 0.012 0.043 0.021 2256-53859-539 0.009 0.041 0.019 2256-53859-546 0.017 0.042 0.019 2256-53859-566 0.012 0.045 0.021 2256-53859-571 0.008 0.037 0.015 2256-53859-575 0.009 0.041 0.019 2256-53859-576 0.009 0.033 0.016 2256-53859-579 0.014 0.040 0.020 Continued on next page. . . 301 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2256-53859-612 0.008 0.041 0.019 M15 1960-53289-441 0.011 0.033 0.013 1960-53289-457 0.011 0.034 0.013 1960-53289-500 0.012 0.017 0.008 1960-53289-522 0.011 0.022 0.012 1960-53289-530 0.015 0.025 0.010 1962-53321-364 0.014 0.014 0.007 1962-53321-375 0.008 0.016 0.007 1962-53321-376 0.009 0.014 0.007 1962-53321-402 0.011 0.021 0.008 1962-53321-403 0.011 0.022 0.009 1962-53321-406 0.014 0.018 0.009 1962-53321-413 0.011 0.015 0.007 1962-53321-415 0.014 0.012 0.006 1962-53321-427 0.013 0.014 0.007 1962-53321-438 0.015 0.014 0.006 1962-53321-454 0.011 0.016 0.007 1962-53321-466 0.010 0.014 0.005 1962-53321-474 0.015 0.014 0.006 1962-53321-506 0.009 0.011 0.006 1962-53321-515 0.010 0.014 0.006 Continued on next page. . . 302 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 1962-53321-532 0.012 0.013 0.005 1960-53289-401 0.008 0.009 0.005 1960-53289-402 0.008 0.008 0.004 1960-53289-406 0.007 0.007 0.004 1960-53289-413 0.007 0.009 0.005 1960-53289-419 0.008 0.007 0.004 1960-53289-442 0.008 0.015 0.006 1960-53289-459 0.009 0.006 0.003 1960-53289-460 0.009 0.012 0.007 1960-53289-511 0.009 0.014 0.007 1960-53289-523 0.009 0.008 0.004 1960-53289-529 0.010 0.007 0.004 1960-53289-420 0.011 0.040 0.017 1960-53289-501 0.011 0.039 0.016 1962-53321-323 0.016 0.023 0.009 1962-53321-328 0.014 0.026 0.013 1962-53321-329 0.011 0.025 0.012 1962-53321-335 0.014 0.024 0.009 1962-53321-368 0.014 0.026 0.012 1962-53321-369 0.016 0.031 0.012 1962-53321-370 0.015 0.022 0.011 1962-53321-371 0.017 0.029 0.012 Continued on next page. . . 303 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 1962-53321-372 0.012 0.022 0.011 1962-53321-407 0.013 0.029 0.013 1962-53321-414 0.017 0.025 0.011 1962-53321-421 0.015 0.027 0.012 1962-53321-423 0.013 0.022 0.009 1962-53321-442 0.015 0.034 0.013 1962-53321-469 0.013 0.024 0.012 1962-53321-470 0.017 0.022 0.011 1962-53321-488 0.020 0.029 0.012 1962-53321-493 0.013 0.020 0.009 1962-53321-495 0.015 0.030 0.011 1962-53321-496 0.015 0.026 0.014 1962-53321-497 0.015 0.030 0.013 1962-53321-500 0.013 0.020 0.009 1962-53321-510 0.012 0.023 0.010 1962-53321-516 0.011 0.022 0.009 1962-53321-518 0.011 0.019 0.008 1962-53321-520 0.013 0.023 0.010 1962-53321-533 0.012 0.023 0.010 1962-53321-549 0.028 0.022 0.010 1962-53321-550 0.011 0.021 0.009 1962-53321-558 0.010 0.020 0.009 Continued on next page. . . 304 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 1962-53321-339 0.019 0.036 0.015 1962-53321-363 0.021 0.048 0.020 1962-53321-378 0.016 0.038 0.016 1962-53321-399 0.017 0.032 0.014 1962-53321-409 0.015 0.043 0.020 1962-53321-412 0.016 0.044 0.017 1962-53321-416 0.018 0.043 0.017 1962-53321-419 0.017 0.048 0.022 1962-53321-422 0.021 0.043 0.017 1962-53321-424 0.018 0.034 0.017 1962-53321-428 0.015 0.035 0.017 1962-53321-430 0.019 0.042 0.020 1962-53321-445 0.017 0.048 0.023 1962-53321-449 0.023 0.056 0.022 1962-53321-460 0.026 0.043 0.022 1962-53321-465 0.015 0.032 0.015 1962-53321-471 0.013 0.026 0.013 1962-53321-478 0.024 0.067 0.025 1962-53321-480 0.018 0.031 0.014 1962-53321-483 0.016 0.050 0.021 1962-53321-484 0.016 0.035 0.016 1962-53321-490 0.015 0.030 0.012 Continued on next page. . . 305 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 1962-53321-503 0.014 0.032 0.014 1962-53321-505 0.016 0.047 0.020 1962-53321-509 0.015 0.042 0.018 1962-53321-512 0.017 0.051 0.021 1962-53321-519 0.016 0.034 0.015 1962-53321-522 0.016 0.051 0.020 1962-53321-539 0.013 0.028 0.010 1962-53321-540 0.016 0.040 0.018 1962-53321-543 0.013 0.031 0.013 1962-53321-545 0.014 0.032 0.014 1962-53321-554 0.016 0.037 0.018 1962-53321-555 0.017 0.052 0.020 NGC 5053 2476-53826-486 0.009 0.043 0.019 2476-53826-497 0.011 0.064 0.025 2476-53826-488 0.017 0.015 0.006 2476-53826-501 0.008 0.012 0.006 2476-53826-505 0.009 0.016 0.007 2476-53826-507 0.009 0.020 0.009 2476-53826-508 0.009 0.022 0.010 2476-53826-519 0.011 0.010 0.005 2476-53826-527 0.023 0.013 0.007 Continued on next page. . . 306 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2476-53826-573 0.012 0.024 0.011 2476-53826-575 0.007 0.013 0.006 2476-53826-577 0.028 0.023 0.010 2476-53826-578 0.015 0.012 0.006 M53 2476-53826-329 0.027 0.068 0.025 2476-53826-405 0.017 0.078 0.032 2476-53826-413 0.017 0.062 0.019 2476-53826-418 0.017 0.079 0.028 2476-53826-361 0.018 0.037 0.014 2476-53826-372 0.018 0.025 0.013 2476-53826-375 0.018 0.041 0.014 2476-53826-378 0.018 0.018 0.006 2476-53826-401 0.017 0.039 0.017 2476-53826-404 0.018 0.018 0.007 2476-53826-409 0.017 0.044 0.017 2476-53826-451 0.019 0.029 0.014 2476-53826-452 0.017 0.042 0.017 M2 1961-53299-140 0.019 0.020 0.008 1961-53299-213 0.008 0.019 0.008 1963-54331-098 0.015 0.021 0.007 Continued on next page. . . 307 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 1963-54331-121 0.013 0.018 0.006 1963-54331-126 0.023 0.033 0.013 1963-54331-128 0.022 0.032 0.012 1963-54331-131 0.012 0.032 0.011 1963-54331-137 0.008 0.022 0.010 1963-54331-139 0.008 0.025 0.010 1963-54331-144 0.016 0.020 0.008 1963-54331-164 0.022 0.029 0.013 1963-54331-178 0.016 0.037 0.014 1963-54331-204 0.011 0.023 0.009 1963-54331-208 0.009 0.022 0.009 1963-54331-209 0.012 0.027 0.012 1963-54331-211 0.011 0.028 0.011 1963-54331-217 0.009 0.019 0.010 1963-54331-218 0.008 0.023 0.011 1961-53299-124 0.020 0.013 0.005 1961-53299-125 0.006 0.011 0.005 1961-53299-131 0.008 0.013 0.008 1961-53299-134 0.015 0.008 0.004 1961-53299-136 0.011 0.019 0.008 1961-53299-144 0.008 0.017 0.008 1961-53299-152 0.022 0.014 0.006 Continued on next page. . . 308 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 1961-53299-159 0.009 0.018 0.007 1961-53299-215 0.009 0.013 0.005 1963-54331-043 0.027 0.043 0.015 1963-54331-083 0.015 0.041 0.019 1963-54331-090 0.014 0.035 0.016 1963-54331-091 0.026 0.040 0.014 1963-54331-096 0.013 0.040 0.017 1963-54331-100 0.012 0.044 0.015 1963-54331-102 0.017 0.052 0.017 1963-54331-114 0.019 0.054 0.018 1963-54331-123 0.009 0.043 0.018 1963-54331-124 0.016 0.049 0.017 1963-54331-143 0.016 0.040 0.017 1963-54331-145 0.015 0.047 0.018 1963-54331-146 0.013 0.053 0.020 1963-54331-147 0.017 0.049 0.020 1963-54331-148 0.014 0.046 0.020 1963-54331-150 0.015 0.068 0.029 1963-54331-179 0.016 0.050 0.018 1963-54331-180 0.013 0.037 0.013 1963-54331-181 0.015 0.038 0.016 1963-54331-184 0.012 0.037 0.013 Continued on next page. . . 309 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 1963-54331-189 0.017 0.047 0.018 1963-54331-194 0.015 0.047 0.019 1963-54331-196 0.015 0.046 0.020 1963-54331-201 0.011 0.033 0.015 1963-54331-206 0.012 0.048 0.023 1963-54331-212 0.012 0.038 0.013 1963-54331-223 0.019 0.045 0.022 1963-54331-254 0.019 0.055 0.021 1963-54331-041 0.028 0.070 0.024 1963-54331-045 0.027 0.055 0.019 1963-54331-082 0.028 0.067 0.023 1963-54331-154 0.023 0.067 0.025 1963-54331-156 0.020 0.059 0.024 1963-54331-162 0.022 0.069 0.025 1963-54331-169 0.018 0.061 0.024 1963-54331-170 0.017 0.059 0.022 1963-54331-185 0.018 0.059 0.022 1963-54331-186 0.022 0.061 0.024 1963-54331-197 0.019 0.061 0.022 1963-54331-200 0.020 0.056 0.025 1963-54331-207 0.015 0.067 0.022 1963-54331-220 0.014 0.048 0.018 Continued on next page. . . 310 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 1963-54331-222 0.017 0.049 0.021 M13 2174-53521-087 0.016 0.026 0.010 2174-53521-094 0.016 0.022 0.008 2174-53521-121 0.011 0.013 0.006 2174-53521-126 0.013 0.019 0.009 2174-53521-128 0.008 0.041 0.013 2174-53521-133 0.008 0.017 0.007 2174-53521-134 0.011 0.019 0.010 2174-53521-155 0.007 0.016 0.007 2174-53521-407 0.009 0.011 0.006 2174-53521-412 0.016 0.023 0.009 2174-53521-414 0.016 0.018 0.009 2174-53521-456 0.014 0.019 0.008 2174-53521-461 0.009 0.020 0.010 2174-53521-471 0.006 0.011 0.006 2174-53521-480 0.009 0.016 0.007 2174-53521-529 0.020 0.011 0.006 2174-53521-563 0.015 0.013 0.006 2255-53565-114 0.012 0.019 0.009 2255-53565-116 0.009 0.013 0.005 2255-53565-437 0.009 0.025 0.010 Continued on next page. . . 311 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2255-53565-476 0.009 0.021 0.009 2255-53565-490 0.007 0.009 0.005 2255-53565-556 0.007 0.018 0.007 2255-53565-597 0.006 0.011 0.006 2174-53521-082 0.013 0.010 0.004 2174-53521-093 0.012 0.008 0.004 2174-53521-098 0.009 0.008 0.004 2174-53521-137 0.006 0.009 0.004 2174-53521-145 0.012 0.007 0.004 2174-53521-154 0.005 0.009 0.004 2174-53521-156 0.006 0.010 0.005 2174-53521-158 0.015 0.010 0.006 2174-53521-159 0.008 0.008 0.004 2174-53521-160 0.007 0.008 0.004 2174-53521-166 0.005 0.009 0.005 2174-53521-167 0.010 0.008 0.005 2174-53521-168 0.012 0.009 0.005 2174-53521-171 0.011 0.007 0.004 2174-53521-172 0.010 0.009 0.004 2174-53521-176 0.005 0.011 0.005 2174-53521-215 0.016 0.008 0.005 2174-53521-376 0.015 0.008 0.004 Continued on next page. . . 312 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2174-53521-410 0.008 0.007 0.005 2174-53521-413 0.012 0.008 0.005 2174-53521-443 0.015 0.007 0.004 2174-53521-449 0.014 0.007 0.004 2174-53521-452 0.013 0.007 0.003 2174-53521-453 0.021 0.007 0.004 2174-53521-455 0.009 0.007 0.005 2174-53521-457 0.011 0.006 0.004 2174-53521-458 0.014 0.006 0.004 2174-53521-459 0.016 0.007 0.004 2174-53521-460 0.012 0.006 0.004 2174-53521-462 0.014 0.006 0.004 2174-53521-463 0.005 0.010 0.004 2174-53521-470 0.007 0.006 0.004 2174-53521-476 0.008 0.008 0.005 2174-53521-477 0.006 0.008 0.005 2174-53521-478 0.008 0.008 0.005 2174-53521-483 0.013 0.007 0.004 2174-53521-484 0.015 0.007 0.004 2174-53521-485 0.016 0.007 0.004 2174-53521-488 0.013 0.008 0.005 2174-53521-489 0.009 0.009 0.004 Continued on next page. . . 313 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2174-53521-493 0.024 0.006 0.003 2174-53521-494 0.019 0.007 0.004 2174-53521-495 0.015 0.009 0.005 2174-53521-497 0.009 0.008 0.004 2174-53521-498 0.006 0.007 0.004 2174-53521-499 0.014 0.007 0.004 2174-53521-500 0.011 0.006 0.004 2174-53521-522 0.010 0.008 0.004 2174-53521-530 0.004 0.007 0.004 2174-53521-531 0.006 0.008 0.004 2174-53521-537 0.007 0.007 0.004 2174-53521-538 0.003 0.006 0.005 2174-53521-542 0.010 0.007 0.004 2174-53521-554 0.009 0.008 0.004 2255-53565-112 0.012 0.045 0.021 2255-53565-120 0.009 0.008 0.005 2255-53565-143 0.011 0.010 0.005 2255-53565-144 0.015 0.009 0.004 2255-53565-148 0.007 0.010 0.005 2255-53565-153 0.008 0.010 0.004 2255-53565-157 0.007 0.007 0.003 2255-53565-171 0.007 0.007 0.004 Continued on next page. . . 314 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2255-53565-175 0.005 0.009 0.005 2255-53565-426 0.012 0.007 0.004 2255-53565-483 0.014 0.007 0.004 2255-53565-485 0.009 0.010 0.005 2255-53565-486 0.004 0.056 0.018 2255-53565-495 0.022 0.039 0.012 2255-53565-496 0.007 0.034 0.011 2255-53565-504 0.005 0.036 0.011 2255-53565-510 0.005 0.008 0.005 2255-53565-512 0.006 0.046 0.017 2255-53565-515 0.008 0.011 0.004 2255-53565-520 0.015 0.042 0.014 2255-53565-542 0.010 0.007 0.004 2255-53565-543 0.009 0.008 0.004 2255-53565-544 0.015 0.044 0.017 2255-53565-545 0.007 0.008 0.004 2255-53565-548 0.009 0.008 0.005 2255-53565-550 0.013 0.007 0.004 2255-53565-551 0.006 0.007 0.004 2255-53565-552 0.005 0.034 0.010 2255-53565-553 0.007 0.006 0.003 2255-53565-557 0.003 0.039 0.016 Continued on next page. . . 315 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2255-53565-559 0.014 0.028 0.009 2255-53565-586 0.009 0.025 0.011 2255-53565-589 0.004 0.007 0.004 2174-53521-054 0.014 0.031 0.012 2174-53521-131 0.010 0.008 0.004 2174-53521-146 0.013 0.033 0.012 2174-53521-149 0.013 0.035 0.015 2174-53521-174 0.017 0.039 0.016 2174-53521-368 0.016 0.023 0.011 2174-53521-402 0.009 0.027 0.012 2174-53521-403 0.010 0.028 0.012 2174-53521-406 0.008 0.022 0.012 2174-53521-445 0.011 0.026 0.011 2174-53521-447 0.011 0.025 0.011 2174-53521-474 0.008 0.022 0.010 2174-53521-481 0.010 0.039 0.014 2174-53521-533 0.009 0.030 0.012 2174-53521-539 0.007 0.021 0.012 2174-53521-560 0.008 0.019 0.009 2174-53521-565 0.008 0.020 0.013 2174-53521-573 0.014 0.026 0.012 2174-53521-576 0.007 0.022 0.011 Continued on next page. . . 316 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2174-53521-577 0.009 0.024 0.012 2185-53532-141 0.019 0.020 0.008 2185-53532-153 0.015 0.015 0.006 2185-53532-237 0.017 0.018 0.007 2185-53532-388 0.016 0.015 0.007 2185-53532-425 0.022 0.014 0.007 2185-53532-426 0.016 0.013 0.006 2185-53532-427 0.016 0.013 0.006 2185-53532-439 0.016 0.012 0.006 2185-53532-461 0.010 0.014 0.006 2185-53532-462 0.018 0.014 0.006 2185-53532-481 0.008 0.014 0.006 2185-53532-482 0.008 0.015 0.007 2185-53532-487 0.010 0.016 0.007 2185-53532-492 0.015 0.011 0.006 2185-53532-493 0.013 0.013 0.007 2185-53532-506 0.012 0.012 0.006 2185-53532-512 0.010 0.012 0.006 2185-53532-520 0.013 0.013 0.007 2185-53532-543 0.010 0.014 0.007 2185-53532-553 0.011 0.012 0.006 2185-53532-554 0.012 0.015 0.006 Continued on next page. . . 317 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2255-53565-103 0.014 0.030 0.013 2255-53565-115 0.014 0.030 0.012 2255-53565-173 0.012 0.041 0.016 2255-53565-424 0.011 0.032 0.015 2255-53565-425 0.010 0.030 0.012 2255-53565-432 0.011 0.032 0.014 2255-53565-466 0.020 0.027 0.013 2185-53532-106 0.019 0.048 0.020 2185-53532-111 0.016 0.028 0.011 2185-53532-113 0.020 0.072 0.027 2185-53532-116 0.018 0.041 0.016 2185-53532-120 0.018 0.036 0.015 2185-53532-143 0.018 0.022 0.010 2185-53532-146 0.021 0.051 0.021 2185-53532-148 0.016 0.024 0.011 2185-53532-150 0.021 0.025 0.010 2185-53532-151 0.018 0.038 0.016 2185-53532-152 0.016 0.024 0.011 2185-53532-154 0.020 0.052 0.018 2185-53532-156 0.012 0.027 0.011 2185-53532-158 0.013 0.024 0.012 2185-53532-160 0.014 0.032 0.013 Continued on next page. . . 318 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2185-53532-161 0.015 0.048 0.024 2185-53532-167 0.015 0.022 0.011 2185-53532-169 0.016 0.027 0.012 2185-53532-171 0.015 0.055 0.020 2185-53532-172 0.018 0.021 0.011 2185-53532-175 0.011 0.026 0.010 2185-53532-176 0.011 0.024 0.009 2185-53532-177 0.010 0.024 0.010 2185-53532-178 0.017 0.028 0.010 2185-53532-179 0.018 0.018 0.008 2185-53532-181 0.018 0.024 0.012 2185-53532-196 0.018 0.033 0.013 2185-53532-197 0.019 0.035 0.015 2185-53532-198 0.018 0.025 0.009 2185-53532-200 0.022 0.047 0.024 2185-53532-390 0.018 0.045 0.019 2185-53532-393 0.025 0.057 0.023 2185-53532-423 0.017 0.018 0.010 2185-53532-424 0.106 0.022 0.009 2185-53532-428 0.018 0.028 0.011 2185-53532-430 0.020 0.047 0.020 2185-53532-431 0.018 0.052 0.020 Continued on next page. . . 319 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2185-53532-433 0.023 0.050 0.023 2185-53532-435 0.011 0.027 0.013 2185-53532-440 0.015 0.045 0.018 2185-53532-464 0.018 0.036 0.015 2185-53532-466 0.019 0.025 0.010 2185-53532-469 0.010 0.031 0.014 2185-53532-473 0.015 0.030 0.012 2185-53532-475 0.017 0.020 0.008 2185-53532-476 0.018 0.026 0.012 2185-53532-477 0.019 0.043 0.016 2185-53532-478 0.019 0.024 0.010 2185-53532-479 0.018 0.037 0.014 2185-53532-480 0.020 0.041 0.018 2185-53532-483 0.014 0.030 0.012 2185-53532-485 0.011 0.012 0.007 2185-53532-486 0.018 0.035 0.014 2185-53532-488 0.019 0.040 0.017 2185-53532-489 0.013 0.025 0.011 2185-53532-490 0.016 0.029 0.015 2185-53532-494 0.013 0.025 0.011 2185-53532-495 0.012 0.018 0.009 2185-53532-496 0.020 0.049 0.020 Continued on next page. . . 320 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2185-53532-497 0.025 0.037 0.017 2185-53532-498 0.010 0.017 0.008 2185-53532-499 0.015 0.021 0.009 2185-53532-500 0.027 0.012 0.007 2185-53532-504 0.021 0.017 0.008 2185-53532-507 0.015 0.024 0.011 2185-53532-508 0.014 0.022 0.010 2185-53532-511 0.022 0.040 0.015 2185-53532-513 0.012 0.020 0.010 2185-53532-514 0.016 0.026 0.012 2185-53532-515 0.013 0.021 0.011 2185-53532-516 0.017 0.051 0.022 2185-53532-517 0.019 0.043 0.020 2185-53532-519 0.012 0.019 0.011 2185-53532-534 0.019 0.015 0.008 2185-53532-537 0.016 0.019 0.010 2185-53532-539 0.021 0.038 0.014 2185-53532-540 0.020 0.030 0.014 2185-53532-541 0.024 0.051 0.019 2185-53532-542 0.017 0.034 0.013 2185-53532-544 0.011 0.022 0.010 2185-53532-545 0.021 0.023 0.010 Continued on next page. . . 321 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2185-53532-546 0.017 0.043 0.021 2185-53532-547 0.024 0.042 0.015 2185-53532-548 0.023 0.044 0.025 2185-53532-549 0.018 0.034 0.017 2185-53532-550 0.019 0.042 0.017 2185-53532-551 0.022 0.045 0.020 2185-53532-552 0.012 0.024 0.011 2185-53532-555 0.019 0.029 0.012 2185-53532-556 0.018 0.029 0.013 2185-53532-557 0.014 0.018 0.009 2185-53532-558 0.009 0.016 0.008 2185-53532-559 0.011 0.024 0.009 2185-53532-560 0.013 0.014 0.007 2185-53532-575 0.024 0.050 0.018 2185-53532-577 0.017 0.023 0.011 2185-53532-581 0.018 0.030 0.012 2185-53532-584 0.014 0.029 0.012 2185-53532-585 0.014 0.026 0.012 2185-53532-587 0.023 0.051 0.021 2185-53532-589 0.012 0.022 0.012 2185-53532-591 0.013 0.020 0.010 2185-53532-592 0.015 0.032 0.016 Continued on next page. . . 322 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2185-53532-593 0.012 0.023 0.009 2185-53532-594 0.023 0.033 0.017 2185-53532-596 0.020 0.042 0.022 2185-53532-598 0.020 0.032 0.016 2185-53532-599 0.017 0.036 0.015 2185-53532-600 0.019 0.051 0.019 2255-53565-436 0.022 0.050 0.016 2255-53565-518 0.035 0.038 0.014 M3 2475-53845-145 0.006 0.015 0.006 2475-53845-150 0.006 0.013 0.005 2475-53845-162 0.022 0.016 0.007 2475-53845-173 0.007 0.014 0.005 2475-53845-199 0.010 0.015 0.006 2475-53845-463 0.008 0.012 0.006 2475-53845-471 0.005 0.012 0.005 2475-53845-479 0.012 0.010 0.005 2475-53845-486 0.014 0.011 0.004 2475-53845-506 0.005 0.008 0.004 2475-53845-511 0.005 0.012 0.005 2475-53845-118 0.015 0.092 0.030 2475-53845-183 0.011 0.032 0.013 Continued on next page. . . 323 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2475-53845-185 0.011 0.067 0.023 2475-53845-192 0.024 0.052 0.021 2475-53845-200 0.009 0.069 0.021 2475-53845-430 0.024 0.071 0.021 2475-53845-469 0.007 0.032 0.013 2475-53845-487 0.006 0.098 0.030 2475-53845-501 0.007 0.028 0.010 2475-53845-507 0.005 0.052 0.018 2475-53845-550 0.017 0.076 0.026 2475-53845-557 0.006 0.042 0.012 2475-53845-116 0.014 0.015 0.006 2475-53845-119 0.004 0.031 0.009 2475-53845-120 0.005 0.033 0.011 2475-53845-141 0.022 0.028 0.010 2475-53845-142 0.014 0.022 0.009 2475-53845-143 0.010 0.024 0.009 2475-53845-144 0.005 0.030 0.011 2475-53845-160 0.020 0.022 0.009 2475-53845-171 0.005 0.028 0.010 2475-53845-176 0.013 0.013 0.006 2475-53845-177 0.005 0.027 0.009 2475-53845-178 0.013 0.025 0.009 Continued on next page. . . 324 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2475-53845-186 0.006 0.021 0.008 2475-53845-196 0.011 0.019 0.007 2475-53845-198 0.016 0.016 0.006 2475-53845-421 0.014 0.012 0.005 2475-53845-436 0.011 0.018 0.007 2475-53845-440 0.010 0.018 0.006 2475-53845-461 0.009 0.018 0.007 2475-53845-466 0.012 0.018 0.006 2475-53845-473 0.005 0.013 0.005 2475-53845-475 0.004 0.016 0.006 2475-53845-480 0.007 0.020 0.006 2475-53845-483 0.010 0.013 0.005 2475-53845-488 0.005 0.020 0.009 2475-53845-489 0.011 0.018 0.006 2475-53845-496 0.005 0.015 0.005 2475-53845-497 0.013 0.014 0.006 2475-53845-498 0.005 0.018 0.006 2475-53845-509 0.006 0.015 0.007 2475-53845-514 0.005 0.025 0.009 2475-53845-515 0.005 0.020 0.006 2475-53845-518 0.004 0.015 0.005 2475-53845-519 0.007 0.019 0.009 Continued on next page. . . 325 Table B.2 – Continued spSpec name σ(g) σ(S(3839)) σ(CH(4300)) (1) (2) (3) (4) 2475-53845-520 0.008 0.024 0.009 2475-53845-551 0.007 0.016 0.006 2475-53845-558 0.004 0.024 0.008 2475-53845-559 0.006 0.018 0.007 M71 2338-53683-186 0.005 0.024 0.010 2338-53683-199 0.005 0.040 0.012 2333-53682-191 0.007 0.030 0.007 2333-53682-193 0.006 0.020 0.006 2333-53682-198 0.006 0.035 0.009 2333-53682-228 0.007 0.025 0.007 2333-53682-229 0.004 0.023 0.007 2338-53683-200 0.013 0.019 0.006 326 BIBLIOGRAPHY 327 BIBLIOGRAPHY Abazajian, K. N., et al. 2009, ApJS, 182, 543 —. 2004, AJ, 128, 502 —. 2005, AJ, 129, 1755 —. 2003, AJ, 126, 2081 Adelman-McCarthy, J. K., et al. 2008, ApJS, 175, 297 —. 2007, ApJS, 172, 634 —. 2006, ApJS, 162, 38 Aihara, H., et al. 2011, ApJS, 193, 29 Allende Prieto, C., et al. 2008, AJ, 136, 2070 Alves-Brito, A., Schiavon, R. P., Castilho, B., & Barbuy, B. 2008, A&A, 486, 941 An, D., et al. 2008, ApJS, 179, 326 —. 2009, ApJ, 700, 523 Arp, H. C., & Johnson, H. L. 1955, ApJ, 122, 171 Ashman, K. M., Bird, C. M., & Zepf, S. E. 1994, AJ, 108, 2348 Barrado y Navascu´s, D., Deliyannis, C. P., & Stauffer, J. R. 2001, ApJ, 549, 452 e Bedin, L. R., Piotto, G., Anderson, J., King, I. R., Cassisi, S., & Momany, Y. 2004, Memorie della Societa Astronomica Italiana Supplementi, 5, 105 Bellman, S., Briley, M. M., Smith, G. H., & Claver, C. F. 2001, PASP, 113, 326 Binney, J., & Tremaine, S. 1987, Galactic dynamics, ed. Binney, J. & Tremaine, S. Boesgaard, A. M., Jensen, E. E. C., & Deliyannis, C. P. 2009, AJ, 137, 4949 Boesgaard, A. M., King, J. R., Cody, A. M., Stephens, A., & Deliyannis, C. P. 2005, ApJ, 629, 832 Bragaglia, A., Carretta, E., Gratton, R., D’Orazi, V., Cassisi, S., & Lucatello, S. 2010, A&A, 519, A60+ Briley, M. M., & Cohen, J. G. 2001, AJ, 122, 242 Briley, M. M., Cohen, J. G., & Stetson, P. B. 2002, ApJ, 579, L17 328 —. 2004, AJ, 127, 1579 Briley, M. M., & Smith, G. H. 1993, PASP, 105, 1260 Butler, D., Dickens, R. J., & Epps, E. 1978, ApJ, 225, 148 Campbell, S. W., Yong, D., Wylie-de Boer, E. C., Stancliffe, R. J., Lattanzio, J. C., Angelou, G. C., Grundahl, F., & Sneden, C. 2010, Mem. Soc. Astron. Italiana, 81, 1004 Cannon, R. D., Croke, B. F. W., Bell, R. A., Hesser, J. E., & Stathakis, R. A. 1998, MNRAS, 298, 601 Carbon, D. F., Romanishin, W., Langer, G. E., Butler, D., Kemper, E., Trefzger, C. F., Kraft, R. P., & Suntzeff, N. B. 1982, ApJS, 49, 207 Carraro, G., Girardi, L., & Marigo, P. 2002, MNRAS, 332, 705 Carretta, E., Bragaglia, A., D’Orazi, V., Lucatello, S., & Gratton, R. G. 2010a, A&A, 519, A71+ Carretta, E., Bragaglia, A., Gratton, R., D’Orazi, V., & Lucatello, S. 2009a, A&A, 508, 695 Carretta, E., Bragaglia, A., Gratton, R., & Lucatello, S. 2009b, A&A, 505, 139 Carretta, E., et al. 2010b, A&A, 520, A95+ —. 2010c, ApJ, 714, L7 —. 2009c, A&A, 505, 117 Carretta, E., Gratton, R. G., Lucatello, S., Bragaglia, A., & Bonifacio, P. 2005, A&A, 433, 597 Carretta, E., et al. 2010d, ApJ, 722, L1 Carroll, B. W., & Ostlie, D. A. 1996, An Introduction to Modern Astrophysics, ed. Carroll, B. W. & Ostlie, D. A. Cassisi, S., Salaris, M., Pietrinferni, A., Piotto, G., Milone, A. P., Bedin, L. R., & Anderson, J. 2008, ApJ, 672, L115 Cavallo, R. M., & Nagar, N. M. 2000, AJ, 120, 1364 Charbonnel, C. 1994, A&A, 282, 811 Chernoff, D. F., & Weinberg, M. D. 1990, ApJ, 351, 121 Cohen, J. G. 1978, ApJ, 223, 487 —. 1999a, AJ, 117, 2428 —. 1999b, AJ, 117, 2434 329 Cohen, J. G., Behr, B. B., & Briley, M. M. 2001, AJ, 122, 1420 Cohen, J. G., Briley, M. M., & Stetson, P. B. 2002, AJ, 123, 2525 —. 2005a, AJ, 130, 1177 —. 2005b, AJ, 130, 1177 Cohen, J. G., Kirby, E. N., Simon, J. D., & Geha, M. 2010, ApJ, 725, 288 Cohen, J. G., & Mel´ndez, J. 2005, AJ, 129, 303 e Conroy, C., & Spergel, D. N. 2011, ApJ, 726, 36 D’Antona, F., Gratton, R., & Chieffi, A. 1983, Mem. Soc. Astron. Italiana, 54, 173 Decressin, T., Baumgardt, H., Charbonnel, C., & Kroupa, P. 2010, A&A, 516, A73+ Decressin, T., Charbonnel, C., & Meynet, G. 2007a, A&A, 475, 859 Decressin, T., Charbonnel, C., Siess, L., Palacios, A., Meynet, G., & Georgy, C. 2009, A&A, 505, 727 Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekstr¨m, S. 2007b, A&A, 464, o 1029 D´k´ny, I., & Kov´cs, G. 2009, A&A, 507, 803 e a a Denissenkov, P. A., & VandenBerg, D. A. 2003, ApJ, 593, 509 D’Ercole, A., Vesperini, E., D’Antona, F., McMillan, S. L. W., & Recchi, S. 2008, MNRAS, 391, 825 Dias, W. S., Alessi, B. S., Moitinho, A., & L´pine, J. R. D. 2002, A&A, 389, 871 e Djorgovski, S. G., & Meylan, G., eds. 1993, Astronomical Society of the Pacific Conference Series, Vol. 50, Structure and dynamics of globular clusters Drukier, G. A., Cohn, H. N., Lugger, P. M., Slavin, S. D., Berrington, R. C., & Murphy, B. W. 2007, AJ, 133, 1041 Freeman, K. C., & Rodgers, A. W. 1975, ApJ, 201, L71+ Fukugita, M., Ichikawa, T., Gunn, J. E., Doi, M., Shimasaku, K., & Schneider, D. P. 1996, AJ, 111, 1748 Fukushige, T., & Heggie, D. C. 1995, MNRAS, 276, 206 Fusi Pecci, F., Ferraro, F. R., Crocker, D. A., Rood, R. T., & Buonanno, R. 1990, A&A, 238, 95 330 Geller, A. M., Mathieu, R. D., Braden, E. K., Meibom, S., Platais, I., & Dolan, C. J. 2010, AJ, 139, 1383 Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, A&AS, 141, 371 Goldsbury, R., Richer, H. B., Anderson, J., Dotter, A., Sarajedini, A., & Woodley, K. 2010, AJ, 140, 1830 Goodwin, S. P. 1996, in Astronomical Society of the Pacific Conference Series, Vol. 92, Formation of the Galactic Halo...Inside and Out, ed. H. L. Morrison & A. Sarajedini, 495–+ Gratton, R., Bragaglia, A., Carretta, E., & Tosi, M. 2006, ApJ, 642, 462 Gratton, R., Sneden, C., & Carretta, E. 2004, ARA&A, 42, 385 Gratton, R. G., Sneden, C., Carretta, E., & Bragaglia, A. 2000, A&A, 354, 169 Grillmair, C. J., Freeman, K. C., Irwin, M., & Quinn, P. J. 1995, AJ, 109, 2553 Grundahl, F., Stetson, P. B., & Andersen, M. I. 2002, A&A, 395, 481 Gunn, J. E., et al. 1998, AJ, 116, 3040 —. 2006, AJ, 131, 2332 Harbeck, D., Smith, G. H., & Grebel, E. K. 2003a, AJ, 125, 197 —. 2003b, A&A, 409, 553 Harris, W. E. 1996, AJ, 112, 1487 Hunter, I., et al. 2008, ApJ, 676, L29 Iben, Jr., I. 1964, ApJ, 140, 1630 —. 1968, ApJ, 154, 581 Jacobson, H. R., Friel, E. D., & Pilachowski, C. A. 2008, AJ, 135, 2341 —. 2009, AJ, 137, 4753 Kalirai, J. S., Fahlman, G. G., Richer, H. B., & Ventura, P. 2003, AJ, 126, 1402 Kayser, A., Hilker, M., Grebel, E. K., & Willemsen, P. G. 2008, A&A, 486, 437 King, J. R., Stephens, A., Boesgaard, A. M., & Deliyannis, C. 1998, AJ, 115, 666 Kraft, R. P., & Ivans, I. I. 2003, PASP, 115, 143 Kravtsov, V., Alca´ ıno, G., Marconi, G., & Alvarado, F. 2010a, A&A, 512, L6+ —. 2010b, A&A, 516, A23+ 331 Kravtsov, V., Alcaino, G., Marconi, G., & Alvarado, F. 2011, ArXiv e-prints Lane, R. R., Kiss, L. L., Lewis, G. F., Ibata, R. A., Siebert, A., Bedding, T. R., & Sz´kely, e P. 2009, MNRAS, 400, 917 —. 2010, MNRAS, 401, 2521 Langer, G. E. 1985, PASP, 97, 382 Langer, G. E., Kraft, R. P., Carbon, D. F., Friel, E., & Oke, J. B. 1986, PASP, 98, 473 Langer, G. E., Suntzeff, N. B., & Kraft, R. P. 1992, PASP, 104, 523 Lardo, C., Bellazzini, M., Pancino, E., Carretta, E., Bragaglia, A., & Dalessandro, E. 2011, A&A, 525, A114+ Lee, S. 1999, AJ, 118, 920 —. 2005, Journal of Korean Astronomical Society, 38, 23 Lee, S. G. 2000, Journal of Korean Astronomical Society, 33, 137 Lee, Y. S., et al. 2008a, AJ, 136, 2022 —. 2008b, AJ, 136, 2050 Lupton, R., Gunn, J. E., Ivezi´, Z., Knapp, G. R., & Kent, S. 2001, in Astronomical c Society of the Pacific Conference Series, Vol. 238, Astronomical Data Analysis Software and Systems X, ed. F. R. Harnden Jr., F. A. Primini, & H. E. Payne, 269–+ Maeder, A., & Meynet, G. 2006, A&A, 448, L37 Mallia, E. A. 1978, A&A, 70, 115 Mandushev, G., Staneva, A., & Spasova, N. 1991, A&A, 252, 94 Marino, A. F., Villanova, S., Piotto, G., Milone, A. P., Momany, Y., Bedin, L. R., & Medling, A. M. 2008a, A&A, 490, 625 —. 2008b, A&A, 490, 625 Martell, S. L., & Grebel, E. K. 2010, A&A, 519, A14+ Martell, S. L., & Smith, G. H. 2009, PASP, 121, 577 Martell, S. L., Smith, G. H., & Briley, M. M. 2008a, PASP, 120, 839 —. 2008b, PASP, 120, 7 —. 2008c, AJ, 136, 2522 McClure, R. D. 1979, Mem. Soc. Astron. Italiana, 50, 15 332 McLaughlin, D. E., & van der Marel, R. P. 2005, ApJS, 161, 304 Meylan, G., & Heggie, D. C. 1997, A&A Rev., 8, 1 Meynet, G., Ekstr¨m, S., & Maeder, A. 2006, A&A, 447, 623 o Milone, A. P., Piotto, G., Bedin, L. R., Bellini, A., Marino, A. F., & Momany, Y. 2010, in SF2A-2010: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, ed. S. Boissier, M. Heydari-Malayeri, R. Samadi, & D. Valls-Gabaud , 319–+ Norris, J. 1987, ApJ, 313, L65 Norris, J., Cottrell, P. L., Freeman, K. C., & Da Costa, G. S. 1981, ApJ, 244, 205 Norris, J., & Freeman, K. C. 1979, ApJ, 230, L179 Norris, J., & Smith, G. H. 1984, ApJ, 287, 255 Norris, J. E., & Da Costa, G. S. 1995, ApJ, 447, 680 Origlia, L., Valenti, E., Rich, R. M., & Ferraro, F. R. 2006, ApJ, 646, 499 Osborn, W. 1971, The Observatory, 91, 223 Pancino, E., Rejkuba, M., Zoccali, M., & Carrera, R. 2010, A&A, 524, A44+ Pancino, E., Seleznev, A., Ferraro, F. R., Bellazzini, M., & Piotto, G. 2003, MNRAS, 345, 683 Peterson, R. C. 1980, ApJ, 237, L87 Pier, J. R., Munn, J. A., Hindsley, R. B., Hennessy, G. S., Kent, S. M., Lupton, R. H., & Ivezi´, Z. 2003, AJ, 125, 1559 c ˇ Pilachowski, C. A., Bothun, G. D., Olszewski, E. W., & Odell, A. 1983, ApJ, 273, 187 Piotto, G., et al. 2007, ApJ, 661, L53 Ram´ ırez, S. V., Cohen, J. G., Buss, J., & Briley, M. M. 2001, AJ, 122, 1429 Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525 Scott, J. E., Friel, E. D., & Janes, K. A. 1995, AJ, 109, 1706 Shetrone, M., Martell, S. L., Wilkerson, R., Adams, J., Siegel, M. H., Smith, G. H., & Bond, H. E. 2010, AJ, 140, 1119 Shetrone, M. D. 2003, ApJ, 585, L45 Smith, G. H., & Mateo, M. 1990, ApJ, 353, 533 333 Smith, G. H., & Norris, J. 1982, ApJ, 254, 149 Smith, G. H., Shetrone, M. D., Bell, R. A., Churchill, C. W., & Briley, M. M. 1996, AJ, 112, 1511 Smolinski, J. P., et al. 2011a, AJ, 141, 89 Smolinski, J. P., Martell, S. L., Beers, T. C., & Lee, Y. S. 2011b, ArXiv e-prints Sneden, C., Kraft, R. P., Guhathakurta, P., Peterson, R. C., & Fulbright, J. P. 2004, AJ, 127, 2162 Sollima, A., Ferraro, F. R., Bellazzini, M., Origlia, L., Straniero, O., & Pancino, E. 2007, ApJ, 654, 915 Spitzer, L. 1987, Dynamical evolution of globular clusters, ed. Spitzer, L. Stetson, P. B. 1987, PASP, 99, 191 —. 1994, PASP, 106, 250 Stoughton, C., et al. 2002, AJ, 123, 485 Suntzeff, N. B. 1981, ApJS, 47, 1 Sweigart, A. V., & Mengel, J. G. 1979, ApJ, 229, 624 Thomas, H. 1967, ZAp, 67, 420 Trefzger, D. V., Langer, G. E., Carbon, D. F., Suntzeff, N. B., & Kraft, R. P. 1983, ApJ, 266, 144 Twarog, B. A., Ashman, K. M., & Anthony-Twarog, B. J. 1997, AJ, 114, 2556 VandenBerg, D. A., Bergbusch, P. A., & Dowler, P. D. 2006, ApJS, 162, 375 Ventura, P., & D’Antona, F. 2008, MNRAS, 385, 2034 Ventura, P., D’Antona, F., Mazzitelli, I., & Gratton, R. 2001, ApJ, 550, L65 Villanova, S., et al. 2007, ApJ, 663, 296 Worthey, G., & Jowett, K. J. 2003, PASP, 115, 96 Yanny, B., et al. 2009, AJ, 137, 4377 Yi, S., Demarque, P., Kim, Y.-C., Lee, Y.-W., Ree, C. H., Lejeune, T., & Barnes, S. 2001, ApJS, 136, 417 York, D. G., et al. 2000, AJ, 120, 1579 334