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ABSTRACT

IDENTIFICATION OF SYSTEMS 0F UNKNOWN ORDER

By

Martin W. Schwartz

The primary purpose of this work is to determine the order

of a discrete-time system from input and output observations.

Several tests, based on the properties of dynamic systems,

are given. The best of them is the determinants of the models'

controllability matrices normalized by the product of their input

coefficients. This and the other new tests compare favorably with

existing tests, based on the prOperties of the least squares

estimator, on simulated examples and observed data taken from an

electric power system.

Theoretical prOperties of the least squares estimator when

the order of the model is not equal to the minimal order of the system

are also developed. When the model order is higher than the system

order in a noise free system, extra poles and zeros are added to the

transfer function; all of these are on the same side of the unit

circle. When noise is present, the estimator still converges, but

to an unknown realization. It is also shown that the small sample

estimates might theoretically differ greatly from the noise-free

estimates in such Situations. However, numerical results are quite

close.



Martin W. Schwartz

Variants of the standard least squares estimator are

developed and compared. A starting algorithm for on-line estima-

tion, based on matrix pseudo-inverses is also developed.
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CHAPTER I

INTRODUCTION

1.1 Motivation

The following problem arose in a study of an electric

power system: find a simple equation which represents the be-

havior of a high-voltage tieline connecting two areas. Such a

mathematical model would be incorporated in simulation models used

in design of the system and would be studied to possibly provide

better control of the system. The Standard theoretical treatments

of these tielines (E2) requires knowledge of parameters which are

often not available and some simplifying assumptions which were

questioned. Thus, it was decided to measure the power and fre-

quency (the relevant variables) on a tieline and form a model

using these measurements.

This is an example of a common problem we will call the

identification problem; namely, to obtain information about a

complicated real-world dynamic system from discrete-time or

sampled measurements of the relevant input and output variables.

Using known information and enough simplifying assumptions to make

the problem computationally feasible, a mathematical model with

unknown parameters is constructed, and the parameters are estimated.

If the model is accurate, some properties of the system can be

determined within certain accuracies. Specifically, consider a



single-input, single-output (SISO) dynamic system which is linear

and time-invariant. If the order n is known, the problem is

to estimate the coefficients of the difference equation:

n n
— +

(1'1°1) 5t 2l aijt-i 2l biut-i

where y is the output, u the input, and yt = y(t) . For

example, a model for one tieline could be

(1.1.2) f = .59ftt + .405ft + . 3 + . 2OO pt_1 00 pt_
-1 -2 2

where f is frequency and p is power. Sometimes the input is

a test signal, sometimes not; the system may be initially at rest,

or may not; and we may have knowledge or can make assumptions about

the measurement errors and plant noise. In each Situation some

method such as least squares, GausséMarkov (L1), maximum likelihood

(A4), Kalman-Ho (K2), or stochastic approximation (M3) is available

to generate the estimates.

Going back to the Specific problem of modeling the load-

frequency behavior of an electric power tieline, the measurements

must be taken during normal operation, and noise is present as

measurement error in both input (power) and output (frequency) and

as an inherent stochastic element of the system (the system loads

and configuration are partly random) (P1). While the model can be

taken as linear and time-invariant during a short period under

normal ranges of the variables, several factors arise that violate

the usual assumptions of existing methods. First, the stochastic

assumptions necessary to insure unbiased estimates are violated.

Second, we do not have Sufficient information about the system



to obtain the order of the model or relations between the parameters.

Third, we have very limited information about the characteristics

of the noise. Finally, the output and, to a lesser extent, the input

are almost constant.

The fourth factor is important. The usual methods for

testing the fit of a model calculate the residuals; if they are

small, the model is considered good. But here the residuals alone

do not constitute a sufficient test for the validity of the model

because any reasonable identification scheme will yield small

residuals. For example, if a constant model equal to the nominal

value of 60.000Hz is taken, one set of data has an rms residual

of .021 of the estimate. But our goal is to derive some information

about the structure of the system, and not just to estimate the

output. Thus, the almost constant data implies that we must look

for additional criteria to use in testing the model fit.

The constancy causes additional problems. Many identifica-

tion.methods involve solution of a set of equations of the form

Y =IXA derived from (1.1.1). Several columns of X will contain

output values (which in the above example vary from 59.980 to

60.017Hz), and these columns will be almost linearly dependent.

Therefore, the solution will be very sensitive to small perturbations

in the data and to round-off errors in the numerical technique.

Another aspect of the problem is that the high intercorrelation of

the columns of X makes it very difficult to determine empirically

a reasonable order for the model. This is important because, as

shown in Section 1.2.1, different models may exhibit identical

input-output behavior and one might be stable and the other unstable,



one controllable and the other uncontrollable, or have other

divergent prOperties.

The following example from numerical analysis (12) shows

this problem in a slightly different context. When solving the

differential equation

dy/dt = -y. y(0) = yo

with a third-order difference approximation (of a specified form)

for the derivative, the difference equation

yt + (3/2 +3h)yt_1 - 3yt_2 + %yt_3 = O

is obtained, where h is the sampling interval. Three distinct

solutions of the form yt = at are obtained. All of the 8's

satisfy the equation

3 2

a + (3/2 + 3h)a - 3a +'% = O .

For sufficiently small h, one eigenvalue is less than -2. Thus

the difference solution becomes unbounded while the true solution

approaches zero. The problem is due solely to the addition of

the extraneous eigenvalues caused by too large a model order.

Our primary motivation is solving the practical problem

of how to choose a model. In doing so we will not always be

rigorous from a probabilistic interpretation. This is deliberate

and is common in developing numerical techniques; Powell (P2),

when discussing methods for finding the maximum of a function

F(x1,x2,...,xn), says:



The lack of definiteness in stating the conditions

on F(x ,x ,...,x ) is deliberate, because we are
l 2 n

describing the current state of optimization, and

it happens that the current state is not a logical

structure of theorems. Instead it has developed

from an assortment of numerical methods which have

been devised because real problems had to be solved,

and at present the actual success of the algorithms

is far ahead of any theoretical predictions.

The model-order problem is much less developed than the maximiza-

tion problem; numerical, rather than theoretical, results for

the model order problem are emphasized.

There are some new theoretical results in this thesis:

Theorem 2 on the asymptotic convergence of least-squares estimators

with correlated noise; Theorem 3 on small-sample properties with

white noise, and Theorem 4 on the location of the additional poles

with too-high a model order and no noise. The algorithm in

Chapter III for the pseudo-inverse of the sum of matrices of a

certain form is also new, and a variant of the least squares

algorithm.which we call the reduced least squares algorithm.has

not been explicitly discussed in the literature. However, for

the solution of the practical problem, the main contribution is

the application of the theory of equivalent representations to

the study of the identification problem.

The nature of the problem precludes a logical structure

of theorems at the present time. The rest of this chapter and

most of the next develOp theory necessary to the understanding

of the tests for model order and their numerical comparison.

Relevant literature is reviewed when the appropriate subject is

discussed and is often juxtaposed with the new material; this is

true, in particular, for the section on the model-order problem.



1.2 Background

In this section we will define and discuss several con-

cepts necessary to define the problem more clearly and to compare

each method with others. The first part distinguishes the dif-

ferent ways we can represent a system and discusses related ques-

tions; although the discussion will be for linear, discrete, time-

invariant 8180 systems, most of the ideas are valid for multivariate

and time-varying ones. The next part describes the different loss

or error criteria we can use for identification. The last part

is a brief outline of several significant identification algorithms

and how they become more elegant and efficient as we have more

information and more control over how the information is obtained.

It is necessary in what follows to distinguish between a

real~world system, a mathematical system, and a mathematical model

of a system. A real-world system is, of course, what we find in

nature and almost always lacks desirable prOpertieS (such as true

time-invariance) that mathematical systems can have. In Section

1.2.1 we will distinguish between a mathematical system and a model

or representation of it. This distinction is more subtle and is

more important because, although we are developing algorithms with

the intent that they will be applied to real-world problems, much

of the time we will have to talk about models of mathematical

systems.

1.2.1 Equivalent realizations and identifiability

In the remaining chapters we talk about "the order of the

system" and "the order of the model" as if they were well-defined



concepts, and it is important that they be well defined. The

most obvious definition (for either concept) would be the largest

lag in the difference equation, i.e. the parameter n in equa-

tion (1.1.1), but this is not sufficient because it does not dis-

tinguish between difference equations which have identical input-

output behavior.

This problem can be thought of (Cl, K1) as pole-zero can-

cellation of the transfer-function T(z) relating input to output.

discrete transform function is the z-transform (01) of the dif-

ferential equation representation of the system. The z-transform

is the discrete version of the LaPlace transform and has many of

the same properties. An example of the use of the z-transform

and the corresponding derivation using the difference equation is

in the Appendix. If we derive T(z) from theoretical considera-

tions and get a pole-zero pair, then it is well known (61) that

if this pole is unstable, then the real system will act as though

it was unstable even though classical z- (or LaPlace) transform

theory tells us that we may cancel that term in the mathematical

model and look at just the other poles. The reasons for this

deviant behavior are that real components are not linear over all

possible input-output values (C2) and that they do not exhibit

exact pole-zero cancellation (Kl).

A simple example (C2), using a continuous time dynamic

model, demonstrates this. Let us set up the system with total

transfer function T(S) = l/(S-l) using two components in series

such that the first has T1(s) = l/(s+l) and the second

The

T2(8) = (s+l)/(s-l), so that T(S) = T1(S)T2(S). With zero initial



conditions and unit step input, theoretically y(t) = l - exp(-t)

the same as if we had used only one integrator. Real components,

however, are linear for only a limited range of their input and

output. Thus, after a while, the output of the first component

or the input of the second would be overloaded, and the observed

behavior would deviate markedly from the theoretical. This is

true even if all the components are perfect; if the pole and zero

do not match exactly, or if there are slight perturbations in the

system, the effect is increased.

However, we are deriving T(z) from observed data, not

theoretical considerations. As explained later in the section

the input-output data gives us information only about the con-

trollable, observable part of the system, and this part has no

pole-zero pairs. If everything is exact, and we take the model

order to be larger than the system order, the model transfer

function will have pole-zero pairs (see Section 2.4.1) and can-

celling these will yield the transfer function of the (con-

trollable, observable part of the) system; here we cancel the

pole-zero pairs because any occurence of such pairs from input-

output data is due to a flaw in the identification algorithm or

an error we have made because we cannot identify those pairs which

do cancel. If there are stochastic elements, then we do not get

exact pole-zero pairs because of the identification errors, but

we would like to guarantee that the behavior is not much dif-

ferent than the behavior of the noise-free system.

We now have two reasons for examining concepts related to

equivalent representations. First, we want to have an unambiguous



statement of what "the order of the system" means. Second, we

must be able to compare two systems and/or models and be able to

say when their behavior is identical or close.

There are three different ways of representing the rela-

tion between the input and output whidh we shall use: difference

equation, transfer function, and state-Space model. Each of these

has advantages and disadvantages, some of which are discussed below.

But first let us explicitly state them. The difference equation

representation is

n n

. . = . +<1 2 1) yt 21 a y -1 z b.ut 1

where the 8i and bi are constants and n is the maximum lag.

Its z-transform is (01)

(1.2.2) T(Z) =

There are several standard state-Space representations of the

difference equation (1.2.1) (01), one of which is as follows: let

:
3
‘

II

b + a h

(1.2.3)

h = b + a h +...+ a h

n n1

Now define the State variables:

x1(t) = yr

x2(t) = x1(t+l) - hlut

(1.2.4) °

xn(t) = xn_1(t+l) - hn_1ut
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Then the state-Space model consists of state- and output-equations

X(t+l) = AX(t) + But

  

(1.2.5)

yt = CX(t)

where

X(t) = col(x1(t),...,xn(t))

r6 1 ... o o7

O O ... O 0

(1.2.6) A = I

O O ... 0 1

L?“ an”1 ... a2 aL

B = col(h1,...,hn)

C = (l,O,...,O)

Two important concepts derived from state-space representa-

tions that we will need for the model-order problem are control-

lability and observability (G1, 01, K1). Formally, a state-space

realization is controllable (observable) if its controllability

matrix Qc (observability matrix Q0)

(B. AB....,A“'IB)D

II

(1.2.7)

- (CT,ATCT,...,(AT)n-1CTO

I

)

has full rank. Intuitively, it is observable if we can see what

is happening internally (in the state vector) by looking at the

output. It is controllable if we can manipulate the state using

the input. The difference equation representation contains in-

formation only about those parts of the system which are both
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controllable and observable. In the above example, the differential

equation does not Show the output of the first integrator or the

input to the second, and it does not allow us to manipulate them

so that the desired input-output relation holds for all values.

The state-space representation (1.2.3)-(1.2.6) has

observability matrix equal to the identity. This can readily be

seen because CT is the first column of the identity and (AT)kCT

is the first column of (AT)k which is the kth column of AT and

is equal to the kth column of the identity. To illustrate several

ideas in this section we will use Example 1, Section 3.2, whose

difference equation form is

. . = . + . - o - o + .5 °

(1 2 8) yt 8yt-1 39yt_2 27yt_3 But-1 ut-Z + 1Ut-3

Its z-transform is

-.522 + .52 + .1

z - .82 - .392 + .27

(1.2.9) T(z)
 

_ -.5(z-l.17082) (z + .17082)

“ (z-.9)(z+.6)(z-.5)

And for the state-space representation we are using

0

(1.2.10) A = 0 C = (l O 0)

2 G
o
t
-
I
o

I
I
!

II

O
H
U
‘

We are now ready to Show that (1.2.8) and the other

representations are not unique, i.e. there are other difference

equations which have identical input-output behavior. The material

is partially contained in several references (A3, B5, R2, 21, 22)

which differ among themselves in definitions; ours will also differ,
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but will generally follow the later sources. We Shall define a

system as an input sequence and its corresponding output sequence.

The triplet (A, B, C), defined above, is called a (state-)

realization of the system. Any system obviously has many realiza-

tions such as (A, B, C) and its similar realizations

(T-IAT, T-lB, CT) where T is any nonsingular matrix of appropriate

size. We shall say that two realizations, S and S', are equivalent

if, given an initial state x0 of S, there is an initial state

x; of S' such that

y(t; XON) = y'(t; xgw).

More Simply, two realizations are equivalent if the same input

string applied to both yields the same output string. Obviously,

two Similar realizations are equivalent, not all equivalent

realizations are similar; while all Similar realizations have the

Same dimension state vector, not all equivalent realizations do.

If there is no realization with a smaller-dimension state vector,

then the realization is called minimal. A11 minimal realizations

are similar. Finally, the order of the system is the dimension

of the minimal realization. We will also call the coefficient

vector of the difference equation form (1.2.1) a realization,

keeping in mind that formally we mean the one obtained from (1.2.1)

by using (1.2.3)-(1.2.6).

If the order of the system is m, then there is no dif-

ference equation with fewer than m lags which realizes the

system. If we do not know m and try models with other maximum

lags, n, then the models will also realize the system. Thus we
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will use the following terminology to differentiate between the

'maximum lag and the order of the system: by "the order of the

model" we will mean the largest lag of the difference equation

in the realization being used. Table 1 illustrates the difference

between "the order of the system" and "the order of the model"

by showing several equivalent realizations of Example 1, where

the order of the system is 3.

Table 1. Equivalent Realizations of a System

order of

the model a1 a2 a3 84 b1 b2 b3 b4

3 .8 .39 -.27 --- -.5 .5 .1 ---

4 .8 .39 -.27 0 -.5 .5 .1 0

4 1.8 -.41 -.66 .27 -.5 1.0 -.4 -.1

4 -.466 -.657 .140 .090 -.5 .332 .267 .033

The following facts about minimal and non-minimal realiza-

tions will be useful:

1) There is no pole-zero cancellation in the transfer

function form (1.2.2) of the minimal realization; non-minimal

realizations have pole-zero cancellation. (1.2.2) shows that the

model of order 3 has no cancellation; the models of order 4 in

Table l have additional factors of z, (z-l), and (z - .334021),

respectively. This is the main advantage of form (1.2.2), since

factoring the numerator and denominator of T(z) is the easiest

way to determine if a realization is minimal. The main dis-

advantage is that T(z) does not account for the initial conditions

unless they are zero.
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2) The difference equation form (1.2.1) of a minimal

realization is unique; this is not true of non-minimal realiza-

tions of fixed order as Table 1 illustrates.

3) Given any realization of a system and its con-

trollability and observability matrices QC and Q0, then the

order of the system is rankKQzOc). Realization (1.2.3)-(1.2.6)

has the advantage that the order of the system it represents is

equal to the rank of’ QC, making calculations easier.

We will finish the discussion of equivalent realizations

in Section 2.4, after some other relevant material has been pre-

sented.

The last question in this section concerns identifiability

(B2, 82). A model is identifiable if its coefficients can be

determined uniquely from the input-output data. This requirement

of uniqueness is desirable to inhibit the estimator from oscillating

between two correct coefficient vectors (i.e. between two realiza-

tions). If m is less than n, there are many possible solutions

and the uniqueness property is not satisfied. But there can be

convergence without uniqueness (Bl); for example, the algorithm

can converge to the realization with minimum norm. This is the

case here (see Section 2.4.2), and we do not care very much which

realization is approached. Thus we will procede to identify the

parameters even if they are not identifiable in the formal sense.

They will be identifiable in practice.

1.2.2 Identification of linear systems

If we were extremely fortunate, we would be able to use a

test signal for the input and observe the output without any noise.
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For such situations, the Ho-Kalman algorithm (K2) provides an

elegant method for determining the order of the system and the para-

meter vector. Let the input be a pulse and let

 

”I 3'2 ”T

y2 y3 ...

(1.2.11) H = . . ...

L: ":1 
H is a Hankel matrix, i.e. its (i,j)th entry depends only on

(i+j). Let its principal leading submatrix of dimension n be

denoted by Hn. If the minimal order of the system is ‘m, then

(1.2.12) det(Hn) = 0 if and only if n > m.

This gives a method for determining the order of the system and

a realization of it:

> ll ‘H;1(sHm), where s is the shift operator

(1.2.13) B col(l, O,..., O)

c = cyl. y2,.... ym>

The algorithm generalizes easily to the Situation where there are

r inputs and p outputs. Then H is a block Hankel matrix

with r X p blocks, and the above expressions for A, B, and C

are pre- and post-multiplied by "editing" matrices, composed of

the identity and zeros, which are easy to compute. If there is no

noise, but a pulse input cannot be used, the method does not work

because it is impossible to set up a matrix which has the properties

of H which are needed. But there is still no problem because

we can set up a system of linear equations of apprOpriate size and
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solve the parameters. On the other hand, there are problems which

have not been completely solved, whenever noise is present, no matter

what the input.

If there is noise, in general the equations are not con-

sistent, so it is necessary to choose some criterion in making

the estimates. The most common criterion is least squares, where

the sum of the squared differences between the model estimates and

the observed values is to be minimized. This method, elaborated in

Chapter II, is the one we have chosen because it has several advan-

tages. It is easy to compute the estimates, and it is essentially

distribution free, i.e. it is not necessary to know the distribution

of the stochastic elements a priori; it is unbiased as long as the

noise is uncorrelated. Other methods, such as maximum-likelihood

and the Bayes' method, which maximize probability density functions,

require known density functions of the residuals.

A set of variants of the least squares method is weighted

least squares. Regular least squares solves a set of equations of

the form. Y = XA derived from (1.1.1). Then weighted least squares

solves WY = WXA, where W is a positive definite matrix. A well-

known example of a weighting matrix is the inverse of the covariance

matrix of the residuals. This variant is called the Gauss4Markov

or Best Linear Unbiased (BLUE) estimator. Another variant is the

instrumental variables method (A3), and a third is discussed in

Section 2.5.

These are the most common criteria in identification

algorithms. There are some other criteria which cannot be used

with a single estimate, but which can be used to compare different
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estimates. For example, we might want the parameter estimates

to be near their true values. Since we do not know the true values,

parameter errors are not a basis for an identification algorithm,

but we can compare the parameter estimates from different estimators.

For dynamic systems, one way to compare them (which is independent

of model order) is to compare the steady State response to a unit-

step input. As shown in the Appendix,

(1.2.14) yss = (z bi)/(1 - 2 81)

where the a1 and bi are the parameters in the difference equa-

tion (1.1.1). We can also compare the estimates of the poles and

zeros of the transfer function of a dynamic system. This topic

is discussed in detail in Section 2.4.3.



CHAPTER II

LEAST SQUARES ALGORITHMS

In this chapter we will discuss least-squares estimation

of discrete, single-input, single-output systems using different

assumptions about the noise, when the order of the system is

known and when it is not. Two variations of the standard technique

are given: a new one which has improved small sample properties,

and a weighted one. We will also discuss tests for the order of

the system.

2.1 Statement of the Problem

A deterministic system of order n can be represented

in discrete time as the difference equation

(2.1.1) x = z“ a.x
n

l 1 t-l + £1 bivt-i

where input v and output x are given at equally spaced times.

If stochastic elements are present, we shall write the equation

to include modeling errors as

_ n n
(2.1.2) yt - 21 aiyt-i + £1 biut-i + et

where et will be explicitly defined as appropriate for each

theorem. After N observations, (2.1.2) is usually written in

matrix form as

18
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(2.1.3) YN = ¢Ne + EN’ where

YN = col(yn+1, yn+2,..., yn+N)’ an N X 1 output vector

EN = col(en+1, en+2,..., eniN)’ an. N x 1 noise vector

9 = col(a1,...,an, b1"°"bn)’ the Zn X l parameter vector,

and

(311:: :: :

[fniN-l ... yN UnfiN-l ... u  
an N X 2n observation matrix. The least squares estimator (lse)

6N of e is given by

(2.1.4) 9N = ngN

where + denotes the Moore-Penrose generalized inverse. If

N 2 2n and ¢N has full (column) rank, then,

(2.1.5) 0N = (¢:¢N)‘1¢§YN

The proof is straight-forward using Lagrange multipliers; the

errors EN dr0p out of the solution because their derivatives

with respect to the parameters are zero.

The large and small sample properties of the lse are given

in the next two sections; there it is shown that it is biased for

a finite number of Samples even when it is asymptotically unbiased.

The variation we call the reduced lse, which is unbiased for finite

samples, can be obtained by deleting entries in YN’ EN, and ¢N

as follows: let
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YR = C01(yn+1’ YZ(n+1)3°°°’ yK(n+1))

and make the corresponding changes in EN and ¢N so that

(2.1.6) YK =(bK9-l-EK

When this is done, any yt, t = l,...,N = K(n+l), will appear

just once in (2.1.6) while it usually appears (n+1) times in

(2.1.3). For example, let n = 2 and N = 7. Then

  

      

”3’31 (3’2 )’1 L12 “17 F837

ya y3 y2 u3 u2 rail ea

y5 Y4 y3 “4 U3 82 - es

YN = ’6 = y5 ya u5 “4 b1 + es

y7 y6 y5 ”6 u5 LPQ. e7

y8 y7 y6 u7 “8 e8

L79J L78 y7 u8 U7- LSQJ

for the full matrix lse, and

y3 y2 y1 u2 u1 rail e3

YK = y6 = y5 Y4 u5 “4 a2 + 86

y9 y8 y7 U8 u7 b1 89
. EZ‘

  
for the reduced matrix lse. The reduced estimator is

+

(2.1.7) 6K - (DKYK

Section 2.4 discusses the lse's when the true order of

the system is not known and studies the practical problem of

choosing a model order; Section 2.5 gives another variation --

normalized least squares.
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2.2 Large-sample Properties

In this section the asymptotic prOperties of the lse of

system (2.1.2) are derived under uncorrelated and correlated noise.

The asymptotic prOperties of the reduced matrix form are the same

as for the full matrix form.

2.2.1 Uncorrelated noise

The simplest stochastic case is independent system noise,

i.e. where the random variables et are independent and identically

distributed (iid) and are independent of the input and output.

This means that there are no observation errors, but only an inherent

stochastic behavior in the system. Astrom (A2) states and sketches

the proof (with minor errors) that in this case the least squares

estimator converges in the mean square. The proof is sketched below

because some intermediate results are used in the rest of the chapter.

Theorem 1. (Astrom) Let the system be given by (2.1.2) and assume:

1) the residuals et are iid with zero mean, have all

moments finite, and are independent of the input and

output;

2) the system is stable;

3) lim fig fi'ut is finite and lim :: % utut-s = Ru(s)

is finite for s = 0,1,...;

4) the matrix whose (i,j)th element is Ru(i-j) is

positive definite;

5) the order of the system is known.

Then the least squares estimator (2.1.4) converges to e in mean

square.
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The assumptions of this theorem are common in identifica-

tion: the first characterizes the errors and will be generalized

in Theorem 2; Assumption 2 guarantees that the output is bounded

(bounded output should be sufficient for the proof); Assumptions

3 and 4 insure that the input is well behaved (for example,

essentially constant inputs such as a unit step or impulse will

not work for least Squares identification); and the last assumption

guarantees uniqueness. The finite difference representation is

used for identification because it gives the unknown parameters

in terms of directly measurable variables. When the (minimal)

order is known, this representation is unique.

Outline of proof (for more details see the proof of Theorem

2 in the appendix): Let

_ _ _ _. T

(2.2.1) BN - N ¢N EN and CN —'N ¢N ¢N

Assumptions 2, 3, and 4 imply that lim EN = 0 and lim CN = C

exists and is positive definite. Define

(2.2.2) ZN = CNS};

where 9N = 6N - e is the error of the N-th estimate. Then

(2.2.3) 2 = l E = B
N ¢N N

It is now possible to Show that

_ T _
E(ZN) — 0 and E(ZNZN) c,

E.

N

I
where s = var(et). Now E(ZN) = C lim 8N, so the lse is unbiased.

Finally,
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lim E<9NT9N) = lim sagzN) = lim% cue),

so the estimate converges in mean square.

2.2.2 Correlated noise

We will now generalize the results to allow et to be

system noise correlated to observation noise.

Theorem 2. Let the system be given by (2.1.2) and assume:

1) The residuals et are identically distributed with

zero mean, all moments finite, E(ete ) = 0 for
t+s

s > n, and are independent of the noise-free input

and output.

2) - 5) same as in Theorem 1.

Then the lse (2.1.4) converges to (e + C-IB) in mean square,

where C is defined by (2.2.1) and

(2.2.4) B = C01(E(ytet+l)’°°°’E(ytet+n)’ E(ute ),...,E(ute ))

t+1 t+n

The proof is given in the appendix. It is similar to the proof

of Theorem 1, but now

E(Z ) = B 1‘ 0 and E(ZTZ ) = 1 ("weighted c").
N N N N

The term C-IB is the asymptotic bias, which is unknown in most

practical situations.

We conclude this section with two comments. First, the

assumption that E(ete = O for s > n is necessary. If it
t+s)

did not hold, the actual order of the system would be greater than

n, as it would be if the numerator of the transfer function was

higher than the degree of the denominator. Second, if there is
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independent observation noise, but no plant noise, than (2.2.4)

can be replaced by

(2.2.5) B = col(-alsy,...,-ansy, -blsu,...,-bnsu)

where s and sy are the variances of the input and output noise

u

respectively.

2.3 Small Sample Properties

While it is theoretically important to have desirable pro-

perties when an arbitrary amount of data is available, in practical

Situations it is more important to know the properties when only a

limited amount of data is available. But small-Sample pr0perties

are more difficult to obtain because they often involve non-linear

transformations. Thus, while the proofs of Theorems 1 and 2 (for

large samples) did not involve the distribution of er, the negative

results of the following theorem (for small samples using the full

matrix lse) are proved explicitly only for an example involving

a particular distribution and Specific values for N and n.

Theorem 3. Under the assumptions of Theorem 1, the full matrix

lse (2.1.5) may be biased for finite samples, while the reduced

matrix lse (2.1.7) is unbiased.

Proof: From (2.2.2) and (2.2.3) we see that

(2.3.2) 9N =¢;E

et is independent of all uS and all eS and yS, s f t. So

in the reduced matrix formulation, each element of EK is inde-

+

pendent of each element of RK’ which implies that E(®REK) = O,
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and 8K is unbiased. On the other hand, for the full matrix

+

formulation, E and ¢N are generally dependent. Let us take
N

the simplest example, n-1 and N = 2. After some algebra, we

 

obtain

1 e2(u2-au1)

(2.3.3) ' = _

9N €2U1+“1(ay1+b”1) y1“2 e (ay +2bu +e )
2 l l 2

Thus,

m c3e

‘ — _.______
(2.3.4) E(a ) — [ c1 +*cze f(e)de

where c1, c2, and c3, obtained from (2.3.3), are independent

of e2, and f(e) is the density function of the error. The

expected value of b' is similar, but has an additional term,

quadratic in e, in the numerator. We will not attempt to find

the class of density functions which give unbiased results; but if

et is uniformly distributed on (-d,d), then

c c - c d

(2.3.5) E(a') = %[2— + if log 23-1—2171} 0, almost surely.

1 2c1 2 1

This is the only bias we will explicitly find, but if either n

or N is increased, (2.3.4) becomes the multiple integral of the

product of a joint density function and a rational function in

several variables, so the full matrix lse will give biased small

sample estimates most of the time.

Of course, there is a price to pay for the unbiased reduced

matrix lse: the convergence factor for the full matrix estimator

n+1

while it is %'= -- for the reduced formulation.15 N
l
N’
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For correlated noise, the situation is less clear. First,

it is impossible to eliminate either small or large sample bias

because EK and é; are dependent for both estimators. Second,

it is more difficult to compare the standard estimates, because

each estimator has a different weighting matrix. However, numerical

results in Chapter III often indicate better results using the

reduced lse. It is possible that either the small sample bias or

the variance of the estimator is reduced.

The only other results on small-sample estimates are in

Hurwicz (H2). He shows that the least squares estimates are biased

for a first order free response system when a finite number of

samples are available and gives specific values of the bias under

very particular circumstances.

2.4 Systems of Unknown Order

The discussion so far has assumed that the order of the

system is known; if the system is simple it is usually possible

to determine the order from physical, economic, or other relevant

theoretical considerations. But if the system is complex, it may

not be possible to determine the order from theory. One reason

is the problem of aggregation -- even when it is possible to model

each component of a system, the total may not act like the sum of

the components. This phenomenon has been noted in engineering (Cl)

and economics (Tl). Another reason is that the order of a

"complete" model (if it is possible to construct one) may be in

the thousands, while the dominant behavior is of low order. Thirdly,

the order of the observable, controllable part may be less than
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the sum of the orders of the subsystems (61).

Thus we are motivated to study parameter estimation when

the order of the model is not that of the system. First, least

squares estimation when the order of the model is higher than the

order of the system is presented. Then tests for the order are

presented. While not completely general, we will assume that the

system has the same form as the model, but has a different order;

this assumption will allow us to use several tools to solve the

model order problem. Let the order of the system be m so that

it may be represented as

— m
m

I

(2.4.1) Yt ' 21 ciyt_i + 21 diut-i + 8t

and let the order of the model be n so that

_ n

(2.4.2) yt — £1 aiy -i + £1 biut-i + et

Further, we will assume that n is larger than m unless other-

wise specified.

2.4.1 No noise

Using the material from Section 1.2.1, we see that there

is not a unique difference equation if n > m. If n-m = p, then

multiplying both the numerator and denominator of the transfer

function T(z) by the same arbitrary p-th degree polynomial yields

an exact n-th order realization of the system. Two such realiza-

tions are

(2.4.3) 9 = col(c ., c , 0,...,0, d.. ... 9 0 ... 0 ,

1’ C2’ m 1’ ’dm ’ ’ )
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where the C1 and (11 are the coefficients in the minimal

realization (2.4.1), and the least squares realization described

below which is due to Soderstrom (81). Table 1 Shows examples

of fourth order realizations of a third order system; the second

row in the table is realization (2.4.3), and the last row is the

least squares model.

With no noise, the rank of ¢ is m+n, so ¢T® is not

invertible. The lse becomes

_+_T+T
(2.4.4) 9N ¢NYN (¢N¢N) ¢NYN

The least squares realization has the smallest norm of any n-th

order realization. To characterize the lse we need some new

notation. First, rearrange the columns of ¢ and the elements

of 9 so that the input and output at the same time are adjacent.

  

Then

yn ”n yn-l ”n-I y1 “Ii

(2.4.5) ¢o = I
;

Lyn-I'N-l un-tN-l yn-tN-Z un-l-N-Z yN “IL

(2.4.6) 90 = col(x 02p)

where

x = (Cl, d1,..., cm, dm)

and 9k is the null vector with k elements. Now define
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91 = c“(021-2

6 = c°1(al’b1"°"an’bn)

-1, O X i=1,ooo,p

OZp-Zi)’

T T

H =C01e 300-39(1 p)

B = col(g1,...,gp)

where G is obtained from the factorization of T(z)

n n-l

blz + bZZ +3..+ bnz

n zn-l

1 ... n

(2.4.8) “T(z) =

p-l

  

m P
+OOO+ 0..= dlz dmz . z +-glz +| +812

m p p-l
-...-

+
+OOO+z c z glz gp

9 can be written as

From (2.4.1) it is clear that H¢: = 0, so that premultiplying

by H yields the solution

(2.4.10) 8 = -(HRT)'1890

Numerical examples of this computation are given in Section 3.2.

One property of the real system that the model should

reflect is stability or instability. The model will be unstable

if one of the extra poles of T(z) lies outside the unit circle,

even though the actual system is stable. We want to insure that

the algorithm used to estimate the coefficients does not introduce

instability into the model; this is especially important if there

are stochastic elements present because then the best we can expect

is that the pole-zero pairs will be approximately, but not exactly,
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equal. Obviously, (2.4.3) yields a stable realization because

G = Op. The situation is not as neat for the lse, as the follow-

ing theorem shows.

Theorem 4. Let a system be given by (2.4.1) and its model by

(2.4.2), where n-m = p > O, and assume that et and e; are

identically zero. Then the lse (2.4.4) introduces p additional

pole-zero pairs to the transfer function (2.4.8). Either all these

pairs are located inside the unit circle or all are located out-

side the unit circle. In particular, if p = l, the extra pair

is stable.

The proof of Theorem 4 is in the appendix.

Our attention has been focused on the case when n is

greater than m because there does not seem to be any practical

problem when n is smaller. The relevant theoretical work, called

the reduction of dynamic systems, (Al, D1, M2) has assumed that

the system.is known and all that is desired is a lower order

approximation to it. Our situation is somewhat different because

all we have are input and output values, but it does not appear to

be much different. We get a projection from m dimensional space

to n dimensional space which does not seem to effect stability

or controllability. In fact, it is sometimes difficult to dis-

tinguish between the reduced and unreduced models both in our

identification problem (see Section 3.3) and in a similar method

for the reduction of known systems (Al).

2.4.2 Noise

There is a great gap between the theoretical development

and the practical results when there is noise and n > m. The
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practical results are amazingly good, while the limited theory

says that we have no right to expect anything very close. The

basic problem is that the noise-free ¢N matrix does not have

full rank, and the observed, noisy ¢N has full rank almost

surely (a.s.). Thus, if C = lim %'¢§¢N is invertible (this

limit of a sequence of non-singular matrices is not necessarily

non-singular), then Theorems 1 and 2 are still valid (with minor

changes). C does have full rank a.s. if there are only

independent observation errors. To Show this let

(2.4.11) ¢N = DN + PN

where DN is the deterministic part and PN are the observation

errors. Then

__1_T lT =
(2.4.12) E(CN) — E(N DNDN) +E(N PNPN) D + P

D has rank (n+m), but P is a diagonal matrix of rank 2n,

(2.4.13) P = diag(sy,...,sy, su,...,su)

so C has rank 2n a.s. If the stochastic part is just independent

plant noise, as in Theorem 1, then

P = diag(s,...,s,0,...,0)

so C is still invertible if 2n 5 ZmNn, and Theorem 1 is still

valid. The small sample properties of Theorem 3 are also correct

if n 5 2m, but the full matrix formulation is also unbiased if

n > 2m.
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It is not clear exactly what happens asymptotically (when

the number of samples becomes large). The estimates do converge

to some estimate; if there is just independent plant noise, the

estimate is an exact realization of the system. It would be very

difficult to decide which realization is approached, because it

would require a very detailed probabilistic argument on the errors

in (2.1.3) and knowledge of the relation between (D+P)-1 and

P"1 and D.1 in (2.4.12) which not available. It would be nice

to say that the answer was either the noise-free least squares

estimate or readization (2.4.3). In fact numerical simulations

in Chapter III and in (A2) have sometimes indicated one and some-

times the other.of these. The reason for this lies in the fact

that we are trying to minimize the norm of the parameter vector

when there is more than one realization. Figure 1 shows the norm

of the estimate for Example 1 when n = 4; while there is a minimum

at the lse, the curve is very flat. Soderstrom (81) indicates

that machine roundoff error alone can cause a large error in the

estimate, so it is not surprising that simulations have not

generated consistent results.

1.4

1.2

  
-1/3 0 1/3 2/3 1

Figure 1. Norm of e vs. Extra Pole
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If we cannot say much theoretically about the asymptotic

estimate, we can say even less about the small sample estimates.

The natural approach is to let P, the stochastic part of E(CN)

approach zero, but then the rank of E(CN) changes from 2n to,

at most, (n+m). When the rank of a matrix changes, the (pseudo-)

inverse is no longer a continuous function of its elements as

the following examples show.

e o '1 /e 0e] 0 0+

0e 0 1/ but 00 g 00

He 1 '1 +e -1 1 1+ 1 1

1 l+e =21 1 1+ b‘“: 1 =2:11
e +2e - e

Thus, the noisy lse might, theoretically, be quite different

 

from the no-noise lse for small samples.

But the numerical results in Chapter III are much different

than the pessimistic theory. Even with noise the computed poles and

zeros are often quite close to the noise-free values.

2.4.3 Tests for the order of the system

The literature contains very few papers on the model-order

problem per se (A2, 62, W3), but there has been work on choosing

a regression model from a set of possible models. All of the

existing work on choosing the order of a linear, dynamic system

has just modified the general regression tests to fit the particular

problem. These existing tests fit into two categories. We can

say that ¢ has full rank a.s. if and only if n s m and that

the problem is to determine the largest n so that the columns
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of ¢ are sufficiently independent. On the other hand, we can

look at the residuals and say that they should have zero mean and

approximately a Gaussian distribution if the correct order is

chosen. None of these methods make use of the considerable body

of knowledge of linear systems that is available. After a rather

complete review of the existing tests of model order, with brief

indications of the numerical results in Chapter III, we shall pre-

sent some new tests which do make use of the theory of linear systems,

in particular the theory of equivalent representations.

The second point of view, residuals, is more common in the

engineering literature (A2, Jl, W3). There are several non-

rigorous tests based on the residuals. Draper and Smith (D1) out-

line several ways to examine the residuals of a given model such

as plots of the residual versus time, the input, and the output,

examination of outliers (those residuals with large magnitudes),

and run tests; none of them seem very useful except at a very pre-

liminary stage of investigation. A much better one, originally pro-

posed by Forsythe (F2) and since used by several others (B4, J1,

W3), is often useful. Forsythe considers the problem of determining

the degree of a polynomial when only noisy values are available

and gives the following heuristic algorithm: Add one degree at a

time to the approximating polynomial; the sum of the squared

residuals (or the RMS residual) should decrease rapidly until the

correct degree is reached and then remain fairly constant. Boling

(B4) has modified the algorithm to include a stopping rule based

on the relative decrease. Numerical examples indicate that

Forsythe's method works well in determining the order of a dynamic
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system when the variables have a wide enough range but does not

work well when the output is relatively constant. Other residual

norms, such as the largest absolute one, give Similar results.

In all the rigorous tests based on the residuals, it is

assumed that they are independent samples from a zero~mean Gaussian

distribution. This restriction may be more important theoretically

than practically, at least in part because of the central limit

theorems. The most common of these is an F-test (Al, El, Bl). Let

V1 and V2 be the sum of the squared residuals for models of

order n1 and n2 > n1, respectively, over the same N observa-

tions. Then

V - V N - 2n

(2.4.14) F = V—1———2 . 2( _2n)

2 I“2 1

 

has an F-distribution with 2(n2 - n ) and (N - n - 1) degrees

1 2

of freedom. The F-test says to accept the hypothesis that

n >11 2m

2 1

if F is smaller than an apprOpriate value of the F-distribution

and reject the hypothesis otherwise. This test also works well

when the variables have a wide enough range. Another test on the

residuals (J1) is to compute the sample spectrum of the residuals

and test the integrated Spectrum using a Kolmogorov-Smirnov

statistic.

The first point of view, the rank of ¢, is more common

in the econometrics literature (Fl, Hl, W2), where it is called

the multicollinearity problem (the word identification being

reserved for a different problem). ¢ has full column rank if and
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only if ¢T¢, a square matrix, is invertible, so tests based on

det(¢T¢) seem reasonable. Both Farrar and Glauber (F1) and Haitovsky

(Hl) do so. However, they use the correlation matrix, whose de-

terminant is between zero and one and is based on a zero-mean pro-

cess, instead of the unstandardized ¢T¢. Haitovsky's test seems

more reasonable: Let Rn be the Zn X 2n correlation matrix.

Then, as in (H1),

(2.4.15) X = -(N + 2n/3 + 11/6) ln(l - det Rn)

has a chi-squared distribution with n(2n-l) degrees of freedom.

A.small X value implies that n > m. For a dynamic system, it

is easy to Show that det Rn+1 s det Rn so that the test gives a

stopping criterion. Of course, if the input or output is

relatively constant, then Rn will be small for any n > 1. The

other problem is that by subtracting the means we may have changed

the rank of the matrix under investigation, i.e. Rn and ¢T¢

may not have the same rank. ¢T¢ can be normalized so that its

determinant is between zero and one, but the chi-squared test will

still not apply. Tests based on det(Rn) or det(¢T¢) do not

seem to work as well as the residual tests.

Goodman and Hiller (CZ) give a test based on the deter-

minant of a square ¢ and estimates of the maximum errors. But,

again, the determinants will be small if a variable is almost con-

stant and will be very sensitive to the particular values of the

variables. Some sort of average determinant might be useful to

reduce this dependency, but the algorithm is not too promising.
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As mentioned above, all of these tests apply to the gen-

eral problem of choosing a regression model. The only applica-

tions to dynamic systems have been the Goodman and Hiller paper

(G2), an application of the F-test by Astrom (A2), and a paper by

Woodside (W3). Woodside compares three tests: the mean squared

residual, the ratio of the determinants of unnormalized $T¢

matrices, and a likelihood ratio test which is fairly complicated

computationally. He concludes that the mean squared residual

test is the best of these. He also gives a method for improving

the results if the characteristics of the (uncorrelated) noise

are available.

All of the above tests have the disadvantage that they

do not work well in practice when the input or output is almost

constant. This is expected in the general regression situation.

But we can expect better results if we can use knowledge of dynamic

systems. Our basic problem is to find a model which behaves in

the same manner as the actual system, at least in those aspects

of interest. Ideally, the model might have the same order, co-

efficients, poles, and zeros as the (minimal respresentation of

the) system, but this might not be possible or even necessary.

If we have several models which behave Similarly to each other,

then any of them should be acceptable. In particular, we can use

knowledge of equivalent representations and reduction of dynamic

systems.

Our procedure will have four steps. First, we compute the

parameters for a number of models; for example, we may get models

of orders one through M for the full matrix, reduced matrix,
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and normalized least squares estimators (more will be said about

the selection of the algorithm in Chapter III). It might be

possible to select the order on the basis of the mean squared

residual or other such test. If not, these tests will allow us

to eliminate some possibilities. This is the second step and re-

duces our selection space to, say, orders m' through M'. The

third step is to examine the poles and zeros of the estimated

transfer functions. The numerator and denominator of an estimate

should have approximately common factors if its order is larger

than the minhmal order of the system. We can also look at the poles

and zeros of different models; they should be approximately con-

stant with respect to changes of model order. The theoretical prob-

lems with the third step are that the roots of a polynomial are

notoriously sensitive to small changes or errors in the coefficients,

and that the standard error of the coefficients increases as the

order does and as the variables become more constant. However,

the numerical results are very good. The final step is to choose

the simplest acceptable model based on steps two and three.

There is a test based on the theory of dynamic systems

which has shown better numerical results than any of the others.

In Section 1.2.1, we stated that, given the controllability matrix,

QC, and the observability matrix, Q0, of any realization of a system,

the minimal order of the system is rankKQiOc). Since the

observability matrix of realization (1.2.3)-(1.2.6) is the identity,

the minimal order is rankKQC). Since the stochastic elements will

cause Qc to always have maximum rank, it seems reasonable to

compute det(QC) and decide when the determinant becomes small
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enough as the rank changes.

It is easy to set up Q and compute its determinant be-

c

cause it is a Hankel matrix, i.e.

(2.4.16) Qc(i,j) = si+j_1

To see this recall that

n-l

(2.4.17) QC = (B, AB,...,A B)

It is now easy to see that

(2.4.18) S, = h , j = l,2,...,n

where hj is defined in (1.2.3), and a little computation shows

that

= n ' = ..
(2.4.19) Sj zlsj-iai’ j (n+1),...,(2n l)

2.5 Normalized Least Squares

One problem with least squares is that larger data values

influence the results more than smaller values. For example, let

(2.5.1) yt = yt-1 - ut-l

We will take two sequences of observations and find the least

squares solutions; in each sequence there is just one error, ya.

yI u1 y2 u2 y3 u3 y4 y1 u1 y2 u2 y3 u3 y4 u4

1 1 0 1 -1 10 -12 10 10 0 10 -10 1 -12

In matrix form
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O 1 O 10 10

-l = O l 9, ~10 = O 10 9

~12 -1 10 -12 -10 1

Solving for e

135 1 342 1

9 = -134 123 9 = -332 321

and the errors are

-1 -10

__.1__. -..L.

' 123 11 E ’ 321 110

-1 542

Thus, in the first sequence, the last residual is the smallest

even though it is the only line where there is an error. In the

second Sequence, the last residual is the largest.

Werther (W1) has prOposed a weighting scheme which

eliminates this inequity. He divides the elements in each row

by the rms value of the row; this correSponds to premultiplying

by a diagonal weighting matrix. He states that the results are

improved sometimes by this "normalization" process.

The non-uniform effect of the observation magnitudes is

also important if the input and output have different magnitudes.

In Examples 2 and 3, Chapter III, the output is about twice the

input. Not only does the output have more influence on the para-

meter estimates, but the variances of the input coefficients are

larger than the variances of the output coefficients. This is

because the variance of a coefficient equals the appropriate

diagonal term of (¢T¢)-l. For a first order system, the variance
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of the output coefficient is proportional to the sum of squares

of the input, and the variance of the input coefficient is propor-

tional to the sum of squares of the output. In the examples the

input coefficient has four times the variance of the output co-

efficient even though it is three orders of magnitude smaller!

Attempts we have made to correct this problem have not

been too successful. More work needs to be done on the area of

choosing a good weighting matrix.

2.6 Summary

This chapter contains the theoretical results on least

squares and the model order problem. After explicitly defining

the full and reduced matrix least squares algorithms, it was

shown that they converge in mean square with correlated errors.

The small sample bias of the full matrix algorithm and unbiased-

ness of the reduced one were shown. Several tests for the order

of the system were given in Section 2.4.3 including some new ones

based on systems realization theory. The last section contained

some material on the selection of weighting schemes to normalize

the effect of the observations.



CHAPTER III

NUMERICAL COMPUTATIONS

In this chapter we will compare the algorithms and order

tests defined in Chapter II. First, we will describe the

numerical algorithms used in the computations. Then the examples

will be described in some detail. Finally, the numerical comparisons

will be made using both simulated data and observed data from a real,

but unknown, system.

3.1 Description of the Algorithms Used

There are several ways to compute the least-squares estimate

off-line. The most obvious, and the most common, method is to pre-

multiply both sides of (2.1.3) by ¢T and solve the system of

equations

T T

(3-1-1) (e ¢)9 = ¢ Y

for e by the Gaussian algorithm. But this method is numerically

unstable (C3). A much better method is to determine a unitary

matrix Q such that Q¢, is triangular. Then the solution of

(3.1-2) (Q¢)e = QY

is the same as the solution of (3.1.1) and the least squares solu-

tion of (2.1.3), but it is much less prone to numerical errors.

42
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This algorithm is the one which we have used most often because

of its stable numerical properties; the actual computer subroutine

was obtained from the IBM Scientific Subroutine Package (11).

Least squares can also be done on-line as follows (G3):

write the n-th order difference equation representation as

(3.1.3) yn+i 1

where

(3.1.4) 21 = col(y , ’yn-l+i’ 1,. "un-l+i)

and let

_ T

UN ' Eli yn+izi

_ T

TN 2: zizi

Then

(3 1.5) = u T"1
‘ 9N N N

This algorithm can be easily modified to handle multi-input

multi-output systems (G3). It also requires less storage than

the off-line algorithms Since it is necessary to keep only the

latest UN vector and the latest TN matrix, in addition to one

21 vector. However, some computational effort can be saved at

the expense of a little bit of storage by finding the inverses

recursively. To do this, we divide the algorithm into three

stages. TN is invertible a.s. if N 2 2n, so we can use the well

known (G3, Pl) equation of (3.1.7) to compute T"1 from Igl.
N+l

If N < 2n, we use the first two stages to get TN+1 from T;.
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Step (a) N = 1. Then

 (3.1.6) I: = (2%2 )2 T1

1 1

Proof: By definition, T# = T+ if TT#T = T, T#TT# = T#, and

TT and T#T are hermitian. Dropping the subscript,

T2 = zszzT = zsz = NT, where x = sz. Thus,

TT+T = (ImZT3 = alpzxr2 = T. Similarly, T+TT+ = T+. TT+

+

and T T are hermitian because T is.

Steb (b) For 1 < N < 2n, when TN is not invertible, then we

can use the new algorithm given below.

Step (c) If T is nonsingular, then

 

N

-l _ -l l -l -l T
(3.1.7) TN+1 - TN - H21. (T_1 ) (TN ZN+1)(TN zN+1)

N+1 N zN+1

The algorithm for step (b) requires that we write TN as

_ T _ T

(3.1.8) TN - :q 2121 — 22

where

(3.1.9) Z = (z1,...,zN)

. T . .
Then, If W = Z 2 Is nonSIngular

+ -

(3.1.10) TN = zw 2zT

Proof: TT+ = ZZTZW-ZZT = ZWW-ZZT = ZW-IZT. Thus,

TTTT = ZW-IZTZZT = ZWW-IZT = ZZT = T. The rest of the proof is

Similar.



45

While the algorithm holds when the 21 are matrices,

that is in the multi-input, multi-output case, if they are vectors

we do not have to invert W at each step. First note that Wfi+1

and WN differ only by the addition of a new column and row.

(3.1.12) W =

where b is N X l and c is a scalar. Thus (F3)

 

-l T

dWfi + ee -e

-1 _ 1

(3.1.13) Wfi+1 d

T

-e l

where

(3.1.14) d = c - bthglb

_ -l

e — WN b

WN+1 Is nonSIngular If WN Is and d is non-zero.

Another on-line method is stochastic approximation (M3).

(3115) = +1» z( -T)
’ ‘ eN+1 eN N+l N yn+N zNeN

where

(3.1.16) P =1> - 1 (p )(P )T
N+1 N T NZN NZN

l +zNPNzN

The initial matrix PO may be any positive definite symmetric

matrix of appropriate dimensions, but is usually taken as a multiple

of the identity. The stochastic approximation estimates approach

the least squares estimates as N becomes large.
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Stochastic approximation has the advantage over on-line

least squares that it is self-correcting; the factor (ynfiN - zSQN)

is the error of the last observation. It will also automatically

correct for slowly-varying parameters. Accumulated roundoff error

was a problem for on-line least squares when the stiff example,

Example 2, was used; double precision arithmetic corrected this

problem. While the on-line algorithms are useful for control of

an operating system, the off-line algorithm seems preferable for

the model order problem because it allows the least amount of over-

all error.

The determinants were taken by the pivotal condensation

method (F3). Some reduction in computation could have been saved

by using elementary row and column Operations on the original

matrices, but the necessary bookkeeping outweighed the improvement.

Both the correlation and observability matrices have determinants

that are relatively insensitive to round-off errors in most

Situations.

3.2 Description of the Examples

In the next section, we will use three examples to

numerically compare the algorithms and tests. The first is regular

simulated system; the second an ill-conditioned simulated system;

and the third is actual data observed on an electric power network.

Example 1. Regular system

=. +. -0 '0(3-2-1) Yt 8Y¢-1 39yc-2 27yt-3 SL1t-l

+ .SUC'Z + .lut‘3
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To illustrate the procedure of Section 2.4.1 for the calculation

of the extra zeros when n > m, we will do it for p = n-m = 1

and for p = 2. For p = 1, (2.4.6) and (2.4.7) become

 

91 = {-1, 0, 8, -.5, 39, 5, - 27, 1)

(3.2.2) eg— (8, - 5, 39, 5, - 27, .1, 0, 0)

H = .3

Thus

(3.2.3) 0 = «9:91) “16:60 = - £3323 m 1/3

The additional pole of T(z) is about -1/3.

For p = 2 we have

D
-
l

92 = (09 09 '19 09 89 " 59 39: 59 ' 279 1)

T
91 = (-I, 0, 8, - 5, 39, 5, - 27, .1, 0, O)

T
90 - ( 8, - 5, 39, 5, -.27, .1, 0, 0, 0, 0)

Now

[2.375 -.7933] '1 [3.7933] .47982

(3.2.4) G = - -.7933 2.375 -.656 = .43648

Thus, the additional factor is (z2 + .479822 + .43648) and

the additional poles are (-.2399 i .6156i).

Example 2. Ill-conditioned system

(3.2.7) yt = .1998yt_1 + .3998yt_2 + .207 92yt-3

+ .1035616yt_A + .0883232yt_5 - .558-46t 1

+'.1595E-3ut - .14245E-3ut
-2

+.881951:-3ut_5

-3
+ .45925E-4ut

-4
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The poles of the transfer function are 0.9998, (-.5 : .3i), and

(.l i;.51); the zeros are approximately 2.8079, -l.34194, and

(.717 j 1.9341). This fifth-order example was designed to

approximate the power system of Example 3; an average input of

33.4 should yield an average output of 60.0. The input used in

the simulations was approximately uniformly distributed in the

interval (30.4, 36.4); the output had a mean of about 59.4 and

a standard deviation of about .31. The range of the output,

although much larger than the output of example, was relatively

small, about .251 of the mean.

Example 3. Observed data

The last example is a set of load-frequency data taken

from an actual Operating electric power system. An attempt to

model the data was made using stochastic approximation (Pl);

several "good" models were made, and the problem of selecting the

best of them motivated the present work.

3.3 Computed Results

In this section we examine the output of simulated runs

of examples one and two, where the noise has different properties

on each run, and the estimates for the real data of example three.

We will see that the model tests alone are sufficient to identify

the order of the regular system, Example 1, but are not sufficient

for the power example and its approximate simulation, Example 2.

There was no difficulty choosing the order of Example 1.

With even a small number of sample points, N = 100, the con-

trollability matrix test worked with every noise configuration that
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was used; the mean squared residual worked except at high noise

levels; the F-test except when there was only observation noise;

the correlation matrix, and its chi-squared variant, did not work.

There seemed to be little difference between the full and reduced

matrix results.

Figures 2, 3, 4 and 5 and Tables 2, 4 and 5 compare the

results for three different simulations of Example 1. All three

had relatively high noise levels (one had system noise only, one

observation noise only, and one had both), and the full matrix

tests were more definite than the reduced ones for all three.

Figure 2 shows the absolute values of the controllability deter-

minants; the numerical data for two of the runs is in Table 2.

As shown in Figure 3, there is at least an order of magnitude

change when going from n = 3, the correct order, to n = 4,

except in two instances, and the drop was often two orders of

magnitude. In the two exceptions, the large drop occurred from

n = 4 to n = 5, giving an estimated order of four.

Figure 4 contains a graph of the full matrix mean squared

residuals, listed in Table 2. The three runs shown there were the

only three where this test did not work well (more typical runs

are in Figure 5); while there is very little decline after n = 3,

there is also very little from n = 2 to n = 3. This test gives

an estimated system order of two. Figure 4 also shows the deter-

minants of the correlation matrices for one of the runs; the

straight line behavior was typical, indicating that the test is

not very good. The chi-squared test based on this determinant

was almost a complete failure.
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Table 2. Order Tests for Example 1

order Mean Square Residual Det(Q)

full Reduced Full Reduced

l .0794 .0824 .0846 .1103

2 .0277 .0235 .0660 .1390

3 .0247 .0216 .0401 .1106

4 .0245 .0213 .0007 .0262

5 .0244 .0212 .0001 .0036

System and observation noise

1 .0770 .0790 .0899 .1062

2 .0528 .0215 .0799 .1194

3 .0224 .0194 .0462 .0944

4 .0223 .0189 .0006 .0158

5 .0221 .0187 .0000 .0003

System noise only

1 .0498 .0480 .1871 .2461

2 .0041 .0030 .0967 .1722

3 .0020 .0017 .0312 .0456

4 .0017 .0014 .0015 .0003

5 .0014 .0011 .0003 .0002

Observation noise only

yt = .8yt-1 + .39yt_2 - .27yt_3 - OSUt-l + jut-2 + .lu
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Table 4 shows the F-test arrays for these runs. The critical

values at 90% confidence are in Table 3.

Table 3. Critical Values for the F-test

“2 1

value 2.30 1.94 1.77 1.67

If a value in the array is lower than the one in Table 3, then

n2, n1 2 m, the minimal order. The first pair of arrays in

Table 4 are for observation noise only, and both indicate that

the system order is at least five. The test does work for the

other two noise configurations shown, although the last array

does not have completely consistent results.

Table 5 summarizes the results of the test on the noise

configurations shown for Example 1. We can conclude that, even

for these relatively high noise levels, the order of the system

is three and we need not do anything further. We can also con-

clude that the determinant of the controllability matrix is the

test that works most often.

The problem of choosing the system order is more difficult

for the second example, as the summary Table 6 shows. The F-test,

detailed in Table 7, is not very helpful. The mean squared

residual, Figure 6 and Table 8, becomes flatter as n increases,

but there is no one point where there is a large change of slope

as there was in Figure 5. But the controllability determinant

does work in most cases.
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Table 4.

1 2

2745.

2929. 259

2373. 182.

2148. 162.

Full matrix --

732.

635. 34.1

528. 27.2

487. 25.9

Reduced matrix

504.

301. 33.0

201. 17.0

152. 11.9

Full matrix --

129.

7.21 4.90

48.7 3.06

36.3 2.22

Reduced matrix

464.

274. 30.0

184. 15.9

138. 11.0

Full matrix --

120.

66.0 4.11

43.9 2.37

32.4 1.62

Reduced matrix
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F-test for Example 1

3 4

52.0

56.2 50.1

observation noise only

12.1

13.0 11.2

-- observation noise only

1.11

1.37 1.62

system noise only

1.20

.886 .584

—- system noise only

1.46 1.30

system and observation noise

.652

.429 .218

-- system and observation noise
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Table 5. Estimates of the System Order

Noise Full Reduced Full Reduced Full Reduced

type MSR MSR F -test F -test det (Q) det (Q)

System 2 or 3 2 or 3 3 3 3 3 or 4

Obser. 2 or 3 2 or 3 2 5 2 5 3 3

Both 2 or 3 2 or 3 3 3 3 3

Table 6. Order Test Summary for Example 2

Test Observation noise System noise Both

Full Reduced Full Reduced Full Reduced

MSR X 5 or 7 5 6 4 or 5 X

F-test 2 7 4 5 or 6 3 or 5 5 4 or 5

Det(Qc) 5 4 or 5 5 5 5 5

Det(Q c)

----— 5 5 5 5 5 5

nbi

Note that the determinant (Table 8) decreases by about three orders

of magnitude in almost all situations and that the relative de-

crease is approximately equal to the input coefficients, b This

observation led to a heuristic modification which has given very

satisfactory results in every instance of Examples 1 and 2:

"normalize" the determinant by dividing by the product of the bi.

Then

(3.3.1)

det (Qm_1) det (Qm)

<<

m9 m

n1 1bi,m-l TIl bi,m
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Table 7.

l 2

91.1

78.0 50.0

62.8 37.5

53.4 31.6

45.2 26.0

42.1 24.9

Full matrix --

14.2

9.76 4.06

8.42 4.22

7.09 3.65

5.60 2.75

5.02 2.56

Reduced matrix

138.

102. 46.3

78.6 33.9

65.2 28.3

52.4 21.6

44.2 17.7

Full matrix --

16.9

11.5 4.47

8.80 3.52

7.37 3.15

6.43 2.90

5.22 2.27

Reduced matrix

156.

99.8 28.7

70.2 18.2

63.4 21.6

51.7 17.1

43.0 13.7

Full matrix --

14.9

9.76 3.55

6.55 1.97

5.81 2.25

4.93 1.98

3.99 1.57

Reduced matrix
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3

21.6

19.3

15.6

16.1

F-tests for Example 2

A 5 6

16.0

11.8 7.29

13.4 11.6 15.5

observation noise only

4.02

3.19

2.17

2.06

2.21

1.22 .275

1.36 .938 1.60

observation noise only

18.7

16.9

11.7

9.28

14.2

7.77 1.30

5.84 1.61 1.93

system and observation noise

2.39

2.33

2.22

1.63

2.16

2.05 1.89

1.36 .958 .084

system and observation noise

6.98

16.6

12.2

9.15

25.6

14.4 3.11

9.67 1.64 .181

system noise only

.449

1.55

1.41

1.07

2.62

1.88 1.14

1.27 .628 .152

-- system noise only
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Table 8. Order Tests for Example 2

Mean Sq

Full

.773E -4

.554E-4

.474E-4

.442E-4

.4l%-4

.40E-4

.388E-4

.l36E-3

.927E-4

.802E-4

.757E-4

.720E-4

.717E-4

.712E-4

.64%-4

.426E-4

.388E-4

.37%-4

.34%-4

.345E-4

.345E-4

-l

. Residual Det(Q) Normalized Det(Q)

Reduced Full Reduced Full Reduced

.778E-4 .23lE-3 .158E-3 1.0 1.0

.555E-4 .498E-7 .114E-6 .703 1.422

.497E-4 .605E-10 .l86E-10 2.36 .468

.444E-4 .661E-14 .2362-12 2.71 6.83

.415E-4 .514E-15 .187E-14 443. 134.

.412E-4 ASE-18 .118E-17 2941. 264.

.391E-4 JOE-22 .127E-20 3425. 887.

Observation noise only

.120E -3 .138E -3 .l45E -3 l .0

.812E-4 .24lE-6 .475E-7 1.65

.71E-4 ,.223E-9 .171E -9 4.06

.67lE-4 .l6lE-l4 .62%-l3 .502

.62%-4 .103E-l4 .31%-14 654.

.594E-4 .l82E-18 .482E-18 366.

. 5 92E -4 . 9213 -21 . 303E -21 8033 .

System and observation noise

.575E-4 .llOE-3 .152E-3

.405E-4 .l4OE-6 .147E-7

.367E-4 .6l3E-10 .143E-10

.362E-4 .677E-14 .301E-l4

.335E-4 .106E-l4 .269E-15

.323E-4 .352E-18 .861E-20

.322E-4 .523E-21 .614E-24

Sys tem noise only

5

+ .1595E-3ut - .l4245E-3ut + .45925E--4ut + .881958-3ut
-2 -3 -4 -5
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where the subscript denotes the order of the model, and m is the

minimal order of the system. Table 8 also shows these normalized

determinants. On the basis of them, we can conclude that the

minimal system.order is five, the correct one, in every instance.

If we are not satisfied with the conclusion from the con-

trollability test, then we can look at the poles and zeros of the

transfer functions. Table 9 shows one set of poles and zeros.

There is very good agreement, with respect to change of model order,

on the dominant pole. Starting with the third order there is a

complex pair with negative real part and norm around .6; these will

behave very similarly. Another pair with about the same norm

enters at n = 5. Looking at the zeros, we see that starting with

n = 5 there are two real (around -l.3 and -3) and one complex

pair (with positive real part and norm 1.1). While the fourth-

order poles are similar to the fifth-order ones, the fourth and

fifth order zeros are not similar. There is no approximate pole-

zero cancellation to help decide. But we can get some information

from the steady-state response to a unit-step input, also shown

in Table 9. There is very good agreement starting with n = 5,

and less agreement with lower order values. Thus we can conclude

from examination of the transfer functions, as well as from the

normalized controllability test, that the system is fifth order.

The order tests yield more consistent answers for Example
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Table 9. Poles and Zeros for Example 2

(a,b) denotes the complex pair (a j;bi)

order Poles

2 .99969 -.561

3 .99978 (-.380, .466)

4 .99975 (-.120, .622) -.607

5 099962 ('0498, 0284) (0057, 0627)

6 .99967 (-.322, .309) (.105, .588) -.442

7 .99965 (-.629, .289) (.322, .489) (-.131, .661)

True .9998' (-.5, .3) (.1, .5)

Steady

order Zeros state

2 -1.38 1.653

3 -2.21 .315 1.600

4 -2.24 (.106, .435) 1.621

5 -l.l3 -3.16 (.591, .915) 1.675

6 -l.29 -2.81 (.504, .941) .285 1.661

7 -l.31 -2.79 (.543, .881) (.134, .382) 1.665

True -l.34 +2.81 (.717, 1.93) 1.603

Table 10. Order Test Summary for Example 3

Test Full lse Reduced lse

Mean Squared Residual X 4

Controllability det 4 4

Normal detalc) 4 or 6 4 or 6

F-test 5 4  
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The tests are detailed in Tables 11 and 12 and in Figures 8 and 9.

From them we draw the tentative conclusion that the system can be

approximated fairly well by a fourth order model.

The poles and zeros for both the full and reduced

algorithms are in Table 13. As in Example 2, the poles and zeros

are relatively constant as the model order changes, but there is

no pole-zero cancellation. The steady-state response to the unit-

step input is virtually constant for the full lse and, as expected,

varies slightly for the reduced lse. The examination of the poles

and zeros gives no reason to reject the tentative conclusion that

m = 4.

Table 11. Order Tests for Example 3

order Mean Sq. Residual Detfll) Normal det

Full Reduced Full Reduced Full Reduced

l .482E-5 .56OE-5 .262E-3 .312E-3 1.0 1.0

2 .300E-5 .336E-5 .180E-6 .236E-6 .98 .80

3 .293E-5 .333E-5 .233E-9 .l3lE-9 3.8 2.7

4 .287E-5 .273E-5 .199E-ll .152E-10 25. 30.

5 .280E-5 .26OE-5 .208E-16 .134E-l3 .3 307.

6 .280E-5 .252E-5 .l67E-l6 .581E-l6 1.7E4 1.1E4

In summary, the normalized det(Qc) test is the most

effective followed by the det(Qc), F-, and mean squared residual

tests; the poles and zeros are useful as checks on the other tests.

It is best to use all the tests and to use them on several sets of

parameter estimates because, consistnet test results imply confidence

about both the chosen order and the chosen model type. Also, the

computations are very inexpensive: the entire computation time for

all tests and parameter estimates for the power example was under

8 seconds on a CDC 6500 computer.
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Steady state

Steady state

Table 12. F-test for Example 3

l 2 3 4 5

116.

61.6 4.65

43.1 4.39 4.06

34.3 4.67 4.60 5.05

27.3 3.52 3.09 2.58 .124

Full matrix

17.0

8.36 .248

8.21 2.70 5.10

6.46 2.17 3.11 1.10

5.24 1.79 2.29 .899 .708

Table 13. Poles and Zeros for Example 3

Poles -- full matrix

1.000135 -.601

1.000106 .052 -.649

10000132 0335 (-0450, 0037)

1.000110 .416 (-.180, .269) -.618

1.000110 .514 (-.534, .143) (-.004, .403)

zeros -- full matrix

.404 1.858

-2.12 .682 1.858

-2.63 (.555, .223) 1.858

-1.87 (.438, .622) .780 1.857

-1.83 (.442, .623) .794 —.033 1.857

Poles -- reduced matrix

1.000158 -.630

1.000142 -.002 -.613

1.000240 .718 (-.663, .417)

1.000196 (-.747, .462) (.444, .287)

1.000209 .685 (-.811, .450) (.157, .548)

zeros -- reduced matrix

.432 1.810

-l.O65 .630 1.830

-1.992 (.666, .207) 1.827

-l.719 (.588, .248) .185 1.831

-1.325 (.497, .433) .736 -.514 1.834



CHAPTER IV

CONCLUSIONS

4.1 Thesis Results

Choosing a model type is always a difficult and important

problem in modeling. Even if it is possible to use the simplest

type of dynamic system -- linear, time-invariant, single-input,

single-output -- there is still the problem of selecting an order

of the model. We have discussed the model order problem for such

systems. There are two aspects of this problem: the method of

parameter identification and tests to determine the order of the

system on the basis of the parameter estimates.

The basic method used in the parameter identification

phase was least squares. Least squares was chosen because it

requires less knowledge and fewer assumptions than other methods.

After introducing the reduced variant of the algorithm, large and

small sample properties were derived assuming that the order of

the system was known. Some theoretical results when the model order

was greater than the system order were given. While reduced least

squares often gave better estimates than the full matrix version,

seomtimes they were worse. It was definitely useful to have both

sets of estimates when estimating the system order.

Several tests to determine the system order were given.

Among them are some new ones based on the characteristics of dynamic
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systems. The most promising of these is based on the fact that the

minimal order of a system equals the rank of the product of the con-

trollability and observability matrices of any representation.

Using a representation where the observability matrix is the identity,

the test is to look at the determinant of the controllability

matrices for successive mode1 orders normalized by the product of

the corresponding input coefficients. The normalized determinants

are relatively constant when the model order is less than the system

order; when they are equal, there is a large jump in the determinant

value; and the behavior is erratic when the model order is more

than the system order. It was helpful to also use an F-test on

the residuals.

4.2 Future Development

Any new area contains many voids between the already known

facts. In identification, much work can be done on the theoretical

prOperties when the model order is more than the system order.

This will be a very difficult problem because uniqueness is absent.

Selection of weighting schemes is also not well developed.

Additional model order tests must be developed. For example,

other state-space realizations might generate determinants which

have more useful prOperties than the one we used. Finding useful

properties of the determinants is also an area for research. And

the general problem of selecting model properties is wide open.
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APPENDIX

A.l Proof of Theorem 2

C = lim C as defined byThe assumptions imply that N

(2.2.1) exists and is positive definite (see (M1) for details)

Intuitively, this makes sense because C is the correlation

matrix for the input and output.

1 N

N zlyn-i-i-len+i E(yt-iet)

1 N

N zlyien-l-i E(yt-net)

(A.1.l) lim BN = lim = = B

l’iNu e E(u e )

N 1 n+i-1 n+i t-l t

1

N ztluien-i-i E(ut-net)

B exists by assumptions 1) - 3). Let

._ l T _ = l T _ T
(A.l.2) 2N N ¢N®N(8N e) N((1;quN (¢N¢N(YN END)

1 T

" N ¢NEN 7' BN

Also,Using (A.1.l) and (A.1.2) E(ZN) = E(BN) = B.

T 1 1 T T . .
E(ZNZN) — N E(N ¢NENEN¢N), a moment matrix which ex1sts. We now

look at the limits. Obviously,

(A.1.3) lim E(CNBW) = linIE(ZN) = B
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Although E(CNefi) 1‘ E(CN)E(9‘\;), still

(A.1.4) 1im‘E(CNe§) = lim E(CN) x lim E(efi) = c lim E(eé)

because the stochastic matrices CN approach the deterministic

matrix C. Since C is invertible,

(A-lo5) lim E(eé) =

In Theorem 1, B = 0, so the lse is unbiased.

To show mean square convergence, we must show that

(A.l.6) lim E(efiTefi) = 0

Since ' = C-12 and since C is symmetric

9N N N N ’

IT I) -2

(A.1.7) E(eN 9N) =E(ZNTNc zN)

(A.1.8) lim E(ZTZ ) = lim E(tr(Z 21))
N N N N

. 1 .
= 11m fi'tr(moment matrix) = O

. . . . . -2 . . .
Since C is pOSltlve definite, CN acts as a weighting matrix

for N sufficiently large. Thus,

(A.1.9) lim E(eNT9N) = lim l'tr(weighted moment matrix)= 0

and mean square convergence is proved.
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A.2 Proof of Theorem 4

Lep p = 1. We will show that -l s -g S 1. From (4.2. )

8T8
1

T

9191

O
 

(A.2.1) -g =

From (4.2.6) and (4.2.7)

T _ T

(A-2.2) 9191 — 1 + 9090

T T T
Let 9190 2 0. If 9190 2 8191, then

T T T
O. ‘ +(A 2 3) 29190 a 9191 9090

or

(A24) 02( -e)T( -)'° 91 O 91 60

T

which is impossible. The proof is similar for 9160 < 0. Now

assume that for p = po we have

_ T - _ -l

(A'2°S) G0 -(HoHo) 11“090 L0 Jo

We will express Gl’ correSponding to p = po + 1, in terms of

. _ T = . .
Go. Notice that (Lo)i,j eiej f‘i-j" allow1ng us to wrlte

L K

(A.2.6) L =
1 KT f

o

where

.2. =(A 7) K col(fp_1,fp 2, ,fl)

and

(A.2.8) J = col(Jo, fp)
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Lil can be expressed in terms of L;1 as (F1)

  

_1 I -L;1K L;1 o 1 o

(A.2.9) L = _ _ _

1 o 1 o (f - KTL 1K) 1 -KTL 1 1
0 O 0

Finally, we get

-1 "O o

- dL + W
Go 0 K 81 dgp-l

(A.2.10) G = = O o

1 d g2 + dgp_2

0

+ d
gp_1 g

c d J

where g: is the i-th element of Go and

T -1 -1 T -l
.2. = - - -(A 11) d (£0 K LO K) (fp K LO Go)

To show that the roots of (2.4. ) are either all within or

all outside the unit circle, we use the Lehmer-Schur method (R1).

Define

= p-l o p o

(A.2.12) Po(z) z + glz + + gp-l

and

* o p-l
= +. +(A.2.13) Po(z) gp_lz l

*

The roots of P are the inverse conjugates of the roots of P,

i.e. if all the roots of P are inside the unit circle then all

*

the roots of P are outside. In a similar manner P1(z) and

*

P1(z) are defined from G1. We now form

2 -

(d -l)g:_lzp 1 +...+ (dz-l)

(dz-1)P:(z)

(A.2.14) T(P1(z)) = (1121(2) - Pie)
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The Lehmer-Schur method states that if T(P1(0)) < 0, then

T(P1(z)) = constant-P;(z) and P:(z) have the same number of zeros

within the unit circle; if T(P1(0)) > 0, then P:(z) and P1(z)

have the same number of zeros inside. In summary, if \d‘ s l

and Go defines a stable system, then G1 will also define a

stable system; if ‘d‘ > 1 and G0 is stable, then every mode

of G1 will be unstable; etc., and the theorem is proved.

It would be more interesting if we could prove that ‘d‘ < 1.

It is not too difficult to show that d > -1, but the other in-

equality is more more difficult.
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A.3 Steady-state Response to a Unit-step Input

We will show that the steady-state response of the system

(1.1.1) to a unit-step input is

(A.3.1) B/(l - A)

where

n _ n

(A.3.2) A — zlai B - zlbi

We will show this in both the time domain (difference equation

representation) and z-domain (transfer function representation)

to illustrate the differences of the two domains.

In the time domain, ut = 1 for all t = 0,1,... Then

y1 = b1

y2 = aly1 + (b1 + b2)

— +...+ +
yn+1 alyn anyl B

n

+

yn+k zlaiyn+k-i B

Taking limits,

n

o o = + = A +

(A 3 3) yss 2laiyss B yss B

and the result is shown.

In the z-domain, the transfer function is

(A.3.4) T(z) = Y(z)/U(z)

and the unit-step response is (01)



(A.3.5) Y(z) = 6(2) -—'

The final value theorem states

(A.3.6) ySS = lim yt = lim ((z-1)Y(z)).

t-m z—41

Thus,

A37 =1' (G())=-B—-( . . ) ySs 1m 2 z l-A

z~1
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