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ABSTRACT

INSTRUMENTAL-VARIABLE ESTIMATION OF
A PANEL DATA MODEL

By

Donald J. Wyhowski

This dissertation involves the estimation of a linear
regression model in the presence of panel data. My research
develops appropriate econometric techniques for such models,
under differing assumptions about the correlation between the
explanatory variables and the (unobserved) effects.

My three major contributions are: First, I have
extended the analysis of Hausman and Taylor (1981) to a model
containing individual and time effects correlated with some
or all of the regressors, under the ;ssumption of large N and
small T. I consider random individual and time effects, and
allow the regressors to be correlated or not with either or
both types of effects.

Second, I have extended the analysis of Hausman and
Taylor to a single equation in a simultaneous equations
system; that is, to a regression model in which some of the
regressors are correlated with the random noise component of
the error. 1 propose 2SLS estimators based on instrument
sets proposed by Hausman and Taylor, Amemiya and MaCurdy
(1986), and Breusch, Mizon, and Schmidt (1987).

Third, the dissertation proposes full-information (3SLS)
estimators for a simultaneous equations system with random

individual effects correlated with some or all of the
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exogenous variables. These estimators are shown to reduce to
the usual fixed-effects treatment if all exogenous variables
are correlated with the effects, and to reduce to an
estimator previously proposed by Baltagi (1981) if none of
the exogenous variables are correlated with the effects. I
also consider the case in which some exogenous variables may
be correlated with the effects in some equations but not in
others, so that the available instrument set varies from

equation to equation.
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CHAPTER 1

Introduction

In this thesis, we consider the estimation of a linear
regression model using panel data. Following the usual
practice in the literature, we assume that this data consists
of T time-series observations on each of N individuals.
Models using panel data present the possibility that some of
the explanatory variables could be constant over either of
the two indices (T or N) and that these variables could be
unobservable. Such unobservable time-invariant and
individual-invariant variables are called individual and time
effects, respectively. Our research will develop appropriate
econometric techniques for panel data models, under differing
assumptions about the correlation between the explanatory
variables and the (unobserved) effects.

It is commonly argued (e.g., Theil (1972), p. 104) that
the stochastic disturbance in the usual regression model
reflects the joint influence of the variables not included in
the model. In the case of panel data, the individual effects
would represent the influences of those neglected variables
which are time-invariant, and similiarly the time effects

would represent the influences of those neglected variables
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2
which are indivual-invariant. Clearly, least squares applied
to a model including either type of effects will be biased if
these neglected variables are correlated with the included
regressors, and we therefore will distinguish different
treatments of the model which vary according to the nature of
the correlation between the regressors and the effects.

The literature on panel data has covered separately
models with individual effects and models with individual and
time effects. One strand of the literature has assumed the
effects to be fixed, or, more or less equivalently, to be
correlated with gll the regressors. The point of the model
then is to remove the potential bias caused by correlation of
the regressors with omitted time or individual-invariant
variables. A second strand of literature has viewed the
effects as being random and uncorrelated with the regressors.
This direction of thought includes the textbook treatment of
the error component model as well as the work of Baltagi
(1981). A third direction of thought assumes the effects to
be random but allows for the possibility of correlation
between the effects and some of the regressors. Recent
papers by Hausman and Taylor (1981), Amemiya and MaCurdy
(1986), and Breusch, Mizon and Schmidt (1987) have considered
the case in which the indivdual effects (the time-invariant
error component) are correlated with explanatory variables,
and have proposed different instrumental variables
estimators. However, with the exception of Amemiya and

MaCurdy, none of these papers considers the case in which
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3
some of the explanatory variables are epndogenous (in the
sense of being correlated with the noise component of the
error, as well as the individual effect). Furthermore,
Amemiya and MaCurdy consider only limited information (2SLS)
estimation, and their model is restrictive in some ways that
ours are not.

The first concern of this dissertation is to extend the
analysis for the case when effects are allowed to be
correlated with some of the regressors to the case when time
effects are present as well as individual effects. That is,
the HT, AM, and BMS articles all consider a model in which
there are individual effects but no time effects, so that the
error has only two components. That is, their error term is
of the form sSit = ui + eit where ui is the individual effect
and eit is the random noise. As pointed out above, the
earlier literature on panel data also considered prominently
the case in which the error also contains a time effect, vt,
so that the error, sit = ui + eit, contains three components.
In this dissertation, we extend the results of HT, AM, and
BMS to the three component case. This results in different
sets of allowable instruments than they use, and to some
interesting results on how many and what kind of exogeniety
assumptions must be made to estimate the model. The analysis
is done mostly under the assumption that both the number of
individuals (N) and the number of time periods (T) is large,
80 that asymptotic properties of the estimators are derived

as both N and T approach infinity. However, we will include
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4
a separate treatment of the case in which N is large but T is
small, the common assumption in the two-component case. This
leads to some novel estimators in the three-component case.

The second concern of this dissertation is the problem
of simultaneity. We consider the usual simultaneous
equations model, but with panel data and with an unobservable
individual effect in every structural equation. The basic
point of view in this thesis, motivated by an argument given
earlier by Breusch, Mizon and Schmidt (1985), is that all
variables correlated with the noise should also be correlated
with the individual effects, but not conversely. This is a
natural extension of the point of view in Hausman and Taylor,
and it can be justified by consideration of a system in which
every structural equation contains individual effects. It
leads to a classification of exogenous variables into three
types: endogenous, meaning correlated with noise and
individual effects; singly ous, meaning correlated with
noise but possibly correlated with individual effects; and
doubly exogenous meaning uncorrelated with individual effects
and noise. Several estimators are derived, which are natural
generalizations both of the HT estimators and the usual two-
stage least squares estimator.

Third, this dissertation generalizes the estimators from
the single-equation literature just cited to full information
(3sLS) estimators. These estimators reduce to the fixed
effects estimators when all exogenous variables are

correlated with the effects, and they reduce to previous
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5
estimators for the random effects model when none of the
exogenous variables are correlated with the effects. 1In
addition, we discuss the case in which different variables
are correlated with the effects in different structural
equations.

The plan of this thesis is as follows. In chapter two,
we survey the existing literature, review the geometry which
is used in our subsequent analysis, and introduce a new
approach for the analysis of regression models with panel
data. This approach proves to be useful in the analysis of
models with both individual effects and time effects, the
topic of chapter three. We then consider the fixed effects
model, in which the individual effects are treated as fixed
parameters to be estimated; the random effects model, in
which the individual effects are treated as random and
uncorrelated with the regressors; and the model of HT, in
which individual effects are treated as random but
potentially correlated with the regressors. We also consider
the problem of consistent estimation of the variances of the
noise and the individual effects. Such estimates are
necessary to implement the generalized least squares
estimators considered above.

In chapter three, we extend the linear regression model
considered in the previous chapter to include unobservable
individual-invariant time effects, and we then apply the HT
method of instrumental variables estimation to this extended

model, and derive the subsequent estimator. The analysis of



the regres
usirg the
consider 1
time effec
ad we cor
individya)
uncorrela*
Version of
ire treate
Tegressor.
tre Chara(
but Ohly

PreijUS ‘
fixeq, -
QStil&tio’

foects '

to i‘Plem
c:nsidere(

In ¢}
equatiOns
individv.mi

consider



6
the regression models considered in this chapter is done
using the approach introduced in chapter two. We then
consider the fixed effects model, in which the individual and
time effects are treated as fixed parameters to be estimated;
and we consider the random effects model, in which both the
individual and time effects are treated as random and
uncorrelated with the regressors. We consider an extended
version of HT, in which both the individual and time effects
are treated as random but potentially correlated with the
regressors. Since many currently available panel data sets
are characterized by having many cross-sectional observations
but only relatively few time periods, we then consider the
previous two models for the case when N is large but T is
fixed. Finally, we consider the problem of consistent
estimation of the variances of the noise, the individual
effects, and the time effects. Such estimates are necessary
to implement the feasible weighted least squares estimator
considered.

In chapter four, we consider the usual simultaneous
equations model, but with panel data and with an unobservable
individual effect in each structural equation. We then
consider a natural extension of the HT model by allowing some
of the explanatory variables to be correlated with the
individual effects. We apply the HT method of instrumental
variables estimation, derive the subsequent limited
information (2SLS) and full information (3SLS) estimators,

and discuss their relative efficiency. In addition, we
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7

provide a survey of the current literature on simultaneous
equations with effects and translate previous estimators into
the notation of this thesis. Finally, we consider an
interesting problem which arises for the linear simultaneous
equations model with effects when some of the variables are
correlated with the individual effects; namely, the
instruments need not be the same for every equation.

In chapter five, we summarize our results and make

suggestions for future directions of research.



CHAPTER 2

Individual Effects but no Time Effects

2.1 Introduction

In this chapter, we consider the estimation of a
linear regression model using panel data. Following the
usual practice in the literature, we assume that this
data consists of T time-series observations on each of N
individuals; we distinguish regressors which vary over
time and individuals from those which vary over
individuals but are time-invariant; and we assume the
presence of unobservable, time-invariant individual
effects as well as the usual statistical noise. In
chapter 3, we will extend this model to include
unobservable time effects.

We write the model to be considered in this chapter as
(2.1-1) yitc = Xi1tB + ZiD + ui + eit, i= 1,00,N; t = lycopT

where yit is the dependent variable, Xit is a vector (of
dimension 1 x g) of time-varying explanatory variables, Zi is
a vector (of dimension 1 x k) of time-invariant explanatory
variables, and B and D are vectors of parameters to be

estimated. The errors eit are iid with mean zero and
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9
variance de¢2. The individual effects ui are unobservable,
and various assumptions about them will be made. However, in
all cases they will be treated as time-invariant.

It is commonly argued (e.g., Theil (1972), p. 104)) that
the stochastic disturbance in the usual regression model
reflects the joint influence of variables not included in the
model. In the case of panel data, the individual effects
(our ui) would represent the influences of those neglected
variables which are time-invariant. Clearly, least squares
(of vy on X and Z) will be biased if these neglected variables
are correlated with the included regressors, and we therefore
will distinguish different treatments of the model which vary
according to the nature of the correlation between the
individual effects and the regressors.

The plan of this chapter is as follows. In section 2.2
we review the geometry which is used in our subsequent
analyses. We then consider the estimation of the model under
various assumptions. In section 2.3 we consider the fixed
effects model, in which the individual effects are treated as
fixed parameters to be estimated. The point of this model is
to remove the potential bias caused by correlation of the
regressors with omitted time-invariant variables. In section
2.4 we consider the random effects model, in which the
individual effects are treated as random and uncorrelated
with the regressors. Under these assumptions there is no
Problem of bias, and efficiency of estimation is our central

concern. In section 2.5 we consider the model of Hausman and
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10
Taylor (1981), in which the individual effects are treated as
random but potentially correlated with the regressors.
Finally, in section 2.6 and 2.7 we consider the problem of
consistent estimation of the variances of the noise and the
individual effects. Such estimates are necessary to
implement the generalized least squares estimators considered
in section 2.4 and 2.5.

This chapter does not contain any new estimators.
However, it provides a survey of the existing literature, and
it introduces a new approach for the analysis of regression
models with panel data. This approach will prove to be
useful in the analysis of models with both individual effects

and time effects, as we will see in chapter 3.

2.2 Geometry

A useful fact, and one to be used throughout the
remainder of this chapter, is that the original equation
(2.1.1) can be equivalently written as the two orthogonal

equations

(2.2.2) (yit - yi.) (Xit - Xi.)B + (eit - e1.)

(2.2.3) yi. = X1.B + ZiD 4+ ui + ei.,
T
Where i = 1,..,N; t = 1,...,T; ¥yi. = (1/T)L yit, X1. =
T T t=1
(1/m)L fit, and e1. = (1/T)L eit. Equation (2.2.3)
ts t=1

expresses the data in terms of its individual averages over
time, while equation (2.2.2) expresses the data in terms of

its deviations around the mean for each individual.
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11

Writing equation (2.1.1) in matrix form, we have
(2.2.4) y = XB + ZD + u + e

where y, u, and e denote (NT x 1) dimensioned vectors; and X
and Z denote (NT x g) and (NT x k) dimensioned matrices,
respectively. Following the convention of Hausman and
Taylor (1981), the observations are ordered first by
individual and then by time, so that u and each column of Z
are (NT x 1) dimensioned vectors consisting of N blocks, with
each block containing T identical entries.

To achieve the same decomposition as was accomplished

above, we define the two orthogonal projections

(2.2.5) P = (I ® jrjr™/T ) and Q@ = Inr - P

where jr = (1,...,1)T is a vector of ones, having dimension
(T x 1). The transformation P determines the means for each
of the individual groups and repeats each of these N
observations T times. The transformation Q transforms each
observation into the difference between itself and its
respective individual group mean. Explicitly, the (i,t)

elements of Py and Qy can be written as

(2.2.6) (Py)it = yi. and (Qy)it = yit - yi

respectively.
Since Z contains variables that are constant across all
time-series observations for a given individual, QZ = 0. The

elements of the columns of Z are, on the other hand,
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12
unaffected by the transformation P; that is, PZ = Z.
Analogous results hold true for the individual effects u;
i.e. Qu-= 0 and Pu = u. Thus, the original equation (2.2.4)
can now be written equivalently as the two orthogonal

equations

(2.2.7) Qy QXB + Qe

(2.2.8) Py

PXB 4+ ZD + u + Pe

2.3 Fixed Effects

In this section, we discuss the estimation of the linear
regression equation (2.2.4) when the individual-specific
effects are treated as fixed constants. The standard
approach is to use individual dummy variables as regressors,
and then to apply least squares. This yields the following

estimator for B:

(2.3.1) bw (XTQX)-1XTQy.

The estimator bw is the familiar within-group estimator; it
uses only the variation within each group. This estimator is
sometimes called the covariance estimator since the
regression just described is in fact the usual analysis of
covariance. The estimator is unbiased, and it is consistent
as either N or T (or both) approaches infinity. These are
all well-known results; for example, see Judge et al. (1985,
pp. 329).

A problem with this estimation procedure is that it is

not possible to obtain estimates of the coefficients of the
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13
time-invariant regressors (Z). Any time-invariant regressor
is perfectly collinear with the individual dummy variables;
equivalently, it is removed by the transformation of the data
to deviations from individual means. If the original model
contained no time-invariant regressors, the estimated

coefficients of the individual dummy variables are

(203.2) Uw = Py - pr"

and these estimates of the individual effects are consistent
as T approaches infinity. If the original model contained.
time-invariant regressors, then uvw defined above is
interpreted as an estimate of (ZD + u) rather than of just u.

An equivalent derivation of the within estimator bw is
to define it as the least squares estimator in equation
(2.2.2), ignoring (2.2.3). Similiarly, the estimator uw is
least squares applied to (2.2.3), after setting B = bv, and
ignoring the time-invariant variables Z.

Using only one part of equation (2.1.1), namely equation
(2.2.2), when estimating B has the advantage of being
computationally more convenient than estimating the whole of
equation (2.1.1). This approach also makes explicit the
statement that bw ignores the between-group variation; i.e.,

it ignores the cross-sectional variation in equation (2.2.3).

In the previous section, we discussed the estimation of
a linear regression model when the individual effects (the

ui ) are treated as fixed constants. In this section, we
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treat the individual effects similiarly to the way we treat
the error term eit; we assume the ui to be random variables.
The N individuals are now to be interpreted as being drawn
from some larger population, and so the effects ui can be
viewed as a random sample from some distribution.

We assume specifically that the ui are iid with mean
zero and variance ou2. We also assume that X and Z are

uncorrelated with u. The model is written as

(2.4.1) yit XitB + ZiD + ui + eit

XitB + ZsD + sit i=1,oo,N;t=1’ooo’T

The variance of yit, conditional on Xit and Zi, is

(2.4.2) var(yit) = var(sit) = 0?2 + Ou?.

The variances o0e? and ou? are sometimes called variance
components; each is itself a variance as well as a component
of the error variance, var(sit). Similiarly, the errors ui
and eit are sometimes called error components. Therefore,
this model is often referred to as an error-components or
variance-components model.

The presence of the random effects ui in the disturbance
term results in correlation among the errors of the same
cross-gsectional unit, although the errors from different
cross-sectional units are independent. This can be made
explicit if we let si denote the (T x 1) dimensioned error
vector (si1,...,817)T. The covariance matrix of si is then

the matrix
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(2.4.3) Cov( 8i ) = Si = o0e?lIr + ou?(jrjr?)

where jr = (1,...,1)T is a (T x 1) vector of 1's. Thus, this
correlation of the errors at the individual level is constant

over time and is identical for all individuals.

2.4.1 Within Estimation

The within-group estimator can be used regardless of
whether the ui’s are viewed as fixed constants or as random
variables. The within estimator of B can be viewed as least
squares applied to equation (2.2.2), and the individual
effects do not appear in this equation. So, whether the ui
are treated as nonstochastic or stochastic, the estimator bw
is still unbiased and consistent. However, as pointed out by
Hsiao (1986), the Within estimator is inefficient when the

effects are random and uncorrelated with the regressors.

2.4.2 Generalized Least Squares Estimation
As was shown above, since the s8it in different time
periods but for the same individual both contain ui, the

errors in the equation

(2.4.4) yit XitB + ZiD + ui + eit

x’.tB+Z1D+81t i=1’oo,N; t=1,ooo’T

are autocorrelated. Efficient estimation requires that we
use the generalized least squares method. Following Hausman

and Taylor (1981), we write

(2.4.5) S = Cov(s ) = Cov(iu+e ) = e2Irn + Tou?P
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where o0e?2 = var(eit) and ou? = var(ui). Since P and Q are
both idempotent and orthogonal, it follows that, up to a

factor of proportionality,

(2.4.6) S-1 = Q + c2P

where c2 = [ 0e2/( 02 4+ Tow? ) ]. Now, if we rewrite

equation (2.2.4) as

(2.4.7) y = XB + ZD + u + e
= RA + s
where R = (X, Z ) and A = ( BT, DT )T, and if we

assume that o2 and ou? are known, the generalized least

squares estimator of A from equation (2.4.7) is simply

(2.4.8) acLs = (RTS-1R)-1RTS-1ly,

Equivalently, the GLS estimator is ordinary least
squares of (S-1/2y) on (S-1/2R). Again following Hausman and

Taylor (1981), we can note that

(2.4.9) S-1/2 = Q + cP = 1INt - (1-c)P

so that S-1/2y = y - (1-c)Py (and similiarly for R). This
transformation is what Hausman and Taylor call "(1-c)

differences." For example,

(2.4.10) (S-1/2y)3¢: = yit - (1l-c)yi.

and this differs from the within transformation to the extent

that c # 0.
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2.4.3 Weighted Least Squares Estimation
As an alternative approach to the generalized least
squares estimator of A, consider the equations which result
from the decomposition of equation (2.4.7). These orthogonal

equations can be written as

(2.4.11) Qy QRA + Qs

(2.4.12) Py

PRA + Ps

First, we consider the following lemma, due to Mundlak
(1978b), and which is to be used throughout much of this
thesis. It concerns the need to correct for the failure of
the covariance matrix associated with the disturbance term to

satisfy the ideal conditions.

Lemma (2.1): Suppose y = XB + 8 satisfies the ideal
conditions except that Cov(y) = Cov(s) = S. Let M be an
idempotent matrix other than the identity matrix, and let y*
= My and X* = MX. Consider the class of estimators of the
form bse = (X*TH-1X*)-1X*TH-1y*, where H is any positive
definite matrix. Then the estimator bo = (X*TX*)-1X*Ty*

is the minimum variance unbiased estimator of B within this

class.

The point of the Lemma is as follows. We have y = XB +
s and cov(s) = S. The best (GLS) estimator of B certainly
involves S. However, if we transform the equation by an

idempotent matrix M:



(2.4.13;

the best
transfor
This is
dealing
Pand Q.

We

errors in

(2.4.14)

and



18

(2.4.13) (My) = (MX)B + (MS),

the best (minimum variance unbiased) estimator of B from this
transformed equation is just OLS, which does not depend on S.
This is relevant in the present context because we are
dealing with equations transformed by the idempotent matrices
P and Q.

We note that the covariance matrices associated with the

errors in (2.4.11) and (2.4.12) may be written as

(2.4.14) Cov( Qs ) = QSQ = q@Q
and
(2.4.15) Cov( Ps ) = PSP = rbP,

respectively, where q = 062 and r = 0?2 + Tou2. Each of
these two covariance matrices is of the form of a constant
times an idempotent matrix. These two constants may be made
the same by multiplying equations (2.4.11) and (2.4.12) by
the weights (1/q) and (1/r), respectively. Moreover, it
follows from Lemma (2.1) that least squares applied to the
system 80 weighted yields the best minimum unbiased estimator
within the class containing all least square estimators of
the parameter vector A from any further transformation of
these equations or, in fact, the original equation (2.4.7).
We will refer to the least squares estimator of A from the

system of orthogonal equations

(2.4.16) (1/q)Qy = (1/q)QRA + (1/q)Qs
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(2.4.17) (1/r)Py = (1/r)PRA + (1/r)Ps

as the weighted least squares estimator of A. This estimator

may be written as

(2.4.18) awrs = (RTQR/q + RTPR/r)-1(RTQ/q + RTP/r)y.

The decomposition of the original equation by the
transformations, P and Q, has the effect of isolating the
correlations found in the non-block diagonal covariance
matrix of its error vector, S, to the particular orthogonal
space. Since these transformations are orthogonal, and their
sum is the identity matrix, equation (2.4.7) is said to have
been reduced by the pair ( Q, P ) into the two orthogonal
equations, (2.4.11) and (2.4.12). Since this pair of
equations contains exactly the same information as the
original equation, we would expect that the minimum variance
unbiased estimator from the two equations would be equivalent
to the generalized least squares estimator from the original

equation. This result is stated in the following theorem.

Theorem (2.2): The weighted least squares estimator, awrLs, is

equal to the generalized least squares estimator, acLs.

Proof:

The generalized least squares estimator of A from the
equation y = RA + 8 where Cov(s) = S, can be written as
acLs = ( RTS-1R )-1( RTS-ly )

( RT{ Q + c?P }R )-!( R*{ Q + c?P }y )
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( RT{ Q + (a/r)P }R )-1( RT{ Q + (q/r)P }y )

since c¢2 = (q/r)

( RT{ (1/q9)Q + (1/r)P }R )-1( R*'{ (1/q9)Q + (1/r)P }y )

( RTQR/q + RTPR/s )-!( RTQ/q + RTP/r )y

Therefore, awLs = acLs. Q.E.D.

Now least squares applied to equation (2.4.12) is called
the between-group estimator; explicitly, it is as
= (RTPR)-1RTPy. It utilizes the cross-sectional variation
in the individual means. Recall that the within-group
estimator can be viewed as least squares applied to equation
(2.4.11); it utilizes the variation within the individual
groups. As Maddala (1971) has shown, the generalized least
squares estimator can be viewed as an efficient combination
of the within-group estimator and the between-group
estimator. The optimal weights for the two different sets of
variation are the constants being used to normalize each of
the equations; i.e. the reciprocal of the variances q = 0%?
and r = 0e?2 + Tou? for the respective equations, (2.4.11)
and (2.4.12).

The following two theorems concern alternative
estimation procedures which yield the weighted least squares
estimator defined above.

For the first such derivation, consider again the
equations resulting from the decomposition of the original

equation (2.4.7). These orthogonal equations can be written

as
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(204019’ ¥y = R« A + 8=
where
Py PR
y= = ’ Rs = ’
Qy QR
" |
and
P(e + u)
S = .
Q( e )
-
Let
qP 0
(2.4.20) S+ = Cov(ss) = ,

0 rQ

so Ss denotes the singular covariance matrix associated with
the error term of the above system. It is well known that
any idempotent matrix is its own generalized inverse, and
therefore the generalized inverse of the singular matrix, S=,

is

(1/q)P 0
0 (1/r)Q

(204021) Sl’ -

Applying generalized least squares to (2.4.19), using the
generalized inverse of the error covariance matrix, we arrive
again at the weighted least squares estimator; this is stated

formally in the following theorem.

Theorem (2.3): The generalized least squares estimator of A
from equation (2.4.19) equals the weighted least squares

estimator of A.
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Proof:
The generalized least squares estimator of A from the

equation (2.4.19) can be written as

acLs* = (ReTSs*Res)-1ReTSetys
= ( RTQR/q + RTPR/r )-1( RTQ/q + RT'P/r )y
Thus, awLs = acLs= Q.E.D.

A second derivation follows the lines of Fuller and
Battese (1974). We note that Cov(s) =S = qQ + rP, and we
cénsider the transformation of the original equation (2.4.7),
using the matrix S-1/2, where S-1/2 = (1/9q*)Q + (1/r*)P,

q = (q)/2 and r = (r )1/2, The transformed

equation can be written as

(2.4.22) s-1/2y S-1/2RA + S-1/2( g )

S-1/2RA + S-1/2( e 4+ u )

Thus, using the Fuller and Battese expression for the
covariance of the error term, s, we have the following

theorem.

Theorem (2.4): The least squares estimator of A from equation
(2.4.22) is equal to the weighted least squares estimator of

A.

Proof:
Now the decomposition of equation (2.4.22) can be

written as
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(2.4.23) Qs-1/2y

QS-1/2RA + QS-1/2( e )

(2.4.24) PS-1/2y PS-1/2RA + PS-1/2( e + u )

The least squares estimator of A from this system is

as = ( R‘rs-l/:gs-l/:g 4+ RTS-1/2ps-1/2R )-1

times ( RTS-1/2QS-1/2 4 RTS-1/2p§-1/2)y

( RT( Q/q* + P/r* )Q( Q/q* + P/r* )R
+ RT( Q/q* + P/r* )P( Q/q* + P/r* )R )-1
times ( RT( Q/q* + P/r* )Q( Q/q* + P/r¥ )

+ RT( Q/q* + P/r* )P( Q/q* + P/r* ))y

( RTQR/q + RTPR/r )-!( RTQ/q + RTP/r )y

As shown in equation (2.4.18), the weighted least squares

estimator of A is written as

avLs = ( RTQR/q + RTPR/r )-1( RTQ/q + RTP/r )y

Thus, awLs = as=. Q.E.D.

2.5 om ts C ela w t

In some applications of the error-component model, there
may be reasons to believe that the individual-specific
unobservable effects found in the error term may, in fact, be
correlated with some or all of the included explanatory
variables. If we take the view suggested earlier, that the
random effects represent omitted individual-specific

variables, this correlation would seem inevitable. When
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there is correlation between the random effects and the
explanatory variables, the generalized least squares
estimator is biased and inconsistent. Indeed, Mundlak
(1978a) takes the extreme view that such correlation is
always present in the error-component model, and therefore
rejects the generalized least squares estimator in favor of
the within estimator.

However, Mundlak (1978a) considers the case in which the
effects are correlated with all of the regressors. We
consider instead the case treated by Hausman and Taylor
(1981), in which the effects are correlated with some of the
regressors. To consider this case, we first need to

introduce some notation. Consider the equation

(2.5.1) yit = (X11t, X2i1t)B + (Z1i, Z22:1)D + us + eit

where Xi1it represents the (1 x g1) dimensioned vector of
time-varying explanatory variables and Zii represents the
(1 x ki) dimensioned vector of time-invariant explanatory
variables, both of which are assumed to be uncorrelated with
both errors, ui and eit. The (1 x g2) dimensioned vector of
time-varying explanatory variables, X2it, and the (1 x kz2)
dimensioned vector of time-invariant explanatory variables,
221, are both assumed to be correlated with ui but
uncorrelated with eit. As before, both the random noise
component, eit, and the individual effects, ui, are i.i.d. as
well as independent of one another.

The matrix form of equation (2.5.1) can be written as
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(2.5.2) vy

(X1, X2)B + (Zi, Z2)D 4+ u + e

RA + s

where y, u, and e are (NT x 1); X is (NT x g ), 8 = g1 + g2;
and Z is (NT x k ), k = k1 + k2.

Now the method of instrumental variables has
traditionally been viewed as the response to the problem of
regressors correlated with the equation’s disturbance tern.
In the present context, Hausman and Taylor (1981) propose an
interesting variation to the usual instrumental variables
estimator. Unlike the usual approach, their estimator is
based on a set of instruments made up of regressors already
present in the equation being estimated.

First, they multiply equation (2.5.2) by S-1/2

(Cov(s))-1/2 to transform the error term so that it has a

scalar covariance matrix. The transformed equation is simply

(2.5.3) sS-1/2y S-1/2(X1, X2)B + S-1/2(Z1, Z2)D + S-1/2g

S-1/2RA + S-1l/2g

Second, they use as their instruments the set H =
(Q, X1, Z1 ), and derive what they consider to be the
efficient instrumental variables estimator of A from equation
(2.5.3). If we define for any matrix M the projection onto
the column space of M as P[M] (so that P[M] = M(MTM)-1MT
when M has full column rank), the Hausman and Taylor

estimator of A can be written as

(2.5.4) anr = ( RTS-1/2p[H]S-1/2R )-1( RTS-1/2PpP[H]S-1/2y )
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The Hausman-Taylor instrument set is cumbersome because
H is not of full column rank. We can evaluate P[H] using the

following Lemma:

Lemma (2.5): P[H] = Q + P[(PX1, Z1)]

However, while this solves the problem of calculating the
estimator, it is not very satifactory in helping us to
understand why the estimator is efficient. Perhaps a
somewhat more intuitive approach to the estimation of

equation (2.5.2) is to decompose it into the two orthogonal

equations
(2.5.5) Qy = (QX1, QXz2)B + Qe
(2.5.6) Py = (PX1, PX2)B + (Z1, Z2)D + P(e + u)

Since Qu = 0, there is no problem of correlation between
errors and regressors in (2.5.5). Furthermore, ( PX1, Z1 )
can readily be seen to be the largest available set of
variables in equation (2.5.6) which have been assumed to be
uncorrelated with the random effects. Projecting equation
(2.5.6) onto the column space of ( PXi, 21 ), we have the set

of orthogonal equations

(2.5.7) Qy QRA + Q( e + u )

(205.8) Ple

PiPRA + PiP( e + u )

where P1 = P[(PX1, Z21)].

The covariance matrix associated with the errors in
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equations (2.5.7) and (2.5.8) can be written as

(2.5.9) Cov( Q( e ) ) = aQ

and

(2.5.10) Cov( P[(PX1, Z1)]P( e + u ) ) = rP[(PX1, Z1)].

respectively. We note that each of these two covariance
matrices has the form of a constant times an idempotent
matrix. Thus, Lemma (2.1) would imply that any further
attempt at diagonalizing the covariance matrices in either
equation would not improve the efficiency of the resulting
estimator. Using the weights q and r, the weighted least
squares estimator of A from equations (2.5.7) and (2.5.8)

becomes

(2.5.11) a*1v = { RT(1/q)QR + RT(1/r)P[(X1, Z1)]R }-1?

times { RT(1/q)Qy + RT(1/r)P[(PX1, Z1)]ly }

Using Lemma (2.5), air can be rewritten as

(2.5.12) aur = ( RT( (1/q9)Q + (1/r)P[( PX1, Z1 )] )R )-1
times ( RT( (1/q)Q + (1/r)P[(PX1, Z1)] )y

We have now proved the following theorem.

Theorem (2.6): The Hausman and Taylor estimator of A equals
weighted least squares applied to equations (2.5.7) and
(2.5.8).
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2.6 rianpce i i W o ects e po
elated wit R 8 8

When discussing the generalized least squares estimation
procedure, we have implicitly assumed that the variance
components, 0?2 and ou?2, were known. In practice, this is
not the case; the variance components are usually unknown and
therefore must be estimated. When estimates of the variance
components are used in place of the actual values, we have an
example of feasjble genperalized least squares.

Under mild regularity conditions, Fuller and Battese
(1973) have shown that the feasible generalized least squares
estimator is consistent and has the same asymptotic
distribution as the generalized least squares estimators with
known variance components. This result holds true for either
large N or large T. Swamy and Mehta (1979) caution that, if
the estimator of ou? is unreliable, say because ot is close
to zero or N is small, the feasible generaligzed least squares
estimator may also be unreliable. Taylor (1980), on the
other hand, has shown that the difference between the
covariance matrices of the Within estimator and of the
feasible generalized least squares estimator is nonnegative
definite for even moderate sizes of either N or T. This
suggests that, in practice, the feasible generalized least
squares estimator may be more efficient than the Within
estimator.

Efficiency in the estimation of the variance components

and its subsequent effect on the efficiency of the feasible
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generalized least squares estimator has been discussed by
Amemiya (1971). Similiarly, papers by Maddala and Mount
(1973) and Taylor (1980) have shown that using more efficient
estimates of the variance components need not lead to a gain
in efficiency of the estimates.

In the following discussion, we rewrite equation

(2.4.11) and (2.4.12) as

(2.6.1) Qy Ri1A1 + Qs

where Ri (QX ), A1 = B, and rank( R1 ) = g; and

(2.6.2) Py = Rz2A2 + Ps

where R2 ( PX, Z ), A2 = ( BT, DT )T, and rank( Rz ) = g +
k.

If feasible weighted least squares is to be implemented
instead of the equivalent feasible generalized least squares
procedure, the weights q and r are the parameters we need
estimate. One approach to estimating these weights is to
estimate q = 082 using residuals from equation (2.6.1) and r
= 1?2 + Toz2?2 using residuals from equation (2.6.2). The
groundwork for such an approach is laid by Maddala (1971),
Swamy (1971), and Arora (1973). We now proceed to show that
estimators so defined are both unbiased and consistent. 1In
addition, we find the necessary conditions for identification
of the model.

We define the sum of squared residuals from equation

(2.6.1) as
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(2.6.3) SSE1 = (Qy - R1a1)T(Qy - Ria1)

where the residuals have been computed using the least
squares estimates of the coefficients in equation (2.6.1),

namely

(2.6.4) a1 = (RiTR1)-1R17y.

And we define the sum of squared residuals from equation

(2.6.2) as

(2.6.5) SSEz = (Py - Rzaz2 )T(Py - Rza2)

where the least squares estimates of the coefficients in

equation (2.6.2) are given as

(2.6.6) a2 = (R2TRz2 )-1Rz27y.

2.6.1 Counting Rules for Identification

To insure that the parameters in the model are
identified requires that the parameters in each of the two
equations, (2.6.1) and (2.6.2), separately be identified.
Thus, the necessary conditions for the identification of the

model are that

Since the second condition follows from the first, the
necessary condition for identification of the model can be

more succinctly written as

(2.6.8) g + k < N.
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2.6.2 Estimation of q and r

Theorem (2.7): Let 812 = SSE1/[ N(T-1) - g 1, and let
822 = SSE2/[ N- g - k ]. Then 812 is an unbiased estimator

q and 822 is an unbiased estimator of r.

Proof:

Let P1 represent the projection onto the column space of
the regressors in equation (2.6.1); i.e. P1 = P[R1] =
Ri(R1TR1)-1R1T. Then QP1 = P1Q = P, Pi1R1 = R1, P1T = P1,
and P1P = 0.

First we write the residual from equation (2.6.1) as

Residuali (Qy - QP1y) = R1A1 + Qs - P1Qy

RiA1 + Qs - P1R1A1 - P1@s

Ri1A1 - Ri1A1 + Qs - P1s

(Q - P1)s

Then we form the expression

SSE1 (Qy - QP1y)T(Qy - QP1y) = yT(Q - QP1)7T(Q - QP1)y

sT(Q - QP1)T(Q - QP1)s = 8T(Q - P1Q@ - QP1 + P1QP1)s

sT(Q - P1 - P1 + P1)s = 87T(Q - P1)s

Taking the expectation of the SSE1, we write

Exp{ SSE1 } Exp{ 8T(Q - P1)s }

Exp{ trace{ 8T(Q - P1)s } }

Exp{ trace{ (@ - P1)ssT } }

since trace(AB) = trace(BA) if both AB, BA

defined and square.
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trace{ (@ - P1)E{ ssT } }

trace{ (@ -~ P1){ a@ + rP } }

since E{ ssT } =S = gqQ + rP;

(q)trace{ (Q - P1) } since P1P = 0.

(q)rank(Q - P1)

since trace(A) = rank(A) if A is idempotent.

(q){rank(Q) - rank(R1)}

Thus, Exp{ s12 } = q.

Now, let P2 represent the projection onto the column
space of the regressors in equation (2.4.2); i.e. P2 = P[R2]
= R2(R2TR2 )-1R2T. Then PP2 = P2P = P2, P2R2 = Rz, P2T =
P2, and P2Q = 0.

First we write the residual from equation (2.6.2) as

Residual2 (Py - PP2y) = R2A2 + Ps - P2Py

R2A2 + Ps - P2R2A2 - P2Ps

R2A2 - R2A2 + Ps - P2s

(P - P2)s

Then we form the expression

SSE2

(Py - PP2y)T(Py - PP2y) = yT(P - PP2)(P - PP2)y

sT(P - PPz )(P - PPz2)s sT(P - P2P - PP2 + P2PP2)s

sT(P - P2 - P2 + P2)s

sT(P - P2)s

Taking the expectation of the SSE we write

Exp{ SSE2 }

Exp{ sT(P - P2)s }

Exp{ trace{ sT(P - P2)s } }
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Exp{ trace{ (P - Pz2)ssT } }
since trace(AB) = trace(BA) if both AB and BA
are defined and square.

trace{ (P - P2 )E{ ssT } }

trace{ (P - P2){ 9qQ + rP } }

since E{ 88T } = qQ + rP.

= (r)trace{ (P - P2) } since P2Q = 0.
= (r)rank(P - P2)

since trace(A) = rank(A) if A idempotent.

= (r){rank(P) - rank(Rz)} Q.E.D.
Theorem (2.8): Let 812 = SSE1/{ N(T - 1) - g } and
s22 = SSE2/{ N - g - k' }. Then s12 is a consistent

estimator

estimator

Proof:

plim 812

of q as N or T gets large, and 822 is a consistent

of r = de?2 + Tou? as N gets large.

plim SSE1/{ rank(Q)

rank(R1) }

plim SSE1/N(T - 1) plim 8T(Q - P1)s/N(T - 1)

plim 8TQs/N(T - 1) - plim sTP1s8/N(T - 1)

The last term is zero since sTP1s/N(T - 1)

= [sTR1/N(T - 1)]J[(R1TR1/N(T - 1)])-1R1T8/N(T - 1) and

RiTs/N(T - 1) -> 0 as N(T -1) -> oo ( as either

N -> o0

or T -> o0 ).

The first term equals 0?2 because, using standard

results ( e.g. Rao (1973, p 185)) on the distribution of

idempotent quadratic forms in normals, 8TQs is distributed as
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dge2X2N(T1-1) .

plim s22 plim SSE2/{ rank(P) - rank(Rz) }

plim SSE2/N = plim sT(P - P2 )s/N

plim sTPs/N - plim sTP2/N

The last term is zero since sTPzs/N
= ([s8TR2/N][R2TR2/N]-1R2Ts8/N and R2Ts/N -> 0 as
N -=> oo0.

The last term equals r = 0e?2 + Tou? because, using
standard results ( e.g. Rao (1973, p 185)) on the
distribution of idempotent quadratic forms in normals, sTQs

is distributed as rX2y. Q.E.D.

2.7 Variance Estimatio en the o c e
Correlated with the Regressors

So far we have considered variance estimation for the
feasible weighted least squares estimator only. We now
consider the model of section 2.5, in which some of the
regressors are correlated with the individual effects. Once
again we will need to estimate the variance components oe?
and ou?2, since they are needed to implement the Hausman and
Taylor instrumental variables estimator (or the equivalent
weighted instrumental variables estimator). The estimate of
0e2 based on the within residuals, discussed in section 2.6,
is 8till consistent in this model. However, the estimate of
r = 0e?2 + Tou? which was discussed in section 2.6 is not
consistent, since it was based on the residuals from least

squares applied to (2.6.2), and this least squares estimator
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is inconsistent when regressors and effects are correlated.

We therefore turn our attention to the problem of
finding consistent estimates of B and D. Then, using these
consistent estimates of A2 = ( BT, DT )T, we derive a
consistent estimate of r. The background for this approach
is the work of Hausman and Taylor (1981), who suggest the
estimate of r which we discuss here. However, they do not
give a rigorous proof that it is consistent. The following

assumptions will be made.

Assumption (2.9): Let H = [ PX1, Z1 ]. Then we assume that
(i) plim XTQe/N = 0 as N -> oo.
(ii) plim HTP(e + U)/N = 0 as N -> oo.
(iii) plim (XTQX)/N 1is finite and nonsingular as N -> oo.
(iv) plim (HTZ)/N is finite as N -> oo.
(v) plim (HTX)/N is finite as N -> oo0.

Even after the introduction of X2 and Z2 - regressors

assumed correlated with the effects - the within estimator is
a consistent estimator of B; no correlation exists between
the disturbance and the regressors in equation (2.5.5). So
the problem of finding a consistent estimator of A2 is
reduced to finding a consistent estimator of D. The
following regression equation will be used in deriving such

an estimator.

Lemma (2,10): Let d* = P(y - Xbw). Then

(2.7.1) d* = ZD + (P - PX(XTQX)-1XTQ)s.
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Q.
*
n

P(y - Xbs) = Py - PXba = Py - PX(XTQX)-1XTQy

P(XB + ZD + s)

PX(XTQX)-1XTQ(XB + ZD + s)

P(XB + ZD + s8)

PX(XTQX)-1XT (QXB + Qs)

P(XB + ZD + s8) PX(XTQX)-1XTQXB + PX(XTQX)-1XTQs

PXB + PZD + Ps

PXB + PX(XTQX)-1XTQs

ZD + (P - PX(XTQX)-1XTQ)s Q.E.D.

Since part of Z is correlated with the error term, least
squares applied to equation (2.7.1) does not yield a
consistent estimator of D. But, using H = (PX1, Z1) as a
set of instruments, the instrumental variable estimator of D

is defined as

(2.7.2) div = (XTP[H]X)-1XTP[H]d"*

where P[H] = H(HTH)-1HT,

It is interesting to note that using d** = (y - Xbw)
instead of d* = P(y - Xbw) would not increase the efficiency
of the estimator, div. Indeed, since P[H]P = PP[H] =
P[H], 217TQ = 0, and the first order conditions (i.e. the
"normal equations") defining bw imply that Xi1TQ(y - Xbw)
= 0,

(2.7.3) HT*P(y - Xbw) = HT(y - Xbw);

thus the same estimator would result if we used d** in place
of d*.

Given the estimator div, the question is whether this
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estimator is, indeed, a consistent estimator of D. But
first, we consider the conditions necessary to assure that

div does exist.

2.7.1 Conditio or t i ce of d

A necessary condition for the existence of div is that
the rank of H be at least as large as the rank of Z; that is,
there must be at least as many instruments as regressors.
This requires g1 + ki > k, or g1 > k2, as noted by Hausman
and Taylor (1981). Intuitively, PX1 is serving as
instruments for Z2, and so there must be at least as many

variables in X1 as in Z2.

2.7.2 Consistency of div

Lemma (2.11): Given assumption (2.95,

(1) plim ZTP1P(e + u)/ N = 0 as N -> oo

(2) plim ZTP1Z/N 1is finite and non-singualar
as N -> oo

(3) plim ZTP1X/N 1is finite as N -> oo

Lemma (2.11) can be easily proved by noting that P1

P[H] = H(HTH)-1HTY, where H = P( X1, Z1 ).

Theorem (2.12): The instrumental variable estimator div is a

consistent estimator of D as N -> oo.

Proof:

First, rewrite div as

div = (Z2TP1Z)-12ZTP1d*
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(ZTP1Z2)-1ZTP1(ZD + (P - PX(XTQX)-1XTQ)s)

(ZTP1Z)-1ZTP12D + (ZTP1Z)-1ZTP1 (P - PX(XTQX)-1XTQ)s)

D + (ZTP1Z)-1ZTP1Ps - PX(XTQX)-1XTQ@s

D + (ZTP1Z/N)-1{ZTP1 Ps/N}

- (ZTP1Z/N)-1{ZTP1 PX/N}(XTQX/N)-1 {XTQs/N}

By assumption

plim XTQ(e + u)/ N = 0 as N =-> oo0.
and

plim (XTQX)/N is finite and nonsingular as N -> oo0.

Using Lemma (2.11), it follows that

plim ZTP1P(e + u)/N = 0 as N =-> o0,

plim (ZTP1Z)/N is finite and nonsingular as N -> oo,

and

plim (ZTP1PX)/N 1is finite as N -> oo.
Thus,
Plim div = D + {finite}{ 0 }

- { finite }{ finite }{ finite }{ 0 }

D as N -=> oo0. Q.E.D.

2.7.3 A Consistent Estimate of r

Using as a consistent estimate of A2 = ( BT, DT )T the
estimators bvw and div, we will now form a vector of
residuals. We will then show that the sum of the squared
terms of this residual vector, divided by N, is a consistent

estimator of r = 0e?2 + Tou?.
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Lemma (2.13): Let Residual = Py - PXbw - PZdiv. Then

Residual = P(e + u)
- PX(XTQX)-1XTQe - PZ(ZTP1Z)-1ZTPi1P(e + u)
+ PZ(ZTP1Z)-1ZTP1 PX(XTQX)-1XTQe

Proof:

Residual = Py - PXbw - PZdiv

Py - PX(XTQX)-1XTQy - PZ(ZTP1Z)-12TP;4d*

P{XB + ZD + WC + s}
- PX(XTQX)-1XTQ{XB + ZD + WC + s}
- PZ(ZTP1Z)-1ZTP1 {ZD

+ (P - PX(XTQX)-1XTQ)(e + u)}

PXB + ZD + P(e + u)

- PX(XTQX)-1XTQXB - PX(XTQX)-1XTQe

PZ(ZTP1Z2)-1Z2TP1ZD

PZ(ZTP1Z2)-1Z2TP1P(e + u)

+

PZ(ZTP1Z)-1Z2TP1 PX(XTQX)-1XTQe

PXB + ZD + P(e + u)

PXB - PX(XTQX)-1XTQ(e + u)

- PZD

PZ(ZTP1Z)-1ZTP1P(e + u)

+

PZ(ZTP12)-1Z2TP1 PX(XTQX)-1XTQe

P(e + u) - PX(XTQX)-1XTQe
- PZ(ZTP1Z)-1ZTP1P(e + u)

+ PZ(ZTP1Z2)-1Z2TP1 PX(XTQX)-1XTQe Q.E.D.

We now define a consistent estimator for r. Define SSE*

as the sum of squared residuals defined in Lemma (2.13). Our
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estimator is just SSE* /N.

(2.7.4) SSE* = (Residual)T (Residual).

Theorom (2.14): plim SSE*/N = r = 0e? + Tou?

Proof:
First, SSE* can be written as

SSE*

(Residual)? (Residual)

(e + u)TP(e + u)

(e + u)TPX(XTQX)-1XTQe

(e + u)TPZ(ZTP1Z)-1ZTP1P(e + u)

+

(e + u)TPZ(ZTP1Z)-1ZTP1 PX(XTQX)-1XTQe

- eTQX(XTQX)-1XTP(e + u)

+ eTQX(XTQX)-1XTPX(XTQX)-1XTQe

+ eTQX(XTQX)-1XTPZ(ZTP1Z)-1ZTP1P(e + u)

- eTQX(XTQX)-1XTPZ(ZTP1Z)-1ZTP1 PX(XTQX)-1XTQe

- (e + u)TPP1Z2(2TP1Z)-12TP(e + u)

+ (e + W)TPP1Z(ZTP1Z)-1ZTPX(XTQX)-1XTQe

+ (e + u)TPP1Z(ZTP1Z)-1ZTPZ(2TP1Z)-1ZTP1P(e + u)

- (e + u)TPP1Z(2TP12)-1ZTPZ(ZTP1Z)-1ZTP1 PX(XTQX)-1XTQe
+ eTQX(XTQX)-1XTPP1Z(ZTP1Z)-1ZTP(e + u)

- eTQX(XTQX)-1XTPP1Z(ZTP1Z)-1ZTPX(XTQX)-1XTQe

- eTQX(XTQX)-1XTPP1Z(ZTP1Z)-1ZTPZ(ZTP1Z)-1ZTP1P(e + u)
+ eTQX(XTQX)-1XTPP1Z(ZTP1Z)-12TPZ(2TP1Z)-1}

times ZTP1PX(XTQX)-1XTQe

Now, from the above expression, taking the probability

limit of SSE* as N gets large is equivalent to taking the
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probability limit of the sum of sixteen different terms.
Evaluation of these sixteen terms shows that the first term
has a probability limit equal to r and that the remaining
fifteen terms each have a probability limit equal to zero
with all limits being taken as N -> oo. These probability

limits are evaluated below.

1) plim (e + u)TP(e + u)/N

= plim eTPe/N + plim ufPu/N
Consider these term by term. First,

N
eTPe/N = TL ei.2/N.
i=1l

Each term ei.?2 has a mean of 0¢2/T, and the terms are

independent. Therefore,

eTPe/N =-> To0e?2/T = (e? as N -> oo0.
Second,
N
ufTPu/N = TL ui?/N -> Tou? as N -> oo0.
1=1
Third,
N
eTPu/N = TL ei.ui/N ->0 as N -> oo

i=1

because e and u are uncorrelated. Therefore,

(e + u)TP(e + u)/N =-> 0e?2 + Tou? as N -> oo.

2) plim (e + u)TPX(WTQW)-1WTQe/N

= plim {(e + u)TPW/N}(WTQW/N)-1{WTQe/N}
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= plim {(e + u)TPW/N} plim (WTQW/N)-1! plim {WTQe/N}

=0 as N -> oo.

3) plim (e + u)TPZ(ZTP1Z)-1ZTP1P(e + u)/N

plim {(e + u)TPZ/N}(ZTP1Z/N)-2{ZTP1P(e + u)/N}

plim {(e + u)TPZ/N} plim (ZTP1Z/N)-1!

times plim {ZTP1P(e + u)/N}

0 as N => oo.

4) plim (e + u)TPZ(ZTP12)-1ZTP) PW(WTQW)-1WTQe/N

plim {(e + u)TPZ/N}(ZTP1Z/N)-1?
times {ZTP1PW/N}(WTQW/N)-1{WTQe/N}

plim {(e + u)TPZ/N} plim (ZTP1Z/N)-! plim {ZTP1PW/N}

times plim (WTQW/N)-1 plim {WTQe/N}

n
(=]

as N -> oo.

5) plim eTQW(WTQW)-1WTP(e + u)/N

Plim {eTQW/N}(WTQW/N)-1 {WTP(e + u)/N}

Plim {eTQW/N} plim (WTQW/N)-1 plim {WTP(e + u)/N}

= 0 as N =-> oo.

6) plim eTQW(WTQW)-1WTPW(WTQW)-1WTQe/N

plim {eTQW/N}(WTQW/N)-1 {WTPW/N}(WFTQW/N)-1{WTQe/N}

Plim {eTQW/N} plim (WTQW/N)-1! plim {WTPW/N}

times plim (WTQW/N)-1 plim {WTQe/N}

n
o

as N =-> oo.

7) Plim eTQW(WTQW)-1WTPZ(ZTP1Z)-1ZTP1P(e + u)/N
= plim {eTQW/N}(WTQW/N)-1{WTPZ/N}

times (2TP1Z/N)-1{ZTPi1P(e + u)/N}
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plim {eTQW/N} plim (WTQW/N)-! plim {WTPZ/N}
times plim (ZTP1Z/N)-! plim {ZTP1P(e + u)/N}

0 as N =-> oo.

8) pPlim eTQW(WTQW)-1WTPZ(ZTP1Z)-1ZTP1 PW(WTQW)-1WTQe/N

plim {eTQW/N}(WTQW/N)-1 {WTPZ/N}(ZTP1Z/N)-1{ZTP1PW/N}
times (WTQW/N)-1{WTQe/N}

Plim {eTQW/N} plim (WTQW/N)-1

times plim {WTPZ/N)}plim (ZTP1Z/N)-1!

times plim {ZTP1PW/N} plim (WTQW/N)-1 plim {WTQe/N}

0 as N -> oo.

9) plim (e + u)TPP1Z(ZTP12)-12TP(e + u)/N

10) plim

11) plim

plim {(e + u)TPP1Z/N}(ZTP1Z/N)-1{ZTP(e + u)/N}
plim {(e + u)TPP1Z/N} plim (ZTP1Z/N)-1
times plim {ZTP(e + u)/N}

0 as N =-> oo,

(e + u)TPP1Z(ZTP12)-1ZTPW(WTQW)-1WTQe/N

plim {(e + u)TPP1Z/N}(ZTP1Z/N)-1}

times {ZTPW/N}(WTQW/N)-1{WTQe/N}

plim {(e + u)TPP1Z/N} plim (ZTP1Z/N)-! plim {ZTPW/N}
times plim (WTQW/N)-1 plim {WTQe/N}

0 as N -> oo.

(e + u)TPP1Z(2ZTP1Z)-1ZTPZ(ZTP1Z)-12TP1P(e + u)/N
Plim {(e + u)TPP1Z/N}(ZTP1Z/N)-1{ZTPZ/N}

times (ZTP1Z/N)-1{ZTP1P(e + u)/N}
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plim {(e + u)TPP1Z/N} plim (Z2TP1Z/N)-! plim {ZTPZ/N}
times plim (ZTP1Z/N)-1 plim {ZTP1P(e + u)/N}

0 as N -> oo.

12) plim (e + u)TPP1Z(2TP1Z)-1ZTPZ(2TP12)"1?

times ZTP1PW(WTQW)-1WTQe/N

13) plim

14) plim

15) plim

plim {(e + u)"PPlZ/N}(Z"’P1Z/N)‘A1{Z"'PZ/N}(Z"’PxZ/N)'1
times {ZTP1PW/N}(WTQW/N)-1{WTQe/N}

plim {(e + u)TPP1Z/N} plim (ZTP1Z/N)-! plim{ZTPZ/N}
times plim(ZTP1Z/N)-1 plim {ZTP1PW/N}

times plim (WTQW/N)-! plim {WTQe/N}

0 as N -> oo.

eTQW(WTQW)-1WITPP1Z(ZTP1Z)-12TP(e + u)/N

plim {eTQW/N}(WTQW/N)-1{WTPP1Z/N}

times (ZTP1Z/N)-1{ZTP(e + u)/N}

plim {eTQW/N} plim (WTQW/N)-! plim {WTPP1Z/N}
times plim (ZTP1Z/N)-! plim {ZTP(e + u)/N}

0 as N -> oo.

eTQW(WTQW)-IWTPP1Z(ZTP1Z)-1ZTPW(WTQW)-1WTQe/n
Plim {eTQW/N} plim (WTQW/N)-! plim {WTPP1Z/N}
times plim (ZTP1Z/N)-! plim {ZTPW/N}

times plim (WTQW/N)-1 plim {WTQe/N}

0 as N => oo.

eTQW(WIQW)-1WTPP1Z(ZTP12Z)-1

times ZTPZ(ZTP1Z)-1ZTP1P(e + u)/N



45

plim {eTQW/N}(WTQW/N)-1{WTPP1Z/N}(ZTP1Z/N)-1

times {ZTPZ/N}(ZTP1Z/N)-1{ZTP1P(e + u)/N}

plim {eTQW/N} plim (WTQW/N)-! plim {WTPP1Z/N}
times plim (ZTP1Z/N)-1! plim {(ZTPZ/N}

times plim (ZTP1Z/N)-! plim {ZTPiP(e + u)/N}

0 as N -> oo.

16) plim { eTQW(WTQW)-IWTPP1Z(ZTP1Z)-1ZTPZ(2TP12)"!
times ZTP1 PW(WTQW)-1WTQe/N }

plim {eTQW/N}(WTQW/N)-1{WTPP1Z/N}

times plim (2TP1Z/N)-1 {ZTPZ/N}(ZTP1Z/N)-1

times plim {ZTP1PW/N}(WTQW/N)-1 {WTQe/N}

plim {eTQW/N)} plim (WTQW/n)-1! plim {(WTPP1Z/N}
times plim (ZTP1Z/N)-! plim {ZTPZ/N}

times plim (ZTP1Z/N)-! plim {ZTP1PW/N}

times plim (WTQW/N)-! plim {WTQe/N}

O as N -> 00. QOE-D.

2.8 Conclusions

In this chapter, we have considered a linear regression
model which contains unobserved individual effects. Given
panel data, this model may be estimated in a variety of ways,
depending on what is assumed about the correlation between
the regressors and the effects. We have given a survey of
the literature, tidying up a few loose ends, and we have
introduced the analytical framework to be used in the rest of
the thesis. In the next chapter, we will extend the analysis

of this chapter to a model which contains unobservable time
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effects as well as individual effects.



CHAPTER 3

Individual and Time Effects

3.1 Introduction

In this chapter, we extend the linear regression model
considered in the previous chapter to include unobservable
time effects. We again assume that the data consists of T
time-series observations on each of N individuals; we
distinguish regressors which vary over time and individuals
from those that are either time-invariant or individual-
invariant; and now we assume the presence of unobservable
time-invariant individual effects, unobservable individual-
invariant time effects, and the usual statistical noise.

We write the model to be considered in this chapter as

(3.1.1) yit = XitB + WeC 4+ ZiD + ui + vt + eit,

i=1,cou,N;t=1’.oo,To

where yit is the dependent variable, Xit is a vector (of
dimension 1 x g) of explanatory variables which vary both
over time and over individuals, Zi is a vector (of dimension
1 x k) of time-invariant explanatory variables, Wt is a
vector (of dimension 1 x h) of individual-invariant

explanatory variables, and B, D, and C are vectors of

417
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parameters to be estimated. The errors eit are iid with mean
zero and variance 0e2. Both the individual effects ui and
the time effects vt are unobservable, and various assumptions
about them will be made. However, in all cases the
individual effects will be treated as time-invariant and the
time effects will be treated as individual-invariant.

The plan of this chapter is as follows. In section 3.2
we review the geometry which is used in subsequent analyses.
We then consider the estimation of the model under various
assumptions. In section 3.3 we consider the fixed effects
model, in which the individual effects are treated as fixed
parameters to be estimated. The point of this model is to
remove the potential bias caused by correlation of the
regressors with the omitted individual-invariant and time-
invariant variables. In section 3.4 we consider the random
effects model, in which the individual and time effects are
treated as random and uncorrelated with the regressors.

Under these assumptions there is no problem of bias, and
efficiency of estimation is our central concern. In section
3.5 we consider an extended version of the model of Hausman
and Taylor (1981), in which the individual effects are
treated as random but potentially correlated with the
regressors. Since many currently available panel data sets
are characterized by having many observations but for only a
relatively few time periods, in section 3.6 we consider the
previous two models for the case when N is large but T is

fixed. Finally, in sections 3.7 and 3.8 we consider the
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‘problem of consistent estimation of the variances of the
noise, the individual effects, and the time effects. Such
estimates are necessary to implement the feasible weighted
least squares estimators considered in section 3.4 and 3.5.

This chapter applies the Hausman and Taylor method of
instrumental variables estimation to the panel data model
extended to included both individual as well as time effects,
and derives the subsequent estimator. 1In addition, it
provides a survey of the existing literature on this extended
model. The analysis of the regression models considered in

this chapter is done using the approach introduced in chapter

2.

3.2 Geometry
A useful fact, and one to be used throughout the
remainder of this chapter, is that the equation (3.1.1) can

be written, equivalently, as the four orthogonal equations

(3.2.1) (yit - y.t = yi. + y..)

= (X1t - X.t - Xi1. + X..)B + (eit - e.t - ei. + e..)

(3.2.2) (yi1. - y..)

= (X1. - X..)B + (Zs - Z.)D + (ui - u.) + (ex. - e..)

(3.2.3) (y.t - y..)

= (X.t = X..)B + (We - W.)C 4+ (vt - v.) + (e.t - e..)
(3.2.4) y.. =X..B+ W.C 4+ Z.D+u. +#v. + e..

T N
where yi. = (1/T)Z 1Y1t, Y.t = (1/N)Z yit, and y..
t= i=1
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N T
= (1/NT)£1:=l g;flt- Equation (3.2.2) expresses the data in
terms of its individual averages over time with the grand
mean subtracted, while equation (3.2.3) expresses the data in
terms of its averages over individuals for each period of
time with the grand mean subtracted. Equation (3.2.1)
expresses the data in terms of its deviations around both the
mean for each individual and for each time period with the
grand mean added; equation (3.2.4) expresses the data in

terms of its grand mean.

Writing equation (3.1.1) in matrix form we have
(3.2.5) y = XB + WC +ZD +u+v +e

where y, u, v, and e denote (NT x 1) dimensioned vectors; and
X, W, and Z denote (NT x g), (NT x k), and (NT x h)
dimensioned matrices, respectively. Again, following the
convention of Hausman and Taylor (1981), the observations are
ordered first by individuals and then by time, so that v and
each column of W are (NT x 1) dimensioned vectors consisting
of N blocks, with each block containing the same T entries.
To achieve the same decomposition as was accomplished
above, we define the same four symmetric, idempotent,
mutually orthogonal matrices used by Fuller and Battese

(1974). These orthogonal projections are

(3.2.6) Q = INT - Q - Q - Q4
(3.2.7) Q = ( INn ® jrjrT/T ) - ( jNTjNT/NT )
(3.2.8) Q = ( jNjnT/N ® Ir ) - ( jNr jNTT/NT )
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(3.2.9) Q = ( JNJNT/N @O jrjrT/T ) = ( jNTrJNTT/NT )

where jr = (1,...1)T is (T x 1). The transformation Q4
determines the grand mean for the NT observations repeated NT
times. The transformation Q2 determines the means for each
of the individual groups, subtracts the grand mean, and
repeats these N observations T times; the transformation Q3
determines the means for each of the time periods, subtracts
the grand mean, and repeats these T observations N times.
The transformation Q1 transforms each observation into the
difference between itself and both its respective individual
group mean and time mean, and then adds the grand mean.
Explicitly, the (i,t) element of Qiy, Q2y, Q3y, and Qsy can

be written as

(3.2.10) (uy)it = yit - yi. - y.t + y..
(3.2.11) (Rey)it = yi. - vy..

(3.2.12) (Q3y)it = y.t - y..

(3.2.13) (Qeylit = y..,

respectively.

Since W contains variables that are constant across all
individual observations for a given time period, QuW = 0.
Similiarly, QW = 0. The elements of the columns of W are,
on the other hand, expressed as deviations from their
respective grand means by the transformation Q3. Analogous

results hold true for the time effects v; i.e. Qv = 0 and
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Qv = 0. Likewise, since Z contains variables that are
constant across all time period observations for a given
individual, @1Z = 0 and Q3Z = 0. And similiarly, Qiu = 0 and
Qu = 0. Thus, the original equation (3.1.5) can now be

written equivalently as the four orthogonal equations

(3.2.14) Qy

Q1XB + Qie

(3.2.15) Qy Q2XB + Q22D + Qz2(u + e)

(3.2.16) Qy Q3XB + QWC + Q(v + e)

(3.2.17) Qy QtXB + QWC + QZD + Q(u + v + e)

3.3 Fixed Effects

In this section, we discuss the estimation of the linear
regression equation (3.2.5) when both the individual-specific
effects and the time-specific effects are treated as fixed
constants. The standard approach is to use dummy variables
for individuals and for time periods as regressors, and then
to apply least squares. This yields the following estimator

for B:
(3.3.1) by = (XTQ1X)-1XTQ1y.

The estimator bw is the familiar within-group estimator; it
uses only the variation within each individual group and each
time period. The estimator is unbiased, and it is consistent
as either N or T (or both) approaches infinity. These are
all well-known results; for example, see Judge et al. (1985,

pp. 338).
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A problem with this estimation procedure is that it is
not possible to obtain estimates of either the coefficients
of the time-invariant regressors (Z) or the coefficients of
the individual-invariant regressors (W). The time invariant
regressors are perfectly collinear with the individual dummy
variables and the individual-invariant regressors are
perfectly collinear with the time dummy variables;
equivalently, they are removed by the transformation of the
data by the matrix Q1. If the original model contained no
time-invariant regressors, the estimated coefficients of the

individual dummy variables are

(30302) Uw = sz - QZXbV’

and these estimates of the individual effects are consistent
as T approaches infinity. If the original model contained
time-invariant regressors, then uvw defined above is
interpreted as an estimate of (Q2ZD + Qu) rather than of
Just u. Simliarly, if the original model contained no
individual-invariant regressors, the estimated coefficients

of the time period dummy variables are

(30303) Vw = QSY - anb',

and these estimates of the time effects are consistent as N
approaches infinity. If the original model contained
individual-invariant regressors, then vw defined above is
interpreted as an estimate of (QsWC + Qav) rather than of

Jjust v.
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An equivalent derivation of the within estimator bw is
to define it as the least squares estimator in equation
(3.2.14), ignoring equation (3.2.15), (3.2.16), and (3.2.17).
Similiarly, the estimator uv is least squares applied to
(3.2.15), after setting B = bw; ignoring the time-invariant
variables Z. And, the estimator vw is least squares applied
to (3.2.16), after setting B = bvw, and ignoring the
individual-invariant variables W.

Using only one part of equation (3.2.5), namely equation
(3.2.1), when estimating B has the advantage of being
computationally more convenient than estimating the whole of
equation (3.2.5). This approach also makes explicit the
statement that bw ignores the between-group variation and the
between time period variation; i.e. it ignores the cross-
sectional variation in equation (3.2.15) and the time series

variation in equation (3.2.16).

3.4 o f ts ot Correla wi e 80

In the previous section, we discussed the estimation of
a linear regression model when the individual effects (the
ui ) and the time effects (the vt ) are treated as fixed
constants. In this section, we treat the individual and time
effects similiarly to the way we treat the error term eit; we
assume both the ui and the ve¢ to be random variables
uncorrelated with the regressors. The N individuals are now
interpreted as also being drawn from some larger population,
and so too the effects ui can be viewed as a random sample

from some distribution. Similiarly, the T time periods are
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now interpreted as being drawn from some larger population,
and so the effects vt can be viewed as a random sample from
some distribution.

We assume specifically that the ui are iid with mean
gero and variance ou2, the vt are iid with mean zero and
variance ov2, and the ui and vt are assumed to be
uncorrelated with each other as well as with eit. We also
assume that X, Z, and W are uncorrelated with both u and v.

The model is written as

(3.4.1) vyit Xi1tB + ZiD + WeC + ui + vt + eit

X1tB+ZlD+WtC+81t, izlgoo-’N;tzl,.oo'T

The variance of yit, conditional on Xit, Zi, and We is

(3.4.2) var(yit) = var(sit) = ocu?2 + w2 + 0e?.

Therefore, this model is often referred to as the generalized
error-components or generalized variance-components model.
The presence of the random effects ui and vt in the
disturbance term results in correlation among the errors for
a given individual as well as among different time series.
This can be made explicit if we let si denote the (T x 1)
dimensioned error vector (si1,...,8ir)T. The covariance

matrix of 81 is then the matrix

(3.4.3) Cov( st ) = ou?2(jrjrT) + ov23Ir + Oe?lr

where jr = (1,...,1)T is a (T x 1) vector of 1’'s.

Furthermore, the covariance between si1 and s; is given by the
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matrix

(3.4.4) Exp( sisjT ) = oviIr.

3.4.1 Within Estimation

The Within-group estimator can be used regardless of
whether the ui’s and vt ’s are viewed as fixed constants or as
random variables. The Within estimator of B can be viewed as
least squares applied to equation (3.2.14), and neither the
individual effects nor the time effects appear in this
equation. So, whether the ui and vt are treated as
nonstochastic or stochastic, the estimator bw is still
unbiased and consistent. However, as pointed out by Judge et
al. (1985), the Within estimator is inefficient when the

effects are random and uncorrelated with the regressors.

3.4.2 Geperalized Least Squares Estimation

As was shown above, since the sit in different time
periods but for the same individual both contain ui, the

errors in the equation

(3.4.5) yit XitB + ZiD + WeD + ui + ve + eit

XitB + ZiD + WeD + 8it, i =1,ono’N; t =lpooo,T

are autocorrelated, and since the sit in the same time period
but for different individuals both contain vt, the errors are
intertemporally correlated. Efficient estimation requires
that we use the generalized least squares method. Following

Fuller and Battese (1974), we write
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(3.4.6) S = Cov(s) = pQ1 + gqQ2 <+ rQs + kQ4

where p = 02, q = (de?2 + THu?2), r = (de?2 + Nov?2), and k =
(Ce?2 + Tou?2 + Nov?2). Since the four matrices Q, Q, Q3, and

Q¢ are idempotent and orthogonal, it follows that

(3.4.7) s-1 = (1/p)@1r + (1/q)Q2 + (1/r)Qs + (1/k)Qs

Now, if we rewrite equation (3.2.5) as

(3.4.7) y = XB + ZC + WC + u + v + e
= RA + s
where R = (X, 2, W) and A = ( BT, CT, DT )T, and if

we assume that ou?, ov?2, and de?2 are known, the generalized

least squares estimator of A from equation (3.4.7) is simply

(3.4.8) acLs = (RTS-1R)-1RTS-1ly,

Equivalently, the GLS estimator is ordinary least
squares of (S-1/2y) on (S-1/2R). Fuller and Battese (1974,

PP. 77) show that, up to a factor of proportionality,

(3.4.9) S-1/2 = 1INt - (1-c2)Q2 - (1-c3)Q3 + (l+ce)Qs

where c2 = (p/q)l/2, c3 = (p/r)l/2, and c4 =
(p/k)l/2, so that the GLS estimator can more conviently be

calculated using the transformed variables

(3.4.10) sS-1/2y = y - (1-c2)Q2y - (1-c3)Q3y + (l+ce )Quy

(and similiarly for R). For example,
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(3.4.11) (S-1/2y)j+ = yit - (l-c2)yi. - (1l-ca)y.t

+ (l+ce)y..

and this differs from the within transformation to the extent
that the scalars c2, c3, and c4 are nonzero. As pointed out
by Hsiao (1986), the GLS estimator converges to the Within
estimator when N - > oo, T -> oo, and the ratio of N over T
trends to a non-zero constant. It can be shown that c2 tends
to zero as T gets large, that c3 tends to zero as N gets
large, and c4 tends to zero as T gets large and the ratio of
N over T is bounded from above.

The GLS estimator is consistent, as pointed out by Judge
et al. (1985), when both N -> oo and T -> o0o; it is not
consistent as N -> oo for T fixed or.as T -> oo for N fixed.
The case when N -> oo for T fixed will be discussed in more

detail in section 3.6.1.

3.4.3 Weighted Least Squares Estimation

As an alternative approach to the generalized least
squares estimator of A, consider the equations which result
from the decomposition of equation (3.4.7). These orthogonal

equations can be written as

(3.4.12) Q1y = QXB + Qe
(3.4.13) Qy = QXB + Q22ZC + Q(u + e)
(3.4.14) Q3y = Q3XB + QWD + Q3(v + e)

(3.4.15) Qy

QXB + QZC + QeWD

+

Qi(u + v + e)
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We note that the covariance matrices associated with the
errors in the above equations may be written (respectively)

as

(3.4.16) Cov( Qs ) = QSQ1 = pQ
(3.4.17) Cov( Q2s ) = Q2SQ = qQ2
(3.4.18) Cov( Q3s ) = Q3SQ3 = rQi3
(3.4.19) Cov( Qes ) = Qa4SQs = kQs

Each of these four covariance matrices is of the form of a
constant times an idempotent matrix. These four constants
may be equated by multiplying equations (3.4.12), (3.4.13),
(3.4.14), and (3.4.15), by the weights (1/p), (1/q), (1/r),
and (1/s), respectively. Moreover, it follows from Lemma
(2.1) that least squares applied to the system so weighted
yields the best (minimum variance) unbiased estimator within
the class containing all least squares estimator of the
parameter vector A from any further transformation of these
equations or, in fact, the original equation (3.4.7). We
will refer to the least squares estimator of A from the

system of orthogonal equations

(3.4.20) (1/p)Qry

(1/p)Q1XB + (1/p)@

(3.4.21) (1/q)Q2y (1/9)Q2XB + (1/q9)Q2ZC + (1/q)Qzs

(3.4.22) (1/r)Qay

(1/r)QsXB + (1/r)QwWwb + (1/r)Qss
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(3.4.23) (1/k)Qe4y = (1/k)QeXB + (1/k)Q4ZC + (1/k)Qe WD
+ (1/k)Qek

as the weighted least squares estimator of A. This estimator

may be written as

(3.4.24) awrLs
= (RTQ1R/p + RTQ2R/q + RTQ3R/r + RTQ¢R/k)-!

times (RTQ1/p + RTQ2/q + RTQ3/r + RTQ4/k)y

The decomposition of the original equation by the
transformations, Q, Q, Q3, and Q¢+, has the effect of
isolating the correlations found in the non-block diagonal
covariance matrix of its error vector, S, to the particular
orthogonal space. Since these transformations are
orthogonal, and their sum is the identity matrix, equation
(3.4.7) is said to have been reduced by the quadruple ( Qi ,
Q2, Q3, Q¢ ) into the four orthogonal equations (3.4.12),
(3.4.13), (3.4.14), and (3.4.15). Since these four equations
contain exactly the same information as the orthogonal
equation, we would expect that the minimum variance unbiased
estimator from the four equations would be equivalent to the
generalized least squares estimator from the original

equation. This result is stated in the following theorem.

ITheorem (3.1)

is equal to the generalized least squares estimator, acLs.

The weighted least squares estimator, aw.rs,
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Proof:
The generalized least squares estimator of A from

equation (3.4.7) can be rewritten as

(3.4.25) acLs

(RTS-1R)-1RTS-1y

(RT[(1/p)Q@1 + (1/q9)Q2 + (1/r)Qs + (1/k)Qs]R)-1
times RT[(1/p)@1 + (1/9)Q2 + (1/r)Qs + (1/k)Qely
(RTQ1R/p + RTQ2R/q + RTQ3R/r + RTQ4R/k)-1?

times (RTQ1/p + RTQ2/q + RTQ3a/r + RTQ4 /k)y
Therefore, awLs = acLsS. Q.E.D.

Now least squares applied to equation (3.4.13) is called
the between-individual estimator; ar = (RTQ2R)-1RTQ2y. It
utilizes the variation between individuals. Least squares
applied to equation (3.4.14) is called the between-time
period estimator; ar = (RTQ3R)-1RTQsy. It utilizes
variation the between time periods. Recall that the within
estimator can be viewed as least squares applied to equation
(3.4.12); it utilizes the residual variation. Maddala (1971)
claims that the generalized least squares estimator can be
viewed as an efficient combination of the above three
estimators. The optimal weights for the three different sets
of variation are the constants being used to normalize each
of the equations; i.e. the reciprocal of the variances p =
Oe2, q = 0e?2 + Tou?2, and r = de?2 + Nov?2 for the respective
equations, (3.4.12), (3.4.13), (3.4.14). Since the weighted

least squares estimator has been shown to be equivalent to
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the generalized least squares estimator, this would imply
that equation (3.4.15) may be dropped and the weighted least
squares estimator computed using the remaining three
equations only. Indeed, equation (3.4.15) only determines
the constant term and, therefore, dropping ihis equation and
omitting the constant term, leaves the estimates for the
other coefficients unchanged. We prove this in the next

theoren.

eore 3 ¢ Weighted least squares applied to the set of
equations (3.4.20), (3.4.21, (3.4.22), and (3.4.23) is
equivalent to weighted least squares applied to the first

three equations only.

Proof:

We rewrite equation (3.4.7) as

(3.4.26) y = RA + s
= Ri1A1 + Rz2A2 + s
where Rt = (1,...,1)T is a (NT x 1) vector of 1’s and A1 is

the constant term. From Schmidt (1983), the generalized

least squares estimator of Az is

(3.4.27) a2 = (RTMR)RTMy

where M = S-1 - S-1A;(A17S-1A1)-1A17TS-1, But for our

S-1 and A1, a straightforward calculation shows

(3.4.28) M

S-1 - (1/8)Qs
(1/p)Qr + (1/q9)Q2 + (1/r)Qs Q.E.D.
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3.5 om ects, Correlated wi egressors

In some applications of the error-component model, there
may be reasons to believe that either the individual-specific
or the time-specific unobservable effects found in the error
term may, in fact, be correlated with some of the included
explanatory variables. If we take the view suggested
earlier, that the random effects represent both omitted
individual-specific and time-specific variables, this
correlation would seem inevitable. When there is correlation
between the random effects and the explanatory variables, the
generalized least squares estimator is biased and
inconsistent.

We consider the case in which the effects are correlated
with some of the regressors. To consider this case, we first

need to introduce some notation. Consider the equation

(3.5.1) yit = (X1it, X24t, X3it, Xe4it)B + (Z1i, Z22i)D

+ (W1t, W2t )C + ui + vt + eit

where X111t represents the (1 x g1) dimensioned vector of time
and individual varying explanatory variables, Zii represents
the (1 x ki) dimesioned vector of time-invariant explanatory
variables, and Wit's represent the (1 x hi1) dimensioned
vector of individual-invariant explanatory variables, all of
which are assumed to be uncorrelated with the three errors,
ui, vt, and eit. The (1 x g2) dimensioned vector of time and
individual-varying explanatory variables, Xzit, and the

(1 x k2) dimensioned vector of time-invariant explanatory
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variables, Z2i, are both assumed to be correlated with ui but
uncorrelated with vt and eit. The (1 x g3) dimensioned
vector of time and individual-varying explanatory variables,
X3it, and the (1 x h2) dimensioned vector of individual-
invariant explanatory variables, W2i, are both assumed to be
correlated with ve¢ but uncorrelated with ui and eit.
Finally, the (1 x g4) dimensioned vector of time- and
individual-varying explanatory variables, X4it, is assumed to
be correlated with ui and vt but uncorrelated with eit. As
before, the random noise component, eit, the individual
effects, ui, and the time effects, vt, are i.i.d. as well as
independent of one another.

We note in passing that the variables X, which vary over
both individuals and time, may be correlated or not with both
the individual effects ui and the time effects vie. Thus
there are four possible kinds of X’s. However, the variables
Z are time-invariant, and can not possibly be correlated with
the time effects; there are only two kinds of Z's, correlated
or not with the individual effects. Similiarly, the
variables W are individual-invariant, and can not possibly be
correlated with the individual effects; there are only two
kinds of W’s, correlated or not with the time effects.

The matrix form of equation (3.5.1) can be written as

(3.5.2) y = (X1, X2, X3, X4)B + (Z1, Z22)D

+ (W1, W2)C + u + v + e

where y, u, v, and e are (NT x 1); X is (NT x g), €8 = g1 + g2
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+ 83 + g4; Z is (NT x k), k = ki1 + k2; and W is (NT x h), h

= h1 + h2.

3.5.1 Weighted Least Squares Estimation
We decompose equation (3.5.2) into the three orthogonal

equations

(3.5.3) Qy = QXi1B:r + Q1Xz2B2 + Q1X3sBa + Qi1Xe¢Bs

+Qa( e )

(3.5.4) Qy = Q2X1B1 + Q2X2B2 + Q2X3B3 + Q2X4Bs

+ Q2Z1D1 + Q2Z2D2 + Q2( e + u )

(3.5.5) Qy Q3X1B1 + Q3X2B2 + Q3X3Bis + Q3XeBs

+ Qa3Wi1C1 + Q3W2Cz + Q3( e + v )

Now since Qv = 0 and Qiu = 0, there is no correlation

between errors and regressors in (3.5.3). Furthermore,

(3.5.6) Hz = [ QX1, QX3 ,Q21 ]

can readily be seen to be the largest available set of
variables in equation (3.5.4) which have been assumed

uncorrelated with the indivdual effects. Likewise,

(3.5.7) H3 = [ QX1, Q3Xz, QW1 ]

can readily be seen to be the largest available set of
variables in equation (3.5.5) which have been assumed
uncorrelated with the time effects. Projecting equation
(3.5.4) onto the column space of Hz and projecting equation

(3.5.5) onto the column space of H3, we have the set of
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orthogonal equations

(3.5.8) Qy QIRA + Q1 ( e )

(3.5.9) P2Q2y P2Q2RA + P2Q2( e + u )

(3.5.10) P3Q3y P3Q3RA + P3Q3( e + v )

where P2 = P[ H2 ] and Ps = P[ Hs ].
The covariance matrix associated with the errors in

equations (3.5.8), (3.5.9), and (3.5.10) can be written as

(3.5.11) Cov( Que ) = pQ1

(3.5.12) Cov( P2Q2( e + u ) ) = qP2
and

(3.5.13) Cov( P3Qa( e + v ) ) = rP3,

respectively. We note that each of these three covariance
matrices has the form of a constant times an idempotent
matrix. Thus, Lemma (2.1) would imply that any further
attempt at diagonalizing the covariance matrices in any of
the equations would not improve the efficiency of the
resulting estimator. Using the weights p, q, and r, the
weighted least squares estimator of A from equations (3.5.8),

(3.5.9), and (3.5.10) becomes

(3.5.14 ) awrs = {(1/p)RTQ1R + (1/q)RTP2R + (1/r)RTP3sR}-?
times {(1/p)RT™@1 + (1/q)RTP2 + (1/r)RTPal}y

It is possible to derive the estimator (3.5.14) without
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decomposing the equation into orthogonal spaces, as follows.
First, we multiply equation (3.5.2) by S-1/2 to transform the
error term so that it has a scalar covariance matrix. The

transformed equation is simply

(3.5.15) S-1/2y = S-1/2RA + S-1/2g

Second, we note that the maximal set of available

instruments for equation (3.5.2) may be written as

(3.5.16) H* = [ @, QX1, QX3, Q21, Q3X1, Q3X2, QW1 ].

We then follow the path of Hausman and Taylor (1981), by
estimating (3.5.15) using IV with instrument set H*. This

yields

(3.5.17) arv = { RTV-1/2p*V-1/2R }-1{ RTV-1/2p*V-1/2 }y

where P* = P[ H* ].

We can evaluate P[ H* ] using the following Lemma:

Lemma (3.3): P[ H* )] = @ + P[ Hz2 ] + P[ Hs ]

= Q@ + P2 + Ps

The efficient instrumental variables estimator of A from

equation (3.5.2) can then be written as

(3.5.18) arv = { RTS-1/2(Q + P2 + P3)S-1/2R }-1
times { RTS-1/2(Q + P2 + P3)S-1/2 )}y
= { RT( (1/p)Q@1 + (1/q)P2 + (1/r)P3)S-1/2R }-1

times { RT( (1/p)Q1 + (1/q)P2 + (1/r)P3) }y
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But this is simply the weighted least squares instrumental
variables estimator. We have therefore proved the following

theorem.

Theorem (3.4): The efficient instrumental variables
estimator of A equals weighted least squares applied to

equations (3.5.8), (3.5.9), and (3.5.10).

3.5.2 Counting Rules for Identification

Following Hausman and Taylor and corresponding to the

familiar rank condition we have the theorem:

eore 3.5): A necessary and sufficient condition that the
vector of parameters A be identified in equation (3.4.7) is

that the matrix RTP*R be non-singular.

Corresponding to the order condition, we have the

following theorem:

Theorem (3.6): A necessary condition for the identification
of A in equation (3.4.7) is that (i) g1 + g3 > k2 and

(ii) g1 + g2 > hz.

Proof:

Since P°R = (Q1 + P2 + P3)( X Z W ) = ( QX 0 0 )
+ (( P2X P22 0 ) + ( P3X 0O P3W ) = ( P*X P2Z P3W ), rank(P*R)
= rank(P*X) + rank(P2Z) + rank(PsW). It follows that a
necessary condition for the matrix RTP*R to be non-singular
is that rank(P*R) = g, rank(P2R) = k, and rank(P3R) = h. Now

rank(P2R) = min { rank(Pz2), rank(R) } = g1 + g2 + k1.
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Similiarly, rank(P3R) = g1 + g3 + h1 and rank(P*R) = g.
Thus, a necessary condition for identification is that g +

g2 + ki > k and g1 + g3 + h1 > h. Q.E.D.

Therefore, to insure that the parameters of the model
are identified requires that the parameters in each of the
three equations, (3.5.3), (3.4.4), and (3.4.5), separately be

identified.

eore : Given the rank condition of Theorem (3.6),
weighted least squares applied to equations (3.5.8), (3.5.9),

and (3.5.10) is a consistent estimator for A.

Proof:

Weighted least squares applied to equations (3.5.8),

(3.5.9), and (3.5.10) can be written as

awLs

{(1/P)RTQ1R + (1/q)RTP2R + (1/r)RTP3R}-!

times {(1/p)RT@Q1 + (1/q)RTPz + (1/r)RTPs}y

A + { (1/p)RTQR + (1/q)RTPzR + (1/r)RTPsR }-!

times {(1/p)RT@1 + (1/qQ)RTP2 + (1/r)RTP3}(u + v + e)
Since the estimator exists,
lim { (1/p)RTQ1R + (1/q)RTP2R + (1/r)RTP3R }-! is finite as

both N -> oo and T -> oo. Next, consider

{ (1/p)RT@ + (1/q)RTPz + (1/r)RTPs }(u + v + e)/NT

= (1/p)RTQi(u + v + e)/NT + (1/q)RTP2(u + v + e)/NT

+ (1/r)RTP3(u + v + e)/NT
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= (1/p)RTQ1(u + v + e)/NT

+ (1/q)(RTH2 /NT)(H2TH2 /NT)-1H2T(u + v + e)/NT

+ (1/r)(RTH3s /NT)(H3TH3 /NT)-1H3T(u + v + e)/NT

where

RTQi(u + v + e)

H2T(u + v +

H2T(u + v +

As we can easily show,

Plim

plim

Plim

plim

plim

plim
and

pPlim

Therefore, plim RTQi(u + v + e)/NT

 —

e)

e)

o

XTQ1e/NT
X1TQz2 (u +
X3TQz (u +
Z17Q2 (u +
X1TQ3 (v +

X2TQa(v +

WiTQs (v +

= plim HaT(u + v + e)/NT

X

17Qz2 (u

X3TQz (u

Z17Qz2 (u

X17TQ3 (v
X2TQ3 (v

W1TQs (v

= 0

e)/NT
e)/NT
e)/NT
e)/NT

e)/NT

e)/NT

0 as

+ e) , and

+ e)

+ e)

as N -> oo or T -> oo,

= 0 as N -> oo,
= 0 as N -> oo,
= 0 as N -> oo,
= 0 as T -> oo,
= 0 as T -> oo,
= 0 as T -> oo.

= plim H2T(u + v + e)/NT

N -> oo and as T -> oo.
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Since the estimator exists, lim (RTH2/NT)(H2TH2/NT)-! is
finite as N -> oo and 1im (RTH3/NT)(H3THs/NT)-! is finite

as T -> oo. Thus,

plim (1/p)RTQ1(u + v + e)/NT

plim (1/q)(RTH2/NT)(H2TH2 /NT)-1H2T(u + v + e)/NT

plim (1/r)(RTH3/NT)(H3aTH3/NT)-2H3T(u + v + e)/NT

0

as both N -> oo and T -> oo.
It follows that, plim awrs = A as both N - > oo

and T -> 00. QIE.D.

The weighted least squares estimator is not consistent
as N -> oo for T fixed or when T -> oo for N fixed. The case
when N -> oo for T fixed will be discussed in more detail in

section 3.6.2.

3.6 Random Effects when T is Fixed

In the previous two sections, we have derived GLS and IV
estimators which are useful only when both N and T are large.
In this section, we will be concerned with the case in which
N is large and T is small. This is the situation most common

in panel or longitudinal data.

(3.6.1) Random Effects not Correlated with the Regressors

For the present we will assume that the regressors (X,
Z, and W) are all uncorrelated with the error components e,
u, and v. Now unbiased estimation is still possible in the

case of small (or fixed) T. The problem which does arise is
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the inability to obtain consistent estimates from applying
either least squares or generalized least squares to the
above equation. To see this, consider equation (3.4.7)

multiplied by S-1/2, We then have

(3.6.1) S-1/2y = §-1/2XB + S-1/2ZD + S-1/2yC

+ S-1/2(e + u + v)

where S-1/2 = ( Q1/p* + Q2/q* + Q3/r* + Q4 /k* ), p*
= ((d?e )1/2; g% = ( d2¢ + Td2u )1/2, r* = ( d2¢ + Nd2u )1/2,
and k* = ( 624 + o2y + @2y )1l/2,

Evaluating the probability limit of the cross product of
the transformed regressor S-1/2X and the transformed error

component S-1/2y, we find that

(3.6.2) plim XTS-1v/NT

Plim XT(Q1/p + Q2/q + Q3/r + Q4/k)Vv/NT

plim XT( Qsv/r + Qsv/k )/NT

since Q1v = Qzv = 0

plim (1/r)XT(jnjxT/N ® Ir)v/NT

+ plim (1/r)XTQ4v/NT - plim (1/k)XTQe¢Vv/NT
This probability limit does not equal zero as N -> oo since

(3.6.3) plim (1/r)XT(jxjnT/N @ It )Vv/NT

T N
= plim (I/P));l(‘:i(.it/N)’Vt/T = 0

only as T -> oo. Therefore, we have the problem of the
regressors being correlated with one of the error components

in the sense that their cross-moments have a nonzero
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probability limit for the case when only N -> oo. Thus, for
the case of fixed T, the generalized least squares estimator
of the coefficient vectors in equation (3.4.7) will not be
consistent. Furthermore, exactly the same problem arises
with ordinary least squares. For example, XTv/NT has a non-
zero probability limit as N -> oo with T fixed. Only if both
N and T -> oo will ordinary least squares be consistent.

A proposed solution to this problem is to apply weighted
least squares to a subset of the equations in the
dgcomposition of equation (3.4.7). Unfortunately, the
coefficient vector C is no longer estimable. The weighted
least squares estimator we derive is for the vector of
coefficients ( BT, DT )T, Consider the decomposition of

equation
(3.6.4) y = XB + ZD + WC + u + v + e

into the four orthogonal equations

(3.6.5) Qy = QXB + Qe
(3.6.6) Q2y = QXB + ZD + Q(u + e)
(3.6.7) Q3y = Q3XB + WC + Q3(v + e)

(3.6.8) @y QeXB + Q¢ZD + Q¢eWC + Q¢(u + v + e)

Using Theorem (3.2), we know equation (3.6.8) may be dropped
without affecting the estimation of the remaining equations.
In addition, equation (3.6.7) must be dropped for it is the

source of the present problem. That is, it is equation
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(3.6.7) from which comes the matrix of cross moments that has
a nonzero probability limit unless T gets large. Thus, the
estimator of (BT, DT )T will be derived by applying weighted
least squares to the two remaining equations; namely
equations (3.6.5) and (3.6.6).

Let R = ( X, Z ). Then the weighted least squares
estimator of (BT, DT )T from equation (3.6.6) and (3.6.6) can
be written as

bwis

(3.6.9) = (RTQR/p + RTQzR/q)-!(RT@1/p + R'Qz2/q)y.
dwis

8 tio 3.5): lim (RTQiR/p + RTQ2R/q) as N =-> oo is

finite and nonsingular.

Theorem (3.6): The weighted least squares estimator of
( BT, DT )T from equations (3.6.5) and (3.6.6) is consistent

as N -> oo, with T fixed.

Proof:
The weighted least squares estimator can be written as
bvis
= (RTQR/q + RTQzR/q)-1(RT@1/p + RTQz/q)y
dvis
PBT
= + (RTQiR/p + RTQzR/q)-!(RT@1/p + RTQ2/q)(u + e).
D
~ 7
B
P
+ {((1/P)RTQ1R/NT + (1/q)RTQ2R/NT)-1

times ((1/p)RTQ1/NT + (1/q9)RTQ2/NT)(u + e)}.
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Consider the second term. First, ( (1/p)RTQ1R/NT +
(1/q)RTQ2R/NT )-! is by assumption finite as N gets large.
Next, we can write ( RTQ1/p + RTQ2/q )(u + e) = (1/p)RTQie +

(1/q)RTQ2(u + e), where

XTQie

(3.6.10) RTQie

and

XTQz(u + e)
(3.6.11) RTQ2(u + e)

ZTQ2(u + e)

As we can easily show,

]
o

(3.6.13) plim XTQi1e/NT as N -> oo or T =-> o0

(3.6.14) plim XTQz(u + e)/NT = O as N -> oo

and
(3.6.14) plim ZTQi(u + e)/NT = 0 as N -> oo.
Thus, plim RTQi(u + e)/NT = plim RTQ2(u + e)/NT = 0 as

N -> o0o. Hence, plim {(1/p)RTQ1e/NT + (1/q)RTQ2(u + e)/NT}
=0 as N -> oo0.

bwiLs B

Therefore, plim as N -> oo0. Q.E.D.

dwirs D
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(3.6.2) dom fects Corre ed wi the Regressors
We again consider the case when T is fixed but, in
addition, we consider the case in which the effects are
correlated with gsome of the regressors. To this end, we

first re-introduce some notation. Consider the equation

(3.6.15) y = XB + ZD + WC + u + v + e

where we again assume that X = (X1, X2, X3, X¢), Z

= (21, Z2), and W = (W1, W2). That is, X1, Z1, and W1 denote
(NT x g1), (NT x ki), and (NT x h1) dimensioned matrices,
respectively, all assumed to be uncorrelated with e, u, and
v; X2 and Z2 denote (NT x g2) and (NT x k2 ) dimensioned
matrices, respectively, both assumed to be correlated with u
but uncorrelated with e and v; X3 and W2 denote (NT x g3) and
(NT x hz2) dimensioned matrices, respectively, both assumed to
be correlated with v but uncorrelated with e and u; and X4
denotes a (NT x g4 ) dimensioned matrix which is assumed to be
correlated with both u and v but uncorrelated with e.

Now, not only is the weighted least squares estimator
of A biased, but so0 is the weighted least squares estimator
of (BT, DT )T derived in section 3.6.1. This bias is due to
the presence of regressors which are assumed correlated with
the equation’s error term. One approach to consistent
estimation of (BT, DT )T is to apply the instrumental
variables, weighted least squares method to the equations
(3.6.5) and (3.6.6). In this section we will derive such an

estimator and show it to be consistent.
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First we consider the equations

(3.6.16) @y (X1, X2, X3, Xe)B + Qie

(3.6.17) Q2y Q(X1, X2, X3, X¢)B + Q2(Z21, Z2)D

+ Q2(u + e)

Since Qi1u = Qiv = 0 and Q1W = 0, there is no problem of
correlation between errors and regressors in (3.6.16).

Furthermore, as we show in appendix A, the set

(3.6.18) Ho = [ QX1, QXs, Q21 ]

contains legitimate instruments for equation (3.6.17). It
can readily be seen that Ho is the largest available set of
variables in equation (3.6.17) which have been assumed
uncorrelated with the individual effects found in that
equation. Projecting equation (3.6.17) onto the column space

of Ho, we have the set of orthogonal equations

(3.6.19) @y Q (X1, X2, X3, X¢e )B + Qie

(3.6.20) P2y P2(X1, X2, X3, X¢)B + P2(Z1, Z2)D

+ P2(u + e)

where P2 = P[Ho].
The covariance matrix associated with the errors in

equations (3.6.19) and (3.6.20) can be written as

(3.6.21) Cov( Qie ) = pQ

and
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(3.6.22) Cov( P2(u + e) ) = qP2,

respectively. We note that each of these two covariance
matrices has the form of a constant times an idempotent
matrix. Thus, Lemma (2.1) would imply that any further
attempt at diagonalizing the covariance matrices in either
equation (3.6.19) or (3.6.20) would not improve the
efficiency of the resulting estimator. Using the weights p
and q, the weighted least estimator of (BT, DT )T from

equations (3.6.19) and (3.6.20) becomes

biv

(3.6.23) = {RTQR/p + RTP2R/q}-1{(RT@1y/p + RTP2y/q}
div

where R = (XIQ X2, XS, Xi, Zl. 22 )o

We first derive the necessary conditions for the
existence of the above estimator, and then show it to be
consistent for fixed T.

Corresponding to the order condition, we have the

following theorem:

ore 3 ¢ A necessary condition for the weighted least
squares estimator of (BT, DT )T from equations (3.6.19) and

(3.6.20) to exist is that g1 + g3 > k2.

Proof:

The existence of the IV estimator depends on the matrix

Q1R QX1 @@aXz Q@aXs Qi1Xs 0 0

Pz2R P2X1 P2X2 P2Xa P2Xe P2Z1 P222
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being of full rank. But for this matrix to be of full rank
it is necessary that (P2Z21, P2Z2) be of full rank. And since
(P2Z1, P222) = (Z1, P[@1X1, @1X3, Q121]Z2), it follows that a
necessary condition for the existence of the estimator is

that rank( X1, X3 ) > rank( 22 ); or that g1 + g3 > k2.

Theorem (3.8): Given the rank condition of theorem (3.7),
weighted least squares applied to equations (3.6.19) and
(3.6.20) is a consistent estimator for (BT, DT )T when T is

fixed.

Proof:
Weighted least squares applied to equations (3.6.19) and

(3.6.20) can be written as

brv

= {RTQiR/p + RTP2R/q}-!{RTQ1/p + RTP2/q}y
div
B
= + {RTQ1R/p + RTP2R/q}-1{RTQ1/p + RTP2/q}(u + e)
D

Since the estimator exists, 1lim {RTQiR/p + RTPzR/q}-1! is

finite as N -> o0o0. Next, consider

{RTQ1/p + RTP2/q}(u + e)/NT

(1/P)RTQ1(u + e)/NT + (1/qQ)RTP2(u + e)/NT

(1/P)RTQ1e/NT + (1/q)RTHo (HoTHo )-1HoT(u + e)/NT

(1/p)RTQ1e/NT + (1/q)(RTHo/NT)(HoTHo/NT)-1(HoT(u + e)/NT)

where

XTQie
RTQie =
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and
-leQz(u + e)-
HoT(u + e) = X3TQz(u + e)
Z1TQ2(u + e)
As we can easily show,
pPlim XT™Qi1e/NT = O as N -> oo or T -> o0,
plim X17Q2(u + e)/NT = 0 as N -> oo,
plim X3TQz(u + e¢)/NT = 0 as N -> oo,
and
plim 2Z217Qz(u + e)/NT = 0 as N -> oo0.
Therefore,

pPlim (1/p)RTQi(u + e)/NT = plim HoT(u + e)/NT

"
(=]

as N -> oo. Since the estimator exists,
lim (RTHo/NT)(HoTHo/NT)-! is finite as N -> o0o. Thus,

plim { (1/p)RTQ1(u + e)/NT

+ (1/q)(RTHo )(HoTHo )~ (HoT(u + e¢)/NT } = 0 as N -> oo0.
biv b
It follows that, plim = as N -> oo.
div d
Q.E.D.
(3.6.3) An Alternative Approach to Estimatjon

The above approach to estimating ( BT, DT )T is an
extension of the analytical method used throughout this
chapter. Instead, we could follow a naive extension of the
analytical method used in chapter 2. In the simple model of
chapter 2 for the case when random indiviual effects are

present consistency of the least squares estimator requires
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N -> o0o. There the problem was that we had present
regressors correlated with one of the error components in the
sense that their cross-moments have a nonzero probabiltiy
limit for the case when only T -> oo. This is because the
effect of the random component ui can be averaged out only in
the direction of that component. That is, probability limits
of terms like XTPu/NT = g?l(g?¥1t/T)u1/N are to equal zero
only as N -> oo. A solution to this problem was to construct
a transformation P which determined the means for each of the
individual groups and repeats these N observations T times.
The within transformation, Q = INr - P, then transforms each
observation into the difference between itself and its
respective indiviual group mean. Premultiplying equation
(2.4.7) by the within transformation eliminated the
individual random effects and so the need for N -> oo. Thus,
least squares applied to the transformed equation turns out
to be consistent as T -> oo.

Now however we are not interested in individual effects
but rather in eliminating time effects and the need for
T -> oo 80 we construct a projection similiar to P but in the

other direction. To this end, we define
(3.6.24) P* = ( jxjn¥/N ©® Ir ) and Q@* = It - P*

where jT = (1,...,1)T is (T x 1). The transformation P*
determines the means for each of the time periods and repeats
each of these T observations N times. The transformation Q*

transforms each observation into the difference between
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itself and its respective time period mean. Explicitly, the

(i,t) elements of P*y and Q*y can be written as
(3.6.25) (P*y)it = y.+ and (Q*'y)it = yit - ¥.t,

respectively. We note that in terms of our previous notation
P* = Q + Q and Q" = Q1 + Q2.

Since W contains variables that are constant across all
individual observations for a given time period, Q*W = 0,
The elements of the columns of W are, on the other hand,
unaffected by the transformation P*; that is, P*W = W.
Analogous results hold true for the time effects v; that is,
Q*v = 0 and P*v = v. Thus, the original equation (3.6.4) can

now be written equivalently as the two orthogonal equations

(3.6.26) P*y P*XB + P*ZD + P*WC + P*(u + v + e)

(3.6.27) Qy

Q*XB + Q*ZD + P*(u + e)

Equation (3.6.27) represents the original model after being
purged of the time effects. Of course the coefficients of
the individual-invariant regressors cannot be estimated but
OLS applied to equation (3.6.27) would yield a consistent

estimator (BT, DT )T,

Assumption (3.9): 1lim RTQ*R as N -> oo 1is finite and

nonsingular.

Theorem (3.10): The least squares estimator of ( BT, DT )T

from equation (3.6.27) is consistent as N -> oo.
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Proof:

The least squares estimator can be written as

boLrLs

= ( RTQ*R )-1RTQ"y
doLs
B
= + ( RTQ*R )-1RTQ*(u + e).
D

Consider the second term. First, ( RTQ*R )-! is by

assumption finite as N gets large. Next, we can write
( RTQ* )(u + e) = RTQ1(u + e) + RTQ2(u + e), where

XTQie

(3.6.28) RTQi1(u + e) =
0
and
XTQze
(3.6.29) RTQz2(u + e) = .

2TQz2 (u + e) -
As we can easily show,

(3.6.30) plim XTQie/NT

"
o

as N -> oo or T -> o0,

(3.6.31) plim XTQ2(u + e)/NT = O as N -> oo,

and
(3.6.32) plim Z2TQ2(u + e)/NT = 0 as N -> oo0.
Thus, plim RTQi1(u + e)/NT = plim RTQ2(u + e)/NT = 0 as

N -> o0o0. Hence, plim { RTQ*(u + e)/NT } = 0 as N -> oo.
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boLrs B

Therefore, plim as N =-> oo0. Q.E.D.

doLs - D
The OLS estimator from equation (3.6.27) can be viewed
as unweighted version of the WLS estimator from equations
(3.6.5) and (3.6.6) as we can see by comparing the following

with equation (3.6.9).

boLs

( RTQ*R )-1RTQ'y
doLrs

( RTQ1R + RTQ2R )-1( RTQ1 + RTQz )y

Since WLS weights the two equations (3.6.5) and (3.6.6)
optimally, we would expect weighted least squares to be
efficient relative to least squares. This is shown in the

following theorem.

orem ¢ The weighted least squares estimator of
( BT, DT )T from equations (3.6.5) and (3.6.6) is
asymptotically efficient (as N -> o0o) relative to the least
squares estimator from equation (3.6.27). If p and q are
known then weighted least squares is also efficient relative

to least squares in finite samples.

Proof:
We prove the finite sample case; the other case is
similiar. Let Cov(u + e) 2 O« = pQ1 + gQ2 so O«-1 = (1/p)@

+ (1/9)Q2. Then
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bwLs
Cov
dwirs
= ( RTQR/p + RTQzR/q )-!( RTQ1/p + R'TQz2/q )(pQ1 + qQz)
times ( QiR/p + Q2R/q )( RTQiR/p + RTQ2R/q )-!
= ( RTfQR/p + RTQR/q )-1( RTQiR/p + RTQ2R/q )
times ( RTQiR/p + RTQ2R/q )-1}
= ( RTQiR/p + RTQ2R/q )-* = ( RT(Q/p + Q2/q)R )-!
= (RTO-‘IR)‘I
And
boLs
Cov = ( RTQ®*R )-1RTQ*0+«Q*R( RTQ*R )-1

doLs

Now to show

boLrs | bwirs
Cov - Cov
doLs dwis

is psd it is sufficient to show that

bwLs bors |
Cov - Cov
dwis dors

is psd. But the latter expression can be written as

(RTOs-1R) - RTQ*R(RTQ*0«Q*R)-1RTQ*R

(RTOs-1R) RTQ*R(RTQ*0=Q*R)-1RTQ"R

= R‘ro.-l/2[ I - o.lle'R(RTQ‘&Q'R)-IRTQ‘O.IIZ ]o.-1/2R

RTQs-1/2[ I - D(DTD)-1DT ]JOs-1/2R
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where D = 0«1/2Q*R, which we see to be a quadratic form in an

idempotent matrix; hence, our expression is psd. Q.E.D.

A similiar approach can be applied to the case when T is
fixed but, in addition, the effects are correlated with gsome
of the regressors. Using the notation of section 3.6.2 we

consider the equation

(3.6.37) y = (X1, X2, X3, X¢)B + (21, Z2)D

+ (W1, W2)C + u + v + e

Here again, X1, Z1, and W1 denote (NT x g1), (NT x k1), and
(NT x h1) dimensioned matrices, respectively, all assumed to
be uncorrelated with e, u, and v; X2 and Zz denote (NT x g2)
and (NT x k2 ) dimensioned matrices, respectively, both
assumed to be correlated with u but uncorrelated with e and
v; X3 and W2 denote (NT x g3) and (NT x h2) dimensioned
matrices, respectively, both assumed to be correlated with v
but uncorrelated with e and u; and X4+ denotes a (NT x g4)
dimensioned matrix which is assumed to be correlated with
both u and v but uncorrelated with e.

As shown in section 3.6.2, the weighted least squares
estimator of (BT, DT )T derived in section 3.6.1 is biased due
to the presence of regressors assumed correlated with the
equation’s error term. An alternative approach to consistent
estimation of (BT, DT )T is to transform equation (3.6.39) by
Q* and then apply the instrumental variables method. 1In the
remainder of this section we will derive two such estimators

and discuss their consistency and relative efficiency.



87
First we consider the decomposition of equation

(3.6.37) into two orthogonal equations

(3.6.38) P*y

P*(X1, X2, X3, X¢e)B + P*(Z21, Z2)D

+ P*(W1, W2)C 4+ P*(u + v + e)

(3.6.39) Q*y

Q*(X1, X2, X3, X¢)B + Q*(Z1, Z2)D

+ Q@ (u + e)

Since Q*v = 0 and Q*W = 0, time effects are eliminated from
equation (3.6.39) but there still exists a problem of
correlation between errors and the regressors X2, X4, and 22.
The largest set of legitimate instruments for equation

(3.6.39) would appear to be

(306-40) H‘ = ( Q‘Xl, Q'Xa, Q'ZI ]

Unfortunately, by comparing Hs to the list of instruments
used for the instrumental variables estimator given in
equation (3.6.23) it can be seen that Hs is not the largest
available set of instruments available. Although not
apparent in equation (3.6.39), both Qi1X3 and QX4 are
available instruments being excluded. Following White (1984,
section IV.3), the efficiency of an instrumental variables
estimator is not decreased by adding more instruments.
Hence, an instrumental variables estimator using the
instrument set Hs would not lead to a more efficient
estimator than the instrumental variables estimator given in
eéquation (3.6.23).

It is interesting to note that the existence of the
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instrumental variables estimator using Hs depends on the
matrix P+R = [ P[Q*H= ]X, P[Q2Hs]Z ] being of full rank; P+ =
P[Hss ). It follows that a necessary condition for the
existence of the above estimator is that rank( X1, X3, Z1 ) >

rank( X ) and rank( X1, X3, 21 ) > rank( Z ); or that ki1 > g2

+ g¢ and g1 + g3 > k2. Thus, not only is it necessary to
have enough X1’'s and Xs's to identify the coefficients of the
Z2's but now we must have enough Z1's available to identify
the coefficients of the X2's and X4's.

If instead of using the instrument set Hs, we use the

instrument set

(3.6.41) Hss = [ @*X1, Q1X2, Q*X3, Q1X4, QZ ]

we would be using the same list of instrument used in the
instrumental variables estimator given in equation (3.6.23).
Projecting equation (3.6.39) onto the column space of Hss, we

have the equation

(3.6.42) P+y = Ps(X1, X2, X3, X¢e)B + Ps(2:1, Z22)D

+ Pi(u + e).

It can be shown that P+ = P1 + P2, where P1
= Pl X, 0 ], P2 = P[ Ho ], and Ho is the instrument set
given in equation (3.6.18). The least squares estimator of
(BT, DT)T from equation (3.6.42) can be written as

bsrv

(3.6.43) = (RTP+R)-1RTP:y
degv



89
where R = ( X1, X2, X3, X¢, 21, 22 ).

We first derive the necessary conditions for the
existence of the above estimator, and then show it to be
consistent for fixed T.

Corresponding to the order condition, we have the

following theorem:

Theorem (3.12): A necessary condition for the least squares
estimator of (BT, DT )T from equation (3.6.42) to exist is

that g1 + g3 > k2.

Proof:

The existence of the least squares estimator from
equation (3.6.42) depends on the matrix P:+R being of full
rank. And since P:R = Pi1R + P2R = ( P+X, P2Z ), it follows
that a necessary condition for the existence of the estimator
is that rank( P2Z ) > k. But this requires that the

rank( P2Z X1, X3, Z1 ) » k; or that g1 + g3 > k2. Q.E.D.

eore . ¢ Given the rank condition of theorem (3.12),
least squares applied to equations (3.6.42) is a consistent

estimator for (BT, DT )T when T is fixed.

Proof:
Least squares applied to equation (3.6.42) can be
written as
bs1v . B

= { RTP+R }-1RTP:y
de1v D

+ {RTPQR}-IRTPQ‘I + e)
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Since the estimator exists, 1lim { RTP:R }-! is finite as

N -> o0o0. Next, consider

{ RTP+ }(u + e)/NT

RTPi1(u + e)/NT + RTP2(u + e)/NT

RTQiR(RTQ1R)-1RTQ1(u + e) + RTHo(HoTHo )-1HoT(u + e)

RTQi1(u + e)/NT + (RTHo/NT)(HoTHo/NT)-1(HoT(u + e)/NT)

where

XTQie
RTQi1(u + e) =
0
and
X1TQz(u + e)
HoT(u + e) = XaTQ(u + e)
Z1TQz2(u + e)
b —
As we can easily show,
Plim XTQi1e/NT = 0 as N -> oo or T -> o0,
Plim X17TQ2(u + e)/NT = 0 as N -> oo,
plim X3TQ2(u + e)/NT = 0 as N -> oo,
and
Plim Z1TQz2(u + e)/NT = 0 as N -> oo0.
Therefore,
Plim RTQi1(u + e)/NT = plim HoT(u + e)/NT = 0

as N -> oo. Since the estimator exists,

lim (RTHo/NT)(HoTHo/NT)-! is finite as N -> oo.
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Thus, plim { RTQi(u + e)/NT + (RTHo )(HoTHo )-!HoT(u + e)/NT }
= 0 as N =-> oo0.

bs1v b

It follows that, plim as N -> oo0.

deiv d

Q.E.D.

The least squares estimator in equation (3.6.43) can be
viewed as an unwveighted version of the weighted least squares

estimator from equations (3.6.19) and (3.6.20), as follows.

bs1v

(RTP+R )-1RTP:y
derv

(RTP1R + RTP2R)-! (RTP1 + RTP2)y

(RTQ1R(RTQ1R)-1RTQ1R + RTHo (HoTHo )-1HoTR)-!

times (RTQiR(RTQ1R)-1RTQ1 + RTHo (HoTHo )-1HoT)y

(RTQ1R + RTP2R)-1(RTQ1 + RTP2)y

Since the weighted least squares estimator weights the
equations (3.6.19) and (3.6.20) optimally, we would expect
that weighted least squares is efficient relative to ordinary

least squares. This is shown in the following.

Theorem (3.14): The weighted least squares estimator of

( BT, DT )T from equations (3.6.19) and (3.6.20) is
asymptotically ( as N -> oo ) efficient relative to the least
squares estimator from equation (3.6.43). If p and q are
known then weighted least squares is also efficient relative

to least squares in finite samples.
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Proof:
We prove the finite sample case; the other case is
similiar. Again, let Cov(u + e) = O« = pQ1 + gqQ2 and O«-1 =

(1/p)Q1 + (1/9)Q2. Then

biv
Cov
drv
= ( RTQiR/p + RTP2R/q )-1( RTQ1/p + RTP2/q )(pQ1 + qP2)
times ( QR/p + P2R/q )( RTQuR/p + RTP2R/q )-!
= ( RTQiR/p + RTP2R/q )-1( RTQ1R/p + RTP2R/q )
times ( RTQiR/p + RTP2R/q )-1!
= ( RTQR/p + RTP2R/q )-! = ( RT(Q/p + P2/q)R )-1!
= (RTOs-1R)-1
And
bs1v
Cov = ( RTP+R )-1RTP+O«P+R( RTP+,R )-1
ds1v

Now to show

BOLs bwiLs
Cov - Cov

doLrs dwLrs

is psd it is sufficient to show that

-1 -1
burs boLs
Cov - Cov
dwis doirs
is p.s.d. But the latter expression can be written as

(RTO+-1R) - ( RTP+R )-1RTP:O«P:.R( RTP+R )-1!

RTOe-1/2[ I - Os1/2P,R(RTP+OsP+R)-1RTP:+0s1/2 ]0e-1/2R

310.-1/2[ I - D(D’D)'ID" ]o.-llzn
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where D = O«!/2P,R, can be seen as a quadratic form in an

idempotent matrix and hence, our expression is psd. Q.E.D.
3.7 Variance Estjimation when the Random Effects are not
Corre ed e o

When discussing the generalized least squares estimator,
we have implicitly assumed that the variance components, de?,
ou?2, and ov?, were known. In practice, this is not the case;
the variance components are usually unknown and, therefore,
must be estimated. When estimates of the variance components
are used in place of the actual values, we have an example of

easjible eneralize east squares.

Under mild regularity conditions, Fuller and Battese
(1973) have shown that the feasible generalized least squares
estimator is consistent and has the same asymptotic
distribution as the generalized least squares estimator with
known variance components. This result holds true for either
large N or large T. Swamy and Arora (1972) caution that, for
small samples, the feasible generalized least squares
estimator could have larger variances than either the least
squares estimator if the variance components ou? and ov? are
small, or the within estimator if cu? and o2 are very large.

Efficiency in the estimation of the variance components
and its subsequent effect on the efficiency of the feasible
generalized least squares has been discussed by Amemiya
(1971).

In the following discussion, we rewrite equation
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(3.4.12), (3.4.13), and (3.4.14) as

(3.7.1) Qy = Ri1A1 + Qis

where R1 = (QuX), A1 = ( BT )T, and rank( R1 ) = g;
(3.7.2) Q2y = Rz2A2 + Q28

where Rz = (Q2X, Q22), A2 = (BT, DT)T, and rank( Rz )
= g + k;

(3.7.3) Q3y = R3A3s + Q3s

where R3 = (Q3X, QW), As = (BT, CT)T, and rank( R3 )
=g + h.

If feasible weighted least squares is to be implemented
instead of the equivalent feasible least squares procedure,
the weights p, q, and r are the parameters we need to
estimate. One approach to estimating these weights is to
estimate p = 0e? using residuals from equation (3.7.1), q =
de?2 + Tou? using residuals from equation (3.7.2), and r = Oe?
+ Nov?2 using residuals from equation (3.7.3). The groundwork
for such an approach is laid by Maddala (1971), Nerlove
(1971), and Swamy and Arora (1972). We now proceed to show
that estimators so defined are both unbiased and consistent.

We define the sum of squared residuals from equation

(3.7.1) as

(3.7.4) SSE1 = (Q1 - R1a1)T(Q1 - Riai)

where the residuals have been computed using the least
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squares estimates of the coefficents in equation (3.7.1),

namely

(3.7.5) a1 = (RiTR1)-'R1Ty.

We also define the sum of squared residuals from equation

(3.7.2) as

(3.7.6) SSE2 = (Q - Rza2)T(Q2 - Rza2)

where the least squares estimates of the coefficents in

equation (3.7.2) are given as

(3.7.7) a2 = (R2TR2)-1R27y.

And we define the sum of squared residuals from equation

(3.7.3) as

(3.7.8) SSE3 = (Q3 - R3a3)T(Q3 - Rsa3)

where the least squares estimates of the coefficents in

equation (3.7.3) are given as

(3.7.9) a3 = (RsTR3)-1RaTy.
Theorem (3.9):
Let 812 = SSE1/{(N-1)(T-1) - g},

SSE2/{(T-1) - g - k},

SSE3/{(N-1) - g - h}.

and 832
Then 812, 822, and 832 are unbiased estimators of p, q, and

r, respectively.
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Proof:

Let P1 represent the projection onto the column space of
the regressors in equation (3.7.1); i.e. P1 = P[R1] =
R1(R1TR1)-'R1?. Then QP11 = P1Q1 = P, PrR1 = R1, PAT = P1,
and P1 is orthogonal to Q, Q3, and Q4.

First we write the residual from equation (3.7.1) as

Residuali (Quy - @aP1y) = R1A1 + Q18 - Pi1Q1y

RiA1 + Qs - PiRi1Ay, - PiQis

RiA1 - RiA1 + Qs - Pi1s

(1 - P1)s

We then form the expression

SSE1 (Q1y - QP1y)T(Q1y - @P1y)

sT(Q1 - @1P1)T(Q1 - Q1P1)s

sT(Qq - P1Qq - QaP1 + P11 P1)s

sT(Qa - P1L - P1 + P1)s

sT(Qa - P1)s

Taking the expectation of SSE1, we write

Exp{ SSE1 } Exp{ sT(Q - P1)s }

Exp{ trace{ s8T(Q - P1)s } }

E{ trace{ (@ - P1)ssT } }
since trace(AB) = trace(BA) if AB and BA are

both defined and square.

trace{ (Q - P1)Exp{ ssT } }

trace{ (@1 - P1){ pQ1 + qQ2 + rQ3 + kQs }
(p)trace{ (@@ - P1) }
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(p)rank(Qa - P1)

since trace(A) = rank(A) if A is idempotent

(p){rank(Q1) - rank(R1)}

Thus, Exp{ s12 } = p.

Now, let P2 represent the projection onto the column
space of the regressors in equation (3.7.2); i.e. P2 = P[Rz2]
= R2(R2TR2)-1R2T. Then QP2 = P2Q2 = P2, P2R2 = Rz, P2T =
P2, and P2 is orthogonal to Q, Q3, and Qs¢.

First we write the residual from equation (3.7.2) as

Residualz = (Qzy - QP2y) = R2A2 + Q28 - P2Q2y
= R2A2 + Qs - P2RzA2 - P2Qz2s
= R2A2 - RzA2 + Qs - Pzs
= (Q2 - P2)s

We then form the expression

SSE2

(Q2y - Q2P2y)T(Q2y - Q2Pz2y)
sT(Q2 - Q2P2)T(Q2 - Q2P2)s

sT(Q2z - P2Qz - QP2 + P2Q2P2)s

sT(Qz - P2 - P2 + P2)s

8T(Qz - P2)s

Taking the expectation of SSEz, we write

Exp{ SSEz }

Exp{ 8T(Q2 - P2)s }

Exp{ trace{ s8T(Qz2 - P2)s } }

E{ trace{ (Q - P2)ssT } }
since trace(AB) = trace(BA) if AB and BA are

both defined and square.
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= trace{ (Q2 - Pz )Exp{ ssT } }

trace{ (Q - P2){ pQ1 + qQz + rQ3 + kQs }

(q)trace{ (Q - P2) }

(q)rank(Qz - P2)

since trace(A) = rank(A) if A is idempotent

(q){rank(Qz) - rank(Rz)}

Thus, Exp{ s22 } = q.
Finally, let P3 represent the projection onto the column
space of the regressors in equation (3.7.3); i.e. P3 = P[R3]

R3(R3TR3)-1RaT. Then Q3P3 = P3Qs3 = P3, P3R3 = Rs, P3T

P3, and P3 is orthogonal to Q1, Q, and Q4.

First we write the residual from equation (3.7.3) as

Residuals = (Q3y - QaP3y) = R3A3 + Qas - P3Qsy
= R3A3 + Qs - PsR3A3 - P3Qis
= R3A3 - R3sA3 + Qs - Pss
= (Q - P3)s

We then form the expression

SSE3 (Q3y - QaP3y)T(Qsy - Q3aP3y)

s8T(Q3 - Q3P3)T(Qs - Q3P3)s

= 87T(Q3 - PiQs - Q3P3s + P3QiP3)s
= 8T(Qs - Ps - P3 + P3)s
= s8T(Q3 - P3)s

Taking the expectation of SSE3, we write

Exp{ SSEs } = Exp{ s8T(Q3 - P3)s }
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Exp{ trace{ sT(Q - P3)s } }
E{ trace{ (Q3 - P3)ssT } }
since trace(AB) = trace(BA) if AB and BA are
both defined and square.
trace{ (Qs - P3s )Exp{ ssT } }
trace{ (Q3 - P3){ pQ1 + qQ3 + rQ3 + kQs }
(r)trace{ (Q - P3s) }
(r)rank(Qs - P3)
since trace(A) = rank(A) if A is idempotent

(r){rank(Q3) - rank(R3)}

Thus, Exp{ s32 } = r. Q.E.D.
re 3. :
Let s12 = SSE1/{(N-1)(T-1) - g},
s22 = SSE2/{(T-1) - g - k},
and s32 = SSE3/{(N-1) - g - h}.
Then
a) 812 is a consistent estimator of p as Nor T -> oo,
b) 822 is a consistent estimator of q = de?2 + Tou? as
N -> oo , and
c) 83?2 is a consistent estimator of r = de?2 + Nov? as
T -> o0 .
Proof:

a) plim 812

= plim SSE1/{rank(Qi1) - rank(R1)}
= plim SSE1/(N-1)(T-1)
= plim sT(Q1 - P1)8/(N-1)(T-1)

= plim 8TQ18/(N-1)(T-1) - plim s8TP1s8/(N-1)(T-1)
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The last term is zero since

sTP1s/(N-1)(T-1)

= [sTR1/(N-1)(T-1)]J[R1TR1/(N-1)(T-1)]-1R1T8/(N-1)(T-1)

and RiTs/(N-1)(T-1) -> 0 as (N-1)(T-1) =-> o0 ( as

either N -> oo or T -> oo )

The first term equals 0e? because sTQi1s can be shown to
be distributed as o0e2X2(N-1)(T-1) using standard results
(e.g. Rao (1973, p 185)) on the distribution of idempotent

qﬁadractic forms in normals.

b) plim s22 = plim SSEz2/{rank(Qz) - rank(Rz2)}

plim SSE2/(N-1)

plim sT(Q - P2 )s/(N-1)

plim 8TQ2s8/(N-1) - plim sTP2s/(N-1)

The last term is zero since sTP2s/(N-1)
= [sTR2/(N-1)][R2TR2/(N-1)]-1R2Ts/(N-1) and R2Ts8/(N-1) -> 0
as N -> oo.

The first term equals q = de? + Tou? because s8TQzs can
be shown to be distributed as qX?(n-1) using standard
results (e.g. Rao (1973, p 185)) on the distribution of

idempotent quadractic forms in normals.

c) plim 832 = plim SSEs/{rank(Q3) - rank(R3)}

plim SSE3/(T-1)

plim s8T(Q3 - P3)s/(T-1)

pPlim sTQ3s/(T-1) - plim s8TP3s/(T-1)
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The last term is zero since sTP3s/(T-1)
= [sTR3/(T-1)][R3TR3/(T-1)]-1R3T8/(T-1) and R3Ts/(T-1) -> 0
as T -> oo0.
The first term equals q = de?2 + Nou?2 because sTQis can
be shown to be distributed as dxz(r-l) using standard

results (e.g. Rao (1973, p 185)) on the distribution of

idempotent quadractic forms in normals. Q.E.D.
3.8 Va ce Estimatio e do ects e
orrelated wit e _Re

So far we have considered variance estimation for the
feasible weighted least squares estimator only. We now turn
our attention to the model of section 3.5, in which some of
the regressors are correlated with the random effects. Once
again we will need to estimate the weights p, q, and r, since
they are needed to implement the weighted instrumental
variables estimator. The estimate of p based on the within
residuals, discussed in section 3.7, is still consistent in
this model. However, the estimate of q = 0e?2 + TOu?2 and r
= de?2 + Nov? which was discussed in section 3.7 is not
consistent, since it was based on the residuals from least
squares applied to (3.5.3) and (3.5.4), and these least
squares estimator are inconsistent when regressors are
correlated with either equation’s error ternm.

We therefore turn our attention to the problem of
finding consistent estimates of B, D, and C. Then, using

these consistent estimates of Az = ( BT, DT )T and As

=

( BT, CT )¥, we derive consistent estimate of q and r. The
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background for this approach is the work of Hausman and
Taylor (1981), who suggest the estimate of q which we
discussed in section 2.7. However, they do not give a
rigorous proof that it is consistent nor do they discuss the
estimation of r.

The following assumptions will be made.

Assumptjon (3.11)

= [ QsX1, Q3X2, W1 ]. Then we assume that

Let H2

[ Q2X1, Q2X3, Z1 ] and Hs

(i) plim XTQi1e/(N-1)(T-1) = 0 as either N -> oo
or T -> oo0.

(ii.a) plim H2TQ2(u + e)/N = 0 as N -> oo.

(ii.b) plim H3TQ3(v + e)/T = 0 as T -> oo.

(iii) plim (XTQ1X)/(N-1)(T-1) is finite and nonsingular
as either N -> 00 or T -> oo.

(iv.a) plim (H27Z1)/N is finite as N -> oo0.

(iv.b) plim (H3™W1)/T is finite as T -> oo.

(v.a) plim (H2TX)/N is finite as N -> oo.

(v.b) plim (H3TX)/T is finite as T -> oo.

Even after the introduction of X2, X3,Xs, Z2, and W2 -
regressors assumed correlated with the effects - the within
estimator is still a consistent estimator of B; no
correlation exists between the disturbance and the regressors
in equation (3.5.3). So the problem of finding a consistent
estimator of A is reduced to finding a consistent estimator
of D and C. The two regression equations introduced in the

following Lemma will be used in deriving such estimators.
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Lemma (3.12): Let f2* = Q2(y - Xbvw) and
f3* = Q3(y - Xbw). Then

(3.8.1) f2*

ZD + (Q2 - QX(XTQ1X)-1XTQi)s

and

(3.8.2) fa* WC + (Q3 - Q3X(XTQ1X)-1XTQ1)s
Proof:

f2*

Q(y - Wbw) Qy - QXby = Qy - QX(XT1X)-1XTQry

Q2 (XB + ZD + WC + 8) - @X(XTQ1X)-1XTQ1(XB + ZD + WC + s8)

Q2(XB + ZD + WC + 8) - QX(XTQ1X)-1XT(Q1XB + Q18)

Q(XB + ZD + WC + 8) - QX(XTQ1X)-1XTQ1XB
+ QX(XTQ1X)-1XTQr s
= QXB + Q27ZD + Q28 - Q2XB + QX(XTQ1X)-1XTQ1s

ZD + (Q2 - QX(XTQ1X)-1XTQ1)s

fa*

Q3(y - Wbhi) = Q3y - Q3Xbw = Qy - @QX(XTQX)-1XTQ1y

Q3(XB + ZD + WC + 8) - Q3X(XTQ1X)-1XTQ1(XB + ZD + WC + 8)

Q3(XB + ZD + WC + 8) - QX(XTQ1X)-1XT(Q1XB + Q8)

Qi(XB + ZD + WC + 8) - QX(XTQ1X)-1XTQ1XB

+ QX(XTQ1X)-1XTQ18

Q3XB + Q3WC + Q3s - Q3XB + Q3X(XTQ1X)-1XTQ1s

Since part of Z is correlated with the error term, least

squares applied to equation (3.8.1) does not yield a
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consistent estimator of D. Likewise, since part of W is
correlated with the error term, least squares applied to
equation (3.8.2) does not yield a consistent estimator of C.
But, using Ha = ( Q2X1, Q2X3s, Z1 ) as a set of instruments,
the instrumental variable estimator of D from equation

(3.8.1) is defined as

(3.8.3) div = (XTP[Hz2 ]X)-1XTP[Hz2 ]f2".

Similiarly, using Hs3 = ( Q3X1, Q3Xz2, W1 ) as a set of
instruments, the instrumental variable estimator of C from

equation (3.8.2) is defined as

(3.8.4) civ = (XTP[H3]X)-1XTP[H3]fa*.

It is interesting to note that using f3** = (y - Xbw)
instead of f3* = Qi(y - Xbw) would not increase the
efficiency of the estimator, civ. Indeed, since P[H3]Qs
= QsP[Hs] = P[H3s], Z1TQ1 = 0, and the first order condition
(i.e. the "normal equations") defining bw imply that

( X1Q1, X2T@ )(y - Xbw) = 0,

(3.8.5) H3TQa(y - Xbw) = HsT(y - Xbw);

thus the game estimator would result if we used f3** in place
of fa3*.

Given the estimators div and civ, the next question is
whether these estimators are, indeed, consistent estimates of
D and C. But first, we consider the conditions necessary to

assure that both div and civ do exist.
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3.8.1 Necessa Conditions for the Existence of

A necessary condition for the existence of div is that
the rank of Hz be at least is large as the rank of Z; that
is, there must be at least as many instruments as regressors.
This requires that g1 + g3 + ki > k, or g1 + g3 > k2.
Intuitively, Q2X1 and Q2X3 are serving as instruments for Z:2,
and so there must be at least as many variables in X1 and X3
as in Z2. Similiarly, a necessary condition for the
existence of civ is that the rank of Hi be at least is large
as the rank of W; that is, there must be at least as many
instruments as regressors. This requires that g1 + g2 + h1 >
h, or g1 + g2 > ha2. Here, Q3X1 and Q3sX2 are serving as
instruments for W2, and so there must be at least as many
variables in X1 and X2 as in W2. The fact that f1* and f2*
are calculated from the within-groups residuals suggests that
if bw is not fully efficient, then div and civ may not be

fully efficient either.

3.8.2 Consistency of divy and civ.
emma «13): Given assumption (3.11),

(1.a) plim ZTP2Q2(u + e)/N = 0 as N -> oo,

(1.b) plim WrP3Q3(v + e)/T = O as T =-> oo,

(2.a) plim ZTP2Z/N is finite and non-singular as N -> oo,
(2.b) pPlim WIPsW/T is finite and non-singular as T -> oo,
(3.a) plim ZTP2X/N is finite as N -> oo,

(3.b) plim WIP3X/T is finite as T -> oo.

Lemma (3.13) can be easily proved by noting that P:
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= P[H2] = H2(H2TH2 )-1H2T, where H2 = Q (X1, X3, Z1), and that

P3 = P[H3)] = Ha(H3TH3s )-1H3T, where Hs = Q3 (X1, X2, W1).

Theorem (3.14): The instrumental variable estimator div is a
consistent estimator of D as N gets large and the
instrumental variable estimator civ is a consistent estimator

of C as T gets large.

Proof:

First, we rewrite div as

div (ZTP2Z)-1ZTP2d2*

(ZTP2Z)-1Z2TP2(2ZD + (Q2 - QX(XTQ1X)-1XTQi)s)

(ZTP2Z)-12TP2ZD
+ (Z2TP2Z)-1Z2TP2(Q2 - QX(XTQi1X)-1XTQ1)s

D + (ZTP2Z)-12TP2Q28 - QX(XTQ1X)-1XTQ1s

D + (ZTP2Z/N)-1{ZTP2Q2(e + u)/N}

- (ZTP2Z/N)-1{Z2TP2Q2X/N}(XTQ1X/N)-1 {XTQie/N}

By Assumption (3.11), plim XTQae/N = 0 as N -> oo and
plim (XTQ1X)/N is finite and nonsingular as N -> oo. Using

0 as

Lemma (3.13), it follows that plim ZTP2Q2(e + u)/N
N -> oo, plim (ZTP2Z)/N 1is finite and nonsingular as
N =-> o0, and plim (ZTP2Q2X)/N is finite as N -> oo.

Thus,

plim div
D + {finite}{ 0 } - {finite}{finite}{finite}{0}

D
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Next, we rewrite civ as

c1v (WTP3W)-1WTP3d3*®

(WIP3W)-1WTP3(WC + (Q2 - QX(XTQ1X)-1XTQ1)s)

= (WIPsW)-1WTP3WC

+ (WIP3W)-1WTP3(Q3 - QX(XTQ1X)-1XTQ1)s

C + (WIP3W)-1WTP3Q3s - QX(XTQ1X)-1XTQis

C + (WTP3W/T)-1{WTP3Q3as/T}

- (WITP3W/T)-1{WTP3Q3X/T)}(XTQ3sX/T)-!{XTQas/T}

By Assumption (3.11), plim XTQie/T = 0 as T -> oo and
pPlim (XTQ1X)/T is finite and nonsingular as T -> oo. Using
Lemma (3.13), it follows that plim WIP3Q3i(e + v)/T = 0 as
T -> oo, plim (WI'P3W)/T is finite and nonsingular as

T -> o0, and plim (WIP3Q3X)/T 1is finite as T -> oo.

Thus,

plim crv

C + {finite}{0} - {finite}{finite}{finite}{0}

C Q.E.D.

3.8.3 Consjistent Estimates of q and r

Using as a consistent estimate of A2 = ( BT, DT )T the
estimator bvw and div, we will now form a vector of residuals.
We will then show that the sum of the squared terms of this
residual vector, divided by N, is a consistent estimator of
qQ = 0e? + Tow2., Similiarly, using as a consistent estimate
of As = ( BT, CT )T the estimator bw and civ, we will form a

vector of residuals and then show that the sum of the squared
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terms of this residual vector, divided by T, is a consistent

estimator of r = de?2 + Nov?,.

Lemma (3.15): Let

(3.8.6) Residual: Q2y - Q2Xbw - Q22drv
and

(3.8.7) Residuals

Q3y - Q3Xbw - Q3Wciv

Then
Residualz = Q2(e + u) - QX(XTQ1X)-1XTQie
- Q2Z(2TP2Z)-12TP2Q2(e + u)
+ QZ(ZTP2Z)-1Z2ZTP2Q2X(XTQ1X)-1XTQre
and
Residuals = Q3(e + v) - QX(XTQ1X)-1XTQie
- Q3W(WITP3W)-1WTP3Q3(e + V)
+ QQW(WTP3W)-1WTP3Q3X(XTQ1X)-1XTQire
Proof:
First, we rewrite Residual2z as
Residualz = Q2y - Q2Xbw - Q2Zd1v

QY - QX(XTQ1X)-1XTQary - Q2Z(2TP22)-1ZTP2d2*

Q{ XB + ZD + WC + 8 }
- QX(XTQ1X)-1XTQa{ XB + ZD + WC + 8 }
- QZ(ZTP2Z)-12TP2

times{ ZD + (Q2 - Q2X(XTQ1X)-1XTQ1)(e + u) }
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Q2XB + ZD + Q2(e + u)
- X(XTQ1X)-1XTQ1XB - QX(XTQ1X)-1XTQire
- QZ(2TP2Z)-12TP22ZD - Q2Z(ZTP22)-12TP2Q2(e + u)

+ QZ(ZTP2Z)-1ZTP2QX(XTQ1X)-1XTQire

Q2XB + ZD + Q2(e + u)
- QXB - QX(XTQ1X)-1XTQ1(e + u)
- Q22D - QZ(ZTP2Z)-1ZTP2Q2(e + u)

+ QRZ(ZTP2Z)-1ZTP2Q2X(XTQ1X)-1XTQre

Q(e + u) - QRX(XTQ1X)-1XTQie
- QZ(ZTP2Z)-1ZTP2Q2(e + u)

+ QZ(ZTP22)-1ZTP2Q2X(XTQ1X)-1XTQi e

Next, we rewrite Residual3 as

Residuals Q3y - Q3Xbw - Q3Wcrv

QY - BX(XTQ1X)-1XTQ1y - QaW(WIPsW)-1WIP3da*

Q3{ XB + ZD + WC + s }

- QX(XTQ1X)-1XTQu{ XB + ZD + WC + s }
- QAW(WTP3W)-1WTPs
times { WC + (Q3 - QX(XT@1X)-1XTQ1)(e + u) }

Q3XB + WC + Q3(e + u)

- QX(XTQ1X)-1XTQ1XB - Q3X(XTQiX)-1XTQie
- Q3W(WTP3W)-1WITP3WC - Q3W(WTP3W)-1WTP3sQ3a(e + u)

+ QW(WIPIW)-IWTP3QaX(XT@1X)-1XTQue

Q3XB + WC + Q3(e + u)
- QXB - QGBX(XTQ1X)-1XTQ1(e + u)
- QWC - Q3W(WTP3W)-1WITP3sQ3(e + u)

+ QIW(WITPIW)-IWITP3Q3X(XTQuX)-1XTQre
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= Qi(e + u) - QLX(XTQ1X)-1XTQie
- Q3W(WITP3SW)-1WTP3sQ3(e + u)

+ QW(WTPsW)-IWTP3QX(XTQ1X)-1XTQre Q.E.D.

We now define consistent estimators for both q and r.
Using the definitions found in Lemma (3.15), we define SSE2*
as the sum of squared residual terms found in Residualz and
SSE2* as the sum of squared residual terms found in

Residuals:

(3.8.8) SSE2* = (Residual2 )T (Residual2)

(3.8.9) SSE3*

(Residuals )T (Residuals)

Our estimators for q and r are then SSE2*/N and SSE3* /T,

respectively.

Theorem (3.16):

plim SSE2* /N Oe? + Tou? as N -> oo

plim SSE3* /T Oe?2 + Nov? as T -> oo

Proof:

First, SSE2* can be written as
SSE2*

(Residual2 )T (Residualz)

(e + u)TQ2(e + u) - (e + w)TX(XTQ1X)-1XTQie
- (e + u)TQ2Z(ZTP22)-1ZTP2Q2(e + u)

+ (e + u)TQZ(2TP22)-1ZTP2@X(X"Q1X)-1XTQre

- eTQX(XTQ1X)-1XTQ2(e + u)

+ eTQUX(XTQ1X)-1XTQz2X(XTQ1X)-1XTQre
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+ eTQIX(XTQ1X)-1XTQ2Z(ZTP22)-12TP2Q2(e + u)
- eTQX(XTQ1X)-1XTQ2Z(ZTP22)-1ZTP2@Q2X(XT@1X)-1XTQie
- (e + u)TQ2P2Z(2TP22)-127Q2 (e + u)
+ (e + u)TQP2Z(ZTP2Z)-1ZTQ2X(XTQ1X)-1XTQre
+ (e + u)TQ2P2Z(ZTP22Z)-127Q2Z(ZTP22)-1ZTP2Q2 (e + u)
- (e + u)TQ2P2Z(ZTP2Z2)-12TQ2Z(2TP2Z)-1ZTP2Q2X(XTQ1X)-1XTQie
+ eT X(XTQ1X)-1XTQ2P2Z(2TP22)-127Q2 (e + u)
- eTQQX(XTQ1X)-1XTQ2P2Z(ZTP2Z)-1Z2TQX(XTQ1X)-1XTQie
- eTQI X(XTQ1X)-1XTQ2P2Z(ZTP2Z)-12TQ2Z(ZTP2Z)-12TP2Q2(e + u)
+ eT X(XTQ1X)-1XTQ2P2Z(2TP22Z)-12TQ2Z(ZTP22)-!

times ZTP2Q2X(XTQ1X)-1XTQie

Now, from the above expression, taking the probability
limit of SSE2* as N gets large is equivalent to taking the
probability limit of the sum of sixteen different terms.
Evaluation of these sixteen terms shows that the first term
has a probability limit equal to q and that the remaining
fifteen terms each have a probability limit equal to zero
with all limits being taken as N -> oo. These probability

limits are evaluated below.
1) plim (e + u)TQz(e + u)/N = plim eTQ2e/N + plim uTQzu/N
Consider these term by term. First,

N
eTQe/N = T) ei.2/N.
1=1

Each term ei.? has a mean of 0e? /T, and the terms are

independent. Therefore, eTQ2ze/N -> Toe?2 /T = 0?2 as N -> oo.
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Second,
N
uTQu/N = T)Y ui?2/N -> Tou? as N -> oo.
1=1
Third,
n
eTQ2u/N = T) ei.usi/N -> 0 as N -> oo
1=1

because e and u are uncorrelated. Therefore,

(e + u)TQ2(e + u)/N -> 0e?2 + Tou? as N =-> oo.

2) plim (e + u)TQ2X(XTQ1X)-1XTQie/N

Plim {(e + u)TQ2X/N}(XTQ1X/N)-1{XTQie/N}

plim {(e + u)TQz2X/N} plim (XTQ1X/N)-! plim {XTQie/N}

0 as N -> oo

3) Plim (e + u)TQ2Z(2TP2Z)-1Z*P2Qz2(e + u)/N
= plim {(e + u)TQ2Z/N}(ZTP2Z/N)-1{ZTP2Q2(e + u)/N}
= plim {(e + u)TQ2Z/N} plim (ZTP2Z/N)-!
times plim {ZTP2Qz2(e + u)/N}

0 as N =-> oo

4) plim (e + u)TQ2Z(ZTP2Z)-1ZTP2Q2X(XTQ1X)-1XTQi1e/N

plim {(e + u)TQ2Z/N}(ZTP2Z/N)-1{ZTP2Q2X/N}

time (XTQ1X/N)-!{XTQie/N}

plim {(e + u)TQ22Z/N} plim (ZTP2Z/N)-1
times plim {ZTP2Q2X/N} plim (XTQi1X/N)-1

times plim {XTQie/N}

0 as N -> oo
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5) plim eTQ1 X(XTQ1X)-1XTQz2(e + u)/N

pPlim {eTQ1X/N}(XTQ1X/N)-1{XTQz(e + u)/N}
Plim {eTQ1X/N} plim (XTQ1X/N)-! plim {XTQz(e + u)/N}

0 as N =-> oo

6) plim eTQ1 X(XTQ1X)-21XTQ2X(XTQ1X)-1XTQ1e/N

7) plim

8) plim

9) plim

plim {e’Q1X/N}(X’Q1X/N)'1{X7Q2X/N}

times (XTQ1X/N)-1{XTQie/N}
Plim {eTQ1X/N} plim (XTQ1X/N)-1! plim {XTQz2X/N}
times plim (XTQ1X/N)-! plim {XTQie/N}

0 as N =-> oo

eT X(XTQ1X)-1XTQ2Z(2TP2Z)-1ZTP2Q2(e + u)/N

Plim {eT@ X/N}(XTQ1X/N)-1{XTQ2Z/N}(ZTP2Z/N)-!
times {ZTP2Qz(e + u)/N}

plim {eTQ1X/N} plim (XTQ1X/N)-1 plim {XTQz2Z/N}

times plim (ZTP2Z/N)-! plim {ZTP2Qz2(e + u)/N}

0 as N =-> oo

T X(XTQ1X)-1XTQ2Z(ZTP2Z)-1ZTP2Q2X(XTQ1X)-1XTQ1e/N
Plim {eTQ1 X/N}(XTQ1X/N)-1{XTQ2Z/N}(ZTP22Z/N)-1

times {ZTP2Q2X/N}(XTQiX/N)-1{XTQie/N}
plim {eTQi1X/N} plim (XTQi1X/N)-! plim {XTQ2Z/N}
times plim (Z2TP2Z/N)-! plim {ZTP2Q2X/N}
times plim (XTQi1X/N)-1! plim {XTQie/N}

0 as N -> oo

(e + u)tQ2P2Z(ZTP22)-12TQ2(e + u)/N

Plim {(e + u)TQ2P2Z/N}(Z2TP2Z/N)-1{ZTQz2(e + u)/N}
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plim {(e + u)TQ2P2Z/N} plim (ZTP2Z/N)-!

times plim {2TQz(e + u)/N}

0 as N =-> oo

10) plim (e + u)TQ2P2Z(ZTP2Z)-1Z2TQ2X(XTQ1X)-1XTQ1e/N

plim {(e + u)TQ2P2Z/N}(ZTP2Z/N)-1
times {ZTQz2X/N}(XTQ1X/N)-1{XTQi1e/N}

plim {(e + u)TQ2P2Z/N} plim (2ZTP2Z/N)-1

times plim {ZTQz2X/N} plim (XTQ1X/N)-! plim {XTQire/N}

0 as N -> oo

11) plim (e + u)TQ2P2Z(2TP2Z)-1Z27Q2Z(2TP22)-12TP2Q2(e + u)/N

plim {(e + u)TQ2P2Z/N}(ZTP2Z/N)-1{ZTQ22Z/N}

times (ZTP2Z/N)-1{ZTP2Qz2(e + u)/N}

plim {(e + u)TQ2P22Z/N} plim (ZTP2Z/N)-1
times plim {27TQ22/N} plim (2TP2Z/N)-1
times plim {ZTP2Qz2(e + u)/N}

0 as N -> oo

12) plim (e + u)TQ2P2Z(ZTP22)-127Q2Z(2ZTP2Z)-!

times ZTP2Qz2X(XTQ1X)-1XTQi1e/N

plim {(e + u)TQz2P2Z/N}(ZTP2Z/N)-1{27Q2Z/N}(2TP2Z/N)-!}
times {ZTP2Q2X/N}(XTQi1X/N)-1{XTQie/N}

pPlim {(e + u)TQ2P2Z/N} plim (ZTP2Z/N)-1?

times plim {27Q2Z/N} plim (ZTP2Z/N)-1
times plim {ZTP2Q2X/N} plim (XTQ1X/N)-1

times plim {XTQie/N}

0 as N -> oo
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13) plim eTQ1 X(XTQ1X)-1XTQ2P2Z(ZTP2Z)-12TQ2(e + u)/N

Plim {eTQ X/N}(XTQ1X/N)-1{XTQz2P2Z/N}

times (2TP2Z/N)-1{ZT'Qz(e + u)/N}

plim {eTQ1X/N} plim (XTQi1X/N)-! plim {XTQz2P2Z/N}

times plim (ZTP2Z/N)-! plim {ZTQz(e + u)/N}

0 as N -> oo

14) plim eTQ1 X(XTQ1X)-1XTQ2P2Z(ZTP2Z)-1ZTQX(XTQ1X)-1XTQi1e/N

plim {eTQ1X/N} plim (XTQ1X/N)-1 plim {XTQ2P2Z/N}
times plim (ZTP2Z/N)-! plim {ZTQz2X/N}

times plim (XTQ1X/N)-! plim {XTQie/N}

0 as N =-> oo

15) plim eTQ1 X(XTQ1X)-1XTQ2P2Z(2TP22Z)-1?
times 2TQ2Z(ZTP22Z2)-1ZTP2Q2(e + u)/N

plim {eTQi X/N}(XTQ1X/N)-1{XTQ2P2Z/N}(Z2TP2Z/N)-1

times ({ZTQ2Z/N}(ZTP2Z/N)-1{ZTP2Qz(e + u)/N}

= plim {eTQ1X/N} plim (XTQ1X/N)-1 plim {XTQ2P2Z/N}
times plim (ZTP2Z/N)-1 plim {2TQ2Z/N}
times plim (ZTP2Z/N)-! plim {ZTP2Q2(e + u)/N}

0O as N -> oo

16) plim eTQ X(XTQ1X)-1XTQ2P2Z(2TP22)-12TQ22(2%P22)"?

times ZTP2Q2X(XTQi1X)-1XTQi1e/N

plim {eTQ1 X/N}(XTQ1X/N)-1{XTQ2P2Z/N}
times plim (ZTP2Z/N)-1 {ZTQ2Z/N}(ZTP2Z/N)-1

times plim {ZTP2Q2X/N}(XTQi1X/N)-1{XTQi1e/N}

plim {eTQ1X/N} plim (XTQi1X/N)-1 plim {XTQz2P2Z/N}

times plim (ZTP2Z/N)-! plim {2TQz2Z/N}
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times plim (ZTP2Z/N)-1
times plim {ZTP2Q2X/N} plim (XTQi1X/N)-1
times plim {XTQie/N}

= 0 as N -> oo

Next, SSE3* can be written as

SSE3*

(Residuals )T (Residuals)

(e + v)TQa(e + v) - (e + v)TQiX(XTQ1X)-1XTQre

(e + vV)TQIW(WTP3W)-1WTP3Q3(e + V)

(e + v)TQIW(WIPsW)-IWTP3Q3X(XTQ1X)-1XTQre
eTQX(XTQ1X)-1XTQ3s (e + v)

T X(XTQ1 X)-1XTQaX(XTQ1X)-1XTQie
eTQ X(XTQ1X)-1XTQaW(WITP3W)-1WTP3Q3 (e + V)
T X(XTQ1X)-1XTQaW(WITP3W)-1WITP3Q3X(XTQ1X)-1XTQie

(e + v)TQ3P3W(WITP3W)-1WTQ3s (e + V)

(e + v)TQaPaW(WTP3W)-1WTQsX(XTQi1X)-1XTQie

(e + v)TQ3P3W(WITP3W)-IWTQaW(WIP3W)-1WTP3Q3(e + V)

(e + V)TQaP3aW(WTP3W)-1WITQaW(WIP3W)-1WITP3QsX(XTQ1X)-1XTQie
eTQX(XTQ1X)-1XTQ3P3sW(WIP3W)-1WTQ3s (e + V)
eTQ X(XTQ1X)-1XTQ3P3aW(WIPIW)-IWTQsX(XTQ1X)-1XTQae
eTQ X(XTQ1X)-1XTQaPsW(WIP3W)-IWTQaW(WIP3W)-1WITP3Q3a(e + V)
eTQ X(XTQ1X)-1XTQ3P3W(WIP3W)-1WITQaW(WTP3W)-1

times WTPsQ3X(XTQ1X)-1XTQie

Now, from the above expression, taking the probability

limit of SSE3* as T gets large is equivalent to taking the

probability limit of the sum of sixteen different terms.
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Evaluation of these sixteen terms shows that the first term
has a probability limit equal to r and that the remaining
fifteen terms each have a probability limit equal to zero
with all limits being taken as T -> oo. These probability

limits are evaluated below.

1) plim (e + v)TQs(e + Vv)/T pPlim eTQ3e/T + plim vIQsv/T

Consider these term by term. First,

T
eTQ3e/T = NY e.t2/T.
t=1

Each term e.t?2 has a mean of 0e?2 /N, and the terms are

independent. Therefore, eTQe/N -> NoOe?2/N = 0?2 as T -> oo.

Second,
T
vIQ3v/T = NEL v12/T =-> Nov? as T =-> oo.
t=1
Third,
T
eTQ3v/T = NL e1.vi/T -> 0 as T -> oo

t=1

because e and v are uncorrelated. Therefore,

(e + v)TQs(e + V)/T =-> JOe? 4+ Nov2 as T -> oo.

2) plim (e + Vv)TQX(XTQ1X)-1XTQie/T

pPlim {(e + v)TQsX/T}H(XTQ1X/T)-!{XTQ1e/T}

Plim {(e + v)TQ3X/T} plim (XTQ1X/T)-! plim {X*Qire/T}

0 as T -> oo

3) plim (e + v)TQ3W(WTP3W)-1WTP3Q3(e + v)/T

= plim {(e + v)TQIW/T}(WTPsW/T)-1{WIPsQa(e + v)/T}
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plim {(e + v)TQ3W/T} plim (WITPsW/T)-1
times plim {WI'P3Qa(e + v)/T}

0 as T -> oo

4) plim (e + V)TQIW(WITP3W)-IWTP3QsX(XTQ1X)-1XTQie/T

5) plim

6) plim

7) plim

plim {(e + v)TQIW/T}(WITP3W/T)-1{WTP3sQ3sX/T)}
times (XTQ1X/T)-!{XTQie/T}

plim {(e + v)TQIW/T} plim (WFPsW/T)-!

times plim {WTP3Q3X/T} plim (XTQ1X/T)-1

times plim {XTQie/T}

0 as T -> oo

eTQ X(XTQ1X)-1XTQa(e + Vv)/T

plim {eTQ X/T}(XTQ1X/T)-1{XTQ3(e + v)/T}

plim {eTQ1 X/T} plim (XTQX/T)-! plim {XTQ3(e + v)/T}

0 as T -> oo

eT X(XTQ1X)-1XTQaX(XTQ1X)-1XTQie/T

plim {eTQi X/TH(XT@1X/T)- ! {XTQ3X/THXTQ1 X/T)-1{XTQ1e/T}
plim {eT@1X/T} plim (XTQ1X/T)-! plim {XTQ3X/T}

times plim (XTQ1X/T)-! plim {XTQie/T}

0 as T -> oo

eTQU X(XTQ1X)-1XTQaW(WIPsW)-1WTP3Q3 (e + Vv)/T

Plim {eTQi X/T}(XTQ1X/T)-1{XTQsW/T}(WIPsW/T)-1
times {WTP3Q3(e + v)/T}

Plim {eTQ1X/T} plim (XTQ1X/T)-! plim {XTQ3aW/T}

times plim (WTP3W/T)-! plim {WTP3Q3(e + v)/T}

0 as T -> oo
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9) plim
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eTQIX(XTQ1X)-1XTQaW(WITP3W)-IWTPsQ3X(XTQ1X)-1X*Qre/T
plim {eTQ1X/T}(XTQ1X/T)-1{XTQaW/T}(WITP3W/T)-?

times {WTP3Q3X/T}(XTQ1 X/T)-1{XTQie/T}
plim {eTQ1X/T} plim (XTQ1X/T)-! plim {XTQaW/T}
times plim (WTP3W/T)-! plim {WI'P3Q3X/T}
times plim (XTQ1X/T)-! plim {XTQie/T}

0 as T -> oo

(e + vV)TQsP3W(WTPsW)-1WTQ3(e + v)/T

plim {(e + v)TQ3P3W/T}(WTP3W/T)-1{WTQ3(e + v)/T}
plim {(e + v)TQ3P3W/T} plim (WTP3W/T)-1?

times plim {WTQa(e + v)/T}

0 as T -> oo

10) plim (e + v)TQ3P3W(WITP3W)-1WTQaX(XTQ1X)-1XTQi1e/T

plim {(e + v)TQaP3W/T}(WITPsW/T)-!{WIrQsX/T}

times (XTQ1X/T)-1{XTQie/T}
pPlim {(e + v)TQ3P3W/T} plim (WTP3W/T)-1! plim {WTQ3sX/T}
times plim (XTQ1X/T)-! plim {XTQire/T}

0 as T -> oo

11) plim (e + v)TQ3PsW(WIPSW)-1WTQsW(WTP3W)-1WTP3Q3(e + v)/T

Plim {(e + v)TQ3P3W/T}(WTP3W/T)-1{WITQ3sW/T}

times (WTP3W/T)-1{WI'P3sQs(e + Vv)/T}

plim {(e + v)TQsP3W/T} plim (WTP3sW/T)-! plim {WTQsW/T}
times plim (WTPsW/T)-! plim {W'P3Qs(e + v)/T}

0 as T -> oo
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12) plim (e + v)TQ3P3W(WITP3W)-1WTQsW(WITPsW)-1

times WIPsQaX(XTQ1X)-!XTQie/T
plim {(e + v)TQ3P3W/T}(WITP3W/T)-1{WIQ3W/T}(WTP3W/T)-1
times {WTP3Q3X/THXTQ1X/T)-!{XTQre/T}
Plim {(e + v)TQ3P3sW/T} plim (WITPsW/T)-! plim {WTQaW/T}
times plim (WTP3W/T)-! plim {WTP3Q3X/T)}
times plim (XTQ1X/T)-! plim {XTQie/T}

0 as T -> oo

13) plim eTQ1 X(XTQ1X)-1XTQ3P3W(WIP3W)-1WTQ3(e + Vv)/T

plim {eTQ1X/TH(XTQ1X/T)-! {XTQ3P3W/T}

times (WTP3W/T)-1{WTQ3i(e + v)/T}
plim {eTQ1X/T} plim (XTQ1X/T)-! plim {XTQsP3W/T}
times plim (WTP3W/T)-1 plim {WT'Q3s(e + v)/T}

0 as T -> oo

14) plim eTQ1 X(XTQ1X)-1XTQ3P3W(WIP3W)-IWTQ3X(XTQ1X)-1XTQie/T

Plim {eTQ1X/T} plim (XTQX/T)-! plim {XTQ3P3W/T}
times plim (WTP3W/T)-! plim {WTQ3X/T}
times plim (XTQ1X/T)-! plim {XTQie/T}

0 as T =-> oo

15) plim eTQ1 X(XTQ1X)-1XTQ3P3W(WIP3W)-1

times WIQaW(WTP3W)-1WTP3Qs(e + v)/T
Plim {eTQi X/T}(XTQ1 X/T)-1{XTQsP3W/T}(WIPsW/T)-1!
times {WTQsW/T}(WIPsW/T)-1{WIP3Qs(e + v)/T}
Plim {eTQ1 X/T} plim (XTQ1X/T)-! plim {XTQaP3W/T}
times plim (WTP3W/T)-! plim {WTQ3W/T}

times plim (WI'P3W/T)-! plim {WTPsQs(e + v)/T}
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= 0 as T -> oo

16) plim eTQ1 X(XTQ1X)-1XTQ3P3W(WIP3W)-1WTQ3aW(WIP3W)-1
times WIP3Q3X(XTQ1X)-1XTQie/T

Plim {eTQ1 X/T}(XTQ1X/T)-1{XTQ3PaW/T}

times plim (WTP3W/T)-1 {(WITQ3sW/T}(WITP3W/T)-1
times plim {WIPsQ3X/T}(XTQ1 X/T)-1{X*Qi1e/T}

= plim {eTQ1X/T} plim (XTQ1X/T)-! plim {XTQsP3W/T}
times plim (WTP3W/T)-! plim {WFQ3aW/T}
times plim (WTP3W/T)-! plim {WIP3QsX/T}
times plim (XTQ1X/T)-! plim {XTQire/T}

0 as T -> (e e} Q.E.D.

3.9 c ions

In this chapter, we have considered a linear regression
model which contains unobservable time effects as well as
individual effects. Given panel data, this model may be
estimated in a variety of ways, depending on what is assumed
about the correlation between the regressors and the effects.
We have given a survey of the literature; we introduced HT-
like estimators for the coefficients of the linear regression
when the effects are assumed to be random and correlated with
some of the regressors, and we introduced estimators for the
variances of the different error components. We also
introduced estimators for the above model that are consistent
as N -> oo for fixed T. These estimators may be useful
because a common problem with panel data is that N is large
but T is small. In the next chapter, we consider the linear

simultaneous equations model with effects.



CHAPTER 4

Simultaneous Equations with Effects

4.1 Introduction

In this chapter, we consider a linear simultaneous
equations model with individual effects. Within this context
we investigate the problem of simultaneity, defined as the
case in which some of the explanatory variables are
correlated with the noise component of the error. We assume
that for each of the M structural equations the data again
consists of T time-series observations on each of N
individuals; we distinguish regressors which vary over time
and individuals from those which vary over individuals but
are time-invariant; and we assume the presence of
unobservable, time-invariant individual effects as well as
the usual statistical noise. We will refer to a variable as
endogenous if it is correlated with the noise and exogenous
if it is uncorrelated with the noise.

We write the model to be considered in this chapter as a

set of M simultaneous equations:

(4.1.1) yitg YitgDg + XitgBg + ZigCqg + uig + eitg

lgooo,N; t=1,-..,T;g=l,ooo,Mo

i
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where there are M equations determining the M endogenous
variables yit1,...,yitn; Yitg is a vector (of dimension
1 x Hg) of endogenous explanatory variables; Xitg is a
vector (of dimension 1 x Gg) of exogenous variables which
vary both over time and individuals; Zig is a vector (of
dimension 1 x Kg) of time-invariant exogenous variables; and
both Dg, Bg, and Cg are vectors to be estimated. The
individual effects uig are unobservable and will be treated
as time-invariant.

Writing each of the M simultaneous equations in matrix

form we have
(4.1.2) yg = YgDg + XgBg + ZgCqg + ug + eg

where yg, ug, and eg denote (NT x 1) dimensioned vectors; Yg
denotes the (NT x H¢) dimensioned matrix of endogenous
variables; and Xg and Zg denote (NT x Gg), and (NT x Kg)
dimensioned matrices of exogenous variables, respectively.
Again, following the convention of Hausman and Taylor, the
observations are ordered first by individuals and then by
time, so that ug and each column of Zg are (NT x 1)
dimensioned vectors consisting of T blocks, with each block
containing the same N entries.

Rewrite equation (4.1.2) as
(4.1.3) yg = RgAg + s8¢

where Rg = [ Yg, Xg, Z¢ ] and Ag = ( DgT, BgT, CgT )T.

Now consider the set of all M equations
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(4.1.4) ys = RsAs + 8»

where
y1 s1 Al
o (] [ ]
Y‘ = [ ’ 8= = . ] A‘ = L] ) and
™ sM Ax
L L N
R1 ]
. 0
R. - . ]
0 .
Ru

We make the usual assumptions about the error terms.

That is, we assume

(4.1.5) .

is iid N( 0, Xu ), and

(4.1.6) .

is iid N( 0, Yo ), where }u and £« are both (M x M) positive
definite matrices. In addition, we assume the e’'s are
uncorrelated with both the u’s and with the (exogenous) X's
and Z's.

For a single equation, say the first equation, the

covariance structure is
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(4.1.7) S11 Cov( ui1 + e1 ) =Je,111INT 4-{}.11(TP)

Ye.,11Q@ + (Fe,11 + TLu,11)P = 012Q + 022P

where Q and P are the same two idempotent matrices given in

chapter 2, 012 = Jo,11, and 022 = (Le,11 + Tiu,11); and so
(4.1.8) sS11-1! = (1/c12)Q + (1/022)P

and

(4.1.9) S11-1/2 = (1/1)Q + (1/d2)P.

And for the system, the covariance structure is

(4.1.10) S = Cov( us + es ) = (Lo ®© INt) + ( Ju @ (TP) )
(f10Q)+ (f2epP)

where J1 =)e and Y2 = (Jo + Tiu).

Throughout this chapter we will consider a natural
extension of the Hausman and Taylor model to a linear
simultaneous equations model with random effects by allowing
some of the explanatory variables to be correlated with the
individual effects. The plan of this chapter is as follows.
In section 4.2 we consider the estimation of the coefficients
of a single linear equation from a simultaneous equations
model. 1In section 4.3 we consider the estimation of the
coefficients of a system of simultaneous equations. An
interesting problem arises for the 1linear simultaneous
equations model with random effects when some of the

explanatory variables are correlated with the individual
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random effects; namely, the instruments need not be the same
for every equation. This is the topic discussed in section
4.4. We summarize our results in section 4.5.

This chapter applies the Hausman and Taylor method of
instrumental variables estimation to the simultaneous
equations panel data model, derives the subsequent
estimators, and discusses their relative efficiency. 1In
addition, it provides a survey of the current literature on
simultaneous equations with effects and translates those

estimators into the notation of this thesis.

4.2 Single Equatjon Estimatijon

Let us now turn to the problem of estimating the
coefficients of a single equation, say the first equation.

That is, we wish to estimate the equation

(4.2.1) y1 = R1A1 + (ur1 + e1).

This is a generalization of the estimation problem considered
in chapter 2 in the sense that, in addition to the "inside"
instruments (i.e. instruments from within the equation
itself), we now have available instruments from "outside" the
equation. Now we need to introduce some notation, but first
we must agree on the type of explanatory variables permitted.
Amemiya and MaCurdy (1986) have considered a simultaneous
equation model with random effects correlated with the
endogenous variables, but in a somewhat non-standard way.

The basic point of view in this thesis is that all variables

correlated with the noise should also be correlated with the
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individual effects, but not conversely. That is, only
exogenous variables can be uncorrelated with the indiv;dual
effects. This point of view can be justified by
consideration of a system in which every structural equation
contains unobserved individual effects. By standard algebra
such a system would imply a reduced form, in which each
reduced form equation has an individual effect which is a
linear combination of the individual effects in the
structural equations. It therefore follows that every
endogenous variable will be correlated with the individual.
effect in every equation, just as it is correlated with every
structural error term. Thus, all endogenous variables must
be correlated with the effects. |

On the otherhand, if we follow a natural extention of
the point of view in Hausman and Taylor, there are two kinds
of exogenous variables possible; namely, those uncorrelated
and those possibly correlated with the individual effects.
That is, if we let X and Z represent the matrices of all
time-varying and time-invariant exogenous variables,

respectively, we can then write X and Z as

(4.2.2) X

[ X1y, Xc2) ]

(4.2.3) z [ Z¢1), Z¢2) ]

where X(1) and Z(1) represents the doubly exogenous

variables, meaning variables uncorrelated with the individual
effects as well as the noise; and X(2) and Z(2) represents

the g8ingly exogenous variable, meaning variables uncorrelated
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with noise but possibly correlated with individual effects.

It is important to note that X(1)

is not the same as X1.

That is, X1 is the matrix of time-varying exogenous variables

that appear in the first equation, and since X1 may consist

of doubly as well as gsingly exogenous variables it may have

elements in both X(1) and X(2).

On the other hand, X

contains both the doubly and singly exogenous variables from

every equation,

contain elements not in Xi.

between Z:,

Z(1),

Zc2), and

not just the first,

so both X(1) and X(2)

may

A similiar relationship holds

Z.

It is an important observation that will be used later

that each instrument set considered in this chapter is of the

form

(4.2.4)

[ X, PE ]

where the set E will vary.

Given this form we can evaluate

P[H] using the following Lemma:

Lenma (4.1)

P[H]

P[H] = P[QX] +
_x‘Q
( QX PE )
ETQ
-
XTQX
( QX PE )
0
QX(XTQX)-1XTQ +

P[PE]

( QX PE )

-

0

ETQE N

PE(ETPE)-1ETP

ETP
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= P[QX] + P[PE] Q.E.D.

The obvious generalization of the analysis of Hausman
and Taylor would be to choose E = [ X(1), Z(1) ] so that the

instrument set is

(4.2.5) H =1 QX, X(1), Z¢1) J].

But we could also consider E = [ X*(1), Z¢(1) ], which is
essentially the instrument set suggested by Amemiya and
McCurdy. As explained by Breusch, Mizon, and Schmidt (1987),
the matrix X*(1) displays each variable geparately for t
=1,2,...,T. That is, for any T x L panel data matrix S, the

T x LT matrix S* is defined by

e ——
F—SII FSII S12 . . . 81T
S17T 811 812 . . . 81T
(4.2.6) S = ’ s* = .
8N1 8N1 SN2 . . . sNY
SNT 8N1 SN2 . . . 8SNTY

This leads to the instrument set

(4.2.7) Ham = [ QX, X*(1), Z(1) ]

A third possibility is E = [ X*(1), Z(1), QX*(2) ], which

implies the instrument set
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(4.2.8) Hews = [ QX, X*(1), Z¢(1), QX*(2) ]

suggested by BMS. For our purposes the list of instruments
given in (4.2.5) will suffice, since the algebra in the other

cases is the same.

(4.2.1) Two-Stage Least Squares

We derive the two-stage least squares estimator as
follows. First, we multiply equation (4.2.1) by S11-1/2 ¢to
transform the error to a scalar covariance matrix. The

transformed equation is simply
(4.2.9) S11-1/2yy = S11-1/2RjA1 + S11-1/2(u1 + e1).

We then follow the path of Hausman and Taylor, by estimating
(4.2.9) using IV with instrument set H. This yields the

following definition:

Definition (4.2): The two-stage least squares (2SLS)

estimator of A1 from equation (4.2.1) is the instrumental
variables estimator of equation (4.2.9), using the instrument

set H. Explicitly,

(4.2.10) ai1,2sLs
= [ RiTS11-1/2P[H]S11-1/2R; ]-1

times R1TS11-1/2P[H]S11-1/2y,,

It is an interesting detail that although we have
transformed equation (4.2.1), we have used the untransformed

instruments, H. Following White (1984, section IV.3), the
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optimal IV estimator is derived by transforming the equation
to be estimated so that its error covariance is scalar (as we
have done), and then using whatever instruments are optimal.
Thus, in general, the question of whether H or S11-1/2H is
preferable depends on which instrument set better explains
the endogenous variables contained in Si1:1-1!/2R;. As Breusch,
Mizon, and Schmidt point out, however, in the present context
transforming the instruments by S1-1/2 makes no difference;
either instrument set leads to the same estimator. This is

implied by the following Lemma:

Lemma (4.3): Given H = [ QX, PE ] defined in (4.2.5) and

S11-1/2 defined in (4.1.9),

(4.2.11) P[H] = P[S11-1/2H].

Proof:

P[S11-1/2H] P[ (1/1)QX + (1/02)PE ]

= P[ (1/01)QX )1 + P[ (1/62)FE ]
{(1/01)QX}{(1/012)XTQX}" 1 {(1/01 )QX}T
+ {(1/02)PE}{(1/022 )ETPE}-1{(1/02 )PE}T

QX{XTQX}-1XTQ + PE{ETPE}-1ETP

PLQX] + PIPE] = P[H)]

Q.E.D.
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(4.2.2) An Orthogonality Condition Derivation of the 2SLS
Estimator

Following Hausman, Newey, and Taylor (1987), we consider
an interpretation of the 2SLS estimator implied by the
instrument-residual orthogonality condition written as plim

f1 /NT = 0, where

(4.2.12) f1 = HTS11-1/2(y1 - Ri1A1).

Now the covariance structure of fi1 is

(4.2.13) Cov(fi) = Ci1 = HTS11-1/28;1811-1/2H = HTH

The instrumental variables estimator (also known as the
"Generalized Method of Moments" estimator) then is the
solution to the problem of minimizing with respect to A1 the

quadratic distance from zero of fi:

(4.2.14) f1TCi1-1f1 = (y1 - R1A1)TWi(y1 - R1A1)

where

(4.2.15) W1 S11-1/2HC1-1HTS1-1/2

S11-1/2H(HTH)-1HTS11-1/2

is a quadratic form. This solution can be written as

(4.2.16) aip,1v

[ RiTWiR:1 ]J-'R1Twiya

[ RiTS11-1/2H(HTH)-1HTS11-1/2R; ]-1!
times RiTS11-1/2H(HTH)-1HTS11-1/2y,

[ RiTS11-1/2P[H]S11-1/2R; ]-1!

times Ri1TS11-1/2P[H])S11-1/2y;.,
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It can readily be seen that ai,1v is equal to the 2SLS
estimator of A1 given in (4.2.10).
It is an interesting result that Si11-1/2 in the
orthogonality condition given in (4.2.12) is superfluous. To
see this, consider the simpler orthogonality condition plim

f2 /NT = 0, where

(4.2.17) f2 = HT(y1 - Ri1A1).

Noting that

(4.2.18) Cov( f2 ) = C2 = HTS11iH,

the problem of minimizing with respect to A1 the quadratic

distance from gero of f2,
(4.2.19) f2TCz2-1f2 = (y1 - R1A1)TW2(y1 - Ri1A1)

where the quadratic form W2 = H(HTS11H)-1!HT, yields the

solution
(4.2.20) az,1v = [ RiTW2R1 ]-1R1TWay1.

Now we can write W2 as

(4.2.21) W2
= H(HTS11H)-1HT
XrQ XTQ
= ( QX PE ){ ( 012Q + 022Q )( QX PE ) }-1?
ETQ ETQ
-1
d12XTQX 0 XTQ
= ( QX PE )

0 d22ETQE ETP



134

(1/012)QX(XTQX)-1XTQ + (1/d22)PE(ETPE)-1ETP
(1/5012 )P[QX] + (1/022)P[PE].

On the other hand, W1 given in (4.2.15) can be written as

(4.2.22) Wi S11-1/2H(HTH)-1HTS;1-1/2

[ (1/n2)Q + (1/022)P ]P[H]
times (1/012)Q + (1/022)P ]

(1/012)P[QX]) + (1/022)P[PE].

Therefore, W1 = W2 and the two estimators are the same.
Substituting W1 from (4.2.22) into the 2SLS estimator given

in (4.2.16), we can rewrite the estimator as

(4.2.23) a1,2sLs
= [ (1/012(QR1)TPI[QX](QR1)
+ (1/022(PR1)TP[PE](PR1) ]-1!
times [ (1/012(QR1)TP[QX](Qy1)
+ (1/022(PR1)TPI[PE](Py1) ].

Now the same line of proof used above would show that
you would get the same estimator based on the orthogonality

conditions

(4.2.24) f3 = HTS11-1(y1 - RiA1).

This is in any case obvious because it corresponds to
transforming both the equation and the instruments by
S11-1/2, yhich we have shown above to be the same as

transforming only the equation and not the instruments.
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(4.2.3) Baltagi’'s Error-Component Two-Stage Least Squares
Estimator

Baltagi (1981) considers a simultaneous equations model
with effects which, in addition to individual effects,
contains time effects as well. In contrast to the model
considered in this chapter, Baltagi’s does not distinguish
between doubly and gingly exogenous variables; implicitly he
assumes that only doubly exogenous variables exist among the
explanatory variables. 1In Baltagi’s notation the Error-
Component Two-Stage Least Squares (EC2SLS) estimator can be

written as

(4.2.25) a1,ec2sLs

3
= {L (Z1(M))TP[X(h) ]Z3(h) /gy (h)2 }-1
h=1

3
times { 2 (Z1(h))TP[X(h) ]Z1(h) /gy (h)2 },
h=1

On the other hand, the 2SLS estimator given in (4.2.23) can

again be written as

(4.2.26) a1,2sLs = [ (1/022(QR1)TP[QX](QR1)
+ (1/012(PR1)TP[PE](PR1) ]-1?

times [ (1/022(QR1)TP[QX]1(Qy1)
+ (1/n2(PR1)TP[PE])(Py1) ].

This is "essentially" Baltagi’'s estimator translated into our
notation. We use the word "essentially" in the preceding
sentence because we do not include time effects in our model.

Now, if we assume only individual effects, we have the
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translation as follows: Baltagi’s Z1 is our Ri1, his §1 is
our A1, his X is our (X, Z), his Z1(1) is our PR1, his X(1)
is our PX, his oc11(1) is our 022, and both his 011(2) and
011(3) are our d12. Since time effects are not present the
distinction between the two terms X(2) and X(3) is irrelevant
so in Baltagi’s notation X(2) 4 X(3) ig our QX. Similiarly,
his Z21(2) + 21(3) is equal to our QR1. Therefore, Baltagi’s

EC2SLS estimator can be written using our notation as

(4.2.27) a1,Ec2sLs
= [ (1/022(QR1)TP[QX](QR1)
+ (1/012(PR1)TP[P(X, Z)](PR1) ]-!
times [ (1/022(QR1)TP[QX]1(Qy1)

+ (1/012(PR1)TP[P(X, Z)](Py1) 1.

It is easily seen that this estimator is the same as the
a1,2sL8 when E = (X, Z); that is, when there are no singly

exogenous variables.

4.3 Syst t o

In section 4.2 we discussed "single-equation" methods of
estimation in the sense that the estimators there operated on
each equation separately. This section will discuss
"systems" methods of estimation, which estimate all equations
jointly. The motivation for considering joint estimation is
of course that the joint estimates are generally more
(asymptotically) efficient than the single-equation
procedures.

Again, let us consider the set of all M equations
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(4.3.1) v = R=As + S=

where of course

— - — - — -
y1 s1 Al
Yy = . ’ Ss = D ’ Ae = . ’ and
™ sM Ax
L L -
._Rl
0
R. = . [}
0
Ru

Note that the covariance matrix of s= is

(4.3.2) S Cov( us + es ) = ( Je @ INT) + ( Yu ® (TP) )

(L1 0Q@) + (f20P)

(4.3.3) 81 = (J1-1 Q) + (2-1 ®@P)
(4.3.4) s-1/2 = (L,-1/2 9Q ) + ( L2-1/2 @ P )

where J1 = 3eQ and Y2 = (Le + TLu); Q and P are, again the
two idempotent matrices used before.

Recall that X and Z represent the matrices of all time-
varying and time-invariant exogenous variables, respectively,

and that we can write X and Z as

(4.3.5) X

[ X1y, Xc2) 1]

(4.3.6) YA

[ Z¢1y,y, Z(2y ]

where X(1) and Z(1) represent the doubly exogenous variables,
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meaning uncorrelated with the individual effects as well as
the noise; and X(2) and Z(2) represent the singly exogenous
variable, meaning uncorrelated with noise but possibly
correlated with individual effects. Note that the
decomposition in both equations (4.3.5) and (4.3.6) are
without reference to a particular equation. This is because
we are assuming that we have the same instruments in every
equation; that is, if a variable is doubly exogenous in one
equation then it is doubly exogenous in every equation and
likewise, if a variable is gingly exogenous in one equation
then it is singly exogenous in every equation. We will
consider the more complicated case when the instruments may
differ from equation to equation in section 4.4. Finally,
recall that our instrument set is of the form H = [ QX, PE ],

where E = ( X(1), Z(1) ).

(4.3.1) Three-Stage Least Squares

We derive the three-stage least squares as follows.
First, we multiply equation (4.3.1) by S=-1/2 to transform
the error to a scalar covariance matrix. The transformed

equation is simply

(4.3.7) S=-1/2ys = Ss-1/2ReAe + Se-1/2gs,

We then follow the path of Hausman and Taylor, by estimating
(4.3.7) using IV with instrument set (I O H). This yields

the following definition:
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Definition (4.4): The three-stage least squares (3SLS)
estimator of A« from equation (4.3.1) is the instrumental
variables estimator of equation (4.3.7), using the instrument

set (I @ H). Explicitly,
(4.3.8) a3sLs

= [ ReT( I1-! © P[QX] ) + ( Z2-! © P[PE] )Rs ]-!

times ReT( J1-1 © P[QX]) ) + ( 22-1 @ P[PE] )Rsys.

(4.3.2) Instrumental Variables Estimation

Following Hausman, Newey, and Taylor (1987), we consider
an interpretation of the 3SLS estimator implied by the
instrument-residual orthogonality condition written as

plim f«/NT = 0, where

HT (y1 - Ri1A1)
(403n9) f. s .
HT (yu - RMAn)

e - c—

= (I ®© HT )(ys - ResAs).
The covariance structure of f= is

(4.3.10) Cov(fs) = Cs = (I @ HT)S=(I @ H)

= (IQHT)( X1 ©€Q ) + (J2©P )(I & H)

(%1 @ HTQH ) + ( L2 © HTPH ).

To assist in the simplification of the estimators considered

below we need the following Lemma:
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e 4.5): Suppose T1 and T2z are positive definite,

nonsingular matrices and H = [ QX, PE ]. Then

(4.3.11) { ( T1 © HTQH ) + ( T2 © HTPH ) }-1!

= Ti-! @ (HTQH)-! + Tz2-1 @ (HTPH)-!.

Proof:
Using Baltagi’s lemma (Baltagi (1980), p. 1548), it is

sufficient to show that

(HTQH) (HTPH)
XTQ XTQ
= Q( QX PE ) P( QX PE )
ETP ETP
XTQX 0 0 0
) o o]l o EreE
—b 0
= - 0. QoEoDo
0 0

As before the instrumental variables estimator (also
known as the "Generalized Method of Moments" estimator) is
then the solution to the problem of minimizing with respect

to As the quadratic distance from gero of fs,

(4.3.12) f+sTCa-1fu = (ys - ReAs )TWe(ys - ReAs)

where

(4.3.13) We = (I ©@ H)Cs-1(I © HT)

is a quadratic form. By Lemma (4.5), Cs-1 can be written as
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(4.3.14) Cs-1 = J1-1 @ (HTQH)-! + §2-1 © (HTPH)-!

80 we can rewrite W= as

(4.3.15) Ws (I @ H)( J1-! ® (HTQH)-1
+ Y2-1 © (HTPH)-! )(I © HT)

(Za1-! @ H(HTQH)-1HT )

+ ( Y2-! @ H(HTPH)-1HT )

( I1-' @ P[QH) ) + ( £2-! e P[PH] )

( L1-! @ PIQX] ) + ( L2-! @ P[PE] ).

The solution can be written as

(403016) as=

[ ReTWaRe ]-1ReTWsys

[ ReT( J1-1 @ P[QX]) ) + ( Y2-! @ P[PE] )Rs ]-!

times ReT( J1-1 ® P[QX] ) + ( Y2-! © P[PE] )y=

It can readily be seen that as is equal to the 3SLS estimator
of As given in (4.3.8).

An alternative estimator can be derived from the
instrument-residual orthogonality conditions given in (4.3.9)

if, in place of the quadratic form Ws we use instead

(4.3.17) W2 (I @ H)[( diag(}Y1) © HTQH )

+ ( diag(¥z2) ® HTPH )]-1(I © HT).

diag(Y1)-! ® H(HTQH)-1HT

+ diag(f2)-! ® H(HTPH)-1HT

diag(f1)-! @ P[QH] + diag(Z2)-! @ P[PH)
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where diag(y1) and diag(fz) are diagonal matrices whose
diagonal entries are the diagonal entries of Y1 and }:2,
respectively. Thus, we do not take account of the fact the
covariance structure of f+« is ( 23 ®© HTQH ) + ( Y2 ® HTPH )
rather than ( diag(fi) © HTQH ) + ( diag(f2) ® HTPH ). This

yields the estimator

(4.3.18) as=2

[ReTW2Re ]-1RaTW2 ys»

[ReT( diag(21)-! ® P[QH] + diag(}z)-! @ P[PH] )R«]-1!

times ReT( diag(l1)-1 © PI[QH] + diag(}z2)-! ® P[PH] )y=.

Since Rs, diag(Y1)-! © P[QH], and diag(}¥2)-! ® P[PH] are
block diagonal and since $i111P[QH] + ¥ii2P[PH]
= Si11-1P[H] = Sii1i-1/2P[H]Si1-1/2, we can rewrite (4.3.18)

as

(4.3.19) a=2

B ]
[R1TS11-1/2P[H]S11-1/2R; ]-1?

| [Rn’Snn'lsz[H]Sun-IIZR“]-:

R1TS11-1/2P[H]S11-1/2y;

times .

Rn'Snn'llzP[H]Sun'llzfj

S

which can be seen equal to be 2SLS applied to each equation

separately.
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Since Wz is a suboptimal weighting matrix, this is one
way of proving 3SLS efficient relative to 2SLS.
Still another estimator can be derived if we consider,
instead of (4.3.9), the instrument-residual orthogonality

conditions written as plim f3/NT = 0, where

(4.3.20) fa = (I @ HT )S-1(y= - RsAs).

The covariance structure of f3 is written as

(4.3.21) Ci =Cov( f3 ) = (I ® HT)S-1(I @ H).

It is an interesting result that S-1 in the orthogonality
condition given above is superfluous. To see this, consider
the problem of minimizing with respect to As the quadratic

distance from zero of f3,

(4.3.22) f3TCa-1f3 = (y* - R+As)TW3(ys - RsAs)

using the quadratic form

(4.3.23) W3 = S-1(I @ H)[(I © HT)S-1(I © H)]-1(I ® HT)S-1,.

The solution to this problem yields the estimator

(4.3.24) as3 = [ ReTW3Re ]-1ReTW3ys,.

Now we can write C3-1 as

(4.3.25) Cs-1

{ (I ® HT)S-1(I @ H) }-!

{(I®HT)( {11 ®Q + J2-1 @ P )(I © H) }-1?

{ Y1-1 @ HTQH + J2-1! @ HTPH }-!
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= Y1 ® (HTQH)-! + J2 ® (HTPH)-!

using Lemma (4.5). Then W3 can be written as

(4.3.26) W3

S-1(I @ H)C3-1(I @ HT)S-1

S-1(I @ H){ £1 ® (HTQH)-! + J2 © (HTPH)-! }(I @ HT)S-!
$3-13111-1 @ H(HTQH)-1HT + J2-1Y2Y2-1 @ H(HTPH)-1HT
I1-1 e PIQH] + Y2-! @ P[PH])

$1-1 @ P[QX] + [2-! @ P[PE]).

Therefore, comparing W3 given above to Ws given in (4.3.15)
it is clear that W« = W2, so the two problems are the same
and the presence of S-! in the orthogonality condition of

(4.3.20) is irrelevant.

(4.3.3) Special Cases

Consider the model

(403.27) y. = R'A‘ + S=

We showed in section 4.3.2 that the 3SLS estimator can be
interpreted as an IV estimator using the instrument set
(I ® H). As we have shown before, H = [QX, PE] where E
= (X1, Z1) contains the doubly exogonous variables present in
the model.

For our first special case, suppose that there are no
doubly exogonous variables; i.e. all exogenous variables are
correlated with the individual effects. Then the set E is

empty and we should have fixed effects. Suppose also there
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are no time-invariant variables Z since estimation of their

coefficients would now be impossible. Our estimator becomes

(4.3.28) a3sLs = [ReT (f1-! @ P[QX] Re]-1?

times R«T(L1-1 @ P[QX] )y=.

An alternative approach to fixed effects estimation
would be to derive the 3SLS estimator by first premultiplying
equation (4.3.27) by (I © Q), a system-wide within

transformation, yielding

(4.3.29) (I ®Q)ys = (I © Q)ReAs + (I © Q)ss»

and then using the instrument set H = ( QX ). This fixed

effects (within) estimator becomes

(4.3.30) ar:

= [ ReT( J1-1 ® P[QX] )Re ]-1ReT( £1-1 @ P[QX] )Reys.

This estimator can be seen as equal to our 3SLS estimator
when there are no doubly exogenous variables.

Estimation of the panel-data simultaneous equations
model with fixed effects have been considered by Cornwell and
Schmidt (1987). There they show that in a simultaneous
equation model in which the same exogenous variables in each
equation have coefficients which vary over individuals, the
MLE, the conditional MLE and the marginal MLE coincide. This
is obviously a more general model than the one being
considered here, but their model does simplifiy to a fixed-

effects version of the simultaneous equations model with
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individual effects. In effect, they show that the MLE, CMLE
and MMLE coincide in a simultaneous equation model with fixed
effects. Their results imply that just as in the single
equation case, the coefficients of the time and individual
varying explanatory variables are determined by the "within"
component of the likelihood and that the coefficients of the
time invariant or the individual-invariant explanatory
variables is determined by the appropriate "between"
component of likelihood.

For our second special case, suppose there are no gingly
exogenous variables so all the exogenous variables are
assumed uncorrelated with the individual effects. This is
the Baltagi case; that is, the case when H = [QX PE] where E
= (X, Z). In Baltagi’s notation his error-component three-

stage least squares (EC3SLS) estimator can be written as

(4.3.31) EC3SLS

{hf (Za(M))T( L(h) @ P[X(h)] )Zy(h) }-2
1

3

times {hE (Z1(B) )T ( F(h) @ P[X(h)] )Z1(h) },
=1

On the other hand, the 3SLS estimator given in (4.3.8) can

again be written as

(4.3.32) a3stLs
= [ ReT( J1-1 @ P[QX] ) + ( X2-! ® P[PE] )Re ]-!

times Re«T( L1-1 @ P[QX] ) + ( £2-! © P[PE] )Rsys.

This is essentially Baltagi’s estimator translated into our
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notation. That is, if we assume only individual effects,
note that his (1) is our J2-1 and his }(2) + J(3) is our
f}'l, and further, use the translation of section 4.2.3, then

Baltagi’s EC3SLS estimator in our notation is

(4.3.33) axcssiLs
= [ ReT( L1-! @ P[QX] ) + ( Y2-! ® P[PE] )Re ]-!

times RsT( $1-1 @ P[QX] ) + ( £2-1 © P[PE] )Reys.

which is the same as a3sis.

(4.4) 3SLS with Different Instruments

We now allow different instruments to exist in different
equations. To this end we need to introduce some notation.
Let Hi = [QX PE1] be the instrument set for equation 1, Hz =
[QX PEz] be the instrument set for equation 2, etc. Note
that as before each instrument set is of the form H
= [QX PE], but the E’s differ across equations. This is
because they contain variables that are doubly exogenous but
only with respect to each particular equation. In this
section a variable which is doubly exogenous for one equation
may not be doubly exogenous in another.

Recall that in section 4.2 we derived the 2SLS estimator
for the first equation by considering the instrument-residual

orthogonality condition based on
(4.4.1) f1 = HiT(yr1 - R1A1).

Using
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(4.4.2) Ci1 = Cov( f1 ) = HiTS11Hi,

the solution to the problem of minimizing the quadratic

distance from gero to fi,

(4.4.3) f1T(H1TS11H1)-1£,)

(y1 - R1A1 )H1 (H1TS11H1)-'H1T(y1 -Ri1A1

(y1 - RiA1)((1/012) P[QX] + (1/022)P[PE1])(y - R1A1)

yvields the estimator

(4.4.4) a1,2sLs

[RiTWiR1 ]J-1R1iTwaiy

(R17((1/012) PI[QX] + (1/022 P[PE])R11]-1}

times R1T((1/012) P[QX] + (lldhi) P[PE])y:1
where
(4.4.5) W1 = HiCi-1HaT = Hi(H1TS11H1)-1HaT,

and the covariance structure for our 2SLS estimator is given

by

(4.4.6) Cov(ai,2srs)

[R1iTW1R1]-1

[R1T((1/012) P[QX] + (1/023) P[PE]) R1]-!.

Now we will derive the joint 2SLS estimator; a system

estimator with 2SLS applied to each equation separately. Let
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(4.4.7) Hs = .

Then we write the instrument-residual orthogonality

conditions as plim f=1/NT = 0, where

(40408) f‘l = Hlt(y‘ - R'A.)o

Although the covariance structure is

(4.4.9) Cs = HeTSH=

we used instead the sub-optimal weighting matrix

(4.4,10) We1 = Hs (HeTblg(S)Hs )-1HaT

where
S11
. 0
(4.4.11) blg(s) = . .
0 [ ]
Sun

We minimize the quadratic distance

(4.4.12) f«17(HeTblg(S)Hs )-1fs,

which yields the joint 2SLS estimator

(4.4.13) a=2sLs

[ReTWe1Re ]J-1 R1TWe1ys

[ReTHs (HeTblg(S)Hs )-1H1Ts«1Rs ]-1R1TWa1ys

Because Rs, A=, and blg(S) are block diagonal, we have
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(4.4.14) as2sLs

F}RITHI(HLSIIHI)'IHITRI]'I

[ReTHn (HuSunHn )= 2HnTRa -1 |

RiTH1 (H1TS11H1 )-1H1iTy1
times ..
‘Ra'Hn(Hn’Snan)'lﬂnTyn
which can be seen as 2SLS applied to each equation

separately. And

(4.4.15) Cov(as2sLs)

[ReTWes1Re ] 1 Rs TWe 1 SWeTRs [ReTWe 1 Re ]- 1

[ReTHs (HsTblg(S)Hs )-1HsTRs ]-1R«TWs S

times WesTRe [ReTHe (H«eTblg(S)H= )-1H«TRs ]-1

Now consider again the instrument residual orthogonality
conditions given in (4.4.8). Using the correct covariance
structure, the problem of minimizing the quadratic distance

from zero of f=1,

(4.4.16) fe1TWe2fe1

where

(4.4.17) VWs2 HeCs~=1HeT

He (He TSHe )-1 HaT

yields the 3SLS estimator

T R T T
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(4.4.18) as3sL [ReWs2Re ]-1 ReWs2ys

[ReHsCs~-1HsTRs ]-1 ReHsCe-1HaTys«

with covariance matrix

(4.4.19) Cov(as3srs) (ReTWs2Re )-1

(ReTHeCs-1HeTRs )-1,

It is a standard result that this estimator is efficient
relative to the 2SLS estimator given above. And when
H+ = (I ® H), it is easy to show that 3SLS given in (4.4.18)

simplifies to 3SLS given in section 4.3.

heore .6): When Hs = (I € H), the 3SLS estimator
given in (4.4.18) reduces to the 3SLS estimator given in

(4.3.8).

Proof:
Note that when H+ = (I © H) where H = [QX PE], the

weighting matrix in (4.4.17), using Lemma (4.5), reduces to

the matrix

(4.4.20) W=2 Hs [Hs TSH=s JHeT

(I H)[I © HT)S (I ® H)]-1(I ® HT)

(I 8 H)( Ia-! @ (HTH)-!

+ $£2-1 @ (HTH)-! )(I ® HT)

$1-1 @ P[QH] + J2-1 @ P[PE]

Ti-1 6 P[QX] + [2-1! @ P[PE]

Since this reduced to the same weighting matrix used in
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(4.3.8), the result follows. Q.E.D.

The question we now ask is whether our EC3SLS estimator
for the more general model allowing instruments to vary
across equations is efficient. We ask whether the
instrument-residual orthogonality conditions given in (4.4.8)
can be mixed using the cross equation covariances as weights.

Consider a positive definite matrix C (of dimension

M x M) and the vector

(4-4021) f's

HeT(C ® Ir)(y*= - RsAs)

po— e

L ci1iHi1T(ys1 - AiRi)
i=1

M
Y cuiHuT(ys - AiRi).
| i=1 -

Thus premultiplying the instruments He« by a matrix of the
form (C ©® I) would "mix" the equations (unless C was
diagonal) and introduce terms like the cross-product

HiT(yi1i - RiAi ) whose probability limit we implicitly assumed
was not zero for at least one j = 1,...., M. (If not then we
have the special case when Hi = H2 = ...= Hu.) Thus, f=3
does not represent true instrument-residual orthogonal
conditions so even consistency of any resulting estimator
would be in doubt. Therefore, the orthogonality conditions
f=*3 would not lead to an improved estimator.

The question of whether we can improve the 3SLS
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estimator derived from f=2 must be addressed by searching
among estimators derived from transformations of fs2 which do
not create new and illegitimate cross-products. We pursue
this line of reasoning in the remainder of this section.

Now there are two ways to order the instrument-residual
orthogonality conditions given by fs2. We can order first by
residuals and then by instruments (which has been the method
used so far) or we can order first by instruments and then by
residuals. We will address the question of transforming the
orthogonality conditions ordered in each of the two ways and
consider the effect, if any, on the resulting GMM estimator.

First, we need to introduce some notation. Let

(4.4.22) H=1[ h1, « « « 4 hL ]

be the set of all instruments; L denotes the total number of

instruments. Then define

U1
(4.4.23) Us =

Un

to be a selection matrix where HUi = Hi; each matrix Ui (of
dimensions Li x mi) selects from H the instruments orthogonal
to the residual si; and mi equals the number of instruments

orthogonal to residual si. We can now write

HU1 Hi
(4.4.24) (In O H)Us =

HUn Hn
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= Hs .

It would follow that the sum m1 + . . . + mu is the total
number of instrument residual orthogonality conditions found
in (4.4.6) and that the matrix Us is of dimension

(mm + . . . + mm) x ML.

We can now write (4.4.6) as

(4.4.25) f=q UsTvec(HTs) = UsT(In ® HT )vec(s)

HiT 81

and the covariance matrix of f=4 as

(4.4.26) C=q4 = Cov(fesa) = E{ UsTvec(HTs)vec(HTs)TUs }
= E{ UsT(IM ® HT )vec(s)vec(s)T(In ® H)Us }

UsT(In O HT)(J1 € Q + Y2 6 P)(In O H)Us

UsT(J1 © HTQH + 12 ® HTPH)Us

since E{ vec(s)vec(s)T } =31 € Q + Y2 6 P. The quadratic

distance to zero of fs¢ can be written as

(4-4.27) f‘l'C‘G'lfiC

= vec(8)T(In © H)UsCeq4UsT (In ® HT )vec(s)

Now define the matrices Ti1 (i = 1,.., M) where T1 is a

positive definite square matrix of order mi. Then
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(4.4028) T‘ = .

is a positive definite, square matrix of order equal to the
total number of restrictions. We can then transform the

orthogonality conditions in (4.4.25) by T+ and write them as

(4.4.29) fe«4

T«sTUsTvec(HTS) = TsTU«T(In ©® HT )vec(s)

r-:1‘1"01"}1" s1
“ IS (Y
L) [
TuTUnTHT sM
—— —— h— J
[ = [ =
TiTH21T 81
TuTHuT | s

We should note that each block, TiTHiTSi, is a mix of the
cross-products beween the instruments in Hi and the residual
8i. Since every instrument in Hi is orthogonal to residual
81, TiTHiTSi represents a mixing of only legitimate
instrument-residual orthogonality conditions. In this mixing
cross-products which have nonzero probability limit

are not introduced.

Now consider

(4.4.30) C=4

= Cov(feq)
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E{ T«TUsTvec(HTs)vec(HTs8)TUsTs }

E{ TeTUsT(In O HT )vec(s)vec(s)T(In @ H)UsT= }

TsTCuqTs

We then write the quadratic distance to gero from fs4 as

(4.4.31) (f»a)T(Coa)-1feq

= vec(HTS)TUsTs [TsTCeqgTes ]-1T«TUsTvec(HTs)

veC(HTS)TUsTe Te~1Cu g1 (TeT )-1T«TUsTvec(HTs)

= vec(HT8)TUsCs4-1UsTvec(HTs)

vec(s)T(In ©® H)UsCeqUsT (In @ HT )vec(s)

which is the same as in (4.4.27). Thus, the GMM derived from
either f+4 or f+4 would be the same. Therefore, mixing the
instrument-residual orthogonality conditons having a common
residual will have no effect on the resulting estimating.

We next consider mixing the orthogonality conditions in
(4.4.6) within subgroups with a common instrument but first

we need to introduce some additional notation. Let

(4.4.32) 8+ = ( 81, ¢« o« o« 484 )

be the matrix (of dimension T x M) containing the residuals.

Then define

(4.4033) 8(1) = 80V1, i = 1, . . . [} L’

as the matrices (of dimension T x li) containing only those
residuals assumed orthogonal to the instrument hi. s(i1) is
the matrix which selects the li residuals from the list in

(4.4.32) where 1li denotes the number of residuals orthogonal
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to instrument hi. Note that there are as many s(i)’'s as
there are instruments.

The matrix containing all the selection matrices can be

written as

(404.34) Vs = . .

Vi

We can now rearrange the instrument-residual
orthogonality conditions found in (4.4.25) first by
instrument and then by residuals. The orthogonal conditions

reordered in such a manner can be written as

(4.4.35) fa5 VeTvec(sTH)

VeT (IL © 8T )vec(H).

It should be pointed out that this rearrangement has in no
way effected the orthogonal conditions; the same instrument-
residual orthogonal conditions contained in (4.4.25) are
still found in (4.4.35) but now in a different order.

The covariance structure of fss5 is written

(4.4.36) Cess = Cov(fss) = E{ VsTvec(sTH)vec(sTH)TVs }

E{ VeT(HT ® In)vec(sT)vec(sT)T(H ® In)Vs }

VeT(HT @ In)(Q O® L1 + P ©%Y2)(H © In)Vs

VeT (HTQH © Y1 + HTPH © §2)Vs

since E{ vec(s)vec(s)T } = Q@1 + PO f2. So the

quadratic distance from f=5 to zero can be written as
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(4.4.37) (f»5)T(Cxs5)-1fss

= vec(sTH)TVeCes-1VaTvec(sTH).

Now define the matrices Ti (i =1, . . ., L) where Ti is
positive definite, square matrix of order li and so

Ta

A J

(4.4038) T‘

TL

is a positive definite, square matrix of order equal to the
total number of restrictions. We can then transform the
orthogonality conditions in (4.4.35) by T+ and then write

them as

(4.4.39) f=5 VeTvec(sTH)

PTl‘V1'9’h1—

L]

TLTVLTsThy

We note that each block, TiTViTsThi, is a mixing of the
instrument-residual orthogonality conditions but for only a
single instrument hi. That is, we are mixing the cross-
products of s(i1) and hi which are all assumed to have a
probability limit equal to gero. Thus, we have not
introduced illegitimate instrument-residual cross-products
whose probability limit may be nonzero.

Now consider
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(414040) g_ls

Cov(fes)

E{ T+TVsTvec(sTH)vec(sTH)TVsTs }

E{ TsTVeT (HT @ In)vec(sT )vec(sT )T(H @ Iy )VsTs }

TeTCesTs

We then write the quadratic distance to zero from fs5 as

(4.4.41) (£s5)T(Ce5)-12fes
= vec(STH)TVeTs [TeTCesTs |- 1T« TVeTvec(sTH)

vec(STH)TVeTsTe-1Cas5-1(TeT )-1TeTVeTvec(sTH)

vec(s8TH)TVeCss-1VeTvec(s8TH).

By comparing the above quadratic distance to that given in
(4.4.37), we find that as long as the Ti’'s are nonsingular so
T+«-1 exists, transforming the orthogonality conditions in
(4.4.37) by T= will have no effect on the resulting GMM
estimator.

In summary, when transforming the instrument-residual
orthogonality conditions when the instruments are different
for each residual, we must restrict ourselves to
transformations which do not create new and illegitimate
cross-products. Unfortunately, when we do so it turns out
that there is no gain for doing such transformation - we just

get back the 3SLS estimator.
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4.5 Conclusions

This chapter applies the Hausman and Taylor method of
instrumental variables estimation to the simultaneous
equations panel data model, and derives the subsequent
estimator. Throughout, we attempt to improve our
instrumental-variables estimator by transforming the error so
to change its error covariance or by transforming the
instruments so to improve their explanatory abilitiy of the
endogenous variables. We consider a natural extension of the
Hausman-Taylor model to a linear simultaneous equation model
with random effects by allowing the effects to be potentially
correlated with some of the regressors. We then consider the
affect on our instrumental-variables estimator when the
instrument sets are not the same for each equation in the

system.
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Conclusion

In this thesis, I have considered the specification and
estimation of linear models in the presence of panel data.
The previous literature on this topic can be organized
according to the following four distinctions: first, the
nature of the model, such as single equation versus
simulataneous equation model: second, whether there are
assumed to be individual and time effects, or just one or the
other; third, whether the effects are assumed to be fixed or
random, and, if they are random, whether they are assumed to
be correlated with some or all of the explanatory variables;
and fourth, whether asymptotic properties of the estimators
depend on a large number of individuals (large N), a large
number of time periods (large T), or both. Existing papers
cover some but not all of the possible combinations of these
assumptions, and the basic purpose of this thesis is to fill
in some of the more obvious gaps in the literature by
considering plausible and important combinations of
assumptions not previously considered. However, another
purpose of the thesis is to advance a particular mathematical

framework for the analysis and to demonstrate its usefulness.

161
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There are three substantive contributions of the thesis.
The first is to extend the analysis of Hausman and Taylor
(1981) to a model containing individual and time effects
correlated with some or all of the regressors, under the
assumption of large N and small T. I consider random
individual and time effects, and allow the regressors to be
correlated or not with either or both types of effects. The
analysis is similiar to that of Hausman and Taylor, but it is
algebraically more complicated because there are more
different types of exogeneity assumptions to consider. It
should also be noted that all previous treatments of models
with both individual and time effects assume large N and
large T. I consider this case in detail, but I also consider
separately the case of large N and small T (as assumed by
Hausman and Taylor).

The second contribution of the thesis is to extend the
analysis of Hausman and Taylor to a single equation in a
simultaneous equations system; that is, to a regression
model in which some of the regressors are correlated with the
random noise component of the error. This case has
Previously been analyzed by Amemiya and MaCurdy (1987), but
in an unsatisfactory way. I follow Hausman and Taylor and
Amemiya and MaCurdy in considering random individual effects
(no time effects) which may be correlated with some or all of
the exogenous regressors, and in assuming large N and small
T. I propose 2SLS estimators based on instrument sets

proposed by Hausman and Taylor, Amemiya and MaCurdy, and
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Breusch, Mizon, and Schmidt (1987).

The third contribution of the thesis is to propose full-
information (3SLS) estimators for a simultaneous equations
system with random individual effects correlated with some or
all of the exogenous variables. These estimators are shown
to reduce to the usual fixed-effects treatment if all
exogenous variables are correlated with the effects, and to
reduce to an estimator previously proposed by Baltagi (1981) ‘
if none of the exogenous variables are correlated with the
effects. I also consider the case in which some exogenous
variables may be correlated with the effects in some
equations but not in others, so that the available instrument
set varies from equation to equation.

The line of research followed in this dissertation can
be extended in a straightforward fashion by considering
additional new combinations of the assumptions underlying
previous work. One obvious and interesting task would be to
analyze a simultaneous equations model when there are both
individual and time effects that may be correlated with the
exogenous variables. A second possible topic of future
research is to consider single equation models in which the
random noise component of the error has a non-scalar
covariance matrix. Finally, although this direction of
research is less clearly defined, I hope to extend the

analyses of this dissertation to nonlinear models.
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