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ABSTRACT

INSTRUMENTAL-VARIABLE ESTIMATION OF

A PANEL DATA MODEL

By

Donald J. Wyhowski

This dissertation involves the estimation of a linear

regression model in the presence of panel data. My research

develops appropriate econometric techniques for such models,

under differing assumptions about the correlation between the

explanatory variables and the (unobserved) effects.

My three major contributions are: First, I have

extended the analysis of Hausman and Taylor (1981) to a model

containing individual and time effects correlated with some

or all of the regressors, under the assumption of large N and

small T. I consider random individual and time effects, and

allow the regressors to be correlated or not with either or

both types of effects.

Second, I have extended the analysis of Hausman and

Taylor to a single equation in a simultaneous equations

system; that is, to a regression model in which some of the

regressors are correlated with the random noise component of

the error.’ I propose ZSLS estimators based on instrument

sets proposed by Hausman and Taylor, Amemiya and MaCurdy

(1986), and Breusch, Mizon, and Schmidt (1987).

Third, the dissertation proposes full-information (3SLS)

estimators for a simultaneous equations system with random

individual effects correlated with some or all of the
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exogenous variables. These estimators are shown to reduce to

the usual fixed-effects treatment if all exogenous variables

are correlated with the effects, and to reduce to an

estimator previously proposed by Baltagi (1981) if none of

the exogenous variables are correlated with the effects. I

also consider the case in which some exogenous variables may

be correlated with the effects in some equations but not in

others, so that the available instrument set varies from

equation to equation.
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CHAPTER 1

Introduction

In this thesis, we consider the estimation of a linear

regression model using panel data. Following the usual

practice in the literature, we assume that this data consists

of T time—series observations on each of N individuals.

Models using panel data present the possibility that some of

the explanatory variables could be constant over either of

the two indices (T or N) and that these variables could be

unobservable. Such unobservable time-invariant and

individual-invariant variables are called individual and time

effects, respectively. Our research will develop appropriate

econometric techniques for panel data models, under differing

assumptions about the correlation between the explanatory

variables and the (unobserved) effects.

It is commonly argued (e.g., Theil (1972), p. 104) that

the stochastic disturbance in the usual regression model

reflects the joint influence of the variables not included in

the model. In the case of panel data, the individual effects

would represent the influences of those neglected variables

which are time-invariant, and similiarly the time effects

would represent the influences of those neglected variables
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which are indivual-invariant. Clearly, least squares applied

to a model including either type of effects will be biased if

these neglected variables are correlated with the included

regressors, and we therefore will distinguish different

treatments of the model which vary according to the nature of

the correlation between the regressors and the effects.

The literature on panel data has covered separately

models with individual effects and models with individual and

time effects. One strand of the literature has assumed the

effects to be fixed, or, more or less equivalently, to be

correlated with all the regressors. The point of the model

then is to remove the potential bias caused by correlation of

the regressors with omitted time or individual-invariant

variables. A second strand of literature has viewed the

effects as being random and uncorrelated with the regressors.

This direction of thought includes the textbook treatment of

the error component model as well as the work of Baltagi

(1981). A third direction of thought assumes the effects to

be random but allows for the possibility of correlation

between the effects and some of the regressors. Recent

papers by Hausman and Taylor (1981), Amemiya and MaCurdy

(1986), and Breusch, Mizon and Schmidt (1987) have considered

the case in which the indivdual effects (the time-invariant

error component) are correlated with explanatory variables,

and have proposed different instrumental variables

«estimators. However, with the exception of Amemiya and

MaCurdy, none of these papers considers the case in which
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3

some of the explanatory variables are endogenous (in the

sense of being correlated with the noise component of the

error, as well as the individual effect). Furthermore,

Amemiya and MaCurdy consider only limited information (ZSLS)

estimation, and their model is restrictive in some ways that

ours are not.

The first concern of this dissertation is to extend the

analysis for the case when effects are allowed to be

correlated with some of the regressors to the case when time

effects are present as well as individual effects. That is,

the HT, AM, and EMS articles all consider a model in which

there are individual effects but no time effects, so that the

error has only two components. That is, their error term is

of the form Sit = u: + eit where u1 is the individual effect

and e1: is the random noise. As pointed out above, the

earlier literature on panel data also considered prominently

the case in which the error also contains a time effect, ve,

so that the error, 81: = u1 + ext, contains three components.

In this dissertation, we extend the results of HT, AM, and

EMS to the three component case. This results in different

sets of allowable instruments than they use, and to some

interesting results on how many and what kind of exogeniety

assumptions must be made to estimate the model. The analysis

is done mostly under the assumption that both the number of

individuals (N) and the number of time periods (T) is large,

so that asymptotic properties of the estimators are derived

as both N and T approach infinity. However, we will include
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4

a separate treatment of the case in which N is large but T is

small, the common assumption in the two-component case. This

leads to some novel estimators in the three-component case.

The second concern of this dissertation is the problem

of simultaneity. We consider the usual simultaneous

equations model, but with panel data and with an unobservable

individual effect in every structural equation. The basic

point of view in this thesis, motivated by an argument given

earlier by Breusch, Mizon and Schmidt (1985), is that all

variables correlated with the noise should also be correlated

with the individual effects, but not conversely. This is a

natural extension of the point of view in Hausman and Taylor,

and it can be Justified by consideration of a system in which

every structural equation contains individual effects. It

leads to a classification of exogenous variables into three

types: endogenous, meaning correlated with noise and

individual effects; gingly e o e o 3, meaning correlated with

noise but possibly correlated with individual effects; and

422211 gnnggnnns meaning uncorrelated with individual effects

and noise. Several estimators are derived, which are natural)

generalizations both of the HT estimators and the usual two-

stage least squares estimator.

Third, this dissertation generalizes the estimators from

the single-equation literature just cited to full information

(3SLS) estimators. These estimators reduce to the fixed

effects estimators when all exogenous variables are

correlated with the effects, and they reduce to previous
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5

estimators for the random effects model when none of the

exogenous variables are correlated with the effects. In

addition, we discuss the case in which different variables

are correlated with the effects in different structural

equations.

The plan of this thesis is as follows. In chapter two,

we survey the existing literature, review the geometry which

is used in our subsequent analysis, and introduce a new

approach for the analysis of regression models with panel

data. This approach proves to be useful in the analysis of

models with both individual effects and time effects, the

topic of chapter three. We then consider the fixed effects

model, in which the individual effects are treated as fixed

parameters to be estimated; the random effects model, in

which the individual effects are treated as random and

uncorrelated with the regressors; and the model of HT, in

which individual effects are treated as random but

potentially correlated with the regressors. We also consider

the problem of consistent estimation of the variances of the

noise and the individual effects. Such estimates are

necessary to implement the generalized least squares

estimators considered above.

In chapter three, we extend the linear regression model

considered in the previous chapter to include unobservable

individual-invariant time effects, and we then apply the HT

method of instrumental variables estimation to this extended

model, and derive the subsequent estimator. The analysis of
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6

the regression models considered in this chapter is done

using the approach introduced in chapter two. We then

consider the fixed effects model, in which the individual and

time effects are treated as fixed parameters to be estimated;

and we consider the random effects model, in which both the

individual and time effects are treated as random and

uncorrelated with the regressors. We consider an extended

version of HT, in which both the individual and time effects

are treated as random but potentially correlated with the

regressors. Since many currently available panel data sets

are characterized by having many cross-sectional observations

but only relatively few time periods, we then consider the

previous two models for the case when N is large but T is

fixed. Finally, we consider the problem of consistent

estimation of the variances of the noise, the individual

effects, and the time effects. Such estimates are necessary

to implement the feasible weighted least squares estimator

considered.

In chapter four, we consider the usual simultaneous

equations model, but with panel data and with an unobservable

individual effect in each structural equation. We then

consider a natural extension of the HT model by allowing some

of the explanatory variables to be correlated with the

individual effects. We apply the HT method of instrumental

variables estimation, derive the subsequent limited

.information (ZSLS) and full information (3SLS) estimators,

and discuss their relative efficiency. In addition, we
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7

provide a survey of the current literature on simultaneous

equations with effects and translate previous estimators into

the notation of this thesis. Finally, we consider an

interesting problem which arises for the linear simultaneous

equations model with effects when some of the variables are

correlated with the individual effects; namely, the

instruments need not be the same for every equation.

In chapter five, we summarize our results and make

suggestions for future directions of research.



CHAPTER 2

Individual Effects but no Time Effects

2.1 Intzodugtign

In this chapter, we consider the estimation of a

linear regression model using panel data. Following the

usual practice in the literature, we assume that this

data consists of T time-series observations on each of N

individuals; we distinguish regressors which vary over

time and individuals from those which vary over

individuals but are time-invariant; and we assume the

presence of unobservable, time-invariant individual

effects as well as the usual statistical noise. In

chapter 3, we will extend this model to include

unobservable time effects.

We write the model to be considered in this chapter as

(20101) yit =XitB+ ZiD+u1 +elt, i = lpoo’N; t: lgoo’T

where yit is the dependent variable, Kit is a vector (of

dimension 1 x g) of time-varying explanatory variables, 21 is

a vector (of dimension 1 x k) of time-invariant explanatory

variables, and B and D are vectors of parameters to be

estimated. The errors e1: are iid with mean zero and
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9

variance 032. The individual effects u: are unobservable,

and various assumptions about them will be made. However, in

all cases they will be treated as time-invariant.

It is commonly argued (e.g., Theil (1972), p. 104)) that

the stochastic disturbance in the usual regression model

reflects the joint influence of variables not included in the

model. In the case of panel data, the individual effects

(our ui) would represent the influences of those neglected

variables which are time-invariant. Clearly, least squares

(of y on X and Z) will be biased if these neglected variables

are correlated with the included regressors, and we therefore

will distinguish different treatments of the model which vary

according to the nature of the correlation between the

individual effects and the regressors.

The plan of this chapter is as follows. In section 2.2

we review the geometry which is used in our subsequent

analyses. We then consider the estimation of the model under

various assumptions. In section 2.3 we consider the fixed

effects model, in which the individual effects are treated as

fixed parameters to be estimated. The point of this model is

to remove the potential bias caused by correlation of the

regressors with omitted time-invariant variables. In section

2.4 we consider the random effects model, in which the

individual effects are treated as random and uncorrelated

‘With the regressors. Under these assumptions there is no

IProblem of bias, and efficiency of estimation is our central

concern. In section 2.5 we consider the model of Hausman and
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Taylor (1981), in which the individual effects are treated as

random but potentially correlated with the regressors.

Finally, in section 2.6 and 2.7 we consider the problem of

consistent estimation of the variances of the noise and the

individual effects. Such estimates are necessary to

implement the generalized least squares estimators considered

in section 2.4 and 2.5.

This chapter does not contain any new estimators.

However, it provides a survey of the existing literature, and

it introduces a new approach for the analysis of regression

models with panel data. This approach will prove to be

useful in the analysis of models with both individual effects

and time effects, as we will see in chapter 3.

2.2 e et

A useful fact, and one to be used throughout the

remainder of this chapter, is that the original equation

(2.1.1) can be equivalently written as the two orthogonal

equations

(2.2.2) (Yit - y1.) (Xit - X1. )3 +(e1t - e1.)

(2.2.3) Yi. X1.B + 21D + 111 + e1.,

1

Where i = 1...,N; t = 1,...,T; y1. = (1/T)Zy1t, X1. =

1‘ 1- t=1

(1/T)Z Kit, and e1. = (1/T)Z en. Equation (2.2.3)

tsi t-l

expresses the data in terms of its individual averages over

time, while equation (2.2.2) expresses the data in terms of

its deviations around the mean for each individual.
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Writing equation (2.1.1) in matrix form, we have

(2.2.4) y=XB+ZD+u+e

where y, u, and e denote (NT x 1) dimensioned vectors; and X

.and 2 denote (NT x g) and (NT x k) dimensioned matrices,

respectively. Following the convention of Hausman and

Taylor (1981), the observations are ordered first by

individual and then by time, so that u and each column of Z

are (NT x 1) dimensioned vectors consisting of N blocks, with

each block containing T identical entries.

To achieve the same decomposition as was accomplished

above, we define the two orthogonal projections

(2.2.5) P = ( In 0 jrer/T ) and Q = Iur - P

where jr = (1,...,1)‘r is a vector of ones, having dimension

(T x 1). The transformation P determines the means for each

of the individual groups and repeats each of these N

observations T times. The transformation Q transforms each

observation into the difference between itself and its

respective individual group mean. Explicitly, the (i,t)

elements of Py and Qy can be written as

(2.2.6) (Py)1t = y:. and (Qy)1t = Yit - y1 - a

respectively.

Since 2 contains variables that are constant across all

time-series observations for a given individual, QZ = 0. The

elements of the columns of Z are, on the other hand,
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unaffected by the transformation P; that is, P2 = Z.

Analogous results hold true for the individual effects u;

i.e. Qu-= 0 and Pu = u. Thus, the original equation (2.2.4)

can now be written equivalently as the two orthogonal

equations

(2.2.7) Qy QXB + Qe

(2.2.8) Py PXB + ZD + u + Fe

2.3 Eingd Effects

In this section, we discuss the estimation of the linear

regression equation (2.2.4) when the individual-specific

effects are treated as fixed constants. The standard

approach is to use individual dummy variables as regressors,

and then to apply least squares. This yields the following

estimator for B:

(2.3.1) bw (XTQX)'1XTQy.

The estimator by is the familiar within-group estimator; it

uses only the variation within each group. This estimator is

sometimes called the covariance estimator since the

regression just described is in fact the usual analysis of

covariance. The estimator is unbiased, and it is consistent

as either N or T (or both) approaches infinity. These are

all well-known results; for example, see Judge n;_nl; (1985,

pp. 329).

A problem with this estimation procedure is that it is

not possible to obtain estimates of the coefficients of the
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time-invariant regressors (Z). Any time-invariant regressor

is perfectly collinear with the individual dummy variables;

equivalently, it is removed by the transformation of the data

to deviations from individual means. If the original model

contained no time-invariant regressors, the estimated

coefficients of the individual dummy variables are

(2.3.2) uw = Py - Pva,

and these estimates of the individual effects are consistent

as T approaches infinity. If the original model contained.

time-invariant regressors, then uw defined above is

interpreted as an estimate of (ZD + u) rather than of just u.

An equivalent derivation of the within estimator by is

to define it as the least squares estimator in equation

(2.2.2), ignoring (2.2.3). Similiarly, the estimator uu is

least squares applied to (2.2.3), after setting B = bu, and

ignoring the time-invariant variables 2.

Using only one part of equation (2.1.1), namely equation

(2.2.2), when estimating B has the advantage of being

computationally more convenient than estimating the whole of

equation (2.1.1). This approach also makes explicit the

statement that ha ignores the between-group variation; i.e.,

it ignores the cross-sectional variation in equation (2.2.3).

2.4

 

In the previous section, we discussed the estimation of

a linear regression model when the individual effects (the

ui) are treated as fixed constants. In this section, we
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treat the individual effects similiarly to the way we treat

the error term eat; we assume the ui to be random variables.

The N individuals are now to be interpreted as being drawn

from some larger population, and so the effects u: can be

viewed as a random sample from some distribution.

We assume specifically that the u1 are iid with mean

zero and variance 0&2. We also assume that X and Z are

uncorrelated with u. The model is written as

(2.4.1) yit XitB + 211) + u1 + eit

XitB + Z1D + Sit i = 1,..,N; t = 1,...,T

The variance of Yit, conditional on Kit and 21, is

(2.4.2) var(y1t) = var(81t) = 062 + 062.

The variances 032 and 052 are sometimes called variance

components; each is itself a variance as well as a component

of the error variance, var(sit). Similiarly, the errors u:

and e1: are sometimes called error components. Therefore,

this model is often referred to as an error-components or

variance-components model.

The presence of the random effects u: in the disturbance

term results in correlation among the errors of the same

cross-sectional unit, although the errors from different

cross-sectional units are independent. This can be made

explicit if we let 81 denote the (T x 1) dimensioned error

vector (s:1,...,81t)7. The covariance matrix of 81 is then

the matrix
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(2.4.3) Cov( Bi ) 5 $1 = 03211 + ahz(jrjr')

where jr = (1,...,1)r is a (T x 1) vector of 1’s. Thus, this

correlation of the errors at the individual level is constant

over time and is identical for all individuals.

2.4-1 111W

The within-group estimator can be used regardless of

whether the “1’8 are viewed as fixed constants or as random

variables. The within estimator of B can be viewed as least

squares applied to equation (2.2.2), and the individual

effects do not appear in this equation. So, whether the u1

are treated as nonstochastic or stochastic, the estimator by

is still unbiased and consistent. However, as pointed out by

Hsiao (1986), the Within estimator is inefficient when the

effects are random and uncorrelated with the regressors.

2.4.2 flgneraliggd Least §guares Estinntion

As was shown above, since the Sit in different time

periods but for the same individual both contain u1, the

errors in the equation

(2.4.4) Yit XitB + ZiD + m + eit

XitB + ZiD + s1: i = 1,..,N; t = 1,...,T

are autocorrelated. Efficient estimation requires that we

use the generalized least squares method. Following Hausman

and Taylor (1981), we write

(2.4.5) S a Cov( s ) = Cov( u + e ) = ohzlru + Tdth
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where 032 = var(eit) and 052 = var(u1). Since P and Q are

both idempotent and orthogonal, it follows that, up to a

factor of proportionality,

(2.4.6) S"1 = Q + czP

where c2 = [ 062/( 062 + TOT.2 ) ]. Now, if we rewrite

equation (2.2.4) as

(2.4.7) y = XB + ZD + u + e

= RA + s

where R = ( X, Z ) and A = ( BI, DT )7, and if we

assume that at? and at? are known, the generalized least

squares estimator of A from equation (2.4.7) is simply

(2.4.8) acts = (RTS'lR)'1RTS'1y.

Equivalently, the GLS estimator is ordinary least

squares of (S'llzy) on (S'llzR). Again following Hausman and

Taylor (1981), we can note that

(2.4.9) 8'”2 = Q + cP = Iur - (1-c)P

so that S‘llzy = y - (1-c)Py (and similiarly for R). This

transformation is what Hausman and Taylor call "(l-c)

differences." For example,

(2.4.10) (S'llzy)1t = Yit - (1-c)y1.

and this differs from the within transformation to the extent

that c i 0.
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2.4.3 nggnted Leagt Sgnageg Estinntign

As an alternative approach to the generalized least

squares estimator of A, consider the equations which result

from the decomposition of equation (2.4.7). These orthogonal

equations can be written as

(2.4.11) Qy QRA + Qs

(2.4.12) Py PRA + Ps

First, we consider the following lemma, due to Mundlak

(1978b), and which is to be used throughout much of this

thesis. It concerns the need to correct for the failure of

the covariance matrix associated with the disturbance term to

satisfy the ideal conditions.

2.1 : Suppose y = XB + 8 satisfies the ideal

conditions except that Cov(y) = Cov(s) = S. Let M be an

idempotent matrix other than the identity matrix, and let y‘

= My and X‘ = MX. Consider the class of estimators of the

form b: = (X'TH'1X')'1X‘TH'1y‘, where H is any positive

definite matrix. Then the estimator be = (X‘TX')'1X‘Ty‘

is the minimum variance unbiased estimator of B within this

class.

The point of the Lemma is as follows. We have y = XB +

s and cov(s) = S. The best (GLS) estimator of B certainly

involves 8. However, if we transform the equation by an

idempotent matrix M:
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(2.4.13) (My) = (MX)B + (MS),

the best (minimum variance unbiased) estimator of B from this

transformed equation is just OLS, which does not depend on S.

This is relevant in the present context because we are

dealing with equations transformed by the idempotent matrices

P and Q.

We note that the covariance matrices associated with the

errors in (2.4.11) and (2.4.12) may be written as

(2.4.14) Cov( Qs ) = QSQ = qQ

and

(2.4.15) Cov( Ps ) = PSP = rP,

respectively, where q = 082 and r = 0&2 + Tahz. Each of

these two covariance matrices is of the form of a constant

times an idempotent matrix. These two constants may be made

the same by multiplying equations (2.4.11) and (2.4.12) by

the weights (1/q) and (1/r), respectively. Moreover, it

follows from Lemma (2.1) that least squares applied to the

system so weighted yields the best minimum unbiased estimator

within the class containing all least square estimators of

the parameter vector A from any further transformation of

these equations or, in fact, the original equation (2.4.7).

We will refer to the least squares estimator of A from the

system of orthogonal equations

(2.4.16) (1/q)Qy = (l/q)QRA + (1/q)Qs
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(2.4.17) (1/r)Py = (1/r)PRA + (1/r)Ps

as the weighted least squares estimator of A. This estimator

may be written as

(2.4.18) aura = (R’QR/q + RTPR/r)'1(RTQ/q + RIP/r)y.

The decomposition of the original equation by the

transformations, P and Q, has the effect of isolating the

correlations found in the non-block diagonal covariance

matrix of its error vector, S, to the particular orthogonal

space. Since these transformations are orthogonal, and their

sum is the identity matrix, equation (2.4.7) is said to have

been zeduced by the pair ( Q, P ) into the two orthogonal

equations, (2.4.11) and (2.4.12). Since this pair of

equations contains exactly the same information as the

original equation, we would expect that the minimum variance

unbiased estimator from the two equations would be equivalent

to the generalized least squares estimator from the original

equation. This result is stated in the following theorem.

Ih£2££l_LZLZl= The weighted least squares estimator, ast, is

equal to the generalized least squares estimator, acts.

22221:

The generalized least squares estimator of A from the

equation y = RA + s where Cov(s) = S, can be written as

86L: ( R'S'1R )-1( R'S'1y )

( R‘{ Q + czP }R )"( R’{ Q + czP ly )
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( R11 Q + (Q/rlp }R )'1( RT{ Q + (q/r)P ly )

since c2 = (Q/r)

( R'{ (1/9)Q + (1/r)P }R )‘1( R’{ (1/9)Q + (l/r)P }y )

( R'QR/q + R’PR/s )'1( R'Q/q + RIP/r )y

Therefore, ast = aGLSo Q.E.D.

Now least squares applied to equation (2.4.12) is called

the between-group estimator; explicitly, it is as

= (RTPR)’1RTPy. It utilizes the cross-sectional variation

in the individual means. Recall that the within-group

estimator can be viewed as least squares applied to equation

(2.4.11); it utilizes the variation within the individual

groups. As Maddala (1971) has shown, the generalized least

squares estimator can be viewed as an efficient combination

of the within-group estimator and the between-group

estimator. The optimal weights for the two different sets of

variation are the constants being used to normalize each of

the equations; i.e. the reciprocal of the variances q = 032

and r = 0&2 + Td’u2 for the respective equations, (2.4.11)

and (2.4.12).

The following two theorems concern alternative

estimation procedures which yield the weighted least squares

estimator defined above.

For the first such derivation, consider again the

equations resulting from the decomposition of the original

equation (2.4.7). These orthogonal equations can be written

as
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(2.4.19) y- = RsA + s:

where

Py PR

ya = , Re = ,

Qy QR

and

P( e + u )

s: = .

Q( e )

Let

qP 0

(204020) St E COV(S’) = g

0 rQ

so Sc denotes the singular covariance matrix associated with

the error term of the above system. It is well known that

any idempotent matrix is its own generalized inverse, and

therefore the generalized inverse of the singular matrix, 8:,

is

(1/q)P 0

0 (1/r)Q

(2.4.21) Sat" .1:

Applying generalized least squares to (2.4.19), using the

generalized inverse of the error covariance matrix, we arrive

again at the weighted least squares estimator; this is stated

formally in the following theorem.

Inggzgn_LZ;§): The generalized least squares estimator of A

from equation (2.4.19) equals the weighted least squares

estimator of A.



 

equation
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£200: 3

The generalized least squares estimator of A from the

equation (2.4.19) can be written as

acLs- = (Rc’Sc‘Rt)'1Rc’SC*y-

= ( RTQR/q + RTPR/r )'1( RTQ/q + RIP/r )y

Thus, awis = acLs- Q.E.D.

A second derivation follows the lines of Fuller and

Battese (1974). We note that Cov(s) 5 S = qQ + rP, and we

consider the transformation of the original equation (2.4.7),

using the matrix 8'1/3, where 8‘112 = (1/q')Q + (1/r’)P,

q' = ( q )1/2 and r‘ = ( r )1/2. The transformed

equation can be written as

(2.4.22) S'llzy S‘llzRA + 8'1/2( s )

s-IIZRA + 5-1/2( e + 11)

Thus, using the Fuller and Battese expression for the

covariance of the error term, 3, we have the following

theorem.

Ingnzgn_(zéjl: The least squares estimator of A from equation

(2.4.22) is equal to the weighted least squares estimator of

A.

2:991:

Now the decomposition of equation (2.4.22) can be

written as
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(2.4.23) QS'llzy QS'IIZRA + QS'1/2( e )

(2.4.24) PS'l/zy PS‘112RA + PS'1/3( e + u )

The least squares estimator of A from this system is

an =(RTs-1/2Qs-IIZR + Hrs-IIIPs-UZR )-1

times ( Rts-IIZQs-llz + Rtg-llZps-112)y

( R‘l Q/q* + P/r* )Q( 9/9* + P/r* )R

+ RT( Q/q* + P/r* )P( Q/q* + P/r* )R )'1

times ( R‘( Q/q* + P/r* )Q( Q/q* + P/r* )

+ RT( Q/q* + P/r* )P( Q/q* + P/r* ))y

( R‘QR/q + R’PR/r )"( R'Q/q + R'P/r )y

As shown in equation (2.4.18), the weighted least squares

estimator of A is written as

ast = ( RTQR/q + RTPR/r )'1( RTQ/q + RIP/r )y

Thus, BWLS = a". QeEeDo

2.5 dom ts C ela w’ t e o

In some applications of the error-component model, there

may be reasons to believe that the individual-specific

unobservable effects found in the error term may, in fact, be

correlated with some or all of the included explanatory

variables. If we take the view suggested earlier, that the

random effects represent omitted individual-specific

variables, this correlation would seem inevitable. When
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there is correlation between the random effects and the

explanatory variables, the generalized least squares

estimator is biased and inconsistent. Indeed, Mundlak

(1978a) takes the extreme view that such correlation is

always present in the error-component model, and therefore

rejects the generalized least squares estimator in favor of

the within estimator.

However, Mundlak (1978a) considers the case in which the

effects are correlated with nil of the regressors. We

consider instead the case treated by Hausman and Taylor

(1981), in which the effects are correlated with ggng of the

regressors. To consider this case, we first need to

introduce some notation. Consider the equation

(2.5.1) y1t = (X11e, XZit)B + (211, 221)D + u1 + e1:

where Xlit represents the (1 x g1) dimensioned vector of

time-varying explanatory variables and 211 represents the

(1 x k1) dimensioned vector of time-invariant explanatory

variables, both of which are assumed to be uncorrelated with

both errors, u1 and e1t. The (1 x g2) dimensioned vector of

time-varying explanatory variables, X21t, and the (1 x k2)

dimensioned vector of time-invariant explanatory variables,

221, are both assumed to be correlated with u1 but

uncorrelated with eit. As before, both the random noise

component, e11, and the individual effects, u1, are i.i.d. as

well as independent of one another.

The matrix form of equation (2.5.1) can be written as
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(2.5.2) y (X1, X2)B + (21, Zz)D + u + e

RA + s

where y, u, and e are (NT x 1); X is (NT x g ), g = g1 + 32;

and Z is (NT x k ), k = k1 + k2.

Now the method of instrumental variables has

traditionally been viewed as the response to the problem of

regressors correlated with the equation’s disturbance term.

In the present context, Hausman and Taylor (1981) propose an

interesting variation to the usual instrumental variables

estimator. Unlike the usual approach, their estimator is

based on a set of instruments made up of regressors already

present in the equation being estimated.

First, they multiply equation (2.5.2) by 8'112

(Cov(s))‘ll2 to transform the error term so that it has a

scalar covariance matrix. The transformed equation is simply

(2.5.3) S'llzy S'1/2(X1, X2)B + S'1’2(21, 22)D + 5-1/23

S'1/3RA + S'llzs

Second, they use as their instruments the set H =

( Q, X1, 21 ), and derive what they consider to be the

efficient instrumental variables estimator of A from equation

(2.5.3). If we define for any matrix M the projection onto

the column space of M as P[M] (so that PIM] = M(M'1'M)"1M'r

when M has full column rank), the Hausman and Taylor

estimator of A can be written as

(2.5.4) an: = ( R’S'1/2PTHIS’1/3R )-1( R's-llzplnls-lizy )
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The Hausman-Taylor instrument set is cumbersome because

H is not of full column rank. We can evaluate P[H] using the

following Lemma:

Jamil-.51: P[Hl = Q + P[(PX1, 21)]

However, while this solves the problem of calculating the

estimator, it is not very satifactory in helping us to

understand why the estimator is efficient. Perhaps a

somewhat more intuitive approach to the estimation of

equation (2.5.2) is to decompose it into the two orthogonal

equations

(2.5.5) Qy = (QX1, QX2)B + Qe

(2.5.6) Py = (PX1, PX2)B + (Z1, 22)D + P(e + u)

Since Qu = 0, there is no problem of correlation between

errors and regressors in (2.5.5). Furthermore, ( PX1, 21 )

can readily be seen to be the largest available set of

variables in equation (2.5.6) which have been assumed to be

uncorrelated with the random effects. Projecting equation

(2.5.6) onto the column space of ( PX1, Z1 ), we have the set

of orthogonal equations

(2.5.7) Qy QRA + Q( e + u )

(2.5.8) P1Py P1PRA + P1P( e + u )

*where P1 = P[(PX1, 21)].

The covariance matrix associated with the errors in
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equations (2.5.7) and (2.5.8) can be written as

(2.5.9) Cov( Q( e ) ) = 9Q

and

(2.5.10) Cov( P[(PX1, Z1)]P( e + u ) ) = rP[(PX1, 21)].

respectively. We note that each of these two covariance

matrices has the form of a constant times an idempotent

matrix. Thus, Lemma (2.1) would imply that any further

attempt at diagonalizing the covariance matrices in either

equation would not improve the efficiency of the resulting

estimator. Using the weights q and r, the weighted least

squares estimator of A from equations (2.5.7) and (2.5.8)

becomes

(2.5.11) a'Iv = { RT(l/q)QR + RT(1/r)P[(X1, Z1)]R }'1

times { RT(1/Q)Qy + RT(1/r)P[(PX1, Z1)]Y }

Using Lemma (2.5), anr can be rewritten as

(2.5.12) aur = ( RT( (1/q)Q + (1/r)P[( PX1, 21 )l )R )"1

times ( RT( (1/q)Q + (1/r)P[(PX1, 21)] )y

We have now proved the following theorem.

Incogg; (2.6): The Hausman and Taylor estimator of A equals

weighted least squares applied to equations (2.5.7) and

(2.5.8).
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2.6 r’ ce t' a ' w e t o ec s e at

0 el te w't e R ssors

When discussing the generalized least squares estimation

procedure, we have implicitly assumed that the variance

components, as? and dbl, were known. In practice, this is

not the case; the variance components are usually unknown and

therefore must be estimated. When estimates of the variance

components are used in place of the actual values, we have an

example of fgagible genegnlizeg lenst gguazes.

Under mild regularity conditions, Fuller and Battese

(1973) have shown that the feasible generalized least squares

estimator is consistent and has the same asymptotic

distribution as the generalized least squares estimators with

known variance components. This result holds true for either

large N or large T. Swamy and Mehta (1979) caution that, if

the estimator of 052 is unreliable, say because on is close

to zero or N is small, the feasible generalized least squares

estimator may also be unreliable. Taylor (1980), on the

other hand, has shown that the difference between the

covariance matrices of the Within estimator and of the

feasible generalized least squares estimator is nonnegative

definite for even moderate sizes of either N or T. This

suggests that, in practice, the feasible generalized least

squares estimator may be more efficient than the Within

estimator.

Efficiency in the estimation of the variance components

and its subsequent effect on the efficiency of the feasible
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generalized least squares estimator has been discussed by

Amemiya (1971). Similiarly, papers by Maddala and Mount

(1973) and Taylor (1980) have shown that using more efficient

estimates of the variance components need not lead to a gain

in efficiency of the estimates.

In the following discussion, we rewrite equation

(2.4.11) and (2.4.12) as

(2.6.1) Qy R1A1 + Qs

where R1 ( QX ), A1 = B, and rank( R1 ) = g; and

(2.6.2) Py = RzAz + Ps

where R2 ( PX, Z ), A2 = ( 8’, Dr )T, and rank( R2 ) = g +

k.

If feasible weighted least squares is to be implemented

instead of the equivalent feasible generalized least squares

procedure, the weights q and r are the parameters we need

estimate. One approach to estimating these weights is to

estimate q = 052 using residuals from equation (2.6.1) and r

= on: + T622 using residuals from equation (2.6.2). The

groundwork for such an approach is laid by Maddala (1971),

Swamy (1971), and Arora (1973). We now proceed to show that

estimators so defined are both unbiased and consistent. In

addition, we find the necessary conditions for identification

of the model.

We define the sum of squared residuals from equation

(2.6.1) as
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(2.6.3) SSE1 = (Qy - R1a1)’(Qy - Rial)

where the residuals have been computed using the least

squares estimates of the coefficients in equation (2.6.1),

namely

(2.6.4) a1 = (R1’R1)'1R1Ty.

And we define the sum of squared residuals from equation

(2.6.2) as

(2.6.5) SSE: = (Py - R2a2)’(Py - Rzaz)

where the least squares estimates of the coefficients in

equation (2.6.2) are given as

(2.6.6) a2 = (Rz‘R2)'1R2’y.

2.6.1 Qonnting Rules fog Identification

To insure that the parameters in the model are

identified requires that the parameters in each of the two

equations, (2.6.1) and (2.6.2), separately be identified.

Thus, the necessary conditions for the identification of the

model are that

(2.6.7) g + k < N and g g N(T - 1).

Since the second condition follows from the first, the

necessary condition for identification of the model can be

more succinctly written as

(2.6.8) 3 + k < N.
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2-6-2 Estimatisn_gf_s_and_r

Inegzgn (2.7): Let 312 = SSE1/l N(T-1) - g ], and let

822 = SSE2/[ N - g - k ]. Then 812 is an unbiased estimator

q and 822 is an unbiased estimator of r.

2:221:

Let P1 represent the projection onto the column space of

the regressors in equation (2.6.1); i.e. P1 = P[R1] =

R1(R1TR1)'1R1T. Then QP1 = P1Q = P1, P1R1 = R1, P11 = P1,

and P1P = 0.

First we write the residual from equation (2.6.1) as

(Qy - QP1y) = R1A1 + Qs - PiQyResiduali

R1A1 + Qs - P1R1A1 - P1Qs

R1A1 - R1A1 1» Q8 - P1s

(Q - P1)s

Then we form the expression

SSE1 (Qy - QP1y)'(Qy - QP1y) = y'(Q - QP1)’(Q - QP1)?

8’(Q - QP1)’(Q - QP1)8 = 8’(Q - PiQ - QP1 + P1QP1)8

= sT(Q- P1 - P1 1» P1)s = s"(Q - P1)s

Taking the expectation of the SSE1, we write

Exp{ SSE1 } Exp{ sT(Q - P1)s }

Exp{ trace{ s'(Q - P1)s ) }

Exp{ trace{ (Q - P1)ss' ) }

since trace(AB) = trace(BA) if both AB, BA

defined and square.
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trace{ (Q - P1)E{ ssT } }

trace{ (Q - P1){ qQ + rP } }

since E{ ssT } g S = qQ + rP;

= (q)trace{ (Q - P1) } since P1P = 0.

(q)rank(Q - P1)

since trace(A) = rank(A) if A is idempotent.

(q){rank(Q) - rank(Rlll

Thus, Exp{ 812 } = q.

Now, let P2 represent the projection onto the column

space of the regressors in equation (2.4.2); i.e. P2 = P[Rz]

= R2(R2TR2)'1R2'. Then PP2 = P2P = P2, P2R2 = R2, P2r =

P2, and P2Q = 0.

First we write the residual from equation (2.6.2) as

(Py - Psz) = R2A2 + Ps - PzPyResidual:

R2A2 + Ps - P2R2A2 - PzPs

R2A2 - RzAz + Ps - P23

(P - P2)s

Then we form the expression

SSEz (Py - PP2y)'(Py - Psz) = y’(P - PP2)(P - PP2)?

8"(P - PP2)(P - PP2)s 3"(P - P2P - PP2 + P2PP2)s

8'(P - P2 - P2 + P2)s sT(P - P2)s

Taking the expectation of the SSE we write

Exp{ SSEz } Exp{ sT(P - P2)s }

Exp{ trace{ sT(P - P2)s } }
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Exp{ trace{ (P - P2)ssT } }

since trace(AB) = trace(BA) if both AB and BA

are defined and square.

trace{ (P - P2)E{ ss' } }

trace{ (P - P2){ qQ + rP } 1

since E{ 881' } = qQ + rP.

= (r)trace{ (P - P2) } since P2Q = 0.

= (r)rank(P - P2)

since trace(A) = rank(A) if A idempotent.

= (r){rank(P) - rank(R2)} Q.E.D.

Inggggl_(2L§): Let s12 = SSE1/{ N(T - 1) - g } and

822 = SSE2/{ N - g - k }. Then 312 is a consistent

estimator of q as N or T gets large, and 822 is a consistent

estimator of r = 632 + Tdu2 as N gets large.

£29.21:

plim siz plim SSE1/{ rank(Q) rank(R1) }

plim SSE1/N(T - 1) plim sT(Q - P1)s/N(T - 1)

plim s'Qs/N(T - 1) - plim s'Pis/N(T - 1)

The last term is zero since s'P1s/N(T - 1)

= [s'R1/N(T - 1)][R1'R1/N(T - 1)]‘1R1Ts/N(T — 1) and

Ri‘s/N(T - 1) -> 0 as N(T - 1) -> oo ( as either

N -> 00 or T -> oo ).

The first term equals 053 because, using standard

results ( e.g. Rao (1973, p 185)) on the distribution of

idempotent quadratic forms in normals, sTQs is distributed as



 

03212151?

plim sz 3
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O'eZXZIHT-l) .

plim sz2 plim SSE2/{ rank(P) - rank(Rz) }

plim SSE2/N = plim sT(P - P2)s/N

plim sTPs/N - plim sTP2/N

The last term is zero since s'st/N

= [sTRz/N][R2’R2/Nl'1R2's/N and Rzrs/N -> 0 as

N -> 00.

The last term equals r = 032 + To'u2 because, using

standard results ( e.g. Rao (1973, p 185)) on the

distribution of idempotent quadratic forms in normals, sTQs.

is distributed as rxzn. Q.E.D.

Va 'a ce 3 imatio e the

Co rel ed w th the Re ressors

So far we have considered variance estimation for the

feasible weighted least squares estimator only. We now

consider the model of section 2.5, in which some of the

regressors are correlated with the individual effects. Once

again we will need to estimate the variance components 032

and 0&3, since they are needed to implement the Hausman and

Taylor instrumental variables estimator (or the equivalent

weighted instrumental variables estimator). The estimate of

063 based on the within residuals, discussed in section 2.6,

is still consistent in this model. However, the estimate of

r = as? + Tot;z which was discussed in section 2.6 is not

consistent, since it was based on the residuals from least

squares applied to (2.6.2), and this least squares estimator
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is inconsistent when regressors and effects are correlated.

We therefore turn our attention to the problem of

finding consistent estimates of B and D. Then, using these

consistent estimates of A2 = ( 8’, Dr )T, we derive a

consistent estimate of r. The background for this approach

is the work of Hausman and Taylor (1981), who suggest the

estimate of r which we discuss here. Hewever, they do not

give a rigorous proof that it is consistent. The following

assumptions will be made.

Angn;p§19n_(2;91: Let H = [ PX1, 21 ]. Then we assume that

(i) plim XTQe/N = 0 as N —> 00.

(ii) plim HTP(e + U)/N = 0 as N -> 00.

(iii) plim (XTQX)/N is finite and nonsingular as N -> 00.

(iv) plim (HTZ)/N is finite as N -> 00.

(v) plim (HTX)/N is finite as N -> 00.

Even after the introduction of X2 and 22 - regressors

assumed correlated with the effects - the within estimator is

a consistent estimator of B; no correlation exists between

the disturbance and the regressors in equation (2.5.5). So

the problem of finding a consistent estimator of A2 is

reduced to finding a consistent estimator of D. The

following regression equation will be used in deriving such

an estimator.

Lesms_lzllfll: Let d' = Pty - wa)- Then

(2.7.1) d‘ = ZD + (P - PX(XIQX)’1XIQ)S.
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d3

P(y - sz) = Py - PXba = Py - PX(XTQX)’1XTQy

PX(XTQX)'1XTQ(XB + ZD + s)P(XB + ZD + s)

P(XB + 2D + s) PX(XTQX)'1X'(QXB + Qs)

P(XB + ZD + s) PX(X7QX)‘1X7QXB + PX(XIQX)'1XTQS

PXB + PZD + Ps PXB + PX(X7QX)'1XTQ8

ZD + (P - PX(X7QX)'1XIQ)8 Q.E.D.

Since part of Z is correlated with the error term, least

squares applied to equation (2.7.1) does not yield a

consistent estimator of D. But, using H = (PX1, 21) as a

set of instruments, the instrumental variable estimator of D

is defined as

(2.7.2) dIV = (XTP[H]X)'1XTP[H]d'

where P[H] = H(HTH)'1HT.

It is interesting to note that using d“ = (y - wa)

instead of d' = P(y - wa) would not increase the efficiency

of the estimator, div. Indeed, since P[HlP = PP[H] =

P[H], Zi'Q = 0, and the first order conditions (i.e. the

"normal equations") defining bu imply that X1TQ(y - wa)

:0,

(2.7.3) HTP(y - va) = HT(y - wa);

thus the game estimator would result if we used d" in place

of d’.

Given the estimator le, the question is whether this
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estimator is, indeed, a consistent estimator of D. But

first, we consider the conditions necessary to assure that

dIV does exist.

2.7.1 Neggsgngz Conditiong {on tng Enigtence of d}:

A necessary condition for the existence of dIV is that

the rank of H be at least as large as the rank of 2; that is,

there must be at least as many instruments as regressors.

This requires g1 + k1 2 k, or g1 3 k2, as noted by Hausman

and Taylor (1981). Intuitively, PX1 is serving as

instruments for 22, and so there must be at least as many

variables in X1 as in 22.

2.7.2 ansigggncz of d1!

Lemma 2. : Given assumption (2.9),

(1) plim ZTP1P(e + u)/N = 0 as N -> oo

(2) plim ZTP1Z/N is finite and non-singualar

as N -> oo

(3) plim Z'P1X/N is finite as N -> 00

Lemma (2.11) can be easily proved by noting that P1 =

P[H] = H(HTH)'1HT, where H = P( X1, 21 ).

Inggggn_12;121: The instrumental variable estimator div is a

consistent estimator of D as N -> 00.

£22.91:

First, rewrite dIV as

dIV = (ZTP1Z)'1ZTP1d‘
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(ZTP12)'IZTP1(ZD + (P - PX(X7QX)‘1XTQ)3)

(Z’P1Z)'IZTP12D + (ZTPIZ)'1ZTP1(P - PX(XTQX)'1XTQ)8)

D + (ZIPIZ)‘IZ’P1PS - PX(XIQX)'1XIQS

D + (ZTP12/N)'1{ZTP1Ps/N}

- (Z'PlZ/N)‘1{ZTPIPX/N}(X’QX/N)'1{XTQs/N}

By assumption

plim X'Q(e + u)/N = 0 as N -> 00.

and

plim (XTQX)/N is finite and nonsingular as N -> 00.

Using Lemma (2.11), it follows that

plim ZTP1P(e + u)/N = 0 as N —> oo,

plim (ZTP1Z)/N is finite and nonsingular as N -> 00,

and

plim (ZTP1PX)/N is finite as N -> 00.

Thus,

plim dIV = D + {finite}{ 0 }

- { finite }{ finite }{ finite }{ 0 }

D as N -> oo. Q.E.D.

2.7.3 A ggnsistgnt Estinnge 91 3

Using as a consistent estimate of A2 = ( B”, D1 )'r the

estimators ha and dIV, we will now form a vector of

residuals. We will then show that the sum of the squared

terms of this residual vector, divided by N, is a consistent

estimator of r = 022 + Toni.
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2. 3 : Let Residual = Py - Pwa - PZdrv. Then

Residual = P(e + u)

- PX(XTQX)'1X7Qe - PZ(Z'P12)'1ZTP1P(e + u)

+ PZ(ZTP1Z)'1ZTP1PX(XTQX)'IXTQe

2:001:

Residual = Py - Pwa - PZdrv

Py - PX(XTQX)'1XTQy - P2(ZTP1Z)'1ZTP1d‘

P(XB + ZD + WC + s}

- PX(XTQX)'1XTQ{XB + ZD + WC + s}

- PZ(ZTP1Z)‘1ZTP1{2D

+ (P - PX(XTQX)‘1XTQ)(e + u)}

PXB + 2D + P(e + u)

PX(X7QX)'1XIQXB - PX(XTQX)"XTQe

PZ(ZIP12)'1Z’P1ZD

PZ(ZTP1Z)'1ZTP1P(e + u)

+ PZ(ZTP12)'1ZTP1PX(XTQX)‘IXTQe

PXB + 2D + P(e + u)

PXB - PX(X7QX)'1XTQ(e + u)

- PZD

PZ(ZTP1Z)'IZTP1P(e + u)

+ PZ(ZIP1Z)'1ZTP1PX(XIQX)'1XTQe

P(e + u) - PX(X'QX)'1XTQe

- PZ(Z’P1Z)'1Z'P1P(e + u)

+ PZ(ZIPIZ)‘1ZTP1PX(XTQX)'1X7Qe Q.E.D.

We now define a consistent estimator for r. Define SSE‘

as the sum of squared residuals defined in Lemma (2.13). Our
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estimator is just SSE‘lN.

(2.7.4) SSE’ = (Residual)'(Residual).

o o 2. : plim SSE‘lN = r35 6.2 + To’u2

21221:

First, SSE‘ can be written as

SSE‘ (Residual)’(Residual)

(e + u)TP(e + u)

(e + u)TPX(XTQX)'1XTQe

(e + u)'PZ(Z’P12)'1ZTP1P(e + u)

+ (e + u)TPZ(ZTP12)'1Z‘P1PX(XTQX)‘1XTQe

- eTQX(XTQX)‘1X’P(e + u)

+ eTQX(XTQX)‘1XTPX(XTQX)'IXTQe

+ eTQX(XTQX)'1XTPZ(ZTP1Z)'127P1P(e + U)

- eTQX(X‘QX)'1XTPZ(Z’P1Z)'IZTP1PX(XTQX)‘1XTQe

- (e + u)TPP1Z(ZTP12)‘1ZTP(e + u)

++ (e u)TPP1Z(ZTP12)'12’PX(XTQX)'1XTQe

+ (e + u)TPP1Z(ZTP12)‘1ZTP2(2’P1Z)'1ZTP1P(e + u)

- (e + u)7PP12(ZTP1Z)'1ZTPZ(ZTP1Z)'1ZTP1PX(XTQX)'1X‘Qe

+ eTQX(XTQX)'1X’PP1Z(2'P1Z)'1ZTP(e + u)

- e'QX(X'QX)'1X'PP1Z(ZTP1Z)'12TPX(XTQX)'1XTQe

- eTQX(XTQX)‘1XTPP12(Z’P1Z)'127P2(27P12)'1ZTP1P(e + u)

+ eTQX(erX)-lerP1Z(zrpiZ)-1z192(zrpiz)-1

times Z'PiPX(XIQX)'1X’Qe

Now, from the above expression, taking the probability

limit of SSE’ as N gets large is equivalent to taking the
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probability limit of the sum of sixteen different terms.

Evaluation of these sixteen terms shows that the first term

has a probability limit equal to r and that the remaining

fifteen terms each have a probability limit equal to zero

with all limits being taken as N -> 00. These probability

limits are evaluated below.

1) plim (e + u)'P(e + u)/N

= plim eTPe/N + plim u‘Pu/N

Consider these term by term. First,

I

eTPe/N = T: 61.2/N.

1:1

Each term e1.2 has a mean of aha/T, and the terms are

independent. Therefore,

eTPe/N -> Tozz/T = 032 as N -> 00.

Second,

a

u'Pu/N = T2: u12/N —> T6112 as N -> 00.

1:1

Third,

a

eTPu/N = TE e1.u1/N -> 0 as N -> oo

i=1

because e and u are uncorrelated. Therefore,

(e + u)TP(e + u)/N -> 032 + Tot.2 as N -> oo.

2) plim (e + u)TPX(WTQW)'1WTQe/N

= plim {(e + u)7PW/N}(WTQW/N)'1{WTQe/N}





3) plim

4) plim

5) plim

6) plim

7) plim
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plim {(e + u)’PW/N} plim (WTQW/N)“1 plim {WTQe/N}

0 as N -> 00.

(e + u)TPztz1912)-1zrpip(e + u)/N

plim {(e + u)TPZ/N}(ZIP1Z/N)'1{ZTP1P(e + u)/N}

plim {(e + u)TPZ/N} plim (2"‘P12/N)’1

times plim {ZTP1P(e + u)/N}

0 as N -> 00.

(e + u)TPZ(ZTP12)'12'P1PW(WTQW)'1WIQe/N

plim {(e + u)TPZ/N}(Z"P1Z/N)'1

times {2TP1PW/N}(WTQW/N)‘1(WTQe/N}

plim {(e + u)7PZ/N} plim (ZTP1Z/N)'1 plim {ZTP1PW/N}

times plim (WTQW/N)'1 plim {WTQe/N}

0 as N -> oo.

eTQW(WTQW)'1WTP(e + u)/N

plim {e'QW/N)(WTQW/N)'1{WTP(e + u)/N}

plim {eTQW/N} plim (W'QW/N)‘l plim {WTP(e + u)/N}

0 as N -> oo.

eTQW(WTQW)'1WTPW(WTQW)‘1WTQe/N

plim {e'QW/NllwrQW/Nl’l{W‘PW/N}(W’QW/N)‘1{WiQe/N}

plim {eTQW/N} plim (WTQW/N)’1 plim {WTPW/N}

times plim (WTQW/N)'1 plim {WTQe/N}

e’QW(W'QW)'1WTPZ(ZTP12)'12'P1P(e + Ul/N

plim {eTQW/N}(WTQW/N)'1{WTPZ/N}

times (ZTP1Z/N)'1{ZTP1P(e + u)/N}
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plim {e'QW/N} plim (WTQW/N)”1 plim {WTPZ/N}

times plim (2"P12/N)'1 plim {2'P1P(e + u)/N}

0 as N -> oo.

8) plim eTQW(WTQW)'1W7PZ(ZTP1Z)'1ZTP1PW(WTQW)'1WTQe/N

plim {eIQW/N}(WIQW/N)'1{WTPZ/N}(Z7P1Z/N)‘1{ZTPIPW/N}

times (WTQW/N)'1{WTQe/N}

plim {eTQW/N} plim (W'l'QW/N)‘1

times plim {WTPZ/N}plim (Z'IPIZ/N)’1

times plim {ZTP1PW/N} plim (WTQW/N)‘1 plim {WTQe/N}

0 as N -> oo.

9) plim (e + u)TPPIZ(ZTP12)'IZTP(e + u)/N

10) plim

11) plim

plim {(e + u)TPP12/N}(ZTP1Z/N)'1{ZIP(e + u)/N}

plim {(e + u)TPP1Z/N} plim (2"P1Z/N)“l

times plim {ZIP(e + u)/N}

0 as N -> 00.

(e + u)IPP1Z(ZTP12)'IZIPW(WIQW)’1WTQe/N

plim {(e + u)"PP12/N}(2"P1Z/N)"l

times {2’PW/N}(WTQW/N)'1{WTQe/N}

plim {(e + u)TPP1Z/N} plim (2"P1Z/N)‘1 plim {Z’PW/N}

times plim (WTQW/N)"1 plim {WTQe/N}

0 as N -> 00.

(e + u)’PP1Z(ZTP12)'12'PZ(Z’P1Z)'1ZIP1P(e + u)/N

plim {(e + u)TPP1Z/N}(Z’P12/N)'1{ZTPZ/N}

times (27P12/N)'1{Z'P1P(e + u)/N}
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plim {(e + u)TPP12/N} plim (Z'I'Piz/N)'1 plim {ZTPZ/N}

times plim (2'1'P1Z/N)'l plim {ZTP1P(e + u)/N}

0 as N -> oo.

12) plim (e + u)TPP1Z(ZTP12)'1Z'PZ(Z7PIZ)'1

times Z’P1PW(WTQW)'1W7Qe/N

= plim {(e + u)‘1'PP12/N}(2‘1'P12/N)‘.1{ZTPZIN}(ZTP1Z/N)"1

times {ZTP1PW/N}(W’QW/N)‘1{WTQe/N}

plim {(e + u)TPP1Z/N} plim (ZTP12/N)'1 plim{27PZ/N}

times plim(Z"'P1Z/N)'l plim {Z‘PiPW/N}

times plim (W“QW/N)'l plim {WTQe/N}

0 as N -> oo.

13) plim eTQW(WTQW)‘1WTPP12(ZTP1Z)'12TP(e + u)/N

plim {eTQW/N}(WTQW/N)‘1{WTPP1Z/N}

times (ZTP12/N)'1{ZTP(e + u)/N}

plim {eTQW/N} plim (W"QW/N)'1 plim {WTPPiz/N}

times plim (Z'I'P1Z/N)”1 plim {ZIP(e + u)/N}

0 as N -> oo.

14) plim eTQW(WTQW)'1W7PP12(ZTP12)‘12‘PW(WTQW)'1W7Qe/n

plim {eTQW/N} plim (W'I'QW/N)“1 plim {WTPP1Z/N}

times plim (Z'l'P12/N)'1 plim {ZTPW/N}

times plim (WTQW/N)‘1 plim {WTQe/N}

0 as N "'> 000

15) Plim eTQW(WTQW)'1WTPP1Z(sz1z)-1

times zrpzurpizrlzrpime + 11)/N
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plim {e'l'QW/N}(W'1'QW/N)"1{W'l'PP1Z/N}(Z"P12/N)‘1

times {ZTPZ/N}(ZTP12/N)‘1{ZTP1P(e + u)/N}

plim {eTQW/N} plim (W'rQW/N)'l plim {W’PPiZ/N}

times plim (2'1'P1Z/N)'1 plim {Z'PZ/N}

times plim (2"P1Z/N)'1 plim {27P1P(e + u)/N}

0 as N -> oo.

16) plim { e1'QW(WTQW)'lW'l'PP1Z(Z"'P1Z)'1Z"'PZ(Z"P1Z)‘1

times ZTPIPW(WTQW)'1WIQe/N }

plim {eTQW/N}(WTQW/N)'1{WTPPlz/N}

times plim (ZTP1Z/N)'1 {Z'l'PZ/N}(Z"P1Z/N)"l

times plim {ZTPiPW/N}(WTQW/N)'1{WTQe/N}

= plim {eTQW/N} plim (WTQW/n)'l plim {WTPP1Z/N}

times plim (Z'rPiz/N)'1 plim {ZTPZ/N}

times plim (ZIPiz/Nr1 plim {ZTP1PW/N}

times plim (W'TQW/N)'1 plim {WTQe/N}

O as N ") 00. Q.E.D.

2.8 o c 8'0 8

In this chapter, we have considered a linear regression

model which contains unobserved individual effects. Given

panel data, this model may be estimated in a variety of ways,

depending on what is assumed about the correlation between

the regressors and the effects. We have given a survey of

the literature, tidying up a few loose ends, and we have

introduced the analytical framework to be used in the rest of

the thesis. In the next chapter, we will extend the analysis

of this chapter to a model which contains unobservable time
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effects as well as individual effects.



CHAPTER 3

Individual and Time Effects

3.1 Introduction

In this chapter, we extend the linear regression model

considered in the previous chapter to include unobservable

time effects. We again assume that the data consists of T

time-series observations on each of N individuals; we

distinguish regressors which vary over time and individuals

from those that are either time-invariant or individual-

invariant; and now we assume the presence of unobservable

time-invariant individual effects, unobservable individual-

invariant time effects, and the usual statistical noise.

We write the model to be considered in this chapter as

(3.1.1) me = XitB + WtC + 21D + m + Vt + e11,

i=1’ooogN;t=1,ooe,To

where yit is the dependent variable, Kit is a vector (of

dimension 1 x g) of explanatory variables which vary both

over time and over individuals, 21 is a vector (of dimension

1 x k) of time-invariant explanatory variables, Wt is a

vector (of dimension 1 x h) of individual-invariant

explanatory variables, and B, D, and C are vectors of

47
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parameters to be estimated. The errors e11 are iid with mean

zero and variance 632. Both the individual effects u1 and

the time effects v: are unobservable, and various assumptions

about them will be made. However, in all cases the

individual effects will be treated as time-invariant and the

time effects will be treated as individual-invariant.

The plan of this chapter is as follows. In section 3.2

we review the geometry which is used in subsequent analyses.

We then consider the estimation of the model under various

assumptions. In section 3.3 we consider the fixed effects

model, in which the individual effects are treated as fixed

parameters to be estimated. The point of this model is to

remove the potential bias caused by correlation of the

regressors with the omitted individual-invariant and time-

invariant variables. In section 3.4 we consider the random

effects model, in which the individual and time effects are

treated as random and uncorrelated with the regressors.

Under these assumptions there is no problem of bias, and

efficiency of estimation is our central concern. In section

3.5 we consider an extended version of the model of Hausman

and Taylor (1981), in which the individual effects are

treated as random but potentially correlated with the

regressors. Since many currently available panel data sets

are characterized by having many observations but for only a

relatively few time periods, in section 3.6 we consider the

previous two models for the case when N is large but T is

fixed. Finally, in sections 3.7 and 3.8 we consider the
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'problem of consistent estimation of the variances of the

noise, the individual effects, and the time effects. Such

estimates are necessary to implement the feasible weighted

least squares estimators considered in section 3.4 and 3.5.

This chapter applies the Hausman and Taylor method of

instrumental variables estimation to the panel data model

extended to included both individual as well as time effects,

and derives the subsequent estimator. In addition, it

provides a survey of the existing literature on this extended

model. The analysis of the regression models considered in

this chapter is done using the approach introduced in chapter

2.

3.2 fieometgy

A useful fact, and one to be used throughout the

remainder of this chapter, is that the equation (3.1.1) can

be written, equivalently, as the four orthogonal equations

(3.2.1) (y1t - y.t - y1. + y..)

= (X1: "X.t - X1. + X..)B + (e11 - e.e - e1. + e..)

(3.2.2) (y1. - y..)

= (X1. - X..)B + (Z1 - Z.)D + (u1 - u.) + (e1. - e..)

(3.2.3) (y.t - y..)

= (X.t - X..)B + (We - W.)C + (v; - v.) + (e.t - e..)

(3.2.4) y.. =X..B+W.C + Z.D+u. + v. + e..

r u

where y1. = (1/T)Z y1t, y.t = (1/N)Z me, and y..

1:1 1:1
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n r

= (l/NT);1 gym. Equation (3.2.2) expresses the data in

terms of its individual averages over time with the grand

mean subtracted, while equation (3.2.3) expresses the data in

terms of its averages over individuals for each period of

time with the grand mean subtracted. Equation (3.2.1)

expresses the data in terms of its deviations around both the

mean for each individual and for each time period with the

grand mean added; equation (3.2.4) expresses the data in

terms of its grand mean.

Writing equation (3.1.1) in matrix form we have

(3.2.5) y = XB + WC + ZD + u + v + e

where y, u, v, and e denote (NT x 1) dimensioned vectors; and

X, W, and 2 denote (NT x g), (NT x k), and (NT x h)

dimensioned matrices, respectively. Again, following the

convention of Hausman and Taylor (1981), the observations are

ordered first by individuals and then by time, so that v and

each column of W are (NT x 1) dimensioned vectors consisting

of N blocks, with each block containing the same T entries.

To achieve the same decomposition as was accomplished

above, we define the same four symmetric, idempotent,

mutually orthogonal matrices used by Fuller and Battese

(1974). These orthogonal projections are

(3.2.6) Q1 = In: - Q2 - Q3 - Q4

(3.2.7) Q2 = ( In 0 jrer/T ) - ( Jurist/NT )

(3.2.8) Q3 ( jnjuT/N 0 Ir ) - ( juerrT/NT )
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(3.2.9) Q4 = ( jujNT/N O jrer/T ) = ( jurjurT/NT )

where jr = (1,...1)’ is (T x 1). The transformation Q4

determines the grand mean for the NT observations repeated NT

times. The transformation Q2 determines the means for each

of the individual groups, subtracts the grand mean, and

repeats these N observations T times; the transformation Q3

determines the means for each of the time periods, subtracts

the grand mean, and repeats these T observations N times.

The transformation Q1 transforms each observation into the

difference between itself and both its respective individual

group mean and time mean, and then adds the grand mean.

Explicitly, the (i,t) element of Q1y, Q2y, Qay, and Qey can

be written as

(3.2.10) (Q1y)1t = y1e - y1. - y.t + y..

(3.2.11) (Q2y)1t = y1. - y..

(3.2.12) (Qay)1t = y.t - y..

(3.2-13) (Qey)1t = y. .

respectively.

Since W contains variables that are constant across all

individual observations for a given time period, Q1W = 0.

Similiarly, Q2W = 0. The elements of the columns of W are,

on the other hand, expressed as deviations from their

respective grand means by the transformation Q3. Analogous

results hold true for the time effects v; i.e. Q1v = 0 and
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sz = 0. Likewise, since 2 contains variables that are

constant across all time period observations for a given

individual, Q12 = 0 and Q32 = 0. And similiarly, Q1u = 0 and

qu = 0. Thus, the original equation (3.1.5) can now be

written equivalently as the four orthogonal equations

(3.2.14) Q1y Q1XB + Q1e

(3.2.15) Q2y Q2XB + szD + Q2(u + e)

(3.2.16) st Q3XB + Q3WC + Q3(v + e)

(3.2.17) Qey Q4XB + Q4WC + QeZD + Q4(u + v + e)

3.3 'xed cts

In this section, we discuss the estimation of the linear

regression equation (3.2.5) when both the individual-specific

effects and the time-specific effects are treated as fixed

constants. The standard approach is to use dummy variables

for individuals and for time periods as regressors, and then

to apply least squares. This yields the following estimator

for B:

(3.3.1) bw = (XTQ1X)'1XTQ1y.

The estimator by is the familiar within-group estimator; it

uses only the variation within each individual group and each

time period. The estimator is unbiased, and it is consistent

as either N or T (or both) approaches infinity. These are

all well-known results; for example, see Judge gt nl. (1985,

pp. 338).
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A problem with this estimation procedure is that it is

not possible to obtain estimates of either the coefficients

of the time-invariant regressors (Z) or the coefficients of

the individual-invariant regressors (W). The time invariant

regressors are perfectly collinear with the individual dummy

variables and the individual-invariant regressors are

perfectly collinear with the time dummy variables;

equivalently, they are removed by the transformation of the

data by the matrix Q1. If the original model contained no

time-invariant regressors, the estimated coefficients of the

individual dummy variables are

(3.3.2) Uw = sz - Q2wa,

and these estimates of the individual effects are consistent

as T approaches infinity. If the original model contained

time-invariant regressors, then uw defined above is

interpreted as an estimate of (Q22D + Qzu) rather than of

just u. Simliarly, if the original model contained no

individual-invariant regressors, the estimated coefficients

of the time period dummy variables are

(30303) Vw = Qay - Q3Xb',

and these estimates of the time effects are consistent as N

approaches infinity. If the original model contained

individual-invariant regressors, then Vw defined above is

interpreted as an estimate of (QsWC + st) rather than of

just v.
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An equivalent derivation of the within estimator bw is

to define it as the least squares estimator in equation

(3.2.14), ignoring equation (3.2.15), (3.2.16), and (3.2.17).

Similiarly, the estimator uu is least squares applied to

(3.2.15), after setting B = by; ignoring the time-invariant

variables 2. And, the estimator Vw is least squares applied

to (3.2.16), after setting B = by, and ignoring the

individual-invariant variables W.

Using only one part of equation (3.2.5), namely equation

(3.2.1), when estimating B has the advantage of being

computationally more convenient than estimating the whole of

equation (3.2.5). This approach also makes explicit the

statement that bw ignores the between-group variation and the

between time period variation; i.e. it ignores the cross-

sectional variation in equation (3.2.15) and the time series

variation in equation (3.2.16).

3.4 Random Effggts, not Qorgelateg wign Reggegsogs

In the previous section, we discussed the estimation of

a linear regression model when the individual effects (the

u1) and the time effects (the ve) are treated as fixed

constants. In this section, we treat the individual and time

effects similiarly to the way we treat the error term e12; we

assume both the u1 and the V: to be random variables

uncorrelated with the regressors. The N individuals are now

interpreted as also being drawn from some larger population,

and so too the effects u1 can be viewed as a random sample

from some distribution. Similiarly, the T time periods are
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now interpreted as being drawn from some larger population,

and so the effects ve can be viewed as a random sample from

some distribution.

We assume specifically that the u1 are iid with mean

zero and variance ahz, the ve are iid with mean zero and

variance 0&2, and the u1 and v: are assumed to be

uncorrelated with each other as well as with e11. We also

assume that X, Z, and W are uncorrelated with both u and v.

The model is written as

(3.4.1) Yit X11B + 21D + WeC + u1 + v: + e1:

XitB+ZID+WtC+Sitg i=1’oeogN;t=1,ooo,T

The variance of Yit, conditional on X11, Z1, and We is

(3.4.2) var(y1t) = var(s1t) = 052 + 0&2 + 062.

Therefore, this model is often referred to as the generalized

error-components or generalized variance-components model.

The presence of the random effects u1 and vs in the

disturbance term results in correlation among the errors for

a given individual as well as among different time series.

This can be made explicit if we let s1 denote the (T x 1)

dimensioned error vector (s11,...,s1r)'. The covariance

matrix of 81 is then the matrix

(3.4.3) Cov( s1 ) = ahz(jrer) + 02211 + 06311

where jr = (1,...,1)‘ is a (T x 1) vector of 1’s.

Furthermore, the covariance between 81 and s: is given by the
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matrix

(3.4.4) Exp( 81811 ) = dtzIr.

3-4-1 Eithin.£stisatisn

The Within-group estimator can be used regardless of

whether the u1’s and ve’s are viewed as fixed constants or as

random variables. The Within estimator of B can be viewed as

least squares applied to equation (3.2.14), and neither the

individual effects nor the time effects appear in this

equation. So, whether the u1 and V: are treated as

nonstochastic or stochastic, the estimator bw is still

unbiased and consistent. However, as pointed out by Judge g;

31. (1985), the Within estimator is inefficient when the

effects are random and uncorrelated with the regressors.

3.4.2 e er i ed at S uare st'm tio

As was shown above, since the 311 in different time

periods but for the same individual both contain u1, the

errors in the equation

(3.4.5) y1t XitB + 21D + WtD + m + V: + e1:

XitB + 21D + WtD + 811, i =1,...,N; t =1,...,T

are autocorrelated, and since the Sit in the same time period

but for different individuals both contain ve, the errors are

intertemporally correlated. Efficient estimation requires

that we use the generalized least squares method. Following

Fuller and Battese (1974), we write
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(3.4.6) S = Cov(s) = pQ1 + qQ2 + rQ3 + er

where p = 032, q = (6.2 + Tduz), r = (6.2 + No’vz), and k =

(d.2 + Tot.2 + N032). Since the four matrices Q1, Q2, Q3, and

Q4 are idempotent and orthogonal, it follows that

(3-4-7) 8'1 = (1/p)Q1 + (l/q)Q2 + (l/r)Q3 + (l/k)Q4

Now, if we rewrite equation (3.2.5) as

(3.4.7) y = XB + 20 + WC + u + v + e

= RA + s

where R = ( X, Z, W ) and A = ( 8', CT, DT )T, and if

we assume that omz, 63‘, and 052 are known, the generalized

least squares estimator of A from equation (3.4.7) is simply

(3.4.8) acts = (RTS'IR)'1RTS'1y.

Equivalently, the GLS estimator is ordinary least

squares of (S'llzy) on (S'1/2R). Fuller and Battese (1974,

pp. 77) show that, up to a factor of proportionality,

(3.4.9) 8-113 = In: - (1-cz)Q2 - (1-c3)Q3 + (1+c4)Q4

where c2 = (p/q)112, c3 = (p/r)1/2, and co =

(p/k)1/2, so that the GLS estimator can more conviently be

calculated using the transformed variables

(3.4.10) S‘llzy = y - (1-cz)Q2y - (1-c3)Q3y + (1+c1)Q4y

(and similiarly for R). For example,
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(3.4.11) (S‘llzy)1t = yit - (1-c2)y1. - (1-ca)y.t

+ (1+c1)y..

and this differs from the within transformation to the extent

that the scalars c2, c3, and ca are nonzero. As pointed out

by Hsiao (1986), the GLS estimator converges to the Within

estimator when N - > 00, T -> 00, and the ratio of N over T

trends to a non-zero constant. It can be shown that c2 tends

to zero as T gets large, that c3 tends to zero as N gets

large, and co tends to zero as T gets large and the ratio of

N over T is bounded from above.

The GLS estimator is consistent, as pointed out by Judge

g; al, (1985), when both N -> 00 and T -> 00; it is not

consistent as N -> 00 for T fixed or as T -> 00 for N fixed.

The case when N -> 00 for T fixed will be discussed in more

detail in section 3.6.1.

3-4-3 Eeishted_Least_§guare§_fistiaatign

As an alternative approach to the generalized least

squares estimator of A, consider the equations which result

from the decomposition of equation (3.4.7). These orthogonal

equations can be written as

(3.4.12) Q1y = Q1XB + Q1e

(3.4.13) sz = Q2XB + szc + Q2(u + e)

(3.4.14) Q3y = Q3XB + QsWD + Q3(v + e)

(3.4.15) Q1y Q4XB + Q4zc + Q4WD 4
.

Q4(u + v + e)
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We note that the covariance matrices associated with the

errors in the above equations may be written (respectively)

8.8

(3.4.16) Cov( Q18 ) = Q1SQ1 = pQ1

(3.4.17) Cov( st ) = stQ2 = qQ2

(3.4.18) Cov( Qas ) = Q3$Q3 = rQa

(3.4.19) Cov( Qes ) = Q4SQ4 = kQ1

Each of these four covariance matrices is of the form of a

constant times an idempotent matrix. These four constants

may be equated by multiplying equations (3.4.12), (3.4.13),

(3.4.14), and (3.4.15), by the weights (1/p), (1/q), (1/r),

and (1/s), respectively. Moreover, it follows from Lemma

(2.1) that least squares applied to the system so weighted

yields the best (minimum variance) unbiased estimator within

the class containing all least squares estimator of the

parameter vector A from any further transformation of these

equations or, in fact, the original equation (3.4.7). We

will refer to the least squares estimator of A from the

system of orthogonal equations

(3.4-20) (1/p)Q1y (1/P)Q1XB + (llp)Qi

(3.4.21) (1/q)Q2y (llq)Q2XB + (1/q)szc + (1/q)st

(3.4.22) (1/r)Q3y (1/r)Q3XB + (1/r)Q3WD + (1/r)Qas
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(3.4.23) (l/k)Q4y = (l/k)Q4XB + (1/k)Q4ZC + (l/k)Q4WD

+ (1/k)Q4k

as the weighted least squares estimator of A. This estimator

may be written as

(3.4.24) ast

= (RTQIR/p + RTQzR/q + RTQaR/r + RTQ4R/k)'1

times (R’Qi/p + R’Qz/q + RTQ3/r + RTQ4/k)y

The decomposition of the original equation by the

transformations, Q1, Q2, Q3, and Q4, has the effect of

isolating the correlations found in the non-block diagonal

covariance matrix of its error vector, S, to the particular

orthogonal space. Since these transformations are

orthogonal, and their sum is the identity matrix, equation

(3.4.7) is said to have been ngdnced by the quadruple ( Q1,

Q2, Q3, Q4 ) into the four orthogonal equations (3.4.12),

(3.4.13), (3.4.14), and (3.4.15). Since these four equations

contain exactly the same information as the orthogonal

equation, we would expect that the minimum variance unbiased

estimator from the four equations would be equivalent to the

generalized least squares estimator from the original

equation. This result is stated in the following theorem.

Ibsgngn__(§;11: The weighted least squares estimator, sure,

is equal to the generalized least squares estimator, 8629.
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21291:

The generalized least squares estimator of A from

equation (3.4.7) can be rewritten as

(3.4.25) acts

(R’S'lR)'1RTS'1y

(R’[(1/p)Q1 + (1/q)Q2 + (l/r)Qa + (1/k)Q4]R)'1

times RT[(1/p)Q1 + (1/q)Qz + (1/r)Q3 + (l/k)Q4ly

(R’QiR/p + R'QzR/q + R'Qafilr + R"Q4R/k)'l

times (RTQ1/p + R’Qz/q + R‘Qa/r + RTQ4/k)y

Therefore, ast = aoLs. Q.E.D.

Now least squares applied to equation (3.4.13) is called

the between-individual estimator; a1 = (R'QzR)'1RTQ2y. It

utilizes the variation between individuals. Least squares

applied to equation (3.4.14) is called the between-time

period estimator; as = (RTQaR)'1RTQ3y. It utilizes

variation the between time periods. Recall that the within

estimator can be viewed as least squares applied to equation

(3.4.12); it utilizes the residual variation. Maddala (1971)

claims that the generalized least squares estimator can be

viewed as an efficient combination of the above three

estimators. The optimal weights for the three different sets

of variation are the constants being used to normalize each

of the equations; i.e. the reciprocal of the variances p =

65’, q = 052 + Tahz, and r = 633 + NOv2 for the respective

equations, (3.4.12), (3.4.13), (3.4.14). Since the weighted

least squares estimator has been shown to be equivalent to
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the generalized least squares estimator, this would imply

that equation (3.4.15) may be dropped and the weighted least

squares estimator computed using the remaining three

equations only. Indeed, equation (3.4.15) only determines

the constant term and, therefore, dropping this equation and

omitting the constant term, leaves the estimates for the

other coefficients unchanged. We prove this in the next

theorem.

eo e 3 : Weighted least squares applied to the set of

equations (3.4.20), (3.4.21, (3.4.22), and (3.4.23) is

equivalent to weighted least squares applied to the first

three equations only.

2:22;:

We rewrite equation (3.4.7) as

(3.4.26) y = RA 4 s

= R1 A1 4' R2 A2 '1' 8

where R1 = (1,...,1)‘r is a (NT x 1) vector of 1’s and A1 is

the constant term. From Schmidt (1983), the generalized

least squares estimator of A2 is

(3.4.27) a2 = (RTMR)R’My

where M = 8'1 - S‘1A1(A1‘S'1A1)‘1A1'S'1. But for our

8‘1 and A1, a straightforward calculation shows

(3.4.28) M S'1 - (1/s)Q4

(1/plQi + (1/q)Qz + (1/r)Qa Q.E.D.
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3.5 on fects Co e a ed ' e essors

In some applications of the error-component model, there

may be reasons to believe that either the individual-specific

or the time-specific unobservable effects found in the error

term may, in fact, be correlated with some of the included

explanatory variables. If we take the view suggested

earlier, that the random effects represent both omitted

individual-specific and time-specific variables, this

correlation would seem inevitable. When there is correlation

between the random effects and the explanatory variables, the

generalized least squares estimator is biased and

inconsistent.

We consider the case in which the effects are correlated

with gnng of the regressors. To consider this case, we first

need to introduce some notation. Consider the equation

(3.5.1) y11 = (X111, X211, X311, X411)B + (211, Zz1)D

+ (W11, W21)C + u1 + Vt + e11

where X111 represents the (1 x g1) dimensioned vector of time

and individual varying explanatory variables, 211 represents

the (1 x k1) dimesioned vector of time-invariant explanatory

variables, and W11’s represent the (1 x h1) dimensioned

vector of individual-invariant explanatory variables, all of

which are assumed to be uncorrelated with the three errors,

u1, v1, and e11. The (1 x g2) dimensioned vector of time and

individual-varying explanatory variables, X211, and the

(1 x k2) dimensioned vector of time-invariant explanatory
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variables, 221, are both assumed to be correlated with u1 but

uncorrelated with V1 and e11. The (1 x g3) dimensioned

vector of time and individual-varying explanatory variables,

X311, and the (1 x hz) dimensioned vector of individual-

invariant explanatory variables, W21, are both assumed to be

correlated with V1 but uncorrelated with u1 and e11.

Finally, the (1 x g4) dimensioned vector of time- and

individual-varying explanatory variables, X411, is assumed to

be correlated with u1 and V1 but uncorrelated with e11. As

before, the random noise component, e11, the individual

effects, u1, and the time effects, V1, are i.i.d. as well as

independent of one another.

We note in passing that the variables X, which vary over

both individuals and time, may be correlated or not with both

the individual effects u1 and the time effects V1. Thus

there are four possible kinds of X’s. However, the variables

2 are time-invariant, and can not possibly be correlated with

the time effects; there are only two kinds of 2’s, correlated

or not with the individual effects. Similiarly, the

variables W are individual-invariant, and can not possibly be

correlated with the individual effects; there are only two

kinds of W’s, correlated or not with the time effects.

The matrix form of equation (3.5.1) can be written as

(3.542) y = (X1, X2, X3, X4 )3 + (21, Zz )D

+(W1,W2)C + u + V + e

where y, u, V, and e are (NT x 1); X is (NT x g), g = g1 + g2
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+ gs + g4; 2 is (NT x k), k = k1 + k2; and W is (NT x h), h

= h1 + h2.

3.5.1 Eeignted Lgnst Sgnnzgg Esgigntign

We decompose equation (3.5.2) into the three orthogonal

equations

(3.5.3) Q1y Q1X1B1 + Q1X2Bz + Q1X3B3 + Q1X4B4

+Q1(e)

(3.5.4) Q2y Q2X1B1 + Q2X2B2 + Q2X3Ba + Q2X4B4

+ Q221D1 + Q222D2 + Q2( e + u)

(3.5.5) Q3y Q3X1B1 + Q3X2B2 + Q3X3Ba + Q3X4B4

+ Q3W101 + Q3W2C2 + Q3( e + v)

Now since Q1v = 0 and Q1u = 0, there is no correlation

between errors and regressors in (3.5.3). Furthermore,

(3.5.6) H2 = [ Q2X1, Q2X3 ,Q221 ]

can readily be seen to be the largest available set of

variables in equation (3.5.4) which have been assumed

uncorrelated with the indivdual effects. Likewise,

(3.5.7) H3 = [Q3X1, Q3X2, Q3W1 ]

can readily be seen to be the largest available set of

variables in equation (3.5.5) which have been assumed

uncorrelated with the time effects. Projecting equation

(3.5.4) onto the column space of H2 and projecting equation

(3.5.5) onto the column space of H3, we have the set of
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orthogonal equations

(3.5.8) Q1y Q1RA + Q1( e)

(3.5.9) P2Q2y P2Q2RA + P2Q2( e + u )

(3.5.10) P3Q3y P3Q3RA + P3Q3( e + V )

where P2 = P[ H2 ] and P3 = P[ H3 ].

The covariance matrix associated with the errors in

equations (3.5.8), (3.5.9), and (3.5.10) can be written as

(3.5.11) Cov( Q1e ) = PQ1

(3.5.12) Cov( P2Q2( e + u ) ) = qu

and

(3.5.13) Cov( P3Q3( e + v ) ) = rPa,

respectively. We note that each of these three covariance

matrices has the form of a constant times an idempotent

matrix. Thus, Lemma (2.1) would imply that any further

attempt at diagonalizing the covariance matrices in any of

the equations would not improve the efficiency of the

resulting estimator. Using the weights p, q, and r, the

weighted least squares estimator of A from equations (3.5.8),

(3.5.9), and (3.5.10) becomes

(3.5.14 ) ants = {(1/p)RTQ1R + (1/q)RTP2R + (1/r)R"P3R}"1

times {(1/p)RTQ1 + (1/q)RTP2 + (l/r)R'P3}y

It is possible to derive the estimator (3.5.14) without
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decomposing the equation into orthogonal spaces, as follows.

First, we multiply equation (3.5.2) by 8’112 to transform the

error term so that it has a scalar covariance matrix. The

transformed equation is simply

(3.5.15) S'llzy = S'llzRA + S'l’zs

Second, we note that the maximal set of available

instruments for equation (3.5.2) may be written as

(3.5.16) 11" = [ Q1, Q2X1, Q2X3, Q221, Q3X1, Q3X2, Q3W1 ].

We then follow the path of Hausman and Taylor (1981), by

estimating (3.5.15) using IV with instrument set H‘. This

yields

(3.5.17) a1v = { RTV'1/2P‘V‘1/2R }'1{ RTV'1/2P‘V'1/2 }y

where P‘ = P[ H' ].

We can evaluate P[ H' ] using the following Lemma:

emma 3:P[H‘]=Q1+P[H2]+P[H3]

§Q1+P2+P3

The efficient instrumental variables estimator of A from

equation (3.5.2) can then be written as

(3.5.18) arv = { R'S'1’2(Q1 + P2 + p3)s-IIZR 1'1

times { R'S'1/3(Q1 + P2 + P3)S'1’2 )y

= { RH (l/p)Q1 + (1/q)P2 + (1/rlPa)S'1’2R )'1

times { RT( (l/P)Q1 + (1/q)P2 + (1/r)P3) }y
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But this is simply the weighted least squares instrumental

variables estimator. We have therefore proved the following

theorem.

eo . : The efficient instrumental variables

estimator of A equals weighted least squares applied to

equations (3.5.8), (3.5.9), and (3.5.10).

3.5.2 Counting Rnles for Identificntion

Following Hausman and Taylor and corresponding to the

familiar rank condition we have the theorem:

Theorem (3.5): A necessary and sufficient condition that the

vector of parameters A be identified in equation (3.4.7) is

that the matrix RTP‘R be non-singular.

Corresponding to the order condition, we have the

following theorem:

Theorem (3.6): A necessary condition for the identification

of A in equation (3.4.7) is that (i) g1 + g3 > k2 and

(ii) g1 + g2 _>_ h2.

Bro—ct:

SinceP‘R=(Q1+P2+Ps)(XZW)=(Q1X00)

+ ( P2X P22 0 ) + ( P3X 0 P3W ) = ( P‘X P22 PsW ), rank(P‘R)

= rank(P‘X) + rank(PzZ) + rank(PsW). It follows that a

necessary condition for the matrix RTP‘R to be non-singular

is that rank(P’R) = g, rank(PzR) = k, and rank(PaR) = h. Now

rank(PzR) = min { rank(Pz), rank(R) } = g1 + g2 + k1.
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Similiarly, rank(PaR) = g1 + g3 + hi and rank(P’R) = g.

Thus, a necessary condition for identification is that g1 +

g2 + k1 z k nnd 31 + g3 + hi 2 h. Q.E.D.

Therefore, to insure that the parameters of the model

are identified requires that the parameters in each of the

three equations, (3.5.3), (3.4.4), and (3.4.5), separately be

identified.

eo e . : Given the rank condition of Theorem (3.6),

weighted least squares applied to equations (3.5.8), (3.5.9),

and (3.5.10) is a consistent estimator for A.

Proof:

Weighted least squares applied to equations (3.5.8),

(3.5.9), and (3.5.10) can be written as

BWLS

{(1/p)RTQ1R + (1/9)RTP2R + (1/r)R'1'P3R}‘1

times {(1/p)RTQ1 + (1/q)RTP2 + (1/r)RTP3}y

A + { (1/P)R’Q1R + (1/Q)RTP2R + (1/r)RTP3R }‘1

times {(1/p)RTQ1 + (1/q)RTP2 + (1/r)RTP3}(u + v + e)

Since the estimator exists,

lim { (1/P)RTQ1R + (1/9)RTP2R + (1/r)RTP3R }'1 is finite as

both N -> 00 and T -> 00. Next, consider

{ (1/p)RTQ1 + (1/Q)RTP2 + (1/r)R'P3 }(u + V + e)/NT

= (1/p)RTQ1(u + v + e)/NT + (1/q)RTP2(u + v + e)/NT

+ (1/r)R'P3(u + v + e)/NT
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= (1/p)RTQ1(u + v + e)/NT

+ (1/q)(RTH2/NT)(H27H2/NT)'1H2’(u + v + e)/NT

+ (1/r)(R‘Hs/NT)(H3‘H3/NT)‘1H3’(u + v + e)/NT

where

RTQ1(u + v + e)

H2’(u + v +

H2T(u + v +

As we can easily

plim

plim

plim

plim

plim

plim

and

plim

Therefore, plim RTQ1(u + V + e)/NT

= plim H37(u + v + e)/NT = 0

e)

8)

 
_.

X31Q2(u

1
L121 Q2 (u

.'

X1’Q3(v

X2’Q3(V

W1TQ3(V b
show,

X'Qie/NT = 0

X1TQ2(u

XsTQ2(u

21’Q2(u

X1TQ3(V

X2'Q3(V

W1’Q3(V

+ e)/NT

+ e)/NT

+ e)/NT

+ e)/NT

+ e)/NT

+ e)/NT

+

+

as N

 

X17Q2 (u + e)

e)

e)-J

e)

e)

e)-J

O
O
O
O
O

-)

‘l

, and

 

N -> 00 or T -> 00,

as N -> 00,

as N -> 00,

as N -> 00,

as T -> 00,

as T -> 00,

as T -> oo.

plim H2’(u + V + e)/NT

co and as T -> oo.



71

Since the estimator exists, lim (RTH2/NT)(H2’Hz/NT)'1 is

finite as N -> 00 and lim (R"H3/NT)(H3"H3/NT)"1 is finite

as T -> 00. Thus,

plim (1/p)RTQ1(u + v + e)/NT

plim (1/q)(R'H2/NT)(H2'H2/NT)‘1H2'(u + V + e)/NT

plim (1/r)(RTH3/NT)(H3'H3/NT)’1H3'(u + v + e)/NT

0

as both N -> 00 and T -> 00.

It follows that, plim ast = A as both N - > 00

and T "> 004 Q.E.D.

The weighted least squares estimator is not consistent

as N -> 00 for T fixed or when T -> 00 for N fixed. The case

when N -> 00 for T fixed will be discussed in more detail in

section 3.6.2.

3.6 Random Effects when I is Fixed

In the previous two sections, we have derived GLS and IV

estimators which are useful only when both N and T are large.

In this section, we will be concerned with the case in which

N is large and T is small. This is the situation most common

in panel or longitudinal data.

(3.6.1) Rnndon Effecgs not gogzelnggd 11th fin; Reggegggrg

For the present we will assume that the regressors (X,

Z, and W) are all uncorrelated with the error components e,

u, and v. Now unbiased estimation is still possible in the

case of small (or fixed) T. The problem which does arise is
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the inability to obtain consistent estimates from applying

either least squares or generalized least squares to the

above equation. To see this, consider equation (3.4.7)

multiplied by S'llz. We then have

(3.6.1) 5-1/2y = S'1/2XB + s-IIZZD + s-l/zwc

+ S'1/2(e + u + v)

where 5-1/2 = ( Q1/p* + Q2/q* + Qa/r* + Q4/k* )1 P*

= ( d2. )1’2; q* = ( dz. + szu )1/3, r* = ( 63. + N62. )1’2,

and k* = ( 62. + dzu + 62v )1/3.

Evaluating the probability limit of the cross product of

the transformed regressor S'1/3X and the transformed error

component S'llzv, we find that

(3.6.2) plim XTS‘IV/NT

plim XT(Q1/p + Q2/q + Q3/r + Q4/k)V/NT

plim XT( st/r + Q4v/k )/NT

since Q1v = sz = 0

plim (1/r)XT(jnju’/N O Im)V/NT

+ plim (1/r)XTQ4v/NT - plim (1/k)X’Q4V/NT

This probability limit does not equal zero as N -> 00 since

(3.6.3) plim (1/r)XT(ijn’/N O Ir)v/NT

2' l

= 911111 (1/r))t:l(1ZiCJt/N)TV1/T = 0

only as T -> 00. Therefore, we have the problem of the

regressors being correlated with one of the error components

in the sense that their cross-moments have a nonzero
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probability limit for the case when only N -> 00. Thus, for

the case of fixed T, the generalized least squares estimator

of the coefficient vectors in equation (3.4.7) will not be

consistent. Furthermore, exactly the same problem arises

with ordinary least squares. For example, XIV/NT has a non-

zero probability limit as N -> 00 with T fixed. Only if both

N and T -> 00 will ordinary least squares be consistent.

A proposed solution to this problem is to apply weighted

least squares to a subset of the equations in the

decomposition of equation (3.4.7). Unfortunately, the

coefficient vector C is no longer estimable. The weighted

least squares estimator we derive is for the vector of

coefficients ( BT, D'r )7. Consider the decomposition of

equation

(3.6.4) y = XB + ZD + WC + u + V + e

into the four orthogonal equations

(3.6.5) Q1y = Q1XB + Q1e

(3.6.6) sz = Q2XB + ZD + Q2(u + e)

(3.6.7) st = Q3XB + WC + Q3(v + e)

(3.6.8) Q4y Q4XB + Q4ZD + Q4WC + Q4(u + v + e)

Using Theorem (3.2), we know equation (3.6.8) may be dropped

without affecting the estimation of the remaining equations.

In addition, equation (3.6.7) must be dropped for it is the

source of the present problem. That is, it is equation
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(3.6.7) from which comes the matrix of cross moments that has

a nonzero probability limit unless T gets large. Thus, the

estimator of (BT, DI )7 will be derived by applying weighted

least squares to the two remaining equations; namely

equations (3.6.5) and (3.6.6).

Let R = ( X, Z ). Then the weighted least squares

estimator of (BT, Dr )T from equation (3.6.5) and (3.6.6) can

be written as

bst

(3.6.9) = (RTQ1R/p + RTQzR/q)'1(RTQ1/p + R'Qz/Q)Y.

dune

s tio 3. : lim (RTQiR/p + RTQzR/q) as N -> 00 is

finite and nonsingular.

Ineozem (3.6): The weighted least squares estimator of

( BT, D1 )T from equations (3.6.5) and (3.6.6) is consistent

as N -> 00, with T fixed.

2:001:

The weighted least squares estimator can be written as

bums

= (R’Q1R/q + R'QzR/Q)'1(R’Q1/P + R'QZ/Q)y

dwns

B

= + (R’Qifi/p + R'QzR/q)'1(R’Q1/p + RTQzlq)(u + e).

D

B

D

+ (((llp)R’QiR/NT + (1/<1)R’Qzl%/NT)‘l

times ((1/p)R'Q1/NT + (1/Q)RTQ2/NT)(u + e)}.
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Consider the second term. First, ( (1/p)RTQ1R/NT +

(1/q)R7Q2R/NT )'1 is by assumption finite as N gets large.

Next, we can write ( RTQ1/p + RTQzlq )(u + e) = (1/p)RTQ1e +

(1/q)R7Q2(u + e), where

X'Qle

(3.6.10) R‘Qle

and

X'thi + e)

(3.6.11) RTQ2(u + e)

2"Q2(u + e)

As we can easily show,

(3.6.13) plim XTQie/NT = 0 as N -> 00 or T -> 00

(3.6.14) plim XTQ2(u + e)/NT = 0 as N —> 00

and

(3.6.14) plim Z'Q1(u + e)/NT = 0 as N -> 00.

Thus, plim RTQ1(u + e)/NT = plim RTQ2(u + e)/NT = 0 as

N -> 00. Hence, plim {(1/p)RTQ1e/NT + (1/9)RTQ2(u + e)/NT}

= 0 as N -> oo.

bums 3

Therefore, plim as N -> oo. Q.E.D.

dWLS D
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(3.6.2) Random Effects Cornelnned winn the Regressors

We again consider the case when T is fixed but, in

addition, we consider the case in which the effects are

correlated with nnnn of the regressors. To this end, we

first re-introduce some notation. Consider the equation

(3.6.15) y = XB + 2D + WC + u + V + e

where we again assume that X = (X1, X2, X3, X4), 2

= (21, 22), and W = (W1, W2). That is, X1, 21, and W1 denote

(NT x g1), (NT x k1), and (NT x h1) dimensioned matrices,

respectively, all assumed to be uncorrelated with e, u, and

v; X2 and 22 denote (NT x g2) and (NT x k2) dimensioned

matrices, respectively, both assumed to be correlated with u

but uncorrelated with e and v; X3 and W2 denote (NT x g3) and

(NT x hz) dimensioned matrices, respectively, both assumed to

be correlated with v but uncorrelated with e and u; and X4

denotes a (NT x g4) dimensioned matrix which is assumed to be

correlated with both u and V but uncorrelated with e.

Now, not only is the weighted least squares estimator

of A biased, but so is the weighted least squares estimator

of (B1, D")'r derived in section 3.6.1. This bias is due to

the presence of regressors which are assumed correlated with

the equation’s error term. One approach to consistent

estimation of (BT, D')’ is to apply the instrumental

variables, weighted least squares method to the equations

(3.6.5) and (3.6.6). In this section we will derive such an

estimator and show it to be consistent.
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First we consider the equations

(3.6.16) Q1y Q1(X1, X2, X3, X4 )B + Q1e

(3.6.17) Q2y Q2(X1, X2, X3, X4)B + Q2(Z1, 22)D

+ Q2(u + e)

Since Q1u Q1v = 0 and Q1W = 0, there is no problem of

correlation between errors and regressors in (3.6.16).

Furthermore, as we show in appendix A, the set

(3.6.18) Ho = [Q2X1, Q2X3, Q221 ]

contains legitimate instruments for equation (3.6.17). It

can readily be seen that H0 is the largest available set of

variables in equation (3.6.17) which have been assumed

uncorrelated with the individual effects found in that

equation. Projecting equation (3.6.17) onto the column space

of Ho, we have the set of orthogonal equations

(3.6.19) Q1y Q1(X1, X2, X3, X4)B + Q1e

(3.6.20) P2y P2(X1, X2, X3, X4)B + P2(21, 22)D

+ P2(u + e)

where P2 = P[Ho].

The covariance matrix associated with the errors in

equations (3.6.19) and (3.6.20) can be written as

(3.6.21) Cov( Q1e ) = pQ1

and
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(3.6.22) Cov( P2(u + e) ) = qu,

respectively. We note that each of these two covariance

matrices has the form of a constant times an idempotent

matrix. Thus, Lemma (2.1) would imply that any further

attempt at diagonalizing the covariance matrices in either

equation (3.6.19) or (3.6.20) would not improve the

efficiency of the resulting estimator. Using the weights p

and q, the weighted least estimator of (B7, D7)r from

equations (3.6.19) and (3.6.20) becomes

b1v

(3.6.23) = {R'Qia/p + RTP2R/ql'1{R'Qiy/p + R’sz/q)

dIV

where R = (X1, X2, X3, X4, 21, 22).

We first derive the necessary conditions for the

existence of the above estimator, and then show it to be

consistent for fixed T.

Corresponding to the order condition, we have the

following theorem:

0 e 3 : A necessary condition for the weighted least

squares estimator of (B’, D")'r from equations (3.6.19) and

(3.6.20) to exist is that g1 + g3 2 k2.

2129.1:

The existence of the IV estimator depends on the matrix

Q1 R Q1 X1 Q1 X2 Q1 X3 Q1 X4 0 0

PZR P2X1 P2X2 P2X3 P2X4 P221 P222
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being of full rank. But for this matrix to be of full rank

it is necessary that (P221, P222) be of full rank. And since

(P221, P222) = (21, P[Q1X1, Q1X3, Q121122), it follows that a

necessary condition for the existence of the estimator is

that rank( X1, X3 ) 2 rank( 22 ); or that g1 + g3 2 k2.

ID§2£2;_L§;§l= Given the rank condition of theorem (3.7),

weighted least squares applied to equations (3.6.19) and

(3.6.20) is a consistent estimator for (BT, D7)T when T is

fixed.

2:221:

Weighted least squares applied to equations (3.6.19) and

(3.6.20) can be written as

bxv

= {R'QIR/p + R‘PzR/ql'1{R‘QI/p + R'Pz/qu

dIV

B

= + {stole/p + RTPzR/q}'1{RTQ1/p + R'leq}(u + e)

D

Since the estimator exists, lim {RTQiR/p + R"'P2R/q}'1 is

finite as N -> 00. Next, consider

{RTQ1/p + RTP2/q}(u + e)/NT

(1/P)RTQ1(u + e)/NT + (1/q)R'P2(u + e)/NT

(1/P)RTQ1e/NT + (1/9)RTH0(H0'H0)'1Ho’(u + e)/NT

(1/p)R7Q1e/NT + (1/q)(R‘Ho/NT)(HoTHo/NT)'1(Ho’(u + e)/NT)

where

XTQ1e

RTQle =
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and

-X17Q2(u + e)-

Ho'tu + e) = X37Q2(u + e)

Z17Q2(u + e)

As we can easily show,

plim X’Qie/NT = 0 as N -> 00 or T -> oo,

plim X1’Q2(u + e)/NT = 0 as N -> oo,

plim X3TQ2(u + e)/NT = 0 as N -> 00,

and

plim Z1TQ2(u + e)/NT = 0 as N -> 00.

Therefore,

plim (l/p)RTQ1(u + e)/NT = plim HoT(u + e)/NT = 0

as N -> 00. Since the estimator exists,

lim (R‘rHo/NT)(Ho"Ho/NT)"1 is finite as N -> 00. Thus,

plim { (1/p)RTQ1(u + e)/NT

+ (1/q)(RTHo)(HoTHo)'1(H07(u + e)/NT } = 0 as N -> oo.

brv b

It follows that, plim = as N -> oo.

dIV d

Q.E.D.

(3-6-3)W

The above approach to estimating ( BT, Dr )'I is an

extension of the analytical method used throughout this

chapter. Instead, we could follow a naive extension of the

analytical method used in chapter 2. In the simple model of

chapter 2 for the case when random indiviual effects are

present consistency of the least squares estimator requires
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N —> 00. There the problem was that we had present

regressors correlated with one of the error components in the

sense that their cross-moments have a nonzero probabiltiy

limit for the case when only T -> 00. This is because the

effect of the random component u1 can be averaged out only in

the direction of that component. That is, probability limits

of terms like XTPu/NT = §:1(§f¥11/T)u1/N are to equal zero

only as N -> 00. A solution to this problem was to construct

a transformation P which determined the means for each of the

individual groups and repeats these N observations T times.

The within transformation, Q = In: - P, then transforms each

observation into the difference between itself and its

respective indiviual group mean. Premultiplying equation

(2.4.7) by the within transformation eliminated the

individual random effects and so the need for N -> 00. Thus,

least squares applied to the transformed equation turns out

to be consistent as T -> 00.

Now however we are not interested in individual effects

but rather in eliminating time effects and the need for

T -> 00 so we construct a projection similiar to P but in the

other direction. To this end, we define

(3.6.24) P' = ( jujNT/N 0 Ir ) and Q' = In: - P’

where j'r = (1,...,1)T is (T x 1). The transformation P"I

determines the means for each of the time periods and repeats

each of these T observations N times. The transformation Q‘

transforms each observation into the difference between
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itself and its respective time period mean. Explicitly, the

(i,t) elements of P'y and Q‘y can be written as

(3.6.25) (P'y)11 = y.1 and (Q'y)11 = y11 - y.1,

respectively. We note that in terms of our previous notation

P'=Q3+Q4 andQ'=Q1+Q2.

Since W contains variables that are constant across all

individual observations for a given time period, Q'W = 0.

The elements of the columns of W are, on the other hand,

unaffected by the transformation P'; that is, P’W = W.

Analogous results hold true for the time effects v; that is,

Q'V = 0 and P‘v = v. Thus, the original equation (3.6.4) can

now be written equivalently as the two orthogonal equations

(3.6.26) P‘y P'XB + P’ZD + P’WC + P‘(u + v + e)

(3.6.27) Q‘y Q'XB + Q‘ZD + P‘(u + e)

Equation (3.6.27) represents the original model after being

purged of the time effects. Of course the coefficients of

the individual-invariant regressors cannot be estimated but

OLS applied to equation (3.6.27) would yield a consistent

estimator (B7, DT)T.

Anny-pninn_iflnfil: lim RTQ‘R as N -> 00 is finite and

nonsingular.

Ih£2£§!_1§1121: The least squares estimator of ( BT, DT )T

from equation (3.6.27) is consistent as N -> oo.
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Bgoof:

The least squares estimator can be written as

bone

= ( R'Q'R )‘1R'Q'y

dons

a

= + ( R'Q‘R )‘1R’Q’(u + e).

D

Consider the second term. First, ( RTQ'R )'1 is by

assumption finite as N gets large. Next, we can write

( R’Q‘ )(u + e) = R'Q1(u + e) + R7Q2(u + e), where

X’Qle 5

(3.6.28) R7Q1(u + e) =

0

and

X’Qze

(3.6.29) RTQ2(u + e) = .

ZTQ2(u + e)'

As we can easily show,

(3.6.30) plim XTQie/NT l
l

0 as N -> 00 or T -> 00,

(3.6.31) plim XTQ2(u + e)/NT = 0 as N -> co,

and

(3.6.32) plim Z'Q2(u + e)/NT = 0 as N -> 00.

Thus, plim RTQ1(u + e)/NT = plim RTQ2(u + e)/NT = 0 as

N -> 00. Hence, plim { RTQ'(u + e)/NT ) = 0 88 N ‘> 00-
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boss B

as N -> oo. Q.E.D.Therefore, plim

dons ~ D

The OLS estimator from equation (3.6.27) can be viewed

as unweighted version of the WLS estimator from equations

(3.6.5) and (3.6.6) as we can see by comparing the following

with equation (3.6.9).

bons

( R’Q'R )‘1R’Q‘y

dons

( RTQlR + RTQZR )‘1( RIQI + RTQZ )1!

Since WLS weights the two equations (3.6.5) and (3.6.6)

optimally, we would expect weighted least squares to be

efficient relative to least squares. This is shown in the

following theorem.

Ineozem (3,11): The weighted least squares estimator of

( BT, D'r )7 from equations (3.6.5) and (3.6.6) is

asymptotically efficient (as N -> 00) relative to the least

squares estimator from equation (3.6.27). If p and q are

known then weighted least squares is also efficient relative

to least squares in finite samples.

2:001:

We prove the finite sample case; the other case is

similiar. Let Cov(u + e).§ 0- = pQ1 + qQ2 so 0-‘1 = (1/P)Ql

+ (1/Q)Q2. Then
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buns

Cov

dams

= ( R’QIR/P + R'Qzfi/q )‘1( R’Qi/p + R'Qzlq )(PQI + QQZ)

times ( Q1R/p + QzR/q )( R’Q1R/p + R’QzR/q )"1

= ( R’QiR/p + R’Qzfilq )“( R'Qifi/p + R’Qzfi/q )

times ( RTQ1R/p + RTQzR/q )'1

= ( R’QlR/p + R’QzR/q )'1 = ( R'(Qilp + Qz/q)R )"1

= (RTOU'IR)'1

And

bons .

Cov = ( RIQ'R )‘1RTQ'OtQ‘R( R’Q’R )‘1

done

Now to show

is

is

boas - buns

Cov - Cov

dons des

psd it is sufficient to show that

burs bons-

Cov - Cov

dwns dons

psd. But the latter expression can be written as

(RTOt’lR) - R'Q‘R(RTQ‘O~Q'R)'1RTQ‘R

(RIOu‘lR) - R'Q‘R(R"Q'O~Q'R)'1R7Q'R

= RTOu'1/2[ I - 0-“2Q’R(RTQ'Ou-Q'R)'1RTQ‘O~1’2 104'1’2R

R’Ou‘1/3[ I - D(D’D)‘1Dr ]OI‘1/2R
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where D = Oalle‘R, which we see to be a quadratic form in an

idempotent matrix; hence, our expression is psd. Q.E.D.

A similiar approach can be applied to the case when T is

fixed but, in addition, the effects are correlated with none

of the regressors. Using the notation of section 3.6.2 we

consider the equation

(346.37) y = (X1, X2, X3, X4 )8 + (Z1, 22 )D

+(W1,W2)C+u+v+e

Here again, X1, 21, and W1 denote (NT x g1), (NT x k1), and

(NT x h1) dimensioned matrices, respectively, all assumed to

be uncorrelated with e, u, and v; X2 and 22 denote (NT x g2)

and (NT x k2) dimensioned matrices, respectively, both

assumed to be correlated with u but uncorrelated with e and

v; X3 and W2 denote (NT x g3) and (NT x h2) dimensioned

matrices, respectively, both assumed to be correlated with v

but uncorrelated with e and u; and X4 denotes a (NT x g4)

dimensioned matrix which is assumed to be correlated with

both u and V but uncorrelated with e.

As shown in section 3.6.2, the weighted least squares

estimator of (BT, DI)r derived in section 3.6.1 is biased due

to the presence of regressors assumed correlated with the

equation’s error term. An alternative approach to consistent

estimation of (B’, Dr)? is to transform equation (3.6.39) by

Q’ and then apply the instrumental variables method. In the

remainder of this section we will derive two such estimators

and discuss their consistency and relative efficiency.
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First we consider the decomposition of equation

(3.6.37) into two orthogonal equations

(3.6.38) P'y = P’(X1, X2, X3, X4)B + P‘(21, 22)D

+ P‘(W1,W2)C + P'(u+v+e)

(3.6.39) Q‘y Q’(X1, X2, X3, X4)B + Q‘(Z1, 22)D

+ Q'(u + e)

Since Q‘v = 0 and Q'W = 0, time effects are eliminated from

equation (3.6.39) but there still exists a problem of

correlation between errors and the regressors X2, X4, and 22.

The largest set of legitimate instruments for equation

(3.6.39) would appear to be

(3.6.40) H: = [Q‘X1, Q‘Xa, Q'Zi ]

Unfortunately, by comparing H: to the list of instruments

used for the instrumental variables estimator given in

equation (3.6.23) it can be seen that H: is not the largest

available set of instruments available. Although not

apparent in equation (3.6.39), both Q1X3 and Q1X4 are

available instruments being excluded. Following White (1984,

section IV.3), the efficiency of an instrumental variables

estimator is not decreased by adding more instruments.

Hence, an instrumental variables estimator using the

instrument set He would not lead to a more efficient

estimator than the instrumental variables estimator given in

equation (3.6.23).

It is interesting to note that the existence of the
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instrumental variables estimator using H: depends on the

matrix P.R = [ P[Q'Hs]X, P[Qthlz ] being of full rank; P. =

P[Hst]. It follows that a necessary condition for the

existence of the above estimator is that rank( X1, X3, 21 ) 3

rank( X ) and rank( X1, X3, 21 ) > rank( 2 ); or that k1 2 g2

+ g4 and g1 + g3 2 k2. Thus, not only is it necessary to

have enough X1’s and X3’s to identify the coefficients of the

22’s but now we must have enough 21’s available to identify

the coefficients of the X2’s and X4’s.

If instead of using the instrument set Ha, we use the

instrument set

(3.6.41) H34 = [ Q'Xl, Q1X2, Q’Xa, Q1X4, Q22 ]

we would be using the same list of instrument used in the

instrumental variables estimator given in equation (3.6.23).

Projecting equation (3.6.39) onto the column space of Has, we

have the equation

(3.6.42) P+y = P.(X1, X2, X3, X4)B + P.(21, 22)D

+ P.(u + e).

It can be shown that P. = P1 + P2, where P1

= P[ Q1X, 0 ], P2 = P[ Ho ], and H0 is the instrument set

given in equation (3.6.18). The least squares estimator of

(B‘, D“')'r from equation (3.6.42) can be written as

btlv

(3.6.43) 3 (R7P4R)'1RTP.y

dtlv
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whereR = (X1,X2,X3,X4, 21, 22).

We first derive the necessary conditions for the

existence of the above estimator, and then show it to be

consistent for fixed T.

Corresponding to the order condition, we have the

following theorem:

Inegzgn (3,12): A necessary condition for the least squares

estimator of (B7, D'l')'r from equation (3.6.42) to exist is

that g1 + g3 2 k2.

Pnoof:

The existence of the least squares estimator from

equation (3.6.42) depends on the matrix P.R being of full

rank. And since P.R = P1R + P2R = ( P4X, P22 ), it follows

that a necessary condition for the existence of the estimator

is that rank( P22 ) 3 k. But this requires that the

rank( P22 X1, X3, Z1 ) > k; or that g1 + g3 2 k2. Q.E.D.

e0 e 3. : Given the rank condition of theorem (3.12),

least squares applied to equations (3.6.42) is a consistent

estimator for (BI, DI)? when T is fixed.

2:001:

Least squares applied to equation (3.6.42) can be

written as

bsiv - B

= {RTP.R }‘1RTP.y

d-xv D

+ {RIP4R}‘1RTP.u + e)
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Since the estimator exists, lim { R7P4R }‘1 is finite as

N -> 00. Next, consider

{ RIP. }(u + e)/NT

R'P1(u + e)/NT + RTP2(u + e)/NT

R7Q1R(R7Q1R)'1RTQ1(u + e) + RTHo(Ho'Ho)'1HoT(u + e)

R‘Q1(u + e)/NT + (R’Ho/NT)(HoTHo/NT)‘1(Ho'(u + e)/NT)

  

where

X’Q1e

RTQHu + e) =

° 1

and

X17Q2(u + e)

HoT(u + e) = X3"Q2(u + e)

21"Q2 (u + e)

b _  
As we can easily show,

plim X’Qie/NT = 0 as N -> 00 or T -> oo,

plim X1TQz(u + e)/NT = 0 as N -> oo,

plim X37Q2(u + e)/NT = 0 as N -> 00,

and

plim Z1'Q2(u + e)/NT = 0 as N -> 00.

Therefore,

plim R'Q1(u + e)/NT = plim HoT(u + e)/NT = 0

as N -> 00. Since the estimator exists,

lim (R'I'Ho/NTHHoTHo/NT)’1 is finite as N -> 00.
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Thus, plim { RTQ1(u + e)/NT + (RTHo)(HoTHo)‘1HoT(u + e)/NT }

= 0 as N -> 00.

balv b

It follows that, plim as N -> 00.

d-Iv d

Q.E.D.

The least squares estimator in equation (3.6.43) can be

viewed as an unweighted version of the weighted least squares

estimator from equations (3.6.19) and (3.6.20), as follows.

balv

(RIPoR )‘1R7P4y

dslv

(arms + RTPzR)-1(R’P1 + RTchr

(RTQ1R(RTQ1R)'1RTQ1R + aruo(HoTHo)-1HoTR)-1

times (arola(atoia)-IRTQ1 + RTHo(HoTHo)-1Ho’)y

(RTQIR + RTPZR)'1(RIQ1 + R’P2)y

Since the weighted least squares estimator weights the

equations (3.6.19) and (3.6.20) optimally, we would expect

that weighted least squares is efficient relative to ordinary

least squares. This is shown in the following.

Ih£2££l_l§41113 The weighted least squares estimator of

( BT, D'r )’ from equations (3.6.19) and (3.6.20) is

asymptotically ( as N -> 00 ) efficient relative to the least

squares estimator from equation (3.6.43). If p and q are

known then weighted least squares is also efficient relative

to least squares in finite samples.
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22221:

We prove the finite sample case; the other case is

similiar. Again, let Cov(u + e) 5 0- = PQl + qQ2 and 0a'1 =

(1/P)Q1 + (l/q)Qz. Then

b1v

Cov

dIV

= ( R'Qin/p + R’PzR/q )'1( R’Qi/p + R'leq )(le + 9P2)

times ( QlR/p + PzR/q )( arola/p + RIPzR/q )-1

= ( R'QiR/p + RIPzR/q )'1( R7Q1R/p + R'PzR/q )

times ( RTQ1R/p + RTPzR/q )‘1

= ( R’Qifllp + R7P2R/q )‘1 = ( R‘(Q1/P + P2/Q)R )'1

= (R"On-'1R)'1

And

belv

COV = ( RrpeR )-1RTP.O~P.R( RrpeR )"'l

dclv

Now to show

bans bums

Cov - Cov

dons dwns

is psd it is sufficient to show that

-1 -

buns bone

Cov - Cov

dWLS dons

18 p.s.d. But the latter expression can be written as

(RIO-'11!) - ( R'PeR )‘1R1P40IP4R( RIP.R )‘1

R70u‘1/3[ I - 01:113P+R(R"P+OIP+R)'1R'l'P+O:-1/2 ]O-'1/2R

aro.-112[ I - D(D’D)'1DT ]o.-112R



93

where D = 041/2P.R, can be seen as a quadratic form in an

idempotent matrix and hence, our expression is psd. Q.E.D.

3.7 Vagiancg Estimation when nhe Enndon Effects nnn not

Cor e ed t e or

When discussing the generalized least squares estimator,

we have implicitly assumed that the variance components, 032,

052, and owl, were known. In practice, this is not the case;

the variance components are usually unknown and, therefore,

must be estimated. When estimates of the variance components

are used in place of the actual values, we have an example of

eas' e eneral' e east 3 u e .

Under mild regularity conditions, Fuller and Battese

(1973) have shown that the feasible generalized least squares

estimator is consistent and has the same asymptotic

distribution as the generalized least squares estimator with

known variance components. This result holds true for either

large N or large T. Swamy and Arora (1972) caution that, for

small samples, the feasible generalized least squares

estimator could have larger variances than either the least

squares estimator if the variance components 063 and dvz are

small, or the within estimator if 062 and 0&3 are very large.

Efficiency in the estimation of the variance components

and its subsequent effect on the efficiency of the feasible

generalized least squares has been discussed by Amemiya

(1971).

In the following discussion, we rewrite equation
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(3.4.12), (3.4.13), and (3.4.14) as

(3.7.1) Q1y = R1A1 + Q18

where R1 = (QIX). A1 = ( Br )1. and rank( RI ) = 83

(3.7.2) Q2y = R2A2 + st

where R2 = (Q2X, Q22), A2 = (Br, DT)T, and rank( R2 )

=s+k:

(3.7.3) Qay = R3A3 + 038

where R3 = (Q3X, Q3W), A3 = (BT, CT)T, and rank( R3 ).

=g+he

If feasible weighted least squares is to be implemented

instead of the equivalent feasible least squares procedure,

the weights p, q, and r are the parameters we need to

estimate. One approach to estimating these weights is to

estimate p = 032 using residuals from equation (3.7.1), q =

032 + Tot.2 using residuals from equation (3.7.2), and r = 032

+ Nd'v2 using residuals from equation (3.7.3). The groundwork

for such an approach is laid by Maddala (1971), Nerlove

(1971), and Swamy and Arora (1972). We now proceed to show

that estimators so defined are both unbiased and consistent.

We define the sum of squared residuals from equation

(3.7.1) as

(3.7.4) SSE1 = (Q1 - R1a1)"(Q1 - R1a1)

where the residuals have been computed using the least
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squares estimates of the coefficents in equation (3.7.1),

namely

(3.7.5) a1 = (R17R1)'1R17y.

We also define the sum of squared residuals from equation

(3.7.2) as

(3.7.6) SSEz = (Q2 - R2a2)’(Q2 - Rzaz)

‘where the least squares estimates of the coefficents in

equation (3.7.2) are given as

(3.7.7) a2 = (R21R2)'1R2Ty.

.And we define the sum of squared residuals from equation

(3.7.3) as

(3.7.8) SSEs = (Q3 - R3a3)7(Q3 - Rsaa)

where the least squares estimates of the coefficents in

equation (3.7.3) are given as

(3.7.9) as = (R31R3)‘1R3Ty.

Thence-4.3.19.1:

Let s12 = SSE1/{(N-1)(T-1) - g},

322 SSEz/{(T-1) - g - k},

SSEa/{(N-1) - g - h}.and 832

Then 81:, 322, and 832 are unbiased estimators of p, q, and

r, respectively.
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2222::

Let P1 represent the projection onto the column space of

the regressors in equation (3.7.1); i.e. P1 = P[R1] =

R1(R1’R1)'1R1". Then Q1P1 = P1Q1 = P1, P1R1 = R1, P1'r = P1,

and P1 is orthogonal to Q2, Q3, and Q4.

First we write the residual from equation (3.7.1) as

Residuali = (Q1y - Q1P1y) = R1A1 + Q1s - P1Q1y

=R1A1 + Q18 -P1R1A1 - P1Q1s

=R1A1 - R1A1 + Q13 - P1s

= (Q1 - P1)s

We then form the expression

SSE1 = (01y - Qipiy)'(Q1y - QIPIY)

= 8"(Ql - Q1P1)"(Q1 - Q1P1)s

= sT(Q1 - P1Q1 - Q1P1 + P1Q1P1)s

= 87(Q1 - P1 - P1 + P1)s

= sT(Q1 - P1)s

Taking the expectation of SSE1, we write

Exp{ SSE1 } = Exp{ sT(Q1 - P1)s }

Exp{ trace{ sT(Q1 - P1)s } }

E{ trace{ (Q1 - P1)ssr } }

since trace(AB) = trace(BA) if AB and BA are

both defined and square.

trace{ (Q1 - P1)EXP{ 88' l }

trace{ (Q1 - P1){ pQ1 + qQ2 + rQa + kQ4 }

(r)trace{ (Q1 - P1) )
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(p)rank(Q1 - P1)

since trace(A) = rank(A) if A is idempotent

(p){rank(Q1) - rank(R1)}

Thus, Exp{ 812 } = p.

Now, let P2 represent the projection onto the column

space of the regressors in equation (3.7.2); i.e. P2 = P[Rz]

= R2(R2‘R2)'1R27. Then Qsz = P2Q2 = P2, P2R2 = R2, P2'r =

P2, and P2 is orthogonal to Q1, Q3, and Q4.

First we write the residual from equation (3.7.2) as

Residualz = (Q2y * Qszy) = R2A2 + st - Pzsz

=R2A2 + st -P2R2A2 - P2st

=R2A2 - R2A2 + 028 - st

= (Q2 - P2)s

We then form the expression

SSEz (Q2y - QzPZY)'(Q2y - Qszy)

s’th - Q2P2)'(Qz - QzP2)s

s"(Q2 - P2Q2 - Q2P2 + P2Q2P2)s

81(Q2 '1’: -P2 +P2)s

s'r (Q2 - P2 )8

Taking the expectation of SSEz, we write

Exp{ SSEz } Exp{ sT(Q2 - P2)s }

Exp{ trace{ s’(Q2 - P2)s } }

E{ trace{ (Q2 - P2)ss'r } }

since trace(AB) = trace(BA) if AB and BA are

both defined and square.
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= trace{ (Q2 - P2)Exp{ ssT } }

trace{ (Q2 - P2){ PQ1 + qQ2 + rQ3 + kQ4 }

= (q)trace{ (Q2 - P2) }

(q)rank(Qz - P2)

since trace(A) = rank(A) if A is idempotent

(q){rank(Q2) - rank(R2)}

Thus, Exp{ sz2 } = q.

Finally, let P3 represent the projection onto the column

space of the regressors in equation (3.7.3); i.e. P3 = P[Ra]

R3(R3’R3)'1R31'. Then Q3P3 = P3Q3 = P3, P3R3 = R3, P3T

P3, and P3 is orthogonal to Q1, Q2, and Q4.

First we write the residual from equation (3.7.3) as

Residuals = (Qay - Q3P3y) = R3A3 + Qas - P3Q3y

=R3A3 + Qas -P3R3A3 - P3Q3s

=R3A3 - R3A3 + Qas - Pss

= (Q3 - P3)s

We then form the expression

SSE3 = (Qay - QaPsy)’(Qay - QaPay)

= sT(Q3 - Q3P3)"(Q3 - Q3P3)s

= sT(Q3 - P3Q3 - Q3P3 + P3Q3P3)s

= s'(Q3 -P3 -P3 +P3)s

8’ (Q3 - P3 )8

Taking the expectation of SSEa, we write

Exp{ SSEs } = Exp{ s7(Q3 - P3)s }
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Exp{ trace{ sT(Q3 - P3)s } }

E{ trace{ (Q3 - P3)ss' } }

since trace(AB) = trace(BA) if AB and BA are

both defined and square.

trace{ (Q3 - P3)Exp{ ss' } }

trace{ (Q3 - P3){ PQl + qu + rQ3 + kQ4 }

(r)trace{ (Q3 - P3) }

(r)rank(Q3 - P3)

since trace(A) = rank(A) if A is idempotent

(r){rank(Qa) - rank(R3)}

Thus, Exp{ 832 } = r. Q.E.D.

re 3. 0 :

Let 912 = SSE1/{(N-1)(T-1) - a}.

322 = SSE2/{(T-1) - g - k},

and $32 = SSEa/{(N-1) - g - h}.

Then

a) s12 is a consistent estimator of p as N or T -> 00,

b) 822 is a consistent estimator of q = 052 + To'u2 as

N -> oo , and

c) ss2 is a consistent estimator of r = 052 + No'v2 as

T -> oo .

2.22211:

a) plim 812 plim SSE1/{rank(Q1) - rank(R1)}

plim SSE1/(N-l)(T-l)

= plim s‘(Q1 - P1)s/(N-1)(T-1)

plim sTQ1s/(N-1)(T-1) - plim s'P1s/(N-1)(T-1)
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The last term is zero since

sTPis/(N-1)(T-1)

= [sTR1/(N-1)(T-1)llRi'R1/(N-1)(T-1)]'1RiTs/(N-1)(T-1)

and R1Ts/(N-1)(T-1) -> 0 as (N-1)(T-1) -> oo ( as

either N -> 00 or T -> oo )

The first term equals 032 because s’Q1s can be shown to

be distributed as 03€K2(u-1)(r-1) using standard results

(e.g. Rao (1973, p 185)) on the distribution of idempotent

quadractic forms in normals.

b) plim s22 = plim SSE2/{rank(Q2) - rank(R2)}

= plim SSEz/(N-l)

plim sT(Q2 - P2)s/(N-1)

plim sTst/(N-l) - plim s'st/(N-l)

The last term is zero since sTst/(N-l)

= [s'Rz/(N-1)][R2TR2/(N-1)l‘leTs/(N-l) and Ra‘s/(N-l) -> 0

as N -> 00.

The first term equals q = 662 + Td'uz because sTst can

'be shown to be distributed as qx2(u-1) using standard

results (e.g. Rao (1973, p 185)) on the distribution of

idempotent quadractic forms in normals.

c) plim 832 = plim SSEa/{rank(Q3) - rank(R3)}

plim SSEa/(T-l)

plim 37(Q3 - P3)s/(T-1)

plim s’Qas/(T—l) - plim s'Pas/(T-l)
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The last term is zero since s’Pss/(T-l)

= [s’Ra/(T-l)][R3’R3/(T-1)]'1R3’s/(T-1) and Ra’s/(T-I) -> 0

as T -> 00.

The first term equals q = 053 + Not.2 because sTQas can

be shown to be distributed as qx2(1-1. using standard

results (e.g. Rao (1973, p 185)) on the distribution of

idempotent quadractic forms in normals.‘ Q.E.D.

3.8 gaginnce Estimntion ghnn tne Bnndon Efifegts nze

Co rel ted with e Re re 0

So far we have considered variance estimation for the

feasible weighted least squares estimator only. We now turn

our attention to the model of section 3.5, in which some of

the regressors are correlated with the random effects. Once

again we will need to estimate the weights p, q, and r, since

they are needed to implement the weighted instrumental

variables estimator. The estimate of p based on the within

residuals, discussed in section 3.7, is still consistent in

this model. However, the estimate of q = 032 + Td'u2 and r

= 632 + No'v2 which was discussed in section 3.7 is not

consistent, since it was based on the residuals from least

squares applied to (3.5.3) and (3.5.4), and these least

squares estimator are inconsistent when regressors are

correlated with either equation’s error term.

We therefore turn our attention to the problem of

finding consistent estimates of B, D, and C. Then, using

these consistent estimates of A2 = ( B”, D1 )T and A3

" ( 3‘, Or )T, we derive consistent estimate of q and r. The
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background for this approach is the work of Hausman and

Taylor (1981), who suggest the estimate of q which we

discussed in section 2.7. However, they do not give a

rigorous proof that it is consistent nor do they discuss the

estimation of r.

The following assumptions will be made.

Assnnntion (3,11): Let H2 = [ Q2X1, Q2X3, 21 ] and H3

= [ Q3X1, Q3X2, W1 ]. Then we assume that

(i) plim XTQie/(N-1)(T-1) = 0 as either N -> 00

or T -> oo.

(ii.a) plim HzTQ2(u + e)/N 0 as N -> oo.

(ii.b) plim H3’Q3(V + e)/T 0 as T -> 00.

(iii) plim (X'QiX)/(N-1)(T-1) is finite and nonsingular

as either N -> 00 or T -> oo.

(iv.a) plim (H2721)/N is finite as N -> oo.

(iv.b) plim (H3'W1)/T is finite as T -> oo.

(V.a) plim (H2‘X)/N is finite as N -> oo.

(V.b) plim (H3’X)/T is finite as T -> 00.

Even after the introduction of X2, X3,X4, 22, and W2 -

regressors assumed correlated with the effects - the within

estimator is still a consistent estimator of B; no

correlation exists between the disturbance and the regressors

in equation (3.5.3). So the problem of finding a consistent

estimator of A is reduced to finding a consistent estimator

of D and C. The two regression equations introduced in the

following Lemma will be used in deriving such estimators.
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e a 3. 2 : Let f2' = Q2(y - wa) and

f3' = Q3(y - wa). Then

(3.8.1) fz' 2D + (Q2 - Q2X(XTQ1X)'1XTQ1)s

and

(3.8.2) fs' WC + (Q3 - Q3X(XTQ1X)'1XTQ1)s

Eroof:

f2‘

= Q2(y - wa) Q2y - Q2wa = Q2y - Q2X(XTQ1X)‘1XTQ1Y

Q2(XB + ZD + WC + s) - Q2X(XTQ1X)-IXTQ1(XB 4 ZD + WC + s)

Q2(XB + 2D + WC + s) - Q2X(XTQ1X)'1XT(Q1XB + Q1s)

Q2(XB + 2D + WC + s) - Q2X(XTQ1X)'1XTQ1XB

+ Q2X(XTQ1X)'1XTQ13

= Q2XB + QZZD + Q28 - Q2XB + Q2X(XTQ1X)'1XTQ18

ZD + (Q2 - Q2X(X7Q1X)‘1XTQ1)s

fa‘

Q3(y - wa) = Q3y - Q3wa = Q3y - Q3X(XTQ1X)'1XTQ1y

Qa(XB + ZD + WC + 8) - Q3X(XTQ1X)-IXTQ1(XB + ZD + WC + s)

Q3(XB + 2D + WC + s) - Q3X(X'Q1X)'1X'(Q1XB + Q13)

Q3(XB + 2D + WC + s) - Q3X(X'Q1X)'1X’Q1XB

+ Q3X(XTQ1X)'1X'Q18

Q3XB + Q3WC + Q38 - Q3XB + Q3X(XTQ1X)'1XTQ1s

WC + (Q3 - Q3X(XTQ1X)'1XTQ1)s Q.E.D.

Since part of Z is correlated with the error term, least

squares applied to equation (3.8.1) does not yield a
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consistent estimator of D. Likewise, since part of W is

correlated with the error term, least squares applied to

equation (3.8.2) does not yield a consistent estimator of C.

But, using H2 = ( Q2X1, Q2X3, Z1 ) as a set of instruments,

the instrumental variable estimator of D from equation

(3.8.1) is defined as

(3.8.3) dIV = (XTP[H2]X)'1XTP[H2]f2'.

Similiarly, using H3 = ( Q3X1, Q3Xz, W1 ) as a set of

instruments, the instrumental variable estimator of C from

equation (3.8.2) is defined as

(3.8.4) c1v = (XTP[H3]X)'1XTP[H3]f3'.

It is interesting to note that using f3“ = (y - wa)

instead of f3' = Q3(y - wa) would not increase the

efficiency of the estimator, crv. Indeed, since P[H3]Q3

= Q3P[H3] = P[H3]. 21’Q1 = 0, and the first order condition

(i.e. the "normal equations") defining bu imply that

( X1Q1. Xz'Qi )(y - wa) 0.

(3.8.5) H37Q3(y - wa) Hs’(y - wa);

thus the nnnn estimator would result if we used f3" in place

of f3‘.

Given the estimators div and crv, the next question is

whether these estimators are, indeed, consistent estimates of

D and C. But first, we consider the conditions necessary to

assure that both dIV and crv do exist.
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3.8.1 Ne essa Condit' ns 0 t e x'stence of and c

A necessary condition for the existence of dIV is that

the rank of H2 be at least is large as the rank of 2; that

is, there must be at least as many instruments as regressors.

This requires that g1 + g3 + k1 2 k, or g1 + g3 2 k2.

Intuitively, Q2X1 and Q2X3 are serving as instruments for 22,

and so there must be at least as many variables in X1 and X3

as in 22. Similiarly, a necessary condition for the

existence of 01v is that the rank of H3 be at least is large

as the rank of W; that is, there must be at least as many

instruments as regressors. This requires that g1 + g2 + hi 2

h, or g1 + g2 3 h2. Here, Q3X1 and Q3X2 are serving as

instruments for W2, and so there must be at least as many

variables in X1 and X2 as in W2. The fact that f1‘ and f2’

are calculated from the within-groups residuals suggests that

if bw is not fully efficient, then dIV and c1v may not be

fully efficient either.

3.8.2 Consistgncy of QT! nnd c11.

e a . 3 : Given assumption (3.11),

(1.a) plim ZTP2Q2(u + e)/N 0 as N -> oo,

(1.b) plim WTP3Q3(V + e)/T 0 as T -> oo,

(2.a) plim Z'PzZ/N is finite and non-singular as N -> oo,

(2.b) plim W’PsW/T is finite and non-singular as T -> 00,

(3.a) plim 2*P2X/N is finite as N -> 00,

(3.b) plim WTPsX/T is finite as T -> 00.

Lemma (3.13) can be easily proved by noting that P2
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= P[Hz] = H2(H2'H2)‘1H2‘, where H2 = Qz(X1, X3, 21), and that

P3 = P[H3] = H3(H3'H3)'1H3T, where H3 = Q3(X1, X2, W1).

Ineozgn (3,11): The instrumental variable estimator dIV is a

consistent estimator of D as N gets large and the

instrumental variable estimator crv is a consistent estimator

of C as T gets large.

2:00: 3

First, we rewrite dIV as

div (27P22)'1ZTP2d2‘

(ZTP22)'1ZTP2(ZD + (Q2 - Q2X(XIQ1X)'1XTQ1)s)

(ZIPZZ)'12TP22D

+ (ZTP22)'1ZTP2(Q2 - Q2X(XTQ1X)'1XTQ1)s

D + (ZTP22)‘121P2Q28 - Q2X(XTQ1X)'1X'Qis

D + (ZTP22/N)'1{ZTP2Q2(e + u)/N}

- (ZTPZZ/N)'1{ZTPzQZX/N}(XTQ1X/N)'1{X‘Qle/N}

By Assumption (3.11), plim X’Qie/N = 0 as N -> 00 and

plim (XTQ1X)/N is finite and nonsingular as N -> 00. Using

0 asLemma (3.13), it follows that plim 2‘P2Q2(e + u)/N

N -> oo, plim (ZTP22)/N is finite and nonsingular as

N -> 00, and plim (Z’P2Q2X)/N is finite as N -> 00.

Thus,

plim dIV

D + {finite}{ 0 } - {finite}{finite}{finite}{0}

D
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Next, we rewrite crv as

crv (WTPsW)'1WTP3d3'

(WTP3W)'1WTP3(WC + (Q2 - Q2X(XTQ1X)'1XTQ1)s)

= (WTP3W)‘1WTP3WC

+ (WTP3W)'1WTP3(Q3 - Q3XlXTQ1X)'1XTQ1)s

C + (WTPsW)'1WTP3Qas - Q3X(X'Q1X)'1XTQ1s

C + (WTP3W/T)'1{WTP3Qas/T}

- (WTP3W/T)'1{WTPaQsX/T}(XTQ3X/T)‘1{X’Qas/T}

By Assumption (3.11), plim XTQie/T = 0 as T -> 00 and

plim (XTQ1X)/T is finite and nonsingular as T —> 00. Using

Lemma (3.13), it follows that plim WTP3Q3(e + v)/T = 0 as

T -> oo, plim (WTP3W)/T is finite and nonsingular as

T -> 00, and plim (WTP3Q3X)/T is finite as T -> 00.

Thus,

plim crv

= C + {finite}{O} - {finite}{finite}{finite}{0}

= c Q.E.D.

3.8.3WW1:

Using as a consistent estimate of A2 = ( BT, Dr )'I the

estimator bu and div, we will now form a vector of residuals.

We will then show that the sum of the squared terms of this

residual vector, divided by N, is a consistent estimator of

q = 053 + T062. Similiarly, using as a consistent estimate

of A3 = ( B7, Cr )7 the estimator by and crv, we will form a

vector of residuals and then show that the sum of the squared
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terms of this residual vector, divided by T, is a consistent

estimator of r = 0&3 + Ndvz.

(3.8.6) Residualz Q2y - Q2wa - Q22d1v

and

(3.8.7) Residuals Q3y - Q3wa - Q3Wc1v

Then

Residualz = Q2(e + u) - Q2X(XTQ1X)'1X'Q1e

- Q22(ZTP22)'1ZTP2Q2(e + u)

+ Q22(ZTP2Z)‘1ZTP2Q2X(X‘Q1X)"XTQle

and

Residuals = Q3(e + v) - Q3X(XTQ1X)'1XTQ1e

- Q3W(W’P3W)'1W7P3Q3(e + V)

+ Q3W(WTP3W)‘1WTP3Q3X(XTQ1X)'1XTQ1e

2:001:

First, we rewrite Residualz as

Residualz = Q2y - Q2va - QZZdIV

Q2y - Q2X(XTQ1X)'1X'Q1y - Q22(ZTP22)-IZTP2d2‘

Qz{ XB + ZD + WC + s }

- Q2X(X'Q1X)'1X’Q1{ XB + 2D + WC + s }

- Q22(ZTP22)'12"P2

times{ ZD + (Q2 - Q2X(XTQ1X)‘1XTQ1)(e + u) }
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Residuals
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Q2XB + ZD + Q2(e + u)

- Q2X(X’Q1X)'1XTQ1XB - Q2X(XTQ1X)'1XTQ1e

- Q22(Z'P22)'1ZTP22D - Q22(ZTP22)'1ZTP2Q2(e + u)

+ Q22(Z'P2Z)‘1Z"P2Q2X(XTQ1X)'1XTQ1e

Q2XB + ZD + Q2(e + u)

- Q2XB - Q2X(XTQ1X)'1XTQ1(e + u)

- QZZD - Q22(ZTP22)'127P2Q2(e + u)

+ QZZ(Z'P2Z)'127P2Q2X(X7Q1X)‘1XIQ16

Q2(e + u) - Q2X(XTQ1X)'1XTQ1e

- Q22(ZTP22)'12TP2Q2(e + u)

+ Q22(ZTP2Z)‘12'P2Q2X(XTQ1X)'1XTQ1e

we rewrite Residuala as

Q3y - Q3wa - Q3Wcrv

Q3y - Q3X(XTQ1X)'1XTQ1y - Q3W(WTP3W)‘1WTP3d3*

Q3{ XB + 20 4 WC + s }

- Q3X(XTQ1X)-1X701{ XB + 2D + WC 4 s }

- Q3W(WTP3W)-1WTP3

times { wc + (Q3 - Q3X(X’Q1X)'1X7Q1)(e + u) }

Q3XB + wc + Q3(e + u)

- Q3X(XTQ1X)’1XTQ1XB - Q3X(XTQ1X)'1XTQ1e

- Q3W(WTP3W)‘1WTP3WC - Q3W(WTP3W)'1W"P3Q3(e + u)

+ Q3W(WTP3W)'1WTP3Q3X(XTQ1X)‘1XTQ1e

Q3XB + WC + Q3(e + u)

- Q3XB - Q3X(XTQ1X)'1XTQ1(e + u)

- QaWC - Q3W(WTP3W)'1WTP3Q3(e + u)

+ Q3W(WTP3W)'1WTP3Q3X(XTQ1X)'1XIQ1e
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= Q3(e + u) - Q3X(X'Q1X)'1XTQ1e

- Q3W(WTP3W)‘1WTP3Q3(e + u)

+ Q3W(WTP3W)‘IWTP3Q3X(XTQ1X)'1XTQ1e Q.E.D.

We now define consistent estimators for both q and r.

Using the definitions found in Lemma (3.15), we define SSE2'

as the sum of squared residual terms found in Residualz and

8822‘ as the sum of squared residual terms found in

Residuals:

(3.8.8) SSEz‘ (Residua12)T(Residualz)

(3.8.9) SSEa’ (Residua13)T(Residuala)

Our estimators for q and r are then SSEz‘lN and SSE3‘/T,

respectively.

Iheorem (3.13):

plim SSE2'/N 052 + TO'u2 as N -> oo

plim SSEa‘lT 032 + No'v2 as T -> oo

Eroof:

First, SSEz‘ can be written as

3822'

= (Residualz)'(Residualz)

= (e + u)"Q2(e + u) - (e + u)TQ2X(XTQ1X)'1XTQ1e

- (e + u)7Q22(Z'P22)'1ZTP2Qz(e + u)

i (e + u)’Q22(2‘P2Z)‘1Z'P2Q2X(XTQ1X)'1X‘Q1e

eTQ1X(XTQ1X)‘1XTQ2(e + u)

4
.

e'Q1X(XTQ1X)'1X7Q2X(XTQ1X)'IXTQle
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+ eTQ1X(XTQ1X)'1XTQ22(ZTP22)'IZTP2Q2(e + u)

- e7Q1X(XTQ1X)'1XTQ22(ZTP22)'12’P2Q2X(XTQ1X)'1XTQ1e

- (e + u)'thZ(Z'Pzz)'lz‘Qz(e + n)

+ (e + u)'Q2P22(Z’P22)'12'Q2X(X'Q1X)'1X'Q1e

+ (e + u)"QzP22(2"P22)'1Z’Q22(ZTP22)‘12TP2Q2(e + u)

- (e + u)'Q2P22(ZTP22)'12'Q22(2'P22)‘12"P2Q2X(XTQ1X)‘1X"Q1e

+ e’QiX(XTQ1X)'1XTQ2P22(ZTP2Z)'12'Q2(e + u)

- e7Q1X(XTQ1X)-1XTQ2P22(ZTP22)'1Z'Q2X(X’Q1X)'1XTQ1e

- eTQ1X(XTQ1X)'1X7Q2P22(27P2Z)'1Z’Q22(27P22)'1Z’P2Q2(e + u)

+ eTQ1X(XTQ1X)'1X7Q2PZZ(Z'P2Z)'1ZrQZZ(ZTP22)‘1

times 27P2Q2X(XTQ1X)'1XTQ1e

Now, from the above expression, taking the probability

limit of SSEz’ as N gets large is equivalent to taking the

probability limit of the sum of sixteen different terms.

Evaluation of these sixteen terms shows that the first term

has a probability limit equal to q and that the remaining

fifteen terms each have a probability limit equal to zero

with all limits being taken as N -> 00. These probability

limits are evaluated below.

1) plim (e + u)TQ2(e + u)/N = plim e’Qze/N + plim u’Qzu/N

Consider these term by term. First,

a

eTQze/N = TE e1.3/N.

1.1

Each term e1.z has a mean of 033/T, and the terms are

independent. Therefore, eTQze/N -> Tofile = 032 as N -> 00.
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Second,

N

uTQzu/N = TZ'u12/N -> Tofu2 as N -> 00.

1.1

Third,

I

eTQzu/N = TX e1.u1/N -> 0 as N -> 00

141

because e and u are uncorrelated. Therefore,

(e

2) plim

3) plim

4) plim

+ u)TQ2(e + u)/N -> 0&2 + To'u2 as N -> 00.

(e + u)’Q2X(XTQ1X)'1XTQ1e/N

plim {(e + u)TQ2X/N}(XTQ1X/N)'1{XTQle/N}

plim {(e + u)TQ2X/N} plim (X'I'Q1X/N)'1 plim {X’Q1e/N}

as N -> 00

(e + u)TQ22(ZTP22)'1Z'P2Q2(e + u)/N

plim {(e + u)Tsz/N}(ZTP22/N)'1{ZTP2Q2(e + u)/N}

plim {(e + u)’Q22/N} plim (Z'l'P22/N)'l

times plim {ZTP2Q2(e + u)/N}

0 as N -> 00

(e + u)TQ22(27P22)'12'P2Q2X(XTQ1X)’1XTQ1e/N

plim {(e + u)TQ22/N}(ZTP22/N)'1{ZTP2Q2X/N}

time (X’QlX/N)’1{X7Q1e/N}

plim {(e + u)TQ22/N} plim (Z'I'P22/N)"1

times plim {ZTP2Q2X/N} plim (X'l'Q1X/N)’l

times plim {X'Q1e/N}

0 as N -> oo
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6) plim

7) plim

8) plim

9) plim
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e7Q1X(XTQ1X)'1XTQ2(e + u)/N

plim {e'Q1X/N}(XTQ1X/N)'1{X’Qz(e + u)/N}

plim {eTQ1X/N} plim (X"Q1X/N)'l plim {XTQ2(e + u)/N}

0 as N -> 00

eTQ1X(XIQ1X)'1XTQ2X(XTQ1X)'1X’Q1e/N

plim {eTQ1X/N}(X'Q1X/N)'1{XTQ2X/N}

times (XTQ1X/N)'1{X7Q1e/N}

plim {eTQ1X/N} plim (X"'Q1X/N)"l plim {X’QzX/N}

times plim (X'IQ1X/N)'1 plim {XTQ1e/N}

0 as N -> oo

eTQ1X(XIQ1X)’1XTQ22(27P22)’12’P2Q2(e + u)/N

plim {eroixmuxrolxmrl{xrozzmHerzZ/m-1

times {ZTP2Q2(e + u)/N}

plim {e7Q1X/N} plim (X'I'Q1X/N)'1 plim {X’QzZ/N}

times plim (Z'I'P22/N)‘1 plim {2‘P2Q2(e + u)/N}

0 as N —> oo

eTQ1X(X7Q1X)’1X'Q22(27P22)'12'P2Q2X(XTQ1X)‘1XTQ1e/N

plim {eTQ1X/N}(XTQ1X/N)'1{X’QzZ/N}(ZTP22/N)’l

times {Z’P2Q2X/N}(XTQ1X/N)'1{X’Q1e/N}

plim {eTQ1X/N} plim (X"Q1X/N)'l plim {X‘QzZ/N}

times plim (Z‘PzZ/N)'1 plim {Z‘P2Q2X/N}

times plim (X1'Q1X/N)”1 plim {X’Qie/N}

0 as N -> 00

(e + u)102P22(Z’P22)'1ZTQz(e + 11)/N

plim {(e + u)TQ2P22/N}(ZTP22/N)'1{ZTQz(e + u)/N}
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plim {(e + u)‘Q2P22/N} plim (2"P22/N)'1

times plim {27Q2(e + u)/N}

0 as N -> 00

10) plim (e + u)7Q2P22(27P22)‘127Q2X(XTQ1X)'IXTQle/N

plim {(e + u)TQ2P22/N}(ZTP22/N)'1

times {ZTQ2X/N}(XTQ1X/N)'1{X'Q1e/N}

plim {(e + u)TQ2P22/N} plim (Z'I'P22/N)‘1

times plim {2*Q2X/N} plim (X"Q1X/N)"1 plim {XTQ1e/N}

0 as N -> oo

11) plim (e + u)’Q2P22(2*P22)'1Z’Q22(ZTP22)'1ZTP2Q2(e + u)/N

plim {(e + u)TQ2P22/N}(ZTP22/N)’1{ZTQ22/N}

times (ZTP22/N)'1{Z’P2Q2(e + u)/N}

plim {(e + u)TQ2P22/N} plim (Z"'P22/N)'1

times plim {ZTsz/N} plim (2"P22/N)‘l

times plim {ZTP2Q2(e + u)/N}

0 as N -> oo

12) plim (e + u)"Q2P22(Z"P2Z)'12"Q22(2"P22)'1

times 2'P2Q2X(XTQ1X)'1XTQ1e/N

plim {(e + 1.1)1'Q2P2Z/N}(Z"P22/N)"{Z"QzZ/N}(Z"‘P2Z/N)"1

times {ZTP2Q2X/N}(XTQ1X/N)'1{X’Q1e/N}

plim {(e + u)7Q2P22/N} plim (Z"'P22/N)’1

times plim {ZTQ22/N} plim (Z"P22/N)'1

times plim {ZTP2Q2X/N} Plim (XTQ1X/N)'1

times plim {XTQ1e/N}

0 as N -> 00
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13) plim eTQ1X(XTQ1X)'1X7Q2P22(ZTP22)'12‘Q2(e + u)/N

plim {e7Q1X/N}(X101X/N)'1{X'QszZ/N}

times (Z'PzZ/N)'1{Z’Q2(e + u)/N}

plim {eTQ1X/N} plim (X"'Q1X/N)'1 plim {X'QszZ/N}

times plim (Z"'P22/N)'1 plim {Z’Q2(e + u)/N}

0 as N -> oo

14) plim eTQ1X(XTQ1X)'1X‘Q2P22(2'P2Z)“12’Q2X(X'Q1X)'1XTQ1e/N

plim {e’Q1X/N} plim (X"Q1X/N)'1 plim {X’QszZ/N}

times plim (2"P22/N)‘l plim {ZTQ2X/N}

times plim (X"Q1X/N)'l plim {X'Q1e/N}

0 as N -> oo

15) plim e"Q1X(X"Q1X)'1X"Q2P22(ZTP22)‘l

times 2’Q22(ZTP22)'1ZTP2Qz(e + u)/N

plim {eTQ1X/N}(XTQ1X/N)'1{X'QszZ/N}(ZTP22/N)’l

times {ZTQ22/N}(ZTP22/N)'1{ZTP2Q2(e + u)/N}

= plim {eTQ1X/N} plim (XTQ1X/N)'1 plim {XTQszz/N}

times plim (ZTP22/N)'1 plim {ZTQ22/N}

times plim (ZTP22/N)‘1 plim {ZTP2Q2(e + u)/N}

0 as N -> 00

16) plim eTQ1X(X’Q1X)'1X'Q2P22(27P22)'127Q22(2'P2Z)’l

times ZTP2Q2X(XTQ1X)'1XTQ1e/N

plim {eTQ1X/N}(X7Q1X/N)'1{XTQZPZZ/N}

times plim (2"P22/N)”1 {ZTQ22/N}(Z"P22/N)‘1

times plim {Z'PzQZX/N}(XTQ1X/N)‘1{XTQle/N}

= plim {eTQ1X/N} plim (X'IQ1X/N)'1 plim {XTQszz/N}

times plim (Z'I'P22/N)'1 plim {ZTsz/N}
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times plim (Zszz/N)'1

times plim {ZTP2Q2X/N} plim (XTQ1X/N)'1

times plim {X’Qie/N}

= 0 as N -> 00

Next, SSEa' can be written as

8883‘

(Residuala)T(Residua13)

(e + v)TQ3(e + v) - (e + v)TQ3X(XTQ1X)'1XTQ1e

+

(e + v)TQ3W(WTP3W)'1WTP3Q3(e + v)

(e + v)TQaW(WTP3W)'1WTP3Q3X(XTQ1X)'1X’Q1e

e7Q1X(X7Q1X)'1XTQ3(e + v)

eTQ1X(XTQ1X)'1X7Q3X(XTQ1X)’1XTQ1e

eTQ1X(XTQ1X)'1XTQ3W(W7P3W)'1W7P3Q3(e + v)

eT01X(XTQ1X)'1XTQ3W(WTP3W)'IWTP3Q3X(XTQ1X)'1XTQ1e

(e + v)TQ3P3W(WTP3W)'1WTQa(e + v)

(e + v)'Q3P3W(WTP3W)-1W’Q3X(XTQ1X)'1X‘Q1e

(e + v)7Q3P3W(WTP3W)'1W?Q3W(WTP3W)-1WTP3Q3(e + v)

(e + v)’QaP3W(WTP3W)'IWTQ3W(WTP3W)°1WTP3Q3X(XTQ1X)’1X‘Q1e

eTQ1X(XTQ1X)‘1XTQ3P3W(WTP3W)'1W7Q3(e + v)

eTQ1X(X’Q1X)‘1X’Q3P3W(W7P3W)'1W’Q3X(X’QiX)'1XTQ1e

e'Q1X(XTQ1X)'1X'Q3P3W(WTP3W)-1WTQ3W(WTP3W)“1WTP3Q3(e + v)

eTQ1X(X’Q1X)'1X'Q3P3W(WTP3W)'1W’Q3W(WTP3W)'1

times WTP3Q3X(XTQ1X)'1X’Q1e

Now, from the above expression, taking the probability

limit of SSEa' as T gets large is equivalent to taking the

probability limit of the sum of sixteen different terms.
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Evaluation of these sixteen terms shows that the first term

has a probability limit equal to r and that the remaining

fifteen terms each have a probability limit equal to zero

with all limits being taken as T -> 00. These probability

limits are evaluated below.

1) plim (e + v)TQ3(e + v)/T = plim e'Qae/T + plim v'Qav/T

Consider these term by term. First,

1

eTQae/T = NZ 8.t2/T.

tsi

Each term e.t2 has a mean of ozle, and the terms are

independent. Therefore, eTQze/N -> Nozle = as? as T -> 00.

Second,

1

vTQav/T = NZLviZ/T -> Ndv2 as T -> oo.

tsl

Third,

I

eTQav/T = NZe1.V1/T -> 0 as T-> 00

1181

because e and v are uncorrelated. Therefore,

(6 + V)’Qa(e + v)/T -> 6.2 + No’v2 as T -> oo.

2) plim (e + v)'Q3X(X'Q1X)’1X’Q1e/T

plim {(e + v)’Q3X/T}(XTQ1X/T)’1{XTQie/T}

plim {(e + v)TQ3X/T} plim ()("QiX/T)"1 plim {X’Qie/T}

0 as T -> oo

3) plim (e + v)’QaW(wrPsW)-IWTPaQa(e + v)/T

= plim {(e + v)'Q3W/T}(WTP3W/T)'1{WTpaQa(e + v)/T}



4) plim

5) plim

6) plim

7) plim
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plim {(e + v)TQaW/T} plim (W'UhW/T)‘1

times plim {WTP3Q3(e + v)/T}

0 as T -> 00

(e + v)‘QaW(WTP3W)'1WP3Q3X(X"01X)'IX’Qie/T

plim {(e + v)‘Q3W/T}(W‘PaW/T)'1{WTP3Q3X/T}

times (X'QlX/T)'1{X7Q1e/T}

plim {(e + v)’Q3W/T} plim (WTP3W/T)'l

times plim {W’PaQaX/T} plim (X’QlX/T)’1

times plim {X'Qie/T}

0 as T -> oo

eTQ1X(X’Q1X)'1XTQ3(e + v)/T

plim {e'Q1X/T}(XTQ1X/T)'1{XTQa(e + v)/T}

plim {e'Q1X/T} plim (X'l'Q1X/T)‘1 plim {X’Q3(e + v)/T}

O as T -> oo

eTQIX(X'Q1X)'1XTQ3X(X’Q1X)‘1XTQ1e/T

plim {eTQIX/T}(XTQ1X/T)'1{X’QaX/T}(X7Q1X/T)'1{XTQle/T}

plim {e’Q1X/T} plim (XTQIX/T)'1 plim {X’QaX/T}

times plim ()("QlX/T)’1 plim {XTQie/T}

0 as T -> oo

eTQ1X(XTQ1X)'1X'Q3W(WTP3W)'1WTP3Q3(e + v)/T

plim {e'Q1X/T}(XTQ1X/T)'1{X’QaW/THWTPSW/T)‘l

times {WTP3Q3(e + v)/T}

plim {e101X/T} plim (X'QiX/T)’1 plim {X’QaW/T}

times plim (W‘PaW/T)’1 plim {W7P3Q3(e + v)/T}

0 as T -> oo
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8) plim e701X(XTQ1X)'1X‘QaW(WTP3W)'1WTP3Q3X(XTQ1X)'1X‘Q1e/T

9) plim

plim {e'Q1X/T}(XTQ1X/T)'1{X'QaW/T}(WTP3W/T)'l

times {WTP3Q3X/T}(XTQ1X/T)'1{XTQie/T}

plim {e7Q1X/T} plim (X’QlX/T)’1 plim {X’QaW/T}

times plim (W‘U’aW/T)"1 plim {WTpaQaX/T}

times plim (X'I'Q1X/T)‘l plim {X’Qie/T}

0 as T -> 00

(e + v)TQaP3W(wTPsW)-1WTQ3(e + v)/T

plim {(e + v)TQ3P3W/T}(WTP3W/T)‘1{W’Qa(e + v)/T}

plim {(e + v)TQ3P3W/T} plim (W1'P3W/T)’l

times plim {WTQ3(e + v)/T}

0 as T -> oo

10) plim (e + v)TQ3P3W(WTP3W)'IWTQ3X(XTQ1X)'1XTQ1e/T

plim {(e + v)TQ3P3W/T}(WTPaW/T)'1{WTQ3X/T}

times (X'QiX/T)'1{XTQ1e/T}

plim {(e + v)TQaP3W/T} plim (WTP3W/T)'l plim {WTQ3X/T}

times plim (X’QiX/T)‘1 plim {X’Qie/T}

O as T -> oo

11) plim (e + v)’Q3P3W(WTP3W)-1W7Q3W(W7P3W)-1WTP3Q3(e + v)/T

plim {(e + v)’Q3P3W/T}(WTP3W/T)'1{WTQ3W/T}

times (W’PaW/T)'1{WTP3Q3(e + v)/T}

plim {(e + v)’Q3P3W/T} plim (WTPBW/T)'1 plim {W’QsW/T}

times plim (WTPSW/T)’1 plim {W’P3Q3(e + v)/T}

0 as T -> oo
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12) plim (e + v)TQ3P3W(W7P3W)'1W7Q3W(WTP3W)'1

times WTP303X(XTQ1X)'1XTQ1e/T

plim {(e + v)'Q3P3W/T}(WTP3W/T)'1{WTQ3W/THWTP3W/T)‘1

times {WTP3Q3X/T}(XTQ1X/T)'1{X’Qie/T}

plim {(e + v)'Q3P3W/T} plim (WTP3W/T)'l plim {WTQ3W/T}

times plim (WTP3W/T)"1 plim {WTP3Q3X/T}

times plim (XTQiX/T)‘1 plim {X'Qie/T}

0 as T -> oo

13) plim e'Q1X(XTQ1X)'leQaP3W(WTP3W)'1W7Qa(e + v)/T

plim {eTQ1X/T}(XTQ1X/T)'1{X’QaPaW/T}

times (WTP3W/T)‘1{WTQ3(e + v)/T}

plim {eTQ1X/T} plim (X’QiX/T)'1 plim {XTQ3P3W/T}

times plim (W'I'P3W/T)'1 plim {WTQ3(e + v)/T}

O as T -> oo

14) plim e701X(XTQ1X)‘1X’QaP3W(WTP3W)'1WTQ3X(XTQ1X)'IXTQle/T

plim {eTQ1X/T} plim (X’QlX/T)'1 plim {X’QaPaW/T}

times plim (WTP3W/T)'1 plim {WTQ3X/T}

times plim (X'I’QLX/T)”1 plim {X'Qie/T}

0 as T -> oo

15) plim e701X(XTQ1X)'1XTQ3P3W(W’P3W)'1

times W‘Q3W(WTP3W)‘1WTP3Q3(e + v)/T

plim {e'Q1X/T}(XTQIX/T)'1{X'QsPaW/THW’PHV/T)’1

times {WTQ3W/T}(WTP3W/T)‘1{WTP3Q3(e + v)/T}

plim {e‘Q1X/T} plim ()("Q1JK/T)‘1 plim {X’QaPaW/T}

times plim (WNW/T)“1 plim {WTQ3W/T}

times plim (W'I'P3W/T)'1 plim {W7P3Q3(e + V)/T}



121

= O as T -> oo

16) plim eT01X(XTQ1X)'1XTQ3P3W(WTP3W)'1WTQ3W(WTP3W)'1

times WTP3Q3X(XTQ1X)'1XTQ1e/T

plim {eTQ1X/T}(XTQ1X/T)'1{X7Q3P3W/T}

times plim (W'I'P3W/T)'1 {WTQ3W/T}(WTP3W/T)'1

times plim {WTPaQ3X/T}(XTQ1X/T)'1{X'Qie/T}

= plim {eTQiX/T} plim (XTQ1X/T)'1 plim {XTQ3P3W/T}

times plim (W'l'P3W/T)"1 plim {WTQ3W/T}

times plim (W'I'P3W/T)‘1 plim {WTP3Q3X/T}

times plim (X'rQ1X/T)‘1 plim {XTQie/T}

O as T -> oo Q.E.D.

3.9 C c ’o s

In this chapter, we have considered a linear regression

model which contains unobservable time effects as well as

individual effects. Given panel data, this model may be

estimated in a variety of ways, depending on what is assumed

about the correlation between the regressors and the effects.

We have given a survey of the literature; we introduced HT-

like estimators for the coefficients of the linear regression

when the effects are assumed to be random and correlated with

some of the regressors, and we introduced estimators for the

variances of the different error components. We also

introduced estimators for the above model that are consistent

as N -> 00 for fixed T. These estimators may be useful

because a common problem with panel data is that N is large

but T is small. In the next chapter, we consider the linear

simultaneous equations model with effects.



CHAPTER 4

Simultaneous Equations with Effects

4.1 lotgoduction

In this chapter, we consider a linear simultaneous

equations model with individual effects. Within this context

we investigate the problem of simultaneity, defined as the

case in which some of the explanatory variables are

correlated with the noise component of the error. We assume

that for each of the M structural equations the data again

consists of T time-series observations on each of N

individuals; we distinguish regressors which vary over time

and individuals from those which vary over individuals but

are time-invariant; and we assume the presence of

unobservable, time-invariant individual effects as well as

the usual statistical noise. We will refer to a variable as

onoogooooo if it is correlated with the noise and oxogonooo

if it is uncorrelated with the noise.

We write the model to be considered in this chapter as a

set of M simultaneous equations:

(4.1.1) Yitg Yithg + Xithg 'l' ZigCg + Lug 4’ eits

l’OOO’N; t=1’OOO’T;8=l’OOO’MOi

122
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where there are M equations determining the M endogenous

variables yit1,...,yits; Yitg is a vector (of dimension

1 x Hg) of endogenous explanatory variables; Xitg is a

vector (of dimension 1 x 63) of exogenous variables which

vary both over time and individuals; 21; is a vector (of

dimension 1 x Kg) of time-invariant exogenous variables; and

both D3, 8;, and C. are vectors to be estimated. The

individual effects uig are unobservable and will be treated

as time-invariant.

Writing each of the M simultaneous equations in matrix

form we have

(4.1.2) 373 = Yng + X33; + ZgCg + u; + e;

where y., u., and eg denote (NT x 1) dimensioned vectors; Yg

denotes the (NT x Hg) dimensioned matrix of endogenous

variables; and X; and 2; denote (NT x Gg), and (NT x Kg)

dimensioned matrices of exogenous variables, respectively.

Again, following the convention of Hausman and Taylor, the

observations are ordered first by individuals and then by

time, so that u. and each column of Z. are (NT x 1)

dimensioned vectors consisting of T blocks, with each block

containing the same N entries.

Rewrite equation (4.1.2) as

where R; = [Yg, Xg, Z. land A. = ( Dgr, 33', Car )1.

Now consider the set of all M equations
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(4.1.4) yt = RtAt + as

where

P - ' - - -

yi rs. A1

0 4 I

y. = . ’ 8. = . , A. = e g and

ya as An

_J _ _ .. J

R1 .7

. O

R. = o o

0 .

Rn

  

We make the usual assumptions about the error terms.

That is, we assume

(4.1.5) .

  
is iid N( 0, Zn ), and

(4.1.6) .

  

is iid N( 0, Z. ), where Eu and Z. are both (M x M) positive

definite matrices. In addition, we assume the e’s are

uncorrelated with both the u’s and with the (exogenous) X’s

and 2’s.

For a single equation, say the first equation, the

covariance structure is



125

(4.1.7) 511 Cov( m + e1 )=Zo,111ur +£u,11(TP)

{“110 + (Z.,11 + Tzu,11)P = 6139 + otzP

where Q and P are the same two idempotent matrices given in

chapter 2, 0&3 = Z}.11, and.sz2 = (2}.11 + sz.11); and so

(4.1.8) 811'1 = (1/612)Q + (l/dhz)P ‘

and

(4.1.9) 811'1/2 = (1/di)Q + (1/dz)P.

And for the system, the covariance structure is

Cov(ua+et )=(Z.OIur)+(ZuQ(TP))

(ZIOQ)+(ZzOP)

(4.1.10) S

where [1 = {a and £2 = (Z. + Tzu).

Throughout this chapter we will consider a natural

extension of the Hausman and Taylor model to a linear

simultaneous equations model with random effects by allowing

some of the explanatory variables to be correlated with the

individual effects. The plan of this chapter is as follows.

In section 4.2 we consider the estimation of the coefficients

of a single linear equation from a simultaneous equations

model. In section 4.3 we consider the estimation of the

coefficients of a system of simultaneous equations. An

interesting problem arises for the linear simultaneous

equations model with random effects when some of the

explanatory variables are correlated with the individual
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random effects; namely, the instruments need not be the same

for every equation. This is the topic discussed in section

4.4. We summarize our results in section 4.5.

This chapter applies the Hausman and Taylor method of

instrumental variables estimation to the simultaneous

equations panel data model, derives the subsequent

estimators, and discusses their relative efficiency. In

addition, it provides a survey of the current literature on

simultaneous equations with effects and translates those

estimators into the notation of this thesis.

4-2 WWW

Let us now turn to the problem of estimating the

coefficients of a single equation, say the first equation.

That is, we wish to estimate the equation

(4.2.1) y: = R1A1 + (u1 + e1).

This is a generalization of the estimation problem considered

in chapter 2 in the sense that, in addition to the "inside"

instruments (i.e. instruments from within the equation

itself), we now have available instruments from "outside" the

equation. Now we need to introduce some notation, but first

we must agree on the type of explanatory variables permitted.

Amemiya and MaCurdy (1986) have considered a simultaneous

equation model with random effects correlated with the

endogenous variables, but in a somewhat non-standard way.

The basic point of view in this thesis is that all variables

correlated with the noise should also be correlated with the
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individual effects, but not conversely. That is, only

exogoooos variables can be uncorrelated with the individual

effects. This point of view can be Justified by

consideration of a system in which every structural equation

contains unobserved individual effects. By standard algebra

such a system would imply a reduced form, in which each

reduced form equation has an individual effect which is a

linear combination of the individual effects in the

structural equations. It therefore follows that every

endogenous variable will be correlated with the individual.

effect in every equation, just as it is correlated with every

structural error term. Thus, all endogenous variables must

be correlated with the effects.

0n the otherhand, if we follow a natural extention of

the point of view in Hausman and Taylor, there are two kinds

of exogenous variables possible; namely, those uncorrelated

and those possibly correlated with the individual effects.

That is, if we let X and 2 represent the matrices of all

time-varying and time-invariant exogenous variables,

respectively, we can then write X and 2 as

(4.2.2) >
4 u

[X(1). X(2) ]

(4-2.3) Z [2(1). 2(2) ]

where X(1) and 2(1) represents the doubly oxogonooo

variables, meaning variables uncorrelated with the individual

effects as well as the noise; and X(2) and 2(2) represents

the giggly oxogeooos variable, meaning variables uncorrelated



128

with noise but possibly correlated with individual effects.

It is important to note that X(1) is not the same as X1.

That is, X1 is the matrix of time-varying exogenous variables

that appear in the first equation, and since X1 may consist

of doubly as well as giggly exogenous variables it may have

elements in both X(1) and X(2). 0n the other hand, X

contains both the doooly and gingiy exogenous variables from

every equation, not just the first, so both X(1) and X(2) may

contain elements not in X1. A similiar relationship holds

between 21, 2(1), 2(2), and Z.

It is an important observation that will be used later

that each instrument set considered in this chapter is of the

form

(4.2.4) H = [ QX, PE ]

where the set E will vary. Given this form we can evaluate

P[H] using the following Lemma:

Lemme_lii11: P[Hl = P[QX] + P[PE]

Eroot 3

-1

x1 Q X’ Q

P[H] = ( QX PE ) ( QX PE )

ET Q ' E" Q

-1

erx 0 XTQ

= ( QX PE )

o ETQE E'P

QX(XTQX)’1XTQ + PE(E'PE)'1E7P
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g P[QX] + P[PE] Q.E.D.

The obvious generalization of the analysis of Hausman

and Taylor would be to choose E = [ X(1), 2(1) ] so that the

instrument set is

(4.2.5) H = [ QX, X(1), 2(1) ].

But we could also consider E = [ X‘(1), 2(1) ], which is

essentially the instrument set suggested by Amemiya and

McCurdy. As explained by Breusch, Mizon, and Schmidt (1987),

the matrix X‘(1) displays each variable geogratgiy for t

= 1,2,...,T. That is, for any T x L panel data matrix S, the

T x LT matrix S‘ is defined by

 

 

 

‘1 -~

r811 r811 812 . . . 811'

811' 811 812 . . . 811'

(4.2.6) 5 = ,, s* = .

8N1 8N1 8N2 . . . 8"!

SN! 8N1 8N2 . . . 8N!

._ .4 L... ._    
This leads to the instrument set

(4.2.7) HAM = [ QX. X‘(1). 2(1) ]

A third possibility is E = [ X*(1), 2(1), QX’(2) ]. which

implies the instrument set
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(4.2.8) Hans = [ QX, X‘(1), 2(1). QX'(2) ]

suggested by EMS. For our purposes the list of instruments

given in (4.2.5) will suffice, since the algebra in the other

cases is the same.

(4.2.1) Igo-Stgge Loggt figoaggg

We derive the two-stage least squares estimator as

follows. First, we multiply equation (4.2.1) by 811'“2 to

transform the error to a scalar covariance matrix. The

transformed equation is simply

(4.2.9) 811'1/2y1 = S11'1/2R1A1 + 811'1/2(u1 + e1).

We then follow the path of Hausman and Taylor, by estimating

(4.2.9) using IV with instrument set H. This yields the

following definition:

Definigioo_igi21: The two-stage least squares (ZSLS)

estimator of A1 from equation (4.2.1) is the instrumental

variables estimator of equation (4.2.9), using the instrument

set H. Explicitly,

(4.2.10) a1,zsLs

= [311311-113PIH1811'1’281 ]‘1

times R1'811'1/2PIH1811'1’2y1.

It is an interesting detail that although we have

transformed equation (4.2.1), we have used the untransformed

instruments, H. Following White (1984, section IV.3), the
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optimal IV estimator is derived by transforming the equation

to be estimated so that its error covariance is scalar (as we

have done), and then using whatever instruments are optimal.

Thus, in general, the question of whether H or 811'1’ZH is

preferable depends on which instrument set better explains

the endogenous variables contained in 811‘1/281. As Breusch,

Mizon, and Schmidt point out, however, in the present context

transforming the instruments by 81'”2 makes no difference;

either instrument set leads to the same estimator. This is

implied by the following Lemma:

Leggg (1.3): Given H = [ QX, PE ] defined in (4.2.5) and

811"“2 defined in (4.1.9),

(4.2.11) P[H] = P[S11'1/2H].

2m:

P[Sll’l’znl P[ (1/di)QX + (1/o&)PE ]

= P[ (1/d1)Qx ] + P[ (1/62)PE ]

{(1/0'1)Qx}{(1/<:f12 )X'Qx}'1{(1/61)Qx}'

+ {(1/o‘z)PE}{(1/o"23)ETPE}-1{(1/dz)PE}r

QX{X’QX}'1X’Q + PE{E7PE}'1E'P

P[QX] + P[PE] = NH]

Q.E.D.
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(4.2.2) t o o t d' ' ‘v 'o o t

Estimgtog

Following Hausman, Newey, and Taylor (1987), we consider

an interpretation of the ZSLS estimator implied by the

instrument-residual orthogonality condition written as plim

f1/NT = 0, where

(4.2.12) f1 = HTS11‘1’2(y1 - R1A1).

Now the covariance structure of fl is

(4.2.13) COV(f1),§ C1 = HT811'1/2811811'1/2H = HTH

The instrumental variables estimator (also known as the

"Generalized Method of Moments" estimator) then is the

solution to the problem of minimizing with respect to A1 the

quadratic distance from zero of f1:

(4.2.14) fi'Cl‘lfi = (y1 - R1A1)TW1(y1 - R1A1)

where

(4.2.15) W1 six-Illnci-lnrsii-IIZ

811"1/3H(H"'H)"1HTS11"1’z

is a quadratic form. This solution can be written as

(4.2.16) a1.1v [ R1’W181 ]'1R1'W1y1

[ Rirsin-llzn(aru)-lnrsii-llzsi 1"1

times R1'S11'1/2H(H’H)'1HTS11'1’2y1

[ R17811'1/3PIH1811’1’3R1 1"ll

times R17811’1/2PIH1811'1’2y1.
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It can readily be seen that a1.1v is equal to the ZSLS

estimator of A1 given in (4.2.10).

It is an interesting result that 811'1’3 in the

orthogonality condition given in (4.2.12) is superfluous. To

see this, consider the simpler orthogonality condition plim

f2/NT = 0, where

(4.2.17) f2 = HT(y1 - R1A1).

Noting that

(4.2.18) Cov( f2 ) a C2 = Hrsiiu,

the problem of minimizing with respect to A1 the quadratic

distance from zero of f2,

(4.2.19) f2’C2'1f2 = (y1 - R1A1)‘W2(y1 - RiAi)

where the quadratic form W2 = H(HT811H)'1HT, yields the

solution

(4.2.20) a2.1v = [ Ri’W2R1 l'lRiTW2y1.

Now we can write W2 as

(4.2.21) W2

H(H7811H)'1Hr

X'Q XTQ

= (QX PE ){ (0'le + dzzQ )( QX PE) }"1

ETQ E'Q

-1

d12X7QX 0 XTQ

( QX PE )

0 OGZETQE E‘P
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(1/612)QX(XTQX)‘1XTQ + (1/622)PE(ETPE)’1ETP

(1/611)P[QX] + (1/622)P[PE].

0n the other hand, W1 given in (4.2.15) can be written as

(4.2-22) W1 S11"‘/2H(HTH)'1HTS11'1/2

[ (1/613)Q + (1/U§Z)P JPIH]

times (1/d12)Q + (1/dzz)P ]

(1/012)P[QX] + (1/623)P[PE]-

Therefore, W1 = W2 and the two estimators are the same.

Substituting W1 from (4.2.22) into the ZSLS estimator given

in (4.2.16), we can rewrite the estimator as

(4.2.23) 81,2828

= [ (1/612(QRI)'P[QX](QRI)

+ (1/oh3(PR1)‘P[PE](PR1) ]‘1

times [ (1/612(QR1)'P[QX](QYI)

+ (1/dzz(PR1)'P[PE](Py1) ].

Now the same line of proof used above would show that

you would get the same estimator based on the orthogonality

conditions

(4.2.24) f3 = HTS11'1(y1 - R1A1).

This is in any case obvious because it corresponds to

transforming both the equation and the instruments by

S11’1/2, which we have shown above to be the same as

transforming only the equation and not the instruments.
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(4.2.3) ggltggi’s Ezgog-Co-pooegt Igo-Stage ngg; figogzes

st' t

Baltagi (1981) considers a simultaneous equations model

with effects which, in addition to individual effects,

contains time effects as well. In contrast to the model

considered in this chapter, Baltagi’s does not distinguish

between goooly and giggly exogenous variables; implicitly he

assumes that only doubly exogenous variables exist among the

explanatory variables. In Baltagi’s notation the Error-

Component Two-Stage Least Squares (ECZSLS) estimator can be

written as

(4.2.25) a1.nczsLs

3

-.- {E (mun)rp[xw)mum/0'11“"2 }'1
h=1

3

times {2: (211M)rptxmlz.<h>/m.<h>2 }.

1121

On the other hand, the ZSLS estimator given in (4.2.23) can

again be written as

(4.2.26) a1.2sLs = [ (1/622(QR1)TP[QX](QRi)

+ (1/612(PR1)7P[PE](P81) ]'1

times [ (1/dh2(Q81)’P[QX](QYI)

+ (1/613(PR1)’P[PE](Py1) ].

This is "essentially" Baltagi’s estimator translated into our

"essentially" in the precedingnotation. We use the word

sentence because we do not include time effects in our model.

Now, if we assume only individual effects, we have the
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translation as follows: Baltagi’s 21 is our R1 , his 81 is

our A1, his X is our (X, 2), his 21(1) is our PRi, his X(1)

is our PX, his 611(1) is our 622, and both his 611(2) and

611(3) are our 613. Since time effects are not present the

distinction between the two terms X(Z) and X‘33 is irrelevant

so in Baltagi’s notation X13) + X(3) is our QX. Similiarly,

his 21(2) + 21(3) is equal to our Q81. Therefore, Baltagi’s

ECZSLS estimator can be written using our notation as

(4.2.27) a1.:czsLs

= I (1/622(QR1)'P[QX](QR1)

+ (1/612(P31)TP[P(X, 2)](PR1) 1'1

times [ (1/dzz(QR1)'P[QX](Qy1)

+ (1/d12(P81)'P[P(X, 2)](Py1) ].

It is easily seen that this estimator is the same as the

al.2813 when E = (X, 2); that is, when there are no singly

exogenous variables.

4.3 8 st t at o

In section 4.2 we discussed "single-equation" methods of

estimation in the sense that the estimators there operated on

each equation separately. This section will discuss

"systems" methods of estimation, which estimate all equations

jointly. The motivation for considering joint estimation is

of course that the joint estimates are generally more

(asymptotically) efficient than the single-equation

procedures.

Again, let us consider the set of all M equations
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(4.3.1) y: = RaAa + 8:!

where of course

      

- q r- -w P-

y1 81 A1

y.= '(i 8*: 0 9 A‘= o gand

ya 83 Au

_. .. _ _ .1

._R1 ._

0

Rt: 0 I

0

Rs  

Note that the covariance matrix of s: is

(4.3.2) S = Cov( u: + e: ) = ( {p 0 INT) + ( {L 0 (TP) )

=(ZIOQ)+(Z29P)

(4.3.3) s-1 = (El-1 9 Q) + (Ea-1 o p)

(4.3.4) s-l/2 = ( {1-112 0 Q ) + ( L's-112 o p)

where £1 = {.9 and £2 = (Z. + Tin); Q and P are, again the

two idempotent matrices used before.

Recall that X and 2 represent the matrices of all time-

varying and time-invariant exogenous variables, respectively,

and that we can write X and 2 as

(4.3.5) X [X(1), X(Z) ]

(4.3.6) z [2(1), 2(2)]

where X(1) and 2(1) represent the doubly ggogoooog variables,
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meaning uncorrelated with the individual effects as well as

the noise; and X(2) and 2(2) represent the giggly egogegogs

variable, meaning uncorrelated with noise but possibly

correlated with individual effects. Note that the

decomposition in both equations (4.3.5) and (4.3.6) are

without reference to a particular equation. This is because

we are assuming that we have the same instruments in every

equation; that is, if a variable is gogoly,ggogggogg in one

equation then it is doubly egogegogs in every equation and

likewise, if a variable is giggly egogogogs in one equation

then it is singly exogenous in every equation. We will

consider the more complicated case when the instruments may

differ from equation to equation in section 4.4. Finally,

recall that our instrument set is of the form H = [ QX, PE ],

where E = ( X(1), 2(1) ).

(4.3.1) Ihzoe-Stago Leagt §gggggs

We derive the three—stage least squares as follows.

First, we multiply equation (4.3.1) by Sandi2 to transform

the error to a scalar covariance matrix. The transformed

equation is simply

(4.3.7) Sa‘l/zyt = Ss'IIZRIAt + St'llzst.

We then follow the path of Hausman and Taylor, by estimating

(4.3.7) using IV with instrument set (I O H). This yields

the following definition:
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Dggigitiog (4,1): The three-stage least squares (3SLS)

estimator of A- from equation (4.3.1) is the instrumental

variables estimator of equation (4.3.7), using the instrument

set (I 8 H). Explicitly,

(4.3.8) assis

= [R-'( Zr! 0 HQ“ > + (ta-1 0 PIPE] )3. 1-1

times 3.1(23-1 o P[QX] ) + ( Zr! 0 PIPE] ”by...

(4.3.2) Igstrugental Vgrigbleg Esgiggiiog

Following Hausman, Newey, and Taylor (1987), we consider

an interpretation of the 3SLS estimator implied by the

instrument-residual orthogonality condition written as

plim fa/NT = 0, where

H'(y1 - R1A1)

(40309) f. = o

H'Hyn - RMAH)

t. J

= (I O Hr)(yt - RtAt).

  

The covariance structure of f: is

(4.3.10) Cov(f-) 5 C: = (I O HT)S-(I 0 H)

= (10H7)(ZioQ)+({2op)(Ion)

(Z1 OHTQH)+(Zz 0111911).

To assist in the simplification of the estimators considered

below we need the following Lemma:
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Legga(4.§): Suppose T1 and T2 are positive definite,

nonsingular matrices and H = [ QX, PE ]. Then

(4.3.11) { ( T1 0 H’QH ) + ( T2 0 H'PH ) 1'1

Ti'1 0 (H'QH)‘1 + T2'1 0 (HTPH)‘1.

2:001:

Using Baltagi’s lemma (Baltagi (1980), p. 1548), it is

sufficient to show that

(H'QH)(H’PH)

er mm

= Q( QX PE ) P( QX PE )

ETP ETP

xth o o o

o o i o ETPE

o o

= = o. Q.E.D.

o 0

As before the instrumental variables estimator (also

known as the "Generalized Method of Moments" estimator) is

then the solution to the problem of minimizing with respect

to A- the quadratic distance from zero of f-,

(4.3.12) ft’Cs'lfu = (y: - RaAs)7W-(ys - RtAt)

where

(4.3.13) W: = (I 0 H)Cs’1(I 3 HT)

is a quadratic form. By Lemma (4.5), Cc'l can be written as



141

(4.3.14) Ct‘l = {h'1 8 (H’QHY’1 + {2‘1 G (HTPH)'1

so we can rewrite W: as

(4.3.15) w. (I s H)( 21-1 0 (atom-1

+ Zr! 9 (Hum-1 )(I 0 Hr)

( £1" 0 H(HTQH)'1H* )

+ ( Zz-l 0110119104111 )

(Zn-1 0 FIG!” ) + (ta-1 0 MPH] )

(Zn-1 9 P[QX] ) + (ta-1 3 P[PE] ).

The solution can be written as

(4.3.16) at

[ RaTWsRs ]'1RsTWsye

I as” {1-1 e P[QXl ) + (la-1 0 PIPE] )R: 1-1

times Rt’( {3'1 O P[QX] ) + ( {2'1 0 PIPE] )Y‘

It can readily be seen that a: is equal to the 3SLS estimator

of A: given in (4.3.8).

An alternative estimator can be derived from the

instrument-residual orthogonality conditions given in (4.3.9)

if, in place of the quadratic form We we use instead

(4.3.17) W2 (1 o H)[( diag(21) o HTQH)

+ ( diag(Z2) s H'PH )1-1(I 0 HT).

disg(Zi)-l o H(H’QH)'1HT

+ diag(£2)'1 o H(H"PH)’1HT

diss(Z1 )-1 o P[QH] + diag(Zz)-1 e P[PH]
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where diag(£1) and diag(£2) are diagonal matrices whose

diagonal entries are the diagonal entries of‘Z} and [2,

respectively. Thus, we do not take account of the fact the

covariance structure of f: is ( Z) O H'QH ) + (Z2 0 HTPH )

rather than ( diag(£1) O HTQH ) + ( diag(£2) 0 H’PH ). This

yields the estimator

(4.3.18) a-2

[RaTWZRI]'1RsTW2yt

[new diag(z1)'1 s P[QH] + diag(£2)'1 o P[PH] )R.]-1

times a.” diag(£1)'1 o P[QH] + disg(£z)-1 o P[PH] )y..

Since Rs, diag({1)‘1 Q P[QH], and diag(£z)-1 3 MPH] are

block diagonal and since Zii1PIQH] + ZiizPIPH]

= S11’1P[H] = 811'1/2PIH1811'1’3, we can rewrite (4.3.18)

as

(4.3.19) atz

[R1'S11'1/2Plfllsll-
IIZRI1-1

 L [RHTSnn'1/3PIH]Sun-I
IZRH1-1

._

R1TS11‘1’2PIHJS11'1/2y1

times .

 
 RH'SHM'IIZPIHISnn'llzgj.

—

which can be seen equal to be 2SLS applied to each equation

separately.
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Since W2 is a suboptimal weighting matrix, this is one

way of proving 3SLS efficient relative to ZSLS.

Still another estimator can be derived if we consider,

instead of (4.3.9), the instrument-residual orthogonality

conditions written as plim fa/NT = 0, where

(4.3.20) f3 = (I O H‘)S'1(yt - RtAt).

The covariance structure of f3 is written as

(4.3.21) Ca §Cov( f3 )= (I 9 HT)S'1(I 8 H).

It is an interesting result that S'1 in the orthogonality

condition given above is superfluous. To see this, consider

the problem of minimizing with respect to A- the quadratic

distance from zero of f3,

(4.3.22) f3T03'1f3 = (ya - RaAs)TW3(y- - RtAt)

using the quadratic form

(4.3.23) W3 = S’1(I 0 H)[(I 9 HT)S'1(I 9 H)]'1(I O H')S'1.

The solution to this problem yields the estimator

(4.3.24) aaa = [ R-‘WaR: l‘lfictWayu.

Now we can write Or1 as

(4.3.25) 03‘1

{ (I O H7 )S"(I O H) }'1

{(I OH')( Zi-l QQ+£z-1 or )(I on) }-1

{ [1'1 o H’QH + Earl 0 mm 1-1
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= [1 3 (atom-1 + £2 9 (mun-1

using Lemma (4.5). Then W3 can be written as

(4.3.26) W3

S‘1(I O H)Ca'1(I O H7 )S'1

s-1(I e H){Z1 e (mom-1 + {,2 o (HTPH)'1 }(I 9 ans-1

{ll-121214 e savour-1n! + Zz-IDZz-l 0 H(H"PH)'1HT

£1“ 0 HQ!” + Zz-l 3 mm”)

{1'1 0 P[QX] + {2'1 s P[PEl).

Therefore, comparing W3 given above to W: given in (4.3.15)

it is clear that W: = W2, so the two problems are the same

and the presence of S'1 in the orthogonality condition of

(4.3.20) is irrelevant.

(4.3.3) Special Cases

Consider the model

(4.3.27) ya = R-At + s-

We showed in section 4.3.2 that the 3SLS estimator can be

interpreted as an IV estimator using the instrument set

(I O H). As we have shown before, H = [QX, PE] where E

= (X1, 21) contains the doubly exogonous variables present in

the model.

For our first special case, suppose that there are no

doubly exogonous variables; i.e. all exogenous variables are

correlated with the individual effects. Then the set E is

empty and we should have fixed effects. Suppose also there
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are no time-invariant variables 2 since estimation of their

coefficients would now be impossible. Our estimator becomes

(4.3.23) assLs = [RsT (ii-1 0 P[QX] Hal-1

times Ra’(£1‘1 0 P[QX] )ys.

An alternative approach to fixed effects estimation

would be to derive the 3SLS estimator by first premultiplying

equation (4.3.27) by (I O Q), a system-wide within

transformation, yielding

(4.3.29) (1 O Q)?- = (I O Q)R4As + (I O Q)s-

and then using the instrument set H = ( QX ). This fixed

effects (within) estimator becomes

(4.3.30) at:

= [ n.r( {1-1 o P[QX] )R. ]'1R:’(Z1’1 e P[QX] )R-yn

This estimator can be seen as equal to our 3SLS estimator

when there are no gogbly egogegogg variables.

Estimation of the panel-data simultaneous equations

model with fixed effects have been considered by Cornwell and'

Schmidt (1987). There they show that in a simultaneous

equation model in which the same exogenous variables in each

equation have coefficients which vary over individuals, the

MLE, the conditional MLE and the marginal MLE coincide. This

is obviously a more general model than the one being

considered here, but their model does simplifiy to a fixed-

effects version of the simultaneous equations model with

_
—
-
‘
_
—
_
-
.
.
_

.
_
-
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individual effects. In effect, they show that the MLE, CMLE

and MMLE coincide in a simultaneous equation model with fixed

effects. Their results imply that just as in the single

equation case, the coefficients of the time and individual

varying explanatory variables are determined by the "within"

component of the likelihood and that the coefficients of the

time invariant or the individual-invariant explanatory

variables is determined by the appropriate "between"

component of likelihood.

For our second special case, suppose there are no giggly

egogegous variables so all the exogenous variables are

assumed uncorrelated with the individual effects. This is

the Baltagi case; that is, the case when H = [QX PE] where E

= (X, Z). In Baltagi’s notation his error-component three-

stage least squares (ECSSLS) estimator can be written as

(4.3.31) roasts

: {fl (z,(h))r( [(h) 0 FUN”) )Zl‘“ }"
1181

3

times { 2: (Z1‘h’)7( 2‘“) 0 P[X(h’] )Zl(h’ }-

'18].

On the other hand, the 3SLS estimator given in (4.3.8) can

again be written as

(4.3.32) assLs

= [ RI’( {1’1 9 P[QXI ) + ( {1'1 9 PIPE] )R' 1‘1

times Rs’( {1'1 O P[QX] ) + ( {3'1 0 P[PE] )Rcys.

This is essentially Baltagi’s estimator translated into our
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notation. That is, if we assume only individual effects,

note that his {(1) is our {2'1 and his {(3) + [(3) is our

{3'1, and further, use the translation of section 4.2.3, then

Baltagi’s EC3SLS estimator in our notation is

(4.3.33) axcasts

= [ Remix-1 0 P[QX] ) + (222-1 9 NPR} )R- 1-1

times RcT( {1'1 0 P[QX] ) + ( [3'1 9 PIPE] )R-y-.

which is the same as assts.

(4.4) S S w'th D' e ent I at ents

We now allow different instruments to exist in different

equations. To this end we need to introduce some notation.

Let H1 = [QX PE1] be the instrument set for equation 1, H2 =

[QX PE2] be the instrument set for equation 2, etc. Note

that as before each instrument set is of the form H

= [QX PE], but the E’s differ across equations. This is

because they contain variables that are oouoly gxogegogg but

only with respect to each particular equation. In this

section a variable which is dogbly egogenogs for one equation

may not be gogoly ggogegoug in another.

Recall that in section 4.2 we derived the ZSLS estimator

for the first equation by considering the instrument-residual

orthogonality condition based on

(4.4.1) f1 = H1T(y1 -R1A1).

Using
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(4.4.2) C1 2 Cov( f1 ) = H17811H1,

the solution to the problem of minimizing the quadratic

distance from zero to f1,

(4.4.3) f1’(H1’S11H1)'1f1

(y1 - R1A1)H1(H1’S11H1)'1H1'(y1 -R1A1

(y1 - R1A1)((1/d12) P[QX] + (1/0'12)P[PE11)(y - R1A1)

yields the estimator

(4.4.4) a1.2sLs

[R17W1R1]'1R1'W1y1

[R11((1/612) P[QX] + (1/0'22 P[PEl)Rll'1

times R1T((1/d12) P[QX] + (1/621) P[PE])y1

where

(4.4.5) W1 = H1C1‘1H1'r = H1(H1TS11H1)’1H1',

and the covariance structure for our 2SLS estimator is given

by

(4.4.6) Cov(a1,ZsLs)

[R1’W1R1]’1

[R1’((1/612) P[QX] + (1/623)P[PE]) R1l‘1.

Now we will derive the joint ZSLS estimator; a system

estimator with ZSLS applied to each equation separately. Let
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(4.4.7) H3 = .

  

Then we write the instrument-residual orthogonality

conditions as plim fs1/NT = 0, where

(4.4.8) fti = H1"(yt - RtAt).

Although the covariance structure is

(4.4.9) C: = HITSHI

we used instead the sub-optimal weighting matrix

(4.4.10) W41 = H3(Hs7blg(S)Ht)'1HcT

where

S11

. 0

(4.4.11) b1g(S) = . .

0 .

Sun

  
We minimize the quadratic distance

(4.4.12) f-17(Hc7blg(S)Ha)'1ftl

which yields the joint ZSLS estimator

(4.4.13) atzsns [Rs'Wt1R-l'1 R1’W-1yt

[n.ra.(a.rb1g(8)nc)-1H1'~1Rs]-1R1Tw.1y-

Because Rs, A4, and b1g(S) are block diagonal, we have
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(4.4.14) a42s13

(“[RNHHHiSnm)‘1H1'R11‘1

  [Run-In (1111811an )‘1HHTRH I‘IJ

‘ R1'H1(H1'Si1H1)'1H1’Y1

times .

Rn’Hu(Hn'Snan)‘ll-Inryn_d  
which can be seen as 2SLS applied to each equation

separately. And

(4.4.15) Cov(auzsLs)

(RI'thRIl'lRaTWa1SWsT
R.[R.Tw.IR.]-1

[Rt'Ha(Ha’b1g(S)Hs)‘1H3TRt]‘1RcTWsS

times WaTRulaaTH.(HsTb18(s)H.)-ln.r
R.1-1

Now consider again the instrument residual orthogonality

conditions given in (4.4.8). Using the correct covariance

structure, the problem of minimizing the quadratic distance

from zero of f-1,

(4.4.16) fti'Wtzftl

where

(4.4.17) W82 HaC-‘lflcr

Ht(H-TSHt)’1 HsT

yields the 3SLS estimator
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(4.4.18) acasL [R4W42R4]'1 R*W*2y'

[ReHsCs'IHsrRs ]'1 ReHsCs'l-Harys

with covariance matrix

(4.4.19) Cov(aaasts) (R'TW'ZR*)'1

(Rs’HcC¢'1HcTRt)'1.

It is a standard result that this estimator is efficient

relative to the ZSLS estimator given above. And when

Hy = (I 0 H), it is easy to show that 3SLS given in (4.4.18)

simplifies to 3SLS given in section 4.3.

heo e .6 : When H: = (I O H), the 3SLS estimator

given in (4.4.18) reduces to the 38LS estimator given in

(4.3.8).

Pyoof:

Note that when H: = (I 0 H) where H = [QX PE], the

weighting matrix in (4.4.17), using Lemma (4.5), reduces to

the matrix

(4.4.20) W42 = HtIHaTSHI]HIT

H)[I o HT)S (1 o H)]'1(I 0 H”)

H)( 21" 0 (H’H)'1

+ [3’1 0 WITH)"1 )(I 0 HT)

(I

(I

{1‘1 0 P[QH] + 22-1 o P[PE]

{3‘1 0 P[QX] + {2'1 0 P[PE]

Since this reduced to the same weighting matrix used in
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(4.3.8), the result follows. Q.E.D.

The question we now ask is whether our EC3SLS estimator

for the more general model allowing instruments to vary

across equations is efficient. We ask whether the

instrument-residual orthogonality conditions given in (4.4.8)

can be mixed using the cross equation covariances as weights.

Consider a positive definite matrix C (of dimension

M x M) and the vector

(4.4.21) fra H-T(C O Ir)(y* - RsAc)

- d

Z c11H1T(y1 — AiRi)

1:1

2: cmHnHyi - AiRi).

Thus premultiplying the instruments H: by a matrix of the

  

form (C 0 I) would "mix" the equations (unless C was

diagonal) and introduce terms like the cross-product

H1’(y1 - R1A1) whose probability limit we implicitly assumed

was not zero for at least one j = 1,...., M. (If not then we

have the special case when H1 = H2 = ...= Ha.) Thus, f-3

does not represent Logo instrument-residual orthogonal

conditions so even consistency of any resulting estimator

would be in doubt. Therefore, the orthogonality conditions

f-a would not lead to an improved estimator.

The question of whether we can improve the 3SLS
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estimator derived from f-z must be addressed by searching

among estimators derived from transformations of fez which do

not create new and illegitimate cross-products. We pursue

this line of reasoning in the remainder of this section.

Now there are two ways to order the instrument-residual

orthogonality conditions given by f-z. We can order first by

residuals and then by instruments (which has been the method

used so far) or we can order first by instruments and then by

residuals. We will address the question of transforming the

orthogonality conditions ordered in each of the two ways and

 
consider the effect, if any, on the resulting GMM estimator.

First, we need to introduce some notation. Let

(4.4.22) H = [ h1, . . . , hL ]

be the set of gll instruments; L denotes the total number of

instruments. Then define

(4.4.23) U: =

  UM

—— d

to be a selection matrix where HUi = H1; each matrix U1 (of

dimensions Li X m1) selects from H the instruments orthogonal

to the residual 31; and mi equals the number of instruments

orthogonal to residual 81. We can now write

“H01 ‘1 -H1 7

(4.4.24) (I. own. e
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=H.o

It would follow that the sum m1 + . . . + ms is the total

number of instrument residual orthogonality conditions found

in (4.4.6) and that the matrix 0- is of dimension

(m1 + . . . + mm) x ML.

We can now write (4.4.6) as

(4.4.25) fnc U-Tvec(H’s) = U-T(In O HT)vec(s)

PH1’ - F81-

1(— _1 8!! J

and the covariance matrix of f-4 as

    

(4.4.26) qu 5:Cov(f-4) = E{ Usrvec(H's)vec(HTs)TUn }

E{ U:‘(In 0 HT)vec(s)vec(s)T(In 0 H)Ut }

(was s H")(Z1 s Q + £2 a PHI): a mu.

Ut"(ZI 0 H10}! + £2 9 H'PH)U3

since E{ vec(s)vec(s)' } = Z; O Q + (Z2 0 P. The quadratic

distance to zero of fc4 can be written as

(4.4.27) f-q'th'lf-c

= vec(s)'(In O H)UsC-4UtT(In O HT)vec(s)

Now define the matrices T1 (i = 1,.., M) where T1 is a

positive definite square matrix of order m1. Then
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(4.4.28) T: = . .

Tu  

is a positive definite, square matrix of order equal to the

total number of restrictions. We can then transform the

orthogonality conditions in (4.4.25) by T: and write them as

(404029) 184 TsTUaTvec(HTs) = T47037(In O H7)vec(s)

    

 

F:I‘1"U1TH'r s1

8 0

THTUHTHT su

_ _1 1- J

rm'I‘11'H1'r r-s1

TuTHn" . . su
— d - d   

We should note that each block, T1TH1781, is a mix of the

cross-products beween the instruments in H1 and the residual

Si. Since every instrument in H1 is orthogonal to residual

si, Ti'Hi'Si represents a mixing of only legitimate

instrument-residual orthogonality conditions. In this mixing

cross-products which have nonzero probability limit

are not introduced.

Now consider

(4.4.30) 9.,

E Cov(iu4)
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E{ T-TUaTvec(HTs)vec(H’s)‘UtTa }

E{ TmrUs’(In O H’)vec(s)vec(s)T(In 0 H)U-Ta }

TtTCncTa

We then write the quadratic distance to zero from {:4 as

(4-4-31) (£*¢)’(Q'4)'1£*4

= vec(HTs)TUsTc[Ts'Cc4TI]'1Tt‘Ut’vec(H’s)

vec(HTs)'UITtTI'1Ct4’1(Tc:)‘th’UtTvec(HTs)

= vec(HTs)'UcCs4'1UaTvec(HTs)

vec(s)T(In G H)UcC-4UsT(In 0 HT)vec(s)

which is the same as in (4.4.27). Thus, the GMM derived from

either ft4 or 144 would be the same. Therefore, mixing the

instrument-residual orthogonality conditons having a common

residual will have no effect on the resulting estimating.

We next consider mixing the orthogonality conditions in

(4.4.6) within subgroups with a common instrument but first

we need to introduce some additional notation. Let

(404032) 89 = ( 81, o o o ,8“ )

be the matrix (of dimension T x M) containing the residuals.

Then define

(404033) 8(1) = SOV1, j. = 1, o o o g L,

as the matrices (of dimension T x 11) containing only those

residuals assumed orthogonal to the instrument hi. s(1) is

the matrix which selects the 11 residuals from the list in

(4.4.32) where 11 denotes the number of residuals orthogonal
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to instrument hi. Note that there are as many 8(1)’s as

there are instruments.

The matrix containing all the selection matrices can be

written as

(4.4.34) V: = . .

  

We can now rearrange the instrument-residual

orthogonality conditions found in (4.4.25) first by

instrument and then by residuals. The orthogonal conditions

reordered in such a manner can be written as

(4.4.35) fcs Vervec(sTH)

V47 (11. O s" )vec(H).

It should be pointed out that this rearrangement has in no

way effected the orthogonal conditions; the same instrument-

residual orthogonal conditions contained in (4.4.25) are

still found in (4.4.35) but now in a different order.

The covariance structure of fts is written

(4.4.36) 035 §_Cov(fas) = E{ Vc’vec(s’H)vec(sTH)TVc }

E{ VcT(HT 0 In )vec(s" )vec(s" )T(H O Iu)V- }

V:'(H" OIHHQOE1 + PODHHOIHW'

vnmrQn e [1 + HTPH 9 DW.

since E{ vec(s)vec(s)1' } = Q 0E1 + P 0 [2. So the

quadratic distance from fcs to zero can be written as
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(4.4.37) (f-5)"(C:s)'1fcs

= vec(sTH)TVaCcS'1VaTvec(87H).

Now define the matrices T1 (i = 1, . . ., L) where T1 is

positive definite, square matrix of order 11 and so

(4.4.38) T: = .

  

is a positive definite, square matrix of order equal to the

total number of restrictions. We can then transform the

orthogonality conditions in (4.4.35) by T: and then write

them as

(4.4.39) its VtTvec(sTH)

FT1TV1TsTh1-l

d

b

T1.'1'V1.'1's'r hL-J

  

We note that each block, T1TV1TsTh1, is a mixing of the

instrument-residual orthogonality conditions but for only a

single instrument hi. That is, we are mixing the cross-

products of 8(1) and hi which are all assumed to have a

probability limit equal to zero. Thus, we have not

introduced illegitimate instrument-residual cross-products

whose probability limit may be nonzero.

Now consider
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(404040) 9.5

Cov(its)

E{ TsTV4'vec(sTH)vec(er)TVtTt }

E{ TaTVI-"(H'r G Iu)vec(sT)vec(s")T(H 9 I11)VtTc }

TITO-5T:

We then write the quadratic distance to zero from its as

(4-4-41) (i'5)'(9‘5)'11'5

= vec(sTH)TVcT:[TcTC-5Tc]'1T4TVaTvec(sTH)

vec(sTH)TV:TuT¢'ICts'1(TIT)‘1Tc'Vchec(s'H)

vec(sTH)TVcCcs‘1Vchec(sTH).

By comparing the above quadratic distance to that given in

(4.4.37), we find that as long as the T1’s are nonsingular so

Tt'l exists, transforming the orthogonality conditions in

(4.4.37) by T: will have no effect on the resulting GMM

estimator.

In summary, when transforming the instrument-residual

orthogonality conditions when the instruments are different

for each residual, we must restrict ourselves to

transformations which do not create new and illegitimate

cross-products. Unfortunately, when we do so it turns out

that there is no gain for doing such transformation - we just

get back the 3SLS estimator.
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4.5 Cogclusions

This chapter applies the Hausman and Taylor method of

instrumental variables estimation to the simultaneous

equations panel data model, and derives the subsequent

estimator. Throughout, we attempt to improve our

instrumental-variables estimator by transforming the error so

to change its error covariance or by transforming the

instruments so to improve their explanatory abilitiy of the

endogenous variables. We consider a natural extension of the

Hausman-Taylor model to a linear simultaneous equation model

with random effects by allowing the effects to be potentially

correlated with some of the regressors. We then consider the

affect on our instrumental-variables estimator when the

instrument sets are not the same for-each equation in the

system.

 



CHAPTER 5

Conclusion

In this thesis, I have considered the specification and

estimation of linear models in the presence of panel data.

The previous literature on this topic can be organized

according to the following four distinctions: first, the

nature of the model, such as single equation versus

simulataneous equation model: second, whether there are

assumed to be individual and time effects, or just one or the

other; third, whether the effects are assumed to be fixed or

random, and, if they are random, whether they are assumed to

be correlated with some or all of the explanatory variables;

and fourth, whether asymptotic properties of the estimators

depend on a large number of individuals (large N), a large

number of time periods (large T), or both. Existing papers

cover some but not all of the possible combinations of these

assumptions, and the basic purpose of this thesis is to fill

in some of the more obvious gaps in the literature by

considering plausible and important combinations of

assumptions not previously considered. However, another

purpose of the thesis is to advance a particular mathematical

framework for the analysis and to demonstrate its usefulness.

161
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There are three substantive contributions of the thesis.

The first is to extend the analysis of Hausman and Taylor

(1981) to a model containing individual and time effects

correlated with some or all of the regressors, under the

assumption of large N and small T. I consider random

individual and time effects, and allow the regressors to be

correlated or not with either or both types of effects. The

analysis is similiar to that of Hausman and Taylor, but it is

algebraically more complicated because there are more

different types of exogeneity assumptions to consider. It

should also be noted that all previous treatments of models

with both individual and time effects assume large N and

large T. I consider this case in detail, but I also consider

separately the case of large N and small T (as assumed by

Hausman and Taylor).

The second contribution of the thesis is to extend the

analysis of Hausman and Taylor to a single equation in a

simultaneous equations system; that is, to a regression

model in which some of the regressors are correlated with the

random noise component of the error. This case has

previously been analyzed by Amemiya and MaCurdy (1987), but

in an unsatisfactory way. I follow Hausman and Taylor and

Amemiya and MaCurdy in considering random individual effects

(no time effects) which may be correlated with some or all of

the exogenous regressors, and in assuming large N and small

T. I propose ZSLS estimators based on instrument sets

proposed by Hausman and Taylor, Amemiya and MaCurdy, and
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Breusch, Mizon, and Schmidt (1987).

The third contribution of the thesis is to propose full-

information (3SLS) estimators for a simultaneous equations

system with random individual effects correlated with some or

all of the exogenous variables. These estimators are shown

to reduce to the usual fixed-effects treatment if all

exogenous variables are correlated with the effects, and to

reduce to an estimator previously proposed by Baltagi (1981)

if none of the exogenous variables are correlated with the

effects. I also consider the case in which some exogenous

variables may be correlated with the effects in some

equations but not in others, so that the available instrument

set varies from equation to equation.

The line of research followed in this dissertation can

be extended in a straightforward fashion by considering

additional new combinations of the assumptions underlying

previous work. One obvious and interesting task would be to

analyze a simultaneous equations model when there are both

individual and time effects that may be correlated with the

exogenous variables. A second possible topic of future

research is to consider single equation models in which the

random noise component of the error has a non-scalar

covariance matrix. Finally, although this direction of

research is less clearly defined, I hope to extend the

analyses of this dissertation to nonlinear models.
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