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ABSTRACT

SOME NON-LINEAR ASPECTS OF CRACK-TIP

FIELDS IN FINITE ELASTICITY

by

Jae-Sung Yang

This dissertation has two parts, each concerned with some

non-linear aspect of crack-tip fields in finite elasticity. The first

part of the current dissertation is concerned with the deformation field

near the tip of a crack in an incompressible solid which is loaded in

Mode 1. The material model used here exhibits strain softening in shear

at large deformations, which allows for a loss of ellipticity of the

governing differential equations. As a result, one expects zones of

localized shear to emanate from each crack-tip and extend into the

interior of the body. A local asymptotic analysis near the crack-tip is

carried out and both elliptic and non-elliptic solutions to the

governing equations are found. Neither of these solutions, alone,

satisfy the boundary conditions and so, neither provides a complete

solution to the problem. However, a composite deformation field

consisting of a "patching together“ of these two separate solutions can

be constructed. There are certain lines of strain discontinuity

emanating from each crack-tip, corresponding to the boundaries between

these different solutions, modelling a narrow zone of localized shear.
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In the second part we are concerned with the derivation of simple

explicit expressions for J, the energy release rate associated with

quasi-static crack growth in nonlinearly elastic solids. The J-integral

is the central theoretical quantity behind nonlinear fracture mechanics

for rate-independent materials under monotonic loading; can also be

regarded as a measure of the intensity of the crack tip singularity

fields. The estimation of J for elastic-plastic crack problems is

usually achieved by interpolation between the values of J corresponding

to linearly-elastic and pure power-law materials. These interpolation

schemes involve coefficients determined through a finite element

analysis; moreover, different interpolation schemes are required for

different constitutive descriptions. It is observed in this

dissertation that one can avoid such interpolations by using a certain

analytical estimation procedure. A center-cracked strip in Mode III is

used to illustrate this. The results for J obtained by this scheme are

appropriate for general constitutive relations and are very accurate

under certain conditions. Consequently, the need to interpolate between

particular materials can be avoided.
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INTRODUCTION

In recent decades, many investigations have been made in fracture

mechanics to study the stress and deformation fields near a crack

tip, and thereby or otherwise, establish criteria for crack initiation

and propagation. Most of these studies have been under linear elastic

conditions. The few extensions to nonlinear stress-strain relations

were still restricted to small strain behavior, e.g., classical

plasticity theory where the strain measure used is still infinitesimal.

However, since the analysis of most crack problems leads to the

conclusion that the displacement gradients are unbounded at the crack

tip, this contradicts the underlying assumptions of any infinitesimal

strain theory. Consequently, the results predicted by such a theory

cannot possibly be uniformly valid near the crack-tips. It is only

recently that fully nonlinear theories, using finite strain measures,

have been utilized in the study of fracture mechanics. In this

dissertation, we examine two problems using the fully nonlinear theory

of elasticity. In the first part we consider a plane strain mode I

problem for a crack in an incompressible nonlinearly elastic material

and study the crack-tip fields. In the second part, we consider the

energy release rate, and discuss an analytical scheme for estimating its

value.



PART I

LDCALIZED SHEAR DISCONTINUITIES NEAR THE

TIP OF A MODE I CRACK



CHAPTER 1

INTRODUCTION
 

Throughout the years, many studies have been devoted to the

investigation of stress and deformation fields near a crack-tip, most

studies being formulated within some small-strain theory. All of these

studies, in contradiction to the approximative assumption upon which

they rest, give rise to locally unbounded strains at the crack-tips.

The predictions of such infinitesimal theories for these problems may

therefore be presumed, at best, to be realistic at finite distances from

the singular point: They £35395 possibly be uniformly valid in the

vicinity of these points, gg_matter how small the applied loads.

A number of recent studies, however, have been concerned with the

elastostatic fields under large strains. An asymptotic treatment,
 

consistent with the fully nonlinear equilibrium theory of compressible

elastic solids, of the stresses and deformations near the tip of a

traction-free crack under plane strain conditions, was given by Knowles

and Sternberg, [1]. The analysis considered a particular class of

materials. The asymptotic analysis of the foregoing crack problem was

reduced to a nonlinear eigenvalue problem, the solution of which was

established in closed form, in terms of elementary functions. Later,

[2], they reconsidered the previous problem, leading to a clarification

and improvement of the results for the lowest-order asymptotic crack tip

fields.

In an attempt to determine the deformations and stresses near a

crack tip for a class of materials different to that in [1], [2],

1
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certain difficulties were encountered. In their efforts to establish an

asymptotic solution to a crack problem for the Blatz-Ko material,

Knowles and Sternberg, [3], noticed that these difficulties suggested

that the problem in this case might not admit a solution of unlimited

smoothness. This in turn led them to investigate the possible failure

of ellipticity of the appropriate system of displacement equations of

equilibrium at solutions involving large deformations. It was shown

that ellipticity prevails only if the principal stretches are suitably

restricted and breaks down, in particular, at a local state of uni-axial

tension or compression of sufficiently severe intensity. They further

established necessary and sufficient conditions, in terms of the local

principal stretches, for ordinary and strong ellipticity of the

equations governing finite plane equilibrium deformations of a general

compressible isotropic hyperelastic solid [4].

A failure of ellipticity of the elastostatic equations suggests the
 

possible emergence of solution fields that possess finite jump

discontinuities in the first displacement gradients across certain

curves, while the displacements themselves still remain continuous

everywhere. Equilibrium shocks of this kind, which resemble in many

respects gas-dynamical shocks associated with steady flows, are shown to

exist if and only if the governing field equations of equilibrium suffer

a loss of ellipticity [5].

Meanwhile, Abeyaratne [6] investigated the corresponding issues for

incompressible materials, namely the possibility of the change in

type of the differential equations governing finite plane elastostatics

and the related issue of the existence of equilibrium fields with

discontinuous deformation gradients. He showed that in the particular
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case of weak elastostatic shocks, ellipticity must necessarily be lost

at the preassigned deformation on one side of the shock. Further, in

the case of shocks of finite strength, it is shown that a strict failure

of ellipticity at a given deformation is sufficient to ensure the

existence of such a shock which has associated with it this deformation

on one side. Moreover, he shows that a failure of ellipticity at some

homogeneous deformation is necessary for the existence of a shock.

Hutchinson and Neale, [7], considered the range of states for which the

equations governing incremental responses are elliptic for isotropic,

nonlinearly elastic solids obeying a finite strain version of the J2

deformation theory of plasticity. Rudnicki and Rice examined the hypothesis

that localization of deformation into a shear band can be understood as an

instability in the macrosc0pic constitutive description of inelastic

deformation of the material, [8]. Specifically, they understood instability

in the sense that the constitutive relation may allow a homogeneously

material to load to a bifurcation point, at which nonuniform deformation can

be incipient in a planar band under conditions of continuing homogeneous

deformation outside the band. The condition for the emergence of such

deformation fields was shown to be a loss of ellipticity of the governing

equations.

Zones of localized deformation in the form of narrow shear bands,

are a common feature of certain severely deformed ductile metals. It is

thought that such behavior can be explained at the microscopic level by

modelling in detail the process of growth and interaction of the many

individual fissures that appear (and ultimately join together) in

forming the macroscopic surface of rupture. A buckling type
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instability of these voids at the microscopic-level, into a band-like

mode, is a possible explanation for this phenomenon. At the macroscopic

level, this manifests itself as a shear band. An investigation of this

hypothesis was undertaken by Abeyaratne and Triantafyllidis in [9].

In [10] and [11], Knowles and Sternberg returned to the investigation

of the elastostatic field near the tip of a crack, the particular

constitutive law now chosen so as to give rise to a loss of ellipticity of

the governing displacement equations of equilibrium in the presence of

sufficiently severe deformation. In [10] and [11] they consider the small

scale nonlinear Mode III problem for an incompressible elastic material. An

explicit exact solution, deduced with the aid of the hodograph method,

exhibits two symmetrically located lines of displacement-gradient and stress

discontinuity issuing from each crack-tip. In [13] Abeyaratne investigated

a similar problem and showed the presence of two pairs of equilibrium shocks

issuing from points on the crack-faces, different from the crack-tips. In

this problem, a class of incompressible, homogeneous, isotropic elastic

materials was considered for which the governing displacement equation of

equilibrium is elliptic at both sufficiently small and sufficiently large

shearing strains but is hyperbolic at an intermediate level of strains.

Most recently, FOwler considered the Mode I analog of the aforementioned

problem for a particular compressible elastic material, viz. the Blatz-Ko

material, using a direct asymptotic method, [14]. Again, the loss of

equilibrium ellipticity resulted in the appearance of equilibrium shocks.

In the meantime, Hutchinson examined the case of a tensile crack in a
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perfectly plastic material under conditions of plane stress. The governing

differential equations here are non-elliptic (at all non-zero

deformations), and he finds two lines issuing from each crack tip across

which the stresses are discontinuous [15].

In the present study we will examine the plane strain mode I
 

problem for a crack in an incompressible nonlinearly elastic material.

The constitutive law is such that the governing differential equations

are elliptic at sufficiently small deformations and non-elliptic at

sufficiently large deformations. Specifically, for the present plane

strain problem, the material may be completely characterized by its

response in simple shear, and this is assumed to be linear for small

amounts of shear and of a power-law form at large amounts of shear (see

Figure 1).

The analysis of the mode 111 problems in [11.12.13] is based on a

hodograph transformation of the governing second order quasilinear

partial differential equation. This method is not available for the

present mode I problem since the governing equations are of higher

order. Instead, a direct asymptotic analysis of the crack-tip field is

carried out.

In Chapter 2 we cite the appropriate equations from finite

elastostatics. The crack problem is formulated in Chapter 3 and the

governing equations are written in terms of polar coordinates centered

at the right crack-tip. In Chapter 4 we find two asymptotic solutions

of the differential equations on overlapping subdomains of the crack-tip

zone (see Figure 3). One of them is non-elliptic and holds in a zone

ahead of the crack; the other is elliptic and is a solution on zones

adjacent to the crack-faces. These solutions are pieced-together in
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Chapter 5, in order to generate a solution of the complete (asymptotic)

boundary-value problem (see Figure 5). The final solution involves two

shocks issuing from each crack-tip and emanating into the body. The

stress and deformation gradient fields are discontinuous across these

curves, though the displacements and tractions remain continuous. The

results are summarized in Chapter 6.



CHAPTER 2

PRELIMINARIES PERTAINING TO FINITE PLANE STRAIN

Suppose that R denotes the three-dimensional Open region occupied

by the interior of an incompressible body in its undeformed

configuration. A deformation of the body is described by a sufficiently

smooth and invertible transformation

y = y(x) = x + u(x) on R, (2.1)

which maps R onto its image R* in the deformed configuration, R* a y(R).

Hence y is the position vector after deformation of the particle which,

in the undeformed configuration, was located at x. He will assume

temporarily that the displacement vector field u(x) is twice

continuously differentiable on R.

The deformation gradient tensor F is defined by

F Ry on R, (2.2)

and the corresponding Jacobian determinant is given by

J(x) - det 5(x) > O on R. (2.3)

Since the body is assumed to be incompressible, the deformation must be

locally volume-preserving so that

J(x) - 1 on R. (2.4)

The right and left Cauchy-Green tensors E and G are defined respectively

by

c = FTF, g = ffT. (2.5)
5 “A

Let t be the Cauchy (true) stress tensor field on R* accompanying

the deformation at hand. The equilibrium equations are

7



div 1 = g, I = rT on R*, (2.6)
A IN

when body forces are presumed to be absent. The Piola (nominal) stress

tensor corresponding to r is given, in view of (2.4), by

p(x) = 1(y(x))(FT(x))'1 on R. (2.7)

Equations (2.2), (2.4), (2.6), and (2.7) lead to the equilibrium

equations in the reference configurations

div p(x) = o, oFT = FoT on R. (2.8)

Furthermore, the nominal and true surface tractions are given by

s = 0N
“A

on S, t = tn on 5*, (2.9)

where S and 5* are surfaces in R and R*, 5* = y(S), while N and n are

unit normals to S and 5*, respectively. It follows then that

s = O on S if and only if t = O on 5*, (2.10)

which is a useful result since it allows the boundary condition on a

traction free surface 5* to be specified on its undeformed image S.

He now turn to the constitutive law and suppose that the body is

homogeneous, incompressible, and elastic, and that it possesses an

elastic potential H a N(F). The nominal stresses are then given by

aim
, (2.11)

where p(x) is a scalar field arising because of the incompressibility

constraint. In the case where the material is isotropic, H depends on F

in a special manner, viz.



u a "(11912): (2.12)

where I1, I2 are the principal scalar invariants of G:

1 = tr e 1 . 1 (tr e)2 - tr(Gz)] (2 13)
1 ~’2 '2": ~ ~ 0

.

Suppose now that the domain R occupied by the undeformed body is a

right cylinder with generators parallel to the x3-axis. Let D be the

open region of the (x1, x2)-plane occupied by the interior of the middle

cross section of this cylinder at x3 = 0. Suppose further that the

deformation (2.1) is a plane deformation so that

.Ya ‘ xa‘+ “u(xlt x2): YB = x3 0" R0 (2014)

Throughout this problem, a comma followed by a subscript indicates

differentiation with respect to the appropriate coordinate and Latin

subscripts take the values 1, 2, 3, while Greek subscripts take the

values 1, 2. Repeated subscripts are summed over the proper range. It

follows from (2.2) and (2.14) that

Fad = “1,8! Fo3 = Fae = 0. F33 = 1. (2.15)

The nominal stresses are now given by

aim _1 913(5)

°oa ' 3F;- " P FBo’ c’33 ‘ '31;— ' P: (2°16)

If we assume that the elastic potential H is such that

. “ . o (2.17)

3' «3 3:3“

for every F such that (2.15) holds, then we further have

030,3 dag . o. (2.18)

If we now define I by



10

I = FQBFQB (2.19)

we have, because of (2.5), (2.13), and (2.15) that

I . 11 - 1 a 12 - 1. (2.20)

In the case when the material is isotropic, we have from (2.12), (2.20)

that, in plane deformations,

*

w . H(1+1, 1+1) (2.21)

so that if we define the plane strain elastic potential H(I) By

* ,

u(x) = u(1+1, 1+1), I > 2, (2.22)

we have that "(F) - H(I) where I = FQBFGB. It follows from this that

A

3HIE) g 2F H'(I). (2.23)

a as 08

From (2.5), (2.16), (2.23), we conclude that

I
dug: 2H'(I)FaB - pFaB. (2.24)

The deformation (2.14) is a simple shear in the x1-direction if it

has the form

U1 3 kxz, uz = 0, (2.25)

where k is the amount of shear in the x1, xz-plane. Then from (2.19),

one gets

I . 2 + k2 (2.26)

and the stress of primary interest, 112, is found from (2.7), (2.15),

(2.24), (2.26) to be

112 a ;(k) - 2kH'(2+k2), 0 < k < o; (2.27)

;(k) denotes the response function _o_f_ the material EMM. Its

secant, tangent, and infinitesimal shear moduli are given by
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us(k) s-IIAL, ut(k) =-E§§51, no = ut(0), (2.23)

respectively. The secant modulus is assumed to be positive, so that

from (2.27), (2.28),

u5(k) =.2u'(1) > o. (2.29)

The in-plane behavior of an incompressible material, in plane

strain, is essentially governed by its response to simple shear. In

particular, agprlane deformation of an incompressible body can always

be decomposed locally into a rigid-body rotation followed, or preceded,

by a simple shear [11]. The amount of this ”effective local shear", ke,

is

k, = (1-2)1/2, 1 a tr FTF . (2.30)

If A, 1'1 are the principal stretches of the deformation, one can

equivalently write

k, = (1 - x-ll. (2.31)

Therefore from (2.24), (2.29), (2.30), the in-plane response of an

isotropic, incompressible, elastic material in ggy_plane deformation can

be written as

ea, . u,(ke)F,B - p(§)rgi, k, = (1-2)1/2. (2.32)

From (2.24), (2.8), (2.19), (2.4), (2.3) and (2.1), one may obtain

the displacement equations of equilibrium for plane deformations of a

homogeneous, isotropic, incompressible hyperelastic material. They are

-1

8a a

F 0 on D, det f = 1 on D, (2.33)
coev6(5) "7.86“ ”’3

where Fag = ua,3 + 5o3 and
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azu
a = ' '

ca8Y5(E) m 2H (”GCYGBG + 4H (I)FGBFY5° (2.34)

It has been shown, (Abeyaratne [11]), that (in the presence of (2.29))

this system of partial differential equation is elliptic at a solution

(ua,p) and at a point (x1,x2) if and only if

2H“(1)(I-2) + H'(I) > O. (2.35)

A physical interpretation of this ellipticity condition may be obtained

in terms of the concept of the local amount of shear. Recall the

definition of the shear stress reSponse function ;(k):

in.) = 2kH'(2+k2), m < ., (2.35)

Differentiating (2.36) with reSpect to k and observing that the secant

modulus is assumed to be positive leads to

;'(k) = 2H'(2+k2){2k2 53-22%)- + 1}. (2.37)
H'(2+k )

He therefore find that (2.35) is equivalent to

;'(ke) > o, ke - (I-2)1/2, (2.38)

from which we conclude that the system of partial differential equations

(2.33) is elliptic at a solution 2, p and at a point x if and only if

the tangent modulus evaluated at the effective local shear ke is

positive. Thus, in particular, if the material at hand has a

monotonically increasing response curve in shear, it follows that

ellipticity prevails throughout.

In this study, we are concerned wfith the case in which the material

behavior allows for ellipticity to be lost at severe levels of deforma-

k

tion. He suppose that the shear response function T(k) is linear for
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small amounts of shear and has a power-law form for large amounts of

shear. Specifically, we take

uok for 0 < k < k0

1(k) : 2 1 (2.39)

k n- a
uoko(-E—) for ko < k < ,

o

where no, kc, and n, (Po > 0, k0 > 0, and O < n < 1/2), are material

constants. A sketch of ;(k) vs. k is shown in Figure 1. Note that when

0 < n < 1/2, as is assumed here, ellipticity is lost whenever the

effective local shear ke exceeds kg.

The loss of ellipticity of the governing partial differential

equations leads to the possible occurrence of elastostatic fields which

are less smooth than previously assumed. Therefore, we now have to

relax the smoothness assumptions made previously in order to account for

such "weak solutions.“ Particular interest lies in the case wherein the

field quantities possess the degree of smoothness assumed previously

everywhere except on one or more curves on 0. Accordingly, it is

assumed that, although 2 is continuous in 0, there is a smooth curve S

in D such that (i) p and u are respectively once and twice continuously

differentiable in 0-5, (ii) p and V2 suffer finite jumps across S.

Under these new conditions, the field equations discussed

previously are to hold in 0-5. In addition, it is required that the

nominal traction s be continuous across S; this in turn implies that

the true traction t is continuous across 5*. Therefore, from (2.9),

we get

[SJN = O on S, [:]n = O on 5*, (2.40)

where [.] indicates the jump across the appr0priate curve. A curve 5

(or its image 5*) carrying jump discontinuities in F, p, and a while
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preserving continuity of displacement and traction is called an

eguilibrium shock.



CHAPTER 3

 

FORMULATION Q§_THE MODE I_CRACK PROBLEM

Let D, the undeformed cross-section of the cylindrical body, be the

exterior of the straight-line segment L (Figure 2),

L . I 5| xz = O, -b < x1 < b}; (3.1)

L represents a traction-free crack of length 2b,

aa2(x1, or) . o, -o < x1 < b. (3.2)1

The body is subjected at infinity to a uni-axial stress in a direction

normal to the crack

022 + 0., 012 + 0, “11 + 0, 021 + O as x12 + xzz + a. (3.3)

The problem to be considered is the following: For the material

characterized by (2.32), (2.39), we seek a suitably smooth deformation

field y(x), a nominal stress field p(x) and a pressure field p(x),

all on D, satisfying the field equations (2.2)-(2.4), (2.30), (2.8), (2.32),

(2.39) and the traction-free and prescribed-load boundary conditions

(3.2), (3.3). As mentioned previously, it is possible for the governing

differential equations here to lose ellipticity.2 This suggests that we

seek the solution to the aforementioned boundary-value problem in a

class of functions which are less smooth than that in which one would

have otherwise sought the solution. Accordingly, we merely require that

A

y(x) be continuous and have piecewise continuous first and second

A

partial derivatives on 0. Furthermore, y(x) is to be bounded near

the crack-tip. Note that the preceding smoothness requirements admit

 

’I:2 As mentioned previously, Greek subscripts take the values 1,2 and

repeated subscripts are summed.

2. The corresponding problem for a material which does not lose

ellipticity has been considered by Stephenson [16].

15
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the possibility of finite jump discontinuities in f and 3 across curves

in D. In the event that such a curve S exists, equilibrium

considerations require that the nominal traction s be continuous across

it. Such a curve S across which the displacements and tractions are

continuous but the displacement gradients are discontinuous is referred

to as an “equilibrium shock” (or 'shock').

Finally, let (r,6) be local polar coordinates in the undeformed

configuration as shown in Figure 2. Then

x1 - b = r cose, x2 = r sine, r > 0, -n < 0 < n. (3.4)

On using (2.28) and (2.32), the equilibrium equations (2.8)1 may be

shown to imply

 

 

 

u (k )-u (k ) 3k 3k
‘32., t e s e __J; 1 __J:

3r u5(ke)Hr + ke grr 3r +:2'gre ae 1’

(395)

u (k )-u (k ) 3k 3k
3 t e s e e l e

3%: "5(ke)He + ke gre 37+:2'988 WJ’

where we have set

RY 3! 8y 3’

2 0‘ .__e_._e
Hrg'fi'tk'ydt’ I"6331—6" ya’grr ar ar ’

(3.6)

9rd ar 89 ’ 988 as as ’

and

2 a 1 (3.7)

ke grr“:2'966 '3'

Similarly, (2.3), (2.4) yields

J ,_,_1_ (3’1 3,2 _ 3’2 33'1 __, 1 (3.8)

r Gr 30 Gr 30 ’

and the boundary conditions (3.2) on the crack surfaces give
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By 31! 3y 31!
1 2 a 2 1 _

"5(ke) 3'6" "P 3F" 0' "s("e) ae ' '9 a—r‘ " 0 (3'9)

on 6 = i n, 0 < r < 2b.

0n using (3.6), (3.8), one can show that the boundary conditions (3.9)

are equivalent to

9669rr‘r2. gre’oo P'us(ke)/9rr 0" 9'1 I. 0 < r < 2b. (3.10)

For the material characterized by (2.32), (2.39) under consideration

here, the equilibrium equations (3.5), in view of (2.28), reduce to

aplar a "oHra ap/ae = "OHS (3.11)

at points in D where 0 < ke < kc and to

331 0 e2".2 ’10 2n-3 3"e 2 3"e

or T k 2n-2 Hr + (ll-UR 2n-2 ke [29" 37- + :2 9re '59—].

o o

2n-2
k u 3k 3k

a no e o 2n-3 e 2 e

3% ' k 2n-2 He + ("'1) k2n-2 ke [29rd '5?" 1' :2" 988 88‘]:

o o

(3.12)

at points where ke > k0.



CHAPTER 4

ASYMPTOTIC SOLUTIONS IQ_THE FIELD EQUATIONS
 

In this chapter we proceed to calculate asymptotic expressions for

the deformation field near the right crack-tip. He will determine two

solutions of the governing differential equations, each valid on some

sub-domain of the crack-tip zone. In the next chapter, these solutions

will be combined in a suitable manner in order to generate a solution of

the complete (asymptotic) boundary-value problem. One of the

deformation fields determined is a non-elliptic one, and satisfies

(3.8), (3.12) in a zone H ahead of the crack-tip, (see Figure 3). The

other is elliptic, and is determined from (3.8), (3.11) in zones E+,

E' adjacent to the crack-faces. The regions E+, E‘, and H are described

by:

E+ = { (r,e)| 0 < e < n, 0 < r < r0},

H = { (r,e)|-eo < e < 00, 0 < r < r0}, (4.1)

E- = { (r,9)|-n < e < 0, 0 < r < r0},

where 00 (O,n) is an angle to be determined.

4.1 Non-elliptic solution on H

He assume that the deformation field in H admits an asymptotic

representation of the form

§a(x1.x2) ~ rmuaw) as r + 0. (4.2)

18
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where ua(e), (uaua$0), are smooth functions defined on some range

-eo<e<eo, and m is a constant. He suppose also that the associated

pressure field is of the form

p(x1,x2) ~ r9p(6) as r + 0. (4.3)

It is further assumed that the asymptotic identities (4.2), (4.3) may be

formally differentiated as many times as necessary. Since we are

interested in the asymptotic structure of the solution near the

crack-tip, we seek the smallest values of m and q (i.e. the most

singular terms)for which (4.2), (4.3) are asymptotically consistent with

the governing boundary-value problem. Accordingly we first restrict

attention to the case

m < o. (4.4)3

If a solution consistent with (4.4) can be found, we need not consider

the range m > 0.

Equations (4.2), (4.4) and the incompressibility condition (3.8)

yield

u1 J2 - uluz a 0 on ‘90 < e < 00, (4.5)

which may be integrated to give

uGI a aau(e) on - 80 < 0 < 60. (4.6)

Here a1, a2 are constants, (aaaa t O), and u (f 0) is a smooth function

on -60 < e < 60. In view of the nature of the prescribed loading (3.3),

and the geometric symmetry present in the current problem, one expects

the deformation field to possess the following symmetries:

 

3:7 As mentioned previously, the deformation field must remain bounded

at the crack-tip. Despite (4.4), the deformation (4.2) is bounded

when the crack-tip is approached from within the (eventuET)

hyperbolic domain (see Chapter 6).
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y1(r.6) = yum-6). yzine) = -yz(r.-6) for 0<r<ro.-w<6<vr. (4.7)

Therefore, in view of (4.2), (4.6), (4.7), we find that one of the

following must hold:

(1) U(9)

(ii) U(6)

(iii) u(e) = u(-6) for -00 < e < 60 if a1 f 0, a2 = D.

O for -60 < 8 < 60 if a1 a2 *-0.

-u(-6) for -80 < e < 90 if a1 = 0, a2 * 0, (4.8)

The first, of course, is inadmissible, and so we note that either a1 or

a2 must vanish. From a physical point of view, one expects the

deformation in the xz-direction to be at least as 'severe' (singular) as

the deformation in the xl-direction, which would imply that it is 31,

rather than a2, that vanishes. Consequently in what follows we assume

this to be the case, and so,

arrow"). yawn”) as NO. 11(6) - -u(-6) on -60 «k 60. (4.9)

Hith no loss of generality, the constant a2 has been absorbed into u(e).

Note that

u(O) s O. (4.10)

Next, from (3.6), (3.7), (4.9), we find

1,2 ~ er-Za(e), 6(6) . n262(e) + u2(e). (4.11)

He assume that 6(6) does not vanish on [-60, 00]. On using (4.9),

(4.11) and (3.6), the equilibrium equations (3.12) in H, give

ap/ar ~ no kOZ-Zn mr2(m-1)n-1 u(e) Z(0),

(4.12)

ap/ae ~ no koZ-Zn r2(m'1)" u(e) 2(0),

on -80 < e < 80, in which we have set

2(a) - e"'2[e{n2u+fi}+(n-1){2n(n-1)Gu+éé}]. (4.13)

The equations of equilibrium (4.12), after the elimination of the

pressure p, yield the single equation



21

u(e)Z(e) + {1+ 2(1-m)m'1n}u(6)l(6)=0 on -eo<e<eo. (4.14)

Since u(6)=-u(-6) on (-60,eo), it follows that u(O)=;(O)=G(O)-0.

Consequently, (4.13) implies that

2(0) = 0. (4.15)

Equations (4.14), (4.15) necessitate

2(6) - 0 for -80 < 8 < 00, (4.16)

which, by (4.13), is equivalent to

G{m2u+fi} + (n-1){2m(m-1)Gu+Gu}=O for -8O<8<80. (4.17)

Differential equations of the form (4.17) have been previously

encountered and successfully analyzed by the phase-plane method (see,

for example, Knowles and Sternberg [1]). He follow their procedure.and

introduce functions p(e) (> O) and 8(6) through

mu(e)=p(e) cosu(e), 0(e)=o(e)sint(e) on -°o < 8 < 80. (4.18)

Eliminating u(e) from (4.18) gives

5(e)/p(e) = {0811(9)} tan 4(6). (4.19)

On the other hand (4.11), (4.17) and (4.18) provide

(2n41)(3(e)/o(e))tant(e) + {1(0) + m + 2(m-1)(n-1)} = 0. (4.20)

Equation (4.19) can now be used to eliminate 5/9 in (4.20) which leads

to

I {n/(I-n)+cos 28} + {wo+c052¢} = 0 on -80 < 8 < 00, (4.21)

where we have set

"0 a 1 - m(1-2n)/(1-n) > 1. (4.22)

The symmetry condition (4.10), in view of (4.18) requires that

((0) a 1/2. (4.23)

Integrating (4.21) and using (4.23) gives 0(8) implicitly as
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8 = -(m -.%) + +11Tm IIEnn wltanTIEwltan(0 --%)]. (4-24)

where

1/2

W1= ((Wo+1)/(Wo-1)) > 0. (4.25)

and wb is given by (4.22). Equation (4.24) cannot be inverted

explicitly to furnish 0 = 0(8). A typical graph of 8 vs. 0 as described

by (4.24) is shown in Figure 4. It indicates that 0(6) is multi-valued

in general but that a single-valued branch, which satisfies 0(0) 2 1/2,

may be chosen. This corresponds to the solid portion of the curve in

Figure 4. From here on, it is this single-valued branch that we

consider. The graph indicates that 0(8) increases monotonically on

('90: 00) from the value 0b=1/2 c05'1(-n/1-n) to u-0o and is

antisymmetric about 8 = 0, 0 = 0/2. Furthermore, we find from (4.24)

that

8 = - tan'1(/1-2n) + l-m 1'2" w tan'1{w ll-Zn} 0 < 6 <1
0 + I-m 1-2n 1 1 ’ o ‘

(4.26)

We now proceed to find u(8) in terms of 0(8). Eliminating p(8)

from (4.18) gives

0 J - mu0 tan0 = O on -80 < 8 < 00, (4.27)

so that (4.21) can be written in the form

{wo + c0520}G + mu0In/(1-n) + c0520}tan0=0. (4.28)

Integrating (4.28) yields the following expression for u(e):

u(8) = a cos0(8){c0520(8) + wo}"(1""')/2 , (4.29)

with 0(8) being the single-valued inverse of (4.24) on -80 < 8 < 80, In

equation (4.29), a is a positive constant and wb is given by (4.22).
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For later purposes it will turn out that we need an explicit

expression for u(8) at small values of 6. This can be readily obtained

by using a Taylor expansion of u(e) about 8 = O. From (4.10), (4.18),

(4.19), (4.23), we have

u(0) = 0, 0(0) = 9(0), (4.30)

0(0) = 5(0). (4.31)

{7(0) = ;(0)-p(0) (1(0))2. (4.32)

while (4.21), (4.23) provide

0(0) a -m. (4.33)

On the other hand (4.18)1, (4.29) give

p(e) a mm{c0520(0) + wo}'(1'm)/2 on -80 < 8 < 80, (4.34)

so that

_ 2n-1) -(1-m)/2
9(0) - am 1-" } » (4.35)

3(0) = 0. 3(0) =W0(0)- (4.36)

Therefore, (4.30)-(4.36) indicate that

 

3

"(9) = p(OILe - m{2(1-g%:m(4n-3)}_§_J + 0(65) as 8 + 0. (4.37)

At this stage the displacement field in H has been found to be

y1 = 0(r'"), y2 = rmu(8) + o(r"') as r + O, (4.38)

where u(e) is given by (4.24) and (4.29). We now proceed to obtain a

better estimate on y1. Accordingly, we suppose that

YI 3 P£V(9) t DIP“). y2 = rmu(6) + o(rm) as r + 0, (4.39)
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n which 2 (>m) is an unknown exponent and v(8) is an unknown smooth

function. Symmetry (4.7), requires that v(8) = v(-8). The

incompressibility condition (3.8), on using (4.39), leads to

r”""""2 (zvu - mvu) + o (r‘i‘m'z) = I, A (4.40)

so that necessarily,

t < 24m. (4-41)

One must consider the two cases 2 < 2-m and z = 2-m separately.

First, if z < Z-m, (4.40) implies that

xvi - mvu = O on -80 < 8 < 00, (4.42)

which may be integrated to give v(8) as

v(e) = clu(e)I£/m. (4.43)

where c is a constant. Since t/n < 1 and u(0) . 0, 6(0) ¢ 0, it follows

that 5(0) is bounded only if t a 0. Thus one finds that

v(8) = constant, 8 a O. (4.44)

This corresponds to a rigid-body translation in the x1-direction.

Consequently, it is the second possibility,

2 = 2-m, (4-45)

that is relevant. In this case, (4.40) implies that (2-m)vu-mvu = 1 on

(-60, 00). The solution v(8) of this equation, which is bounded at 8 =

0 is

6

me) = - finall‘z’w'“ I [u(m'z’mdo for o < e < 60. (4.46)
O

with symmetry, v(8) = v(-8), defining v(8) on (-80, 0). From (4.46),

(4.35)-(4.37), we find that for small angles 8, v(8) can be approximated

to be
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v(e) =m [1+W2]+ 0(6“). (4.47)

In summary, we have found that the deformation field near the

crack—tip in region H is given, asymptotically, by (4.39). Here the

exponent m is yet to be determined. The function u(e) is known (except

for the amplitude a) and is given by (4.24), (4.29). The exponent t =

2-m and the function v(8) is given by (4.46). The region H is defined

by (4.1), (4.26).

 

4.2. Elliptic solution on E1

Next, in E+, we take y(x) to be of the form

.Ya ~ ba + r"u(,(8) as r + 0. (4.48)

Since we have ellipticity here ke < kc, and this requires 8 > 1.

Furthermore, not both u1, uz can vanish identically. Incompressibility

(3.8) together with (4.48) provides

erV'Z (ulfiz-uzul) + 0(r2V'2) = 1 as r + 0. (4.49)

Since 2v-2 > O, (4.49) requires that v = 1. Thus

UIOZ - uzdl = 1 on O < 8 < n. (4.50)

On the other hand the equilibrium equations (3.11), on using (3.6),

(4.48) and v=1, lead to

a (II +u ). (4.51)aplar ~ noua(ua+ua)/r, 3p/88 ~ "0 a a a

Eliminating the pressure p from (4.51) yields

d
3-5 (uaua) + ZlimuOI = 0,

which may be integrated4 to give

 

4. The constant of integration can be shown to be zero by using (4.51),

(4.53) and the boundary condition (3.IO)3.
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u1(u1+ul) + u2(uz+u2) = O on O < 8 < n. (4.52)

On the other hand, differentiating (4.50) with respect to 8 gives

u1(u2+u2) - u2(u1+ul) = 0 on O < 8 < n. (4.53)

Since u12 +-u22 ¢ 0, the pair of equations (4.52), (4.53) require that

ul+u1 = O , u2+u2 = O on 0 < 8 < n. (4.54)

Next, on using (4.48) with val and (3.6), the boundary conditions

(3.10)1, (3.10)2, on the crack-faces give

uBuBGaJ, = 1, [Julia - 0 on 8 a n. (4.55)

Thus on solving (4.54), subject to (4.50), (4.55), one finds

u1(8) ao cose - (bo/(a§+ b§)) sine, (4.56)

2 2 .
u2(6) bo cose + (ao/(ao+bo)) Slne,

for 0 < 8 < n, where a0, b0 are unknown constants, aoz + b0? t 0.

In order to calculate the leading terms for the stress components

in E*, it turns out that we need an expression for the deformation to an

order higher than in the foregoing. Therefore, we now assume

(ya ~ ba + rua(8) + rkfa(8) as r + 0, (4.57)

where k > 1 is a constant and fa(8) are smooth functions on [0,0]. The

higher order consideration (4.57) yields, through the incompressibility

condition (3.8),

ulfz - uzfl + k(Ozf1 - Olfz) = O on 0 < 8 < u, (4.58)

while the equilibrium equations (3.11), together with (3.6), give

ap/ar ~ unrk-Z ua(fa+k2fa), ap/ae ~ nork-l ua(fa+k2fa). (4.59)
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This indicates that the pressure field is of the form p(x1,

x2)~p0+r9f3(8) as r + 0, where q k -1 > 0 and

(k-1)f3 = uoua(fa+k2fa), i3 uoOa(fa+k2fa) on 0 < e < n. (4.60)

The boundary conditions (3.10)1 and (3.10)2, in view of (3.6), (4.55),

(4.57), yield

uaug(uaf3+kugfa) = O on 6 = n,

(4.61)

uafa + kuafa = 0 on 8 = 1:,

while the third of (3.10), together with (4.59)1, requires that

uyuyuauau3(f3+k2f5) + 2k(k-l)faua = 0 on 8 : n. (4.62)

In summary, we have found that the deformation field near the

crack-tip in region E+ is given, asymptotically, by (4.57). Here the

exponent k > 1 is yet to be determined. The functions u1(8), u2(8) are

given by (4.56) while f1(8), f2(8) are to be determined from (4.58),

(4.60)-(4.62). Symmetry (4.7), gives the deformation in E'.



CHAPTER 5

MATCHING

In the previous section we found two solutions to the governing

differential equations, each valid on some subdomain of the crack-tip

zone. Figure 3 shows the domain of validity of each solution. In this

chapter, we will combine these deformation fields in a suitable manner

in order to obtain a solution of the complete (asymptotic)

boundary-value problem.

It is sufficient to restrict attention to the upper half-plane.

One can show from (4.24), (4.26), (4.29), (4.39), (4.45), (4.46),

(4.56), (4.57) that5 ya? does not match continuously onto yafl across the

line 8 = 80. Thus we are led to seek two curves 5*, S' lying in H

across which the deformation is continuous, (see Figure 5). These

curves are defined in a neighborhood of the right crack-tip by

St: 8 = i 8(r), 0 < r < r0, (5.1)

where we suppose that

8(r) 8 Ar5 + o(r5) as r + 0. (5.2)

Here A > 0 and s > 0 are constants. Note that if s = 0 the curves 5*

make angles tA with the x1-axis at the crack-tip. In this case one must

have 0 < A < 80. If s > 0, the curves 51 are tangent to the x1-axis at

the crack-tip.

The crack-tip zone may now be divided into three zones 2", E ‘andK

as follows (see Figure 5):

 

5. The superscripts E’and H will be used in this section to denote

quantities associated with the elliptic and non-elliptic solutions,

respectively.
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E“ = {(r,8)| 8(r) < 6 < w, 0 < r < r0},

’1 = {(r.6)| -9(P) < 9 < 9(r). 0 < P < r0}, (5.3)

£,- a {(r,8)| -n < 8 < -8(r), O < r < r0}.

The deformation field near the crack-tip is now taken to be

H (5.4)

fix 0" K:

E

ya on 2*, 8'.

Yo.’

where yafl and yaE were found in Sections 3.1 and 3.2 respectively. It

is clear from the preceding analysis that (5.4) does in fact satisfy all

requirements, provided that this deformation field and the corresponding

traction field are continuous across S+ and S', i.e.

ya = ya on S , (5.5)

s E = sH on S+. (5.6)
a (I

First we match y1 across the shock and find through (5.2), (4.39),

(4.45). (4.47). (4.57). (4-55). (5.5). that

I 2-m
b1 + aor (2-m)p(0) r as r + 0, (5.7)

and so, recalling that m < 0,

b1 8 0, do 8 O. (5.8)

Similarly, matching y2 across the shock leads to

02 + bor + rkf2(0) ~ Ap(0)r5+m as r + 0. (5.9)

Observe from (4.57) that b2 denotes the crack-opening displacement.

Thus we expect b2 > 0 and so (5.9) gives

b2 2 Ap(0), s a -m > 0. (5-10)

He may also match the deformation y1 to a higher order to find, through

(5.2), (4.39), (4.45), (4.47), (4.57), (4.56), (5.5) and (5.8), that
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-1 2-I-m k 1 m
-bo Ar + r f1(0) ~ (z-n)o(0) r as r + 0. (5.11) 

Assuming f1(0)¢0, this gives

k = 1-m, f1(0) . Abo'l. (5.12)

Next we compute expressions for the Piola stress components in E+

and H. First, we calculate the pressure field using (3.12), (3.11),

(3.6), (4.39), (4.45), (4.56), (4.57), (5.8) to get, in H and ET,

respectively pH(r,8) = 0(r2(m-1)(O-2)),

' k-I

pE(r,e) ~ po + udEE:T>I-b;lsin8(f1 + szl) + (5.13)

2
bocose(f2 + k f2)} ,

where p0 is a constant. He now calculate the stress fields through

(2.2), (2.30), (2.28), (2.32), (2.39) to get, jg_H,

a), = 0(r(m-1)(Zn-3)),

H (5.14)

012 = 0(r(m‘1)(2"'3)).

ogl = uokoz'zn G28) [mucose - Gsin8]r(m-1)(Zn-1)

+ o(r(m-1)(20-1)),

egg 2 uokoz'zn G(g)1[musin6 + Ocose]r(m-1)(Zfl-1)

+ o(r(m-1)(20-1)),

and _i_9_ E"’,

E
.

.

O11I {u°(kf1c°s
e ‘ f15199) ' Po(kfzsin8

+fzcos8)}p
k-l+

0(rk'1).

E - ° -012 a (pobo-uobo 1)+[uo(kf151n8 + flcosfl) + po(kf2cose fzsine) +

- " 2 " 2 k-1 k-I
(bouo/(k-1)){-bolsin6(f1 + k f1) + bocos8(f2 + k f2)}]r + o(r ),

E -1 k-l

021 = uobO - pob0 + 0(r ), (5-15)
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Gig = {uo(kfzsin8 + fzcose) - po(kf1cose-f15in8)}rk'1 +

0(rk'1).

The traction-free condition 012 a 022 a 0 on the crack requires that

Po iuobo'2 (5.16)

as well as that (4.61), (4.52) hold.

In calculating the Piola tractions, note that the unit normal

vector N to 5* has components

N1 = -A(1+s)rs + o(r5), N2 = 1 + 0(r25). (5.17)

He may now match the nominal tractions across 5*. 0n using (2.9),

(5.14)-(5.17) we find that the continuity of $1 a OlgNg requires

2

{ubil(0) + pokf2(0) +-E§:¥(?2(0) + k2f2(0))}rk-1 + o(rk-1) - 0.

(5.18)

This implies that

. bzu ”

ubf1(0) + pokf2(0) +-—§:§(r2(0) + 12r2(o)) = 0. (5.19)

Similarly, on matching the traction component 52 = angg, we get

nok02-2n p(o)2n-1 p(m-1)(2n-1)

~ -(hobo-pooo-1)A(1-n)r-m’+ (uof2(0) - pokf1(O))r‘m, (5.20)

from (2.9), (5.14), (5.15), (5.17), (5.10), which provides

m = 1 - 1/2n, (5.21)

u0i2(0)‘-pokf1(0) a A(1-m)(uobo-pob;1) + uokg'2“of331 . (5.22)



CHAPTER 6

SUMMARY inRESULTS

In summary, we have investigated the near-tip displacement and

stress fields under plane strain mode I conditions for the piecewise

power-law material characterized by (2.39), (2.32). He found two shock

lines 5*, S' emanating from the crack-tip (Figure 5) and described

asymptotically by

8 ~ o,r1(0)r-1+1/2n. (5.1)

The curves 5*, 5’ separate the crack-tip zone into regions I; T. E; '

(adjacent to the crack-faces) and K (ahead of the crack), defined by

(5.3), (5.1), (6.1). Note that 5+ and S'are tangential to the xl-axis

at the crack-tip. The deformation and stress fields vary smoothly

within E T, E 'and K ; the defamation and the tractions are

continuous across S+ and S‘. The deformation gradient and stress are

discontinuous across these curves.

The deformation field in the elliptic zone 5 + is given by

’1 fl "”4“” + rmnffle)’ onET. (5.2)
y2 - b2 + rbocose + r1/2“f2(6).

Here b2 = bof1(0)p(0) > 0 and b0 > O are constants with p(O) given by

(4.35), (5.21). Further, the smooth functions f1, f2 (and f3) are given

by

fi(9) = koZ‘Z" 9(012"'1 91(6), i = 1, 2 and 3, (5.3)

where according to (4.58), (4.60)-(4.62), (5.19), (5.22), (4.56), (5.8),

(5.12), (5.16) and (5.21), 91, gz (and 93) are to be found from the

linear boundary-value problem
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bocose 91 + bo‘lsine92 + k(bosin8 91-b0'1cose 92): on (O,n),

uOI-bo‘lsin8(gl+k291) + boc058(g2+kzgz)} = (k-1)g3 on (0, n),

"ofbo‘lcose(91+k291) + bosine(92+k292)} = -93 on (0.“).

92 + k{k+2(k-1)bo'4}92 = O on 8 = O and 8 a n, (6.4)

52 - kbo291 = 1 on 6 = 0. 92 - kbo‘zgl = 0 on e . n,

where k = 1/2n. He have been unable to determine a closed form solution of

this linear boundary-value problem. On the other hand, for a given

value of b0, it may be solved numerically for each value of n. The

leading order homogeneous deformation characterized by (6.2) describes a

state of uni-axial tension in the yz-direction. The principal stretches

of this deformation are be, 00-1, and in view of ellipticity, are

restricted by Ibo-bo'll < k0. The Piola stress components in ET are

given by (5.15) with po=uobo‘2, k = 1/2n.

In the hyperbolic region K , the defamation field is given by

yl ~ r1+1/va(e), ll)( (5 5)

ya 2 rl'I/Z"U(9). ’ .

with u(8) given by

u(8) . acos0(8){cos20(8) + (1-2n+2n2)/(2n(1-n))}'1/4",

8 a -(0-n/2) + tan‘1{(1-2n)‘1tan(0-w/2)}, (6.6)

and v(8) given by (4.46) with m = 1-1/2n. 0n using the fact that the

shock-lines S2 are tangential to the x1-axis at the origin, and u(0)=0,

it may be easily verified that the deformation (6.5) is bounded in K .

The Piola stress components in K are given by (5.14) with m = 1-1/2n.

Finally we note that the asymptotic expressions for the various

field quantities determined here are known completely in terms of two

unknown constants a and b0. Necessarily, an asymptotic solution
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procedure cannot provide the value of both of these constants since they

must depend on the global problem. It may however be possible to

determine the value of one of them through a higher order calculation.



PART II

ESTIMATION OF ENERGY RELEASE RATES:

AN ALTERNATIVE TO INTERPOLATION



CHAPTER 7

INTRODUCTION
 

Fracture mechanics is focused in two principal directions, the

development of phenomenological explanations of crack extension, and the

description of the micromechanical process of material separation on the

microscale. In the first, emphasis is placed on predicting crack

extension behavior, usually in terms of a single parameter which

characterizes the near-tip stress field. Linear elastic fracture

mechanics is a case in point, where predictions are made in terms of the

elastic stress-intensity factor K, which serves to characterize the

influence of applied loads and geometry on the near-tip field under

elastic (or even small-scale yielding) conditions. Hence, the

analytical problem in elastic fracture mechanics is to determine the

stress intensity-factor. Rice showed that in the elastic range, the

value of the so-called J aintegral is proportional to the square of the

stress intensity-factor [17].

The J - integral continues to be path independent even for

nonlinearly elastic materials. It is the central theoretical quantity

behind nonlinear fracture mechanics for rate - independent materials

under monotonic loading, since it can be regarded, from a physical point

of view, as a measure of the intensity of the crack-tip singularity

fields. Also, it represents the energy release rate (see, for example,

the recent survey article, Hutchinson [18]).

If a crack in a deformed solid is to propagate, it requires energy

and the “energy release rate“ represents the rate at which energy is
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made available to the crack for this purpose. Experiments carried out

by Begley and Landes [19] have demonstrated the potential that this

parameter has for use as a fracture initiation criterion. The

importance of the energy release rate as a fracture initiation criterion

has prompted many studies to calculate its value under nonlinear

conditions. These have primarily consisted of numerical and

experimental investigations, e.g. [20-23], as well as analytical

approximations based on interpolation, e.g. [24,25]. The only exact

solution appears to be that due to Amazigo [26] for a pure power - law

material under conditions of anti - plane shear.

In his paper [24], Shih proposed some approximate (but accurate)

formulas for estimating the relation between the path - independent

integral, J, the applied stress, the load point displacement, and the

constitutive parameters for cracked bodies of strain hardening elastic

-plastic materials. The formula makes use of results from the elastic

and fully plastic solutions so as to interpolate from the small - scale

yielding range to the fully plastic range. However, this interpolation

scheme involves coefficients that are determined through a finite

element analysis. Moreover, different constitutive descriptions (e.g. a

Ramberg - Osgood material as against power - law material) require

different schemes.

Recently, Abeyaratne [27] suggested an analytical estimation

procedure for calculating the value of the energy release rate

associated with Mode I and Mode III crack problems for an infinite body

composed of a nonlinearly elastic material. The results are accurate

even up to moderately large loads. This scheme does not suffer from the
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drawbacks mentioned above and adapts an approximation that is a natural

extension of the small-scale yielding concept. The small-scale yielding

approximation for the energy release rate uses the argument that when

the applied loads are small, the nonlinearities in the problem are

confined to a small region near the crack tips and that the linear

elastic solution provides a good approximation elsewhere. The present

scheme, essentially, replaces the linear elastic solution in the

preceding argument by a better approximation. Consider, for example, a

Mode 111 crack problem under remotely applied uniform shear. In the

absence of the crack, the body is in a homogeneous state of (finite)

anti-plane shear. If one were to assume that the presence of the crack

causes only a small perturbation of this homogeneous state, one can then

carry out an analysis based on the theory of small deformations

superposed on a large deformation. The results based on such an

approximation would clearly be invalid in the vicinity of the

crack-tips, but one would expect it to provide a reasonable

approximation at points distant from the crack. Since our interest here

lies églgly_in estimating the energy release rate, and since this can be

written in the form of a path independent line integral J taken over a

contour that is far from the crack-tips over most of its length, one

expects such an approximation to be suitable for our purposes, at least

when confined to moderate levels of loading.

The analytical scheme in [27] is appropriate for general

constitutive relations and is not restricted to a particular model.

Consequently, one does not need to go through an elaborate calculation

each time the material changes. This important observation was not made
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in [27] and it is this point that we wish to make in this study. He use

a center - cracked strip in Mode III to illustrate this.



CHAPTER 8

PRELIMINARIES PERTAINING TO FINITE ANTI-PLANE STRAIN

Suppose that an isotropic, homogeneous, incompressible elastic

body occupies the region R in the undeformed state, and consider the

deformation

y = y (x) = x + u (x) on R, (8.1)

where i is the position vector in R, y the position vector in the

deformation image R* of R, and u is the displacement vector. This

mapping is one-to one. The deformation gradient tensor F is defined by

f (5) = V y (f); (8.2)

the incompressibility of the material requires that

J = det F (x) = 1 on R, (8.3)

for every admissible deformation, so that the deformation is locally

volume-preserving. let

9= 5 5“ <84)

be the left Cauchy - Green tensor for the deformation, and set

11 = Tr g, 12 - 1/2 [(Tr g)? - Tr (82)], (8.5)

so that 11, 12 are two of the three principal invariants of G. Here a

superscript T stands for transpose and the third invariant is 13 a det

E . 02, and is equal to 1 by the incompressibility condition (8.3). At

the undeformed state I1 = 12 a 3, and 11 > 3, 12 > 3 for all

deformations.

The mechanical response of an isotropic, incompressible,

hyperelastic material is governed by its strain energy function per unit
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undeformed volume H, which depends only on the strain invariants 11, 12:

H a H (11, 12). If I is the Cauchy stress tensor (force per unit

deformed surface area), the stress - deformation relation is

aw 8H

5=2gq§+3g(m1-§)g-p1 on)

where 1 is the unit tensor and the scalar p is an arbitrary pressure

whose presence is necessary to accomodate the incompressibility

constraint (8.3). The Piola stress a (force per unit undeformed area)

is then related to T according to

3 ‘ I‘ET)’1- (8.7)

From (8.6), (8.7), and (8.4) it follows that

8 3H T -1

g -- 21%;. +350, 1 - (1)131 - p(E) . (8.8)

The differential equations of equilibrium may be expressed either

in tenms of 3, regarded as a function on R*, or in terms of g, regarded

as a function on R. In the absence of body forces, these equations are

div 5 = O on R*,

(8.9)

div 3 = O on R.

The tensor I is symmetric (32:1); 2 in general is not. If S* is a

traction free portion of the boundary of the region R* occupied by the

deformed body, T satisfies

1 n = 0 on 5* (8.10)
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where n is a unit normal vector on S*. If S is that portion of the

boundary of R which is carried onto 5* by the deformation (8.1), as a

consequence of (8.7), (8.10), 3 satisfies

3 N = O on S (3-11)

where N is a unit normal vector on S.

Suppose now that R is a cylindrical region, and choose rectangular

cartesian coordinates x1, x2, x3 with the x3 4 axis parallel to the

generator of R. The deformation (8.1) is an anti- lane shear if it is
 

of the form

y1 = X1. y2 = X2. y3 = X3 + U(X1.X2)- (8.12)

It is convenient to think of the 'out-of—plane' displacement u as a

function on the plane cross-section D of R for which x3 = 0. Here x1,

yi are the components of x, y, respectively, in the given frame.

In the present problem we consider a class of incompressible

materials for which H is independent of the second invariant

H = H(11), (3-13)

so as to ensure that the governing field equations have a solution of

anti-plane shear type (Knowles [13]). He assume that H(I1) is twice

continuously differentiable for I1 > 3 and that it vanishes in the

undeformed state, H(3) a 0. If (8.13) holds, the two forms (8.6), (8.8)

of the constitutive law take the simpler forms

T 8 2H'(I1)G - p l ,

“ “ “ (8.14)

o = 2H'(I1)F - p(FT)‘1.

where the prime indicates differentiation with respect to the argument

of N. For the deformation (8.12), the matrices of components of the

tensors F and G are readily found from (8.2), (8.4) to be



1 O O 1 0 u,1

F = O 1 D , G = O 1 0,2 , (8,15)

u,1 u,2 1 u,1 u,2 1 + |vu|2

IV'UI2 = U.au.o- . (8.16)

and

Here a subscript preceded by a comma indicates partial differentiation

with respect to the correSponding x - coordinate; and Greek subscripts

have the range 1, 2, while Latin subscripts take the values 1, 2, 3;

repeated subscripts are summed over the appropriate range. From the

first of (8.15), one confirms that the incompressibility condition (8.3)

is automatically satisfied, while the first of (8.5) and the second of

(8.15) furnish

11 = 12 a 3 + |Vu|2. (8.17)

From (8.14), (8.15) we find the Cauchy and Piola stress components in

terms of u, p. Through the equilibrium equations for the Piola

stresses, one can determine p which when substituted back into the

expressions for the stresses gives (e.g. Knowles [14])

130 3 T03 a 036 a 2H.(Il)usas

“63 ‘ [2"'(11) + do(X3+U) + 9110.8.

res = °a8 = ' [do(x3+U) + d115a8. (8.18)

T33 = 2H'(Il) |Vu|2 - do(X3+u) - d1,

033 = - [do(x3+u) + d1].

Here 6GB is the Kronecker delta, and do, d1 are constants. The

differential equations of equilibrium require that

[2H'(3+|Vu|2)u,o],o = do on 0 (8.19)

The constants do and d1 must be determined from boundary conditions in a

particular anti-plane shear problem.

The deformation (8.12) is a simple shear in the xg-direction if u



43

has the form

u(x1,xz) 8 k xz, (8.20)

where k is the amount of shear in the X3, x1 - plane. Then from (8.17),

one gets

11 = 12 -- 3 + k2 (8.21)

and the stress of primary interest, 132, is found from the first of

(8.18), (8.20), (8.21), to be

r32 . t(k) . 2ku'(3+k2). (8.22)

The graph of 1(k) vs. k is henceforth to be referred to as the response

curve jp_simple shear. Then the corresponding secant, tangent, and

infinitesimal shear moduli (all assumed to be positive) are defined by

115(k) ails-fl, ut(k) $3391, no = ut(0). (8.23)

Finally, returning to a general anti-plane deformation (8.12) and

comparing (8.17) with (8.21), leads one to define the ”effective shear“

as

ke(§) = |vu(§)| on D. ' (8.24)



CHAPTER 9

FORMULATION
 

9.1 The crack problem.

Consider now an infinite strip of width 2b, whose cross section 0

contains a crack of length 28. Let (X1,X2,X3) be rectangular Cartesian

coordinates chosen such that the x3-axis is parallel to the edges of the

crack with the origin lying on the crack, midway between its edges (see

Figure 6). Suppose that the strip is subjected at infinity to a simple

shear parallel to the edges of the crack, and that both the crack and

the long sides at x1 = tb, remain traction-free in the deformed

configuration. Thus by (8.11), on the plane surface of the crack, the

Piola stresses must satisfy

012 = 022 a 023 8 O for x2 = Oi, - a < x1 < a. (9.1)

Reference to (8.17) shows that the first conditon in (9.1) is

automatically satisfied, while the second conditon requires that

do = d1 = O. (9.2)

Because of (9.2), one can reduce, with the aid of (8.17), the Cauchy and

Piola stress components given in (8.18) to the following forms:

T3a’3 103 a 036 = dog 8 2H'(3+|Vu|2)u,o on D,

coo . coo . 0 on 0, (9.3)

133 . zu'(3+IVu|2)|Vu|2, 033 = 0 on 0.

A

Recalling that r a 1(k) represents the response function in simple shear

of the current material, in view of (8.23) one can now write
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115018) = 2H'(3+k:), (9.4)

8 I 2 2 u 2

”t(ke) 2w (3+ke) + 4 ke w (3+ke)

where the first invariant I1 is now given, from (8.17), (8.24), by

2
I1 8 3 + ke . (9.5)

Here ke designates the effective amount of the shear |Vu|. The

constitutive law of the current incompressible material (8.14)1 yields

the components of the Cauchy (true) stresses accompanying an anti-plane

deformation, through (9.3), (9.4), in terms of the out-of—plane

displacement as

T301' T013 ’ Ps(ke)uoa.

TUB = 0, T33 3 "5(ke)k: o
(9.6)

Consequently, the boundary value problem governing the out-ofeplane

displacement u(x1,x2) consists of the equilibrium equation (8.9)1 which,

in view of (9.6), is

[us(ke)u,1],1 + [us(ke)u,2],2 = O on D (9.7)

with the traction free boundary conditions on crack and side surfaces

T32 = u5(ke)u,2 8 O at xz = 01, - a < x1 < a,

(9.8)

131 a us(ke)u,1 = O at X1 = ib, - a < X2 < a,

In addition to the free-surface conditions (9.8), one imposes the

requirement that, at infinity, the displacement field should approach

that of a simple shear parallel to the crack surface and perpendicular

to the cross-section D,

u ~ kuxz as xi + xg + w, - b < x1 < b, (9.9)
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where kw is the remotely applied shear. The differential equation

(9.7), the boundary conditions (9.8), (9.9) and the further requirement

that u be suitably smooth on D and bounded near the crack tips, comprise

a nonlinear boundary value problem for the out-of—plane displacement

u(x1,x2).

9.2. The enepgy release rate.
 

There is associated with the anti-plane Shear problem formulated

above, a path independent integral of the type first discovered by

Eshelby [28] and later exploited by Rice [17] in connection wfith crack

problems. The path independent integral associated with finite

anti-plane shear is

J a JP [H(3+k§) n1 - t3anau,1]ds. (9.11)

Here 1 is any simple closed curve which encloses the right crack tip in

its interior but does not include the left one and no are the components

of the unit outward normal to I while 5 is arc length along 1.

Now let P(a) denote the total potential energy of the body and

loading system currently under consideration. Let P(a+Aa) denote the

total potential energy of a system which is identical to the previous

one, except that the crack in this body has length 2(a+Aa). Then the

  

enepgy release rate G associated with the first body is defined by

_lim P(a+Aa) - P(a)
 

G ' Aa+o Aa

(9.12)

. .22- aa'

Rice [17] has shown that J = G, provided the path of integration 1 is as
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described above. Therefore, the value of the path-independent integral

J, (9.11), taken around the crack tip can be viewed as representing the

energy release rate. Our purpose in this problem is to calculate the

value of G (or equivalently J) associated with the particular boundary

value problem (9.7)-(9.9).



CHAPTER 10

29811191

In the absence of the crack, the deformation of the body is one of

simple shear and the associated displacement field is u . k.x2 on D. If

we assume that the presence of the crack causes only a small disturbance

of this crack-free equilibrium state, we would have

u(x1,x2) a kaxz + O(x1,x2), where [Val << 1 on O. (10.1)

While such a hypothesis is undoubtedly invalid in the vicinity of the

crack, it seems reasonable to assume that it would be true at points

distant from the crack tips. Since our interest here lies ipl_el_y in

calculating the value of the path-independent integral J, and since for

this purpose we may consider a path that is essentially far removed from

the crack tip (provided the crack length 2a is not too close to the

strip width 2b), the error introduced by such an assumption is probably

small. Thus motivated, we now assume that the displacement field is of

the form (10.1). Then from (10.1), we get

A A

u,1 a u,1, u,2 = k» + u,2 (10.2)

so that

2 2 2 ~ ~ 2 e 2
ke = |Vu| - k“ + 2 k.P:2 + |Vu| , |Vu| = u,au,a. (10.3)

Next, we calculate the Cauchy stresses to leading order with the

aid of (9.4), (9.6), (10.3) as
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T31 us(ke)u.1

2R'(3+kiazkafi,2)fi,1

2(fi'(3+k§) + 'lI-(3+ki) (2195.916,1

(10.4)

29' ($49,296,1

us(k.,)U.1

~ 2

where us(ka) - 2H'(3+k~) is the secant modulus at infinity. Similarly,

we get

132 = bs(ke)u.2

ZH'(3+kE) k” + 4w'(3+ki) kflfi,2+ 2fi'(3+kf,)fi,2 (10.5)

To. + “t(k..)“'2

where "t(k.) - ZR'(3+kE) + 4N"(3+ki)k3 is the tangent modulus at

infinity. We have set

Is. 2

I“ 8 2H (3+k”)k~,

so that r. is the remotely applied shear stress.

Similarly we can linearize the nonlinear boundary value problem

(9.7)-(9.9) to get

us(kalu.11 + ut(k~)U.22 = 0 on D.

-T
a

691:0 0nx1=tb,lle<°°,

N

u + O as |x2| + a , |x1| < b.
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Correspondingly, we can calculate the linearized version of J as

2

follows. First, H(3+ke) in the integrand of (9.11) is linearized by

H(3+k§) w(3+ki+2ku,2+ke2),

= w(3+k2) + N' (3+ki)(2k u,2+ke2) +—2w'(3+ki)(

2K + (1,2 + k22 (1007)

fi(3+ki) + t¢O,2 + R'(3+ki)fi,§ +‘%’"t(k.)332 ,

and T36060.1 by

r3°nau,1 = {ZR'(3+kE)O,1n1 + (r.,.,+ut(lr,,)h,zlnzla,1 , (10.8)

so that the J integral (9.11) is now linearized to yield

. ~2 ~~ ~2
J £ 1/2{ut(k~)u,2n1-20t(ka)u,Zu,1n2-us(ka)u,1n1}ds. (10.9)

Our present task therefore is reduced to solving the 112322 boundary

value problem (10.6) for O(x1,x2) and to then evaluate the integral

(10.9). ‘

The linear boundary-value problem (10.6) may be further simplified

by the scaling £1 = x1. 52 - mxz, m2 - “5(ko)/ut(kw) and by setting

U(51,E2) = u(x1,x2) + kdmzxz. (IO-10)

This leads to

A A

“91 = U919 “all a U911:

u,2 = mU,2 - kednz, u,22 = mZU,22, (10.11)
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so that the boundary-value problem (10.6) yields

V2U(E1,Ez) . 0 on 0,

U,2 a O on 62 = 01, |61| < a,

0,1 = 0 on 51 a to, |£2| < a, (10.12)

U + (kam)€2 on 52 * °. [Ell < b.

The mathematical problem (10.12) is identical to the linear elasticity

problem governing the Mode III center-cracked strip problem. The

solution to this problem is well-known and we find ([31])

K
III

”S”

U ~ 2 m gosh-g- as r + O, |8| < 1!. (10.13)

where (r,8) are polar coordinates in the (61.62) plane such that r case

= 51 - a, r sine-£2 and

km = c“ A‘aég. tan (13%)]1/2. (10.14)

On using (10.11), (10.13) we may calculate

y KIII sin-;

"9 a " ( )7 7 .

K O

111 “’5 '2' 2

"'2 "‘ '“"‘("")7"usk” In 7—2" " "oom

Thus we may now evaluate the J integral (10.9) (by choosing the contour

to be an ellipse of major axis a and minor axis ma in the (x1,x2)-

plane):
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8
1! Sin

3 KIII '2' 2 r cos 8

.. 1,, var-v.01W.. 2..) ——-—...

cos a
(k)(u:ltnm '2' -2k¢m)r9-—-se—

KIII “"2” K111 “52

2"tam”.- us(k¢)7m an)'7—_(s"'u(k)7m

- kamz) r sin 8}d8,

 

v/ll (k~)u (kg) K

=1} . my:.8442:- 

sin2 g-)cos 8 + 2 sin gcos ‘3‘ sin 8}d8,

 

: ‘2' 'lus(k~)"t(k~)(TTIIK-I—IT-F’

which in view of (10.14), gives the desired result

2
‘1'
co1 2b

J = 2. [USOCI non...) ir a [Tr'a' tan gg].
 

(10.16)

(10.17)

Here us(ka.) and ut(k..) are the values of the secant and tangent moduli

far from the crack and r... is the remotely applied shear stress.



CHAPTER 11

DISCUSSION

Equation (10.17) is a simple formula for the value of J in terms of

constitutive, geometric and load parameters. He now specialize it to

certain special material. In the case of a linear material,
 

k/ko a r/to, we have from (8.23) that

"5(ko) = ut(k.) ' To/ko (ll-1)

and so (10.17) yields (the “small-scale yielding" result)

1 1.. 2 2b «a
J/tokoa = 2- (7), IEE tan (5)]. (11.2)

On the other hand, in the case of a pure power-law material described by

k/ko = u(t/to)", we have

1'

o (I-n)/n

n k“ ’

(aka) (11.3)

85(k.) =

‘1'

o k (1-n)/n’

n(ako) "

ut(k.,) =

so that (10.17) yields (the "fully plastic solution“)

‘1'

o +
J/‘tokoa - 55(7): "/n‘ r [E—g- tan (3%)]. (11.4)

If one were now interested in a, say, Ramberg;0sgood material,
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k/ko = r/ro + u(t/to)" (11.5)

the traditional procedure for determining J has been to interpolate

between (11.2) and (11.4). [The need for such a procedure stems from

the fact that (11.2) and (11.4) are usually found directly, by

exploiting certain special features of those material, rather than from

a more general result such as (10.17): no such specialized methods have

been available to study more general materials such as (11.5)]. The

interpolation formula proposed by Shih [24] for the Ramberg-Osgood

material is

J] k (1,)21f1(a/b.1) (1%)",1 f1(a/b.n) (116)

100a 3 —- ___.._._._.... .

o (Ilib) o (I-a/b)n

where the function f1(a/b, n) is determined numerically through a finite

element analysis (see Table 3 in [24]). Improvements to (11.6) based on

the notion of an effective crack length, have also been pr0posed in

[24].

The advantage of the present procedure is that the result (10.17)

is not restricted to a particular shear response function. For a

Ramberg-Osgood material one obtains, from (10.17) and (11.5), the

expression (in the 'elastic-plastic range")

T T

J/tokoa a-%(;:)2[1+o(n+1)
(1:)"'1mflzo((:) 20-2

(11.7)

11/2_2b tan (%

Figure 7 shows the variation of the energy release rate J/rokoa with the

applied load talro (in the case n a 3, a . 3/7 and for a/b a 1/8 and
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1/4). The solid curve correSponds to the formula (11.7) derived here

while the dashed curve describes the result according to the

interpolation formula (11.6). The agreement is seen to be good.
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Figure 1. Response curve in simple shear for the piecewise power-law

material.
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Figure 2. Geometry of the global crack problem.
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Figure 6. Geometry of Center-cracked strip.
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Figure 7. Variation of J with load for a Ramberg-Osgood material

with n=3, a=3/7. Solid curve corresponds to the formula

(ll.7) derived here; dashed curve corresponds to interpolation

formula (ll.6).
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