A SYSTEMS APPROACH TO A PRODUCTION SCHEDULING PROBLEM INVOLVING ASSEMBLY

Thesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY RODOLFO CAMANZO YAPTENCO 1967

LIBRARS Michigan University

This is to certify that the

thesis entitled

A SYSTEMS APPROACH TO A PRODUCTION SCHEDULING

PROBLEM INVOLVING ASSEMBLY

presented by

Rodolfo Camanzo Yaptenco

has been accepted towards fulfillment of the requirements for

Ph. D. degree in Wood Technology

Major professor

Date May 16, 1967

O-169

ABSTRACT

A SYSTEMS APPROACH TO A PRODUCTION SCHEDULING PROBLEM INVOLVING ASSEMBLY

by Rodolfo Camanzo Yaptenco

A scheduling problem involving assembly of the type that generally characterizes plywood manufacturing is identified and modelled mathematically in terms of algebraic and difference equations. The facility is viewed as a <u>system</u> made up of a discrete number of components, viz., production centers, that interact with each other only at a discrete number of points, viz., points where inputs are received and outputs removed. The mathematical formulation is shown in considerable detail to illustrate the logic of the approach taken.

Following hypothetical considerations, an actual scheduling problem is subsequently described and modelled. Production centers in the facility are identified and defined, modelled independently of each other and the component models combined (using the inter-connection pattern of the system) to form the system model.

Practical implications of the dynamic case are discussed, with some emphasis given to the economic feasibility of implementing such a model in the real world. The static case (where only one interval is considered and taken equal to the planning horizon) is also discussed. Results from a computer run of the static model using actual data, e.g., order file, initial inventories, machine capacities available, space limitations, etc., are presented in the appendix.

Certain aspects of the model where improvements can be effected are mentioned.

A SYSTEMS APPROACH TO A PRODUCTION SCHEDULING PROBLEM INVOLVING ASSEMBLY

В**у**

Rodolfo Camanzo Yaptenco

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Forest Products

ACKNOWLEDGMENTS

340 32

I thank the College of Forestry, University of the Philippines, the National Economic Council, Philippine Government, and the Agency for International Development, United States Department of State which collectively made it possible for me to pursue a doctoral program at Michigan State University. I also thank the Department of Forest Products, Michigan State University, through its chairman, Dr. Alexis J. Panshin, for the pleasure of doing graduate work with them.

Special thanks are due to Boise Cascade Corporation, especially the Department of Operations Research and the Lumber and Plywood Division at Yakima, Washington, for allowing me to conduct the study in one of their plywood mills and for giving me access to actual production data. Acknowledgment is also given for their financial assistance, especially that for computer time.

I am indebted to my major professor, Dr. Aubrey E. Wylie, for his guidance during the course of my program, to the members of my committee, Drs. Richard F. Gonzales, David N. Milstein and Otto Suchsland, for their invaluable help in shaping my program, and to Dr. Herman E. Koenig for reviewing the manuscript and for his suggestions.

Finally, many thanks are due to a wonderful family, my wife Tita and daughters Jig and Jinkle, for their understanding and patience during those trying days of graduate work.

`~

TABLE OF CONTENTS

																Page
ACKNOW	LED	GMEN	TS	•	•	٠	•	•	•	•	•	•	•	•	•	1 1
LIST O	F T/	ABLE	S	•	•	•	•	•	•	•	•	•	•	•	•	v
LIST O	F FI	IGUR	ES	•	•	•	•	•	•	•	•	•	•	•	•	vi
LIST OF	F Al	PPEN	DIC	ES	•	•	•	•	•	•	•	•	•	•	•	viii
Chapter	r															
I.	INT	TROD	UCT	ION	•	•	•	•	•	•	•	•	•	•	•	l
II.	THE	E JO	B-S	HOP	SC	HED	ULI	NG	PRO	BLE	Μ	•	•	•	•	3
III.	A S	SYST	EMS	AP	PRO	ACH	то	SC	HED	ULI	NG	•	•	•	•	9
IV.	THE	E PL	YWO	OD	PRO	DUC	TIO	N S	CHE	DUL	ING	PR	OBL	EM	•	26
ν.	FOF	RMUL	ATI	ON	OF	A S	CHE	DUL	ING	MO	DEL	•	•	•	•	35
VI.	PRA	CTI	CAL	IM	PLI	CAT	ION	S	•	•	•	•	•	•	•	75
VII.	CON	ICLU	SIO	NS	•	•	•	•	•	•	•	•	•	•	•	80
APPENDI	ICES	5.	•	•	•	•	•	•	•	•	•	•	•	•	•	85
REFEREN	ICES	5.	•	•	•	•	•	•		•	•	•	•	•	•	137

LIST OF TABLES

Table	'age
V-2.1. Green End Recoveries in Percent	43
V-4.1-a. Dryer Grade Yields (Face Stock)	49
V-4.1-b. Dryer Grade Yields (Core Stock)	50
V-9.1-a. Panel Falldown Summary (Exterior Sheathing)	68
V-9.1-b. Panel Falldown Summary (Sanded Products)	69
V-10.1. 8-Foot Lathe Production Rates	72
V-10.2. Drying Productivity	73
V-10.3. Patching Productivity	74

LIST OF FIGURES

Figure		Page
III - 2.1.	Schematic Diagram of a Hypothetical Production System	15
III - 2.2.	Equivalent System Graph of Production System Shown in Figure III-2.1.	15
III - 2.3.	Region of Feasibility	24
IV-1.1.	Typical Construction of a Plywood Panel	28
V-2.1.	Relationship Between the Magnitudes of Lead Time and Period	38
V-2.2.	Schematic Diagram of Processor No. 1 Representing the 8-Foot Lathe, Two 8-Foot Clippers and Associ- ated Equipment	41
V-3.1.	Schematic Diagram of Processor No. 2 Representing the Core Lathe, Clippers and Associated Equip- ment	41
V-3.2.	Fish Tail	48
V-4.1.	Schematic Diagram of Processor No. 3 Representing Three Veneer Dryers .	48
V-5.1.	Schematic Diagram of Processor No. 4 Representing a Veneer Saw	48
V-6.1.	Schematic Diagram of Processor No. 5 Representing Veneer Jointer and Edge Gluer	53
V-7.1.	Schematic Diagram of Processor No. 7 Representing Four Veneer Patchers.	53

Figure			
V-8.1.	Schematic	Diagram	of

-8.1.	Schematic	Diag:	ram of	Green	and	Dry	Enc	1	
	Section	ns of	Plywoo	d Mill	L.	•	•	•	55

Page

LIST OF APPENDICES

Appendix				J	Page
Α.	List of Vectors and	Variables	•	•	86
Β.	Lay-Up Schedule		•	•	95
С.	Veneer Requirements		•	•	98
D.	Production Schedule	for Week	•	•	100
Ε.	Yakima Plywood Mill January 1967	Scheduling Mode	l,	•	103

I. INTRODUCTION

A scheduling problem is said to exist if in the production of goods there are (or there become available) a number of alternatives for sequencing a number of jobs or performing a series of operations on a number of machines and it is desired to choose from these alternatives those that would optimize some chosen objective.

In general, the number of alternatives is very large; consequently, the job of a production scheduler is expected to be complex. It is a wonder, therefore, why schedulers do not seem to find scheduling a problem at all. Pounds (13) provides us with some explanation. He reports that in most cases there are no scheduling problems to start with because ". . . the organization which surrounds the schedulers reacts to protect them from strongly interdependent sequencing problems." Mellor (12) concurs. "In effect," he observes, "industrial schedulers are being asked to get a pint out of a quart pot and are experiencing no difficulty in doing so. The scheduler's protection, of course, comes from extravagant provision of shop capacity or poor commercial performance."

We conclude, therefore, that multiplicity of alternatives per se does not make scheduling difficult; rather,

it is how restrictive our objective is or how good a schedule is desired and how well the capacity of the facility is utilized. Indeed, if only mediocre schedules are made or if plenty of excess capacity is available, the job of a production scheduler would be trivial. On the other hand, choosing an optimal schedule for a plant operating at or near capacity is a formidable job. Obtaining optimal schedules is of course the object of today's factories, especially with the specter of increasing costs and stiffening competition looming in the future. Thus, the need for efficient methods of selecting optimal or near optimal schedules is very real.

The purpose of the research which forms the basis of this dissertation was to find a method of solution to a certain class of scheduling problems involving assembly, to which plywood manufacturing belongs. The work herein described is an attempt to provide the scheduler assistance by reducing the scale of the problem to a point where it would require only judgment to select a near optimal or optimal schedule. It is expected to free the scheduler from having to contend with normally multifarious alternatives.

II. THE JOB-SHOP SCHEDULING PROBLEM

II-1. Background

Much of the literature about scheduling is concentrated on "job-shop scheduling," a consequence of the fact that it is regarded as the most complex. We define "jobshop scheduling" as the sequencing of a number of jobs that require varied sets of operations and follow diverse routings through a facility of several production centers and compete with each other for productive capacity on common machines. It becomes a problem when sequencing is to be done with some objective in mind, e.g., minimizing total processing time, minimizing total production cost, minimizing lateness of deliveries, minimizing downtime, or some combinations thereof.

The simplest approach to the problem is without any doubt an exhaustive enumeration of all feasible schedules and selecting from the set the schedule that optimizes the objective. The method, however, is not practical since the number of feasible schedules is very large even for small problems. For example, if we have \underline{j} jobs and \underline{m} machines and each job needs to be processed by each machine, then the number of feasible schedules is (j!)^m.

For five jobs and four machines this number is 207,360,000 --a number which even the modern digital computer cannot search through <u>economically</u> for the optimal schedule. Intuitively, though, one gets the impression that surely the optimal schedule must come only from a much smaller subset of the whole set of feasible schedules. What is obviously needed are some criteria for discarding those schedules that have no possibilities of becoming optimal and searching only those that do, for the optimal schedule.

Giffler and Thompson (8) narrowed the number of feasible schedules to be included in the enumeration by considering only "active" schedules. (They define an "active schedule" as a feasible schedule such that no machine may be idle for a period of time greater than or equal to the processing time required by a job that is available for processing and that processing of a job is started as soon as both machine and job are free.) For moderate-sized problems the method has distinct advantages. However, when considered in terms of the size of real problems it likewise suffers from the combinatorial character of job-shop problems, since the number of active schedules also increases very rapidly with an increase in the number of jobs or the number of operations required on each job.

To get around the immensity of the number of alternatives, a Monte Carlo sampling technique was devised (9) for drawing samples from the set of active schedules, and searching only the samples for the best schedule. Since

only samples are considered, the method does not guarantee an optimal schedule, although the probability of obtaining one can be increased by taking more samples. The implication of course is that as more samples are taken to increase the probability of obtaining an optimal schedule, the amount of computation required will correspondingly increase.

A method which has attracted a great deal of attention, and rightfully so, is the heuristics approach (2, 7, 18). In this method simple but effective rules of thumb are used for discriminating between alternative ways of sequencing jobs. These rules may be "borrowed" from rules of thumb used by capable schedulers, or they may be the result of simulated studies of the problem, or from some other appropriate sources. Unfortunately, it cannot show, except perhaps intuitively, that the schedules chosen on the basis of these rules are consistently good. The only justification for their use is that they either represent the sound judgment of skillful schedulers and/or were found effective under simulated conditions. Heuristics, however, provides the opportunity to narrow, rather drastically, the number of alternatives down to manageable proportions, permitting the selection of a schedule which is at least as good (if the rules are chosen properly) as a human scheduler could make. With more experience in the selection of rules, it may be the most practical approach to certain types of scheduling problems.

There are of course other methods (1, 10, 12, 15, 16, 19) that have been proposed for certain idealizations of the scheduling problem. However, there exists a gap between the problems assumed in these formulations and those of the real world. Moreover, the amount of computation seems to limit the size of the problem that can be practically handled. Consequently, applicability is still somewhat limited.

In each of the methods of solution reviewed above, the object was always to find some optimal solution to the problem. Analytical methods tend to require too much computation (at least for now) and empirical methods tend to oversimplify the problem. A combination of analytical and empirical methods might provide the right combination. Indeed, it is a distinct possibility. In other words, instead of trying to obtain a complete solution to the problem, what is suggested here is cutting down the size of the problem by analytical methods to a point where the human scheduler can use his judgment effectively and consistently.

The subject of this dissertation is the formulation of the scheduling problem in a format that is amenable to already available optimizing techniques. It approaches the problem with the systems concept by viewing the production facility as a "system" and describing it in terms of product flows and inprocess inventories in the form of algebraic and difference equations. Its objective is to

narrow down the number of alternatives a scheduler must choose from and the number of decisions he has to make. It hopes to present to the human scheduler the problem in a much simplified form and leave to him the details of bringing the problem to complete solution. In effect what is proposed here is some form of sub-optimization.

II-2. <u>Scheduling Problems</u> Involving Assembly

We also note from the literature that attention given to scheduling problems is generally directed at job-shop problems of the type that does not involve intermediate or final assembly. Consequently, the solutions proposed exclude assembly-type problems where jobs (and the parts they require for assembly) compete with each other for productive capacity. In this variation of the job-shop problem, jobs generally require certain parts that are also required by other jobs. Since parts are processed in batches, we can conceive of the problem as made up of jobs which in later stages of manufacture break up and recombine with others to form new jobs. Thus, the problem basically is sequencing the right quantities of material or semi-finished products at each processing center so that assembly of jobs at a later stage in time can proceed with as little interruption as possible without building up in-process inventories.

The development following concerns an assembly-type of scheduling although the method here proposed is not necessarily limited to such types of problems.

III. A SYSTEMS APPROACH TO SCHEDULING

A <u>system</u> is a collection of objects or entities which are related to and interact with one another in some fashion such that each object or entity performs a function that contributes to the objectives of the group. A formalized awareness of the interactions between parts of a system is what is popularly known as <u>systems engineering</u> (6). The key to the whole concept of systems engineering is the simultaneous consideration of the relationships between components of the system and the emphasis given to the effectiveness or the objectives of the whole system rather than that of the parts taken separately.

A production facility, in the context of the definition given above, is a system. It is a collection of processing centers functioning together as a group with a unified objective--the production of goods. It should, therefore, be amenable to the same techniques of systems analysis used in engineering to describe physical systems, <u>provided</u> <u>certain conditions are met</u>. Indeed, if these conditions can in fact be met, then we would have made significant progress because system theory provides a rigorous and consistent analytical framework for describing the behavior of systems.

III-1. System Theory

System theory has its origins in the analysis of electrical networks. It has been extended to include discrete physical systems, and very recently efforts have been made to extend its usefulness to socio-economic systems.

A rigorous treatment of system theory as applied to physical systems may be found in a recent book by Koenig, Tokad, and Kesavan (11). To attempt will be made here to discuss the fundamentals of the theory, except very briefly those that have pertinence to the discussion.

III-1.1 Discreteness

One fundamental requirement of system theory is that a system must be identifiable into a finite number of components that are interconnected and interact only at a discrete number of points. Consequently, each component can be isolated and modelled independently from other components and, through the topology of their interconnections, combined into a system model. System theory, therefore, assumes that the model of a component characterizes that component as an entity without regard to how the component may be interconnected with other components of the system. This assumption is not true of course in cases where the presence of a component has induced effects on other components. In such cases, we may either neglect these induced effects or isolate the components only conceptually.

We note that a production system is identifiable into a discrete number of components, e.g., machines or groups of machines, that constrain or interact with each other only at the points where inputs are received and outputs removed. Hence, the above requirement of discreteness can be satisfied.

III-1.2. Generalized Kirchoff Postulates

Another requirement of system theory is that the performance characteristics of each component should be described in terms of two complementary variables that satisfy the two generalized Kirchoff postulates. This pair of variables, which we shall denote as \underline{X} and \underline{Y} , should have analogous connotations, respectively, as voltage and current in electrical systems or pressure and fluid flow in hydraulic systems.

III-1.2.1. Flow Variable, Y,

Let Y_{i} be the flow of materials or products in the system. If the flows are expressed in the same units, then the flow variable Y_{i} satisfies the first Kirchoff postulate. That is, "The algebraic sum of all directed flows at any point in the system must vanish." In symbols, for any cut-set <u>m</u> and any time <u>t</u>, we write,

 $\Sigma Y_{mi}(t) = 0$ (III-1.2.1)

Therefore, it only needs to be established that all flows in the system are expressable in the same units. It will be shown later, in the discussion of an actual problem, that in fact this can be done.

III-1.2.2. Propensity Variable, X,

The propensity variable, X, , is most difficult to identify at the present time because little is known about the interrelationships between factors that influence the flow of materials in a production system. We know intuitively and from experience that the flows of materials between any two points is a function of (i) demand for such materials elsewhere in the system, (ii) the levels of inprocess inventories, (iii) the costs associated with such flows, (iv) difficulty associated with holding materials in inventory (such as due to space limitations), (v) the capacities of machines in which these materials need to be processed, and (vi) still probably some other factors. Because the relationships between these factors are not known, it is not now possible to identify a propensity variable that could, in addition to the flow variable, be used to describe the performance characteristics of a production system. More research and experience are undoubtedly required before an appropriate propensity variable can be identified.

We can, however, proceed to model a production system in terms of flows and the factors suggested above without necessarily knowing the interrelationships of these factors, for we know in general how these factors independently affect the selection of a schedule. This is best shown by considering a hypothetical example in the next section. There we will model a system in terms of material flows and in-process inventories and use such factors as demnad, costs, space limitations and machine capacities to constrain the selection of a schedule, at the same time making the most use of the resources of the system.

III-2. <u>A Scheduling Problem</u> Involving Assembly

In the classical¹ job-shop problem, the usual assumption is that a succeeding operation on a job cannot be started unless a preceding operation has been completed on the whole job. In other words, no two machines may work on the same job simultaneously. This assumption is obviously suited only for jobs that cannot be split physically (such as jobs consisting only of one unit each) or for jobs that require small processing times on each machine. On the other hand, if the processing times involved are in the order of, say, an hour or more and it is possible and practical to split jobs (such as batch types), the assumption introduces considerable error in the form of excessive and unnecessary

¹Defined as <u>n</u> jobs, <u>m</u> machines, the processing time of each job on each machine being known and the object is to find the sequence at each machine center that requires the least total processing time.

waiting time. In assembly-type production, the parts that go into assembly are generally processed in batches. At earlier stages of production, i.e., before assembly, these batches are themselves jobs which can be worked on concurrently by two or more machines after allowing sufficient lead time in the preceding operations. In such a case, it is more desirable to use a time interval as a criterion for moving completed portions of jobs to the next operations. For example, if the interval chosen were an hour, then we can for instance make the assumption that the portion of a job completed during a given hour may be moved to and worked on at the next operation during the next hour, but not before then. We also make the restriction that the movement of material between two processing centers occurs in "spurts" and is possible only at the beginning of each period.

Obviously, the choice of an appropriate interval will depend on how discrete the jobs are, i.e., how many units make up a job, and the time it takes to process a unit of a job.

Consider now a facility of several processing centers manufacturing products that require assembly in the last operation, shown schematically in Figure III-2.1. The solid circles represent processing centers and the dotted circles in-process inventories. If we let $Z_i(t)$ represent inventories and $Y_{ij}(t)$ represent material flows during any time t, then we can write

Figure III-2.1--Schematic diagram of a hypothetical production system. Solid circles represent processing centers and dotted circles represent in-process inventories.

Figure III-2.2--Equivalent system graph of production system shown in Figure III-2.1.

$$z_{i}(t+1) = p_{i} z_{i}(t) + \Sigma y_{ji}(t) - \Sigma y_{ki}(t)$$
 (III-2.1)

where $y_{ki}(t)$ represents flow from inventory \underline{i} to machine \underline{k} , $y_{ji}(t)$ represents flow from machine \underline{j} to inventory \underline{i} and $\underline{p_i}$ is some constant. In the example shown in Figure III-2.1, i = 1, 2...8, j = 1, 2, 3, 4, and k = 1, 2, 3, 4. If we write Equation III-2.1 for all \underline{i} , we have

$$z_{1}(t+1) = p_{1} z_{1}(t) + y_{11}(t) - y_{21}(t)$$
 (III-2.2)

$$z_2(t+1) = p_2 z_2(t) + y_{12}(t) - y_{22}(t)$$
 (III-2.3)

$$z_3(t+1) = p_3 z_3(t) + y_{13}(t) - y_{36}(t) - y_{33}(t)$$
 (III-2.4)

$$z_{4}(t+1) = p_{4} z_{4}(t) + y_{14}(t) - y_{44}(t)$$
 (III-2.5)

$$z_5(t+1) = p_5 z_5(t) + y_{25}(t) - y_{35}(t)$$
 (III-2.6)

$$z_6(t+1) = p_6 z_6(t) + y_{26}(t) + y_{36}(t) - y_{46}(t)$$
 (III-2.7)

$$z_7(t+1) = p_7 z_7(t) + y_{27}(t) + y_{37}(t) - y_{47}(t)$$
 (III-2.8)

$$z_8(t+1) = p_8 z_8(t) + y_{38}(t) - y_{48}(t)$$
 (III-2.9)

Equations III-2.2 through III-2.9 can all be written together simply as

$$Z(t+1) = P Z(t) + G_{1} L_{1}(t) - T_{2} L_{2}(t)$$
 (III-2.10)

where Z(t) is a vector of in-process inventories, $L_1(t)$ is a vector of outputs $(y_{ji}(t))$, j = 1,2,3, and $L_2(t)$ a vector of inputs $(y_{ki}(t))$, k = 2,3,4. P, G_1 and G_2 are matrices. Let us assume for the moment that we have valid models of machines 1, 2 and 3 of the form

$$Y_{ji}(t+1) = R Y_{ji}(t) + S Y_{ki}(t)$$
 (III-2.11a)

or

$$Y_{ii}(t) = D Y_{ki}(t)$$
 (III-2.11b)

Then we can combine Equations III-2.10 and III-2.1, eliminating outputs (y_{ji}) , j = 1,2,3, and write the result in the following matrix form:

$$Z(t+1) = P Z(t) + Q E(t)$$
 (III-2.12)

where E(t) is a vector of inputs, (Y_{ki}) , k = 1,2,3,4 and Q is a new matrix resulting from the operations implied above.

Equation III-2.12 can also be obtained by representing Figure III-2.1 by an equivalent system graph shown in Figure III-2.2 and selecting a tree, T (shown in heavy lines). Writing the cutset equations for the tree T, we obtain a mathematical model of the interconnection pattern of the system:

The general equation for in-process inventory is given by

$$Z_{i}(t+1) = p_{i} Z_{i}(t) + Y_{i}(t)$$
 (III-2.14)

Combining Equation III-2.14 with Equations III-2.11 and III-2.13, Equation III-2.12 can be obtained.

Let the vector E(t) be rearranged such that we can partition it into (i) inputs to machines 1,2, and 3 and (ii) inputs to machine 4. Then we can write

$$E(t) = \begin{bmatrix} E_1(t) \\ E_2(t) \end{bmatrix}$$
(III-2.15)

where $E_1(t)$ represents inputs to machines 1, 2, and 3 and $E_2(t)$ represents inputs to machine 4 (an assembly process). We can therefore rewrite Equation III-2.12 as

$$Z(t+1) = P Z(t) + \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} E_1(t) \\ E_2(t) \end{bmatrix}$$
(III-2.16)

or
$$Z(t+1) = P Z(t) + Q_1 E_1(t) + Q_2 E_2(t)$$
 (III-2.17)
Let $J(t) = \begin{bmatrix} J_1(t) \\ J_2(t) \\ J_3(t) \end{bmatrix}$ represent the assembly schedule for

machine 4 during time <u>t</u>. The quantities of $E_2(t)$ demanded by the assembly process during the same period is given by

$$E_2(t) = W J(t)$$
 (III-2.18)

where W is a matrix whose entries represent the quantities of each part in $E_2(t)$ that is required in the assembly of each unit of product in J(t). Substituting III-2.18 in III-2.17, we obtain

$$Z(t+1) = P Z(t) + Q_1 E_1(t) + Q_2 W J(t)$$
(III-2.19)
or $Z(t+1) = P Z(t) + Q_1 E_1(t) + R J(t)$ (III-2.20)

where $R = Q_2 W$.

For any given period, Z(t) represents initial inventories and Z(t+1) represent ending inventories. J(t) is the schedule of assembly at machine 4 and $E_1(t)$ represents the schedules at machines 1, 2, and 3 during the same period. In general J(t), $E_1(t)$ and Z(t+1) are unknowns. However, Z(t) is known so that if we specify J(t) and require that Z(t+1) be non-negative, then we can choose $E_1(t)$. It is clear that J(t) and $E_1(t)$ are both arbitrary; therefore, they can be selected so that some objective is realized.

Equation III-2.20 represents a mathematical model of the system shown in Figure III-2.1. If we assume for simplicity a planning horizon of three periods, then Equation III-2.20 can be solved for t = 0, 1, 2 as follows:

$$Z(1) = P Z(0) + Q_1 E_1(0) + R J(0)$$
(III-2.21a)

$$Z(2) = P Z(1) + Q_1 E_1(1) + R J(1)$$
(III-2.21b)

$$Z(3) = P Z(2) + Q_1 E_1(2) + R J(2)$$
(III-2.21c)

Equations III-2.21a, III-2.21b and III-2.21c can be written in simplified form as

$$\begin{bmatrix} Q_{1} & R & -U \\ Q_{1} & R & P & -U \\ Q_{1} & R & P & -U \\ Q_{1} & R & P & -U \end{bmatrix} \begin{bmatrix} E_{1}(0) \\ E_{1}(1) \\ E_{1}(2) \\ U(0) \\ U(0) \\ U(1) \\ U(1) \\ U(2) \\ U(1) \\ U(2) \\ U(1) \\ U(2) \\ U($$

Equation III-2.20 can also be solved recursively for three periods to obtain a much more compact form

$$Z(1) = P Z(0) + Q_1 E_1(0) + R J(0)$$

$$Z(2) = P Z(1) + Q_1 E_1(1) + R J(1)$$

$$= P^2 Z(0) + P Q_1 E_1(0) + P R J(0)$$

$$+ Q_1 E_1(1) + R J(1)$$

$$Z(3) = P Z(2) + Q_1 E_1(2) + R J(2)$$

$$= P^3 Z(0) + P^2 Q_1 E_1(0) + P^2 R J(0) + P Q_1 E_1(1)$$

$$+ P R J(1) + Q_1 E_1(2) + R J(2) \quad (III-2.23)$$

Equation III-2.23 can also be written in matrix form.

$$\begin{bmatrix} P^{2}Q_{1} & PQ_{1} & Q_{1} & P^{2}R & PR & R & -U \end{bmatrix} \begin{bmatrix} E_{1}(0) \\ E_{1}(1) \\ E_{1}(2) \\ J(0) \\ J(1) \\ J(2) \\ Z(3) \end{bmatrix} = \begin{bmatrix} -P^{3}Z(0) \end{bmatrix} (III-2.24)$$

The form given in Equation III-2.22 is preferable, however, since it is important that we be able to impose certain restrictions on the magnitudes that Z(1) and Z(2) can attain. For example, we must require that the value of Z(t) during any time t should be non-negative and not exceed the maximum that can be tolerated in the system. In Equation III-2.24, there is no way of doing this so that we have no assurance that the quantities of in-process inventories during any period will always be within the range that has meaning in an actual scheduling problem.

It is also necessary to impose restrictions on the magnitudes of $E_1(t)$ since the quantities that can be processed during any period should not exceed the capacities available from the machines during the same period. In addition, there may be other restrictions that are peculiar to the problem. Finally, if we add an objective function, such as a processing cost function, then Equation III-2.22 can be rewritten together with the restrictions and objective function, as follows:

			R			- U				E,(0)	=	-P Z(0)]
	Qı			R		P	-U			E ₁ (1)	=	0	
	-	Q			R		Ρ·	-U		E ₁ (2)	=	0	
A		-								J(0)	= <	K	
	A2									J(1)	=	K	(III-2.25)
	_	A ₃							İ	J(2)	= <	K	
		5	D	D	D				U	Z(1)	=	OF	
						Βl				Z(2)	= <	V	
						-	^B 2			Z(3)	= <	V	
							_	^B 3		J'(3)	= <	v	
												Mtn	
Ľı	^С 2	^с з	С4	^C 5	⁰ 6	^C 7	8	69	⁶ 10		-		

The vectors K and V represent, respectively, machine and inventory space capacities and the row vectors C_d , d =1,2,...,10, are costs associated with each activity. J'(3) represents orders that cannot be satisfied during the planning horizon. Thus, C_{10} is a penalty cost. In Equation III-2.25,

V = in-process inventory space capacity

It is now evident from Equation III-2.25 that the scheduling problem has now been formulated in a form that can be solved with linear programming (4). The number of feasible schedules is still very large. However, we do have in the linear programming algorithm an efficient technique for arriving at an optimal solution since the algorithm considers only those combinations that potentially can become optimal. For example, in Figure III-2.3 the range of feasibilities due to the indicated linear constraints is represented by the enclosed area <u>A</u>. If the variables <u>x</u> and <u>y</u> were continuous, the area <u>A</u> represents

Figure III-2.3--Region of feasibility.
an infinite number of feasible schedules. Linear programming, however, considers only the feasible schedules represented by points a, b, c, d and e; surely a small number compared to the whole set.

We note that originally the problem was dynamic in nature in the sense that the element of time is involved. But through the use of systems concepts we have reduced the problem to an equivalent static problem that is amenable to linear programming. It should be clear, however, that the solution to Equation III-2.20 need not be obtained with linear programming. Possibly other methods, e.g., tynamic programming, would be just as effective. Linear programming was selected, however, because of its simplicity and because of the value of other information obtainable from the solution, e.g., the dual.

The above developments form the basis of the formu-Lation of a mathematical model of an actual scheduling roblem.

IV. THE PLYWOOD PRODUCTION SCHEDULING PROBLEM

Assembly-type problems occur very frequently in industry; in fact, it is more the rule than the exception. One such problem occurs in plywood manufacturing, where various veneers that go into the lay-up of plywood panels have to be processed on several machines with sufficient lead time so assembly can later proceed with as little interruption as possible. Since veneers are generally processed on common machines, sequencing the right quantities of material through these machines is of prime importance.¹ The following description of a scheduling problem is that of a mill that utilizes relatively poorer quality logs than generally are used.

IV-1. The Process

Plywood manufacturing (5) includes three major processes: conversion of logs to veneer (also called the

¹Sequencing is even more important in many of today's mills, where poorer quality logs are increasingly utilized due to increasing log costs and scarcity of supply, thus requiring more veneer preparation and more competition for machine time. Although this situation is not yet typical of the whole industry at the present time, it is expected to be so in the near future when further increases in log costs, scarcity of supplies and more competition from other materials are to be expected.

green end), preparation of veneers to usable form (the dry end), and assembly of correct mixtures of veneers into plywood panels. Green end equipment includes one barker, two cut-off saws, eight steam vats, one high-speed 8-foot lathe, one 4-foot lathe, and three clippers. Veneer preparation is accomplished with three dryers, one edge gluer, one veneer saw, and four veneer patchers. Lay-up and finishing machinery includes four glue spreaders, two prepresses, two automatic 30-opening hot presses, one panel saw, one high speed wide belt sander and one panel sorter. In addition, there are other equipment associated with special finishing and packaging of products.

The green end process consists of cutting logs to length, steaming, peeling to veneer, clipping veneer to standard widths, and sorting. As much as possible, veneers are clipped as wide as defects would allow to 54 inches, 27 inches and narrower random widths. The mill utilizes six species of logs for use as faces, backs and centers.¹ Three of these are being peeled to two thicknesses (1/10 and 1/6) and the rest to three thicknesses (1/10, 1/6 and 7/32) or a total of 15 different inputs at the 8-foot lathe distinguished by species and thickness of peel. At the 4-foot lathe (or core lathe), four basic species are used. Three are peeled to 1/6, 7/32, and 5/16 and the fourth to only one thickness of 1/6 or a total of 10 possible inputs

¹See Figure IV-1.1 for description of a plywood panel.

Adopted from Basic Plywood Figure IV-1.1--Typical construction of a plywood panel. Adopted f <u>Processing</u> by Ted Demas, American Plywood Assoc.

either side of a panel where the grading rules draw no distinction between faces. FACE = The better side of a panel in any grade calling for a face and a back; also, BACK = The side reverse to the face of the panel.

CORES (Crossbands) = Inner plies running perpendicular to the panel face. CENTERS = Inner plies running paralle to the panel face.

at the core lathe. Clipping practice at the core lathe is similar to that at the 8-foot lathe. However, because of poorer quality of logs being peeled specifically for core, clipping is generally in random fashion.

The dry end process consists of drying veneers to appropriate moisture contents, sorting dryer output by widths and grades, and further processing on certain types of veneers as the situation requires. Veneers are graded into four grades after drying. Eight-foot stock is sorted to ABCp, C, D and NC grades.¹ Some of the 54-inch stock is directly available after drying for faces and backs (C and D grade) or centers (C, D, and NC grades) while ABCp grade needs further processing at the veneer patchers where they eventually split up to grades A, B, Cp, C, and The C, D. and NC grades of 27-inch veneer may be used D. as centers without further processing or edge glued (except NC grade) for faces and backs. Alternatively, they may be sawn in half for core. The ABCp grade of 27-inch stock is generally edge glued and patched for faces and backs, although some of it is used for patching material.

Core veneer is sorted into four grades: <u>Csolid</u>, <u>C</u>, <u>D</u> and <u>NC</u> and needs no further processing.

Assembly of veneers into plywood starts at the glue spreaders where certain quantities, grades and thicknesses

¹ABCp is a veneer grade from which grades A, B and Cp can be recovered. Grade <u>A</u> is the highest, <u>B</u> second highest and NC is the lowest grade.

of veneer are assembled in certain combinations to obtain required panel dimensions and grades. Then assemblies in multiples of 30's or 60's (depending on the thickness) are pre-pressed in preparation for automatic loading and curing in hot presses. Thence, cured panels are trimmed to proper dimensions, sanded and graded for defects. Panels that are defective and cannot be accepted as "on-grade" are reclassified to appropriate lower grades. Thus, only a certain percentage of the original number laid-up at the spreaders can be applied to customer orders so that allowances have to be made to compensate for "falldowns." For sheathing products, the process would have ended after sorting for grades; however, for sanded products and other specialty items additional work on the panels is required, such as repairing minor defects, additional sanding, grooving, coating and other special work the customer may require.

IV-2. The Scheduling Problem

The processes after the spreaders do not pose much of a scheduling problem since the operations follow one another in a fixed sequence and so long as no breakdowns occur in the line, the rest of the operations proceed without requiring too much attention. Indeed, the heart of the scheduling problem lies in the green and dry ends where choices have to be made from among a large number of alternatives. In general, the choice of one alternative over

another is influenced by the composition of the order file and of the veneer and product inventories on the floor and by the available machine and storage capacities.

Customer orders for the coming week's production (an order file) are received at the plant superintendent's office on the Friday of the preceding week and may consist of about 15 to 25 customer orders representing approximately 75 percent of plant capacity. Each customer order may consist of any number of items in the some 152 basic products that the mill manufactures. Usually, though, an order ranges from one to ten items, altogether usually forming a carload, sometimes two. Because of limited space in the mill it is not possible to inventory dry veneers or finished products in large quantities. Railroad cars are brought in five at a time and must be loaded and ready within three days at the latest. Because no additional cars can be brought in until previous cars have been cleared away, it is desirable to complete loading whatever cars are on the docks within 24 hours. This means that orders have to be completed and loaded at the rate of approximately four to five orders a day. The problem has been basically that of properly timing veneer preparation so that the right types and quantities of veneer are available at the time they are needed at the spreaders. Moreover, these should be in quantities sufficient to maintain production with a minimum of change-overs but small enough so as not to build prohibitively large in-process inventories.

The availability of the right types and quantities of veneer is important, too, to the proper use of material. Experience has shown that misuse of veneer is extensive when the proper grades are not available in sufficient quantities. In an effort to maintain production, downgrading¹ is sometimes resorted to. Although downgrading is not a policy of the mill, it is common knowledge that it is practiced. At the present time the mill has no measure of how much loss due to improper use of material is being sustained, mainly because it is very difficult (if not impossible) to get factual data about it. However, to those knowledgeable with losses in revenue due to misapplication of material, the feeling is that the practice might be reaching alarming proportions.

In general, if the schedule were to lay-up by customer orders, finished products inventory would be minimized but at the expense of probably too many changes in machine setups and a probable build-up of dry veneer inventory, especially if customer orders lean heavily toward one or two product grades. This is a consequence of the fact that the production of certain grades of veneer is always accompanied by the generation of other grades as well which may not be needed immediately, if at all, or which may be in excess of what is or will be required.

¹Using better quality veneer than what is required.

On the other hand, laying-up products that complement each other, i.e., products that use veneers in the proportion they are generated, minimizes veneer inventory. However, these products may belong to various orders making it necessary to hold them in inventory until the other items in the orders are likewise completed.

Efforts are being made by the company to seek orders in the right combinations (through an allocation model) and using the information as a guide for sales efforts. Unfortunately discrepancies between what is desired and what is obtained always exist. Thus, failing to influence the composition of demand for its products, it then becomes necessary for the mill to control production effectively so that whatever discrepancies may exist between the order file and the mixture of veneers obtainable from the raw material could be worked into the plant and still operate within the constraints of machine and storage capacities and delivery dates without incurring unnecessary increases in production costs.

The presence of a number of alternatives for getting required veneers to the spreaders gives the mill flexibility for working around whatever limitations the order file may impose on the mill. It also makes scheduling that much more difficult since compatible decisions have to be made consistently at each production center.

Because of the formidable number of alternatives that a production scheduler has to choose from, it is very unlikely that the choices he makes every day or every week are consistently good because it is simply impossible to consider or to be aware of all interacting factors that should enter into his decisions during the short time available for decision making. Indeed, not even the best and most experienced scheduler can or would be willing to go through even a small number of, say, 200 alternatives every week to determine which combination of alternatives will give him his best (according to some criterion) schedule.

Thus it is desirable to quantify the problem so that, for any given week, order file and initial inventories, a schedule that takes into account all important factors and limitations can be determined.

V. FORMULATION OF A SCHEDULING MODEL

The formulations that will be developed in this chapter concern only the green and dry ends of the plywood mill where the scheduling problem resides. Because of the great number of variables involved, the flows are handled as vectors to simplify the algebra. A listing of the variables included in each vector can be found in Appendix A.

V-1. Choice of Interval

The choice of an appropriate interval of time to be used in the formulation of the problem is an important consideration since it determines the quality of information that can be derived from the solution to the problem and the corresponding cost of computation required to obtain the solution. Ideally the interval would be the smallest lead time being experienced in the system. However, a practical interval, during which it is useful to have information on the level of activities, should probably be something much larger. Indeed, it may be only necessary or helpful to know the state of the system though there exists in the system lead times in the order of, say, 10 minutes.

In the problem studied, it is difficult to make a definite statement on what might be the most practical interval of time to use. Practicability has to be measured in terms of the difference between the cost to be incurred and the benefits to be derived. Moreover, the benefits to be derived have to be measured relative to some datum, generally current performance. The cost of computation can be reasonably determined; unfortunately a measure of current performance is not readily available. However, an evaluation of current performance should yield some useful measure of effectiveness. Only then can practicability or economic feasibility be truly determined.

In the following developments, an 8-hour interval is used because it seems the most ideal from the plant superintendent's point of view. Certainly his work would be much simpler if for any given week the schedule of activities of all processing centers has already been determined for all shifts. As a consequence, decision making would be narrowed down and localized to 8-hour periods since there would be no more need to consider the relationship between activities of different shifts, these relationships having been considered already in the solution to the problem.

V-2. Model for Processor No. 1

Processor no. 1 basically consists of the 8-foot lathe, belt conveyors, two clippers, a sorting table, sorting carts, and the men associated with each activity. This is shown schematically in Figure V-2.2.

It takes approximately only an average of 10 minutes to process veneer on the lathe and clippers, starting at a point in time when a log is charged to the lathe to a point when it becomes clipped veneer and available for drying. If the interval chosen were 10 minutes, then the lead time required for processing is one period, which means that inputs to the lathe during any 10-minute period will not be available as output from the clippers until the next 10-minute period. If the interval chosen were 20 minutes instead, the lead time will still be 10 minutes; however, inputs to the lathe during any 20-minute period will all be available as clipped veneer after the first half of the next period. The relationship between lead time and period is shown schematically in Figure V-2.1. In the figures, A represents the first period during which input is being taken in and B represents the time (also equivalent to one period) during which output is available. The first input occurs at a, and first output becomes available at time b₁. The last input (during the interval under consideration) is taken in at time a, which subsequently becomes available as output at time b₂. The lead time, represented by a_1b_1 or a_2b_2 , is 10 minutes regardless of the magnitude of the period chosen. However, if lead time is considered in terms of a period, in (a) it is equivalent to one period, in (b) half of a period and in (c) 1/48th of a period. Thus, as the interval is chosen to be larger the lead time becomes relatively smaller. At the chosen interval of

(a) Lead time and period of 10 minutes each.

(b) Lead time of 10 minutes and period of 20 minutes.

Figure V-2.1. Relationship between the magnitudes of lead time and period.

8 hours the relative importance of a 10-minute delay becomes very small and insignificant. Moreover, the lathe and clippers have excess capacity relative to the dryers so that the production of the lathe during any period can keep the dryers busy during the same period. We thus assume for practical purposes no delay in processor no. 1, that is, no lead time is necessary for peeling logs to veneer before drying can be initiated, provided that the period in question is large enough. We therefore write for the 8-foot lathe:

$$\begin{bmatrix} Y_{121}(t) \\ Y_{122}(t) \\ Y_{123}(t) \\ Y_{123}(t) \\ Y_{124}(t) \\ Y_{125}(t) \end{bmatrix} = \begin{bmatrix} R'_{11} \\ R'_{21} \\ R'_{31} \\ R'_{41} \\ R'_{51} \end{bmatrix} Y_{110}(t)$$
(V-2.1)

We note from Appendix A that Y_{110} , Y_{121} , Y_{122} , Y_{123} and Y_{124} are vector flows. Consequently, R'_{11} , R'_{21} , R'_{31} , R'_{41} and R'_{51} are matrices whose entries represent the quantities of veneer of each type that is obtainable from every unit of input of each variable in Y_{110} . Y_{125} represents the flow of material that is not usable for veneer. Therefore, as far as the scheduling problem is concerned, it is best excluded from further consideration. If we let

$$Y_{120}(t) = \begin{bmatrix} Y_{122}(t) \\ Y_{123}(t) \\ Y_{124}(t) \end{bmatrix} \text{ and } R_{11} = \begin{bmatrix} R_{21} \\ R_{31} \\ R_{41} \end{bmatrix}$$

then we can write V-2.1 as

$$\begin{bmatrix} Y_{121}(t) \\ \overline{Y}_{120}(t) \end{bmatrix} = \begin{bmatrix} R_{11}' \\ \overline{R}_{11} \end{bmatrix} Y_{110}(t)$$
 (V-2.2)

Equation V-2.2 is a mathematical model of processor no. 1 shown schematically in Figure V-2.1. To illustrate the structure of Equation V-2.2, we write it in detail as Equation V-2.3 using data from Table V-2.1. In Equation V-2.3, log inputs are expressed in thousand board feet¹ (MBF) and veneer outputs are in thousand surface feet 3/8basis² (M3/8). The first column in the recovery matrix indicates that for every MBF of Douglas fir logs peeled to 1/10th veneer, 1.13 M3/8 of 54-inch veneers, 0.82 M3/8 of 27-inch veneers, 0.46 M3/8 of strips and 0.12 M3/8 of fish tails³ can be recovered.

We also note from Equation V-2.3 that during a given period any number of inputs can be greater than zero. In other words, two or more inputs can be processed concurrently during any 8-hour period. In practice, of course, inputs are processed sequentially. This is perfectly

¹A board foot is the volume of a rectangular piece of wood one-inch thick, 12 inches wide and 12 inches long.

²Volume of a panel 3/8-inch thick, 10-feet wide and 100-feet long.

³Veneer generated at the 8-foot lathe before the log gets perfectly round so that only one end may be utilized, and only for core. See Figure V-5.1.

Figure V-2.2--Schematic diagram of processor no. 1 representing the 8-foot lathe, two 8-foot clippers and associated equipment.

Figure V-3.1--Schematic diagram of processor no. 2 representing the core lathe, clippers and associated equipment.

TABLE V-2.1.--Green end recoveries in percent.

Width	1/10 DF1	1/10 WF	1/10 SP	1/10 LH	N4 PN	ΠH 01/1	1/6 WF	1/6 SP	Nd PN	1/6 HL
54	44.80	27.40	52.00	42.70	46.00	36.30	27.80	58.00	46.00	36.30
27	32.30	47.00	24.80	28.60	26.00	40.10	47.00	24.80	26.00	40.10
Strips	18.20	20.50	20.30	24.50	23.00	19.70	20.50	20.30	23.00	19.70
Fish Tail	4.70	5.10	2.90	4.20	5.00	3.90	4.70	2.90	5.00	3.90
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.001	100.00
Recovery	2.532	2.14	2.28	2.22	2.32	2.11	2.26	2.28	2.32	2.21
-										

^LDF = Douglas Fir, WF = White Fir, SP = Spruce, LH = Larch, PN = Ponderosa Pine, HL = Hemlock.

²M3/8 per MBF.

valid since, as will be seen later, the total demand for machine time will always be equal to or less than what is available.

V-3. Model for Processor No. 2

Processor no. 2 is made up of a cut-off saw, a core lathe, a drum clipper, a guillotine clipper and veneer handling accessories. Schematically it is shown in Figure V-3.1 as a single processor receiving logs at one end and producing veneer at the other.

Following the discussion of Section V-2, we likewise write for processor no. 2,

$$\begin{bmatrix} Y_{221}(t) \\ Y_{222}(t) \end{bmatrix} = \begin{bmatrix} R_{12}^* \\ R_{22}^* \end{bmatrix} Y_{210}(t)$$
(V-3.1)

where $Y_{222}(t)$ represents veneer waste that cannot be used for plywood production. We therefore drop it from further consideration and write simply

$$Y_{221}(t) = R_{20} Y_{210}(t)$$
 (V-3.2)

where R_{20} is equivalent to R_{12}^* and represents veneer recovery at the core lathe. Because the logs generally used for core are of poorer quality, core veneer can rarely be clipped into standard widths. Thus veneers from the core lathe are not sorted by widths unlike those from the 8-foot lathe. The entries of R_{20} , therefore, represent total veneer recoveries in M3/8 units from each MBF of log input in Y_{210} . Equation V-3.2 or V-3.3 represents a mathematical model of processor no. 2.

V-4. Model for Processor No. 3

Three veneer dryers make up processor no. 3. Veneers are brought to the dryers from green in-process inventories and fed manually as fast as is operationally possible. On the other side, veneers are sorted by grades and moved to dry inventory.

It takes approximately 10 to 30 minutes for veneer to dry while traversing the length of the dryers, depending on the thickness and species. The delay due to processing time alone seems small enough to be neglected as argued for processors 1 and 2; however, there are other factors that must be taken into consideration. Firstly, veneers proliferate into several grades after drying so that specific grades do not accumulate fast enough, making it imperative to accumulate them in sufficient quantities before they can be moved to the next operation. For example, ABCp grade veneers which come in small quantities relative to the total output of the dryers cannot operationally be transferred to the patchers as soon as a few sheets are available. Rather, they are accumulated until there is enough to keep a patcher busy for a sufficiently long period.

Secondly, there are technical requirements that must be satisfied. For instance, in the case of C and D grade

Log Peels During time <u>t</u> in MBF Units White Fir to 1/6th 2.10 Hemlock to 5/16th P. Pine to 5/16th P. Pine to 7/32nd Hemlock to 7/32nd Spruce to 5/16th Hemlock to 1/6th Spruce to 7/32nd P. Pine to 1/6th Spruce to 1/6th 2.16 2.14 2.12 Recovery Matrix 2.13 2.18 2.15 2.11 2.21 2.10 11 Veneer Output During time <u>t</u> in M3/8 Units 5/16th Hemlock 1/6th White Fir 5/16th P. Pine 7/32nd Hemlock 7/32nd P. Pine 5/16th Spruce 7/32nd Spruce 1/6th Hemlock 1/6th P. Pine 1/6th Spruce

(V-3.3)

veneers that are 54 inches wide, the next operation would be at the spreaders. However, these should be allowed to cool down to room temperature before using due to technical requirements at the spreaders.

It is therefore, necessary that sufficient lead time be allowed for the drying process so that the requirements of succeeding operations are satisfied. A lead time equivalent to one shift was found the most appropriate so that we write as a mathematical model of the drying process,

$$\begin{bmatrix} Y_{330}(t+1) \\ Y_{340}(t+1) \\ Y_{350}(t+1) \\ Y_{360}(t+1) \end{bmatrix} = \begin{bmatrix} R_{12}^{\circ} & R_{14}^{\circ} \\ R_{21}^{\circ} & & \\ R_{31}^{\circ} & & \\ R_{41}^{\circ} & R_{43}^{\circ} \end{bmatrix} \begin{bmatrix} Y_{310}(t) \\ Y_{320}(t) \\ Y_{370}(t) \\ Y_{380}(t) \end{bmatrix}$$
(V-4.1)

which indicates that inputs to the dryers druing any 8-hour period will not be available for further processing until the next period. Because of the size of the recovery matrix for the dryers, Equation V-4.1 is not shown here in detail. However, it can be constructed from data given in Table V-4.1 and the listing of vectors in Appendix A.

V-5. Model for Processor No. 4

Processor no. 4 consists only of one veneer saw. It provides the opportunity to convert 8-foot veneer to core, hence also the opportunity to peel core material at the 8-foot lathe. Since very little time is required to saw veneer, no lead time is required and we write,

Figure V-3.2--Fish Tail. Core material may be recovered from it by cutting at dotted line. Unusable portion goes to chipper.

Figure V-4.1--Schematic diagram of processor no 3. representing three veneer dryers.

Figure V-5.1--Schematic diagram of processor no. 4 representing a veneer saw.

Face Stock	Width	ABCp	<u>c</u> ²	D	NC
1/10 Doug. Fir	54's 27's Strips	18.89 5.40 1.40	30.24 21.50 20.40	49.55 60.03 68.47	1.32 7.07 9.63
l/10 White Fir	54 's 27 's Strips	4.81 0.71	43.58 36.30 6.17	46.13 51.07 77.59	5.48 11.92 16.24
1/10 Spruce	54 's 27 's Strips	3.08 0.06	52.44 45.81 22.28	41.15 47.69 68.75	3.33 6.44 8.97
l/10 Larch	54 's 27 's Strips	22.10 8.69 3.46	34.84 30.31 21.33	40.11 54.65 64.72	2.95 6.35 10.49
1/10 Pond. Pine	54's 27's Strips	4.57	23.18 13.82 2.68	68.05 78.05 77.66	4.20 8.13 19.66
l/10 Hemlock	54 's 2 7's Strips	11.54 2.21	34.45 30.55 9.76	50.09 58.88 77.65	3.92 8.36 12.59
1/6 White Fir	54 's 27 's Strips	10.64 3.50	42.65 45.58 40.43	43.58 40.00 49.72	3.13 10.92 9.85
1/6 Spruce ³	54's 27's Strips	12.00 2.00	45.00 42.00 26.00	39.00 46.00 62.00	4.00 10.00 12.00
⊥/6 Pond. Pine3	54 's 27 's Strips	5.50 1.50	28.50 18.50 15.00	62.50 73.00 75.00	3.50 7.00 10.00
1/6 Hemlock	54's 27's Strips	18.80 4.45 1.21	38.94 43.34 39.92	40.63 46.29 53.17	1.63 5.92 12.70

TABLE V-4.1-a. Dryer grade yields¹ (percent).

¹Based on May, June and August dryer production reports.

²Includes <u>C</u> Solid. ³Estimated figures.

Core Stock Type		C Solid ¹	С	D	NC	
1/6 Pine	Random	9.00	32.98	49.51	8 51	
1/6 Hemlock	11	11.00	31.83	46.60	10.57	
1/6 Mix	"	10.00	24.61	56.16	9.23	
1/6 Redry	"	7.00	12.12	67.63	13.25	
7/32 D. Fir	**	12.00	46.92	33.44	7.64	
7/32 W. Fir	"	10.00	56.42	27.58	6.00	
7/32 Spruce	**	10.00	56.59	26.53	6.87	
7/32 Larch	**	15.00	58.69	22.10	4.21	
7/32 Pine	**	11.00	50.08	32.80	6.11	
7/32 Hemlock	**	13.00	37.00	40.47	9.53	
7/32 Mix	**	12.00	46.30	34.07	7.63	
5/16 P. Pine	"	12.00	14.90	68.08	5.02	
5/16 Mix	**	13.00	25.73	54.41	6.86	

TABLE V-4.1-b.--Dryer grade yields.

¹Estimated figures. It is difficult to determine precisely the percentage of C solid that can be recovered from core stock because core is only sorted for C solid when there is a need for it. Otherwise, it is sorted as C grade. However, the sum of C solid and C grade is accurate.

$$\begin{bmatrix} \underline{Y}_{430}(t) \\ \underline{Y}_{034}(t) \\ \underline{Y}_{435}(t) \end{bmatrix} = \begin{bmatrix} s_1 & s_2 & s_3 \\ & & s_4 \\ & & s_5 \end{bmatrix} \begin{bmatrix} \underline{Y}_{410}(t) \\ \underline{Y}_{420}(t) \\ \underline{Y}_{440}(t) \\ \underline{Y}_{415}(t) \end{bmatrix}$$
(V-5.1)

where $Y_{415}(t)$ represents a vector of fish tails¹ originating from the 8-foot lathe. $Y_{410}(t)$, $Y_{420}(t)$ and $Y_{440}(t)$ represent, respectively, dry strips, 27-inch, and 54-inch veneers that are to be converted to core, the entries in S_1 , S_2 and S_3 are all 1's indicating 100 percent recovery. $Y_{034}(t)$ is the quantity of core recovered from fish tails and $Y_{435}(t)$ is the waste material that goes to the chippers.

V-6. Model for Processor No. 5

Processor no. 5 is made up of a jointer and an edge gluer that is used for joining narrower veneer, i.e., 27 inches wide and narrower strips, to obtain full-sized veneer sheets for use as faces, backs or centers. Edge gluing is a slow process and it is necessary that some lead time be allowed for the operation to accumulate enough output sufficient to be considered for input to the next operation. The lead time required may not be quite 8 hours. However, for simplicity we also assume a lead time equivalent to one period. This has the effect of a conservative schedule since it implies that processing of

¹See Figure V-5.1.

needed veneers has to be done one full shift ahead, although in certain cases (such as when only small quantities are required) it might be possible to process veneers during the same shift it is needed. For the edge gluing process we, therefore, write

$$\begin{bmatrix} Y_{531}(t+1) \\ Y_{532}(t+1) \\ Y_{533}(t+1) \\ Y_{533}(t+1) \\ Y_{534}(t+1) \end{bmatrix} = \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \\ G_{31} & G_{32} \\ G_{41} & G_{42} \end{bmatrix} \begin{bmatrix} Y_{510}(t) \\ Y_{520}(t) \\ Y_{520}(t) \end{bmatrix}$$
(V-6.1)

where as before, G_{11} , G_{12} , G_{21} , G_{22} , G_{31} , G_{32} , G_{41} and G_{42} are matrices with entries that represent the percentages of each output that can be recovered from each unit of input. Processor no. 5 is shown schematically in Figure V-6.1.

V-7. Model for Processor No. 6

Four veneer patchers make up processor no. 6. It takes in for input full-sized veneer sheets of <u>ABCp</u> grade originating directly from the dryers, from purchased dry veneer, or from the edge gluer. The process involves patching knotholes and similar defects that can be patched and segregating processed veneers into grades <u>A</u>, <u>B</u>, <u>Cp</u>, <u>C</u> and <u>D</u>.

Like edge gluing, patching is also a slow process. Moreover, it takes a while to accumulate the usual

Figure V-7.1--Schematic diagram of processor no. 6 representing four veneer patchers.

quantities required of <u>A</u>, <u>B</u> and <u>Cp</u> grades, due to poorer quality of logs available to the mill. Consequently, it is necessary to allow processor no. 6 a lead time of one period and we write the mathematical model of the process as follows:

$$\begin{bmatrix} Y_{621}(t+1) \\ Y_{622}(t+1) \\ Y_{623}(t+1) \\ \frac{Y_{623}(t+1) }{Y_{625}(t+1)} \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} & T_{13} \\ T_{21} & T_{22} & T_{23} \\ T_{31} & T_{32} & T_{33} \\ \frac{T_{41}}{T_{42}} & T_{43} \\ \frac{T_{41}}{T_{51}} & T_{52} & T_{53} \end{bmatrix} \begin{bmatrix} Y_{611}(t) \\ Y_{612}(t) \\ Y_{630}(t) \end{bmatrix}$$
 (V-7.1)

 Y_{625} represents waste generated by the process and may be dropped from further consideration. Schematically the patching process is represented by Figure V-7.1. Data such as that shown in Table V-7.1 for Douglas Fir required by Equation V-7.1 can be obtained from production reports.

V-8. In-Process Inventories

Figure V-8.1 is a schematic diagram of the green and dry end sections of the plywood mill showing the manner component processors previously discussed are interconnected together. The symbols and connotations parallel those in Figure III-2.1 except that the flows indicated are vector flows, that is, each arrow in the diagram represents, in general, more than one flow. The solid circles also represent one or more machines. For example, Y₁₁₀(t)

Solid show Figure V-8.1--Schematic diagram of green and dry end sections of plywood mill. circles indicate processors and dotted circles in-process inventories. Arrows direction of material flows in the system.

represents 15 different flows and processor no. 6 represents four veneer patchers.

With reference to Figure V-8.1, we now write the following equations for in-process inventories:

Green Core Originating from Fish Tails

$$Z_{800}(t+1) = U_{01}Z_{800}(t) + U_{02}Y_{034}(t) - U_{03}Y_{380}(t)$$
 (V-8.1)

Green Core from 4-foot Lathe

$$Z_{810}(t+1) = U_{11}Z_{810}(t) + U_{12}Y_{221}(t) - U_{13}Y_{320}(t) \qquad (V-8.2)$$

Green Face Stock from 8-foot Lathe

$$Z_{820}(t+1) = U_{21}Z_{820}(t) + U_{22}Y_{120}(t) - U_{23}Y_{310}(t) \qquad (V-8.3)$$

where
$$Y_{120}(t) = \begin{bmatrix} Y_{122}(t) \\ Y_{123}(t) \\ Y_{124}(t) \end{bmatrix}$$
 and $Y_{310}(t) = \begin{bmatrix} Y_{311}(t) \\ Y_{312}(t) \\ Y_{313}(t) \end{bmatrix}$

Green Face Stock from Purchased Veneer

$$Z_{830}(t+1) = U_{31}Z_{830}(t) + U_{32}Y_{037}(t) - U_{33}Y_{370}(t) \quad (V-8.4)$$

$$x_{840}(t+1) = U_{41} Z_{840}(t) + U_{42} Y_{330}(t) - Y_{43} Y_{100}(t)$$
(V-8.5)
where $Y_{330}(t) = \begin{bmatrix} Y_{331}(t) \\ Y_{332}(t) \\ Y_{333}(t) \\ Y_{334}(t) \end{bmatrix}$ and $Y_{100}(t) = \begin{bmatrix} Y_{101}(t) \\ Y_{102}(t) \\ Y_{103}(t) \\ Y_{104}(t) \end{bmatrix}$

Dry Strips

$$Z_{850}(t+1) = U_{51}Z_{850}(t) + U_{52}Y_{340}(t) - U_{53}Y_{410}(t) - U_{54}Y_{510}(t)$$
(V-8.6)

Purchased Dry Veneer

$$Z_{880}(t+1) = V_{31}Z_{880}(t) + V_{32}Y_{038}(t) - V_{33}Y_{630}(t) \qquad (V-8.7)$$

$$\begin{bmatrix} Y_{341}(t) \\ Y_{242}(t) \end{bmatrix} \qquad \begin{bmatrix} Y_{411}(t) \\ Y_{412}(t) \end{bmatrix}$$

where
$$Y_{340}(t) = \begin{bmatrix} Y_{342}(t) \\ Y_{343}(t) \\ Y_{344}(t) \end{bmatrix}$$
, $Y_{410}(t) = \begin{bmatrix} 412 \\ Y_{413}(t) \\ Y_{414}(t) \end{bmatrix}$
and $Y_{510}(t) = \begin{bmatrix} Y_{511}(t) \\ Y_{512}(t) \\ Y_{513}(t) \end{bmatrix}$.

$$\begin{split} z_{860}(t+1) &= U_{61} z_{860}(t) + U_{62} Y_{350}(t) - U_{63} Y_{420}(t) - \\ &= U_{64} Y_{520}(t) - U_{65} Y_{012}(t) - U_{66} Y_{013}(t) - \\ &= U_{67} Y_{015}(t) \end{split} \tag{V-8.8}$$

$$\begin{aligned} where \ Y_{420}(t) &= \begin{bmatrix} Y_{421}(t) \\ Y_{422}(t) \\ Y_{423}(t) \\ Y_{423}(t) \\ Y_{424}(t) \end{bmatrix} \qquad \text{and} \ Y_{520}(t) = \begin{bmatrix} Y_{521}(t) \\ Y_{522}(t) \\ Y_{523}(t) \\ Y_{523}(t) \end{bmatrix}$$

Dry 54's

$$\begin{split} z_{870}(t+1) &= U_{71} z_{870}(t) + U_{72} Y_{360}(t) + U_{73} Y_{624}(t) + \\ & U_{74} Y_{532}(t) - U_{75} Y_{440}(t) - U_{76} Y_{612}(t) - \\ & U_{77} Y_{011}(t) - U_{78} Y_{014}(t) - U_{79} Y_{016}(t) - \\ & T_{71} Y_{017}(t) - T_{72} Y_{021}(t) \end{split}$$
 (V-8.9)
where $Y_{360}(t) = \begin{bmatrix} Y_{361}(t) \\ Y_{362}(t) \\ Y_{363}(t) \\ Y_{364}(t) \end{bmatrix}$ and $Y_{440}(t) = \begin{bmatrix} Y_{441}(t) \\ Y_{442}(t) \\ Y_{443}(t) \\ Y_{444}(t) \end{bmatrix}$

Processed Core

$$Z_{890}(t+1) = U_{91}Z_{890}(t) + U_{92}Y_{100}(t) - U_{93}Y_{200}(t) \quad (V-8.10)$$

where $Y_{200}(t) = \begin{bmatrix} Y_{201}(t) \\ Y_{202}(t) \\ Y_{203}(t) \\ Y_{204}(t) \end{bmatrix}$ and $Y_{100}(t) = Y_{330}(t)$.

Processed Centers

$$\begin{split} z_{900}(t+1) &= V_{11} Z_{900}(t) + V_{12} Y_{013}(t) + V_{13} Y_{012}(t) + \\ &\quad V_{14} Y_{533}(t) + V_{15} Y_{011}(t) + V_{16} Y_{014}(t) + \\ &\quad V_{17} Y_{30}(t) - V_{18} Y_{300}(t) \end{split} \tag{V-8.11}$$

where $Y_{300}(t) = \begin{bmatrix} Y_{301}(t) \\ Y_{302}(t) \\ Y_{303}(t) \end{bmatrix}$ and $Y_{30}(t) = Y_{015}(t) + Y_{016}(t)$

Faces and Backs

$$Z_{910}(t+1) = V_{21}Z_{910}(t) + V_{22}Y_{017}(t) + V_{23}Y_{021}(t) +$$

$$v_{24}v_{620}(t) - v_{25}v_{400}(t) \qquad (V-8.12)$$

where $v_{400}(t) = \begin{bmatrix} v_{401}(t) \\ v_{402}(t) \\ v_{403}(t) \\ v_{404}(t) \\ v_{405}(t) \end{bmatrix}$ and $v_{620}(t) = \begin{bmatrix} v_{621}(t) \\ v_{622}(t) \\ v_{623}(t) \end{bmatrix}$.

From Equations V-2.1 and V-5.1,

$$Y_{034}(t) = S_4 Y_{415}(t)$$

 $Y_{415}(t) = Y_{121}(t) = R_{11}'Y_{110}(t)$

Substituting in Equation V-8.1, we obtain

$$Z_{800}(t+1) = U_{01}Z_{800}(t) + U_{02}S_4R_{11}Y_{110}(t) - U_{03}Y_{380}(t)$$

$$(V-8.13)$$

We also have from Equation V-3.2,

$$Y_{221}(t) = R_{20}Y_{210}(t)$$

Substituting into V-8.2, we have

$$Z_{810}(t+1) = U_{11}Z_{810}(t) + U_{12}R_{20}Y_{210} - U_{13}Y_{320}(t)$$
 (V-8.14)

V.9. System Model

Equations V-4.1, V-6.1, V-7.1, V-8.3, V-8.4, V-8.5, V-8.6, V-8.7, V-8.8, V-8.9, V-8.10, V-8.11, V-8.12, V-8.13, and V-8.14 can all be written in matrix form as Equation V-9.1, where

$$A_{11} = U_{02} S_{4} R_{11}^{\prime}, A_{12} = U_{12} R_{20}, A_{13} = U_{22} R_{11},$$
$$T_{11}^{\prime} = \begin{bmatrix} T_{11} \\ T_{21} \\ T_{31} \end{bmatrix}, T_{12}^{\prime} = \begin{bmatrix} T_{12} \\ T_{22} \\ T_{32} \end{bmatrix}, \text{ and } T_{13}^{\prime} = \begin{bmatrix} T_{13} \\ T_{23} \\ T_{33} \end{bmatrix}.$$
If we let,

		1	- -				
	Z ₈₀₀ (t)		Y _{Oll} (t)				
	Z ₈₁₀ (t)		Y ₀₁₂ (t)				
	Z ₈₂₀ (t)		Y ₀₁₃ (t)				
	Z ₈₃₀ (t)		Y ₀₁₄ (t)				
	Z ₈₅₀ (t)		Y ₀₁₅ (t)				
	Z ₈₆₀ (t)		Y ₀₁₆ (t)				
	Z ₈₇₀ (t)		Y ₀₁₇ (t)				
	Z ₈₈₀ (t)		Y ₀₂₁ (t)				
	Z ₈₉₀ (t)		Y ₀₃₇ (t)				Y ₂₀₀ (t)
S(t) =	z ₉₀₀ (t)	, F(t) =	Y ₀₃₈ (t)	2	E(t)	Ħ	Y ₃₀₀ (t)
	Z ₉₁₀ (t)		Y ₁₁₀ (t)				Y ₄₀₀ (t)
	Y ₃₃₀ (t)		Y ₂₁₀ (t)				
	Y ₃₄₀ (t)		Y ₃₁₀ (t)				
	Y ₃₅₀ (t)		Y ₃₂₀ (t)				
	Y ₃₆₀ (t)		Y ₃₇₀ (t)				
	Y ₅₃₁ (t)		Y ₃₈₀ (t)				
	Y ₅₃₂ (t)		Y ₄₁₀ (t)				
	Y ₅₃₃ (t)		Y ₄₂₀ (t)				
	Y ₆₂₀ (t)		$Y_{440}(t)$				
	Y ₆₂₄ (t)		$Y_{510}(t)$				
			$Y_{520}(t)$				
			^Y 612 ^(t)				
			[^Y 630 ^(t) _				

•

<pre>Z800(t) Z800(t) F810(t) Z830(t) Z850(t) Z850(t) Z860(t) S890(t) S890(t) 330(t) 330(t) 350(t) 350(t) 350(t) 531(t) 532(t)</pre>	520(t) 524(t)
	<u>> > </u>
5 < <	
74 7 7 7	
	Ті Т41
с ² с ² с ²	
د ب	
2 1 2 1	
16 11 ^v	
v ³ 1	
u ₆₁ U ₇₁	
25 25	
<u> </u>]
100(t+1) 10(t+1) 20(t+1) 50(t+1) 60(t+1) 10(t+1) 10(t+1) 10(t+1) 10(t+1) 10(t+1) 10(t+1) 10(t+1) 31(t+1)	24 (t+1)
9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	×

6,2

then we can write Equation V-9.1 simply as

$$S(t+1) = P S(t) + Q F(t) - G E(t)$$
 (V-9.2)

where P, Q and G are matrices. For any given period, E(t) represents veneers demanded by the spreaders due to a lay-up schedule J'(t), that is

E(t) = C J'(t) (V-9.3)

where C is a construction matrix with entries representing the quantities of each type of veneer required by each product in J'(t). The matrix C is shown in detail in Equation V-9.3-b for certain selected products.

The lay-up schedule at the spreaders, represented by J'(t), includes allowances for falldown.¹ The relationship between the quantities required by the order file and the quantities to be laid-up is given by

$$J(t) = D J'(t)$$
 (V-9.4)

$$J'(t) = D^{-1}J(t)$$
 (V-9.5)

or

where J(t) represents the quantities required by the order file. The falldown matrix D is always square and lower triangular (if product grades are arranged in decreasing order) whose rows are independent of each other. Therefore,

¹Products not acceptable in the grade they were originally laid-up due to defects that developed during manufacture.

 D^{-1} exists (17). To illustrate the construction of D, we show it for the products used for an example in Equation V-9.4-b, using data from Table V-9.1. The complete falldown matrix can be constructed from data given in Tables V-9.1-a and V-9.1-b.

Substituting Equation V-9.4 in V-9.2, we obtain

$$S(t+1) = P S(t) + Q F(t) - G C J'(t)$$
 (V-9.6)

or S(t+1) = P S(t) + Q F(t) - H J'(t) (V-9.7)

where H = G C. Equation V-9.7 is a mathematical model of the production process. For any period <u>t</u> we have the following:

S(t+1) = Veneer inventories at the end of the period.

J'(t) = Lay-up schedule at the spreaders.

We are now in a position to solve Equation V-9.7 for t = 0,1, 2.,,14,15, as follows.

$$S(1) = P S(0) + Q F(0) - H J'(0)$$
 (V-9.8)

$$S(2) = P S(1) + Q F(1) - H J'(1)$$
 (V-9.9)

S(15) = P S(14) + Q F(14) - H J'(14) (V-9.22)

					(V-9.3-b)					
3/8 cc	1/2 CC	5/8 cc	3/8 CD	1/2 CD	5/8 CD	3/8 CDNC	1/2 CDNC	5/8 CDNC		
385 .0085	085 .0085			085 .0085			171			- - -
.0085 .00	.0085 .01			0.			.0085 .0			
.0085	.0085		.0085			_			.0142	
5.0085	5.0085		.0085			5.017				
.0085	.0085					.008		Q		
.0171		.0085						.014:		
L7I0.		.0085			1710.					
- .0171					.0085					
L					It					
5	Д	U	D	NC	U	A	NC	U	Д	NC
1/10th	1/10th	1/10th	1/10th	1/10th	1/10th	1/10th	1/10th	1/6th	1/6th	1/6th
ks es	មិឧင ន ១៩៤	S	rətr	rəD			sərc			

8 CC	2 CC	8	8 CD	2 CD	8 CD	8 CDNC	2 CDNC	8 CDNC	8 SHOP	2 SHOP	8 SHOP
<u> </u>	L L	5/	м М	<u> </u>	5	м Э	<u>-</u>	5/	m	<u>-</u>	<u>``</u>
1									0000	1.0000	1.000
								.9145	л.	-	.0855
						00	.940		00	.0599	
						.95(.05		
					.7519			.1509			.1972
				.8459			.1353			.0188	
			.8365			.1429			.0206		
		.7289			.2467						.0244
	.8417			.0428			.1049			.0106	
.8068			.0851			.0943			.0138		J
٤							11				1
8 CC	5 CC	`8 CC	(8 CD	/2 CD	/8 CD	/8 CDNC	/2 CDNC	/8 CDNC	/8 SHOP	/2 SHOP	1/8 SHOF
. è	Г.	ŝ	ŵ	ĥ	С	ξ	Ч		(1)		

(A-4.6-V)

Product	On- Grade	Sub-Grade	Non- Cert	Shop	Blows	Sample Size ²
3/8 CC	80.68	3/8 CD-8.51	9.43	0.63	0.75	1599
1/2 CC	84.17	1/2 CD-4.28	10.49	0.82	0.24	4955
5/8 CC	72.89	5/8 CD-24.67		2.44		450
5/16 CD	85.10		12.37	0.74	1.79	25845
5/16 CD #2	77.89		17.17	1.83	3.11	1417
5/16 CD #3	76.01		18.17	3.49	2.33	2063
3/8 CD	83.65		14.29	1.09	0.97	45828
3/8 CD #2	82.68		13.53	1.91	1.88	3829
3/8 CD #3	83.89		12.42	2.88	0.81	3576
1/2 CD	84.59		13.53	1.18	0.70 1	50382
1/2 CD #2	82.30		15.28	1.72	0.70	76432
1/2 CD #3	85.11		12.61	1.54	0.74	15579
5/8 CD	75.19		15.09	1.82	7.90	16946
5/8 CD #2	84.07		13.78	1.37	0.78	4969
5/8 CD #3	85.52		11.82	1.57	1.09	 ³
3/4 CD	85.64		11.37	1.94	1.05	11578
3/4 CD #2	86.08		10.46	2.78	0.68	1185
3/4 CD #3	86.38		11.56	1.64	0.42	7419
5/16 TRU PLY	96.81				3.19	660
1/2 TRU PLY	94.01			2.80	3.19	20187
5/8 TRU PLY	91.45			5.96	2.59	772

TABLE V-9.1-a.--Panel falldown summary¹ (exterior sheathing).

¹Data taken from July, August, September, and up to October 18 (1966) production reports.

²Panels.

 $^{3}\mathrm{No}$ data available. Interpolated from 1/2 CD #3 and 3/4 CD #3 figures.

percent.
μ
products
sanded
for
summary
falldown
-9.1-bPanel
TABLE V

				Grade	Breakdow	E E			
Grade	AA	AB	AC	AD	BB	BC	BD	SHOP	TOTAL
AA	55.0	22.0	8.0					15.0	100.0
AB		59.0	18.0	5.0				18.0	100.0
AC			64.0	15.0				21.0	100.0
AD				70.0			8.0	22.0	100.0
BB					73.0	12.0		15.0	100.0
BC						78.0	5.0	17.0	100.0
BD							80.0	20.0	100.0

^lFalldown figures by product not available.

Transposing terms and rearranging, we can write Equations V-9.8 through V-9.22 as Equation V-9.23. In Equation V-9.23,

- A_i = Matrix whose entries are productivity coefficients, that is, processing time for each unit of input at each machine center,
- B₁ = Matrix with entries of l's,
 - D = Falldown matrix,
- J = Products that cannot be satisfied and must be backlogged,
- $J_{T} = Order file,$
- K_i = Column vector of machine capacities,
- I, = Column vector of inventory space capacities,

C_x = Penalty cost for backlogged orders,

- C₁ = Cost associated with each activity,
- C' = Cost of holding veneers on inventory,
- F(j) = Production schedule during the (j+1)th period,
- J'(j) = Lay-up schedule during the (j+1)th period,
 - S(O) = Beginning inventories, and
- S(15) = Ending inventories.

The submatrices, A_i, are constructed from data such as shown in Tables V-10.1, V-10.2, and V-10.3.

-P S(0)	0	•	0	Кl	K ₂	•	K ₁₅	Ч	цЪ	I_2	•	I14	I15	Minimum
11	11	•	11	∨II	VII	•	VII	11	VII	×II	•	v II	∨∥	II
F(0)	F(1)	•	F(14)	J'(0)	(1).ſ	•	J'(14)	ч х	S(1)	S(2)	•	S(14)	S(15)	
1		•				•					•		B ₁₅	C15
		•	Г Ы			•					•	B_{14}		c14
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	5					•				$^{\rm B}_{\rm 2}$	•			5-4 C
-	T 0					•			Б	i	•			C I C
ر ا	щ							D			•			× ن
		•	ы					D			•			
		•	1					•	•	•	•	•		•
	•	•	•	•	•	•	·							
	Η	•				•		Ц						
Ħ		•				•	۲5	D			•			15
		•	ď			•	A_				•			0
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	ଓ	•			A 2	•					•			ບັ
ا ھ				Al		•					•			

(V-9.23)

		1/10		Peel TI	hickness 1/6	0		7/32	
Species	Output	Reco	Input	Output	Reco	Input	Output	Reco	Input
Douglas Fir	18.717 ^a 0.0534 ^d	257 ^b	7.283 ^c 0.1373 ^e	25.127 * 0.0398*	266*	9.427 * 0.1061*	19.761 0.0506	239	8.280 0.1208
White Fir	14.462 0.0691	204	7.105 0.1407	19.151 0.0522	256	7.493 0.1335			
Hemlock	15.161 0.0660	224	6.768 0.1478	17.070 0.0586	228	7.487 0.1336	12.334* 0.0811*	238*	5.192 * 0.1926 *
Spruce	15.266 0.0655	254	6.010 0.1664	18.252 ** 0.0548 **	230**	7.936** 0.1260**	16.003* 0.0625*	203*	7.876 * 0.1270 *
Larch	14.244 0.0702	238	5.985 0.1671						
Pine	15.141 0.0605	236	6.416 0.1559	20.544 0.0487	257	9.780 0.1022	15.350 ** 0.0651**	179 **	8.575 ** 0.1166 **
H H * * *	ess than 5 ess than 1	0 hours	of produc	tion. Other	wise, g	reater than	100 hours	of prod	uction.

TABLE V-10.1.--8-foot lathe production rates

d_Hours per 1000 surface feet of output. 10101 280 5 suriace it per 100 pd it ^eHours per 1000 bd ft (block scale) of input. ^cBoard feet per hour (block scale). ut K.Javoban MSF per nour (3/0).

Veneer Thickness	Species	Hrs/MSF3/8	Hrs/MBF
1/10	Douglas Fir	.0449	.1175
1/10	White Fir	.0815	.1737
1/10	Spruce	.0590	.1345
1/10	Larch	.0648	.1543
1/10	Ponderosa Pine	.0602	.1421
1/10	Hemlock	.0633	.1419
1/6	Douglas Fir	.0783	.1980
1/6	White Fir	.1282	.2731
1/6	Spruce	.1011	.2304
1/6	Larch	.1008	.2400
1/6	Ponderosa Pine	.1005	.2333
1/6	Hemlock	.0924	.2200
7/32	Spruce	.1078	.2384
7/32	Ponderosa Pine	.1144	.2413
7/32	Hemlock	.1019	.2282
5/16	Spruce	.1110	.2453
5/16	Ponderosa Pine	.1177	.2483
5/16	Hemlock	.1130	.2430

1

TABLE V-10.2.--Drying productivity.¹

¹Average for all widths.

Thickness	Species	Veneer Grade	Original Width	Hrs/MSF3/8
1/10	Douglas Fir	AB	54	1.43
1/10	Douglas Fir	ABCp	54	1.47
1/10	White Fir	ABCp	54	1.70
1/10	Larch	**	**	1.33
1/10	Hemlock	11	**	1.77
1/6	Douglas Fir	11	**	0.94
1/6	White Sir	11	**	1.02
1/6	Larch	11	**	0.80
1/6	Hemlock	11	**	1.07
1/10	Douglas Fir	11	27	1.80
1/10	White Fir	11	**	1.97
1/10	Larch	11	**	1.53
1/10	Hemlock	11	**	2.04
1/6	Douglas Fir	11	**	1.08
1/6	White Fir	"	"	1.18
1/6	Larch	11	**	0.99
1/6	Hemlock	**	**	1.24
1/10	Douglas Fir	"	Strips	1.97
1/10	White Fir	11	**	2.13
1/10	Larch	11	**	1.67
1/10	Hemlock	**	11	2.24
1/6	Douglas Fir	11	**	1.17
1/6	White Fir	11	"	1.29
1/6	Larch	11	"	1.01
1/6	Hemlock	11	"	1.35

TABLE V-10.3.--Patching productivity.¹

¹Estimated figures or based on small sample.

VI. PRACTICAL IMPLICATIONS

The practical usefulness of the preceding formulation (or any other formulation) depends on two important considerations which must be taken into account before any attempt can be made to implement the proposed method. The first consideration is the improvement that can be expected over the present method of scheduling and second, the cost of implementation, in particular, the cost of computing time required to obtain a solution to the problem.

The first consideration is not by any means easy to evaluate because means for measuring scheduling effectiveness are not generally available. Moreover, the proposed method has to be tried and tested for a long enough period before a comparison can be made. Such parameters as (i) unit processing cost, (ii) weekly production "through-put," or (iii) lateness in deliveries, can possible be used to measure scheduling effectiveness. However, it should be borne in mind that the magnitudes of these parameters could change, not as a result of a change in scheduling techniques, but due to some other factors.

There is no question that current methods can be improved upon. This conclusion comes from knowledge that

materials are every now and then misapplied, from observing frequent slowdown in production because sufficient lead time was not allowed in preceding operations, from observing the pile-up of in-process inventories because activities at various processing centers were not coordinated properly, and from similar omissions that every now and then hinders the productivity of the mill. But whether or not the improvement can be effected at a relatively smaller cost to make implementation economically feasible is another matter. Indeed, in any industrial innovation, it is the "pay-off" that is the deciding factor. Consequently, it is possible for an improvement to be practical in one application and impractical in another if the dollar savings in one is more than the other, although the size and complexity of the problem in both cases are comparable.

The cost of computation (which for practical purposes represents the cost of implementation) can be easily estimated because the running time for any given size of a problem does not vary very significantly from one run to another. Thus, given the expected cost of computation, the question that remains to be answered is whether it is less than the savings it is anticipated to make.

The scheduling problem of the mill as formulated in Chapter V would result in a linear programming matrix of dimensions in the order of 3000 rows by 5000 columns. The matrix, however, is sparse with a density of approximately

0.53 percent. From past experience on the UNIVAC 1107, it is estimated that the model would entail a computation time of approximately two hours for each weekly schedule and, depending on where it is run, may cost anywhere from \$600 to \$1000 a run. The question then becomes: Would the expected improvement be worth more than \$1000 a week? Initially, of course, this question can be answered only in somewhat vague terms. However, a production manager who has been keeping an eye on inefficiencies or deficiencies in the mill should be able to answer the question emperically with reasonable accuracy.

V-1. The Static Case

The company for some time had been trying to formulate a computer model of a "veneer scheduler" which in effect would determine the quantities of materials (logs and veneers) that would be required by a given order file. In effect, the information to be obtained from the model would be a summary of material requirements for the whole week. Undoubtedly, there would be questions raised as to the usefulness of such information. Admittedly, a lot still remains for the production scheduler to do as far as making specific machine time allocations is concerned. But the information to be derived from such a veneer scheduler will serve a very useful purpose of a guide for quantity requirements of each type of material.

The same type of information can be obtained from the model outlined in Chapter V with very little modification. This is easily done by taking the period equal to the planning horizon, i.e., a week, and making adjustments in the lead times required by each processing center. This is what might be referred to as the static case and was considered an excellent starting point for evaluating the value of the model. The static model as formulated for the mill can be found in Appendix E. It is intended to be run at the beginning of each week with the order file and initial inventories as inputs. Its solution consists of two stages.

VI-1.1. Phase I

The first stage is the determination of the lay-up schedule, i.e., the quantities of each product that are required to satisfy the order file, and of the corresponding quantities of veneers that will be required. The following are the factors considered in the calculation of the lay-up schedule:

- Products already on inventory at the beginning of the week
- 2. Allowances to be made for product falldown
- 3. The order file

Because pressing is done by the press loads, viz., in multiples of 60's for 1/4- and 3/8-inch plywood or 30's for 1/2-inch or thicker plywood, the initial lay-up schedule together with other pertinent data is shown in Appendix B. Corresponding veneer requirements are shown in Appendix C.

VI-1.2. Phase II

Given the veneer requirements shown in Appendix C, the next step is to determine how best these veneers can be made available at the spreaders. This is accomplished with the model shown in Appendix E. The matrix has 491 rows and 927 columns and takes about 11 minutes of computer time on the UNIVAC 1107. The information obtained from the solution includes (i) production schedules for each processing center, (ii) outside veneer required to balance what is available from the raw material against the requirements of the order file, and (iv) veneer requirements that cannot be met during the week and must be backlogged. Valuable information can also be obtained from the dual solution of the problem. The most important of these is the information on machine capacities that are expected to be inadequate (as far as the current order file is concerned), thereby giving the scheduler an opportunity to make necessary arrangements for overtime and other similar adjustments. The production schedule corresponding to veneer requirements indicated in Appendix C is shown in Appnedix D.

VII. CONCLUSIONS

The discussion in Chapters III, IV and V outlines a procedure by which a scheduling problem involving assembly may be modelled mathematically so that a realistic schedule can be derived from its solution. The procedure is built around the premise that alternatives are selected over other alternatives on the basis of cost, within the limitations of machine and storage capacities. To illustrate in part the behavior of the model, we assume a situation in which there is a demand for C centers at the spreaders. Specifications allow the use of Douglas fir, larch, white fir, spruce, ponderosa pine, or hemlock for centers. Normally, the model would choose the most economical source of C centers, since the objective is to minimize total processing cost. Assuming that there are sufficient machine capacities available, it would probably call for a peel of such less expensive material as ponderosa pine or spruce even if there is already available on inventory C grade of Douglas fir. Douglas fir, of course, has more valuable applications. Suppose, however, that there is a shortage in dryer capacity. Then the model would be constrained to use Douglas fir veneer (sustaining a higher material cost because of capacity limitations) or backlog

the demand for \underline{C} centers and suffer a corresponding penalty cost, whichever is the cheaper. On the other hand, if \underline{C} grade of hemlock were also available from inventory then hemlock would be selected since it is a less valuable material than Douglas fir.

It is clear that the behavior of the model is highly dependent on the relative "costs" associated with each activity or input; therefore, it is important that these "costs" be accurately determined or appropriately chosen. It is highly debatable whether what is referred to here as "cost" is truly cost or a combination of cost and value. In certain cases it can be actual direct processing and material cost, in other instances, a combination of processing cost and value (of material) is more appropriate. For example, in applications where more than one species are equally acceptable (such as the previous example), actual cost or a combination of processing cost and value can be used. However, if the choice were between materials of the same species but of different grades, the picture changes somewhat. Accounting practices in the mill considers actual cost of C and D veneer of the same species to be the same, the processing cost being the same for both grades and there being no accurate method of allocating the cost of material to various grades recoverable from the log.

The model as formulated in the dynamic case (Chapter V) or the static case (Appendix E) is rather formidable in

size. Questions might, therefore, be raised regarding the efficiency of the method here proposed for describing scheduling problems. It is difficult at this point to assess the efficiency since there is no basis for comparison. However, it can be pointed out that the problem modelled is not an idealization of reality but an actual problem that involves 152 basic products that are assembled from 43 basic veneer types, 210 dry veneer in-process inventories, 50 green veneer in-process inventories, and 6 processing centers. A typical week might involve 20 customer orders (jobs) each requiring one to ten of the 152 products that the mill manufactures. Surely by any standard, the problem is not trivial.

The model, however, can be simplified by excluding certain activities or inputs that can never or very remotely will ever be chosen over other alternatives; for example, sawing 27-inch <u>C</u> grade of Douglas fir for core (Appendix E, BSI, column 1234) or edge gluing <u>D</u> grade of 7/32 spruce strips (Appendix E, EGI, column 1209). Another possibility is consolidating certain veneer in-process inventories that can be combined; for example, combining all inventories that are 54 inches wide (Appendix E, VI54 and VRFX-X, VRC8-X) and combining all core inventories (VIC4 and VRC4-X). It is estimated that the number of variables can be reduced by about 20 to 30 percent if the above possibilities are undertaken. It will, however, require careful study and

time to make sure the removal of these variables does not impair the effectiveness of the model.

Any mathematical model is only as good as the data fed to it. The static case presented in Appendix E was constructed with some estimated figures. While these figures were chosen with care and are believed to be realistic, they still remain estimates of certain production statistics that were not readily available at the time the model was formulated. The following are the data in the model that need upgrading:

- 1. Recoveries at the edge gluer.
- 2. Productivity of the edge gluer for each species and each thickness.
- 3. Productivity of the Riamann veneer patchers.
- 4. Falldown figures for sanded products.
- 5. Processing cost at each production center.

The production schedule presented in Appendices B, C and D was obtained from a computer run using actual data. These results were discussed with production people to determine whether or not they are reasonable in the light of what might be expected from usual methods of scheduling. The major difference was in the tendency of the model to bring in outside veneer (through purchase) even before machine capacities are exhausted as contrasted with the usual tendency of peeling all veneers that can be peeled until machine capacities run out. This difference was traced to the fact that it is the policy of the mill to utilize its resources (logs and machines) whenever it can without too much regard to the resulting in-process inventories on the floor. The model, on the other hand sees to it that levels of in-process inventories on the floor do not exceed the prescribed maximum. We point out that bringing in outside veneer is a good way to balance the veneer grades obtainable from the logs against the requirements of the order file, thereby minimizing extraneous veneers not needed for production.

The model also has a greater tendency to up-grade veneers (through edge gluing) than what is normally done. No comments, however, can be made regarding the logic of this tendency until more accurate data from the edge gluing operation is available, viz., productivity of the edge gluer for each species and grade, recoveries for each grade and edge gluing costs. APPENDICES

APPENDIX A

٠

LIST OF VECTORS AND VARIABLES

 Y_{110} Vector--Log inputs to 8-foot lathe

1. 2. 3. 5. 7.	Doug] White Spruc Larch Ponde Hemlo Doug]	as Fi Fir e rosa ock las Fi	lr Pine Ir	peel " " " peel	to " " " " to	1/10 " " " 1/6t)th		
8. 9. 10. 11.	White Spruc Larch Ponde Hemle	Fir e i erosa	Pine	11 11 11 11	17 17 17 17 17	11 11 11 11			
13. 14. 15.	Spruc Ponde Hemlo	e erosa ock	Pine	peel "	to " "	7/32	2nd		
Y ₂₁₀	Vecto	prLo	og input	ts to	001	re la	athe		
1. 2. 3. 5. 5. 7. 8. 9. 10.	White Spruc Ponde Hemic Spruc Ponde Hemic Ponde	Fir Fir ce ck ck ce cosa ck ce ck ce cosa ck	Pine Pine Pine	peel " peel " peel "	to " to " to "	1/6t " 7/32 " 5/16	2nd Sth		
Y ₁₂₀	, Y ₃₁₀), and	^z 820	Vecto	r(ireer	1 8-:	root	veneer
1. 23. 56. 890. 123. 156. 123. 156.	1/10 "" "" "" "" "" "" "" ""	Doug] White Spruc Larch Ponde Hemlo	Las Fir "Fir " " " " " " " " " " " " " " " " " " "	52 s 52	4s 7trin 7trs in 7trs in 7trs in 7trs in 7trs in 7trin 7trin	os os os os			

(Continued)

19.	1/6	Douglas Fir	54 s
20.	11	"	27 s
21.	**		strips
22.		white fir	54S
23.	11	11	2/5 strins
25.	11	Spruce	54s
26.	TT	11	27 s
27.	11	11	strips
28.	11	Larch	54s
29.	**	**	27 s
30.	**	Dendemore Pin	Strips
3⊥• 30	11	"	27g
33.	11	**	strips
34.	11	Hemlock	54 s
35.	11	"	27s
36.	11	11	strips
37.	7/32	Spruce	54 s
38.	**	**	27s
39.			strips
Y	and Y	Yu. Vectors	Fish tails
-121		-415	
1.	1/10	Douglas Fir	
2.	1, 10	White Fir	
3.	11	Spruce	
4.	11	Larch	
5.	11	Ponderosa P	ine
6.	7 10	Hemlock	
<i>[</i> •	1/0	Douglas Fir White Fir	
0. Q	11	Spruce	
10.	11	Larch	
11.	11	Ponderosa P	ine
12.	11	Hemlock	
13.	7/32	Spruce	
14.	**	Ponderosa P	ine
15.		Hemlock	
¥ ₀₃₇	• ^Y 370	, and Z_{830} Ve	ctorsPurchased green veneer
	1 7 7 64	-n UOUCTAS F	
2	1/100		" CD

 Y_{120} , Y_{310} , and Z_{820} Vectors (continued)

^Y 221 '	Y ₃₂₀ ,	and	^Z 810	VectorsGreen	core
COLUMN TWO IS NOT THE OWNER.					

 1/6th White Fir rand "Spruce" "Pond. Pine" "Hemlock" 7/32 Spruce "Pond. Pine" "Hemlock" 5/16 Spruce "Pond. Pine" "Hemlock ' 	lom width """ """ """ """ """" """
--	--

Y_{034} , Y_{380} and Z_{800} Vectors--Green core from fishtails

1.	1/10th	Douglas Fir	random	width
2.	11	White Fir	**	11
2	**	Spruce	11	11
۰ د ال	"	Tomob	11	11
4.		Larch		••
5.	**	Pond. Pine		11
6.	11	Hemlock	11	11
7	1/6th	Douglas Fir	**	11
6.	17 0 0 11	White Fin	11	11
0.		WILLCE FIL		.,
9.	11	Spruce		
10.	11	Larch	11	11
11	11	Pond, Pine	11	11
12	"	Hemlock	11	11
12.		nemiock	"	11
13.	7/32nd	Spruce		
14.	**	Pond. Pine	11	11
15	11	Hemlock	11	11
エノ・				

Y_{330} , Y_{100} , Y_{200} , Z_{840} , Z_{890} and Y_{430} --Dry core

1.	1/10th	C solid	random "	width "	
2.	11	C		"	
3.	11	D			
4.	11	NC	11	11	
5	1/6th	C solid	11	11	
5.	1/0011	0 00114	11	11	
0.			11	11	
7.	11	D	.,	11	
8.	11	NC			
9.	7/32nd	C solid	11	11	
10	17 52114	C	11	11	
11	**	0	11	11	
11.		D	11	11	
12.	11	NC	••	.,	
13.	5/16th	C solid			
٦4.	11	С	TT	11	
<u>ז</u> ה	11	Ū	11	11	
10.	,,	NO	**	11	
TO.		NC			

1.	1/10th	Douglas Fir	ABCp
2.	11	n n	C -
3.	11	11 11	D
4.	11	11 11	NC
5.	11	White Fir	ABCp
6.	**	11 11 11 11	C
7.	**		D
8.	**		NC
.9.	**	Spruce	ABCP
10.		11	
11.	11	11	
12.	11	Lanch	ABCD
エラ・ コル	11		ADCD C
15	11	11	D
16	11	**	NC
17	11	Pond. Pine	ABCp
18.	11	11 11	C
19.	11	11 11	D
20.	11	11 11	NC
21.	11	Hemlock	ABCp
22.	11	11	C -
23.	11	11	D
24.	11	11	NC
25.	l/6th	Douglas Fir	ABCp
26.	11	11 11	C
27.	11	11 11	D
28.	ŤŤ	11 11	NC
29.	11	White Fir	ABCp
30.	11	•• ••	C
31.		11 II	
32.	**	0	ABCD
33.	••	Spruce	ADCD
34.	11	11	
35.	11	11	NC
30.	11	Iarch	ABCp
2/.	11		C
20.	ŦŤ	11	D
ンフ・ 山口	11	11	NC
чо. Дп	11	Pond. Pine	ABCp
42	11	11 11	C
43.	11	17 11	D
44	11	11 11	NC
45	11	Hemlock	ABCp
46.	11	11	С
47.	11	11	D
48.	11	"	NC
-		(continued)	

 Y_{340} , Y_{410} and Z_{850} Vectors--Dry strips

Y ₃₄₀	Y410	and Z ₈₅₀	Vectors	(continue	ed)
49 5555555555555555555555555555555555	7/32nd " " " " " " " " "	d Spruc " Pond." " Hemlo "	e Pine " " ck	ABCp C D NC ABCp C D NC ABCp C D NC	
Y ₅₁₀	Vector	Strip	input to	edge glue	er
Same	as Y ₃₁	10, escep	t withou	t NC grade	es.
Y ₃₅₀	Y420	, and Z ₈₆	0Dry 2	7-inch ver	neer
Ident	ical w	vith Y ₃₄₀	vector		
^Ү 520	Vector	27-inc	h veneer	input to	edge gluer
Ident	ical v	vith Y ₅₁₀	vector		
Y ₃₆₀	, Y ₄₄₀ ,	, and Z ₈₇	0 Vector	Dry 54-:	inch veneer
Ident	ical w	vith Y ₃₄₀	vector		
^Y 300	and Zg	00 Vecto	rsCent	ers	
1. 2. 3. 5. 78. 9.	1/10tr " 1/6th " 7/32nd	n C Any D " NC " C " D " NC " A C " D " NC "	species " " " " " " "		
Y ₄₀₀	and Z _g	910 Vecto	rFaces	and Back	3
1. 2. 3. 4. 5.	1/10tr " " "	Doug.	Fir/Larc " " " ued)	h A B Cj C D	þ

Y400	and Z ₉₁₀	VectorFaces and Backs (continued)
6. 7. 8. 9. 10. 11. 12. 13.	1/10th "" " 1/6th "	Wh. Fir/Hemlock Cp "C D P. Pine/Spruce C "D Wh. Fir/Hemlock Cp "C D D D
Y Y011 Y013	54-inch 27-inch	C center input to spreaders, and C center input to spreaders
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	1/10th "" " 1/6th "" 7/32nd ""	Doug. Fir White Fir Spruce Larch Ponderosa Pine Hemlock Douglas Fir White Fir Spruce Larch Ponderosa Pine Hemlock Spruce Ponderosa Pine Hemlock
Y ₀₁₂ Y ₀₁₄	27-inch 54-inch	D center input to spreaders, and D center input to spreaders
Ident	tical with	Y_{011} and Y_{013} , except it is D grade
Y Y015 Y016	27-inch 54-inch	NC center input to spreaders, and NC center input to spreaders
Ident	tical wit)	n Y_{011} and Y_{013} , except it is NC grade
Y 021	54-inch	D back input to spreaders
Ident	tical wit	r Y ₀₁₄
Y ₀₁₇	54-inch	C back/face input to spreaders
Ident	tical wit	n Y _{Oll}

^Y 612	54-incr	ABCp	input	to pat	chers	
1. 2. 3. 5. 7. 8.	1/10th " " 1/6th "	Dougla White Hemloo Larch Dougla White Larch Hemloo	s Fir Fir k s Fir Fir	ABCr " " " ")	
^Y 624	edge g]	Lued C	grade	, 54-ir	nch ver	neer
1. 2. 3. 4. 5. 6. 7. 8. 90. 11. 12.	1/10th "" " 1/6th ""	Dougla White Spruce Larch Pond. Hemloc Dougla White Spruce Larch Pond. Hemloc	s Fir Fir Pine k s Fir Fir Pine k	C " " " " " " " " " " " " " " " " " " "		
^Y 038	, ^Y 630 ar	nd Z ₈₈₀	Pur	hased	dry ve	eneer
1. 2.	1/10th "	Dougla "	ıs Fir "	AB CD		
¥ ₅₃₁	Edge gl	Lued 54	-inch	ABCp		
1. 34. 56. 890112 134. 156.	1/10th "" 1/6th "" 1/10th "" 1/6th ""	Dougla White Larch Hemloo Dougla White Larch Hemloo Dougla White Larch Hemloo Dougla White Larch Hemloo	s Fir Fir Fir k s Fir Fir k s Fir Fir k s Fir Fir	edge " " " edge " " " " "	glued "" " " glued " " " " "	27's "" "" "" strips "" "" ""

 Y_{534} and Y_{625} --Dry veneer waste, goes to hogs

Y₅₃₃--D centers originating from edge gluing process

1. 1/10th D grade Mixed species 2. 1/6th " " " " APPENDIX B

•

LAY-UP SCHEDULE

					5 ply	2 1	, 1	n D D V D V	2 4	-		1	5 ply				5 ply	Larch	Larch	Larch	Larch).	Larcn /Tarch	Larch	'Larch	Larch	Larch	>
ict otion	년 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ካተ የ የ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	н 1 1 1 1 1 1	1 1 1 1 1 1 1	F1r r	4 1 1 1	ት ት ት ት	ЧГ	Fir	Fir	Fir	น ร 	ц к ц Б	4 4 4 4 4	Fir	Fir	F1r/	Fir/	F1r/	F1r/	ORM D	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Fir/	F1r/	F1r/	ער היד א	•
Produ escriț	Doug	Doug	Doug	Doug	Doug	Doug.	nong	Doug. Doug.	Doug.	Doug.	Doug.	Doug.	Doug		Doug	Doug.	Doug.	Doug.	Doug.	Doug.	Doug.	B/TRUF		Doug.	Doug.	Doug.	Doug.	
Ă	3/8 AA	1/2 AA	3/8 AC	1/2 AC	3/4 AD	1/4 AD	3/0 AU	3/4 AD 3/4 BB	1/4 BC	3/8 BC	1/2 BC	5/8 BC	3/4 BC	UU 4 4/7 UU 4/8/8		5/8 BD	3/4 BD	1/4 BC	3/8 BC	1/2 BC	3/4 BC	3/4 BUI	יט או/ א	3/8 CD	1/2 CD	5/8 CD	3/4 CD	
Ending Inventories	113	50 424		24 518	0 00 T	0 L M	С Ч Т	30 17	69	342	1411	88	1823 02	20	153 153	25	484	32	14	16	2	268	30 L	176	II	159	372	
Lay-up Schedule			240	540	60	240		2460										540	240	270	510				3000			
Exact Panel Requirements			237	516	52	210	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2443)									508	226	254	508				2989			
Order File for Week		396	264	330	264	264		3300 3300)					8	0			396	176	198	396				3102			
Beginning Panel Inventories	113	820 820	112	л В	231	717 71	77	1517	69	342	1411	0 1 2 2 1	с <i>ь</i> /. h h T	- 00	153	25	483					268	30 L	176	574	159	372	
.

97 White Fir/Hemlock White/Fir/Hemlock PTS UDL " " White Fir/Hemlock F1r/Hemlock White Fir/Hemlock F1r/Hemlock 5/8 CD PTS UDL " " 5/16 CD P. Pine/Spruce 3/4 CD " 5/16 CDNC Pine/Spruce 3/8 CDNC " 1/2 CDNC " 5/8 CDNC " 3/4 CDND " Tilemate REG 1-1/8 2-4-1 REG 1-1/8 TRUFLOOR REG F1r/Larch Fir/Larch F1r/Larch UDL Doug. = 5/8 CD PTS SUDL D. PTS UDL W. PTS UDL W. UDL D. " JUU Mixed Shop Sanded Shop Rough Shop Shop Sanded PTS PTS PTS PTS = = = = 888 8888 S -1/8 8858 8858 л487 13/82 5/8 3/4 3/4 14 L2280633 L22807 L20807 L20807 L20807 L20807 L20807 L20807 L20807 L20807 L20807 L2080 743 1020 117 338 267 25 14 128 29 4440 4114 71 1367 1020 260 390 360 120 379 1006 256 335 106 963 792 846 220 318 396 88 29 1020 117 338 267 120 128 142 77 1367

APPENDIX C

VENEER REQUIREMENTS

Quantity#	Thickness	Species	Grade	Use/Type
11.8932	1/10	D.Fir/Larch	ВСр	Face/Back
37.9894	1/10	D.Fir/Larch	С	11
24.4638	1/10	"	D	11
3.2118	1/10	W.Fir/Hem.	BCp	"
14.4718	"	"	С	"
17.6836	"	**	D	11
10.0750	"	Doug. Fir	А	11
38.3776	**	11	вСр	**
3.6401	11	11	C	"
3.0903	**	11	D	**
39. 8792	11	Mixed Species	D	Center
49.4737	1/6	11	С	"
3.6300	**	11	D	"
16.8483	1/10	11	С	Core
56.8064	11	11	D	**
4.3742	1/6	"	C soli	d "
35.4826	11	"	D	"
114.8121	7/32	"	С	Core
9.5260	11	"	D	"

*****M3/8

APPENDIX D

PRODUCTION SCHEDULE FOR WEEK

Beginning Veneer Inventories

41.470 46.613 48.560 194.320 179.840 37.870 148.900	<pre>1/10 Larch 1/6 Spruce 1/6 Spruce 1/10 Pine 1/6 Pine 7/32 Pine 7/32 Mixed</pre>	54s D 54s C 54s D Strips Strips Strips D Core	NC D D
697.5 73 M3/8			

8-ft Lathe

56.770	MBF	Larch peel to 1/10
37.280	11	Hemlock peel to 1/10
101.630	11	White Fir peel to 1/6
74.560	11	Spruce peel to 7/32

4-ft Lathe

11 160	הד רייצ	White	E i v	nool	+ ~	1/6
11.160	MBF	White	Fir,	peei	το	T/0

Purchased Veneer

16.450 M3/8	Douglas	Fir,	green,	1/10	AB
5.59 "	Douglas	Fir,	green,	1/10	CD

Band Saw

38.010	M3/8	7/32	Spruce	54s C
35.490	11	7/32	Spruce	54s D
1.41	11	1/10	Larch	27s C
21.15	11	1/10	Larch	27 s D
5.69	**	1/10	Hemlock	27s C
32.33	*1	1/6	White Fi	r 27s D
30.65	11	7/32	Spruce	27sC
7.06	11	1/10	Larch St	rips C
21.43	11	1/10	Larch St	rips D
1.61	11	1/10	Hemlock	Strips C
12.43	11	1/10	Hemlock	Strips D
3.15	11	1/6 W	hite Fir	• Strips D
9.66	71	7/32	Spruce S	Strips C
9.53	11	7/32	Spruce S	Strips D

Edge Gluer

3.26	M3/8	1/10 Larch 27s ABCp
10.30	11	1/10 Larch C
0.74	**	1/10 Hemlock ABCp
4.55	**	1/10 Hemlock 27s C
2.80	**	1/10 Hemlock 27s D
3.80	**	1/6 White Fir 27s ABCp
1.15	**	1/10 Larch strips ABCp
0.63	11	1/10 Hemlock Strips D
0.47	**	1/6 White Fir strips ABCp
20.27	11	1/6 White Fir strips D
179.84	11	1/6 Pine strips D

Raimann Patchers

12.75	M3/8	1/10 Larch 54s ABCp
2.62	11	1/10 Larch 543 ABCp (from edge glued 27s)
5.64	11	1/10 Douglas Fir 54s AB
8.37	"	1/10 Douglas Fir ABCp 54s
28.86	**	1/10 Douglas Fir 54s ABCp (edge glued 27s)
3.50	11	1/10 Hemlock 54s ABCp

APPENDIX E

YAKIMA PLYWOOD MILL SCHEDULING MODEL January 1967 CODE FOR READING THE LP1107 OUTPUT (Next 31 pages)

NOTES:

- 1. All veneers are given in 1000 SF 3/8 (MSF3/8) and all logs are in 1000 bd. ft. (MBF).
- Productivity coefficients are in Hrs. per MSF3/8 (dryers, patchers, edge gluer, etc.) and Hrs. per MBF (lathes).
- 3. Products are in number of panels.
- 4. To use MATRIX GENERATOR II
 - a. Beginning panel inventories and order file (in panels) are punched within the first 10 columns. The product number (row number) is punched in the next 5 columns (ll to 15) right justified.
 A 1 must be punched in column 20 to indicate that it is an element of a vector.

Example: (Format is F10.4,215)

264.0 25 1 to indicate that 264 panels of 3/8 BB is on the order file or beginning inventory, as the case may be.

b. The generator outputs cards in a format compatible with the format required by the LP1107 routine. The first card is a FIRST B card and the last card is an EOF card. Since a FIRST B and EOF cards are already in the LP routine from previous runs, make sure they are not duplicated.

		Objective Punction VRP8 VRV1 } Processed VRC8 } Veneers	VI54 - Veneer V127 Veneer V1RD } Inventories V1C4	Lathe 8 Lathe 4 DRYERS Vencer Storage Edge Gluer Baudsaw Ralmanna	Initial Veneer Inventories
		Minimum VRP8 ' VRP3 ' VRC8 ' VRC8 '		100 88 960 900 100 100	VI54-I VI27-I VIRD-I VIC4-I
		0.8.9.8.8		<u> </u>	
1922-1927	9014	. X	-K2		
1261-9061	I-401A		. 40		Χ Ά
9061 - 9181	I-CHIV		Er.		. 🗳
5787-9827	1-75IV		J2		2
5871-SOTI	I-7SIA		F		¥
T0/1-7891	X-#CRV	41 -	T		
≦89 1- 4291	X-80AV	EI-	H		
9291-2291	X-X38V	-12	r. F		
T∠9I-699T	X-8397	L:-	Ę		
891 - 891	AICH-E		- UB	7	
3+91-2851	AIRD-E		- n2	3	
7653 - 7785	3-281%		- né	A.2	
1:436-1255	AI2d-E		- n2	ş	
1#23-1#38	ABC#-B	чн 1		•	
2541-4141	e-80AV	н3 U3			
£tηt~60ηt	А-ХЯЯУ	H2 U2			
60#1-9681	e-934V	LH IN			
£6€T-98€T	rI1		S	2.2	
≤851-1781	813		S1 S3 S4 S4		
0261-6961	PGV	C6	M7 M8 M9	Ê	
89ET-29ET	PDV	C5	D2		
9987-8987	XI9A	67 80	-D6	4¢	
7338-7365	IAA	NS SS S	-D5	5 B	
1222-1332	ISE	C2 C2	F7 -64	Г ⁸	
1216-1221	EGIX	и6 М4 М4	- F4	17	
1132-1512	EGI	v5 M1 M2	F6 - F3 - G2	Р Г Г	
nETT-6TTT	40TV	cı 🥻	- P2		
9111-2601	ATC8	v3 B3	-D7 -F2		
1028-1031	XIIV	N3 KS	- 104		
1001-1051 cornwuz	84TV	V1 A3	-D3		
	ROMST	2-14 15-19 20-28 29-44	45-128 129-188 189-248 249-264	265 2667 268 269 269 269 271	272-355 356-415 416-475 476-491

106

YAKIMA PLYWOOD MILL MODEL

ROW DESCRIPTION

VRF8 (D. Fir/Larch face veneer requirements)

Row No.

Description

1 2 3 4 5 6 7 8 90 11	Objectiv 1/10 " " " " " " 1/6 "	ve function Doug.Fir/Larch " Wh. Fir/Hemlock " P. Pine/Spruce " Wh. Fir/Hemlock "	54s "" " " " " "	BCp C D C D C D C D BCp C D
13	**	P. Pine/Spruce	11 11	C D
14 VRFX	(Doug. Fir	face/back veneer re	quirements)	
15 16 17 18 19	1/10 " " "	Doug. Fir " " P. Pine	54s " "	A BCp C D C
VRC8	(Center ve	neer requirements)		

С
С
,
)
IC

VRC4 (Core veneer requirements)

29	1/10	Mix	Random	C solid
30	11	11	11	С
31	**	11	11	D
32	fT	11	11	NC
33	1/6	TT	**	C solid
34	11	11	11	С

Row No.

Description

VRC4 (Core veneer requirements continued)

~ F	7/6	Mitr	Random	D
35	1/0	11	11	NC
30	7/22	11	11	C solid
37	(/) <	11	**	С
30	11	**	**	D
39	11	**	11	NC
40	5/16	11	**	C solid
4 L 20 0		11	**	С
42	**	11	**	D
43 44	11	11	**	NC

VI54 (54s Veneer inventory)

45	1/10	Doug. Fir	54s	ABCp
46	17 10		11	С
40 11 7	11	11	11	D
48	11	*1	11	NC
<u>ц</u> о	11	Wh. Fir	t t	ABCp
50	**		11	С
51	**	11	11	D
52	**	"	11	NC
53	11	Spruce	11	ABCp
54	**	11	11	С
55	11	11	**	D
56	**	11	**	NC
57	**	Larch	11	ABCp
58	11	11	11	C
59	11	"	11	D
60	**	11	11	NC
61	**	Pine	11	ABCp
62	"	11	11	С
63	**	"	**	D
64	**	"	**	NC
65	**	Hemlock	11	ABCp
66	**	11	**	С
67	11	11	11	D
68	**	11	**	NC
69	1/6	Doug, Fir	11	ABCp
70		11	11	C
71	**	"	11	D
72	11	**	11	NC
73	F1	Wh. Fir	**	ABCp
74	*1	11	11	c -
75	17	17		D
76	17	*1	11	NC
77	**	Spruce	11	ABCp
78	51	11	11	сſ
79	**	**	11	D

Rov	1 N	ο.

Description

80	1/6	Spruce	5/Le	NC
81	1,0	Lanch	945	
82	"		**	ABCD
82	11	"	**	
0)	"	11	11	
04	••	.		NC
85		Pine		ABCp
86	**	"	11	C
87	**	ŤŤ	**	D
88	11	tT	**	NC
89	**	Hemlock	11	ABCp
90	11	**	**	C
91	11	11	**	D
92	**	11	**	NC
02	7/22	Spruce	**	ABCD
95	1752	bpi uce	11	C
94		"	11	
95			,,	
96				NC
97	TT	Pine		ABCp
98	**	11	**	C
99	11	11	**	D
100	11	11	**	NC
101	**	Hemlock	11	ABCp
102	11	11	11	С
102	11	11	11	D
101	"	11	11	NC
104	1 / 1 0	Doug Fir	11	AB
105	1/10		11	Δ
106	••	D. Dia /Iomah	11	BCn
107		Doug. Fir/Larch	11	BCD
108	"	Wh. Fir/Hemlock	"	
109	1/6	Wh. Fir/Hemlock	"	D Contona
110	1/10	Mix	**	D Centers
111	1/6	11		
112	7/32	11	"	
113	1/10	Doug. Fir/Larch	**	ABCp (edge
<u>, , , , , , , , , , , , , , , , , , , </u>	_/			glued 27s)
ערר	11	Wh. Fir	11	** **
116	11	Larch	11	TT TT
116	**	Hemlock	11	11 11
	7 16	Doug Fir	11	11 11
	1/0	UL FIN	11	11 11
118			11	TT TT
119		Larch	11	11 TT
120	TT	Hemlock	**	" (edged glued
121	1/10	Doug. Fir		(capca piaca
			"	
122	**	Wh. Fir		11 11
123	11	Larch	11	
124	**	Hemlock	11	··· ··
125	1/6	Doug. Fir	11	··· ··
106	1,0	Wh. Fir	11	11 II 11
107	11	Larch	11	11 11
12(Hemlock	11	11 11
T58		NEWLOCK		

VI54 (54s Veneer inventory continued)

109

```
Row No.
```

Description

VI27	(27s venee	r inventory)		
129	1/10	Doug. Fir	27 s	ABCp
130	11		"	С
131	11			D
132	"			NC
133	11	WD. Fir	"	ABCD
125	11	11	**	
136	**	**	"	NC
137	11	Spruce	**	ABCD
138	11		**	C
139	11	**	**	D
140	11	**	"	NC
141	**	Larch	**	ABCp
142	tt	11	**	С
143	"	**	**	D
144	11	**	**	NC
145	11	Pine	••	ABCp
146	"		11	C
147	"	**	"	
148	**	II.em] o o la	11	ABCD
149	"	Hemlock	11	С
150	11	**	**	D
152	11	**	"	NC
152	1/6	Doug, Fir	11	ABCp
154	1,0		11	C
155	11	**	11	D
156	11	**	11	NC
157	"	Wh. Fir	11	ABCp
158	11	ft	11	C
159	11	**	11	D
160	11		11	ABCD
161	**	Spruce	**	C
162	**	11	**	D
103	11	**	11	NC
104	tt	Larch	**	ABCp
166	**		11	С
167	11	**	11	D
168	11	**	11	NC
169	"	Pine	11	ABCp
170	11	11	"	C
171	11	11	**	D
172	11	11	**	
173	11	Hemlock	11	С
174	TT	11	11	n
175	11	11	**	NC
176	11			110

•

Description

VI27 (27s veneer inventory continued)

177	7/32	Spruce	27 s	ABCp
178	11	- 11	11	c -
179	11	11	**	D
180	11	**	11	NC
181	11	Pine	11	ABCp
182	11	TT	**	c ·
183	11	11	**	D
184	11	11	11	NC
185	11	Hemlock	11	ABCp
186	TT	TT	11	c Î
187	TT	TT	11	D
188	11	TT	**	NC

VIRD (8 ft random veneer inventory)

189	1/10	Doug. Fir	Strips	ABCp
190	11	Ŭ 11	11	С
1 91	11	11	ŤŤ	D
192	11	11	11	NC
193	11	Wh. Fir	11	ABCp
194	11	·····	**	C
195	11	11	11	D
196	**	11	"	NC
197	11	Spruce	11	ABCp
108	11		11	C
100	11	"	11	D
200	11	11	**	NC
200	11	Larch	**	ABCp
201	11	11	11	C
202	11	11	11	D
203	11	11	11	NC
205	11	Pine	It	ABCp
205	tt	11	**	С
200	11	*1	11	D
207	tt	11	11	NC
200	11	Hemlock	**	ABCp
209	11	11	11	С
210	11	11	**	D
212	TT	11	11	NC
212	1/6	Doug, Fir	11	ABCp
213	17 0		11	С
215	11	11	"	D
215	11	11	11	NC
210	11	Wh. Fir	**	ABCp
218	**	11	11	C
210	11	11	17	D
220	**	**	**	NC
220				

•

Row	No.

Description

221	**	Spruce	Strips	ABCp
222	"	- 11	11	C
223	**	**	**	D
224	**	*1	11	NC
225	**	Larch	11	ABCp
226	**	11	11	С
227	**	11	11	D
228	11	"	11	NC
229	11	Pine	11	ABCp
230	**	11	11	С
231	11	"	11	D
232	ft	"	11	NC
233	11	Hemlock	**	ABCp
234	11	**	11	С
235	**	*1	11	D
236	11	**	11	NC
237	7/32	Spruce	11	ABCp
238	11	- 11	**	С
239	11	11	11	D
240	11	11	11	NC
241	tt	Pine	11	ABCp
242	**	11	11	С
243	11	11	11	D
244	**	11	11	MC
245	11	Hemlock	11	ABCp
246	**	11	11	С
247	11	11	11	D
248	TT	"	11	NC
VICL	lacme ver	eer inventory)		
VIC4	(0016 /011		- I	
249	1/10	Mix	Kandom	U SOLIA
250	11	11	••	U D
251	11	11	**	
252	11	11	11	nu C solid
253	1/6	"	11	
254	11	"	11	
255	11	11	11	NC
256	**	"	11	
257	7/32	"	11	C SOLLO
258	11	17	11	
259	11		11	NC
260	11	11	11	
261	5/16	"		C SOLIC
262	11	11	••	
263	**	11		
264	**	11		NC

VIRD (8 ft random veneer inventory continued)

Row No.

Description

CAPACITY Constraints

ers

BEGINNING VENEER INVENTORIES

272	1/10	Doug. Fir	54s	ABCp
273	**	11	**	
2/4	11	11	11	NC
215	11	White Fin	11	ABCD
210	11	WHICE FIL	**	C
278	**	11	**	D
270	11	11	11	NC
280	**	Spruce	**	ABCp
281	**		11	С
282	**	11	**	D
283	**	"	11	NC
284	**	Larch	11	ABCp
285	**		11	С
286	**	**	**	D
287	11	11	11	NC
288	**	Pine	11	ABCp
289	**	11	11	С
290	**	**	11	D
291	**	11	11	NC
292	**	Hemlock	11	ABCp
293	11	"	**	С
294	**	11	"	D
295	11	11		NC
296	1/6	Doug. F'ir		ABCp
297	11	**	11	C
298	**	11	11	
299	11	**	11	
300	11	White Fir	11	АБСР
301	**		11	С П
302	**	••	11	NC
303	11		11	ABCn
304	11	Spruce	"	X
305	**		11	D
306	11	11	11	NC
307	11	Tamah	**	ABCp
308	11		11	C
309	11			-

Row	No.

Description

310	1/6	Larch	54 s	D		
312	11	Pine	**	ABCD		
313	11	11	11	C		
314	11	**	11	о Л		
315	**	"	**	NC		
316	11	Hemlock	**	ABCp		
317	11	11	11	C		
318	11	11	**	D		
319	**	TT	**	NC		
320	7/32	Spruce	**	ABCp		
321	11	- 11	**	С		
322	11	11	**	D		
323	11	"	**	NC		
324	11	Pine	**	ABCp		
325	11	"	**	С		
326	11	"	**	D		
327	**	"	**	NC		
328	11	Hemlock	11	ABCp		
329	**	11	11	C		
330	**	"	**	D		
331	tt	"	11	NC		
332	1/10	Doug. Fir	**	AB		
333	11	11	**	A		
334	11	Doug. Fir/Larch	"	ВСр		
335	11	White Fir/Hemlock	**	••		
336	1/6	11			4	
337	1/10	Mixed	Mix	D cer	nters	
338	1/5	**		••		
339	7/32	**		4 D 0-	1	
340	1/10	Doug. Fir	54 s	АВСр	(eage glued	27s)
3/11	11	White Fir	**	**	11	
342	**	Larch	**	11		
343	11	Hemlock	11	11		
344	1/6	Doug. Fir	11	**		
345	1 / 0	White Fir	11	**		
346	**	Larch	11	11	••	
347	**	Hemlock	11			
348	1/10	Doug. Fir	**	ABCp	(edge glued	strips)
240	**	White Fir	11	11	11	
250	11	Larch	**	11	11	
321	11	Hemlock	**	11		
350 J)T	176	Doug. Fir	11	11	**	
352	1,0	White Fir	11	"	••	
355 354	11	Larch	11		**	
355	tt	Hemlock	**			

Ro	W	No	э.

Description

(27s Veneer)

356	1/10	Douglas Fir	27 s	ABCp
357	••			C
358				D
359	"			NC
360	11	White Fir	**	ABCp
361	11	11		С
362	**	**	**	D
363	11	11	**	NC
364	11	Spruce	**	ABCp
365	11	TT	**	С
366	11	TT	**	D
367	11	11	11	NC
368	11	Larch	**	ABCp
369	11	11	**	С
370	11	11	11	D
371	11	**	17	NC
372	11	Pine	**	ABCp
373	**	TT	**	С
374	11	11	**	D
375	11	11	11	NC
376	fT	Hemlock	**	ABCp
377	tt	11	**	С
278	**	11	**	D
270	11	11	11	NC
290	1/6	Douglas Fir	**	ABCp
200	1/0		**	сÌ
201	11	11	**	D
302	11	11	11	NC
303		White Fin	**	ABCp
304		WIIICE FII	11	С
305		11	11	D
385		"	**	NC
387	••		**	ABCp
388	••	Spruce "	**	C
389		11	**	D
390		11	**	NC
391	11	Tanah	**	ABCD
392	11	Larch	11	C
393	11		11	D D
394	11	**	11	NC
395	11		11	ABCD
396	11	Pine	11	C C
397	11		**	n
398	11	**	11	NC
399	**	11 	11	ARCn
400	11	Hemlock	tt	C VDCD
401	11	11		
402	11	11	••	NC
403	11	T		110

Row No.

Description

(27s Veneer continued)

404	7/32	Spruce	27s	AECp
405	17	- 11	11	с ⁻
406	**	11	11	D
407	11	TT	**	NC
408	fi	Pine	**	ABCp
409	17	11	ti	C
410	11	11	11	Ð
411	17	11	**	NC
412	ti	Hemlock		ABCp
413	1:	11	<u>۴</u> ۰	С
414	11	11	11	D
415	11	**	11	NC

(Strips)

416	1/10	Douglas Fir	Strips	AECp
417	۴۲	fì	**	C
418	7	11	11	L
419	11	11	11	\mathbf{NC}
420	1/10	White Fir	 	AECp
421	tu)	11	**	С
422	₹1	11	11	D
403	117	11	**	NC
424	11	Spruce	1	ABCp
425	: •	11	- 1	С
125	71	: •	13	D
127	*r	11	11	NC
128	11	Larch	1	ABCp
420	11	11	1,	C
425	**	**	t i	D
450	**	**	1.	NC
431 100	11	Pina	1.	ABCp
432 100	11	11	5 T	C -
455	 1 1	11	11	D
434		1 R	π,	NC
435		Homloal	11	ABCp
- 35	.,	nemitock	:1	C
437	11	11	17	D
438		11	11	NC
439			.1	ABCr
440	1/0	Dougras Fir	17	C
441	11	11	11	D
442	¥T	11		NC
443	/1		11	ABCD
444	fi -	White Fir	1	C
445	11		11	ŭ
446	18	14	1;	NC
447	11			

Row No.

Description

(Strips continued)

.448	1/6	Spruce	Strips	ABCp
449	11	- 11	"	C -
450	TT	11	**	D
451	11	11	**	NC
452	**	Larch	**	ABCp
453	**	**	**	с
454	11	11	**	D
455	11	11	11	NC
456	11	Pine	11	ABCp
457	11	11	**	C -
458	**	11	**	D
459	11	**	**	NC
460	**	Hemlock	**	ABCp
461	tt	11	**	C
462	**	**	11	D
463	tt	11	**	NC
464	7/32	Spruce	**	ABCp
465	11	11	**	С
466	**	11	11	D
467	11	11	**	NC
468	11	Pine	**	ABCp
469	11	11	11	С
470	11	11	**	D
471	11	11	11	NC
472	11	Hemlock	11	ABCp
473	**	11	11	С
474	**	11	11	D
475	11	11	11	NC

(cores)

476	1/10	Mixed	Random	C solid
477	-,	11	ŤŤ	C
178	11	11	3 1 ·	D
470	**	**	11	NC
4/9	7/6	**	11	C solid
400	1/0	TT	11	С
401	11	**	11	D
402	11	**	11	NC
403	7 (22	11	11	C solid
404	(/32	**	11	С
405	11	**	11	D
400	**	**	11	NC
487	- /2 C	**	11	C solid
488	5/10	"	11	С
. 489	**	**	11	D
- 490	**	**	11	NC
491				

COLUMN DESCRIPTION

VTF8 (veneers transferable directly from veneer to inventory to spreader w/out further processing, 54s) --combination of species

Column No.

Description

1001 1/	10 Doug. Fir	54s	С
1002 "	"		D
1003 "	Wh. Fir	11	С
1004 "	11	11	D
1005 "	Spruce	11	С
1006 "	- "	11	D
1007 "	Larch	11	С
1008 "	**	11	D
1009 "	Pine	11	С
1010 "	11	11	D
1011 "	Hemlock	11	С
1012 "	11	11	D
1013 1/	6 Doug. Fir	11	С
1014 "		11	D
1015 "	Wh. Fir	11	С
1016 "	11	11	D
1017 "	Spruce	11	С
1018 "	11	11	D
1019 "	Larch	11	С
1020 "		11	D
1021 "	Pine	11	С
1022 "	11	11	D
1023 "	Hemlock	11	С
1024 "	11	11	D
1025 1/	10 Doug. Fir/Larch	11	ВСр
1026 "	Wh. Fir/Hemlock	11	ВСр
1027 1/	6 "	"	11

VTFX (Doug. Fir veneers directly transferable from inventory to spreaders without further processing)--for orders specifying Doug. Fir/pine

1028	1/10	Doug. Fir	54s	A C
1029	11	"	"	D
1031	11	Pine	**	C nat.

VTC8 (Centers directly transferable from inventory to spreaders w/out processing)

1032	1/10	Doug. Fir	54s	D NC
1033 1034	11	Wh. Fir	11	D
1035	TT	11	11	NC

1036	1/10	Spruce	54 s	D
1037	11	Larch	11	NC
1039	11		**	NC
1040	11	Pine	**	D
1041	11	**	"	NC
1042	**	Hemlock	**	D
1043 10///	1/6		11	NC
1045	1/0	Doug. FIF	**	D NC
1046	11	Wh. Fir	"	D
1047	11	"	**	NC
1048	11	Spruce	"	D
1049	11	11	**	MC
1050	**	Larch	11	D
1051	11	Pine	11	D
1052	**	1 7116	**	NC
1054	11	Hemlock	"	D
1055	**	11	**	NC
1056	7/32	Spruce	**	ABCp
1057	11	"	**	C
1058	**	11	11	D NC
1059	11	Pino	11	ABCD
1061	**	r 1116 11	**	C
1062	**	"	**	D
1063	11	11	11	NC
1064	**	Hemlock	**	ABCp
1065	11	••	1	C
1066	**	11	11	NC
1067		Doug Fir	27 s	C
1069	1/10		- 1 - 11	D
1070	11	11	**	NC
1071	11	Wh. Fir	**	C
1072	**	**	1	
1073	11		11	C
1074	**	Spruce "	11	D
1075	11	**	11	NC
1077	11	Larch	11	С
1078	11	11	11	D
1079	**	**		NC
1080	tt	Pine		
1081	11	**	11	NC
1082	11	Uomloak	11	C
1083	11	Hemrock	**	D
1085	11	11	"	NC

1086	1/6	Doug Etm	27 -	~
1087	170	Doug. FIL	2/8	
1088	11	11	**	
1080	11	Wh Fin	11	
1009	11	11 11	**	
1001	11	11	17	
1091	11	Spruce	11	nu C
1003	11		11	D
1095	tt	**	**	NC
1095	11	Larch	11	C
1096	TT	11	11	D
1097	11	11	**	NC
1098	11	Pine	11	C
1000	11	11	11	D
1100	11	11	. 11	NC
1101	11	Hemlock	**	C
1102	11	11	11	D
1103	11	11	11	NC
1104	7/32	Spruce	11	ABCp
1105	17 5 -	11	11	C -
1106	11	11	11	D
1107	11	11	11	NC
1108	11	Pine	11	ABCp
1109	11	11	11	C
1110	11	11	11	D
1111	11	11	11	NC
1112	11	Hemlock	11	ABCp
1113	**	tt	11	С
1114	11	11	11	D
1115	TT	11	11	NC
1116	1/10	Mix	54s	D Cn
1117	1/6	11	"	11
1118	7/32	11	11	11

VTC4 (Core veneer directly transferable to spreaders from inventory)

1119	1/10	Mix	Random	C solid
1120	-/	11	11	С
1120	**	11	11	D
1121	11	**	"	NC
1122	- 16	"	11	C solid
1123	1/6		**	C
1124	n	. 11	11	
1125	11	TT		D
1126	11	11	11	NC
1120	7/22	**	TT	C solid
1121	1/32	11	**	С
1128	11	••	**	n
1129	11	n		NC
าารก	11	17		NC
1121	5/16	11	**	C SOLIA
1121	<u> </u>	11	11	С
1135			**	D
1133	11		11	NC
1134	**	TT		110

.

119

EGI (inputs to edge gluer)

1135	1/10	Doug. Fir	27s	ABCp
	••			С
113/	••		11	D
1130	••	Wh. Fir		ABCp
1139	••		**	С
1140	11	11	**	D
1141	11	Cpruce	11	ABCp
1142	11	11	11	С
1143	11	**	**	D
1144	11	Larch	"	ABCp
1145	11	"	**	C
1146	11	11	**	D
1147	11	Fine	11	abCp
1148	11		**	C
1140	11	**	11	D
1150	11	Vemlock	**	ARCn
	**		**	C
1101	"	"	**	
++) 2	3		11	
153	1/6	Doug. Fir	II.	АВСР
1154				C
1155	11	11		D
1156	11	Wh. Fir	"	ABCp
1157	11	**	**	С
1158	11	**	**	D
1159	11	Spruce	**	ABCp
1160	11	± ,,	**	С
1161	11	"	11	D
1162	11	Larch	**	ABCp
1162	11		**	C -
1105	11	TT	"	D
	11	Pino	**	ABCp
1105		r 111e	**	C
1100		"	**	D
1101	••		**	ABCD
1168		Hemlock	**	C
i169	11	••	"	n
1170	TT	·'	Ctartag	ABCD
1171	1/10	Doug. Fir	Strips	C ADOD
1172	11		11	
1173	11	**	••	J A D C m
1174	11	Wh. Fir		АБСР
1175	11	**		U D
1176	11	11	11	D
1177	11	Spruce	**	ABCp
1178	11	11	ŤŤ,	С
1170	11	**	**	D
1180	11	Larch	**	ABCp
יסנו	11	11	**	С
	**	11	**	D
	11	Dine	**	ABCp
TTQ7	••	11 L TITE	**	C
1184	••	.,	**	D
1185	11	•••		-

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211	1/10 " 1/6 " " " " " " " " " " " " " " " " " " "	Hemlock " Doug. Fir " Wh. Fir " Spruce " Larch " Pine " Hemlock " " Spruce " " Pine " "	; Strips """"""""""""""""""""""""""""""""""""	ABCp C D A D C D A D C D D A D C D D A D C D D C D D D D
1214 1215	"	ll dro rivor f	"	D all
EGIX (inp Dou	g. Fir)	dge giuer i	produces requiring	622
1216 1217 1218 1219 1220 1221	1/10 " " "	Doug. Fir " " " "	27s " Strips "	ABCp C D ABCp C D
BSI (inpu	ts to ba	ndsaw for co	ore)	
1222 1223 1224 1225 1226 1227 1228 1229	7/32 " " " " "	Spruce " " Pine " "	54s """"""""""""""""""""""""""""""""""""	ABCp C D NC ABCp C D NC

1231 " " " D 1233 " " " NC 1234 1/10 Doug. Fir 27s C 1235 " " " NC 1236 " " " NC 1237 Wh. Fir " D 1238 " " NC 1239 " " NC 1240 Spruce " ABCp 1241 " " NC 1242 " " NC 1244 " Larch " C 1244 " Larch " D 1244 " T NC D 1247 Pine " ABCp 1248 " " NC 1249 " " NC 1251 Hemlock " D 1252 " " NC 1255 " " NC 1256	1230	7/32	Hemlock	54 s	ABCp
1232 " " " D 1233 1/10 Doug. Fir 27s C 1235 " " D D 1236 " " D D 1237 Wh. Fir " D D 1238 " " D D 1239 " " D D 1240 Spruce " ABCp 1241 " " D 1242 " " D 1243 " " D 1244 " Larch " C 1245 " " NC D 1246 " " NC D 1246 " " NC D 1247 Pine " ABCp 1248 " " NC D 1250 " " NC D 1251 " Hemlock " C 1255 <td< td=""><td>1231</td><td>11</td><td>11</td><td>"</td><td>C</td></td<>	1231	11	11	"	C
1233 """"""""""""""""""""""""""""""""""""	1232	11	**	**	D
1234 1/10 Doug. Fir 27s C 1235 """"" NC 1236 """" NC 1237 "Wh. Fir "C 1238 """" D 1239 """" NC 1239 """" NC 1239 """" NC 1240 "Spruce "ABCp 1241 """" D 1242 """" D 1244 "Larch "C 1244 "Larch "C 1245 """" D 1246 """" D 1247 "Pine "ABCp 1248 """" D 1246 """" D 1247 "Pine "ABCp 1248 """" D 1249 """" D 1250 """" D 1251 "Hemlock "C 1252 """" D 1254 1/6 Doug. Fir "C 1257 <td>1233</td> <td>**</td> <td>**</td> <td>"</td> <td>NC</td>	1233	**	**	"	NC
1235 """""" "D 1236 """" NC 1237 "Wh.Fir" "C 1238 """ NC 1239 """ NC 1240 "Spruce "ABCp 1241 """ C 1242 """ NC 1243 """ NC 1244 "Larch "C 1245 """ NC 1244 "Larch "C 1245 """ NC 1247 "Pine ABCp 1248 """ D 1250 """ NC 1251 "Hemlock "C 1252 """ D 1255 """ D 1255 """ D 1256 """ NC 1257 Wh.Fir D 1258 """ D 1260 "Spruce "ABCp 1261 """ D 1263 """ D 1264 <td>1234</td> <td>1/10</td> <td>Doug. Fin</td> <td>s 27 s</td> <td>С</td>	1234	1/10	Doug. Fin	s 27 s	С
1236 """"""""""""""""""""""""""""""""""""	1235	TT	11	"	D
1237 " Wh. Fir " C 1238 " " NC 1239 " " NC 1240 " Spruce " ABCp 1241 " " D D 1242 " " D D 1243 " " D D 1243 " " D D 1243 " " D D 1244 " Larch " D 1246 " " NC D 1246 " " D D 1246 " " D D 1246 " " D D 1250 " " NC C 1252 " " NC D 1251 Hemlock " C D 1255 " " NC C 1256 " " NC D	1236	TT	**	11	NC
1238 " " NC 1240 " Spruce " ABCp 1241 " " C 1242 " " D 1243 " " D 1244 " Larch " C 1244 " Larch " C 1245 " " D D 1246 " " D NC 1247 Pine ABCp D D 1246 " " D NC 1247 " Pine " ABCp 1248 " " " D 1250 " " NC D 1251 Hemlock " C D 1255 " " NC D 1257 Wh. Fir " C D 1256 " " NC D 1260 Spruce ABCp D 1264	1237	11	Wh. Fir	"	С
1239 """"" "ABCp 1241 """"""""""""""""""""""""""""""""""""	1238	11	**	"	D
1240 "Spruce "ABCp 1241 """ "D 1242 "" D 1243 "" "D 1244 "Larch "C 1245 "" D 1246 "" D 1245 "" D 1246 "" NC 1247 "Pine "ABCp 1248 "" D 1249 "" "D 1247 "Pine "ABCp 1248 "" D 1250 "" "D 1251 "Hemlock "C 1252 "" "D 1253 "" "D 1254 1/6 Doug. Fir "D 1255 ""<"	123 9	11	**	"	NC
1241 """"" "" C 1242 """" NC 1243 """" NC 1244 "Larch "C 1245 """" D 1246 """" D 1247 "Pine "ABCp 1248 """ C 1249 """ D 1250 """ D 1251 Hemlock "C 1252 """" D 1253 """ D 1255 """ C 1255 """ D 1256 """ D 1257 Wh. Fir C 1258 """ D 1257 Wh. Fir C 1259 """ D 1260 "Spruce """ 1261 """ D 1263 """" D 1264 "Larch "C 1265 """" D 1266 """" D 12	1240	TT	Spruce	"	ABCp
1242 """" "" D 1243 """" C 1244 "Larch "C 1245 """ D 1246 """ D 1247 "Pine "ABCp 1248 """ C 1249 """ D 1250 """ D 1251 Hemlock "C 1252 """ D 1253 """ D 1255 """ D 1255 """ D 1256 """ NC 1257 Wh. Fir C 1257 Wh. Fir D 1256 """ NC 1257 "Wh. Fir D 1260 Spruce "ABCp 1261 """" D 1262 """"" D 1263 """"" D 1264 Larch "C 1265 """"" D 1266 """" D <	1241	11	**	**	С
1243 """"""""""""""""""""""""""""""""""""	1242	11	**	**	D
1244 " Larch " C 1245 " " D 1246 " " NC 1247 " Pine " ABCp 1248 " " D C 1249 " " D C 1250 " " D C 1251 Hemlock " C C 1252 " " D C 1253 " " D C 1255 " " NC C 1255 " " D D 1256 " " NC C 1257 Wh. Fir " D D 1260 " Spruce " ABCp 1261 " " NC C 1262 " " D D 1261 " " D C 1262 " " D D	1243	11	**	**	NC
1245 """" D 1246 """ NC 1247 "Pine "ABCp 1248 """ C 1249 """ D 1250 """ NC 1251 "Hemlock "C 1252 """ D 1253 """ D 1254 1/6 Doug. Fir "C 1255 """ D 1256 """ NC 1257 Wh. Fir C 1258 """ D 1259 """ D 1260 "Spruce "ABCp 1261 """ C 1262 """" D 1263 """ C 1264 "Larch "C 1265 """" C 1266 """" D 1266 """" D 1266 """" D 1266 """" D 1270 """" D	1244	11	Larch	**	С
1246 """"""""""""""""""""""""""""""""""""	1245	11	**	11	D
1247 "Pine "ABCp 1248 ""C 1249 ""C 1250 ""D 1251 "Hemlock "C 1252 ""D 1253 ""D 1254 1/6 Doug. Fir "C 1255 ""D "D 1256 ""D "D 1257 Wh. Fir "C 1258 ""D D 1259 ""D D 1260 "Spruce "ABCp 1261 ""D D 1262 ""D D 1261 ""D D 1262 ""D D 1263 ""D C 1264 Larch "C 1265 ""D D 1266 ""D D 1267 "Pine "D 1268 ""D D 1269 ""D C 1270 "D C 1271 Hemlock C 1272	1246	11	**	**	NC
1248 """"""""""""""""""""""""""""""""""""	1247	11	Pine	11	ABCp
1249 """" D 1250 """" NC 1251 "Hemlock "C 1252 """ D 1253 """ D 1253 """ NC 1254 1/6 Doug. Fir "C 1255 """" D 1256 """" D 1257 Wh. Fir "C 1258 """ D 1259 """ D 1259 """ D 1259 """ D 1259 """ D 1260 "Spruce "ABCp 1261 """" D 1262 """" D 1263 """" D 1264 "Larch "C 1265 """" D 1266 """" D 1267 Pine "ABCp 1268 """" D 1271 Hemlock "D 1271 "Hemlock D	1248	11	**	**	С
1250 """"""""""""""""""""""""""""""""""""	1249	**	**	**	D
1251 "Hemlock "C 1252 ""D 1253 ""D 1254 1/6 Doug. Fir "C 1255 "D D 1256 ""D D 1257 Wh. Fir "C 1258 ""D NC 1259 "NC NC 1260 Spruce "ABCp 1261 ""D NC 1263 ""D NC 1264 Larch D 1265 ""D NC 1266 ""D D 1266 ""D NC 1267 Pine "ABCp 1268 ""D D 1267 Pine "ABCp 1268 ""D D 1270 ""D D 1270 ""D D 1271 "Hemlock "D 1273 ""D D 1274 7/32 Spruce "D 1276 ""D TD D 1	1250	TT	**	**	NC
1252 """" "NC 1253 """ NC 1254 1/6 Doug. Fir "C 1255 """ D 1256 """ NC 1257 "Wh. Fir "C 1258 """ D 1257 Wh. Fir "C 1259 """ NC 1260 "Spruce "ABCp 1261 """ D 1262 """ D 1263 """ D 1264 "Larch "C 1265 """ D 1266 """ D 1267 "Pine "ABCp 1268 """ D 1269 """ D 1270 """ D 1270 """ D 1271 Hemlock "C 1273 """ D 1274 7/32 Spruce """ 1276 """ D 1276 """ D	1251	11	Hemlock	"	С
1253 """"""""""""""""""""""""""""""""""""	1252	11	11	"	D
1254 1/6 Doug. Fir " C 1255 " " D 1256 " " NC 1257 " Wh. Fir " C 1258 " " D D 1259 " " D D 1260 " Spruce " ABCp 1261 " " D D 1262 " " D D 1263 " " D D 1264 Larch " C D 1265 " " NC D 1266 " " NC D 1267 Pine " D D 1268 " " D D 1270 " " NC C 1271 Hemlock " C C 1273 " " D D 1276 " " D D	1253	11	11	"	NC
1255 """" D 1256 """" NC 1257 "Wh.Fir" "C 1258 """ D 1259 """ NC 1260 Spruce "ABCp 1261 """ D 1262 """ D 1263 """ D 1264 Larch "C 1265 """ D 1266 """ D 1266 """ D 1266 """ D 1268 """ D 1269 """ D 1269 """ D 1269 """ D 1270 """ D 1271 "Hemlock "C 1273 """ D 1274 7/32 Spruce "C 1276 """ D 1276 """ D 1277 "" D 1278 Pine "C 1280	1254	1/6	Doug. Fi	? "	С
1256 """" NC 1257 "Wh.Fir "C 1258 """ D 1259 """ NC 1260 "Spruce "ABCp 1261 """ D 1262 """ D 1263 """ D 1264 Larch "C 1265 """ D 1266 """ D 1266 """ D 1267 "Pine "ABCp 1268 """ D 1267 "Pine "ABCp 1268 """ D 1267 "Pine "ABCp 1268 """ D 1270 """ NC 1271 "Hemlock "C 1273 """ D 1273 """ D 1274 7/32 Spruce "C 1275 """<"	1255	11	11	**	D
1257 "Wh.Fir "C 1258 ""D 1259 ""NC 1260 "Spruce "ABCp 1261 ""D 1262 ""D 1263 ""D 1264 Larch C 1265 ""D 1266 "D 1267 Pine ABCp 1266 ""D 1267 "Pine ABCp 1268 ""D C 1269 ""D C 1270 ""D C 1271 Hemlock "C 1273 ""D C 1273 ""D C 1273 ""D C 1274 7/32 Spruce C 1275 ""D C 1276 ""D C 1277 "D C 1278 Pine ABCp 1280 ""D C 1280 ""D C	1256	TT	**	"	NC
1258 """" D 1259 """ NC 1260 "Spruce "ABCp 1261 """ C 1262 """ D 1263 """ D 1264 "Larch "C 1265 """ D 1266 """ D 1266 """ D 1267 "Pine "ABCp 1268 """ D 1269 """ D 1270 """ D 1270 """ D 1271 "Hemlock "" 1273 ""<"	1257	**	Wh. Fir	11	С
1259 """"""""""""""""""""""""""""""""""""	1258	TT	11	"	D
1260 "Spruce "ABCp 1261 "" " 1262 "" " 1263 "" " 1264 Larch "C 1265 "" " 1266 "" " 1267 "Pine "ABCp 1266 "" " 1267 "Pine "ABCp 1268 "" "D 1269 "" "D 1270 " " D 1271 "Hemlock "C 1273 " " D 1273 " " D 1273 " " D 1274 7/32 Spruce " D 1276 " " D D 1278 " Pine " D 1280	1259	**	**	**	NC
1261 " " " D 1262 " " NC 1263 " " NC 1264 " Larch " C 1265 " " D 1266 " " NC 1266 " " NC 1267 " Pine " ABCp 1268 " " D D 1269 " " D D 1270 " " D D 1270 " " NC D 1271 " Hemlock " D 1271 " Hemlock " D 1273 " " NC D 1274 7/32 Spruce " D 1276 " " D D 1276 " " D D 1278 " Pine " D 1280 "	1260	11	Spruce	**	ABCp
1262 """ D 1263 """ NC 1264 "Larch "C 1265 """ D 1266 """ D 1266 """ NC 1267 Pine "ABCp 1268 """ D 1269 """ D 1269 """ D 1270 """ NC 1271 "Hemlock "D 1272 """ NC 1273 """ D 1274 7/32 Spruce "D 1275 """ D 1276 """ D 1277 ""<"	1261	**	- 11	"	С
1263 """"""""""""""""""""""""""""""""""""	1262	11	11	**	D
1264 " Larch " C 1265 " " D 1266 " " NC 1267 " Pine " ABCp 1268 " " D 1269 " " D 1270 " " D 1270 " " NC 1271 " Hemlock " C 1272 " " NC 1272 1273 " " NC 1273 1274 7/32 Spruce " ABCp 1275 " " NC 1276 1277 " " NC 1277 1278 " Pine " C 1279 " " D 1280 NC 1280 " " NC NC 1281 NC	1263	11	11	11	NC
1265 """" D 1266 """" NC 1267 "Pine "ABCp 1268 """ D 1269 """ D 1269 """ D 1270 """ NC 1271 "Hemlock "C 1272 """ D 1273 """ D 1273 """ D 1274 7/32 Spruce "ABCp 1275 """ "D 1276 """ D 1277 """ D 1278 "Pine "ABCp 1279 """ D 1280 "" "D 1281 "" "D	1264	**	Larch	11	С
1266 """" NC 1267 "Pine "ABCp 1268 """ D 1269 """ D 1269 """ D 1270 """ NC 1271 "Hemlock ""D 1272 """ D 1273 """ D 1273 """ D 1274 7/32 Spruce "ABCp 1275 """ "D 1276 """ D 1277 """ NC 1278 "Pine "ABCp 1279 ""<"	1265	**	11	**	D
1267 "Pine "ABCp 1268 ""D 1269 ""D 1269 ""D 1270 ""D 1271 "Hemlock 1272 ""D 1273 "D 1274 7/32 Spruce "C 1276 " <d< td=""> 1277 "<d< td=""> 1276 "<d< td=""> 1277 "<d< td=""> 1278 Pine 1279 "<d< td=""> 1280 "<d< td=""> 1281 "<d< td=""></d<></d<></d<></d<></d<></d<></d<>	1266	11	**	11	NC
1268 """" C 1269 """ D 1270 """ NC 1271 "Hemlock "C 1272 """ D 1273 """ D 1273 """ NC 1274 7/32 Spruce "" 1275 """ " D 1276 """ "D D 1277 """ "D D 1276 """ "D D 1277 "" "D D 1278 "Pine "ABCp ABCp 1279 """ "D D 1280 "" "D D 1281 " " NC	1267	**	Pine	**	ABCp
1269 " " D 1270 " " NC 1271 " Hemlock " C 1272 " " D D 1273 " " D D 1273 " " NC D 1273 " " NC D 1273 " " NC D 1274 7/32 Spruce " ABCp 1275 " " " D 1276 " " NC D 1277 " " NC D 1278 Pine " ABCp 1279 " " D 1280 " " D 1281 " " NC	1268	**	11	**	С
1270 " " NC 1271 " Hemlock " C 1272 " " D 1273 " " NC 1273 " " NC 1274 7/32 Spruce " ABCp 1275 " " D D 1276 " " D D 1277 " " NC D 1278 Pine " ABCp 1279 " " D 1280 " " D 1281 " " NC	1269	TT	**	**	D
1271 "Hemlock "C 1272 " "D 1273 " "NC 1273 " "C 1273 " "C 1274 7/32 Spruce "C 1275 " " D 1276 " " D 1277 " " NC 1278 "Pine "C ABCp 1279 " " D 1280 " " D 1281 " " NC	1270	TT	**	**	NC
1272 """ D 1273 """ NC 1273 """ ABCp 1274 7/32 Spruce ""C 1275 """ "D 1276 """ D 1277 """ NC 1278 "Pine "ABCp 1279 "" <d< td=""> D 1280 ""<d< td=""> NC 1281 "" "NC</d<></d<>	1271	11	Hemlock	11	С
1273 """" NC 1274 7/32 Spruce ""ABCp 1275 """ C 1276 """ D 1277 """ NC 1278 "Pine "ABCp 1279 "" <d< td=""> 1280 ""<d< td=""> 1281 ""<nc< td=""></nc<></d<></d<>	1272	11	11	11	D
1274 7/32 Spruce "ABCp 1275 " " C 1276 " " D 1277 " " NC 1278 " Pine " ABCp 1279 " " D 1280 " " D 1281 " " NC	1273	11	11	11	NC
1275 " C 1275 " " 1276 " " 1277 " " 1278 " Pine 1279 " " 1280 " " 1281 " "	1074	7/32	Spruce	11	ABCp
1276 " " D 1276 " " NC 1277 " " NC 1278 " Pine " ABCp 1279 " " D 1280 " " D 1281 " " NC	1275	17 52		11	C
1277 " " NC 1278 " Pine " ABCp 1279 " " C 1280 " " D 1281 " " NC	1276	11	11	11	D
1278 " Pine " ABCp 1279 " " C 1280 " " D 1281 " " NC	1077	11	11	11	NC
1279 " " C 1280 " " D 1281 " NC	1278	**	Pine	"	ABCp
1280 " " D 1281 " " NC	1270	**		11	С
1281 " " NC	1080	11	11	"	D
	1281	**	**	**	NC

1284 """"""" "D 1285 """"" NC 1286 1/10 Doug. Fir Strips C 1287 """"" "D D 1288 """"" "NC D 1289 "Wh. Fir "C D 1290 """" D D 1291 """" D D 1292 Spruce "ABCp D 1293 """" D D 1294 """" D NC 1295 """" "D NC 1296 Larch "C D 1299 "Pine "ABCp 1300 """"" D 1301 """"" D 1302 """"" D 1303 "Hemlock "C D 1304 """"" D D 1305 """"" D D 1306 1/6 Doug. Fir<""C D 1301 """""" D D <	1282	7/32	Hemlock	27 s	ABCp
1285 " " " NC 1286 1/10 Doug. Fir Strips C 1287 " " NC 1288 " " NC 1289 Wh. Fir " D 1290 " " NC 1291 " " D 1292 Spruce " ABCp 1294 " " D 1295 " " " D 1295 " " " D 1296 Larch " C D 1298 " " " D 1297 " " " D 1298 " " " D 1300 " " NC C 1301 " " NC C 1303 Hemlock " C C 1306 " " NC C 1309 Wh. Fir "	1203	**	••		C
1286 1/10 Doug. Fir Strips C 1287 " " " " D 1288 " " " " C 1289 " Wh. Fir " C C 1290 " " " D D 1291 " " " NC D 1292 " Spruce " ABCp D 1293 " " " D D 1294 " " " D NC 1295 " " " D NC 1296 Larch " C D D 1298 " " " D D 1300 " " " NC D 1302 " " " NC D 1306 1/6 Doug. Fir " D D 1307 " " " NC D <t< td=""><td>1204</td><td></td><td></td><td></td><td>D</td></t<>	1204				D
1286 1/10 Doug. Fir Strips C 1287 " " " D 1289 " Wh. Fir " C 1290 " " " D 1291 " " " D 1292 " Spruce " ABCp 1293 " " " D 1294 " " " D 1295 " " " D 1296 Larch " C D 1298 " " NC D 1300 " " NC D 1301 " " NC D 1302 " " NC D 1303 " Hemlock " C 1304 " " NC D 1305 ! " NC D 1306 " " NC D 1310 " " <td>1205</td> <td>- (</td> <td></td> <td></td> <td>NC</td>	1205	- (NC
1287 " " NC 1289 " " NC 1290 " " NC 1291 " " NC 1292 " Spruce " ABCp 1293 " " D D 1294 " " D D 1295 " " NC D 1296 Larch " D D 1296 " Larch " D 1298 " " NC D 1300 " " D D 1301 " " D D 1301 " " D D 1304 " " D D 1305 " " NC D 1304 " " D D 1305 " " NC D 1306 1/6 Doug. Fir " D 1311	1200	1/10	Doug. Fir	r Strips	C
1286 """"""""""""""""""""""""""""""""""""	1287	••	••		D
1289 """"""""""""""""""""""""""""""""""""	1288	••		"	NC
1290 """"""""""""""""""""""""""""""""""""	1289		Wh. Fir	"	С
1291 """"""""""""""""""""""""""""""""""""	1290		**	"	D
1292 "Spruce "ABCp 1293 """ "C 1294 """ D 1295 """ D 1296 "Larch "C 1297 """ D 1297 """ D 1297 """ D 1297 """ D 1298 """ D 1299 "Pine "ABCp 1300 """ D 1301 """ D 1302 """ D 1303 Hemlock "C 1304 """ D 1305 """ D 1306 1/6 Doug. Fir "D 1308 """ NC 1309 "Wh. Fir "D 1311 """ NC 1312 """ D 1313 """" D 1314 """ D 1315 """" D 1320 """" D 1321	1291			"	NC
1293 """"""""""""""""""""""""""""""""""""	1292	11	Spruce	"	ABCp
1294 """"""""""""""""""""""""""""""""""""	1293		••		C
1295 """"""""""""""""""""""""""""""""""""	1294	11	11		D
1296 " Larch " C 1297 " " D 1298 " " NC 1299 " Pine " ABCp 1300 " " D D 1301 " " D D 1302 " " NC D 1303 " Hemlock " C 1304 " " D D 1305 " " NC C 1304 " " D D 1305 " " NC C 1307 " " D D 1307 " " D D 1310 " " NC D 1311 " " NC D 1313 " " NC D 1313 " " NC D 1313 " " NC D	1295	**	11		NC
1297 " " NC 1298 " " NC 1299 " Pine " ABCp 1300 " " " C 1301 " " D NC 1302 " " D NC 1303 Hemlock " C 1304 " " D 1305 " " D 1306 1/6 Doug. Fir " C 1307 " " D D 1308 " " NC 1308 " " D 1308 " " NC 1310 " D D 1310 " " NC 1312 NC 1313 NC 1313 " " NC 1314 " NC 1315 1314 " " NC 1320 NC 1321 1320 NC 1320 " " <td< td=""><td>1296</td><td>"</td><td>Larch</td><td></td><td>C</td></td<>	1296	"	Larch		C
1298 """"""""""""""""""""""""""""""""""""	1297	11	11		D
1299 " Pine " ABCp 1300 " " " D 1301 " " D D 1302 " " " D 1303 " Hemlock " C 1305 " " D NC 1305 " " D NC 1306 1/6 Doug. Fir " C 1307 " " D D 1306 " " NC D 1309 " Wh. Fir " D 1310 " " NC D 1311 " " NC D 1312 " " NC D 1313 " " NC D 1314 " " NC D 1316 Larch " C D 1320 " " NC D 1322 " "	1298				NC
1300 """"""""""""""""""""""""""""""""""""	1299	**	Pine		ABCp
1301 """"""""""""""""""""""""""""""""""""	1300	**	11		C
1302 """"""""""""""""""""""""""""""""""""	1301	11	11	"	D
1303 "Hemlock "C 1304 ""D 1305 "U "NC 1306 1/6 Doug. Fir "C 1307 "U "D 1308 "U "D 1309 "Wh. Fir "C 1310 "U "D 1311 "U "D 1312 "Spruce "ABCp 1313 "U "D 1314 "U "D 1315 "U "D 1316 "Larch "C 1317 "U "D 1318 "U "D 1319 "Pine "ABCp 1320 "U "D 1321 "U "D 1322 "U "D 1323 "Hemlock "D 1324 "U "D 1325 "U "D 1326 "U D 1327 "U D 1328 "U D 1329 "U	1302	11	ŤŤ		NC
1304 " " D 1305 " " NC 1306 1/6 Doug. Fir " C 1307 " " D D 1308 " " NC C 1309 " Wh. Fir " D 1310 " " D D 1311 " " D D 1312 " Spruce " C 1313 " " D D 1313 " " D D 1313 " " D D 1314 " " D D 1316 Larch " C D 1318 " " NC D 1320 " " D D 1321 " " D D 1322 " " D D 1321 " " D D <tr< td=""><td>1303</td><td>11</td><td>Hemlock</td><td>"</td><td>C</td></tr<>	1303	11	Hemlock	"	C
1305 """"""""""""""""""""""""""""""""""""	1304	11	11	"	D
1306 1/6 Doug. Fir " C 1307 " " D 1308 " " D 1309 Wh. Fir " C 1310 " " D 1310 " " D 1311 " " D 1312 " Spruce " ABCp 1313 " " " D 1312 " Spruce " C 1313 " " " D 1314 " " D D 1315 " " NC D 1316 " Larch " D 1318 " " NC D 1320 " " D D 1321 " " D D 1322 " " D D 1323 " " NC D 1324 " "	1305	11	11	"	NC
1307 " " D 1308 " " NC 1309 " Wh. Fir " C 1310 " " D 1310 " " D 1311 " " D 1312 " Spruce " ABCp 1313 " " D D 1314 " " D D 1315 " " D D 1316 Larch " C D 1318 " " NC D 1319 Pine " C D 1320 . . . D 1321 . . . D 1322 . . . D 1323 " " D D 1324 . . . D D 1323 " " D D D 1326	1306	1/6	Doug. Fir	P 11	C
1308 """"" NC 1309 "Wh.Fir "C 1310 """ D 1311 """ NC 1312 "Spruce "ABCp 1313 """ D 1314 """ D 1315 """ NC 1316 Larch "C 1317 "" D 1318 """ NC 1319 "Pine "ABCp 1321 "<"	1307	**	11	"	D
1309 "Wh. Fir "C 1310 ""D 1311 "NC 1312 "Spruce "ABCp 1313 ""D 1314 "D 1315 "D 1316 Larch C 1317 "D 1318 "D 1317 "D 1318 "D 1319 Pine 1320 "D 1321 1323 "Hemlock 1324 "D 1325 "D 1324 "D 1325 "D 1326 7/32 1327 "D 1328 "D 1329 "D 1320 "D 1321 "D 1322 "D 1331 "D	1308	11	11	"	NC
1310 """" D 1311 """ NC 1312 "Spruce "ABCp 1313 """ C 1314 """ D 1315 """ D 1316 "Larch "C 1317 "" D 1318 "" "D 1319 "Pine "ABCp 1320 "" "D 1321 D 1323 "Hemlock "C 1324 "" D 1325 "" "D 1324 "" D 1325 "" "D 1326 7/32 Spruce "ABCp 1326 7/32 Spruce "ABCp 1329 "" "D NC 1331 ""<"	1309	tt	Wh. Fir	"	C
1311 """"""""""""""""""""""""""""""""""""	1310	11	**	"	D
1312 "Spruce "ABCp 1313 ""C 1314 "D 1315 "INC 1316 Larch C 1317 "INC 1318 "INC 1319 Pine ABCp 1320 "INC 1321 "INC 1322 "INC 1323 "Hemlock C 1324 "INC 1325 "INC 1324 "INC 1325 "INC 1326 7/32 1327 "INC 1328 "INC 1329 "INC 1320 "INC 1321 INC 1322 INC 1324 "INC 1325 "INC 1326 7/32 Spruce "INC 1329 "INC 1330 "INC 1331 "INC 1332 "INC 1333 "INC	1311	11	11	"	NC
1313 """"""""""""""""""""""""""""""""""""	1312	11	Spruce		ABCP
1314 """ D 1315 """ NC 1316 "Larch "C 1317 "" D 1317 "" D 1318 """ D 1319 "Pine "ABCp 1320 "" "D 1321 " "D 1322 " "D 1323 "Hemlock "C 1324 " "D 1325 " "D 1326 7/32 Spruce "ABCp 1328 " "D 1329 " "D 1329 " "D 1320 " "D 1323 " "D 1326 7/32 Spruce "D 1329 " "D NC 1330 " "D D 1331 " " D 1332 " " D 1333 " " NC 1333	1313	11	11		C
1315 """"""""""""""""""""""""""""""""""""	1314	11	11		D
1316 " Larch " C 1317 " " D 1318 " " NC 1319 " Pine " ABCp 1320 " " C 1321 . . " D 1322 . . . D 1323 " Hemlock " C 1323 " Hemlock " D 1324 " " NC 1325 1324 " " NC 1325 1325 " " NC 1326 1326 7/32 Spruce " ABCp 1328 " " NC 1329 1330 " " NC 1331 1331 " " D 1332 1332 " " D 1333	1315	11	11		NC
1317 """" D 1318 """" NC 1319 "Pine "ABCp 1320 """" D 1321 """ D 1322 """ D 1323 "Hemlock "C 1324 """ D 1325 """ "D 1326 7/32 Spruce "ABCp 1327 """ NC 1328 """ "D 1329 """ NC 1330 "Pine "ABCp 1331 """ D 1332 """ NC	1316	11	Larch		C
1318 """" NC 1319 "Pine "ABCp 1320 """ C 1321 """ D 1322 """ D 1323 "Hemlock "C 1324 """ D 1325 """ NC 1326 7/32 Spruce " 1328 """ D 1329 """ NC 1330 "Pine "ABCp 1331 "" D 1332 "" " D 1331 " " D 1332 " " NC	1317	11	11		D
1319 "Pine "CBCp 1320 "CD 1321 "DD 1322 "DD 1323 "Hemlock "CD 1324 "UD "DD 1325 "UD "DD 1326 7/32 Spruce "DD 1326 7/32 Spruce "DD 1328 "UD "DD 1329 "UD "DD 1330 "Pine "DD 1331 "UD "DD 1332 "UD "DD 1331 "UD "DD 1332 "UD "DD 1333	1318	11	**		NC
1320 """" C 1321 ""D 1322 ""D 1323 "Hemlock "C 1324 ""D 1325 ""NC 1326 7/32 Spruce 1328 ""D 1329 ""D 1329 "NC 1330 "Pine 1331 "D 1332 "NC 1333 "NC	1319	11	Pine		ABCP
1321 " Hemlock " C 1323 " Hemlock " D 1324 " " D 1325 " " NC 1326 7/32 Spruce " ABCp 1328 " " D 1329 " " NC 1330 " Pine " ABCp 1331 " " D NC 1332 " " NC NC	1320	11	11		C
1322 "Hemlock "C 1323 "U "D 1324 "U "D 1325 "U "NC 1326 7/32 Spruce "ABCp 1328 "U "D 1329 "U "D 1330 "Pine "ABCr 1331 "U "D 1332 "U "NC 1333 "U "NC	1321	,	••	<i>,</i>	0
1323 "Hemlock "D 1324 ""D 1325 ""NC 1326 7/32 Spruce 1327 ""C 1328 ""D 1329 ""D 1330 "Pine 1331 ""D 1332 ""D 1333 "NC	1322		,		
1324 """ "D 1325 """ NC 1326 7/32 Spruce "ABCp 1327 """ C 1328 """ D 1329 """ NC 1330 "Pine "C 1331 "" "D 1332 "" NC 1333 " "NC	1323	11	Hemlock		C
1325 """" NC 1326 7/32 Spruce "ABCp 1327 """ C 1328 """ D 1329 """ NC 1330 "Pine "ABCp 1331 "" D 1332 "" " 1333 " "	1324	11	11		D
1326 7/32 Spruce "ABCp 1327 "U "C 1328 "U "D 1329 "U "NC 1330 "Pine "ABCp 1331 "U "D 1332 "U "D 1333 "U "NC	1325	tt	11		NC
1327 " " C 1328 " " D 1329 " " NC 1330 " Pine " ABCr 1331 " " D 1332 " " D 1333 " " NC	1326	7/32	Spruce	11	ABCP
1328 " " D 1329 " " NC 1330 " Pine " ABCr 1331 " " C 1332 " " D 1333 " " NC	1327	1	- 11	11	C
1329 " " NC 1330 " Pine " ABCr 1331 " " C 1332 " " D 1333 " " NC	1328	11	*1	11	D
1330 " Pine " ABCr 1331 " " C 1332 " " D 1333 " " NC	1329	11	••	11	NC
1331 " " C 1332 " D 1332 " NC	1330	17	Pine	•1	ABCD
1332 " " D 1333 " " NC	1221	11	**	11	C
1333 " " NC	1332	11	11	11	D
	1333	11	**	11	NC

1334	7/32	Hemlock	Strips	ABCp
1335	11	**	$-\frac{1}{n}$	C
1336	11	11	"	D
1337	**	11	11	NC

RPI (inputs to Raimann patchers)

1338	1/10	Doug. Fir	54s	AB-54 (c	original "	Lly 54s	5)
1370	11	Wh Fir	11	HDCD-J4	11		
ועצו	11	Larch	11	11	**		
1342	11	Hemlock	**	**	"		
1343	1/6	Doug. Fir	**	**	**		
1344	11	Wh. Fir	**	**	**		
1345	11	Larch	11	**	**		
1346	11	Hemlock	**	**	11		
1347	1/10	Doug. Fir	11	ABCp-27	(edged	glued	27 s)
1348		Wh. Fir	11	11		0	
1349	11	Larch	11	11	**		
1350	11	Hemlock	11	11	11		
1351	1/6	Doug, Fir	**	**	11		
1352	1,0	Wh. Fir	11	**	11		
1353	11	Larch	**	**	11		
1354	11	Hemlock	11	**	**		
1355	1/10	Doug. Fir	**	ABCp-R	(edged	glued	strips)
1356	11	Wh. Fir	11	11		0	-
1357	11	Larch	**	**	**		
1358	11	Hemlock	11	11	**		
1250	1/6	Doug. Fir	**	**	**		
1260	1,0	Wh Fir	**	**	**		
1261	**	Tarch	**	**	11		
1301	**	Hemlock	**	**	**		
1305		nemitock					
PIX (Ra	aimann pat	cher inputs	for produ	ucts spea	cifying	all	

RPI. Doug. Fir)

1363	1/10	Doug. Fir	54s	AB-54 (originally 54s)
1364	**	11	**	ABCp-27(edge glued 27s)
1366	**	"		ABCp-R (edge glued strips)

PDV (Purchase Dry Veneer--Doug. Fir)

1267	1/10	Doug. Fir	11	AB
1368	"		11	CD

PGV (Purchase Green Veneer--Doug. Fir)

1369	1/10	Doug. Fir	54s	AB
1370	"	"	"	CD

LI8 (8 ft lathe log inputs)

1371 1372	Doug. Fir Wh. Fir	Peel	to "	1/10	veneer "
1373	Spruce	11	11	11	**
1374	Larch	11	11	11	**
1375	Pine	11	11	11	**
1376	Hemlock	11	11	11	**
1377	Doug. Fir	Peel	to	1/6	veneer
1378	Wh. Fir	11	11	11	**
1379	Spruce	11	11	11	**
1380	Larch	11	**	11	**
1381	Pine	11	**	11	11
1382	Hemlock	11	11	**	**
1383	Spruce	Peel	to	7/32	veneer
1384	Pine	11	11	**	**
1385	Hemlock	11	11	**	11

LI4 (core lathe inputs)

1386	White Fir	Peel to	1/6 core
1387	Spruce	11 11	11 11
1388	Pine	11 11	11 11
1389	Hemlock	11 11	11 11
1300	Spruce	11 11	7/32 core
1201	Pine	11 11	11 11
1202	Hemlock	11 11	11 11
1202	Springe	11 11	5/16 core
1393	Dino	11 11)/ 10 0010
1395	Hemlock	TT TT	11 11

VRF8-B (Face/back veneer requirements that cannot be met-backlogged)

1396	1/10	Doug. Fir/Larch	54 s	B-Cp
1207	11		11	С
1208	**	"	11	D
1390	**	Wh Fir/Hemlock	11	B-Cp
1399	••	WII. FIF/Hemroek	11	Ċ.
1400			11	n
1401	TT		11	D C
1402	**	Pine/Spruce		
1403	**	**		D D C.
1404	1/6	Wh. Fir/Hemlock	**	B-Cp
1405	_, _	**	**	С
1405	**	**	**	D
1400	**	Pine/Spruce	**	С
1407	••	I THE PPI COO	**	D
1408				2

VRFX-B	(All Pon. Pi cannot be me	ne Doug. Fir face tbacklogged)	/back veneer	' that
1409 1410 1411 1412 1413	1/10 " " "	Doug. Fir " " Pine	54s " " "	A B-Cp C D C Nat. (for knotty pine)
VRC8-B	(Veneer requ metbacklo	irements for cent gged)	ers that car	nnot b e
1414 1415 1416 1417 1418 1419 1420 1421 1422	1/10 " 1/6 " 7/32 "	Mix "" "" "" ""	Mix "" "" ""	C D NC C D NC NC
VRC4-B	(Veneer requ backlogged	irements for core)	that cannot	t be met
1423 1424 1425 1426 1427 1429 1430 1431 1432 1434 1435 1435 1435 1436 1438	1/10 " 1/6 " 7/32 " 5/16 "		Random """"""""""""""""""""""""""""""""""""	C solid C D NC C solid C D NC C solid C D NC C solid C D NC
VI54-E	(Ending inve	ntory of 54 venee	ers)	
1439 1440 1441 1442 1443 1444 1445 1446	1/10 " " " " " "	Doug. Fir " Wh. Fir "	54s "" " " " "	ABCP C D NC ABCP C D NC

1447	1/10	Spruce	54 s	ABCp
1448	11	TT	**	C
1449	11	11	**	D
1450	11	11	11	NC
1451	tt	Larch	11	ABCp
1452	11	**	11	c •
1453	11	11	**	D
1454	11	11	11	NC
1455	**	Pine	11	ABCD
1456	**		11	C
1457	11	11	11	ũ
1/158	**	11	11	NC
1/150	**	Hemlock	11	ABCh
1459	11	nemitock	11	ADCP
1400		"	11	
	11	"	11	
1402	7.10		11	NC ADC=
1463	1/0	Doug. Fir	••	АВСР
1464	"	••	••	C
1465	TT		••	D
1466	11	11		NC
1467	11	Wh. Fir	11	ABCp
1468	11	TT	11	С
1469	11	11	11	D
1470	11	11	11	NC
1471	tt	Spruce	11	ABCp
1472	11	11	**	С
1473	11	11	**	D
1/7/	11	**	11	NC
ユマノマ コ ル フ に	11	Larch	11	ABCp
14/5	11	11	**	сİ
14/0	"	**	**	D
14//	11	11	**	NCth
14/0	"	Pine	11	ABCD
1479		r 1116 11	11	C
1480	**	11	tt	D D
1481		11	**	NC
1482	••		**	ABCD
1483	11	Hemlock	**	C
1484	11	11	11	D
1485	11	••	**	
1486	11	-		ABCD
1487	7/32	Spruce		ADCD
1488	11	Ť	••	
1489	tt	ŤŤ		D
1490	11	TT .	11	NC
1491	11	Pine	11	ABCP
1492	11	**	11	C
1/03	11	11	11	D
т - 20 1 Л О Л Г	11	**	**	NC
エマフマ コルのロ	**	Hemlock	11	ABCp
エマソフ	tt	11	11	С
1490	11	11	**	D
149/	11	**	**	NC
1498	••			

. . . .

1499 1500	1/10 "	Doug. Fir	54s	AB
1501	11	Doug, Fir/Larch	11	RC n
1502	11	White Fir/Hemlock	11	BCp
1503	1/6		11	
1504	1/10	Mix	11	Dcenters
1505	1/6	11	11	D CENCELS
1506	7/32	"	11	11
1507	1/10	Doug. Fir	**	ABCp-27 (edge
1508	**	White Fin	11	giued 2/s)
1500	**	Lanch	11	11 11
1510	11	Hemlock	11	11 11
1511	1/6	Doug, Fir	11	11 11
1512	±, 0	Wh. Fir	11	11 11
1513	**	Larch	11	11 11
1514	**	Hemlock	11	11 11
1515	1/10	Doug. Fir	11	ABCp-R (edge
	_ ·			glued strips)
1516	11	Wh. Fir	11	" "
1517	11	Larch	11	11 11
1518	**	Hemlock	11	17 11
1519	1/6	Doug. Fir	11	11 11
1520	11	Wh. Fir	11	11 11
1521	TT	Larch	11	11 11
1522	**	Hemlock	**	11 11

VI27-E (Ending inventory of 27 veneers)

1523	1/10	Doug. Fir	27 s	ABCp
1524	11	- n	**	С
1525	11	TT	**	D
1526	**	TT	**	NC
1527	11	Wh. Fir	**	ABCp
1528	**	11	**	С
1520	**	11	**	D
1530	**	**	**	NC
1531	11	Spruce	**	ABCp
1532	11	11	11	С
1533	11	**	**	D
エノフラ 1 5 2 ル	**	11	**	NC
1535	**	Larch	**	ABCp
1526	11	11	**	С
1507	11	11	**	D
1528	**	11	**	NC
1520	**	Pine	**	ABCp
1573	11		**	С
1540	11	11	**	D
1541	**	11	**	NC
エク42	**	Hemlock	**	ABCp
1543	**	11	**	С
1544		11	11	D
1545		11	11	NC
1546				

128

VIRD-E (Ending inventory of strips)

1582	ח ו / ו	Doug, Fir	Strips	abCo
1903	1/10		11	С
1584	**	"	11	D
1585	**	"	**	NC
1586	**	Wh Fin	11	ABCr
1587		WII. T.T.	11	C
1588	11	11	**	D
1589	11	11	"	NC
1590	11	2	**	APCE
1591	11	Spruce	11	C
1592	11		**	
1593	11		,,	
1594	11	•		

1595	1/10	Larch	Strips	ABCp
1507		11	**	C
1508	11	11	"	D
1500	11	Dime	"	NC ADC-
1000	11	Pine		ABCD
1600	"	11	**	C
TOOT	"	11		D
1002	**			NC ADO-
1003	**	Hemlock	**	ABCP
1604	••		**	
1005			**	D
1000	7 16		**	NC ADC=
1607	1/0	Doug. Fir		АВСР
1008	**		11	
1609		11	"	
1610				
1611		wn. Fir		АВСР
1612	**	11	11	
1013			11	
1614	••		11	NC ABCT
1615		Spruce	11	АВСР
1616		11	11	
1617	••		11	
1618		T e e e le	**	ABCD
1619		Larch	11	ADCD C
1620		11	11	
1621		11	**	
1622			11	ABCD
1623		Pine	11	C C
1624	**	11	**	D D
1625		11	11	NC
1626	••	I and a la	11	ABCn
1627		Hemiock	**	C
1628		11	11	D
1629		11	11	NC
1630			**	ABCD
1631	7/32	Spruce "	11	C
1632		11	**	0 D
1633	11	11	**	NC
1634	11		11	ABCD
1635	**	Pine	**	C
1636	11	11	11	0 G
1637	11	11	**	NC
1638	11	" "	11	ABCn
1639	11	Hemlock	**	C L L
1640	"	**	**	Ď
1641	11	11	11	NC
1642	**	11		140
VIC4-E	(Ending invent	cory for core ven	eers)	
--	--	---	--	---
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654	1/10 " " 1/6 " 7/32 " "	Mix """"""""""""""""""""""""""""""""""""	Random "" "" "" "" "" "" ""	C solid C D NC C solid C D NC C solid C D NC
1656)/ 10 11	11	**	C
1657 1658	"	11	11	D NC
VRF8-X	(Excess face/M	back veneerretu	rned to f	invento ry)
1659	1/10	Doug. Fir/Larch	54s	BCp
1660 1661	11	11	11	D
1662	11	Wh. Fir/Hemlock	11	BCp
1663	11	11	11	C
1664	11	11	**	D
1665	11	Pine/Spruce	11	C
1666	11		,,	D
1667	1/6	Wh. Fir/Hemlock	11	C DOD
1668	**	11	11	D
1670	11	Pine/Spruce	11	Č
1671	11	11110, 551 000	11	D
VRFX-X	(Excess Doug. inventory)	Fir/Pine face/ba	ck venee:	rsreturned to
1672	1/10	Doug. Fir	54s	А
1673	11	- 11	**	BCp
1674	11	11	11	C
1675	11		**	C Nat
1676	11	Pine		0 1140.
VRC8-X	(Excess center	r veneer-returned	to inver	ntery)
1677	1/10	Mix	Mix	C
1678	11	"	**	
1679	11		11	C
1680	1/6	11	11	D
1681	11	11	**	NC
1602	7/20	11	TT	С
1 6 8 JI	1/54	11	**	D
1685	11	"	TT	NC

·				5 /
1686	1/10	Mix	Random	C solid
1687	11	TT	11	C
1688	11	**	**	D
1689	11	**	**	NC
1690	1/6	TT	**	C solid
1691	11	11	11	C
1692	**	11	**	D
1693	11	TT	**	NC
1694	7/32	11	**	C solid
1695	11	11	**	С
1696	11	11	11	D
1697	**	11	**	NC
1698	5/16	TT	**	C solid
1699	11	11	11	С
1700	11	11	11	D
1701	11	11	11	NC
BEGINNING	VENEER	INVENTORIES (54s)		
1702	1/10	Douglas Fir	54 s	ABCp
1703			11	С
1704	**	**	11	D
1705	**	11	11	NC
1706	11	White Fir	11	ABCp
1707	**	11	11	C
1708	**	11	11	D
1709	**	"	11	NC
1710	**	Spruce	11	ABCp
1711	**	"	11	C
1712	**	11	11	D
1713	11	**	**	NC
1714	11	Larch	17	ABCp
1715	**	ŧt	11	C
1716	**	**	**	D
1717	**	ŧt	11	NC
1718	11	Pine	"	ABCP
1719	**	**	••	C
1720	**	**	••	D
1721	11	**	••	NC
1722	11	Hemlock	••	АВСР
1723	11	**	••	
1724	TT	**	••	
1725	**	**	••	
1726	1/6	Douglas Fir	••	АВСР
1727	11	"	**	
1728	11		**	NC
1729	11			ABCD
1730	11	White Fir	11	C C
1731	TT		11	
1732	11	••	11	NC
1733	11	11		110

VRC4-X (Excess core veneer--returned to inventory)

1734	1/6	Spruce	54s	ABCp		
1736	**	11	11			
1737	11	TT	"			
1738	**	Larch	11	ABCD		
1730	11		11	C KDCF		
1740	11	11	**			
1741	**	11	11			
1740	"	Pine	**	ABCD		
17/12	**	1 1116	11	C C		
エ(マン)	**	"	**			
エ/ 44 コワルロ	11	**	**			
17/6	**	Hemlock	**	ABCD		
1740		Hemiock	**	ADCD		
1/4/		"	11			
1/40	••	11	**			
1/49	7 (20					
1750	1/32	Spruce	11	АБСР		
1751	••	••	11	C		
1752		••	**			
1753			**	NU ADC-		
1754	11	Pine	**	ABUL		
1755	"		**	C		
1756	11			D		
1757	**		**	NC ADC-		
1758	**	Hemlock	••	ABCD		
1759	**	"	••	C		
1760	11	"	••	D		
1761	11	"	••	NO		
1762	1/10	Douglas Fir		AB		
1763	**	**		A		
1764	11	Douglas Fir/Larch		Bra		
1765	11	White Fir/Hemlock	1:			
1766	1/6	**				
1767	1/10	Mixed	Mixed	D cer	luers	
1768	1/6	ŤŤ	**	••		
1769	7/32	**			(
1770	1/10	Douglas Fir	11	ABCD	(eage	(27-)
					giuea	2(5)
1771	"	White Fir		••		
1772	**	Larch	11	•	11	
1773	11	Hemlock	**	•	••	
1774	1/6	Douglas Fir	TT		••	
1775	11	White Fir	**		••	
1776	tt	Larch	11	••	••	
1777	11	Hemlock	11		, ,	
1778	1/10	Douglas Fir	**	ABCp	(edge glued	strips
1770	,,	White Fin	11	11	;	-
1/79		Tanoh Tanoh	11	fi	;*	
1780	••	Hemlook	11	TT	ti	
TLAL	2 16	Dougles Fir	11	tt	11	
T/ 85	1/0	DUUKIAD TII White Rin	11	11	1.	
1783	••	Tabop Mutos Titi	11	11	•	
1784		Hemlogh	11	11	13	
1785		HEILIOCK				

)

(27s veneers)

1786	1/10	Douglas Fir	27s	ABCp
1787	**		"	С
1788			••	D
1789	**			NC
1790	••	vhite Fir	11	ABCp
1791			"	C
1/92			"	D
1/93	••		1	NC
1794		Spruce	**	ABCp
1795		••		C
1796			11	D
1797		- '' ·		NC
1798	**	Larch	••	ABCp
1799	11		••	C ·
1800	**		••	22
1801	TT		••	NC
1802	11	Pine		ABCD
1803	tt	**	11	C D
1804	TT	11		D
1805	11	tt.		NC
1806	11	Hemlock		ABCp
1807	11	11	11	С
1808	11	11	••	D
1809	11	11 	••	NC
1810	1/6	Douglas Fir		ABCp
1811	**	11	11	C
1812	11		••	
1813	17		**	110 ADCm
1814	**	White Fir	11	ABUD
1815	ŤŤ	••	11	
1816	**	••		
1817	**		11	NC ADCn
1818	11	Spruce	11	ABCP C
1819	**	••		<u>ر</u>
1820	11		11	
1821	11	- ',		/ BCn
1822	**	Larch	11	C C
1823	11	••	"	C T
1824	11		11	
1825	**		11	A D C D
1826	11	Pine	11	C ADOD
1827	**			
1828	11		11	
1829	**	"	**	
1830	11	Hemlock	**	ADCP
1831	11	••	11	U D
1832	**	••	**	
1833	11		11	ARCn
1834	7/32	Spruce	11	C YDOD
1835	11	••	**	
1836	TT	**	**	NC
1837	**			140

1838 1839 1840 1841 1842 1843 1844 1845	7/32 " " " " "	Pine " " Hemlock "	27s " " " " "	ABCp C D NC ABCp C D NC
(strips)				
(strips) 1846 1847 1848 1849 1850 1851 1852 18554 18556 18557 18559 18661 18665 18666 18666 18666 18666 18671 18773 18778 18778 18877 18876 18877 18876 18877 18876 18877 18876 18877 18876 18877 18876 18878 18888 1888 188888 18888 18888 18888 18888 188888 18888 18888 1888	1/10 """""""""""""""""""""""""""""""""""	Douglas Fir "" White Fir "" Spruce "" Larch "" Pine "" Hemlock "" Douglas Fir "" White Fir "" Spruce "" " " Larch	Strips "" "" "" "" "" "" "" "" "" "" "" "" ""	ABCP C D NC ABCP
1886 1887 1883 1889	11 11 11 11	Pine " "	17 71 17 11	ABCP C D NC

1890	1/6	Hemlock	Strips	ABCp
1891	11	11	11	C
1892	11	tt.	11	D
1893	11	**	**	NC
1894	7/32	Spruce	**	ABCp
1895	11	**	11	C
1896	11	Ŧ	11	D
1897	TT	11	11	NC
1898	11	Pine	11	ABCp
1899	11	11	11	C
1900	11	11	11	D
1901	11	11	11	NC
1902	**	Hemlock	11	ABCp
1903	11	11	11	С
1904	**	11	11	D
1905	11	"	11	NC
(cores)				
1906	1/10	Mixed	Random	C solid
1907	11	**	11	С
1908	11	**	tt	D ·
1909	**	11	11	NC
1910	1/6	11	11	C solid
1911	11	11	11	С
1912	f1	11	11	D
1913	**	"	11	NC
1914	7/32	11	**	C solid
1915	11	11	TŤ	С
1916	11	11	tt.	D
1917	**	11	11	NC
1918	5/16	11	11	C solid
1919)/ _ C 11	11	11	C
1920	**	TT	11	D
1921	**	11	**	NC
(additiona	al veneer	transfers1/6 54s	C veneers	for centers)
1922	1/6	Douglar Fir	54 s	C

1/6	Douglar Fir	248	
**	White Fir		
*1	Spruce	"	••
**	Larch	**	
11	Pine	11	11
11	Hemlock	11	**
	1/6 " " " "	1/6 Douglar Fir "White Fir "Spruce "Larch "Pine "Hemlock	1/6Douglar Fir548"White Fir""Spruce""Larch""Pine""Hemlock"

REFERENCES

REFERENCES

- Brooks, G. H. and White, C. R. "An Algorithm for Finding Optimal or Near Optimal Solution to Production Scheduling Problems," <u>Journal of</u> <u>Industrial Engineering</u>, Vol. 16, 1965, pp. 34-40.
- Burstall, R. M. "A Heuristic Method for a Job-Scheduling Problem," <u>Operational Research</u> <u>Quarterly</u>, Vol. 17, No. 3, September 1966.
- 3. Charnes, A. and Cooper. W. W. <u>Management Models and</u> <u>Industrial Applications of Linear Programming</u>. <u>New York: John Wiley & Sons, Inc., 1961.</u>
- 4. Dantzig, G. B. <u>Linear Programming and Extensions</u>. Princeton, New Jersey: Princeton University Press, 1963.
- 5. Demas, Ted. <u>Basic Plywood Processing</u>. American Plywood Association, 1965.
- 6. Forrester, J. W. Industrial Dynamics. Cambridge, Massachusetts: The M. I. T. Press, 1961.
- Gere, William S., Jr. "Heuristics in Job Shop Scheduling," <u>Management Science</u>, Vol. 13, No. 3, November 1966, pp. 167-190.
- 8. Giffler, B. and Thompson, G. L. "Algorithms for Solving Production Scheduling Problems," <u>Operations Research</u>, Vol. 8, No. 4, July-Aug., 1960, pp. 487-503.
- 9. Giffler, B., Thompson, G. L. and Van Ness, V. "Numerical Experience with the Linear and Monte Carlo Algoithms for Solving Production Scheduling Problems," in J. F. Muth and G. L. Thompson (eds.), <u>Industrial Scheduling</u>. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1963.
- 10. Ignall, E. and Schrage, L. "Application of the Branch and Bound Technique to Some Flow Shop Sequencing Problems," <u>Operations Research</u>, Vol. 13, 1965, pp. 400-412.

- 11. Koenig, H. E., Tokad, Y. and Kesavan, H. K. <u>Analysis</u> of Discrete Physical Systems. New York: McGraw Hill Book Co., 1967.
- 12. Manne, A. S. "On the Job Shop Sequencing Problem," Operations Research, Vol. 8, 1960, pp. 219-223.
- 13. Mellor, P. "A Review of Job Shop Scheduling," <u>Operational Research Quarterly</u>, Vol. 17, No. 2, pp. 161-171.
- 14. Pounds, W. F. "The Scheduling Environment," in J. F. Muth and G. L. Thompson (eds.), <u>Industrial</u> <u>Scheduling</u>. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1963.

- 15. Rowe, A. J. "Toward a Theory of Scheduling," <u>Journal</u> , <u>of Industrial Engineering</u>, Vol. 11, No. 2, March-April, 1960, pp. 125-136.
- 16. Smith, R. D. and Dudek, R. A. "A General Algorithm for Solution of the n-Job, M-Machine Sequencing Problem of the Flow Shop," <u>Operations Research</u>, Vol. 15, No. 1, January-February, 1967, pp. 71-82.
- 17. Shields, P. C. Linear Algebra. Reading, Massachusetts: Addison-Wesley Publishing Co., Inc., 1964.
- 18. Van Woerner, T. "The Trimmer: A Heuristic Solution to the Trim Problem in the Corrugated Container Industry." Unpublished Ph.D. Dissertation, Carnegie Institute of Technology, 1963.
- 19. Zangwill, W. I. "A Deterministic Multi-Period Scheduling Model," <u>Management Science</u>, Vol. 13, No. 1, September 1966, pp. 105-119.

