STATE MODEL APPROACH TO THE SYNTHESIS OF LC
NETWORKS AND THE CANONIC LC NETWORK
TRANSFORMATIONS

Thesis for the Degree of Ph. D.
MICHIGAN STATE UNIVERSITY
Racha Krishna Rac Yarlagadda
1964

P A Ay 4



LIBRARY

Michigan State
University

This is to certify that the
thesis entitled

STATE MODEL APPROACH TO THE SYNTHESIS OF
LC NETWORKS AND THE CANONIC LC
NETWORK TRANSFORMATIONS

presented by

Radha Krishna Rao Yarlagadda

has been accepted towards fulfillment
of the requirements for

Ph.D. degree in Electrical Engineerj

7

Major pr(ﬁessor

'DateﬂgUSt 12, 1964

0-169



RCOM USE OxLy
ROOM USE ONLY

" 3 T,
Lot v redb



ABSTRACT

STATE MODEL APPROACH TO THE SYNTHESIS OF
LC NETWORKS AND THE CANONIC LC NETWORK TRANSFORMATIONS

by Radha Krishna Rao Yarlagadda

In this thesis 1) a state model approach to the synthesis of LLC
networks and 2) a realization procedure for canonic LC networks using
the equivalent network transformations are considered.

In Chapter II analysis and formulation of LLC networks from the
state model point of view is described.

In Chapter III a new definition of canonic LC networks is given.
This definition is applicable to general ri-port LC networks. A general
realization procedure of LC networks from the state model equations
is described. A state model approach to the realization of reactance
or susceptance matrices with the ideal transformers is given. The
state model approach is also utilized in the realization of reactance
functions without the use of ideal transformers. This procedure is
extended to the reactance matrices of order two having dominant resi-
due matrices; however, it is also applicable to n-port LC networks of
the same class.

In Chapter IV a technique for realizing canonic networks is
described. This is accomplished by establishing a parametric matrix
relation, which relates the parameters of two canonic networks by an
orthogonal matrix. Some of the known canonic forms are derived by

the application of this technique.
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CHAPTER I

INTRODUCTION

In classical network theory, the synthesis problem is stated
in terms of the impedance or admittance matrices in the s-domain,
and its solution is realized by mathematical operations on these
matrices which can be interpreted as the interconnection of certain
sub-networks. These mathematical operations, in general, neces-
sitate the use of ideal transformers, even though the given matrix
is known to be realizable as a network contains only two terminal R,
L and C elements.

Recently it is recognized by many investigators that the
topological approach to the synthesis problem might offer new in-
sight. Indeed, the problem of synthesizing n-terminal R networks
characterized by the impedance or admittance matrices of order
(n-1) is completely solved [PA 1]. Although extension of R-network
synthesis to some very special class of multi-terminal RLC networks
is also known [CE 4], the solution of the general problem appears at
best, to be very difficult.

A natural approach to the RLC network synthesis is by means
of state models since, in general, the state model of the network
provides more direct information about the network topology than

does the network matrices. Recently, some works have been
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initiated in this direction [RA 1], [DE 2], [KA 1]. Since the properties
of the relations between the state models and the topology of the
corresponding network are not explored fully, in this thesis a natural
decision is made and only the synthesis problem of LC networks is
considered.

In recent literature, new canonic networks have been proposed
[RE 1, LE1, YA 1]. The first set of canonic networks were given by
Foster in 1924 [FO 1]; later in 1930 Cauer gave another set of canonic
networks. In 1955 Reza [RE 1] stated that there are many more
canonic forms which cannot be obtained even if a mixture of Foster
and Cauer procedures is used. But he gave neither the properties
of such new canonic forms nor the realization procedures. In 1963,
Lee [LE 1] gave a lattice canonic form and Yarlagadda and Tokad
proposed a different lattice canonic form [YA 1]. None of these
known canonic forms are obtained as the result of a general theory.
Rather, each is derived by a procedure unique to its form.

This thesis presents for the first time two general procedures
for deriving one canonic LC network from another. The first proce-
dure is based on the equivalent network transformation introduced by
Howitt [HO 1], [HO 2] and extended by Cauer, Guillemin [GU 1],
Schoeffler [SC 1] and others. None of these methods, however,
consider major changes in the topology of the network, i.e., equiva-

lent networks are always assumed to have the same number of meshes
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or node-pairs or one equivalent network is generated from the other
by rather obvious network modifications.

The second method is based on similarity transformations on
the state models of the networks rather than on the mesh or node
equations.

In Chapter II analysis and formulation of LLC networks from
the state model point of view is described along with certain
similarity transformations. Such an analysis is the backbone of
the synthesis procedures considered in the successive Chapters.

In Chapter III, a new definition of canonic LC network is
given which applies to general n-port networks. A general realiza-
tion procedure for the state model equations as an LLC network is
described in Section 3.5 and certain conditions for realizability are
stated. Although methods exist [KA 1], [GI 1] for derivating the
state model from the impedance or admittance matrix, a slightly
different approach is given in Section 3.4. The problem of realizing
impedance or admittance matrices with the ideal transformers is
solved by state models. Although Kalman [KA 3] in a recent talk
has suggested that this result is possible, but so far no published
material is available. In Section 3.6 a realization procedure for the
reactance functions is given in terms of state models and the proce-

dure extended to a class of 2-port LC networks.
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In Chapter IV a general procedure for transforming a one-
port canonic LLC network to another is given. The relation between
the element values of one canonic network to another is established

and this relation is called parametric matrix relation. For some

of the canonic networks given in Table 4. 3.1, the nonlinear
equations obtained from parametric matrix relation are solved
analytically. But, in general, an analytical solution for an arbitrary
canonic form may not be possible, although computer solution might
conceivably give a solution in a particular application. Such numer-
ical solutions are not considered in this thesis.

Chapter V presents examples, illustrating the procedures

described in the thesis.



CHAPTER II

ANALYSIS OF LC NETWORKS

2.1 General

In this chapter the analysis of n-port LLC nefworks in
terms of state model formulation is co.nsidered. This analysis
establishes the conditions on the short circuit and the open circuit
parameters of the n-port LC network which are nece;sary for its

"

realizability without the ideal transformers.

2.2 The State Model

In classical network theory the analysis, in general, is based
on the s-domain loop or node equations and natural frequencies are
defined as

Definition 2.2.1: The finite zeros of the determinantal equation

of the loop or the node matrix of an RLC network are called the natural
frequencies, and the number of these natural frequencies is cailed the
""order of complexity' of the network.

The instanteous behavior of the network can also be described
by a set of first order differential equations and a set of algebraic

equations of the form

d
4 x - AX+BY+C Y
dt dt
(2.2.1)
- d
Y = PX+QY+R— Y

dt

-5-
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where X is called the state vector and consists of branch capacitor
voltages and chord inductor currents, and Y is a vector which contains
the specified voltages and currents; Y contains the complementary
variables of those in Y. The coefficient matrix A is real square and
called the operator matrix. All other matrices B, C, P, and Q are
real and, in general, they are rectangular. The set of equations in
(2.2.1) describes the behavior of the network completely and it is
called the state model of the network.

An alternate definition for the natural frequencies of the network
as given in terms of the state model is

Definition 2. 2.2: Natural frequencies: The natural frequencies

of an RLC network is defined as the eigenvalues (not necessarily distinct)
of the operator matrix A in the state model (2.2.1).

In the literature, the order of complexity has been discussed by
several authors. Some define it in terms of the topological properties
of the network [RE 1, GU 1, SE 1 and others], and the others
[BR 1, BA 1] define it in terms of state variables. However, the two

definitions are equivalent, i.e., the order of complexity is equal to the

order of the state vector.

2.3 Explicit Expressions for the State Equations of an n-port LC

Network

A procedure for determining a state vector of minimum ‘order

has been described by several authors [BR 1, BA 1, WI 1, KO 1, and others].
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The procedure given originally by Wirth is based on a tree of the system
graph defined as follows:
Let G be the graph of such network.

1. Consider the subgraph Go of G which contains all the elements

corresponding to the voltage drivers. Let TO be a tree (or

forest) in G For consistent networks it is necessary that

0’
TO = GO.

2. Let Gl be the subgraph of G which contains Go and all
elements corresponding to capacitors. Select a tree Tl in
G1 such that T1 contains TO'

3. Let G2 be the subgraph of G which contains G1 and all
elements corresponding to inductors. Select a tree in G2
such that T2 contains Tl. Then T2 is a tree in G and all
current drivers are included in its co-tree. (For consistent
networks current drivers cannot form a cut-set).

4. The voltages of the branch capacitors and the currents of the
chord inductors constitute the variables of the state vector.

For an LC network the circuit equations corresponding to a tree

selected according to the above rules described has the form



L
Vo
[ | - \
B,, B, oI U o o] be
' Ve
B,, B,, By 0 U 0 =0 (2.3.1)
l VCC
|
B,, B, B33| 0 0 U v
L - ct
v

where Bij are the submatrices of the fundamental circuit equations, U,

the unit matrix and the variables are classified as follows:

VO - Voltage drivers

Vbc - Branch capacitor voltages

Vb! - Branch inductor voltages

Vcc - Chord capacitor voltages

V1 - Voltages of the current drivers

Similarly, the cut-set equations for the same network corres-

ponding to the same tree are

— T — Io
U 0 o -B11 -B,, -B3; I
bc
T T
- - - = 0 2.3.2
0 U O© B, B,, B,, IM ( )
ICC
0 0 U 0 BT B
“P23 7733 I
| | ct
I
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Let the terminal equations of the branch capacitors and chord

inductors be written as

C
- = (2.3.3)

and let the terminal equations of the branch inductors and chord

capacitors be written as

bt
. d
= = (2.3.4)
C \" I
c cc cc
Then the state equations can be obtained as
— . _ N — T— -
0 B A"
Cb * BlZCcBIZ 0 Vbc 22 bc
d -
T dt -
-B 0 I
0 I"c * B23LbB23 Icl 22 cl
— — ~— - — I e
T T
v 0 B v
B12CB1 0 4| Vo 32 0
- a +
T
-B 0 I
0 Bo3lyBis L 21 1
(2.3.5)

From (2.3.1) and (2. 3. 2) the currents of the voltage sources and the

voltages of the current sources are
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-
I
cC
_ T T T
Ip =t [Bu B, B31j| s
I
L
L (2.3.6)
Vo
Vi= - l:B31 B3, B33:| Ve
VbIJ

% * ok k-
The terminal variables Vo, Vl’ 10, I1 are related to the variables

associated with the drivers by

1 I v. = v
o o0 1 - "1
5 . (2.3.7)
Vo= Ve oy I, = L)
also
d d
= — - - — +B V

I, =C.a Vee = Cea Br1 Vo Brz Vi

Substituting this expression of ICC and (2.3.7) into (2.3.6) we have

* T d _* T d T T _*
= -1 = 4 4 - I +BL 1
I, = -1,=B,C. B3 Vot B11% Bl Vbe " Pa1ter’ P31
V* +B.. V. )
] = =By Vot Bap Ve ¥ Bi3 Yy

x d T d T %
- 4 45 L B, I
{531 Vo*tBia Ve tar Pas My Bazfer T & P33 b 3301

(2.3.8)
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The state model obtained above reduces to the form given in
(2.2.1) upon taking the inversion of the coefficient matrix on the left
of (2.3.5) and substituting the resulting expressions for the derivatives
of the state variables into (2.3.8). The required inverse always exists

as established by the following theorem.

Theorem 2.3.1: Let Cb’ Cc’ Lb, Lc be diagonal matrices with

positive entries and B

2 B, be arbitrary matrices (in our case they

1 23

are unimodular matrices), then the matrices Cb + B'lr2 Cc B12 and

- T ‘ps -
Lc + B23 Lb B23 are positive definite.

Proof: After Tokad and Kesavan [TO 1]
The final explicit form of the state model for any n-port LC

network without ideal transformers is

R - -1 T_ ]
. Vb 0 (Cy +B1,C B1a) By, Ve
dt - o -l
It -(L, *+ B,3L,By3) By, 0 i I i
L — L b
pr— -1 - — -
T T X
(Cy, +B1,C B,) B,C.By, 0 . Yo
. ) :
0 (L +B..L.BL) B,.L.B~ I
N e T T23TpT23’ T3ty [ b |
o -1 — - o
0 -C. +BX.C B..) BY v
p P B12C.B12) Bsp 0
+
. T -1 N
(L. * Byl Bys) By 0 L
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-1
" T T T T g 4
Ip = {BnCcBu - B),C B 1,(Cy +B1,C B1o) BoCBnr & Yo
T T -1 T T
- I
* {BIICCBIZ(Cb+B12CcBIZ) By, "B 1
T T -IB v +BT I
- B, ,C.B (L  +B,3L Byi) By Vi B3 h
and
* T T T -1 T d _*
- L. B g
Vi = - l:{B33LbB33+B33LbB23(Lc+BZ3LbB23) BoshyBasr at 1

-1
T T
* {B32 - By3LyBys(L, + By3LyB,s) Bzz} Ve

-1
K e
BTI +B_.V

T T )
12 3271 31'0 (2.3.9)

" B33l Bas(Cy + B12C B
Other investigators (e.g., [BR 1, 2]) have given alternate
procedures for developing the general form of the state model for LC
networks with restricted voltage and current drivers (voltage driver
in series with an element and current driver in parallel with an element).
For this restricted class of networks the procedure of Bryant and that
given here provides a method for investigating the network without
drivers. When all voltage drivers are replaced by short circuits and

all current drivers are replaced by open circuits then the natural

frequencies of the resulting network are invariant.
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However, in the procedure given here there is no restriction on
the location of the drivers in a network and, in general, replacing
voltage drivers by short circuits and the current drivers by open cir-
cuits modifies the network and hence the natural frequencies. However,
by the following procedure the general LC network with arbitrary
drivers, can be transformed into an LC network without the drivers,
while holding the number of natural frequencies invariant.

Procedure:

1. Substitute a capacitor for those voltage drivers which form
circuits with capacitors in the network and a short circuit
for all other voltage drivers.

2. Substitute an inductor for those current drivers which form
cut-sets with inductors and open circuit for all others.

In this procedure, the size of the capacitors (inductors) substi-
tuted for voltage drivers (current drivers) has no effect on the number
of natural frequencies. In the case of an arbitrary n-port network, it
is always possible to select the type of excitation at the ports such that
the number of natural frequencies of the network will be invariant, i.e.,
some of the excitations can be taken as voltage drivers, such that they
do not form circuits with other capacitors and the remaining excitations
can be taken as current drivers, such that they do not form cut-sets

with the other inductors.
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Theorem 2.3.2: For an LLC network the natural frequencies are

located on the imaginary axis, i.e., the operator matrix has eigenvalues

on the imaginary axis.

Proof: The operator matrix in (2. 3.9) can be written as

§ T -1 17 T— r 1 i
(C, +B,C B;,) 0 0 B,, X
A - - =
. B, =PB,
T -1
0 (L_+B,,L B,,) -B,, 0 YlJ
(2.3.10)
where
C. +BYL.C B.. = X
b 12 ¢ C12 = ™1
Lo *tBy3 Ly By = ¥
and
T
0 B,,
= Bl
-B,, 0

Since B1 is a skew symmetric matrix eigenvalues of B are all on the
imaginary axis (See, e.g., [PE 1], p. 196)% To prove that A also has

eigenvalues on the imaginary axis, consider the characteristic

equation of A:
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n
o

| A - U
(2.3.11)

1]
o

IPB1 - \U|

X
From Theorem 2.3.1, it is known that [ 1 YJ is a symmetric and

positive definite matrix. Therefore, the positive definite matrix,

2
x!/

2
v/

exists, and is unique [PE 1, p. 203]. Hence (2.3.11) can be written as

1/2 1/2 -1/2
det(pBl-xU)=lp/l|p/Bl-xp /Ul
1/2 1/2 1/2 -1/2
=,p/I|P/B1P/-XU,[P/I
2 2
= lpl/ BlPl/ - \U|
. 1/2 1/2 . . . e
where, since P BIP is a skew symmetric matrix, all its eigen-

values lie on the imaginary axis. This implies, A = PB1 has eigenvalues

on the imaginary axis.

2.4 Short-Circuit and Open-Circuit Parameter Matrices from the

State Model
To obtain short circuit or open circuit parameters from the
state model equations, i.e., from (2.3.9) or from (2. 3.5) and (2. 3. 8),

let (2.3.5) and (2. 3.8) be repeated here for ready reference.
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_ T .
Cb+B12CCB12 0 vbc 0 B, Ve
4
- dt =
0 + -
B Lo+ BaslyPBas | T | B2z O [ fer |
= —— P — — — o ﬂ
T * T %
BIZCcBll 0 Vo 0 -B,, Vo
4 s
0 B,.L BT * 1* B ) T
“P237p 33 1 P21 1
- _ A I 4 L °_
(2.4.1)
and
* T d _=* T d T T _*
= — — - +B
Ip =B C. B @ VorB11C% Biz® Voe "Byl ¥ Ba1 hy

<
|

* * d T T d *
- {331 Vot By Ve ta Bas by Basly "Bzt Pasx 11}

(2.4.2)

Although the derivations of state variables appear explicitly in (2. 4. 2)
they can be eliminated if desired, by direct substitution from the
differential equations. Since the coefficient matrix to the left of (2.4.1)
is positive definite, its inverse exists. In (2.5.1) introduce the following

transformation of variables

o — p— — - -
A T 1/2 '
0 v v

(Cy, + B, C. Bya) be be
o 12 X

0 (L, +By3 Ly Bog) | [Ty | | Ter |

(2.4.3)
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where the coefficient matrix represents a positive definite root of the

matrix to be inverted. This transformation takes (2.4.1) and (2. 4. 2)

into the form

p— '—l ol T -1/2 T -1/?
Vi 0 (C,#B,CB,)  By,(L +B,L By,
d -
a | . | o -1/2 . -1/2
- 0
LIcl i (L_*B,;L, By3)  B,,(C+B ,C By,)
B -1/2
T T
0
(C, +B1,C.B1y)  B,C. By,
4
BT --1/.213 . BT dt 1*
0 -(L_+ B,aLy 23) 237p 33 B
-I/ZBT v
0 (C, +By,C Byp) 32 0
] T “1/2 0 I*
(L, + B30 Bys) 11
and
-1/2 ,
* T d _ * T T d
= 4 C. +BL.C B..)
I, =B, C By 3 Vot B11CcB12(C * B12%: "1z 3t Vbe
-1/2
T T T %
+BI 1
-(L_ *B,3 Ly Bys) BoyIe TBa1h
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Vo= BV +B..(C T ¢ e
1 © 7 B3 Vot B3 (C +B,C B, Ve
-1/2
T T 4 T 4
+B L + 44 . g
331 Bag(L  +By3 Ly Byy) 3t s "BaspBis @ 11}

(2.4.4)
It is evident that the operator matrix is still skew symmetric, i.e., the
skew symmetric property of the operator matrix is invariant under the
transformation in (2. 4. 3).

For convenience define the following variables

1/2

T _Jl/2
(Cb +B12Cc BIZ) = X1
1/2
T 1/2
(Lc +BZ3 Lb 323) = Y1
T
BlZ cc B11 - XZ
T (2.4.5)
Byslp By = ¥y
= X
Bll Cc Bll 3
T
B33 I—'b B33 - Y3
and let (2.4.4) be written as
~ - — e P— , -
' -1/2 _ T -1/2
A"/
Vbe 0 X, B, be
g -
dat | - 1/2 -1/2 '
ey 0 I
Lot Y Ba* L
. — L




-1/2 * -1/2_T *
x- 1 %x 0 v
1 2 4 0 0 Xl B3Z Vo
- 2 -
-1/2 * -
0 sy 2y I s T I
1 Y2 1 1 By 1
d ¥ T-1/2d ! T -1/2 T %
I =%, 2 vi:x 4y
0~ %@ VotXe T & Ve "Ba Yy Iy B3 )
x " -1/2 T -1/2d 4 *
V.=-4{B..V + a7 ¢y 4
1 { 1370 B3 ¥ VWt ¥ FlycVim 11}
(2.4.6)

2.4.1 Short-Circuit Parameters

If an LLC network contains only voltage drivers then the s-domain

short-circuit parameter matrix is of interest and is obtained from the

k¢
1

of course, implies that all initial conditions are taken equal to zero.

d
= 0 and replacing — by s. This,

state model in (2.4.6) by setting I It

The result is

e — e ——

r —
-1/2_T _-1/2 ' -1/2
- X
sU X, BpY Voe 8X, 2 .
= VO
-1/2 -1/2 ' -1/2
vy /g
Y B, X] sU ] Iclj X 21
and
. . _1/2
s oex. visexTx M2y BT vyl (2.4.7)

0 3°0 271 bc 21 "1 ct

1
Solving the first expression in (2.4.7) for V, and substituting into the
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second and third gives

' 1 -1/2 -1 _T _-1/2_
(UL, +3 Y By X BpYy  1,)-=
-1/2 -1/2 _-1/2 * -1/2 3
Y, B2 %) X X2V - ¥y Ba1 Vo
or
v 1_-1/2 -1/2 -1/2 *
Ic!-[sU+;Yl B, x B Y] :l [ B x x Y1 Byl Vo
(2.4.8)
and
* T -1 * T.-1_T _-1/2 _T _-1/2
- - - Y
I = 8(X; =X, X" X))V + (X, X By ¥y Bar ¥y )

-1 T
1_-1/2 -1_T _-1/2 T, -1_T _-1/2 T _-1/2 "
(:SU +=Y "B, X "B,,Y xle B,,Y, B, Y, v,

2271 72271
(2.4.9)
using (2. 4.5) this last expression can be rewritten as
T -1 7 %
* T v
Iy =S[Bucc By - By Cc B2 (G +B 2C.B1a) B2 G BIJ 0
-1/2

-1
T T Tw +B,.LB
¥ [(BIICCBIZ(Cb+BIZCCBIZ) B,,(L *tB;314B23)

T T -1/2
- B,,(L_+B,, Lb B,,) ] x
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-1

{ 1 T -1/2 T -1 T T -1/2
sU+=(L +B..L

s (LctBasly,Bys)  B,,(C +B1,C B,) B,,(L +B,.L B,.)
x|BY.¢c B .(c. +8T.c B )-IBT (L +B pT y-1/2

119 812G, tB1,C Byp) By, (L +B, L, B,,)

-1/2 .
T *

-B.. (L +B .( ]

21 (T ¥ Bz Ly Byg) | Vo (2.4.10)

2.4.2 Open-Circuit Parameters

In the case when the LC network contains only current drivers,
the open-circuit parameters can be derived through a procedure similar

. d.
to that considered in Section 2.4.1. Indeed replacing Ty by s and

*
setting Vo = 0 in (2. 4.6), we have
-1/2_T .-1/2 ' -1/2_T
sU X BY Ve X, Bs
%
= - Il
-1/2 -1/2 ! -1/2
-sY Y
Yl BZZXI sU Icf sY, 2
and
* -1/2 ! T.-1/2 %
= - -8y, I
V1 {Bsz X7 Ve T8 Y, I, 8t (2.4.11)

1
Solving the second expression in (2.4.11) for I_, and substituting into

the first and third gives
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- - %
A" sU+—X B..Y B_. X B__+X B.,.Y 1Y I
bc s 2 1

v 1 -1/2,T -1 -1/2) 70 (_-1/2.T _-1/2_T
- 1 2271 T22™ ! 32771 2271

(2.4.12)

-1
1

-12 "'12
BZX/-BX/)X

* T.-1 % T
'\/1-3(Y3-Y2‘Y1 YZ)II+(Y2Y 2% 32 X,

-1/2 T *

-1
{ 1.-1/2_T _ -1 -1/2} Ty 1T x-1/2 ) o

sU+S X, B,,Y, B,,X, 2 ¥y ByoX -B3X

(2.4.13)

Using (2.4.5) this last expression can be rewritten as

: -1
s T T T T|
v, = s[:13331‘191333 - B3y Bys (L + By3Ly Bys) B23LbB33] I

T T " T -1/2 T -1/2
t|By3lyBys(L B, Ly Bog) Byo(C 4B ,C By) =By, (C+B ,C By,)

-1
-1/2 -1 -1/2
T T T T
C_B,,) B,,(L_*B,;L B,.) B,,(C,+B ,C B ) }

1
X {SU+E(Cb+Blz 23 °23

-1 T -1/2

T T
x [BZ3LbB23(Lc+B23LbBZ3) B,,(Cy+B1,C By,)

T -1 ﬂ ' *
-B32 (Cb+B12cc BIZ) I1 (2.4.14)
Equations (2.4.10) and (2.4. 14) are the desired basic equations,
and the specifications of the networks are usually given by these forms
in network synthesis. In symbolic form (2.4.10) and (2. 4. 14) can be

written as
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I =YV = (A s+A (su+La -IA v 2.4.15

0o o - M 2 '8 5 A3 2!V (2.4.15)
and

Vi o2 z1 - (A s+AT(s+ LA -IA I 2.4.16

1 1] T Byt Ag(s+ oA AL (2.4.16)

2.5 Certain Necessary Conditions for Transformerless Realization

For the realization of RLC networks without the ideal transfor-
mers, Cederbaum has given the following theorem [CE 1].

Theorem 2.5.1: A necessary condition for a matrix to be an

impedance or admittance matrix of an RLC n-port is that, it is a

paramount matrix.

Proof: After Cederbaum [CE 1]
The following corollary is immediate.

Corollary 2.5.1: A necessary condition for a matrix to be

impedance or admittance matrix of an LC n-port without ideal transfor-

mers is that, the matrix is symmetric, positive real and paramount.

Proof: Follows from Theorem 2.5.1

Theorem 2.5.2: Let Z(s) or Y(s) be a paramount matrix hav-

ing a pole at the origin or at infinity, then the residue matrices corres-

ponding to these poles are paramount.

Proof: Follows from Theorem 2.5.1
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From the state model the following necessary condition for

realization of LC network without ideal transformers is developed.

’

Theorem 2.5.3: A necessary condition for an admittance (or

impedance) matrix to have a pole at infinity is that the network contains
at least one cut-set consisting of inductors and current drivers only
(or at least one circuit consisting of capacitors and voltage drivers

only).

Proof: From (2.4.10) and (2.4.15) ( (2.4.14) and (2.4.16) ) the
existence of the residue matrix A1 (A4) corresponding to the pole at

infinity implies that the submatrices B . and CC (B, and Lb) are non

11 33

empty and from (2. 3.1) the conclusion of the theorem is evident.

2.6 An Important Special Case

Consider an LL.C network in which there are no circuits of
capacitors with or without drivers, no cut-sets of capacitors, no cir-
cuits of inductors and no cut-sets of inductors with or without current
drivers. However, cut-sets of capacitors with the voltage drivers only
and circuits of inductors with the current drivers only are allowed. It
is shown in Chapter III that this special case corresponds to canonic
networks. For this reason the LC network satisfying the above condi-
tion will be called a canonic LC network.

The circuit and cut-set equations for this special case take on

the form
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- —
Vo
By Bz U O Vbe
= 0
By Bz 00U Ve
\'%
_
and
- -
Io
v o -BY BT
s § B | e
T T =0
0 U -Bj; By I
I
R (2.6.1)
Therefore, the state model is given as
— - — T r | T— — T r | T_ r—
Cy Ve 0 | Bra| | Vbe 0 : B2l | Vo
d
Ty zl-=-=- - -- tf—=- = --
N | 0 - |
L L) e [Brzy O Lled [Bury O Lh
T T
Io = Bl Bl
V= "Bay Vo m B2 Vi (2.6.2)
x *x * *
Again, terminal variables IO' Il' Vo and Vl are related to the driving

variables by




=1 vi-v

0o o0’ 0~ 0
and

r I viev

1~ 1 1 1

a) If there are only voltage drivers present then the state model

can be simplified further and has the form

o 1 [ ST Ty 1 [ o ]
Vbc 0 Cb B12 Vbc 0
d %
dt = R + Yo
Tt Le Br2 0 T B
I I JL-J4 L
* T
Io= "Bl (2.6.3)
By using the transformation of variables (2.6.3) becomes
[ 172 0.7 [
Cb Vbc Vbc
= 2,6.
L1/2 I I' (264
c cl _J ct
we have
o et -12) 01 .
0
Vbc 0 Cb BIZLc Vbc
*
' -1/2 -1/2 -1/2
Tes Lo BSy 0 Ly Lo Bn
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T _-1/2
0 1t Iy (2.6.5)

The short circuit parameters are obtained from (2.6.5) as

-1

* T _-1/2 1 _-1/2_T . -1 s12.°Y C12 "

Ip=B; L, (U+5C " B,L "Bj,C ) Lo BV
(2.6.6)

which has no pole at infinity.
b) If there are only current drivers present in the network then

the state model is again simplified and we have

pa—
p— — — | e — e

-1 T— -1_T
Ve 0 1 S Bl | Vee| | B2z
*
-d_. - - - |- = = = + Il
dt |
-1 0
Icl I"c BlZ| . 0 Llcl
g — S I —t — . —
E3
V1= B2 Ve (2.6.7)

Using the transformation of variables in (2.6.4), the state model

transforms into

B “1/2_T . -1/2 ' c-l/2gT
%
d + I
dt - /2 ' 1
-1/2 -1 0
- 0 I
Icl L. B12-cb ¢ | L .
b — - — h—
% -1/2 _!
V=B, Gy Vi (2.6.8)
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and, the open circuit parameters are given by

-1
LT -1/2° Y 1y
B ,Cy Bl ) Gy 220

-1/2
b

-1/2

* 1
V. = BZZC (SU + ;LC

1
(2.6.9)
In the above two cases, it is concluded that the short and open circuit
parameters cannot have a pole at infinity for the canonic LC networks.
F:) The derivation of hybrid parameters for general LC

networks from the state model is possible, but the final relation is
very complex and are not considered in the thesis. However, for
completeness a procedure is given below for canonic LLC networks.

Using the transformation of variables in (2.6.4) and the

% % * %

i = - = = = - 2.6.2 b
relations I0 Io, V0 VO, V1 Vl’ and I1 I1 (2.6.2) can be
written as

T a/z.t.-12) 071 [ 21/2_T |

vbc 0 Cb BIZLc vbc 0 -Cb BZZ
4 _ +
dt

' -1/2 -1/2 . -1/2

- 0 - 0
ICI I"c BIZC:b Icl c 11 |
%* T.-1/2 T
= - + I
Ip =-Bnile Iy *Barh
* # * -1/2 !
Vl = -BZI VO - Bzz Cb Vbc (2.6.10)

After replacing ad—t- by s in (2.6.10), we have
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B /.t 12l 01 ¢ /2.1 | [ox]
sU -C B..L -
b Pr2lc Vbe 0 -Cy Byl Ve
-1/2 -1/2 ! -1/2 *
L™ B .c .
¢ B12% sU Tes Lo B O L
and
* T _-1/2 T x
I0 =-BLe cz'+B2111
* * -1/2 !
V= BaVor B2 Vi (2.6.11)

From the first equation in (2.6.11)

12T * (2.6.12)

S1/2_T . -1/2.
L I 2211

1 1 .-
Vie =3 C%  Brale Iy 5%

1
Substituting Vbc into the second equation of (2.6.11) and solving for

Icl gives
-1
v 1 -1/2 1T . -1/2 -1/2 1T %
=1 1 c
I,=356U+o L BipCy Bra*e L." B, Gy Byl
1 -1/2 LT 172 -1z "
- - L - B - \'
(sU+-L_  "B,C B,L ) L BnY
(2.6.13)
1
By substituting for Icl in (2.6.12) we have
-1
' 1 _-1/2_T _-1/2 1. -1/2 -1_T _-1/2 -1/2 -1_T _*
_ 1 1 L. .c’'B
V. IB_,_cb BL,L  /(sU+SL] "B ,Cp BL ) Ly, '“B,C
1 _-1/2_T . -1/2 1 -1/2_ % -1_T -1/.2‘114.1/2B o
-5C, B, BUtgL. BAC, "Bl ) Lo Pt
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-1/2 _ T I*
b 221 (2.6.14)

1
-=C

8
Substituting (2.6.13) and (2.6.14) into the last two equations of (2.6.10)

gives the required hybrid parameters as

1

* T _-1/2 1_-1/2 -1_T _-1/2"_-1/2 *
Ip =By L, (8U+ gL B,Cp Bk ) Lo 11 Vo
-1
T 1 -1/2 1. -1/2 1.T . -1/2 "7 -1/2 -1_T
+ [B21'EBll (s U+—LC Blzcb BIZLC ) LC B Cb B Z]I
1 1_.T 1 T _ -1/2 1 -1/2 1/2 -1
s - - -
= (= - += c B Lo
Vi, = (5B,,C, By, szsz BIZL (sU+=L_' B, )
-1/2 -1_T *
¢ B12%, Bazh
1T -1/2, .. 1_-1/2 17271 2172 %
1 - - - - -
- .- += B, c B L. LB )V
(Byy- 3 B22C, Brale (U5 L. b ) L. B
(2.6.15)
Equation (2.6.15) can be written in symbolic form as
p— o= pr— — pe— *—
I A B \'%
0 0
- (2.6.16)
% %
v, C D I,

Note that in the last relation the entries of all the submatrices A, B, C,

and D are rational functions of s. Further, the matrices A and D are

T
symmetric and also B = -C .



CHAPTER II1

SYNTHESIS OF LC NETWORKS

3.1 General

In this chapter the following problems are considered: 1) canonic
forms of LC networks 2) realization of state models with and without
ideal transformers 3) realization of state models from the given specifi-
cations in s-domain, and 4) realization of s-domain models with and

without ideal transformers.

3.2 Canonic Forms of LC Networks

Although the properties of canonic one port LC (RL and RC)
networks are well defined in network theory a clear definition of canonic
LC n-ports has not been given. The following definition is based on the

topology of LC n-port networks.

Definition 3.2.1: If all the capacitors of a connected LC network

form both a tree and a co-tree in the system graph, then the network is

a canonic network.

This definition implies the network N has no drivers. The case

where N contains drivers will be considered later.

The number of elements in a canonic network has certain proper-
ties which will be used later in the synthesis procedure. Some of these

properties are discussed in the form of theorems.

-31-
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Theorem 3.2.1: Let G be the graph of a connected LLC

network N which has no drivers. If N has no circuits of capacitors,
cut-sets of capacitors, circuits of inductors and cut-sets of inductors,
then N is canonic and the number of capacitors is equal to the number

of inductors.

Proof: From the hypothesis of the theorem it follows that all
capacitors can form a tree, as well as a co-tree. This property
implies, by Definition 3. 2.1, that the network is canonic. Further,
since e - v + 1 = v -1 then the number of capacitors and the number of
inductors in N are equal.

Theorem 3.2.2: In an LC network N containing drivers, if the

capacitors and the voltage drivers form a tree as well as a co-tree (or

equivalently if all the inductors and the current drivers form a tree as

well as a co-tree) then in N

n +n =n +n,
c v )4 i
when
n_ = number of capacitors, n_ = number of voltage drivers
nl = number of inductors and ni = number of current drivers.

Proof: Follows immediately from Theorem 3.2.1.

Theorem 3.2.3: Let G be the graph of a connected LC network

N. Also in N let there be
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kl voltage drivers and k_ current drivers,

2
r, independent circuits of inductors with the current drivers,
no circuits of capacitors with or without voltage drivers,
no cut-sets of inductors with or without current drivers,
no cut-sets of capacitors only,
and no circuits of inductors only

Then in N
n_ + (k1 -T

)=n +(k2-r

1 Ji 2)

Proof: Replace a voltage driver by a capacitor if the driver does
not form a cut-set with the capacitors and by a short circuit if it does.
Also replace a current driver by an inductor if the driver does not form
a circuit with the inductors and by an open circuit if it does. This
procedure reduces N to the network considered in Theorem 3.2.1, and

the proof follows.

3.2.1 Tests for Canonic LC Networks

Consider the graph G of a connected LC network N. Let
n terminal pairs on this network be specified as the ports, i.e., N is
considered as an n-port network. Let Gl be the graph of the drivers
(the types of drivers yet to be determined) to be connected at the ports
of N.

1. Consider the subgraph G_ of GUC.‘:1 which contains the

elements corresponding to the capacitors and the subgraph Gl.



-34.

In Gc if there is a circuit of capacitors then N cannot be a
canonic network. If Gc contains no circuit of capacitors
then it> is possible to select a tree in Gc such that it contains
all the capacitors. Further, this tree may contain elements
of Gl' in this case the drivers corresponding to these
elements are taken as voltage drivers and the remaining
drivers in the network are taken as current drivers.

2. Let GL be the subgraph of (}UC}1 which contains all inductors,

and consider GCUG If there is a cut-set of inductors with

L’
or without current drivers then N cannot be a canonic LC.
Otherwise consider the next step.

3. Replace a voltage driver by a capacitor if this driver does
not form a cut-set with the capacitors and by a short circuit
if it does. Replace a current driver by an inductor if this
driver does not form a circuit with the inductors and by an
open circuit if it does.

If the resulting network satisfies Theorem 3.2.1 then the n-port

network under consideration is a canonic LC network.

An n-port canonic LC network can be generated, by the inverse
of the above procedure, from a given arbitrary canonic LC network
(Definition 3.2.1). If the n-terminal pairs are prescribed as the ports
of the network, then the problem is reduced to that of selecting the

type of drivers to be connected at the ports. These drivers by necessity



-35-

must be current drivers, otherwise there would be a circuit of capacitors
with the voltage driver. This procedure, in general, introduces a cir-
cuit of inductors with the current driver.

If a prescribed port is generated by simply breaking an element
and introducing a port, then this port must be excited with a voltage
driver. This procedure, in general, introduces a cut-set of capacitors
with the voltage driver.

Other canonic LC networks with drivers can be generated from
a given canonic LC network by replacing some capacitors by voltage

drivers and some inductors with current drivers.

3.2.2 Degree of a Rational Matrix

The degree of a rational matrix, defined first by McMillan
[MC 1] in 1951, recently has become an important concept in network
theory [DU 1, KA 2]. The objective here is to derive a relation between
the degree of the Y or Z matrix of an LC network and the minimum
number of elements necessary to realize this matrix.

Definition 3.2.2: [DU 1] Let F(s)be annXxn matrix whose

elements are rational functions of the complex variables s, and let A

be an n x n matrix of complex constants. Then

P ,(s)
Q,(s)

| F(s) + A =
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where PA(s) and QA(S) are polynomials in s and they are relatively
prime. The degree of F(s) is the maximum degree of PA(s) for all
possible choices of the constant matrix A.

McMillan [MC 1] defines the degree of Z or Y matrices as
follows: LetR _, R, ..., Rn' R _ be the residue matrices of ZorY

0 1

with ranks Tgr Tpo weer T r, respectively. Then the degree of Z or
Y is
r0+?.‘.2“,ri+rqD (3.2.1)

Kalman [KA 2] has shown that, if Z or Y is regular at =, the
degree, i.e., (ro + ZEri) is equal to the number of state variables.
When Z or Y has a pole at infinity, he transforms this form to the
previous form by considering a Mobius transformation. However, it
is easy to show by constructing a state model from Z or Y, as
discussed in Section 3.3, that the McMillan's degree is equal to the
number of state variables plus the rank of the residue matrix corres-
ponding to the pole at infinity.

In the case of canonic LC networks, the number of elements is
equal to the degree of Z or Y matrices. This is true, since the
impedance matrix Z (or admittance matrix Y) cannot have a pole at

infinity, and also the inductor and capacitor variables are present in

the state vector.
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3.3 Realization of a State Model of an LC n-port without Ideal e

Transformers

The specification of networks are usually given in the s-domain.
However, a state model corresponding to the given s-domain model
can always be found and such procedure is presented in Section 3. 4.
The state model so obtained can be realized by a network containing
ideal transformers. This problem is considered in Section 3.5. In
this present section, however, certain conditions are derived which are
necessary to realize a given state model by an LLC network without the

ideal transformers. Given the specifications

Vbc 0 K1 vbc K3 0 5 0
d d
I = - - +
dt - dt
- 0 1 K, © 1
I, K, 0 I, Kﬂ ) ¢ )
* d V4K 1 +K V. +K, I
I =X, % Vo 8 “ct 9 '0 10 "1
* d _x * *
- - Z I.+K., V
Vi=-[K s YR Ve PR3 TR 0]

(3.3.1)

a necessary condition for the realization of this model by an LLC network

is that the operator matrix must have eigenvalues on the imaginary

axis,

Comparing (3. 3. 1) with (2.4.4) and identifying the matrices we

have



11

12

13

T
(C, + B, C. B, By,
T -1 T
(C, +B,C B,) B, C By
T -l
(C, +B12C.Byp) By
-1
(L +B_. L BT) B
c TBa3 Iy Bas 22
T -1 T
+
(L, +B,; Ly Bys) Byyly By
(L +B.. L Bl )-lB
c T Bos Iy Bys 21
T
. 3.3.2
Bj) Ko ( )
T T -l
B;,C.By; " B11C.B12(Cy, + B12C Byo) B1,C.B11

-1
T T T
B;; C B, (C *B,C Byp) Byp-By

-1

T
L BJ.) B21

T
C.B (L, + By Ly B3

Bl

-1

T T T T
B..L. B
Byl Bys + ByyLyBos(lo ¥ B,3L,B23) BaszlyPis

-1

T T
- B
B,, - By; Ly Byy (L +Bpy Iy B,3) By,

-1
T T T
-B,, L, B,, (€, +B, C  Bjp) P
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i b b

and Lc must be determined from the above equations. Let (3.3.2) be

where K, is known. The problem is that the matrices Bij' C,, L, CC

written in the form,

T T
(Cy + B, C . B) K =By,
(C. +BL.C B.,)K.=BL C B
b 12 ¢ 712 3 12 ¢ 11
T T
(Cb+B1?_Cc BlZ)Ks'B32
L +B._ L BI)K.=B
(L, + B,y Ly Bys) By =55,
T T
(L_+B,3 Ly Bys) Ky =By Ly By
(L +B.,.L BL)K, =B (3.3.3)
o T Ba3 Ly Bas) By =55,
T T
- - B..K
K, =B, C. B} -B; C B2 By
T T
Ko =B, C_ B, K| - By
- . K
K, B, C. By, K
- L BY +B_.L B, K
K1 = B335y BPa3 T P33 23 "4
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where each of the matrices

BTCB BTCB

12)’ 11 ¢ 12" 711 “¢ 1Y B33L

T
C. +
( b BIZCCB bB33

T T
(LC+B L B ),), B,,L B ’BZI'B

23 b 23 33 7b 23 B

22’ 732
are considered as unknowns. Once these matrices are determined
their constituents, can be found. Since the system of equations in
(3.3.3) is linear, a solution exists only if they are consistent.
Assuming that the system is consistent, a solution of the unknowns
establishes a model of the form given in (2.5.1). In this form the
bmatri C +BTC B.,and L +B LBTbnecessit are
submatrices C, 12 ¢ B2 n c 23 “p 023 Yy y
positive definite.

From (2.5.1) the submatrices Bij' Lb, Lc’ Cb and Cc must

be determined. Since from the above solution the submatrices B11

BT C B and C +BT C B1 are known, construct the

c:cBll' 11 "¢ 12 b 12 "¢ 2

matrix

K T
BBl B, . B2
v - (3.3. 4)
T T
C B
LBIZCcBll Cp * B1z c P12 |

where Y corresponds to the admittance matrix of a capacitor
c

network and can be obtained by substituting Vbl = Vcl = V1 =0 in
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the node equations of the network.

To determine the matrices Bll’ BIZ’ Cb and CC in (3.3.4)

apply the decomposition algorithm of Cederbaum [CE 2] to (3.3.4).

Rearranging the rows and columns gives

0 BT_1 C i 0 OT
11 b
Y =
C
u -B C -B -B
1 12
L 12] | cf L1 |

(3.3.5)

which is essentially unique due to the nature of this alogarithm. If

entries in either Cb and CC are not positive or if

0 P11
U BT
P12

L |

is not a cut-set matrix, then, the given state model is not realizable.

The above procedure can be repeated for a new matrix

T T
ZL having the matrices B33 Lb B,y B, Ly Bis and L _ + B,y Ly B,
edance matrix of

as its submatrices, where ZL corresponds to an imp
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the inductor network. The matrices B B.,., Lc and L are again

23’ 733 b

determined by the use of the decomposition algorithm. Here the
diagonal matrices Lc and Ly must have positive entries and B,,, B,
must be submatrices of an unimodular matrix. From the submatrices
determined above and the solution of linear equations in (3.3.2) all the
submatrices appearing in (2.5.1) are determined completely, and the

circuit matrix is established as

_ | _
0 0
B B2 o v
|
|
_ 0 U 0 3.3.6
B =| By Ba Pa ( )
|
' o 0o U
LB31 By, Bss ||

The problem is reduced, therefore, to the realization of this circuit
matrix. If it is realizable, the topology of the LC network can be
determined through any one of the known techniques [TU 1, GO 1, KI 1,
BI1l, GU 2, CE 3]. In summary the state model is realizable without
ideal transformers if

1. Solution exists for the system (3.3.3)

2. The circuit matrix B in (3. 3.6), is realizable, and
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3. Cb’ Cc’ L, and Lc are diagonal matrices with positive

b
diagonal entries.
It is interesting to note that if the conditions given in the above
are not satisfied, this does not imply that the network is not realizable
without the ideal transformers. Indeed, another state model obtained

from that given by a similarity transformation might be realized as an

LC network without the ideal transformers.

3.4 Derivation of a State Model from the s-domain Equations

The derivation of a state model from the s-domain model has
been considered by Gilbert and Kalman [GI 1, KA 1, ZA 1] and they
have described certain procedures for this derivation. Ia this thesis,
since our main interest is LC networks, a slightly different method
for deriving the state model is given. The procedures are the same
for the open and short circuit parameters.

Let Y be expanded into partial fractions to obtain

Yy=R 1+zR S RS (3.4.1)

0 s + .
1

where R_, R, and R are the residue matrices whose properties are
i

0
well known [CA 1].

The operator matrix in (2.4.6) corresponding to an LC network

. : 1
s . 3 3 N Y S
is skew symmetric and consequently it has pure imag:inary eigenva.iue

tj)\l, tj)\z, ... . Note that some of the eigenvalues may be zero.
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Then there exists an orthogonal matrix P such that

where the matrix A_ has one of the two forms

-44.

Theorem 3.4.1: Let A be a skew symmetric matrix of the

PTAP=_/\_

(3.4.2)
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or
— | -
')\1)\ 0...0
O | 2
| -
| ) [
| k 0...0 Qb o
- ! I
Apm - - ——— - — e —— - = [--- - -
| -D |
) [
)‘1 ' - == O
Y | !
2 | 0|
X 1 E— -
-)\kl O
[
0 0,
. T
0 0l
- —
B | ]
0 I DT
N R
' l
-D I 0
B | N (3.4.3)

The expression for _I\_l applies when the number of branch capacitors
is greater than the number of chord inductors, and _/\_2 applies when the

number of branch capacitors is less than the rumber of chord inductors.

In_/\_l and A_

2 )\i's are taken as the absolute values of the eigenvalues

of A.

Proof: Follows from the application of Theorem 5-11 in

Perilis [PE 1]
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To apply the above theorem to the operator matrix in the state

%
model of (2.4.6), (I1 = 0), let P be a transformation matrix such that

e — p— —

1

v
bc VZ
P = (3.4.4)

Icl I3

. pa— — —

The transposed state model is then

"1 o] e I
v, o ||V, x %, 0
;
.;lt - -pT %VO-PT L v
I, D of]| 1 0 778,
1’;=x3-:—tvz+x§xil/2pditvz-B;rlYil/ZPf {3.4.5)

and the short circuit equations are

* T . -1 * T,-1.T -1/2 T _-1/2, 5
I, = s(X, - X; X X,) V, + (X, X B,,Y, B, Y, )P x
-1 T
1 ' 'T T T . -1_T _-1/2 T -1/2
[Us t< DD'] P [X2 x1 BZZYI -B,, Y1 ] Vo
(3.4.6)
which is of the form
F iR s+R Laz S —RIV, (3.4.7)
o = Rys*+Ryg Z 2 il o
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The fundamental problem is to derive (3.4.5), or an equivalent state
model from (3.4.7).
Since the short circuit and the open circuit matrices are

positive real, the residue matrices R, R and Ri are all positive

0
definite or semi-definite [CA 1]. Decomposition of each residue
matrix Rj into the form Rj = K;r Kj is always possible as stated in
the following theorem. Even though this theorem is well known, the
proof given here presents a procedure for decomposing the residue

matrices.

Theorem 3.4.2: The necessary and sufficient condition for

the decomposition of any real symmetric matrix R, into the products
of the form KTK, is that R is positive definite or positive semi-

definite.

Proof: Necessity is evident [HN 1]. To prove the sufficiency,

consider an orthogonal matrix V which transforms R into diagoral

matrix D, i.e., VT RV= Dl; where D_ is a diagonal matrix consisting

1

of the eigenvalues of R. Since R is positive definite or semidefinite,

all the elements in D1 are either positive or zero. Let the positive

1/2
square root of the matrix of D1 be denoted by D1 , i.e., all the

elements in DI/Z are all non-negative. Then R can be written as

1

T
1/2, o pl/2
Ot

R = (VD

n

(3.4.8)

KTK

"
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which proves the sufficiency.
In (3.4.8) K is a square matrix, consisting of zero rows

corresponding to the number of zero eigenvalues of R. These rows

1
in K can be deleted, to give a rectangular matrix K for which

T 1 '
R =K K=KTK

From the above theorem, (3.4.7) can be written as

Tt 1 s T
0 KOEZ 2 2
[ +(1)i

% ' ! ' *

= 3.4.
I, = (Ko Kgs +K K. K]V, ( 9)
From the information contained in (3.4.5) and {3.4.6), a state

model corresponding to this equation can be constructed as

- _ 'T— — - —
A\ 0 D A\ 0
g |2 2 N
£ = + v
dt , ' 0
- K
13 D 0 I3
— -J h— — b — — —
* 4T d o T (3.4.10
_ a {3.4.10)
I =K, K, Vot K 13
where
-, -
Kl
1 ° ot
_ (3.4.11)
K = Kn
]
K0
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1
and Ki i=1, 2, ... n are the submatrices obtzined from the decomposi-
]
tion of Ri' and D has the form given in (3. 4. 2) or (3. 4. 3).

The form of D in (3.4. 2) or (3.4.3) is

D = 2 (3.4.12)

— -

2 2
where Di is a scalar matrix associated with d, = u)i . Note that the
i
order of D _ is equal to the rank of Ri' and each Di is arranged in the
i
!
same order as of Ki'

An interesting result in the decomposition is that, the procedure

gives a spectral decomposition of the residue matrices, indeed

R = VDIVT
4
=V . VT
*d
n
n 00 n n
. T
=Zv “d VT=ZVdVT= d, V.V
1. - i i1 i1 1
i=1 . i=1 i=1
"0

T
where each of the matrices (Vi Vi ) have the same order as R and each

represents a constituent matrix of R.
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3.5 Realization of Short Circuit and Open Circuit Parameters of an

n-port LC Network Using Ideal Transformers

In the literature, the technique for realizing the short circuit
and open circuit parameters of an LC network by using the ideal
transformers is well established [CA 1]. The procedure described
here for the realization of LC n-port networks is slightly different
from that of Cauer and utilizes a state model for rezlizing these
parameters. This method also realizes the network with mirimum
number of reactive elements, this number being equal to the degree of
Z or Y. The method is identical for short circuit and open circuit
parameters.

Let the given short circuit parameters be

% %
- (3.5.1)
1, = YV,

where Y is an n x n positive real matrix. Expanding Y into partial

fractions gives

"
)

1 5 3.5, 2)
Y S+R ;+ZR. Z 2 (' )

[}
0 1s+w,
i

From Section 3.4, (3.5.1) can be written in terms of the decomposed

residue matrices as-

* T 'T 1 5 'T
I =[K"K_s+K K —+2Z > K,
0 © © 0 0 s SZ+(x)i 1

1 X
7 3.5.3
Ki] v, ( )
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and the state model given in (3.4.10) is

v o D7
d 2 VZ 0 ”
E I = D! ! VO
3 - 0 13 K
* T ' d % T .
IO = K, K, Ty VO + K 13 (3.5.4)

In order to realize the state model in (3.5.4), consider an ideal

transformer network with the following terminal equations.

F 1 7 F l IT-— r ] ]
(n) 10 0 0 : K VO
' 0 P T Y 3.5.5
(rbc) IZ = 0 I 2 ( o Je )
B [ — I — c— -— - s
vl K' Dl I 0 I'
(rcl) 3_1 | 3

Let the terminal graph of the transformer be selected as shown in
Fig. 3.5.1. Further, let two-terminal inductors and capacitors be
connected to the external terminals of the transformer network, as

shown in Fig. 3.5.2.



-52-

Fig. 3.5.1 Fig. 3.5.2

Note that the number of ports of the ideal transformer, as indicated in
(3.5.5), is equal to the number of state variables in (3.5. 4) plus the
order of the admittance matrix in (3.5.2). It will be shown that, the
jdeal transformer network which is loaded by the two-terminal
inductors and capacitors has the state model given in (3.5.4) except
the first term in the algebraic part of (3.5. 4). The transformer
network is then modified as required to give 2 complete solution.
From this point the synthesis procedure reduces to the determination
of the submatrices in the coefficient matrix of (3.5.5).

If the element values of the inductors and the capacitors are
taken equal as unity, then the terminal equations of these components

are
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dt - (3.5.6)

I 1 IT 1
2 -I2 0 -D V2 0
1
v v | ] o
3 3 - 0 13 -K
— p
0 D V2 0 '
- + \"
' 1 0
-D 0 I -K
L 3 (3.5.7)
Therefore, the state model is of the form
— '
0
; VZ 0 D V2
—_— = + A\
dt [] 1 0
13 -D 0 13 +K
- -
IT 1 IT
- - - 3.5.8
I, K I,=-K 1, ( )

In the above model, the residue matrix corresponding to infinity is not
included. This matrix is derived separately. Indeed, let the terminal
equations of another transformer network, corresponding to the

terminal graph in Fig. 3.5.3, be
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[ ] B e I
T "
I, 0 Ke v,
= (3.5.9)
" 1 "
\A -K_ 0 I,

"
Connecting capacitors with unit values across the ports indicated by 3 ,

the terminal representation of the resulting network with reference to
Fig. 3.5.4, can be derived as follows:

The terminal equations of the capacitors are

d (3) _ ,(3)
T Vs =L (3.5.10)

" " INEIIRIN ) N E)

Fig. 3.5.3 Fig. 3.5.4

From Fig. 3.5.4 and (3.5.9), we have
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(3) _ " _ s L 'T (3)
I = <1, = Ky I;=K, I

'T d (3) 'T d "
Ke & Vs =Kz Vs

1
'
~
A
I
<

Ko Ko gp Vo (3.5.11)

Hence the first term in the algebraic part of (3.5.4) is realized.
To combine the transformer networks corresponding to (3.5.5) and

(3.5.9) as indicated in Fig. 3.5.5 we have

o q®

*_ (3)
d = = 3.5.12
; o +1g) and V=V v ( )

0 0 0

Substituting (3.5.8) and (3.5.11) in (3.5.12) gives

— 1 r I
v o DY||v 0
2 2
d - + v
dt - | " 0
I, -D 0 I
L p— L. — L — L -
* kT 4 kT (3.5.13)
I =Ky Kogr Vot K I,

which is the desired state model. The network corresponding to this

state model is shown in Fig. 3.5.6.
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(3) *

Fig. 3.5.5

The state model given in (3.5.13) is not unique. But any
such derived state model can be transformed into the state model
(3.5.13) by means of a similarity transformation P. Therefore, the
general form for the realization of the given short circuit parameters

is given in Fig. 3.5.7.

-

Transformer
@ Network

Corresponding
to (3.5.5)

e
—

a—
—
—

—d

Transformer
Network

 Corresponding
to (3.5.9)

Fig. 3.5.6
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Transformer
Network
Corresponding

to P-l

Fig. 3.5.7
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The above realization is based on element values of unity magnitude.
These values can theoretically be altered to any desired values by
including a transformer of the desired ratio. Further, multi-
terminal inductance and capacitance networks as well can be used
since the realization of one-kind of n-port networks can be reduced
to the form discussed above [CA 1].

The realization of the transformer networks corresponding
to the terminal equations of the forms given in (3.5.5) and (3.5.9) is

classical and can be found elsewhere [BE 1].

3.6 Realization of LLC Networks without Ideal Transformers

Realization of LLC n-port networks without ideal transformers
has been an outstanding problem in Network Theory. Only certain
sufficient conditions are known to realize a given reactance matrix
[SL 1, FO 1, SO 1]. Although general necessary and sufficient
copditions are stated by Cederbaum [CE 1], the application of these
conditions to the synthesis procedure seem impossible. A new
approach to the synthesis problem, not utilizing the reactance matrices
directly, is considered here. First attempts in this direction were
made by Kalman [KA 3] who gave a procedure for realizing LC driving
point admittance function using the state models. The approach given
here for one-port LC network synthesis differs from his. Also a
procedure for realizing 2-port L.C networks is given with the restriction

that the residue matrices are dominant.
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I. One-Port Realization Procedure

The procedure developed here is applicable to any driving
point admittance or impedance, which does not have a pole at
infinity. A consideration of the functions Yl(s), Zz(s), Z3(s) and
Y4(s) is sufficient to cover all possible LC driving point functions

(see Section 4. 2).

The partial fraction expansion of

2 2
(sz+a.1) . e . (32+a2r1 1)
Yl(s) = 5 > > 5 (3.6.1)
s(s +a2). . . (s +a2n)
gives
c r
R S N S
Yl(S) = ro 5 +‘_—IT—T (3.6.2)
iz 8 +a

where ri i=1, ..., nare the residues of Yl' Therefore, a state
model corresponding to (3.6.2) can be constructed, through the

procedure given in Section 3.4. This resulting model is of the form

I — —
[ ) 02 |
- O | a, _
v, " . v O
| 2
d I 0 aZn
oy = - = === == - =~ S
t 1 0 0 . 01 I 's/ro
-a |
2 Nr
"2y : O 2
‘. I Nr
i | 2n
- *2n - — -J



and

Premultiplying both sides of (3.6.3) by the diagonal matrix

gives a state
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I=[’\/—r7)...'\]r2n]13

{(3.6.4)
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I 0 a N
| 2
|
|
| — _
I — —
|
Y a, VZ O
|
— — — — — — — — — — |—.____.._..____ + —— —
0 . 0 | 1
| I
% | 3 1
l\/r |
1 |
! 1
| L -
|
|
|
a |
2n |
- |
Nr
2n |
| (3.6.5)
n _
and
I=[~ll'o. ’ Jan]I3

To retain the skew symmetric property of the operator matrix in

(3.6.5), apply the similarity transformation




(3.6.6)
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~N - ™ > —
oS —
L | L 1
| _ |35
| e}
— 3\ ]
| 4 | _
_ _ s
—
| | N
| |
I~ Fo _
_ £ _ N
R S _ |
Q
| £ |
o
P | m " l_r
| | wo T - TS s s m -
O |
" m..\ o [
f 1 © I
L J 0 l |
-
o)
=)
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|
0. .0 |
I
a |
.2 [
NT_ I
2 |
. |
L] a I
. 2n :
's/rz I

n

and

]

——=| Vv

|1

(3.6.7)

To reduce the operator matrix in (3. 6.7) to the desired form, apply the

similarity transformation in (3.6.7).

[ -,

VT2
— I_ azn
VZ '\/rzn

(3.6.8)
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(3.6.9)

and

1] 1,

1=[1
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-] N NN N
- ~ ]
Z
——00000 ——¢
[N
.I.— N ) 2_22
Lo - ]
O

Fig. 3.6.1
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The circuit matrix as obtained is (see Chapter II),

r— — P c—
-1 Lo | v
| !
| | 1
-} | 1 ] | U VZ =0 (3.6.10)
. | .. |
-1 I 1 | I'
| | L 3

The circuit matrix in (3.6.10) corresponds to second Foster form
indicated in Fig. 3.6.1. The element values obtained from the

coefficient matrix in (3.6.9) are indicated in Fig. 3.6.1.

II. Two-Port LC Network Realization Procedure

This part is devoted to the realization of a special class of 2 x 2
reactance or susceptance matrices having dominant residue matrices.
Slepian and Weinberg [SL 1] have described a general procedure of
realizing n-port Z(Y) matrices having dominant residue matrices.
Using state model approach, we shall show that 2 x 2 Z or Y matrices
can be realized yielding an jdentical solution to that obtained by Slepian
and Weinberg. Since the realization procedure is identical to both Z

and Y matrices, only Y matrices are considered here. Consider

first the susceptance matrix Y, which does not have a pole at infinity.

The general form of the network is shown in Fig. 3.6.2.
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In this network, it can be observed that all the capacitors and the
voltage drivers can be included in a tree T, which also contains an
inductor. This inductor has to be selected from a series or a cross
arm of the lattice. Select an inductor between any one of the terminal
pairs (A, B), (A, D), (B, C) or (C, D). If such an inductor does not
exist, select an inductor from the resonators between any one of these
terminal pairs. Let the graph of this network be shown in Fig. 3.6.3
with the arbitrary orientations of edges. Because of the above
selections of the inductors we have two possible cases.

1. An inductor exists between any of the terminal pairs. Then

the circuit equations can be written as

A"
v
B11 U: B13 : U be
=0 3.6.11
[ | 5 Vi, ( )
B,y OV By : v
! cl
Vl22
where
\4 = voltage drivers
Vbc = capacitor voltages
\"2 = voltage of the branch inductor

be
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voltages of the inductors which are in the resonators

vcl
Vv

12 voltages of the inductors which are not mentioned above.

Then the state model can be constructed as follows.

- _ _
c, 0 0 Ve,
T T d
0 L_,#,B3B3 4,B13B1y | |
T T
I
LO £,,B14B13 Lo, B14Pis | e
pr—— | \ — — - - —
O | U: O Vbc O
| A o sk
- FF=--t--- + |- v
= [ -B
v I 11
O : O 52 “Ba1
- L ] L (3.6.12)

and

where I,ﬁ< and V* represents the terminal variables which are related

to the driving function as

and
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2., There is no inductor between any of the terminal pairs
(A, B), (A, D), (B, C), or (C, D) in Fig. 3.6.2. In
this case the synthesis procedure can be reduced to the
previous case. Indeed, in this case, since Y matrix
does not have a pole at the origin, then we introduce
such a pole by simply adding a term corresponding to
the pole at the origin. After the realization for this
augmented matrix the inductances corresponding to the
pole at the origin are removed to yield the network for Y.
In the following we shall discuss the procedure for realizing
2 x 2 susceptance matrices which have dominant residue matrices.
Consider first the susceptance matrix Y1 which does not have

a pole at infinity. The partial fraction expansion gives

Y. =R L1432 R. (3.6.13)
s 2 2 i
s +ooi

where R0 and R. are the residue matrices which are assumed to be
i

dominant. The procedure for decomposing the residue matrices

differ from the procedure described in Section 3.4. Consider the

following two possibilities:

a) Let

(3.6.14)
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represent any one of the residue matrices in (3.6.13), such that

>b., > >0, i.e., R, i i .
al_b1 cl_b1 a.ndbl_O i.e RJ is dominant

can be decomposed into the form

decomposed as follows

Then R_ in (3.6.14)
j

-
b, b, a -b 0 0 0
Rj = + +
bl bl 0 0 0 - bl
e — pr— — — —_
Jbl al-bl 0
= E'\/bl ~}b1] + ['\/al-bl 0] + [0 '\/_CT-TI]
N b1 0 -bl
L ] - - - il
} 10 bl bl ]
'Jbl Na -b1 0
1 a.-b 0 = K, K,
N - 0 c.-b
i\ 0 7P 17°1
B I
- (3.6.15)
b) If the residue matrix is of the form
a -b
- 2 2 (3.6.16)
Rk =
-bz <,
> 0. Then R in (3.6.16) can be
where a, sz, c, zbz and bZ >0 enR (



-b _
2 a.z b2 0 0
+ +
bZ 0 0 0 c,
— —
Va,-b,
[VbZ-Vbﬂ + [JE;$;
0
_ —
N az-bz 0 bZ
N az-b2
0 N cz'-b2
0
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- bZ
_ -
0
0] + [0 N c,-b,]
AEPRLP
L -
-r\/ b2
0
e,7b,
|
(3.6.17)

The corresponding state model can be constructed by the procedure

already described in Section 3.4. The result is

where

V2 0

I3 -D
'T

I = K I3

[ o |

(3.6.18)



-73-

- KOJ

and D has the same form as in (3.4.2) or (3.4.3). Applying a proce-

dure identical to that applied for one ports, i.e., premultiplying both
sides of (3.6.18) by a diagonal matrix and applying the similarity

transformation, the equivalent state model is

1 0
|
1 0
|
r = ’_ '- O ' o' : - '-
C, \F : 1 0 v,
i = l---"—-—_—— I ——————— +
T | '
L I ' I
3 3 -1 | | 73]
[ °_ . |
. |
| O
-1 |
|
O Oo . o '
and
]
1 - BTI3 (3.6.19)

' .
where B contains ! 1, 0 as its entries and CZ and L3 are diagonal

matrices.
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To determine the network corresponding to (3.6.19) the only
requirement is that B' must be a submatrix of a circuit matrix. If
it is, then the realization follows immediately. If B' is not a sub-
matrix of a circuit matrix, then the state model obtained above must
be modified by using a proper similarity transformation on the state
vector so that the new model is realizable. This is always possible

!
and is shown next. The first column of B contains only the entries

+1, or 0 but not -1 and the second column of each Bi (the submatrix

!
of B ) has the following possible forms

(2) 0

(b) (3.6.20)

1+

(c) |

In (3. 6.20a), the plus sign is taken if the off-diagonal entry in
the residue matrix is positive, and the negative sign is taken if
otherwise. Equation (3.6.20b) appears if the residue matrix is

diagonal and (3.6.20c) appears if the entries in the residue matrix

are equal in absolute value. Again the plus sign is taken if the off-
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diagonal entry of the residue matrix is positive and the negative sign
is taken if otherwise. In the following,three cases are considered
separately. In Case l it is assumed that the off-diagonal entries in
the residue matrices are all positive, in Case 2 all are negative and
in Case 3 they are arbitrary.

1
Case 1: If each submatrix Bi of B contains one of the following

matrices
1 1
1 0 1 1
1 0 or ’ ’ [1 1]' [1 0]
0 1 1 0
01 (3.6.21)

then B is a submatrix of a circuit matrix. Then the circuit equations

as obtained are

V3 (3.6.22)

These equations correspond to the network shown in Fig. 3.6.4.
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LTt 1 T T

Fig. 3.6.4

The element values in this network are dictated by the diagonal matrices

C2 and L3 in the state model.

Case 2: If each B, represents any one of the following matrices
i

1 -1
10 1 -l

1 of , , L[ o-11, [ o]
0o 1 10

|01 (3.6.23)

[

and the corresponding network for the circuit matrix is very similar

to Fig. 3.6.4 and is shown in Fig. 3.6.5.
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_©

00
- L~

_9
H

Fig. 3.6.5

1 1
Case 3: If some Bi have the form in (3.6.21) and some Bi

1
have the form in (3.6.23), then the resultant B may not be a sub-

1
matrix of circuit matrix. A typical form of B in this case is

! 1]
1 0
0 1
B = 1 -1 (3.6.24)
1 1
1 -1
| ! 0]

! .
In this case, although B may not be a realizable submatrix, the

state model can be transformed to a realizable state model by first

augmenting the state model and then using a similarity transformation

on the state vector.
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The augmentation of the state model can be achieved by

decomposing the residue matrices as follows:

»\/Tlﬁ. ~/b1/z
»\/YI/Z «/bllz al-bl 0 \/bl/Z '\/bI/Z
RJ, =
«lbllz ~fb1/2 0 cl-bl al-bl 0
0 cl-b1
(3.6.28)
~/b272' -'\/b'27_2
- - 2
ﬁz/z ~/b2/2 a,-b, 0 ~Fb2/2 «sz/
Rk =
-»\sz/z -'\/bZ/Z 0 cz-bz a,-b, 0
0 '\ch-b2
(3.6.9)

In order to illustrate the procedure,the following example is considered.

Example: Let

s(252+5) _ 3s 5
(s2+1)(s2+4) (s2+1)(s +4)
Y(s) = (3.6.30)
3s s(ZsZ+5)
T2 2 2 2
(s +1) (s +4) (s '+1) (s +4) |

be the given susceptance matrix which has no pole at the origin.

Adding the term
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1 -1
1
SR, = 1
-1 1 s
to Y(s) we have
1o-1 | 1 1 . 1 -1
8
Rt T s 241 ! +4
-1 1 1 1| °® 1 1| °®

(3.6.31)

Note that R_ is arbitrary but it is dominant. Decomposing the residue

0

matrices as

. 1| [ o
VT NT VT Nz
Rl =
SR I R U
7z Nz | | vT oNT
N
NI NZ VT NZ
RZ 1 _1_ ___l_ 1
NT NT v NT |

and
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G818
O g e et -

_ N o
| )
_ N o
_ ]
O [ - o
]
| 4 o
| ' |
]
o —
[sa] < [To] O [ [s o] o 4 —
S S > > - o - - -

A state model can be constructed:

and

(3.6.32)

|

NZ N2z N2z
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Applying the transformation of variables we have

1
1 v
Z ]
1 v
z 4
1 v
3 X
1 d | v _
3 x| ¢ |-
2 i
2 !
2 i
2 2
1 19
1
Y10
1
3!
_ —_ _
[ 0 '
1 v
| ;
| 1 0 v
O | 1 o | 74 O o
v
o _ e - ==
_____ | V6
-1 [
| i 1 1
-1 | '7 v,
[ 3 1 11 - -
-1 18
|
-1 O i 1 -1
| 9
1
0 0 0 O - 1 -1
- — '10
1
i 1 -1
| L ] (3.6.33)
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The submatrix

[~ ——
1 1
1 1
[
B = 1 -1
1 -1
1 -1
L -

is not a submatrix of a circuit matrix, therefore, a similarity trans-
1

formation T must be used to reduce B, to the desired form. General

description of the transformation matrix is given later.

Let the transformation matrix be taken as of the form

— —_
1

-—— (3.6.34)

Applying the transformation to the inductor currents in (3.6.33) and

then using another set of transformation of variables similar to that

used in one-port case, the final state model is



5 >
_ . L ]
o —4
*V3 *V4 *VS *V/D *.17 *.18 *.19 *.11 *.11 _ \ J
1 [} ) [ ]
o |5 . O _
I ) _
+
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where

Hence

o =

N

NI'-‘l
™| =
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Then the circuit matrix can be constructed from (3. 6. 35) and (3.6.37) as

0 +1 I 1 I -1 1 1 -
' I |
I I [

B = -1 1 1 1 | 0 | 1

l I [

-1 11 11 o0 | 1
I I I

-1 1 10 0 0 o | 1 | 1

(3.6.38)

The network can be realized from (3. 6. 38) and the element values
are determined from (3.6.36) and (3.6.37), and the result is shown

in Fig. 3.6.6.

=1
)
— I
T ——
AN
2 1
. 8
2 2
[
T
Y4
~0I0—(
1 2
2
1
2 8
It
L
1
2 Fig. 3.6.6

The network corresponding to the given matrix Y can be obtained by

removing the two inductors 11 and !2 in this figure.
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Selection of the Transformation Matrix T

Consider
Bl
B,
' L]
B = .
Bk
B0

where Bi is obtained from the residue matrices as discussed earlier.
The leading two rows of Bi (i # 0) are one of the forms: [1 1],
(1 -1], [1 0], [0 1]. The last row of B, can be taken as (1 1,

or [1 -1]. Then T must have the form

|
|
T = [-——1—-- (3. 6.39)
|
|

where
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+ .
contains - 1, 0 as entries. If the last row of B is [1 1], then
considering all the submatrices, Bj’ whose first two rows contain
[1 -1], we see that it is necessary to take

T, =-1 T., = 1
jl or jl

szz 2 sz = =1

and for all the other entries Ti = 0. If the last row of BO is [1  -1],

consider all the submatrices. BJ whose first two rows contain [1 1].

then we shall select either

1

T., = -1 T, = 1]
il or )1 .

Tj2= 1 TjZ -lj

In the above discussion we assumed that Y has no pole at

infinity. If it has a pole at infinity, the residue matrix can be
realized without considering the state model approach and the
corresponding network can be connected to that obtained from the
realization of the other residue matrices.

The above procedure can be extended to n-port LC networks
for which the residue matrices are dominant [SL 1]. If the
dominancy condition is not imposed on the residue matrices, the
realization by the procedure given here, in general, may not be

possible.



CHAPTER IV

EQUIVALENT NETWORKS

4.1 General

This chapter is concerned with the parameter transformations
on one port canonic networks.

The theory of equivalent networks goes back to 1930's. In the
classical theory one equivalent network is obtained from another by
applying a non-singular transformation to the mesh impedance or node
admittance matrices such that certain parameters of the network are
ipvariant. In the following sections, these classical transformation
techniques are summarized along with the development of certain new
contributions to equivalent networks.

In the last section state model equations are used to generate

one equivalent network from the other.

4.2 Equivalent Networks - Transformation Matrix

Two n-port networks are said to be equivalent if they have
identical terminal equations corresponding to a given terminal graph.

The important point is that the two n-port networks have the
same terminal characteristics. Their internal construction need not
be identical.

In general, the transformation of a network into another
equivalent network is possible only if the internal constructions of

-88~
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these two networks are known. If only the terminal equations are given
such transformation is possible if the network is of one element-kind.
This type of transformation, called the congruent transformation, is
discussed by Cauer [CA 1] and has very limited applications.

Howitt in his doctoral thesis, later in his papers [HO 1, HO 2]
discussed the equivalence transformation of RLC networks, and
showed that the equivalent electrical networks form a group. He also
considered the necessary minimum number of elements to realize the
given driving point impedance function.

The equivalent networks are also considered by Guillemin
[GU 1], [GU 3], who attempted to simplify the problem by using the
normal coordinate transformations. Recently Schoeffler [SC 1], [SC 2]
considered a transformation of equivalent networks, keeping the same
network configuration but with different element values. Guillemin
applies the transformation on the mesh impedance or node admittance
matrices, while Schoeffler applies such transformations to the
parameter matrices, thereby introducing additional constraints on the
transformation matrix. In all of these existing techniques the topology
of the equivalent networks is held rigid, i.e., in general, equivalent
networks derived have identical topologies (networks haviﬁg either the
same number of meshes or the same number of nodes). In the
following, the principles of Howitt transformation is considered briefly

with some additional remarks.
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Let the mesh equations of an n-port RLC network in the s-

domain be written as

1
V=(R+LS+-S—K)I (4.2.1)
where
V=I[v,, v,, cv., Vv ]T (mesh voltages)
1’ "2 " 'n
I=[i, i,, ..., i ]T (mesh currents)
1" 2 n

and R, L, K are square real matrices, i.e., mesh resistance, mesh
inductance and mesh elastance matrices. Let the vector I and V be

1 1
transformed into vectors I and V by

I =C1
(4.2.2)
1
v=cly
where C is a non-singular matrix
€11 €12 *°° CIn
€21 €22 * ' “on
c=|. : (4. 2.3)
Cnl an ¢« o Cnn

This transformation carries (4. 2.1) into a new form for which the mesh
resistance, mesh inductance and mesh elastance matrices are of the

form



K

C

T

RC

LC

KC
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(4. 2. 4)

To hold the driving point impedance invariant through the

transformation, it is necessary that i1 = i1 and vy =Yy Consequently,
if C is taken as
r 1 0 . 0—
‘21 ‘22 “on
: (4.2.5)
_cnl cnri_

In general, it is easy to show that for the invariance of first

k mesh voltages and currents, C must have the form

(4.2.6)

where Uk is a unit matrix of order k.

4.3 Canonic Transformation for One-Port Canonic Networks

The oldest known one-port LC canonic networks were obtained

by Foster [FO 1] through the partial fraction expansion of the
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reactance functions. Later Cauer [CA 1] gave other forms, which are
canonic by considering the continued fraction expansion of the reactance
functions. Recently Lee [LE 1] gave a lattice canonic form for the one-
port LLC networks which are derived by applying a combination of the
Foster and Cauer procedures and modifying the final network by an
ideal transformer. Yarlagadda and Tokad [YA 1] considered a rather
restricted lattice canonic form which differes from that given by Lee
and is derived from two cascaded Brune sections. The known canonic
networks introduced by Foster, Cauer and Lee are shown in Table 4.3.1.
In Section 3.2 procedures have already been given for deriving
one-port canonic networks from a general canonic network. There are
four possible classes of one-port canonic networks obtainable by this

process. These four classes correspond to the four reactance functions.

Class 1: 5
s(s2 + a;) . . e (sZ + azn)
Z (s) =
1 (sz + af) .« . (s2 + aZn-l)
or
(s2 + ai’) ... (8 + aZn-l)
Y (8) = 2
1 s(s” + ai). co(sT+ay)
Class 2:
(sZ + af) e o. (8 + aZn-l)
Z,(8) = —3—3 )

s(s  +a.). .. (s +a2n)
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Class 3:
2
s(s +a§)...(sz+a§ )
zZ (8) = n-1
3 2 3
(s + al)' .. (s + a, )
Class 4:
(Sz+af). .. (sz+a:)
Z,(8) = ——s—m = (4.3.1)
s(s + a,) (s +a, )
or
s(sz+a§)...(sz+a§ )
Y (s) = n-l
4 2

i 2
(s +a1). . . (s +a:n)

Each class corresponds to a class of canonic networks as follows.
Class 1: Class 1 is obtained by replacing a capacitor by a
voltage driver in a canonic network. Therefore, the number of
inductros is one more than the number of capacitors. For Yl(s) in
(4.3.1), one-port canonic network contains (n + 1) inductors, n

capacitors and a voltage driver.

Class 2: This class of canonic networks are obtained by
replacing an inductor by a current driver in a canonic network.
Therefore, the number of capacitors is one more than the number of
inductors. For Zz(s) in (4.3.1), one-port canonic network of Class 2

contains n + 1 capacitors, n inductors and a current driver.
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Class 3: This class of canonic networks are obtained from a

canonic network by inserting a current driver between arbitrary
nodes. Therefore, the number of capacitors is equal to the number
of inductors. For 23(8) in (4.3.1), one port canonic network of

Class 3 contains n inductors, n capacitors and a current driver.

Note that the current driver forms a circuit with some of the inductors
in the network.

Class 4: If in a canonic network, a branch or a chord is
opened, and a voltage driver is inserted in series with this branch or
chord, the fourth class of canonic networks results. In this class of
networks the number of capacitors is equal to the number of inductors.
For Y4(s) in (4.3.1), one port canonic network of Class 4 contains n
inductors, n capacitors and a voltage driver. Note that the voltage
driver forms a cut-set with some of the capacitors.

The admittance functions are considered for Classes 1 and 4,
and impedance functions are for Classes 2 and 3 for the obvious

reasons that Yl(s), ZZ(S)’ Z3(s) and Y4(s) have no poles at infinity.

Transformation Matrix C Corresponding to Canonic Networks

In considering the equivalent networks, it is generally assumed
that one canonic network is given, and the problem is to determine the
element values of another canonic networi< of known topology. Since
the topology of both networks are known, certain restrictions are im-

posed on the transformation matrix C.
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Class 1: Let N1 be a one-port canonic network having the cut-

set equations

[UA] =0 (4.3.2)

and let N, be second one-port canonic network of the class having the

2

cut-set equations

[UA =0 (4. 3. 3)

J

where N1 is assumed to be known completely (i.e., topology and element

values are known) and for N, only the topology is known. The problem

2

is solved if the element values of NZ are determined. Because of the

nature of this class of canonic forms, the known submatrices Al and

A2 in (4.3.2) and (4. 3.3) are nonsingular. The branch equations for

network N1 , are

0 | Dls 0 I U
T | A v
1 | | 1 ] T 1
v s M Al

(4.3.4)

and for network N2
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o | D_s | 0 U
2 [
*! | ] 1 et
I. = |-——; A —_—_——— = - === v
1 1772 | 1 T 1
U | |-S—LZ A2
[ | (4. 3.5)

where the entries in the diagonal matrices Dl and D2 are the element

values of the capacitors, the entries in the diagonal matrices L1 and

L2 are the inverses of the element values of the inductors in these

* sl 1 %! '
vV, =V, Il=--I1 andV1=V are the

*
canonic networks, and I1 = -Il, 1 1 1

terminal variables.

Expressing (4.3.4) and (4. 3. 5) in symbolic form, we have

* * - 4.3.6
I =Y,V (4.3.6)
and
% ! 4
- .3.7
11 Yl v1 ( )

V* C V*'
1 - 1
(4.3.8)
%1 T *
Il = C I1
from which it follows that
I*' CT Y. C V*' 4.3
] < I ) (4.3.9)

Comparing (4.3.9), (4.3.7), (4.3.5) and (4.3.4) gives
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o | Dls ol U o | D._s
T ' [ _ |
C -— A ——=-—=|C%}—, A
U ! : Ly AT u ! ’ -
| s 1 1 | s L
(4.3.10)
which is an identity for all values of s. For large values of s = jw,
(4.3.10) gives
0 0
cT D [0 UlC= D, [0 U] (4.3.11)
U U
Equation (4. 3.11) can be rewritten as
0 0
1/2 T_ 1/2
o D, [0 UjlC-= DZ/ vV DZ/ [0 U] (4.3.12)
U U
where V is an arbitrary orthogonal matrix. From (4.3.12)
0 0
cT pl/¢ pt/ty (4.3.13)
1 2
U U

From (4. 2.5) the driving point impedance remains invariant if
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rl 0...0—

cnl an e o nn-_J

e

and from (4. 3. 13) it follows that
C21= . . =Cn1=0

The final form of C is, therefore,

and (4.3.13) can be rewritten as

T 1/2 _ _1/2
c, D" =D,V
T _1/2_ _-1/2
C, = D, VD

where it is evident that C1 is a non-singular matrix.
For small values of s = jo, (4.3.10) gives

cTaL

T T
= A
1 IAIC AZL

22

or

(4.3.14)

(4.3.15)

(4.3.16)

(4.3.17)

(4.3.18)
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(4.3.19)

Substituting the expression of C1 from (4.3.17) into the above equation

gives
1 1 1 1 1 1
AILIAI
1/2 -1/2 -1/2 T 1/2
D2 Vv D1 D1 v DZ
T
=8 L4, (4. 3. 20)
or
1 1 1 1 1 1
AL A = A L AT
17171 - 27272
-1/2 -1/2 T -1/2 -1/2
\4 D1 ) \% D2 D,
— v ) \ -/
parametric matrix of N1 parametric matrix of N2
(4.3.21)

This result indicates that the parametric equations of network

N1 can be transformed to the parametric equations of network N2 by an

orthogonal matrix.

The unknowns in this transformation are the matrices
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Class 2: The procedure for the derivation of the transformation
for this class is similar to that given above except for the fact that a
current driver replaces voltage drivers and circuit equations rather
thancut-set equations are considered. The result then has the same
general form as that in (4. 3. 21) with cut-set matrices replaced by the
circuit matrices.

Class 3: Let the canonic network N1 have the circuit equations

V1
[131 U] =0 (4.3.22)
V?.
and let the canonic network NZ have the circuit equations
1
Vl
[B U] =0 (4.3.23)
Z 1
V2

where again N, is known completely but only the topology of canonic

1

network N2 is known. Note that unlike in Class 1 and 2, B1 and B2

are rectangular matrices. Deriving the chord equations for network

Nl’ we have

and for network N2
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where the entries in the diagonal matrices D

(4. 3.25)

and D_ are the inverses

1 2
of the capacitor element values, similarly the entries in Ll’ L2 are
. d * b3 it 1 d
the inductor element values, and VZ = VZ’ I2 = -IZ, V2 = VZ’ an
1 '
I2 = -I2 are the terminal variables.
Consider the following transformation
!
IZ = C IZ
(4. 3. 26)
' T
V.2 = C V2
Equations (4. 3.24) and (4. 3.25) gives
oot ][ BT [ 1o |[p L
T | ls 1 | 2 s
—_—— — — — — C = B - —
C B1 [ | 2 |
lu Lsl|lo U U L,s
| 1 I
- iy L - . i
(4.3.27)
For large values of s = jw, from (4. 3.27) we have
0 0
T _ .3.2
C L [0 vulC= L, [0 U] (4.3.28)
U U

which implies
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L)/ “v (4.3.29)

where V is an arbitrary orthogonal matrix. The transformation matrix

C has the form

C = (4. 3. 30)

-

For small values of s = jo, (4.3.27) gives

1 1 1 1
T
B, D B
- -1/2 T
v L 1/2 17171 L / v
1 1
1 1
T
= 172 B2P2P: L -1/2
L, 2 (4.3.31)

where the relation in (4. 3.29) has been used in the final form. The
unknowns in the transformation are V, L2 and DZ'

Class 4: The derivation of the transformation for Class 4
canonic forms‘ is identical to that in Class 3 except for obvious
interchange of voltage and current drivers and circuit and cut-set

matrices.
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4.4 Realization of One-Port Canonic Networks by the Canonic

Transformation

Consider first the realization of some of the known one-port
canonic networks by using the canonic transformation developed in
the last two sections. The parameters for equivalent LC networks

are related by (4.3.21), where the matrices V, DZ and L. are yet to

2

be determined.
For a canonic network of Class 1, containing n inductors and

n-1 capacitors, the number of unknowns in (4. 3.21) is

- -2 +1
n+ (n-1) + 22tl(o-2) nlorl) (4.4.1)
where EI-—I)-Z(—n--—Z) corresponds to the number of unknown entries in the

orthogonal matrix V. In (4.3.21) the matrix

A L, A 12

is symmetric. Therefore, the number of equations is equal to the

number of unknowns. However, the equations in (4.3.21) can be

simplified by rewriting

1
! An Arz||! : P Prz
T szl | T g o172
v| A, Ag \ D, Bz Baz 2

(4. 4. 2)
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1/2

Combining D2 with the matrix V, we have

1
AL ALl B,
1/2 T T 172 |
D T
2 V|| M1z P22 v D, B,

from which it follows that

If we let

T _1/2
VDZ/ =XT

the (4.4.5) can be written as

Al T B
T 1
A, X = By
T 1
X A,, X = B,,

These equations are quadratic in the unknowns.

(4.4.3)

(4. 4. 4)

(4.4.5)

(4.4.6)

Steepest descent,

Gauss-Scidel or Newton's method can perhaps be used to obtain a

numerical solution [HH1, ZU 1]. The difficulty, however, is that

the approximate solution must be given.

This approximate solution
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can perhaps be obtained by using the analog simulation methods
discussed by Rybashov [RY 1]. For some of the known canonic forms
an analytical solution is possible.

In the following we shall discuss the realization of certain
known canonic forms of Class 1. In obtaining these forms, parametric
equations in (4. 3. 21) are considered. Canonic network N, is assumed

to be known.

I. Cauer's First Canonic Form

The topology of the first Cauer form is given in Table 4.3.1.

In (4.3.21), AZ corresponds to the submatrix of the cut-set matrix for

the Cauer network.

It is evident that AZ L2 A:‘ is in tridiagonal form, for any diagonal

matrix L and this property is not altered after pre- and post-

multiplication by the diagonal matrix
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-1/2

Let (4. 3. 21) be written in the form

1 b
11 Bz |! 21 A
= (4.4.7)
T T T
v BlZ BZZ \ AlZ AZZ
[\ ~/ ) — e )
B A

where A is a tridiagonal matrix <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>