
 

STATE MODEL APPROACH TO THE SYNTHESIS OF LC

NETWORKS AND THE CA-NONIC LC NETWORK

TRANSFORMATIONS

Thesis for the Degree of Ph. D.

MICHIGAN STATE UNIVERSITY

'Radha Krishna Rao Yarlagadda

1964 -
w

 



    
   

  

LIBRARY

Michigan Sun

University

This is to certify that the

thesis entitled

STATE MODEL APPROACH TO THE SYNTHESIS OF

LC NETWORKS AND THE CANONIC LC

NETWORK TRANSFORMATIONS

presented by

Radha Krishna Rao Yarlagadda

has been accepted towards fulfillment

of the requirements for

 

Ph. D. degree in Electrical Engineer’

  

 

/
Major prtfiessor

.Date August 12, 1964

0-169



ROOM USE ONLY

w‘ ' "3.,‘y‘

kin; U ru-OU

ROOM USE 02355.7!



ABSTRACT

STATE MODEL APPROACH TO THE SYNTHESIS OF

LC NETWORKS AND THE CANONIC LC NETWORK TRANSFORMATIONS

by Radha Krishna Rao Yarlagadda

In this thesis 1) a state model approach to the synthesis of LC

networks and Z) a realization procedure for canonic LC networks using

the equivalent network transformations are considered.

In Chapter II analysis and formulation of LC networks from the

state model point of view is described.

In Chapter III a new definition of canonic LC networks is given.

This definition is applicable to general n-port LC networks. A general

realization procedure of LC networks from the state model equations

is described. A state model approach to the realization of reactance

or susceptance matrices with the ideal transformers is given. The

state model approach is also utilized in the realization of reactance

functions without the use of ideal transformers. This procedure is

extended to the reactance matrices of order two having dominant resi-

due matrices; however, it is also applicable to n-port LC networks of

the same class.

In Chapter IV a technique for realizing canonic networks is

described. This is accomplished by establishing a parametric matrix

relation, which relates the parameters of two canonic networks by an

orthogonal matrix. Some of the known canonic forms are derived by

the application of this technique.
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CHAPTER I

INTRODUCTION

In classical network theory, the synthesis problem is stated

in terms of the impedance or admittance matrices in the s-domain,

and its solution is realized by mathematical operations on these

matrices which can be interpreted as the interconnection of certain

sub-networks. These mathematical operations, in general, neces~

sitate the use of ideal transformers, even though the given matrix

is known to be realizable as a network contains only two terminal R,

L and C elements.

Recently it is recognized by many investigators that the

topological approach to the synthesis problem might offer new in—

sight. Indeed, the problem of synthesizing n-terminal R networks

characterized by the impedance or admittance matrices of order

(n-l) is completely solved [PA 1]. Although extension of R-network

synthesis to some very Special class of multi-terminal RLC networks

is also known [CE 4], the solution of the general problem appears at

best, to be very difficult.

A natural approach to the RLC network synthesis is by means

of state models since, in general, the state model of the network

provides more direct information about the network topology than

does the network matrices. Recently, some works have been
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initiated in this direction [RA 1], [DE 2], [KA 1]. Since the properties

of the relations between the state models and the tOpology of the

corresponding network are not explored fully, in this thesis a natural

decision is made and only the synthesis problem of LC networks is

considered.

In recent literature, new canonic networks have been proposed

[RE 1, LE 1, YA 1]. The first set of canonic networks were given by

Foster in 1924 [F0 1]; later in 1930 Cauer gave another set of canonic

networks. In 1955 Reza [RE 1] stated that there are many more

canonic forms which cannot be obtained even if a mixture of Foster

and Cauer procedures is used. But he gave neither the properties

of such new canonic forms nor the realization procedures. In 1963,

Lee [LE 1] gave a lattice canonic form and Yarlagadda and Tokad

proposed a different lattice canonic form [YA 1]. None of these

known canonic forms are obtained as the result of a general theory.

Rather, each is derived by a procedure unique to its form.

This thesis presents for the first time two general procedures

for deriving one canonic LC network from another. The first proce-

dure is based on the equivalent network transformation introduced by

Howitt [HO 1], [HO 2] and extended by Cauer, Guillemin [GU l],

Schoeffler [SC 1] and others. None of these methods, however,

consider major changes in the topology of the network, i.e. , equiva-

lent networks are always assumed to have the same number of meshes
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or node -pairs or one equivalent network is generated from the other

by rather obvious network modifications.

The second method is based on similarity transformations on

the state models of the networks rather than on the mesh or node

equations.

In Chapter II analysis and formulation of LC networks from

the state model point of view is described along with certain

similarity transformations. Such an analysis is the backbone of

the synthesis procedures considered in the successive Chapters.

In Chapter III, a new definition of canonic LC network is

given which applies to general n-port networks. A general realiza-

tion procedure for the state model equations as an LC network is

described in Section 3. 5 and certain conditions for realizability are

stated. Although methods exist [KA 1], [G1 1] for derivating the

state model from the impedance or admittance matrix, a slightly

different approach is given in Section 3. 4. The problem of realizing

impedance or admittance matrices with the ideal transformers is

solved by state models. Although Kalman [KA 3] in a recent talk

has suggested that this result is possible, but so far no published

material is available. In Section 3. 6 a realization procedure for the

reactance functions is given in terms of state models and the proce-

dure extended to a class of 2-port LC networks.
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In Chapter IV a general procedure for transforming a one-

port canonic LC network to another is given. The relation between

the element values of one canonic network to another is established

and this relation is called parametric matrix relation. For some
 

of the canonic networks given in Table 4. 3. 1, the nonlinear

equations obtained from parametric matrix relation are solved

analytically. But, in general, an analytical solution for an arbitrary

canonic form may not be possible, although computer solution might

conceivably give a solution in a particular application. Such numer-

ical solutions are not considered in this thesis.

Chapter V presents examples, illustrating the procedures

described in the thesis.



CHAPTER II

ANALYSIS OF LC NETWORKS

2.1 General

In this chapter the analysis of n-port LC networks in

terms of state model formulation is considered. This analysis

establishes the conditions on the short circuit and the Open circuit

parameters of the n-port LC network which are necessary for its

realizability without the ideal transformers.

2. 2 The State Model
 

In classical network theory the analysis, in general, is based

on the s-domain 100p or node equations and natural frequencies are

defined as

Definition 2. 2. l: The finite zeros of the determinantal equation

 

of the loop or the node matrix of an RLC network are called the natural

frequencies, and the number of these natural frequencies is called the

"order of complexity" of the network.

The instanteous behavior of the network can also be described

by a set of first order differential equations and a set of algebraic

equations of the form

d
ix = AX+BY+C—-Y
dt dt

(2.2.1)

_ d
Y = PX+QY+R——Y

dt
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where X is called the state vector and consists of branch capacitor

voltages and chord inductor currents, and Y is a vector which contains

the Specified voltages and currents; Y contains the complementary

variables of those in Y. The coefficient matrix A is real square and

called the operator matrix. All other matrices B, C, P, and Q are

real and, in general, they are rectangular. The set of equations in

(2. 2. 1) describes the behavior of the network completely and it is

called the state model of the network.

An alternate definition for the natural frequencies of the network

as given in terms of the state model is

Definition 2. Z. 2: Natural frequencies: The natural frequencies
 

of an RLC network is defined as the eigenvalues (not necessarily distinct)

of the Operator matrix A in the state model (2. 2. 1).

In the literature, the order of complexity has been discussed by

several authors. Some define it in terms of the topological prOperties

of the network [RE 1, GU 1, SE 1 and others], and the others

[BR 1, BA 1] define it in terms of state variables. However, the two

definitions are equivalent, i.e. , the order of complexity is equal to the

order of the state vector.

2. 3 Explicit Expressions for the State Equations of an n--port LC

Network

A procedure for determining a state vector of minimum order

has been described by several authors [BR 1. BA 1. WI 1. KO 1» and others].
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The procedure given originally by Wirth is based on a tree of the system

graph defined as follows:

Let G be the graph of such network.

1. Consider the subgraph GO of G which contains all the elements

correSponding to the voltage drivers. Let T0 be a tree (or

forest) in G For consistent networks it is necessary that0°

T0 = GO.

2. Let G1 be the subgraph of G which contains GO and all

elements corresponding to capacitors. Select a tree T1 in

G1 such that T1 contains To.

3. Let G2 be the subgraph of G which contains G1 and all

elements correSponding to inductors. Select a tree in G2

such that T2 contains T1. Then T2 is a tree in G and all

current drivers are included in its coutree. (For consistent

networks current drivers cannot form a cut-set).

4. The voltages of the branch capacitors and the currents of the

chord inductors constitute the variables of the state vector.

For an LC network the circuit equations correSponding to a tree

selected according to the above rules described has the form



  

- _

V0

F l " V
B11 B12 0 | U 0 0 be

' bez
B21 1322 1323, 0 U o = 0 (2.3.1)

I V

I CC

B31 B32 B33| 0 O U V

_. _ cl

Vl  
where Bij are the submatrices of the fundamental circuit equations, U,

the unit matrix and the variables are classified as follows:

V0 — Voltage drivers

vbc - Branch capacitor ”Rages

Vb! ' Branch inductor voltages

Vcc - Chord capacitor voltages

V1 ' Voltages of the current drivers

Similarly, the cut-set equations for the same network corres-

ponding to the same tree are

  

r _

_ .. Io

U 0 0 "BM “1321 'B31 I
be

T T T
.. - - = 0 2.3.2

0 U o 1312 B22 B32 Ibi ( )

I
CC

0 0 U o 4323 -B33 I

_ __1 cf

I1   
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Let the terminal equations of the branch capacitors and chord

inductors be written as

   L
I

bc

c1  —

[1b

V

 _ “J

C

 

(2.3.3)

and let the terminal equations of the branch inductors and chord

capacitors be written as

 

F

  

1b!

V

CC   

Then the state equations can be obtained as

_

 

C

b

T
o

+ BIZCCBIZ

0 LC + BZ3LbB23

_ T _

o
BlZCCBll d

at-

T

0 B231‘191333
L. _  

 

 

—

 

 

  

0
Vbc

Icf 'Bzz
__ L

— T q

o 1332

+

-1321 O

   

(2.3.4)

bc

Icf   

  

(2.3.5)

From (2. 3.1) and (2. 3. 2) the currents of the voltage sources and the

voltages of the current sources are
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_ -

I
CC

T T T
= +

I0 [311 B21 B31] c1

I

L 1-

_ (2.3.6)

V0

V1: ' [B31 B32 B33] Vbc

beJ  
'1 3::

>:< >.~ >1: -

The terminal variables V , V , I II are related to the variables

0 l 0'

associated with the drivers by

>1: >'<

I0 = '10 1 V1 ‘ V1

(2.3.7)

_ >',< _ -I><

Vo ' Vo I I1 ‘ 1

also

(1 d

= — = - — + B V

Icc C:c dt Vcc Cc dt (B11Vo 12 bc)

Substituting this eXpression of Icc and (2. 3. 7) into (2. 3. 6) we have

>1: T d >:< T d - T1 +BT 1*

I0 = 'Io;B11Cc BllETVo+Bllcc BIZdt Vbc BZI c! 31 1

V* V +B V )

1 ' '(B31V0 + B32 bc 33 b1

* dBLBTI-iBL
BTN

' B31Vo+B32Vbc+EiE 33 ‘b 23 c1 dt 33 b 331
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The state model obtained above reduces to the form given in

(2. 2. 1) upon taking the inversion of the coefficient matrix on the left

of (2. 3. 5) and substituting the resulting eXpressions for the derivatives

of the state variables into (2. 3. 8). The required inverse always exists

I

as established by the following theorem.

Theorem 2.3.1: Let C , Cc'b Lb' LC be diagonal matrices with
 

positive entries and B be arbitrary matrices (in our case they
12' B23

B and

T

+B 12are unimodular matrices), then the matrices C 12

b Cc

BT

L 23
23 b are posuive definite.L+B

c

Proof: After Tokad and Kesavan [TO 1]

The final eXplicit form of the state model for any n-port LC

network without ideal transformers is

 

 

r ‘ r
v o (c
be b

:1.

dt _1

I (L + B L ET) B

at ' c 23 b 23

_ T “'1 T

(Cb + B12CCB12) BlZCcBll

o -(L +B
_ C

o - +

+

= -1

-(L + B L ET) B
c 23 b 23 21 

  

' T

+ BIZCCB

22 0

-l

T

23LbB23)

T

B12CcB12)

12)

-1
T

Bzz

 

BLBT
23b33]

-1

T

B32
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T T '1 T >2d
s T

- - B c B -—V

I0 ’ {BllccBll BllccB12(Cb+B12CcB12) 12 c 11} dt 0

—1

T
T 'r T

- 1

+ {BllccB12(cb+BlZCcBlz) B22 B21} c1

T T '1 Vs ET 1*

- +
BllCcB12(Lc +1323L’sz3) 1321 o 31 1

* T T T ’1 T d >=<

—
B L B — 1

V1 ’ " [{B33LbB33 +B3szBz3(Lc +BZ3LbB23) 23 b 33 dt 1

-1
T T

+ {B32 ‘ B33LbB23(Lc + B231131323) B22} Vbc

-1
T >3

12) B3211 +1331Vo (2.3.9)

3::

" B33LbB2r3(Cb + BirzccB

Other investigators (e. g. , [BR 1, 2]) have given alternate

procedures for developing the general form of the state model for LC

networks with restricted voltage and current drivers (voltage driver

in series with an element and current driver in parallel with an element).

For this restricted class of networks the procedure of Bryant and that

given here provides a method for investigating the network without

drivers. When all voltage drivers are replaced by short circuits and

all current drivers are replaced by open circuits then the natural

frequencies of the resulting network are invariant.
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However, in the procedure given here there is no restriction on

the location of the drivers in a network and, in general, replacing

voltage drivers by short circuits and the current drivers by open cir-

cuits modifies the network and hence the natural frequencies. However,

by the following procedure the general LC network with arbitrary

drivers, can be transformed into an LC network without the drivers,

while holding the number of natural frequencies invariant.

Procedure:

1. Substitute a capacitor for those voltage drivers which form

circuits with capacitors in the network and a short circuit

for all other voltage drivers.

2. Substitute an inductor for those current drivers which form

cut-sets with inductors and open circuit for all others.

In this procedure, the size of the capacitors (inductors) substi-

tuted for voltage drivers (current drivers) has no effect on the number

of natural frequencies. In the case of an arbitrary n-port network, it

is always possible to select the type of excitation at the ports such that

the number of natural frequencies of the network will be invariant, i. e. ,

some of the excitations can be taken as voltage drivers, such that they

do not form circuits with other capacitors and the remaining excitations

can be taken as current drivers, such that they do not form cut-sets

with the other inductors.
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Theorem 2. 3. 2: For an LC network the natural frequencies are
 

located on the imaginary axis, i. e. , the operator matrix has eigenvalues

on the imaginary axis.

Proof: The operator matrix in (2. 3. 9) can be written as

      

" T -1 W Jr.“
(Cb+B12CcB12) 0 0 B22 X1

A = = =-1 Bl PB1

T -1
o (LC+BZ3LbBZ3)-J -B22 OJ Y1-J

(2.3.10)

where

c +BT c B - x
b 12 c 12 ’ 1

Lc +13231‘131323 " Y1

and

[- T—
0 B22

: B],

_'Bzz U  

Since B1 is a skew symmetric matrix eigenvalues of B are all on the

imaginary axis (See, e. g. , [PE 1], p. 196)? To prove that A also has

eigenvalues on the imaginary axis, consider the characteristic

equation of A:
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l
l

0IA — ml

(2.3.11)

ll 0IPB1->.UI

X

From Theorem 2. 3.1, it is known that [ 1 Y1] is a symmetric and

positive definite matrix. Therefore, the positive definite matrix,

.1

[Xi/2

1/2

I. Y .1

exists, and is unique [PE 1, p. 203]. Hence (2. 3.11) can be written as

  

l 2 1 2 -l 2

det(PB1->\U)=]P/[]P/ Bl-XP /U[

l 2 l 2 1 2 -1 2
=]P/(IP/B1P/-XU([P/I

l 2 l 2

= lp / BlP / -xul

. 1/2 l/Z. . . . .
Where, Since P BlP is a skew symmetrlc matrix, all its eigen-

values lie on the imaginary axis. This implies, A = PB1 has eigenvalues

on the imaginary axis.

2. 4 Short-Circuit and Open-Circuit Parameter Matrices from the

State Model
 

To obtain short circuit or open circuit parameters from the

state model equations, i.e. , from (2. 3. 9) or from (2. 3. 5) and (2. 3. 8),

let (2. 3. 5) and (2. 3. 8) be repeated here for ready reference.
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C +BT c B o — r— - _ T- _ -

b 12 C 12 Vbc 0 B22 Vbc

i
T dt =

0 L + -

— C 13231-1sz3. _IC£_ LB22 0.1 :01 .J

— — - — — q — .1

T s T :1:

13126.3311 0 V0 0 'Bzz Vo

-d— +
- dt

0 -B L 13T 1* -13 o 1
23 b 33 1 21 1

_ _ _ L L. _ _ L

(2.4.1)

and

* T d * T d T T >:<

= — — - I + B I
I0 Bu Cc B11 dt V0 + I"3’11 Cc B12 dt Vbc B21 cf 31 1

* * d T T d >1:

V ‘ ' {B31 Vo + B32 Vbc +3 B33 Lb I323 Ici ' I3331131333 dt 11}

(2.4.2)

Although the derivations of state variables appear explicitly in (2. 4.2)

they can be eliminated if desired, by direct substitution from the

differential equations. Since the coefficient matrix to the left of (2. 4. l)

is positive definite, its inverse exists. In (2. 5. 1) introduce the following

transformation of variable 3

1/2 t

T
0 V V

(Cb‘I'Blzcc B12) bc bC

1/2 1

B L ET) 1 1

L 0 (LC + 23 b 23 c1 c1       
(2.4.3)
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where the coefficient matrix represents a positive definite root of the

matrix to be inverted. This transformation takes (2. 4. l) and (2. 4. 2)

into the form

   

 

 

 

  

  

 

 

 

 

V' 0 (C +BT C B -1/2BT (L +B L ET) ”2 V'

be b 12 c 12) 22 c 23 b 23 bc

i -
dt ' " T -l/2 T -1/2 '

Ie1 ”(Le+Bz3Lsz3) B22(Cb+BlZCcBlZ) 0 Ie1

L - L _ ..

T -1/2 T j
o v

(Cb+B12CcB12) B12(3cB11

i

LBT -1/2B LBT dt 1*
0 '(Lc+Bz3 b 23’ 23 b 33 _1 _

v0 (c1) + BIZCCBIZ) B32 0

T -1/2 0 1*

(Le +B23LbBZ3) l_]

and

-1/2 '

s 'r d * T T 51._. __ C +B C B )

Io BllCcBlldtVO+BllccB12( b 12 c 12 dt bc

-1/2
T T I T *

- +B I

(Le +1323 Lb 323) B211e1 31 1
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v* - B v* +13 0 T -1/2 '
1 ‘ ' 31 o 32‘ b+BIZCc 312) Vbe

-1/2
T T d ' T d *

+13 + — - —
33LbBZB(Lc 323113323) dt Ie1 B33LbB33 dt I1}

(2. 4. 4)

It is evident that the operator matrix is still skew symmetric, i.e. , the

skew symmetric property of the operator matrix is invariant under the

transformation in (Z. 4. 3).

For convenience define the following variables

1/2

   

T 1/2

(Cb +B12Cc B12) ’ X1

1/2
T 1/2

(Le +1323 Lb 323) ‘ Y1

T

B12Ce B11 ' X2

T (2.4.5)

B23 Lb B33 — Y2

= X

Bll Cc B11 3

T

1333 Lb B33 ’ Y3

and let (2. 4. 4) be written as

r- .1 P- — I-v ' "

. -1/2 T -1/2 V

Vbc 0 X1 B22 Y1 bC

i _

dt ' ' 1/2 -1/2 '
. _ " 0 I

let-J 1 B22 Xl _ _Cl -1   



        

T -l/2 _ ’- *— 7 -1/2 T 7 7x x o v °1 2 d o 0 X1 B32 Vo
- «Te -

-1 2 >1: -

0 --Y1 / Y2 I1 - 11/2 21 o I:

d =3 T -1/2 (1 ' T -1/2 1 T ><
I =x -—v +X x -— -
o 3 dt 0 2 1 dt Vbe B21Y1 1c! + 133111

,1 a: -1/2 ' T -1/2 d 1 d >1:
v - B v + - - —

1 { 13 0 B32 1 Vbe + Y2 Y1 dt Iez Y3 dt 11}

(2.4.6)

2. 4. 1 Short-Circuit Parameters
 

If an LC network contains only voltage drivers then the s-domain

short-circuit parameter matrix is of interest and is obtained from the

al: (1

l = O and replacing — by s. This,state model in (2. 4. 6) by setting I dt

of course, implies that all initial conditions are taken equal to zero.

The result is

      

-1/2 T -1/2 ' -1/2
- X

8U X1 BZZYI Vbe 8X1 2 ,3

= VO

-1/2 -1/2 ' -1/2
I Y BY1 132le sU J “J 1 21J

and

* >:< T -1/2 ' T -1/2'
_ _ 1 2.4.7

10 _ 3x3 v0 + sXZ xl Vbc B21 Y1 d ( )

I

Solving the first expression in (Z. 4. 7) for Vbc and substituting into the
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second and third gives

(EU 1' -1/2 --1 T -1/2 I1
+_ _

e1 8 Y1 B22 X1 B22 Y1 Iez) ’

-1/2 -1/2 -1/2 * -1/2 *
Y -

1 132le X1 X2 Vo Y1 B21Vo

01'

' 1 -1/2 1/2 1 1/2 >:<

I = s +-c1[UsY1B22Xl12T21BY_-l[ZZZIBXXZ'YIBZIJVO

(2.4.8)

and

I*-s(X XTX-IX)V*+(XTX-1BT Y--1/2 BT Y-1/2

0’ 3 2 1 2 o 2 1 22 1 ' 21 1 )

1 T

1 -1/2 -1 1/2 T -1 T -1/2 T -1/2 :1:

EU +§Y1 Bzzx1 BzzY1 :l [XZXI BzzY1 'leYl V0

(2. 4. 9)

using (2. 4. 5) this last expression can be rewritten as

-1 *.

* T T T T
= - c B v

10 3|:B11CC B11 BMCC B12(Cb+B12 cC B12) B12 C 11] o

-1 -1/2

+ (BTCB (c +BTCB ) BT(L +13 LB)

11e12b_12e12 22e23b23

-1/2

T T

- BZl.(LC + BZ3 Lb B23) J x
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-l
1 T -1/2 T -1 T T -1/2

sU+- L +B L
s( c 23 sz3) B22(Cb+B12CcBIZ) B22(LC+BZ3LbB23)

x BT c B (c +BT c B -1BT L T '1/2
11 e 12 b 12 e 12) 22( e+Bz3Lsz3)

-1/2 .
T >1:

-B L +B L B -| J
21‘ e 23 b 23) — V0 (2.4.10)

2. 4. Z Open-Circuit Parameters

In the case when the LC network contains only current drivers,

the open-circuit parameters can be derived through a procedure similar

. d .

to that considered in Section 2. 4. 1. Indeed replacing a by s and

      

a):

setting V0 = O in (2. 4. 6), we have

-1/2 T -1/2 ' -1/2 T

8U ”X1 BzzY1 Vbe X1 I332

:1:

= - 11

-1/2 -1/2 ' -1/2
-sY Y

Y1 Bzzx1 8U lo! 1 2J

and

* -1/2 ' T -1/2' ==<

= - - Y I

V1 {1332 X1 Vbc+SYZY1 1c! S 3 1 (2.4.11)

I

Solving the second expression in (Z. 4. 11) for Id and substituting into

the first and third gives
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-1
' _ 1 -1/2 T -1 -1/2 -1/2 T -1/2 T -1 *

Vbe‘{SU+§X1 B22Y1P’22X1 } {"x1 B32+x1 BzzY1 Y2 I1

(2.4.12)

* T -1 >2 T -1 -1/2 —1/2

V1‘8‘Y3'Y2 Y1 Y2’I14"Y2Y1 B22x1 'B32 1 ) X

-1 T
1 -1/2 T -1 -1/2 T -1 T -1/2 -1/2 4

{sU+-s-X1 BZZYl B22X1 } ‘Y2 Y1 Bzzx1 'B32X1 ) I1

(2.4.13)

Using (2. 4. 5) this last expression can be rewritten as

. -1
* T T T T >=<

V1 ' sI:I:~"3:3Lb]333 ' B33Lsz3 ‘Le J“ B23LbB23) B23Lb1'333] I1

T T T T
+|:B L B (LC+B B23) B C +B ZCeB -B32(Cb+B CCB J

33 b 23 23Lb 22‘ b 1 12) 12 12)

1/2 -1 1/2 “1

U+lc+BTCB .. BT(L+B LBT) B (C+BTCB)
XSE‘blzelz) 22e23b23 22b12e12

.. -1 2

xB LBT(L+B LBT)1B (c +BTCB )/
23 b 23 c 23 b 23 22 b 12 c 12

T '1‘? T *
-B32(Cb+B12CC B12) 11 (2.4.14)

Equations (2. 4.10) and (2.4.14) are the desired basic equations,

and the specifications of the networks are usually given by these forms

in network synthesis. In symbolic form (2.4. 10) and (2. 4. 14) can be

written as
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I*-YV*-(As+AT(sU+1A -1A V* 2415

o’ ‘ 1 2 s 3) 2) 0 ('°)

and

-l

V*=ZI*=(A s+AT(s+-1-A) A)1* (2416)
l l 4 5 s 6 5 1 °'

2. 5 Certain Necessary Conditions for Transformerless Realization

For the realization of RLC networks without the ideal transfor-

mers, Cederbaum has given the following theorem [CE 1].

Theorem 2. 5.1: A necessary condition for a matrix to be an
 

impedance or admittance matrix of an RLC n-port is that, it is a

par amount matrix.

Proof: After Cederbaum [CE 1]

The following corollary is immediate.

Corollary 2. 5.1: A necessary condition for a matrix to be
 

impedance or admittance matrix of an LC n-port without ideal transfor-

mers is that, the matrix is symmetric, positive real and paramount.

Proof: Follows from Theorem 2. 5.1

Theorem 2. 5. 2: Let 2(5) or Y(s) be a paramount matrix hav-
 

ing a pole at the origin or at infinity, then the residue matrices corres-

ponding to these poles are paramount.

Proof: Follows from Theorem 2. 5.1
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From the state model the following necessary condition for

realization of LC network without ideal transformers is developed.

I

Theorem 2. 5. 3: A necessary condition for an admittance (or
 

impedance) matrix to have a pole at infinity is that the network contains

at least one cut-set consisting of inductors and current drivers only

(or at least one circuit consisting of capacitors and voltage drivers

only).

Proof: From (2.4. 10) and (2.4.15) ( (2.4.14) and (2.4.16) ) the

existence of the residue matrix A1 (A4) correSponding to the pole at

infinity implies that the submatrices B and CC (B and Lb) are non

11 33

empty and from (2. 3. l) the conclusion of the theorem is evident.

Z. 6 An Importantfiecial Case
 

Consider an LC network in which there are no circuits of

capacitors with or without drivers, no cut-sets of capacitors, no cir-

cuits of inductors and no cut-sets of inductors with or without current

drivers. However, cut-sets of capacitors with the voltage drivers only

and circuits of inductors with the current drivers only are allowed. It

is shown in Chapter III that this Special case correSponds to canonic

networks. For this reason the LC network satisfying the above condi-

tion will be called a canonic LC network.

The circuit and cut-set equations for this Special case take on

the form
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). __

V0

7VB“ B12 U o vbC

= o

B B 0 U V
2 22

_ 1 4 .1

J- V14

and

r _

Io

T

U 0 1311 '321 Ibc

T T = 0

O U '312 “322 Icf

I

.. 1 - (2.6.1)

Therefore, the state model is given as

_ fl _ — )— l T1 '— _ ’— l T- )—

Cb vbc 0 'B12 Vbc O 'Bzz Vo

d I l

d—t =———l—-- +-———’———-

- | o -B ' o

_. LE. ICI .1 -Blzl .4 L. Cl - 111 J ._11.)

T T

Io Eula: +132111

V1: 'BZIVo 'Bzz Vbc (2.6.2)

at * * Il‘

Again. terminal variables 10. 11, V0 and V1 are related to the driving

variables by

 



I*-I V*-V
0"0" 0‘ 0

and

1* I V* v
1"1' 1‘ 1

a) If there are only voltage drivers present then the state model

can be simplified further and has the form

        

 

 

     

     

“' “ F -1 T_ " )— “T

Vbc 0 Gb 12 Fvbc 0

d
3::

IF = 1 + Vo

1c! 'Lc BIZ 0 let "Bu

__ __ _ .J __ J _ J

* T

1o ‘ 'Bu 1c: (2.6.3)

By using the transformation of variables (2. 6. 3) becomes

— 1/2 _ _ _ )- ' _

Cb Vbc Vbc

1.1/2 I 1' (2.6.4)

c cf J cl J

we have

_ '_ F -1/2 T -1/2" F.1— F "
O

Vbc 0 Cb B1?.Lc Vbc

2):

dit = + V0

' -1/2 -1/2 -1/2

Icz 'Lc B 12Gb 0 Ian ”Le B 11  
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_ T -1/2

0 lch 1d (2.6.5)

The short circuit parameters are obtained from (2. 6. 5) as

-1

* _ T '1/2 1 -1/2 fr -1 -1/2 -1/2 4

I - B Lc (sU +;Cb BIZLc Blsz ) Lc Bllvo

(2. 6. 6)

which has no pole at infinity.

b) If there are only current drivers present in the network then

the state model is again simplified and we have

        

— — _ ' -1 T— — " _ -1 T—

Vbc 0 ' Cb B12 Vbc ' '06 B22

d
*

-_. . =.___ ____ I- _.._ _. + I1

dt I

- ' o

Icl Lc 312' . 0 LIcl

*

V1: "322 Vbc
(2.6.7)

Using the transformation of variables in (2. 6. 4), the state model

transforms into

        

— 1‘ _ -1/2 T —1/2 1 —l/2 T
V’ -C B

Vbc 0 b BIZLc bc b 22 *

d + I
— =

1

dt ' /2 '

-1/2 -1 0

. c 0 I

LIcl I"c B12 b _ _°£_ (_ -

* -1/2 '



-23-

and, the open circuit parameters are given by

a):

V =B

22

-1

C

b

/ 2
(sU +

1 - - __L 1/2 1 T 1/2

S C 12 b 12

-l

BCBL)

c

-l

C:b

/2T*

221

(2.6.9)

In the above two cases, it is concluded that the short and open circuit

parameters cannot have a pole at infinity for the canonic LC networks.

c) The derivation of hybrid parameters for general LC

networks from the state model is possible, but the final relation is

very complex and are not considered in the thesis. However, for

completeness a procedure is given below for canonic LC networks.

* .

relations I = -I 9 V

written as

After replacing

 

Using the transformation of variables in (2. 6. 4) and the

  —

dt

    

* e *

0 O=VO.V1=V1,andIl—

-1/2 T -1/2— 1— '— —

0 Cb B12 c Vbc

+

-1/2 -1/2 1
0 -

c Blsz lo!

4: 'I‘ -l/2' T

= - + I

I0 1311 c cl B21 1

e * -1/2 '

V1 = 'le Vo " B22 Cb Vbc

by s in (2.6.10), we have

-11 (2.6.2) can be

  

(2.6.10)
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_ -1/2 T -1/7 _ '- _ -1/2 T— ' *-
sU -c B L -

b 12 c Vbc 0 Cb B22 V0

-1/2 -1/2 ' -1/2 *

L B C sU -

c 12 b 1c! LLc B11 0 I1

and

* _ T -1/2' T ab

10 _ -B11LC 1C! +B2111

=3 _ *‘ -1/2 1

V1 ' B21.VO‘i;' BZZCb Vbc (2.6.11)

From the first equation in (2. 6.11)

1”Br 1* (2.6.12)
-1/2 T -1/2'

L I 221

1
i-

V ”Ecb B12c cz'ECb

Substituting V into the second equation of (2. 6. 11) and solving for

be

I

1c! gives

-1

' 1 -1/2 -1 T —1/2 -1/2 C-l T >=<

=- _ B I

1c: (SU+s c 12 b 12 c c B12 b 22 1

1 1/2 1 T 71/2 ’1 1/2 >:<

- — ' ' ' ' V

(“”ch Blzcb B12 c ) Lc B11 0

(2.6.13)

1

By substituting for 16! in (2. 6. 12) we have

-1

' _1 -1/2 T -1/2 1 -1/2 -1 T -1/2 L--1/2B ‘C-lBTft

Vbc-_2Cb 131ch (SU+;LC Blzcb l312ch ) c 12b 221

S

1 1/2 T 1/2 1 -1/2 ' -1 T —1/2"1L—1/2B v*

-gcb 131ch (sU+-S—LC B16201D BIZLC ) C 110
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-1/2 T 1*

b 22 1, (2.6.14)

1

- - C

3

Substituting (2. 6.13) and (2.6.14) into the last two equations of (2.6. 10)

gives the required hybrid parameters as

1

:1):

I

* _ T -1/2 1 -1/2 -1 T —1/2' -1/2 >1:

Io ‘BnLc (511+ch B12cb B12Lc ) Lc B11Vo

-1

T 1 L.1/2 1 -1/2 -1 T -1/2 -1/2 1T

+[15”21'3'13111‘(“’UJ’EJLC Blzcb B1211: ) Lc B lZCb B2211

* 1 1 T 1 T 1/2 1 1/21/2 1

= - ' - -— ' 2;;C1TB L'
v0 (8 32201) B22 S—z-Bzzc; chlzL ‘5‘“ch B1 12 )

-1/2 -1 T *

Le lZCb E2211

1 1T 1/2 1 1/2 1T 1/2 '1 1/2 >1:

— " " — " ' ' ' B V
-(B21-SB22Cb BIZLC (sU+SLC B1zcb Blch ) LC 11) 0

(2.6.15)

Equation (2. 6. 15) can be written in symbolic form as

10 A B v0

-
(2.6.16)

:1:

v: c D 11

h— — L- —- b --      

Note that in the last relation the entries of all the submatrices A, B, C,

and D are rational functions of 8. Further, the matrices A and D are

T

Symmetric and also B = -C .



CHAPTER III

SYNTHESIS OF LC NETWORKS

3.1 General

In this chapter the following problems are considered: 1) canonic

forms of LC networks 2) realization of state models with and without

ideal transformers 3) realization of state models from the given Specifi—

cations in s-domain, and 4) realization of s-domain models with and

without ideal trans formers.

3. 2 Canonic Forms of LC Networks

Although the properties of canonic one port LC (RL and RC)

networks are well defined in network theory a clear definition of canonic

LC n-ports has not been given. The following definition is based on the

topology of LC n-port networks.

Definition 3. 2. 1: If all the capacitors of a connected LC network

 

form both a tree and a co-tree in the system graph, then the network is

a canonic network.

This definition implies the network N has no drivers. The case

where N contains drivers will be considered later.

The number of elements in a canonic network has certain proper-

ties which will be used later in the synthesis procedure. Some of these

properties are discussed in the form of theorems.

-31-
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Theorem 3. 2.1: Let G be the graph of a connected LC
 

network N which has no drivers. If N has no circuits of capacitors,

cut-sets of capacitors, circuits of inductors and cut-sets of inductors,

then N is canonic and the number of capacitors is equal to the number

of inductors .

Proof: From the hypothesis of the theorem it follows that all

capacitors can form a tree, as well as a co-tree. This property

implies, by Definition 3. 2. 1, that the network is canonic. Further,

since e - v + 1 = v -1 then the number of capacitors and the number of

inductors in N are equal.

Theorem 3. Z. Z: In an LC network N containing drivers, if the

 

capacitors and the voltage drivers form a tree as well as a co-tree (or

equivalently if all the inductors and the current drivers form a tree as

well as a co-tree) then in N

n +n =n +n,

c v f 1

when

number of capacitors, n = number of voltage drivers

v

:
3 II

number of inductors and n_ = number of current drivers.

I
1

:
3 l
l

Proof: Follows immediately from Theorem 3. 2. 1.

Theorem 3. Z. 3: Let G be the graph of a connected LC network

 

N. Also in N let there be
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k1 voltage drivers and k current drivers,

2

r2 independent circuits of inductors with the current drivers,

no circuits of capacitors with or without voltage drivers,

no cut-sets of inductors with or without current drivers,

no cut-sets of capacitors only,

and no circuits of inductors only

Then in N

nc+(k1-r )=n +(kZ-r

1 1 2"

Proof: Replace a voltage driver by a capacitor if the driver does

not form a cut-set with the capacitors and by a short circuit if it does.

Also replace a current driver by an inductor if the driver does not form

a circuit with the inductors and by an open circuit if it does. This

procedure reduces N to the network considered in Theorem 3. 2.1, and

the proof follows.

3. 2.1 Tests for Canonic LC Networks

Consider the graph G of a connected LC network N. Let

n terminal pairs on this network be Specified as the ports, i. e. , N is

considered as an n—port network. Let (31 be the graph of the drivers

(the types of drivers yet to be determined) to be connected at the ports

of N.

1. Consider the subgraph Gc of GUC}1 which contains the

elements correSponding to the capacitors and the subgraph Gl'
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In (2‘:C if there is a circuit of capacitors then N cannot be a

canonic network. If Gc contains no circuit of capacitors

then it. is possible to select a tree in CC such that it contains

all the capacitors. Further, this tree may contain elements

of G1, in this case the drivers correSponding to these

elements are taken as voltage drivers and the remaining

drivers in the network are taken as current drivers.

2. Let GL be the subgraph of GUC‘:1 which contains all inductors,

and consider GCUG If there is a cut-set of inductors withL.

or without current drivers then N cannot be a canonic LC.

Otherwise consider the next step.

3. Replace a voltage driver by a capacitor if this driver does

not form a cut-set with the capacitors and by a short circuit

if it does. Replace a current driver by an inductor if this

driver does not form a circuit with the inductors and by an

open circuit if it does.

If the resulting network satisfies Theorem 3. 2. 1 then the n-port

network under consideration is a canonic LC network.

An n-port canonic LC network can be generated, by the inverse

of the above procedure, from a given arbitrary canonic LC network

(Definition 3. 2. 1). If the n—terminal pairs are prescribed as the ports

of the network, then the problem is reduced to that of selecting the

type of drivers to be connected at the ports. These drivers by neces31ty
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must be current drivers, otherwise there would be a circuit of capacitors

with the voltage driver. This procedure, in general, introduces a cir-

cuit of inductors with the current driver.

If a prescribed port is generated by simply breaking an element

and introducing a port, then this port must be excited with a voltage

driver. This procedure, in general, introduces a cut-set of capacitors

with the voltage driver.

Other canonic LC networks with drivers can be generated from

a given canonic LC network by replacing some capacitors by voltage

drivers and some inductors with current drivers.

3. Z. 2 Degree of a Rational Matrix

The degree of a rational matrix, defined first by McMillan

[MC 1] in 1951, recently has become an important concept in network

theory [DU 1, KA 2]. The objective here is to derive a relation between

the degree of the Y or Z matrix of an LC network and the minimum

number of elements necessary to realize this matrix.

. Definition 3. 2i [DU 1] Let F(s) be an n x n matrix whose

 

elements are rational functions of the complex variables 8, and let A

be an n x n matrix of complex constants. Then

PA(S)

(8)

|F(s) +A| =

 

QA
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where PA(S) and QA(s) are polynomials in s and they are relatively

prime. The degree of F(s) is the maximum degree of PA(S) for all

possible choices of the constant matrix A.

McMillan [MC 1] defines the degree of Z or Y matrices as

follows: Let R , R , . . . , Rn’ Rm be the residue matrices of Z or Y

O 1

with ranks r0, r1, . . . , 'rn, rm reSpectively. Then the degree of Z or

Y is

r0 + 22ri+rm
(3.2.1)

Kalman [KA 2] has shown that, if Z or Y is regular at on , the

degree, i.e. , (r + 22r,) is equal to the number of state variables.

10

When Z or Y has a pole at infinity, he transforms this form to the

previous form by considering a Mobius transformation. However, it

is easy to show by constructing a state model from Z or Y, as

discussed in Section 3. 3, that the McMillan's degree is equal to the

number of state variables plus the rank of the residue matrix corres-

ponding to the pole at infinity.

In the case of canonic LC networks, the number of elements is

equal to the degree of Z or Y matrices. This is true, Since the

impedance matrix Z (or admittance matrix Y) cannot have a pole at

infinity, and also the inductor and capacitor variables are present in

the state vector .
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3. 3 Realization of a State Model of an LC n-port without Ideal “
 

Transformers
 

The Specification of networks are usually given in the s—domain.

However, a state model correSponding to the given S-domain model

can always be found and such procedure is presented in Section 3. 4.

The state model so obtained can be realized by a network containing

ideal transformers. This problem is considered in Section 3. 5. In

this present section, however, certain conditions are derived which are

necessary to realize a given state model by an LC network without the

ideal transformers. Given the Specifications

              

-- .— —- —n 1—- — r -! — *— P'" - — *—)

O V 0 K V

Vbc 0 K1 Vbc K3 0 5 0

d
d

" ’ - — +

dt -

dt *

' 0 I -K O I

101 K?- 0 lei-J K4 1 6 l

* d * *

= — + + K V + K I

I0 K7 dt VO K8 Icl 9 O 10 l

>'.< d 9.:
y): a):

" - -
I + K V

V1" [Klldt I1 +K12 Vbc+K13 1 14 o

(3. 3. l)

a necessary condition for the realization of this model by an LC network

is that the operator matrix must have eigenvalues on the imaginary

axis .

Comparing (3. 3. 1) with (2. 4. 4) and identifying the matrices we

have



11

12

13

T

C +(b 131ch 312) B32

T -l

L +

( C B23 Lb B23) B22

T T T

B1166 B12 (Cb + B12 Cc B12) 1322 ' B21

T T

'Bll Cc B12 (Lc + B23 Lb 323) B21

T T T '1

I333LbB33 + B33LbBZ3(Lc + 323Lb323) B23LbB33

-1

T
T

L B (LC +B23 Lb B23) B

B b2332 " B33
22

-1

T T T

'B33 Lb B23 (Cb + B12 Cc B12) B32
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where K. is known. The problem is that the matrices Bij' Cb, b'

1

and Lc must be determined from the above equations. Let (3. 3. 2) be

C

c

written in the form,

T T

(Cb + BIZCCB12)K1 — B22

T T

(Cb +B12CCI3BZ)K -B12CCB11

C +BTch B )K -BT

(b 12 5’ 32

T

(LC + B23 Lb B23) K2 — B22

l

U
1

1
"

U
3

(LC+B23 Lb B23)K4 23 b 3

= (3.3.3)

(Lc+Bz3 Lsz3)K6 321

K -B c B BT c B K

7 ‘ 11 c 11 11 c 12 3

8 11 c 12 1 21

=- KK9 B11Cc312 6

- L BT +B L B K

K11 B33 b 33 33 23 4
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where each of the matrices

BTCB

T

C +B C B 9 9 9

( b 12 c 12) 11 c 12 11 c 11 33 b 33

(Lc+B LBT B LBT.B

23 b 23)' 33 b 23 21’B 22’ B32

are considered as unknowns. Once these matrices are determined

their constituents, can be found. Since the system of equations in

(3. 3. 3) is linear, a solution exists only if they are consistent.

Assuming that the system is consistent, a solution of the unknowns

establishes a model of the form given in (2. 5. 1). In this form the

submatricesC +BT C B

12 c
b and L + B L BT by necessity are

c12 23 b 23

positive definite.

' d t
From (2. 5.1) the submatrices Bij' Lb, LC, Cb an CC mus

T

be determined. Since from the above solution the submatrices Bll

T
T

d + B C B are known, construct the

c:c B11' B11 Cc I312 an Cb 12 c 12

matrix

—T C B BT C B 1

B11 c 11 11 c 12

Y :

(3.3.4)

c

T
T

C B

LBlZCc B11 Cb+B12 c 12__  

Where Y correSponds to the admittance matrix of a capacitor

c

network and can be obtained by substituting Vbl = Vcl = V1 = 0 in
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the node equations of the network.

To determ' th '
'

me e matrices B11, B12, Cb and Cc 1n (3. 3.4)

apply the decomposition algorithm of Cederbaum [CE 2] to (3. 3. 4).

Rearranging the rows and columns gives

      

' i " ‘1 ' 7
T

0 -B11 Cb
O O

Y :

c

LU -312 L Czc L-Bll -1312)

(3.3.5)

which is essentially unique due to the nature of this alogarithm. If

entries in either Cb and C are not positive or if

c

_o BT—l
' 11

U -B
12

L-
.-  

iS not a cut-set matrix, then, the given state model is not realizable.

The above procedure can be repeated for a new matrix

Z ' ' T B L BT and L + B L BT

L havmg the matrices B33 Lb B33, 23 b 33 c 23 b 23

as its submatrices
, where ZL corresponds

to an impedance matrix of
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the inductor network. The matrices B B239
are againL andL

C33’ b

determined by the use of the decomposition algorithm. Here the

diagonal matrices Lc and Lb must have positive entries and B23, B33

must be submatrices of an unimodular matrix. From the submatrices

determined above and the solution of linear equations in (3. 3. 2) all the

submatrices appearing in (2. 5. 1) are determined completely, and the

circuit matrix is established as

 

_ 1 L

o 0

B11 B12 0 I U

1

1

- I 0 U 0 3.3.6

B ’ I321 B22 B23 . ( )

1

| o 0 U

LB31 B32 B33 I1 

The problem is reduced, therefore, to the realization of this circuit.

matrix. If it is realizable, the topology of the LC network can be

determined through any one of the known techniques [TU 1, GO 1, K1 1,

BI 1. GU 2, CE 3]. In summary the state model is realizable without

ideal transformers if

1. Solution exists for the system (3. 3. 3)

2. The circuit matrix B in (3. 3.6), is realizable, and
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3. Cb, CC, Lb and Lc are diagonal matrices with positive

diagonal entries.

It is interesting to note that if the conditions given in the above

are not satisfied, this does not imply that the network is not realizable

without the ideal transformers. Indeed, another state model obtained

from that given by a similarity transformation might be realized as an

LC network without the ideal transformers.

3. 4 Derivation of a State Model from the s-domain Equations

The derivation of a state model from the s—domain model has

been considered by Gilbert and Kalman [CI 1, KA l, ZA 1] and they

have described certain procedures for this derivation. In this thesis,

since our main interest is LC networks, a Slightly different method

for deriving the state model is given. The procedures are the same

for the Open and short circuit parameters.

Let Y be eXpanded into partial fractions to obtain

 

2 +Rms
(3.4.1)

Y=R -l—+Z‘R,

S 1

5 +631
0

Where R R, and R00 are the residue matrices whose properties are

1
0'

well known [CA 1].

The operator matrix in (2. 4. 6) correSponding to an LC network

0

a
‘ 1

' w °
' ' . s

is Ske symmetric and consequently it has pure imag1nary eigenvaiue

till: tjkz, . . . . Note that some of the eigenvalues may be zero.
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Theorem 3.4.1: Let A be a skew symmetric matrix of the 

 

form

1- T—
o A

1

A :

-A1 0

_ _1 

Then there exists an orthogonal matrix P such that

T

P AP = A.

where the matrix J\_ has one of the two forms

F 1, —

 

1

l

| x2

0 ' 1| k

. F

IO 0 o

I:
1°

I0 0 0

JL: ______ _.__.__l _______ :—

1 1

-1 0.01

1-x 1

1 | O ._

, 1

")‘k 0. 01 _)  

  (3.4.2)
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01‘

T :11 owe—1

x

O ' Z1 _

1 1 F ' '

1 k 0 0 O'D' O

_ 1 1 1
A2- ———————— '— _________ : -_‘__.-

1 -D'
_

1

1. _, ; o
2 l

0)

1 — ' J

-xkl O

1

9 1

I l

0 01
_

._J

1' 1 ."

O | DT

: ___1___

, 1

-D | O

__ , J (3.4.3)  

The expression for JLl applies when the number of branch capacitors

is greater than the number of chord inductors, and _A_2 applies when the

number of branch capacitors is less than the number of chord inductors.

In-/\_1 and_/\. 2 , N's are taken as the absolute values of the eigenvalues

1

of A.

Proof: Follows from the application of Theorem 5311 in

Perilis [PE 1]
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To apply the above theorem to the operator matrix in the State

*

model of (2. 4.6), (II = 0), let P be a transformation matrix such that

1—,-1 -—

V V

bc 2

P = (3.4.4)

Llcl 3_]    

The tranSposed state model is then

          

— I- )— —- — — ._ —-(

o D'El v W x'l/ZX 0

V2 2 1 2

:1: T '

-d— = -PT i V - P v

dt dt 0 0

' o ”fl/2B

* d 4 T -1/2 d T -1/2 T f

— ._ — - B Y 9 3.4.5

Io’x3dtVoJ"X2 X1 PdtVZ 21 1 3 ‘ )

and the short circuit equations are

 

>1< T —1 >1: T --1 T —l/2 _ T Y~1/1Z p

10 = s(x3 - X2 X1 x2) V0 + (x2 x1 BZZYl B21 1 ) x

-1 2T 5':

1 1 'T T T —1 T 4.1/2 _ T -1/ v'

[Us +-S- D D ] P [X2 X1 BZZYI B21 Yl ] 0

(3.4.6)

which is of the form

* 1 S * 3 4 7)
_ _ V ( . .

IO-[Rms+ROS+Z
2 2Ri10
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The fundamental problem is to derive (3. 4. 5), or an equivalent state

model from (3. 4. 7).

Since the short circuit and the open circuit matrices are

positive real, the residue matrices R , Rm and R1 are all positive

0

definite or semi-definite [CA 1]. Decomposition of each residue

matrix Rj into the form Rj = K? K_ is always possible as stated in

J

the following theorem. Even though this theorem is well known, the

proof given here presents a procedure for decomposing the residue

matrices .

Theorem 3. 4. 2: The necessary and sufficient condition for

 

the decomposition of any real symmetric matrix R, into the products

of the form KTK, is that R is positive definite or positive semi-

definite .

Proof: Necessity is evident [HN 1]. To prove the sufficiency,

consider an orthogonal matrix V which transforms R into diagonal

matrix D, i. e. , VT R V : D1; where D1 is a diagonal matrix consisting

of the eigenvalues of R. Since R is positive definite or semidefinite,

all the elements in D1 are either positive or zero. Let the positive

1/2 , 11 th

Square root of the matrix of D1 be denoted by D1 , i.e. , a-- . e

elements in D1/2 are all non-negative.
Then R can be written as

T

1/2 1/2
1 )(v D1 1w I (V D

(3.4.8)

KTK
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which proves the Sufficiency.

In (3. 4. 8) K is a square matrix, consisting of zero rows

corresponding to the number of zero eigenvalues of R. These rows

1

in K can be deleted, to give a rectangular matrix K for which

'1" 1 1

R=K K=KTK

From the above theorem, (3. 4. 7) can be written as

* 'T ' 'T ' l K K V* (3 4 9)IO— [Km KcoS+KO KO's—Z 7—: Ii 1.] 0 . .

S +61)i

From the information contained in (3. 4. 5) and (3. 4. 6), a state

model corresponding to this equation can be constructed as

        

—— q 1- “IT. r- —1 r—1 —

V2 0 D V2 0

i = + J
dt , .

I -D 0 I K

3

_ 3_1 - - L - _ -

>3 1T 1 d :lt. 'T '

= _ + I (3.4.10)
Io Km Km dt V0 K 3

where

F- , -‘

K1

1 "

_
(3.4.11)

K - Kn

I

K0   
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I

and Ki i = 1, Z, . . . n are the submatrices obtained from the decomposi-

|

tion of Ri' and D has the form given in (3. 4. Z) or (3. 4. 3).

The form of D in (3.4. 2) or (3.4. 3) is

D = 2 (3.4.12)

  
, 2 2

where Di 18 a scalar matrix associated with d, = a), . Note that the

1 1

order of D, is equal to the rank of Ri' and each D, is arranged in the

1 1

I

same order as of Ki'

An interesting result in the decomposition is that, the procedure

gives a Spectral decomposition of the residue matrices, indeed

  

R. = VDIVT

r—d —

1

=v - vT
’d

n

_ ._

0

I
I

a
m

<
1 9
.
.

<

r
-
l

l
l

.
M
b

<
'
,

0
.

<
1

"
r
-
i

H

3
1
M
:

H
Q
:

H
< <

H
»—

3

  

Where each of the matrices (V, V?) have the same order as R and each

1

represents a constituent matrix of R.
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3. 5 Realization of Short Circuit and Open Circuit Parameters of an

n-port LC Network Using Ideal Transformers

In the literature, the technique for realizing the short circuit

and open circuit parameters of an LC network by using the ideal

transformers is well established [CA 1]. The procedure described

here for the realization of LC n-port networks is slightly different

from that of Cauer and utilizes a state model for realizing these

parameters. This method also realizes the network with minimum

number of reactive elements, this number being equal to the degree of

Z or Y. The method is identical for short circuit and open circuit

parameters.

Let the given short circuit parameters be

* ’5‘

= (3.5.1)
IO Y V0

where Y is an n x n positive real matrix. Expanding Y into partial

fr actions give 3

1 ._.—L— 35.?»
Y=RmS+R0§+ZRi Z Z ( I

s +00i

From Section 3. 4, (3. 5.1) can be written in terms of the decomposed

residue matrices as.

IT 1 l S 'T

°° 0 O s s +wi 1

:1: IT

10 = [Km

 

I >}<

" 3.5.3Ki] V0 ( )
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and the state model given in (3. 4.10) is

        

_ ' _ _ ._.

Fv ro D T Fv To
d 2 _ 2 ,5

a - 1 l V0

I3 -D O I K

_ 4 _ J -33 _ _

* _ 'T ' d * 'T ‘IO—Km Kmd—tVO+K 13 (3.5.4,

In order to realize the state model in (3. 5.4), consider an ideal

transformer network with the following terminal equations.

' _
I 1 _ I _

(n) F10 F0 0 : K T Fvo

(rbc) 1'2 = 0 o : D'T V; (3.5.5)

-- — —————
I — -— ——-

I - t - I I 0 II

(rcfl) _V3J _ K D l a _ 3J      

Let the terminal graph of the transformer be selected as shown in

Fig. 3. 5. 1. Further, let two-terminal inductors and capacitors be

connected to the external terminals of the transformer network, as

shown in Fig. 3. 5. Z.
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Fig. 3.5.1 Fig. 3.5.2

Note that the number of ports of the ideal transformer, as indicated in

(3. 5. 5), is equal to the number of state variables in (3. 5. 4) plus the

order of the admittance matrix in (3. 5. 2). It will be shown that, the

ideal transformer network which is loaded by the two-terminal

inductors and capacitors has the state model given in (3. 5. 4) except

the first term in the algebraic part of (3. 5. 4). The transformer

network is then modified as required to give a complete solution.

From this point the synthesis procedure reduces to the determination

of the submatrices in the coefficient matrix of (3. 5. 5).

If the element values of the inductors and the capacitors are

taken equal as unity, then the terminal equations of these components

are
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d v2 127

a; I ==
(3.5.6)

__ 3- LV3_

          

      

        

‘— T — 1‘ — HIT“ P .- _ '3

12. -I2 0 -D V2 0

I

V = v = D o ' + ' V0
- I -K

_. 'T_ __ _, _ _

O D V2 0 '

= + V

I
I O

-D O I -K

_ _ L 3__ L _ (3.5.7)

Therefore, the state model is of the form

_ _. _ “1,1 ._ ._ _ _

0
d V2 0 D VZ

— = + V

dt '
I O

I -D 0 I +K

3

IT I IT

_._. ._. ..
(3. 5. 8)

I0 K I3 K I3

In the above model, the residue matrix correSponding to infinity is not

included. This matrix is derived separately. Indeed, let the terminal

equations of another transformer network, correSponding to the

terminal graph in Fig. 3. 5. 3, be
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F— H— F- 1 - _ -T II

10 0 Km v0

= (3.5.9)
II I II

v3 -Km 0 13

II

Connecting capacitors with unit values across the ports indicated by 3 ,

the terminal representation of the resulting network with reference to

Fig. 3. 5. 4, can be derived as follows:

The terminal equations of the capacitors are

5; V?) = 12” (3.5.10)

11 11 11 3

0 3 0 0(3) 3 3( )

Fig. 3.5.3
Fig. 3.5.4

From Fig. 3. 5.4 and (3. 5. 9), we have
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(3) _ H - 1T 11- 1T (3)

I0 — Io .. -Km I3—Km 13

'T d (3) 'T d 11

Ken 31! V3 ’ Koo 'd-t V3

IT I d 11

-Km Km 8? V0

'T ' d (3)

Km K” dt Vo (3.5.11)

Hence the first term in the algebraic part of (3.5.4) is realized.

To combine the transformer networks correSponding to (3. 5. 5) and

(3. 5. 9) as indicated in Fig. 3. 5. 5 we have

* (3) * (3)
= - = = 305.12I0 (I0 + IO) and V0 V0 V0 ( )

Substituting (3. 5.8) and (3.5.11) in (3. 5.12) gives

        

F." — F- IT_ -— —- )—— -—

0 D V 0

d V2 2 ,1

— = + V'
dt 1 K1 0

I3 -D 0 I3

_ _ _. d _ .1 .- .J

* .. 'T ' d * 'T (3.5.13)10-K,, KmdtVOJrK 13

Which is the desired state model. The network correSponding to this

state model is shown in Fig. 3. 5. 6.



The state model given in (3. 5. 13) is not unique.

(31 0

Fig. 3. 5. 5

~56-

But any

such derived state model can be transformed into the state model

(3. 5. 13) by means of a similarity transformation P. Therefore, the

general form for the realization of the given short circuit parameters

is given in Fig. 3.5. 7.

 

Transformer
 

6:9
 

Network

CorreSponding

to (3. 5. 5) ‘

 

‘
1
1
t
h
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Transformer

Network

Corresponding

to (3. 5. 9)

Fig. 3.5.6
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The above realization is based on element values of unity magnitude.

These values can theoretically be altered to any desired values by

including a transformer of the desired ratio. Further, multi-

terminal inductance and capacitance networks as well can be used

since the realization of one -kind of n-port networks can be reduced

to the form discussed above [CA 1].

The realization of the transformer networks correSponding

to the terminal equations of the forms given in (3. 5. 5) and (3. 5. 9) is

classical and can be found elsewhere [BE 1].

3. 6 Realization of LC Networks without Ideal Transformers

 

Realization of LC n-port networks without ideal transformers

has been an outstanding problem in Network Theory. Only certain

sufficient conditions are known to realize a given reactance matrix

[SL 1, F0 1, SO 1]. Although general necessary and sufficient

conditions are stated by Cederbaum [CE 1], the application of these

conditions to the synthesis procedure seem impossible. A new

approach to the synthesis problem, not utilizing the reactance matrices

directly, is considered here. First attempts in this direction were

made by Kalman [KA 3] who gave a procedure for realizing LC driving

point admittance function using the state models. The approach given

here for one-port LC network synthesis differs from his. Also a

procedure for realizing 2-port LC networks is given with the restriction

that the residue matrices are dominant.
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1. One -Port Realization Procedure

The procedure developed here is applicable to any driving

point admittance or impedance, which does not have a pole at

infinity. A consideration of the functions Y1(s), 22(5), 23(5) and

I Y4(s) is sufficient to cover all possible LC driving point functions

(see Section 4. 2).

The partial fraction eXpansion of

2

 

(s + a2) (3 + a )1 I I O Zn-l

Y1(s) = 2 2 2 2 (3.6.1)

s(s + a2) . . . (s + aZn)

gives

u r s

1 K ‘ 213.

“:1. S + a7:

where ri i = l, . . . , n are the residues of Y1. Therefore, a state

model correSponding to (3. 6. 2) can be constructed, through the

procedure given in Section 3.4. This resulting model is of the form

     

   

F— : 0 a2 _ . F

O I a4 __

rv; : . °. sz l Q

d l 0 a'2n

a; = -—-— —--— -— -— -1 ———————— + —--—-

I o o o 1 1 «fTO’

__ 3d 1 L 3)

-a, I

2 NE?—

'34 : O 7'

.' I an

(_ '8'2n I __( L- J
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and

I=['\/—r7)...'\}r2n]13

Premultiplying both sides of (3. 6. 3) by the diagonal matrix

(- 1 a

I 1 (3.6.4)
 

 
 

 

 

  
 

 

  



-61-

   

 

   

I O a —

I 2

I

I

| _

I 1—-

I

l 0 a2n V2 0

|

— ————————— l—__.__ ______ + ._.-._.

0 O l l

I
a I 3

- 2 1 __ _) 1

.[T |

1 I

l 1
I 1__

I

l

I

a I

2n I

- I

«('5—
Zn I

1 (3.6.5)

and

I=[\/—;B» '“anI3

To retain the skew symmetric property of the operator matrix in

(3- 6- 5). apply the similarity transformation

 



(3.6.6)
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— I a 1

Z

l0

I II;

0 ' '
1 a _ '1

I 2n

(0 J"—

l r2n V2

———————— '—-—-—————— + —-- V

I 1

o .o ' I

I 3 1

a l

- 2 |

r l

“2. . 0 L1-
I

a 1
... 2nI

‘Vrz'

n _( (3.6.7)

and

To reduce the operator matrix in (3. 6. 7) to the desired form, apply the

Similarity transformation in (3. 6. 7).

  

     

7 I. T

8.2 I

,r—r |

Z |

° 1

F _ aZn I I—

V' ' V2

2 “/an 1

_____ I— —— — —
_ 1 ' ‘

I
I

I

L13 ' U _ 3J

- I (3.6.8)



 

 

(3.6.9)
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and
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Fig. 3.6.1
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The circuit matrix as obtained is (see Chapter II),

 

._. P .—

-1 I 0 I ‘1 V

I I

I I 1

-l I 1. 1 U v2 = 0 (3.6.10)

: I . I

-1 I 1 I I;

I I

_ ._ L _   

The circuit matrix in (3. 6. 10) correSponds to second Foster form

indicated in Fig. 3. 6. l. The element values obtained from the

coefficient matrix in (3. 6. 9) are indicated in Fig. 3. 6.1.

II. Two-Port LC Network Realization Procedure

This part is devoted to the realization of a Special class of 2 x 2

reactance or susceptance matrices having dominant residue matrices.

Slepian and Weinberg [SL 1] have described a general procedure of

realizing n-port Z(Y) matrices having dominant residue matrices.

Using state model approach, we shall show that Z x 2 Z or Y matrices

can be realized yielding an identical solution to that obtained by Slepian

and Weinberg. Since the realization procedure is identical to both Z

and Y matrices, only Y matrices are considered here. Consider

first the susceptance matrix Y, which does not have a pole at infinity.

The general form of the network is shown in Fig. 3.6. 2.
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In this network, it can be observed that all the capacitors and the

voltage drivers can be included in a tree T, which also contains an

inductor. This inductor has to be selected from a series or a cross

arm of the lattice. Select an inductor between any one of the terminal

pairs (A, B), (A, D), (B, C) or (C, D). If such an inductor does not

exist, select an inductor from the resonators between any one of these

terminal pairs. Let the graph of this network be Shown in Fig. 3. 6. 3

with the arbitrary orientations of edges. Because of the above

selections of the inductors we have two possible cases.

1. An inductor exists between any of the terminal pairs. Then

the circuit equations can be written as

  

  

V

I311 U: B13 : U Vbc

= 0 3.6.11
1 1 U Vb1 ( )

B21 0 1 B14 : V

" I — cl

V12

where

V = voltage drivers

4 11 ca acitor volta es
bc P g

voltage of the branch inductor

< 11

bl
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Vcl

V

12

Then the state model can be constructed as follows.

    

      

_ fl __ _.,

o o
C:b

Vbc

T T d

0 I"Jolt-”b11313Bl3 [blBl3Bl4 d—t I61

T T

L0 £b£B14B13 L2+1b1B14B14 L 112

— I 1 '3 — _ _ 7

O I U: Q Vbc O

_. __ _ _L _ _ _ _ _ __

- +
- - 1 -13

U l Icf 11

1

O 1 O 112 'Bz1
__ _ __ _ u _

and

1"

1 I
* T T c1

1 _ -[B11 1321]

In

 

>i< >1<

where I and V represen

to the driving function as

and

 

voltages of the inductors which are in the resonators

voltages of the inductors which are not mentioned above.

(3.6.12)

ts the terminal variables which are related
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2. There is no inductor between any of the terminal pairs

(A, B), (A, D), (B, C), or (C, D) in Fig. 3.6.2. In

this case the synthesis procedure can be reduced to the

previous case. Indeed, in this case, since Y matrix

does not have a pole at the origin, then we introduce

such a pole by simply adding a term correSponding to

the pole at the origin. After the realization for this

augmented matrix the inductances correSponding to the

pole at the origin are removed to yield the network for Y.

In the following we shall discuss the procedure for realizing

2 x Z susceptance matrices which have dominant residue matrices.

Consider first the susceptance matrix Yl which does not have

a pole at infinity. The partial fraction exPansion gives

1 S
= _ E:_____ R 3.6.13

Yl ROS+ 2 2 i ( )

S +wi

where R0 and R, are the residue matrices which are assumed to be

dominant. The procedure for decomposing the residue matrices

differ from the procedure described in Section 3. 4. Consider the

following two p03 8 ibilitie s:

a) Let

(3.6.14)
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represent any one of the residue matrices in (3.6.13), such that

a >b , c >b andb >0, i.e., R.is dominant. ThenR in(3.6.l4)

l- 1 1— 1 1- J j

can be decomposed into the form

      

      

    

—b b T F b 0— _ ‘1

1 1
a1 - 1

O 0

R. = + +

J

b
-

L _ L. _ _. _-

— — —- --1 — —1

lb].

3.1-bl

0

= (dbl \Ibl] + [Val-.131 0] + [o «FEET-Tl]

«Ibl O cl-b1

L. _. _. ._. ._ -_.

1——
——q I_-

—

Vbl dbl

«(bl al-b1 0

a -b 0 = K K

=

1 1

J

N/bl 0 cl-b1 0 cl-b1

._ _ I.

(3.6.15)

b) If the residue matrix is of the form

a -b

— 2 2 (3 6 16)
Rk —

-bZ c2

L_.
.4  

> . h R ' 3.6.16 canbe

where azibz, c :bzandb2_0 T en k1n( )

decomposed as follows



 

  

 

  

-b _ _

2 I-az b2 0 To

+ +

b O O 0 c

24 _ _) _ 3

F _

“az'bz

[4 b2 " \I ha] 'I' [‘V aZ-bz

O

L J

«I aZ-b2 0 b2

NI aa-b2

O c -b

2 2

0

._J _

 

 

  

 

 

 

 

 

 

0

- sz

I- “1

O] + [O ch-bz]

NIc -b2

_. _I

-N/‘b_2

0

(3.6.17)

The correSponding state model can be constructed by the procedure

already described in Section 3. 4. The result is

   

I—I ‘_' 1—

V 0

g 2 - _-_
dt ’

-D

I3

I = KTI

where

v Fo—

     

(3.6.18)
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  _ K01

and D has the same form as in (3. 4. Z) or (3. 4. 3). Applying a proce-

dure identical to that applied for one ports, i. e. , premultiplying both

sides of (3. 6. 18) by a diagonal matrix and applying the similarity

transformation, the equivalent state model is

      

  

r— I 1 o—

I

1 O
I

F .1 o . -. —,-

C2 V2 : 1 0 V2

1 :: —————— I ——————— +

dt I I I

L I _1 13

._ 3- _ 3.3 ' _ J

-1 I

I

1 O
-1 I

|

o o. o ,

and

I

I : BT13 (3.6.19)

where B contains t 1, 0 as its entries and C2 and L3 are diagonal

matrices .
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To determine the network corresponding to (3. 6. 19) the only

requirement is that B' must be a submatrix of a circuit matrix. If

it is, then the realization follows immediately. If B' is not a sub-

matrix of a circuit matrix, then the state model obtained above must

be modified by using a proper similarity transformation on the state

vector so that the new model is realizable. This is always possible

I

and is shown next. The first column of B contains only the entries

I

+1, or 0 but not -1 and the second column of each Bi (the submatrix

I

of B ) has the following possible forms

  

J.“- 1

(a) O

l

I. d

0

(b) (3.6.20)

1

+

(C) I 1]

In (3. 6. 20a), the plus sign is taken if the off-diagonal entry in

the residue matrix is positive, and the negative sign is taken if

otherwise. Equation (3. 6. 20b) appears if the residue matrix is

diagonal and (3. 6. 20c) appears if the entries in the residue matrix

are equal in absolute value. Again the plus sign is taken if the off-
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diagonal entry of the residue matrix is positive and the negative sign

is taken if otherwise. In the following,three cases are considered

separately. In Case 1 it is assumed that the off-diagonal entries in

the residue matrices are all positive, in Case 2 all are negative and

in Case 3 they are arbitrary.

I

Case 1: If each submatrix Bi of B contains one of the following

matrices

_ '1

l l

1 0 l 1

l 0 or . . [1 1]: [1 0]

O 1 1 O

._0 1
(3.6.21)  

then B is a. submatrix of a circuit matrix. Then the circuit equations

as obtained ar e

   

_ 7 _ 1

I 1 I V

I |

l 1 I

-B' | 1 ' U v2 = o

I I

|
I

' 0 I V3 (3.6.22)

 
These equations correSpond to the network shown in Fig. 3. 6. 4.
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Fig. 3.6.4

The element values in this network are dictated by the diagonal matrices

Czand L3 in the state model.

Case 2: If each B, represents any one of the following matrices

1 

  

1 -1

1 o 1 -1

1 o . . , [1 -1], [1 0]

o 1 1 o

_o 1—I
(3.6.23)

I

Then B is a submatrix of a circuit matrix of the form

   

_ _ _ 1

II I v

I I

" 1 lU V —0
-Bl

1 I
2 _

I ', I

L I .0: V3 

and the correSponding network for the circuit matrix is very similar

to Fig. 3.6. 4 and is shown in Fig. 3.6.5.
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Case 3: If some Bi have the form in (3.6. 21) and some Bi

Fig. 3.6.5

I

have the form in (3. 6. 23), then the resultant B may not be a sub-

I

matrix of circuit matrix. A typical form of B in this case is

I—

 

l

 OJ

(3.6.24)

In this case, although B may not be a realizable submatrix, the

state model can be transformed to a realizable state model by first

augmenting the state model and then using a similarity transformation

on the state vector.
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The augmentation of the state model can be achieved by

decomposing the residue matrices as follows:

 

«[6172 NHEITZ

46177 dbl/'2

—~l bz/Z «162/2

-d13272 -NFE;TZ

 

.-

l-b1 0

O cl-b1

.1

Z-bz 0

0 cz-b2

 

  

 

Vin W

al-b1 O

0 cl-b1

(3.6.28)

«IbZ/Z -'\I bZ/z

  
(3.6.9)

In order to illustrate the procedure,the following example is considered.

Example:

Y(S) =

be the given susceptanc

Let

s(Zsz+5)

(s2+l)(sz+4)

 

3s

(sz+l)(sz+4)

 

 _

Adding the term

3s
 

(sz+l) (sz+4)

2

s(ZS +5)
 

 (sz+1)(sz+4)

(3.6.30)

e matrix which has no pole at the origin.
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(3. 6. 31)

Decomposing the residue
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A state model can be constructed:
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Applying the transformation of variables we have

  
  

  

  

_ -— r.—

1
V

3 3’

1
v

7 i‘

1 v

- 5

8
I

l d v
.. _ 6 =

8 dt ,

Z i

2 .7
2 i

2 f3
l 19

I

‘10

I

111

I—-
— _ —I I—' —

I O '

l v

' .3
I 1 o v

4O : 1 0 ' Q _ _

V

I 1 o 5 v1

___-I _______
4,----

____ I V6

-1
'

' i 1 1

-1 l
"7 V2

I
. 1 1 - .-

-1
18

I

‘1' O 1' 1 -1

I
9

I

o o 0 0| . 1 _1

—
- 110

I

i 1 -1

L 1L L _ (3.6.33)    
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The submatr ix

  

r—- —I

1 l

l l

I

B : l -l

l -1

l -1

I_ .3

is not a submatrix of a circuit matrix, therefore, a similarity trans-

I

formation T must be used to reduce B , to the desired form. General

description of the transformation matrix is given later.

Let the transformation matrix be taken as of the form

,— _

l

— — — (3.6.34)

  
Applying the transformation to the inductor currents in (3. 6. 33) and

then using another set of transformation of variables similar to that

used in one ~port case, the final state model is
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where

Hence
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(3.6.35)

(3.6.36)

(3.6.37)
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Then the circuit matrix can be constructed from (3. 6. 35) and (3. 6. 37) as

  

o +1I1 l-lll q

I I I

-1 ol 1 I 1| 1

I I I

B: -1 1| 1 lol 1

I I I

-1 1| 1| 0| 1

I I I

-1 1Io o 0 0| 1| 1

(3.6.38)

The network can be realized from (3. 6. 38) and the element values

are determined from (3. 6. 36) and (3. 6. 37), and the result is shown

in Fig. 3. 6. 6.

  

1-1

1"?-

11

*— If

2 1
8

1

— 2     

     
  
 

_1_ I2

2

l

2 8

J!

L/UUD'OYIU‘ Ir

_1_

7- Fig. 3.6.6

The network corresponding to the given matrix Y can be obtained by

removing the two inductors 11 and 12 in this figure.
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_S_e_lection of the Transformation Matrix T

Consider

B1

B2

' O

B = -

Bk

BO   
where Bi is obtained from the residue matrices as discussed earlier.

The leading two rows of Bi (i 16 O) are one of the forms: [1 l] ,

[1 -1] , [1 O] , [0 1]. The last row of B can be taken as [1 1] ,
0

or [1 -l]. Then T must have the form

—— I '—

U , T

T ._- -———|——-— (3.6.39)

0 I 1

— I —.I  

where
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contains t 1, O as entries. If the last row of B0 is [1 1], then

considering all the submatrices, Bj’ whose first two rows contain

[1 -1], we see that it is necessary to take

T, =-1 T, = 1

J1 or J1

sz= Z sz : -1

and for all the other entries Ti 2 0. If the last row of B0 is [1 -l],

consider all the submatr1ces B3, whose first two rows contain [1 1],

then we shall select either

I

T : -1 T -‘ I]

' ‘1
J1 or , 8

3'2: 1 T32: 1I

In the above discussion we assumed that Y has no pole at

T

infinity. If it has a pole at infinity, the residue matrix can be

realized without considering the state model approach and the

corresponding network can be connected to that obtained from the

realization of the other residue matrices.

The above procedure can be extended to n-port LC networks

for which the residue matrices are dominant [SL 1]. If the

dominancy condition is not imposed on the residue matrices, the

realization by the procedure given here, in general, may not be

possible.



CHAPTER IV

EQUIVALENT NETWORKS

4.1 General

This chapter is concerned with the parameter transformations

on one port canonic networks.

The theory of equivalent networks goes back to 1930's. In the

classical theory one equivalent network is obtained from another by

applying a non-singular transformation to the mesh impedance or node

admittance matrices such that certain parameters of the network are

invariant. In the following sections, these classical transformation

techniques are summarized along with the development of certain new

contributions to equivalent networks.

In the last section state model equations are used to generate

one equivalent network from the other.

4. 2 Equivalent Networks - Transformation Matrix
 

Two n-port networks are said to be equivalent if they have

identical terminal equations correSponding to a given terminal graph.

The important point is that the two n-port networks have the

same terminal characteristics. Their internal construction need not

be identical.

In general, the transformation of a network into another

equivalent network is possible only if the internal constructions of

.88...
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these two networks are known. If only the terminal equations are given

such transformation is possible if the network is of one element-kind.

This type of transformation, called the congruent transformation, is

discussed by Cauer [CA 1] and has very limited applications.

Howitt in his doctoral thesis, later in his papers [HO 1, HO 2]

discussed the equivalence transformation of RLC networks, and

showed that the equivalent electrical networks form a group. He also

considered the necessary minimum number of elements to realize the

given driving point impedance function.

The equivalent networks are also considered by Guillemin

[GU 1], [GU 3], who attempted to simplify the problem by using the

normal coordinate transformations. Recently Schoeffler [SC 1], [SC 2]

considered a transformation of equivalent networks, keeping the same

network configuration but with different element values. Guillemin

applies the transformation on the mesh impedance or node admittance

matrices, while Schoeffler applies such transformations to the

parameter matrices, thereby introducing additional constraints on the

transformation matrix. In all of these existing techniques the topolOgy

of the equivalent networks is held rigid, i. e. , in general, equivalent

networks derived have identical topologies (networks having either the

same number of meshes or the same number of nodes). In the

following, the principles of Howitt transformation is considered briefly

with some additional remarks.
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Let the mesh equations of an n-port RLC network in the 8-

domain be written as

l
Vzm+Ls+EIQI (41”

where

V = [v v , v ]T (mesh voltages)

1' Z ’ n

I = [i , i , ..., i ]T (mesh currents)

1 Z n

and R, L, K are square real matrices, i.e. , mesh resistance, mesh

inductance and me sh elastance matrices. Let the vector I and V be

I I

transformed into vectors I and V by

I = CI

(4.2.2.)

I

V = CTV

where C is a non-singular matrix

C11 c:12. ' ° ' C1n

C21 C22 '° ‘ C2n

C = . . (4.2. 3)

c c . . . c

_— n1 n2 nn_J  
This transformation carries (4. 2. 1) into a new form for which the mesh

resistance, mesh inductance and mesh elastance matrices are of the

form
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I

R =CTRC

. T
L =c LC (41%

I

K =CTKC

To hold the driving point impedance invariant through the

transformation, it is necessary that i1 = i1 and v1 = v1. Consequently,

if C is taken as

 

T1 o...ofl

c21 C22 C2n

(13$

_Cnl C111:- 
In general, it is easy to show that for the invariance of first

k mesh voltages and currents, C must have the form

——- MJA)

  

where Uk is a unit matrix of order k.

4. 3 Canonic Transformation for One-Port Canonic Networks

The oldest known one -port LC canonic networks were obtained

by Foster [F0 1] through the partial fraction expansion of the
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reactance functions. Later Cauer [CA 1] gave other forms, which are

canonic by considering the continued fraction eXpansion of the reactance

functions. Recently Lee [LE 1] gave a lattice canonic form for the one-

port LC networks which are derived by applying a combination of the

Foster and Cauer procedures and modifying the final network by an

ideal transformer. Yarlagadda and Tokad [YA 1] considered a rather

restricted lattice canonic form which differes from that given by Lee

and is derived from two cascaded Brune sections. The known canonic

networks introduced by Foster, Cauer and Lee are shown in Table 4. 3. 1.

In Section 3. 2 procedures have already been given for deriving

one -port canonic networks from a general canonic network. There are

four possible classes of one -port canonic networks obtainable by this

process. These four classes correspond to the four reactance functions.

 

 

 

 

Class 1:

Z 2 Z Z

Z () s(s +a2). . .(s +a2n)

s =

2 2 2 Z

1 (s + a1). . . (s + aZn-l)

°r 2 2 2

( ) (s + a1) . . . (s + aZn-l)

Y s =

1
Z Z Z

s(s + a2) . . . (s + aZn)

Class 2:

2

(s + a ) . (s + azn_1)

 

N

N

A

m

V

I

N
N

N
N
I
—
‘
N



 

 

 

 

 

Class 3:

s(sz + a2) . . (s + a: 1)

23(8) = 2 2 an.

(s + a1). . (s + azn)

Class 4:

Z

(s + a?) . (s + aim)

Z4(s) _ 2 2 2 (4.3.1)

s(s + a2) . (s + aZn-l)

or

Z 2 2

y (8) : s(s + a2) . . (s + aZn-l)

4 Z Z 2

Each class corresponds to a class of canonic networks as follows.

Class 1: Class 1 is obtained by replacing a capacitor by a

voltage driver in a canonic network. Therefore, the number of

inductros is one more than the number of capacitors. For Y1(s) in

(4. 3.1), one -port canonic network contains (n + 1) inductors, n

capacitors and a voltage driver.

Class 2: This class of canonic networks are obtained by

replacing an inductor by a current driver in a canonic network.

Therefore, the number of capacitors is one more than the number of

inductors. For 22(3) in (4. 3. 1), one -port canonic network of Class 2

contains n + l capacitors, n inductors and a current driver.



v
—
g
n
v
—
—
—
-
-
v

-
.
v
-
-
.
v
_
_
-

T
a
b
l
e

4
.

3
.

1

C
l
a
s
s

1
C
l
a
s
s

2

 
 

 

 

I-
I

I
I
I

.
9
1

T
1

T
T

.-
T
I

 
 

 

 
 

 

(
F
o
s
t
e
r
)

 
 
 

 
 

 
 

 

 

-94-

 
 

 

_Jf

 
 

 
 

 

 
 



C
l
a
s
s

1
C
l
a
s
s

2
‘

C
l
a
s
s

3
C
l
a
s
s
4

E
E
E

E7
!

°‘
“‘
3“

.__
if
E

 

 
 

 
 
 

 



-96-

Class 3: This class of canonic networks are obtained from a
 

canonic network by inserting a current driver between arbitrary

nodes. Therefore, the number of capacitors is equal to the number

of inductors. For 23(3) in (4.3. 1), one port canonic network of

Class 3 contains 11 inductors, n capacitors and a current driver.

Note that the current driver forms a circuit with some of the inductors

in the network.

Class 4: If in a canonic network, a branch or a chord is

opened, and a voltage driver is inserted in series with this branch or

chord, the fourth class of canonic networks results. In this class of

networks the number of capacitors is equal to the number of inductors.

For Y4(s) in (4. 3. 1), one port canonic network of Class 4 contains n

inductors, n capacitors and a voltage driver. Note that the voltage

driver forms a cut-set with some of the capacitors.

The admittance functions are considered for Classes 1 and 4,

and impedance functions are for Classes 2 and 3 for the obvious

reasons that Y1(s), 22(3), 23(3) and Y4(s) have no poles at infinity.

Iransformation Matrix C Correspondingto Canonic Networks
 

In considering the equivalent networks, it is generally assumed

that one canonic network is given, and the problem is to determine the

element values of another canonic network of known topology. Since

the topology of both networks are known, certain restrictions are im-

posed on the transformation matrix C.
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Class 1: Let N1 be a one -port canonic network having the cut-

set equations

[U A1] = 0 (4.3.2)

  

and let N2 be second one -port canonic network of the class having the

cut-set equations

[U A2] = o (4.3. 3)

  

where N1 is assumed to be known completely (i. e. , topology and element

values are known) and for N only the tOpology is known. The problem

2

is solved if the element values of NZ are determined. Because of the

nature of this class of canonic forms, the known submatrices Al and

A2 in (4. 3. Z) and (4. 3. 3) are nonsingular. The branch equations for

network N1, are.

      

0 I TD 8 70 I U i

* I 1 I 3::

11: ”": A1 1 "“17" V1

U -L A

__ ' J __ 5 £1 _ 1 _J (4.3.4)

and for network NZ
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’0 I _ VB 8 I — To: UT

*' I :3!

I = —--—' A -—--—-— ——'-—- v
1 I 2 1 T 1

U I I -s—L2 A2

_ l ._J _ ' ._J _ _1, (4.3.5)

where the entries in the diagonal matrices D1 and D2 are the element

values of the capacitors, the entries in the diagonal matrices 1..1 and

L2 are the inverses of the element values of the inductors in these

.I v *1 I

V=V I=-I andV=Varethe

*

canonic networks, and I1 = ~11. 1 1: 1 1 1 1

ter minal variable 3 .

Expressing (4. 3. 4) and (4. 3. 5) in symbolic form, we have

1* * ~ 4 3 6l — Yl V1 ( . . )

and

3:“ >:U 4 7: .30

l Y1V1 ( )

v* c v*'
1 ' 1

(4.3.8)

*I T >:<

I1 — C I1

from which it follows that

*' CT Y c v*' 4 3Il _ 1 1 ( - -9)

Comparing (4. 3.9), (4. 3. 7), (4.3.5) and (4.3.4) gives



 

which is an identity for all values of s.

  

(4. 3.10) gives

Equation (4. 3.11) can be rewritten as

P

O

 

where V is an arbitrary orthogonal matrix.

1

 

To“

U   L.

D[0

_ —

0

  

D [0

U]C=

1/2
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U 0 | D s 0 ' UE

= ' Z I
T C" ----| AZ 1 __;_

I ..

1 U, SL2 A2
_J) ._ _ _. ._.1 _. .—

(4.3.10)

For large values of s = jw.

 

- -]

0

U] C = D2 [0 U] (4.3.11)

U

o

2
Dilly VTD;/ [0 U] (4.3.12)

U

From (4.3.12)

— -]

o

131/2v (4.3.13)

2

U

  

From (4. 2. 5) the driving point impedance remains invariant if
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E—l 0...0_

  

C21 C22 . . . Can

0 = ' '

Cnl an o . o Gnu—J

and from (4. 3. 13) it follows that

C21: =Cn1=0

The final form of C is, therefore,

F1 0—

  _ 1.1

and (4. 3.13) can be rewritten as

CTDI/Z = D1/2

1 1 2 IV

T _ 1/2 -1/2
(:1 - 132 'v:ol

Where it is evident that C1 is a non-singular matrix.

For small values of s = ja) , (4.3.10) gives

T T T

C AlLlAl C - AZLZAZ

01'

(4.3.14)

(4.3.15)

(4.3.16)

(4.3.17)

(4.3.18)
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F1 — F1 _

A L AT - A L AT
CT 1 1 l - 2 Z Z

c

_. 1J J- 1J (4.3.19)  

Substituting the expression of C1 from (4. 3. 17) into the above equation

            

     

gives

F1 7 F1 7 F1 _ F1 _ F1 — F1 7

1/ AILIAT

2 -1/2 -1/2 T 1/2
D V D D V D

_ Z J _ J _ 1 J _ 1 J _ J _ ZJ

T

= A2 L2 A2 (4.3.20)

01‘

F1 _ F1 _ F1 — F1 - F1 _ F1

T T
A L A = A L A

v D.1/2 1 1 1 D.1/2 VT -1/2 2 Z 2 D

_ J 1 J _. 1 J __ J _ 7- J _ 2       
 

parametric matrix of N1 parametric matrix of N

(4.3.21)

This result indicates that the parametric equations of network

N1 can be transformed to the parametric equations of network N2 by an

orthogonal matrix. The unknowns in this transformation are the matrices

V. .D2 and L2



-102-

Class 2: The procedure for the derivation of the transformation

for this class is similar to that given above except for the fact that a

current driver replaces voltage drivers and circuit equations rather

than cut-set equations are considered. The result then has the same

general form as that in (4. 3. 21) with cut-set matrices replaced by the

circuit matrices.

Class 3: Let the canonic network Nl have the circuit equations

_V T

u] 1 = 0 (4.3.22)

V2
— -

[Bl

  

and let the canonic network NZ have the circuit equations

  

_ '...

Vl

[B U] = 0 (4.3.23)

2 I

V
2.

_ J

where again N1 is known completely but only the topology of canonic

network N is known. Note that unlike in Class 1 and 2, B1 and B2

2

are rectangular matrices. Deriving the chord equations for network

N1, we have

* 1
v = B ' _____ 12 (4.3.24)

      

and for network N



where the entries in the diagonal matrices D1

of the capacitor element values, similarly the entries in L

the inductor element values, and V

*1

I2

 

3:: l

l

  

-lO3-

 

J;

2

-I2 are the terminal variables.

Consider the following transformation

  

D
i

ls

   

 

Z

 

"‘=V,I

>1:

2

 

 

(4.3.25)

and D are the inverses

=-I

For large values of s = ju), from (4. 3. 27) we have

—

 

Which implies

0

U

m

 J

0L1[

P

U]C=

 

O

U

_

 

L

2

[0

2

>1:

Z’V

U]

2

 

)

 

1, L2 are

1

= V2, and

(4.3.26)

  

(4.3.27)

(4.3.28)
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where V is an arbitrary orthogonal matrix.

C has the form

  

     

For small values of s = jog, (4. 3. 27) gives

_ ,_ _ r

F1 1 1

-1/2 BIDIBIV

1 J

71

= D B
-1/2 B2 2 2

L2    

(4.3.29)

The transformation matrix

(4.3.30)

   

-1/2

L2 (4.3.31) 

where the relation in (4. 3. 29) has been used in the final form. The

unknowns in the transformation are V, L2 and D2.

Class 4: The derivation of the transformation for Class 4

canonic forms is identical to that in Class 3 except for obvious

interchange of voltage and current drivers and circuit and cut-set

matrices .
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4. 4 Realization of One -Port Canonic Networks by the Canonic
 

Transformation
 

Consider first the realization of some of the known one -port

canonic networks by using the canonic transformation developed in

the last two sections. The parameters for equivalent LC networks

are related by (4. 3. 21), where the matrices V, D2 and L2 are yet to

be determined.

For a canonic network of Class 1, containing n inductors and

n-1 capacitors, the number of unknowns in (4. 3. 21) is

 n +(n-1) + (n'l)z(n’2) = 3922-) (4.4.1)

where (n-1) (n-2) correSponds to the number of unknown entries in the
 

2

orthogonal matrix V. In (4. 3. 21) the matrix

F. 1 r.
T

-1/2 A2 L2 A2 -1/2

    

is symmetric. Therefore, the number of equations is equal to the

number of unknowns. However, the equations in (4. 3. 21) can be

Simplified by rewriting

          

1 A11 A12 1 1 B11 12

= _ 'T I -1/2

v A A V 12 22 2

_12 22_ __ _ _ 2 _ L _ _ _

 
(4. 4. 2)
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, , l 2

Combining DZ/ with the matrix V, we have

— — F — — _-

1 F '
A11 A12 1 B11

1/2 T T 1/2 = 'T
D

__ 2 V A12 A221 V D2 BIZ
_ ._. 1__ _J _—       

from which it follows that

If we let

T12

VD2/:XT

the (4. 4. 5) can be written as

A = B

11 11

T 1

A12X ’ B12

T I

XAZZX _ 132.2

These equations are quadratic in the unknowns.

 

(4.4. 3)

(4. 4. 4)

(4.4. 5)

(4.4.6)

Steepest descent,

Gauss-Scidel or Newton's method can perhaps be used to obtain a

numerical solution [HH 1, ZU l]. The difficulty, however, is that

the approximate solution must be given. This approximate solution
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can perhaps be obtained by using the analog simulation methods

discussed by Rybashov [RY 1]. For some of the known canonic forms

an analytical solution is possible.

In the following we shall discuss the realization of certain

known canonic forms of Class 1. In obtaining these forms, parametric

equations in (4. 3. 21) are considered. Canonic network N1 is assumed

to be known.

I. Cauer's First Canonic Form

The topology of the first Cauer form is given in Table 4. 3. 1.

In (4. 3. 21), A correSponds to the submatrix of the cut-set matrix for

2

the Cauer network.

F—l

  
It is evident that A2 LZ A; is in tridiagonal form, for any diagonal

matrix L2,, and this property is not altered after pre- and post-

multiplication by the diagonal matrix



F1

 

 

—Fb
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F1—

Tv

_J   
 

Fall A12

T

J A12 A22J

‘: V

A

(4.4.7)

where A is a tridiagonal matrix and all other matrices are defined by

comparison with (4. 3. 21). The known matrix B can be reduced to A

by an orthogonal matrix transformation described by Frame [FR 1].

An alternate procedure, and one which has advantage over the tridia-

gonal method in that it also provides a proof that element values so

obtained are all positive, is presented here.

Since B is positive definite, it has real positive eigenvalues

where

B :

ll

21

 n1

T

PJLP

P12 ... Pln

P22 . . P211

PnZ Pun—J 

(4.4.8)

(4. 4. 9)
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andJ\. is a diagonal matrix containing the eigenvalues of A. Substituting

(4. 4. 8) in (4. 4. 7) we have

        

l T 1

P_/\_P = A (4.4.10)

V VT

or

1 l

=PT A P=QTAQ (4.4.11)

VT V

where

" 1 T _ ._ ‘1 o a]
T q11'” qnl T 1 p11 p21 pnl

Q = . . =P : . 0

. O
T O

V . . .

q1n qn: _ — _pln pm: _0 V _.

(4.4.12)

Comparing the terms in the above matrix equation, we obtain

: z ..., -_- (4.4.13)

q11 p11’ q12 p12’ qln pln

Since Q in (4. 4. 11) is an orthogonal matrix, it transforms A into a

diagonal form. The matrices Q and A are obtained, simultaneously,

from the above information as demonstrated in the following.

Since q, is an ‘eigenvector

1

(A -in)qi=o
(1: 1. 2, n) (4.4.14)
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01'

  

  

all i ‘312 0 0 0

-a12 aZZ-AI -a23 O 0 r—qh—

0 "’23 4334.1 ’a34 0 q2i : O

0 O "334 314441 0 q ,

_ 111.1

o

_ _ (4.4.15)

From the first equation of (4. 4.15)

(all ' x1) q11 : a‘12 q21

(4.4.16)

(all ”‘2’ q12 = 2"12 q22

(all " kn) qln = 3‘12 an

where b1 and ql, are known. After squaring and adding the

1lzall

equations in (4. 4. 16) we have

2 2 2 2 2 2 2 2

= = "'
so. + -x

a12(q21+”‘ +q2n) 8‘12 (all x1) (111+ (all n) qln

(4.4.17)

Taking the positive value of a12 as determined from (4. 4. 17), the

values of qz, can be obtained from (4. 4.16). Then

1

2

x + + 2x

322—0121 1 qzn n
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The remaining coefficients ai, in (4. 4. 15) are obtained by an identical

procedure. After obtaining the matrix A, the network parameters are

determined as follows. Let A be written as

   
  

  

  

 

_1 _ F1 -1 _

F1 -1 1 1 -1 F1

A '—'-' L2

D-l/Z -1 l l -l

2

L. __

(4.4.18)

with

.12 T

1/2 d3

D- : o .

2 ° (1

n

and

11 l

2

L :

Z 1
n 

Forming the matrix products in (4. 4. 18)
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O
1

[— 1 -1 d o -O -1 1 2
[ F—all a12 0

~11d2 (11+12)d: —1 d d o .. . o -a a2 2 3 12 22 '323 0

A: o ~£2d2d3 (1 +1 )d‘Z . . . = o -a a -a2 .3 3 23 33 34"'

o
o

o o _J o 0

(4.4.19)

Therefore, network parameters are

6111 : 121

a

d2 ==._LE
a

11

1 _ a'11 a22 _ all 2
2 — 2 -a11 — 7(311322-312) (4.4.20)

alz a12

a a

d z 23 12

3 a - a

11 22 12

a a a. (a a a —) a 2
1 ._ 33 23 1 33 11 22 12 " 11 a23

’ -§—"‘___— :'___——_.3 d3 d2d3 a112‘13 aL12357-3

. 1 .
Note that the numerical values of the capacitors IS -—2- and inductors

(1

§

1 .
1

theorem.

i

The positiveness of the parameters is established by the following
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Theorem 4.4.1: Let B be a symmetric and positive definite
 

matrix of order n and let N be a real non-singular matrix, then NBN

is positive definite .

Proof: After Hohn [HN 1]

Since the matrix A1 L1 Al 15 p031t1ve def1n1te,the matrix A IS

positive definite and the submatrices corresponding to the principal

minors of A are positive definite. In general, the eXpression for Ii

contains the first principal minor of order i x i, which is positive.

Therefore, there exists a first Cauer form for a given canonic network

with positive element values.

II. Second Foster Form

The topology of the second Foster form is given in Table 4. 3.1.

In this case the matrix A2 corresponds to the submatrix of the cut—set

matrix and has the form

_ _.

1 1 1. 1

A = l 0 (4.4.21)

2 1

o   

Therefore, for any diagonal L2 and D2 matrices we have
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Fa a fl. . . a

_ _. __ 11 21 1 fl 1 In F; A _1

T a a ll 12

A L A = 12 22 O -_—
2. 2 2

D-l/Z -1/2 . AT A

_ Z ‘ _ 2 a a 12 22

1n 0 nn —' —

(4.4. 22)

where A.22 is also a diagonal matrix. Writing the above parametric

equation in the form

”1 ‘ i. ‘ ’1 ‘ ' A ‘
11 1312 311 12

= (4. 4. 23)

T T

V B12 B22 V A12 A22

_. _ 1.— ...1 ._. —J ._ .—

and equating the submatrices gives

a‘11 = b11

T T
=

4.4. 24

V B12 A12 ( )

T

V B22 V - A22

Since V is an orthogonal matrix which transforms B22 into its diagonal

form, the eigenvalues of B22 are the diagonal entries in A22. The

matrix V can be obtained by any one of several methods, and the

matrix A is obtained as a solution to (4. 4. 24).

y writing (4. 4. 22) expli-

The parameter values can be obtained‘b

citly in terms of L2 and D2 as
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F-l I F. 1 1 - F. -l F. '7. I 1

d2 ii: 1 Z n d all 312 aln

. ° 12 I 2 a a

° 2 12 22
d . . d o

n ' o

_ _j In '1 n - .

n

" J __ _J _aln a‘nnJ

04.4.25)

which gives

2 a.. 2

d = i

1 a ,

i¢1 11

ali
Ii = a— (4. 4. 26)

141 11

and

1 1
where —2 represents the capacitor element values and T are the

d, i
1

inductor element values. Since B22 is positive definite, the eigenvalues

of B22 are all positive, implying aii (i # l) is positive (all is also

positive since b11 > 0). Since A is positive definite, 11 is positive.

2

By the above reasoning all L's and di '5 are positive. Note that

1

aii' i 16 l correSponds to the resonant frequencies of the resonators

in the second Foster form and that they are distinct.
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111. Second Cauer Form
 

The topology of the second Cauer form is given in Table 4. 3. 1.

The matrix A2 correSponds to the submatrix of the cut-set matrix and

has the form

_ _1

1 1 1 1 1 1

1 1 1 1 1

1 1 1...1

A = (4.4.27)

2
1 1. 1

'1   
-1 . . . .

For canonic networks of Class 1, A ex1sts and 1t is given as

2

l —l

l —l

-1
A2 = 1 “'1

(4.4. 28)

o '1

l   
In this case, taking the inverse of the correSponding parametric equation,

i. e. , taking the inverse of each matrix in (4. 3. 21) we have
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L'A
(A2) 2 2

    _ 2 J 2 (4.4.29)

Since the right hand side of (4. 4. 29) has the tridiagonal form, the

techniques already presented can be used to find the matrix A, and

the network parameters. It can be shown that all the element values

are positive .

IV. First Foster Form
 

The topology of the first Foster form is given in Table 4. 3.1.

In this case the matrix A2 corresponding to the submatrix of the cut-set

matrix has the form

  

1 o o o

1 1

A = O (4. 4. 30a)

2 1 1

1 O 1_

The parametric equation in symbolic form is

       

F — — — — a A

T T T
V B12 322 V A12 A22__

L. ._d -— —‘ '_ - — 

which can be rewritten as
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r—b B — F1 7 Fa A _ —1 _
11 12 11 12

T _ T

B” B27- V A112 A22 V
__ A __ _l _ __ ._ 4 (4.4.30)

Since B is a symmetric and positive definite matrix, there

exists an orthogonal matrix P which transforms B into its diagonal

form, i. e. ,

T 12 121*
B=P_/\P =P_/\_/_/\_/P (4.4.31)

where P and .A. are calculatable. If Q is an arbitrary orthogonal matrix,

then (4. 4. 30) can be written as

12 T
A LlleQTL/ AZ

       

2 2 2
- 2 -1/2

VT D2” D2

L — —
a—J

—
—J h

2 T
: (pA1/2)(_,\_1/ p) (4.4.32)

It follows from (4. 4. 32) that

_ _ __ _

1 1 1/2

AzLi/ZQ=PJ\_ (4.4.33)

T -1/2.

v D

— —a ._. 2 -—J    

or

 



 

22 3

23

Zn

2

PJLl/

 

 

 

2...

33...
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—' F 1/2
0 1

l

'V

n2 1/2 1/2
dzll dzlz

‘Vn3

V' d 11/2

nn n.l

'— F 1/2
, x

P12 pln 1

p22 p2n

pnn

x1/2 hl/Z

12 2 1n n

1/2 1/2
X

22x2 2n n

1/2
X

pnn n

'7 T-

0 q11 qu

SZn q21 qzz

Snn L‘an  

' d

1/2

1 21 /

Iln  

 

 

xl/Z

 

(4.4.34)
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where s,, is a function of v”, I, and d .
1J ij 1 i

From the first row of (4. 4. 34)

1/2 _ 1/2

21 q11 ‘ p11)‘1

11/2 xl/Z (4.4.35)
1 q12 :: p12 2

1/2 1/2

= X

£1 qln 1n :1

where Ii/Z = b112, p,, and L's are known from (4. 4. 31). Therefore,

13 1

from (4. 4. 35) ql, can be calculated. To obtain the other qij' pre-

1

multiply the matrix equation (4. 4. 33) by its tranSpose, which can be

written as

71

QTLl/ZAT 1 AZLléZQzAzQTCQ (4.4.36)

2 2 .D-

U  

Furthermore, because of the Special form of A2 in (4. 4.30a), C has the

 

form

F- .—

C11 C12 C1n

(4.4.37)

C '3 C12 C22 0

c1n O Cnn

 

From (4. 4. 36), for q, an eigenvector of C,

1
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(C ->\. U) q. = 0
1 1

or

f—' _—

-1
C11 1 C12 C1n _ _

c c -1 o o q”
12 22 i

q . = 0
21

o -1 .
C33 i 9

cl 0 o. ..c -1, qu
_ n nn _1_ - (4.4.38)  

where Cll' ql, are known quantities. From the second row of the

1

matrix equation in (4. 4. 37) we have

  

(C2241) q21 = 'q11 C12

- = - 4.4.39

(C22 12) q22 q12 C12 ( )

(CZZ-Xn) q2n : "q12 C12

for ql. at O, and

1

q21 _ (:12

q11 k1"sz

C

:12—2 ._- 12 (4.4.40)

q12 *2"sz

an _ C:12

q1n n 22
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Multiplying each one of the equations in (4. 4. 40) by (1:1, qIZ’ . . . ,

Z

q1n re Spectively, give 3

C111C121 x -c '

 

q12 2-2 1,4 (4'4'41)

_ C12‘11n

q1n an - RY «c3,Z

In (4. 4.37) c,, (i gt 1) correSponds to the resonant frequencies of

11

the resonators in the first Foster form and they are all distinct. Further-

more, cl, is unequal to zero in the matrix C. Therefore, the following

1

theorem can be stated.

Theorem 4. 4. 2; Let
 

r‘ C "7

C11 C12 ' ' ‘ 111

C12 C22 0

c 2 (4.4.42)

C33

Cln Cnn   
.

o ‘
.

. o I

3

he a non-Singu1ar symmetric matrix With eigenvalues X1. - - . . kn (..,i> 0)

Such that the entries c and c,, are all non-zero. Let c” # c,, for

Ii 11
11 JJ

ii 1, i#j. Then c__ #hj for alli?é 1.

11
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Proof: The proof of this theorem is established by contradic-

tion. Let Q be an orthogonal matrix which transforms C into the

    

diagonal form. Assume that c22 = Xk. Then for )1

-X .

611 k C12 Cln _ 1

Cl
1k

C12 0 0

q = 0 (4.4.43)

4. 2.

C33 k . k

0 -1 q

C1D. Cnn kl 1..— 111(—

From the second row of the matrix equation (4. 4.43), C12 q2k = O,

which implies q2k = 0, since c1i ¢ 0 by hypothesis. Then from the

third, fourth, . . . , nth row of (4. 4. 43)

q3k=q4k:°" =an=0

Also from the first row

c‘12 qZk

Which implies

qZk

Therefore, the eigenvector qk corresponding to the eigenvalue

Xk is identically zero and a contradiction is established --- by definition

an eigenvector is a non-zero vector. An identical proof can be

repeated for all c,, (i a)! 1) to establish the theorem.

ii
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Now return to the solution of (4. 4. 41), since Q is an orthogonal

matrix

qllq21+qlzq22+... +q1nq2n=0 (4.4.44)

Substituting for qu qu from (4.4.41) into (4. 4. 51) gives

2 2

c q c q c q
2 Z 2

)‘lf—Cll + iL-C—l_+ ...+)\—l-F-l-E: 0 (4.4.45)

1 22 2‘ 22 n 22

But since C12 16 0, it follows that

‘12 q2 q2
Z

i—lé-l— + «inl—u + . . . + ‘K—l:—- : O (4.4. 46)

1 22 2'°22 n“ 22

Repeating the procedure given above establishes all c” (i 1! 1) as a

11

solution to the polynomial obtained from

 
  

q qZ C12‘

11 + 12 +... + 1n = 0 (4.4.47)
X -C.. X -C.. X -C..

l 11 2 11 n 11

The degree of this polynomial in cii is (n - 1). By using the positive

pair property, it can be shown that all cii (i :1! l) are positive real and

distinct (from the unpublished notes of Dr. Tokad). Therefore, the

roots of (4.4. 47) gives

 

C .

q __ 11

11 “(111 x -c,,
1 11

C11
in : qlz X -C (4.4.48)

. 2 11

c

11
q :  

in q1n X -c

n
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After squaring and adding, we have

( 2 2

2 2 2 q11 qln
qi1 + ... +q, — l - C 1 h _c” +... + X -C,,

1 11 n 11

  

 
‘ (4. 4. 49)

where c1i is the only unknown. The network parameters are found

by applying a procedure similar as described before for the previous

cases.

The procedures for Class 2 canonic networks are similar to

those of Class 1 and are not consider further.

The procedures for Class 3 and 4 are similar to 1, except when

it needs an inverse of the submatrix B2. But, in general, Class 3 and

4 can be reduced to Class 2 and 1, respectively, by the following

procedure; a canonic network of Class 3 is reduced to Class 2 by

introducing a capacitor C0 in series with the current driver and of

Class 4 is reduced to Class 1 by connecting an inductor parallel to the

voltage driver. In considering the solution, N1 and N2 of Class 3 (4)

are augmented by the above procedure with an identical capacitor (an

identical inductor).

In conclusion of this section, realization of canonic networks

by using transformation matrix needs a. solution of nonlinear algebraic

equations. In general, an analytical solution may not be possible.

However, in certain Special cases, these equations can be linearized.
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4. 5 A Realization of Canonic Networks by Tridiagonalization

In this procedure, the transformation from one canonic

network, N1, to the other, N2' is realized in two steps. First,

transform the given network N into its equivalent first Cauer form

1

NC; then transform N into N2. The reason for the use of Cauer

c

network as an intermediate step is obvious --- the parameter matrix

for NC is tridiagonal.

The transformation matrix T from N to N is then obtained

1 2

as the product of two transformation matrices T1 and T2 where T1 is

used to transform N1 into N and T2 transforms N into N2. The

c c

construction of T is already given in Section 4. 4. To construct T

l 2

let the parametric equation be written as

T ATT = A T = B (4.5.1)

Where A is tridiagonal and corresponds to the first Cauer form Nc’

B corresponds to the unknown canonic form N2 and V is an orthogonal

matrix. The topology of N2 is assumed to be known.

The transformation in (4. 5. 1) can also be written as

A = 13 (4.5. 2)

The matrices B and A have the following form
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7' _

b11 b12 ° ' ° b1n

blz bzz O O O bZn

B = ' ° ' (4.5.3)

bln b2n ' ' ' bnn

and

(— ...

a11 all

"a12 a22 “a23

A : -.'=1Z3 a33 (4.5.4)

an-1,n-1 -an,n-1

-a a

n,n-1 nnJ  
The first row in B is reduced to tridiagonal form by the

symmetric orthOgonal matrix [FR 1]

 

 

2 T

X1 X1

Where

Fb12 + a12

bl3

X = -

l

_bln ....) 
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and

F1 — {—1 _)

    

  

[— <1)
bll -b12 O . . . O

(1) (1) (l) (1)
-b12 b22 bZ3 . . . b2n

= ° (4.5.5)

(1)

9 P23

(1) '(1)
0 b2n . . . bnn

_ .1

Where b”) f t' s ofb andb =a b =a b =a .
ij are unc 10H ija 11 119 12 12: 22 22

The second row of B1 is transformed to tridiagonal form by an ortho-

gonal matrix

Where
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_

bm
+

23 a23

(1)
b24

'(1)
b2n

— A  
and

n

2 2

a = E: b
20

23 ”1,2 1

The matrix B2 has the form

    

  

—l — Fl — _all -a12 0 . . O—

132 = 1 1 1 'a12 a22 ”b2? 0 0

v, v. . 1:2

— — _ — 9

_ o o .133 . . 131::

(4. 5. 6)

where b(223)___ az3, b33123): a33 and the entries bi?) (i, j 16 2, 3) are obtained

(1)
in terms of b,. .

1J

The number of orthogonal transformations involved in this procedure

This procedure is continued until B is tridiagonalized.

is n - 2 and in the last stage, we have



    

)— + (n-3) (n-3)

a'n-1,n-1 - an-1,n bn-1,n-1 bn-1,n

Bn"2 — + : Vn-Z ( 3) ( 3) Vn-2

- a a b n- b n-

n-1,n n,n n-1,n nn

_ _ _. J

(4.5. 7)

The equations of equality involved in the successive transformation

are

11 11

n

2

3‘12 = Z b11
i=1

8.22 = f(bij)

n

2

a : b(21,)

23 1¢I.Z 1

_ (1) __
:133 _ 1(15ij ) .. HbiJ) (4.5.8)

(n-3) _

an-1,n-l f(bij ) ’ f(bid)

_. (11-3) _

a31.1.1.3 ‘ f(bij ) " f“01.1)

_ (W3) ._an'n _ 1(1)ij ) _ 1(1)“)

In the above set there are
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n + n-l = 2n-1

equations, correSponding to the 2n-l unknowns. However, these

equations are nonlinear, and have no Special advantage over the

quadratic equations of Section 4. 4 insofar as solution is concerned,

except the number of equations are minimized and are eXpressed

in terms of the network parameters.

Synthesis equations similar to those in (4. 5. 8) can be

obtained by a different procedure, which is as follows. Since the

t0pology of the canonic network N2 is known, the entries of the

admittance matrix Y2 can be obtained as an explicit function of the

network parameters. The driving point admittance is the ratio of

the principal minor and the determinant of Y2. Due to the top010gical

properties of canonic networks, the principal minor and the determinant

of Y do not have any factors in common.
2

In a similar manner the driving point admittance of N1 can be

obtained. The desired synthesis equations are obtained by equating

the two admittance functions. The resulting equations are also non-

linear in network parameters.

4. 6 Equivalent Networks - A State Model Approach

In Section 4. 2 the properties of equivalent networks are studied

from their ‘mesh or nodal equations. Equivalent networks can also be

generated from each other by considering their state models with the

restriction, of course, that the operator matrices are related by a

similarity transformation.
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The state model for canonic networks considered in Chapter 2

is of the form

          

        

        

r T rO

Cb d Vbc B12 Vbc 0 *

a-t- : + V0

Lc Icl ~B12 0 1c! -Bll

I— A. _ ...J -_ —.J .— _1 _ J

(4.6.1)

* T

Io ' "B111c1

and its transformed state model is

7 1— (— - 2 - 2— F 1 _ 7 _
V 0 C 1/ BT L l/ V 0

d bc b 12 c bc

dt " 0

1 -1/2 -1/2 ' -1/2

Ic1 Lc BlZCb O Ic1 'Lc B11

and (4.6.2)

I T -l/2 '

o ’ 11 c c1

or

r " — T“ c “ r r
0 0

V2 A1 V2

d >§<

dt _ + V0

I3 -A1 0 I3 -Bl_)

_. ._. ... _1 _. ... ...

(4.6.3)

3:: T

IO — ~B1 I3
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Since a similarity transformation does not effect the terminal character-

istics of the correSponding network, it is always possible to transform

the state model of canonic network N into the state model of canonic

        

1

network N2. Let the state model of N2 be written in symbolic form as

r- . — r‘ _ l— — F —

T I

d V2 0 A2 V2 0 ,4

_ ._. v'

dt . , + 0

I -A 0 I -B

_ 34 _ Z _ _ 3‘ _ 2_)

1* — ET 1* 4 6 4
o " ' 2 3 ( ' ° )

>i< *

Note that V0 and I0 in (4. 6. 3) and (4.6. 4) are identical. A procedure

for constructing the transformation matrix is given by the following

theorems.

Theorem 4. 6.1: Let the operator matrix correSponding to
 

(4. 6. 2) be

_ T...

0 A1

A : (4.6.5)

-A1 0

_ _J  

Then the non-zero eigenvalues of A1 A? and A? A1 are identical.

Proof: Consider
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. 0 A? 1 s1 .14.?

IBU'AI =det)[8U]-
>._.

-A o A s
1 1 2

. _ ..J 1

(4.6.6)

where S1 and S2 are the scalar matrices of the forms sU1 and sUz

where subscripts l and 2 are used to distinguish the order of these

matrices .

Expanding the determinant given in (4.6.6) [GA 1], we have

(1)

IsU-AI

T -1
lszl |sl +A1 (52) All

1. T

'52. '51”r E A1 All

2 T -l

ISZI ls U1+A1A1| Isl) (4.6.7)

or expanding by the assond row

(1) 2 :T -1

)aU-Al = [sllls U2+A1A1l lszl (4.6.8)

Therefore, from (4.6. 7) Incl (4.6.8) we have

(1) z T 41 2 T -1

IBU‘AI = '52| l'U1+A1A1' lsll : Isl. 'BUZ+A1A1' 'Szl

(4.6.9)

T

It follows from (4. 6. 9) that the non-Zero eigenvalues of A1 A1 and

A1 A? are identical.



Theorem 4. 6. 2: Let
 

A11)

and

Am

be two operator matrices having the same eigenvalues.

exists an orthogonal matrix of the form
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which transforms A”) into A( ).

Proof: Consider first the lemma

Lemma :4. 6.1: Let

(1)

and

  

(4.6.10)

(4.6.11)

Then there

(4.6.12)



  

where D has one of the forms shown in (3.4.2) or (3.4. 3). Let A”) and

A3 have the same eigenvalues. Then there exists an orthogonal matrix

of the form

p“) = (4.6.13)

  

which transforms Al to A3.

Proof: Since (A A?) is a symmetric matrix, there exists an

1

orthogonal matrix Pl [PE 1] such that

T T T

= DD
(4.6.14)

P1 (A1A1)P1

To show that this is true we follow a technique similar to that used in

l

the proof of Theorem 4.6.1. Indeed, since A( ) and A3 have the same

eigenvalues we can write

-1

PA(1)P = A3

Where P is orthogonal, hence

lsU-PA(1)P-ll = ISU'A3
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IPI IsU-A‘l’l lP'll = (56.1.
3

lsU—A‘”! = lsU-A3I

From (4. 6. 9) We have

2 T -1 2 T -1
|51||sU+A1All )szl=|sl| |sU+D DIISZI

_ 2 T -1 2 T -1
—)SZIISU+A1A1||81|=|SZIISU+DD)|SII

(4.6.15)

. T T . . .
which shows that A1 A1 and D D have identical eigenvalues and

(4.6.14) is established. Also from (4. 6.15) it follows that A1 A? and

T .
D D have identical eigenvalues. Therefore, there exists an ortho-

gonal matrix P2 such that

T T T _ T
P1(A1(P2PZ)A1)P1— DD

01'

PTAP =D m6nm
2

2

( ) has the same

(3)

Continuing with the proof of the main theorem; since A

eigenvalues as A”), it follows from the Lemmas that A can be

H

transformed into A3 using an orthogonal matrix P of the form given

in (4. 6.13). Thus

(P')T A(1)P' = A3

and

”T(p ) A(2) n
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01‘

       

Therefore

H 1 T g H

(P )(P) Alp (p )T = A2

where

l H

P = p (p )T

Consider now the similarity transformation from N1 to N2

1 ‘ ‘ 1' 1‘
V2 F131 V2

= (4.6.17)

1

I P I

3 2 3

_ J _ 3 _ 3

From (4.6. 3) we have

'- ' r- - r - r " - "7 1' "1 — _

' T T T
V P 0V2 P1 0 A1 P1 2 1 .1.

t
' T

' T

I P -A 0 P2 I3 PZ -Bl

_ 3i 1_ Z__ _ l _J _ .. _ _ _ J ... _

* T ' (4.6.18)
I0 — -B1 P213

which is to be identical to (4.6.4), i.e. , we require that

P — F- — -— T—

P? To .1 o A.

T -A 0

P7- -A1 _ i _ 1

(4.6.19)
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T
13231-132

T T T
191.13.113.15.2

and (4.6.20)

P 131 =13Z

Since N1 is given and the topology of N2 is known, the forms of

Az and B2 are known. Hence the problem is to find orthogonal matrices

P1 and P2 such that (4.6. 20) is satisfied. The network parameters can

be obtained by compariing (4. 6. 2) with (4. 6. 4).

The realization of any canonic form by this procedure may not

be possible, in general, because of the nonlinear algebraic equations

involved in (4. 6. 20). However, some of the known canonic froms can

be realized by this procedure. An example is illustrated in Chapter V.

The development for n-port canonic networks is identical to

*
.

the above, except V0 is now taken as a vector correSponding to the

drivers.



CHAPTER V

EXAMPLES

5.1 General

This chapter is devoted to the examples which illustrate the

various techniques presented in the previous chapters.

5. 2 Example 1
 

Realize the LC network whose Specifications are given by the

following state model.

I I

1

J T— q (P

 

          

  

0 0 l. l. v --];- 0 '1'

V2 '4 4 2 4 4
P

v 0 0 0 l v 0 0 0 v

d - -V +

a = dt 0

' 0 O 0 1
17 l O O 0 17 .-

1
_ l l - 0 — 0
18 --2- -2 0 0 18 z

L J _ _. .. .. - 4 — 1

(5.2.1)

and

r. _1

1

7

3:: 23 d * 1 3 -1*

i = —— v + [ -' Z l 1

0 4 dt 0 4

i8

v2 *

* d .* +

— - —- + -l 0 v

V1 ‘ 3 dt 11 [ 1 0

V3   
-l40-
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Solution: Since the eigenvalues of the operator matrix are pure

imaginary, one of the necessary conditions is satisfied.

Comparing (3. 3. 2) and the state model in (5. 2.1), gives

  

  

  

  

  

_l 1-

'Z 4'

K1 _

1

0 z

— '1

1 0

...K :

2 1 l

'2 2

_1-

K _ '4
3 _

o

n J

(5.2.2)

= 0

K4

1

K _ 4

5 _

o

— 0—

..K :

6 _1_
2

(__ ...

23

K7 - 4

1 3

K8 = [4 Z]



K

K

K

K

10—

ll

12—

l3

l4—
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Let the following matrices be identified as

 

 

(5.2.3)



  

  

b
T 9

B23 Lb B313 ;'

b1o
— ._J

b5

I321 =

b6

Bllcc B11 = 11’7

and

F" 1 _

£11 12

L +13 L BT =
c 23 b 23

‘12 ’22   

Therefore, (3. 3. 3) can be written in matrix form:



fi
x
v

’
1
'

 



 

 

 

 

 

 

M4:
L43- 2.

w.

7
_

oooooooooooooooog4nta403qoo

_ . L

_nnufianfinnutzbfi.56183m_

rCCCbbbeQibbbbbbbbbbL

_ I 1..-:

..

I 1 1+

_

.

.

_ I

_

.I
1.41.2

I (31?)?

.

Lat—2. in.

1.212! L7.

_ .

_

a _

-.. .

.
_

. _

......

1.41.4.1... ...... ......

.

git, II, 1.4. .0 2.3%..

l25456789mHQHMWWWWHZZ,ZzZ
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In (5. l. 4) there are 24 linear equations, in 20 unknowns. However,

equations 6, 7, 19 and 24 are redundant, and they can be omitted.

By writing the remaining 20 equations in matrix form, it is verified

that the coefficient matrix is nonsingular and the solution is given by

cll=4, clz=0, CZZ=4' b3Z=-l, b34=l, b4z=0,

b43rl, 111-1, ‘12'0' 122 - 2, bl=-1, bz=0.

b3=.1' 134:0, b5=o’ b6="l, b7=‘. b8=3, 139:0,

.. 5.2.5b1o 0 ( )

From (5. 2. 3) and (5.2.5)

....
_ ... I .1

T T
6 -l 0

Bncc 311 I311 96 B12 _L

Y = = -l . ‘ 0

C

T T l0 0
BIZCc Bll Cb + 312Cc B12 I —

    

Applying Cederbaum'o algorithm to Y6 and rearranging the rows and

columns, we have

  

(‘0 o : 1 1 3 0 1 0

l 4 0 O 1

Y = 1 o (-1 o
(5.2-6)

c l 1 1 -1 o

o 1 ' o o .
1.... -- 5 1 0 0‘    



Similarly

T

Lc + B23 Lb B23

2 =

L T

B33 Lb B23 
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T

B23 L161333

T

B L B

33 b 321 

and after the application of algorithm

 

22

32

21

B31

 

r3

 

—P

  

Therefore, the circuit matrix is

 

 

 

(5. 2. 7)

(5.2.8)
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F v0

F—l 1 o o 1 v2

-1 o o o 1 v3

0 -1 o o 1 v4 ___ o

-l l l O 1 v5

_ 1 -1 o 1 14 v6

V7

V8

._ VI &  
Which is realizable and the correSponding network is given in

Fig. 5. 2.1, with the element values taken from (5. 2. 6) and (5. 2. 8).

 

  

C
S
}

4.
5

 
  

 

  
 

Fig. 50 201
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5. 3 The following example is given to illustrate the procedure des-

cribed in Chapter IV, Section 5.

Example 2
 

Determine the element values of the lattice canonic network

‘ in Fig. 5. 3. 2 which has identical driving point impedance with the

Cauer network given in Fig. 5. 3. 1.

l
2 3 . L4

WW j—rvmm

7J1 A ——_| (_2—E— L

Z(3)‘—'—) | (__

F—erimgi—

L5

Fig. 5.3.1 Fig. 5.3.2

 

l
e

Z(s) ——> 13‘- l
l

 

    
 

Solution: Let the linear graphs of these equivalent LC networks

be. drawn as in Fig. 5. 3. 3.

 

 

 

Fig. 5. 3. 3
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The parameter matrix for the Cauer form is

 

O F'all

-fl —

12 " “a12

1

— 0

4.1  

12

22

23  
(5.3.1)

The parameter matrix for the lattice section will be of the form

 

 

 

F1 "

B :

-1/2

2

14-+15 +16

= -(£5-+£6)d2

d(14-+15) 3

L.

b11 "b12

= “b12 b22

b13 'b23 

 

71

T

A2 L2 AZ

D-l/2

2

_ _J

- d(£5+£6)d2 (24+l5) 3

1 d2 I d d
(15+ 6) 2 " 2 3

-15 d2 d3 (14+15)d3

b13

'b23

b33  

 

 

(5.3.2)
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Since the first row of B is not in tridiagonal form, an orthogonal

matrix defined by

V1=U-ZTXXT

XX

is used to transform B into a tridiagonal form where

  

_. ‘1

’b12 + a12 2

X = +b "H2+bn =

13

Therefore, Vl can be expressed in terms of b,, as

Since

and

then

 

  

   
   

u

1 b12 ‘b13

V1 =Zf-3— ‘b -b

13 12

— — - —' _l — b

b11 : b12 b13 11

__—)————-- =

(1)
I - V -b

1 ”b12 I b22 b23 1 12

d I — — O

b -b b

(l) _

b12 " all

 

12

(5.3.3)

(1) _

“b12 0

(1) (l)

b22 b23

(l) (1)

b23 b33_

(5.3.4)



Although in (5. 3. 5), there are two possibilities for the sign of b

shall take the positive sign.

 

r (1)

bZZ

+ (1)
- Z3

 

01'

 

__

b22 -b

-b23 b

"b23

b33

.3 
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+ (1)—

' 23

hm

 33J

-

23

 

 

In this case

71
4

.
_
.
4
l

N
o
d

 

 

V7?

17?

l
4

 

 ._

  .
b
p
d

 

(5.3.5)

(1)

23

(5.3.6)

 

(5.3.7)

From (5. 3. 2) and the tridiagonalization procedure we also have the

relations

2. 2

3 = b12 + b13

and

2 2

‘312 b33 + b13 b22

Substituting the expressions of b12' bzzi 1323. 1333 8i

01‘

b12 b13 b23 =
2b

22 b33

(5.3.8)

(5.3.9)

,we

ven in (5. 3. 7) and
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(5. 3.8) into (5. 3. 9), we obtain

3/2 1/2
1 4 1 2 1 «l3 2 «1‘3 2 3

54 b13'l'8'b13+8'+‘3'6'(3'b13) b13" 36 (3'b13) b13 ‘ 0

(5. 3. 10)

. . . . . Z
wh1ch 1s equivalent to a fourth degree equation in the unknown b13'

One of the solutions of (5. 3. 10) is

3

b13‘2

Corre8ponding to this solution from (5. 3. 8) and (5. 3. 7), we have

\f— 3

b12= 73' ' 10229;? ' b23= _1"’ b3: 2 (53°11)
V3

Hence from (5. 3. 2), the network parameters are determined as follows:

1 1

C -3 ’ C ’1 ’ L4- 1 '2"L5 l5).

.
1
;

(5. 3. 12)

Other possible solutions can be investigated similarly.

5. 4 The procedure for the transformation of the state model described

in Chapter IV, Section 6 is illustrated by the following example.

Example 3

Determine the element values of the Cauer network, N2, shown

in Fig. 5. 4. 1, which is equivalent to the Foster network, N1, given in

Fig. 5. 4. 2.
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14 15

Mmgm .-

Z(s)———) C2 .3: C3 #1 £6 Z(s)__)%z 6

1 1

A 2 “Ta

. , g I J   
 

Fig. 5.4.1 Fig. 5.4.2

are given inSolution: The linear graphs for N1 and N2

Fig. 5. 4. 3.

 

Fig. 5. 4. 3

The state model of N2 is

 





 

and
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01-1

J     

Applying the transformation described in Chapter III, the state model

in (5. 4.1) can be brought to the form
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F 1‘ F —
v2 0

I

v3 0

' -1/2
x 14 + [4 V1

I

15 0

I

i O

_ 61 _ 1

and

T1-

i4

-l/2. '

i1 -[14 0 0] 15

I

i

_ 61  

v1 = V1

and

1* - i

l - 1

we have

1" r
'-

l - O

F”; , ll1 ll2

1 O l

v3 I 0 ‘13 "4

ii - ————— '— -----t ' - |
14 -e1 0 I

|

15 "Z '33 ' O

i' o :a      

1","

   

(5.4. 2)



  

        

(‘33

14

.* [b 0 l

1 = '

1 1 O] 15

I

i6
—. _J

or in symbolic form

r ,- r- “ - ‘r -'
T {—1

d Vbc 0 A2 Vbc 0

'5? ' = ' + V1 (5.4.4)

v -A o I -B
cl 2 2

_ J _ _. _CIJ _. _

T I

I1 ’ '32 c1

Repeating the same transformation for N its state model takes on the

       

1

form

[— -" F- | -— r- - F" —

v* 0 (3 0 v* 0

2 l 2

O 1
* >I<

v I 0 O 1 v 0

d 3 I 3 91‘

i4 0 O I 14 F

3
l

1* - 3 o ' O 1* —1-—

5 I 5 a:
,1: I _* 1

i 0 '1 I 16 —

_ 6J ._ J _ .1 a«F2. 
and
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F— *—

i4

* l l 1 >1:

«[3 «I? «f?

.31:

16-J

or symbolically

F- *— F T.- :1: _ )— _-

v od be Al v‘DC o

- = + v 5.4.6

dt 1* A o 1* l ( )
c1 " 1 c1 “Bl

_ J _ J _ J _ J

and

T

I1 “ "B1161

Now consider the transformation described in Section 4. 6. To transform

the state model of N1 into that of N2, from (4.6. 20), we write

PT B " B or B " P B

2 1 ' 2 1 - 2 2

and (5.4.7)

T

Pl A1 Pl — A2

where P1 and P2 are orthogonal matrices. The first equation gives

T _Fb‘f_

(5.4.8)

|
~
i
l
l
~
i
|
|
~
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01‘

(5.4.9)

0
"

II

squaring and adding these equations, we have

2 2 2 2 2

IC’1(P11+‘-"21+p31) ‘ 1 ‘ b1

01‘

where the sign of b1 is decided from the topology of N2. Therefore,

(5.4.9) gives

1 l
p = II— , p = —

(5.4. 10)

21 «F6 31 .17

1

.7?

V'Also from the second equation in (5. 4- 7). it follow3 that

P A A: ng AT = 3 (5.4.11)

  

where



 

r-

a1 'a1az

AAT aa a+a2

22= 12 2 3

0 -a3a4

Equation (5. 4. 11) indicates the eigenvalues of A are 0, 3 and 1.

(5. 4. 10) the first eigenvector is known.

a2 _ 2

1 _

l

= + — . 3

O 6

or

= 1

a1

Further from the relation

or

r 2 1. a

a1 " i “*1 2

Z

.. - Xal a2 a2 + a3 1

0 --a3 a4

 
we have
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Then

22
1

p11 k1+ 132112 + p31 3

   

1

"I” E . 1 - l

0

0 p11

-a3 a4 pi2

2
- )1 ,

a4 fl p13

(5.4.12)

From

0 (5.4.13)
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2

a‘1 p11 z a’1 8‘2 p12

(a2 3) —

1 p21 ' a13‘21’22

2

(a1 ' 1) 1331 = aL1“‘2 p32

Substituting the values of pi1 and a1, (5. 4. 14) gives

= EL1 a2 p12

= a1 212 p22

:
(
|
~

3
1
F

0 = a1a2p32

from which

01'

Therefore, from (5.4. 14), we have

1 _ Z -0

p12 = (IT—I, Pzz'flflu
p32

Since

2 2 2 2 2 1. _

a2+a3=p12x1+P22x2+P32
3

we alsohave

a = 1

(5.4.14)

(5.4.15)
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The second row of (5. 4. 13), after substituting the known variables,

gives

1 + Z a a
.— — -_- p

(r3 «[3 3 4 13

1 + 2 a a
'— — - P

«16 a 3 4 23

_1_ _ a a p
If? 3 4 33

from which we have

l+l+i-l-a2aZ-l

3 6 2 - — 3 4 -

or

a4 == 1

Therefore,

p _ 1 p -_1_ p -...1.
l3 “—3 23 (f? 33 1J7.-

Since all the entries are found, (5. 4. 3) is of the form

F- .fi 1— " '— '-1 _ 1

v2 : 1 -1 0 v2 0

1 <:> I '

v I 0 1 ’1 V3 0

d 3 *
— = ————|———--

+ V

dt 1 0 ' .1 1 1

. _ 1

1 I '

i5 1 '1 l O 15 0

|

1 | ,' O

i 0 l 1

_ 6_ _ I _J __ 6- L. -        
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and

  

Note that, with this procedure, although the transformation matrix P

is necessary to be evaluated, it is not needed for the final part of

synthesis. Comparing (5.4. 2) and (5. 4.16), we have the element

values



CHAPTER VI

CONCLUSION

The use of state models is shown to be effective in realizing

reactance functions and they have served as a basis for extending

the realization of Z-port Z and Y matrices having dominant residue

matrices. The same procedure can be applied to n-port matrices,

having dominant residue matrices. One of the significant features of

the state model approach is that the realization procedures do not

differ from one- to n-port networks.

The similarity transformations given in Chapter IV provide

simple and practical ways of relating the parameters of one canonic

network to another. Although the solution to the resulting equations

is given explicitly for certain classes of canonic networks, their

solution for certain other classes may be very difficult either analyti-

cally or numerically. One of the difficulties with numerical techniques

is an initial guess. As an aid in establishing the initial estimation, a

procedure is given for reducing the parametric matrix to tridiagonal

form. This form is sometimes effective in obtaining an analytic

s olution.
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