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ABSTRACT

POWER SYSTEM SECURITY ASSESSMENT FOR

FAULTS USING DIRECT METHODS

By

Ahmad Sadeghi Yazdankhah

Power system operators and planners have long desired to be

able to simulate the transients due to electrical faults on-line and

without the extensive computation and time required to solve the non-

linear system differential equations. Extensive research has been

devoted to developing Lyapunov methods that would eliminate the com-

putation and thus permit (a) on-line assessment of stability by

operators and (b) much more extensive evaluation of the security of

the system for different faults by system planners.

The Lyapunov methods for assessing the stability of power system

for a particular fault have been unable to predict whether the system

will or will not be stable. Moreover, the procedures developed for

eliminating the need to solve the system differential equations require

either approximately the same computation as the solution of the dif-

ferential equations themselves or are not accurate.

Two algorithms have recently been proposed for assessing the

stability by (a) identifying a critical machine that determines whether

the system will be stable and (b) determining whether the deceleration
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energy of the transmission network is sufficient to maintain stability

for the particular fault and clearing time. The first contribution

of this thesis is to show that these two algorithms are extremely

accurate and can easily identify the critical fault clearing time at

which the system just loses stability. Moreover, both methods were

shown to predict identical fault clearing times.

The second contribution is to develop an accurate method of
f

directly predicting the maximum angular deviation during the transient
’

for a particular fault, fault clearing time, and operating condition.

This prediction of peak angular deviation is required to detennine

whether the system is stable or unstable using the above algorithms.

The computation required for this angular prediction and thus the

resulting direct stability assessment method is shown to be extremely

small and less than one-hundredth of that required for solution of

the differential equations. The accuracy of the direct stability

assessment method using the peak angle prediction method is shown to

be Quite good based on the extensive computational results on the

Reduced Iowa System.
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CHAPTER 1

POWER SYSTEM STABILITY

1.1. Introduction
 

Since the industrial revolution.man's demand for and consump-

tion of energy has increased steadily. A major portion of the energy

needs of a modern society is supplied in the form of electrical

energy. A

The ever-increasing dependence of societies on electrical

energy requires not only the production of a continuous electric

supply but also energy within acceptable Quality limits. Very complex

power systems have been built to satisfy this increasing demand.

The trend in electric power production is toward an interconnected

network of transmission lines linking generators and loads into

large integrated systems.

In the interconnected power system, the ability to provide

reliable and uninterrupted srevice to the loads is the main concern

for both planning and operating engineers in their decision making.

1" Practical terms this means that both voltage and frequency must

be held‘within close tolerances so that the consumer's equipment may

OPerate satisfactorily. The concept of stability arises when the

Power system is subjected to the occurrence of a disturbance. If

the disturbance does not involve any net change in power, the power
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system variables, such as the rotor angles, powers, etc., undergo a

small deviation from their nominal value and then return very shortly

to their original state. If an unbalance between the supply and

demand is created by a change in load, in generation, or in network

conditions, a transition from one operating state to another results.

The behavior of the system response to occurrence of a large dis-

turbance (electrical fault, loss of a generator, etc.) is called

the transient stability analysis of the power system. During this

state transition some of the severely disturbed generators will

"swing" far enough from their equilibrium positions to lose synchronism

in the process. Usually the severe disturbance under which transient

stability is tested is a short circuit in the high-voltage trans-

mission network. In power system terminology this is referred to as

a fault.

When a fault occurs, certain generators which are electrically

close to the fault location are disturbed to a greater extent than

the other generators which are remote from the fault. These generators

tend to accelerate or decelerate, depending on the nature of the

fault, from the rest of the generators in the system. If the fault

lasts long enough, eventually one machine or a group of machines

Separates from the rest of the system, causing instability (loss of

Qynchronism). However, the power network is equipped with automatic

devices that sense the existence of the faults in the network and

l'I'Iitiate action to "clear" the fault, i.e., isolate the faulted

Sfiiction of the network. A matter of great practical importance,

therefore, is that the time required to clear the fault should be
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less than the duration of the fault that would create a disturbance

large enough to cause one or more machines to lose synchronism.

This is the so-called "critical clearing thne (tcc)’ commonly used

in the literature on transient stability of power systems. This

term is often quoted by researchers on power system transient stability

by direct mechods as a figure of merit to be used (a) to compare

results obtained by time simulation with those obtained by direct

methods, and (b) to determine how "robust" a power network may be

as it is subjected to disturbance. (The state vector, evaluated at

the critical clearing time, provides a means of estimating the region

of attraction of the pdst-fault systems.)

The most widely used transient stability analysis is obtained

by the time solution of the machine's rotor angles. Then, based on

the observation of the swing curves and engineering judgment, the

stability or instability of the power system is decided. However,

there are some disadvantages of this technique such as:

(1) Stability (or instability) depends on network configura-

tion and the type of disturbance

(2) The computation is cumbersome and time consuming for a

large system.

The drawbacks of the time solution and the need for fast, com-

lJUtationally efficient and approximate transient stability analysis

ITIiade researchers inquire into an alternatiVe approach. As a result,

tlie concept of direct methods of stability was pursued. From the
 

I early stages of development, the direct methods of Lyapunov and the
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energy function analysis showed promise of assessing transient

stability rapidly without the computation required to integrate the

many system differential equations even though the method remained

far from implementation. The use of such a method for contingency

analysis in expansion planning, operation planning, and on-line

operation was exciting. It is clear, however, that such approxima-

tion methods would never replace time solution for accurate stability

assessment.

The historical development of the direct methods for transient

stability in this area is divided into the following distinct but

continuous phases.

(1) The work (Hi Magnusson in 1947 [30] considers a classical

model representation of the power system. In this representation

the transfer conductance is omitted and an energy function for the

system is evaluated. Then the critical energy, by which the region

of stability is identified, is determined by the energy of the lowest

 

_§§ddle point, V15. The work of Aylett [31] is devoted to finding an

ienergy integral. The kinetic (KE) and potential (PE) components of

energy are identified and the stability of the power system is decided

QY'determining whether KE < PE.

(2) The work in phase (1), although outstanding in the elabora-

titon of the concept, was far from implementation. The main issues

rEflnaining were
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(a) to resolve the difficulty in obtaining all singular

points,

(b) to be able to identify the correct singular point,

(c) to be able to include the transfer conductances in

the model, and

(d) to identify the critical value of energy which if

exceeded would result in loss of stability.

The work of El-Abiad et al. [32] and Prabhakara et al. [33]

was devoted to finding the appropriate saddle points and hence the

critical energy. The work of Uyemura et al. [34] was devoted to

approximating the transfer conductance term, while Smith and Tavora

[35] initiated the first work toward considering the critical energy

which was related to the faulted trajectory.

(3) The work in references [4, 9] in the development of the

Potential Energy Boundary Surface (PEBS) and [13, 14, 28] in the

development of energy accounting using the transient energy function

tnark the latest advances of algorithms for direct assessment of

transient stability. A main point of this work is that the critical

energy evaluated is directly related to the fault trajectory and

hence a larger region of stability is obtained. The work in this

Phase will be discussed in detail in Chapter 2.

However, in spite of these encouraging results, the work in

[29] showed that the true region of stability is identified by con-

S‘ideration of local kinetic and potential energy of an individual

l"achine rather than global kinetic and potential energies of all
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generators in the system. This investigation attempted to identify

the particular individual machine whose behavior dictates the stability

of the entire system. Furthermore, it was shown that the region of

stability obtained by the individual machine energy function concepts

is more accurate than total system energy function concepts.

In this research, it is believed that the efficiency and relia-

bility of algorithms for direct assessment of transient stability

using individual machine energy function could be improved by further

investigating the following concepts:

(1) development of a method for determining the accelerated

group and the critical generator without simulating the system for

the particular fault and analyzing the individual generator energy

function in time frame,

(2) testing of the Local Equal Area and Local Potential Energy

Boundary methods on several fault cases to show the extreme accuracy

and the ease in determining the critical clearing times when applied

to transient stability simulations of the faults,

(3) development of very fast and computationally efficient

algorithms for implementing the algorithms based on the Local Equal

Area Condition or Potential Energy Boundary Condition using individual

machine energy function without simulation of the system and thus

integration of the differential equations.

(4) extensive verification of the algorithms developed on a

test system and extensive fault cases to detennine if there are spe-

cial cases for which these algorithms fail.
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To achieve the goals, the contents of Chapter 2 are devoted to

describing the behavior of the power system and the concept of tran-

sient stability analysis. The historical development of the direct

methods for transient stability assessment is revisited in further

detail. The concepts and algorithms based on potential energy bound-

ary surface [4, 9] and on equal area with global energy accounting

[13, 15, 28] are explained.

Chapter 3 proposes and justifies two hypotheses, (a) that the

stability of a group of machines and thus the system is dictated by

a region of stability for one machine in that group, and (b) that

this region of stability is reflected in the kinetic and potential

energy of this machine. The individual machine energy function is

then presented and shown to violate the conditions for it to be a

Lyapunov function. A PEBS algorithm [16] is then justified that

utilizes the maximum individual generator potential energy as a

function of time for a fault-on trajectory (t: >> tcc) as a critical

energy threshold for deciding whether the system is or is not stable.

This threshold energy value is compared with the maximum of the

individual generator potential energy as a function of time for some

tc S t: to decide retention or loss of stability. The second algorithm,

Equal Area Criterion (EAC), is then justified that utilizes the minimum

energy margin AE* = A1 + A2 as a function of time to decide retention

or loss of stability. A1 is the accelerating energy produced during

the fault period and A2 is the decelerating energy after the fault

is cleared of the individual generator with respect to the rest of
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the generators in the system. This minimum value of energy differ-

ence should be less than zero if stability is to be retained for

any clearing time. Then the concepts of critical group, critical

generator, and critical boundary are also defined.

Chapter 4 presents two algorithms based on the kinetic and

potential energy conditions discussed above. Simulation results are

then presented that indicate these algorithms are extremely accurate

and hold significant promise for the development of both accurate

and computationally efficient procedures.

Chapter 5 proposes two fast and computationally efficient

algorithms (Fast PEBS and Fast EAC). Both algorithms are based on

the potential energy of the individual machine with respect to the

other generators in the system. Computation of this potential energy

requires calculation of the initial operating states, the final

operating states (peak values of generator rotor angles), and the

post-fault network conditions. It is shown that this information

about the system state trajectory can be obtained by one of two tra-

jectory approximations, the Taylor series or Cosine series, to imple-

ment these algorithms without simulation. However, it is shown that

the first requires extensive computation and the second is in general

not sufficiently accurate.

Chapter 6 derives the Root Mean Square (RMS) coherency measure

for different disturbances (step, impulse, and pulse). A nonlinear

RMS coherency measure based on the critical unstable equilibrium

point is also derived. The impulse RMS coherency measure is then
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shown to predict the peak angle deviation of the generator for a

second order linear single machine infinite bus system model. As

last step a computational algorithm for the finite interval pulse

coherency measure is derived.

Chapter 7 applies the two fast algorithms (PEBS, EAC), dis—

cussed in Chapter 5, directly to the Reduced Iowa system. The

results of these applications for different fault cases are then

presented that indicate the algorithms are extremely accurate.

Finally in Chapter 8 the contribution of this investigation

and the avenues for further inquiry are considered.



CHAPTER 2

THEORETICAL DEVELOPMENT ON

POWER SYSTEM TRANSIENT STABILITY

2.1. The Dynamics of Power System During a Transient

When the power system is operating in normal state, all the

equality and inequality constraints are satisfied, all the generators

are operating at synchronous speed, and its dynamics are defined by

a nonlinear vector differential equation

§= E(§.E) (2.1)

where F(§,P) is the transient stability model of the power system,

and 5 and P are states and parameters of the system, respectively.

Of special interest in the analysis of the system (2.1) is the equi-

librium, which is the state of the system where the rate 2.is zero

and the system is "in balance." The most significant interpretation

attached to the equilibrium in a wide variety of application in

engineering is stability. Stability is commonly understood as a

situation where the system is in equilibrium, and if perturbed,

returns in time to equilibrium. The equilibrium operating point 351

(s.e.p.) of the system (2.1) is defined by

X= 51w =9 (22)

10
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Upon the occurrence of an electrical fault, the power system under-

goes two new phases [5]:

(1) during the fault, where the dynamic behavior of the power

system governed by

O < t < tc (2.3)

(2) post-fault (after clearance of the fault); once the fault

is cleared, the system will assume a new configuration and thus its

behavior will be governed by another set of nonlinear differential

equations of the form

where tc is called the clearing time.

If, after the transition from the fault phase to the post-

fault phase, synchronism for all the generators in the system is

maintained, then transient stability results and the system trajec-

tory will converge toward a post-fault s.e.p.

52(352’Epf) = 0 (2'5)

If, after this transition, synchronism of all the generators

is lost, the trajectory will pass close to an unstable equilibrium

point (u.e.p.) that satisfies

Ez<x“.epf) = o (2.6)

One of the basic problems of stability analysis is to find

(necessary and sufficient) conditions on the system parameters so
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that the convergence of solutions to a post fault s.e.p. takes place.

The most powerful method of solving such a problem is the Lyapunov

direct method [6]. The method answers questions of stability without

the explicit solution of the related differential equations, such

as (2.1).

The underlying idea of the Lyapunov method is to find a posi-

tive scalar function V(§) with the rate of change 9(5) negative for

every possible state 3 belonging to some region of stability R except

for a single equilibrium state 3* where V(§) attains its minimum

V(§*). Then the function V(§) will continuously decrease along the

solutions of the system until it assumes its minimum V(X*) and the

system reaches the equilibrium 5*.

As a candidate for Lyapunov's function V(§), the energy func-

tion of the power system will be chosen. The analysis of kinetic

and potential energy components at two different instants of time

has been used to conclude transient stability or instability of the

system. The next section is devoted to the transient stability

analysis from the energy point of view.

2.2. Correspondence of the Equal lArea Criterion

and the Transient Energy Method

 

 

2.2.1. Introduction
 

Before the occurrence of the fault, the power system is operat-

ing at the nominal state (pre-fault s.e.p.) and the machine veloci-

ties with respect to a synchronous reference are zero. The fault

changes the network configuration of the system and the machine
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velocities will increase, thus increasing kinetic energy. Obviously,

the acceleration that increases kinetic energy also moves the

system from its pre-fault s.e.p. After the fault is removed, a new

network configuration results and the excess kinetic energy produced

during the fault period is distributed in the post-fault network

according to the network requirements. If the motion of the acceler-

ated generators with respect to the rest of the system's center of

inertia is reversed due to the kinetic energy distribution, then the

system converges toward the post-fault s.e.p. where again the machine

velocities are zero. If the motion of the accelerated generators

with respect to the center of inertia is not reversed, a loss of

stability occurs. The capability of the post-fault network for pro-

ducing restoring forces is measured by the potential energy of the

network elements.

The transient energy function contains both kinetic and poten-

tial terms. The system kinetic energy, associated with the relative

motion of machine rotors, is independent of the network. The system

potential energy, associated with the potential energy of network

elements and machine rotors, is always defined for the post-fault

system, whose stability is to be analyzed. The principal idea of

the direct methods is that a system's transient stability can, for a

given contingency, be determined directly by comparing the total

system energy which is gained during the fault on period, with a

certain critical potential energy. For a two-machine system this

critical energy is uniquely defined and the direct analysis is

equivalent to the equal area criterion.
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The correspondence of the equal-area criterion and the transient

energy method for a two-machine system is illustrated for the equiva-

lent single machine infinite bus system in Figure 2.1. In this

figure the kinetic energy KE(6C) = A1 gained during the fault-on

period (using equation (2.3))

c
a

V(5°) = KE(6C) = [ F1(X,Pf)dX

551

is compared to the critical potential energy PE(6C,6U) = A2 (using

equation (2.4))

6” f

v(5”,6c) = mafia”) = f Few“)?dx
<5c

For A2 = PE(5U,6c) ; KE(6C) = Al, the system remains stable and for

A2 = PE(6u,6c) < KE(6C) = Al, the system loses stability.

For a system with three or more machines, the direct analysis

becomes more difficult. In this case the critical energy is not

uniquely defined and its detennination becomes the key step in the

analysis. According to the Lyapunov-based theorem [7], the critical

energy is chosen to be the potential energy at the unstable equilib-

rium point. This unstable equilibrium point is called the lowest

saddle point [10]. This critical energy frequently yields results

that are very conservative, especially for large systems.
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PREFAULT

POSTFAULT

/A"
 

FAULTED

z

. ‘ \    
 

651 652 6c 6U

Point 0: prefault operating point; 6 = 651, t = t;

Point a: electrical power at t = t3, 6 = 651

Point b: electrical power at t = t2, 6 = 6c

Point c: electrical power at t = t2, 6 = 6c

Point d: operating point when transient subsides, t + a,

6‘6

Figure 2.1. Power angle curves for one-machine infinite-bus system.
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2.2.2. Definition of Transient Energy

The previous section describes the sequence of functions (2.1-

2.6) that characterize stability or loss of stability and the energy

transfers associated with this transient stability problem. The

equal area criterion, which precisely describes the energy transfers

for a single machine-infinite bus (equivalent infinite machine that

represents the rest of the system) model, is discussed based on

Figure 2.1. Although the equal area criterion has motivated the

methods used for multimachine power system, these methods have not

yet been shown to achieve the desired accuracy.

llfis subsection will develop the nmltimachine classical tran-

sient stability model and present the "total" energy function for

this model. Then the areas A1 and A2 for the equal area criterion

will be defined using this energy function with the appropriate

model (the fault model for A1 and post-fault model for A2), the

appropriate terms in this expression (kinetic for A1 and potential

for A2), and the proper limits of integration (651 and 6C for A1 and

5c and 6" for A2). The PEBS and UEP methods, which are both based

on the definition of energy Vcl and Vcr for post-fault network and

related to A1 and A2 respectively, are then discussed in subsection

2.2.3. The importance of the discussion of the equal area criterion

is (1) its use to justify the PEBS and UEP methods for the total

energy function in this chapter and the PEBS and equal area methods

based on an individual machine energy function in the next chapter;

and (2) the results in Chapter 4 that show the equal area criterion
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based methods for the individual energy function are extremely pre-

cise and accurate for determining region of stability. These results

using the individual energy function are much more accurate than the

results obtained using the total energy function.

The dynamic behavior of the power system is described by two

sets of differential equations. One set describes the internal

structure of machine quantities and their mutual relationships, and

the other set relates the tenninal voltage and current of each machine

to those of the other machines [2]. Because of the fact that a syn-

chronous machine has several coupled circuits, inclusion of one or

more of the coupled circuits within the machine increases the com-

plexity of the power system model. The complexity will become more

apparent if a multimachine power system is considered. For the pur-

pose of investigation of stability for approximate and easily computed

transient security assessment, a simplified classical model will be

used to determine the dynamic behavior of the power system.

The classical model is characterized by [1]

(1) Mechanical input power is constant.

(2) Damping coefficient, both mechanical and electrical, is

neglected.

(3) The voltage behind transient reactance of the synchronous

machine is assumed to be constant.

(4) Loads are represented by constant impedances.

For the system model being considered, the equations of motion

are:
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where

n

i=1 ,

#i

_ 2

pi ‘ Pmi ' EiGii

Dij = ElElej

and, for unit i,

Pmi = mechanical power input

Gii = driving point conductance

E1 = constant voltage behind the direct axis transient

reactance

mi,61 = generator rotor speed and angle deviations,

respectively

Mi = moment of inertia

Bij(Gij) = transfer susceptance (conductance) in the reduced

bus admittance matrix

The transformation of equations (2.7) into the center of angle

coordinates provides a concise framework for the analysis of systems

with transfer conductances. Define:
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n

1
so 9—1? M16]

n .

A

MT = "1

i=1

then

n n n-l n

. = - = - A

”Two 2”? Pei) Pi 2: Z Dij C05 513' = PCOA

i=1 1=l i=1 j=i+1

50 = mo (2.9)

By defining new anlges and speeds relative to the center of angle

reference, 9i Q 61 - 60 and Di é mi — mo, the system equations of

motion become

{1:113 i=1, 2, ....,n (2.10)

2111.91. = . Mimi = o (2.11)

The transient energy function V is obtained from equation (2.7)

by first establishing the n(n - 1)/2 relative acceleration equations,

multiplying each of these by the corresponding relative velocity and
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integrating the sum of the resulting equations from a fixed s.e.p.

(as) to a variable upper limit [4]

n-l n

2 Z Mira-(w.- -w,-><wi w.»
i=1 j=i+1

n-l n

=2 (MJP1 - M1PJ)(w1 - wJ)

i=1 J=l+1

n-l n

i=1 j=i+1

n-l n

a __1_ 2 _l_ s

V Z [ MT M1MJ(‘”1 ‘ “3) 'MT (PiMj'PjMi)(5ij'613)

i=1 j=i+1

s

- Cij(cos 513 - cos Sij)

61+6j-250

+ s s s Dij cos dijd(61 + 5j - 250)] (2.13)

6 +6j-26

The system transient energy components in equations (2.13) are

identifiable. The first term is the kinetic energy. The second

term is related directly to the rotor angle position of generators,

so it is called position energy. The third term is magnetic energy

and the fourth term is the dissipation energy, which is the energy

dissipated in the network transfer conductances. It is common to

use the term "potential energy" to indicate the last three terms.
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To write the energy function in a more convenient form using

the center of angle variables, apply the above steps to the n center

of angle acceleration equations (2.10)

n n

V =1ZM15’1 2 PM ‘ 6?)
i=1 i=1

n-1 n

-2 Z [Cij(cos 91.3. - cos 6%)

i=1 j=i+1

[6 +62

6s 6s Dij cos eijd(ei + Gj) ] (2.14)

where eij = e. - e

The physical significance of the center of angle reference in

the transient stability problem formulation is illustrated by the

fact that, for systems without transfer conductances, the equilibrium

points are obtained by solving n - 1 real power equations (2.10,

2.11 where $1 = 0, i = 1, 2, ...., n) for an n machine system, given

appropriate initial angles [11]. This works satisfactorily for such

systems because there is no change in load.

For systems with transfer conductances, however, the total

load will differ from one operating point to another and therefore

a closed form expression for the total system energy cannot be

obtained. Many previous researchers have neglected transfer conduc-

tances, i.e., real part of the off-diagonal elements of the reduced

bus admittance matrix, which depend not onlyCNithe transmission line
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resistances but also on loads modeled as constants impedances. There-

fore, these terms can be large and in general cannot be neglected.

For transient stability assessment using the transient energy

function as a direct method, an approximation to the conductance

energy term is necessary since the conductance term is path dependent

and the entire trajectory must be known. A linear trajectory in the

angle space is assumed to express the integral term as

ei+ej

Iij = Dij cos eijd(ei + ej)

B

- e

I (
.
4

m
-
I
-
m

m
t
—
J
o
m

. . s
[Sln 6.. - Sln e..]~ D.. (2.15)

6] '9j-9.+e. 1J 1J 1:]

.
.
.
;

L
;

The transient energy function (2.13) or (2.14) for a two-

machine system with the assumption of zero transfer conductance is

analogous to the equal-area criterion.

Considering the situation at clearing time, the transient

1
energy function, using the post-fault network and as as reference,

is given by [13]:

B
2

= = ~c _ c _ $1 _ c _ 51
V V a? M(w ) C12(cos 6 cos 6 ) P1(e e )

9 (2.16)

The first term in the right hand side of (2.16) is the kinetic

energy produced during the fault period and is proportional to the

area oabf of Figure 2.1. The second and third terms add up to the
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potential energy of the system during the fault which is associated

with the (area cdfc- area oed). The clearing energy is thus the

area

oabf + (cdfc- oed) .

52
The critical energy is evaluated from post-fault s.e.p. e to

u 2
the u.e.p., e . The velocity of the system at both 65 and e” is

zero and thus the critical energy consists of only potential energy,

V = V
(2.17)

The right-hand side of (2.17) corresponds to the area cgf + cdf.

2 as a reference [4], the transient energy
5

When vcr use 6

function is not analogous to the equal area criteria. However,

Fouad et al. in [13] argue that the critical energy shouldtxeevaluated.

from 651 and thus a correction term of

952

vcor=v (2.18)

51
9

must be added to the critical energy, Vcr'

eu B52 Su

Vér = Vcr + Vcor=v +V =V (2.19)

e52 e51 651

Vér then corresponds to the area dgcd - oed and contains the area

cdfc - oed in addition to A2. The VC1 in (2.16) contains area
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cdfc - oed in addition to A1. Thus, the condition VC] 5_Vér with

the correction Vcor in Vér corresponds to the equal area criterion

(A1 5_A2). The critical energy can be found for multimachine power

systems by computing the proper u.e.p. a” and knowing initial operat-

ing point 651.

2.2.3. The Conservative Nature of Classical Lyapunov Methods

Unstable Equilibrium Point (UEP) Method. In a large inter-
 

connected network a fault followed with or without line switching

will result in a mode of stability which is different for different

fault locations in the system even though the post-fault configura-

tion may be the same. For a given post-fault configuration, there

are several singular points among which one is s.e.p. and others

are u.e.p. or saddle points. Depending on the location of fault,

severity, and type of fault, the post-fault trajectory if cleared

at t = tcc will pass in the vicinity of one among the saddle points.

It is not possible to find a unique closed surface (boundary)

in the state space separating stable and unstable regions which

will give accurate results for all faults. In the past, the critical

value was obtained as Min V(§) evaluated at all the saddle points.

Fouad [13] and Athey [14] showed that for t = t the post-fault
cc’

trajectory just becomes unstable and theoretically passes through

but practically approaches very close to the u.e.p. for a specific

fault. The critical energy (boundary) is defined as the energy of

the system when the post-fault trajectory passes very close to the

u.e.p. For different fault conditions, there is a different fault
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trajectory and a different u.e.p., and therefore the computation of

critical energy for each fault is a difficult problem in the multi—

machine case.

A method of selecting the proper u.e.p. from the possible

2"'1 (for n machine system) has been suggested in [14]. For systems

without transfer conductances, the calculation of the unstable

equilibrium points using a Newton-Raphson or Gauss Siedel technique

can be used successfully. The recommended procedure consists of

solving n - 1 real power equations (2.10) having $i==0, i= 1, ....,

for an n machine system with one reference machine. An initial

guess for the u.e.p. for machine i going unstable given the post-

fault stable equilibrium point 652 is

. 9? iii

e‘!= (2.20)

J n- 952 j ,1,-
i

K

If the set of generators {ik} are assumed to go unstable, the

k=1

initial guess for the unstable equilibrium point is

52 . . . .
u ej J # 11, 12, ...., 1k

e. = (2.21)

J - 952 ° = 1' 1° 1' ,17 j J 1, 2, ..... , k

This works satisfactorily for systems without transfer conductances

since the starting values are close to the solution, and there is no

change in load.

For systems with transfer conductances, the total load at a

u.e.p. will differ from that at the s.e.p. The difference will be

n
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allocated to the reference generator bus resulting in a substantial

mismatch. The scalar function J, defined by

.1 A: (P. - MT PCOA) (2.22)

is the objective function whose minimization provides an alternative

approach to the calculation of the u.e.p. Even this algorithm does

not readily converge based on the initial guess given above and in

this case the angle from the transient stability simulation when

the potential energy is maximum is used.

Having selected the proper u.e.p. and computed it, the pro-

cedure used to test for whether the system is stable or unstable is

based on

n-1 n

+2 2 [Cij(cos 8% - cos 9:93.)

 

i=1 j=i+1

u u 51 51
e. + e- - e. - e.

1 j 1 j . u _ $1
+ 013 a” e” 651 + 851 (s1n eij sin 9.J.)] (2.23)

i ’ j ' i j
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BC 11 n

V -V(ec)=V =IZM"C2 ZP(eC-651)
cl ‘ $1 2 1‘”1 " 1 1' 1

6 i=1 i=1

c
+2 Z[C1.J.( cos 6. - cos 61.1.)

 

1j=-i+1

c c s1 51
e. + e. - e. -e .

l J 1 J - c _ $1
+ Dij 8c - 6c - 651 + 951 (s1n eij sin 611)] (2.24)

i j i .

_ 3

where D.j and C.j are the parameters of the post-fault network.

For V" >Vcl system is stable and for V“ < Vcl system loses

stability.

Potential Energy Boundary Surface (PEBS) Method. The potential

energy boundary surface method [3] is an abstraction which examines

the potential energy function VPE(6) in the angle space for a multi-

machine power system. For a three machine system, the corresponding

potential energy surface is shown in Figure 2.2 as are the actual

stable and unstable system trajectories and the corresponding saddle

points. The line joining the saddle points and orthogonal to the

constant Vp contours is known as the potential energy boundary sur-

face (PEBS) (dotted line). A faulted trajectory if cleared at

t > t will cross the PEBS at some point on the curve. The critical
CC

trajectory (fault cleared at t = t will just touch the boundary
cc)

but does not cross it. The value of Vcr can be taken to be the

value of VPE(gB) (2.23) for a fault-on trajectory at the point 68
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Figure 2.2. Stable, unstable, and critical trajectory for a three-

machine‘system.
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when it crosses the PEBS. At the PEBS crossing, VPE(eB) has a rela-

tive maximum and Vk(&), kinetic energy, has a relative minimum which

is near zero and assumed to be zero in this method. This is the

Kakimoto method [3] of detecting PEBS crossing. The stability of the

system is determined by the following comparisons:

(1) If V(6C) 5-Vcr = VPE/max’ then the system is stable.

(2) If V(ec) > vcr = VPE/max’ then the system is unstable.

Computational experience [8] indicates that the PEBS method

of computing Vcr is extremely fast and results are reliable and

accurate for only first swing stability cases.

In the latest effort on transient stability analysis, it is

claimed that the kinetic and potential energies of the "individual"

machines (and not the "total" energy) must be considered for accu-

rately estimating the stability boundary (critical clearing time).

The next chapter is denoted to derivation, discussion, and compari-

son of the individual energy function derived by two different

methods.
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CHAPTER 3

INDIVIDUAL ENERGY FUNCTION AND ITS APPLICATION

IN TRANSIENT STABILITY ASSESSMENT

3.1. Introduction
 

In Chapter 2 an attempt was made to investigate the recent

development in assessment of transient stability by Lyapunov's direct

methods. The concept of potential energy boundary surface [4] and

energy accounting of the total system energy [13] was introduced.

Several stability criteria based on "total" system energy were iden-

tified, and the boundary energy Vcr was calculated alternatively by

(1) computing the energy at the lowest saddle point (u.e.p.

with minimum enerQY) a”;

(2) computing the energy at the u.e.p. e” closest to trajectory;

(3) computing the value of the potential energy of the system

for a fault-on trajectory when it crosses the PEBS boundary.

It was pointed out that the region of stability evaluated

based on total system energy produces conservative results. For a

larger and more accurate region of stability and boundary (critical

clearing time), the stability of the power system must be investi-

gated in terms of the energy components that truly reflect loss of

stability for a particular fault and post-fault network. As a first

step, the separation of the total system energy into "within" and

30
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"between" coherent group energies was considered. The kinetic and

potential energy between the accelerated group and the stationary

group of generators, which can be considered an equivalent single

machine or infinite bus, was considered as the “between" group energy.

The "within" group energy was defined as the kinetic and potential

energy within both the stationary and accelerated groups. Although

the PEBS and UEP methods described in the previous chapter are more

accurate if the between group and within group kinetic and potential

energy are accounted for at clearing time and at the potential energy

boundary surface, the results are still conservative.

The most recent work [16,29] indicates that a much more precise

determination of the region of stability and the boundary (defined

by the critical clearing time) can be made if (1) an individual

machine is identified as the critical generator upon which the sta-
 

bility of the system depends for a particular fault; (2) an indi-

vidual machine energy function is defined and then developed for the

generator determined as critical for the particular fault; and

(3) appropriate methods are developed for defining the boundary of

the region of stability. These methods are developed based on the

equal area criterion which’precisely determines the boundary of the

region of stability for the single machine infinite bus model. The

methodology based on (1)-(3) above is shown via computational results

in Chapter 4 to precisely detennine the boundary of the region of

stability for a particular fault for several fault cases on a multi-

machine power system model.
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The individual machine energy function is derived and the

methods for detennining the boundary of the region of stability for

a particular fault are developed in sections 3.2 and 3.3, respec-

tively, assuming knowledge of how to identify the critical generator

that detennines stability or loss of stability for a particular

fault and for which the individual machine energy function is written.

Section 3.4 then develops a procedure for identifying the critical

generator.

3.2. Transient Energy of Individual Machines
 

For the classical model described in section (2.2.2) of Chap-

ter 2, an expression will be derived for the individual machine

transient energy. Some energy functions describe the system tran-

sient energy using a synchronous frame of reference [9, 12]. Others

have used a center of inertia (COI) formulation [13]-[15]. The fol-

lowing two subsections describe the derivation of the individual

energy function with these two different reference frames:

(1) Center of Inertia (COI) Reference. Consider the mathe-
 

matical model described by equations (2.10) in Chapter 2. Multiply

the ith post-fault swing equation (equation of motion of critical

generator by 61 to obtain

2 . ( M1 .

M.u).6. = P. - P ---P )6.

1 e1 T C01 1

Integrating (3.1) with respect to time, using as a lower limit

51 51
t = t$1 where 6 = O and 6(tsl) = e is the s.e.p., yields
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1 2 _ $1
-2-M11w -P1(e1-e )-Zf51 C1J s1n e1Jde1

j=1 e1

in

n 61 M1 6i

'=1 6S 6?

121 l ‘

n e.

_ 1 ..2 51 Z 1 .

._ sl
3"]. 61

j#1

" 91 M1 91

._ 51 T 51

ifi

1 = 1, 2, , n

This integral is evaluated using the values of e1, 61, 61, and using

the values C11, D1j, and 9:1 for the post-fault network. The first

term in the right-hand side of (3.3) is the kinetic energy of machine

1 with respect to the system inertial center. It is customary to

consider the remaining terms as a potential energy. Thus (3.3) can

be expressed as

V1 3 VKE. + VPE. (3-4)
1 1

Since (3.3) contains path dependent integrals, the verifica-

tion of V1 as being Lyapunov function cannot readily be detennined

analytically in closed form, and the transient stability analysis
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using this energy function requires simulation of system trajectory

for critical generator. The above derivation of the individual

energy function can be found in [16].

(2) Synchronous Reference. Consider the mathematical model
 

described by equations (2.7) in Chapter 2. For generator i (being

known as critical generator) and an arbitrary generator j (j = 1, 2,

. i-l, i+1, ...., n) the equations of motions of these generators

are written as

3 E

I
I

.
0

I

.
0

(3.5)

3 E

II

.
U 1

1
:
)

Multiplying first the equation of generator i(j) by moment of inertia

of the other generator Mj(M1) and then subtracting these equations

from each other results in (3.6)

j = 1, ...., n

i f i

Equation (3.6) represents the equation of motion of the relative

velocity of generator i with generator j. Multiplying (3.6) by

(w1 - wj) and adding these new n - 1 equations to each other yields
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n n

2 M1MJ(w1- wJ)(w1- (113) =Z(MjP1 - M‘iijwi - wJ)

1=1 i=1
in in

n

-Z (M11161 - M1PeJ)(w1 - 1.1) (3 7)

3:1

jfi

Integrating (3.7) with respect to time, using as a lower limit

t = t51 where w51 = O and 5(tsl) = 651, results in the energy func-

tion of critical generator 1

n n

1 :2 2 2 1 :2 : 51

J: J:

jfl jfi

n

51
- Zcfikos 61.3. - cos 61.11)

i=1

1%:

+ 0.. cos a..d(a. + s. - 25 ) 3.8

551+651-2651 13 13 I J o

i j o

This representation of the individual energy function, derived

in [29], contains only one path dependent integral and requires

trajectory simulation for the transient stability analysis of the

system. However, in order to obtain the critical energy Vcr’ which

is the energy at the u.e.p. corresponding to the actual boundary of

separation, a linear trajectory in the angle space is assumed. This
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allows the term in (3.8) to be analytically evaluated between the

limits 651 and 6” with the expression given in (3.8a)

U U U

6 . ~260

 

1+63

u u $1 $1
60 +60 - 6. - 5.

= 1 j 1 j . u _ . 51
013 6” _ u - 651 + 651 (s1n 61j s1n 61j) (3.8a)

i j i j

Testing the above technique of transient stability assessment

on several moderately large power systems showed that the approxima-

tion is quite acceptable.

The stability criteria based on the total system kinetic and

potential energy for assessing the region of stability of the system

could be applied to the individual generator kinetic and potential

energy function with more accurate results. The following section

justifies the idea of using the individual energy function in tran-

sient stability assessment of the power system.

3.3. Analytical Justification of Using the Critical

Energy of Individual Machines for

Transient Stability Assessment

 

 

 

One way of assessing the transient stability of a power system

is by comparison of the critical energy, the energy at the lowest

saddle point, with the clearing energy V A second method is
cl'

based on the concept of potential energy boundary surface (PEBS) as

discussed in Chapter 2. In this method the critical energy is con-

sidered to be the potential energy at the crossing of the total
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system trajectory and the PEBS. It was pointed out previously that

the region of stability obtained by the application of the PEBS is

larger than the one resulting by consideration of the energy at the

lowest saddle point. Theoretically, these different approaches are

based on similar Lyapunov stability theorems but with different

regions of definiteness. This is clarified by the following theorem.

Theorem--Let V(§) be a scalar function. Suppose that the

region R = {§|V(§) < k} which contains the origin is bounded. Let

9(5) be the derivative of V(§) along the solutions of X = f(§);

f(9) = 0. IF V(§) is positive definite and v(§) negative definite

in R, then

(1) the origin is an asymptotically stable equilibrium state,

and

(2) every solution of 8 = f(§) starting in R converges to

the origin as t + m.

To obtain the best estimate for the domain of attraction by the

use of the theorem, one chooses the largest value k = E for which the

hypotheses of this theorem are satisfied. In the following, it is

shown that the individual machine energy function of the critical

group of machines does satisfy the hypotheses of the theorem. But before

proceeding to the proof for the critical groupcnimachines, it is appro-

priate to show how the conditions of the theorem can be shown to be

satisfied for the total system energy function. The sign definiteness

of the total system energy function V and its derivative 9 cannot be

proven when the transfer conductance term is included in V [14, 18].
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However, the total system energy function restricted to a suitably

small region of interest can be shown to be positive. The derivative

of this total system energy function without mechanical damping is

zero for t:; tc based on simulation results for all system trajec-

tories. This observation is then coupled with a proof that the

effect of the mechanical damping is negative definite to suggest

that 9(5) ;,0. This same "proof" has been attempted for the indi-

vidual energy function. This proof is now outlined and then shown

to be incorrect. This suggests that the individual energy may not

be a Lyapunov function and thus that one may not be able to apply

normal Lyapunov theory to establish a region of convergence. The

excellent computational results obtained using the individual energy

function and the physical understanding of how loss of stability

occurs in relation to the individual energy function are the basis

for using it at this point in its development.

Consider the mathematical model including the mechanical

damping

where D1 presents the mechanical damping for i = 1, 2, ...., n.

Writing the equation of motion in terms of center of angle

results in (3.9)

, M1. M1. "

Mi‘*’i = (Pi ' Pei ‘ Diwi) ‘ "M‘T‘ PM + if}: Diwi

i=1

M. n
- l 1

3:1
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From (3.9) the contribution of the mechanical damping to the

time derivative of the energy function is

n M n

1 ~

' Z [Diwi ‘ "M'T' 01%]“1

1=1 j=1

n n n

_ .. _ 2_ -[Z 01......” - 0] - {Z 01...]. - Z oiwiwo] (3.10)

i=1 i=1 i=1

The right-hand side of (3.10) is negative, if

wow. i=1,2, ....,n (3.11)

Condition (3.11) and the fact that (from simulation) the time

derivative of energy function of a model without mechanical damping

is zero results in v < 0. If V is indeed positive definite and v is

indeed negative definite, one is able to apply an invariance theory

to estimate a larger region of stability. In summary, the steps

taken in this analysis [16] of the positive definiteness of V and

the negative definiteness of v are

(1) to show that the energy function is positive in a suitable

small subregion;

(2) to suggest that the constant energy of the undamped system

in simulation results indicates the time derivative of the energy

function is zero; and

(3) to suggest that the contribution of damping under certain

conditions is negative and thus results in a negative time derivative

of the energy function.
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Despite the above argument outlined from [16], one is not

able to make any judgment on the sign definiteness of the time

derivative of the individual machine energy function. In contrast

to the case of the total system energy, the individual machine energy

does not maintain a constant value after the fault clearing time.

There is always a transfer of energy back and forth between machines.

Figure 3.1a illustrates the sum of the potential energy produced

between generators 5 and 6 (critical group) and all of the generators

of the stationary group. Figure 3.1b depicts two plots: one for

the potential energy produced between generator 5 and the rest of

the system, and a similar one for the partial potential energy

between generator 6 and the rest of the system. The oscillatory

nature of the potential energy of the critical group in Figures 3.1a

and 3.1b clearly displays the nondefinite behavior of the time
 

derivative of the energy. Thus, the individual energy function is

‘29; a Lyapunov function for weakly damped systems and thus the

invariant theorem cannot be used as the theoretical basis of the

algorithm developed in later sections even though the argument was

made in [16].

These algorithms need not be justified based on Lyapunov

stability theory because there are sound physical arguments for

justifying these algorithms, which are presented in the subsections

3.3.1 and 313.2 for the PEBS and equal area methods. Furthermore,

the very high accuracy of the algorithm in predicting critical clear-

ing times based on application to several fault cases on different
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power system data bases further justifies the algorithm and stability

criteria based on the individual generator energy function.

3.3.1. Potential Energy Boundary Surface (PEBS) Method
 

By making use of total system energy functions, the boundary

of the region of stability is determined by hypersurfaces which are

orthogonal to the equipotential surfaces and which pass through the

saddle points. These hypersurfaces form the principal energy bound-

ary surface (PEBS) as shown in Figure 2.2 in Chapter 2. At the

PEBS, the potential energy for the system is maximum, and on the

boundary of the region of stability, the total energy of the system

is approximately equal in magnitude to the potential energy at the

PEBS. If the system trajectory never crosses the potential energy

surface, since it is stable, the potential energy should reach a

maximum and the kinetic energy should reach a minimum at or near

the point where the trajectory most closely approaches the PEBS.

The magnitude of this maximum potential energy for the trajectory,

when the fault is cleared at a clearing time tC less than the critical

clearing time tcc’ should then be less than the potential energy at

the PEBS, since the potential energy for points along the PEBS are

larger than points in the region of stability near but not at the

PEBS.

The above properties of the potential energy boundary surface

for the total energy function are also true for the individual energy

function defined for the critical generator for the particular

fault [16, 18]. Moreover, it was suggested in [16] that the
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individual machine potential energy for the critical generator will:

be nearly constant for all points on the PEBS.

The results in Chapter 4 suggest that the potential energy at

the point on the PEBS when the fault clearing time tc equals tcc is

significantly larger than the points on the PEBS crossed by the

system trajectory when tc > t A method for determining stability
cc'

requires the determination of the maximum potential energy along

the trajectory for a particular fault as a function of clearing

time. The clearing time at which this function is maximum is the

critical clearing time tcc and the system is stable if tc:; tcc' A

second method, which is not as accurate, uses the potential energy

at the PEBS for a fault on trajectory as the critical energy Vcr

based on the incorrect assumption that the energy along the PEBS is

constant. This method may not be accurate in determining tcc or

determining whether the system is stable or not if the peak potential

energy along the trajectory is greater than this value of Vcr’ How-

ever, the method will determine whether the system is stable if the

peak potential energy along the trajectory is less than Vcr since at

this value the trajectory never reaches the potential energy boundary

surface. Figure 3.2 indicates selecting vcr as the value of the

potential energy at the PEBS for a fault on trajectory results in an

interval around tcc where stability or loss of stability cannot be

determined. However, for development of fast on-line stability

assessment by operators, this interval of uncertainty appears to be
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Figure 3.2. Stable, unstable, and critical trajectory for a three-

machine system.
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acceptable in terms of the accuracy required in determining tCC or

more likely the stability for a particular fault.

The procedure for transient stability assessment using the

transient energy of individual machines (or groups of machines) is

outlined below:

(1) For the post-fault network, the stable equilibrium point

551, the admittance matrix YBUS’ and the parameters Cij and Dij for

all i, j = 1, ...., n are determined.

(2) For the particular fault and a fault on trajectory where

tC > tcc’ using the special computer program compute the energy

 

values

M n n

= i _ £2_._L_:E: _ _ sl

i=1 i=1

in jfi

” 51 a1. + 53 - 5:1- 631

- :5: Cij(cos aij - cos 613) + Dij 6 - 6 - 651 + 651

j=1 i j i , j

m

, . . sl
(Sln aij - Sln Gij) (3.12)
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for i = 1, 2, ...., n along the faulted trajectory at every time

interval At.

(3) By examining the value of Vi = VPE + VKEi and its com-

1

ponents at each time step, determine the value of Vi where VPE- has

1

maximum value and the value of VKE- is near zero (this particular

1

value of energy Vi is called the critical energy and defined as

vi/critical = VPEi/max) and store for each fault locat1on.

(4) Repeat step (3) for the same fault for the particular

clearing time tc < tcc to be investigated and determine the maximum

potential energy along this trajectory and let this value of maximum

potential energy be denoted as Vi/t=tc'

(5) Check for the stability of' the machine i. If

Vi/t=tc5=vi/critical’ mach1ne 1 1s stable, and 1f Vi/t=tc> Vi/critical

machine i would be unstable.

3.3.2. Local Equal Area Criterion
 

The second method for determining the region of stability

boundary of stability for a multimachine power system is based on

the well-known "equal-area criterion" of one machine infinite bus

systems. The local equal-area method is an extension of equal-area

criterion in the sense that a particular machine of the critical

group is considered against the rest of the generators in the power

system. Then by comparison of the energy transfers between this

particular generator and the rest of the system during and after the

fault period, a decision on the stability of the entire power system

is made for a fault at or near this generator. The discussion
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concerning determination of the critical generator is left to the

next section. In order to clarify the concept of this equal-area

criterion applied to a multimachine power system, the equal-area

criterion applied to a single machine infinite bus is reviewed.

For the one-machine infinite bus model,

Mm = Pm - Pe (3.13)

where

E152
P = ——-— sin 6 = C sin 6 (3-14)
e X12

Consider the power angle representation Pe of Figure 3.3 illustrat-

ing the behavior of the single machine against the infinite bus

during the transition from one state to another where Po sin 6,

P2 sin 6, and P1 sin 6 represent the electrical real power of the

system before the occurrence of the fault (pre-fault), during the

fault period and after the fault is cleared (post-fault), respec-

tively. The area A1 in Figure 3.3a which is obtained from the mis-

match of power existing between the mechanical input and the faulted

electrical output, represents the kinetic energy of the generator's

inertia that resulted from the fault that reduced the electrical

power Pe below mechanical input power Pm. The area A1 is compared

with a critical energy A2, which is shown in Figure 2.1 and represents

the energy capacity of the transmission network for a particular

mechanical power Pm, network configuration and fault clearing time.

The critical energy A3 shown in Figure 3.3a is the amount of
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Figure 3.3. Equal area criterion

(a) Power angle representation of one-machine

infinite-bus system.

(b) Variation of energy margin vs. time.
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decelerating energy produced by the post-fault network to compensate

for the acceleration energy A1. Note that for any tC < tCC the

rotor angle position 6(t) peaks when [A1] = |A3| and starts to

decrease and oscillate afterwards. If the system is damped then the

rotor angle also damps out and assumes the post—fault steady-state

angle. If the post-fault transmission network cannot decelerate the

machine and cause a reversal of direction of motion at some time t8,

then the generator will lose stability. This can be understood by

defining A1 and A3 and AE(t).

AE(t) = A1(tc) + A3(t) is defined to be a function of rotor

angle position which in turn is a function of time as follows:

I 5(tc)=aC

.jr 1 (PM - stin 6)d6 6(t) < 6C

5
6

A1(tc) =«

O 0
'
)

A

H
.

V "
V

O
?

O

 

A3(t) =1

 

5(t)

.jf (PM - Plsin a)d5 6(t) 3_a. (3'15)

5

Figure 3.3b depicts the quantity AE(t) = A3 + A1 as a,function

of time. In the fault period AE(t) > 0, and reaches its maximum

value at the clearing time tc. At tc, the network is switched to

assume the post-fault network and hence for tc=é t AE(t) decreases
CC’
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until it becomes zero at tB (decelerating energy A3(tB) < 0, provided

by the post fault network is capable of capturing the accelerating

(kinetic) energy A1(tc) produced by the fault). For tc = tCC the

minimum of AE(t) takesa longer time to become zero. Note that tBl is

also the time at which the rotor angle position is maximum (5(tBl) =

6 For tc > t the quantity AE(t) = A1(t) increases with time
max)' cc’

for t < tc and then decreases (AE(t) = A1(tc) + A3(t)) for t > tc.

However, in this case AE(tB)==Min (AE(t)) > 0 and occurs where

6(t) = 6" at t = tBZ. Thus, the decelerating energy capability of

the post-fault network A3(t32) is less than the acceleration energy

A1(tc). Since AE(tBZ) = A1(tc) + A3(th) > 0 is a measure of the

net decelerating energy and the kinetic energy remaining in the

machine's inertia and since AE(t) remains positive and never reaches

zero for all t > O, the machine angle 6(t) never changes its direc-

tion of motion and continues to increase for t > tBZ as shown in

Figure 3.2. Thus AE(t) = A1(tc) + A3(th) + A4(t) for t > th where

A4(t) =‘

 

5(t)

f (PM - Plsin a)d<s 5(t) > a“

L 5

where A4(t) > 0

It should be noted that increasing tc for tc < t tB where

1

AE(tB ) = 0, increases since more accelerating energy A1(tc) is put
1 .

CC’



NR‘
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into the system and thus a longer time for AE(tB )==A1(t )i-A t )==O.(
1 c 3 B

For tc> t decreases for increasing tC since there is a larger, t
cc 82

excess accelerating and thus kinetic energy AE(tB ) = A1(t ) +

2

A3(tB ) > 0, which permits the trajectory to reach the PEBS

2

faster. Thus the maximum t8 and t8 occurs when tB = t8 for

1 2 1 2

tc = tcc‘ Therefore, the boundary of stability (tcc) can be pre-

dicted by the following two different ways:

(2) the maximum value of tc for which the minimum value of

AE(t) over t is zero; or

(2) the max1mum t1me tBl for tC é=tcc or t82 for tc ggt at

which AE(t) reaches its minimum value which satisfies tB = t and

1 B2

AE(tBl) = AE(th) for tC = tcc'

This equal area criterion is now extended to multimachine

systems represented as

Mi

M1‘”1 = Pi ' pe1 "fi; PCOA

6i = mi i = 1, ..oo, n (3.17)

where

n

Pei =2: [cij sin 91.3. + Di.) cos eij]

i=1

ifi

by attempting to apply a similar equal area analysis to the energy

associated with accelerating and decelerating torques between critical

generator i and the rest of the generators j # i in the system. The

potential energy measure is in part contributed by the torques on
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machine i and all j # i from the equivalent transmission lines con-

necting generator 1 to the rest of the generators in the system. By

observation of the behavior of AE(t) = A1 + A3, in Chapter 4, the

equal area criterion based on either (1) or (2) above apply to the

multimachine model (3.17) just as in the single-machine infinite bus

case. Before going to the next chapter, the following remarks and

limitations are in order.

(1) The concept of equal area is justified only for the loss-

less systems.

(2) The loss of stability in a multimachine system will not

occur when the generator i (critical generator) reverses direction

with respect to a synchronous reference but rather when the generator
 

i reverses direction with respect to the inertial center of the other
 

machines in the power system model. Since these generators also
 

accelerate with respect to a synchronous reference the minimum resid-

ual energy AEi(tB) of generator i at the boundary, where generator

i reverses direction with respect to the inertial center, may be

positive.

(3) The generators in a multimachine power system do not act

as an infinite bus or even as a single equivalent machine. The

deceleration energy A3(tB) may exceed the acceleration kinetic energy

A1(t and thus AE(tB) could be negative.C)

It will be shown in Chapter 4 that if one generator is acceler-

ated by a fault the minimum residual energy value AE(tB) will be

negative for any clearing time tC < tCC for that fault, since the
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other generators do not act as a single machine and the network has

more deceleration energy than acceleration energy due to that fault.

If, however, a fault accelerates a large number of generators the

minimum residual energy AE(tB) for this fault will be positive since

generator 1 reverses direction with respect to the other generators

when it still has some_kinetic energy with respect to a synchronous

reference.

The last and possibly most important point of interest in

direct stability analysis of the power system based on the individual

energy function is to determine which of the accelerated generators

will dictate the stability of the group and in general the stability

of the system. The following section proposes a procedure for iden-

tifying this individual generator (critical generator) that dictates

stability of the system.

3.4. Critical Group, Generator, and Boundary
 

It was argued previously that once the individual machine

energies are related to the entire system rotor angle position and

angular velocity,it could be used to estimate the boundary of the

region of stability of the entire system. Knowing that it is possible

to predict the critical clearing time by an individual machine raises

the argument that one has to identify a particular individual machine

whose behavior dictates most accurate the stability of the entire

power system.

In reSponse to occurrence of a fault, the group of generators

which are most affected and disturbed by the fault energy (those
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generators which are electrically closer to the fault location) is

called the accelerated group. The longer the fault remains on the

system, the larger will be the number of generators in this group.

For example, in the Cooper case where the fault is applied to the

high side of the transformer connected to generator 2 and the fault

is cleared at tc = .220 seconds, only generator 2 is contained in

the accelerated group. On the other hand, if the fault is kept on

for a longer time and cleared at tC = .24 seconds, then generator 17

also joins to the accelerated group. Note that from Figure 3.4

generator 17 (Neb. CT, bus 774) is close to fault location and thus

would logically enter the accelerated group as the fault clearing

time increases. The rest of the generators in the system constitute

the stationary group (generators which are least affected by the

fault energy and remain relatively close to their pre-fault condi-

tions). Based on the fact that the behavior of the generators of

the accelerated group is very different from that of their pre-fault

condition, it is believed that the specific generator dictating the

transient stability of the entire system is contained in the acceler-

ated group. It is worth noting that the generators initially forming

the accelerated group do not necessarily remain in this group, and

some of them may decelerate and join the less accelerated or "sta-

tionary" group at a later time. The stationary group plays the role

of the infinite bus in the classical equal area criterion for the

single machine infinite bus model.
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For a given small clearing time a generator or a group of

generators which accelerates and pulls out of the system simulta-

neously is the one which causes instability and it is called the

"critical group." For a longer fault clearing time, other generators

may also pull out from the system and thus result in a different

mode of instability, but these generators do not play any role in

determining the stability of the system. For example, the critical

group for the Cooper case consists of generator 2 and not generators

2 and 17. As another example, the critical group for the Raun case

consists of both generators 5 and 6. These two generators pull out

of the system simultaneously. A more detailed discussion for prac-

tically identifying the critical group will be presented in Chapter 4

where the simulation results are considered.

Once the critical group is identified, the dynamic behavior and

energy transfers between the individual machines in this group must

be investigated. Although all of the generators of the critical

group pull out of synchronism with the system, there is only one

particular generator whose stability or instability accurately indi-

cates the stability or loss of stability of the critical group and

thus the system. This particular generator in the critical group,

which dictates the stability or instability of the critical group,

is called the "critical generator." The appropriate boundary

encircling the critical generator is called the "critical boundary."

The critical boundary determines a potential or kinetic energy bound-

ary whose violation results in instability. The kinetic energy
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boundary is evidenced by a minimum of energy Min (A1 + A3) in equal-

area criterion. The crossing of a potential energy boundary for

the critical generator is evidenced by a maximum in potential energy

of the critical generator after the fault is cleared (PEBS).

Generators of the critical group will each cross their own

potential or kinetic energy boundary with respect to the generators

of the stationary group one at a time and the critical generator is

the last one in the critical group which crosses a potential or

kinetic energy boundary. If the critical generator crosses its

potential or kinetic energy boundary, then the entire critical group

loses synchronism with the stationary group. If this critical gen-

erator never crosses its potential or kinetic energy boundary, the

critical group will remain stable. To clarify the loss of synchronism

between the critical generator and the generators of the stationary

group, a very simplified example is in order.

Consider the real power transmitted between two generators i

and j connected by a lossless line with reactance X1
3',

lE-llE-l
.. =——‘—J—sina.. (3.18)
13 Xij 13

where 5ij = 61 - aj and E1, Ej are the magnitude of voltage at buses

i and j. If E1 and Ej are kept constant, then

Pij = Pmax sin aij (3.19)

E. E.

Where P = iii—[J].

max Xij
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The real power transmitted from bus 1 to bus j through line

ij clearly depends on the phase angle difference between buses i and

j. When the phase angle difference (due to load increase or a change

in generation due to a fault) is forced to attain a value near 90°,

the power transmitted will reach Pmax’ the maximum value, and any

additional phase angle difference (beyond 90°) will decrease the

transmitted power. At the point where 5 = 90° (the static stability

limit), the system "pulls apart electrically" and the synchronism

between bus i and j is lost [20] if buses i and j are only connected

through this one path. If buses i and j are operating in such a way

that the phase angle difference is small, then these two generators

are said to be operating in synchronism or strongly coupled. In
 

contrast, if the angle difference exceeds 90°, buses i and j are

weakly coupled. If there are several paths connecting two sets of
 

buses I and 0, then all buses ikeI and jzed must be weakly coupled

for I and J to lose synchronism. One can now argue that once the

potential energy of the line connecting bus ik to bus it achieves

its maximum capacity, then generators ik and j£ become weakly coupled.

In a dynamic sense, if all of the generators ik belonging to the

critical group and all generators j belonging to the stationary

group exceed the potential energy capacity of the equivalent line

connecting them, the two groups lose synchronism and thus the critical

group goes unstable. The last generator in the critical group which

approaches its potential energy boundary of the lines connecting it

to the stationary group decides the stability of the critical group
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and hence the entire system. In Chapter 5, two boundary conditions

are investigated and the accuracy of the critical clearing time

estimates which are based on these stability boundaries will be

discussed.



CHAPTER 4

STABILITY SIMULATION STUDIES USING

INDIVIDUAL ENERGY FUNCTION

4.1. Introduction
 

The power network used in the validation studies of this

research is an equivalent of the real Iowa system (referred to here

as the Reduced Iowa System) [28]. This network consists of 17 gen-

erators and 163 buses. Figure 4.1 shows a one-line diagram of the

Reduced Iowa System.

The study done at Iowa State University confirms that this

reduction preserves the dynamic behavior of the system for "first

swing" stability. The generator data, together with the initial

conditions including the generator internal voltages, are given in

Table 4.1.

The Reduced Iowa System model was tested by running stability

studies for three different fault cases: the Cooper case (BUS 6),

the Fort Calhoun case (BUS 773), and the Raun case (Bus 372).

The objectives of this chapter are:

(1) To establish the critical generator concept on several fault

cases as well as on the Raun case where the critical group consists

of more than one generator. The critical generator must be identified
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Table 4.1. Reduced Iowa System generator data and initial conditions.

 

 

Initial Conditions
 

 
 

 

Generator

Parametersa Internal Voltage

Generator H Xd Pmoa E

Number (MW/MVA) (p.u.) (p.u.) (p.u.) (degrees)

1 100.00 0.004 20.000 1.0032 -27.92

2 34.56 0.043 7.940 1.1333 - 1.37

3 80.00 0.0100 15.000 1.0301 ~16.28

4 80.00 0.0050 15.000 1.0008 —26.09

5 16.79 0.0507 4.470 1.0678 - 6.24

6 32.49 0.0206 10.550 1.0505 - 4.56

7 6.65 - 0.1131 1.309 1.0163 -23.02

8 2.66 0.3115 0.820 1.1235 -26.95

9 29.60 0.0535 5.517 1.1195 -12.41

10 5.00 0.1770 1.310 1.0652 -11.12

11 11.31 0.1049 1.730 1.0777 -24.30

12 19.79 0.0297 6.200 1.0609 ' -10.10

13 200.00 0.0020 25.709 1.0103 - 8.10

14 200.00 0.0020 23.875 1.0206 -26.76

15 100.00 0.0040 24.670 1.0182 -21.09

16 28.60 0.0559 4.550 1.1243 - 6.70

17 0.0544 5.750 1.116 - 4.3520.66

 

aon IOO-MVA base
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properly to determine the machine for which the individual energy

function must be constructed.

(2) To show that the PEBS method for assessing transient sta-

bility using the transient energy of the critical generator results

in extremely accurate determination of the critical clearing times

compared to similar total transient energy methods.

(3) To compare the accuracy of PEBS and Local equal area

methods in terms of determining critical clearing time.

(4) To determine the effect of conductances on the accuracy

of the PEBS method by comparing the results when they are included

or excluded in individual transient energy function.

The following sections discuss these objectives by showing

the results of simulation runs for each fault case. Later in Chap-

ter 7, these results will be compared to the results obtained by

testing the proposed fast stability algorithms (which will be

described in Chapter 5) on each fault case.

4.2. Cooper Case
 

A three-phase fault is applied to generator 2 (Cooper) and is

removed by clearing line 6-439.

The system trajectory was simulated for different fault clear-

ing times and it was observed that although the generators 1, 17, 12,

and 16 are electrically close to the fault location (see Figure 4.1),

their behavior is different than that of generator 2. The fault

energy separated the system into two groups; one consisting of the

most accelerated (critical) generator 2, and the second of the rest

of the generators in the system. Figures 4.2, 4.3, and 4.4 depict
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Figure 4.2. Swing curves for Cooper. Clearing time = .218 seconds.
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the swing curves for generators 2, 17, 16, and 12 for fault clearing

times of tC = .218, .220, and .330 seconds, reSpectively. When the

fault is cleared at tc = .218 all the generators stay stable, and

although the peak of the swing curves of generator 2 reaches approxi-

mately 150° (62 > 90°), it ultimately decelerates and remains stable

‘with the rest of the system. Figure 4.3, however, illustrates that

for a longer clearing time (t = .220 seconds) generator 2 acceler-
c

ates and pulls away from the rest of the system and hence by defini-

tion is the critical generator and the critical group. As a further
 

step, Figure 4.4 illustrates that for tC = .330 seconds both gener-

ators 2 and 17 lose synchronism with respect to the rest of the

system, but the group consisting of these two generators, which did

not lose synchronism simultaneously, is not considered as the critical

group. Once the critical generator or group is determined, it is

appropriate to calculate the critical energy of the individual energy

function for this critical generator using the transient stability

simulation program.

The critical boundary or the PEBS for Cooper is based on the

maximum of potential energy as a function of time for t > tC

n

_ 1
VPE2(t)-Kr-Z: (PZMj'-.PjGZJMZH - 9232+HZ C2j( cos 02j((t)

 

J=1

322 372

1 51
e (t)+-e (t)- 0S - e.

- cos 6:1) 023 2 :1 i1 [s1n 02j(t)- sin 031]
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This critical generator maximum potential energy is calculated for

different clearing times tC and the results are summarized in

Table 4.2. The maximum potential energy (4.1) as a function of

time is determined for each clearing time tc' The time tB(tc) occurs

at the point in time when the trajectory most closely approaches the

potential energy boundary surface for the individual energy function

of the critical generator for the case where the clearing time tC is

less than the critical clearing time tcc‘ For clearing times tc

greater than the critical clearing time, the maximum potential energy

occurs at the point in time tB(tc) when the trajectory crosses the

potential energy boundary surface. The peak potential energy

Vp52(t8(tc)) should clearly increase for increasing clearing time tc

when the clearing time tC is less than the critical clearing time

tcc' The peak potential energy function VPE2( t3(tc )) has been claimed

to be nearly constant for all tc greater than the critical clearing

time in the previous literature [16]. It is clear from Table 4.2

that VPE2(tB(tc )) decreases slowly for tC greater than critical

clearing time since VPEZ(tB(tC )) decreases for tC > 0.220 seconds,

where it is clear that the system is unstable for tc = .220 seconds

from Figure 4.3. There is a very significant peak in VPE2(tB(tC))

when tc is close to tcc’ making it easy to accurately identify tcc

The decrease in the peak potential energy for increasing tc beyond

the critical clearing time is due to the fact that the generator 17

and ultimately 16 and 12 will lose stability with generator 2 and

thus the angle differences between generator 2 and these generators
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Table 4.2. Potential energy boundary surface energy as a function of

tC for determining tcc'

 

 

  

 

with conductance without conductance

* *

tc VPE(tB) t3 VPE(tB) ‘3

.192 6.546 .368 4.961 .368

.208 8.105 .448 6.586 .448

.210 8.362 .480 6.879 .480

.217 10.173 .644 8.876 .637

.218 10.843 .687 9.549 .687

.219 12.897 .814 11.042 .821

.220 15.133 .935 13.924 .946

.222 13.672 .848 11.388 .848

.224 12.021 .672 11.241 .672

.240 9.403 .432 8.180 .464

 

tB - time at which the maximum of potential energy occurs

tc - clearing time
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at tB(tc) will be smaller mak1ng VPEZ(tB(tc)) decrease with clearing

time tC > tcc‘ From the above discussion the critical clearing time

should occur precisely at the time that VPE2(tB(t )) is maximum.
c

For the Cooper case it is estimated that the actual critical clearing

time is tce:(.219-.220) seconds based on the above criteria for

selecting toc' This predicted critical clearing time is very accurate

compared to the results in [16] and very well comparable to simula-

tion results that indicate the critical clearing time lies in

(.219-.220).

The local equal-area critierion for Cooper is based on the

minimum overtime of the energy margin

AE2(t;tC) = A1(tc) + A2(t,tc) (4.2)

where

e(tc)

A1(tc) ‘ VPEZ

951

is evaluated using the local potential energy function VpEz(t) with

the faulted network admittance matrix and

9(t)

A2(t;tc) = VPE (4.3)

2

e(tc)

is the local potential energy function with the post-fault network

admittance matrix. The local EAC (tc) is thus
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EAC (tc) = min AE2(t;tC) = AE2(tB;tC) (4.4)

t > tC

Figures 4.5 and 4.6 show the simulation of AE2(t;tc) performed

with small integration step for two different clearing times, .218

and .220 seconds. In both figures AE2(t;tC) starts from zero value

at time t = 0 and increases with time until it peaks at clearing

time tc = .218 and .220 seconds. This increase of energy margin is

due to the excess kinetic energy (accelerating energy) A1 of generator

2 during the fault period where A1 is positive energy and A2 = 0.

After the fault is cleared t > tc, the post-fault network

starts to absorb the kinetic energy at clearing time and the minimum

AE2(tB;tc) is reached at some time tB after the clearing time. For

tC = .218 seconds, the minimum of AE2(tB;tc) occurs at t8 = .676 and

tB = .687 with and without conductance term included, respectively,

in equation (4.1). The value of EAC(tC) being negative for tC < tCC

indicates that the post-fault network is completely capable of

absorbing the faulted energy and decelerates the critical generator

to a point where its direction of motion is changed and the system

remains stable. However, for large clearing time tc > tcc’ more

kinetic energy is produced during the fault-on period which causes

the post-fault network in: abSOrb more kinetic energy but no longer

all of it. As a result, the minimum of AE2(tB,tC) for tC > tcc

never reaches zero and remains positive |A1| > [AZ], indicating the

fact that the critical generator does not change its direction of
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motion and the system loses stability. In contrast to the case of the

equal-area criterion of one-machine infinite bus, the minimum

AE2(tB;tcc) in a multimachine power system is negative and not zero

when the system is stable. As was discussed earlier, this phenomenon

was expected because of the fact that the non-critical machines do

not behave as an infinite bus and thus require more deceleration

energy A2 to reverse the direction of motion of the critical genera-

tor than if they acted in unison as a single bus.

The stability simulation program was run for different clearing

times to predict the critical boundary using Minimum Energy Equal-

Area Criteria and the results are summarized in Table 4.3. The

minimum of AE2(tB;tc) occurs at tB = .946 for both cases where the

transfer conductances are and are not included. This observation

certainly shows that for the qualitative analysis the concept of the

equal-area criterion can be extended for a multimachine case.

From Table 4.3 it is clear that the estimated critical clearing

time is tc c (.219-.220) seconds which is comparable to simulation

results tc e (.219-.220). Note that the very sharp narrow minimum

for AE2(tB,tc) for tC near tcc makes accurate identification of tcc

quite easy.

The results of both algorithms PEBS and EAC in Tables 4.2 and

4.3 show that increasing tC for tC < tCC causes tB(t to increasec)

since the angle deviation of the accelerated generators from their

nominal (initial operating) state becomes larger and it takes more

time for generators to reverse their directions and return to the
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Table 4.3. Minimum of AE2(tB,tC) = A1(tc) + A2(tB,tc) for critical

generator 2 using stability simulation program.

 

 

with conductance
 

without conductance
 

 

tC AEZ(tB,tC) t8 AE2(tB,tC) tB

.192 .423 .368 -2.199 .368

.208 .011 .464 -2.578 .480

.210 - .036 .495 -2.695 .495

.217 -1.522 .637 -4.067 .637

.218 -2.111 .676 -4.647 .687

.219 -3.873 .821 -5.910 .821

.220 -6.358 .946 -8.826 .946

.222 -5.422 .848 -7.266 .848

.224 -4.032 .688 -5.909 .672

.240 1.399 .496 -1.041 .464

 

tB - time at which the minimum of AE2(t,tC) occurs

t
C

- clearing time
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previous stable position. The maximum tB(tC) occurs when tC = tcc'

Thus there are two indicators of tCC by observing the minimum value

of AE2(tB):

(1) the maximum value of tc for which the minimum value of

AE2(t,tc) over time is the smaller than some value c .

(2) the maximum time t8(tc) at which the minimum of AE2(t,tC)

is less than c.

4.3. Fort Calhoun Case
 

A three-phase fault is applied to generator 16 (Ft. Calhoun)

in Figure 4.1 and is removed by clearing line 773-779.

From Figure 4.1 the generators electrically close to the fault

location are generators 17, 12,1IL 5, and 6. For different fault

clearing times the system trajectory was simulated and generator 16

was found to be the first generator which was accelerated and separated

from the rest of the generators. Therefore, generator 16 constitutes

the critical group and the critical generator. Based on simulation,

it is observed that for clearing time of tC = .354 seconds the system

is stable but that for tC = .356 seconds the system becomes critically

unstable. Figures4c7 and 4.8 illustrate the swing curves of some of

the generators of the stationary group and the critical generator

for clearing times of .354 and .356 seconds, respectively. Note

that the peak of the swing curves of the stationary group is some-

where around 80°-100° while that of the critical generator is about

170°-180° for the stable case, confirming the fact that the critical

generator is initially pulling away from the stationary group but at
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a later time all of the generators decay and resume a relatively

small angle indicating stability.

For clearing times tC = .354 and tc = .356 seconds, Figures 4.9

and 4.10 illustrate the energy margin AE16(t,tC) = A1(tc) + A2(t,tc)

produced between critical generator 16 and all of the generators of

the stationary group. From Figure 4.9, it is clearly seen that the

minimum of AE16(t,tc) occurs at t8 = 1.2 seconds and it has negative

value, i.e., IAll < IAZI, indicating that the post-fault network

captures the total kinetic (accelerating) energy produced during

the fault period and hence changes the direction of motion of the

critical generator; therefore the system is stable. For the larger

clearing time tC = .356 seconds, Figure 4.10 shows that the minimum

of AE(t,.356) = EAC(.356) occurs at earlier time tB = .997 seconds

(because the post-fault network does not have the capability of

absorbing the faulted energy completely and it takes less time to

reach the minimum of (A1+-A2). Table 4.4 shows the minimum of

AE16(t,tc) for different clearing times. From the entries of this

table it is clear that the lowest possible value occurs close to

tc = .354 seconds, indicating critical clearing time. Note that

AE16(tB,tC) has a sharp narrow minimum, making the accurate identi-

fication of tcc easy.

Similar analysis was done for different clearing times to cal-

culate the boundary energy (Maximum Potential Energy) of the critical

generator using the PEBS method. The Stability simulation program was

run and the maximum of potential energy was calculated at each clearing
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Table 4.4. Minimum of AE15(tB,tc) = A1(tc) + A2(tB,tC) for critical

generator 16 using stability simulation program.

 

 

with conductance without conductance
  

 

tc AE16(tB,tc) tB AE16(tB,tC) t8

.320 .486 .624 - 3.287 .624

.345 - .064 .885 - 4.107 .885

.352 -3.440 .928 - 7.836 .944

.354 -6.220 .200 -11.149 .200

.356 -5.880 .997 - 9.982 .997

.357 -5.442 .959 - 9.400 .959

.360 -4.315 .900 - 8.011 .900

.368 -2.005 .816 - 5.428 .816

 

tB - time at which the minimum of AE16(t,tc) occurs

tc
- clearing time
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Table 4.5. Potential energy boundary surface energy as a function of

tc for determining tcc'

 

 

  

 

with conductance without conductance

* *

tc VPE16(tB) t8 VPE16(tB) tB

.320 7.681 .624 5.672 .624

.345 12.561 .885 9.825 .885

.352 14.402 .960 11.888 .944

.354 18.267 1.200 15.315 1.200

.356 16.382 .997 14.265 .997

.357 15.708 .959 13.741 .959

.360 14.230 .888 12.528 .900

.368 11.848 .800 ‘ 10.428 .816

 

tB - time at which the maximum of potential energy occurs

tC - clearing time
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time for two different cases, one with transfer conductances included

and the other with transfer conductancesnot.included. The results

of this analysis are summarized in Table 4.5.

The entries in columns 2 and 4 of Table 4.5 indicate that for

clearing time tC = .354 seconds the maximum potential energy of the

critical generator has its largest value. This potential energy

value represents the boundary energy and the corresponding clearing

time (close to .354 seconds in this case) is called the critical

clearing time tcc' The accurate identification of tcc is again

possibly due to the sharp narrow peak of Vp516(t8). It should also

be noted that the critical generator trajectory for this particular

)clearing time achieves the potential energy maximum at a time tB(tCC

which is larger than all the trajectories for which the fault was

cleared at tC # tcc' This phenomenon happens because of the fact

that for tc = tCC the angle deviation of the accelerated generators

from their initial operating state has the largest value and it

takes the longest time for generators to reverse their directions

and return to their previous stable position.

The results obtained for the Fort Calhoun case indicate that

the concepts of the selection of the critical generator and both

EAC and PEBS are valid for multimachine power systems and both pre-

dict the critical clearing time very accurately' tC e (.354, .356).

This investigation of the accuracy of assessing critical clear-

ing time by (a) identifying a critical generator, and (b) using the

PEBS or equal area method with the critical generator's individual
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rnachine energy function is extremely accurate and indicates these

methods truly capture the energy conditions that cause loss of sta-

taility. This attempt to determine the accuracy of the PEBS and

eaqual area criterion methods using the critical generator's individual

energy function has shown that there are very large changes in

‘VPE(tB1tc) for PEBS and AE(tB;tc) for equal area when tC is near tcc'

“this makes very accurate assessment of tCC quite easy.

The previous research using the PEBS method on an individual

energy function [16] did not attempt to determine how accurate the

rnethod was and only indicated the critical clearing time belonged

to intervals of .011 and .008 seconds rather than .002 and .001 for

the Fort Calhoun and Cooper cases, respectively, as in this research.

4.4. Raun Case

A three-phase fault is applied to the high side of the trans-

‘former’connected to generator 6 (Raun) and is removed by clearing

line 372-193.

Stability run for Raun case was done earlier in Reference [29].

'To complete the thesis, the analysis and the results obtained are

summarized here. For different fault clearing times the system

trajectory was simulated and it was observed that generator 5 was

electrically closest to the fault location and thus possesses similar

behavior to that of generator 6. The fault energy separated the

System into two groups, one consisting of the accelerated generators

(5 and 6) and the other by the rest of the system. Figures 4.11

and 4.12 show the swing curves of the generators for fault clearing
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times tC of 0.19 and 0.1925 seconds, respectively. For tc = 0.19

seconds all the rotor positions do n0t exceed the stability limit

and do not accelerate indefinitely. However, it is clear that the

behavior of generators 5 and 6 is different from that of the other

generators. Figure 4.12, where the fault was cleared at tC = 0.1925

(sec.), also indicates the similarity in behavior of generators 5

and 6, but here they are both accelerated and thus pull out of step

from the rest of the system, causing instability. Based on simula-

tion, it was observed that for clearing time of tc = 0.1922 seconds

the system was critically stable as shown in Figures 4.13a and 4.13b.

Note that the peak of the swing curves of the stationary group is

somewhere around 90°-100°, while that of the critical group is about

160°-170°, confirming the fact that the critical group is initially

pulling away from the stationary group but at a later time all of

the generators resume E! relatively small angle indicating stability.

For the same clearing time, i.e., t = .1922 seconds, Figure 4.14a
0

illustrates the sum of the potential energy produced between gen-

erators 5 and 6 and all of the generators of the stationary group.

Figure 4.14b shows the plot for the potential energy produced between

generator 5 and the stationary group and a similar one for the partial

potential energy between generator 6 and the stationary group. The

peak of the partial potential energy of generator 6 indicates the

maximum energy capacity of the transmission network connecting gen-

erator 6 to the stationary group. Before reaching the peak of poten-

tial energy. there is a strong coupling between generator 6 and the
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stationary group, and after the energy exceeds the maximum potential

energy capacity of all lines connecting 6 and the stationary group,

the magnetic coupling between generator 6 and the stationary group

becomes weakly coupled. If generator 6 was the only machine in the

critical group, one could conclude that generator 6 would pull away

from the system and thus lose synchronism. However, for this case,

where generator 5 is also in the critical group, one cannot yet make

any decision on the loss of stability. Now consideration of the

energy behavior of generator 5 reveals that the peak of the partial

pcrtential energy of generator 5 is reached at a later time, indicating

the fact that although generator 6 is trying to pull away from the

system, generator 5 maintains a strong coupling to the stationary

group. Thus, among the generators of the critical group (5 and 6),

generator 5 is the last generator to exceed its potential energy

boundary capacity and therefore is by definition the Mai

_ggnerator.

Now that the critical generator is identified, it still remains

to identify a boundary of stability. For both the inclusion and

exclusion of the transfer conductances, several simulation runs for

tftfferent clearing times were performed by Rastgoufard [29]. Fig-

ures 4.15-4.18 illustrate some of these results. Figure 4.15 depicts

the partial potential energy across the boundary of generator 6,

cleared at tc = .18 seconds. It is clearly seen that for this case

the minimum of AE6(t,tc) is negative (for both cases with and without

transfer conductances), confirming the stability of the system.

However, in contrast to the case of equal area criterion of one
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machine infinite bus, the minimum of AE6(t,.18) is not zero. As

was discussed earlier; ‘this phenomenon was expected. In Figure 4.16,

where the fault is cleared at tC = 0.1925, the minimum of energy

margin AE6(t,tC) has positive value (lAll > IAZI), indicating loss

of stability.

Figures 4.17 and 4.18 depict the generator 5 potential energy

boundary for tc = .1922 and .1925 seconds, respectively. In comparing

the behavior of generator 5 with that of generator 6, it is seen

that the minimum of AE(t,tC) for generator 5 takes place at a later

time than that of generator 6. Although the energy boundary of both

generators predicts tcc e (.1922, .1925), the fact that the minimum

of AE(t,tc) for generator 5 occurs at a later time confirms that

generator 5 is the critical generator.

Both the PEBS and EAC methods using the individual energy

function accurately determined the critical clearing time for the

cases studied. However, these results were based on step-by-step

integration of system differential equations to evaluate the indi-

vidual potential energy required at each integration step. The major

point of interest here is to test the proposed direct methods (to be
 

described in Chapter 5) on the same Reduced Iowa System and compare

the results of predicting the boundary of stability with that of

simulation results.



CHAPTER 5

PROPOSED DIRECT STABILITY ASSESSMENT ALGORITHMS

The purpose of this chapter is to develop a fast PEBS method

and a fast equal area method using the individual machine energy

functions. The results of the previous chapter indicated that both

the PEBS method and equal area method using the individual machine

energy function are extremely accurate in determining the critical

clearing time for a particular fault, which is a measure of its

ability to test whether a system is stable for that fault and the

clearing time and the margin of stability. However, these results

were based on simulation of the system differential equations to

evaluate the individual potential energy:

7 n

1 2i: 1

J-

118'

 

n

51
+2 Cij(cos 61.j(t) - cos 81.3.)

i=1

in

01(t) + 6j(t) - 0:1 - 031 $1

61(t) - 0j(t) 81 ej

(5.1)
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required for the PEBS and equal area methods at each integration

step. Thus the results of Chapter 4 suggest that the equal area

and PEBS methods are extremely accurate in confinning the conclusion

concerning whether the system is stable or unstable, which can also

be determined by observing the simulated system trajectory. Thus

the PEBS and equal area methods are totally dependent on the tran-

sient stability simulation and only provide a quantitative measure

in terms of energy of the relative margin of stability or instability.

The objective in developing the PEBS and equal area methods

was to develop fast stand alone algorithms that could determine

whether a system is stable or unstable; the margin of stability for

a particular fault, clearing time, and operating condition; and

the sensitivity of the stability to such operating conditions as

network configuration, load level, generation dispatch, etc. These

stand alone algorithms obviously should not require time step inte-

gration of the transient stability model but should provide the

same results and conclusions concerning the stability of the system;

the margin of stability for the fault, clearing time, and operating

conditions; and sensitivity to operating conditions.

The fast PEBS and fast equal area methods require methods

for:

(I) Obtaining the total energy which the system gains during

the fauit-on period. This has previously been accomplished by per-

forming a step-by-step integration of the faulted system equations

and simultaneously calculating the appropriate energy;
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(2) Determining the critical generator and thus the generator

for which the individual energy function is evaluated;

(3) Determining the actual critical energy by calculating

the peak potential energy using the PEBS method;

(4) Computing the energy at the proper unstable equilibrium

point (u.e.p.) using the UEP method.

Two algorithms have been proposed for producing system trajec-

tory approximations that could provide the above information required

by fast PEBS and fast equal area methods. These Taylor series and
 

cosine series approximations algorithms are discussed in this chapter
 

and shown to either be inaccurate or require computational require-

ments comparable to simulating the system trajectory.

A fast PEBS and a fast equal area method are then proposed

based on using an RMS coherency measure to accurately predict the

state when the system trajectory either most closely approaches or

crosses the PEBS. These fast PEBS and equal area methods do not

require approximating the faulted system trajectory over time but

rather only require predicting the trajectory when it comes closest

to or crosses the PEBS for a specific fault and fault clearing time.

The cosine and Taylor series approximations of the system

trajectory are discussed first before the fast PEBS and equal area

methods based on the RMS coherency measure [21]. The RMS coherency

measure is then developed in Chapter 6.
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5.1. Modified Transient Energy Method
 

5.1.1. Fault Trajectory Approximation by Cosine Series
 

From the concepts of the previous section it is understood

that a knowledge of the faulted system trajectory is necessary or

very useful.

A simple approximation of the system fault trajectory developed

by Athay et al. has been proven to be sufficiently accurate in some

cases for the four purposes mentioned above. Representing the center

of angle referenced accelerating powers of the faulted system by

f. (i.e., f.1 1 = the right hand side of equation (2.10)), the form of

the approximation is

f1 = a] + b1 COS wt 1 = 1: 2: ----, n (5.2)

The The method for determining the unknown constants ai, bi’

i = 1, 2, ...., n and the frequency w are quickly summarized;

basically, two power flow solutions are utilized [17]. The first,

at the instant of fault application, determines the parameters

ai’bi’ i = 1, 2, ...., n for a given frequency w. The second, along

an approximate trajectory shortly after the fault, is used to compute

m. Angles obtained from this fault trajectory approximation are

given in Table 5.1 for a particular case on the ten machine New

England System. The comparison of the actual angles and those

obtained by this approximation indicates that the approach can be

quite accurate in some cases. The approach will not be accurate

at all for long faults where the post-fault network determines the
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Table 5.1. Comparison of fault trajectory angles at t = 0.4 sec.

(fault on bus 15, New England system).

 

 

 

cosine

unit actual approximations

1 - 38.0 - 38.1

2 55.7 55.4

3 63.2 63.2

4 98.5 98.8

5 91.2 91.0

6 95.0 95.7

7 100.7 101.2

8 43.9 42.4

9 71.7 71.5

10 8.2 9.4
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.critical generator that loses stability and not the initial acceler-

ation during the fault. Thus, the cosine approximation can only

be used in cases where the fault clearing time is small and stability

is assured.

5.1.2. Trajectory Approximations by Taylor Series
 

The Taylor series method proposed in Ref. [19] is conceptually

attractive. The absolute rotor angles 61(t), i = 1, 2, ...., n are

approximated by Taylor series expansion and the coefficients of the

series are computed from the prefault operating point 551 using the

faulted admittance matrix. Because of the fact that all 61's are

zero, the computation of the Taylor series coefficients would be

simplified because all the odd coefficients are zero.

A more accurate form of this method would be to update the

Taylor series coefficients at successively smaller time intervals

until the desire accuracy is achieved. This procedure is in con-

trast with the alternative of increasing the order of the Taylor

series until the desired accuracy is achieved. This updating pro-

cedure involves more terms since the 61's are no longer zero at

each update. The form for updating at t = t0 for the fourth order

series is

 

 
 

+ i o o i o o (5 3)
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where

 
 

+ 2! + i o o (5.4)

where to is the time of last update

n

(2 _ 1 .
51. )(t) TM;[Pi -JZ=:1(C1-j51n 61.j(t) + Dij cos 61.j(t))] ,

if”

n

(4) _ 1
61 (t) - E1"; {[013 Sin 613(t)

m

2

- C11“ cos dij(t)][6$1)(t) - 6§1)(t)]
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To implement this Taylor series updated given t0 = 0 and {61(0)}?=1

n - .
311d {wi(0)}i=1 "' 0.

(1) Set m = 0.

(2) Compute the new {Sgk)(to)}?=1 for k = 0, 1, 2, 3, 4 at

to = m- A .

(3) Set the new t = (m + 1)- A (time of update).

(4) Utilizing 61k)(to), to, and t, compute {61(t)}91:1 and

{61(6)}?gl using (5.3) and (5.4).

(5) If (m + 1)- A gatf, stop; otherwise return to step (2)

with m = m + 1.

These approximated trajectories produce very nearly the same

energy functions as the exact trajectories. From numerical results

of the fault on cases studied, a single update at t = 0.2 was enough

to give the same results as the exact trajectory.

Although it is found that the Taylor series method of Ribbens

Pavella [19] avoids integration of the differential equations and

gives acceptable accuracy, updating this Taylor series which cal-

culates the rotor angles {614”}?=1 and their successive derivatives

61k)(to) for k = 0, 1, 2, 3, 4 at each updating time using equa-

tions (5.4) and (5.5) requires a large number of algebraic operations

(additions, multiplications, and divisions) which is comparable to

the number of operations needed to solve load flow equations using

a Gauss Seidel method at each integration step for a transient sta-

bility simulation.
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Thus the computation for each update of the Taylor series

algorithm at time step m- A is comparable to that for solving the

network equations using a Gauss Seidel algorithm at each integration

step. Since the time step for the Taylor series update and the

integration step sizes are comparable, the Taylor series algorithm

does not appear to significantly reduce computation compared to a

conventional transient stability simulation even though the Taylor

sieres can be quite accurate.

Having presented the two methods that have been proposed for

fast transient stability simulation, the PEBS and equal area methods

using the individual machine energy function are now reviewed in

terms of the information required to produce a fast transient sta-

bility assessment procedure. The results of this review of these

methods is that one could produce an extremely fast method for tran-

sient stability assessment if a direct'method for predicting the

state of the system when the system trajectory most closely approaches

the boundary energy (stable case) or crosses it (unstable case) for

a particular fault and clearing time could be developed. A method

for direct prediction of this state using the RMS coherency measure

is then proposed in the next chapter.

5.2. Fast PEBS Method
 

Using the individual machine energy function, the boundary of

the region of the stability is determined by the potential energy

boundary surface (PEBS) as discussed in Chapters 2 and 3. At the

PEBS which is defined for the post-fault network, the potential
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energy of the critical generator with respect to the rest of the

generators in the system is maximum, and on the boundary of the

region of stability the total energy of the critical generator with

respect to the rest of the system is equal in magnitude to the

potential energy at PEBS. Since at the PEBS the potential energy

is maximum, stability is maintained if the system kinetic energy

is totally converted to potentiai energy (single machine infinite

bus system) or if the system kinetic energy is minimum (multiple

machine system) before reaching the PEBS. This maximum of potential

energy as a function of time (5.1) varies with Clearing time

tc < tcc since the maximum ei(t) depends on tc. Thus, one can write

Max VPE(t,tc) = VPE(tB,tc) = v;E(tC) where tB(tc) is the time where

VPE(t,tc) is maximum for clearing time tc. Increasing tc for

tc < tCC will increase this maximum value of the potential energy of

the critical generator v;E(tc) and it reaches its highest value for

t t . This particular maximum value of potential energy for
C CC

to

to the rest of the system generators and it is denoted by Vcr' For

tcc is called the critical energy of generator i with respect
 

large clearing times tc > tcc’ some of the generators in the sta-

tionary group may start accelerating and also become separated from

the rest of the generators in the stationary group. As a result of

this phenomenon, the system kinetic energy is not totally converted

to potential energy (i.e., the power system does not behave as a

single machine and infinite bus system) and even for large system

the system kinetic energy is not minimum at the PEBS based on the
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individual machine energy function. Therefore as tC keeps increasing

for tc > t the maximum of potential energy VPE(tc) at PEBS decreases.
cc’

In order to determine the precise value of the critical energy as

well as the critical clearing time, one has to compute the maximum

of potential energy for different clearing times and search for the

highest value among these maximum potential energies.

Based on the fact that the rate of change of the maximum of

potential energy for tC > tcc may be small, one could use the maximum

potential energy v;E(tc) of the critical generator or group for some

arbitrary large clearing time tC > t
1 c

' potential energy of the critical generator or group at clearing time

c’ and compare it with the

tc < tcc < tC where the stability is desired to be tested; If

1

VPE(tcc) is much greater than v;E(tcl), as shown in Figure 5.1., one

* I * O I

could use VPE(tc1) as Vcr 1f VPE(tc) r1ses very rap1dly for values

. O O I * -

of tc sl1ghtly less than tcc' Ut1l121ng VPE(tC1) for tc1 - .240

would indicate the system is stable for tc < .217 rather than for

o o o o *

tc éltcc = .220 in the Cooper case from Table 4.2. Ut1l121ng VPE(tC1)

for tc = .368 would indicate the system is stable for tC < .345

ratherlthan tcc e .354 in the Fort Calhoun case from Table 4.5. As

tc1 were to increase the error in being able to determine tcc or

judging values of tc for which the system is stable would increase.

The error does not appear unacceptable for the applications of a fast

transient stability assessment method such as a screening tool for

assessing fault contingencies in operation or expansion planning or

for use by operators in control centers.
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Determination of critical boundary for critical generator

using maximum potential energy VPE(tc) method.

Figure 5.1.
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Determination of the critical generator or group as well as

the states (rotor angles of the generators) of the system at time tB

is the critical requirement for calculating the critical energy

0(tB,tC)

e51

 

for either tc1 or tc using equation (5.1). Transient stability

simulation study shows that the rotor angles of the generators of

the system at time tB are at their peak values. The previous algo-

rithms discussed earlier in determining the generator angles at any

specific time dealt with the simulation of the trajectories and thus

required a significant amount of computations.

The RMS coherency measure (linear/nonlinear) technique devel-

0ped by Schlueter in 1978 [21] seems to be appropriate to use as a

) ma

direct method of predicting the peak angles 8(t t = e x and also
8’ c

the critical generator or group of the system. If one used the RMS

coherency measure to predict the state 9(tB;tc) at which the trajec-

tory most closely approaches or crosses the potential energy boundary

surface for any clearing time in order to evaluate v;E(tc), the

error in determining tcc by maximizing the function v;E(tc) is only

the error in predicting 8(tB;tC) for each tc‘ However, if one

evaluates v;E(tc1) for some tC1 > tCC using the RMS coherency measure,

then the error in determining tCC and assessing whether the system

is stable depends on both the difference VPE(tcc) - v;E(tC1) and the

error in predicting 8(tB;tC) for some tc and tC . The elimination

1
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'k

of the computation to maximize VPE(tc) is justified if this error

in determining tCC due to VPE(tcc) - VPE(tc1) is not large.

Chapter 6 of this thesis defines this RMS coherency measure

and outlines the procedure of obtaining the peak angles 8(tB;tc)

and identifying the critical generator. Finally, it provides the

theoretical justification and verification for the use of the RMS

coherency measure as a fault security measure based on analysis on

a second order system.

5.2.1. Efficient PEBS Algorithm for Predicting Stability
 

The procedure for computing the boundary (critical) energy

Vcr and using it as a stability limit consists of the following

steps:

(1) Solve base case load flow equation (5.6) to obtain gen-

erator angles at prefault (initial) operating point 651.

n

M1011- = P1. - Z [Cij sin 81.3. - 013' cos 61.3.] = 0 (5.6)

i=1

ifi

where

913- = 6.1- 6:)-

0 =5 -<S
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(2) For an arbitrary large clearing time (t >> tcc) use
c

the linear or nonlinear RMS coherency measure for t6e particular

fault to obtain the peak angles emax as well as the critical group

or critical generator.

(3) Having determined the critical generator i which is neces-

sary to determine the proper generator to write the individual

1
machine energy function, the prefault operating point as and the

peak angles 8(tBl,tc1) = emax, calculate the potential energy at

time tBl, V;51(tcl) = vPE(t81;tc1)

emax

vcr = VPEi 951 = VPE(tBl’tc1)
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max max 51 51
8. +6. -8- -B. -

_ 1 j 1 j . max _ . sl

Dij max max s1 51 [51” eij 51” eij] (5'7)
81- 4-3]. -B1. +BJ.

(4) For a specific clearing time tC < tc , where the stability

1

of the system is desired to be tested, repeat steps 2 and 3, and

'k

then calculate potential energy of the critical generator VPE.(tc)

. _ 1k

and compare 1t to Vcr - VPEi(tc ).

1

(5) If VPEi(tc) §=Vcr=:vPEi(tc1) the system remains stable,

and if VPEi(tc) > Vcr = VPEi(tcl) the system would be unstable.

The applications of this algorithm to different fault cases

on the Reduced Iowa system are discussed in Chapter 7 and the results

obtained from these applications verify the accuracy of the

algorithm.

5.3. Fast Equal Area Method
 

From review of Chapter 3 it is understood that for multi-

machine power systems the equal area criterion considers a par-

ticular generator (critical generator) against the rest of the gen-

erators in the system. The amount of energy produced during the

fault period (accelerating energy) A1(t is added to the energyC)

after the fault is cleared (decelerating energy) A3(t) and the

quantity AE(tB,tC) = A1(tc) + A3(tB) at time t3, the time at which

the system generators peak, determines the stability of the system

as shown in Figure 3.2 in Chapter 3 for single machine infinite

bus system. In order to determine the stability boundary of the

system tCC very accurately, one has to compute the minimum energy
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difference AE(tB,tC) = AE*(tC) for different clearing times and

search for the smallest value among these minimum energy differences.

This search technique, of course, requires more computations and

hence it is time consuming and requires significant computation.

An approximation method is proposed that does not require

determining the minimum of AE*(tC). If AE*(tc) is near zero for

t §=tcc for any fault case, it may be possible to test for sta-
c

bility of the system by determining whether AE*(tc) is less than

some small a. The selection of 8 appears to be fault dependent

based on the results for the Cooper and Fort Calhoun cases in

Tables 4.3 and 4.4, respectively. Furthermore, the assumption that

if AE*(tc) < a stability is assured is not exactly correct since

the value of AE*(tC) for some interval tC above tCC is less than a

as shown in Figure 5.2. If this interval is small, and if one could

find an e for all fault cases, the algorithm presented in the next

subsection could be used for fast stability assessment.

Determination of the critical generator and the generator

max) and clearing timeangle positions of the system at time t8 (6

tc(ec) is the key point in calculating the minimum of energy dif-

ference AE(tB,tc) = AE*(tc). Analogous to the "fast PEBS method,"

one could apply the same RMS coherency measure (linear/nonlinear)

technique referenced in section 5.2 for post-fault network and

X

directly predict the peak angles ema as well as the critical gen-

erator of the system.
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Figure 5.2. Determination of critical boundary for critical generator

using minimum energy margin AE(tB,tc) method.
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The angles at clearing time tC(0C) can be approximated with

enough accuracy by using the Taylor series approximation algorithm

as described in subsection 5.1.2 for the faulted network. The fol-

lowing subsection summarizes the algorithm and outlines the pro-

cedure in a suitable order.

5.3.1. Efficient Equal-Area Algorithm for

Predicting Stability

 

 

The procedure for computing the transient energy margin

AE*(tC) and predicting the stability of the power system involves

the following computations:

(1) Solve the base case load flow equation (5.6) to obtain

generator angles at prefault (initial) operating point 051.

(2) Apply Taylor series approximation algorithm for faulted

network to obtain the generator angles at clearing time

tc,8(tc) = 6c.

(3) Use the linear pulse coherency measure to obtain angles

at time tB,e(tB) = emax and the critical generator.

(4) Having determined the critical generator and thus the

generator f0r which the individual machine potential energy is to

be evaluated, compute energy A1(851,8c) for faulted network using

equation (5.1)

A 851,8C) = V
1< PE.

1 e51
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(5) Compute energy A2(ec,emax) for post-fault network using

equation (5.1)

max

(6) Compute the sum of A1 + A2.

(7) If A1 + A2:; a, the system is stable. If A1 + A2 > e,

the system is unstable.

This algorithm was tested on the l7-Generator Reduced Iowa

System for different fault cases and the results are shown in

Chapter 7.

Comparison of the two algorithms, the fast equal-area method

and the fast PEBS method, determines that the latter is more effi-

cient and computationally faster because:

(a) it is not necessary to calculate the system parameters

for the faulted network, and

(b) there is no need to calculate the generator angles at

clearing time 6(tc) = 8C using the Taylor series approximation which

in turn requires a reasonable amount of calculations.

The equal-area method requires both (a) and (b) to compute accel-

erating energy A1.



CHAPTER 6

DERIVATION, JUSTIFICATION, AND VERIFICATION 0F

SECURITY MEASURE, PREDICTION OF PEAK ANGLES

6.1. Introduction
 

The concepts of this chapter deal with the development of a

linearized power system state model, a generalized disturbance model,

and the root mean square (RMS) coherency measure. These models and

the generalized coherency measure are used to derive algebraic expres-

sions which relate the RMS coherency measure, evaluated over an

infinite observation interval for step, impulse, and pulse distur-

bances in mechanical input power, to the parameters of the power

system state model and probabilistic description of the disturbance

vector. Finally, the theoretical justification of the fault security

measure for a second order system is discussed and the prediction of

the peak angles of the power system by RMS pulse coherency measure

is verified. The last section derives the computational algorithm

of pulse coherency measure for a multimachine power system.

6.2. Linearized Power System Model
 

A system of linearized state equations is derived for a power

system which is composed of classical synchronous machine models,

voltage dependent load models, and a transmission network model.

117
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A linear model can be derived from the nonlinear differential

equations for the electromechanical motion of the classical syn-

chronous generators plus a set of algebraic equations for the power

'Flows between the generators and the load buses of the system. The

eelectromechanical equations for the motion of each synchronous gen-

erator are:

where

d _

a? 6,-(t) ‘ “((15)
(6.1a)

d

M,- 'a'f w,(t) = PM (t) - PG1.(t) - Diwi(t) (6.1b)

l = 1, 2, , n

M. = inertia constant of generator i (in p.u.)

D. = damping constant of generator i (in p.u.)

6. = rotor angle of generator i (in radians)

w. = speed of generator i (in rad/sec)

PM. = mechanical input power of generator i (in p.u.)

PG. = electrical output power of generator i (in p.u.)

n 8 total number of generators in the system

In some papers, equation (6.1a) is given as:

34t— aim = 6.081(6) = 218081.“) (6.2)

where fo is the synchronous frequency of the system in Hertz, and

(L)

i '18 in per unit (p.u.) instead of rad/sec. Equations (6 1) are
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nonlinear because of the nonlinear relationship between PGi and the

bus angles in the interconnected network.

Equations (6.1) can be linearized around the nominal operating

conditions 5:1, (0:1, PG?1, and PM?1 by introducing the following

deviations:

_ s1
A61. - <51. - 61.

_ 51

A031 "' (Di - 0.11-

_ sl

APM = PM - PM51
i i i

The resulting linear model has the form

2191: A61.(t) = Aw1.(t) (6.3a)

Mi é%-Awi(t) = APM1(t) - APGi(t) - DiAwi (6.30)

i =1, 2, ...., n

Where A indicates that the variable represents a small deviation

From a specified steady state operating point.

The changes in the complex voltages and power injections at

the network generator and load buses may be expressed using a

JaCObian matrix as [22]



where

   

3g = [PG1, P62, ....

1
8

P

.g = [51, E2, ....

§_ = [61, 62,

1 = [V1, v2,

g = [61, 82,

89Q/a_6_

”APE. Egg/96

Afl BEL/36

AQ§_ -

_AQ_|_.__ _8_QL/8§

[001, 002, ....

PL = [PL1, PL2, ....

[QL1, 0L2, ....

120

339/31».

BEL/8311

eggs];

agg/ay

PG 1

06an

PLk]T

T

QLkI

   

BBQ/BE BEE/817F116-

Bfl/afi BEL/3! A];

aQ_G/8_E_ aQ_G/8_V_ A_E_

aQL/ag egg/ail _AL

(6.4)

real power injections at internal

generator buses (p.u.)

reactive power injections at

internal generator buses (p.u.)

real power residuals at load buses

(p.u.)

reactive power residuals at load

buses (p.u.)

voltages behind transient reac-

tances at generator internal

buses (p.u.)

angles at internal generator

buses (rad)

voltages at load buses (p.u.)

angles at load buses (rad)

For low loss systems (resistances in the transmission network are

close to zero) equations (6.4) can be simplified by accounting for

the decoupling which exists between the real and reactive power

flows [23]. The real power flows are largely dependent upon the

voltage angles and as a first approximation, the effect of variations

in load bus voltage magnitude may be neglected by setting the terms

QEQ/a! and aEL/ay_in equations (6.4) to zero. The voltages behind
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the generator transient reactances are constant, thus Ag =19. There-

fore, in equations (6.4) real power and phase angles are decoupled

from reactive power and voltage magnitude. These linearized decoupled

equations for real power flows can be written in polar form as:

agg BEE/86 ago/351 Ag

43L agL/ag REE/31 Ag

The partial derivatives corresponding to the above four terms are

most precisely calculated using the voltages and angles at the post-

fault steady state operating point 652, 052.

The power angle Jacobian matrix in the network equations (6.5)

is a sparse, symmetric, and singular matrix. Therefore, a unique

solution for Ag and Ag, given AP§_and AEL, cannot be obtained. This

minor problem can be solved by an angle referencing scheme [24].

Equations (6.3) and (6.5) are said to be synchronous frame

model since the deviations in generator and bus angles and generator

speeds are measured with respect to an external reference rotating

at the nominal system speed (fo = 60 Hertz). The deviations in

generator angles in response to a step disturbance in mechanical

input power will appear as ramp function. Therefore, the synchronous

frame modelhaslan eigenvalue at the origin (step input, ramp output).

Since a linear state model is desired that has all non-zero

eigenvalues, an arbitrary reference is chosen for the angles and

speeds of the generators. Selecting generator N of the system as
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the reference is a common practice in power system analysis, and in

a practical power system generator N is usually designated to be one

of the generators with a comparatively large inertia. This fact

suggests a modified version of the generator N reference known as

the "Nth machine reference" frame. The resulting linear model with

N-machine reference frame has the form

5
4
D C
D

d
o A

fl

v

H

D E
c
-
J A

d

v

—
J H

-1
M1 [APMi(t) - APGi(t)]

5
3 D E

)

a
. A

fl

v

I
I

- M&1[APMN(t) - APGN(t)] - 660i

where

o = Di/Mi 1 = 1, 2, ,

81(t) = 61(t) - 6N(t) 1 = 1, 2, ,

61(t) = 61(t) - 6N(t) 1 =1, 2, ,

wj1t1= 1,10 - 6N0) .1 =1, 2. .

The power equations in terms of the new variables

written as:

AE§_ egg/88 aggfag A8

A3): BEL/BB all/83g A‘_¥_

where

1, 2, ...., n - 1

can

(6.6a)

(6.6b)

be
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]T

-
_

T
§-[61,62, ....,8 ,i"[‘1’1,‘¥2, ...oa Wk‘l]

n-l

The network equations can be used to express AEG in terms of Ag and

AEL- This can be done by solving the second equation in (6.7) for

A? and substituting it in the first equation in (6.7) to obtain

83g 83g 8P_L -1331: BE BEL ’1

439' 53’s.??? 8143* “51‘ ‘8‘ (AP—L-

Oi“

AE§_= [Ag - EARL (6.8)

where

3%; 83g 831; '1 83!: 3E 8_P_L “1

Dir—8'28.“ ‘87:?7591? ‘5'”

‘1 is called the synchronizing torque coeffient matrix and L is called

the load reflection matrix.

Now, a linearized state space model can be derived by substi-

tuting PE in (6.8) into equation (6.6b) and writing the 2(n - 1)

equations in (6.6) in vector form to obtain

3(t) = Ax<t> + 89(t) (6.10)

where

§= m. ,3: ..... (6.108)



    

. .

-(n-1) (11-1)! -n-1 9 I 9
1

E = ............. 1 ---------- , 8 = ---T---- (5-10b)

1

_ I

I. 1.11. | Gin-1 J b M | ...".J

-1 -1-
LMI

: ‘MN

-1
'

M2 I

0 I
I

I

E =
: (6.10C)

I
0 | .

I -1
I -MN

-1 I -1

_ M n-1 I “MN J  
The next task in this chapter is to derive the disturbance

model which can be used for deterministic as well as probabilistic

system disturbances. The disturbance model has been developed in

[21] and the presentation here follows that development.

6.3. Disturbance Model

The input g(t), composed of the deviations in the mechanical

input power ABM on the generators and the deviations in load power

43L: can be used to model:

(1) loss of generation due to generator dropping

(2) loss of load due to load shedding

(3) changes in load injections due to line switching

(4) electrical faults
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These contingencies can be modeled by an input u(t) that has the

following form

u(t) = u(t) + u2(t) (6.11)

6.3.1. Step Disturbance

The vector function

I
91 t ;=0

91(t) =1 (6°12)

t < O ‘
0

where ul(t) is a vector step function with amplitude 91‘ Thus, the

non-zero entries in 91(t) can model the first three types of

disturbances.

The uncertainty due to a generator dropping, load shedding,

and line switching disturbance could be modelled by

      

r. ABM .1 P-mll .

EIgl} = E 1 ----- I = ----- =‘m1 (6.13a)

. ABE-.j .-m12 J

P311191

“Ml-mHh-mflT= ----- I ----- =31 (6mm

.91522.  
where

(1) @11 and 311 can describe the uncertainty in the location

and magnitude of generation changes due to generator dropping when
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the particular station, the generator in the station, and the power

produced on the generator are unknown.

(2) @12 and 322 describe the uncertainty in the location and

magnitude of the load being dropped by any manual or automatic load

shedding operation.

(3) @12 and 322 can describe the uncertainty in the location

and the change in injections on buses due to any line switching

operation.

The uncertain model of 91 can handle the case of a specific

deterministic disturbance by setting 81 = 0 and m1 = 91 for the

particular disturbance.

The function 91(t) can only model disturbances that resemble

step changes.

6.3.2. Electrical Faults
 

To model electrical faults, first define the vector function

 

I Q t > T2

92(t) = 1 92 0 ;3t ;,T2 (6.14)

I 9 t < O

that represents a pulse of duration T2 and amplitude 92' This vector

function can represent the effects of elettrical faults where T2

represents the fault clearing time and

[ AEM_]
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represents the step change in generation output equivalent to the

accelerating powers due to a particular fault. This change of mech-

anical powers, ABM, which is equal to the accelerating powers on

generators due to a particular fault is calculated by an ACCEL pro-

gram [22], and has been shown to adequately model the effects of

that fault when a linearized model based on pre-fault load flow con-

ditions is used.

The above model can be generalized to model the uncertainty of

any particular disturbance and yet handle specific deterministic

disturbance as a special case. If the size and location of an elec-

trical fault are not known and if the clearing time T2 for this

fault is known, then a probabilistic description of this fault is

  

'1‘21-

E{92} = “““ = T2 (6.158)

19.

. 321 E 9 .

E{[y2 ‘ T2][92 ‘ T21T} = """é"' = 82 (6.15b)

(050
- -.I  

where m21 and 321 describe the uncertainty in accelerating power on

all generators due to this electircal fault. This mean and variance

should be determined based on observed historical records or hypothe-

sized based on the present network conditions. If R = O, and

11121 = ABM for a specific fault, this generalized model then reverts

to the detenninistic model of a specific electrical fault.
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It should be noted that ARM and 43L are assumed to be uncor-

related because this model is to represent only one specific type

of contingency at a time. For the same reason 91 and 92 are assumed

uncorrelated with initial conditions, i.e.

E{§(0)u{} = g

(6.16)

E{§(O)u;} = 9

where the initial conditions of the linear differential equations

(6.10) are assumed random with

E{§(0)} = g (6.17a)

615(0)§T(0)1 = yx(0) (6.17b)

6.4. Linear RMS Coherency Measure

The RMS measure of coherency between generator internal buses

k and £ based on the uncertain description of disturbances is [25]

 

 

Ck£(T1)=\/T%? E{~/;T1[(Aék<t>*-46N(
t))- (463(t)-446N(t))]2 dt

= J§R£§X(T1)§k£
(6.18)

where

T1

-X(T1)=?15[ E{>_<(t)>_<T(t)}dt
(6.19)

1 0
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is a (2n - 2) x (2n - 2) symmetric matrix which is defined in terms

of the state vector x(t) of the linear model of the power system.

The integer p is chosen to be one if a load shedding, line

switching, or generator dropping contengency occurs and zero if an

electrical fault occurs. This integer is chosen as one or zero so

that the above integral will be finite and non-zero for an infinite

observation interval (T1 = m). ekz is a (2n - 2) x 1 vector defined

below for the generator N reference

 

I1 j=k

(-1 j = k for k f N, 2 f N

0 j # k, K

1 j = k

{geld} = for k ,1 N, 2 = N (6.20)

1' 0 jfk

1 J = 2

for k = N, E f N

0 j f K

since the objective is to compute the n x n coherency matrix C where

{C}k£ = Ck£(T1)’ k, 3 = 1, 2, ...., n

The elements of this matrix can be easily computed, provided

that the upper-left (n - 1) x (n - 1) submatrix of §x(T1) is known,

because the coherency measure between any pair of generators depends

only'on the generator angles (6.18). Denoting the upper-left

(n - 1) x (n - 1) submatrix of §x(T1) by SX(T1), the coherency mea-

sure Ck£(T1) can be found as
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{§x(T1)}££ k - N, 2 f N (6.21)

where

11 I §x(11)§ * l

§X(T1) = 33 f E{§(t)xT(t)}dt = ------- -I----

T1 ‘ 1

0 * : *  

The matrix §x(T1) can be easily computed by substituting §(t)

in equation (6.19). For the input function u(t) = u1(t) + 92(t),

§(t) has the following form

t

r At AT

e' x(0) + J{. 8" drB(u + u ) for t < T2

0

 
At t ’31 5(F‘T2) T2 5:

e x(0) + e drBul + e e dng

o o

for t > T2 (6.22)

Ftn" a specific step input disturbance (load shedding, loss of genera-

‘tion, or line switching) with the following specification

P = 1, Tl = 91, m2 = 0, 81 = R2 = Q, and V (0) = Q
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the matrix §x(T1) has the form

'1' (Sq T

(T)=.|.1—f:1{[fAeqqu]u1u1[[ e dQEI }dT (6-23)

0

If the specific deterministic disturbance is an electrical

fault sinceir1this case

= 82 = 9. and !x(0) = 9 .p=osml=0,m2
=92,81

the matrix §x(T1) becomes

T T T T

= j 211/ 81.11) 811 1 1
O 0 O

T ,T_ T

+[ 1{[ee( T2)] 2eAqqu] uzuu2|:eA (ITszszquIBJTdr}

T2 o o

(6.24)

This RMS coherency measure can handle both deterministic and

probabilistic descriptions of power system disturbances. It is

shown in [26] that the RMS coherency measure evaluated over an infi-

nite interval (T1 = m) can be analytically related to generator

inertias. synchronizing power coefficients tkz of equivalent lines

connecting internal generator buses k, 1., and the statistics of the

disturbances .
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In the following subsections an infinite interval-RMS coherency

measure will be derived for step, impulse, and pulse disturbances in

the mechanical input power of the generators.

6.4.1. RMS Coherency Measure for Impulse Input Disturbance

The RMS coherency measure matrix for the impulse input dis-

turbance can be obtained from the general equation (6.21) provided

§x(w) for impulse is derived first, using

-x T”

1

1

s (.1 =.211 JII E{§(t)§T(t)}dt (6.25)

1

where §(t) is the solution of

5(1) = 55(1) + 991(t) (6.26)

for the impulse input uI(t) = g- 6 (t) . Assuming zero initial

conditions, i.e., at t = 0, 3(0) = 0, the state of the system at

time t can be found as

t A(t-1) At

5(t) = e 896(t)dt = e 89 (6.27)

0

Substituting (6.27) into (6.26), Sx (m) for impulse becomes

I

T1 At T T ATt

S (m) = Kim E{ e 899 B e l-dt

xI T1+00 0

T1 At 1 T ATt

= 21m (8 BE{gg }B e )dt (6.28)

T177 0
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where

  

represents the step change in generation output equivalent to the

accelerating powers due to this impulse. The statistics of this

disturbance are defined to be

F m

  

 

-al

-a = E{g} = TTTTT

91

1 8,1;9

B, = EIE9 - 0,119 - 9,] 1 = -----f--

0 E 0
I-.-

thus

I- T'

B l + Talmal E

I

E{ooT} = R + m mT = .............. 1

-- -a -a-a '

9 I
b I 

where 3611 is the variance matrix and @611 is

 

 

(6.29a)

(6.29b)

(6.30)

the mean vector of the

uncertainty in accelerating power on all generators due to this

impulse (electrical fault).

Defining v = n(n + m mT) T
-a - -a -a-a

8 equation (6.28) becomes



S (m) = £im (e' V e )dt (6.31)
-x

I T1+0°

In order to obtain a closed form solution for §x1(m) it is

appropriate to approximate the impulse as a pulse with very short

duration. To clarify this let us start with the pulse and its sta-

tistics and try to relate it to the impulse and its statistics

approximately.

Define the pulse of duration T2 as

IQ t>T2

g2(t) = 1 92 0 g.- _:_12 (6.32)

LQ t>O 

where 92 - [ABM E Q]T , and its statistics are

  

.

r r1‘21

[112 = E{L_‘2} = “““ (6.338)

9

. : 1

821 : 9
I

32 = 61192 - mZJIQZ - mZJT} = ----- 1--- (6.33b)

9 59   

'The impulse now can be approximated by the above pulse as follows

r

0 t > T2

91(t) = 96(t) = $130 92(t) z 1 1/T2 a 0:; t é=T2

2 19 t<0 
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and the statistics of pulse and impulse may be related as

e .1.m2 T2 ma (6.34a)

R =-l— R (6 34b)
-2 T2 -a '

2 .

It has been shown in [26] that for a pulse of very short duration

(impulse), 5x (m) can be determined from the following equation

. g
(6.35)

where N is the solution of the following Lyapunov equation

5g + ngT = - Y2 (6.366)

and

12 = 6182 + 1211118 (6.3511

T1 At th

N = Kim (e V e )dt
_ T +m -2

1 o

T1"T2 At ATt

= Kim (e yze )dt (6.36c)

T1+00 0

Comparing equations (6.31) and (6.36c) and knowing that Y2 =-l§ ya

T2
it is obvious that N =-l> Sx (m). Substituting matrices N and Y2

1% I

into equation (6.36a), the following Lyapunov equation is obtained
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55x (.1 + 5x (.)A = - 1, (6.37)
I I

This Lyapunov equation (6.37) can be easily solved by considering

the symmetric property of the matrix Sx (w). Thus, partitioning

  

I

S (w) as
..xI

, .

.S.1:§2

§XI(~) = ----f---- (6.38)

sT's

-‘2 ‘34

and calculating

..g : 9 .

_ TT_ '

-, - 1(8, + m,-,)§ - ---) -------------------

I T T

_.9 1 ”(8&1 T Ta19a1)5  

along with some algebraic manipulation S1 becomes

- ~ . ..1. -1 1 1
§1 - §XI( ) 40 [(fl) ”(F-{011 + Tali-‘61)”

T T -T

+ («(120,1 + 1.19.1)” (MI) 1 (6.39)

The expression (6.39) shows that for the impulse input disturbance

the matrix Sx (m), which defines the infinite interval RMS coherency

I

measure, is related algebraically to the parameters of the linear

system model and the disturbance statistics.
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6.4.2. RMS Coherency Measure for Pulse Input Disturbances

The RMS coherency measure for a pulse input disturbance Sx (a)

may be obtained as the limit of Sx (T1) when T1 approaches infingty.

§x (w) for a pulse disturbance of duration T2 has been derived in

P

[24] and is shown to be

Q

_
.
l

n T

5, (...) = 312- (5"‘2 1.4 + v<e”'2) 1 (6.40)

p n=2

where N is the solution of the Lyapunov equation (6.36a). The solu-

tion of this Lyapunov equation is similar to the solution of the

Lyapunov equation for the impulse disturbance. The solution of N is

exactly the same as the solution of §x (m), except that we have to

I

use the statistics of the pulse rather than the impulse statistics.

This solution has the form

£E.[(MI)‘1MAEM-APMTMT4-MAEMAPMTMT(MI)-T1 9

0 i; [MAPMAPMTMT]  

(6.408)

where M and Afl are the inertia matrix and the accelerating

power on all generators due to the pulse input disturbance,

respectively (electrical fault). If the pulse duration time

T2 is very short,only the first term in the series (6.40)

will be required, and under this assumption Sx (on) = TS N.

I
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Equation (6.40) shows that for the pulse disturbance, S (m), which

P

defines infinite interval RMS coherency measure, is related alge-

braically to system structure and disturbance statistics.

6.4.3. Justification of Nonlinear RMS Coherency Measure

The nonlinear RMS coherency measure is now derived based on

the linear RMS coherency measure derived in the previous section

by showing the term [MI]'1MAPM_in N is a linearized inertial load-

flow.

The inertial load-flow equation is first proven to be defined

as a singular point of the global energy function. An expression

for a linearized inertial load-flow equation is then obtained.

Finally, the angle changes for this inertial load-flow are shown to

satisfy

49 = [Mil-10' 42!. (6.41)

which appears in N. This justifies replacing expression (6.41) in

N by §u _ §52.

The inertial load-flow equation that defines the singular

point of the global energy function is now derived.

Consider the energy function of the system represented by

n-l n

V = Z Z I—MiMj (1. - (1)2 - (Ple ' 13.11,)“ .- .152)
ZMT 1 j MT 13 i3

i=1 j=i+1

 

52

- Cij(cos Sij - cos Gij)] (5-42)



139

Take partial derivative of V with respect to 61 and set equal to

zero, BV/aoi = 0.

 

n n
P M. - P.M.

- l J J l =2 MT +2 C13 s1n 6 J 0 (6.43)

i=1 i=1

121

n

Pi 253IMj M n n

i=1 _ _1 = .
MT MT Pj Cij s1n Gij (6.44)

i=1 i=1

Mi n n .

i=1 i=1

Assume that Pi = PMi; therefore

M. n n

.1 = - A

i=1 i=1

The equation (6.46) is an inertial load-flow equation and is

used to solve for an unstable equilibrium point of the system. This

equation can be linearized to form the following:

APMi - W71: APM. :21.)T. .A6. (6.47)

where
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_
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.
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.

c
.
.
.

  

  

M. n-1 n-1

l _
APMi --5; APMi - TijAei (6.48)

i=1 i=1

where

A0 = A61 - A6N

or

T .

1‘1 1‘1 11
MT MT MT

MT ”T MT

IA2=i.I.- )AEM.

E in
. MT ' MT 1

(6.50)

n

where ZMJ. = MT' Multiplying both sides of equation (6.50) from

i=1

the left by M, where:
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'L __1_]

M1 Mn

5 =

_1____1_

_ Mn-l Mn .

and noting that:

'_1_ -_1_1 11.141. 11_11

M1 Mn MT MT MT

1212 112.0

MT ”1 MT '.

-1-_1_ Flair: in.

L Mn-l Mn . L MT MT MT ‘

then (6.50) may be written as:

MAPM = MT A8 (6.51)

Thus, the inertial angle changes for step input disturbance (loss of

generation i and generator buses are:

[11114131135 (6.52)A6

As a result of this discussion one could use the UEP angles

eu _ 952
A8, calculated by a special program, instead of [MI]'1M PM

to calculate the fault coherency measures (non-linear). This leads

us to the following equation



0) + 66(0)(e” - 652) (6.53)

In the next subsection the method of obtaining the peak angles from

matrix 5x (6) is described.

1

6.4.4. Theoretical Justification of Fault Security

Measure for Second Order System

Consider a second order system such as single machine infinite

bus power system; its behavior can be represented by the following

linear second order differential equation

M1A6(t) + DA6(t) + TA6(t) = u(t) (6.54)

where

3

C
)
H

I
I

I
I

inertia of the machine

damping coefficient

and u(t), A6(t) are defined as input and output of the system. The

point of concern here is to study the response of this second order

system to

(1) step input disturbance

(2) impulse input disturbance

and then show that these responses are related to each other.

System Response to Step Input Disturbance. Defining the step

input function as
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one could solve the linear differential equation

I". > O (6.55)M1A65(t) + DAos(t) + TA6S(t) = APM

and obtain the closed form solution Aos(t)

-D/2M t

1 cos (\/4M1T - 02/2M1) t

 APM{1_e

-D/2M t
- D e 1 sin ( ./4M11 - 02/2141) t} (6.56)

((41111 - 02

Steady-state response of the system is obtained when t + w

_ APM
Aos( ) - ‘T" (6.57)

To find initial acceleration A65(0), set D = 0 in equation (6.56):

(6.58)
_ APM

A65(t) - ‘T‘ {1 - cos (/4M1T/2M1)t

and then take the second derivative of equation (6.58)

t) = fl cos (/4M1T/2M1)t-A6'(
s M1

By setting t = 0, the initial acceleration will be obtained
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665(0) = 434 (6.59)

Multiplying equation (6.57) by equation (6.59),

-APM.A_PA
865(m) A6S(O) - —TP' M1 (6.60)

Rearrange equation (6.60) and define M 91%; to obtain the result in

1

the compact form

A65(m)° 665(0) (MT)-1MAPM° APM- M (6.61)

System Response to Impulse Input Disturbance. Consider the

same second order model and apply an impulse function u(t) = APM 6(t)

where 6(t) is defined as a delta function.

M166(t) + DA6(t) + TAO(t) = APM- 6(t) (6.62)

The solution of this differential equation can be expressed as

 

‘2M‘ t

A6 (t) = ZAP” e 1 sin (./4M T - 02/2M ) t (6.63)
1 4M 1 02 1 1/ 1 -

The maximum value of A6I(t) can be obtained by taking the first

derivative of A61(t) with respect to t.

1(1)/01
 

(t) = ZAPM e‘(tan

0° sin (tan'1 a) (6.64)A6

S
2

Imax

where
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6 g\/ 4M1T - 02/0

For the case where damping is zero (0 = 0),

(t) = AP” = (M T)‘i APM (6.65)

Imax V MIT 1

 

Let M Q-£L and rewrite equation (6.65) in desired fonn

1

(t) = (MT)'i M- APM (6.66)

By comparing equations (6.66) and (6.61) with each other, the rela-

tionship between the response of the system to impulse disturbance

and step disturbance is represented by

 

(t) = LAG («)A6 (0) (6.67)

For multimachine power systems, the security measure for impulse

input disturbance can be written as

2
. T

s (e) = -3(}M1)‘1MAPMAPMTMT + MAPMAPMTMT(MT)-T] (6.68)
.% 46— »——- -———-—

substitute

(Ali‘lnABAAPMTnT

by
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T

A8 (t)- A8

_—Jmax Tfiimax(t)

in (6.68) and write the resulted expression in vector form

5,61) =k2[_1_e_I ~16} +16] 49., 1 (6.69)
I max max max max

where k2 2

k2 - T2
"46

Having calculated the matrix Sx (m), the diagonal elements of this

I

matrix are proportional to the square of the angle changes of the

- 2

generators (A6} ) for i = 1, 2, ...., n due to impulse disturbance

max

and the post-fault system generator angles at time tB are

6} = 652 + koe} , i = 1, 2, ...., n (6.70)

max 7 max

The above development of the expression for the peak angle

deviation for the second order system (6.54) is based on the assump-

tion of zero damping. However, the RMS coherency measure depends

on the damping to inertia ratio 6 = Di/Mi which it should because

the peak angle deviation should decrease for increased damping.

Thus, 6 should be set experimentally to reflect the effect of turbine

damping Di as well as the effective damping caused by the load

impedance reflected in the conductances in the transmission network.

Thus, the square root of the diagonal elements of the matrix

SI(w) can be added to the base case load-flow angles to predict the
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peak angles for the multimachine system. This prediction (6.70) of

the peak angles using the linear or nonlinear RMS coherency measure

has not been justified based on analysis of the multimachine model

but solely based on the analysis on the special case of the second

order system model. The accuracy of the prediction of the peak

angles (6.70) using the RMS coherency measure from experimental

results in the next chapter justifies the use of this prediction

model.

6.5. Computational Algorithm for Infinite

IntervéT'PuTSe Coherency Measure

 

 

From the discussion of subsection (6.4.2) it is understood

that the coherency measure for pulse input disturbance, which was

derived in [24], has the following expression

- 2 n-2 n-2

§x (...) - 2310) 11+ [MA ) J (6.71)

p n=2

where N is the solution of the Lyapunov equation (6.368) and has the

form shown in (6.40a).

The objective of this section is to derive an algorithm for

computing the coefficient matrices En-ZN in the above series expan-

sion for the pulse coherency measure.

Consider the matrix H shown in (6.408) and define the sub-

matrices M and X as



I
x

so that

I
:

  

(6.72)

For the power system model with zero damping (o = D/M = 0), the

matrix A has the following form

|
J
>

form

AN

 

 

 

 

 

l
>
<

 

 

 

I
O

'
0

l
-
<

l
-
<

1

1
fi

l
5

L3
.

  

  

(6.73)

l
-
<

 

'
0

I
O

 

 



149

1
3
>

1
2
:

I
I II

      (MT)"'1!J
— L

MT 0

'
0

Since the pulse coherency measure is computed from upper diago-

nal submatrix, it is clear that the matrices

2k
(EZkUI11 = upper diagonal submatrix of 5 w = (M1)kx (6.756)

need to be computed since

(AZK'ly)11 = upper diagonal submatrix of 52k'1n = g (6.75b)

for k = 1, 2, If we define vectors

0 - ——

2’5 (6.76)

v1 9 —l—-MAEM

2/6

then matrix 5 has the form

T T

vov1 + vlvo (6.77)

|
>
< I
I
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and the series (M1)k§ could be written as a function of these vectors

v0 and v1 as the following

_ T T _ T T
(M )3 - (MT)vov1 + (MT)v1vO - vlv1 + V2Vo

2 _ T T _ T T

MT.) ’3 ' (M—T-IV1V1 t (wvzvo ‘ V2V1 “ v3"o

(NJ-)3! ' (EIVZVI i (EIV3V6 = V3V1 i V4V6

(111)"); = (_T)vk_lv{ + (mvkv; = vkq + 1W; (6.78) .

where

vk+1 MT vk , k = 0, 1, 2,

The series

.. kT

2 (5k 25)11 Ti

k-2

can then be written as

.. k 4
1 1 1
2 k-2 _ 2 1 T 2 1

12145 ”11 ‘ 2T(V1Vo + VoV1) + 71T("2Vo i V1V1) +

k=2

and
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(WAR-2) I = 2T("1"o+V V1)+“T (V

k=2 11
(6.79)

5
'

[
V
i
—
'
7
?

As a result of this analysis, one has to compute the vectors Vi

i = 0, 1, 2, 3 to compute the pulse coherency measure, which pre-

dicts the peak angles of the system for a particular fault.

The computational algorithm of the pulse coherency measure

for predicting peak angles of the generators in the system can be

summarized in the following order.

(1) Compute generator accelerating power APM using ACCEL pro-

gram, which requires one linear matrix equation to be solved. Then

 

compute v1 = MAPM_directly./‘

(2) Co6p6te vo from inertial load-flow equation for post-

fault network (see Appendix A).

(3) Compute Vk+1’ k = 1, 2, ... from iterative equation involv-

ing pre-fault network Jacobian network matrix (see Appendix A).

(4) Compute post-fault stable equilibrium points 852 from

DC load-flow equation.

(5) Substitute vés in equations (6.79) to obtain the pulse

coherency measure matrix Sx (m). Then take the square root of diago-

nal elements of this matrix and add them to the post-fault stable

equilibrium point angles as was shown in equation (6.70). The results

would predict the generator peak angles for this fault disturbance.

This method of finding the peak angles of the system generators

is very fast and computationally efficient in comparison with trajec-

tory simulation method. Simulating the» systen trajectory
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requires iterative solution of n + m (where n is the number of gen-

erator buses and m is the number of load buses) dimensional set of

nonlinear equations every integral step size At = .01 seconds during

fault and every At = .05 seconds after fault clearing. This approxi-

mation algorithm requires solution of only a few sparse linear matrix

equations such as:

(1) one linear equation solution for computing APM

(2) one solution of a nonlinear load flow for post-fault stable

equilibrium point 8S2

(3) one linear equation solution for computing v0

(4) computational results showed that after four iterations

terms (MI)kX: for k = I, 2, 3, 4, the measure (6.71) converged.

Therefore the algorithm requires in total six sparse linear equation

solutions and one nonlinear load flow solution.



CHAPTER 7

STABILITY ANALYSIS USING FAST DIRECT METHODS

AND COMPUTATIONAL RESULTS

7.1. Introduction
 

The same power network (Reduced Iowa System) described in

Chapter 4 was used to study the stability of the system by fast

direct methods for the same three fault cases, Cooper, Fort Calhoun,

and Raun, as described in Chapter 4.

The objective of this chapter is to apply the fast direct

method stability algorithms (the PEBS and equal-area) and show the

results of the direct stability run for each fault case and dichss

the accuracy of these results.

7.2. Cooper Case
 

A three-phase fault is applied to generator 2 (Cooper) and

is removed by clearing line 6-439.

The point of interest is to study the behavior of the system

due to the fault and directly determine whether the system is stable

or unstable without simulating the system trajectory.

Recall the efficient PEBS algorithm described in subsection

5.2.1. To compute the boundary energy VPET(tB’tc) = vcr from equa-

s1
tion (5.1) having the prefault Operating state 8 , it is understood

max
that one needs to determine the peak angles 8 (using linear or

153
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nonlinear RMS coherency measure) as well as the critical generator

or the critical group. The linear and nonlinear RMS coherency pro-

gram was run for different clearing times and generator 2 was found

to be the generator with the highest peak angle. Therefore, gener-

ator 2 is predicted as the critical generator. Tables 7.1 and 7.2

show the peak angles of the generators with respect to generator 13

as a reference generator for two different clearing times tC = 0.192

and 0.210 seconds. Although the predicted peak angles by RMS coher-

ency program (entries of columns 3 and 4) do not match with those

obtained from simulation program (entries of column 2) in these

tables, the results of computing the maximum potential energy of the

critical generator using these approximated peak angles shows that

the fast PEBS algorithm works accurately and predicts the stability

boundary of the system. For different clearing times, the proposed

PEBS method with both linear and nonlinear RMS coherency as peak

angle predictors were tested on the Reduced Iowa Test system and

the results are summarized in Table 7.3.

In Table 7.3 columns 2 and 3 represent the boundary energies

v;E(tc) calculated for different clearing times using the linear

RMS coherency measure as predictor, for the energy function (5.1)

with conductance term included and excluded, respectively. In

both cases the largest peak value of the boundary energies

occurs for clearing time within the interval tce (.210, .224)

indicating that the critical clearing time is in this interval.
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Table 7.1. Generator peak angles((81-61 for C00per using the RMS

coherency measure and simulagion programs. Clearing

time = .192 seconds

 

 

RMS coherency peak angles

 

 

generator simulation

number peak angles linear nonlinear

1 20.33 50.68 12.91

2 130.20 176.44 119.26

3 28.67 29.94 14.60

4 11.51 22.84 8.43

5 57.28 56.54 25.18

6 58.53 43.11 25.85

7 9.84 49.71 17.29

8 13.27 70.96 20.11

9 19.68 39.28 20.17

10 69.17 101.22 42.58

11 26.98 71.65 21.68

12 64.45 135.99 52.16

13 --- --- ---

14 - 0.26 6.49 2.12

15 13.66 16.52 9.40

16 74.12 113.28 46.51

17 92.78 138.14 56.29
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Table 7.2. Generator peak angles (81-81 ) for Cooper using the RMS

coherency measure and simula ion programs. Clearing

time = 0.210 seconds.

RMS coherency peak angles

generator simulation

number peak angles linear nonlinear

1 20.33 50.68 12.91

2 130.20 176.44 119.26

3 28.67 29.94 14.60

4 11.51 22.84 8.43

5 57.28 56.54 25.18

6 58.53 43.11 25.85

7 9.84 49.71 17.29

8 13.27 70.96 20.11

9 19.68 39.28 20.17

10 69.17 101.22 42.58

11 26.98 71.65 21.68

12 64.45 135.99 52.16

13 --- --- ---

14 - 0.26 6.49 2.12

15 13.66 16.52 9.40

16 74.12 113.28 46.51

17 92.78 138.14 56.29

 



 

 Table 7.

clearing

times

0.192

0.208

0.210

0.216

0.224

0.24

\
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Table 7.3. Determination of maximum potential energy (PEBS) for

Cooper using the fast direct method.

linear nonlinear

clearing with without with without

times conductance conductance conductance conductance

0.192 9.907 4.915 9.937 6.886

0.208 9.941 5.156 10.896 7.928

0.210 9.947 5.174 11.009 8.057

0.216 9.949 5.197 11.336 8.187

0.224 9.773 5.112 11.744 8.930

0.24 9.516 5.062 10.917 8.735
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Comparison of these results with the actual tcc s .220 seconds

obtained from simulation program (Table 4.2) confirms the accuracy

of the algorithm. It should be noted that in this research there

was no attempt to determine the stability boundary very accurately.

However, one could calculate the boundary energies v;E(tc) for addi-

tional clearing times to precisely determine the highest possible

value of VPE(tc)' The corresponding clearing time for which this

maximum energy value occurs was the critical clearing time from the

results of Chapter 4. The results in columns 4 and 5 of Table 7.3

show that the boundary energy v;E(tc), where the nonlinear RMS coher-

ency measure was used as the predictor, peaks for clearing time

tC c (.216, .240), therefore the critical clearing time is within

this interval.

Although the critical clearing time tCC for the nonlinear

case appears to occur at a later time compared to the critical clear-

ing time of the linear case, the results are still in agreement with

actual simulation results.

For the same fault location (Cooper) the fast equal area

algorithm was applied to the same test system and stability of the

system was tested by computing the energy margin AE(tc) = A1(tc) +

A2(tc,tB) for differentclearing times. The results of this analysis

are summarized in Table 7.4.

From Table 7.4, where the local equal area energy margin for

generator 2 is considered, it is observed that when the linear RMS

coherency measure is used as the predictor of generator peak angles,
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Table 7.4. Determination of minimum energy margin (EAC) for Cooper

using the fast direct method.

 

 

 
 

 

nonlinear

clearing with without with without

times conductance conductance conductance conductance

.192 - .372 1.487 1.548 .791

.208 1.559 2.709 .486 .071

.210 1.832 2.886 .374 .004

.216 2.661 3.021 .018 .0038

.224 3.955 4.287 - .509 -.569

.24 6.244 6.215 1.573 .583
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the minimum of AE2(tB) increases as the clearing time increases.

The critical clearing time based on the second and third columns

of this table is not predictable because there is no minimum point

for AE2(tB) versus clearing time tC and hence the algorithm based

on the linear RMS coherency measure does not work properly. The

entries of the fourth and fifth columns with the nonlinear RMS

coherency measure show that the energy margin AE2(tB) decreases as

the clearing time approaches the critical clearing time for tcstCC

and then AE2(tB) starts to increase as clearing time increases for

tc > tcc’ The critical clearing time based on the fourth and fifth

columns of Table 7.4 is again estimated to be in the interval

tcc e (.216, .240). These results confirm that the approximation

algorithm based on the nonlinear RMS coherency measure for predicting

critical clearing time is very compatible to the results obtained

from simulation.

The nonlinear RMS coherency measure requires very significant

computation to obtain the unstable equilibrium point. Since the

linear RMS coherency measure appears to perform quite well for the

PEBS method and since it can be computed at the cost of a decoupled

load flow, the nonlinear RMS coherency measure was not applied to

either the Fort Calhoun or Raun cases. However, the nonlinear RMS

coherency measure performed satisfactorily for both the equal area

and the PEBS methods where the linear RMS coherency measure only

performed adequately for the PEBS method.
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7.3. Fort Calhoun Case
 

For the critical generator 16 of the Fort Calhoun case, a

similar analysis to that of generator 2 of the Cooper case is per-

formed. Generator 16 is correctly selected as critical from the

maximum of peak angles predicted by the RMS coherency measure.

Tables 7.5a and 7.5b summarize the results obtained by monitoring

the individual machine potential energy (PEBS) and energy margin

AE(tB,tC) for generator 16, respectively. Note that in these analy-

ses only the linear RMS coherency is used to predict the critical

generator 16 and the peak angles of the system generators. From

Table 7.5a it is clearly observed that as the clearing time increases

toward the actual critical clearing time (which is not known at this

time), the maximum of the potential energy increases until it reaches

its highest value for tC c (.360, .368). However, this result is

off by .008 seconds from the result obtained from simulation

tc e (.352, .356) in Table 4.5. From Table 7.5b, where the minimum

energy margin for generator 16 is considered, it is observed that

again the minimum of AE16(tB) increases as the clearing time increases.

Since there is no minimum point for AE16(tB) versus clearing time

tc, the critical clearing time once again cannot be predicted using

the fast equal-area algorithm and the linear RMS coherency measure.

7.4. Raun Case

For the Raun case, for both the inclusion and exclusion of

the transfer conductances the proposed fast PEBS and EAC algorithms

for different clearing times were applied. In both cases the linear
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Table 7.58. Determination of maximum potential energy (PEBS) for

Fort Calhoun using the fast direct method.

 

 

linear

 

clearing with without

times conductance conductance

 

.320 11.442 4.232

.336 11.584 4.451

.345 11.678 4.627

.352 11.714 4.721

.360 11.737 4.819

.364 11.748 4.936

.368 11.740 4.907

.384 11.690 4.749

 

Table 7.5b. Determination of minimum energy margin (EAC) for Fort

Calhoun using the fast direct method. ‘

 

 

 

 

linear

clearing with without

times conductance conductance

.320 -3.647 -1.504

.336 -2.831 -1.125

.345 -2.137 - .844

.352 -1.681 - .601

.360 -1.131 - .294

.364 - .883 - .082

.368 - .549 .046

.384 - .700 .822
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RMS coherency measure was used to predict the critical generators and

the generator peak angles. This coherency measure indicates gener-

ator 6 is the most accelerated generator in the system. Therefore,

by definition, generator 6 would determine the stability or insta-

bility of the system. Thus, generator 6 is the critical generator

in this case. However, in Chapter 4 it was shown that both gener-

ators 5 and 6 were accelerated and separated from the rest of the

system simultaneously, and it was also shown that more time was needed

to drain out the excess clearing energy of generator 5 than that of

6. In other words, although both generators 5 and 6 lose synchronism

with respect to the stationary group, generator 6 becomes weakly

decoupled where generator 5 is still strongly coupled and becomes

weakly decoupled at a later time if the system loses stability. This

confinms the fact that the true mechanism of stability is dictated

by generator 5 rather than 6. The linear RMS coherency measure

therefore did not correctly identify the critical generator in this

Raun case.

However, in both algorithms (PEBS and EAC), the energy of gen-

erator 6 was used to predict the stability boundary of the system.

Tables 7.6a and 7.6b show the results obtained from the direct appli-

cation of both the PEBS and EAC algorithms on the Reduced Iowa Test

System, respectively. From the entries of Table 7.6a, for both

the inclusion and exclusion of the transfer conductances, it is

clear that the potential energy maximum of generator 6 with respect

to the rest of the system has the highest value for clearing time

around tc = .1922 seconds. This phenomenon indicates that the
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Table 7.6a. Determination of maximum potential energy (PEBS) for

Raun using the fast direct method.

 

 

 

 

linear

clearing with without

times conductance conductance

.160 10.384 7.205

.176 10.672 7.711

.1922 10.691 7.858

.208 10.184 7.608

.224 9.420 6.946

 

Tkable 7.6b. Determination of minimum energy margin (EAC) for Raun

using the fast direct method.

 

 

linear

clearing with without

times conductance conductance

.160 .117 . 1.251

.176 2.785 3.216

.1922 6.294 5.941

.208 10.623 9.434

.224 15.686 13.640

x
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estimated critical clearing time is approximately equal to tcc =

.1922 seconds, which is very compatible to the actual boundary

tc c (.1922, .1925) obtained from the simulation results.

Table 7.6b shows the minimum energy margin of generator 6

with respect to the other generators AE6(t in the system for dif-c)

ferent clearing times for both the inclusion and exclusion of the

transfer conductances. In both cases, the minimum energy margin

AE6(tc) varies with clearing time, i.e., for increasing clearing

time tc, AE6(tc) increases and this relationship holds even for

large clearing times. Thus,function1AE6(t ) does not have a minimum
c

point with respect to clearing time tc and hence one cannot predict

the critical boundary tCC using the fast equal area prediction method

with the linear RMS coherency measure.

The PEBS method for the individual machine energy function

with the linear RMS coherency measure used to predict the peak

angles is quite accurate compared to results obtained:

(1) Using the PEBS method for the individual machine energy

function based on the actual simulation [16]. The results in Chap-

ter 4 indicate that the critical clearing time could be determined

much more accurately but the accuracy obtained in [16] was deemed

adequate to indicate accuracy of the method.

(2) Using the PEBS [17] or critical UEP methods [2] based on

the total energy function. These methods have limitations on their

accuracy due to use of the total energy function.
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The fast PEBS method is quite acceptable in its level of

accuracy because:

(1) the results using the PEBS method for the individual

energy function with the linear RMS coherency measure are as accu-

rate as these previous results, and

(2) for applications of this fast PEBS method for on line

simulation at utility control centers and for screening contingen-

cies for operation planning, and expansion planning it is more than

sufficient.

The fast PEBS method with the linear RMS coherency measure

does not require the significant computation required for computing

the nonlinear RMS coherency measure. Thus, since the linear RMS

coherency measure appears to give results with adequate accuracy,

the fast PEBS method with the nonlinear RMS coherency measure was

not explored in depth.

I The linear RMS coherency measure did not perform properly

for the equal area criterion method for the individual machine energy

function. The nonlinear RMS coherency measure did perform adequately

for the equal area method but was not explored in depth due to the

significant additional computation required for the nonlinear RMS

coherency measure. The equal area method also requires computing

the angles at clearing time using a Taylor series which is additional

computation.
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In conclusion, the fast PEBS method with the linear RMS

coherency measure thus appears to provide adequate accuracy at a

minimum computational requirement.



CHAPTER 8

REVIEW, CONCLUSION, AND TOPICS

FOR FUTURE INQUIRY

“
7
3
,

8.1. Chapter Review
 

A fast accurate direct method for assessing whether the power

I
‘
?
‘

7
“

system will or will not lose stability for a particular fault, line

clearing action, and fault clearing time has been sought for over

thirty-five years. The development of such a direct method should

not require simulation of the fault and the clearing action for a

particular fault clearing time but should require approximately

the computation associated with a fast decoupled AC load flow. If

this direct method of assessing stability for faults had the computa-

tion requirements of an AC decoupled load flow, it could be applied

in the following applications for fault contingencies as the decoupled

load flow is presently used for line outage and loss of generation

contingencies.

(1) A screening tool for operation planning where all first

and second contingencies are evaluated to (a) assess whether the

operation plan for any day, week, or season is vulnerable to a loss

of stability, (b) determine and rank contingencies for which the

system is vulnerable, and (c) select the contingencies to be evalu-

ated on-line at the utility control center. Theoperationpflan would

168
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be modified if the particular operation plan was vulnerable to any

credible first or second contingency. The fault contingencies that

are found to be most severe can be evaluated using more accurate

models to assess the cause and severity of the particular contingency.

(2) As a check for system operators at control centers. The

operators could assess the severity and whether the system would

lose stability for any fault contingency or set of contingencies

that appear of great concern because of loss of generation; line

outages or fault contingencies haveoccurred that were not anticipated

in the operation plan. The set of contingencies selected off line

as part of the operation plan could also be simulated to determine

if any of these contingencies would cause loss of stability or

security due to changes in operating conditions. The operator will

attempt to modify the operation based on the results of the con-

tingency simulation to eliminate the security or stability problems .

identified by the contingency simulations.

(3) A screening tool for expansion planning where all first

and second contingencies are evaluated for each alternate expansion

plan for several operating conditions. The relative security or

reliability of the expansion plan will be used to help decide which

expansion plan should be implemented. Detailed simulation of fault

contingencies found to make the system vulnerable would be under-

taken to accurately assess the cause and severity of the security

or stability problem.

The proposed contributions of this thesis are:
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(1) To further refine the potential energy boundary surface

and equal area methods developed previously [16, 19] using an indi-

vidual machine energy function. The method for identifying the

critical generator in [29] is used to select the machine for which

the individual machine energy function is written. The potential

energy boundary surface method, which determines the maximum poten-

tial energy of the individual machine energy function as a function

of clearing time, is shown to have a very sharp narrow peak at the

critical clearing time. It was thought, based on [16], to be nearly

flat for all clearing times greater than critical clearing time.

This very sharp narrow peak for the maximum potential energy as a

function of clearing time at the critical clearing time (8) makes

extremely accurate identification of the critical clearing time

quite easy, and (b) indicates that the combination of the method

for identifying the critical generator and the method for determin-

ing the maximum potential energy produces an energy metric that

truly captures the structural conditions that cause the loss of

stability for a particular fault. The equal area method measures

the accelerating energy and decelerating energy for the individual

machine energy function of the critical generator for a particular

clearing time. The maximum decelerating energy is determined by

noting the maximum of decelerating energy as a function of time.

The difference between the accelerating energy as a function of

clearing time is shown to be close to zero for small clearing times,

have a very sharp negative peak at the critical clearing time, and

II
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have positive values for clearing times greater than the critical

clearing time. This result was not known previously and (a) shows

that the equal area condition of single machine infinite bus system

does apply to the multimachine system if properly applied to the

individual machine energy function for the critical generator,

(b) makes extremely accurate identification of the critical clearing

time quite easy, and (c) shows this difference in accelerating and

maximum decelerating energy as a function of time is another energy

metric that captures the structural conditions that cause loss of

stability for a particular fault, clearing action, operating condi-

tions, and clearing time. The individual machine energy function

for the critical generator and the PEBS or equal area method appear

to finally have been established experimentally as properly captur-

ing the structural conditions that cause loss of stability in power

systems. These methods still require theoretical justification,

which is a topic of further research.

(2) The second major contribution of this thesis is the

development of a fast accurate method for determining loss of sta-

bility without requiring transient stability simulation of the fault,

the clearing action, and the fault clearing time as was required in

the previous results to date [16, 17, 29]. This method is shown

to require computation that is approximately that of an AC decoupled

load flow and thus could be utilized in the applications mentioned

earlier. The practical contribution of this method cannot be under-

estimated because the previous literature on direct methods were
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principally concerned with showing that the retention or loss of

stability obtained from observing angle differences on a transient

stability simulation could also be obtained via observing a measure

of energy on that same transient stability simulation. The research

performed to eliminate the need to perform the transient stability

simulation was quite limited, never thoroughly investigated, and

either required very extensive computation or was not very accurate.

Thus, the development of the fast accurate method is an important

contribution because the objective of the research on direct methods

of stability assessment for faults is the elimination of the need

to simulate the fault contingency.

Such fast algorithms are based on the potential energy of the

individual machine with respect to the rest of the generators in

the system. Computation of this potential energy requires calcula-

tion of the initial operating state, the final operating state (gen-

erator peak angles), and the post-fault network conditions. The

initial operating state and the network conditions are easily obtained

by solving a load flow equation. However, the calculation of the

generator peak angles is the key point to implement these algorithms.

A linear RMS coherency measure for pulse input disturbance is

a proper fast method to predict the generator peak angles of the

system. A nonlinear RMS coherency measure based on the critical

unstable equilibrium point is an alternative approach for predicting

the peak angles, but it requires significant additional computation

compared to that required by the linear RMS coherency measure. As
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a theoretical basis, the RMS coherency measure is justified for a

second order linear single machine infinite bus system model. The

theoretical justification of RMS coherency measure, for a multi-

machine power system, is a subject for further research.

The algorithms are implemented and tested on the Reduced Iowa

System consisting of 17 generators and 163 buses. The results in

Chapter 7 indicate the accuracy of the algorithms and their signifi-

cant promise for further improvement.

8.2. Topics for Future Research
 

Based on the development of the first seven chapters, it is

concluded that for direct stability assessment, the energy behavior

of a particular individual machine (critical generator) is the deter-

mining factor in accurately estimating the region of stability

(critical clearing time). The results obtained from application of

the fast direct methods for different fault cases on a test system

are extremely promising and could be further investigated as follows:

(1) development ofaitopological energy function that does

not aggregate the network back to internal generator buses, allows

arbitrary nonlinear real and reactive load models, and allows arbi-

trarily complex generator models;

(2) development of an individual machine energy function for

this topological energy function;

(3) showing that the PEBS and equal area criterion can easily

and accurately identify the critical clearing time for this



174

topological individual machine energy function based on time simula-

tion of the fault; .

(4) development of an RMS coherency measure for the more

complex power system model;

(5) development of a fast computational method for predicting

the state at which the trajectory most closely approaches or crosses

the PEBS using this modified RMS coherency measure;

(6) testing this fast computational method for predicting

the state at which the trajectory most closely approaches or crosses

the PEBS on several fault cases to show that it is a fast efficient

and accurate computational method for direct prediction of stability

on this more accurate power system model.
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APPENDIX A

A.1. Computation of Vk+1
 

In section 6.5 of Chapter 6 it was shown that Vk+1 = (MDVk

for every k = 1, 2, .... Here it will be shown that vk+1 can be

computed by solving the linear equation

      

I9‘ ”911 11121 _9l

= (A.1)

.AEQ.) L921 L122.. .Aé.

where

A§ = [A81, A62, ...., ABm]T; angle changes at load buses

A6 = [A61, A62, ...., A6 1]T; angle changes at generator

' n- buses

ABE = [APG1, APGZ, ...., APGn_1]T; real power changes at internal

generator buses

First solve equation (A.1) for A8

0)“

x _ -1 A

A8 - - J11 012 A6 (A 3)

Then substitute this A8 value in the second equation of (A.1) to
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obtain the expression of ABE

ABE ‘ ‘ J21 J11 J12 44 i 522 AA (A°4)

4E9 = 1°49 (A.5)

where

I = 922 ‘ 921 911 912 (A‘6)

Define vk A A6 and multiply both sides of equation (A.5) by

matrix M

MARE = MT v_ k (A.7)

By comparing vk+1 = M: vk with equation (A.7) it is obvious that

vk+1 = MAEG (A.8)

This implies that the vk+1 is the solution of linear equation

I’ ‘ “’2‘
0 Idll 012 A8

      
v MJ Md v
T k+1J _ --21 --2zJ _ kl

for each k = 1, 2, ....

.
.
.
—
-

.
u
‘

T
“
-
5
-
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A.2. Computation of V0
 

Recall v0 and v1 defined in section 6.5:

v = _1__ (fl) MAL“. (A.10)

° 25

v1 =—l—rjAgr_4_ . (A.11)

2/5

v1 = (”I’ve (A.12)

Recall equation (A.6) and multiply both sides by matrix M and rewrite

it in the following form:

MAPG = (MTlaa (A.13)

Again define v ==A§ and compare equation (A.12) with equation (A.13).
0

As a result v1 = UAEE- Substitute this value of v1 in equation (A.11)

and write the result as

mm = MA_P_G_ (A. 14)

N
I
H

3
1

Based on this analysis, one could obtain vo as the solution of linear

      

equation

F 0 . r. . A -

_ 911 912 FA9

=
(A.15)

1 .
-——-MAPh MJ MJ v
_2/; "_:J _--21 --22J _ OJ
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Therefore computation of V0 requires one linear equation to be

solved.
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