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ABSTRACT

MODEL DEPENDENCE OF THE
BINDING ENERGY OF NUCLEAR MATTER

By

Michael David Miller

It is possible to produce hard core, soft core, finite
core, and momentum-dependent potentials which fit the two-
nucleon elastic scattering data equally well and which are,
therefore, indistinguishable from that standpoint. This
thesis examines the feasibility of using nuclear matter
calculations to distinguish between potentials which cannot
be distinguished through two-nucleon elastic scattering
experiments.

Using the method described by Brueckner and Masterson*
for the static potentials and, with modifications, for the
momentum-dependent potentials, the mean binding energy per
nucleon in nuclear matter is calculated for each of the S,
P, and D states using several phenomenological two-nucleon
potentials which have identical on-energy-shell matrix
elements. The binding energy is found to be very sensitive
to the form of the short range repulsion in the potential.
Replacing a hard core potential by a short range momentum-
dependent one having identical on-energy-shell matrix elements
is found to increase the contribution of the S and P states

to the binding energy of nuclear matter. There was little

change in the contribution of the D states. With the proper



Michael David Miller
form for the momentum dependence, increases in the binding
energy of over 12 MeV per particle were obtainable.

The hard core Hamada-Johnston potential predicts a
binding energy of 8.5 MeV per particle for a Fermi momentum
of 1.4 F—l. This is fairly typical of hard core potentials
which fit the two-nucleon elastic scattering data fairly
well, but is in poor agreement with the empirical value of
16 MeV per nucleon. Replacing the S state potential alone
by an equivalent momentum-dependent one results in a cal-

culated value for the binding energy which is in excellent

agreement with the empirical value.

K. A. Brueckner and K. S. Masterson, Jr., Phys. Rev. 128,
2267, (1962).
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SECTION I

INTRODUCTION

Ever since the discovery that the atomic nucleus was
composed of neutrons and protons, there have been attempts
to explain the properties of nuclei in terms of the inter-
action of these particles. Although it is now clear that an
accurate theory of the nucleus will involve more than the
nonrelativistic Schroedinger equation for neutrons and
protons interacting through a two-nucleon potential, this is
at least a good starting point. Even if the two body forces
prove to be unable to account for all of the nuclear data,
their failure should at least provide some clue as to the
nature of the many body forces.

The two-nucleon potential need only be valid up to
about 350 MeV in the laboratory frame. Above this energy
pion production becomes significant and the use of the non-
relativistic Schroedinger equation is probably not justified.
However, since the top of the Fermi sea in nuclear matter
corresponds to an energy of only about 160 MeV, the 350 MeV
upper limit on the theory should not be too restrictive.

It is generally agreed that if a two-nucleon potential
is to fit the two-nucleon elastic scattering data, it must

assume the form of the one-pion-exchange potential at large

1
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distances. At small distances it must have some form of
short range repulsion, at least in the S and 3Po states.
Within this broad framework there have been many attempts to
produce a purely phenomenological two-nucleon potential
which not only fit the two-nucleon elastic scattering data,
but also produced reasonably good results in nuclear cal-
culations.

The phenomenological potentials are best classified
according to the form used for the short range repulsion.
The most common types have been the infinitely repulsive
hard core, the finite core, the soft core, and the momentum-
dependent repulsion. The ability of these potentials to
describe the two-nucleon interaction has differed widely.
The best way of comparing the quality of one phenomenolog-
ical potential with another is to compare the goodness-of-
fit parameter, jC‘, obtained when each of the potentials is
used to predict the same set of experimental data. For N
data,

v 5 (Lea)
Az “

where €, is the experimental standard deviation associated
with the experimental datum é; , and f% is the value pre-
dicted by the potential.l The closer the predicted values
are to the experimental values, the smaller 'X"will be.
The more accurate data with their lower uncertainties will
be more sensitive to variations in the potential parameters

than the less accurate data.
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Table I shows some of the more popular potentials and
their associated Zf values for the current set of statisti-
cally valid two-nucleon elastic scattering data below 350
MeV. The Bressel-Kerman finite core potentialz seems to be
the one preferred by the elastic scattering data. However,
the hard core Hamada-Johnston potential3 is five years older
and is still almost as good a fit to the data. Probably only
some small changes in the values of the potential parameters
in order to account for the additional, more accurate data
would result in very close agreement between these two
potentials. In fact, previous work with the very accurate

data available at 210 Mev?

has shown that at that energy the
majority of the difference in the two potentials could be
eliminated by changes in the 3P2 state alone. Presumably,
similar results would be found at other energies.

Thus, at the present time, the two-nucleon elastic
scattering data does not appear to be able to distinguish
between properly parameterized hard core and finite core
potentials. This was emphasized for the lSo state when a
family of hard, soft, and finite core potentials was gener-
ated, each of which gave a precise fit to the lS0 phase
shifts deduced from the elastic scattering data below 330
MeV.5 The same thing could probably be done for the other
states. Furthermore, Baker has shown that given any hard
core potential, a family of momentum-dependent potentials

can be generated which will produce elastic scattering

phase shifts which are identical at all energies to those



2
Table I. X for various phenomenological two-nucleon

potentials.

a 2
Potential Type ¥ for A for
648 pp 952 np
data data
Bressel-Kermana finite core 1382 2031
Hamada—Johnstonb hard core 1929 2149
Bethe-Reid® hard core 1763 4249
vale? hard core 2471 2511
a

Reference 2.

Reference 3.

€ R. V. Reid, quoted in Bhargava and Sprung, Reference 2.

d K. E. Lassila, M. H. Hull, Jr., H. M. Ruppel, F. A.

MacDonald, and G. Breit, Phys. Rev. 126, 881 (1962).
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produced by the original hard core potential.6

It has been suggested that the many-body problem might
be helpful in distinguishing between potentials that are
identical from the standpoint of two-nucleon elastic scat-
tering.7 The advantage of the many-body problem is that it
allows for scattering off the energy shell. This is scat-
tering in which the two-body interaction occurs between two
particles in excited states at an energy different from that
of the initial and final states.

There have been previous attempts to use nuclear
matter calculations to distinguish between hard core and
momentum-dependent potentials.8 Although the results indi-
cated a desirable increase in binding for the momentum-
dependent potentials, they were not conclusive qualitatively.
For one thing, the potentials used did not have identical
on-energy-shell matrix elements, although it is clear from
Baker's work that it is possible to develop potentials of
these two forms that do. Thus one was left to wonder
whether the nuclear matter calculations merely emphasized
the on-energy-shell differences in the potentials, which
could be distinguished through sufficiently accurate elastic
scattering experiments, or if the differences in the nuclear
matter calculations were really due to off-energy-shell
processes, which are not involved in two-body scattering.
To further complicate matters, the momentum-dependent
potential calculations were carried out using perturbation

theory while the hard core potentials were treated using



Brueckner's method. The different approximations made in
the two methods alone could easily result in discrepancies
of over 2 MeV per nucleon in the average binding energy,
which is more than the difference between some models when
a consistent procedure is used.

Both of these sources of uncertainty have been avoided

here. In the treatment of the 1

So state alone, the momen-
tum-dependent potentials were derived from the 0.4 F hard
core 180 potential of Reference 5 using Baker's transform-
ation. As shown in Figure 1, the lS0 phase shifts below
330 MeV obtained from the soft core and finite core poten-
tials agree with those obtained from the 0.4 F hard core
potential to within a small fraction of the standard devia-
tion obtained from the experimental data. Above 330 MeV

they begin to diverge slowly. Of course, the 1

S0 phase
shifts obtained from the momentum-dependent potentials are
identical to those produced by the 0.4 F hard core potential
at all energies. So for use in nuclear matter calculations
these potentials can be considered to have identical on-
energy-shell matrix elements. In working with the other
states, the momentum-dependent potentials were obtained
from and compared with the Hamada-Johnston hard core poten-
tial alone.

In calculating the binding energy for nuclear matter,

9 was used

the method described by Brueckner and Masterson
for all of the potentials. The modifications made in

treating the momentum-dependent potentials involved no



'So Phase Shift (Degrees)

L L L
(0] 100 200 300
E_a (MeV)

Figure 1. ls phase shifts predicted by the static potentials
and the valueg deduced from two-nucleon scattering experi-
ments. See Reference 5.
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additional approximations above those involved in the
calculations using the other potential forms. Thus the
results obtained here should be an accurate quantitative
description of the ability of nuclear matter to distinguish
between potentials that cannot be distinguished through two-

nucleon elastic scattering experiments.



SECTION II

THEORY

A. Properties of Nuclear Matter

Nuclear matter is a hypothetical system of % neutrons
and % protons where A is allowed to become infinitely large.
If the coulomb repulsion of the protons is ignored, it is
thought that in its lowest energy state a stable configura-
tion would result, characterized by a uniform density, /4 v
and a mean binding energy per particle, « . Because nuclear
matter is assumed to be homogeneous and isotropic, the single
particle wave functions of nuclear matter are just plane
waves. Thought of as a first approximation to a heavy nucle-
us, nuclear matter provides a medium in which the ability of
a two-nucleon potential to predict some of the properties of
a nucleus can be tested without all of the difficulties
inherent in the calculation of the properties of a finite
nucleus. A potential which fails to satisfactorily predict
the binding energy and density of nuclear matter need not
be dragged through a finite nucleus calculation.

The average binding energy per particle that nuclear
matter would be expected to have if it really existed is
deduced from the semi-empirical mass formula.‘10 According

to this formula, the binding energy of a nucleus is
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) - a2 -4 4
Eququ‘Ar*ad(é‘Z)‘/q‘*q,ZA:*a;A’ (II-1)

The first term is the volume energy term, the second a
correction to account for surface tension, the third is the
symmetry energy. The fourth term represents the contribution
of the coulomb repulsion between protons, and the last term
is a small correction which accounts for pairing effects.
With properly chosen constants, this equation predicts the
binding energies of nuclei with a standard deviation of
2.61 MeV per nucleon.ll However, the deviations from the
mean values have systematic trends which are evidence of
shell structure and no attempt was.made to account for this
property of nuciei in equation (II-1l).

For nuclear matter, the number of nucleons, A, is infin-
itely large, sb the surface and pairing effects are negli-
gible. As stated before, coulomb effects are ignored, and
equal numbers of neutrons and protons are assumed. The
result of these assumptions is that the expected binding
energy of nuclear matter is just the volume energy term of
the semi-empirical mass formula. This quantity has been

11, 12

determined to be about -16 MeV per nucleon. The corre-

sponding energy for finite nuclei is about -8 MeV per par-

13 The difference is due solely to the inclusion of

ticle.
coulomb, surface, symmetry, and pairing effects in finite
nuclei.

In addition to the binding energy of nuclear matter,

the saturation density must also be calculated. The latter
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is determined from potentials by plotting the binding
energy as a function of particle density. The minimum of
the curve determines the saturation density and the asso-
ciated binding energy. These can then be compared with the
empirically determined quantities. Starting from the density
of the interior of a heavy nucleus and taking into account
the effects of coulomb repulsion and surface tension, the
saturation density of nuclear matter has been determined to
be about 0.170 F_3.l4 Because nuclear matter is treated as
the ground state of a Fermi gas which is perturbed by two-
body interactions between the nucleons, a more convenient
quantity to use in describing the density of nuclear matter

is the Fermi momentum, é,, which is related to the satura-

tion density,/q , by

)
3 X é
A‘_ H (—Lzz#-) = /J‘ /:--/

B. Summary of Brueckner-Goldstone Theoryls

The theory of nuclear matter begins with A nucleons
composing a Fermi gas in its ground state, which is assumed
to be non-degenerate. The density of the Fermi gas is‘/o=fg,
where 2 is the volume of a very large box in which all the
nucleons are contained. If the particles do not interact,
then the energy of the distribution is just the sum of the

kinetic energies of the particles

A A 4
/—’:’Z,: Tff:)‘.zﬂi‘
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To obtain the ground state of nuclear matter, a two-

nucleon potential, 3@ , acting between states and‘j is
introduced. The total Hamiltonian then becomes

] — 4

H2 T(h)+2. 2%

Y “‘J. 4=/

which can be written

H: //’ f‘/[ (II-2)

where

A A
H =2 %—chj ‘Z:- V(/u)

1<) iz

The quantity b«h)is the single particle potential acting
on particle ; and is dependent only on the momentum of the
particle on which it acts. It is introduced only in order
to simplify the calculation by improving the convergence of
the series expansion and will have no effect on the energy
of the distribution. The actual form of the single particle
potential will be discussed later.

If f is the perturbed ground state wave function, then

the energy per particle, £ , is found by solving

HE=c¢ (II-3)
For the unperturbed ground state this reduces to
HB-CB

where gf is a Slater determinant of the single particle

states, ?{ . The normalizations of ‘ﬁ and f, are chosen
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such that
<éo/¢;>:/

and

<& /¥¢>=1

Then from equations (II-2) and (II-3)

SBIE/E>-BIt1 > +<E [H]F>
giving
E-&=: <@ /Hl¥F>

Equation (II-3) can be rewritten

(6-H)I#> = H, /P> (11-4)
Adding the homogeneous equation (€e-#.)/ D=0 to the right

hand side of equation (II-4), one obtains

/&> = é_:. e S

— HP>

D A R4 2o

Then using equation (II-4),

/#>=)8, == Al

ﬂ”

= /S?:>"'¢~-/:, H]F> (II-5)

where Ps /- /#,><$ | is an operator which prevents the
unperturbed ground state from occuring as an intermediate

state. Using equation (II-5) in equation (II-4) and
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multiplying on the left by <¢‘;/ . the energy shift is found

to be

E-6 =<E/HI>+ Bl i) P>
which can be expanded as a perturbation series in /|

giving

EGo= <&IMI> <EIHZL /g > ar-e)
to second order.

At this point it becomes more convenient to let the

subscripts refer to states rather than particles. Subscripts

a through j refer to states above the Fermi sea, k through
n to states in the Fermi sea. The rest refer to ahy state.
Sums over these subscripts imply sums over the entire range
of states covered by the subscripts. Since each momentum
state below the Fermi momentum will contain two neutrons
and two protons (one of each spin), there will be four
distinct states of each momentum up to the top of the Fermi
sea for a total of A filled states. A particle will have

a momentum greater than 4_ only if it has been excited,
leaving a hole in the state it originally occupied below
the Fermi sea. Equation (II-6) can be rewritten as an
expansion in terms of the single particle potential, %L and
the two-body potential, 1¢’. Then in the notation of
second quantization (see Appendix) equation (II-6) becomes
to first order

E-E,= '.il"z <mnjvima>-L3 <mn|v/nm>~ 2 &alViny
Y 2 " (II-7)
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The factor % is needed because the summation is carried out

over all states with the result that each distinct matrix
element is counted twice.

A problem immediately arises because of the strong
short range repulsion of many two-nucleon potentials.
Matrix elements of these potentials will be extremely large
and equation (II-7) will not converge even though the energy
shift, €- &, , may be small. Brueckner's solution to this
problem was to replace the expansion in terms of the two-
nucleon potential by an expansion in terms of the reaction

matrix defined by

K (W)= Yog = Yoy (%P-)KLW) (II-8)
where & is the Pauli operator with the properties
/Pg> if p and ¢ are both excited states
G /o s above the Fermi sea
L. V2, otherwise
and
ClPpr=(catEp-W)[pp>
where )/ is the starting energy. The energy denominator is
determined by calculating the sum of the particle energies
minus the sum of the hole energies. The starting energy is
obtained by subtracting é}*é}. from the result.

Introducing the reaction matrix is equivalent to
regrouping the matrix elements of the two-nucleon potential
between particles in the original expansion in such a way
that each term in the new series makes a small enough con-

tribution to the total energy that the series quickly
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. converges. Interactions between holes are not included in
this partial summation because their momenta are restricted
to As< /rF whereas the momentum of a particle can be many times
that. Hence the phase space available to the holes is much
more limited than that available to the particles with the
result that interactions between particles are expected to
be the major contributors to the energy shift.

The grouping of terms is probably more easily explained
in terms of diagrams. Any series of interactions between

particles of the form

----- + + - - - +.--

- - - - — -

is replaced by one diagram containing the interaction repre-

sented by

The dashed line represents the two nucleon potential and the
wavy line the reaction matrix. The diagrams to first order

in the reaction matrix and single particle potential are

The contribution of the first order diagram in the single
particle potential cancels the corresponding term arising
from A, regardless of the form of the single particle

potential. The second of the first order diagrams
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represents the sum of diagrams involving the two-nucleon

potential

The third is just the exchange diagram

All second order diagrams of the reaction matrix are
either redundant or do not conserve momentum, so they do not
contribute to the energy of nuclear matter. For example,

the diagram

O3 090

is clearly included in the first order diagram

OO

An example of a second order diagram that does not conserve

—-X

momentum is
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Since the state a is above the Fermi sea and state » is in
it, momentum conservation is clearly violated between the
two interactions.

It is possible to choose the single particle potential
in such a way that most of the important three-body diagrams
will cancel. If this is done the contribution of these and
higher order diagrams to the energy of nuclear matter is

16 Even if

expected to be only about 1 MeV per particle.
some other form is chosen for the single particle potential,
the contribution to the energy which is not included in the
first order diagrams is not expected to exceed 4 MeV.ls’ 17
This is only about 10% of the total potential energy, and if
it is not considerably more model dependent than the contri-
bution of the first order diagrams it will not alter the
conclusions drawn on the basis of the first order diagrams
alone. Because only first order diagrams were considered
here, the single particle potential was chosen in such a
manner that the contribution of the two reaction matrix

diagrams were cancelled by the diagram involving the single

particle potential. That is

<’7/ Vin>= % mnlk/mn> - 2. <mn/K[nm>

Thus the energy shift will be just the sum of the matrix

elements of the unperturbed Hamiltonian, H. , between all
single particle states in the Fermi sea. This is just the
sum of the kinetic energies and single particle potential

energies of each particle in its lowest state.
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In order to calculate the reaction matrix elements, it
is conwvenient to define a correlated two-body wave function,
gg . The unperturbed two-body wave function is just the

product of two unperturbed single particle wave functions.

2, : LB ppD>
As stated before, the unperturbed single particle wave func-
tions are just plane waves. If the nuclear matter under
consideration is assumed to be enclosed in a large box of

volume 2, then the single particle wave functions are

3 A
éf{&:a =_J_11:.e"'e‘/¥‘

This can be rewritten

| kR ikF
e

f}f (7,2)= € (I1I-9)
where

R= % (A+7) F=7-7

— pu ) _l -

Kf’= A,"/r’. = 3(6 /f’)

These new quantities are the center of mass coordinate of

the two particles, A , and the total momentum /(, .

other two quantities are the relative position and momentum.

The

Equation (II-9) can be rewritten



20

ig;:ﬁ

é} (A7) = —e Doy (%) (II-11)

This defines g&(9§19 as that part of the unperturbed two-
body wave function which is a function only of the relative
position and momentum of the two particles. The two-body

correlated wave function is then defined

fyod, - 2K,

- - 4K)4,,

Multiplying both sides by the two-nucleon potential and
using the definition of the reaction matrix, equation (II-8),

results in
=y @ -
So equation (II-12) can be rewritten

A

73 fé - é?iu Py

Because the operators v/, € , and & all conserve total

-

momentum, the dependence of f,f and &, on = and A will

(II-13)

be the same. The correlated wave function can then be

written
-—

. u;
| VA
= =€ -14
15, A Y, (II-14)
where ng is a function of the relative position vector and

momentum only.
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Using equations (II-11) and (II-14) in equation (II-13),
one finds, as expected, that the reaction matrix elements

-

are independent of . and K .

<rsik/pp> -ﬁ (P v k) 3&, (F)d7 (II-15)
where
L= 4,0- Jo, GR)uirs ) Yoy ()45 (x1-16
and
k. CP-R
6 (I‘ I' JA M ‘ cr ) (11_17)

T an 2wt e (&, 4y
As stated previously, the total momentum, *}; , is conserved

in the two-nucleon interaction; however, the relative

-

’
momentum, A , can change to some new value, I . The Pauli

operator, & , eliminates from the integrand all transitions
-

to occupied states in the Fermi sea. If Kk and K. are the
momenta of particles 1 and 2 in some intermediate state,

then

@= O if k<K or Kky<ke
C?= { if k,)k; and A‘>k;

where, by equation (II-10),

Ko "4

Ky =

-

A.-

The energy denominator, @ , is dependent not only on the

L?NL
M~ Nk

kinetic energy of the states involved, but also on the

single particle potentials associated with them. However,
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the single particle potentials are functions of momentum
which are determined by the reaction matrix elements. Thus
one must assume some initial value for the single particle
potentials and calculate the reaction matrix. New single
particle potentials can be calculated from the reaction
matrix, and these are then used in recalculating the energy
denominator. This procedure is repeated until the single
particle potentials generated by the reaction matrix agree
with those used to calculate that reaction matrix. If it
were not for the complicated dependence of the operators @
and e on the total and relative momenta, nuclear matter
calculations would be greatly simplified. 1In fact, if one
sets @s/ and defines the energy denominator to be just the
kinetic energy of the particles involved, as is the case for
the free two-nucleon interaction, one finds that 4»,(659

can be calculated analytically and equation (II-16) becomes
kP -/ 2
7‘(;’)3 ¢(") y_,-'//; 7/ u(’) %fy a/7'
where A; is the relative momentum of the two nucleons
before scattering. This is the integral equation for two-
particle scattering.

C. Baker Transform

The Schroedinger equation for two nucleons interacting
through a momentum-dependent potential can be shown to have
solutions which are identical at large distances to those
produced by the Schroedinger equation for two nucleons

interacting through a static potential outside a hard core.6
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The Schroedinger equation for the momentum dependent poten-

tial can be written
/ 3 - - 3 . - >
{ ,7,:,-[/‘0)/‘ *4p uc)p */"/‘0)} A c»)f Y?) = € #7) (II-18)

where/h?/ for a repulsive force and (w)=-o- M is the
nucleon mass, and '.és(w) is a static potential. The form of
the term involving the momentum operator is required for
hermiticity and time reversal invariance.18 If/ach)al for
all values of /», then equation (II-18) just reduces to the

Schroedinger equation for a static potential. Using ;= % v,

equation (II-18) can be written
w(r) p? }é(")+ Vacr) - VWU‘)* —-',é(,) V/a.cr)
f e ko)t - o

a
Since/ and K are functions of /7 only, equation (II-19)

(II-19)

may be separated into radial and angular components.
Writing the equation for a particular partial wave and
nbting that the angular component is identical to the one

obtained in the static problem, the radial equation becomes

,a(f) 2
T '/(d _acr) )alr ’ﬂ() (I1-20)
4('9+ L (r) [ ,)J ’%’éﬂffojm

") T 2pucs) T ) f"’

where

)z L ur)

Now make the transformation



24

rs ree)
%= TR Y ()
So
A1 o
AT ) e
where

rop)s j’//-; ree)

Then equation (II-20) becomes

)5 LG L) it ¢y )
[rg]” 42 7y

[zrgx/ccr) 2uecr) | mn) _ regMLCr) T oy 0
[r)]F (morp 7y [r)’ dp

+ 2 M) S ¢ ), [ ) a'r) _ rip) e
g;[v/“ i __jj‘z \'7/‘)&"7/‘) re)  [re)]? )5 )5‘59‘)

. %Z"—' K‘(’(/))JC(/)QQ) = O (I1-21)
A

Demanding that the coefficient of Y equal zero and that

. Ahc . .
the coefficient of = equal ¥¢#) will define 3’(/’)
o
and P in such a way that equation (II-21) will assume the
form of the Schroedinger equation for a static potential.

From the condition
a
_wer)= Lrp)]

one finds

r'¢e) - [/«c'y]‘1 (I1-22)
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which defines the reiationship between Y. and r to be

r -4
/=/[/<u-9] ‘a/r‘ (I1-23)

Then setting

2 SR xcr) LY AR wep) uce)
[#r)])* ware)  re)  [ege)]3

$) = O

requires that

T(p) = (11-24)

/
nyol/anJ#
Using equations (II-22) and (II-24), equation (II-21) can

finally be reduced to

/g 28 ,e(,e;f,acr) Y ¢2)

(11-25)
+ —’/3-\1 E—V‘(r)+5-/%-,“ r—' “‘—)]U (p)=0

which looks like the Schroedinger equation for a static
potential.

Since the wave functions (4(/4) and }f (r) are related
by

cy- -————-(-Qr
r/)[/cu)J

the matrix elements of any operator A between states 3/”,"9
and ‘)ﬁ(’) of equation (II-20) are related to those between
the corresponding states U)(/.o) and 1/}(,) of equation

(II-25) by
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/7é<dﬁ % & ridez, , (/4)/4‘/ (2 o

Outside the range of the momentum dependence/«cn)g /

so
Y 2) Y 7

in that region. Equation (II-23) can be written

Y
r-r ./,[“C")] )

w81 f/«wJ'"ia/w

ﬁ

But for 7 outside the range of the momentum dependence

; oo

‘/}/-[/‘"7].‘1)?‘#':/ f/-/ja/,.' )
So out there
3 -4
por o= 31 L)) §de = - a .

Define R%A+q everywhere. This reduces to A=» outside the

range of the velocity dependence. Define

3,(R)2 U(R-a)= 4 (p)

Then since{J%&db » equation (II-25) can be rewritten

R 1(,4«»// MS 4 (R K)
e 50+ L] S [ Y Gy o xuyé———,),m)] K‘)

-‘z_ﬁ%‘ﬂ'(f(‘ y(é—;‘—’(_(’—’((‘t"» "(""9>]§§ (R/ =0 (II-27)
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subject to the boundary condition ¥,@)=o. This is the
Schroedinger equation for the potential enclosed in the
square brackets outside of a hard core of radius a. Out-

side the range of the momentum dependence,

LA)= by r ¥
Starting now with a potential h/(@) outside a hard core
of radius a4 and reversing the steps that lead to equation
(II-27), one finds that for any function‘/ucd which is
related to the hard core radius A by equation (II-26) one

can write

n 3 L+
LD LNt A ELE Y ) o Gy e 4 e Ve

[‘:‘ WK~ ; /‘fr)(y/::j - 7/)_] if(') =0 (11-28)

where

Re ova

a:x(}Q—éﬂ(ﬁﬂ-ffdﬂ’

From equation (II-28) one can deduce a velocity dependent
potential which gives identical two-body phase shifts to
those produced by the original hard core potential.

Rewriting equation (II-28) as

./2 /((/efo'; */“/(r)ﬁ _'_{_ */“ll(’)’*/“l(’)
Jor " T _xtr)Her) n@r) e gucr) T aer)

(II-29)

] kr _ MW(R(")) 51&(),0
mw /m) /«(,)



28
and defining

e (n) = r chr)

results in

’/ ’!a"” +/#(f),/ ,_{‘_i‘_:) :_ A’ MW(“"))iU(d,o
vt sir) R " Taatr) e /m) gl ) auco)

In order to eliminate the first derivative of (j (r) , define

Y ) y(r)
which leads to

./‘ A‘ L) /a'cr) 12k u-(r) W(ﬂcn)_)

A " Ty gy lmiol T Faay (%70 ©

This can be written in the form of a Schroedinger equation

with a static potential

E "&J)— /l-—"\/(f)i (7= O

where
W), i L~ L7, [uw-1] s
V ") Cf) M 51(1*1) R‘(') @) ’l] * ::(r) k
L A (") ,u cr) _
?,’409 7}“("] } (11-30)
and

Kr) = 2cr)ra

= | Taen)] ‘o
- L3 Z/w]}""'
. Y lr
t() AL rc)t
The potential V(,.) is referred to as the Baker transform of
the static hard core potential W(t) Any function «cv)

which gives the correct value for the hard core radius, 4 ,



29

defines a new effective potential V(7). Thus a whole
family of momentum-dependent potentials can be generated
having phase shifts identical to those produced by the hard
core potential VVZ&4. Since outside the range of the velo-
city dependence 4()=1 , 1 (r):= 4 (") which is just the
usual two body radial wave function. This equivalence of
the hard core potential and its Baker transform for the two-
body interaction does not imply their equivalence in the

many body problem.



SECTION III

POTENTIALS

The study of the model dependence of nuclear matter was
carried out in two parts. The first involved only changes

in the potential used in the 1So state with the 3

Sl, P, and

D states always represented by the Hamada-Johnston potential.
In the second part, the changes in the contributions of all
of the states were calculated when the Hamada-Johnston poten-
tial was replaced by several different momentum dependent
potentials having the same on-energy-shell matrix elements

as the Hamada-Johnston potential.

The work involving the 1S0 state alone was carried out
using the potentials shown on Figure 22 The three static
potentials used are each representative of a family of
potentials developed by precisely fitting the lS0 phase
shifts obtained from energy independent phase shift analyses
of the proton-proton elastic scattering data between 9 MeV
and 330 MeV and the pp scattering length. These potentials
were constrained to be smooth functions of distance through-
out their range, including the region around the edge of the
repulsive core. This is in sharp contrast to some of the
better known potentials which have large discontinuities at

the core edge. The result is that these new potentials are

30
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Figure 2. Static lsd potentials. See Reference 5.
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less sensitive to variations in the mesh size around the
core edge in numerical calculations.
Potentials were available which had hard cores of radii

0.1 F to 0.4 F and which fit the 1

So phase shifts equally
well. The potential having a hard core radius of 0.1 F was
classified as a soft core potential because of its Yukawa
repulsion at small distances which joined smoothly onto the
hard core at 0.1 F. Presumably the Yukawa repulsion could
have been continued into the origin, but it is so large at
0.1 F that there probably would have been little difference
in the resulting potential outside 0.1 F.

The 400 MeV finite core potential was one of a group of
potentials having core heights ranging from 400 MeV to
2000 MeV. These were generated in the same manner as the

hard core potentials. The parameterizations of the three

static potentials used here are given below:5

Hard core lS0 potential

-2x - .
Ver)= Vo, -(.-S‘Sz.r% - /o5%78 . (727.8¢.  for r>ay~
X

= e for r<o.v¥/-~
"Soft" core lS0 potential
e"vl ~-24
V(r)= Voo = 1913 &+ 28195 for P> 0.IF
=% forr<o)F

400 MeV finite core lso potential

-2x

’ , 4\
Vie) s (Voper- 3. oz.n‘%— -/0§28 e_;.”)(/-e°(‘f))+ Y00 e-”“)
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where

X = —'%"i—'-'- fe = 197322 MeV-F

- M > 13s5.0 M‘V

Voﬁlﬁ”o‘oe‘"ngx— Xe* 0.720s87

The effective momentum-dependent potentials shown in
Figure 3 were all obtained from the 0.4 F hard core poten-
tial using equation (II-30) and should not be thought of as
being completely equivalent to the three static potentials.
They may be used in the Schroedinger equation with an
effective wave function which agrees with the true wave
function only in the region outside the range of the momen-
tum dependence.

The form of‘/u(O used here was‘/u(ds' {39 where

nr
faz /¢ (e —/)e , hn3o

This form is convenient because it allows the integrals

involved in calculating /0(0 and a to be solved analyti-

cally, giving
/(r) = p-qr T‘:—,(n(f(*)) = R -«

Taking the Baker transform of the 0.4 F hard core potential

with “Cg) as described above, one finds

-

- Xa -2 - AXa
V(r) =lV.”p f(r) P-gssase {7
-f - 44(\ —Q';] #c
) n ] ““’T
josd e fem +6727.5e we Rey 55

b (€ in - l)(/+ daq* k/n)
Ya* fw M (III-1)
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Figure 3. Momentum-dependent lS0 potentials. Generated from

0.4 F hard core potential.
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where e a
Ka? he /?(r)=r+%/n[\fcf)]
Qa:z oy~

and M is the nucleon mass. Care must be taken in treating
the coulomb interaction in the effective potential. The

coulomb potential must be included in the potential for iso-
spin triplet states before the transformation is made. This

results in an additional factor

[ 7397
A Cr)

-2 -2
2
S fw) = 14378 £r) =
which must be added to the term in the square brackets of
equation (III-1). The resulting effective potential is the
correct one to use for the pp interaction. - For nucleon-

nucleon interactions which do not involve the coulomb poten-

tial one must then subtract

e _/#3%]
rucr) - g;«(h)

from the effective potential for the isospin triﬁlet states.
The//uic) in the denominator is required because of the form
of the effective potentials and wave functions.

The longest range momentum dependence used in the 1S0
state was one in which the range parameter, 7 , in the
equation for {Yn) was set equal to 1.4. This produced a
momentum dependence with the same range as that used in the
Bryan-Scott potential for this state. The effective
momentum-dependent potential for this value of the range

parameter and a shorter-ranged one with the value of the

range parameter set at 3 are included in Figure 3. All of
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the potentials are in good agreement beyond about 1.4 F,
except for the intermediate range momentum-dependent one.
It is significantly less attractive than the others beyond
about 0.8 F.
For the 381, P, and D states there was no set of static

1

potentials comparable to the one available for the ~S

0
state. Consequently, for these states it was only possible
to compare hard core and momentum-dependent potentials. The
hard core potential used was the Hamada-Johnston potential

which consisted of a sum of four terms:3

Ve - Vi)« VS, + v, (r) (Zf) + V¥ ) /.,,.

The subscripts refer to the central, tensor, linear spin-
orbit, and quadratic spin orbit contributions, respectively.

The individual contributions are given by

V)= 008 (Fme)(F 5 )G %) Kl I+ a Y+ 4 Y ')

Vi (= 008 (3 )(%-7.) 2wli+ar Y- b.y 2‘)]
Vs me G Yo Lre buyen]

V)= me Go 32 2] I+ ac Yoy + b Y]
where

)Qk)s jéj

2= (1+3+3) Y

N o

X= ke
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The pion mass, e o is 139.4 MeV, and the hard core radius
is 0.4855 F for all states. The parameters a, b , and G,
which are state dependent, are given in Table II. The

operators 5;1 ’ L‘S., and L,‘ are defined by

@7 @D
7) - (77

N

Ly + (7%)-43ED@GED) + 7T) (G0

()
Nan
(g
<

+
~
N
N1
\J
(P
~
»
]
N
"
S
»

Equivalent momentum-dependent potentials were generated

from the Hamada-Johnston potential numerically.
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Table II. Hamada-Johnston potential parameters.
Parameter Singlet Triplet Triplet Singlet
even odd even odd
a, 8.7 -9.07 6.0 -8.0
bc 10.6 3.48 -1.0 12.0
an -1.29 -0.5
bT 0.55 0.2
GLS 0.1961 0.0743
Gyg, -0.000891 -0.000891 0.00267 -0.00267
ar; 0.2 -7.26 1.8 2.0
b -0.2 6.92 -0.4 6.0




SECTION IV

CALCULATIONS

The binding energy per nucleon to first order in the
reaction matrix was calculated using the method described
by Brueckner and Masterson9 (BM) for static potentials and
modified as outlined by Ingber19 for momentum-dependent
potentials. The approximations made in BM simplify the
calculations considerably, but at the expense of 1 or 2 MeV
in the accuracy with which the mean binding energy per

16 This does not seriously detract

nucleon is determined.
from the usefulness of the method, however, because the main
object here is to compare potentials, not to obtain the best
possible value from each one. It is more important, in this
case, that the same approximations be made for each poten-

tial.

A. Static Potential Calculations

The first step was to calculate the Green's functions
for each partial wave. These were obtained by expanding
equation (II-17) in partial waves. In order to simplify
the calculation of the Green's functions, it was assumed in

9

BM~ that the energy denominator was independent of the total

momentum and was rewritten

39



40

Em*r & - EL- & = Z["?(/r,") - 6“(/;.;)] (Iv-1)

where &w and &, are the self-consistant energies of par-
ticles moving in the Fermi sea and E: and E‘* are the self-
consistent energies of excited states above the Fermi sea.
The quantity on the right hand side of equation (IV-1) is
dependent only on k,," and /(“ , the relative momenta of
states m and » and states & and & respectively. This
approximation is accurate if E, is essentially a quadratic
function of /{, or if the relative momenta are large compared
with the total momenta. In line with this approximation,

the total momentum was replaced by its average value for a

given relative momentum, k , where

k. kT
P Z—élé:(/- Té)(/g& ZE) for k<ke

(/"z%)

(IV-2)
= O for A’%Ir,-

The Green's functions were then given by

ot [k k) iy (4%) e &)

for on-energy shell propagation. For off-energy-shell

propagation the denominator of the integrand was replaced
by 2[6‘(/()-"(/49]— /  where A is the mean excitation energy,
taken to be &(4) -L—"(O) . The Pauli step function,/(/j /B
excluded values of 4 which corresponded to filled states

in the Fermi sea. It was given by2°



= !/, k- =7 > ke (IV-4)

k" - #/’a_ '('f‘
kP

otherwise,

where A is the average momentum of equation (IV-2). In the
actual calculation the integral of equation (IV-3) was split
into two parts:

/ ‘/~ / ‘ldr - / /_“
r .o - ——‘ . .. .
2K ar* A

wr

where k,,, was chosen so that the denominator of the inte-

LY A v
grand could be approximated by .-‘7‘-4-/‘- for K°> kwr> ks .

For k"> k. ,/[1(/3 /r7= / , so the second part of the integral

could be written

M . v . v, “
“gﬁ/’}“Ck ")Jl (k r) vy
Kinr

But this could be rewritten without further approximation as

) P
- ‘%‘[ﬁ Chn) oK) olt”= - 4,‘,04;) RGIZN
k
M _ [ L
uMbTOL o\,;c.e':-)\/‘(k'p)/,e

The first integral on the right side was evaluated analyti-

cally, giving for on-energy-shell propagation
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g M n\f
61.(”’)2 Prer t(34+) (7:)
(IV-5)

L phe ﬂ*k"'_[cf,’u .
+‘m‘//‘.(k r)J,,(kr);;z LJécn) -ema)] EJA

where /; is the lesser and 7, the greater of » and .

The wave functions were calculated by iteration of the

equation
J; /" %
s S~ /el /0 T
Ko Chpe)s 3,608, *7/:42;:4’“# b Car Y per) Lehr) (1v-6)
) (3
g 0 . .
where \4‘"(,«) is the static two body potential and

§¢(%Q)=' Jl(lﬂ)’[’a(la,)<§'(4’EL/QS‘(4/'@2]
6(41‘): 61(4")-[646/:") 64(':,’9//6‘(4, /Z)]
The forms of s, and /;: resulted from the requirement that

the wave function vanish at /#, the radius of the hard

core.20 For potentials having no hard core,

<e (A") s JA(“")
i (ar): G lar)

The wave function in the integrand of equation (IV-6) was
initially set equal to .5,(‘9 gzz' . Thereafter the values of
the wave functions calculated on the previous iteration were
used in the integrand. This was repeated until for any
value of P the change in the wave function on two succes-

3

sive iterations was smaller by at least a factor of 10~

than the wave function itself.
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The reaction matrix elements were then calculated
using
Jf’l I(k")
kIKIk>=2 ) ¢ [‘—J—f——-«
<' / '> Js j%;l s Q‘de)

(IV-7)
g

+ %—;/ ‘wr -&u»)2___l Ve ’) % (A,

where
c . rar %
Jes 3

J is the total angular momentum and T is the isospin. For
potentials which do not have a hard core, the first term in
the square brackets is zero.

Finally, the single particle potential was calculated

from

(“‘p 'A)/‘
Vek)= % | k"t <KIKIKS

+,,_; Kt KK IAD )+t (1Iv-8)

The -1/

for A<k, . For A k. the first integral vanishes. These

Cbr&}ﬁ :)

single particle potentials were then used in recalculating
the energy denominators of the Green's functions given by

equation (IV-5)
&ECh)= -rVU‘)
Starting with these new Green's functions, a new set of

single particle potentials was calculated. This process was

repeated until the single particle potentials used in
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calculating the Green's functions reappeared in equation
(IV-8). When these self-consistent single particle poten-
tials had been obtained, the mean binding energy per nucleon

was calculated from

s [0 Ve
E = Z?JZQ‘J‘[;:;-*.Z C&z}
The saturation density is determined by finding the Fermi
momentum for which the mean binding energy reaches a
minimum. The saturation density was not calculated here.
Instead the Fermi momentum was fixed at its experimental
value of 1.4 F I,

B. Momentum-Dependent Potential Calculations

In order to treat momentum-dependent potentials, equa-
tions (IV-6) for the wave function and (IV-7) for the reac-
tion matrix elements had to be modified. For a momentum-

P A
dependent potential, K;:(z”f)' these equations become

% . e &
Bt juthod e g " GCs) g (B 1) Y Ch7) (1v-9)

and
J#l

Jel <r ‘
SWkk>= e Z 2 G, / o Oh) & o (3.0 L ") 1v-10)

Both of these equations now involve derivatives of the wave
function. These are difficult to calculate because the wave
function is calculated numerically by an iterative process.
However, by integrating equations (IV-9) and (IV-10) by

parts, it is possible to eliminate the wave function



45

derivatives in favor of derivatives of Bessel functions and

Green's functions, both of which can be expressed analyti-

cally.19
In order to carry out this modification it was neces-

sary to know something about the form of the potential,

%.L' (7',). Defining a function

a)(c)3;f<;¢¢¢)-{)
the Schroedinger equation for a momentum-dependent potential,

equation (II-18), can be rewritten

2 LIS P . Iy
5_,%_ . wcr)% L0 %(,)iv/'(,):(_- #7) (Iv-11)

where

V, (r) = (4)-* ‘('uzk)r aﬂZ;{)

is the static part of the potential. The quantity «/(#) will
in general be a function of J, £ , and s . However, for
convenience, these subscripts as well as those on K(d
and Z'(r) will be suppressed. In the actual calculations
the same anf) was used for all states, although there is
certainly no reason to expect this to be true. This will
be 'discussed in greater detail later.

The term [43(;9 in the static part of the potential in
equation (IV-1l) can be evaluated by comparing equations

(II-20) and (II-29) with the result

A s L. M) ) mn)
M‘('): %l (/"(’))’;y’t—;l(lw)[”(b nt ]+ 2 /(d )E (IV-12)
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Using /acr) » /+ 2a)(r) and /"("): Z«'?) this becomes

4 5 2 | ]tAn) , w
U= wire)« £ Saae)[ s - L5 ol - ]

So Y (r) can be written

_ J+2wCr) [u wn]’ w%r)
Wew= ( ﬂ(r)) + -I—-[I(lﬂ) R%w») ri y[/ f,z..,a) SZ

2004+1) § o r)

S W)+ W)

From equation (IV-11l) it is clear that

a a
waﬂd: u(&p/\f"p wr) r Wcr) (IV-13)

This can be expressed in a form that is more convenient for
use in equations (IV-9) and (IV-10). Multiplying on the
75
right by et (A,d and carrying out the operations implied by
x .
the momentum operators in \;‘ (V,'-/) , equation (IV-13)

becomes

A
P AL
. s
--£l2é529+1uﬂﬁ ié!é!(&C)

Zt“’(")j'/? {1 (k,r) (IV-14)

f[pd ey 22wyl

for the uncoupled states. This can be rewritten

75 Js
\,/,‘L(V,,r)g (4,;)’{% (ﬂ(d)*«(df,drr)jl;‘*ﬂf);ri}}é (k) (IV-15)

where
1“7\) )
xi)s W)~ 7 [ il (’)] (IV-16)
r)
ABa)=""M 24 [""“1‘:( g (’)] (IV-17)

)/(r)t-",*\qiw(') (Iv-18)
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If coupled states are to be included, this becomes

A A Ji Ja
Z Vet (O Y (k) = 2 Wi (Re) Y4

J d gk
)t Bese = 1) Tn (Y k) (1v-19)
Using this expression in equation (IV-9) and integrating by

parts, the wave function becomes

o7 “, Ji b
4; A ’) Jl(")g‘l + VIT‘/;"/, fgz'r:%"' (’?(”)Z(” v(k,f‘)

l: C r)lzqu) rd(r)T 'd’")]‘: k’,(, ”)

where

Alrys wcx)r 22¥ )+ FHC 0 f0)- 550 ~50r)
Ber: ’Z"/W" Ry’'e) -/309

The second derivative of the Green's function can be elimi-

nated by using
2 ) J) = M Y —p
(5 + 4 Gelrnn)= 2L Screr)
From which one obtains
At .M p)
‘7;7; G‘(f,i‘y: 7/8':‘ 3Cﬁ—r‘j" ;,"‘g/;‘ (" r)- k ;L(I‘ P)

So

A M~ i
L Cu)m e Che) b+ 550D Y (49
.: JJ \ ¢ 7 J
+ Yz ﬁ. ./,«'f ﬁ a’,y[/)c,-y ~k per) - [ 8- ;‘- D) I}

s i
+£Z M!‘a (ﬁ(’y) Z"’ Cf)i C?l'(f".)
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Which can be rewritten

[/4-2«.0('2]2{‘, (kr) J‘(kr)&‘l *9)(‘/'"‘/’2;14,/;1 (‘49(’,)) (r)

‘z ¢ L 8 LA} o
s Yo )iy B k- 340 -

-4u'(r)7‘{—,)] Gy (r) (IV-20)

On the first iteration the value of the wave function in the

integrand was taken to be

Lo C4,) = dekke) beur

/+ 2wir)
In order to evaluate equation (IV-20) it is still

necessary to know jéq&(hqj . For on-energy-shell prop-

agation

- Gy CAP) = /;':/A:L, (k'v)jg;/j,(/('ﬂ)/(g,ej
Ar 74, 2[5(&)_‘9»(‘.)-7

L [ §F gD ke WIS fur 1)
b2 - exG) ]

with 2[&‘(&)“"’-“‘2{ + 4 in the denominator for off-energy-
shell propagation. The derivative of the Green's function
was calculated in a manner similar to that used for the

Green's function itself. In this case the result was

k
J e [. wT , 5 M f"’*)
7 6‘(’,"9 = .z_:'c‘j.*/l Ck f)[ = dalh v')- /‘ ")]g';; &[ak) _5-»“9] g

ﬁ‘(?z;wau,) 4.«‘( )U(" ')g (1Iv-21)
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where /; is the lesser and /. the greater of » and ”»

and (/(r-r) is a step function defined by

u(r-r) =2 |, if r'sy
T, if  prie

o , if rr

The equation for the reaction matrix elements was also
integrated by parts to eliminate the derivatives of the wave
function. In this case recursion relations were used to
eliminate the second derivative of the Bessel function

leaving

<kIKk[kD> = y’rt Z /:‘/’ZZ ) W, M’Cd),/z.(“’)

Js l: -I

(k f)[ W) - (Zl(lf)-zk p)u(r) ~2r(Lr) Wcr)

-r ..;”(r)]JL(h) r2kw'(r) 7’ (A ')‘/M (lf)i (IV-22)

With these changes it was possible to extend the method
described in BM to momentum-dependent potentials. Because
of the necessity of calculating the first derivative of the
Green's function and the need to extend the region of inte-
gration all the way in to the origin instead of just to the
hard core radius (0.4 F to 0.5 F usually), the computer time
required for momentum-dependent potentials was about two to
four times as great as that required for hard core poten-

tials.
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C. Phase Shift Calculation

As a check on the validity of the equations and the
programing, one further modification was made in the equa-
tions for the momentum-dependent potentials. By changing
the denominator of the Green's functions and their deriva-
tives (equations (IV-5) and (IV-2l1)) to be just the differ-
ence of the relative kinetic energies

¢ & Cjut

2[cck)- €% k)] = %‘- - i;;i
and setting J[(P, A').z / for all P and 4  , the Green's
functions and their derivatives for nuclear matter became
those associated with the free two-nucleon elastic scattering
problem. The singularity within the range of integration
results in complex Green's functions and therefore complex
wave functions. From the equations thus modified, the phase
shifts, ‘?%;p , for the uncoupled states could be calculated

using

: »~ Méo 'y
3“,(2 < l) y t# (‘)a(Vr '9 fe (A‘f) (IV-23)

and compared with the known values of those phase shifts.
The integrand of equation (IV-23) is of the same form as
that of equation (IV-10) which was evaluated as shown in

equation (IV-22).



SECTION V

RESULTS

Before using the program to calculate the binding energy
of nuclear matter, the Green's functions were modified as
described previously so that the elastic scattering phase
shifts could be calculated. When these were compared with
their known values they were found to differ in the third
significant figure. This difference was due almost entirely
to the method of evaluating the Green's function integral
around the singularity. When the free two-nucleon Green's
function integral was evaluated analytically, the phase
shifts calculated by the two methods were in even better
agreement.

Returning to nuclear matter calculations, the Hamada-
Johnston hard core potential was used for all states in
order to find the self-consistent single particle potential
and the binding energy per nucleon predicted by this model
for a Fermi momentum of 1.4 F-l. The resulting binding energy
per nucleon, 8.5 MeV, is fairly typical of the values pre-
dicted by hard core potentials which fit the elastic scat-

9

tering data”® and is clearly in poor agreement with the empir-

ical value of 16 MeV. The study of the model dependence of

the lS0 state was then carried out using this single particle

51
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potential as a starting point. The Hamada-Johnston lS0
potential was replaced by the 0.4 F and 0.1 F hard core
potentials, the 400 MeV finite core potential, and finally
thé momentum~-dependent lS0 potentials. The results are
shown in Table III. From the calculations involving the
three static potentials, it was clear that the contributions

of the 3

Sl' P, and D states were not significantly affected
by the changes introduced in the single particle potential
as a result of using different lSo potentials. Consequently
it was not necessary to recalculate these states when the
momentum-dependent lS0 potentials were used.

The results shown in Table III confirm the expectation
that potentials having soft cores, finite cores, or a
momentum-dependent repulsion all would produce a desirable
increase in the binding energy above that predicted by a
longer range hard core potential, at least for the 180 state.
The maximum amount of binding occurred with the momentum-
dependent potential having the range parameter about equal
to 3. This can perhaps be understood by comparing the
effective potentials for n=1.4, 3, and 5, as shown in Figure
3. As the value of the range parameter, n, increases, the
size of the short range repulsion increases. This is
accompanied by a corresponding increase in the intermediate
range attraction. As n increases past 3, the increase in
attraction in the intermediate range is not sufficient to
counteract the increased short range repulsion seen by the

wave function. Similarly as n decreases from 3 down to 1.4,
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Table III. Mean binding energy per nucleon predicted by the

1S0 potentials.

lS0 potential Potential energy for lSO Total energy*
(MeV) (MeV)

0.4 F hard core -15.8 -9.3

0.1 F hard core -16.8 -10.3

400 MeV finite core -17.2 -10.7

n=1.4 momentum dep. -17.4 -10.9

n=3 momentum dep. -18.2 -11.7

n=4 momentum dep. -17.8 -11.3

*
Using Hamada-Johnston potential for all other states and
including a kinetic energy of 24.39 MeV per nucleon.
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very little short range repulsion remains, but there is also
virtually no attraction in the intermediate region. This is
borne out by Table IV which compares the values of the lS0
reaction matrix elements for each potential to the values
obtained when the 0.4 F hard core potential was used. 1In all
cases the gain in the size of the reaction matrix elements
increases with momentum, indicating that the size of the
short range repulsion is the dominant factor. The momentum-
dependent potential with n=1.4 is especially interesting.
Although at high momenta the K matrix elements are consider-
ably larger than those of the 400 MeV finite core potential,
at small momenta they are somewhat smaller. This seems to
verify the previous remark regarding what appears to be an
undesirably weak attraction in the intermediate region of
this potential.

The 2.4 MeV increase in the average binding energy per
nucleon of the lS0 state for the n=3 momentum-dependent
potential over the value obtained with the 0.4 F hard core
potential is a change in the right direction. But combined
with the hard core Hamada-Johnston potential for the other
states it still leaves the total of the contributions of all
the states short of the 16 MeV empirical value. This clearly
indicates the necessity of examining the effects of the
various potential forms on the other states.

Table V shows the contribution of each state to the
binding energy of nuclear matter for several momentum-

dependent potentials and for the Hamada-Johnston potential
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Table IV. Percent increase of lS0 K matrix elements over

values obtained with 0.4 F hard core potential.

Potential k/kF= 0.1 0.3 0.5 0.7 0.9
0.1 F hard core 4.1 5.0 6.3 9.3 17.7
400 MeV finite core 5.7 6.8 8.8 13.1 27.2
n=1.4 momentum dep. 4.7 6.1 9.7 18.8 47.1
n=3 momentum dep. 9.0 11.1 15.2 24,2 50.8
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Table V. Mean binding energy per nucleon predicted by
momentum-dependent potentials generated from the Hamada-

Johnston potential.

State Hard Momentum-dependent H-J
core
H-J n=1.4 n=3 n=>5
(MeV) (MeV) (MeV) (MeVv)

1 a
S, ~15.09 ~16.30 ~13.66 -20.08
3sl -16.05 -12.94 ~19.55 -21.212
lpl 3.68 3.21 3.53 3.61
3p0 -3.47 -3.71 -3.69 -3.65
3P1 11.13 10.07 10.40 10.41
3p2 -7.13 ~4.73 ~7.45 -8.91
102 -3.09 ~2.86 -3.07 -3.11
301 1.57 1.56 1.57 1.57
302 -4.47 —4. 40 -4.48 ~4.48
Total? -8.54 -6.64 -16.61 -18.69

aThese values are for n=3.7.

bTotal for each column is the sum of the S states from that
column, the P and D states from the hard core H-J column,
and a kinetic energy of 24.39 MeV per nucleon.
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from which they were generated. The increase in the binding
energy of the lS0 state when the hard core in that state was
replaced by a momentum-dependent repulsion was greater than
that obtained when the 0.4 F hard core was replaced by a
momentum-dependent repulsion. The 351 state shows even more
sensitivity to the form of the short rarnge repulsion than
the lS0 state. The intermediate range momentum dependence
produced about 3 MeV less binding in the 351 state than the
hard core Hamada-Johnston potential. The short range
momentum dependence characterized by n=3.7 produced about a
5 MeV increase in binding. Combined with the increase of 5

MeV in the 1

S0 state and using the hard core Hamada-Johnston
potential for the P and D states, the n=3.7 momentum depend-
ence in the 3Sl state produced too much binding. This could
be corrected by adjusting the value of the range parameter
for either or both of the S states to reduce the binding
energy to the desired value. Setting n=3 for both states
results in good agreement with the empirical value. 1In any
event, a deviation of 1 or 2 MeV from the empirical value is
not a cause for concern since the method used in the calcula-
tion could have introduced errors of this magnitude.

The D states showed some loss of binding with the inter-
mediate range momentum dependence. With the shorter range
momentum dependence, n=3, the contribution of these states

to the binding energy was brought into close agreement with

the values obtained from the hard core potential. This was
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perhaps to be expected since the D waves see virtually
nothing of the interior region of thc potential. What is
seen, however, is the decrease in attraction in the inter-
mediate region of the n=1.4 momentum-dependent potential
and the fairly close agreement between the hard core and the
shorter range momentum-dependent potentials in the inter-
mediate region as shown in Figures 4, 5, and 6. Thus it
makes little difference whether a hard core or short range
momentum-dependent potential is used in the D states.

1 3 3

The Pl' PO' and “P, states together are about 1.8 MeV

1
more attractive when the n=1.4 momentum dependence is used °
to replace the hard core. This increase in binding is
reduced to half this value when the range parameter is set
equal to 5. The 3P2 state more than cancels the increase

in binding produced by the other P states for n=1.4. For
that value of the range parameter, the 3P2 state produces

2.4 MeV less attraction than it does with the hard core
potential. This changes to about 1.8 MeV of added attraction
when n is increased to 5. As n increases above 5, the
increase in attraction levels off and will then gradually
return to the value obtained with the hard core potential.
Setting the range parameter equal to 3 for all of the P
states results in 1.4 MeV more binding energy than is
obtained when the hard core Hamada-Johnston potential is
used.

3

The Po phase shift is very poorly defined by experiment

at energies between about 60 MeV and 130 McV, a region which
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Figure 4. Momentum-dependent 1D2 potentials. Generated from
the Hamada-Johnston potential.
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Figure 5. Momentum-dependent 3D1 potentials. Generated from
the Hamada-Johnston potential.
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Figure 6. Momentum-dependent D2 potentials. Generated from
the Hamada-Johnston potential.
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is very important in nuclear matter. The uncertainty in
this phase shift results in an uncertainty of about 0.4 MeV
per nucleon in the contribution of this state to the binding
energy of nuclear matter.21 The 3Pl and 3P2 phase shifts
are pinned down somewhat better than the 3P0, but at energies
above about 100 MeV the Hamada-Johnston potential does a
rather poor job of fitting these phase shifts.* Using the
phase shift approximation for the reaction matrix, the
Hamada-Johnston potential was found to produce about 0.4 MeV
per nucleon less binding than the experimentally determined
phase shifts in the 3P0 state and 0.6 to 0.8 MeV per nucleon
more binding in each of the other states. Consequently the
numerical results obtained for the P states should be inter-
preted with caution.

In conclusion, the binding energy of nuclear matter
seems to be quite sensitive to the form of the short range
repulsion used in phenomenological two-nucleon potentials.
Even two-nucleon potentials which have identical on-energy-
shell matrix elements may predict mean binding energies per
nucleon for the S and P states which differ by several MeV.
The binding energies of both the S and the P states showed
a desirable increase when a hard core potential was replaced
by a short range momentum-dependent one. Using a momentum-

dependent potential for the S states and a hard core poten-

tial for the P and D states resulted in a mean binding

*
See Figures 7 through 10.
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energy per particle which was in good agreement with the
empirical value of 16 MeV. It would be desirable to repeat
the work on the 3Sl, P, and D states with a set of potentials
similar to the ones used for the 1S0 state rather than the
Hamada-Johnston potential which is not always in agreement

with the phase shifts obtained from analyses of the two-

nucleon elastic scattering data.
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DIAGRAMS

The unperturbed ground state of nuclear matter is
represented by a Slater determinant of the unperturbed
single particle wave functions corresponding to the A single

particle states of lowest energy. That is

-4 A
‘ -
D=(A) ‘& TT &)
° ¢
where (f is the antisymmetrizing operator. The unperturbed

wave function, é; , is normalized

<8/8>-

Let ¢;(;:) and 4(;':) be two single particle states
interacting through the two-nucleon potential. Then the

product of these states is written

[pp>= BE) B (R)
<rrl = 24) 9%

The matrix element describing the scattering of particles 1
and 2 through the two nucleon potential from states p, and

2 to states » and s is
K rsfojpp> s /ﬂ’,’éw $A) vB A L) dn I
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The matrix element of the single particle potential is

similarly defined

<plV/p>s /?ﬁ?é) V #.05) s,

Define the Fermion creation and annihilation operators
with the properties that q: creates a particle (annihilates
a hole) in state p  and Ap annihilates a particle (creates
a hole) in state / - These operators satisfy the anticom-
mutation relations

Ap Gyt A 3p =9, ajaz rag 4 =, "/"rr*";“f =$r

Diagrams provide a convenient way of illustrating the
effect of a particular term in the Brueckner-Goldstone
expansion. In order that they be used in a consistent way,
it is necessary to specify a few rules for drawing or inter-
preting a diagram. The direction of increasing time will be
toward the top of the page. Any state not specifically
included in a diagram is assumed to be as it was in the
unperturbed state. Thus above and below the diagram all
states below the Fermi level are filled and all states above
are empty. The first interaction results in two particles
in the Fermi sea being excited to states above the Fermi sea,
leaving holes in the originally occupied states. Continuing
in the direction of increasing time, particles are repeatedly
scattered into unoccupied states until the final interaction
results in their being scattered back into their original
states, leaving the wave function as it was before the first

interaction took place. An upward directed line represents
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a particle above the Fermi sea and a downward directed line
represents a hole in the Fermi sea. Since particle number
is conserved, there must always be one hole in the Fermi sea
for every particle above it. The matrix element </7—/”/"~‘>
is represented by a horizontal dashed line connecting the
intersection of lines representing the states , and » at
one end with the intersection of lines representing states
4 and s at the other end. The matrix element {p/V/2> is
represented by a horizontal dashed line terminated at one
end by the intersection of the lines representing states p
and % and at the other end by an X . The incoming lines
are associated with the initial state /r;) . The particles
in this state are destroyed by the operator qsa; . The
operator 4; a;, creates particles in the final state {/%/
which is represented by the outgoing lines. The energy
denominator is equal to the sum of the particle energies
minus the sum of the hole energies. Finally, the contribu-
tion of the diagram to the energy shift is obtained by
multiplying the product of the matrix elements and the energy

(_1)h+c+e+s where h is the number of hole

denominators by
lines, ¢ is the number of closed loops, e is the number of
energy denominators, and s is the number of interactions
involving the single particle potential.

Consider, for example, the following diagram:

Gl



71

The initial state is just QE. As a result of the first two-
body interaction, particles in states » and » in the Fermi
sea are scattered into excited states a and b , respec-
tively, leaving holes in the states they originally occupied.
In operator notation this is written

a: al an am / é: >
The matrix element corresponding to this interaction is
<“‘/U /n m> and the energy denominator for the intermediate
state resulting from this interaction is—(é;ré;—e;.‘éa)“ .
The minus sign preceding this term will later be combined
with other factors of -1 as described in the final rule in

the previous paragraph. Thus the effect of the first inter-

action is written

(ab/‘v/ﬂm} afafa.. a.
(Gar€i-Em-Ea)

The interaction with the single particle potential results
in the scattering of a particle in state A’ in the Fermi sea
into the unoccupied state w also in the Fermi sea, leaving
a hole in state _¢ . It can also be thought of as the
scattering of the hole in state a into state £ . This

interaction contributes the additional factor

_ m/V]L> a‘a:
(‘-:A"‘:b - é',,-ﬁ)

to the term resulting from the first interaction. Although
this interaction involves scattering from state m to X,

the energies of states a4, b, and # also affect the
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contribution of this interaction. This is an example of a
process taking place off the energy shell. The final inter-
action scatters the particles in excited states « and b
back into the holes left in states » and A as the result
of the previous interactions. After this interaction the
particles are all back in their unperturbed ground states.

The total contribution of this diagram is

nd[viadbd>cm)yU>ab /v inm>
(CatCy-E,-E )(EnrEG-Em=En)

X<£ /q"q;a“ a, a, a:q:a: Ay Am /f°7

The quantity

\é/an A Qo dya, Am A A, Ay du /& >
is just %1, depending on the order of the creation and
destruction operators. Using the commutation relations for

the operators and remembering that

a,fﬂ,/g:’): "/f,> if p4A (in the Fermi sea)

O if ,g>/) (above the Fermi sea)
the expectation value of this particular set of operators is
found to be +1. This agrees with the result obtained by
using the last rule for the diagrams. There are three hole
lines, two closed loops, and one interaction involving the

3+2+1_ )

single particle potential, giving a sign of (-1)
The two minus signs from the energy denominators cancel,
leaving as the contribution of this diagram to the energy of

nuclear matter
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<ntllvlab><m/Vig>Lab|v/nm>
(Ea 64 =CaE2) (Cu v 3 —Cu=E)

To find the total contribution of all the distinct diagrams
of this type, one must calculate the sum of these terms where
o and b are allowed to take on all possible values greater

than A, and ", n , and £ take on all possible values
between 1 and A. The sum is then multiplied by % to account

for the fact that since
Cpplvies> = <pploisr>

each distinct combination of states has been calculated

twice.



REFERENCES




10.

11.
12.

13.

14.

15.

REFERENCES
P. Cziffra and M. J. Moravcsik, University of P
California Radiation Laboratory Report UCRL-8523 Rev. [
C. B. Bressel and A. K. Kerman quoted in P. C. Bhargava
and D. W. L. Sprung, Annals of Physics (N. Y.), 42,
222 (1967).

T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).

T

M. D. Miller, P. S. Signell, and N. R. Yoder, Phys.
Rev. 176, 1724 (1968).

M. S. Sher, Ph. D. thesis, Michigan State University,
1969.

G. A. Baker, Jr., Phys. Rev. 128, 1485 (1962).
R. E. Peierls, Proceedings of the International

Conference on Nuclear Structure, Kingston, fniversity
of Toronto Press, Toronto, 1960.

A. M. Green, Nucl. Phys. 33, 218 (1962) and A. M.
Green, Phys. Lett. 1, 136 (1962).

K. A. Brueckner and K. S. Masterson, Jr., Phys. Rev.
128, 2267 (1962) hereafter referred to as BM.

J. Orear, A. H. Rosenfeld, and R. A. Schluter, Nuclear
Physics, University of Chicago Press, Chicago, 1967,

p. 7.
P. A. Seeger, Nucl. Phys. 25, 1 (1961).

A. E. S. Green, Phys. Rev. 95, 1006 (1964).

D. Halliday, Introductory Nuclear Physics, John Wiley
& Sons, Inc., New York, 1962, p. 261.

B. H. Brandow, Ph. D. thesis, Cornell University, 1964
gquoted in Reference 16,

Much of the material for this section was obtained from
Reference 16,

74



16.
17.

18.

19.

20.

21.

22.

75

B. Day, Rev. Mod. Phys. 39, 719 (1967).
M. W. Kirson, Nucl. Phys. A99, 353 (1967).

S. Okubo and R. E. Marshak, Annals of Physics 4, 166
(1958) quoted in P. Signell, The Nuclear Potential, i.
Advances in Nuclear Physics, M. Baranger and E. Vogt,
ed., Vol. 2, Plenum Press, New York, 1969.

L. Ingber, Ph. D. thesis, University of California,
San Diego, 1967.

K. A. Brueckner and J. L. Gammel, Phys. Rev. 109,
1023 (1958).

P. S. Signell and M. D. Miller, Phys. Rev. 178, 2377
(1969).

M. H. MacGregor, R. A. Arndt, and R. M. Wright,
University of California preprint UCRL - 70075 (Part X).



MICHIGA| UNI B
1 T
” |

A —
O L

”u L !u\ WL

3 1293 03169 6382




