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ABSTRACT

MODEL DEPENDENCE OF THE

BINDING ENERGY OF NUCLEAR MATTER

BY

Michael David Miller

It is possible to produce hard core, soft core, finite

core, and momentum-dependent potentials which fit the two-

nucleon elastic scattering data equally well and which are,

therefore, indistinguishable from that standpoint. This

thesis examines the feasibility of using nuclear matter

calculations to distinguish between potentials which cannot

be distinguished through two-nucleon elastic scattering

experiments.

Using the method described by Brueckner and Masterson

for the static potentials and, with modifications, for the

momentumedependent potentials, the mean binding energy per

nucleon in nuclear matter is calculated for each of the S,

P, and D states using several phenomenological two-nucleon

potentials which have identical on-energy-shell matrix

elements. The binding energy is found to be very sensitive

to the form of the short range repulsion in the potential.

Replacing a hard core potential by a short range momentum-

dependent one having identical on-energy-shell matrix elements

is found to increase the contribution of the S and P states

to the binding energy of nuclear matter. There was little

change in the contribution of the D states. With the proper
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form for the momentum dependence, increases in the binding

energy of over 12 MeV per particle were obtainable.

The hard core Hamada-Johnston potential predicts a

binding energy of 8.5 MeV per particle for a Fermi momentum

of 1.4 F-l. This is fairly typical of hard core potentials

which fit the two-nucleon elastic scattering data fairly

well, but is in poor agreement with the empirical value of

16 MeV per nucleon. Replacing the S state potential alone

by an equivalent momentum—dependent one results in a cal—

culated value for the binding energy which is in excellent

agreement with the empirical value.

 

K. A. Brueckner and K. S. Masterson, Jr., Phys. Rev. 128,

2267, (1962).
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SECTION I

INTRODUCTION

Ever since the discovery that the atomic nucleus was

composed of neutrons and protons, there have been attempts

to explain the properties of nuclei in terms of the inter-

action of these particles. Although it is now clear that an

accurate theory of the nucleus will involve more than the

nonrelativistic Schroedinger equation for neutrons and

protons interacting through a two-nucleon potential, this is

at least a good starting point. Even if the two body forces

prove to be unable to account for all of the nuclear data,

their failure should at least provide some clue as to the

nature of the many body forces.

The two-nucleon potential need only be valid up to

about 350 MeV in the laboratory frame. Above this energy

pion production becomes significant and the use of the non-

relativistic Schroedinger equation is probably not justified.

However, since the tap of the Fermi sea in nuclear matter

corresponds to an energy of only about 160 MeV, the 350 MeV

upper limit on the theory should not be too restrictive.,

It is generally agreed that if a two-nucleon potential

is to fit the two-nucleon elastic scattering data, it must

assume the form of the one-pion-exchange potential at large

1
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distances. At small distances it must have some form of

short range repulsion, at least in the S and 3Po states.

Within this broad framework there have been many attempts to

produce a purely phenomenological two-nucleon potential

which not only fit the two-nucleon elastic scattering data,

but also produced reasonably good results in nuclear cal-

culations.

The phenomenological potentials are best classified

according to the form used for the short range repulsion.

The most common types have been the infinitely repulsive

hard core, the finite core, the soft core, and the momentum-

dependent repulsion. The ability of these potentials to

describe the two-nucleon interaction has differed widely.

The best way of comparing the quality of one phenomenolog-

ical potential with another is to compare the goodness-of-

fit parameter, :k‘, obtained when each of the potentials is

used to predict the same set of experimental data. For N

data,

1‘. fi<fir£1f

Ila] 6"

where 6" is the experimental standard deviation associated

with the experimental datum E; , and I"; is the value pre-

dicted by the potential.1 The closer the predicted values

are to the experimental values, the smaller 1‘ will be.

The more accurate data with their lower uncertainties will

be more senSitive to variations in the potential parameters

than the less accurate data.
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Table I shows some of the more pOpular potentials and

their associated If values for the current set of statisti-

cally valid two-nucleon elastic scattering data below 350

MeV. The Bressel-Kerman finite core potential2 seems to be

the one preferred by the elastic scattering data. However,

the hard core Ramada-Johnston potential3 is five years older

and is still almost as good a fit to the data. Probably only

some small changes in the values of the potential parameters

in order to account for the additional, more accurate data

would result in very close agreement between these two

potentials. In fact, previous work with the very accurate

data available at 210 MeV4 has shown that at that energy the

majority of the difference in the two potentials could be

eliminated by changes in the 3P2 state alone. Presumably,

similar results would be found at other energies.

Thus, at the present time, the two-nucleon elastic

scattering data does not appear to be able to distinguish

between properly parameterized hard core and finite core

potentials. This was emphasized for the 180 state when a

family of hard, soft, and finite core potentials was gener-

1
ated, each of which gave a precise fit to the So phase

shifts deduced from the elastic scattering data below 330

MeV.5 The same thing could probably be done for the other

states. Furthermore, Baker has shown that given any hard

core potential, a family of momentum-dependent potentials

can be generated which will produce elastic scattering

phase shifts which are identical at all energies to those
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Table I. x.for various phenomenological two-nucleon

 

 

 

 

potentials.

,_ a

Potential Type 2,’ for X for

648 pp 952 np

data data

Bressel-Kermana finite core 1382 2031

Hamada—Johnstonb hard core 1929 2149

Bethe-Reidc hard core 1763 4249

Yaled hard core 2471 2511

a
Reference 2.

Reference 3.

c

d

R. V. Reid, quoted in Bhargava and Sprung, Reference 2.

K. E. Lassila, M. H. Hull, Jr., H. M. Ruppel, F. A.

MacDonald, and G. Breit, Phys. Rev. 126, 881 (1962).
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produced by the original hard core potential.6

It has been suggested that the many-body problem might

be helpful in distinguishing between potentials that are

identical from the standpoint of two-nucleon elastic scat-

tering.7 The advantage of the many-body problem is that it

allows for scattering off the energy shell. This is scat-

tering in which the two-body interaction occurs between two

particles in excited states at an energy different from that

of the initial and final states.

There have been previous attempts to use nuclear

matter calculations to distinguish between hard core and

momentum-dependent potentials.8 Although the results indi-

cated a desirable increase in binding for the momentum-

dependent potentials, they were not conclusive qualitatively.

For one thing, the potentials used did not have identical

on-energy-shell matrix elements, although it is clear from

Baker's work that it is possible to develop potentials of

these two forms that do. Thus one was left to wonder

whether the nuclear matter calculations merely emphasized

the on-energy-shell differences in the potentials, which

could be distinguished through sufficiently accurate elastic

scattering experiments, or if the differences in the nuclear

matter calculations were really due to off-energy-shell

processes, which are not involved in two-body scattering.

To further complicate matters, the momentumrdependent

potential calculations were carried out using perturbation

theory while the hard core potentials were treated using



Brueckner's method. The different approximations made in

the two methods alone could easily result in discrepancies

of over 2 MeV per nucleon in the average binding energy,

which is more than the difference between some models when

a consistent procedure is used.

Both of these sources of uncertainty have been avoided

here. In the treatment of the 1So state alone, the momen-

tum-dependent potentials were derived from the 0.4 F hard

core 180 potential of Reference 5 using Baker's transform-

ation. As shown in Figure l, the 180 phase shifts below

330 MeV obtained from the soft core and finite core poten-

tials.agree with those obtained from the 0.4 F hard core

potential to within a small fraction of the standard devia-

tion obtained from the experimental data. Above 330 MeV

they begin to diverge slowly. Of course, the 180 phase

shifts obtained from the momentum-dependent potentials are

identical to those produced by the 0.4 F hard core potential

at all energies. So for use in nuclear matter calculations

these potentials can be considered to have identical on-

energy-shell matrix elements. In working with the other

states, the momentum-dependent potentials were obtained

from and compared with the Hamada-Johnston hard core poten-

tial alone.

In calculating the binding energy for nuclear matter,

the method described by Brueckner and Masterson9 was used

for all of the potentials. The modifications made in

treating the momentumrdependent potentials involved no
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Figure l. 1S phase shifts predicted by the static potentials

and the values deduced from two-nucleon scattering experi-

ments. See Reference 5.
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additional approximations above those involved in the

calculations using the other potential forms. Thus the

results obtained here should be an accurate quantitative

description of the ability of nuclear matter to distinguish

between potentials that cannot be distinguished through two-

nucleon elastic scattering experiments.



SECTION II

THEORY

A. Properties of Nuclear Matter
 

Nuclear matter is a hypothetical system of % neutrons

and % protons where A is allowed to become infinitely large.

If the coulomb repulsion of the protons is ignored, it is

thought that in its lowest energy state a stable configura-

tion would result, characterized by a uniform density, /4 ,

and a mean binding energy per particle, «k . Because nuclear

matter is assumed to be homogeneous and isotropic, the single

particle wave functions of nuclear matter are just plane

waves. Thought of as a first approximation to a heavy nucle-

us, nuclear matter provides a medium in which the ability of

a two-nucleon potential to predict some of the properties of

a nucleus can be tested without all of the difficulties

inherent in the calculation of the prOperties of a finite

nucleus. A potential which fails to satisfactorily predict

the binding energy and density of nuclear matter need not

be dragged through a finite nucleus calculation.

The average binding energy per particle that nuclear

matter would be expected to have if it really existed is

deduced from the semi-empirical mass formula.10 According

to this formula, the binding energy of a nucleus is
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-£

r

s _ ‘ _,

E’quqfatflr*aJ(‘§‘Z)‘/
4‘+q,Z/4:+asfl

(II’l)

The first term is the volume energy term, the second a

correction to account for surface tension, the third is the

symmetry energy. The fourth term represents the contribution

of the coulomb repulsion between protons, and the last term

is a small correction which accounts for pairing effects.

With properly chosen constants, this equation predicts the

binding energies of nuclei with a standard deviation of

2.61 MeV per nucleon.11 However, the deviations from the

mean values have systematic trends which are evidence of

shell structure and no attempt was made to account for this

prOperty of nuclei in equation (II-l).

For nuclear matter,the number of nucleons, A, is infin-

itely large, so the surface and pairing effects are negli-

gible. As stated before, coulomb effects are ignored, and

equal numbers of neutrons and protons are assumed. The

result of these assumptions is that the expected binding

energy of nuclear matter is just the volume energy term of

the semi-empirical mass formula. This quantity has been

11, 12
determined to be about -16 MeV per nucleon. The corre-

sponding energy for finite nuclei is about -8 MeV per par-

13 The difference is due solely to the inclusion oftic1e.

coulomb, surface, symmetry, and pairing effects in finite

nuclei.

In addition to the binding energy of nuclear matter,

the saturation density must also be calculated. The latter
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is determined from potentials by plotting the binding

energy as a function of particle density. The minimum of

the curve determines the saturation density and the asso-

ciated binding energy. These can then be compared with the

empirically determined quantities. Starting from the density

of the interior of a heavy nucleus and taking into account

the effects of coulomb repulsion and surface tension, the

saturation density of nuclear matter has been determined to

be about 0.170 F-3.14 Because nuclear matter is treated as

the ground state of a Fermi gas which is perturbed by two-

body interactions between the nucleons, a more convenient

quantity to use in describing the density of nuclear matter

is the Fermi momentum, 4, , which is related to the satura-

tion density,/0, , by

4

3 4 3

NEG-’57“) =23; F./

B. Summary of Brueckner-Goldstone Theory15

The theory of nuclear matter begins with A nucleons

composing a Fermi gas in its ground state, which is assumed

to be non-degenerate. The density of the Fermi gas is,/“‘fig'

where.n.is the volume of a very large box in which all the

nucleons are contained. If the particles do not interact,

then the energy of the distribution is just the sum of the

kinetic energies of the particles
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To obtain the ground state of nuclear matter, a two-

nucleon potential, PQ', acting between states i and‘/ is

introduced. The total Hamiltonian then becomes

.4 ._ .4

Isl I", "’

which can be written

H= xx, r-M (“‘2’

where

The quantity Va.) is the single particle potential acting

on particle i and is dependent only on the momentum of the

particle on which it acts. It is introduced only in order

to simplify the calculation by improving the convergence of

the series expansion and will have no effect on the energy

of the distribution. The actual form of the single particle

potential will be discussed later.

If f is the perturbed ground state wave function, then

the energy per particle, ET, is found by solving

#1}: E? (II-3)

For the unperturbed ground state this reduces to

444.2225.

where ‘2? is a Slater determinant of the single particle

states, y; . The normalizations of 1p and fl are chosen
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such that

<£/¢>:/

<é/f>=/

Then from equations (II-2) and (II-3)

OWE/11>“; sér/mxf> CHM/14>

giving

5- E. = «UM/15>

Equation (II-3) can be rewritten

(£-M)/f>=H,/1V.> (II-4)

Adding the homogeneous equation {(5. ”If. M.>=o to the right

hand side of equation (II-4), one obtains

M»-:,Z‘M.>

 

4W)

= /¢2>-—b—E~5°/2£> —_:’,;~///1/7>

Then using equation (II-4),

 

  

           

 

/1P>= M. 54,, ,_.—_’-—-—;-//.//>

= /fi,>+¢._l:o H/f) (II-5)

where Pa /- /[.><é/ is an operator which prevents the

unperturbed ground state from occuring as an intermediate

state. Using equation (II—5) in equation (II-4) and
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multiplying on the left by (é/ , the energy shift is found

to be

4—15. =<95./d/é.>+ @Mg—fi- MM}

which can be expanded as a perturbation series in /£

giving

 

55.: <é/M/4:> +<¢2///, 5/; hf/é.>+-~ (11-6)

to second order.

At this point it becomes more convenient to let the

subscripts refer to states rather than particles. Subscripts

a through j refer to states above the Fermi sea, k through

n to states in the Fermi sea. The rest refer to any state.

Sums over these subscripts imply sums over the entire range

of states covered by the subscripts. Since each momentum

state below the Fermi momentum will contain two neutrons

and two protons (one of each spin), there will be four

distinct states of each momentum up to the tOp of the Fermi

sea for a total of A filled states. A particle will have

a momentum greater than A; only if it has been excited,

leaving a hole in the state it originally occupied below

the Fermi sea. Equation (II-6) can be rewritten as an

expansion in terms of the single particle potential, V; and

the two-body potential, 2%,. Then in the notation of

second quantization (see Appendix) equation (II-6) becomes

to first order I

5-2:. = 1L2 Ova/m» - 4-2: <m / v/m> - 244/ w.» ...-

," n’" " (II-7)
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l
The factor 5» is needed because the summation is carried out

over all states with the result that each distinct matrix

element is counted twice.

A problem immediately arises because of the strong

short range repulsion of many two-nucleon potentials.

Matrix elements of these potentials will be extremely large

and equation (II-7) will not converge even though the energy,

shift, E'- Ea , may be small. Brueckner's solution to this

problem was to replace the expansion in terms of the two-

nucleon potential by an expansion in terms of the reaction

matrix defined by

K(W)= 7+, - 24., {-23} KM) (II-8)

where Q is the Pauli Operator with the pr0perties

CAFf> if]? and 7 are both excited states

($égff1: above the Fermi sea

K. 5 otherwise

and

807'): ((54+5f’ W)/ff>

where h/ is the starting energy. The energy denominator is

determined by calculating the sum of the particle energies

minus the sum of the hole energies. The starting energy is

obtained by subtracting é}+£}. from the result.

Introducing the reaction matrix is equivalent to

regrouping the matrix elements of the two-nucleon potential

betWeen particles in the original eXpansion in such a way

that each term in the new series makes a small enough con-

tribution to the total energy that the series quickly
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. converges. Interactions between holes are not included in

this partial summation because their momenta are restricted

to IfsA; whereas the momentum of a particle can be many times

that. Hence the phase space available to the holes is much

more limited than that available to the particles with the

result that interactions between particles are expected to

be the major contributors to the energy shift.

The grouping of terms is probably more easily explained

in terms of diagrams. Any series of interactions between

particles of the form

————— + + ..-..- +0.0

-—-- -“

is replaced by one diagram containing the interaction repre-

sented by

The dashed line represents the two nucleon potential and the

wavy line the reaction matrix. The diagrams to first order

in the reaction matrix and single particle potential are

The contribution of the first order diagram in the single

particle potential cancels the corresponding term arising

from lhfi regardless of the form of the single particle

potential. The second of the first order diagrams
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represents the sum of diagrams involving the twornucleon

potential

m:Q---Q£19:ng-

The third is just the exchange diagram

 

All second order diagrams of the reaction matrix are

either redundant or do not conserve momentum, so they do not

contribute to the energy of nuclear matter. For example,

the diagram

----

“=
0 0 + 0--Of

. 0*...

is clearly included in the first order diagram

An example of a second order diagram that does not conserve

momentum is
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Since the state ca is above the Fermi sea and state re is in

it, momentum conservation is clearly violated between the

two interactions.

It is possible to choose the single particle potential

in such a way that most of the important three-body diagrams

will cancel. If this is done the contribution of these and

higher order diagrams to the energy of nuclear matter is

16 Even ifexpected to be only about 1 MeV per particle.

some other form is chosen for the single particle potential,

the contribution to the energy which is not included in the

first order diagrams is not expected to exceed 4 MeV.16' 17

This is only about 10% of the total potential energy, and if

it is not considerably more model dependent than the contri-

bution of the first order diagrams it will not alter the

conclusions drawn on the basis of the first order diagrams

alone. Because only first order diagrams were considered

here, the single particle potential was chosen in such a

manner that the contribution of the two reaction matrix

diagrams were cancelled by the diagram involving the single

particle potential. That is

<”/ V/”> 5 % <""'//</‘""> ~ ;. ("M/k /nm>

Thus the energy shift will be just the sum of the matrix

elements of the unperturbed Hamiltonian, #4 , between all

single particle states in the Fermi sea. This is just the

sum of the kinetic energies and single particle potential

energies of each particle in its lowest state.
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In order to calculate the reaction matrix elements, it

is convenient to define a correlated two-body wave function,

g2 . The unperturbed two-body wave function is just the

product of two unperturbed single particle wave functions.

if g €53 E/ff>

As stated before, the unperturbed single particle wave func-

tions are just plane waves. If the nuclear matter under

consideration is assumed to be enclosed in a large box of

volume.fl-, then the single particle wave functions are

" ..-

54,4
é(€)=-—7&;e

so the two-body unperturbed wave functions are

d -_. ... .J

I £11,": ily'rs

$03". =Jz- e e

This can be rewritten

$5 (‘ " - —-—-—’ . ' if}. 4,4. ‘J'L e e (II-9)

where

=2’-<'P.'+7i) F: 7,"-

K flaw/E 121(41‘27)

These new quantities are the center of mass coordinate of

m

(II-10)

...-D

the two particles, I? , and the total momentum K, . The

other two quantities are the relative position and momentum.

Equation (II-9) can be rewritten
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_. 1?’
¢((4, .) = 35-6 ”2%, (M?) (11-11)

This defines g&}0§29 as that part of the unperturbed two-

body wave function which is a function only of the relative

position and momentum of the two particles. The two-body

correlated wave function is then defined

4.a .444,

3 0‘ g”) £7

Multiplying both sides by the two-nucleon potential and

using the definition of the reaction matrix, equation (II-8),

results in

-.w- 52 ..

”0“” ”60% ‘ KP};

So equation (II-12) can be rewritten

Lazé
--E?

)«e V ,7, (II-13)

Because the operators 3’, e , and C? all conserve total

...)

momentum, the dependence of if” and ’7' on ..w. and I? will

be the same. The correlated wave function can then be

written
J

75 '1?
2?. =fiL€ f 3/4, (II-14)

where 7;}, is a function of the relative position vector and

momentum only.
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Using equations (II-ll) and (II-l4) in equation (II-l3),

one finds, as expected, that the reaction matrix elements

.3

are independent of J2. and K .

(”UK/ff) .../4(7) 7/0: k) 3%, (F) I? (11-15)

where

gfi‘k 9,4, (ii/6,, (if?) Mr; I.) V” (.7ij (11-16)

and

17-0-1?)
6’ (’3’ ’9- ##2eWeI (11-17)

I r ' J
P 2n GAO)

As stated previously, the total momentum, *9; , is conserved

in the two-nucleon interaction; however, the relative

.3

momentum, A , can change to some new value, I”. The Pauli

Operator, C? , eliminates from the integrand all transitions

_J .4

to occupied states in the Fermi sea. If k. and A3. are the

momenta of particles 1 and 2 in some intermediate state,

then

4:0 if k,</‘z= or k,</<,

CP=I if k,>k, and 43k.-

where, by equation (II-10),

”a "/r
a.

A-

The energy denominator, e , is dependent not only on the

u
t
3
>
t

F
h

b
k

2?

kinetic energy of the states involved, but also on the

single particle potentials associated with them. However,
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the single particle potentials are functions of momentum

which are determined by the reaction matrix elements. Thus

one must assume some initial value for the single particle

potentials and calculate the reaction matrix. New single

particle potentials can be calculated from the reaction

matrix, and these are then used in recalculating the energy

denominator. This procedure is repeated until the single

particle potentials generated by the reaction matrix agree

with those used to calculate that reaction matrix. If it

were not for the complicated dependence of the operatorch

and <3 on the total and relative momenta, nuclear matter

calculations would be greatly simplified. In fact, if one

sets Qzl and defines the energy denominator to be just the

kinetic energy of the particles involved, as is the case for

the free two-nucleon interaction, one finds that be(€39

can be calculated analytically and equation (II-16) becomes

I :kj?r/

‘7%fi)3 ¢QVU"§;V/’e/;fi'l DMVJ'7%{) a/r'

..3

where A; is the relative momentum of the two nucleons

before scattering. This is the integral equation for two-

particle scattering.

C. Baker Transform
 

The Schroedinger equation for two nucleons interacting

through a momentumrdependent potential can be shown to have

solutions which are identical at large distances to those

produced by the Schroedinger equation for two nucleons

interacting through a static potential outside a hard core.6
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The Schroedinger equation for the momentum dependent poten-

tial can be written

- t

{f;[/(df‘*1/-/uwfi+fl/‘W]+ K 0)}m -- E 5’09 (II-18)

where/uzl for a repulsive force and ”00:0. M is the

nucleon mass, and K809 is a static potential. The form of

the term involving the momentum operator is required for

hermiticity and time reversal invariance.18 If/«USI for

all values of r, then equation (II-18) just reduces to the

Schroedinger equation for a static potential. Using /f=L$VC

equation (II-18) can be written

/(r) l71’044-77/4.“) vfif)+ 4350) 7/2“»)

1" %[c‘~ VJJWJV‘W = 0

x

Since/a. and K are functions of I“ only, equation (II-19)

(II-19)

may be separated into radial and angular components.

Writing the equation for a particular partial wave and

noting that the angular component is identical to the one

obtained in the static problem, the radial equation becomes

J‘y fi?’) 1. 51/0)

; (r + ,.

27 t J (107).? (IP20)

4‘“) "’ [WK‘WJ {LE-flif‘fiwyaw) 2r”0) #0)Mt,‘

 

where

/"’)?;‘é-/u")

Now make the transformation
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l‘s rg/Q

£0); {9049)

So

.31.... , .4
"" T ”’V) «94

where

rho); i];- ’9')

Then equation (II-20) becomes

Misc! law/2g; )

[WK/)1 4/” W21 WW

age/m) Zu_,u__) /a___’____<d_ ”(5)5501 Jew)

[In/21‘ MW ”'99 [r'wj’ W47;-

 

/()r" )/2_/a_m) ,u___’____(r)_ rc) 0*

257[V/“"’]‘7)—_ZTZ\WW?) "/9 [7%)36'849’)

fl4 8

* “Elf-V. (ryflgwléé’) = 0 (11-21)

Demanding that the coefficient of' ”f; equal zero and that

{y

the coefficient of !J/ffl—L") equal (9') will define IQ“)

and /A in such a way that equation (II-21) will assume the

form of the Schroedinger equation for a static potential.

From the condition

2.

/6c c r) = ["90]

one finds

r'(/)= [/09]: (II-22)
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which defines the relationship between./o and ,, to be

r -1

/=/[/a(r9] ‘a/f" (II-23)

Then setting

2 3,043/“2 + 150') + ,u’O') _ #2:) £0)
= o

[”3721‘ Ivory» run) [iggg3 Eb»

requires that

 

IQ) = (11-24)

I

4&79i/azflé-

Using equations (II-22) and (II-24), equation (II-21) can

finally be reduced to

Ceiz(£)_ leIfiLAafld 0’98)

/;2 .fi

(II-25)

+T E-V(r)+~—£/“""W37"; -,:/-)]U (/)= 0

which looks like the Schroedinger equation for a static

potential.

Since the wave functions (49a) and in) are related

by

)rywéquZ’

the matrix elements of any Operator I4 between states £09

and ‘40) of equation (II-20) are related to those between

the corresponding states efigq) and (‘1,9 of equation

(II-25) by
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/7,€<d/1747’0 rum/0,."Md/iv C/JJ/

Outside the range of the momentum dependence/1unoz /

SO

 

Uc) uc‘d

g(r)= ”‘95-: ~57"

in that region. Equation (II-23) can be written

4

lfl-r %,/:“1"/]' ‘

m/S’V- [/«wP‘ié/w

\
l

/.\

But for"r outside the range of the momentum dependence

1'”

[3/‘Qtr7]-{}‘/'"=/ [VF/SJ.“ = 0

So out there

on -.t
/: fi-[Z/‘Z/ucra

j 3/1" 55 ,4-“ (II-26)

Define K's/om everywhere. This reduces to 42% outside the

range of the velocity dependence. Define

EM)?- Hdfim): q. 92)

Then since‘JWEdb , equation (II-25) can be rewritten

J‘S‘(5)_1(,2+// M ,4on
fl ...... l; (K/+——-232‘!V(«9...25.10![jg/H(«y K")

-..ifl’mx-3’(§2€g'fi‘%)’ «TQES (R) «o (II-27)
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subject to the boundary condition ;(a)=o . This is the

Schroedinger equation for the potential enclosed in the

square brackets outside of a hard core of radius ca. Out-

side the range of the momentum dependence,

£04): V409: r 31/0)

Starting now with a potential LJ(@) outside a hard core

of radius cl and reversing the steps that lead to equation

(II-27), one finds that for any function .uxg) which is
/

related to the hard core radius ca by equation (II-26) one

can write

 

'.
1+!

40117.44 1‘WJZuwvZa-u) V140“? {‘47f")

3%[5- WOO-2”fig/(r) 52:3 - 71—1] £09 =0 (II-28)

where

fi-s/w-q

Q=A{}O“éfl(€fi-%§Ofll

From equation (II-28) one can deduce a velocity dependent

potential which gives identical two-body phase shifts to

those produced by the original hard core potential.

Rewriting equation (II-28) as

Jar 152.9,; */I(r)r ,1 Wrap. /“l(——-—:)-

Jr" flag/€09 /u.(r) Jr ”(1') /a¢(r)

(II-29)

 

$27k k2,. __ Mzwacgjrggwm

’ /0) t/rr)
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and defining

MOVE r 2%”)

results in

OI‘ lafij +/(})J+ £(“(t fi/C’) :L _MW(‘CF)?§Q(’9’O

«77 )arM‘w ,ao) air /m) Z70 #02 1;er

In order to eliminate the first derivative of (4(a) , define

7,4 376:0)5/(0)

which leads to

0" A‘ ,17290 ’/uQ¢) 3,/db9 : 141VWOflgP

.~ L/ a C)

#7772luv/av) my 1“") t7") “0

This can be written in the form of a Schroedinger equation

with a static potential

2E$:“£Z;JZ~ +-fi --"VQ2)§V (:9 = C9

where

  

(I? t‘ ’ - ..L (0" t

VC" 5 L)+tM§1afl) R‘C'O/ ('9 P‘]+ {:10} Jk

+/u”.C") [,an‘) _30

$40) 4%ij ”I )

and

R0) ’/’(')r«

,J(h)= g/Pz;u(kl]ab

=/.{/-Z/WJ]}J"

3009: vow

4/091"

The potential V75) is referred to as the Baker transform of

the static hard core potential W09. Any function /t*)

which gives the correct value for the hard core radius, ‘\ ,



29

defines a new effective potential V76). Thus a whole

family of momentum-dependent potentials can be generated

having phase shifts identical to those produced by the hard

core potential W09 . Since outside the range of the velo-

city dependence/KU)=I , 140'): 4&0) which is just the

usual two body radial wave function. This equivalence of

the hard core potential and its Baker transform for the two-

body interaction does not imply their equivalence in the

many body problem.



SECTION III

POTENTIALS

The study of the model dependence of nuclear matter was

carried out in two parts. The first involved only changes

in the potential used in the 180 state with the 351' P, and

D states always represented by the Hamada-Johnston potential.

In the second part, the changes in the contributions of all

of the states were calculated when the Ramada-Johnston poten—

tial was replaced by several different momentum dependent

potentials having the same on-energy-shell matrix elements

as the Hamada—Johnston potential.

The work involving the 180 state alone was carried out

using the potentials shown on Figure 2.5 The three static

potentials used are each representative of a family of

potentials developed by precisely fitting the 130 phase

shifts obtained from energy independent phase shift analyses

of the proton-proton elastic scattering data between 9 MeV

and 330 MeV. and the pp scattering length. These potentials

were constrained to be smooth functions of distance through-

out their range, including the region around the edge of the

repulsive core. This is in sharp contrast to some of the

better known potentials which have large discontinuities at

the core edge. The result is that these new potentials are

30
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Figure 2. Static 180 potentials. See Reference 5.
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less sensitive to variations in the mesh size around the

core edge in numerical calculations.

Potentials were available which had hard cores of radii

0.1 F to 0.4 F and which fit the 180 phase shifts equally

well. The potential having a hard core radius of 0.1 F was

classified as a soft core potential because of its Yukawa

repulsion at small distances which joined smoothly onto the

hard core at 0.1 F. Presumably the Yukawa repulsion could

have been continued into the origin, but it is so large at

0.1 F that there probably would have been little difference

in the resulting potential outside 0.1 F.

The 400 MeV finite core potential was one of a group of

potentials having core heights ranging from 400 MeV to

2000 MeV. These were generated in the same manner as the

hard core potentials. The parameterizations of the three

static potentials used here are given below:5

Hard core 1SO potential

V - -1X ’y‘ - i‘

00- Va,” -(..5'52:_%. - /o.r¢.7§‘.. +£20.59. for r>a.w=
K

= as
for r50.~//‘-'

"Soft“ core 150 potential

'1" «7;

V“): Mpg-IV/A3—f—r- *SZXI.7%— fox-P) an:

3 .0
forr‘salF

400 MeV finite core 180 potential

-
I __,_4‘.. I

VII): (Mffi‘3,02&‘§
::/0723e- ”9p

- '(fl)+ $1006 \k)

X T
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where

X = £35- 1. - 197. 322. MeV-F

-‘ "n3 [35.0 M.V

e

Von-p"0'08"t‘7' x¢= 0.79597

The effective momentum-dependent potentials shown in
 

Figure 3 were all obtained from the 0.4 F hard core poten-

tial using equation (II-30) and should not be thought of as

being completely equivalent to the three static potentials.

They may be used in the Schroedinger equation with an

effective wave function which agrees with the true wave

function only in the region outside the range of the momen-

tum dependence.

1

The form of f0) used here was «0)? {0) where

~55

{093/1- (ct/)8 A n30
I

/

This form is convenient because it allows the integrals

involved in calculating f6”) and a to be solved analyti—

cally, giving

/0) = r- OI P S‘IHO‘OJ) ‘ RW' “‘

Taking the Baker transform of the 0.4 F hard core potential

with an.) as described above, one finds

I

 

V0) =l Km. {(0‘) a ”6’. 5525' 6 {Cr} "

u, .. 41g - :45] kc

- 0 ‘7' - ~ u .w--_.-
/.S"r’.7e [09 4472.2”): Mic/{(0fb)

+ n‘t‘({2f)*l)(/+4qzk‘/n)

‘7‘4‘ (‘0‘) M (III—1)
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Figure 3. Momentum-dependent lSo potentials. Generated from

0.4 F hard core potential.
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where "ha

as #c /?(r)=r+%/(n[fcr)]

a. : 0.7/33

and M is the nucleon .mass. Care must be taken in treating

the coulomb interaction in the effective potential. The

coulomb potential must be included in the potential for iso-

spin triplet states before the transformation is made. This

results in an additional factor

[V377

,ucfl

-z -z
a

e fay = H37? {0) -

which must be added to the term in the square brackets of

equation (III-1). The resulting effective potential is the

correct one to use for the pp interaction. -For nucleon-

nuoleon interactions which do not involve the coulomb poten-

tial one must then subtract

6:, - 41:91
can!) " r/«(d

from the effective potential for the isospin triplet states.

The /axc) in the denominator is required because of the form

of the effective potentials and wave functions.

The longest range momentum dependence used in the 1So

state was one in which the range parameter, ’7, in the

equation for {0) was set equal to 1.4. This produced a

momentum dependence with the same range as that used in the

Bryan-Scott potential for this state. The effective

momentumrdependent potential for this value of the range

parameter and a shorter-ranged one with the value of the

range parameter set at 3 are included in Figure 3. All of
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the potentials are in good agreement beyond about 1.4 F,

except for the intermediate range momentum-dependent one.

It is significantly less attractive than the others beyond

about 0.8 F.

For the 381, P, and D states there was no set of static

potentials comparable to the one available for the 180

state. Consequently, for these states it was only possible

to compare hard core and momentumrdependent potentials. The

hard core potential used was the Hamada-Johnston potential

which consisted of a sum of fOur terms:3

VG’)’ K094- W(r)S"+ K; (r) (Z5) + V“(’9 L”.

The subscripts refer to the central, tensor, linear spin-

orbit, and quadratic spin orbit contributions, respectively.

The individual contributions are given by

v.0): ace (who? iXJ-r- 6:)M/+ at. Ya» A. no]

Vr(r)= o.oe(2’-”x)(f-Pl} Za)[/+ar Va). 6.- flu]

v..w= m. 6.. ya) [n 6.. 70)}

V“ (r): ”I! 61.4. X”: Eu)[/+a“ You +' A“ X210]

where

7%x)5 5%:

aha/$4.) 7..)

fish

x: #‘1
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The pion mass, ’Mk , is 139.4 MeV, and the hard core radius

is 0.4855 F for all states. The parameters a , b , and 6,

which are state dependent, are given in Table II. The

operators 52‘ , L-f, and l,“ are defined by

 

(5;: (fi? _,
'9 ~ <07- )J

“

Equivalent momentumrdependent potentials were generated

from the Hamada-Johnston potential numerically.
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Table II. Ramada-Johnston potential parameters.

Parameter Singlet Triplet Triplet Singlet

even odd even odd

ac 8.7 -9.07 6.0 -8.0

bc 10.6 3.48 -l.0 12.0

aT -1029 ‘005

bT 0.55 0.2

GLS 0.1961 0.0743

bLS -7012 -001

GLL -0.000891 -0.000891 0.00267 -0.00267

aLL 0.2 -7.26 1.8 2.0

b -0.2 6.92 -0.4 6.0

 



SECTION IV

CALCULATIONS

The binding energy per nucleon to first order in the

reaction matrix was calculated using the method described

by Brueckner and Masterson9 (BM) for static potentials and

modified as outlined by Ingber19 for momentum-dependent

potentials. The approximations made in BM simplify the

calculations considerably, but at the expense of 1 or 2 MeV

in the accuracy with which the mean binding energy per

16 This does not seriously detractnucleon is determined.

from the usefulness of the method, however, because the main

object here is to compare potentials, not to obtain the best

possible value from each one. It is more important, in this

case, that the same approximations be made for each poten-

tial.

A. Static Potential Calculations

The first step was to calculate the Green's functions

for each partial wave. These were obtained by expanding

equation (II-17) in partial waves. In order to simplify

the calculation of the Green's functions, it was assumed in

BM9 that the energy denominator was independent of the total

momentum and was rewritten

39
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5., us, - 4::— 5;" = Z[€C/rm) - 5*(k.,)] (IV-1)

where Fan. and E; are the self-consistant energies of par-

ticles moving in the Fermi sea and E: and 5‘“ are the self-

consistent energies of excited states above the Fermi sea.

The quantity on the right hand side of equation (IV-l) is

dependent only on km and If“ , the relative momenta of

states in and n and states a and A respectively. This

approximation is accurate if z; is essentially a quadratic

function of k, or if the relative momenta are large compared

with the total momenta. In line with this approximation,

the total momentum was replaced by its average value for a

given relative momentum, /< , where

.05.... A"

I?" 2744;1(l- %)(erg) for k‘ks

(“31%)

(IV-2)

:: O
for k%/frt

The Green's functions were then given by

, / P771001“) 03,)

@cc’)=xn‘/2[5(B_€xa§j——/ (”‘3’

for on-energy shell propagation. For off-energy-shell

 

 

prOpagation the denominator of the integrand was replaced

by .2[£‘(k)-"(£')J— [I where A is the mean excitation energy,

taken to be 564;.) 1710) . The Pauli step function,/(/3A’j ,

excluded values of k” which corresponded to filled states

in the Fermi sea. It was given by20



 

 

/O3/«9= o , “our .7.

: / I A"- II‘I‘" > A“; (IV-4)

= k, ’7’)- ié’ otherwise,

k’P

where f9 is the average momentum of equation (IV-2). In the

actual calculation the integral of equation (IV-3) was split

into two parts:

N

/‘° ._ I/‘r ... I/..
2x‘ . 271'“ a Zn‘ 1:

OUI’

 

 

 

where Ah” was chosen so that the denominator of the inte-

t. 0" ~

grand could be approximated by 1;:- for k aka" >/<, .

For k"> k,- ,//(/9’ A7: / , so the second part of the integral

could be written

M o q ° 4' I ”

..zz‘ti Jr“ ”)J‘ U‘ r) .44

INT

But this could be rewritten without further approximation as

Q

fl

" zfi£l1(“)./
l (£99.12 ‘= -fiégfifi;a$91.4 "

M ‘3"

+217“
. ‘Jléi'

;le‘(k
vr')J*

.

The first integral on the right side was evaluated analyti-

cally, giving for on-energyéshell propagation
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. M r. 1

61-03,): 71:» $711+!) (’3)

(IV-5)

’ ' ”r0 . ~ . fl ku‘ (6“2__ '

+1?//1'(« I')J),(/< ’) ‘3 + [ o9] EJA
214:1 k)'c-‘Rt

 

where I; is the lesser and I“, the greater of t‘ and r" .

The wave functions were calculated by iteration of the

equation

J’ /" z
‘ ‘~ I . r.

X" (‘3’) ' f‘(kr);‘v +7/c‘é-4wdfi' f‘CrQZ‘,¢w) fray“) (IV-6)

IL . , . .
where ““09 1.3 the static two body potential and

5".(10‘) = J;(A’)-[J‘(£r‘) 61(4 4)/6:‘(4-I")]

6:0,"): 592(4”)'[6¢C4") (91(1’31'9/520": 4-)]

The forms of 5.0 and 5 resulted from the requirement that

the wave function vanish at r; , the radius of the hard

core.20 For potentials having no hard core,

The wave function in the integrand of equation (IV-6) was

initially set. equal to flag 5“. . Thereafter the values of

the wave functions calculated on the previous iteration were

used in the integrand. This was repeated until for any

value of I' the change in the wave function on two succes-

3
sive iterations was smaller by at least a factor of 10-

than the wave function itself.
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The reaction matrix elements were then calculated

 

using

if (k«)J1

k a< //</I> gig}... Imy

”a (Iv-7)

+ V/r/“é &(£'?¢:,V11'(’y 511’ (IQ/r)

where

C _ £2Ju)(27+/)

313‘. 3

J is the total angular momentum and T is the isospin. For

potentials which do not have a hard core, the first term in

the square brackets fs zero.

Finally, the single particle potential was calculated

from

(kp “)/3

my £2 #77070»

va&)é ‘

-—-A"./A<k/x/I') M9...};ZL') (IV-8)

”II, 44/;

for A<A;- For I‘?£; the first integral vanishes. These

single particle potentials were then used in recalculating

the energy denominators of the Green's functions given by

equation (IV-5)

ér(@) 3M#‘+ Ck)

Starting with these new Green's functions, a new set of

single particle potentials was calculated. This process was

repeated until the single particle potentials used in
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calculating the Green's functions reappeared in equation

(IV-8). When these self-consistent single particle poten-

tials had been obtained, the mean binding energy per nucleon

was calculated from

3 fr 4‘13 ’V
é? :‘Z?J42afl4/;:fi-+'z ‘“Q]

The saturation density is determined by finding the Fermi

momentum for which the mean binding energy reaches a

minimum. The saturation density was not calculated here.

Instead the Fermi momentum was fixed at its experimental

value of 1.4 F_1.

B. Momentum-Dependent Potential Calculations

In order to treat momentumedependent potentials, equa-

tions (IV-6) for the wave function and (IV-7) for the reac-

tion matrix elements had to be modified. For a momentum-

J’

dependent potential, Kl: (Wm) , these equations become

«L ‘3 , ..L .I

%1’ ("a ’J‘(‘f)§“: f ”Sgofl‘g' @’(’:’9Z2. (7", ”9&0 ("’9 (IV-9)

and

an

<A/K/I>= 71.22c./47‘0")!
1(r’r)/’,&Ck,r) (IV-10)

4
9
‘
1
4
:
4
?

Both of these equations now involve derivatives of the wave

function. These are difficult to calculate because the wave

function is calculated numerically by an iterative process.

However, by integrating equations (IV-9) and (IV-10) by

parts, it is possible to eliminate the wave function
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derivatives in favor of derivatives of Bessel functions and

Green's functions, both of which can be expressed analyti-

cally.19

In order to carry out this modification it was neces-

sary to know something about the form of the potential,

”4'(7' V). Defining a function

60(fi)3‘f<;u(¢)-4)

the Schroedinger equation for a momentum-dependent potential,

equation (II-18), can be rewritten

 

2. tr 1 r .. _. .
gfi+ UC’)% / ”()+ K(,.)§¢(p):[: yca (IV—11)

where

 

“(')EVC")+_ “1’9 U___C__"d

is the static part of the potential. The quantity 4409 will

in general be a function of 07,.1 , and s . However, for

convenience, these subscripts as well as those on 16(0

and [‘09 will be suppressed. In the actual calculations

the same Ada) was used for all states, although there is

certainly no reason to expect this to be true. This will

be discussed in greater detail later.

The term [480) in the static part of the potential in

equation (IV-11) can be evaluated by comparing equations

(II-20) and (II-29) with the result

.5 .’ __“_,,amd ‘/u'ov‘:Uud I

magmas—2419!”; ,——«.—-]+ . ,0) Km-..)
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Using /a<r') a /+ 11.10) and /a’(r‘)= Zd’Ofl this becomes

1 .r. '1 , _ ”2%) , a.”

K 093 M4, (Ra- +75,- z1a+fllm ‘71—" r (404ij ~ 72]

So ‘40) can be written

 

H1016") [U‘10)] u____(__"f)

M(r) ('40))1' ‘14:?!an’70) I“ 91“.?»wa

um/ ‘ r

M(%&Q) h/(k)’ fiiig‘ucj

 

,(1’

From equation (IV-11) it is clear that

a a

KI‘T‘(V’I r): ““21””?! 90") f K")
(IV-l3)

 

This can be expressed in a form that is more convenient for

use in equations (IV-9) and (IV-10). Multiplying on the

I

right by 11 ‘66,!) and carrying out the operations implied by

. J? .
the momentum Operators in \L (Bl/9 , equation (IV-13)

becomes
If

2 ‘4”? (f

V(ii/)1:(M;V(r)*—" ”('9 11.1".) “’")}V(&»)

-i‘l’6’__g__(f)+10’(r-—Trafl}é(k r)

%*:)(r)j/”: 31"];(A, r) (IV-l4)

for the uncoupled states. This can be rewritten

7.: J3

¥,£(er)g (4,.)=[% (Rafima) 7&0}; *JC’)7;1}”¢£U<,r) (IV-15)

where 1,__‘:’___.7’)

am)! Mari-4’77" * “’ 09] (Iv-16)

)

W—w2*#15:;— ~«)1

X(r)I-%“0) (IV-18)
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If coupled states are to be included, this becomes

‘74 ,J‘ J. J.

ng’(0’.’ ’)Z(‘ (@I‘) :42“ M10 (‘00) Z "(é/9

./ 4‘ J:

Using this expression in equation (IV-9) and integrating by

parts, the wave function becomes

"2’ 7.: . It .2.

r1! L‘II) =J’;(‘f)&1, + ynf. d/f ggghdjl’l‘ (K(t» ¥1,(k’r)

+11fl(,r)114(r)
td(r)jf7jWadi—

.kflcr r)

where

Ame m) . virm + ~;’-‘-x’w ,. m - 7am ~42»)

80') 5 {4/071' 16”“) -/4(,9

The second derivative of the Green's function can be elimi-

nated by using

(7} 49920; ry= f; Sew-r?

From which one obtains

‘ A4 _ A
477‘ @(f’ f): FSCf-r) 7’

‘
l
\

W§erj~~/(‘C;'(Mr)

So

J M a:

7ft (hr/ax, (An) 3“. + {I'd/(r) 33‘ (b9

1 JJ \ ¢ . 1 a]

1’ ”‘fl'é’ffifly
I409 %J'cr)-[8w-fra’u2/J;]

‘5 J5
+ 3: k4,. new) 2”,." a); 64-44")
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Which can be rewritten

A]; . 72/] F 1‘ . z.

[/4'2wajzf’, (klr) : J1 (0)5“. + 95 a” r 3,713/1g" (470'?) fia<r°j

t];
‘

I. . u

" Z'(Ilf’ [%0)*”£(2k
tdgfy- é‘d") “U (I!)

—AU’(")—j——é;)] G" (’3 w) (IV-20)

On the first iteration the value of the wave function in the

integrand was taken to be

K’JA r)= J‘U’) 84:".
/+ («I u)

In order to evaluate equation (IV-20) it is still

necessary to know :jé§&(h¢) . For on-energy-shell prOp-

agation

J6 UV”)- I /;M1‘ (k”)£,Ij1(‘w)/(8‘y

7’: " ’ 3‘“ 2[c=u)-E*(U]

 

.—. :ki'l‘ Jl-u“'92:" J)-04")kJu 0‘’)§fi5‘)

2‘ 2.1“]; e‘ozfl

 

with gig/J- Whig] f- A in the denominator for off-energy-

shell prOpagation. The derivative of the Green's function

was calculated in a manner similar to that used for the

Green's function itself. In this case the result was

k,1 f “T , ”1,.“wa
4-; (7!“r)‘:%1/Jg(‘ '91::Nhar)£02!-”a’9]2" alga.){NI-.9] ”E

”o”.

in:“225MCZLQC‘
EJix”,¢(£~)U(r’-fig

(IV-21)
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where I; is the lesser and r, the greater of r‘ and r' ,

and Okrkc) is a step function defined by

U(r"-r) 5 I , if r">r

1’- , if rér‘

Olif r’Q/

The equation for the reaction matrix elements was also

integrated by parts to eliminate the derivatives of the wave

function. In this case recursion relations were used to

eliminate the second derivative of the Bessel function

leaving

962-1“ ’1" /.;/ if my!» J. .
(“K/k) 2 Wig-1.2.7., ch. , ’ 1%,?7u'U‘I’) “,{rCA’cWch}

‘ J: y

+ Kl (19,)2{:4 MO) “(baby-11? r9wér) ”2410 «I2 r)

J. .
- wwbgflc) *Zk “"0 £4 “Id/w (“)1 (”'22)

With these changes it was possible to extend the method

described in BM to momentum-dependent potentials. Because

of the necessity of calculating the first derivative of the

Green's function and the need to extend the region of inte—

gration all the way in to the origin instead of just to the

hard core radius (0.4 F to 0.5 F usually), the computer time

required for momentum-dependent potentials was about two to

four times as great as that required for hard core poten-

tials.
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C. Phase Shift Calculation

As a check on the validity of the equations and the

programing, one further modification was made in the equa-

tions for the momentum-dependent potentials. By changing

the denominator of the Green's functions and their deriva-

tives (equations(IV-5) and (IV-21)) to be just the differ-

ence of the relative kinetic energies

, L , at

.z[E(;/<.)-E*Ck'7]3 1174*: - i/Tqé'

and setting flip, 2475 1 for all P and A” , the Green's

functions and their derivatives for nuclear matter became

those associated with the free two-nucleon elastic scattering

problem. The singularity within the range of integration

results in complex Green's functions and therefore complex

wave functions. From the equations thus modified, the phase

shifts, 11$?! , for the uncoupled states could be calculated

using

‘ a 1_2Mk. &

31.,(2 z“ 6): 7"“/7(W)V070W:(‘1’) (Iv-23)

and compared with the known values of those phase shifts.

The integrand of equation (IV-23) is of the same form as

that of equation (IV-10) which was evaluated as shown in

equation (IV-22).



SECTION V

RESULTS

Before using the program to calculate the binding energy

of nuclear matter, the Green's functions were modified as

described previously so that the elastic scattering phase

shifts could be calculated. When these were compared with

their known values they were found to differ in the third

significant figure. This difference was due almost entirely

to the method of evaluating the Green's function integral

around the singularity. When the free two-nucleon Green's

function integral was evaluated analytically, the phase

shifts calculated by the two methods were in even better

agreement.

Returning to nuclear matter calculations, the Hamada-

Johnston hard core potential was used for all states in

order to find the self-consistent single particle potential

and the binding energy per nucleon predicted by this model

for a Fermi momentum of 1.4 FSl. The resulting binding energy

per nucleon, 8.5 MeV, is fairly typical of the values pre-

dicted by hard core potentials which fit the elastic scat-

tering data9 and is clearly in poor agreement with the empir-

ical value of 16 MeV. The study of the model dependence of

the 180 state was then carried out using this single particle

51
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potential as a starting point. The Hamada-Johnston 180

potential was replaced by the 0.4 F and 0.1 F hard core

potentials, the 400 MeV finite core potential, and finally

the momentum-dependent lSO potentials. The results are

shown in Table III. From the calculations involving the

three static potentials, it was clear that the contributions

of the 351' P, and D states were not significantly affected

by the changes introduced in the single particle potential

as a result of using different 180 potentials. Consequently

it was not necessary to recalculate these states when the

momentum-dependent 180 potentials were used.

The results shown in Table III confirm the expectation

that potentials having soft cores, finite cores, or a

momentum-dependent repulsion all would produce a desirable

increase in the binding energy above that predicted by a

longer range hard core potential, at least for the 180 state.

The maximum amount of binding occurred with the momentum-

dependent potential having the range parameter about equal

to 3. This can perhaps be understood by comparing the

effective potentials for n=l.4, 3, and 5, as shown in Figure

3. As the value of the range parameter, n, increases, the

size of the short range repulsion increases. This is

accompanied by a corresponding increase in the intermediate

range attraction. As n increases past 3, the increase in

attraction in the intermediate range is not sufficient to

counteract the increased short range repulsion seen by the

wave function. Similarly as n decreases from 3 down to 1.4,





Table III. Mean binding energy per nucleon

lSo potentials.

53

predicted by the

 

 

 

180 potential Potential energy for 1 Total energy*

(MeV) (MeV)

0.4 F hard core -15.8 ~9.3

0.1 F hard core -16.8 -lO.3

400 MeV finite core -l7.2 ~10.7

n=l.4 momentum dep. -l7.4 -10.9

n=3 momentum dep. ~18.2 —1l.7

n=4 momentum dep. —17.8 -ll.3

 

*

Using Hamada-Johnston potential for all other states and

including a kinetic energy of 24.39 MeV per nucleon.
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very little short range repulsion remains, but there is also

virtually no attraction in the intermediate region. This is

borne out by Table IV which compares the values of the 1S0

reaction matrix elements for each potential to the values

obtained when the 0.4 F hard core potential was used. In all

cases the gain in the size of the reaction matrix elements

increases with momentum, indicating that the size of the

short range repulsion is the dominant factor. The momentum-

dependent potential with n=l.4 is especially interesting.

Although at high momenta the K matrix elements are consider-

ably larger than those of the 400 MeV finite core potential,

at small momenta they are somewhat smaller. This seems to

verify the previous remark regarding what appears to be an

undesirably weak attraction in the intermediate region of

this potential.

The 2.4 MeV increase in the average binding energy per

nucleon of the 1So state for the n=3 momentum-dependent

potential over the value obtained with the 0.4 F hard core

potential is a change in the right direction. But combined

with the hard core Hamada-Johnston potential for the other

states it still leaves the total of the contributions of all

the states short of the 16 MeV empirical value. This clearly

indicates the necessity of examining the effects of the

various potential forms on the other states.

Table V shows the contribution of each state to the

binding energy of nuclear matter for several momentum-

dependent potentials and for the Ramada-Johnston potential
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Table IV. Percent increase of 150 K matrix elements over

values obtained with 0.4 F hard core potential.

 

 

 

Potential k/kF= 0.1 0.3 0.5 0.7 0.9

0.1 F hard core 4.1 5.0 6.3 9.3 17.7

400 MeV finite core 5.7 6.8 8.8 13.1 27.2

n=1.4 momentum dep. 4.7 6.1 9.7 18.8 47.1

n=3 momentum dep. 9.0 11.1 15.2 24.2 50.8
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Table V. Mean binding energy per nucleon predicted by

momentum-dependent potentials generated from the Hamada-

Johnston potential.

 

 

 

 

State Hard Momentum—dependent H-J

core

H-J n=l.4 n=3 n25

(MeV) (MeV) (MeV) (MeV)

l a

30 -15.09 -16.30 —19.66 -20.08

351 -16.05 -12.94 -19.55 -21.21a

1P1 3.68 3.21 3.53 3.61

3PO -3.47 -3.71 -3.69 -3.65

3P1 11.13 10.07 10.40 10.41

3p2 -7.13 -4.73 -7.45 -8.91

102 -3.09 -2.86 -3.07 -3.11

301 1.57 1.56 1.57 1.57

302 -4.47 -4.40 -4.48 -4.48

Total -8.54 —6.64 -16.61 -18.69

 

aThese values are for n=3.7.

bTotal for each column is the sum of the S states from that

column, the P and D states from the hard core H-J column,

and a kinetic energy of 24.39 MeV per nucleon.
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from which they were generated. The increase in the binding

energy of the 180 state when the hard core in that state was

replaced by a momentum-dependent repulsion was greater than

that obtained when the 0.4 F hard core was replaced by a

momentum-dependent repulsion. The 381 state shows even more

sensitivity to the form of the short range repulsion than

the 180

produced about 3 MeV less binding in the 381 state than the

state. The intermediate range momentum dependence

hard core Hamada-Johnston potential. The short range

momentum dependence characterized by n=3.7 produced about a

5 MeV increase in binding. Combined with the increase of 5

MeV in the 1So state and using the hard core Hamada-Johnston

potential for the P and D states, the n=3.7 momentum depend—

ence in the BSl state produced too much binding. This could

be corrected by adjusting the value of the range parameter

for either or both of the S states to reduce the binding

energy to the desired value. Setting n=3 for both states

results in good agreement with the empirical value. In any

event, a deviation of 1 or 2 MeV from the empirical value is

not a cause for concern since the method used in the calcula-

tion could have introduced errors of this magnitude.

The D states showed some loss of binding with the inter-

mediate range momentum dependence. With the shorter range

momentum dependence, n=3, the contribution of these states

to the binding energy was brought into close agreement with

the values obtained from the hard core potential. This was
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perhaps to be expected since the D waves see virtually

nothing of the interior region of the potential. What is

seen, however, is the decrease in attraction in the inter—

mediate region of the n=l.4 momentum-dependent potential

and the fairly close agreement between the hard core and the

shorter range momentum-dependent potentials in the inter—

mediate region as shown in Figures 4, 5, and 6. Thus it

makes little difference whether a hard core or short range

momentum-dependent potential is used in the D states.

1 3 3
The P1, P0, and P states together are about 1.8 MeV

1

more attractive when the n=l.4 momentum dependence is used '

to replace the hard core. This increase in binding is

reduced to half this value when the range parameter is set

equal to 5. The 3P2 state more than cancels the increase

in binding produced by the other P states for n=l.4. For

that value of the range parameter, the 3P2 state produces

2.4 MeV less attraction than it does with the hard core

potential. This changes to about 1.8 MeV of added attraction

when n is increased to 5. As n increases above 5, the

increase in attraction levels off and will then gradually

return to the value obtained with the hard core potential.

Setting the range parameter equal to 3 for all of the P

states results in 1.4 MeV more binding energy than is

obtained when the hard core Hamada-Johnston potential is

used.

The 3P0 phase shift is very poorly defined by experiment

at energies between about 60 MeV and 130 MeV, a region which
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is very important in nuclear matter. The uncertainty in

this phase shift results in an uncertainty of about 0.4 MeV

per nucleon in the contribution of this state to the binding

energy of nuclear matter.21 The 3P1 and 3P2 phase shifts

are pinned down somewhat better than the 3P0, but at energies

above about 100 MeV the Ramada-Johnston potential does a

rather poor job of fitting these phase shifts.* Using the

phase shift approximation for the reaction matrix, the

Hamada-Johnston potential was found to produce about 0.4 MeV

per nucleon less binding than the experimentally determined

phase shifts in the 3P0 state and 0.6 to 0.8 MeV per nucleon

more binding in each of the other states. Consequently the

numerical results obtained for the P states should be inter—

preted with caution.

In conclusion, the binding energy of nuclear matter

seems to be quite sensitive to the form of the short range

repulsion used in phenomenological two-nucleon potentials.

Even two-nucleon potentials which have identical on-energy-

shell matrix elements may predict mean binding energies per

nucleon for the S and P states which differ by several MeV.

The binding energies of both the S and the P states showed

a desirable increase when a hard core potential was replaced

by a short range momentum-dependent one. Using a momentum-

dependent potential for the 8 states and a hard core poten-

tial for the P and D states resulted in a mean binding

 

*

See Figures 7 through 10.
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energy per particle which was in good agreement with the

empirical value of 16 MeV. It would be desirable to repeat

3
the work on the 51’ P, and D states with a set of potentials

similar to the ones used for the 1So state rather than the

Hamada-Johnston potential which is not always in agreement

with the phase shifts obtained from analyses of the two-

nucleon elastic scattering data.
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APPENDIX

DIAGRAMS

The unperturbed ground state of nuclear matter is

represented by a Slater determinant of the unperturbed

single particle wave functions corresponding to the A single

particle states of lowest energy. That is

..1 A
‘ .3

p44!) a 7T¢.(r.-)
’ in ‘

where C? is the antisymmetrizing Operator. The unperturbed

wave function, £5 , is normalized

<d/é>=

Let $0?) and 4(3) be two single particle states

interacting through the two-nucleon potential. Then the

product of these states is written

/,a;> —.— gar) an?)

</H = flame)

The matrix element describing the scattering of particles 1

and 2 through the two nucleon potential from states f2 and

7, to states r and .s is

(rs/v/f}.> {/fljh‘) 2125:) Véxjjéa") J2; Jag
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The matrix element of the single particle potential is

similarly defined

<f/Y/}> ; flay V ,1; 0;) a/x

Define the Fermion creation and annihilation operators

with the properties that car creates a particle (annihilates

a hole) in state f , and a, annihilates a particle (creates

a hole) in state f’. These operators satisfy the anticomr

mutation relations

“2 “P “r ”/ =0 ) “/74”; “fr“ ' “/‘rr*“;“/ =5”

Diagrams provide a convenient way of illustrating the

effect of a particular term in the Brueckner-Goldstone

expansion. In order that they be used in a consistent way,

it is necessary to specify a few rules for drawing or inter-

preting a diagram. The direction of increasing time will be

toward the tOp of the page. Any state not specifically

included in a diagram is assumed to be as it was in the

unperturbed state. Thus above and below the diagram all

states below the Fermi level are filled and all states above

are empty. The first interaction results in two particles

in the Fermi sea being excited to states above the Fermi sea,

leaving holes in the originally occupied states. Continuing

in the direction of increasing time, particles are repeatedly

scattered into unoccupied states until the final interaction

results in their being scattered back into their original

states, leaving the wave function as it was before the first

interaction took place. An upward directed line represents
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a particle above the Fermi sea and a downward directed line

represents a hole in the Fermi sea. Since particle number

is conserved, there must always be one hole in the Fermi sea

for every particle above it. The matrix element (ff/V/”J>

is represented by a horizontal dashed line connecting the

intersection of lines representing the states /o and r‘ at

one end with the intersection of lines representing states

7. and ,s at the other end. The matrix element <F/V/7) is

represented by a horizontal dashed line terminated at one

end by the intersection of the lines representing states f’

and 7 and at the other end by an X . The incoming lines

are associated with the initial state Ir;>.. The particles

in this state are destroyed by the operator Gr‘h . The

Operator 4; a; creates particles in the final state <f7«/

which is represented by the outgoing lines. The energy

denominator is equal to the sum of the particle energies

minus the sum of the hole energies. Finally, the contribu-

tion of the diagram to the energy shift is obtained by

multiplying the product of the matrix elements and the energy

)h+c+e+s where h is the number of holedenominators by (-1

lines, o is the number of closed loops, e is the number of

energy denominators, and s is the number of interactions

involving the single particle potential.

Consider, for example, the following diagram:

_”___ I x

n ’ b m““ix
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The initial state is just. 45. As a result of the first two-

body interaction, particles in states I1 and h! in the Fermi

sea are scattered into excited states :2 and 6 , respec-

tively, leaving holes in the states they originally occupied.

In operator notation this is written

a: (A: an an jg >

The matrix element corresponding to this interaction is

(“b/V /0m> and the energy denominator for the intermediate

state resulting from this interaction is-(clre‘.-é’,.. ’6‘)" .

The minus sign preceding this term will later be combined

with other factors of -l as described in the final rule in

the previous paragraph. Thus the effect of the first inter-

action is written

<aA/v/m> affirm a"

(5*Fs‘€~*€q)

 

The interaction with the single particle potential results

in the scattering of a particle in state A? in the Fermi sea

into the unoccupied state hr also in the Fermi sea, leaving

a hole in state ,[7. It can also be thought of as the

scattering of the hole in state 0; into state I . This

interaction contributes the additional factor

- W”?
(cafl'b' 5,11)

 

to the term resulting from the first interaction. Although

this interaction involves scattering from state In to,17,

the energies of states a , é , and I: also affect the
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contribution of this interaction. This is an example of a

process taking place off the energy shell. The final inter-

action scatters the particles in excited states a and L

back into the holes left in states ’7 and .1 as the result

of the previous interactions. After this interaction the

particles are all back in their unperturbed ground states.

The total contribution of this diagram is

(”1 /V/a ‘><m/V/1>ga L /V/""')

(64w: -€,, —c—1)(€. *éz-fw‘fn)

X<£ /4:4;a‘~ a6 04. 61:61:41“. a... /fa>

The quantity

/ f I" f 4, f ..

is just *1, depending on the order of the creation and

destruction operators. Using the commutation relations for

the operators and remembering that

a/f‘V/fl>: 67;.) if [05/4 (in the Fermi sea)

0 if lp>A (above the Fermi sea)

the expectation value of this particular set of operators is

found to be +1. This agrees with the result obtained by

using the last rule for the diagrams. There are three hole

lines, two closed loops, and one interaction involving the

3+2+1=+1 .

single particle potential, giving a sign of {-1)

The two minus signs from the energy denominators cancel,

leaving as the contribution of this diagram to the energy of

nuclear matter
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§nUV/a L><m/V/,£><at/u[mn>

(fiflurfl-ég-E;)(ffl.rdi"5k‘£3)

To find the total contribution of all the distinct diagrams

of this type, one must calculate the sum of these terms where

ayand L. are allowed to take on all possible values greater

than A, and m, n , and I take on all possible values

between 1 and A. The sum is then multiplied by %lto account

for the fact that since

<,«;/u/~> = «HM-s»

each distinct combination of states has been calculated

twice.
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