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ABSTRACT

NUMERICAL ANALYSIS OF COMBINED BENDING AND TORSION

OF A PRISMATIC BAR USING RIGID-PLASTIC AND

WORK-HARDENING PLASTICITY THEORIES

by Patrick M. Miller

The problem formulation assumes an incompressible

plastic material, a prismatic bar having at least one

cross-sectional axis of symmetry, and the stresses to be

independent of the longitudinal coordinate.

The objectives achieved in the study are threefold:

l) to better establish the torque-moment interaction

curve for the perfectly-plastic material,

2) to provide a solution to the combined bending and

torsion problem for both the work—hardening

generalized J2 deformation theory and the counter—

part generalized J2 flow theory, and

3) to compare the predictions of these work-hardening

theories for different loading parameters.

The rigid-perfectly plastic numerical analysis is

confined to a solution to an equation derived by S.

Piechnik, a non-linear second—order partial differential

equation. Using a finite-difference approach, the dis-

crete analogue of this equation is solved by the
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Gauss-Seidel over-relaxation procedure. The results of

the rigid—perfectly plastic analysis confirm the more

limited results obtained by other investigators through a

numerical solution of the Hill-Handelman stress-function

equation. But, because of the better convergence pro—

perties of the Piechnik equation, the solution easily

gives any point on the torque—moment interaction curve.

Equations, considering the effect of work-hardening,

are developed for both the generalized J2 deformation

theory and the counterpart flow theory. With each theory,

a stress-function and a warping-function formulation is

given. This development, in all cases, leads to a system

of two simultaneous partial differential equations. The

first is the governing equation, corresponding to a com-

patibility equation with the stress function and to an

equilibrium equation with the warping function, while the

second equation represents the non-linear behavior of the

constitutive relation.

In determining the discrete analogue for the flow-

theory equations, a backward-difference quotient is

applied to derivatives taken with respect to the time-

like variable. This approach leads to a system of finite-

difference equations, whose solution is comparable to the

solutions of the discrete deformation—theory system of

equations.
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The numerical algorithms apply the Gauss-Seidel

over-relaxation iteration to the discrete analogue of the

governing equation in a manner analogous to the corres-

ponding linear elasticity problem. Concurrently, the

Newton-Raphson iteration is applied to the discrete repre-

sentation of the constitutive relation. During a sweep

through the cross-sectional mesh, these iterations are

performed successively on each unknown discrete variable

at all points. The sweeps are continued until the

greatest change in any of the unknown discrete values of

the governing equation due to the last iteration is less

than a preassigned convergence parameter.

The results of work-hardening analysis lead to the

following conclusions: (1) In both the deformation and

flow-theory calculations, the stress-function equations

and the warping-function equations give comparable results

with approximately the same amount of computation.

(2) The results for the deformation theory agree with

those of flow theory when a constant ratio is maintained

between the curvature and unit angle of twist variables.

(3) The two work-hardening theories predict different

results for a given deformation when this ratio is allowed

to vary. (4) Because the backward-difference quotient was

used with flow-theory formulation, the numerical solution

of the flow-theory equation is of the same degree of numeri-

cal difficulty as that for the deformation-theory equations.
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I. INTRODUCTION

In the elastic analysis of combined bending and

torsion, the solutions may be determined separately for

pure bending and pure torsion, and then superimposed to

give the solution for the combined problem. In a plastic

medium, this principle of superposition no longer applies,

and the problem must be formulated so that these two phe-

nomena and the interaction between them are considered

simultaneously. This interaction gives rise to a system

of non-linear equations. In general, closed form solu-

tions are not available for these equations; however, the

development of high speed digital computers permits the

problem to be treated by approximate numerical methods.

1.1 Review of Related Investigations
 

The problem of combined bending and torsion of a

rigid-perfectly-plastic bar has been considered by several

investigators. In 1944, Handelman [7], using a stress-

function approach, formulated the governing differential

equation, assuming a material obeying Levy-Mises flow

theory. The work of Handelman was extended to a more

general loading situation by Hill [11]. The stress—

function equation, governing the combined bending and tor-

sion of a prismatic bar, known as the Hill-Handelman

1
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equation, is highly non-linear and, in addition, is

singular along the cross-sectional neutral axis of

bending.

Because of the non-linear nature of the equation,

early efforts to establish the interaction curve between

the applied moment and torque were confined to the appli-

cation of energy methods. Hill and Siebel [13], in 1953,

established energy techniques which permit the calculation

of upper and lower bounds for the torque and moment inter-

action curve. Using these energy methods, Steele [30]

determined the upper and lower bounds for a square cross

section. The maximum deviation between these upper and

lower bounds was found not to exceed 14 per cent. In

addition, Steele used Southwell's relaxation method to

determine two points on the interaction curve.

Employing an approach similar to that of Steele,

Imegwu [15] obtained additional points on the interaction

curve. It appears that the line singularity mentioned

above gave the most difficulty in obtaining the numerical

solutions to the Hill-Handelman equation.

In 1961, Piechnik [24] formulated the problem using

the warping function, as opposed to the stress-function

formulation of Hill and Handelman. Piechnik determined

the interaction curve in the region where the bending may

be treated as a perturbation of the problem of pure

torsion. Later in 1961, Piechnik and Zyczkowski [25]
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solved the problem where the torsion may be considered as

a perturbation of the situation of pure bending. Using

both the perturbation solutions and the conditions of

isotropy, these authors fitted a smooth fourth order

interaction curve whose constants were evaluated so that

the location, slope, and curvature at both intercepts

agree with the two perturbation solutions. This curve was

found to lie almost exactly between the upper and lower

bounds of Hill and Siebel.

Concurrently, other researchers were considering

the problem of work-hardening from both the standpoints of

a deformation theory and of a flow theory.1 Ramberg and

Osgood [27] had introduced an empirical three-parameter

uniaxial stress-strain law including the effect of work-

hardening. This law was extended by Nadai to what is

called the generalized J deformation theory. Prager [26]
2

formulated a procedure giving the counterpart flow theory

to a given deformation theory. Using Prager's method, a

counterpart generalized J flow theory has been developed
2

by Prager and Laning [6].

Greenberg, Dorn, and Wetherell [6] applied both

generalized J2 deformation theory and the generalized J2

flow theory to the problem of a unit square bar subjected

 

1Some authors designate the deformation and flow

type theories as "total strain" and "incremental"

theories, respectively.
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to pure torsion. In the deformation theory, their

governing equation is a non—linear second order partial

differential equation. For flow theory, the governing

equation is treated as a non-linear second order partial

differential equation in the space variables at each level

of the time-like variable. The finite difference approxi-

mations to these equations were solved by methods of

numerical analysis.

The numerical solution of the deformation-theory

governing equation tended to converge at a reasonable

rate, but with the flow-theory equation, the rate was much

slower; and, consequently, comparisons between the theories

were made only for a very limited range of the Ramberg-

Osgood parameters. In all of the cases compared, the two

theories were found to agree, even though the stress paths

were non-radial.

A point in the body is said to be subjected to a

radial stress path if the stress components at that point

maintain the same ratios during the loading, that is, if

d = Cdij’ where the Gij's are constants and C is a mono-

iJ

tonically increasing parameter. For such a radial path,

the flow-theory equations are integrable to those of the

deformation theory [12], [8]. With non-radial stress

paths the two theories are generally expected to give

different results, but the torsion solution of the square

bar seems to indicate that while the radial stress path is
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a sufficient condition for agreement of the two theories,

it may not be a necessary condition.

Based on Drucker's assumptions [3], Budiansky [1]

proposed a criterion under which a deformation theory

would be an "acceptable competitor" to its counterpart

flow theory even under the conditions of a non-radial

stress path. Thus, on the basis of the "physical sound-

ness" of a plasticity theory, one might expect the defor—

mation and flow theories to yield comparable results even

though the stresses deviate from a radial path during the

loading. However, it should be emphasized that this cri-

terion deals only with the physical acceptability of the

deformation theory and not with the question of integra-

bility of the flow-theory equations to those of the defor-

mation theory.

2 Objectives and General1.

DIScussion of the PresentStudy
 

The principal objectives achieved in this study are

threefold: (l) to better establish the torque-moment

interaction curve for the perfectly plastic material,

(2) to provide a solution to the combined bending and tor-

sion problem for both generalized J deformation theory
2

and generalized J flow theory, and (3) to compare these
2

solutions for different loadings.

In the establishment of the interaction curve for a

rigid-perfectly plastic material, Piechnik's warping-
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function equation is solved numerically for a wide range

of combined bending and torsion. Solutions are obtained

for prismatic bars having either a unit square or a unit

radial cross section. Since the warping-function formula—

tion avoids the singularity of the Hill-Handelman equa-

tion, the numerical solution appears to converge through-

out the range of the load parameters. In Section 5.3,

these interaction curves are given, and it is found that

they agree with those points calculated by previous

investigators.

The application of generalized J2 deformation or

flow theory implicitly assumes the entire bar to be

plastic. Thus, upon initial loading, yielding takes

place immediately, followed by isotropic work-hardening,

so that the material properties are governed by an

expanding yield surface in a stress-representation space.

In this study no unloading is considered, i.e., the

second invariant of stress always increases.

Since governing equations including work-hardening

in the combined bending and torsion problem were not

available for either deformation or flow theory, systems

of equations were developed for each theory. The develop-

ment of these governing equations departs somewhat from

the standard approach since it was not possible to deter-

mine a single governing equation. Instead, in both

instances, the governing equations are presented as a
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system of implicit non—linear partial differential

equations for the unknown functions. These equations are

solved simultaneously by numerical methods.

In the usual processes of determining work-

hardening solutions, the flow-theory solution to a problem

is generally much more difficult to obtain than its

counterpart deformation-theory solution. The application

of the backward finite-difference representation with

respect to the time-like variable in the flow-theory

equations (Section 3.6) leads to a flow-theory system of

equations in which the difficulty in getting the numerical

solution through iteration is comparable to that for

deformation theory. The significance of this result is

further analyzed in Section 5.7.

This approach, in the case of flow theory, seems to

offer a distinct advantage for numerical solution over the

method which Greenberg, Dorn, and Wetherell [6] applied to

the case of pure torsion. Thus, numerous comparisons

between the two theories may be made without difficulty,

including cases of combined bending and torsion not pre—

viously treated.

Numerical solutionsikx‘both the generalized J2

deformation and flow theories are obtained for a prismatic

bar of a unit square cross section. With each theory, the

solutions are obtained for both a stress-function and a

‘warping-function formulation. The stress—function and
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warping-function formulations appear to be equally

competitive, with neither offering any computational

advantage, and their results were found to agree within

the assumed numerical accuracy.

Differences appear between the flow and deformation-

theory predictions for combined bending and torsion when

the bending curvature ;< and the torsional angle of twist

per unit length 6) do not maintain a constant ratio during

the deformation. When-13 was constant throughout the

loading, the numerical solutions for the two theories

agreed. This agreement would seem to indicate that a

radial straining in the K -(9 generalized-strain space may

be a sufficient condition for integrability of the flow

theory for combined bending and torsion. The results of

Greenberg, Born, and Wetherell are a special case of this

since for pure torsion-ii = 0 throughout the loading. At

the present time a proof has not been given that the con-

dition of a constant ratio is in fact a sufficient condi—

tion for integrability, but the numerical solutions

obtained for the square bar support this hypothesis.

A numerical solution for the generalized J2 defor-

mation theory was also developed for the circular bar,

using polar coordinates. This solution is given only to

illustrate the feasibility of the method in instances

where the coordinates are chosen so as to correspond to

the cross-sectional geometry.
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The basic equations are developed in Chapter II.

The rigid-perfectly plastic formulation essentially

repeats the work of Piechnik [24]. This formulation is

presented in order to acquaint the reader with the basic

differences between the rigid-perfectly plastic equations

and the work-hardening formulations. The numerical

algorithms for the square bar and the circular bar are

given in Chapters III and IV, respectively. Chapter V is

devoted to the presentation of the results and general

conclusions of the study. Chapter VI suggests possibi-

lities for additional investigations.



II. DERIVATION OF EQUATIONS

2.1 General Principles of Mechanics

A long prismatic bar with a simply—connected cross

section having at least one axis of symmetry is acted on

by a combined bending moment and torque at each end

(Figure 1).

 
Figure 1. Coordinate system

The bending moment M acts in the yz-plane of

symmetry about the Ox axis and the torque T acts in the

xy-plane. The z-axis is parallel to the generators of the

cylinder and is also the axis of twist.

The equilibrium equations for no body forces and

the boundary conditions are

10
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OX BY 82

.2332 + ad Z + 8022 = 0
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(2.1)

an = joxx + moXy + noxz

P = /[O + m0 + no

nY XY YY YZ

Pnz = )zdxz + rnOyz + nUzz

where (an, P , Pn ) are the traction vector components
ny 2

at a boundary point with outer unit normal 3.

The relationship between the displacements and the

small strain components is

  

  

  

au 1 av au

SXXLSY 8w“? [ax+ BY]

_ iii _ 1 63w 63v

E:yy " ay eyz ‘ 7 [3y * 52]. (2.2)

8w 1 8w au

Szz = 3? sz = '2 [ax + 52] ,°

The total displacement of the prismatic bar is

assumed to be the sum of the displacement due to pure

bending and that due to pure torsion. For an
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incompressible bar, assuming bending parallel to the

yz-plane, this sum is [12], for 692 << 1,

u=-%ny- eyz

v = --2i-K(222 - x2 + y2) + 6x2 (2.3)

w = KYZ + f(x:Y9@):

where I< is curvature, 69 the angle of twist per unit

length and f(x,y,(9) the warping function.

The terms u' = -6yz and v' = (9xz represent a

rigid rotation of the cross section around the z-axis

through the angle 92, provided 6’2 is small compared to

one radian. Since finite rotations are considered, these

displacement expressions are accurate only for small

values of 2. But the strain components derived from them

are independent of z and are assumed to apply along the

whole length of the bar.

The strain components for the prismatic bar are

determined from Equations (2.2) and (2.3). Thus,

 

1

8xx = - §4<y 8xy = O

8 = - le E: = 1 8f + 6x (2.4)

W ’2 yz '2 ay

l
822 = KY 5x2 = ? [—a—3—(v - QY] o
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This strain tensor satisfies the incompressibility

assumption of the material since

1 1
38m—Exx+ syy+ ezz--'2Ky—§Ky+ Ky-O. (2.5)

Therefore, the strain tensor of (2.4) is also the strain

deviator tensor.

The stresses Oxx’ O , and Oxy are identically zero

YY

for the combined bending and torsion problem in elasti-

city. By analogy witflm the elastic problem, these stresses

are assumed to be zero for the corresponding problem in

plasticity [11]. In addition, the bar is taken to be of

sufficient length so that the stresses are independent

of z. As a result of these assumptions, the equilibrium

equations and lateral boundary condition (2.1) reduce to

 

80 O'

(2.6)

Pnz = 10x2 + mOyz. (b)

The components of the unit normal vector 3 at any

point on the lateral boundary are 3 ( I,m,0) and for the

load vector they are—P (0,0,0). Therefore, the boundary

condition (2.6b) takes the form

0x21 '1' Gyzm = O. (207)
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From Figure 2 it is observed that the componentsj7

and m of the unit normal vector are given by [34]

j: COS nx=cai%,m=cos ny=--a—§. (2.8)

Y

city—c\

Y

ds \ \

n

d

YA

 

  
 V x

 

2
5
>

 

Figure 2. Relation between unit normal

vector and direction cosines

Using Equations (2.8), Equation (2.7) is expressed

Oxzdy - oyzdx = O. (2.9)

For the complete specification of a mechanics

problem, the above equations must be supplemented by

appropriate constitutive equations. These physical equa-

tions define the material relationship between stress and

strain.

In the following sections the problem will be

formulated for the constitutive relations of:
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l. Rigid-perfectly plastic material governed by Hencky

deformation theory.

2. Rigid-perfectly plastic material governed by Levy-

Mises flow theory.

3. Work-hardening material governed by generalized J2

deformation theory.

4. Work-hardening material governed by generalized J2

flow theory.

Each theory will lead to a different formulation of

the problem. In all cases the entire bar will be assumed

to be plastic. Surfaces across which the interior normal

component of stress is discontinuous are permitted, e.g.,

the neutral surface in pure bending.

The development of the rigid-perfectly plastic

equations (Sections 2.2 and 2.3) essentially repeats the

derivation given by Piechnik [24]. The work-hardening

equations (Sections 2.4 and 2.5) represent a formulation

which is original with this study.

2 2 Rigid-Perfectl Plastic Material
_,_‘

Governed'byfiHenéEy eformatiOn Theory
 

For a rigid-perfectly plastic material obeying

Hencky deformation theory the strain deviator tensor is

proportional to the stress deviator tensor [9], [12].

Thus,

(2.10)



r
'

(
’
1

m
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where T is an unspecified proportionality function, sij

the strain deviator tensor, and Gij the stress deviator

tensor. For this material, the function T is usually

determined through the specification of a yield condition

[12]. The Mises yield condition [19] is used in the

following development, namely

(O -O')2+(O' —O‘)2+(O -Or)2
xx yy yy zz 22 xx

2 2 2 2

+ 6(0’xz + dyz + Oxy) = 6k , (2.11)

where k is the yield stress in pure torsion. .According to

the elastic analogy assumptions, Oxx = Oyy = Oxy = 0, and

this yield condition becomes

02 + 302 + 302 = 3k2. (2.12)
22 xz yz

From the assumption that Oxx = ny = 0 it follows

that the deviatoric components of normal stress are Oix

l 2
— O§y = — 3022 and 0&2 _ 3022. Hence, the following

independent equations follow from the application of

Equation (2.10) and the elastic analogy assumptions on the

stress tensor:
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3

022 “a?“

__ 1 5f

CYz “ET [7337 " 9"] (2'13)

1 (3f

Oxz=2T[-5'x'- 6y] '

The solution of the problem requires the determina—

tion of functions f and T such that the equilibrium equa-

tion (2.6a) and the yield condition (2.12) are satisfied

identically throughout the cross section, and the boundary

condition (2.9) is satisfied at each boundary point.

These functions may be determined by two different

approaches [24], corresponding respectively to the warping-

function approach or to the stress-function approach for

the pure torsion problem.

The two approaches are summarized here, and the

details carried out in the following sections.

(a) Warping-function method. The stress components

(2.13) are substituted into the yield condition (2.12),

giving T as a function of the warping-function f. The

parameter T found in this manner is substituted along with

Equation (2.13) into the equilibrium Equation (2.6a).

These substitutions result in a single second-order par-

tial differential equation for the unknown function f.
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(b) Stress-function method. A stress-function Nb,
 

defined by Equations (2.14), is introduced into the system

as a new unknown:

 Eg=§f£,3{3=- 8T (2.14)
aY'

Stresses defined in this manner in terms of the function

¢Isatisfy the equilibrium Equation (2.6a) identically.

The warping-function f is now eliminated from the shear

strain Equations (2.4) to obtain the following compatibi-

lity equation for the shear strains:

as Z asXZ

5" ay

 = 9. (2.15)

The stress components (2.13), represented in terms

of NU, are substituted into the yield condition (2.12),

giving T as a function of ND. Substitution of (P along

with these same stress component expressions into (2.15)

produces a single second-order partial differential equa-

tion for the unknown function #1.

2.2.1 Warping-Function Formulation

As a consequence of the stress-strain relations

(2.13) the equilibrium Equation (2.6a) is

 
 

  

447% i- 9.)] ”‘SYWS? ex 1
(2.16)
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The yield condition (2.12) becomes

2 2
9 K’ 2

17y

f

3y + (9x 

2

] = 3k2o

(2.17)

 

f

"gs-91’

   

3

+25%

Equation (2.17) is solved for T as a function of f. Thus,

2
2 + f: - 2fx6y + 62y2 + fy

1
T ='§E[3I<2Y

+ 2fy9x + 92x211/2, (2.18)

where the subscript represents differentiation with

respect to that variable.

Equation (2.16), after multiplication by 2w2 yields

(fox + fyy) - cpxu?x - 9y) - «>wa + 9x) = o. (2.19)

Upon substitution for T and its respective derivatives

from (2.18), Equation (2.19) takes the following form:

2 2 2 2 2 2
3[I< y (fxx + fyy) - Kyfy — If faxy] + fyfxx + fxfyy

2 2 ,.
+ 6 y f + 2 xfyfxx - zeyfxfyy _ 2fxfyfxy + zgyfyfxy

-26xff + zezxf + 62x2f =0 (2 20)
x xy Y xy xx ' °

Equation (2.20) was first developed by Piechnik [24] and

is referred to as the Piechnik equation.



f
)

u
:

p
;
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9
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By introducing into (2.20) the dimensionless

coordinates

x=a§,y=a77 (2.21)

and the function

t =7?— (2.22)

a 9

and denoting

u =—é5-, (2.23)

the Piechnik equation is transformed to

2
302772(t;€ + 1:777? ) + tgg (t77 + g) (:7777 (tg

~21: (t 77)(t77 + g) ~3p277t -3p,2€77=

”'7 5 77
(2.24)

Expressed in terms of the dimensionless coordinates

g and 'n and the function t, the boundary condition (2.9)

(tg - 77mm - (t77 + flag = o. (2.25)

2.2.2 Stress-Function Formulation

As a result of the stress-strain relations (2.10)

and the Equations (2.14) defining'¢/, the shear strains

become
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  e =kT a¢is =-«T a¢j (229

Substitution of these strains into the compatibility

Equation (2.15) gives

.aw
53¢

  + gy(._5_a‘f).1@=o. (2.27)

From the yield condition (2.12), the normal stress

a

'5')?

  

022 is, if lpg and l#& denote partial derivatives,

022 = ifiku - 41$ - (ijl/Z, (2.28)

where choice of sign corresponds to the sign of the

coordinate y. Since symmetry conditions permit restricting

an analysis to the region where y is positive, the posi-

tive sign will be taken for the following development.

According to (2.13) the stress Gzz is

3

Equating Equations (2.28) and (2.29) and solving for T

yields

¢=V3— K
1 . (2.30)

2): 2 2 1/2
[1 - (LIX - l/Jy]
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Substitution of T from (2.30) into Equation (2.27)

produces the following partial differential equation for

the unknown function #1:

7%.: o, (2.31)

where

 

X = 2y 2 1/2'

[1 - Aux - wy]

Through the use of energy principles, Equation

(2.31) was first developed by Handelman [7] and later

extended to more general loading situations by Hill [11].

This equation is referred to as the Hill-Handelman

equation.

From Equations (2.9) and (2.14) the boundary condi-

tion on 1P for the Hill-Handelman equation is expressed as

23¢ a
dK/J = Tidy + 7:de = O, (2.32)

or

(p = constant A (2.33)

on the boundary. However, since only derivatives of Vb

are required, the constant is taken as zero, making the

boundary condition

([1 = o. (2.34)
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2.3 Rigid-Perfectlnylastic Material

EBverned'By Leyy-Mises Theory

For a material obeying Levy-Mises theory, the

rate-of-deformation deviator tensor is proportional to the

stress deviator tensor [12]. That is

8' .

ij "" “£1
(2.35)

where the dot represents differentiation with respect to

an appropriate time-like variable and >\ is an unspecified

proportionality function.

The kinematical relation between the velocities and

the rate of deformation tensor, which for small displace-

ments may be identified with the time derivative of the

strain tensor, is

 

  

 

_a ' _1[a{r+ 63']
xx ax XY-E ax W

' __a_; ' =1 av} ax}
Syy" ay syz 7[8Y+ OZ] (2.36)

. _a;, .

zz az
  

The velocities are determined by differentiating

the displacement (2.3), with respect to time. For small-

displacement theory, these velocities are (for small 2)
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- ékxy - éyz

2

< u --%I;(222 - x + y2) + (éxy (2.37)

Kyz + F(x,y, 9) ,2 II

where F(x,y,(9) is the derivative of the warping function

with respect to time. For small-displacement theory the

coordinates may be considered as material coordinates

giving the initial position of the particle.

The rate of deformation tensor is assumed to be

independent of z and is determined from Equations (2.37)

through the kinematical relations (2.36). Thus,

 

. - - l . . — 0

xx ' -§;<y xy -

E =- lpéy 6.: = 1[3F+ 6.x] (2.38)

yy 7 yz 7 81/

O - O . - 1 BF 0

zz"Ky xz_2[_§)—c-9y]'

As a consequence of relation (2.35) the non-zero

components of the stress tensor are



 

3 .

XX 2X

1 BF '

yz 2X [ ay + 9x]

By a procedure analogous to Section 2.2, a warping-

rate function equation and a stress-function equation are

derived.

2.3.1 Warping-Rate Function Formulation

The stresses from (2.39) are substituted into the

equilibrium Equation (2.6a). Differentiation and multi-

plication of this equation by 2 X? result in

>\(Fxx + Fyy) - >\x(Fx — 9y) - )( (FY + 9x) = o. (2.40)
Y

The proportionality factor >\ is obtained through

substitution of (2.39) into the yield condition (2.12).

After simplification, :X is expressed as

)\ = 7%[3 RZyZ + F: — 29x93) + 92% + F;

+ 2pyex + 922311”. (2.41)



a
“
.
.
.

G
s
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The proportionality factor' A is eliminated from

(2.40) through (2.41) to give

'2 2 ° 2 ‘ 2 ' 2 2
3[K y (Fxx + Fyy) - K yFy - K exy] + F Fxx + FxFyy

O 2 2 O O O

+ 9 y Fyy + 29xF Fxx zeypxryy 2FxFnyy + 26yFnyy

- ZéxFF + 26.sz + 9.2sz = 0 (2 42)
x xy y xy xx ’ °

With the dimensionless coordinates <§ and 77 defined in

(2.21) and with

u‘ = g, (2.43)

F

T = 75- (2044)

a

Equation (2.42) becomes

3p¢2772(T C + T7777 ) + Tég (T77 + g)2 + T7777 (T6 - 77)2

5

- 2T;77 (Tg - 7’])('I‘77 + g) — 3u‘277T - Bu‘zén = 0.

5 77 (2.45)

In this notation the boundary condition (2.9) is

expressed as

(ch - 77)c177 - (T77 + gmf = o. (2.46)
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If p = u', then Equations (2.45) and (2.24) are

identical. This means-ii =-£:, or {§-= éé- which implies

ln K = an + constant, and consequently g- = constant

during the test. This type of loading is "proportional

straining" in terms of the generalized variables fi< and 6).

Under the condition of proportional straining, there is no

difference between the Hencky and Levy-Mises rigid-

perfectly plastic interaction curves for combined bending

and torsion. This was first noted by Piechnik [24].

2.3.2 Stress-Function Formulation

By eliminating the warping-rate function from the

kinematical relations (2.38), the following compatibility

relation is obtained:

 

8 8

35%.. %:z=9. (2.47)

With use of the stress-strain relations (2.35), and

Equation (2.14) defining ¢;, this compatibility equation

becomes

“STD—85%)] +_§_y[>\__g%] +.Q.=o. (2.48)

Paralleling the procedure used to determine T, the

following relation for A,is derived from the yield

condition:
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0- 15;. é’y
I]: o (2049)

2 I72
[1 - (bx - \[Jy]

Substitution for )\ from (2.49) produces (2.50), a single

second-order partial differential equation for the

unknown #1:

   

%;[X if] 4, gy[ _%L.§] + 173—€730, (2.50)

where

 

Y

X = 2 2 1/2‘

[1 -“px ““l’lyl

The boundary condition for (2.50) is also

(p = o. (2.51)

Again, if-ég =-€%, Equation (2.50) is identical to

(2.31) and the two theories agree.

Equation (2.50) has been solved numerically by both

Steele [30] and Imegwu [15] and [16]. In his second solu-

tion, Imegwu examines Hill's version of (2.50), which

represents a more general loading condition than considered

here.
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2.4 Work-Hardening Material Governed

Byfa CeneraIIzequ DeformatiOn Law

Ramberg and Osgood [27] introduced the following

three-parameter stress-strain curves for uniaxial tension:

0'

V5):

 

1 2n

8 = E [l + ]U, (2952)

  

where 8 is strain and O stress. The law fits a variety of

metals and includes work-hardening effects. These stress—

strain curves for n = l, n = 9, and n -- 03 are shown in

Figure 3. For n-«- 00 the curve approaches the elastic-

perfectly plastic law.

 

 

  

n

105 [—
l

O 9

1.0 ~ 00

\/3 k

0.5 b

O l l l

1.0 200 300

ES
 

Figure 3. Ramberg-Osgood stress-strain curves

The uniaxial stress-strain law (2.52) has been

extended by Nadai [6] to the following generalized
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Ramberg-Osgood J2 deformation theory:

n

2685.1 = [1 + J2]O‘ij, (2.53)

where J2 is the normalized second invariant of deviatoric

stress,

_ 1

The development is again analogous to Section 2.2.

However, the yield condition is no longer required since

the proportionality factor is now specified. Letting

q; = 1 + J2, (2.55)

Equation (2.53) becomes

ZGSij = (bah. (2.56)

The kinematic equations (2.3) and (2.4) remain valid for

the incompressible material. According to the stress-

strain relation (2.56) and Equations (2.3) and (2.4), the

normalized non-zero stresses are
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0.21/3
Vic C13Ow

O z _ C) (at
+_$[ay+x] (2.57)

O‘xz__®[at ]

‘17-'55 “gs-Y)

where

(:>='§é29 H ='i:

9

and

2.4.1 Warping-Function Formulation

The shear stresses of (2.57) are introduced into

the equilibrium Equation (2.6a) to obtain

“53%- )1 +gY[_<§15(

The normalized second invariant of stress J2 is

 

] = 00 (2058)

 

0
4
0
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If the stresses from (2.57) are employed in (2.59), then

2 2_®2 2 2
J2 -«——5 [3p y + (ty + x) ]. (2.60)CD + (tx — y)

Thus, Equation (2.55) becomes

cp-1+ @211 [322+ (t - )2+ (t +302]n (2 61)- 13?; H Y x Y y . .

Differentiation and simplification of (2.58) lead

to

CI>(txx + tyy) - cbxvcx - y) - cpyuzy + x) = o, (2.62)

where Cb is obtained from the (2n+1)th degree polynomial

representation of (2.61). Thus,

(find - c132“ - 5n = o, (2.63)

where

)2
S = ®2[3u2y2 + (tx - y + (’(:y + x)2].

The boundary condition on the function t according

to Equation (2.9) is

(tx - y)dy - (ty + x)dx = 0. (2.64)

Equations (2.62) and (2.63) are solved simulta-

neously for the unknown functions t and db.
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2.4.2 Stress-Function Formulation

In view of the stress-strain relation (2.56) and

Equations (2.14) defining the stress function, the shear

strains are expressed as

k at!) k ; 841
8X2. = Egg—5;, Eyz = - de—é—i-o (2.65)

Since Equations (2.3) and (2.4) remain valid, the

compatibility Equation (2.15) must be satisfied. Substi-

tuting from (2.65) into (2.15) yields

a aw a eat/1 26
—é-’-‘[¢-—a-§]+_-a—i[ W]+—@-=O. (2.66)

Equations (2.14), the first Equation (2.57), and Equation

(2.59) then bring Equation (2.55) into the form

2

Cb: l + [3.2 “21,2 + \IJ: + $3] n. (2.67)

These equations can be brought into a form super-

ficially similar to those for the warping-function formu-

lation. Equation (2.66) takes the form

@(KPXX + ‘11”) + 6px (bx + cpy L/Jy + 2@ = o. ._ (2.68)

Equation (2.67) is expressed as a (2n+1)th degree poly-

nomial,



r
t
-
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c133“ - c132“ — sIn = o, (2.69)

where

S = 3 ®2u2y2 + ¢2(1,b)2( + $5). (2.70)

It should be noted that Equation (2.69) is not really of

the same form as Equation (2.63), since S now contains the

unknown<i>. But in the numerical algorithms both equa-

tions are treated in the same manner.

The boundary condition on the function MD is #1: O

on the surface contour.

Equations (2.68) and (2.69) are solved simulta—

neously for the unknown functions 1p and d).

2.5 work—Hardening Material Governed

By a Eeneralized quFIow Law

  

According to Prager-Laning type flow theory [6],

[26], the generalized Ramberg-Osgood law takes the form,

° ' 2n+l n-l '
i — O 1

where the dot represents differentiation with respect to

an appropriate time-like variable. Since 69 is assumed to

increase monotonically with time, we may take 9 as the

time-like variable. In the following, the dot refers

specifically to differentiation with respect to 9 .
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Letting

permits (2.71) to be expressed as

268'ij = dij + Aoij. (2.73)

Differentiation of the displacement Equations (2.3),

with respect to 9, yields the velocity components,

- x2 + y2) + xy (2.74)

yz + f(x,y,(9).

.3
;

From the kinematical relations (2.36), the corres-

ponding strain rates are

m
.

 

10

xx = _'2’<y 8xy = 0

° 1 ' ° 1 a?

eyy = --7I<y eyz =-§ [ ay+ x] (2.75)

O . O 1 ap

szz=Ky 8xz=2[ax-y]

where i%=-§€% and F is the derivative of the warping

function with respect to 6 .
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2.5.1 Warping-Rate Function Formulation

Equations (2.73) and (2.75) are combined to obtain

the following non-zero stress relations:

22 + x022 = BGKy

yz + >\°yz = G(Fy + x) (2.76)

XZ + >\ze = G(Fx -’ Y).

The shear stresses must satisfy the equilibrium

equation

 

50x2 5012
+ = o, (2.77)

a X a Y

and, on the contour surface, the boundary condition,

In order to determine an equation representing

(2.77) in terms of the warping-rate function F, the first

order differential equations (2.76) would have to be

solved explicitly for the stresses as functions of the

strain rates.

Since Equations (2.76) represent a coupled set of

non—linear equations, they will not be solved explicitly.

Rather, in Chapter III, by means of a backwgrds difference
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scheme for Q , a discrete system of equations will be

cieveloped. This system, in the discrete sense, will be

shown to satisfy Equations (2.76) and (2.77).

2 . 5. 2 Stress-Function Formulation

By virtue of the constitutive relation (2.73) and

— C 2.14) defining (p, the shear strain rates are

. k .

(2. 79)

éyz =5; (Ll/x + )(pr).

Eliminating the warping—rate function from the

Shear strain rate expressions in (2.75) produces the

fo1lowing compatibility equation:

88 z agxz
_.‘L_ax -Ty .-. 1, (2.80)

After substitution of the shear strain rates from (2.79)

aInd further simplification, the compatibility equation

( 2.80) becomes

. . . 2

LZ/ch + Lpyy + >\(L/Jxx + Lpyy) + >\x 4}}: + >\yklqu' 7% = 0’

where, according to (2.72) ,

n-l’_ 2n+l
X-TJZ J20
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From (2.59), the normalized second invariant J2 is

 

      

— + o

2 V5):

or

J ,_. _Z_Z. 4,2 (pi, (2.83)

 

2 V_k2

In order to determine a system of equations

comparable to the deformation-theory stress-function

Equations (2.68) and (2.69) , J2 must be expressed expli-

Citly as a function of Ry, 1.1/x, and \lJy. In Chapter III,

this will be accomplished, in the discrete sense, through

the use of a backward difference in the 9 variable.

The governing deformation—theory equations for both

the warping function and the stress function are repre-

sented as a system of two equations in terms of two

unknown functions. This formulation for a combined bend-

ing and torsion of a Nadai work-hardening material is

believed to be new. For a numerical analysis approach, it

will be shown in Chapter III that this formulation leads

i=0 a reasonable computational algorithm.

The equations for the flow-theory formulation

Qennot be expressed as two explicit continuous equations

in a form analogous to those of the deformation theory.

But, through the use of a backward difference in 9 , it
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will be shown that both the warping-function and the

stress-function formulations may be represented, at each

discrete level of 9 , as a system analogous to that of

the deformation theory. In addition, the computational

algorithm for these equations will be shown to be almost

equivalent to the deformation—theory algorithm.

It is generally believed that a flow-theory formu—

lation leads to a much more difficult problem than its

counterpart deformation-theory formulation [2], [6], [18].

The results of the present formulation indicate that both

theories, in the case of combined bending and torsion,

lead to problems in which the solutions are obtained

through comparable numerical computations.



III. NUMERICAL SOLUTIONS FOR

A UNIT SQUARE CYLINDER

3. 1 Symmetry Properties of the Solution

The unit square cross section is geometrically

:5)(mmetric with respect to both the x and y axes (Figure 4).

YA

 

  

  
 

Figure 4. Coordinate system for

unit square cross section

Since the bending moment acts about the x—axis, the

IThermal stresses are symmetrical with reSpect to the y-axis.

Because the material is isotropic, the normal stresses are

Einti-symmetric with respect to the x-axis. Moreover, only

‘iilne square of the normal stress enters into the calculation

(DEE the stress function and warping function, since the

40
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Inormal stress is considered only in the second invariant

<>f deviatoric stress J2. This implies that the normal

stresses produce only symmetric effects on the governing

equations. Hence, the solutions to the differential equa-

tions have the same symmetry properties as in the case of

pure torsion .

When a square bar is subjected to pure torsion, the

stress function is symmetrical with respect to the x and y

axes, and the warping function is anti-symmetric with

respect to these axes [34].

3. 2 Digcretization and

Q nite Difference Operators

A square mesh of equally spaced horizontal and

Vertical lines is superimposed on the positive quadrant of

the cross section (Figure 5).

Y? —-h-—;

 

3
‘

 

 

 

 

      
 

>

X

Figure 5. Lattice spacings for square mesh
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The intersections of these lines are called mesh

points or nodal points. The values of x and y at the

nodal points are given by

(i-l)h 1: is N>
4 II

(3.1)

y (j-l)h lEjEN

where i and j are integers, h the lattice Spacing, and N

the number of nodal points in either the x or y direction.

A function g(x,y) defined at the point (x,y) has the dis-

crete analogue g(i,j) defined at the point (i,j).

For the cross section, continuous physical para-

meters are replaced by discrete functions defined only at

the mesh points. Discretization of the problem is accom-

plished through replacing the governing differential equa-

tion by its discrete analogue. Thus, the problem is

reduced to that of solving a system of algebraic equations

for the values of the discrete function.

The spatial derivatives are represented by the

following finite-difference operators:

a) first derivatives at an interior point,

gx [g(i+l,j) - g(i-l,j)]/2h

(3.2)

[g(i,j+l) - g(i,j-1)]/2h,

L
O II



(
1

‘1
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b) second derivatives at an interior point,

gxx = [g(i+l,j) - 2g(i,j) + g(i-1,j)]/h2

(3.3)

gyy = [g(i,j+l) — 2g(i,j) + g(i,j-l)]/h2,

c) mixed second derivative at an interior point,

gxy = [g(i+l,j+l) - g(i-l,j+l) + g(i-l,j—1)

- g(i+1,j-l)]/4h2, (3.4)

d) first derivatives at a boundary point,

9x = [3g(N,j) - 4g(N-l,j) + g(N-2,j)]/2h

(3.5)

gy = [3g(i,N) - 4g(i,N-l) + g(i,N-2)]/2h.

The error for each of the above spatial derivative

operators is of order h2 [29].

In the flow-theory considerations, a function

g(x,y, 6) is defined at the point (x,y,6) and has the

discrete analogue g(i,j,,[) defined at the point (i,j,j).

The derivative with respect to 9 , at the point (i,j,/(),

is represented by a backward difference quotient. Thus,

96 = [g(iaj:/() " g(iajaj'l)]/A9, (3.6)

and this approximation has an error of order A69 [29].
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Quadrature is performed by the repeated use of the

two-dimensional form of Simpson's-% quadrature formula.

The integral of the function over the area bounded by

(i—l)h:E x E (i+l)h and (j-l)h:E y E (j+l)h is approxi-

mated by

h2

ffg(x,y)dxdy = -—g

A

+ g&+l,j-l) + 4[g(i+l,j) + g(i,j+l) + g(i-l,j) + g(i,j-l)]

g(i+l,j+l) + g(i—l,j+l) + g(i—1,j-l)

 

+ l6g(i,j) . (3-7)

 

The error of this quadrature formula is of order h4 [6].

3.3 Piechnik Equation for

Rigid—Perfectly Plastic Material

 

As was observed in Section 2.3.1, the warping—

function equations for flow and deformation theory of

rigid—perfectly plastic material are identical. Conse-

quently, a solution is provided only for the case of

deformation theory.

The Piechnik Equation (2.24) is quasi-linear in the

unknown function t(x,y) and may be expressed as

Atxx + Zthy + Ctyy + Dty + E = 0 (3.8)

where the non—linear terms are contained in the coeffi-

cients



C
u

F
h
.
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A = 3u2y2 + (ty + x)2

B = -(t)( - y)(tx — y)2

C = 3u2y2 + (tX - y)2

D = -342y

E = -3u2xy

In view of the boundary conditions (2.9) and the

anti-symmetry property of the warping function, t must

satisfy the additional constraints,

t = -x if y = 0.5 (3.9)

t=0 if x=0 or y=0,

on the first quadrant of the unit cross section.

Following the Gauss—Seidel over-relaxation proce-

dure outlined in Appendix I, the values of tm+1(i,j) for

)th
the (m+1 sweep through the mesh are calculated by

t +1(i,j) = tm(i,j) +w[tm (i,j) - tm(i,j)] (3.10)
m+l

where QJis the over-relaxation factor and the t (i,j)
m+1
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values are furnished by

tm+l(i,j) =

+ (E+fi)tm(i,j+1) + (E-fi)tm

- tm+l(i-l,j+l) - tm(i+l,j-l) + tm+l(i-l,j-l)] + E

where

>
l

(
I
I
I

0
|

E

and the discrete values of x and y are determined by

Equations (3.1).

2(A+C)

l

+

[tm(i+l,j) - tm+l(i-l,j)]/2h

[tm(i,j+l) - tm+l(i,j-1)]/2h

2 22

3p y + (ty + X)

-[(tx - y)(ty + X)]/2

2 2
3p2y + (tX - Y)

-l.5u2yh

3u2xyh2,

X[tm(i+1,j) + tm+1(i-l,j)]

l(i,j—1) + §[tm(i+1,j+1)

(3.11)

At the boundaries, x = 0.5 or y = 0.5,

the respective derivatives are known from (3.9) and these

are incorporated into the above equations. For points on
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the center lines, x = O or y = O, the values of t(i,j)

are known.

For each sweep through the mesh, the cyclic order

is prescribed so that the rows of the unknown matrix

t(i,j) are successively displaced. Thus, for each i, the

index j runs through the range 1 s j;s N, before i is

increased through its range 155i 5 N.

The iterations are continued until

Max (i,j) - tm(i,j) <= 8, (3.12)
tm+l

for a preassigned convergence parameter 8, where the

maximum is taken over all mesh points. More specific

information on the choice of the over—relaxation factor

and the convergence parameter 8 for all algorithms is

provided in Chapter V, Section 5.2.

The stresses are calculated by the finite-

difference analogue of the stress-strain relations (2.13).

The parameter (D is obtained through the analogue of

(2.18). The difference representations of these quanti-

ties are

9 2 2

‘Pk(i,j) = 1UP (1.)) =6 1)) y + éUtx — y)2 + (ty + :02] 1/2
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ozz(i,j)

-VQ
W-zfiffiv

Ox (i,j) 9[ t(i+1,j) - t(i—l,_L) __ y]

x g 2h , (3.13)

2¢k(i,j) '

 

 

t(i j+l) - t(i j—l)
0 (i,j) 6[ ’ ’ + x]
yz 2h

k = 2(pk(i,j) ’

where x and y are determined by (3.1). The values com-

puted according to (3.13) are normalized stresses.

The normalized stress resultants, bending moment

mn, and torque tn, are determined by the following

integrals:

mn ='fi% Aydzsz

(3.14)

t =-—l j (x0 — yo )dA
n To A yz xz

where MO is the moment for pure bending and T0 is the

torque for pure torsion. The integrals of Equations

(3.14) are approximated by repeated use of Simpson's-%

quadrature formula, Equation (3.7).

The numerical calculations for the solution to the

Piechnik equation are performed by a FORTRAN program,

WARPI. A flow chart showing the sequence of operations
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for program WARPI is provided in Appendix III, Figure 17.

The listing of FORTRAN statements is given in Appendix IV.

3.4 Warping-Function Equations

for Work—Hardening Generalized

‘gz Deformation eory

Equation (2.62) may be expressed as a non-linear

 

Poisson equation,

txx + tyy - E(tx,ty,x,y) = 0, (3.15)

where

= ¢x(tx - y) + d>y<ty + x)

(13

E 

and cp is obtained from the polynomial,

d32n+l - $2“ - 6n = o, (3.16)

where

2
2

s = C) [3u2y2 + (tx - y) + (ty + x)2].

Equations (3.15) and (3.16) are treated as two simulta-

neous equations for the unknown functions t(x,y) and

Cb(x,y). Equation (3.15) is a second-order partial

differential equation and the Equation (3.16) is a

(2n+l)th degree polynomial in d).
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The solution t(x,y) to the system must satisfy the

conditions of anti—symmetry and the boundary condition

(2.9). Thus, the constraints,

t = .f = 005x y i x

t = 0 if x = 0 or y = 0,

must be satisfied.

Each equation is represented by its corresponding

finite-difference analogue. Using the Gauss-Seidel over-

relaxation procedure (Appendix I), Equation (3.15) is

solved as a Poisson equation.

Since this technique assumes values of the unknown

function t(i,j) at each grid point, the difference esti-

mate of E(i,j) is made at each point using the current

estimates of t(i,j). Thus, in the approximate discrete

sense, E is considered as a function of the spatial

variables. This means, that to some degree, the conver-

gence of the system to the solution t(x,y) depends on the

manner in which E(i,j) converges to the function

.E(tx,ty,x,y).

At each point, after the new estimate for the

function t(i,j) has been determined, a new estimate to

db(i,j) is made by means of the Newton-Raphson method
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(Appendix II) applied to Equation (3.16). Thus, the two

iteration processes are performed during the same sweep

through the mesh. It appears that the calculation of

these corrected values for the two functions in this

successive manner tends to accelerate the convergence of

the system.

To begin the iteration, initial solutions for

t(i,j) and Cb(i,j) are assumed. These values are cor—

rected by succeeding sweeps through the net. According

to the Gauss-Seidel procedure, the values of tm+l(i,j) for

the (m+1)th sweep are calculated by

tm+l(i,j) = tm(i,j) + Cd[tm+l(i,j) - tm(i,j)] (3.18)

where

Em+1(1,j) = [tm(1+1,j) + tm(i,j+l) + tm+l(i-1,j)

+ tm+l(i,j-1) - Em+1]/4, (3.19)

and

13m+1 = [¢m(1+1,j) - ¢m+l(i-l,j)][tm(i+l,j)

- tm+l(i—1,j) - 2hy] + [Cbm(1,j+1) - d>m+l(i,j-1)]

[tm(i,j+l) - tm+l(i,j-l) + 2hx] /4<bm(1,j). (3.20)
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The discrete values of x and y are obtained from (3.1).

Modifications in Equations (3.18) through (3.20) are made

at the boundaries, x = 0.5 and y = 0.5, so that the con-

straints of (3.17) are satisfied. Furthermore, on the

center-lines, x = O and y = 0, the values of t(i,j) are

known.

During the same sweep, the values of Cb (i,j) are
m+1

calculated by the Newton-Raphson iteration for a (2n+1)th

degree polynomial

¢§n(i,j)[d>m(1,j) - 1] - 3;“

" _ 3

Chi“ I<i.j)[(2n+1)c1>m(i,j) - 2n]

 Cbm+1(i,j) = cpm(i,j)

(3.21)

where Sm+1 is the difference representation of

(.92 22 2 2
S =,fi 3p y + (tx - y) + (ty + x) .

The iterations are continued until

Max tm+1(i’j) - tm(i,j)' <= 8, (3.22)

 

with a preassigned convergence parameter 8, where the

maximum is taken over all mesh points.

In general, if the necessary and sufficient condi-

tions stated in Appendix I are satisfied, then the Gauss-

Seidel method will converge for an arbitrary initial

solution to(i,j). However, as shown in Appendix II, the
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Newton-Raphson method requires an initial estimate of

Cfio(i,j) near the exact solution. Therefore, to ensure

convergence, the process is initiated near C) equal zero.

At this starting point, with C) equal to zero, the exact

values for t(i,j) and Cb(i,j) are known. Consequently,

if C) is increased by a small amount AC), and this known

solution for (D = 0 is used as an initial estimate, the

process may converge. In fact, if AC) is small enough,

one would expect the Newton-Raphson technique to converge

rapidly.

Thus, the mathematical algorithm assumes the solu-

tion to be known at G) = 1 A69. This solution is used as

the initial estimate for the solution at (9 = (I +1)A@.

Iteration is continued until the convergence criterion

(3.22) is satisfied, giving the solution at (1 +1)A®.

Experience indicates that if AC) is kept small enough,

this procedure will provide convergence throughout the

desired range of() .

After a solution is obtained for a given(3 , the

normalized stresses are calculated by the following

relations:
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ozz(i,j)
_\/§®

was???

____1?__. = d§(i,j)' (3.23)

a 751.1) ®[t(i,j+l) - t(i,j-1) + x]

“x"?— = cram °

The normalized bending moment and torque for this

 

(D are calculated according to Equation (3.14) using the

two-dimensional Simpson's-% rule.

The calculations for this system of equations are

performed by a FORTRAN program, WARPO. A flow chart

depicting the sequence of operations is shown in Appen—

dix III, Figure 18. The FORTRAN listing of this program

is provided in Appendix IV.

3.5 Stress-Function Equations

for‘WErk—Hardening GeneraIizéd

'2, Deformation Theory

 

 

 

The solution to the stress-function equation for

deformation theory parallels the solution presented in

Section 3.4 for the warping-function equation. Equation

(2.68) is expressed as the non-linear Poisson equation,

we (1yy + 3(1111)‘, wy,X,Y) = O, (3.24)

where

  



 

th
and q: is obtained from the (2n+1) degree polynomial,

®2n+l - c112” - 5n = o (3.25)

where

2 2 2 2 2 2

s=3®uy+CI>(\/JX+LIJY).

By virtue of Equation (2.34) and the symmetry

properties of Vb, indicated in Section 3.1, the following

conditions must be satisfied:

NU = 0 if x = 0.5 or y = 0.5

w
e

X
e

II
ll

0
0

if y=00

As in Section 3.4, Equations (3.24) and (3.25) are treated

as two simultaneous equations for the unknown functions

1p(x,y) and Cb(x,y). Equation (3.24) is a second-order

partial differential equation and (3.25) is a (2n+1)th

degree polynomial ian . Each equation is represented by

its finite-difference analogue. Consequently, the Gauss-

Seidel method (Appendix I) is employed on the analogue of

(3.24) and the Newton-Raphson technique (Appendix II) is
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used on (3.25). This algorithm is completely analogous

to that applied in Section 3.4 to the warping-function

equations.

The iteration begins with assumed initial solutions

for Vb(i,j) and Cb(i,j). These are subsequently corrected

by successive sweeps through the mesh. The values of

me+1(i93) for the (m+1)th sweep are given by

kpmflid) = (Hung) + wt $m+1<id> - L/Jm(i,j)], (3.27)

where

flung) = [l/Jm(i+1,j) + Lilm(i,j+1) + L/Jm+l(i—1,j)

“ wmu‘id'l’ + Banal/4) (3.28)

and

Em+l = ([cpm(i+1,j) - Cbm+l(i-l,j)][ (11m(1+1,j)

LPm+1(1-1,j)] + [q3m(1,j+1) — cpm+l(i,j-1)][L[Jm(i,j+1)

- ¢m+l(i’j-l)] + 8®h2 /4c:>m(1,j). (3.29)

During the same sweep, the values of CD (i,j) are
m+l

calculated according to the Newton-Raphson iteration,

2n n

cpm (i,j)[cpm(1,j) - 1] - s“1+1

Cbrnfn-l(i,j)[(2n+l)d)m(i,j) - 2n],

(3.30)

 

<Dm+l(i’j) = Cbh(i’3) -
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where Sm is the difference representation of
+1

2 2 2 2 2 2

S = 3(3 p y + (b [1px + (Pyj .

The iterations are continued until

Max 1ph+l(i,j) - 1pm(i,j)| < e, (3.31)

 

with a preassigned convergence parameter s, where the

maximum is taken over all mesh points.

The algorithm for the deformation-theory stress-

function formulation proceeds in a manner identical to

that for the warping function in Section 3.4. Thus, the

computations are initiated at C) equal to AC) and C) is

incremented until the desired stresses and stress result—

ants are obtained for a given range of C).

The normalized stresses are calculated by the

difference analogues of the first equation of (2.57) and

Equations (2.14). These difference representations are,

respectively,

qzz(i,j)

03k
366—39

Oxz(i’j) _ l(J(i,j+l) - IMini-l)

_ 2h

—_T<—_ (3.32)

o z(i,j)
((1 1, ) - Viki-1, )..i_k_ . .. + 1 2h 1. 
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For the stress—function formulation, the torque is

calculated directly from the stress-function 1p(x,y).

From the last equation of (3.14), the normalized torque is

1

Introducing '¢; and ‘¢§ from (2.14) yields

tn = Ti [-ffy\/Jydxdy - ffxwxdxdy] . (3.34)

The integrals of (3.34) are integrated by parts, and since

Vb = 0 on the boundary, the expression for tn becomes

2

The normalized bending moment is calculated by

_ 1
mn ‘fi'; fydzzdxdy. (3.36)

Numerical integration of (3.35) and (3.36) is per-

formed through Simpson's-% rule according to (3.7).

The computations for the stress-function system of

equations are furnished by the FORTRAN program STRO. The

sequential flow chart for the program is given in Appen-

dix III, Figure 19, and the FORTRAN listing in Appendix IV.
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3.6 Warping:Function Equations

for Work-Hardening Generalized

_3., Flow Theory

 

The warping—rate function F(x,y, 6) depends not

only on the spatial coordinates, x and y, but also on the

time-like variable 6). Thus, the difference analogue of

the function must be described by three integers i, j, 1,

where

(i—l)h>
4 ll

9: 189.

Using the backward difference quotient (3.6) for Ozz’ o

Oyz’ but not for %() and denoting

xz’

Ozz xz z
I _.__ __ o = _ v =

ozz '\/3-k, Oxz k ’ Oyz E

and C9 = «E6, the stresses at the level C») = [AC-D,

according to (2.76), are

0' (1)“ V3A®F<y + Géz(j-1)

ZZ _ [\(jr)

 

A®(Fx-y) + 6122(1 -1)

0322(1) = N1) (3.38) 

o' (I) = A®(Fy+x) + o§z(’(-1)

yz N1)
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where

m1) =1+A )(1).

The quantity )f’[) is obtained from the backwards dif-

ference representation of (2.72). Hence,

NI) = 1 + 2233 Jg‘1(1)[.12(1)- 32(1-1n, (3.39)

where J2(,€) is the normalized second invariant of stress

at the [ACE level.

For convenience, the notation,

T = A®F, (3.40)

is introduced. The shear stresses of (3.38) are substi-

tuted into the equilibrium Equation (2.77) to give

a g; — A®y + 0&2‘1‘1’

“'53? [\(1)

 

+
 

8T
+ AC)x + O' ( -l)

a [51 12 I J = 0, (3.41)
By IQCZ Y

which after differentiation and simplification becomes

2 2

A(/)[_8_§._§.;g] - AM) [33.18, + (wad-1)]
ax

 
 

aT ' aOJ'(2(/ -1)

_Ay(j)[ay+8®x+oyz(j-1)] + [\(j)[ ax

 

5092(j-l)] z 0

BY (3.42)
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The unknown function.1N(/() is obtained from Equation

(3.39).

The boundary condition (2.9) takes the form

 

Lg; — A®y + 0322(1 -1)] dy

5T . ..
+ [51’ + A®x + O'yz(1-l)] dX — O. (3.43)

For a unit square cross section, Equation (3.43) and the

anti-symmetry properties of Section 3.1 imply

TX = A®y if X = 005

T = 0 if x = 0 or y = 0.

In Equation (3.44), the conditions

I
I

0 II 0 0 U
]

O£z(,(-l) if x

and

N C II 0 0 U
1

(5)./2(1-1) if y

have been used.

The three equations, (3.42), (3.39), and (3.43),

represent a discrete system in terms of the (3 variable

and a continuous system in terms of the spatial variables
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x and y. In addition, the entire system represents an

initial value problem, requiring the additional condition

that the solution is known for (3 equal zero.

These equations now represent a system which is

discrete in the time—like variable C) and continuous in

the spatial variables x and y. At each discrete level of

C), the system may be considered as a continuous system

very similar to the continuous system given for the

deformation theory (Section 3.4). The solution to this

system at a given C) level will be somewhat equivalent to

the solution of the deformation system. Since, in

general, the solution is required for a range of C), the

two systems may be solved by similar algorithms, which

will depend on incrementing AC). This formulation,

through the backwards difference on the (3 variable,

yields a system of flow-theory equations which are essen-

tially like the counterpart deformation-theory equations,

and are solvable through numerical calculations of com-

parable difficulty.

The technique for solving this system of equations

is very similar to that used in the case of deformation

theory. However, now not only the iteration but also the

solution to the system at the ,(AC) level depends on the

solution at the previous level.

If the solution is known at the previous level,

then the continuous equations at the present level take
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the form,

Txx + Tyy + E(Tx,Ty,x,y) = 0, (3.45)

where

[\(1) 3T [\(1) air
E=-—Kx-r7-T[—5-§-A®y+0;(z(1-l)]--%T7-y[-5§

--6v (1-1) 0" ( -1)

+A®x+d§z(1-l)]
+ Oxz ayzj .

  

ax + By

The variable AJ,() is obtained from the (2n+1)th degree

polynomial

A2184”, ) - A371) - m1) = o, (3.46)

where

8(1) =39; sn‘1(j)[5(j) - [(2% )32(1—1>J, (3.47)

and the parameter 5(j ) is given by

2

5(1) = [WA®Ry+oéz(j-l)] + [—%}T-E-A®y

22

+ G'XZ(1—1)] + [3; + A®x + O§z(1-l)] .
 

At a given C) level, Equations (3.45) and (3.46)

are treated as two simultaneous equations in the unknown

functions T(x,y,/() and ,A(x,y,/€). Each is represented
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by its corresponding difference analogue, and simulta-

neously (3.45) is solved as a non-linear Poisson equation

(Appendix I) and (3.46) as a (2n+1)th degree polynomial

(Appendix II).

To begin the iteration, initial solutions for

T(i,j,/€) and ,A(i,j,/() are assumed to be the final

solutions at the previous level. These values are cor-

rected by successive sweeps through the mesh. The values

Tm+1(i,j,/[) for the (m+1)th sweep are furnished by

Tm+l(i’j’/C) Tm(i’j’1) + wETma-lU'Lj’Z) - Tm(i’j’1)]’

(3.48)

where

fm+l(1,j,j) = [Tm(i+1,j,1) + Tm(1,j+1,,()

+ Tm+l(1-1,j,1) + Tm+l(1,j—1,1) - Em+l]/4, (3.49)

and

Em+l = [([Am(i+1’j91) - Am+l(i-1,j,1)][Tm(i+1,j,1)

- Tm+1(i-1,j,1) - 2hA®y + 2ho)'(z(,{7—l)] + [Am(i,j+1,1)

— Am+1(1,j-1,/g)][1m(1,j+1,1) - Tm+l(i,j-l,1 )

+ 211869;: + 2ho§z(1 -1)] /4Am(1,j,1)] - 2h[q;cz(i+l,j,/(-D

— c§z(1-1,j,1-1) + G§z(i,j+l,1-l) - o§z(i,j-1,1-1)l.



65

At the boundaries, the constraints of Equations

(3.44) are incorporated into the above equations.

During the same sweep, the values (\m+1(i’j”1)

are calculated by the Newton-Raphson iteration. Thus,

Am+l<i,j.1) = Am(i.j,1)

A:n(i,j,j)[/\m(i,j,j) - 1] - ((m+1

Aifi-I<i.j.1)[(2n+1)Am(1,j,j) - 2n]

 (3.50)

where Km+ is the difference analogue of (3.47).
1

Experience indicates that a one—to-one correspon-

dence between the number of iterations for the Gauss-

Seidel and Newton-Raphson methods is not sufficient to

give general convergence. Thus, at each point an addi-

tional convergence requirement is placed on the Newton-

Raphson iteration of j\m+1(i,j, I).

Temporarily, the notation [\ (i,j,/[) is

introduced. At each point in the mesh the Newton-Raphson

m+1,n

iteration is continued on /\ (i,j,/() until
m+1,n

Am+l,n(i’j’1) " Am+l,n—l(i’j’1) < 51, (3.51)

(for a preassigned convergence parameter 81, at that

particular point. '

It is worth noting that the primary difference

between the flow-theory calculation and deformation-theory
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calculation (Section 3.4) is this additional iteration.

From a computer standpoint, these additional calculations

represented a very small difference in the two solutions

for the combined bending and torsion problem.

After inequality (3.51) is satisfied, the (m+1)th

sweep is continued. The number of sweeps are continued

until

Max Tm+1(1,j,j) — Tm(i,j,1) <2 8, (3.52)

for a preassigned convergence parameter 8, where the

maximum is taken over all mesh points.

As in the deformation-theory solution, the compu—

tations are begun for the undeformed bar. However, in

flow theory a particular path for the forward integration

is prescribed. The iteration at any level takes the pre-

vious solution as an initial estimate and iterations are

continued until condition (3.52) is satisfied.

To better illustrate the method of solution, the

curvature I< and unit angle of twist 69 space is con-

sidered (Figure 6).

Any point (/<,(9) in this space may be reached by

any number of paths pl, p2, p3, etc. The only restriction

is that 69 be a monotonically increasing function. Speci-

fication of dK/de as a function of e , with the initial

condition, K'= 0 when 6): 0, defines the load path.
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X

(K.9)

 

Figure 6. Arbitrary integration paths

for a given deformation (K , 9)

Experience indicates that if AC) is kept small

enough the method will converge at each level of C), in a

manner analogous to that of deformation theory. However,

in flow theory an additional reason for keeping AC) small

is that according to the difference representation, the

error in the forward integration is of order AC).

At each level, the normalized stresses are calcu—

\

lated by
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. ‘\/‘3A®ky + Oéz(i,j,1-l)

022(1’3J) = Add.) I
 

(3.53)

T(i+l,j,,( )2;T(i-l,j,1) _ A®y + 0322(1’3’1'1)

K(iv,j,1.)

 O

x
o

N

p
.

C
.

X
e I

T(iij+lgjy)2;T(lfij-121) + A®x + O§Z(i,j,1-l)

116.131) °

 Q P
.

U
.

K

V

l

The normalized bending moments and torque are deter-

mined by substitution of (3.53) into (3.14) and carrying

out the integration by Simpson's-% rule.

The computations for this system of equations are

furnished by a FORTRAN program WARPLV. The flow chart and

FORTRAN listing of WARPLV are shown in Appendix III,

Figure 20, and Appendix IV, respectively.

3.7 Stress-Function Equations

for WEEk-HardeningGéneraIizéd

J, EIow Theory

In flow theory, the stress-function W(x,y,‘6) is a

function of the three variables x, y, and 9 . The dif-

ference analogue is represented by the integers i, j, and

’[as defined by (3.37).

Through application of the backwards difference on

6, in the same manner as in Section 3.6, Equation (2.81)

becomes



69

A(1)[prx(1)+ WWW” + [\x(j)IIJx(/)) + Aydnpyd)

+ 2463 - Bond-1) - (AMI-l) = 0. (3.54)

where .A(/() is again defined by (3.39). But the norma-

lized second stress invariant J2(/() is now given by

V3A®ky + 022(1-1) 2

J2(»() = [\(1)

Equation (3.54) is expressed as the non-linear

 4 (113251) + (113(1).

(3.55)

Poisson equation,

(bud) + WWW) + E( \JJX,(py,x.y) = 0. (3.56)

where

a -.- [Ax<1> (w) + Ay<1>wy<1> + 249- (4.4-v

- L(Inge-1.)] //\(j).

The function 1\(/() is obtained from the (2n+1)th degree

polynomial,

A2“*1(,(7)- firm) — («1): o, (3.57)

x<1>= 39-33“- sn‘1(j)[8(j) - A2(j)32(1-1)], (3.58)
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and the parameter 5(1 ) is provided by

s<1>=£1f33®ky + Oéz(1-l)]2

+ A2(1)[Kl/fc(1)+ 1123(1)]. (3.59)

Since the stress function (p is still defined by

(2.14), the boundary conditions on.1p given by (3.26) are

valid for any level of C). The condition of the

unstressed bar, #lidentically zero throughout the cross

section, is assumed as the initial condition at C) equal

zero.

Equations (3.56) and (3.57) are represented by

their discrete analogues and solved simultaneously by an

algorithm identical to that employed in Section 3.6.

At a given level 1A6), the values ¢m+l(i,j,j)

for the (m+1)th sweep are furnished by the Gauss—Seidel

over-relaxation (Appendix I),

\P+1(1,j,1) \lJm(1.j,1) + wt¢m+1(i.1.1> - \Pmuawl
m

(3.60)

where

¢m+1(isj)1) = [wm(i+1,j,1) + me(i,j+l,1)

+ libm+l(i-l’j’/C) + lemma-1.1) + amp/4. (3.61)

and
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m+

E 1 = ([Am(i+l,j,1) - Am+1(i-l,j,j)][ %(i+l,j,1)

¢m+l(i-1ajs,€)] + [Am(i:j+191) " Am+1(iaj'l:1)]

[tlJm(1,j+1,1) - ¢m+l(i,j-1,1)J + 8A®h2 + 4[\/J(1+1,j,1-1)

+ ‘lJ(i,j+1,/(-l) + l/J(i-l,j,/(-l) + (Pug-1,14)

— 41,1/(1,j,/( -1) )/4Am(i.j.1)-

At the boundaries, the constraints of Equations

(3.26) are incorporated into the above equations.

During the same sweep, the values A_ (i,j,/() are
m+l

calculated by the Newton-Raphson iteration (Appendix II),

Am+l(i’j’1) = Am(iaj91)

A§n(1,j,j )[Am(1,j,1) - 11- Km+1

Am (1.j,j)[(2n+1)/\m(i,j,j) - 2n]

 

where Km is the difference analogue of (3.58).
+1

Again, an inner iteration is performed on

j\m+l(i,j,,() at each spatial point, until condition

(3.51) is satisfied. The (m+1)th sweep is then continued.

The sweeps are continued until

Max

m
 

(11‘4de) .. \Dm(i,j,j)| e 6, (3.63)
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for a preassigned convergence parameter s, where the

maximum is taken over all mesh points.

As in Section 3.6, a load path is specified in the

curvature-twist space. This specification indicates the

dependency of the stresses and stress resultants on the

load history.

At each level, the normalized stresses are deter-

mined

‘\/—3A®I.<y + O‘éz(i,j,/€-l)

 

 

 

“éz‘iJJ’ = AflsL/{H—

“322(11311) ___ W(1,3+1,£)2% ¢(i,j-l,,() (3.64)

O§z(i,j,/€) =_‘/J(1+1,j,1)2; W(1-1,j,1).

The normalized torque and bending moment are

obtained by substitution of the above results into Equa-

tions (3.35) and (3.36). These integrals are evaluated by

Simpson's-% rule, (3.7).

The computations for this system of equations are

performed by a FORTRAN program STPLDT. The flow chart and

FORTRAN listing of STPLDT are presented in Appendix III,

Figure 21, and Appendix IV, respectively.

The numerical results for the unit square bar calcu-

lations are given in Chapter V. In order to demonstrate

the feasibility of applying this technique to other
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coordinate systems, a circular bar of unit radius is

considered in Chapter IV, using polar coordinates.



IV. NUMERICAL SOLUTION FOR A

CIRCULAR BAR OF UNIT RADIUS

4.1 Transformation of Equa-

tions to Polar Coordinates
 

A point P, defined by the polar-coordinates (r,a),

may be transformed into rectangular coordinate (x,y)

through equations

x = r cos a and y = r sin a. (4.1)

The inverse form of relations (4.1) is

r = (x2 + y2)1/2
and a = arctan«¥. (4.2)

If u is a function of r and a, then according to

the chain rule and the inverse relations (4.2), the rec-

tangular coordinate derivatives are determined by the

following formulas:

an au sinoc au

"56 C°S “‘JF’T‘EEZ

u u cos a u
-€;§ sin a'%%5 +-——E—--€;I.

Similar expressions may be developed for the second deri-

(4.3)

vatives azu/ 8x2, 8211/ 3Y2. and 3211/ Ex ay.

74
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Substituting relations (4.3) into the Piechnik

Equation (2.24) yields

2 3
3p r 2)2

2 2
sin a(r trr + rtr + tad) + rtrr(ta + r

2 2

- 2tr(rtra - ta)(r + ta) + rtr(rtr + tau)

3 5
- Buzr sin g(rtrsin a + tacos a) - 3u2r sin a cos a = 0.

(4.4)

From equation (2.18), the parameter (D given in

terms of r and a is

t

e2
r

2 1/2

+ r + Zta:] .

(4.5)

w = k ¢ = -g 3u2rzsin2a + t: +

  

The non-zero stresses (2.13) are transformed to

 

Ozz V3.6

k

= pr sin a

V316 H

  

0‘ 6z _ . COS a

.—%— "2WF; trSln a + ta-—fF—— + r cos a (4.6)

0x2: 9 tcosa-tM—rsina

E 2<Dk r a r '

  

Equations (4.3) permit the deformation—theory

Equations (2.62) and (2.63) to be transformed to their

respective polar-coordinate representations. These equa-

tions become
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t
1 1 Choc a __ _

Cb trr+?tr+:2t0(0( - CI)rtr- (pa 0’

(4.7)

and

C1D2n+l _ ¢2n _ Sn = O, (4.8)

where

t 2 2

S = ()2 3u2rzsin2a + t3 + -—% + r2 + Zta ] . (4.9)

  

Equations (4.7) and (4.8) may be treated as two simulta-

neous equations for the unknown functions t(r,a) and

@(rmn).

The stresses are determined by the polar represen-

tation of Equations (2.57). These normalized stresses

become ,

0'

 22 = lggpr sin 0.

g.

  

O'

2 ‘Cl . cos a
—%—»= CD tr51n a + ta __?_— + r cos a (4.10)

O'

xz -.£2 _ sin a _ .
._E_ _ CD trcos a ta‘_—F_- r Sin a .

  

The normalized bending moment and torque relations

of (3.14) are transformed into their polar-coordinate
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representation. That is,

.1n M J[r Sln a ozsz

0 A

(4.11)

-1
t. — TP'J[(r sin a Oxz - r cos a Gyz)dA

o A

where dA is now given by rdadr.

The boundary conditions for both the Piechnik

Equation (4.4) and the work-hardening deformation Equa-

tion (4.7) are given by the transformation of the general

boundary condition (2.64). This equation may be expressed

d dx

(tx - y) 3% - (ty + x) E = 0. (4.12)

 
 

 

 

 

 

Figure 7. Relationship between unit normal

direction cosines and coordinate angle
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From Figure 7 the direction cosines are given by

«%§ = cos a and -%§ = -sin a,

and when x and y are on the surface of the unit circular

cross section,

x = cos a and y = sin a.

Thus, (4.12) becomes

t cos a + t sin a = 0. (4.13)

x Y

However, Equation (4.13) is recognized as the partial

derivative of t with respect to r. Consequently, the

general boundary condition (2.64) reduces to the following

condition for the case of a unit circular cross section:

This boundary condition (4.14) is appropriate for

both the rigid-perfectly plastic and the deformation—

theory work-hardening formulations.

4.2 ‘Polar—Coordinate Discretization

and—Finite-Difference Representation

 

A mesh of equally spaced concentric circles and

radial lines is superimposed on the circular cross section

(Figure 8). Again the symmetry arguments of Section 3.1

apply to the solution. Thus, in determining the solution,
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only one—quarter of the cross section needs to be

considered.

y!)

 
 

  

Figure 8. Lattice spacing for

polar-coordinate mesh

Since the spacing between concentric circles is h

and the angle between radial lines is Aa, the values of r

and a at each nodal point are given by

(i-l)h 1 _<. i _<_ NI"
!

II

(4.15)

(j-1)Aa l f j.§ N.9 n

The spatial derivatives of a function g(r,a) are repre-

sented by the following finite-difference operators:

a) first derivatives,
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= g(i+l,j) — g(i-l,j)
 

 

 

 

gr 2h

(4.16)

- g(i.j+1) - g(i,j-1)

96 ’ 2(56) ’

b) second derivatives,

_ g(i+l,j) - 29(i,1) + g(i-l,j)

grr ‘ 2
h

(4.17)

- 3

ad (Aa)2

c) second mixed derivative,

_ g(i+l 141) - g(i-l,j+l) + g(i-l j-l)-g(iHHj€D

gra ‘ ’ 4h(Aa) ’ ’

(4.18)

The integral of the function g(r,a) over the region

(i-l)h E r fi(i+l)h and (j-l)rAa fire 5 (j+1)rAa is

approximated by Simpson's-% rule for polar coordinates,

 ‘1]g(r,a)rdadr = (Aa)3r(i) [g(i+l,j+l) + g(i—l,j+l)

+ g(i+l,j—l) + g(i—l,j-l) + 4[g(i+l,j) + g(i,j+l)

+ g(i—l,j) + g(i,j-l)] + l6g(i,j)] . ' (4.19)

4.3 Piechnik Equation for

Rigid-Perfectlyplastic Material

The polar-coordinate representation of the Piechnik

Equation (4.4) is expressed as
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At + Bt + Ct + Dt + Et + F = 0, (4.20)
rr ra aa r a

where the coefficients are given by

A = BuzrssinZa + r(t0L +r2)2

2

B = —2rtr(r * ta)

C = 3u2r35in2a + rt;

2 32 .
E — 22tr(r + ta) — 3p r Sin a cos a

F = ~3u2rssin a cos a.

By virtue of the anti—symmetry property of t(r,a)

and the boundary condition (4.14), the following condi-

tions must be satisfied on the first quadrant of the unit

circle:

t = 0 if a = O or a =

m
i
n

(4.21)

Equation (4.20) may be replaced by its respective

finite-difference analogue. The Gauss-Seidel over-
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relaxation procedure, outlined in Appendix I, applied to

this system of algebraic equations, gives the numerical

solution. Thus, the tm l(i,j) for the (m+1)th sweep is
+

given by

tm+l(i,j) = tm(i,j) + (uEEm+l(1,j) - tm(i,j)], (4.22)

where

Em+1(1,j) = [(i+5)tm(1+1,j) + (A-D)tm+l(i-1,j)

+ (C+E)tm(i,j+l) + (C-E)tm+l(i,j-l) + EEtm(1+1,j+1)

-tm(i+l,j-l) + tm+l(i-l,j-l) - tm+l(i-l,j+l)]

+ E] /[2(K+E)], (4.23)

with the coefficients having been previously calculated

according to

 

  

 

-

2

A — (AOL)2 [3p2rssin2a+-r 2h + r2 ] ,

- 2 2h

 

 

 

r2 + tm(i,j+l) - tm+l(i,j-1)

2(Aa) ’



83

 

 

 

 

 

 

  

= H r Sln a + r 2h 3

5 _ hm0021.2 tm(i+l,j) - tm+l(i-1.i) 2

' 2 2h ’

E h2(Aa)[2 (tm(i+l’j) - tm+l(i-l’j))
' '—“§" 26

t (i j+l) - t (i j-l)
2 m ’ m+l ’ 2 3 .

r + 2(Aa) + 3p r Sin a cos a] ,

F =-h2(Aa)2(3u2rssin a cos a).

The iterations are continued until the condition,

Max tm+l(i,j) - tm(i,j) 5 6, (4.24)

is satisfied for a preassigned s, where the maximum is

taken over all nodal points.

The normalized stresses are calculated from the

discrete analogues of (4.6). The normalized bending

moment may then be obtained by successively applying

Simpson's-% rule (4.18) to Equations (4.11). The compu-

tations for this system of equations are performed by the

FORTRAN program POLARR. The flow chart and FORTRAN list-

ing for POLARR are shown in Appendix III, Figure 22, and

Appendix IV, respectively.
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4.4 Warping-Function Equation

fBr Work-Hardening Generalized

En Deformation Theory

Equation (4.7) is treated as a non-linear Poisson

equation expressed in polar coordinates. That is,

 

trr +-% tr +-—% tad + E(tr,ta,r,a) = O, (4.25)

r

where

cbt -®°‘t°‘-c1>
r r r2 a

E: ,

CID

and Q) is obtained from the (2n+1)th degree polynomial,

 

2n+1 2n 2 2 2 . 2 2

q; — c1) - [C9 (3p. r Sit) on + tr

t 2 2 n

a 2 _
+ .5 + r . 26“) J - 0. (4.26)

 

Equations (4.25) and (4.26) may be considered as two

simultaneous equations for the unknown functions t(r,a)

and Cb(r,a). In addition, the function t(r,a) must

satisfy the boundary conditions,

t=0 if a=0 0r C1=

m
i
n

(4.27)
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Each of the simultaneous equations may be repre-

sented by its respective finite-difference analogue.

Applying the Gauss—Seidel and the Newton—Raphson methods

to these difference analogues yields the following

sequence for correcting the initially assumed values for

t(i,j) and Qb(i,j). During the (m+1)th sweep, the values

tm+l(i’j) are calculated by

tm+l(i,j) = tm(i,j) + (0[Em+1(1,j) - tm(i,j)], (4.28)

where tm+l(i,j) is given by

tm+l(i,j) = (K+B)tm(i+1,j) + (Kimmie-1m

+ C[tm(i,j+l) + tm+1(i,j-l)] - Em+1 -/[2(X+E)]. (4.29)

The coefficients are determined according to

 
 

A = (AOL)2r2

E = h2

2

5 = h(Aa) r
.___§___

(4.30)

E _ h2(Aa)2r2 cbm(1+l,j) - cbm+l(i-l,3))

m+l ‘ cpm(i,j) 21.

+
 

 

(tm(1+1,j) - tm+1(i-1,j) Cbm(i,j+l) - dbm+l(i,j-l))

2h 2(Aa)

  

 

tm(i,j+l) - tm+l(i,j-l) _ 1)

2(A0L)r2
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Furthermore, the corrected values of d) (i,j) are
m+l

calculated during this sweep according to

 

2n . n
(1 j)[<1> (1 j) - 11- s

<13... (i,j)[(2n+l)CI>m(i,j) - Zn]

(4.31)

where the parameter S is given by the (m+1)th discrete
m+l

representation of S in Equation (4.9).

The sweeps continue until

Max tm+l(i’j) - tm(i,j) «=8, (4.32)

for a preassigned convergence parameter 8, where the

maximum is taken over all nodal points.

The normalized stresses may now be obtained from

the difference analogues of (4.10). As a result of

Equations (4.11), these stresses determine the normalized

stress resultants.

The calculations for this system of equations are

performed by the FORTRAN program POLARO. The flow chart

and FORTRAN listing in POLARO are shown in Appendix III,

Figure 23, and Appendix IV, respectively.

The polar-coordinate solution was developed only

for these two cases. However, due to the similarity

between the algorithms for the deformation and flow

theories in the case of a square bar, it is believed that

a similar polar-coordinate algorithm could be developed
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for flow theory. The purpose here is to demonstrate the

feasibility of the technique applied to circular geometry

rather than to compare the two theories.



V. RESULTS AND DISCUSSION

5.1 Effect of Mesh Refinement
 

Steele [30] observed, in his numerical solution of

the Hill-Handelman equation, that a 9 x 9 mesh on the

entire unit square cross section provides torque and

moment values which vary by less than 0.5 per cent from

those for a 13 x 13 mesh. Thus, assuming the finite-

difference solution converges to the continuous solution

as the lattice spacing approaches zero, the normalized

torque and moment provided by the 9 x 9 mesh appear to be

valid to at least two decimal places.

The present investigation utilizes a 12 x 12 cross-

sectional mesh. As a consequence of the symmetry pro-

perties, the solution must be obtained for only a 7 x 7

set of lattice points or 49 discrete points. In order to

estimate the effect of grid size, the number of grid spac-

ings was doubled. This latter system, a 24 x 24 mesh,

requires the determination of the solution for a 13 x 13

set of lattice points or 169 discrete points. Two solu-

tions were obtained for the Piechnik rigid-perfectly

plastic equation with N = 13. A comparison between the

normalized torques and bending moments for the two mesh

sizes is shown in Table l.

88
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Table 1. Effect of mesh refinement on

normalized torque and moment

(calculations at N x N points)

Per cent difference

2
N u tn mn Atn Amn

7 0.333 0.8294 0.6388

13 0.333 0.8350 0.6370 +0.67 —0.28

7 1.333 0.6417 0.8230

13 1.333 0.6452 0.8188 +0.54 -0.51

The results of Table 1 indicate that the actual

error inthe torque and moment would tend to cause dis-

agreement in the third decimal place. Thus, with the 49

discrete point solution, at least two place accuracy is

assumed in the normalized torques and bending moments.

The variations in stresses for the above calcula-

tion on the Piechnik equation are presented in Table 5

of Appendix V. The stress results tend to show a dif-

ference in the second decimal place.

Greenberg, Dorn, and Wetherell [6], in their

numerical solution to the plastic torsion problem, used

an 8 x 8 mesh on one quadrant of the cross section. With

this mesh size, a solution is required for 81 discrete

points, and accuracy of the calculated torques was assumed

to be valid to three decimal places.

Using N =3B, u = 1.00, and n = 12, computer runs

were performed for both the deformation-theory and the

flow-theory warping-function equations. With each run,
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the difference between the normalized torques and bending

moments for N = 13 and those for N = 7 was of the same

order as that shown for the Piechnik equation in Table 1.

In view of the large number of calculations

required for the combined bending and torsion problem,

and since the major emphasis of this study is confined to

the torque and moment relationships, the remaining calcu-

lations use a discrete system of 49 points on the first

quadrant of the cross section. The comparisons between

calculated stresses and stress resultants according to

different theories assume the numerical accuracy of the

order presented in the above discussion.

5.2 Effect of Over-Relaxation Factor

'EHH_CFSIEE_3f—50nvergenc6*?arameter

In the case of linear second—order equations,

formulas are available for selecting an optimum relaxa-

tion factor [32]. Generally, these formulas are dependent

on the mesh size h and the geometric shape of the cross

section. Apparently, formulas of this nature are not

available for the non-linear cases.

Since most of the computer runs were for a system

of 49 discrete points, various relaxation factors were

considered in an experimental analysis. Data, showing the

effect of the over-relaxation factor a), was determined

for the Piechnik equation, the warping—function equation,

and the warping-rate function equation. This information

is presented in Figures 9a, 9b, and 9c.
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Figure 9a. Effect of relaxation factor (0 on

the number of iterations I for the Piechnik

equation with N = 7 and u = 1.00
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Figure 9b. Effect of relaxation factor Q) on

the number of iterations I for the warping-

function deformation-theory equations with

N = 7, u = 1.00, and n = 2
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Figure 9c. Effect of relaxation factor cu on

the number of iterations I for the warping-

function flow-theory equations with

N 3 7, p. = 1000, and n = 2

In the case of the Piechnik equation, Figure 9a,

the system failed to converge after 250 iterations, for

a): 1.9. With the other two equations, the system con-

verged for the entire range of a). In all cases, the

results indicate that the rate of convergence is quite

dependent on the values of the relaxation factor. Values

of (0 from 1.5 to 1.6 appear to give reasonable conver-

gence rates for the values of u, n, and C) tested.

The value of 1.55 for (U was used in all calcula-

tions except for the experimentation just described. This
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implicitly assumes that the optimum over—relaxation

factor is independent of u, n, and C). As Figures 9b and

9c indicate, this probably is not exactly the case, since

the optimum (0 changes when n and u are held constant and

C)is allowed to vary. However, a run for n = six and

u = zero for the case of deformation theory gave the

optimum a) as approximately 1.45. In addition, with the

optimum over-relaxation factor, these deformation and flow

equations tend to converge faster than the Piechnik

equation.

For the case where N = 13, the number of discrete

points is 169, and the optimum over-relaxation factor is

1.80. Using the optimum over—relaxation factors, 1.55 for

N = 7 and 1.80 for N = 13, the following comparisons were

observed with the warping-function deformation—theory

equations for u = 1.00 and n = 12 with 0 5 C9 5 4.00:

1) With the increase in grid lines, the average number

of iterations increased from 23 to 38.

2) The execution time increased from 0.82 minutes to

4.27 minutes for the respectives runs.

Because of the large number of computer runs, it

was felt that the most effective use of the computer time

would be realized if the convergence parameter required

the computed variable to have only four significant non—

zero digits after the decimal place. Since only first

derivatives of this function are needed, the accuracy
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should be sufficient to allow the making of reasonable

comparisons. The convergence parameter is given in each

program listing (Appendix IV), under the variable name El.

In each program E1 is set equal to the desired constant.

5.3 Results of the Piechnik Equation

for Rigid—Perfectly PIastib Material

The Piechnik equation was solved numerically for

the unit square and unit circular cross sections. The most

important aspect of each solution is the interaction curve

between the normalized torque and bending moment.

The interaction curve for the unit square cross

section is shown in Figure 10. These results are compared

with those obtained by Steele [30] and Imegwu [15] through

a numerical solution of the Hill-Handelman equation. The

numerical results are essentially equal, but in the pre-

sent study the Piechnik equation has been solved through-

out a greater range of p. This is possible since the

Piechnik equation does not have the line singularity pre-

sent in the Hill-Handelman equation. In addition,

Figure 10 contains the upper and lower bounds for a unit

square section, obtained by Steele [30] by means of energy

principles developed by Hill and Siebel [13].

Because of the line singularity in the Hill-

Handelman equation, nodal points cannot be placed on the

x-axis. Steele [30] and Imegwu [15], [16] begin the grid

lines at a distance of-% from both the x and y axes. If
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Figure 10. Normalized torque vs. bending moment

interaction curve for a unit square bar
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the Piechnik equation is solved with N = 10, then the

stresses at selected spatial points may be compared with

those obtained by Steele at these points. Steele computed

the stresses for p =-—l and p =-—3. The Piechnik equation

3

was solved with N = 10 for thesevgame values of u. A com-

parison between the stresses given by Steele and those of

the Piechnik solution for p =-—£ are given in Table 6 of

Appendix V. Because of the fingr grid, the results of the

Piechnik equation should be more accurate. However,

general agreement between the stresses for the two solu-

tions is observed.

A comparison between the interaction curve for the

unit circular bar and unit square bar is illustrated in

Figure 11. These results seem to indicate that the inter-

action curve is somewhat insensitive to the geometric

cross section. Prager and Onat [20] obtained a similar

result for the case of combined plastic bending and an

axial load. In his more limited analysis, Imegwu [15]

came to the conclusion that such an insensitivity appears

to exist also for the case of combined bending and torsion.

Piechnik [24] solved his equation by assuming the

bending to act as a perturbation on the pure plastic

torsion. Due to mathematical difficulties, this solution

was confined to a unit circular cross section. A com-

parison between the numerical and perturbation solutions

is presented in Table 2. Piechnik states that his results
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Figure 11. Comparison of the normalized torque vs.

bending moment interaction curves for the

square and circular bar
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should be reasonably accurate for p less than 0.25. The

values shown in Table 2 indicate a favorable comparison

within this range of u.

Table 2.

u

0.10

0.15

0.20

0.25

0.30

radial cross section

Numerical

tn mn

0.9929 0.1329

0.9845 0.1945

0.9735 0.2518

0.9603 0.3050

0.9454 0.3542

Comparison between numerical

and perturbation solutions for unit

Perturbation

tn mn

0.9927 0.1328

0.9846 0.1951

0.9747 0.2529

0.9647 0.3240

0.9562 0.4107

The results for both of these numerical solutions

of the Piechnik equation agree with those determined

through energy, perturbation, and numerical methods, by

other researchers. Thus, even though no mathematical

justification is available to ensure convergence of the

system to the correct result, the above comparisons

strongly suggest the method indeed converges to a satis-

factory solution.

5.4 Generalized J
 

Deformation—Theory,Solutions

The combined bending and torsion problem for the

generalized J deformation theory was solved numerically

by both a warping-function and a stress-function approach.

For the case of the unit square bar, the two formulations

provide essentially the same result.
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This generalized J deformation law was also used
2

in the solution of the unit circular bar in polar

coordinates. The polar-coordinate solution shows that the

mathematical algorithm appears to be a tractable means to

solve the problem when the coordinate system corresponds

to the cross-sectional geometry.

5.4.1 Warping-Function

Solution for Unit Square Bar

The warping-function deformation-theory equations

were solved for the values of u and n as shown in Tables 7

of Appendix V. The resulting normalized torques and bend-

ing moments are also given in these tables. For each

particular combination of H and n a given range for C) is

specified. The range of C) and the given AC) may be

obtained from inspection of the data in each table.

To illustrate the general effect of the work-

hardening on the torques and moments, the normalized

torques and bending moments vs. the unit angle of twist,

for selected values of the Ramberg-Osgood exponent n, are

shown in Figures 24 of Appendix VI.

Due to the large number of calculations, it is not

convenient to present the entire stress output. However,

Table 8 of Appendix V shows the typical stress output

obtained by the warping-function formulation for some

values of u, n, and® .
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5.4.2 Stress-Function

Solution for Unit Square Bar

The solution to the stress-function equations

serves as a check on the warping-function solution and was

developed so that a comparison could be made with the

above results. The equations were solved for the combina-

tions of u and n as presented in Tables 9 of Appendix V,

and the normalized stress resultants obtained are also

given in these tables.

Calculations of the stresses corresponding to the

same values of u, n, and C) as given in Table 8 (warping-

function results of Section 5.4.1) are presented in

Table 10 of Appendix V. A comparison between the two

stress calculations may be obtained by examining these two

stress tables.

Since the results are only assumed to be accurate

to two decimal places, the stress resultants for the

warping and stress-function formulation are essentially

equal. The computational algorithms are also essentially

the same. Thus, it appears neither method offers an

advantage, although, from the standpoint of error, the

stress-function formulation would be expected to be

better, since the values of the unknown function are pres-

cribed on the boundary, while in the case of the warping

function, the normal derivatives are prescribed at the

boundary.
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The warping-function approach has the advantage of

giving directly the axial displacements, which might be of

physical interest. For this reason, and because it repre-

sents a more novel approach in plasticity, the major

effort in this study was made with the warping-function

approach.

5.4.3 Warping-Function Solution

for a Unit Circular Bar

The polar—coordinate deformation-theory warping-

function equations for the circular bar were solved for

the values of u and n as shown in Tables 11 of Appendix V.

The normalized stress resultants are presented graphically

in Figures 25 of Appendix VI.

5.4.4 Approximation of the Elastic-

Plastic Boundary for an Elastic-

Perfectly Plastic Material

The generalized J work-hardening deformation-
2

theory approach provides a method of approximating the

elastic-plastic boundary for an elastic-perfectly plastic

material. As was pointed out in Section 2.4, as n-a-oo

the uniaxial Ramberg-Osgood stress-strain curve approaches

the elastic-perfectly plastic curve represented by the

curve consisting of two straight segments in Figure 3.

When the tensor version, Equation (2.53), of the Ramberg-

Osgood law is assumed to apply over the whole cross sec-

tion in a deformation-theory analysis with no unloading,
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it is reasonable to expect that the solution for n large

will approximate the elastic-perfectly plastic solution.

The region where J2 approaches the constant unity approxi-

mates the perfectly-plastic region,axu1the boundary of

this region is taken as the approximation to the elastic-

plastic boundary.

On the basis of letting n become large, the

elastic-plastic boundary was approximated for the square

section for u = 0 and for p = l, and for the circular

section with u = 1. These boundaries for various values

of G) are shown in Figures 12.

By the sand hill-soap film analogy, the boundary is

known for the case of pure torsion. Figure 12a has the

appearance of the elastic-plastic boundary predicted by

this familiar analogy. The boundary for the combined

bending and torsion problem is not known. However, an

indication that the solution is approximating a perfectly—

plastic material is given since the second stress deviator

invariant, J2, approaches unity. Since J2 approaches its

greatest values along the y-axis, J2 is plotted as a

function of distance along the y-axis in Figures 13.

5.4.5. Comparisons of the

Deformation—Theory Solutions

A general comparison between the stresses and

stress resultants calculated by the warping function

(Tables 7 and 8) and by the stress function (Tables 9
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boundary with u = 0.00 and n = 12
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Figure 12b. Approximation to elastic-plastic

boundary with u = 1.00 and n = 12



104

ll l
-
‘

C U
1

C

II N O O O 

 

 

  

 

II p o O O

 

 
Figure 12c. Approximation to elastic-plastic boundary

for circular section with p - 1.00 and n - 15

and 10) indicate that they agree within the limits of the

assumed numerical accuracy. In addition, for the case of

pure torsion, each method confirms the results presented

by Greenberg, Dorn, and Wetherell [6]. As a final check,

if n becomes large, then the moments and torques approach

those given by the solution to the Piechnik equation.

Typical comparisons for both the unit square and circular

bars are shown in Table 3. These arguments offer physical

assurance that the results are indeed converging to

reasonable values.
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Table 3. Comparison between deformation-theory

solution approximation to perfectly-plastic

material and the Piechnik solution

Deformation theory Piechnik equation

Square Bar

n = 12, p. = 1000, Q = 4.00 p = 1000

tn mn tn mn

0.6834 0.8093 0.6874 0.7885

Circular Bar

n a 15, p. = 1000, G) =3 4000 H = 1000

tn mn tn mn

0.7119 0.7855 0.6936 0.7488

In the case of the unit circular bar, expressed in

polar coordinates, the warping function offers an advantage

over the stress-function formulation. That is, the govern-

ing equations in both cases are singular at the origin.

However, with the warping function, the singularity is

removable since the warping is known to be zero at the

origin. Thus, the warping-function approach provides a

numerically tractable way to approach the problem through

the use of polar coordinates.

The flow-theory equations are solved in Section 5.5

for the same parameters as the deformation-theory equa-

tions. As will be shown, the two theories appear to give

the same results under the condition of proportional

straining in terms of the generalized variables K and 9 .
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5.5 Generalized J

mgns

The generalized J2 flow-theory analysis was also

formulated for both the warping and stress functions.

Both methods give essentially the same results for the

stresses and the normalized torques and bending moments.

5.5.1 Warping-Function Solutions

The warping-function system of equations was solved

for various values of n and u; the resulting normalized

stress resultants are given in Tables 12 of Appendix V.

Typical values for calculated stresses are presented in

Table 13 of Appendix V.

5.5.2 Stress-Function Solutions

The stress-function system of equations was solved

for the various values of u and n; the resulting normalized

torques and bending moments are given in Tables 14 of

Appendix V. Table 15 of Appendix V gives calculated

values for the stresses which compare with those for the

warping-rate function calculations given in Table 13.

5.5.3 Comparisons for Flow Theory

A comparison between the torques and moments for

the warping function (Tables 12) and the stress function

(Tables 14) shows that the two formulations provide

results which agree within the assumed numerical accuracy.
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An examination of Tables 13 and 15 shows a similar

agreement between the stresses. Thus, both methods pro—

vide essentially the same results.

From a computational point of view, neither method

offers an advantage, since the mathematical algorithms

are practically equivalent.

5.6 Comparison Between Flow

and DeformatiOn Theory

  

5.6.1 Conditions Where

the Theories Agree

Piechnik [24] showed that for a rigid-perfectly

plastic material, the condition-é; =-€% produces the same

governing equation for flow theory as for deformation

theory. The solution to the Piechnik equation is given by

the interaction curve between torque and moment. In the

case of deformation theory, this curve results from 0 f-é;

5300. Similarly, in the case of flow theory, it results

from 0:5 Jg-EEOO. Thus, the interaction curves for both

theories are identical.

In the work-hardening materials, the solution to

the system of equations is no longer an interaction curve

but rather the relationships of the moments and torques to

the deformation parameters K7 and 9 . These relationships

depend on the Ramberg-Osgood constant n. A comparison

between the results presented for deformation theory

(Section 5.4) and flow theory (Section 5.5) indicates that
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the two theories appear to agree under the condition

K' I(

9 It should be noted that the solutions to the flow

theory represent a forward integration in the C) variable.

This is accomplished through a backwards difference

quotient in AC). The error in the system is of order AC)

and it may tend to accumulate with increasing C). Thus,

the two theories would not be expected to agree as well

for C) large as for C) small.

In all cases tested, with N = 7, the calculations

for deformation theory and for flow theory agree to two

decimal places when C) is small. As C) assumes its maxi-

mum value in the specified range, there is a little less

agreement. This difference is believed to be due to an

accumulation in the error of the backwards difference

quotient.

To investigate these numerical differences,

computer runs were made with N = 13, u = 1.00, and n = 12

for both the deformation and the flow-theory warping-

function equations. In addition, with the flow theory the

increment in C) was AC) = 0.0625. The results of these

calculations with the two theories agree to three places

initially and gradually decrease to two places as C) takes

on its maximum value. This indicates the theories produce

the same results if«é§ = constant and that any difference

in results can be attributed to numerical error rather
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than to actual differences in the predictions of the

theories.

It is generally believed that the solutions for a

deformation theory and its counterpart flow theory will

agree only under the conditions of radial loading in the

stress space. Greenberg, Dorn, and Wetherell [6] showed

the two theories provided the same numerical result for

pure torsion even though the stresses were non-radial.

The present study shows that under the loading condition

«f? = constant, where f< and (9 are generalized strain

parameters, the deformation and flow theories provide

essentially the same numerical results. In this more

general situation, the loading is such that the stresses

follow a non—radial load path.

As was remarked in Section 1.1, a radial stress

= Co’

13 ii

is a function which increases monotonically with the time-

load path means a where dij are constants and C

like variable. Thus, for the combined bending and tor-

sion, a radial stress load path implies

0' O O

22 XZ Z

22 xz yz

O O 0

where 022’ Oxz’ Oyz may be taken as the respective stresses

when C1) equal AG).2

 

2This choice of the value of (:>at which the

stresses Oij are taken is arbitrary.
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To better illustrate the non—radial nature of the

combined bending and torsion problem, consider

37": c2 (5.2)

where the CB are functions of (9. A radial loading is

indicated if C1 = C2 = C3. If C1’ C2, and C3 are plotted

as functions of the time-like variable 6 , then the dif-

ference between the curves will tend to indicate the degree

of non-radial stress loading.

Figures 14 show the functions CB plotted as func-

tions of (9 for u = 0 and for u = l and for two choices of

the Ramberg-Osgood exponent, n = 2 and n = 12. The

stresses are taken at the spatial point where i = 4 and

j = 5. The results for u = 0 confirm the results reported

by Greenberg, Dorn, and Wetherell.

An analysis of these graphs shows that the stress

paths tend to be more non-radial when u is smaller and n

larger. However, in the torque, moment, and stress

results, it was found that the two theories agree under

the condition-é; = constant, and there appears to be no



 O l l l 1 (3?

l 2 3 4

Figure 14a. Functions CB vs.-§éL showing non-radial

stresses for u = 1.00 and n = 2 at the

 

discrete point i = 4, j = 5

 
 

Figure 14b. Functions CB vs.-§éL showing non-radial

stresses for u = 0.00 and n = 2 at the

discrete point i = 4, j = 5
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Figure 14c. Functions CB vs. 9&1 showing non-radial

stresses for u = 1.00 and n = 12 at the

discrete point i = 4, j = 5

  
6

Figure 14d. Functions CB VS"§E— showing non-radial

stresses for p = 0.00 and n = 12 at the

discrete point i = 4, j = 5
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dependence on the values of n and p, insofar as agreement

between the two theories is concerned. The agreement

between the numerical results from the two theories seems

to suggest that, although the condition of a radial stress

path is a sufficient condition for integrability of the

flow-theory equations to those of deformation theory, it

may not be a necessary condition. Otherwise, with non—

radial stress paths, one would expect more disagreement

between the two theories than that observed with this

study.

Budiansky [1] has proposed a condition under which

the deformation theory is an "acceptable competitor" to

the flow theory even under the condition of non-radial

stress paths. For the generalized J2 deformation theory,

this condition is [6]

a1< tan-lj/Zn-l (5.3)

where

1 013011

1 1 I72 .1 '. I/Z'
[Uklokl] [opqopq]

(5.4) a = cos-

Budiansky and Mangasarian [2], [18], for the case

of an infinite plate with a circular hole, showed that

generalized J deformation theory and generalized J2 flow
2

theory give comparable results even if the stress paths

are non-radial. However, in all cases the Budiansky

criterion was satisfied.
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Calculations with the combined bending and torsion

problem indicate that under the condition €§.= constant,

the Budiansky criterion is satisfied. Thus, on the basis

of Budiansky's physical arguments, perhaps one could

expect the results of the two theories to be comparable.

Nevertheless, this condition does not answer the question

of integrability posed earlier in this section.

In Section 5.6.2 examples will be given where the

theories do not agree. This disagreement between the

theories will be shown to depend on how much the load

variable-$51 is allowed to vary during the loading.

5.6.2 Examples of Load Paths Where

the Theories Do Not Agree

To further compare the results of the deformation—

theory and the flow-theory calculations, the parameter-$5;

was allowed to vary during the loading. As was shown in

Chapter III, Section 3.6, a point in the generalized K—Q

space may be reached by any number of paths. For the

paths A, B, C, and D shown in Figure 15, the values calcu-

lated at the point (3.00,3.00) for the normalized torque

and moment are shown in Table 4. These calculations were

made with n = 2 and with n = 12. This table shows the per

cent difference between the normalized torques and moments

and those for load path C. In this case, path C repre-

sents the loading where é; is constant. The values for

the deformation-theory calculations are also included in
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Figure 15. Paths chosen for comparing the deformation

and flow-theory calculations at the point (3.00,3.00)

Table 4. Comparison of torques and moments for

different load paths (see Figure 15)

Per Cent Dif—

ference from C

Path tn mn torque moment

Ramberg-Osgood exponent n = 2

B 00711 0.743 +11009 " 6077

C 0.640 0.797

C (deformation) 0.642 0.807 + 0.3I + I.38

D 0.593 0.836 - 7.34 + 4.52

Ramberg-Osgood exponent n = 12

C 0.659 0.781

C (deformation) 0.656 0.789 - 0.45 + 1.11

D 0.625 0.807 - 5.16 + 3.33
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this table; deformation theory predicts the same results

for all paths.

For the paths tested, the differences are not

extremely large; however, they are of such magnitude that

they cannot be attributed to numerical error. Thus, under

the condition of non-radial loading in terms of the

generalized strain parameters l< and 6 , a difference in

the predictions of the flow and deformation theories is

observed. This difference becomes greater as the path in

the F<- 6 space becomes more non-radial.

The Budiansky criterion, Equations (5.3), was

checked with deformation-theory calculations for paths A

and B with the Ramberg-Osgood exponent n = 2. For n = 2,

the maximum permissible value for the angle a is 65.9“.

With path A the maximum calculated a was 76.2“ while with

path B the maximum calculated a was 63.9“. Thus path A

violates the Budiansky criterion while path B does not

violate this condition. These deformation-theory calcu-

1ations deviated by as much as 14.8 per cent of the flow-

theory values with path A while the maximum deviation was

about 10.0 per cent of the flow-theory values with path 8.3

Although no definite conclusion may be drawn from this

particular analysis, it would seem that if the Budiansky

 

3When calculated as a percentage of the deformation—

theory values, the percentages for paths A and B were as

high as 17.7 per cent and 11.1 per cent, respectively.
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criterion is violated with a deformation theory then the

results certainly should be questioned.

The development of the Budiansky criterion is

predicated on the assumption that one wishes to set a

limit on when the deformation theory may be considered as

an "acceptable competitor" to a counterpart flow theory

[1]. This implicitly assumes that one would prefer the

flow-theory solution, but that generally it is easier to

obtain the deformation-theory solution [2], [18]. The

results of the present study indicate that the flow-theory

analysis is comparable to the numerical calculations

required for the deformation theory. If the flow theory

is the preferable theory, then it may be more reasonable

to proceed with a flow-theory analysis.

5.7 Conclusions

The following general conclusions relating to the

combined bending and torsion problem are made as a result

of this investigation:

1) The numerical solution of the Piechnik equation

confirms the results of other investigators. But,

from a computational point of view, the Piechnik

equation has better convergence properties, and,

consequently, all points on the interaction curve

may now be calculated.

2) In both the flow-theory and the deformation-theory

generalized J2 work-hardening material calculations,
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the stress-function equations and the warping—

function equations give comparable results with

approximately the same amount of numerical compu-

tation. Thus, neither method appears to offer any

computational advantage. However, with more com-

plicated geometric boundaries, the stress-function

approach would be preferable.

The two work-hardening theories, deformation and

flow, appear to agree under loading conditions

where a constant ratio is maintained between the

generalized strain parameters K and 9 even though

the stress load path is non-radial. This strongly

suggests that a radial stress load path may be only

a sufficient condition for integrating the flow-

theory equationstx>those of deformation theory, but

not a necessary one.

4) As the strain path is made non—radial in terms of

5)

the generalized variables K and 9 , differences

are observed in the results of the two theories.

It is customarily believed that the flow theory

should be the preferable theory [12], [17]. Thus,

for this type of non-radial straining, the flow-

theory results should be preferred to those of the

deformation theory.

The numerical analysis calculations for the flow-

theory solution are comparable to those for the
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deformation theory. In all solutions, both flow

and deformation, the times required for convergence

at any given (9 level are comparable. The flow—

theory calculations take slightly longer due to the

additional iteration mentioned in Section 3.6, but

this iteration is not significant in terms of the

total time. The more important consideration

between the theories is the size of the increment

AC). In flow-theory computations, this must be

kept small because of the error, and, consequently,

more calculations are required for a given range

of C).

It is generally believed that even with numerical

analysis the flow-theory solutions are much more difficult

to obtain than the deformation-theory solutions. With the

iteration procedures of the present study, this was not

the case for combined bending and torsion, and it is

possible that similar procedures could be used in other

problems to make flow-theory competitive with deformation

theory from the standpoint of computational difficulty.



VI. POSSIBLE EXTENSIONS OF THE RESEARCH

It may be possible to extend the research along

two primary avenues: (l) to apply the technique to other

related problems in mechanics, and (2) to establish a

mathematical criterion which would ensure the convergence

of the iterative schemes.

6.1 Related Mechanics Problems

6.1.1 More General

Loading Conditions

The equations should be extended to a more general

loading situation. Hill [11], [12] extended Handelman's

work [7] to the general case of combined torsion, bending

about two orthogonal axes of symmetry and uniaxial exten-

sion. In a similar manner, the work-hardening formula-

tions could be generalized to include these loadings.

In this generalization, the displacement Equations

(2.3) would be replaced by the following displacements:

u = -%K1xy + %K2(y2 - x2 - 222) -%6x - eyz

v = %K1(x2 - y2 - 222) - 3211(ny - )2” by + 6x2 (6.1)

w = Klyz + szz + 62 + f(x,y, 9),

121
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where I<1 and I<2 are curvatures, 69 unit angle of twist

and 6 unit extension. These more general displacements

represent the sum of the displacements for each loading

considered separately.

Again, the elastic analogy assumption on the

stresses would be made and an incompressible material

assumed. The development should parallel that of Chap-

ter II, but, in the solution, the manner in which the

curvatures and the extension depend on the unit angle of

twist would have to be specified. Numerical solutions

could be obtained with algorithms similar to those used in

this study. Since under the more general loading the

effect of the unit angle of twist on the normal stress is

greater, extreme care should be maintained in incrementing

the unit angle of twist variable.

6.1.2 General Boundaries

From a more practical viewpoint, it may be reason-

able to consider other geometric cross sections. The

present analysis treated only the square and the circular

bars. In each of these cases, the algorithms exhibit

reasonable convergence rates. For these examples, the

normal derivatives on the boundary are parallel to the

grid lines, and neither the warping function nor the

stress function offer a computational advantage. In the

case of an irregular boundary, however, the stress-



123

function approach might give an advantage, since the value

of the stress function is prescribed on the boundary while

the normal derivative is prescribed for the warping

function.

In the extension to a more general boundary, the

major problem would be computer programming. The program

must consider the different possibilities at each boundary

point. In addition, an irregular geometric cross section

may tend to cause some difficulty in the convergence of

the algorithms. The convergence properties of the Gauss-

Seidel method applied to the linear Poisson equation are

known to depend on the boundary geometry [32].

6.1.3 Other Theories

A number of attempts have been made to determine

mathematical stress-strain relations. Many of these are

summarized by Osgood [21]. Some of these theories may be

preferable to the ones used in this study. Since the pre-

sent formulation considers the constitutive relation as a

separate equation, the algorithm could be adapted to these

other theories, and the results of different theories

could be compared.

Perhaps one of the more interesting theories would

be one due to Prager [12], assuming the tensile stress-

strain curve as

o = Y tanh [23) . (6.2)
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Prager [26] and Hill [12] give the counterpart generalized

flow theory for this stress-strain curve. From a physical

standpoint, one of the objections to this relation is the

difficulty in defining the parameters [21]. However, in

the case where the material has a well-defined yield point

and the actual stress-strain curve approaches the elastic-

perfectly plastic situation, this formulation provides a

good fit to the uniaxial physical data [12]. Thus, using

Prager's relation for the whole body provides a numerical

method of determining displacements when the material

behavior approaches that of an ideal elastic-perfectly

plastic medium.

Hill [12] gives an equation for determining the

warping in the case of pure torsion of a prismatic bar

with an elastic-perfectly plastic material. Hodge [14]

has applied this equation to some special cross sections.

In Hodge's formulation, the deformations must be such that

the elastic strains may be neglected. This restriction

would not be necessary in the numerical calculations with

a smooth stress-strain curve such as Prager's hyperbolic

tangent law.

The Ramberg-Osgood curve also approaches the

elastic-perfectly plastic case when n approaches infinity.

But, in the plastic region, the perfectly-plastic stress

is approached from above, whereas with Prager's method it

is approached from below. Consequently, in this special
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case, it would seem that Prager's relation offers some

advantage over that of Ramberg and Osgood for approxi-

mating an elastic—perfectly plastic curve by a smooth

curve.

6.1.4 Work-Hardening Equations Not

Related to Combined Bending and Torsion

The iteration procedure developed in this study

permits the material non-linearity to be confined to a

single equation. This non-linearity, resulting from the

constitutive relation, is treated by the Newton-Raphson

iterative procedure. The governing equation, i.e., the

equilibrium equation with the warping function or the com-

patibility equation with the stress function, is still

treated numerically in a manner analogous to the corres-

ponding linear elasticity problem.

It may be possible to develop iterative procedures

similar to those used in this study for other work-

hardening problems not related to combined bending and

torsion. For example, the governing work—hardening equa-

tions for an Airy's stress function in plane stress or

plane strain problems may be developed. This development

would assume the entire body to be governed by work-

hardening plasticity equations so that no undetermined

elastic-plastic boundary is involved. The governing equa-

tion would be a fourth-order partial differential equation

which would be treated in a manner similar to the linear
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biharmonic equation. The non—linear material properties

would be contained in an equation similar to the polyno-

mial equation considered in this study. The computational

algorithm should somewhat parallel that employed with the

stress-function approach of this investigation.

As in elasticity, the Airy stress-function approach

would be suitable only for problems with traction boundary

conditions. For displacement boundary conditions or mixed

problems, it might be possible to develop a similar proce-

dure for equations analogous to the Navier equations of

elasticity. Another possible class of problems are those

of axial symmetry including, but not limited to, torsion

of bars of non-uniform cross section. Also, no considera-

tion has yet been given to combined torsion and flexure

with transverse loads, introducing dependence on the

z—coordinate.

6.1.5 Experimental Verification

The validity of any engineering analysis must be

measured by the degree to which it actually predicts the

behavior of physical phenomena. To determine if this

method produces reasonable results, one would have to com-

pare these analytical results to experimental measurements.

Since the deformation and flow theories produce different

results under certain loading conditions, there is some

question as to the physical validity of the methods. It
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should be possible to develop experiments which would

provide greater insight into the application of the

theories.

It would be quite difficult to subject a prismatic

bar simultaneously to arbitrary pure bending and torsion

where the rates of curvature and rates of twist could be

independently controlled. Hill and Siebel [13] have

reported on an experiment with a steel circular bar where

the ratio of moment to torque was held constant.

The problem of combined torsion and tension should

exhibit similar differences between the theories. It

should be feasible to design an experiment where the rate

of extension and rate of twist are independently controlled

to determine the relationship between tension and torsion.

This type of experiment may be a possible way of checking

the physical validity of the numerical procedures.

Ramberg and Osgood [21] suggest that their formu-

lation will provide a reasonable fit to a variety of

materials. For the uniaxial stress conditions, the three

parameters are easily obtained [21].

In order to obtain a valid mathematical stress—

strain relation for a given material, it may be necessary

to consider other theories such as those suggested in

6.2.3. If a reasonable fit to a given material is made,

then the above experiment should provide additional infor-

mation concerning the range of application for both the

deformation and the flow theories.
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6.2 Mathematical Investigations

6.2.1 Bound on the Theta Increment

Experience indicates that the algebraic system for

both the flow and deformation theories converges at

reasonable rates if the increment in the angle (9 is

small. Thus, at any given level of G) , the convergence

is possible only if the initial solution is near the

actual solution. It appears that the governing factor on

the "nearness" of the initial solution is the Newton-

Raphson iteration on the (2n+1)th degree polynomial. That

is, if the initially estimated roots provide a good

approximation, then the system tends to converge.

The object of an additional investigation might be

to determine a bound on the increment AC). Previous

results show that this bound depends on the Ramberg-Osgood

exponent n and on the curvature-twist (or curvature rate-

twist rate) ratio p.

By experimenting with different increments, a bound

depending on n and u could be established experimentally.

Mathematically, the term Sm (for example, see Equation
+1

3.21) must be bounded for a given increment. With this

bound, a limit may be established on the degree of change

in the root<i>(i,j) at an arbitrary point (i,j).
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6.2.2 Effect of Newton-

Raphson Iteration

The effect of the Newton-Raphson iteration should

be further studied. It appears that an equation of the

type.

A(u)uxx + B(u)uxy + C(u)uyy + D(u)ux + E(u)uY + F(u) = 0,

(6.3)

solved by iteration will tend to converge if the estimates

of the non-linear coefficients A(um), B(um), C(um), D(um),

E(um), and F(um) approach their respective limits at a

faster rate than um approaches u. This seems to indicate

that, if values of um approximate u in a relatively coarse

manner, some technique must be utilized by which the

coefficients are predicted quite accurately. If such

techniques can be developed, it seems reasonable to expect

the system to converge.

In a certain sense, the Newton-Raphson iteration

takes rather poor values of tm(i,j) and predicts quite

accurate values for Em(i,j). Thus, this iteration scheme

acts as a predictor in determining more accurate esti-

mates. It may be possible that other predicting tech-

niques may provide better convergence rates.

6.2.3 General Convergence

The question of general convergence must be con-

sidered from two standpoints: (1) will the discrete
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system converge to the continuous system as the lattice

parameter approaches zero, and (2) will the iterative

method for the algebraic system converge. In non-linear

problems, very little theory is available in regard to

either of these two problems.

Recently, Parter and Greenspan [22], [23] con-

sidered these convergence problems with a mildly non-

linear second-order partial differential equation. They

considered the Dirichlet problem, on the union of R and S,

with

Vzu = f(u) on R

(6.4)

u = g(x,y) on S,

where R is the interior of the closed path S. In addition,

the function f(u) must be such that both its first and

second derivatives exist and are always greater than or

equal to zero.

Parter [22] considered the convergence of the dis-

crete system to the continuous system. Both authors [23]

treat the convergence of a number of different algorithms

for the solution of the discrete system. In each analy-

sis, the most important restriction appears to be the

bounds on the function f(u) and its first and second

derivatives.

It may be that the equation considered in this

study,



131

0216 + E(tx,ty) = o, (6.5)

also possesses similar non-linear properties. The problem

is to establish certain bounds on the function E(tx’ty)‘

If this is accomplished, then perhaps a procedure analo-

gous to that of Parter and Greenspan could aid in the

establishment of a general convergence requirement of the

system. In addition, with the warping-function formula-

tions, the analysis requires the consideration of the

Neumann boundary conditions.



APPENDIX I

SOLUTION TO FINITE-DIFFERENCE EQUATIONS BY

THE GAUSS-SEIDEL OVER-RELAXATION METHOD

This method, also known as Liebmann's method or the

method of successive displacements, is considered in most

books treating iterative methods for solving linear alge-

braic equations. Additional details may be obtained by

examining references such as Fox [5], Forsythe and Wasow

[4], Varga [33], etc.

To illustrate the procedure, the method will be

applied to the solution of the discrete representation of

the Poisson equation, where the equation is defined on a

square region R. However, the method may be applied to

other partial differential equations.

The Poisson equation is

uxx + uyy = F(x,y) (I-l)

where either u or the normal derivative is specified on

the boundary.

An N x N set of grid lines with lattice dimension h

is superimposed on the region R. Equation (I-l) is repre—

sented by its discrete finite-difference analogue. Thus,

at all mesh points

132
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u(i+l,j) + u(i,j+l) + u(i-l,j)

+ u(i,j-l) — 4u(i,j) = h2F(i,j), (1-2)

where on the boundary either u(i,j) or the normal deriva—

tives are known.

If u(i,j) is known at each boundary point, then the

number of points where u(i,j) is unknown is (N — l)2.

However, if the normal derivatives are specified, then

expressing (I-2) along with the derivative approximation

permits the determination of u(i,j) on the boundary as a

function of the interior points. In this latter case, the

system can be solved within an arbitrary constant. In the

more general case, where u(i,j) is specified at some

boundary points and the normal derivative is specified at

the other points, the rank of the system will be equal to

the number of unknowns.

To begin the Gauss-Seidel over-relaxation proce-

dure, an initial solution uo(i,j) is assumed. These

values are recalculated during successive sweeps through

the mesh. A particular cyclic order for replacing u(i,j)

in any one sweep is specified.

If um(i,j) represents the values for the mth sweep,

then the values um+l(i,j) for the (m+1)th sweep are calcu-

lated by the formula,

um+1(i,j) = um(i,j) + QJ[fim l(i,j) - um(i,j)], (1-3)
+
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where (U is a relaxation factor and fim+l(i,j) is the

unextrapolated value given by Equation (I-2). Thus,

fim+l(i,j) depends on its nearest neighbors and on the

cyclic order. If the cyclic order is such that for each

i, all values of j are computed before i is increased,

then Gm+l(i,j) is given by

fim+l(i,j) = [um(i+l,j) + um(i,j+l) + um+l(i-l,j)

+ um+l(i,j-1) - h2F(i,j)]/4. (1-4)

The relaxation factor (D may take on values

If (0 <= 1 the system is under-relaxed and if a) =6 l the

system is over-relaxed. For linear systems, various

theorems are available for estimating the optimum a) [4],

[32].

The iterations, or sweeps, are continued until some

convergence criterion is satisfied. A common criterion is

Max um+l(i’j) - um(i,j) <: 8, (I-6)

where the maximum is taken over all mesh points.

From the above, it appears that convergence depends

on the initial uo(i,j), the relaxation factor a), and the

specified cyclic order. However, the general question of

convergence depends on the properties of the system of
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equations specified by (I-2). The system represented in

matrix form is

Au = B. (I-7)

The matrix A may be expressed as the sum

A=T-T—T (I-8)
D L U’

where TD is the diagonal of A such that ‘TD‘-l # 0, TL and

TU are respectively strictly lower and upper triangular

matrices, whose entries are the negatives of the entries

of A below and above the main diagonal. A necessary and

sufficient condition for convergence is that all the roots

of the polynomial,

P( A) = [( >( + (11- 1)1‘D - an )er + TU) = 0, (I-9)

have modulus less than one [33].4

The method may also be applied to the general

quasi—linear second-order equation,

Au + Bu + Cu + DuX + Euy + F 0, (I-10)
XX XY yy

where A, B, C, D, E, and F are functions of u, ux, uy, x,

and y. In this latter example, the (m+1)th sweep consi-

ders the equation

Amuxx + Bmuxy + Cmuyy + Dmux + Emuy + Fm = 0, (I-ll)

 

4Condition follows from Varga [33], Section 3.4,

page 75. Presented in this form by C. S. Duris, class

notes, Math 852, Winter Term, 1965.
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where the subscript m denotes that these coefficients are

evaluated at each iteration as functions of um, x, and y.

The above method is applied with this additional consi-

deration that as m —>-OO , the solution to (I-11) con-

verges to the solution to (I—lO). At the present time,

general theorems giving the conditions for convergence are

not available.



APPENDIX II

NEWTON-RAPHSON ITERATIVE METHOD FOR

SOLVING A NON-LINEAR EQUATION

The general problem is to find the solution or

zeros of the equation

In general f(x) is a non-linear function, and the problem

reduces to that of finding the zeros of (II-l) through

some iterative sequence. The Newton-Raphson iterative

method is a procedure for determining a single root (5 if

an initial estimate of the root is near enough to g'.

The technique may be applied to either real or

complex roots. However, in the following the interest is

only in determining a single real root. In this case, the

method corresponds to using the tangent to the curve f(x),

at the last determined point[xi,f(xi)] to evaluate a new

approximation x.+
i l'

the new approximation to xi+

From Figure 16, it is observed that

1’ according to the tangent

approximation, is

x1+1 = x1 " TITS??? (II'Z)
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f(x)“

 
Figure 16. Estimation of new

approximation by tangent

A more detailed discussion of the properties of

(II-2) and the iterative method may be obtained from Todd

[32] and Hildebrand [10]. However, the convergence is

dependent on the error of the initial approximation.

Figure 16 illustrates that if this approximation is near

enough to the root €:, then the method will always

converge.

If the method converges to fir, and k is taken

sufficiently large, then the error at the k + 1 iteration

is [10]

~ 1.5.45) 2
(5 - xk+l) ~ - .2 (f- xk) . (II-3)

Thus, the error in xk+1 is proportional to the square of

the error in xk. Iterative methods having this property

are called second-order processes and should provide

reasonable convergence rates.



APPENDIX III

BASIC FLOW CHART PATTERNS

The basic flow pattern for each program is shown

in the following flow charts. The details of the calcu-

lations may be obtained by examining the equations listed

on each flow chart. Additional information on the

specific equation of each program is contained in the

program listings of Appendix IV.
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APPENDIX IV

FORTRAN PROGRAMS

The listings for all FORTRAN programs are provided

in this appendix. The purpose of each program and the

page listings are as follows. WARPI (pages 148-50) solves

the Piechnik equation for a unit square section. WARPO

(pages 151-54) solves the warping-function deformation-

theory equations for a unit square cross section. STRO

(pages 155-58) solves the stress-function deformation-

theory equations for a unit square cross section. WAPPLV

(pages 159-63) solves the warping-function deformation-

theory equations for a unit square cross section. STPLDT

(pages 164-67) solves the stress-function deformation-

theory equations for a unit square cross section. POLARR

(pages 168—70) solves the Piechnik equation for a unit

radial cross section. POLARO (pages 171-72) solves the

warping-function deformation-theory equation for a unit

radial cross section.

All programs follow the coordinate representation

of Piechnik [24] while the theory follows Hill [12].

Program variable names generally agree with those of the

theory. Major exceptions are T for ND, LAMDA for<i>, and

TAU for the shear stresses.
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305 X=Al

301 CONTINUE

IFCX‘E15200051‘51

51 DO 53 I’lON 5 DO 53 JEION

TZCIQJ) 3 T‘IOJ’

TI(IQJ) 3 TICIQJ) + BETA*(T(I¢J)-T1(IQJ))

53 T(IQJ) = TI(10J)

IT 3 IT + I S IF(IT-ITER)694OOO4OO

200 PRINT ZOIQITOBETAQPHIO((T(loJ)ol310N)oJ'10N)

201 FORMAT (1H19* T‘IQJ) VALUES FOR ITERATION * 9 I100//* RELAXATION

SFACTOR *9F10050* PHI VALUE *9FlOo5o//(7El708 ))

GO TO 112

400 PRINT 401OITOBETAOPHI

401 FORMAT(1H19* FAILED TO CONVERGE AFTER * 01100*ITERATIONS*

S ///* BETA EQUAL*0FIO.5o* PHI EQUAL*¢F10¢5)

GO TO 105

112 DC 199 1=loN $ 00 199 J=10N

CHI 3 (I*1)*H $ ETA 3 (J-l)*H

IFCI~I)117QIO79117

107 IFKJ-I)IO991990109

CASE I=1 J81

110 5X 8 TCI+10J)/H

SY : T(IoJ+l)/H $ GO TO 151

109 IF(J-N)11191139111

CASE I31 J NOT 8 1 OR N

111 SK 3 T(I+1cJ}/H

SY 8 (T(IQJ+1)-T(IoJ-l))/(2*H) $ GO TO 151

CASE 1:1 J=N

113 SX 8 T(I+loJ)/H

SY 8 CH!

GO TO 151

117 IF(I-N)12101190121

119 IF(J~N)12591230125

CASE I 8N J=N

123 SX = - ETA

SY = CHI

60 T0 151

125 IFCJ-l)13591370135

CASE I=N J81

I37 Sx 8 ~ ETA

SY 3 T(19J+1’/H

GO TO 151

CASE I=N J NOT 8 1 OR N

135 5X 8 - ETA

SY 8 ( TC!0J+1)‘ T(IoJ-l))/(2*H)

GO TO 151

121 IF‘J‘I)12901279129

CASE I NOT 3 1 OR N J31

127 5X 3 ( T(I+10J)“ T‘I-IQJ))/(2*H)

SY 3 T(19J+l)/H

GO TO 151

129 IF(J-N)I3lol33ol3l

CASE I NOT 3 1 09 N JaN



133

131

151

199

411

413

415

900

911

901

903 FORMAT¢1HOQ* TORQUE EGUALS *0F10080* SENDING

5 oFlOoB)

150

SX = ( T(1+19J)~ T(1‘1od))/(2*H)

SY = CHI

60 TO 151

CASE NOT 8 1 0R N J NOT = 1 OR NI

5X = ( T(1+1QJ)* T(1*19J11/(2*H1

SY 8 ( T(19J+1)- T(19J-1))/(2*H1

LAMDA 8 SORTF1 2.25*PH1*ETA**2 + 0075*($Y**2-2*CHJ*SY+CH1**2 +

s SX**2 + 2*ETA*SX + ETA**21)

SIGMAZCIQJ) = 105*SQRTF(PH11*ETA/LAMDA

TAUXZ‘IOJ) I3(005*(SX+ETA)/LAMDA1*SGRTF‘3.1

TAUYZC19J) 8(005*(SY*CH11/LAMDA)*SORTF(301

CONTINUE

PRINT 4110((SIGMAZ(10J)OI=1QN10J=10N1

FORMAT(1H09* SIGMA Z STRESSES§//(7E1708))

PRINT 4139((TAUXZC10J)91=19N)0J310N)

FORMAT¢1H0¢* TAU XZ STRESSES* // (7E170811

PRINT 4159((TAUYZ‘10J101=ION19J810N1

FORMATC1H09* TAU Y2 STRESSES* //(7E17081)

DO 911 1:19N

DO 911 JSIQN

CH1 3 (1-1)*H S ETA 3 (J-1)*H

T1(19J1 = ETA*SIGMAZ(10J1

TCIOJ) 8 ETA*TAUXZ(10J1 - CH1*TAUYZ(10J)

TORO 3 0.0 5 BEMO I 000

DO 901 1=ZQN12

DO 901 J=20N02

T090 = TORG + T(I-19J‘11+T(1+19J-1)+T(1-1vJ+1) + 4o*(T(IcJ-1)+

S T(1+19J)+T(1QJ+11+T(1‘19J11 + 16¢*T(I¢J)

BEMO = BEMO + T1(I‘10J-1)+T1(1+19J-1)+T1(1+1oJ+1)+T1(1-10J+1)

$ + 4.*(T1(19J‘1)+T1(1+1cJ1+T1(IoJ+1)+T1(1~1.J)) + 16o*T1(19J)

HSQ = (H**21/9o

TOPQ = 12*TORG*HSQ

BEMO = 16.*HSQ*BEMO

PRINT 903vTORQoBEMO

105 IFCKSTOP12150 1 9215

215 STOP 5 END

+T(1+19J+1)

MOMENT EGUALS *
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51

400

401

404

405

317

407

153

A1 = ABSFIABSFI T(IoJ))‘ABSF(T1(IoJ)1)

1F(A1‘X161963063

$9FlOo5o/(7E17o811

PRINT 4059 ((LAMDAIIQJ)01=10N19J=19N1

FORMAT(1HO¢* LAMDA VALUES* /(7E1798))

DO 317 1=10N

DO 317 J=loN

J2(1¢J) = J2I19J) / LAMDA(19J)**2

PRINT 4079 ((J2(10J101=19N19J=19N1

FORMATI1H09* J2 VALUES * /(7El7.8))

COMPUTE NORMALIZED STRESSES

200

207

209

211

213

217

219

DC 299 I=19N

DO 299 J=IoN

X = (1‘11*H S Y = (J-1)*H

IFII-112171207o217

IE1J¢112O992999209

IFIJ-N121102139211

CASE 1=1 J NOT = 1 09 N

SX = TII+1¢J)/H

SY : (T(19J+1)-T(1cJ-111/(2*H)

GO TO 251

CASE 181 J=N

SX = T(1+19J)/H

SY = X

GO TO 251

IFII-N)22102190221

[F(J-N122592239225

CASE I=N J=N

223 SX = -Y

SY 2 X

60 TO 251

225 IFIJ-1123592379235

. CASE 1=N J=1

237 SX = -Y

SY = T‘IOJ+I)/H

GO TO 251

CASE 1=N J NOT = 1 OR N

235 SX = ‘Y

221

227

SY = (TIIqJ+l)-T(IoJ-1)1/(2*H)

GO TO 251

1F(J-1)229¢2279229

CASE 1 NOT 8 1 OR N J:1

sx s'(T(I+1.J)-Tc!-1.J))/(2*H)

NE EQUAL *

BETA EQUAL

X = A1

CONTINUE

IFIX-E11400016016

DO 51 I=loN

DO 51 J=19N

T1(19J) = TIIOJ)

IT = IT + 1 3 GO TO 112

PRINT 401olToNEoTHETAoPHIoBETAo((T(19J191310N10J=19N1

FORMATIIH09* T(IOJ) VALUES FOR ITERATION*QIIOO*

$oIIOo/* THETA EQUAL *9F10059* PHI EQUAL *9F10.59* *
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SY a T(1oJ+1)/H

GO TO 251

229 IEIJ‘N123102330231

CASE I NOT = 1 on N JBN

233 SX = (T(1+19J)*T(I-19J))/(2*H)

SY a X

GO TO 251

CASE I NOT = 1 OR N J NOT a 1 OR N

231 SX = (T(I+1oJ)-T(I-19J))/(2*H)

SY = (TIIoJ+l)-T(IoJ~1)1/(2*H)

251 SIGMAZ(I.J) = SORTFI3.*PHI)*THETA*Y/LAMDA(IoJ)

TAUXZIIoJ) = THETA*(SX+Y)/LAMDA(19J)

TAUYZ(I¢J) = THETA*(SY-X)/LAMDA(I¢J)

299 CONTINUE

4001 PRINT 4119((SIGMAZ(I¢J)oI=ION19J819N1

411 FORMATIIHO.* SIGMA Z STRESSES * /(7E17.8))

PRINT 4130((TAUXZI19J191=19N19J819N1

413 FORMAT11H09* TAU XZ STRESSES * /(7E1708)1

PRINT 4159((TAUYZI19J1¢I=10N19J819N1

415 FORMATI1H00* TAU YZ STRESSES */(7E1708))

4002 DO 911 1:10N

DO 911 J=10N

X = (1‘11*H S Y = (J-1)*H

BEN(IOJ1 SIGMAZIIOJ1*Y

911 TORIIOJI : Y*TAUXZ(IQJ) - X*TAUYZ(I.J)

TOPO z 0.0 S BEMO : 0.0

900 DO 901 1:29N92

DO 901 J=29N92

TORO = TORO + TORII-IOJ‘I1+TORI1+19J‘11+TOR(1‘10J+11+

S TORCI+19J+11 + 40*(TOR(1+19J1+TORI10J+11+TOR(1-10J1

$ +TORIIOJ-I)1 + 160*TOR(IQJ1

901 BEMO = BEMO + BEN(1“10J-11+BENII+IOJ-11+BEN(1”10J+11

5 +BENII+19J+11 + 40*(BEN(1+1QJ1+BEN(IOJ+1I+BEN(I‘1QJ1

5 + BENIIQJ‘I)’ + 160*BENIICJ1

H50 3 H**2 /9o

T090 3 120*TORQ*HSQ

BEMO = 160*HSQ*BEMO

PRINT 9039TORQQBEMO

903 FORMATIIHOQ* TORQUE EOUALS *9F10050* SENDING MO‘ENT EOUALS*9

$ F1008)

500 THETA = THETA + DTHETA

IF‘THETA‘THETAMISOIOSOI9411

501 IT 2 1 5 GO TO 112

411 IFIKSTOP14I3CIQ413

413 STOP 5 END
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51 TIIIOJ) 3 TIIOJI

IT = IT + l 5 GO To 112

400 FRINT ‘01QITONEQTHETAOPHIOBETAQI(TIIOJ’QI:ICN)OJ319N’

401 FORMATIIH00* TIIQJI VALUES FOR ITERATION*QIIOO* NE EQUAE *

$QIIOQ/* THETA EQUAL *9F10059* PHI EQUAL *QFIOOSO * BETA EQUALS*

SQFIOOSO/(7El708I)

IFIKODEIZOOQ4049200

404 pRINT 4059 (ILAMDAIIQJ)OI=IONIQJ=19NI

405 FORMATIIH09* LAMDA VALUES* /(7El708))

DO 317 I=loN $ 00317 J=19N

317 JZIIOJ’ = JZIIOJ) / LAMDAIIOJ)**2

pRINT 407v (IJZIIOJIQI=19N)CJ=10N)

407 FORMATIIH00* J2 VALUES * /(7E1708))

COMPUTE NORMALIZED STRESSES

200 00 299 I=loN

DO 299 J=10N

X = (I-I)*H S Y = (J-l)*H

IFII-II21702070217

207 IFIJ‘1320992999209

209 IFIJ-NI2IIQ2130211

CASE 1:1 J NOT = 1 on N

211 SX = 0.0

SY 8 ITIIQJ+I)-T(I9J‘I)’/(2*HI

GO TO 251

CASE 1‘] J=N

213 5X 3 000

SY 8 (3*TIIOJ) “4*TIIQJ“I) +TIIOJ-ZII/(2*H)

GO To 251

217 IFII-NI22102190221

219 IFIJ‘NI22592230225

CASE IZN J=N

223 SX = 0.0 S SY 3 000

GO TO 251

225 IF(J*1)23592370235

CASE I=N J31

237 SX 8 (3*TII9J) ‘4*T(I‘10J) + TII‘ZQJII/I2*H)

SY 3 000

GO TO 251

CASE I=N J NOT = I 09 N

235 SX = (3*TIIQJ) -4*TII‘IQJ)+T(I*20J))/I2*H)

SY = 000

GO TO 251

221 IFIJ-I)22992279229

CASE I NOT = 1 OR N J=l

227 SX 2 ITII+IQJI“T(I*IQJ)I/(2*H)

SY 9 000

GO TO 251

229 IFIJ‘N323102330231

CASE I NOT = 1 09 N J=N

233 SX = 060

SY = (3*TIIOJ) “4*TIIOJ“1)+T(IQJ‘2))/I2*H)

GO To 251
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CASE 1 NOT 8 1 OR N J NOT = 1 OR N

231 SX (T(I+19J)-T(1~19J))/(2*HI

SY = (TII.J+1)-T(I¢J‘l))/I2*HI

251 SIGMAZ(19J) = SQRTFI3o*PH1)*THETA*Y/LAMDAIIIJI

TAUXZI1QJ) = ~SY

TAUYZIIOJ) = SX

299 CONTINUE

IFIKODEISOOOvSIIOoSOOO

5110 DRINT SIIQIISIGMAZIIOJIOI=I0N19J=10N1

511 F09MATI1HO.* SIGMA Z STRESSES * /(7El7o8))

PRINT 4139‘ITAUXZIIOJ)91:19N19J819N)

413 FORMAT<1H0.* TAU xz srnessss * /(7517.e))

PRINT 415.(¢TAUY2(1.J>.I=1.N).J-1.N)

415 FORMATIIHOo* TAU Y2 57955525 ”/l7617.83I

5000 DO 911 1:10N

00 911 J=19N

X = (1‘1)*H $ Y = (J-1)*H

SIGMAZIIQJ) = Y*SIGMAZ(1¢J)

911 TAUXZIIQJ) = Y*TAUXZ(19J) ‘ X*TAUYZ(19J)

T090 = 0.0 $ BEMO 3 0.0

T0902 3 0 o 0

900 DC 901 1:29N92

DO 901 J=20N02

T0902 3 T0902 + TII‘IOJ‘11+TI1-10J+1)+T(1+19J“1’+T(1+19J+1I

5 + 4*IT(1+1¢J)+T(10J+1)+T(1~19J)+T(IoJ-1I) + 16*TI19JI

T090 = T090 + TAUXZII-l9J-1)+TAUXZ(1+10J~1)+TAUXZ(1‘19J+1)+

S TAUXZII+19J+1I + 40*(TAUXZII+10JI+TAUXZI19J+1)+TAUX2I1‘19JI

S +TAUXZI10J-111 + 160*TAUXZIIQJ1

901 BEMO = BEMO + SIGMAZII‘IQJ‘I)+SIGMAZ(1+19J*11+SIGMAZII~19J+11

$ +SIGMAZI1+19J+II + 40*(SIGMAZ(I+10J)+SIGMAZ(10J+1I+SIGMAZ(1‘19J)

5 + SIGMAZIIoJ-1)) + 160*SIGMAZIIQJ)

HSQ = H**2 /90

T0902 = 24.*T0902*HSQ

T090 = 120*T090*HSQ

BEMO = 16.*HSQ*BEMO

P9INT 9039TO9QQBEM09T0902

903 FO9MATI1H09* T09QUE EQUALS *0F10080* SENDING MOMENT EQUALS*O

S F10.89* T0902 EQUALS * oFlOoB)

500 THETA 8 THETA + DTHETA

IFITHETA-THETAMISOIQSOI0411

501 IT = 1 $ GO TO 112

411 IFIKSTOP)413010413

413 STOP $ END
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PROGRAM WARPLV

TYRE REAL LAMDAQJZQLAMDAXQLAMDAYQJelOLAMDAI

DIMENSION T(25925)9LAMDA(25925)9T1(25925)9J2I25¢25)9LAMDA1(25925)

$ QSIGMAZIZSQZS)oTAUXZI25025)9TAUYZI25925)oTORIZSQZSI

$ QJEIIZSQZSIQTAUXZI(ZSQESIOTAUYZI(25.25)OSIGMA21(25925)OBENIESQZS)

1 READ 39PHIQ BETAQDTHETAOTHETAMoNoNEOITEROKPSQKSTOP

3 FORMATI4F10059515 I

READ 49 PHIloTHETAloDTHETAIQKPSI

4 FORMAT (3F1005915)

M = N‘I S H = 0.5/M $ IT

NE2 = 2*NE $ NE2N1= NE2 -

E2 = IoE-4 S KODE = 0

THETA = DTHETA $ 9H1 = RH1**2 $ PHII = PH11**2

DO 5 1:19N

DO 5 J=loN

TIIQJ) = 000 $ TIIIOJ) = 000 $ TAUY21(I9J) = 0.0

SIGMA21(IQJ) = 000 S LAMDA1(IOJ) 3 000

SIGMAZIIQJ) = 0.0 $ TAUXZIIQJ) 8 000 $ TAUYZI+OJ) ‘ 0.0

JZIIQJ) 3 0.0 5 JZIIIOJ) = 0.0 $ TAUXZIIIOJ) = 000

5 LAMDAIIQJ) = 100

PRINT 800NEQPHIODTHETA

80 FORMATIIH19* WARPING FUNCTION FLOW THEORY CALCULATIONS FOR NE E0

$UAL *QIIOQ * PHI E0UAL*9F10059* DTHETA EQUAL *9F1005I

112 D0 199 1=ION

DO 199 J=19N

X = (1‘1)*H $ Y = (J-1)*H

IFI1“1)11701079117

107 IFIJ-I)10901990109

109 IFIJ-N)11191139111

CASE I=l J NOT = 1 09 N

111 SX = T(I+loJ)/H

SY = (T(19J+11-T(IOJ*1)I/(2*H)

GO TO 169

: CASE I=l J=N

113 SX = TII+19J)/H

SY X*DTHETA

GO TO 169

117 IF(I~N)12101199121

119 IF(J*N)12591239125

CASE I=N J=N

123 SX = ‘DTHETA*Y

SY = DTHETA*X

DXTXZ = (30*TAUXZIIIQJ) '4.*TAUXZI(I‘19J) + TAUXZIII-29JII/I2*H)

DYTYZ = (30*TAUYZIIIOJ) - 40*TAUYZIIIQJ’1) + TAUYZIIIOJ‘ZII/I2*HI

LAMDAX = (30*LAMDAIIcJ1-40*LAMDA(1‘19J)+LAMDA(I*29JII/I2*H)

LAMDAY = (30*LAMDA(IQJ)“40*LAMDAIIoJ-I)+LAMDA(IoJ-2))/(2*H)

E = (DXTXZ + DYTYZ ‘ (LAMDAX*I(SX + DTHETA*Y) + TAUXZIIIQJII

S + LAMDAY*((SY - DTHETA*X) + TAUYZIIIQJ))1/LAMDA(10J))*IH**2)

TBAR = (20*(TII-I0J)-H*DTHETA*Y)+20*IT(IQJ‘I)+H*DTHETA*XI+E)/4o

TIIQJ) = TIIQJI + BETA*(TBAR * TIIQJ))

GO TO 169

125 IFIJHIII3591379135

C CASE I=N J=1

= 1 S KP = 1 S E1 8 1.E~e

1 $ NENI 2 NE - 1

I
I

II

(
I



‘

160

137 SX 3 ‘Y*DTHETA

SY 8 TIIQJ+1I/H

GO TO 169

CASE I=N J NOT = 1 09 N

135 SX = ‘DTHETA*Y

SY = ITIIOJ+1) ‘ TIIoJ-III/(2*H)

DXTXZ 8 (30*TAUXZIIIQJ) -4o*TAUXZIII’19J) + TAUXZIII-Z.J))/I2*HI

DYTYZ 3 (TAUYZIIIQJ+1I ‘ TAUYZIII.J‘1))/(2*H)

LAMDAX = (30*LAMDAIIOJ)-40*LAMDAII-I9J)+LAMDAII’29JII/(2*HI

LAMDAY = (LAMDAII9J+1) ‘ LAMDAIIoJ-III/(2*H)

E = (DXTXZ + DYTYZ * (LAMDAX*(ISX + DTHETA*Y) + TAUXZIIIOJII

S + LAMDAY*((SY - DTHETA*X) + TAUYZI(I¢JI))/LAMDA(I¢J))*IH**2)

TBAR 8 (20*(TII-IQJ)-H*DTHETA*YI+T(IoJ+1)+T(IoJ-1)+E)/4o

TIIoJ) 3 T(1vJ) + BETA*(TBAR - TIIOJII

GO TO 169

121 IF(J*1)12901279129

CASE I NOT = 1 09 N J=1

127 5X 2 ( T(1+1¢J)- T(I-1oJ))/(2*H)

SY = T(19J+l)/H

GO TO 169

129 IF(J*N)13101330131

CASE I NOT = 1 OR N J=N

133 SX = (TII+1¢J)-T(I-19J))/(2*HI

SY = DTHETA*X

DXTXZ = ITAUXZIII+19JI ‘ TAUXZIII-loJII/(2*H)

DYTYZ = (3.*TAUYZI(I¢J) - 4o*TAUYZIIIoJ‘1) + TAUYZIIIOJ“2)I/I2*H)

LAMDAX = (LAMDA(I+19J) - LAMDAII-IOJ1)/(2*H)

LAMDAY = (30*LAMDAIIOJI-40*LAMDA(IQJ‘II+LAMDAIIOJ‘2))/(2*HI

E = (DXTXZ + DYTYZ - (LAMDAX*((SX + DTHETA*Y) + TAUXZIIIQJII

$ + LAMDAY*I(SY - DTHETA*X) + TAUYZIIIQJIII/LAMDAIIQJ))*(H**2)

TBAR = (T(I+1oJ)+T(1*1.J)+2-*(T(IoJ-1I+H*DTHETA*XI+E)/4o

TIIqJ) = T(IoJ) + BETA*(TBAR - TIIQJ))

GO TO 169

CASE 1 NOT = 1 OR N J NOT = 1 OR N

131 SX = (TII+1.J)~T(I-1¢J))/(2*H)

SY = (T(19J+1) ‘ TIIoJ~lII/(2*HI

DXTXZ = (TAUXZI(I+19J) - TAUXZIII-IQJ,)/I2*H)

DYTYZ = (TAUYZI(I¢J+1) - TAUYZIIIvJ‘1))/(2*H)

LAMDAX = (LAMDA(I+10J) - LAMDAII-IQJII/(2*H)

LAMDAY = (LAMDA(IqJ+l) - LAMDAIIoJ-III/(2*H)

E = (DXTXZ + DYTYZ - (LAMDAX*((SX + DTHETA*Y) + TAUX21(IOJII

$ + LAMDAY*((SY - DTHETA*X) + TAUYZIIIQJIII/LAMDAIIoJ))*(H**2)

TBAR (T(I+19J) + TIIQJ+1I + TII‘IOJ) + TIIOJ“1) + EI/4o

TIIQJ) TIIQJ) + BETA*(TBA9 “ TIIOJII

169 J2I10J) = (DTHETA*SORTF(30*RHI)*Y + SIGMAZIIIQJ))**2 + (SX+DTHETA*

S Y + TAUXZIIIOJII**2 + (SY‘DTHETA*X + TAUYZIIIOJ))**2

170 IFINENIII7391719173

171 LAMDAIIQJ) = LAMDA(19J) ‘ (LAMDAIIOJ)**NE2*(LAMDA(10J) ‘ 10) -

$ (INE2+10)/20I*IJ2(I9J) - (LAMDAIIOJ)**2)*J21(IQJIII

$ / (LAMDAIIQJ)**NE2N1*((20*NE+10)*LAMDAII9JI - 20*NE) + I20*NE+10)

S *J21II9J)*LAMDA(IOJ)I

GO TO 177

173 LAMDA(IQJI = LAMDAIIQJ) - (LAMDAIIoJ)**NE2*(LAMDA(IoJ) ’ 1.) -
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223 SX = *Y*DTHETA

SY 8 X*DTHETA

GO TO 251

225 IFIJ~1123592370235

CASE I=N J=1

237 SX = -Y*DTHETA

SY = TIIOJ+I)/H

GO TO 251

CASE ISN J NOT = 1 09 N

235 SX = -Y*DTHETA

SY = (T(19J+1)-T(IOJ‘1)I/(2*H)

GO TO 251

221 IFIJ-1122902270229

CASE I NOT = 1 09 N J=1

227 SX = ITII+10J)-T(I‘10J))/(2*H)

SY 8 TI19J+11/H

GO TO 251

229 IFIJ~NI23192339231

CASE 1 NOT = 1 09 N J=N

233 SX = (T(I+19J)‘T(I‘19J))/(2*H)

SY = X*DTHETA

GO TO 251

CASE 1 NOT = 1 09 N J NOT = 1 09 N

231 SX = (T(I+1.J)“T(I*10J))/(2*H)

SY = ITIIOJ+11‘T(IoJ-1)1/(2*H1

251 SIGMAZIIoJ) = ISORTF(3.*PHI)*DTHETA*Y + SIGMAZI(I.J)I/LAMDAIIQJI

TAUXZIIQJ) g (SX+DTHETA*Y + TAUXZI(I.J))/LAMDA(I.J)

TAUYZIIOJ) = (SY-DTHETA*X + TAUYZIIIQJII/LAMDA(1.J)

299 CONTINUE

IF(KP-KPS)500.5059500

505 PRINT 411c((SIGMAZ(IoJ)v1=1.N)oJ819N)

411 FORMATI1H09* SIGMA Z STRESSES * /(7E17.8))

PRINT 4130((TAUXZIIoJ).I=loN).J=10N)

413 FORMATI1H0.* TAU XZ STRESSES * /(7E17.8)I

PRINT 415.((TAUYZ(IoJIoI=19N)oJ319N)

415 FORMAT(1H0¢* TAU YZ STRESSES */(7E17.8)I

DO 911 1=loN

DO 911 leoN

X = (I-l)*H 5 Y = (J-1)*H

BENIIoJ) = SIGMAZ(I¢J)*Y

911 TOR(I.J) = Y*TAUXZ(I¢J) - X*TAUYZ(19JI

TORO = 0.0 $ BEMO = 0.0

900 00 901 I=20N92

DO 901 J=2oN92

TORO = TORQ + TORII‘10J*1)+TOR(I+19J~1)+TOR(1-1.J+1)+

$ TOR(I+1.J+1) + 4.*(TOR(1+1oJ1+TOR(IoJ+II+TOR(I*19J)

S +TORI19J-11) + 16.*TOR(I¢J)

901 BEMO = BEMO + BEN(1'10J‘1)+BEN(I+1.J-1)+BEN(I-1.J+1I

$ +BEN(I+10J+1) + 4.*(BEN(1+1oJ)+BEN(IoJ+1)+BEN(I-lod)

s + BENIIcJ-III + 16.*BEN(I¢J)

HSO z H**2 /9.

TORO = 12.*TORO*HSQ

BEMO = 16.*HSO*BEMO

PRINT 9039TOR09BEMO
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903 FORMATI1HO.* TORQUE EOUALS *0F10080* SENDING MOMENT EQUALS*.

$ F10.81

KP=0

500 THETA = THETA + DTHETA

IFITHETA ‘ THETA11501950105001

5001 IFIKODE15003Q500595003

5005 KODE = 1 5 THETA z THETAI + DTHETAI

KPS = KPSI S DTHETA = DTHETAI $ PHI 3 PHII $ KP 8 O

5003 IFITHETA-THETAM150195010411

501 IT 2 1 S KP = KP +1

DO 601 I=ION

DO 601 J=19N

TAUXZIIIQJ’ = TAUXZIIOJ)

TAUYZIIIQJ) = TAUYZ(IOJ)

SIGMAZIIIOJ) = SIGMAZIIOJ)

601 J21IIQJ) = JZIIOJI

GO TO 112

4111 PRINT 411201T

4112 FORMATIIHOQ* FAILED TO CONVERGE AFTER *01100* ITERATIONS*)

411 IFIKSTOP14I3119413

413 STOP S END
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251 SHGMAZCIOJ) = (SORTF(30*PHI)*DTHETA*Y + SIGMAZI(IQJ))/LAMDA(IQJ)

TAUXZ(!QJ) 3 allSY

TAUYZ(I¢J) = SX

299 CONTINUE

IF(KODE)30019090300

909 PRINT 5119((SIGMAZCIOJ)OI=loN)oJ=loN)

511 FORMAT(1H09* SIGMA Z ST9ESSES * /(7El708))

P9INT 4130((TAUXZ(IOJ)QI=19N)OJ‘19N)

413 FORMAT<1HO¢* TAU XZ STRESSES * /¢7E17o8))

PRINT 4150((TAUYZ(IqJ)ol=IoN)qJ81cN)

415 FORMAT(1H0q* TAU YZ STRESSES */(7El7o8))

300 00 911 I=loN $ 00 911 J=10N

X = (I-l)*H 3 Y = (J—1)*H

BEN(IQJ) 3 Y*SIGMAZ(IQJ)

911 TAUXZ‘IQJ) = Y*TAUXZ(IQJ) ‘ X*TAUYZ(IQJ)

T090 = 000 $ BEMO : 0.0 S T0902 3 000

900 DC 901 I=2¢Nv2

DO 901 J=20N02

T0902 3 T0902 + T(I-19J-l)+T(I-19J+1)+T(I+IQJ*1)+T(I+11J+1)

5 + 4*(TCI+1¢J)+T(IOJ+1)+T(I-19J)+T(IoJ-1)) + 16*T(IOJ)

T090 = T090 + TAUXZ(I‘1oJ-l)+TAUXZ(I+19J‘l)+TAUXZ(I‘19J+1)+

$ TAUXZ(I+19J+1) + 40*(TAUXZCI+1¢J)+TAUXZ(IQJ+I)+TAUXZ(I’IOJ)

$ +TAUXZ(IQJ-1)) + 160*TAUXZ(IOJ)

901 BEMO = BEMO + BEN(I’10J’1) + BENCI+loJ-l) + BENCI-19J+1)

$ + BEN(I+19J+1) + 40*(BEN(I+19J) + BEN(19J+I) + BEN(I‘10J)

S + BEN(IoJ-l)) + 160*BEN(IOJ’

H50 = H**2 /90

T0902 = 240*T0902*H50

T090 = 120*TO90*H50

BEMO = 160*H50*BEM0

IF(KODE)90499020904

902 99INT 9039T09098EMO0T0902

903 FORMAT(1HO¢* TORQUE EOUALS *0F10089* SENDING MOMENT EQUALS*¢

$ Flo-89* T0902 EQUALS * QFIOOB)

GO TO 500

904 PRINT 906cIT¢THETAcTORQZanMO oTORQ

906 FOQMAT(11294F1206)

500 THETA = THETA + DTHETA

IF(THETA-THETAM)50105019411

501 IT = 1 $ KP = KP +1

00 601 I=19N S 00 601 J=1¢N

SIGMAZI(I¢J) = SIGMAZ(I¢J)

T2(IoJ) = T(IoJ)

J21(IOJ) = J2(I¢J)

601 CONTINUE S GO TO 112

4111 p9INT 411291T

4112 FORMATCIH00* FAILED T0 CONVERGE AFTE9 *01100 * ITE9ATIONS*)

411 !F(KSTOP)413v10413

413 STOP 5 END

1
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PROGRAM POLARO

TYRE REAL LAMDA 0 J3

DIMENSION T125925)0T1(25925)¢J2(25925)QSIGMAZIZ5925IOTAUYZIZSQZSIo

S TAUXZI25025) QTORIZSQZSI 9 BENIZSOESIORIZSI 9 THAI25I

$ 0 LAMDAIZSQZSI

1 READ 30p51QBETAODTHETAQTHETAMONONEQITERQKSTOPQKODE

3 FORMATI4F100505151

IFIKODEIEQ402

PRINT éopSIoBETAoNE $ GO TO 8

FORMATIIH19* DEFORMATION THEORY - CIRCULAR BAR FOR PSI EOUAL*O

$F10.59* BETA E0UAL*0F10059* NE EOUAL*9150//* ITERATION THETA

S TORQUE MOMENT*)

4 PRINT SQPSIQBETAQNE

5 FORMATI*1*9* T‘IOJ) VALUES FOR CIRCULAR BAR OF UNIT RADIUS WHERE

$951 E0UAL*9 Flo-59* BETA EQUAL*0F1005 9* NE E0UALS*9151

8 NEZ = 2*NE $ NEZNI = 2*NE - 1

PSI 3 PSI**2 5 M 8 N‘l 5 M1 3 N+1

H = Io/M S DTHA 3 105708 / M

0
I
0

1T = 1 5 E1 = 10E‘6 S THETA 2 DTHETA

DO 7 1:19M1

THAIII = (1-1)*DTHA

7 9(1) = II’II*H

00 9 I=10M1 5 DO 9 J=10N

SIGMAZIIQJ) = 000 5 TAUYZIIQJI = 0.0 S TAUXZIIQJ) 3 000

T1(19J1 3 000 $ LAMDAIIQJI = 100

9 T‘IOJ’ = 000

10 DO 11 1:29N S 00 11 J=10N

IFII-NI603g60lg603

601 IFIJ-II6O796050607

CASE I=N J=1

(505 SR 2 000

STHA = TIIoJ+l)/0THA $ 60 TO 625

607 IF(J-N)61196099611

CASE I=N J=N

609 SR 3 000

STHA = *TIIoJ-II/DTHA $ GO TO 625

CASE I=N J NOT = 1 OR N

611 SR = 000

STHA 3 (T(19J+1) - TIIoJ-III/(20*DTHAI

A 8 IRII)**2)*(DTHA**2) $ C = H**2

E (((LAMDA(19J+II ‘ LAMDA(IoJ-1II/(20*DTHA)I*(STHA/(RIII**2) ‘

$ IoOI/LAMDAIIQJ)I*(R(I)**2)*(H**2I*IDTHA**2I

TBAR = (20*A*TII*19JI + C*(T(10J+1) + T(IoJ-1)) - E)/(2o*(A+C))

TIIQJ) = TIIoJ) + BETA*(TBAR - T(10J))

GO TO 625

603 IFIJ-1)61596130615

CASE I NOT = N J31

613 SR = (T(1+1¢J) ‘ TII‘IoJII/(2o*HI

STHA = TIIoJ+1)/DTHA $ GO TO 625

615 IFIJ-N161906170619

CASE 1 NOT 8 1 0R N J=N

617 SR = (T(I+19J) ‘ TII‘IoJ))/(2.*HI

STHA = ‘TIIoJ-II/DTHA S GO TO 625
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103 IFIJ‘N110591070105

CASE J=N

107 STHA = “TIIoJ-II/DTHA

SR 3 (T(I+19J) - T(I-19J))/(2.*H)

GO TO 109

CASE J NOT = 1 09 N

105 STHA = (T(10J+1) * TIIoJ-III/(2o*DTHAI

SR = (T(I+1oJI ‘ TII‘IQJII/(20*HI

109 SIGMAZIIOJ) =I(SQRTFC3.*PSII*QII1*SINFITHAIJIII/LAMDAIIOJI)*THETA

TAUXZIIQJ) =IISR*COSF(THA(JII - STHA*SINF(THA(J))/9(I) + 9(1)

3 *SINFITHAIJIII/LAMOAIIOJI)*THETA

TAUYZIIOJI =((SR*SINF(THA(J11 + STHA*COSF(THA(JII/9(I) * 9(1)

5 * COSFITHAIJIII/LAMDAI19J1)*THETA

111 CONTINUE

IF(KODE)4OIO¢4OIIQ4OIO

‘4011 991NT 4119‘(SIGMAZIIOJ)Q1319N19J=10N1

411 FORMATI1H09* SIGMA Z STRESSES*//(7E17¢BII

PRINT 4130((TAUXZI19J101=10N10J¢19NI

1413 FORMATIIHOQ* TAU X2 STRESSES’ // (7E170811

PRINT 415cICTAUYZIIQJIOI=19N1onloNI

415 FORMATI1H09* TAU YZ STRESSES* //(7E1708))

‘4010 DO 113 I=10N

DO 113 J=19N

BENIIQJI 3 SIGMAZIIQJ)*I9(II**2)*SINFITHA(JII

113 TORIIOJ) = (9(1)**2)*(SINF(THA(JI1*TAUXZIIQJ) - COSFITHAIQII

S *TAUYZ(IQJ)1

T090 = 000 $ BEMO = 0.0

00 115 1:29N92

DO 115 J=20N92

T090 = T090 + T09(I+1QJ+1) + TOR(1“19J+1) + TOR(1-19J‘1) +

S TORII+10J*1) + 40*(TOR(I+19J) + TORI10J+1) + TORII-IOJ) +

S TORIIoJ-II) + 160*T09(19J)

115 BEMO = BEMO + BEN(I+19J+1) + BENI1-10J+1) + BENII“10J‘II +

S BENII+19J-1) + 40*(BEN(I+19JI + BENIIQJ+11 + BENII‘IQJ) +

S BENIIQJ-III + 160*BEN(19J)

H50 3 IDTHA*H)/9o

T090 = 40*T090*H50/(20094I

BEMO = 30*BEMO*HSO

IF(KODEI9O499029904

904 PRINT 90891T9THETA9T09098EM0

908 FORMAT12XQ11092X9F100602X9F100692X9F1006)

GO TO 500

902 PRINT 9030T09095EMO -

903 FORMATI1H00* TORQUE EQUALS *0F10089* SENDING MOMENT EQUALS

S 9F1008)

500 THETA = THETA + DTHETA

IFITHETA ‘ THETAM)501950191105

501 IT = l 5 GO TO 10

1105 IFIKSTOPIZISO 1 9215

215 STOP 5 END

{-



APPENDIX v

TORQUE, MOMENT, AND STRESS OUTPUTS

Table 5. Effect of grid dimension on Piechnik e uation

warping function and stresses for p = 1/ 3

(lower values for finer mesh)

Warping function: t x 10-2

i 1 2 3 4 5 6 7

j 1 3 5 7 9 11 13

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.0000 0.5028 0.7515 0.6005 0.2114 -0.3191 -0.9613

3 0.0000 0.5036 0.7243 0.5591 0.1647 -0.3681 -1.0111

3 0.0000 0.9032 1.4392 1.3673 0.7540 -0.2326 -1.4970

5 0.0000 0.8853 1.3786 1.2682 0.6365 -0.3565 -1.6220

4 0.0000 1.3055 2.1900 2.3449 1.7040 0.3830 -1.4691

7 0.0000 1.2702 2.0980 2.1946 1.5140 0.1777 -1.6758

5 0.0000 1.7619 3.0814 3.5996 3.1341 1.6625 -0.7165

9 0.0000 1.7139 2.9621 3.4021 2.8740 1.3722 -1.0060

6 0.0000 2.3023 4.1675 5.2016 5.1393 3.7911 0.9913

11 0.0000 2.2485 4.0263 4.9563 4.8026 3.4076 0.6383

7 0.0000 2.9435 5.4874 7.2137 7.8358 7.0955 4.0434

13 0.0000 2.8951 5.3334 6.9167 7.3898 6.5419 3.7365

Normal stress: Ozz/ngik

i 1 2 3 4 5 6 7

j 1 3 5 7 9 11 13

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.5016 0.5353 0.5702 0.4287 0.2765 0.1898 0.1398

3 0.4914 0.5242 0.5656 0.4167 0.2687 0.1856 0.1374

3 0.5180 0.5462 0.6206 0.6552 0.5487 0.4052 0.2996

5 0.5126 0.5430 0.6238 0.6515 0.5362 0.3954 0.2937

4 0.5235 0.5467 0.6158 0.7077 0.7329 0.6291 0.4828

7 0.5209 0.5460 0.6198 0.7114 0.7256 0.6150 0.4726

5 0.5217 0.5404 0.5983 0.6941 0.7980 0.8165 0.6870

9 0.5207 0.5409 0.6024 0.6998 0.7981 0.8037 0.6732

6 0.5151 0.5297 0.5760 0.6584 0.7783 0.9092 0.8890

11 0.5147 0.5307 0.5805 0.6550 0.7819 0.8999 0.8792

7 0.5054 0.5162 0.5513 0.6148 0.7112 0.8746 0.9943

13 0.5052 0.5171 0.5565 0.6235 0.7202 0.8527 0.9988
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Table 5 (continued)

Shear stress: lo /k|
xz

 

i 1 2 3 4 5 6 7

j 1 3 5 7 9 11 13

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 0.8651 0.8242 0.6105 0.2621 0.0935 0.0296 0.0000

3 0.8709 0.8256 0.5771 0.2381 0.0871 0.0280 0.0000

3 0.8553 0.8296 0.7247 0.4939 0.2328 0.0769 0.0000

5 0.8586 0.8303 0.7126 0.4676 0.2163 0.0721 -0.0000

4 0.8520 0.8344 0.7698 0.6254 0.3880 0.1501 0.0000

7 0.8536 0.8344 0.7638 0.6093 0.3677 0.1403 0.0000

5 0.8531 0.8405 0.7966 0.7010 0.5200 0.2507 0.0000

9 0.8538 0.8401 0.7927 0.6915 0.5046 0.2382 0.0000

6 0.8571 0.8480 0.8169 0.7509 0.6205 0.3663 0.0000

11 0.8574 0.8474 0.8135 0.7441 0.6118 0.3641 0.0000

7 0.8629 0.8565 0.8343 0.7884 0.7050 0.4768 0.0000

13 0.8630 0.8559 0.8308 0.7817 0.6932 0.5199 0.0000

Shear stress: Oyz/k|

i 1 2 3 4 5 6 7

j 1 3 5 7 9 11 13

1 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.0000 0.1870 0.5498 0.8646 0.9564 0.9814 0.9902

3 0.0000 0.2088 0.5891 0.8773 0.9593 0.9822 0.9905

3 0.0000 0.1153 0.2994 0.5716 0.8030 0.9110 0.9541

5 0.0000 0.1254 0.3210 0.5974 0.8159 0.9157 0.9559

4 0.0000 0.0696 0.1679 0.3287 0.5588 0.7627 0.8757

7 0.0000 0.0748 0.1801 0.3501 0.5816 0.7759 0.8813

5 0.0000 0.0382 0.0862 0.1637 0.3047 0.5200 0.7266

9 0.0000 0.0406 0.0935 0.1791 0.3291 0.5453 0.7395

6 0.0000 0.0158 0.0308 0.0524 0.0957 0.1980 0.4577

11 0.0000 0.0162 0.0348 0.0638 0.1195 0.2399 0.4765

7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 6. Comparison between stresses computed from

Piechnik e uation and HilluHandelman equation for

p = 1‘V5 (lower values due to Steele)

Normal stress: Ozz/‘V3 k

i 2 4 6 8 10

j 1 2 3 4 5

2 0.497 0.496 0.246 0.137 0.091

1 0.348 0.452 0.277 0.139 0.077

4 0.526 0.622 0.629 0.444 0.296

2 0.507 0.626 0.612 0.455 0.628

6 0.531 0.612 0.738 0.729 0.543

3 0.554 0.633 0.727 0.712 0.487

8 0.524 0.586 0.712 0.865 0.819

4 0.540 0.601 0.735 0.844 0.815

10 0.510 0.554 0.648 0.802 1.000

5 0.530 0.571 0.668 0.837 1.000

Shear stress: '0 /k‘
xz

i 2 4 6 8 10

j 1 2 3 4 5

2 0.856 0.492 0.110 0.027 0.000

1 0.907 0.553 0.097 0.027 0.000

4 0.847 0.718 0.385 0.112 0.000

2 0.849 0.664 0.339 0.116 0.000

6 0.846 0.778 0.583 0.252 0.000

3 0.829 0.746 0.532 0.229 0.000

8 0.852 0.809 0.693 0.424 0.000

4 0.841 0.788 0.651 0.381 0.000

10 0.860 0.832 0.761 0.598 0.000

5 0.848 0.821 0.744 0.548 0.000

Shear stress: 10 /kl
yz

i 2 4 6 8 10

j 1 2 3 4 5

2 0.137 0.715 0.963 0.990 0.996

1 0.238 0.700 0.956 0.990 0.997

4 0.076 0.311 0.675 0.889 0.955

2 0.103 0.370 0.687 0.881 0.963

6 0.039 0.142 0.339 0.636 0.840

3 0.053 0.190 0.407 0.651 0.873

8 0.015 0.050 0.113 0.269 0.574

4 0.020 0.073 0.170 0.349 0.580

10 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000
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Second invariant of stress:
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Table 8.

deformation—theory with n

and ® = 3.00

i

i

i

i

1 2 3

0.000 0.030 0.132

0.259 0.274 0.327

0.618 0.617 0.621

0.868 0.863 0.850

1.064 1.057 1.037

1.231 1.224 1.202

1.383 1.376 1.355

Normal stress: Ozz/‘VE k

1 2 3

0.000 0.000 0.000

0.406 0.403 0.391

0.627 0.627 0.625

0.741 0.744 0.754

0.812 0.818 0.834

0.860 0.867 0.885

0.892 0.898 0.916

Shear stress. onz/k|

l 2 3

0.000 0.000 0.000

0.307 0.293 0.251

0.474 0.457 0.405

0.566 0.549 0.498

0.636 0.621 0.574

0.701 0.687 0.645

0.766 0.754 0.718

Shear stress: IO /k|
yz

1 2 3

0.000 0.172 0.363

0.000 0.160 0.333

0.000 0.122 0.258

0.000 0.086 0.184

0.000 0.054 0.116

0.000 0.025 0.054

0.000 0.000 0.000\
l
m
m
w
a
l
—
H
—
u

J

180

2

4

0.314

0.433

0.646

0.840

1.011

1.168

1.320

0.000

0.365

00611

0.761

0.856

0.915

0.947

0.000

0.185

0.317

0.410

0.489

0.568

0.651

0.560

0.515

0.414

0.304

0.195

0.092

0.000

5

0.528

0.585

0.712

0.851

0.989

1.127

1.273

0.000

0.322

0.575

0.753

0.876

0.953

0.991

0.000

0.111

0.205

0.285

0.361

0.443

0.540

0.726

0.685

0.583

0.450

0.302

0.148

0.000

1.00,

6

0.733

0.760

0.824

0.905

0.993

1.093

1.218

0.000

0.275

0.516

0.714

0.872

0.986

1.046

0.000

0.047

0.093

0.139

0.191

0.256

0.352

0.856

0.826

0.741

0.612

0.443

0.236

0.000

Typical stress output for warping-function

2: P =

7

0.923

0.936

0.968

1.008

1.052

1.101

1.180

0.000

0.231

0.447

0.644

0.822

0.978

1.086

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.961

0.940

0.877

0.770

0.612

0.379

0.000
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Second invariant of stress:
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Table 10.

i 1

0.000

0.253

0.622

0.875

1.070

1.237

1.387

183

Typical stress output for stress-function

deformation-theory with n = 2, p =

and ® = 3900

2

0.030

0.269

0.622

0.869

1.063

1.229

1.380

3

0.131

0.325

0.625

0.856

1.043

1.207

1.359

Normal stress: 022/ V3 k

\
l
m
t
fl
P
W
N
I
-
‘
L
—
I
-

Shear stress:

\
I
O
W
U
l
-
h
W
N
I
-
‘
L
h

i

i

1

0.000

0.407

0.624

0.736

0.808

0.856

0.888

1

0.000

0.295

0.483

0.578

0.646

O. 710

0.773

2

0.000

0.404

0.624

0.740

0.813

0.862

0.894

 

2

0.000

0.283

0.465

0.561

0.631

0.696

0.762

«In/kl

3

o. 000

0.392

0.622

0.750

0.830

0.881

0.913

3

0.000

0.246

0.410

0.508

0.583

0.654

0. 725

Shear stress: loyz/k|

\
l
O
‘
U
‘
l
-
b
U
J
N
I
-
‘
L
b

i 1

0.000

0.000

0.000

0.000

0.000

0.000

0.000

2

0.174

0.161

0.125

0.089

0.056

0.026

0.000

0.362

0.334

O. 264

0.190

0.120

0.056

0.000

J2

4

0.307

0.436

0.650

0.845

1.015

1.173

1.323

0.000

0.365

0.609

0.758

0.853

0.912

0.944

0.000

0.184

0.321

0.417

0.498

0.577

0.657

0.554

0.514

0.420

0.311

0.201

0.096

0.000

5

0.523

0.584

0.715

0.855

0.993

1.131

1.275

0.000

0.323

0.573

0.750

0.872

0.950

0.990

0.000

0.112

0.208

0.290

0.368

0.453

0.543

0.723

0.684

0.586

0.457

0.310

0.154

0.000

1.00,

6

0.729

0.758

0.825

0.907

0.997

1.097

1.218

0.000

0.275

0.515

0.712

0.868

0.982

1.047

0.000

0.048

0.094

0.141

0.195
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1

Table 13.

flow-theory with n

Second invariant of stress:

\
l
m
m
b
W
M
l
-
‘
L
-
b

i 1

0.000

0.257

0.608

0.852

1.043

1.206

1.354

2

0.030

0.272

0.608

0.847

1.036

1.199

1.347

3

0.130

0.324

0.613

0.836

1.018

1.178

1.327

Normal stress: Ozz/N/B k

\
l
m
U
'
l
o
b
m
e
i
-
‘
K
—
h

Shear stress: loxz/kl

i 1

0.000

0.404

0.617

0.730

0.800

0.847

0.878

2

0.000

0.401

0.619

0.733

0.805

0.853

0.884

3

0.000

0.390

0.618

0.743

0.822

0.872

0.903

3

0.000

0.254

0.406

0.499

0.574

0.644

0.716

3

0.361

0.329

0.256

0.186

0.118

0.055

i 1 2

J'

1 0.000 0.000

2 0.306 0.293

3 0.475 0.458

4 0.565 0.549

5 0.635 0.620

6 0.699 0.685

7 0.764 0.752

Shear stress: ‘0 /k|
yz

i 1 2

J'

1 0.000 0.172

2 0.000 0.158

3 0.000 0.120

4 0.000 0.087

5 0.000 0.055

6 0.000 0.026

7 0.000 0.000 0.000

90

= 29 P

and @= 3000

J2

4

0.307

0.427

0.638

0.828

0.994

1.146

1.294

0.000

0.364

0.606

0.752

0.845

0.903

0.934

0.000

0.189

0.318

0.411

0.490

0.567

0.649

0.554

0.508

0.411

0.306

0.199

0.095

0.000

5

0.516

0.575

0.702

0.839

0.973

1.107

1.248

0.000

0.324

0.571

0.745

0.865

0.942

0.981

0.000

0.113

0.207

0.287

0.363

0.444

0.535

0.718

0.677

0.577

0.449

0.305

0.150

0.000

6

0.717

0.745

0.811

0.891

0.977

1.076

1.196

0.000

0.276

0.514

0.708

0.863

0.974

1.034

0.000

0.048

0.093

0.138

0.190

0.261

0.355

0.847

0.816

0.733

0.608

0.444

0.243

0.000

Typical stress output for warping-function

= 1000,

7

0.904

0.919

0.953

0.993

1.032

1.080

1.158

0.000

0.232

0.446

0.638

0.816

0.970

1.076

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.951

0.930

0.869

0.765

0.605

0.374

0.000
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Second invariant of stress:

\
l
m
U
'
I
b
U
O
N
P
-
‘
L
a
.

Normal stress:

\
l
m
U
l
t
h
O
M
l
-
‘
L
h

Shear stress:

~
4
0
3
t
h
t
u
m
)
H
u
1

Table 15.

i

i

i

1

0.000

0.251

0.612

0.857

0.105

1.211

1.358

1

0.000

0.405

0.616

0.725

0.795

0.842

0.874

1

0.000

0.294

0.482

0.576

0.645

0.708

0.771
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Typical stress output for stress-function

 

flow-theory with n

and (9 = 3.00

Shear stress: loyz/kl

Q
C
h
U
t
h
u
N
H
H
h
»

i 1

0.000

0.000

0.000

0.000

0.000

0.000

0.000

2 3

0.031 0.132

0.268 0.324

0.611 0.616

0.852 0.840

1.041 1.022

1.204 1.183

1.351 1.331

Ozz/fi k

2 3

0.000 0.000

0.402 0.390

0.617 0.616

0.729 0.740

0.801 0.818

0.849 0.868

0.880 0.899

ze/kl
2 3

0.000 0.000

0.282 0.245

0.464 0.409

0.559 0.506

0.630 0.582

0.695 0.652

0.759 0.723

2 3

0.175 0.363

0.162 0.335

0.126 0.265

0.090 0.190

0.056 0.120

0.026 0.056

0.000 0.000

= 2: H

J:2

4

0.307

0.430

0.642

0.831

0.996

1.149

1.297

0.000

0.363

0.603

0.749

0.842

0.900

0.932

0.000

0.183

0.319

0.415

0.496

0.574

0.654

0.554

0.514

0.420

0.311

0.202

0.096

0.000

= 1000,

5

0.520

0.581

0.707

0.842

0.975

1.110

1.250

0.000

0.322

0.568

0.743

0.863

0.940

0.979

0.000

0.111

0.206

0.288

0.366

0.450

0.540

0.721

0.682

0.585

0.456

0.310

0.154

0.000

0.721

0.750

0.816

0.894

0.980

1.077

1.194

0.000

0.275

0.512

0.706

0.860

0.973

1.036

0.000

0.047

0.093

0.140

0.194

0.265

0.348

0.849

0.820

0.738

0.614

0.450

0.248

0.000

0.919

0.935

0.967

0.999

1.033

1.078

1.158

0.000

0.228

0.438

0.633

0.814

0.972

1.076

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.959

0.940

0.881

0.774

0.608

0.365

0.000



APPENDIX VI

GRAPHICAL REPRESENTATION OF TORQUES

AND MOMENTS

Since all work-hardening formulations provide

essentially the same numerical results when-43 = constant,

the results are shown graphically for only té: deformation-

theory warping-function formulation. These figures

include both the unit square and unit radial solutions.

In all graphs, values of n were chosen so that the

general effect of the work—hardening on the torques and

moments is illustrated. More specific information on the

exact values of the torques and moments may be obtained

from Appendix V.
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Figure 24a.“ Torque vs. unit afgle of twist for

warping-function deformation-theory solution

of a square section with p a 0.00
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Figure 25a. Torque vs. unit angle 0f twist for

warping-function deformation-theory solution

of a circular section with p a 0.00
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