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ABSTRACT

FORMULATION AND ESTIMATION OF A COMPLETE

SYSTEM OF DEMAND EQUATIONS

BY

Arshad Zaman

This dissertation constitutes an investigation

into the principles underlying the formulation and estima—

tion of complete sets of theoretically plausible demand

equations. Upon an analysis of these principles, two

alternative parametrizations of the convenient double—

logarithmic system of demand equations are suggested.

These two systems along with two other systems are esti—

mated from five—series data on personal consumption

expenditures in the United States. A comparison of the

results reveals that the two double—logarithmic systems may

indeed be serious competitors to the existing functional

forms for demand equations.
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CHAPTER 1

THE PURE THEORY OF CONSUMER'S DEMAND

1.1 Introduction 

In this chapter we present the main results of the

pure theory of consumer's demand under static certainty.

This theory, as it is known today, represents a major

triumph of axiomatic methods in the analysis of economic

behavior. The current formulation, however, has evolved

after a long period of extended debate over numerous and

assorted issues. In section 1.2 we have attempted to

provide a brief survey of the methodological and other

issues that were the subject of this historical debate.

The emphasis in this section, however, is more toward

history. The theoretical issues have been examined in

greater detail in sections 1.3 and 1.4. In section 1.3

we make use of hindsight to provide the current axiomatic

formulation of consumer demand theory, while in section

1.4 we digress to examine briefly the theory of revealed

preference which historically preceded the current formu—

lations. Finally, in sections 1.5 and 1.6, the major

results in the pure theory of consumer's demand are de—

rived, and in section 1.7, the conditions under which

 



 



aggregation over individuals and commodities may be car—

ried out are formulated.

1.2 Methodology and History
 

The purpose of demand analysis is to explain vari-

ations in consumer expenditures by an analysis of cross—

sectional or time—series data on consumption expenditures

and prices. For the analysis to be meaningful, a model

must be built in conformity with the a priori beliefs of

the researcher. These a priori beliefs may be specified

on an ad hoc basis, or be deduced from a set of axioms

that are specified as the maintained hypotheses. The

model should reflect these beliefs in terms of restric—

tions on the functional form and the parameters of the

demand equations. Both the ad hoc specification, and the

axiomatically derived restrictions approach have been

used in the literature on demand theory; and a wide vari—

ety Of demand models have resulted from combining the two

approaches in varying proportions. A broad distinction

can, however, be made between two classes of models, which

for lack of accepted terminology are labelled as "ad hoc

models" and "axiomatic models."

The ad hoc approach in demand theory is usually

credited to the work of Gustav Cassel [1899], [1918], who

was the first of the modern economists to revive the

approach of Augustin Cournot [1838] and Leon Walras [1874]



 

in viewing demand functions as empirical hypotheses. Un-

like Cournot and Walras, however, Cassel expressed a

positive distaste for "utility theory" which he considered

unrealistic and full of error. Instead, he argued, that

a theory of demand could be constructed independent of a

utility substructure.l

Cassel was not alone in viewing utility theory

with some suspicion. Henry L. Moore, credited with being

the founder of statistical demand analysis, was yet an—

other major economist who espoused the ad hoc approach in

demand theory. With the extensive statistical works of

Moore [1914], [1922], [1925—26], the ad hoc tradition in

 

demand analYSis was firmly established among empirical ‘

demand theorists. Models of demand were specified on an

ad hoc basis and restrictions on parameters were imposed

in a similar manner. From a methodological point of View

it was unclear what the maintained hypotheses were, and

 

1The references above are from Stigler [1950], and

W01d [1943-44]. The extent to which Cassel was successful

in construction a demand theory independent of utility is

a matter of debate. Wold [1943-44, Part III, pp. 77—90]

has shown that Cassel actually imposed suffic1ent restric—

tions on his demand functions to make them logically equi—

valent to the Hicks-Allen [1934] indifference curve appriach.

StiGler [1950] is of a similar Opinion. Houthakker [$96 ]

however, has differed. Taking issue With Wold S [195 ]

assertion that "revealed preference theory is a vagiant

Of Cassel's approach, Houthakker declares that tiet gzégel

weakness in Cassel's approach lies in the factft at'ons

did not impose any restrictions on his demand unc i .



 
 



hence it was difficult to provide an immediate interpre—

tation as to what the estimates of the parameters really

Signified. Despite these and other weaknesses the ad hoc

approach to demand theory went unchallenged until recently.2

In order to evaluate the merits of the ad hoc approach it

will be desirable to look at the more attractive and

theoretically desirable axiomatic approach that is also

available to the demand theorist. Indeed, an analysis of

the axiomatic approach and its historical development pro—

vides some insight into the reasons that led to the distaste

for utility that had characterized the founders of the

ad hoc tradition.

The axiomatic models of demand have evolved from

the classical theory of utility. The roots of this theory

can be traced to late nineteenth century European writers.

The prominent contributors to this theory were Gossen

[1854], Jevons [1871], Walras [1874], Edgeworth [1881],

Fisher [1892] and Pareto [1895].3 Unfortunately, the work

a

2An example of a recent study in this tradition is

the work by Houthakker and Taylor [1966] in which an exten-

siVe model of consumer demand is built for the United States

econOmy, and the "adding—up" restriction (see section 1.6)

is imposed on an ad hoc basis. Since the number ofhcom—l

modities is large—7665? eighty), this seems to be t e on y

Viable approach.

3For a reference to these authors, and a disigggion

of their works, I am relying primarily on Marshall éscu—I

Bk. III, Ch. III), Hicks and Allen [1934], N. Eeoigwith

Roegen [1936], Wold [1943—44], Wold ln aSSOCIa ::r [1954
Jureen [1953, pp. 81ff. and Notes), and Schumpe I

Pp. 1054-1069].

  



 



of these writers was seldom unambiguous and was often

marred by a pronounced lack of rigor. Moreover, the

choice of the word "utility" and the style in which the

theory was stated was responsible for a considerable

amount of subsequent confusion both with regard to the

dependence of utility theory on psychological laws, and

also with respect to its philosophical foundations. It

was this confusion of economic theory with psychology and

philosophy, perhaps, that became the source of discontent

with utility theory that many later economists exhibited.4

The situation was not long left unremedied. An-

tonelli [1886] was the first to give a rigorous statement

of the theory that had evolved up to that time. Other

 

4The initial confusion with regard to psychology

arose in the context of the importance that the early theor—

ists attached to the ability that goods possessed to ful-

fill basic biological needs. This hedonistic aspect of the

"utility" concept rendered it unacceptable to many. It was

quite late in the history of utility theory that scholars

realized that this was not a crucial assumption. This has

been pointed out by Samuelson [1947a, p. 91]. Yet another

a8pect of the same issue was the extended debate that arose

over the confusion of Gossen's "law of satiable wants" with

the Weber-Fechner "fundamental law of psycho-physics"

(identical in formal structure to the Bernoulli-Laplace

hypothesis about the marginal utility of income, proposed

as a solution to the St. Petersburg Paradox). For a dis-

cussion see Viner [1925, p. 37lff.], and Schumpeter [1954,

p. 1058]. On the philosophical side the ethical and

Utilitarian convictions of Gossen, Jevons, Bentham, Sidg-

Wick and Edgeworth were the cause of numerous subsequent

misunderstandings. On this see Schumpeter [1954, p. 1056].

The fact that utilitarianism had little to do with utility

theory was emphatically pointed out by Marshall [1890, Bk.

I, Chap. II, Sec. 1, n. 2; and Bk. I, Chap. II, Sec. 1,

n. l].





writers were not far behind. The early twentieth century

saw three other writers' successful efforts at a synthesis

of the then current theory. Johnson [1913] gave a clear

statement to the Jevons—Menger—Walras tradition of the

posthumously so-called "cardinal" theory of utility; while

both Pareto [1906] and Slutsky [1915] reviewed the exist—

ing "ordinal" tradition and made significant contributions

of their own.5 It was with these papers that two distinct

traditions arose within utility theory. The orthodox

"cardinal" tradition held on to the assumption that the

consumer behaved as if he were maximizing a specific

utility function, while the "ordinal" theorists were con—

tent with the assumption that indifference curves were

well-defined, so that the consumer could be maximizing a

class of utility functions that were unique only up to

monotonic transformations.

The "ordinal" theory, derived independently by

Pareto and Slutsky was extensively reviewed and given

essentially its current content by Hicks and Allen [1934].

The primary contribution of the "ordinal" theorists was

to demonstrate that most of the results derived by the

cardinal theorists were accessible to them without

 

5The references to Antonelli's work are from the

sources cited in footnote 2. For Pareto's work I am rely-

ing primarily on the extensive discussion in Wold and

Jureen [1953]. For the choice of authors to whom the

"cardinal utility" tradition can be attributed I am re-

lying on the verdict of Stigler [1950].

  



assuming the existence of a utility function. They assumed

instead the existence of "indifference curves,‘ and using

relatively elementary mathematical techniques derived most

of the restrictions on demand functions that were known.

In an attempt to consider the ramifications of the two

existing approaches, Georgescu—Roegen [1936] took up the

problem of "integrability" considered by Antonelli [1886],

and discussed by Pareto [1906] and Slutsky [1915], and

tried to derive its implications for the theory of demand

proposed by Hicks and Allen. Georgescu-Roegen, in the

same paper, made one of the earliest systematic investiga—

tions of the axiomatic structure of the Hicks—Allen theory,

which subsequently was a topic of considerable interest.

On another front, Wold [1943-44], in an extensive paper

used Volterra's [1906] formulation of the integrability

conditions6 to synthesize the three approaches that he

found in economic theory: (1) Pareto's theory of indif—

ference maps, (2) The Hicks-Allen theory of marginal sub—

stitution, and (3) Cassel's demand function approach.7

Although both Wold and Georgescu-Roegen provided useful

analyses of the approaches found in utility theory, and

 

6For a discussion of the meaning and relevance of

these mathematical conditions, see Wold and Jureen [1953].

7The reference to Volterra [1906] is from Wold

[1943-44, Part I, p. 86] and Wold and Jureen [1953, p. 90].

 





raised important issues, the problem of integrability8

continued to be a blemish on the Hicks-Allen theory. It

remained for Samuelson [1950] to demonstrate that the

problem of integrability was more of a mathematician's

worry than a valid cause for concern among economists.

Samuelson demonstrated that the integrability conditions

are violated only when we are willing to attribute more

than a fair share of inconsistencies to the behavior of

the consumer.

The investigation into the axiomatic structure of

utility theory was carried further by Samuelson [1938a]

through the "revealed preference" theory, which was claimed

to have freed the theory of consumer behavior from the

"vestigial" motions of utility. In effect, Samuelson laid

down a set of axioms with regard to the preference behavior

of the consumer, and showed (much like Hicks and Allen)

that all of the results of the Hicks—Allen formulation

were the consequences of his axioms. Following in his

footsteps numerous writers experimented with an array of

modified axiom sets that were capable of yielding the same

results. Although the "revealed preference" theory was a

source of great insight into utility theory, it was

 

81n simple terms the problem of integrability

deals with the conditions under which the existence of

"indifference curves" may be shown to imply the existence

of a "utility function."





subsequently revealed that Samuelson's theory was not

radically different from the Hicks—Allen theory in logi-

cal structure.9 It remained for Uzawa [1960] to provide

a synthesis of demand theory by generalizing previous

formulations and demonstrating rigorously that the exist—

ence of demand functions satisfying certain regularity

conditions was implied by, and in turn implied, the

existence of a "preference relation" which possessed some

specific properties.

The consequence of these developments for the

empirical demand theorist is that he "can adopt as his

maintained hypothesis a definite" axiomatic structure which

yields substantial restrictions on the demand functions.

With an explicit statement of the maintained hypotheses,

it is very clear that the estimates of the parameters of

the "axiomatic model" are conditional on. Further, the

empirical worker can put to test the maintained hypotheses

themselves and thereby test if the empirical data confirm

his a priori beliefs regarding the external world.

 

9Houthakker [1950] showed that the "revealed pre—

ference" theory was logically equivalent to the indiffer—

ence curve approach, while at the same time generalizing

Samuelson's "fundamental hypothesis" so that it would

imply integrability, and hence the existence of an ordinal

utility function. Subsequently, Arrow [1959] showed that

if the commodity space contains all its finite subsets,

then the equivalence of Samuelson's "weak axiom" to Houth—

akker's "strong axiom" is assured. Finally, Uzawa [1960]

extended Arrow's general theorem and derived conditions

for the demand function under which Samuelson's "weak

axiom" is equivalent to Houthakker's "strong axiom."
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It was stated that the "ordinal" theory yields

mg§t_of the results of the "cardinal" theory without re-

sorting to the more stringent axioms of the latter. This

is not to suggest, however, that the cardinal theory is

without merits. In fact, it is a "quasi-cardinal" approach

that is found in the empirical analyses of demand.10 It

is somewhat unfortunate that except for very small systems

of demand equations (involving very high levels of aggre-

gation), the "ordinal" theory does not provide enough

restrictions to enable the empirical demand theorist to

estimate all the cross-elasticities of demand, the own-

price elasticities and the income elasticities. In these

situations the pragmatic approach usually taken is to

impose introspective a priori restrictions equating

several (often all) cross-elasticities to zero.

As mentioned above, the cardinal approach is

better equipped to handle these problems. The pioneer

work is of Klein and Rubin [1947], who proposed a specific

functional form for a complete set of demand equations that

came to be known as the "linear expenditure system." This

system was shown by Samuelson [1948] and Geary [1950] to

be implied by a specific utility function, which has come

to be called the "Stone—Geary Function." Stone [1954a and

 

10The rest of the discussion in this section

anticipates some of the future discussion, and has been

included only to provide a very brief outline of current

developments in the literature.
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others), employed this function to estimate complete sets

of demand equations. It was evident that Stone's system

yielded substantial economies of parametrization, and re—

sulted in estimates of all cross—elasticities without the

imposition of artificial restrictions.

Although it was well-known that if the utility

function could be assumed to be of the Stone—Geary type,

substantial economies of parametrization could be obtained,

the general case of a quasi-cardinal utility function and

its consequence for demand theory were not fully exploited.

Frisch [1959] and Houthakker [1960a] were the first to

analyze a specific type of utility function that resulted

in powerful restrictions on the parameters of the demand

system. This was the quasi-cardinal property of "additivity"

(or Want—Independence in Frisch's terminology) that was in

fact possessed also by the Stone-Geary function. In this

sense the Frisch—Houthakker case of "separable" utility

was a generalization of the Stone-Geary case. The general—

ization from "additivity" to "almost additivity" was im—

mediate. Barten [1964] gave rigorous content in terms of

the Frishc—Houthakker theory to earlier ideas of Strotz

[1957]. Based on these ideas, Houthakker [1960a], Barten

[1964] and Theil [1965] proposed specific functional forms

for the estimation of complete sets of demand equations.

Finally, the work of Pearce [1961], [1964] merits

attention. In the tradition of the ordinal theorists
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Pearce has made a definite attempt to render the strictly

ordinal theory as empirically fruitful as the quasi—

cardinal variety. The motivation for such an effort may

be derived from a critical look at the restrictive assump-

tions that cardinal theorists must make. In particular,

Pearce objected to the additivity assumption on grounds

that it was not invariant with respect to monotonic trans—

formations of the utility function.11 He proposed, in—

stead, a new form of separability, "neutral want

association,‘ which was shown to be invariant under mono—

tonic transformations. From this assumption Pearce claims

to have shown that substantial restrictions on the demand

functions can be Obtained in a manner very similar to the

cardinal theorists' models. In fact, Pearce [1964, p. 206]

has claimed that all the computational advantages of

additivity are available even if we make the much weaker

assumption of neutral want association. In the review of

empirical models below an analysis of Pearce's claim is

made, and there is reason to believe that the case for

neutral want association may have been overstated.

 

llSubsequent discussion reveals that this may not

have been a valid criticism of the quasi—cardinal approach.

This is because the assumption of "strong separability,"

which is invariant with respect to an arbitrary non—linear

transformation of the utility function, results in much

the same restrictions on the demand functions as does the

assumption of additivity. For further discussion see

Uzawa [1964] and Chapter 2 below.
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To summarize, then, the empirical demand theorist

has the option of building an "ad hoc model" or an "axio—

matic" model. It has been pointed out that the consensus

is that the former approach is less desirable. Of the

latter, there exist two distinct traditions. The "quasi—

cardinal" tradition results in the most powerful restric—

tions on the set of demand equations, although it does so

at the cost of restrictive assumptions. The strictly

"ordinal" approach is based on more palatable assumptions

but does not afford the computational conveniences of the

latter.12

1.3 The Axiomatic Foundations 

As we have noted in the previous section, the

foundations of utility theory have only recently been

investigated in a satisfactory manner. Prior to this

investigation into the aximatic structure of utility, it

had been the custom to accept the existence of a well—

behaved utility function strictly on faith. Assuming that

the consumer maximized his "utility function" which pre—

sumably was well-defined and had certain desirable proper-

ties, empirical workers conceeded to estimate elasticities

 

12The advantages of the cardinal models may have

been overstated in this section. In subsequent sections

it will be pointed out that the three acceptable cardinal

models: Stone's Linear Expenditure System, Houthakker's

Indirect Addilog Model, and the Rotterdam Model are all

non-linear in parameters, so that estimation with restric—

tions becomes non-trivial.
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from available data on expenditures, prices and income.

Critics of the approach were at a loss to comprehend the

exact implications of such assumptions, and debate over

their validity was often confused and universally incon—

clusive. A need was felt, therefore, to decompose these

assumptions into several primitive components in order

both to promote understanding of the behavioral implica-

tions of this axiom and to aid in a direct statistical

verification, should it seem desirable.

The effort is all but concluded with Uzawa's [1960]

justly acclaimed synthesis of the investigation into the

axiomatic structure of utility theory that began with

Georgescu-Roegen [1936], and Wold [1943—44].13 The re-

sults have been reassuring on at least two counts. First,

it has been shown that a "well—behaved"l4 utility function

does in fact exist under reasonable assumptions with re-

gard to the properties and existence of consumer prefer—

ences. Secondly, it has come to emerge that many of the

basic results of demand theory can be obtained by using

topological methods, directly from the properties of the

preference relation, without any mention whatsoever of a

 

l3Although Georgescu-Roegen [1936] did concern him-

self with the axiomatic bases of utility theory, it seems

that Wold [1943—44] was the first writer to be concerned

with the conditions under which a real—valued, differen-

tiable, order-preserving (utility) function can be shown

to exist.

14

A definition of "well—behaved" will be given below.
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15 The theorist thus has his option ofutility function.

using classical calculus methods, or of defining a pre—

ference relation which satisfied certain additional con—

ditions, and then use topological methods to derive the

same restrictions on the demand equations. Since the

economic content of the two approaches is practically the

same, the classical calculus method is adopted in this

paper. To do so, however, a brief discussion of a set of

axioms that imply the existence of a "well—behaved" utility

function is given below.16

Consider a single consumer who is confronted with

a choice between a finite number of commodities which are

labelled i=l,...,n. The quantity consumed of the ith

commodity by the consumer is denoted by Xi' A "commodity

bundle" will be defined as a n-dimensional vector, with xj

as its jth component, and will be denoted by a non—sub-

scripted lower case English alphabet, for example x or y.

 

15See, for example, the literature on revealed

preference theory: Samuelson [1938a], [1938b], [1947a],

Houthakker [1950], etc. In a more general context, these

results are derived by Yokoyama [1953]. It might be noted

that the term "topological methods" may be a misnomer.

The term is used to describe the methods of higher mathe—

matical analysis involving Real Analysis, Topology and

Abstract Algebra, as opposed to "calculus methods" by which

is meant the elementary calculus approach that is found

for example in R. G. D. Allen [1935], and [1956].

16The remainder Of this section relies heavily on

Uzawa [1960], and the extensive discussion of Uzawa's

paper, and other formulations by Pearce [1964].
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The set of all commodity bundles, C, will be called the

"Commodity Space" and will be assumed to be the non-

negative orthant of an n-dimensional Euclidean space.

It is assumed that there exists a dichotomous

"binary relation" P, defined on C, which is called the

consumer's "preference ordering" if it satisfies the

following additional requirements:

Property 1: Irreflexivity.
 

For any x in C, xPx. (where, P denotes the negation

of P.)

Property 2: Transitivity.
 

For all x,y,z in C, If xPy and sz, Then xPz.

Property 3; Monotonicity.
 

For all x,y in C, If x>y, Then xPy

(Definition: x>y if xi_>_yi for all i, and for some

j, x.>y..)

J J

Prgperty 4: Convexity.
 

For all x,y in C, If x¢y and xPy,

then (l-A)x+xy P x for all 0<A<l.

. 17

are open in C.

An economic interpretation of this assumption may

be provided as follows. The relation P can be interpreted

as "preference" in the following sense of the word: "xPy

 

17For a definition of an "open set" see Rudin [1964,

p. 28]. The concept of a "binary relation" is defined in

Birkhoff and McLane [1965, p. 29f.]. if, and only if, for

all x, y, x#y, either xPy or ny.
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may be read as "the commodity bundle x is at least as good

as the commodity bundle y" in the eyes of a hypothetical

consumer. The mathematical assumption of the existence

of this binary relation P over the commodity space C is

tantamount to assuming that the consumer is able to make

pairwise comparisons of commodity bundles and come to the

conclusion whether one or the other is preferred, or

whether he finds himself indifferent to the two bundles.

The assumption of dichotomy implied that the consumer can

do this for all possible commodity bundles.

Of the properties that the preference relation is

assumed to possess, the first defines the meaning of the

relation and states that no commodity is preferred to it—

self. The transitivity property is of a more substantive

nature insofar as it expresses a belief about a certain

regularity that the consumer's preference is assumed to

have. It states that if the consumer prefers x to y,

and y to 2, then the consumer must prefer x to 2.18 The

assumption of monotonicity states that if a commodity

bundle x possesses at least as much of every good as an-

other bundle y, and has more of at least one good, then

the bundle x must be preferred to the bundle y. The

 

18It is this axiom of transitivity that results

in the symmetry of the Slutsky substitution term and pro—

vides the single most useful restriction on the complete

set of demand equation. This is pointed out by Pearce

[1964, p. 52], for example.
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consequence of this assumption is to rule out the exist—

ence of a satiation point.19 The property of convexity

is roughly equivalent to the assumption that if a bundle

x is not preferred to a bundle y, then all bundlex 2 that

lie on the straight line connecting x and y and are dis—

tinct from y, must not be preferred to the bundle y. The

consequence of this property is that on any budget hyper—

surface there exists a unique point preferred to all

others. The property of continuity is the least easily

interpretable. Formally it states that both the set of

commodity bundles that are preferred to a specific bundle

O

x , and the set of bundles over which X0 is preferred,

are open in C. In mathematical terms, this implies that

there exist limit points for the two set which are not

contained in either of the sets. Thus, the consumer is

indifferent to a number of points within an E-neighborhood

of each point in the commodity space. Roughly speaking,

this insures that two commodity bundles that are close

together in a spatial sense, must be ranked "close to—

gether" in the sense of preference.20

 

19Houthakker [1961, p. 713] considers this to be a

limitation. For empirical work, however, there would be

little doubt that the assumption of non-satiation is not

far from reality.

20A good discussion of the plausibility of this

assumption is found in Pearce [1964, pp. 22ff.]. It is

difficult, in general, to find preference orderings that

are non—continuous. There is, however, a famous example

of the "lexicographic ordering" due to Debreu [1954] that

is not continuous and for which a utility function can not
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Given the existence of a preference ordering sat-

isfying properties listed above, it has been shown that a

utility function can be constructed in the usual sense.

More correctly, a class of real—valued, continuous, order-

preserving (utility) functions, unique up to monotonic

transformations can be shown to exist if there exists an

ordering of the type described above. The formal result

as stated by Uzawa [1960, p. 135], based on the theorem

by Debreu [1954, p. 162, Theorem I] is as follows:

Theorem: If a dichotomous binary relation, P, defined

on an n—dimensional Euclidean (commodity) space, is

irreflexive, transitive, monotonic, convex, and con—

tinuous, then there exists a real—valued, and continuous

function u(x) defined on the Commodity space, such

that for any x,y in C:

xPy if and only if u(x)>u(y).

The proof of the theorem is omitted due to the fact that

no additional insight of economic relevance may be had

from it.

So far, the discussion has been of a general

mathematical nature, with no explicit behavioral content.

For the empirical analysis of consumer's demand, however,

certain behavioral assumptions are needed. Before specify-

ing these, however, we define the concept of an "attainable

set of commodities":

 

be constructed. Pearce [1964] has discussed why the

"lexicographic ordering" does not seem to be of much

empirical relevance.
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Definition: The "attainable set of commodities" is defined

to be a proper subset of the commodity space, C, and is

given by {x: p'x = y, x in C} where p is the (nxl) vector

of prices that the consumer must pay, and y is the prede-

termined amount of total expenditure that the consumer can

make, y being a scalar.

The formal model of utility theory, then, rests on the

following axioms:

Axiom 1: (Existence of a preference ordering). It is as-

sumed that the consumer possesses a dichotomous irreflexive,

transitive, montonic, convex, and continuous "preference

ordering" defined over the entire commodity space, C.

Axiom 2: (Axiom of Choice). It is assumed that the con-

sumer chooses that commodity bundle x, which is preferred

to all other commodity bundles in the "attainable set" of

commodity bundles.

Although these two axioms are sufficient for an analysis

of consumer's demand, and the principal results may all

be obtained by using methods involving finite differences,

it is usually assumed also that:

Assumption: (Differentiability). The set of order-

preserving utility functions that result from the prefer—

ence ordering assumed to exist from Axiom l, are all at

least thrice differentiable.

 

The need for this assumption arises from the fact that

Debreu's Theorem guarantees only the continuity of the

utility functions, and makes no claims about differenti—

ability. Having assumed differentiability, classical

calculus techniques may be utilized in the analysis of

the consumer's problem, and the derivation of demand
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functions and restrictions upon them become straightfor-

ward.

On the basis of Axioms l and 2, and the assumption

of differentiability, the consumer's problem may be formu—

lated as:

Problem: Given a set of prices {p1, p2,...Pn3, and

a fixed level of total expenditure or income y, the

consumer wishes to any utility function that preserves

the preference ordering given by Axiom 1; subject to

the "budget constraint" p'x=y.

Once it is recognized that by virtue of the definition of

a "monotonic" transformation, the choice of the specific

utility function to be maximized is arbitrary, then the

above statement of the problem may easily be seen to be

identical in formal content to the classical statement of

the consumer's problem. The advantage of the above approach

lies, however, in identifying the set of primitive com-

ponents of this assumption, and hence in increasing the

insight into the behavioral implications of the utility

assumption.

Before proceeding to an analysis of the problem

described above, and the derivation of the classical re-

sults of demand theory, we shall digress to discuss very

briefly some of the saliant issues in the theory of "re-

vealed preference." In conclusion, we may mention here

that two topics of current interest have been completely

neglected in our discussion so far. These are the topics

of dynamic utility maximization and of stochastic utility
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and uncertainty. Our excuse for this omission is that de—

spite their great significance these theories are yet in

an embryonic state, and have, therefore, not been a source

of many additional empirical tests.

1.4 Revealed Preference: A Digression 

No discussion of axiomatic utility theory would be

complete without a mention of the revealed preference ap—

proach, due to Samuelson [1938a, etc.], which historically

preceded the simpler and equally general approach outlined

in the preceding section. In fact, the general preference

relation approach gained much from the discussions of re-

vealed preference theory. In this section, therefore, we

shall briefly survey the principle ideas underlying re—

vealed preference theory, the related debate over transi—

tivity, and the reasons why revealed preference theory

may be considered to be a special case of the general

theory outline in section 2.

In the tradition of Gustav Cassel, and Henry L.

Moore, Paul A. Samuelson attempted to construct a theory

of consumer demand independent of the idea of a "utility"

function. The resultant revealed preference approach

started out with the assumption that given a set of market

prices and income, the consumer selects a unique commodity

bundle. Thus, a single—valued demand function,

i

Xi = h (pll°"lpnrY) (i=1,...,n)
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was assumed to exist. Also, by nature of definition, the

budget constraint,

was assumed to hold. It becomes easy to show that from

these conditions alone, we may demonstrate the validity

of many of the principle results of demand theory to be

derived in the next section. However, the two most import-

ant results of demand theory: the symmetry and negative

definiteness of the Slutsky matrix, are not deduceable

from this assumption alone.

To get at these crucial properties of the Slutsky

matrix, an attempt was made to work backwards in order to

infer the existence of some sort of a quasi-utility func—

tion from the axioms of revealed preference.21 Pursuing

this approach, it was found that the symmetry of the

Slutsky matrix could not be proved from the assumption

given above, alone. with regard to the negative definite-

ness, however, the revealed preference approach led to

some degree of success. To show that the Slutsky matrix

was negative definite the revealed preference theorists

introduced the so-called "weak axiom" of revealed prefer—

ence:

 

21This interpretation is provided by Pearce [1964,

p. 67]. This section has greatly benefited from the dis-

cussion of revealed preference theory in Pearch [1964, pp.
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The Weak Axiom: If a specific commodity bundle x0 is pur—

chased at a given set of prices and income, when another

commodity bundle x could also have been purchased; then

the commodity bundle x1 will never be purchased when x0

may also be purchased at the prevailing income and prices.

On the basis of this axiom, we may define a revealed pre—

ference relation, R, which is antisymmetric, and is given

by:

xoRxl if and only if 2i pi(x$ - xi) 3 0, xofxl.

Assuming only antisymmetry of R, it can be shown that the

matrix of Slutsky terms is negative definite. However,

the demonstration of symmetry of the Slutsky matrix re—

quires assumptions with regard to the transitivity of R.

Historically, the realization that it was necessary

to assume the transitivity of the revealed preference re-

lation, R, came after great difficulty. The first step

was provided by Houthakker's [1950] "strong axiom" of

revealed preference, which established the relation R*,

where xOR*xS if and only if (s-l) commodity bundles can

be found such that xoRxl, lex2,..., xs_leS. The "strong

axiom" required that R* be antisymmetric. The motivation

behind the introduction of the "strong axiom" are quite

simple. The relation R* is transitive by definition.

Combining this with the axiomatized antisymmetry of R*,

Houthakker [1950] was able to show that a utility function

can, in fact, be demonstrated by appealing to Debreu's

Theorem, mentioned in the previous section, and noting
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that R* satisfies all of the requirements of a "preference

ordering" outlined in section 2. In fact, Uzawa [1960]

showed that both the revealed preference relations R, and

R* implied transitivity if the choice (demand) functions

satisfied certain regularity conditions. With this demon-

stration, it became clear that the relations R, and R* are

in fact equivalent to the relation P introduced in section

2.

To summarize, then, the revealed preference the—

orists pioneered in an attempt to found a theory of con-

sumer demand upon certain simple axioms derived from the

observation of market behavior. It was found, however,

that both the weak and the strong hypotheses depended

upon the additional assumption of transitivity. Thus,

the general "preference relation" approach of section 2,

is seen to be equivalent to the revealed preference rela-

tions approach. Indeed, the general approach gains con—

siderably in simplicity, without any sacrifice in

generality or rigor.

1.5 Theory of Consumer's Demand22 

In the previous section it has been shown that

the problem of the consumer is to

 

22This section relies heavily on Goldberger [1967].
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MaXimize: u = u(xl, X2""Xn)

Subject to: zipixi = y

where u = u(xl,...xu) is any utility function which pre-

serves a "preference ordering," x.l is the quantity con-

sumed of the ith commodity, with price, pi, and y is the

predetermined value of total expenditure. In this version,

the statement of the consumer's problem corresponds to

the "ordinal" model of utility theory.

The analysis of demand is usually conducted, how-

ever, in the very closely related "cardinal" model, which

may be given as follows:

Maximize: u = u(xl, x2,...,xu)

Subject to: Zipixi = y

where the consumer is assumed to possess a specific

utility function u(x), which it is assumed that he max-

imizes subject to the budget constraint. It is immediate-

ly obvious that the latter formulation is far more

restrictive than the former. In fact, the validity of

the second formulation as a relevant description of the

process by which the empirical data under analysis is

generated, is highly questionable. Fortunately, the

methods of analyzing both formulations are quite parallel.

In the following discussion, however, those results that

are valid only under the "cardinal" model shall be specifi-

cally pointed out. Needless to add, any results that are
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true under the "ordinal" model are also true for the

"cardinal" case, as the latter is a special case of the

former.

Recall that xi denotes the quantity consumed of

the ith good (i=l,...,n); pi the price of the ith good

(i=l,...,n); and y denotes the predetermined amount of

total expenditure, or income. It is convenient to use a

vector notation sometimes, and so the (nxl) vectors x and

p are defined as:

X1 p1

X2 p2

X = . , and p =

Xn pn

Given prices p, and income y, the consumer is assumed to

select that commodity bundle x, which maximizes the value

of an arbitrary (order-preserving) utility function

u = u(xl,x2,...,xn) = u(x)

subject to his budget constraint:

or,

p'x = y, in vector notation.
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By virtue of the properties that consumer prefer-

ences are assumed to have in Axiom l, and the assumption

of differentiability, the utility function u=u(x) is real-

valued, continuous, and thrice differentiable. To develop

further notation, ui=ui(x) will denote the first partial

derivative of u=u(x) with respect to xi; and ulj=uij(x)

will denote the second partial derivative of u=u(x) with

respect to xi and xj. Note that the assumption of thrice

differentiability implies that u .=u.., which shall always

be assumed to be the case.23 Thijpaiillel matrix notation

for these derivatives will be as follows:24

ul ' uln

uX = . , U = .

un . . . unn

 

 

23Alternatively, the existence of derivatives to

the second order could have been assumed, with the addi—

tional assumption that these second order derivatives were

continuous. This slightly weaker assumption would, in

fact, be sufficient to insure the equality of the cross

partials. For a proof of this theorem in advanced calculus,

see Cronin-Scanlon [1967, p. 90, Theorem 7]. The stronger

assumption is made for simplicity, though the economic

consequences of either assumption are practically identi-

cal.

24The matrix development of utility theory, which

has proved of great convenience is due to Barten [1964],

[1966], and Theil [1965], and [1967].
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Two additional properties of the utility function that are

a result of the properties that consumer preferences are

assumed to have may be noted here. The monotonicity of

preferences implies that all first partials of the utility

function uj, (j=l,...,n) are strictly positive. Also,

convexity of preferences imply that the matrix of second

order partial derivatives U is negative definite every—

where.25 This implies, incidentally, that ujj is strictly

negative for all j=l,...,n; so that each good has diminish-

ing marginal utility.

Using the conventional Lagrange multiplier method

for the solution of the constrained maximum problem, the

following function is constructed:

L(x,}\) = u(x) — Mp'x - y)

where A is the Lagrangian multiplier. Maximizing L yields

the solution to the constrained maximum problem. Differ-

entiating with respect to x and A, and setting the deriva—

tives equal to zero, we get the "first order conditions"

(FOC)

 

25For a proof of the latter property, which, in—

cidentally, is sufficient to assure a unique solution to

the constrained maximization problem, see Lancaster [1968,

p. 333].
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Or, in the more familiar non—matrix formulation, these are

the (n+1) equations:

u. = Api (i=l,2,...,n)

(FOC)

Zpixi = y (where the sum is from i=1, to n).

These first order conditions are the foundations upon

which a vast edifice of demand theory has been built.

Borrowing the terminology of macroeconomic models, the set

of (n+1) equations (FOC) may be construed as the set of

"structural equations" of demand theory, while the set of

demand equations and the equation expressing A as a func-

tion of y and p, may be compared to its "reduced form."

To solve for this "reduced form" we first note

that the negative difiniteness of the Hessian, U, further

guarantees that the set of equations (FOC) may be solved

to yield x and A, as single-valued functions of p and y.

These functions are denoted as

x = h(p,y), and A = A(p,y)

Or, in customary algebraic notation:

x. = hj(pl,...,pn,y) (j=l,...,n)

A = A(pl,...,pn,y)

The first n equations expressing xj as a function of all

prices and income are referred to as the "complete set of
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demand equations." It is readily verified that the demand

functions, hj(j=l,...,n) are invariant under an arbitrary

non-linear monotonic transformation of the utility func-

Bxi 3xi
553 , and 5;“ are

also "monotonic invariant." These are the equations that

tion. Hence, the partial derivatives

are estimated by the empirical demand theorist from an

analysis of expenditure and price data.

Using the Barten-Theil notation, a matrix solution

of the complete set of demand equations is possible. The

matrix solution can then be easily interpreted in terms of

the classical development in which Cramer's Rule was the

workhorse for deriving various properties of the demand

functions. To do so, some additional notation is required.

Since the set of demand functions are also differentiable

as a consequence of the differentiability of the utility

function, we define the (nxl) income-slope vector xy, and

the (nxn) price-slope matrix Xp, as follows:

—8 F- 3 _—xl 8x1 . . . x1

3 3 8
Y Pl Pn

x = . , and X = . .

y C p O O

axn an . . . an

3 3 3
Y __pl an  

Similarly, the A function is also differentiable, and the

scalar Ay, and the (nxl) price—slope vector Ap, are de-

fined as follows:
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3A_

Spl

Ay = g? , and Ap = E

§A_

pn

With this notation we may write down what Barten

[1966] has called "the fundamental equation of the theory

of consumer demand in terms of partial derivatives" as,

(1)...

Perhaps the best way to see the validity of equation (1)

is to consider the sets of equations that result from a

partial differentiation of the first order conditions,

(FOC), with respect to income, y, and prices, p. Differ—

entiating the set of equations (FOC) with respect to y,

we get:

3x 3x 8x

_1 2 n _ £31 _
u11 ay + u12 ay + ' ' ' + uln 8y Pi 3y ‘ 0

8x 3x 8x
2 n 8A _

unl 3y + un2 8y + ’ ’ ' unn 8y _ pn 3y 0

3x 8x 8x

1 2 n _
pl 53,—: + p2 T + . . + pn 59—- — l
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This set of equations is represented by the (n+1) equations

that result from equating the elements in the first column

to the product of the two matrices on the left hand side

of equation (1) to the corresponding elements on the

right. In a similar way, the system of (n+1) equations

resulting from equating the right hand side and the left

hand side elements in the (j+l)th column of equation (1),

are seen to be:

3x 8x 3;;

u + u 2 + ‘ + u n 32 = 0
11 p:I 12 Epj in 35; - Pl 5p]

9x 8x 8x

u. _.l + 11. _2+ . o . u. _n — p i = A

31 3p. 32 3p- in 3p- 3 3p-
j J 3 3

8x 8x 8x

1 2 3A _
u —— + u —+ - . - + u — — p — — 0
n1 8 . n2 8 . nn 8 . n 8 .

1 p: p: p] p:

8x 8x2 an

P1 ‘1an +92 E+...+pn8p_j =-Xj

The (n+1)2 equations that constitute the matrix

equation (1), can be solved for the (n+1)2 partial deri—

vatives. The easiest procedure to adopt is to premultiply

both sides of the equation by the inverse of the first

matrix on the left hand side of equation (1),26

26The computation is straightforward. Baretn [1964]

first adopted this procedure, and gave the formulae for the

inverse. Hadley [1961, pp. 107-109] gives the relevant

formulaes for the general case of inverting a partitioned

matrix of the form above.
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-l

U p (p'U 1pm 1 — (U 1p) (U lpw U l
__ I _l '1 P

p' O (U p)' -l

Carrying out the multiplication, we obtain the solution for

the slopes,

U_lp (p'U'lp)A.U'1—A(U‘lp)(U'lp)'-U‘1px'

-1 A(U_lp)' + x'

Reading off the blocks of equation (2), and writing in

simple algebraic form we have

" —l
(3) . . . A = (22 uljp.p.)

Y ij 1 3

where ulj denotes the (i,j)th element of the inverse of

the Hessian matrix, U.

4 . . . ——&-= A 2. ij . f all ‘=1 ... n.( ) 3y y( j u p3) or i , ,

3X1 ij is jt
(5) . . . 55; = Au —A Ay(£S u pS)(ztu pt)

is
Ay(>3S u ps)xj

fOr i,j=l,2,ouo,nn

(6) . . . 3%7 = -Ay(AZS ulsps + xi) (i=1,...,n)

l
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The equations (3)-(6) give the slopes of all the demand

functions and the A function, in terms of prices and in-

come. All of the properties that demand functions possess

may be obtained from these equations. Before doing this,

however, we shall write these equations in a form that is

more usual. This is done by substituting equation (4)

into (5) and (6). The revised version of these equations

are:

(7) . . . A = (2.2 uijp p.)‘1
y 1 j i 3

3xi ij
8 o o o — = A 2| u . I=l 0.0 n( ) 3y y ( 3 P3) (1 I I )

axi ij A (Bxi)(3x.) (axi)

(9) . . . 'a—I')" = All - T W— 43y — Xj F

J Y

(i,j=l,...,n)

8x.

3A - _ (_l) 1%] -_
(10) u I o apj —‘ B By + Xj \ay (j-l’u-o’n)

We might note that equation (10) is called "Schultz's

Relation," after Schultz [1938].

These equations have been used extensively by

empirical demand theorists; and specially in the case of

"additivy" (discussed below) they have proved to be a

source of considerable simplification in computational

procedures. In the next section we shall discuss the

implications of these equations for demand theory. Before

concluding this section, though, it ought to be pointed
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out that equations (8) and (9) are a modified version of

the Slutsky equation, or in the terminology of Hicks and

Allen [1934], "the fundamental equation of value theory."

This can be seen by denoting by Kij' the so—called "Slutsky

term"

A (3*) (“3)(ll) . . . Kij = Au " 5:; ~3-y— 5y—

With this notation, equation (9) may be written as Hicks

and Allen wrote it,

(12) . . .

where Kij’ is called the (Hicks—Allen) "substitution ef—

fect" and the second term on the right is called the in—

come effect" of a change in price on the quantity demanded.

From equation (12), and from the fact that the demand

functions (and their partial derivatives) are "monotonic

invariant" it is readily seen that the Slutsky term, Kij’

is also invariant with respect to an arbitrary non-linear

monotonic transformation of the utility function.

Hicks and Allen attached great importance to

equation (9) because they were able to show that Kij re—

presented the change in the quantity purchased by the

consumer of the ith good, due to a change in the price of

the jth, if the consumer's income was changed so as to

compensate for the price change in the sense of keeping

utility unchanged. Thus, the consumer's response to a
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price change could be decomposed into a (Hicks-Allen)

"substitution effict" Kij’ and an "income effect" given

by the term xj(§§i)

Barten [1964], following Frisch [1959] and Houth—

akker [1960], has further decomposed the Hicks-Allen

"substitution effect" into a "specific substitution ef-

fect" and a "general substitution effect." This has been

done in response to the realization that there exists a

difference between a "specific" substitution of one good

for another‘in terms of the ability of the two goods to

fulfill the same needs, and the "general" variety of sub—

stitution of one good for another due to the change in

real income that is accompanied by a price change. These

ideas can be expressed more rigorously by an investiga—

tion of the "indirect" utility function.

The "indirect utility function" is obtained from

the "direct utility function" u=u(x), by substituting the

demand functions x=x(p,y) into the latter, to yield the

value of utility that the consumer derives from selecting

the optimal good bundle under prices p, and total expendi—

ture y. The indirect utility function is denoted:

u = u*(p,y) = u(x(p,y))

Differentiating with respect to y and using the chain

rule for differentiation, we have
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U H
.

where we denote the first partial of u with respect to

xi by u., in the usual manner. Substituting for ui from
i

the first order conditions (FOC) we have

8x 8x

*= __i_ *= _i_uy Zi(Api) 3y , and uj Zi(Api) apj

We now use two results which may be obtained by suitably

differentiating the budget constraint in the first order

conditions (FCC) and which are formally derived in the

next section,

8x.
1 _ .

2i pi 5y— — l . . . (Engel aggregation)

8x. .

i _ _ . . . (Cournot aggregation)
and, Si pi 55; — xj

Substituting these in the equation above, we have

(13) . . . u; = A , and u; = eij (j=l,...,n)

It is clear, then, that the Lagrangean multiplier, A, is

the "marginal utility of income" so that the function

A = A(p,y) gives the marginal utility of income as a func-

tion of prices and income.

These results may now be utilized to analyze an

infinitesimal change in utility. Denoting the total

differential of the utility function by du, we have
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du = u* d + E. u? d .

Y y 3 3 p3

A dy -AZj dePj using (13)-

Similarly, the total differential of A= A(p,y), d , is

an
dA=Ad+z.——d.

yy 3313ij

Using Schultze's relation equation (10), we may write

this as

8x, 8A

dA=A d -z. [A—l+x.—]d.
yy 3 By Jay p3

We may now derive two kinds of compensating variations in

income. Setting du=0, we get the Hicks—Allen variety of

a change in income that is required to offset a change dp

in prices, in the sense of leaving utility unchanged,

(dy)* = Z. xjdp

On the other hand, in the analysis of Frisch—Houthakker

decomposition27 of the response to price change, we are

concerned with that change in income which will compensate

the consumer for a price change dp, in the sense of leav-

ing his marginal utility of income unchanged. This is 

given by equating dA = 0.

 

27The term is Goldberger's [1967].
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8

IAA (S ) j
** = Z. . .(dy) j y y + X] dpj

X.

3

(3X3)2. [ ——— + x.] d .

J ¢y 3y 3 p3

Where ¢ denotes the inverse of the "income elasticity of

the marginal utility of income" denoted By, and given by28

-l _ _ 3A

¢ :EA‘ (F)A

Consider now the total differential dxi of the

demand function for the ith good,29

(“1) (“1)dx. = ——— d + Z. ——— d .

1 3y y J 3p p:

Substituting from equation (9), we have

(a) [. MPH—13’") (“)1“1‘ W— 9”sz ‘E V 3y ‘X: F dpj

 

28This is the terminology of Barten and Theil, Our

is closely related to what Frisch [1932], [1959] called

the "money flexibility" which in our terminology would be

equal to E . Houthakker [1960] called ¢y the "income

flexibility."

29The argument could have been carried generally

for all goods by considering the (nxl) vector of differen—

tials of the demand functions, dx. For clarity, however,

we have chosen a single good. The extension to matrices

is obvious and can be found in Goldberger [1967, p. 17].
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With this formulation of the differential of the ith demand

flunction and the two concepts of compensation, we may

easily analyze the Hicks-Allen and the Frisch-Houthakker

decomposition of the response to an infinitesimal price

change of the jth commodity dpj.

In the Hicks—Allen case, consider a change in the

demand for the ith good, (dxi)* in response to the change

in the price of the jth good dpj, when the consumer is

compensated in the utility sense, so that dy=(dy)*. We

have then

(8x1) (3x1)

dx. * = ——— d + Z ——— d( 1) 3y y 3 apj p3

and,

d * = Z. x.d ..

( y) J J p:

(”ifSo that dx. * = Z. ——— d .( l) J apj p3,

(axi)* ij (axi)(3x.)

where 55; = Au — ¢y §§_ §§l = Kij

and is the Slutsky term introduced before. Thus, Kij

measures the response of the quantity demanded of the ith

good to the change in the jth price when income is com—

pensated in a manner so as to leave the level of utility

unchanged. The total effect of a price change is thus

decomposed into a "substitution effect" and an "income

effect." Incidentally, goods may be classified in the
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Hicks-Allen theory as substitutes, independent, or com—

pLenents according as Kij is positive, zero, or negative.

In the Frisch-Houthakker decomposition, however,

we consider a change in jth price and analyze the effect

on the demand for the ith good, when income is compensated

so as to leave the marginal utility of income of the con—

sumer unaffected. Thus, we have

(axi) (Bxi)

mi)” = '87 dY‘“ 2j ”E dpj

8x.

nd d ** = z. [ (——l) + .] d .
a ’ ( y) 3 ¢y 3y X] p:

So that on substitution we obtain,

3X. **

(dx. ** = 2. (——£) d .

l) J apj p3

3x. **

where, (§_£) = ..
. 1p3 J

(“1) (no) 6")= — + — + x_ ..—

Bpj ¢y 3y 3y 3 3y

= Aulj

Just as Kij was the Slutsky price slope, Fij is the Frisch30

price slope, and measures the response in the demand for

the ith good due to a change in the jth price, when income

 

30After Frisch [1959, p. 184] who introduced this

type of marginal utility of income compensated price re-

sponses in terms of elasticities. The term Frisch slope,

is used by Goldberger [1967, p. 18].
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is compensated in such a manner so as to leave the marginal

utility of income of the consumer unchanged. The total

effect of a price change has now been decomposed into a

specific substitution effect, a general substitution ef-

fect, and an income effect. On a suggestion by Houthakker

[1960, p. 248] goods may be classified as substitutes,

independent, and complements as the specific substitution

effect, F is positive, zero or negative.
ij’

A schematic representation due to Goldberger

[1967, p. 19] may serve to illustrate the two decompositions

of equation (9):

(axi)
ij (axi)(3x.)

(axi)
=

Au
- _

_ X-

Specific General
:gfzit Substitution Substitution L";2§:2:-J

Effect Effect

L—_Hi:ks:Allen Substitution

Effect __I

We might note here, that while the Hicks-Allen decompo—

sition is unaffected by monotonic transformations of the

utility function, the further decomposition of the sub-

stitution effect in the Frisch-Houthakker fashion is af—

fected by arbitrary non-linear monotonic transformations

of the utility function.
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1.6 Properties of Demand Functions
 

The first order conditions and the equations (7)-

(10) that were derived from them, have been used in the

previous section to decompose the consumer's response to

a price change. More fundamentally, however, these re—

sults can be used to derive important restrictions on a

complete set of demand equations of the consumer for whom

Axioms (l) and (2) and the assumption of differentiability

applies. Indeed, as Samuelson [1947, p. 97] puts it,

"utility analysis is meaningful only to the extent that

it places hypothetical restrictions upon these demand

functions." Prior to a formal derivation of these results

we shall introduce some concepts that have historically

been used in the analysis of demand.

Recall that the complete set of demand equations

is given by,

xi = xi(pl,p2,...,pn,y) (i=l,2,...,n)

and the related marginal utility of income function by,

A = A (P11P2;---rpnry)-

Although the analysis of demand can easily be conducted

with reference to the conventional mathematical concept of

"slope" of the demand function, or the partial derivative;

it has historically been analyzed with reference to "elas—

ticities" or logarithmic partial derivatives. We define,
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then, the (Cournot) "price elasticity of demand" (for

good i with respect to the jth price) as,

3(log x.) p. (3x.

= 1 = _i_l)
eij 8(log pj) xl apj

If i=j, then eii is referred to as the "own—price elas—

ticity" and otherwise as the "cross—price elasticity."

In a similar fashion we may define the "price elasticity

of the marginal utility of income" as,

8(log A)

eAj = 8(1og pj)

Where these (Cournot) price elasticities measure the per-

centage uncompensated change in the demand for ith good

with respect to the percentage change in the price of the

jth good, the alternative (Slutsky) "price elasticity of

demand" is defined as,

(pi

i' A Bxi 3x.

= (u n - (—(—)(4)1] A 8y 8y

(axi) (Bxi)

= ——— + . ———

apj Xaay

as before. From the analysis of the previous section, it

is easily seen that sij measures the utility—maintaining

income-compensated percentage variation in the demand for
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thezith good with respect to the percentage change in the

jth price .

Also, we define the (Engel) "income elasticity of

demand" as,

 

3(log xi) .1. (axi)

= x .

i = 8(109 y) 1 3y

where, Ei measures the percentage change in demand with

respect to a percentage change in income. Similarly, we

define the "income elasticity of the marginal utility of

income" as,

E = _a.<.2912).. = y. _a_
A 3(109 Y) A By '

We may note, once again, that EA is the celebrated "money

flexibility" parameter used by Frisch [1932], [1959], and

measures the percentage change in the marginal utility of

income associated with a percentage change in income.

In addition, we define the "budget share" of the ith good,

W.l, as

 

Note, that purely by definition, the following relation

(called "Slutsky's relation") connects the Cournot and

Slutsky price elasticities:

Slutsky's Relation: s.. = e.. + w. E..
ij ij j l



 



47

Finally, we define the "elasticity of substitution" be-

tween goods i and j, as

With these concepts in hand we are ready to derive

all of the known restrictions on a complete set of demand

equations. The proof of these results may be obtained

from the first order conditions, (FOC), directly, or from

their solution in terms of the slopes given by equations

(7)-(10). The procedure adopted is to give the most

simple proof of these results. As a matter of notation,

these restrictions are numbered from (R1) to (R7). Recall,

the first order conditions, (FOC),

u. = Api (i=1,...,n)

(FOC) . . .

The last of these (n+1) equations that must be fulfilled

by a complete set of demand equations is

(R1) . . . 2i pixi = y (Adding-up restriction)

By differentiating partially the (n+1) equation of (FCC),

called the "budget equation," and by multiplying and divid-

ing by y/xi, we get

(R2) . . . Zi wiEi = l (Engel aggregation)

I 'fl’Y; ‘
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Alternatively, we may obtain the same result by multiply—

ing equation (8) by pi and summing over i, and substitut-

ing for Ay from equation (7). The third restriction,

"Cournot aggregation" is similarly obtained by differen—

tiating partially with respect to pj, the same "budget

equation" and multiplying and dividing appropriately to

convert slopes into elasticities and collecting terms,

(R3) . . . E. wie.. = -w. (j=l,...,n) (Cournot aggregation)

Alternatively, this result can be derived by multiplying

(9) by pi, summing over i, substituting for (R2), multiply-

ing and dividing appropriately, and noting that the inverse

of the symmetric matrix U, is itself symmetric.

The fourth restriction is the symmetry of the

Slutsky terms, Kij’ and can most easily be proved by not-

ing that U-1 is a symmetric matrix, so that ul3=ujl. This

gives,

ij A (axi)(3x,)

Kij = Au "W “a? ”lay

.. 8x. 8x.

- ._ (—a) (—l)Ay y 3y

= K..

31

Recalling the fact that the Slutsky elasticity is given by,

p.

= —l K

X.

S.. ..

l] l l]

h I
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we may state the symmetry condition in elasticity form:

(R4) . . . wisij = szji (i,j=l,...,n) (Symmetry Relation)

The restrictions (R2) through (R4) are the main

content of the classical theory of consumer demand. They

constitute independent restrictions on a complete set of

demand equations and are responsible for the considerable

economy of parametrization which results when it may be

assumed that the consumer behaves in a manner which

satisfies Axioms (l), (2). Additional restrictions that

are not all independent of these may also be derived from

these conditions.

The "homogeneity condition" may be obtained by

observing that if prices and income were multiplied by

the same arbitrary constant, the first order conditions,

(FOC), remain unaffected by proportional changes in income

and prices. Stated in a more rigorous way we have

(R5) . . . z. e.. = -E. (i=l,...,n) (Homogeneity)

which states in elasticity form the condition that demand

functions are all homogeneous of degree zero in income

and prices. This suggests that a proof of the result (R4)

may be obtained by applying Euler's theorem after estab-

lishing the homogeneity of degree zero of demand functions.

More rigorously the result may also be proved by multiply—

ing equation (9) by pj, summing over j, and substituting
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conditions (R2), (R3). This proof points out the fact that

the "homogeneity condition" is not independent of (R1),

(R2), and (R3), from which it can be derived. In this

sense it imposes no additional constraint on the demand

functions.

A familiar result, that has been utilized by

Pearce [1964] as a restriction on a set of demand functions

is

(R6) . . . 2i piKij = Zj ijij = 0.

The validity of this result may most readily be seen by

multiplying equation (9) by pi, summing over i, and using

Engel aggregation to clear terms. Repeating the same pro-

cedure for pj, the truth of (R9) can be established. A

somewhat longer procedure adopted by Pearce to prove the

same result may perhaps be more intuitively appealing.

The term ZipiKij may be proved equal to zero by summing

the two equations that may be obtained by (1) partially

differentiating the budget equation with respect to pj,

and (2) partially differentiating the budget equation with

respect to y and multiplying by xj. The second term x

Zj ijij can be shown to be zero by substituting for 55%

from the Hicks-Allen fundamental equation of value theory

into the homogeneity condition. It might be noted that

a classical consequence of this condition is that not all
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goods in the budget of the consumer can be complements in

the Hicks—Allen sense.31

A final result, which is stated without proof,32

is that the (nxn) matrix of Slutsky terms, Kij’ is nega-

tive definite. The reason for this is simply that due to

our assumption of convexity of preferences, the Hessian

matrix U is negative definite. We state the result form—

ally,

(R7) . . . K is negative definite,

where we have denoted by K the matrix of Slutsky terms.

We might point out that from equation (2) we have:

K = AU"l — A AY(U—lp)(U—lp)'

Alternatively; (R7) may be stated as,

K11 K12

K
<0’ >0, etc.

 

K

ln K
21 22

which is the familiar result that the principal minors of

a negative devinite matrix alternate in sign, beginning

with the first minor being negative.

31The fact that no such condition holds for substi—

tutes points to an asymmetry in the Hicks—Allen theory

that Houthakker [1960] has called a "minor blemish." It

was in response to this aspect of the Hicks—Allen theory

that the further Frisch—Houthakker decomposition of the

total substitution effect was proposed. It should be noted

that the definition of substitutes and complements on the

basis of the sign of the specific substitution effect suf-

fers from no such bias.

32

 

For a proof see Pearce [1964, pp. 54—7].

1 I“-
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The restrictions (Rl) to (R7) constitute all of

the known restrictions on a complete set of demand equa-

tions, and have been utilized with great effect by empiri-

cal researchers in demand theory. We might point out that

in this section we have stated all of these restrictions

in Slutsky price elasticity form instead of the usual

Cournot form. The only exceptions being the homogeneity

condition (R5) and Cournot aggregation (R3). This has

been done because it is the Slutsky elasticities that are

usually estimated by researchers. The reason for this is

immediately obvious when we consider the Symmetry condi-

tion as it is often stated, in Cournot form:

E. + (w.)-le.. = E. + (w.)_le..

i j ij j 1 31

The validity of this can be seen by direct substitution

of the Slutsky relation in (R4).

Due to the importance of the Slutsky elasticity

in actual empirical practice, we note two further results

that are the direct consequence of Cournot aggregation,

the Homogeneity condition, Engel aggregation, and the

Slutsky relation:

(R5') . . . Zj sij = O (i=1,...,n) (Slutsky homogeneity)

(R3') . . . Z = 0 (j=l,...,n) (Slutsky aggregation)..w.s..
i i ij
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1.7 Aggregation Theorems
 

In the previous sections a considerable amount of

theory has been developed with regard to the single con—

sumer's demand for basic goods. It has been shown that

demand functions resulting from utility—maximizing behavior

must obey certain restrictions. It is unfortunate, how—

ever, that typically the data that are available are on a

community or nation's expenditure on aggregated "expendi—

ture categories" which subsume within them a large number

of basic goods. It is meaningful to ask, then, what

additional assumptions are required before we can apply

the theory developed so far to the aggregate data that is

available. In answer to this question, we give in this

section the necessary and sufficient conditions under

which, (1) basic-goods may be aggregated into "composite"

goods in such a way so as to insure that the aggregate

demand functions possess all of the desirable properties

of the micro demand functions; (2) single-consumer demand

functions may be aggregated into community demand func—

tions with the latter possessing all of the properties of

the former; and (3) individual utility functions may be

aggregated to community ”behavior function" such that the

latter gives rise to a community demand function which is

both consistent with, and possesses all of the properties

of, the individual demand functions.
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Of these, the conditions pertaining to the aggre—

gation over commodities is the most straightforward. To

restate the problem, we seek a procedure whereby the vast

number of basic commodities that enter the individual's

utility functions may be condensed into a fewer number of

composite commodities that represent sets of the elementary

commodities. In doing so, we must obviously sacrifice

some of the information that the micro data contain. For

aggregation to be "consistent" however, we require that

this sacrifice of information should not affect the re—

sults obtained. More precisely, aggregation will be said

to be "consistent" when a knowledge of the macro relations

and the values of the independent macro variables leads

to the same values of the dependent macro variables as

would be obtained if all the micro relations and the

values of all the independent micro variables were known.33

Specifically, in the context of utility theory, it is

useful to think that the consumer maximizes utility in

the following manner: he first allocates the total expend—

iture between composite goods by reference to the price

indices of these goods; and then allocates the expenditure

on each category among its primitive components, the basic

 

33These ideas are expressed by H. A. J. Green

[1964, pp. 3-5, 35] who provides an excellent survey of

the literature on aggregation. As will be obvious, much

of this section relies on the initial chapters of Green

[1964].
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goods, by a reference to their prices.34 In this frame-

work an aggregation procedure will be said to be "consist-

ent" if there exists a quantity index and a price index

for the composite commodity such that, (1) maximizing a

utility function whose arguments are the quantity indices

gives rise to aggregate demand functions "consistent" in

the general sense defined above; and in addition (2) the

product of the price and quantity indices for the composite

commodities gives rise to the same value of expenditure on

the composite commodity as would be obtained by summing

the expenditure on each of the elementary commodites con—

tained in the composite commodity.

Before starting the formal result, it would be

useful to give the following definition:

Definition: A function u = u(xl,x2,...,xn) is said to be

"weakly separable" if and only if the commodities (xl,...,xn)

can be partitioned into groups G1, G2,..., and when

8(u./u.)

-——%§—l— = 0, for all i,j 6 GS, k t GS, where ui and uj

denote the first partial derivatives of u with respect to

xi and xj respectively, as before.

We are now in a position to state the basic theorem on

the aggregation over commodities:

 

34This is the celebrated "utility-tree" concept

proposed by Strotz [1957]. Strotz [1957, 1959] and Gorman

[1959a] analyzed in detail the consequences of this two—

stage maximization procedure using the concept of "func—

tional separability" due to Leontieff [1943] and Sono

[1961]. In fact, Strotz and Groman anticipated many of

the useful results that were later established by Frisch

[1959], Houthakker [1960], and Barten [1964]. These

latter results are discussed in Cahpter 2.
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Theorem: The necessary and sufficient condition for a

“consistent" aggregation of goods is that the utility

function be weakly-separable, and that each quantity index

be homogeneous of degree one in its elementary commodities.

For a proof of the theorem, the reader is referred to

Green [1964]. A more complete proof is provided by Gorman

[1959a] and Strotz [1959]. To gain an intuitive insight

into this theorem we note two facts. The first condition

requires weak separability of the utility function, which

may be argued for on grounds of the assumption of the two-

stage maximizing procedure for the individual consumer.

Given weak separability, the only other condition is that

there should exist the possibility of constructing a

quantity index for the composite commodity such that a

proportionate change in all of the quantities of the ele—

mentary commodities gives rise to a change in the quantity

index of the same proportion. We see, then, that it is

 

35This is Theorem 4 in Green [1964, p. 25], and is

originally due to Gorman [1959a] and Strotz [1959]. Gor-

man and Strotz offered three alternate conditions that

were also necessary and sufficient for consistent aggre—

gation. These were: (i) that there be only two composite

commodities; or (ii) that the utility function be weakly-

separable with respect to a partition of the goods into

two groups, with one group consisting of a single commodity

and the other group consisting of composite commodities;

where it should be possible to construct quantity indices

for the composite commodities which are homogeneous in

their arguments; or finally, (iii) that the utility func—

tion be strongly separable. It should be noted that the

condition we have stated in the theorem is a generalized

version of the celebrated "Composite Commodity Theorem"

anticipated by Leontieff [1936] and established by Hicks

[1939]. The Leontieff—Hicks case of price proportionality

is a special case of this theorem. As a parallel degenerate

case, with limited economic relevance, Green [1964, p. 25]

cites the possibility of quantity proportionality among

the elementary commodities.

35
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not unreasonable to consider that the consumer maximizes a

utility function whose arguments are quantity indices of

composite commodities, subject to the aggregate budget

constraint which limits the expenditure on all composite

commodities to total expenditure. This procedure gives

rise to demand functions for the composite commodities

which possess all of the properties possessed by the demand

function for the elementary commodities. These demand

functions, however, are for the single-consumer. We seek

now to find conditions under which these functions may be

aggregated over individuals to give rise to community

demand functions.

In the case of aggregation over individuals, how-

ever, there does not exist a procedure similar to the case

of aggregation over goods. The temptation exists, never-

theless, of attempting to find conditions under which util-

ity functions may be aggregated over a community to give

rise to a community "behavior function."36 Indeed,

 

36This approach trespasses on the domain of welfare

economics. The "behavior function" has, however, only

limited welfare implications; for it cannot be unequivo-

cally asserted that social welfare has increased if the

aggregate of utility increases. For a discussion of wel-

fare issues see Pearce [1964, pp. 127-132] and Green [1964,

pp. 55-7]. Our interest in the existence of a community

behavior function is restricted to the possibility of an

additive-type community behavior function which may result

from similar individual utility function, thus resulting

in the same economies of parametrization for the community

demand functions as are available for the individual de—

mand functions. Thus we are interested in the community

behavior function only to the extent that it might result

in all of the "cardinal" properties of micro demand func-

tions in the macro demand functions.
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Samuelson [1956] motivates his discussion of social indif-

ference curves by their bearing on community demand curves.

The temptation always is to define a social-welfare func-

tion, somewhat like a "composite" utility function, so

that by direct appeal to the results derived for the

single-consumer theory, we may easily deduce the same re-

sults for the community demand theory. The efficacy of

this approach has been a source of some controversy, and

in this dissertation a position will not be taken on the

relevant issues. Instead, we shall take a somewhat neglect-

ed path which leads surprisingly to conditions quite similar

to the existence conditions for a community behavior func-

tions.

Without recourse to a community utility function,

we might ask under what conditions will the aggregate de—

mand functions possess the properties of the single-con-

sumer demand functions. Specifically, we seek necessary

and sufficient conditions under which community demand

functions satisfy the restrictions (R1) to (R6) that

individual demand functions were shown to possess, in

section 1.4. To do so we develop some notation37 as

follows:

Let the subscript i=1,...,n refer to goods as usual; and

the superscript k=1,...,K refer to individuals. Denote

 

37This line of attack was adopted by Roy [1952],

whose notation we adopt, with slight modification.
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the demand function for the ith commodity for the kth

individual:

k k k .
xi = Xi(p1’°"'pn’ y ) for all i,k

where yk refers to the kth individuals income. Defining

community aggregates of demand for the ith good and com-

munity income respectively in the natural fashion:

we denote community demand functions:

xi = xi(pl,..., pn, y) for all i.

To facilitate the exposition we define the following

 

parameters:

xk k k k
k___ i k_y k_3(1ogy)_ (3y)

Finally, if we denote as usual the Cournot price elastic-

ity, the Slutsky price elasticity, the Engel income

elasticity, and the budget share of the ith commodity in

the community demand function respectively as eij

Ei’ wi; and their counterparts for the kth individual's

demand function by e3 Sij’ BE, WE; then it is easy to
ij' i

verify that the following relations hold between the macro

SDII le

elasticities and the micro elasticities:
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_ k k .'.

E. = z Bf bf dk for all i,k
i k i i

w = Z w wk ck for all i,k

i k i i

_ k k k -l

- (wi c )(bi)

With these definitions, we state the two main results:

Theorem: The community demand function is homogeneous of

degree zero if and only if dk = 1.

Also,

Theorem: The Slutsky term is symmetric in the community

demand function if and only if ckdk = b? for all i.

(dek = bk => 5.. = Z 8*. bk )
l ij k 13 i

It can also be shown that if the community demand function

is homogeneous of degree zero, and possesses symmetric

Slutsky terms, then the Adding-up restriction, Engel

Aggregation, Cournot Aggregation, and the condition (R6)

ZipiKij = szjKij = O are fulfilled. As the proofs of

these results are trivial we do not state them.38

An intuitive interpretation of these results is

immediately available. The first theorem states that if

the community demand functions are to be homogeneous of

degree zero, as they must be, then it is necessary and

 

38Roy [1952] proves the first Theorem.
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sufficient that the "elasticity of income distribution,"

to use Roy's term, be unity. Alternatively, we must.

assume that the proportion of national income held by

every individual is unaffected by changes in the national

income. This is reasonable to expect, for the community

demand curve is a function of the prices and community in-

come, while the individual demand functions admit an

extremely large number of income variables yk, k=1,...,K.

The price that is paid for aggregating all of the income

variables is, as we should expect, paid by the assumption

that income distribution of the community remains un—

changed.

The requirement for the symmetry of Slutsky terms

is far more stringent. In combination with the requirement

of no change in income distribution, the condition of the

second theorem is in fact equivalent to the restriction that

W? = wi(i=l,...,n; and for all k); or, the restriction that

every commodity has the same share of every consumer's

budget. This is indeed an extremely stringent restriction

for it implies that every consumer allocates his expendi-

ture in identical proportions between the commodities in

his budget: the actual quantities of each commodity

purchased being dependent only on his income. This im-

plies, incidentally, that the Engel curve for each com—

modity is a straight line through the origin, and is

identical for each individual.
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Interestingly enough, these are the very conditions

on Engel curves that Gorman [1953] has shown to be suf-

ficient for the existence of an aggregate of utility func-

tions, the community "behavior function" mentioned in the

beginning of this section. We have come upon these con-

ditions, however, in a more direct manner, and have

avoided the relatively difficult proofs that are needed

to establish the consistent aggregation of utility func—

tions. For completeness, however, we state the theorems

due to Gorman:39

Theorem: (Necessity) A necessary condition for consist—

ent aggregation of individual utility functions is that

all Engel curves are straight lines, parallel for each

individual.

Theorem: (Sufficiency) It is sufficient for consistent

aggregation of utility functions that all Engel curves are

parallel straight lines through their origin, for each

individual.

To summarize, then, aggregate demand functions

possess all of the "ordinal" properties of the single-

consumer, basic—good demand functions if it may be assumed

that the community's income distribution remains unchanged,

and also that each individual's Engel curves are straight

lines through the origin, and are identical. We have

also shown that if the last property of Engel curves may

be assumed then a community behavior function may be

 

39These occur as Theorem 9 and Theorem 10 respec—

tively in Green [1964, p. 47, p. 49] where a proof is also

given.
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constructed by aggregating over the individual's utility

functions. Since the aggregation procedure assumes the

summing of functions of individual utility functions, we

may conclude that if all of the individual utility functions

were separable with respect to the same partition, then

the community behavior function is also separable with

respect to the same partition. Thus, all of the "cardinal"

properties resulting from additivity—type assumptions on the

individual utility functions carry over to the community

behavior function. This has the effect of imposing the

same parametric restrictions on the aggregate demand

functions. Thus, the community's demand for composite

commodities may be treated identically to the single—

consumer's demand for elementary commodities if we assume

no change in income distribution, and linearity through

origin of all Engel curves.





CHAPTER 2

SEPARABLE PREFERENCES

2.1 Introduction
 

The set of restrictions on a complete set of de-

mand equations that have been derived in section 5 of the

previous chapter have been used with great effect in the

analysis of data on consumer demand. The major difficulty

that arises in the estimation of a complete set of demand

equations is the large number of free parameters to be

estimated. For n commodities it is required that esti-

mates of (n2+ n) elasticities be provided. A preliminary

reduction in these can result by imposing the independent

restrictions of Engel aggregation, (R2), Cournot aggrega—

tion, (R3), and Symmetry, (R4), derived in section 1.5.

This reduces the number Of free parameters from (n2 + n)

to a substantially less, yet fairly large number of

l/2(n2 + n - 2). For example, consider the moderate case

of n=lO, for which the imposition of these classical re—

strictions reduces the free parameters from 110 to 54,

which is still large in comparison to the number of ob—

servations that are usually available.
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In the light of these facts a need has been felt

to impose additional restrictions on the consumer's pre-

ferences in order to further restrict the number of free

parameters to be estimated. The next efficacious course,

and one that has proved of great importance, has been to

incorporate the quasi-cardinal assumption that the con-

sumer's preferences are "separabel" in some manner. In

this chapter, then, we present a brief survey of this

theory of separable preferences. In the following section

(Sec. 2.2) we define the alternative separability assump-

tion and state briefly their implications for the Slutsky

terms of the demand equation. Subsequent sections are

devoted to a more detailed discussion of the implications

for complete sets of demand equations of the assumptions

of additive preferences, almost additive preferences and

neutral want association, respectively. Finally, we

discuss the case of indirectly additive utility in the

last section, Sec. 2.6.

2.2 Definitions and Fundamental Results
 

Before defining "separability" of consumer pre-

ferences in a rigorous manner, we might examine intuitively

the motivation behind such an assumption. Strotz [1957],

[1959], and Gorman [1959a,b] expressed the belief that the

total utility that the consumer derives is the sum of the

utilities of the "branches" of utility, which may themselves
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be split up into further branches. This View of utility

as a "tree" reflected the belief that the set of all

commodities in the consumer's budget could be partitioned

(perhaps repeatedly) into groups of commodities in such a

way so as to insure that price changes outside any particu-

lar group failed to affect the marginal rates of substitu-

tion between goods within the group. Intuitively, this

implies that the consumer's allocation of expenditure

between several goods in one group of commodities, say

food, is unaffected by changes in the price of goods

outside the food group. On a priori grounds, these assump-

tions do not appear unreasonable for broad aggregates of

goods.

In order to give rigorous content to these ideas,

we first define the concept of a "partition" of a set.

In doing so, we assume familiarity with the defines of a

"set," the operations of "union" and "intersection," the

"empty set" and the definition of "mutually exclusive"

sets. We have then:

Definition: A Partition, P, of a set N, is a set of sets,
  

P = {N1,N2,..., Nk}; where the Ni (i=1,...,k) are mfitually

exclusive subsets of N, whose "union" is N, i.e., .U Ni = N.

Now we assume that the n goods can be partitioned ihio

groups, Gl’GZ""’ Gk' with the number of goods in group

Gi being denoted by ni, for all i=1,...,k. Of course, the

sum Xi ni = n. We introduce also the notation x1 to denote
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an (nix 1) vector of goods in the ith group, Gi' Goods

within a group will be identified by a lower subscript,

thus x; denotes the jth good in x1. Denoting the utility

functions, once again, by u(x), and the marginal utility

of the ith good by ui, we have:40

Definition: u(x) is strongly separable with respect to a

partition, P, if and only if

3(ui/u.)

__§§__l_ = 0 V, IENS, jsNt (s#t)

k

 
 

k¢(NS U Nt)

Definition: u(x) is weakly separable with respect to a

partition, P, if and only if,

  

3(ui/u.)

“‘"SE—L = 0 V i, jeNS; k¢N
k S

It is easy to see that both strong and weak separability

are invariant with respect to an arbitrary non—linear

monotonic transformation of the utility function.

Definition: u(x) is Pearce-separable with respect to a

partition, P, if and only if it is weakly separable with

respect to P, and is strongly separable with respect to a

pointwise partition of the elements of P. In other words,

u(x) is Pearce separable with respect to P, if and only if,

  

3(ui/u.)

3x = O Vi,j€NS; k#i,j

k

Once again, it is readily seen that Pearce-separability

is a "monotonic invariant" concept.

1This section is but a paraphrasing of Uzawa's

[1964] paper which has so succintly related the various

concepts of separability, in addition to providing a proof

of the necessary and sufficient conditions on the Slutsky

terms under "neutral want association."
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The consequence of both weak and strong separa—

bility, (and hence of Pearce-separability,) both in terms

of the functional form of the utility function and of the

Slutsky terms have been proved by Uzawa [1964]. As the

proof is mathematically involved, and offers little in-

tuitive understanding, we have omitted it, but we state

the principal results derived by Uzawa. (In our state-

ment we have actually combined two theorems into one.)

Theorem: u(x) is strongly separable if and only if
 

either (i) u(x) = F(ul (x1)+ . . . + uS(XS))

or (ii) W)( %) V ieNS, jeNt(s#t) & for

all x, k(x) being some

function of x.

where, for the second condition it is assumed that u(x)

is strictly quasi-concave; and the theorem holds in both

cases for s>2.

Also, a similar theorem for weak separability:

Theorem: u(x) is weak1y_separable if and only if
 

either (i) u(x) = F(ul(xl), . . . , us(xs))

.. st (8X1) (11:1) . .

or (ii) Kij = k (x) §§—- 3y VieNs, jeNt(s#t)

& for all x, kSt (X)

defined for s#t.

where, once again, for the latter condition it is assumed

that u(x) is strictly quasi-concave.
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With the aid of these theorems, and the definition

of Pearce—separability, it is readily seen that:

Theorem: u(x) is Pearce—separable if and only if,

3(ui/u.)

either (i) ————3— = o i,jsN; k7£i,j
Bxk s

or (ii) u(x) = F(fl(ull(xi)+...+ulnl(xl), ... ,

nI

fS(uSl(xi)+...+usnS(xS ) )
n
5

st (Bxi)(3x.)

or (iii) Kij = k (x) 8y— 5;; IENS, jENt; & for all x,

kSt(x) defined for all

s,t.

where for (iii) u(x) is assumed to be strictly quasi-

concave .

2.3 Additive Preferences
 

The pioneering works in the theory of separable

preferences are those of Schrotz [1957], [1959], Gorman

[1959], Frisch [1959] and Houthakker [1960]. In particu-

lar, Houthakker [1960] considered the case of "additive

preferences," (or "strongly separable" utility, in the

terminology of Sec. 2.2), i.e., the case where the con-

sumer's preferences could be represented by (at least one)

"41

utility function which was "directly additive. A

41Alternatively, this could be called "complete

want-independence" in the terminology of Frisch [1959],

who defined "want—independence" between two goods as the

case where the marginal utility of one good does not depend

on the quantity of the other good.
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utility function will be said to be "directly additive"

if and only if42

u = u(x 1n) = u(xl)+...+u(xn)lloo.’

Now, since the Slutsky equation and the complete

set of demand equations are all invariant with respect to

an arbitrary non-linear transformation of the utility

function, we may proceed to analyze the case of "additive

preferences" by considering that specific utility function

which is directly additive. We must remember, however,

that this additive (canonical) form of the utility function

is chosen only for convenience, and all of our results

must be checked independtly for monotonic invariance.

To proceed, then, if utility is directly additive

then the Hessian matrix of the utility function, U, is

diagonal, so that the inverse, U—l, is also diagonal,

with elements:

(14) . . . u. —

 

42Note that "direct additivity" of the utility

function is not the same as "strong separability" or its

equivalent "additive preferences." The case of strongly

separable utility" or "additive preferences" exists if

and only if the class of monotonic transforms of any

utility function representing the consumer's preferences

contain at least one "directly additive" utility function.
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The major effect of additivity is that all price elasti—

cities may be derived from income elasticities and the

(inverse of) the income elasticity of marginal utility of

income, or in Frisch's term the "money flexibility"

parameter. To prove this it is helpful to rewrite the

solutions to the slopes of the demand equations and the

marginal utility of income function that are given as

equations (7)—(10), in terms of elasticities. These may

be written as:

-l ..

_ 3(lo A) _A 13
(15) . . . ¢ — I:8 log y)] — y (ZiZj u pipj)

¢ ..

 
—l

8(log x.) A ij
_ i = (2. u p.) (i=1,...,n)

(l6) . . . Ei — 3(109 y Xi j j

8(1og xi)

(l7) . . . e.. = —3———-———- = n.. - ¢E.E.w. — E.w.

13 (log pj) 1] 1 J J l J

Auijp. (i,j=l,...,n)

where, n.. = ____.l_ = s.. + ¢E.E.w.

13 xi 1] l j j

= 3(10 A) = _ + —1 .=
(18) . . . eAj 3(109 pj) wj(Ej ¢ ) (j 1,...,n)

Note now that,

Z. n.. = Z. s.. + ¢(Z. w.E.)E.

J l] J l] 3 3 J 1

where use has been made of Engel aggregation, (R2), and

Slutsky homogeneity, (R5'). Also, in the case of direct

additivity,
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Z. n.. = n..

j 1] ii

So that, we have for the price elasticity of demand under

directly additive utility:

2 ._.
¢Ei — ¢Ei wi - Ei wi i—j

(l7DA)... eij =

- E.E.w. - E.w. i '¢ 1 3 J l J #3

Or, expressing (17DA) in terms of the more conventional

expression for the Slutsky price elasticity:

2 .
¢Ei - ¢Ei wi i H

(
.
l
.

S.. =

13

— OEiijj i¢j

The power of these results is immediately obvious. From

the general case of (n2 + n) unknown free coefficients

that are required for the estimation of a complete set of

demand equations, the additivity restriction reduces these

to the n unknown income elasticities and the "money flexi—

bility" parameter, for a total number of free parameters

of (n+1).

Although equation (l7DA) expresses concisely the

major implication of direct additivity, we record for

completeness some of the results stated by Houthakker [1960]

in his original derivation. In elasticity form, the fol-

lowing results may be derived by simple manipulation from

(l7DA):





(19) i = —T (i,jI‘k)

which states the fact that under direct additivity, the

ratio of Cournot price elasticities of two goods with

respect to the price of a third good is equal to the ratio

of the Engel elasticity of the two goods. This is equa—

tion (1) in Houthakker [1960].

Also, Houthakker's equation (11) may be derived

from equation (l7DA), or more easily from the expression

for sij derived from (l7DA), by noting that Ki' is, by

J
x.

definition, equal to (pi)sij' This is the result of the

j

fact that the Slutsky term, Kij’ is proportional to the

product of the income slopes, under direct additivity:

. (no) --(2°) Kij = ' I; '3? 3y ”‘3

Note that this result is the slope form (as Opposed to the

elasticity form) of our expression for sij'43

 

43It is sometimes asserted (mistakenly) that the

relationship (20) is not "monotonic invariant." That this

is not so, is readily seen by defining the "canonical

money flexibility" as 3x. 8x. Since K.. and

(u = Ki./(3—£) (—l)). 13
J y 3y

the income slopes are monotonic invariant, so is U. Of

Course, under strong separability, the "cononical money

flexibility" is equal to the "money flexibility," A/Ay,

and for the canonical (or additive) form of the utility

function. Thus, while the "canonical money flexibility"

is independent of the choice of the utility function, the

"money flexibility" is not.

Mil,
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The result (20) is important from another view—

point. Houthakker's Theorem 1 establishes the condition

(20) as being necessary and sufficient for utility to be

directly additive. We note the theorem formally without

. . 44
giVing a proof:

Theorem: (Houthakker, 1960a) The utility function is

directly additive if and only if the Slutsky term,

satisfies equation (20).

Kij'

To conclude, direct additivity is a forceful re-

striction on a complete set of demand equations and results

in the utmost economies of parametrization. These econo-

mies are not costless, however. Houthakker [1960] has

pointed out that direct additivity rules out specific

substitution: uij = O for i#j. Theil [1967, p. 199] has

proved that direct additivity rules out inferior goods.

Also, direct additivity rules out complementary goods, as

pointed out by Goldberger [1967, p. 31].45 As a result,

direct additivity is a meaningful hypothesis only when

 

44A more rigorous statement of the theorem and a

proof are given by Uzawa [1964, Theorem 4, p. 392]. In

fact, Uzawa has shown that the utility function is "strong-

ly separable" if and only if the Slutsky term is propor-

tional to the product of the income slopes. Of course,

the factor of proportionality in the latter case is no

longer the same as in Houthakker's theorem. Incidentally,

Uzawa [1964, n. 6, p. 392] seems to have confused "strong

separability" with "direct additivity" and has come to

the conclusion that Houthakker's statement of the theorem

and his proof suggest more generality than there is. This

does not appear to be the case.

45

p. 31].

These references are given by Goldberger [1967,
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the data are aggregated to a very high degree.46 In the

estimation of relatively large complete sets of demand

equations, where goods are defined in a narrow sense, the

assumption of additivity becomes questionable. For in

this case, there is reason to suspect the presence of

specific substitutability, complementarity and perhaps

inferiority.

In view of the severity of these restrictions, the

empirical researcher may want to go only half way towards

the additivity hypothesis. This can be done by a straight-

forward generalization of direct additivity that is due to

Strotz [1957]. This is the case of "block-independent

preferences" (or, "block additivity") where it is assumed

that the set of all commodities can be divided into G

groups, (with ng being the number of commodities in the

gth group) in such a manner that the marginal utility of

any good depends only on the quantity of the goods in the

group in which the commodity is placed. This results in

the block-diagonality (as opposed to "diagonality") of the

Hessian of the utility function, U. Alternatively, we may

define a utility function, u, to be block—additive, if it

is of the form:

 

46It might be pointed out that this repeatedly

cited effect of "aggregation" is itself only "observed"

and there seems to be little theoretical support for such

an idea.



 



u = u(xl, ... , x )

n

= Z ug(xg) I

g=l

where, x9 denotes the (ngxl) vector of goods in the gth

group. With this formulation, we note that

Utilizing this as a restriction, along with symmetry and

Engel aggregation, we get the number of free parameters

to be estimated in the case of block-additive utility as47

G

l + 1/2 X n (n +1).

g=l g 9

To see this, note that the price elasticities are given

in this case by:

eij = Ggh nij - ¢Eiijj — Eiwj isg, 36h

and 69h is Kronecker's delta.

2.4 Almost Additive Utility
 

In View of the somewhat restrictive implications

of the assumption of direct additivity, it was proposed

in the last section that block-additivity be assumed as a

half-way measure. Barten [1964] has generalized on these

 

47This formula is given by Theil [1967, p. 199].
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ideas and has proposed the assumption of "almost additiv—

ity" which yields the direct additivity case and the block-

additivity case as special cases within the almost addi-

tivity hypothesis.48 The motivation behind this assumption

lies in the observation that the price elasticities may

all be estimated from the income elasticities and the

money flexibility parameter, if the off-diagonal elements

of the inverse of U are zero. Thus, if the off—diagonal

elements could be approximated by some function of the

diagonal elements of the Hessian, then there would be rea-

son to believe that a possible relation could be found

where cross price elasticities may be estimated from the

own-price elasticities and the income elasticities. It is

with this in mind that "almost additivity" assumes that

the off diagonal elements of the Hessian are not zero, as

was the case in additivity, but "small" in comparison to

the geometric mean of the corresponding diagonal elements

of the Hessian.

Formally, we define a utility function to be

"almost additive" if second partial derivatives of the

utility function may be written as:

1/2 . ._

ij cij(uiiujj i,j—1,...,n

 

48The statement is not quite true for block-

additivity, as will be obvious after a definition of

"almost additivity" is given.
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where the cij are fixed constants given by:

C..

13

C..

13

In addition, the cij are symmetric in the sense that

c.. = c.. i,j=l,...,n

and, finally, the cij (for i#j) are "small" in the sense

that the inverse of the Hessian U, has elements that may

be "adequately" approximated by:

-1 .__

(uii) l—J

ij 1,

-l/2

) i#jc..(u..u..

13 ii 33

We note that the case of direct additivity corresponds to

cij = 0, for all i,j. Whereas a specialized block-

additivity results if we set blocks of cij equal to zero.

In empirical practice, it is the latter assumption that is

frequently used.49

 

49Although almost additivity has been widely ac-

claimed as an ingeneous and useful hypothesis, as it no

doubt is, there remain some implications of the "smallness"

of the cij that have been a source of some discomfort for

the present writer. In particular, it seems that there is

a need to derive the implications for the functional form

of the utility function that must be implied by the second

order partial differential equation:

_ 1/2
u.. - c..(u..u..)

1] 13 ll 33

with the constants being "small." In empirical work,

Barten [1964] assumed these constants to be of the order

of less than 0.2. It is easily verified that it is
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Two consequences of almost additivity are immediate-

ly obvious. First, the elements that are zero in U, are

zero in U-l. This means that if it is suspected that two

commodities have a zero specific substitution effect, then

this prior information can be incorporated in the model by

specifying the corresponding cij to be zero. This would

result in the uij being zero, which is necessary and suf-

ficient for the specific substitution effect to be zero;

for non—zero prices and finite income. Secondly, the

ratio of the non-zero off-diagonal elements to the geo-

metric mean of the corresponding diagonal elements, is the

same in U, and U—l.50

The consequences of "almost additivity" are seen

in a way quite similar to direct additivity. Recall equa—

tion (17) which states in general the solution for price

elasticities:

 

necessary and sufficient for utility to be directly addi-

tive, that the c's be zero for (i#j). What is unclear is

the implications of c's of the order of 0.1, or 0.2. Also,

there seems to be a need for examining the order of the

error in the approximation used for elements of the in-

verse.

50These results are stated by Barten [1964, p. 4].

He states the second result with the qualification, "apart

from sign" due to the way he formulated his definition of

"almost additivity." The formulation in this paper avoids

this by neglecting to append a minus sign before the uii’

as Barten does. Barten's reason for doing so are to insure

that diagonal elements "represent decreasing marginal

utilities." Barten [1964, p. 4]. His 9 = -ci..

ij 3
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(17) ... eij = nij — ¢Eiijj - Eiwj (i,j=l,...,n)

In the case of almost additivity we have,

 

Ap.

i ._.

x. u.. l_3

i ii

ij - AP-

3

-1/2 1*]

It is easy to see, therefore, that the following relation

holds between the n..(i#j), and the n..,n..:51

13 ii 33

1/2
= c.. (n )n.. ..n..w.

13 13 ll 33 3/wi

Also, the constraint that the specific substitution effects

sum to money flexibility times the income elasticity holds

for each good. Thus, if mi non-zero cij are specified for

each row of U, then we have to estimate l+2n+2mi elastici—

ties, and O. There are 1+n+1/22mi constraints; Engel

aggregation, Zj nij = OEi, and symmetry of specific sub-

stitution effects. This leaves n+1/22mi free parameters

to be estimated.52 This is a substantial reduction in the

parameters, and shows the effectiveness of almost additiv—

ity as a more sophisticated additivity assumption.

 

51In Barten's [1964] actual work, a different for-

mula was used as an approximation to this formula. This

is discussed in the section on almost additivity in Chap-

ter 3, below.

52Barten [1964, pp. 607].
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2.5 Neutral Want Association
 

A hypothesis, quite similar to Barten's almost ad-

ditivity hypothesis, is that of "neutral want association"

proposed by Pearce [1961], [1964]. Once again the restric—

tion is on the off-diagonal elements of the Hessian of the

utility function, and it is assumed, as before, that com-

modities can be divided into groups, but this time the

off-diagonal elements of the Hessian are assumed to be

proportional to the product of the marginal utilities of

the row and column goods, the factor of proportionality

being the same for goods in the same group. Unlike almost

additivity, though, neutral want association does not place

any restriction on the size of these factors of propor-

tionality. Also, neutral want association introduces all

of the first derivatives of the utility function into the

specification of the Hessian. Both these factors have the

effect of making it a non-trivial problem to solve for the

inverse of the Hessian, U, and to analyze the effect on

the Frisch-Houthakker specific substitution effect as we

have done so far. We resort, therefore, to an alternative

mode of analysis used by Uzawa [1964] in which the impli-

cation of neutral want association is seen upon the separ—

ability of the utility function, and results are derived

for the Slutsky term under these assumptions.

To proceed, we need a definition of neutral want

association.
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Definition: (Pearce, 1961) Two goods i and j are defined

to be neutrally want associated to a third good, k, if and

only if,

 

 

3(ui/u.)

Bxk

where, ui, etc. denote the first partial derivatives of

the utility function, as usual. To get an intuitive idea

of the implication of neutral want association, note that

what the definition amounts to is simply the assumption

that the marginal rate of substitution between goods i and

j is not affected by the amount consumed of the kth good.

This is a straightforward generalization of the additivity

assumption that the marginal utility of one good was un-

affected by the quantity consumed of another good. Of

course, the additivity relation was binary and hence sym-

metric. This is obviously not true of the neutral want

association relation.

In the previous sections we were able to demon-

strate the effect of the hypotheses of additivity and

almost additivity directly on the inverse of the Hessian

matrix, and hence on the Slutsky elasticities. Although

we shall not be able to carry out this procedure in the

case of neutral want association, we note, however, the

effect on the Hessian matrix of the assumption of neutral

want association. The elements of the Hessian, U, are

esaily seen to be:



 



83

uii 1:3

lj 2 ieN , jeN ; for all s,t.

A astpipj s t

where the aSt are constants, Ns and Nt are the sth and

t—th commodity groups, A is the marginal utility of income,

and use has been made of the first order conditions.

Thus, very much like Barten's almost additivity hypothesis,

the neutral want association hypothesis also assumes that

the off—diagonal elements of the Hessian matrix are func—

tions of the known prices, the marginal utility of income,

and a constant which remains the same for each commodity

group. The comparison between almost additivity and neut-

ral want association, however, cannot be carried on much

further. The reason is that Barten formulates his hypothe-

sis with the sole purpose of getting manageable and well-

behaved off—diagonal elements in the inverse of U, while

Pearce makes no such attempt. Thus, the methods of analy—

sis, utilizing the Frisch-Houthakker decomposition, are no

longer available to us for the purpose of analyzing the

effects of neutral want association on economies of para-

metrization.

The alternative approach in analyzing the conse—

quences of neutral want association is due to Uzawa [1964].

Consider the entire set of commodites grouped into k groups:

G1, G2, ..., Gk' with x1 denoting the (nix 1) vector of
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goods in the i-th group, and ni being the number of goods

in the i—th group. We have, then,

Theorem: (Uzawa, 1964)

3 (n../u.)
l

X = o, i,jeGS, k#i,j.

k

if and only if:

t Bxi 3x.

= ks (x) ——— ——1 ieGs, jth;

x, kSt(x) defined for

all s,t.

and for all

In other words, if goods may be partitioned in such a way

that all pairs of goods in any group are neutrally want

associated with any third good, then the income compensated

(Slutsky) price elasticity between two goods is proportion-

al to their income elasticities. The constant of propor-

tionality, however, is the same for each pair of groups

to which the respective commodities belong. Under neutral

want association, then, the number of unrestricted para-

meters to be estimated becomes 1/Zg(g+1)+n, where g is the

number of groups, and n the number of commodities, [Pearce,

1964, p. 214]. This is indeed a substantial reduction in

the number of parameters.

Unfortunately, no empirical results seem to be

available on the application of neutral want association

to the estimation of demand functions, in the form outlined

above. Instead, it seems, Pearce [1964] used additional

assumptions in the implementation of neutral want
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association to British data. In his estimation procedure,

Pearce [1964, pp. 213ff.] adopted the following assump-

tions, which appear to be quite restrictive:

Assumption 1: The expenditure on any group of commodities

bears a fixed proportion to total expendi—

ture.

 

Assumption 2: The income slope of the demand functions is

assumed constant with respect to variations

in prices and expenditures.

 

The first assumption is equivalent to assuming that each

commodity group may be treated independently, in the sense

that price changes outside the group do not affect the

allocation of expenditures within any group. If enforced

exactly, rather than as an approximation, this would be

equivalent to arbitrarily equating all the cross—

elasticities outside each group to zero. Such an assump-

tion would cast severe doubts on the results. The second

assumption seems equally restrictive in its implications.

Thus, a valid test of the plausibility of the neutral

want association hypothesis remains to be carried out.

2.6 Indirectly Additive Utility
 

A final theoretical restriction on the form of the

utility function which results in economies of parametri-

zation is the restriction of "indirect additivity," pro-

posed by Houthakker [1960] along with its counterpart,

direct additivity, mentioned above. Unfortunately, the

(consequences of indirect additivity are difficult to
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reconcile with ordinarily held beliefs about the behavior

of the consumer. Also, preliminary empirical results on

a specific indirectly additive utility model of demand

have offered evidence of serious statistical limitations

of the model. For completeness, however, we discuss the

consequences of indirect additivity briefly.

It has been noted in Chapter 1 that by substitut-

ing for the demand functions into the direct utility

function, we can get the indirect utility function:

C

II

U*(plr ~00 I Pnr Y)

U(Xl(pIY)I 00- I Xn(pIY))

where, for notational convenience we denote by p, as

usual, the (nxl) price vector. Now, each demand function

is homogeneous of degree zero, so that proportional in—

creases in prices and income leaves the quantities demanded

of each good unchanged. This means, then, that the in-

direct utility function is also homogeneous of degree

zero in prices and income. Thus, the indirect utility

function can be written as:

u = u*(y/pl, ... , y/pn).

This is the canonical form of the indirect utility func-

tion, and all discussions of the functional form refer to

this function rather than the one above.
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Rigorously, then, a utility function is said to be

"indirectly additive" if the corresponding indirect utility

function can be written as:

u = u*(p,y) = 2i u*i(y/pi)

The consequences of indirectly additive utility are best

analyzed by the use of an identity due to Rene Roy [1943].

To derive this identity recall equation (13) of Chapter 1:

(13) . . . u; = A, and u? = —ij (j=l,...,n)

where u;, and u; denote the partial derivatives of the

indirect utility function u* with respect to income y,

and the jth price pj, respectively. As a direct consequence

of (13) we have Roy's Identity:

 

x. = - (i=1,...,n)

Using Roy's identity and equation (13) it is relatively

easy to derive all of the expressions for price and income

slopes of the demand and the marginal utility of income

functions. Note that from (13), we have

A = u*

Y YY

a .
and — = 11* u = 11* =1 0 o o n

pj 173 31/ (3 ’ ’ )

where ugh denote second partials of u* with respect to the

variables a, b. The income lepe is obtained by
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differentiating Roy's identity; where for all i=1,...,n

 

 

we have

axl (u; uiy - u: u§y)

F = — *2 (i=1,...,n)

u

-l
= - * *. + x * b 13(uy) (qu i uyy) y ( )

_ _ -1 3A 3A by (13)

Similarly, by differentiating with respect to the jth

price, we derive the price slope of the demand functions:

For all i,j=l,...,n

 

axi (u; uij - u: u§j

Fz' *2
j u

Y

-1 8A
=_* 'k _

(uy) (uij + xi apj) by (13)

-1 3X: 3A
=_* * ._ _

(uy) {uij + xi( Aay xjay)} by (10)

-l —1 8x.

= -A u#. + A A x.x. + x.——1 by (13)
13 y i j 13y

Collecting results, we may write in concise form all of

the solutions to the slopes in terms of the indirect

utility function quite generally as:

3A
71 —— A = *

( ) 8y y uyy



 



89

3x

i _ —1 3A 3A ._

8x. 3x.

_i — _ -l * -1 + ( )

(91) apj — A uij + A Ay xi Xj xi §§l

(i,j=l,...,n)

3A .

(101 ——— = u*. = u* =1 ... n

) apj y3 3y (3 ' ')

These relations in fact can be viewed as a sort of "dual"

to the equations (7)-(10), of Chapter 1.53

The consequences of indirect additivity are now

obvious. If the utility function is indirectly additive

then ugj = 0 for i¢j. This means that the price elastici-

ties of the demand equations are given by:

. = #. + _ . + . . ' '= ...eij nlJ ¢ wJ EJ wJ (i,j l, ,n)

where, p. u*.

11*. = — _1 _ll

1] xi A

and O is the money flexibility parameter. Note that

nij = O, i¢j is the consequence of indirect additivity,

so that the Cournot price elasticity of demand depends

 

53Several comments are in order. The duality re-

lations linking direct and indirect additivity are explored

by Samuelson [1965]. Further discussion of this aspect is

at the end of this section where the case of "simultaneous

additivity" is briefly touched upon. These relations are

derived elegantly by Goldberger [1967, pp. 85-86] using

matrix notation, similar to the Barten-Theil notation for

the directly additive case.
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only on the good whose price is changing and not on the

good whose quantity is affected. This is the classical

consequence of indirect additivity and was expressed by

Houthakker [1960a] as:

(i,ji‘k).|
..
.

or, in our elasticity notation, quite simple as,

Houthakker [1960] has given formulas for the

price elasticities of demand that are related to our ex-

pression for eij given above.54 We derive these formulas

by noting, as Goldberger [1967] does, the effect of the

Cournot aggregation condition on our results. Multiply-

ing through by wi and summing over i; we have for j=l,...,n:

- w = Z. w e..

3 l 13

-l
= Z w n* + (¢ + E.) w. 2. w.

i i ij j j i i

F
3
?

p.p. U... _

= Z. (_l__l)__l + (¢ 1 + E.) W.

1 Y 3 J

 

54Goldberger [1967, pp. 87-88] has derived the

correct version of the original Houthakker formula, which

is in error. Our derivation is somewhat different from

either Houthakker or Goldberger, but the substantive re-

sults are the same.
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So that, in general, we have,

 

p.p. u#.
-l _ i J 11 _ ._

Now in the case of indirect additivity this reduces to:

—1 p2. ut.
(¢ + Ej) wj = ( 3/y)( 33/A) - wj

This in turn implies that

—1
+ E. = - n#. - 1(¢ j) 3]

or, n*. = - (¢'1 + E.) - 1
33 3

We may write, therefore, the following equations that give

the price elasticities of demand under indirect additivity:

2

(pj/y)(ujj/A) - wj ..... (i#j)

e..=

ij 2 u* u*

(Pi/y>( ii/A) - wi - (pi/xi>( ii/A) (i=j)

where, the first of these quations is cited by Houthakker

[1960] as equation (22). The own price elasticity is

derived, however, in a somewhat different form. For sym—

metry, we state the cross elasticity formulas corresponding

55
to Houthakker's own-price formulas, also. This can be

done by substituting for nii in the expression for eij’ to

 

55This corresponds to Houthakker [1960a] equation

(23), which was corrected by Goldberger [1967] and appears

as equation (4.36) in the latter paper.
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give an alternative expression for the price elasticities

under indirect additivity:

1

(¢' + Ej) w. (iej)
3

e..
13 1

(¢‘ + Ej)(wj - 1) - 1 (i=j)

where, the latter formula is equation (4.36) of Goldberger

[1967].

We see, then, that the case of indirect additivity

imposes substantial restrictions on the number of free

parameters to be estimated, for all price elasticities

are estimable from income elasticities and the money flexi-

bility parameter. Unfortunately, there is no direct

motivation for assuming indirect additivity comparable to

the direct additivity case. The result is that the in-

direct additivity hypothesis has to be introduced solely

on the grounds of resulting computational convenience.

The empirical consequence of equal Cournot price elastici-

ties of two goods with respect to a third price, seems

dubious for obvious reasons. Thus, the indirect additivity

hypothesis has not much to recommend itself to the empiri-

cal worker.56

56In practice, indirect additivity has been imposed

only within the context of the "indirect addilog" utility

function proposed by Houthakker [1960b]. As Goldberger

[1967, p. 92] has noted, Houthakker arrived at this func-

tion by attempting to force the "constant elasticity of

demand" system to satisfy the budget constraint. In doing

so, however, the indirect addilog function became nonlinear

in parameters, so that the most attractive feature of the

 



 



93

In conclusion, we might mention the case of

"simultaneous additivity" mentioned by Houthakker [1960a]

and explored by Samuelson [1965]. A utility function is

defined to be "simultaneously" additive if both the direct

and the indirect utility functions are additive. It was

proved (incorrectly, as it turned out) by Houthakker

[1960a] that simultaneous additivity implied unitary income

elasticities. Also, Samuelson [1965] proved (once again,

incorrectly) that simultaneous additivity implied unitary

price elasticities. The exception to these results was

given by Hicks [1969], who showed that these results were

not true for the following utility function:

n

Hicks exception: u = u(x , ... , x ) + Z a.(1og x.)57

l r r+l J

Samuelson [1969] has corrected the two theorems, and has

shown that Houthakkers theorem [1960, Th. 3] holds for

n=3, with the Hicks exception being the only exception.

Also, Samuelson's theorem holds, except that at most one

good may not have unitary price elasticity.

 

constant elasticity of demand system — ease of estimation -

was lost.

57We give the generalized Hicks' exception, given

by Samuelson [1969].





CHAPTER 3

EMPIRICAL MODELS OF CONSUMER DEMAND:

STOCHASTIC SPECIFICATION, AND

ESTIMATION

3.1 Introduction
 

In Chapter 1 it was shown that a "utility-

maximizing" consumer possesses a complete set of demand

equations which obey a set of restrictions on their par-

tial derivatives. In addition, if it may be assumed that

the consumers in a given community or nation possess iden-

tical preference patterns, with linear Engel curves

possessing zero intercepts, then it was shown that the

community's demand for aggregates of goods is also a func-

tion of all prices and national income. Further, this

complete set of demand functions for the community possesses

all of the prOperties possessed by the individual's demand

functions. Finally, it was pointed out that under the same

assumptions about Engel curves, a community "behavior

function" can be constructed. The community's demand

functions may then be derived alternatively by viewing the

community as a single consumer attempting to maximize the

community behavior function subject to the community bud-

get constraint. Thus it was established that the

94
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community's complete set of demand curves possess all of

the properties that the individual demand curves were

shown to possess.

Under the assumptions above, it has been shown

that the community's demand for aggregates of goods is a

function of all prices and national income, with con-

straints on the partial derivatives of the demand func-

tions. Unfortunately, this is not sufficient to determine

a unique functional form for the demand equations. The

choice for functional form must be guided, however, by the

condition that the demand equations must obey the restric-

tions derived above. Historically, this point was often

ignored by empirical researchers, and it is only in the

past decade that a great deal of attention has been di-

rected at the search for a "complete system of theoreti-

cally plausible demand functions."

In this chapter we discuss the three leading

"theoretically plausible" functional forms that have been

proposed in the literature. In addition, we discuss the

"Constant Elasticity of Demand System" which is of his—

torical importance, but is not theoretically adequate.

3.2 The Constant Elasticity of

Demand System

 

 

The "Constant Elasticity of Demand System" is

based upon the double-logarithmic specification of the

functional form of the demand equations, and has been the
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most widely used specification in the estimation of demand

functions.58 Despite the fact that it was well-known that

the function was inconsistent with utility theory, the ease

of estimation and direct interpretation of the parameters

led empirical researchers to utilize this form and justify

their actions by arguing that the specification was a good

first-order local approximation.

The "Constant Elasticity of Demand System" (CEDS)

may be specified in its non-stochastic form as follows:

log xi = ai + Ei (log y) + Zj eij (log pj) (i,j=l,...,n)

where, as before, Xi is the quantity of the ith good, pi

is its price, y is the total expenditure or "income," Ei

is the income (Engel) elasticity, and eij is the price

(Cournot) elasticity of demand. In addition, it is assumed

that Ei and eij are constant with respect to variations in

prices and income. The ai are constants which may be in-

terpreted as trend terms. This specification will be

referred to as the "Cournot specification" of the CEDS, as

distinguished from the "Slutsky specification" which may

be derived from the above by using the Slutsky Relation:

log xi = ai + Ei (log y - ijjlog pj)

+ Zj sij (log pj) (i,j=l,...,n)

 

588chultz (1938, p. 83, n. 46) cites a July, 1929

paper by Leontieff in which this form was used.
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where wj is the j—th commodity's budget share, wj E p,x./y,

J J

59 The simplic-and sij is the price (Slutsky) elasticity.

ity of the system is apparent. All coefficients are

directly interpretable as elasticities. Finally, if an

additive disturbace term is appended to the form, estima-

tion becomes a trivial problem.

The CEDS is, unfortunately, inconsistent with

utility theory. This was demonstrated by Wold and Jureen

[1953, pp. 105-7], for example, in the context of integra-

bility conditions. They showed, to be precise, that the

double-logarithmic demand function does not satisfy the

integrability conditions, and hence is inconsistent with

any utility-maximizing process, unless it is assumed that

the indifference curves are of an empirically implausible

form. A simpler and intuitively appealing argument can be

made in fact against the plausibility of any system of

demand equations in which elasticities are assumed con—

stant. The argument rests upon the fact that if the income

elasticity is constant then unless it is equal to unity,

there exists a finite income for which the commodity will

either not be bought at all, or be bought solely. Thus,

if income elasticities are constant then they must all be

 

59The distinction between "Cournot" and "Slutsky"

specifications will be made throughout, and is dependent

upon which price elasticity appears in the functional

form. The latter specification was used by Stone (1954a).
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unity. This may be proved rigorously as follows: We have

for all i=1,...,n. By definition:

log wi 5 log pi + log xi - log y

Taking total differentials, and assuming prices constant,

d(log wi) _ d(log xi) - d(log y)

(Ei — l) d(log y)

where Ei denotes the income elasticity as before, and use

has been made of the fact that the ratio of total logarith-

mic differentials is equal to the partial logarithmic

derivative if prices are assumed unchanged. Rewriting,

we have:

v7-.—i=(1~3i-1)‘:,—Y

Now assume, in all generality, that at income y0 and

prices p0 the budget share of the ith commodity was WE.

Using the above relation we can calculate the incomes for

which the budget share of the ith commodity becomes unity

and zero. To do so we note that:

o . u—wn .
dwi < (l-wi) iff (Ei-l)dy < wo y

i

o . o
and dwi > -wi iff (Ei-l)dy > —y
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We have, therefore, the condition that: 0 <I(w$ + dwi)<( 1

if and only if:

0

(l—wi)] O

‘—“6”—’ Y

W.

l

[(Ei-l) - 1] y0 < (Ei-lHy0 + dy) < [(Ei—l) +

Depending upon the sign of (Ei-l), the above equation

gives us the limits (finite) within which the income,

(yO - dy), must remain if the ith commodity's budget share

is to lie between zero and unity. We see immediately that

only under the case Ei=l do we permit income to lie be-

tween plus or minus infinity.60 Thus, it has been shown

that if income elasticities are constant, and are all not

equal to unity, then the budget constraint is violated at

a finite income.61

The estimation of the CEDS is not discussed in any

detail due to its trivial nature. The stochastic specifi—

cation consists of assuming that a normally distributed

disturbance term with zero mean and finite variance

 

0

Actually, we are only concerned with removing

the upper bound on income, for the natural lower bound of

zero is always assumed to apply.

61The need for such a proof was suggested by a

reading of a paper by Yoshihara [1969] in which he proved

this for the specific case of the double-logarithmic func-

tion (as opposed to our case of any constant income elas-

ticity of demand function). Unfortunately, Yoshihara's

proof implicitly assumes no negative income elasticities,

and is, therefore, not completely general.
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appears additively in each of the demand equations. Sin-

gle equation OLS estimates are best linear unbiased, and

with the assumption of normality are also maximum likeli-

hood.62 Alternatively, the disturbances may be assumed

to be non-independent. Ignoring parametric restrictions,

the assumption of non-independence of the disturbances

across equations does not affect the properties of the OLS

estimates. However, if some of the price elasticities are

assumed to be zero and if the disturbances are assumed

non-independent, OLS estimates are no longer efficient.

An appropriate procedure is Zellner's (asymptotically)

efficient procedure, ZEF.

Finally, unless cross-elasticities are assumed

zero, the CEDS does not provide a useful model for even a

medium sized model. This is partly due to the severe

problem of multicollinearity which is almost always pre-

sent in the data on prices. On the other hand, if the

cross-elasticites are arbitrarily equated to zero, then

the validity of the CEDS specification can be seriously

questioned. As is well—known, an incorrect specification

leads to biased parameter estimates.

 

62This is not strictly correct because there are

restrictions on the parameters which are ignored primarily

due to the fact that imposing them is non-trivial.



 



3.3 Rotterdam School of

Demand Models
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A very elegant rectification of the CEDS results

from considering differentials of logarithms in the spec-

ification of the functional form. This differential

double-logarithmic form has given rise to the "Rotterdam

School of Demand Models" which retain some of the flavor

of the CEDS, but are entirely consistent with the theory

developed in the previous chapter.63 Indeed, the approach

adopted by Barten and Theil admits of considerable general-

ity, though the specific

an approximate nature.

formulations are admittedly of

To arrive at the Barten-Theil specification, con-

sider the total differential of the demand functions:

Bxi

dxi = (———) dy +

3y
(i,j=l,...,n)

Bxi

..(_)..
3 apj p3

If we denote by 5x the logarithmic differential:

Dx E d(log x) E

then we have the following

above equation by dividing

Dx. = E, Dy +

l i

 

63These models are

and Theil [1965], [1967].

due to Goldberger [1967].

dx

X

equation, derived from the

by xi and rearranging:

2] ij pj (i,j=l,...,n)

the work of Barten [1964], [1967a],

The name "Rotterdam School" is



 



102

where Bi and eij are as usual the income (Engel) elastici—

ties, and the price (Cournot) elasticities, respectively.

Note that if Ei and eij are considered as functions of in-

come and prices (and not as parameters) then the above

equation is completely general and is true for any specifi—

cation of functional form of the demand equation. In fact,

the subsequent discussion maintains this spirit of gener-

ality, which is abandoned only when we spcify which terms

in the specification are assumed to be constant and hence

assumed to be parameters instead of variables. It has

been noted that the symmetry condition of Cournot elastici—

ties is rather clumsy to handle. As before, then, we con-

sider the "Slutsky form" of the above equation, which is

obtained by substituting for eij from the Slutsky Relation,

to give:

Dxi = Ei(Dy — Zj ijpj) + Zj Siijj (i,j=l,...,n)

where the sij are the Slutsky price elasticities, and the

wj are the budget shares, as usual. Multiplying both sides

of the equation by wi we get the form that is fundamental

to the Rotterdam School models:

(21) W-Dx. = wiEi(Dy - Zj ijpj) + ij.s..Dp
l ij j

(i,j=l,...,n)
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We note, once again, that equation (21) is complete-

ly general and holds for any specification of the functional

form. Several substantive assumptions are now made, which

reflect in fact, the maintained hypotheses underlying the

Rotterdam models. First, it is assumed that Dsi, Dy, Dpj

can be suitably approximated by the finite differences

in their logarithms, Dxi, Dy, Dpj; where the operator D

is defined by:

Dx 5 (log xt) - (log x )
t t-l

where Xt’ and xt—l are the observations on the variable

x in the periods t, and t-l, respectively. More impor-

tantly, it is assumed that the income elasticity, Ei'

depends in the following manner upon prices and income:

w. E. = b., where b. is a constant;

1 1 i i

which is to say that the income elasticity of demand for

all goods in a rectangular hyperbola when plotted against

the budget share of the commodity. This is, in fact, the

assumption which renders the Rotterdam models theoreti-

cally plausible, in contrast to the CEDS.

It may further be assumed that (w.s..) = C..,
1 ij . 13

another constant. In this version, the Rotterdam model

may be written as:

(22) wlii = bi(Dy - Zj ijpj) = Zj cij Dpj (i,j=l,...,n)
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It is easy to see that the following restrictions on the

parameters apply:

Engel Aggregation: 2. b. = l

cij cji (for all i#j)

Homogeneity (Slutsky): Zj cij 0 (for all i=1,...,n)

Symmetry:

In practice, the first two conditions are imposed in es-

timation; while homogeneity is imposed by deflating all

prices by the nth (or any other) price, and estimating

the remaining (n-l) equations. The parameters of the re-

maining equations can then be estimated by using the

restrictions given above.64 In this specification there

has been no appeal to the cardinal properties resulting

from additivity type hypotheses. Substantial economies of

parametrization result from decomposing the Slutsky price

elasticity into the Frisch-Houthakker "specific" and "gen-

eral" substitution effects discussed in Cahpter 1.

Before doing this, however, we note that in prac-

tice it is desirable to alter equation (22) in two ways.

First, the budget shares, wi, are usually replaced by the

arithmetic means of the budget shares, wf, given by:

64

With slight modification, this is the procedure

used by Parks [1969]. The modifications, which are almost

always made, consist of using the (backward) arithmetic

means of the budget shares instead of the ordinary budget

shares; and using an average of the logarithmic difference

of the quantities, weighted by the arithmetic means of

budget shares, for the real income term given by

(Dy-ijijj). These modifications are discussed below.
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= l/2(wit + wi,t-l)°
*

wit

Also, in order that the equations add up, the real income

term, (Dy—ijijj) is replaced by Dxt, where

—_- *
Dxt Zj wjt ijt

The motivation for the latter operation is as follows.

The term, (Dyt - Z is a local quadratic approx-

1 th DPjt”

imation to the log-change in the "true index" of real in-

come. This is also true of Dxt. Now the difference

between these two approximations is of the third-order in

the logarithmic differences of prices.65 Thus, it is not

unreasonable to replace the former term by the latter,

when in doing so the equations can be made to satisfy the

adding-up criterion. With these changes, equation (22)

can be written in the form in which Parks [1969], for ex-

ample, has estimated them:

* = ' '=(23) witDXit bi Dxt + Zj cij Dpjt (i,j 1,...,n)

where the t subscript refers to the observations in the

t-th period.

The Barten-Theil approach, however, does not stop

here. The Slutsky elasticity, Sij’ may be decomposed as

follows:

 

65This is proved by Theil [1967, pp. 223-226],

where a detailed discussion of these issues is presented.
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s.. = n.. - ¢E.E.w.

1] 13 1 J J

as can be seen from equation (9), and the definitions of

p .

s.. E —l K... Thus, we have:

13 xi 1]

cij = wi sij

= w.n.. -¢w.E.E.w.

i ij i i j j

= mij - bibj¢

where by mij we denote the product of wi and nij which is

assumed constant, and the bi’ bj’ are as above, and are

called the "marginal budget shares" of the commodities i

and j, respectively. Note that the constancy of the mij

implies that the specific substitution effects are assumed

to vary inversely (as a rectangular hyperbola) with the

budget shares of the commodity whose quantity is affected.

Substituting for cij into (23) we get:

* = _ ' '=witDXit bi Dxt + Zj (mij Obibj)Dpjt (i,j 1,...,n)

Before proceeding to simplify this equation, we

note the parametric restrictions implied by the theory

developed in the previous chapter. First, Engel aggre—

gation requires, as before, that Zbi=1. Secondly, recalling

that by definition n..
2 ij . .

l] _ Au pj/Xi’ where A is the marginal

utility of income and ulj is the (i,j) the element of the

inverse of Hessian, U, of the utility function, we see

that:
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13'
_ Apipju

m.. — ————————-

13 Y

so that, mij=mji for all i,j. Thirdly, the following

condition is obvious from equation (8):

II

6 (
3
‘

Which, in turn, implies the final condition:

ZiZj mij = O < 0,

where, the inequality is based upon the negative difinite-

ness of the U matrix.

The fact that ijij = bi’ can be used to simplify

the above equation further:

*
(24) w. Dxi1t = bi Dx + Zj mij (Dpjt - X b Dpkt)

t t k k

Equation (24) gives the functional form that is fundamental

to the Rotterdam models. An interpretation of the various

terms is readily available. The parameters, bi' and mij’

are the "marginal budget share" of the ith commodity, and

the "specific substitution effect" on the ith commodity

of a change in the price of the jth commodity, respective-

1Y- The term, DXt, is an approximation to the log-change
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in real income, (Dyt—ijgtDpjt), where the latter is the

difference between the log-changes in absolute income and

the "cost of living price index.“ The price term,

(Dpjt-Xk kaPkt)’ may also be interpreted readily. This

is, in fact, the log-change in the relative price of the

jth commodity; and is obtained by subtracting the log-

change in the "marginal price index" from the log-change

in the price of the jth commodity.66

Denoting by Dpét, the log-change in the relative

price of the jth commodity, i.e., (Dpjt - 2k bk Dpkt)’ we

may summarize all of the above as follows:

The Non-stochastic Rotterdam Model:

* = I
(25) wit Dxit bi Dxt + Zj mij Dpjt

* =where, wit l/2(wit + wi,t-1)

Dx = Z. w? Dx.

1t i it t

and, Dpét = (Dpjt - 2k bk Dpkt).

In addition, the parameters are restricted as follows:

z.b.=1
ll

mij = mji (for all i,j)

Zj mij = ¢bi (for all i=1,...,n)

 

66These interpretations are given, for example, by

Theil [1967, pp. 197, 200—201].
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and Zizj mij = ¢<0.

If the number of commodities is n, the total number of

free parameters to be estimated, including ¢, is l/2n(n+l).

Note that in the case of direct additivity, mij = O for

i¢j. Thus, in this case, the number of free parameters

reduces to n. In the case of the existence of a partition

into groups, with respect to which the utility function is

strongly separable, i.e., in the case of "block-independent"

preferences, it is easy to show that the number of free

parameters to be estimated is given by 1+1/2 glng(ng+l),

where G is the total number of groups, and nggIs the number

of commodities in group 9.

In the highly pragmatic spirit that characterizes

the Rotterdam approach, Barten and Theil have explored a

concise stochastic specification of this model. This has

been termed the "Marginal Utility Shock Model" and consists

of assuming the existence of a stochastic component in the

first order conditions of utility-maximization. The im-

plications of this specification have been explored in de-

tail by Theil [1967], and Barten [1968],67 in the context

 

67One of the first attempts to specify in some de-

tail the stochastic structure of demand relationships is

that of Theil and Neudecker [1957], and predates the mar—

ginal utility shock model. However, the models presented

in that paper are more complicated, and admittedly less

elegant. See Theil [1967, p. 228, n. 2].
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of a quadratic utility function. Since the derivation of

the actual estimator proposed by Theil [1964] is somewhat

complicated, we present a brief outline of the procedure

adopted.

The stochastic specification of the functional

form for the demand equations is given by assuming that

an additive disturbance term appears in equation (25)

given above. Thus, we have:

*
(26) w. Dxi

= l
1t bi Dx + E. m.. Dpjt + v

t t j 1] it

Note that by our definition of the variable, Dxt, we have

This means that the disturbances are not independent, so

that the covariance matrix of the disturbance term is

singular. To cope with this problem, a more specific

formulation of the nature of the disturbance term is

needed. The marginal utility shock model consists of the

specification that the utility function is of the follow-

ing quadratic form:

u = u(x1,...,xn) = 1/2 Zizj Xixjuij + Xi aixi
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where the ai are assumed to be random variables.68 This

results in the following first order conditions:

ui(x) = Z. x. u.. + a. = Ap (i,j=l,...,n)

J J 13 l

where the marginal utilities are stochastic, with xj, ai,

and stochastic; uij fixed. In addition, the budget con-

straint is assumed to hold in a non-stochastic manner.

To avoid random coefficients in the demand equa-

tions, we replace A, by E(A), in the definition of the

parameters mij; and redefine mij as follows:

ij
_ E(A) pipju

m..

13 Y

From this equation it is easy to solve for u. in terms of

13

the mij' pi, pj, y, and E(A). To do so, let M denote the

(nxn) matrix with mij as its (i,j)th element; and let P

denote the (nxn) diagonal matrix with the elements of the

(nxl) price vector P appearing on its diagonal. The above

equation may be written in the following matrix form:

E444 PU_1P

Y

 

68‘Theil[l967, p. 228] points out that the quadra-

tic approximation suffices when considering "first-order

effects in the neighborhood of the consumer's optimal

point." A generalization of the above approach has been

pointed out incidentally in a footnote by Pollak and Wales

[1969, p. 617, n. 13], and has not been explored at all.

Pollak and Wales suggest that the Theil-Barten approach

is tantamount to assuming a stochastic utility function

= Z, ,of the form u u(x)+ lalxi.
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where, once again, U refers to the Hessian matrix. Since

I O O O I -1 I

it is assumed that prices are pOSitive, P ex15ts; and

hence, M-l exists. We have therefore:

Elil PM-lP

y

or in simple algebraic form,

 

u. E(A)_ i3

3

where, ml], denotes the (i,j)th element of the matrix M_1.

By substituting this in the first order conditions derived

above, we get:

3
 

(Z- pipml O + l = A 0 i=1 ... nY j 3 X3) a P ( I I )
l l

or, alternatively, in terms of budget shares:

.. a.
ij 1 A ._

. . + = '——— —l 00.

Now consider random shocks (dai) in the stochastic

term of the expression for the marginal utility of good i.

This will cause random shocks in the budget share wi and

the marginal utility of income, A, which will be related

to each other as follows:

 2 ij = -=( j m dwj) + si E(A) (i 1,...,n)

where, Si’ is the ratio of the initial shift in the margin-

al utility to the expected value of the marginal utility
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da.

of good i, and is given by ETAI ° Now, dwi is subject to

the restriction: 2i dwi = O, by definition. Recalling

that M is a symmetric matrix, with the sum of the ith row

equal to Zj mij = ¢bi; and the sum of all elements

zizj mij = ¢; we may solve the above (n+1) equations for

dA . .
dwi, and ETAT , in terms of mij’ bi’ Si’ and o, to give

69
the following result:

dwi = -Zj (mij - ¢bibj)sj

Note that in this analysis prices and income have been as-

sumed constant, so that the budget discrepancy, dwi, is

identically equal to the disturbance term in the ith de—

mand equation. If we additionally assume that the random

marginal utility shocks are uncorrelated with prices and

income, then the result carries over to the case where in-

come and prices do vary, as is the case in actuality. We

therefore have:

vit = -Zj (mij -¢bibj)sjt

where the time subscripts have been attached, and in par—

ticular, sjt will reflect the random shifts in the marginal

utility of the jth good, over time.

Note the similarity between the expression for vit

and the price term in the demand equations (25):

 

69Foracomplete derivation see Barten [1968, pp.

220-221] or Theil [1967, pp. 228-230].
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2. m.. D l = 2. m.. - b.b. D .

3 13 p3t 3 ( 13 ¢ 1 3) p3’6

An interpretation of this similarity provides insight-into

the assumptions underlying the marginal utility shock

model. In effect, the assumptions with regards to the

stochastic disturbance terms in the demand equations can

be summed up as follows. It is assumed that marginal

utilities of goods are subject to a random shock, and that

this random shock (apart from its sign) has the same ef-

fect on the dependent variable, as the effect of log-

changes in relative prices. In fact, it is possible to

decompose the effect of the random shock into a specific

and a general component much like the effect of a price

change. It should also be noted that with this definition

the singularity of the covariance matrix of the disturb-

ance terms has been built in within the stochastic struc—

ture. For we have:

- Zi vit = zizj(mij - cpbibj)sjt

= z z — b.
3( 13 ¢ 3)83t

= X. b. - b. s.

3“": ¢3’3t

= 0

To proceed with estimation, the specification of

the first and second moments of the disturbance are re-

quired. This is done by a direct assumption of these
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moments for ai, which define the moments of 51’ which in

turn define the moments of Vi' In particular the follow-

ing assumptions are made about the moments of the disturb-

ance terms:

E (Vit) = 0 (for all i,t)

Cov (Vit’vjt') - 0 (for all i,j; and tft )

2 ..

Var (sit) = —%—m11 (for all i,t)

02 ..

and, Cov (sit’ Sjt) = —$—m13 (for all i,t)

This completes the stochastic specification. The implica-

tion for the covariance matrix of the disturbances, Vit’

is as follows:

2

I _ O _ I
 

where, Vt is the (nxl) disturbance vector with elements

(vit); M is the matrix described above; and b is the (nxl)

vector of the marginal budget shares, with elements (bi)°

We note without proof that the covariance matrix defined

above is positive semidefinite, with rank (n-l). The

latter fact is in fact consistent with our requirement

that zivit = 0.

With these stochastic specifications, Theil [1964],

has suggested an estimator for the covariance matrix of

the disturbance term, which can be constructed with a

priori specification of the M matrix of specific
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substitution effects. This estimator is best linear un-

biased under certain very restrictive conditions. Barten

[1968, pp. 230ff.] discusses the properties, and the re-

strictiveness of the estimator proposed by Theil. He then

applies this model to a four commodity breakdown ovautch

data on consumption covering the periods 1923-1939 and

1950-1961, which have also been used by Theil and Mnookin

[1966] and Theil [1967]. Barten's [1964] a priori inform-

ation is derived from the studies by Frisch [1959] and

Houthakker [1965]. Utilizing Frisch's estimate of the

marginal utility of income, and deriving estimates of

marginal budget shares from Houthakker's estimates of in-

come elasticities, the standard errors of these estimates

are derived from an estimate of the covariance matrix. A

knowledge of the covariance matrix of the disturbance is

used to calculate the covariance matrix of the parameters.

Theoretical plausibility of the model is then tested pri—

marily by checking for the negative definiteness of the

matrix of Slutsky terms, which was the only restriction

which was not incorporated in estimation.

In conclusion, we note that the Rotterdam model

does effect considerable economies of parametrization, but

the nonlinearity in parameters results in making estima-

tion extremely cumbersome.
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3.4 Stone's Linear

ExpendIture System

 

 

A serious competitor to the double-logarithmic

type of demand models discussed in the previous two sec—

tions, is the so-called "Stone's Linear Expenditure Sys-

tem," (SLES), proposed by Klein and Rubin [1948], and

implemented extensively by Stone [1954a], [1954b], and

elsewhere, and by Stone, Brown and Rowe [1964]. The

functional specification of the demand functions is given

in its non-stochastic form as:

x. = c. +- —— (y - 2k pkck) (i=1,...,n)

The "expenditure functions" corresponding to the demand

functions above are given by:

pixi = pici + bi(y - kakck) (i=1,...,n)

In this form, there is an immediate economic interpreta-

tion available for the behavioral implications of the

SLES [Stone, 1954, p. 512]. The consumer may be thought

to allocate his expenditures in a two-step fashion. He

first buys the minimum required quantities of each good,

Ci. The cost of this "subsistence bundle" may be termed

"subsistence income,’ and is given by kakck. In the

second step, the consumer is seen as allocating a fixed

proportion, bi' of his "supernumerary income," (y-kakck),

to his supernumerary consumption. On intuitive grounds,
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this interpretation provides a most convincing motivation

for the introduction of SLES in the estimation of demand

relationships.

Additional desirable properties of SLES result

from the fact that a utility interpretation is also avail-

able. Samuelson [l947b] and Geary [1949] have demonstrated

that the SLES may be derived from the constrained maxima-

tion of the so-called "Stone-Geary utility function,"

which is a generalization of a specific form of the

70 This utility"Bergson family" of utility functions.

basis of the SLES assures that the resulting demand

functions are consistent with the classical utility-

maximizing assumptions. Additionally, the utility basis

may be identified as the source of the comparatively few

parameters that occur in the SLES. These utility aspects

of SLES are considered in the next section.

Purely from the functional form, however, it can

readily be seen that the income (Engel) elasticities, and

the (Slutsky) price elasticities are given by:

wiE. = b. (i=1,...,n)

 

70The term "Bergson family" is due to Pollak [1967]

and Samuelson [1965], and is used in reference to utility

functions considered in Bergson [1936]. The indifference

maps of these functions are identical to the isoquant maps

of the "constant elasticity of substitution" production

functions. This is noted by Pollak [1967, p. 3, n. 6].
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2 ._.

and, wisi. = .

3 - ¢ bibj (irj)

where, -¢ denotes the ratio of supernumerary income to

the total income, and is given by:

Y

 

(This notation anticipates future results, where it will

be shown that with a "Stone-Geary" utility function, the

Frisch "money flexibility" parameter is, in fact, as de-

fined above.) It is important to note that SLES assumes

the bi' and ci to be constant, and hence the elasticities

Ei’ and sij appearing in the above equations are not con-

stant with respect to variations in expenditures and

prices. Additionally, SLES, like the Rotterdam models,

assumes the constancy of the marginal budget shares, as

Opposed to that of income elasticities, and is, therefore,

free of the inconsistencies resulting in CEDS.

The expression for the Slutsky price elasticities

given above may be derived as follows. By direct differ-

entiation of the demand equations, we can get the Cournot

price elasticities:

c. p.c-

_ _ _ _i. _ _l_l. ' °=
eij _ (1 Xi) 6ij bi (pixi) (1'3 ll°°'ln)

where, 5ij' is Kronecker's delta. Utilizing the Slutsky

relation, of section 1.5, it is easily seen that:
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c. w.

+ bi(1 — §%)(W;) (for all i,j)

C.

s.. = -(1 -§i) (Si.
. 3 l13 1 3

where, the wi are budget shares as usual. The expression

for sij is then derived from the above equation by noting

that

c.

(1 — g?) = ‘¢Ei

a result easily verified by manipulation of terms in the

functional form for the demand equations under SLES.

With the expressions above we may examine the

effect of the parametric restrictions implied by demand

theory as derived in the first chapter. It is readily

seen that Engel aggregation implies that the marginal

budget shares sum to unity:

This, in fact, is the only restriction on the parameters.

For, as may be readily verified, the SLES satisfies the

homogeneity condition, the adding-up condition, and the

symmetry of the Slutsky terms implicitly. This is, indeed,

the most attractive feature of SLES. For estimation,

then, there is only one restriction. The number of free

parameters to be estimated is, therefore, given by (Zn-l),

where n is the number of commodities. This is a consider—

ably small amount in comparison with most other models.
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Having noted how the parameters of the SLES relate

to the conventional elasticities of demand, we proceed to

examine the stochastic formulations available. Usually,

it has been the custom to assume that an additive random

variable appears in the non-stochastic formulation of the

"expenditure" equation. Estimation is then carried out

by an iterative method due to Stone [1962—66], and Stone,

Brown and Rowe [1964], and reported in Malinvaud [1966, pp.

310-14]. The estimation procedure suggested by Stone

ignored, however, the singularity of the covariance matrix

implied by the adding-up criterion. A maximum likelihood

procedure has been suggested by Parks [1968] which takes

this problem into account. An alternative stochastic

specification results from appending an additive disturb-

ance term to the demand equation as opposed to the expend—

iture equation. This results in the non-constancy of the

covariance matrix over time, and renders the estimation

procedure suggested by Parks, ineffective. Pollak and

Wales [1969] have explored this problem, and have consid-

erably refined the specification of the error structure

for the SLES, and have proposed another maximum likelihood

procedure for estimation. We conclude this section with a

brief discussion of the several models proposed, and

briefly examine the motivation behind the estimation pro-

cedures suggested.
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In the original formulations, the SLES, was given

the following stochastic formulation:

p.x. = pici + bi(y - kakck) + ui (i=1,...,n)

where the ui are independently and identically distributed

random variables with zero mean and constant variance.

The estimation of SLES is always accomplished by exploit-

ing the fact that given the bi(i=l,...,n), the SLES is

linear in the ci, and vice versa. Thus, using initial

estimates of either of the n parameters, an iterative

procedure is used to estimate the other, and so on,

until some measure of convergence is reached. Of course,

the estimation procedure must take into account the re-

striction that the bi sum to unity. Fortunately, the

definition of the variable y as Zipixi ensures that the

least squares coefficients bi obtained by regressing pixi

on y, will sum to unity. This is a well-known result in

least squares estimation, and is examined in the context

of SLES, for example, by Goldberger and Gamalestos [1967,

pp. 28ff.] where the estimation procedure outlined above

is discussed. We might note, that the estimation proce—

dure given here is due to Stone [1954b], and has been the

most extensively used procedure in the estimation of SLES.

Parks [1968] criticized the estimation procedure

outlined above on the grounds that the constraint on the

bi's and the definition of the variable y, implies that
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Ziui=0. Thus, Stone's procedure does not take into ac-

count the singularity of the convariance matrix, which is

implicit in the model. Parks has suggested that one

equation of the system may be deleted (the choice of the

equation is arbitrary, if the disturbance covariance mat-

rix is constant over time, as is assumed) and the result-

ing system of (n-l) equations be estimated, either by a

straightforward application of the Gauss-Newton procedure

for nonlinear estimation, or by Stone's procedure applied

to the reduced system of the (n-l) equations. Parks points

out, however, that the Gauss-Newton procedure has the

added advantage that it provides an estimate of the

variance-covariance matrix of the estimates, while Stone's

procedure results in estimates of the variance-covariance

matrix of the n parameters, bi' conditional on the pre-

vious estimates of the Ci’ or vice versa. In addition,

Parks' experience with Swedish data from 1861—1955 sug-

gests that convergence is faster with the Gauss-Newton

procedure.

Finally, it might be noted that if there is reason

to believe that the disturbances may be serially correlated,

then both the modified Stone's procedure, and the Parks'

(Gauss-Newton) procedure may be readily extended along the

lines suggested by Parks [1967], and Kmenta and Gilbert

[1970]. Essentially, this is done by estimating the above

equations after correcting for autocorrelation. The
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correction consists of a weighted first-differencing of

the variables, the weights being estimates of the first

order autocorrelation parameter obtained from either the

single-equation OLS residuals (Parks), or the ZEF residuals

(Kmenta and Gilbert). Utilizing the former procedure,

Parks [1969] has provided estimates of SLES fitted to

Swedish data.

Pollak and Wales [1969], however, looked at a

somewhat different specification of SLES. They specified

that the random disturbance term, uit’ enters the demand

functions additively, i.e., for i=1,...,n; t=1,...,T, the

expenditure equations are:

pitxit = pitci + bi(yt ‘ Zk pktck) + pituit

where the uit are i.i.d. random variables with zero mean

and finite variance. Thus, the composite error term of

the expenditure equation, vit = pituit’ is in general not

constant over time. In addition, vit does not retain the

property of homoskedasticity. Thus, in the Pollak-Wales

specification of SLES, Parks' procedure fails to produce

maximum likelihood estimates of the parameters, due to the

presence of heteroskedasticity in the disturbances.71

—__

71It might be noted that there seems to be some

confusion in the literature with regard to the uniqueness

9f the parameter estimates of SLES that result from util-

izing the modified Stone's procedure, as suggested by

Parks [1968]. Parks [1968, Appendix, p. A-l] states that

the choice of the equation to be deleted "does not matter."

POJQlak and Wales [1969, pp. 618-619] claim, however, that
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Pollak and Wales have developed an alternative

estimation procedure in the context of "dynamic" models

proposed by them. These dynamic models proposed by them

are of the "distributed lags" variety, and are considerably

more 50phisticated than the initial dynamic specification

that was suggested originally by Stone. The simplest

dynamic specification, due to Stone, may be specified as

follows:

b. = b? + b** t

it i i

and, cit c: + c:* t

where, bit’ cit' replace the coeffiCIents bi' ci in the

original specification of SLES, to incorporate the belief

that the parameters are subject to a linear trend, in-

stead of the static assumption that they are constant over

time. In this version, SLES has been estimated by Parks

[1969].

Pollak and Wales object to the above specification

on the grounds that a secular increase (assuming a:*>0) in

M

the estimates depend on which equation is omitted." (This

Statement by Pollak and Wales is also cited in an unpub-

lished paper by Murray Brown and Dale Heien, on page 18).

(Additional evidence for the uniqueness of estimates, i.e.,

'fihe irrelevance of the choice of equation to be deleted,

are provided by Powell [1969] in the context of the gen-

eral (not Stone's) linear expenditure system. Powell has

C(Dnclusively demonstrated that in any linear expenditure

Siestem of demand equations, the choice of equation to be

dEileted is arbitrary.
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the subsistence bundles, Ci’ over time, irrespective of

prices and income is an implausible specification. In

addition, it might be pointed out that this kind of an

assumption for the marginal budget shares, bi’ is even

more questionable, since the bi cannot exceed unity. In-

stead, Pollak and Wales propose "habit formation" models

with regard to cit’ while assuming bit to be constant

over time. In addition, the chief contribution of Pollak

and Wales has been to develop a dynamic version of SLES,

in which considerable attention is given to the specifica-

tion of the structure of the disturbance terms. With

their stochastic specifications, they develop a more

satisfactory procedure for dealing with the implied sin-

gularity of the covariance matrix of the disturbance

terms.

The Pollak-Wales linear expenditure system (PWLES)

is derived from the non—stochastic specification of SLES

as follows. Consider the non-stochastic SLES:

pitxit " + b (Yt ' Zpitcit i k pktckt)

where the t-subscript on the ci is appended to incorporate

the belief that the subsistence bundles, Ci' change over

time. The crucial assumption of the PWLES is that the

subsistence bundle is a random variable, satisfying cer-

tain stochastic assumptions. Thus, PWLES specifies the

exact nature of the disturbance terms appearing in each

demand equation. More rigorously, PWLES assumes that:
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= * I = . =eit eit + uit (1 1,...,n, t 1,...,T)

where the ui are random variables, assumed to possess
t

the following properties:

(i) E(uit) = 0 (For all i,t)

(ii) E(u2 ) = 02 (For all i t)
it i ’

(iii) E(uitujt) = 0 (for all i#j, t)

(iv) E(uitujt')= O (for all i,j, t#t')

Substituting the equation for eit into the non-stochastic

equation for SLES, given above, we get:

* _ *

pitxit pitcit + bi(yt Z2k pktckt ) + pitvit

b (2
Where' pituit ' i k pktukt)'pitvit

The implications for the distribution of the vit are easily

derived from the specification of the moments of 111 Ift.

the uit are assumed to be multivariate normal, in addition,

the vit are also distributed as multivariate normal, with

mean zero. The covariance between vit from two different

time periods is zero. However, under assumption (iv) the

variance of the disturbances vit are independent of income

and quantities but are inversely related tc>prices. Since

prices fluctuate, the covariance matrix of the disturbances

may not be assumed constant over time. Pollak and Wales
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consider (ii) to be implausible, and suggest an alterna-

tive specification:

2 2 2 2 ,.

it) ‘ Oi E(Xi
) = c.

.. ,

(ii) E(u t 1 xit

where, (ii)' expresses the belief that the variance of

the disturbance terms in the demand equations are larger

for higher levels of consumption.

Finally, to complete the specification of PWLES,

the nature of variations in ait over time need to be

specified. Pollak and Wales suggest the following alter-

native hypotheses:

. o * —_ * . —_HypotheSis 1. cit k1 + ki t (i 1,...,n)

- . * = + *
HypotheSis 2. cil kl k Xil—l

where the first hypothesis is of the Stone variety, while

the second is the "linear habit formation" hypothesis

which subsumes under itself the cases of constant cit

(over time), and the "proportional" habit formation

hypothesis, which results when ki=0 in Hypothesis 2.

Using these specifications, Pollak and Wales de-

rived maximum likelihood estimators for the coefficients,

and estimated demand for four commodities for the United

States, using data from 1948-1965. They also estimated

these models for prewar (1930-1941) data, and found signifi-

cant differences in the underlying utility functions for
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the prewar and the postwar periods. Unfortunately, their

estimates suggest that for postwar data the stochastic

specification of variances of disturbances proportional

to quantities is valid only for the "proportional" habit

formation model under Hypothesis 2. However, the dynamic

specification and the estimation technique were shown to

affect the results of estimation significantly. We dis-

cuss these results in some detail here because the model

to be proposed in Chapter 3 is also estimated using the

same data.

3.5 Utility Aspects of SLES
 

Samuelson [1948] and Geary [1949] demonstrated

that Stone's linear expenditure system could be derived

from a constrained maximization of the so-called "Stone-

Geary" utility function, which is given as:

u = u(xl,...,xn) = Xi bi log(xi - Ci)

where the function is defined for (xi - ci)>0, and for all

i=1,...,n, O : bi i l, and ci 1 0. In addition, Zibi=l.

Maximizing the Stone-Geary utility function subject to the

budget constraint, gives rise to SLES:

pixi = pici + bi(Y ' kakck)’

Thus, the a priori specification of SLES has been shown to

be equivalent to the assumption that the consumers possess
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a definite pattern of preferences, which they attempt to

maximize subject to their budget constraint. In addition,

the utility basis of SLES is a source of additional in-

sight into the behavioral implications of SLES.

The first point to be noted is that the Stone-

Geary utility function is directly additive. Thus, with-

out further analysis, the results of section 1.6 ensure

that goods represented by SLES must be Hicks-Allen sub-

stitutes. Also, these goods cannot be inferior, nor can

they be complements, nor specific substitutes in the

Frisch-Houthakker sense. The absence of specific sub-

stitutability, inferiority, and complementarity suggest

that SLES is a plausible specification only for broad

aggregates of expenditure categories.

In addition, it is easy to show that for SLES

the implied Engel curves are linear, and the own-price

elasticities are less than unity in absolute value. The

fact that Engel curves are linear is obvious from the

constancy of the marginal budget shares bi' which are

defined as

3X1 .
bi = pi (§§—) (i=1,...,n)

Thus, given a set of prices, the consgancy of bi ensures

that the slope of the Engel curves, (8;E)’ is also constant.

The restriction on own-price elasticities is apparent
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from the formulas derived in the last section. Recall

that the Cournot own-price elastiCities are given by:

C1 Ci .
eii = "(l - X_) - bi ('X—i') (i=1,...,n)

Ci .

= - 1 + (1 - bi) £1» (i=1,...,n)

Now, since 0 §.bi : 1 (i=1,...,n), the own-price elastici-

ties, eii' lie between zero and minus unity. An examina-

tion of the similar expression for the Slutsky own-price

elasticities will reveal that they are subject to the same

upper and lower bounds. These results imply, therefore,

that SLES is a valid specification only for goods whose

demand is "price-inelastic" in the usual sense. Further,

the linearity of the Engel curves implies that the model

should be applied only to those samples for which the

sample variance of income is relatively small.72

The linearity of the Engel curves also result in

an interesting analysis of the behavior of the budget

shares as income varies. These results due to Goldberger

[1967, pp. 53 ff.] may be derived as follows. Dividing

the expenditure equation under SLES, by income, y, we get

wi = (pici)/y + bi(y — Zk pkck)/y (i=ll°°°ln)

 

72These points are made by Stone [1965, p. 275],

and Goldberger [1967, pp. 6lff.].
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where wi denotes the (average) budget share of the ith

good, as before. This may be written as

w. = (l -d) w? + d b.

1 i i

pici
where, w? = ———————-, the "subsistence budget shares"

1 2 p c
k k k

and, a = (y - kakck)/y , is the ratio of supernumerary

income to income. It is easy to see, then, that in SLES

the budget shares are weighted averages of the "subsistence"

budget shares and the "marginal" budget shares for each

commodity.

Further, the weights appearing in the expression

for wi may be identified as the Frisch "money flexibility"

function. To see this, substitute the SLES demand func-

tions into the Stone-Geary utility function to get the

indirect utility function associated with the Stone-Geary

function:

C
. II u*(pl,....pn.y)

2i bilog bi + log(y - Xi pici) - 2i bi log pi

Thus, the marginal utility of income is given by

A = (Y ‘ Zk pkck)—l

The inverse of the income elasticity of the marginal util-

ity of income, which by definition is the "money flexibility,"

¢, is easily seen to be
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¢ = _ (Y ‘ 2k pkck) z 3(log A) '1

y 3(109 y)

Thus, the ratio of supernumerary income to income, apart

from its sign, is identical to the a above. In view of

this, we may write the final expression for the (average)

budget shares under SLES

wi = (1 - |¢|) w; + |¢| b. (i=1,...,n)

Noting first that wi and w: sum to unity, and secondly

that wi, wi, |¢|, and bi all lie between zero and unity;

an interesting implication of the response of budget

shares to changes in real income, becomes available. We

see that the (average) budget shares under SLES are bounded

from below by the "subsistence" budget shares, and from

above by the marginal budget shares. Their proximity to

the upper and lower bounds is determined by the value of

|¢| for the particular levels of prices and income. As

income rises, with prices constant (or vice versa), |¢I

tends to its upper limit of unity, and the (average) budget

shares, wi, tend towards the marginal budget shares, bi'

Similarly, a fall in real income due to changes in income

or prices, results in |¢| to fall towards its lower limit

of zero, and the (average) budget shares approach the "sub-

sistence" budget shares.73

73The fact that the Frisch "money flexibility"

function, lies between zero and unity in absolute value,

and is the ratio of supernumerary income to total income,
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In addition to the above properties, SLES has also

the desirable property of aggregating perfectly over both

individuals and commodities. This should be obvious from

the section of aggregation in the previous chapter where

we stated the conditions on Engel curves which were neces-

sary and sufficient for aggregation. Thus, the linearity

of Engel curves plays a crucial role in the existence of

desirable properties in the linear expenditure system.

Curiosly enough, it is this linearity of the Engel curves

which constitutes one of the serious restrictions of SLES

too.

Finally, we point out that a utility basis may also

be provided for the Pollak-Wales modification of SLES, by

a direct extension of the Stone-Geary function. Pollak

and Wales [1969] have shown that their stochastic specifi-

cations for their dynamic demand functions are obtainable

from a constrained maximization of the following stochastic

utility function:

{:
1 ll

... X ...u(XlI I nlvll IVn)

2i bi log(xi- ci- vi)

where the vi are random variables with a specified dis-

tribution. Maximizing this utility function subject to

 

lends particular credance to Frisch's [1932], [1959],

proposition that "money flexibility" be treated as an index

of welfare.
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the budget constraint, yields the PWLES, given in the

previous section:

_ _ *

where, v: = pivi — bi(2kpkvk).

Thus, much like SLES, the PWLES may also be justified on

grounds of a specific utility function. Indeed, the

Pollak-Wales approach towards a stochastic formulation of

the consumer's utility function admits of somewhat more

generality than the Rotterdam approach, which is the only

other model whose stochastic underpinnings have been ex-

plored in detail. As Pollak—Wales [1969] point out, the

"marginal utility shcok model" utilized by Theil and

Barten (discussed in section 3 above) assumes that the

stochastic terms enter the utility function in a specific

manner, as follows:

n

u = u(xl,...,xn) + E x v

klk
k

where vk are random variables.

3.6 General Linear Expenditure

Systems (GLES)

 

Although Stone's linear expenditure system has

attracted the most attention, other linear expenditure

systems have also been investigated and estimated. These

"general" linear expenditure systems were proposed by
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Stone [1954b], and were in fact specialized by Stone to

yield SLES. The procedure by which this was achieved was

simply to impose the classical restrictions on the general

linear expenditure system. In doing this, Stone demon-

strated that GLES satisfied the classical restrictions

implied by demand theory only if it had the form of SLES.

An alternative approach has been to consider the GLES and

impose (approximately) the classical restrictions on the

demand function in estimation. This approach was adopted

by Leser [1958], [1960], [1961], and subsequently by

Powell [1965], [1966], and Powell, Hoa, and Wilson [1967].

Estimation of the linear expenditure system was analyzed

definitively by Powell [1969]. As an introduction to

these models it might be instructive to consider the

method by which Stone [1954b] arrived at SLES from GLES.74

Stone [1954] considered the GLES,

(GLES) ... pixi = ai + biy + chikpk (i=1,...,n)

where the ai, bi’ and the CR are assumed to be constant.

By direct differentiation and manipulation of terms it is

easily verified that the income (Engel) elasticities, and

the price (Cournot) elasticities are given by,

 

74Our exposition follows Frisch [1954] due to his

simplified presentation. Stone [1954], and Goldberger

[1967, pp. 50-52] also present the same material.
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bi
E1 = VT; (1:1,. 0 o ,n)

Ci p- p. . .

and, e.. = —L-J' — —l 6.. (l,J=l,ooo'n)

13 xipi pi 13

where, wi is the budget share as before, and 5ij is

Kronecker delta. It is easy to see, therefore, that the

Slutsky price elasticities, sij’ are given by

w.bi c..p. p.

.. = —‘l—— + "ii-‘1 - —l 6.. (i,j-1,...,n)

13 W1 xipi Pi 13

The effect of the classical restrictions may now

be examined. Homogeneity requires that

E. e.. + E. = 0 (i=1,...,n)

Substituting from above, we see that for the GLES, this

implies that

 

Ox.

pl 1

a.

X: e.. +E- = -( l) = 0 (i=1,...,n)

Thus, GLES satisfies the "homogeneity" condition if and

only if all the intercepts, ai = 0. Similarly, the

"adding-up" criterion, Xipixi=y, if fulfilled if and only

if,

Ziai = 0, Zibi = l, and chij = 0 (i=1,...,n)

The symmetry condition, wisij = szji’ requires,

WJbl + ClJEY - w];— 6ij = wlbj + 0313; - W121. ij
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Multiplying through by y, cancelling the last terms on

each side, and substituting for pixi and pjxj from GLES,

we have after transfering all terms to the left hand side,

bi(aj+ bjy + chjkpk) + pjcij - bj(ai+ biy + chikpk)

picji = 0

or, (biaj - bjai) + 2k pk(bicjk - bjcik)

+ (pjcij - picji) = 0

Utilizing Kronecker deltas, we may write down equation (21)

of Frisch [1954, p. 509]: (in our notation)

(biaj - bjai) + 2k pk(bicjk- bjcik

+ Cikékj ’ Cjkdki)

where this equation holds for all i,j=l,...,n. Since

this equation holds for all prices, both the first term,

and the coefficient of the price term are identically zero:

(biaj - bjai) = O, (i,j—l’ooo’n)

Cik C‘k . .

and' W = 8—73—87 (1.3=1,....n)
l 1 k] j

The first condition implies that

ai = biy (i=1,...,n)

while the second is true only if,
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cij = (éji - bi) xj (i,j-1,...,n)

where i, §5(j=l,...,n), are (n+1) constants that charac-

terize the demand equations.

Introducing these into the original expenditure

equations under the GLES, we get

pixi = biy + Zk(6ki- bi)pkxk (i=1,...,n) (Zbi = 1)

= pixi + bi(y - kakxk) (i-l,...,n) (Ebi = 1)

75

which is Stone's linear expenditure system, SLES, with ck

replacing xk

shown that Stone's LES is the only form of the GLES which

in our previous notation. Thus, it has been

satisfies the homogeneity condition, the adding-up criter-

ion, and the symmetry conditions. Indeed, the derivation

above points quite forcefully towards the power of the

classical restrictions.

The impact of this, however, is to make the model

nonlinear in parameters, and hence rob the GLES of its

single most attractive feature: linearity. The estima-

tion of SLES is quite cumbersone, as we have seen, and has

been satisfactorily analyzed only recently. Leser [1958],

 

75A single-subscripted ck refers to the subsistence

consumption level of the k-th commodity, in conformity with

our previous notation; and should not be confused with the

double subscripted c.k which were arbitrary coefficients in

the GLES. l
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therefore, examined the GLES with the view of maintaining

the convenient parametric linearity of the system at the

expense of only an approximate enforcement of the classi—

cal restrictions. In Leser's linear expenditure system,

(LLES), the expenditure functions are taken to be of the

GLES form, initially:

pixi = biy + Zj aijpj (i=1,...,n)

where, it is understood that only the "adding-up" criter-

ion is to hold globally, while the homogeneity and symmetry

conditions are to hold only at the sample means of expend-

itures and prices.

It is apparent that the adding-up criterion will

be met for all values of the independent variables if and

only if

and E. b. = l.

(The latter condition, incidentally, insures that Engel

aggregation conditions are satisfied globally). To

achieve further economy of parametrization, Lese intro-

duces the Hicks—Allen "elasticity of substitution" be-

tween goods i and j, aij’ defined as

wj aij = sij (i,j=l,...,n)
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where Sij' and wj are the Slutsky price elasticity and

the budget share of the jth commodity, respectively.

Using the Slutsky relation, it is easily verified that

the Slutsky price elasticity for the GLES is given by

sij = pjaij/vi - 6ij + wjbi/wi (i,j=l,...,n)

where, vi denotes the expenditure, pixi, on the ith good.

By a suitable rearrangement of terms, and substitution

from the expression for aij, we have

=—— * — — _ ' '=aij wixjaij bixj + xiéij (i,j 1,...,n)

which is derived by Leser [1960, p. 105] and is cited by

Powell [1969, p. 921, equation (A.3)]. The equation is

understood to hold at sample means of budget shares and

quantities, wi, and ii, respectively. Substituting this

in the GLES, we have

= _ _ — * _ _pixi pixi + bi(y ijjxj) + Ejaij(wipjxj)

(i=1,.. . ,n)

Leser's linear expenditure system (LLES) is de-

rived from this equation by noting the fact that the

demand functions will be homogeneous (at the sample means)

if and only if

Zj wja:j = O (i=1,...,n)
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Substituting for aii from this condition we have, for LLES

(LLES) ... p.x = pixll i + bi(y - Z.pjxj)

J

+ E at. a: .2]— a: .§.

j¢i 3( 1p3 3 3pl 1)

which is given by Leser [1960, p. 105, equation 2]. Un-

fortunately, LLES is still quite rich in parameters, so

that for purposes of estimation, Leser arbitrarily equated

all cross-elasticities of substitution between goods,

a§j(i#j). With this assumption, it is readily seen that

LLES has (2n+l) free parameters. Also, it has been shown

that LLES satisfies the adding-up criterion globally, and

the homogeneity and symmetry conditions at the sample

means. Estimation of the model is discussed by Leser,

but the definitive solution is provided by Powell [1969].

Powell's procedure takes account of the implied singularity

Of the covariance matrix of the disturbances. A generalized

Aitken [1935] type of estimator is derived by Powell with

the use of the Moore—Penrose generalized inverse for a

matrix of less than full rank. We discuss briefly both

Leser's procedure and the one suggested by Powell.

Having equated the cross elasticities of substitu-

tion, Leser was confronted by a linear model in which one

parameter, aij = a* (identical for all i#j), occurred in

all of the equations. Leser [1960, pp. 107ff.] adopted

the procedure of accepting those estimates of a* which
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minimized certain arbitrary linear combinations of residual

sums of squares from the n fitted equations. Thus, denot-

ing v.1 = pixi, Leser obtained estimates of the parameters

in LLES, which minimized:

A 2

s ‘ ZiAiEt(Vit ‘ Vit)

where, Ai are arbitrary constants, and vi represent the

estimated values of Vi' To derive actual estimates, Leser

proposed the following two assumptions:

(i) A.l l (for all i)

2
or, (ii) A.l l/Zt(v. - 0. )

it it

which correspond respectively to the minimization of the

total sum of squares, and to the maximization of the sum

of the R25. Powell [1966, p. 665, n. 3] subsequently

credits a referee for pointing out that only under cri-

terion (i) are the estimates of the parameters linear.

Utilizing this procedure, Leser obtained the estimates of

a*. Estimates of the other parameters were obtained in a

similar fashion in a second round. It was noted that the

least squares procedure ensured that Zibi = l; and ziti = 0,

where ti were coefficients of the time trend variable.

Powell [1965] has proposed an alternative estima-

tion procedure for LLES which takes also into account the

fact that the classical restrictions imply that the covari-

ance matrix of the disturbance terms is singular. Although
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Powell considers the general LLES, (a:j unequal for i#j),

the "restricted" LLES under consideration may be estimated

by deleting one equation (the choice is arbitrary) and

using a restricted (a:j = a*, all i#j) Zellner's [1962]

two-step procedure. Recovering the coefficients of the

deleted equation by parametric restrictions, this estima-

tion procedure leads to efficient and unbiased estimates

under appropriate assumptions. The details of the pro-

cedure parallel the discussion in Chapter 4 for the

model prOposed in this paper.

On another front, Powell [1965], and elsewhere,

proposed a modification of LLES. The motivation behind

Powell's model lay in the dissatisfaction with Leser's

procedure of arbitrarily equating the cross elasticities

of substitution. Indeed, from a strictly theoretical

point of view, Frisch [1959] has questioned the use of the

elasticity of substitution as a parameter in demand models,

due to its peculiar disadvantage of tending towards in-

finity as budget shares become small. (Thus, Leser's

[1960] estimate of 0.5 as the value of the elasticity of

substitution seems questionable when the mean budget

shares for the nine commodities under question are reported

between 0.020 and 0.259 [Leser, 1960, p. 108]). Of

course, the advantage of using the elasticity of substitu-

tion as a parameter lies in its symmetry.
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To achieve symmetry, however, Powell took the

approach of utilizing results from the theory of additive

preferences. Thus, if it may be assumed that the class

of utility functions which give rise to the GLES have as

a member an additive utility function, then the results

of section 1.6 of the previous chapter may be used in

achieving a more parsimonious parametrization of the GLES.

This, in fact, was Powell's approach. To derive his

"model of additive preferences" (PMAP) consider the GLES:

pixi = biy + Zj aijpj

where, the intercept (not used by Powell), and an addi-

tive time trend term (used by Powell) are omitted for

simplicity. With the above specification, it is easy to

see that

(all 1.3)

An expression for aij may be derived as follows:

Bxi

= p1(Kij — iji/pi) (for i¢j) (where, Kij is the

Slutsky term).

= k bibj/p' - ijl (for i#j)
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where, k = - A5 L

Y

and use has been made of the fact that under additivity

A (3xi (dx.)

K_.=—_._ ._)__l

ij Ay y 3y

Note, however, that the consequences of additivity are not

imposed globally, but are instead assumed to hold only at

the sample means of the prices and quantities.

Also, the adding-up criterion is met only if

Which implies, since prices are arbitrary, that

Using this relation, we deduce:

where, we have used the expression for aij above. Finally,

we may substitute these expressions for aij into the

original formulation of the expenditure equation under

GLES, to get Powell's "model of Additive preferences"

(PMAP):

(PMAP) ... pixi = pixi + bi(y - ijjxj)

+kb.2.b. .". - ._.l J 3(p3/p3 pl/pl)
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In this version, an interpretation of PMAP becomes

available. Given a set of income and prices the consumer

is assumed to pruchase "typical" quantities of goods,

§i(i=l,...,n). The consumer then allocates his "supernum—

erary income," (y — szjgj)’ proportionally among goods in

accordance with their respective marginal budget shares,

bi‘ This is parallel to the behavioral interpretation

given for SLES with the "subsistence bundles," ci, of

SLES playing the role of the "typical bundles," ii, of

PMAP. Unlike SLES, however, PMAP assumes that the con-

sumer adjusts his allocation of his supernumerary income

to account for substitution effects resulting from price

changes. This price response is given by the third term

in PMAP, which, incidentally, sums to zero across equa-

tions, and thus ensures that the adding-up criterion is

76
met for all prices and incomes. Powell [1966, p. 663],

further notes that if the two terms, (y - ijjij), and

- pixi — kbiZjbj(pj/pj -pi/pi) ), are deflated by

the ith price, pi, then (in terms of the purchasing power

(pixi

of the ith good) we would obtain, respectively, an index

of "real" supernumerary income, and a quantity index for

the ith good.

76This interpretation, and much of the subsequent

discussion of PMAP, relies to a great extent on the exposi—

tion of PMAP given by Goldberger [1967, pp. 95—101],

alongwith Powell [1966, pp. 663ff.].
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From a statistical viewpoint, PMAP possesses con-

siderably more attractive properties than SLES. Firstly,

the introduction of sample mean values (observable) in—

stead of the "minimum" or "subsistence" values, Ci’ reduces

by n the number of parameters to be estimated for PMAP, as

compared to SLES. Thus, the number of total free para-

meters to be estimated under PMAP is seen to be just n.

In other respects, however, PMAP retains the same assump-

tions as SLES. In particular, the behavior of price and

income elasticities with respect to variations in expendi—

tures and prices are assumed to be identical under the two

specifications. It might be noted, however, that PMAP

assumes the parameter "k" to be constant. This implies

that Frisch's "money flexibility" (or the inverse of the

income elasticity of the marginal utility of income) when

plotted against income yields a rectangular hyperbola, at

mean values of prices and income. This is due to the

equality of k with (—¢y) at sample means. SLES, on the

other hand, defines (-¢y) to be identical to "supernumerary

income," a crucial variable. Finally, it has been noted

that PMAP imposes the classical restrictions only approxi-

Inately. Thus, PMAP is not strictly consistent with

77
‘utility-maximizing behavior.

__¥

77It ought to be pointed out, however, that Gold-

berger [1967, pp. 99ff.] has shown that PMAP may be derived

from a constrained maximization of the Stone-Geary utility

function subject to the additional restrictions that
‘

Cxi - kbi/pi) = ci(i=l,...,n); where ci are parameters of
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Evaluating PMAP with respect to ease of estimation,

we see that PMAP is non-linear in parameters like SLES.

Thus, the estimation of PMAP is carried out by iterative

procedures described under SLES. The comments of that

section apply to the estimation of PMAP.

3.7 Other Models of

Consumer Demand

 

 

In the previous sections we have explored the most

widely utilized empirical models in demand theory. There

remain, however, an infinite variety of models that may

be derived from any utility function which satisfies the

several properties necessary for qualifying as a utility

function. In this section we consider three specific

models of consumer demand that are a result of three fa-

mous utility functions proposed in demand theory. These

are the Quadratic utility demand models, the "direct

addilog," and the "indirect addilog" utility models of

demand. Although all three are consistent with utility

maximizing behavior, and hence satisfy the classical

constraints, yet on intuitive and empirical grounds these

models leave much to be desired. Their main contribution

lies in providing additional insight into theoretically

plausible models of consumer demand.78

 

the Stone-Geary function identified under SLES as subsist-

ence bundles.

78Our discussion relies on Goldberger [1967] and

Houthakker [1960].
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Quadratic Utilipy:
 

The "Quadratic utility function" is given by

(QUF) ... u = u(xl,...,xn) = 2i aixi - 1/22i2j bijxixj

where the ai and the bij are constants. Although the

Quadratic utility function was considered by Allen and

Bowley [1935], it received little attention subsequently

in the analysis of consumer demand, with the notable ex-

ception of Rotterdam models where it was discussed by

Theil [1967, pp. 183-188, 228-229], who used it as an

illustration.

To facilitate eXposition, we adOpt the following

  

notation:

_a1- 1’11 1’12 ° ' bln_

a2 b21 b22 ° ° ' b2n

a = B = .

_?n_‘ bn1 bn2 ° . . bnn   
where a is an (nxl) vector, and B an (nxn) pos. definite

matrix of coefficients. The Quadratic utility function

may then be given in its matrix form by

(QUF) ... u = u(x) = a'x — 1/2 x'Bx

where, x, is the (nxl) vector of quantities defined in
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Chapter 1. By the usual methods adopted before, it is

easy to see that the demand functions are given by:

ij ij -1 ij ij
X . = Z I D b - Z . Z ' b ' D Z . z I ' a I b - - Z ‘ b .

1 3 a3 ( 1 3 p1p3) ( 1 3 3 p1 y) 3 p3

where, bl] refers to the (i,j)th element of B-l. (For

details of the derivation, Goldberger [1967, p. 73ff.]

may be consulted.) From this we see that the expenditure

functions under the Quadratic utility specification are

given by:

.bljJ -a-bljp- - y)p Z bljp-
_ i3 -

pixi — piZ.ajb (ZiZ J j l l J j
-1

J pipj) (212

or in matrix notation:

px = pB la - (p'B_lp)'l(p'B_la - y)fiB_lp

where, p, denotes the (nxn) matrix whose off-diagonal ele-

ments are zeros, and the ith diagonal element is pi.

An ingenious, but unreasonable interpretation may

now be offered with regard to the behavior of the consumer

reflected by the expenditure functions given above. To

do so we note that the marginal utility of income function

may be derived to be:

A = (p'B—lp)_l(p'B_la - y)

So that the positivity of the marginal utility vector uX

ensures that:

y < p'B‘la.
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1a may be thought of as maximum at-This means that p'B_

tainable income, or "bliss income." If actual income, y,

were equal to the "bliss income" the consumer would buy

the "bliss bundle" of goods, given by B_1a. Thus, an

interpretation for the consumer's behavior may be offered

as follows. The consumer is thought to "buy" the "bliss

bundle" conceptually, but since his income is below the

"bliss income" he "sells back" the goods, receiving a

fixed proportion, pi(2jbljpj/2i2jbljpipj), of his "infra-

bliss deficit" of, (Zizjajbijpi- y)> 0, in return [Gold-

berger, 1967, pp. 74-75]. This interpretation is

(admittedly) at best tenuous. A further discussion of the

Quadratic utility model is omitted due to its limited

relevance for empirical work. We note, however, the

principle results.

It is relatively easy to show that under the

Quadratic utility function, the demand functions may give

rise to negative quantities for some income-prices. Also,

it is possible that some goods possess negative marginal

utilities at low income levels while the opposite holds

true for other goods. From the demand functions, we see

that the marginal budget shares are constant for given

prices. Thus, the Engel curves are linear. However,

under the Quadratic utility model, the marginal budget

shares are not bounded between zero and unity, (although

they sum to unity as usual). This is because the elements
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of B-lp may be negative. The possibilities of negative

marginal budget shares also implies that inferior goods

are permitted under the Quadratic utility function. An

additional property of this function concerns the perverse

behavior exhibited by the Frisch money flexibility func-

tion. In the case of Quadratic utility, for a given set

of prices, the money flexibility falls from zero to minus

infinity as income rises from zero to bliss income. Thus,

its inverse (and not itself) may serve as a welfare indi-

cator in this case. Finally, we note that if it is

specified that bij = 0, for i#j, then utility becomes

additive, and the additive quadratic utility function gives

rise to the so—called Gossen map (see Samuelson [1947a, p.

93] and Allen and Bowley [1935, p. 139]).

From the point of View of estimation, the Quadra-

tic utility model possesses little attraction. In fact,

the demand functions that result are quite complex, and

have not been estimated by anyone.79

Direct AddilogyUtility:
 

The direct addilog utility function (DAUF) was pro—

posed by Houthakker [1960], alongwith its operational

counterpart, the indirect addilog utility function, (IAUF).

The DAUF is given by:

 

79We have but paraphrased Goldberger [1967, pp.

73-80] in this section.
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(DAUF) ... u = u(x1,...,xn) = 2i ai xi

where it is assumed that ai > 0, and 0 < bi < l for all

i=1,...,n. It has been shown by Houthakker [1960, p. 253]

that only a partial solution to the demand functions is

available. This is due to the fact that the first order

conditions are difficult to solve explicitly for the x's

in terms of the prices and income. To get a partial

solution, the ratio of marginal utilities may be equated

to price ratios to give:

(1 — bi)log xi - (l - bj)log xj = log(aibi/ajbj)

(for all i,j)

Since the direct addilog model is non-operational,

(unless extremely tedious methods of estimation are adopt-

ed), we omit further discussion, but note briefly the few

properties that are known about this model. Houthakker's

[1960] results that the ratio of income elasticities under

DAUF are constant, may be easily derived by taking a total

differential of the equation above, assuming prices con-

stant:

(1 - bi)d log xi - (l - bj)d log xj = 0 (all i,j)

which implies, after clearing terms and dividing by dlog y,
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A special case of the DAUF results when all the bi

are equal, say to b. It is easy to show, then, that the

resulting demand functions are given by

-1
(b—l)

(p-/a-b

x. = 1 l) y (i=1,...,n)
-1

(b—l)
Zj pj(pj/ajb)

 

Hence, all Engel curves are straight lines through the

origin, so that income elasticities are all unity. Pollak

[1967, p. 3] shows that this special case of the direct

addilog utility function is a monotonic trasformation of

the constant elasticity of substitution utility function.

This is easy to see if we set ai = Di, b = —p. Then

1/b - —1
v(xl,...,xn) = u = (Zipix. p) /p

1

which is the CES utility function. Finally, for the spe—

cialized indirect addilog function, it can be shown that

the money flexibility is given by:

¢=(b-l)l

which is negative but independent of income.

Indirect Addilog Utility:
 

Finally, we have the operational case of "indirect

addilog" utility function due also to Houthakker [1960].

Estimation of demand functions under this utility function
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was carried out by Houthakker [1960], although the demand

functions which result had already been explored by

Somermeijer and Witt [1956]. Somermeijer [1961], Russel

[1965], Parks [1969], and Yoshiahara [1969], have applied

the model to data from Netherlands, U.S.A., Sweden, and

Japan, respectively. The extreme difficulty in estima-

tion, the lack of good empirical fits, and the admitted

lack of intuitive justification render the indirect

addilog case as somewhat of a curiosity among demand

models.

The indirect addilog utility function proposed by

Houthakker [1960] is given as

b.

= * = l o ...(LAUF) ... u u (y,pl,...,pn) 2i ai(y/pi) (ai<o, 1<bi<o)

where, u* is understood to be the "indirect utility func-

tion" defined in Chapter 1. This is, in fact, the only

explicit function that has been considered in the litera-

ture, which exhibits the property of "indirect additivity"

examined in Chapter 1, Section .

Obtaining demand functions under indirect addilog

utility is relatively easier, as noted earlier. Differen—

tiating with respect to y gives the marginal utility of

income function:

b

_ 3u* _ k
A - BY — (2k akbk(Y/Pk)
 

)/y

Differentiating with respect to the ith price gives:
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b
3u* _ _ i .=

35"; -' (l/Pi) aibi (Y/pi) (1 ll°°°ln)

Now, using Roy's identity (see p. ), we get the demand

functions:

1+b.

x 1 39* — aibi(Y/pi) 1 (i-l n)
1.2-A 3p. — bk —’...'

1 2k akbk(y/pk)

which is Houthakker's equation (29), [1960].

It is readily verified that for this system, the

income (Engel) elasticities are given by:

Ei = (1+bi) - Zkbkwk (i=1,...,n)

where, the wk are the usual budget shares. Similarly,

for the (Cournot) price elasticities, we have

e.. = b.w. - (1+b.) 6..

13 J J 1 1]

(i,j=l,...,n)

Thus, as is true in any indirectly additive model, the

cross-price elasticities depend only on the good whose

price is changing. Note, also, that for this particular

model the differences between income elasticities are

constant.

By direct differentiation of the A function, we

obtain the income elasticity of the marginal utility of

income, or the inverse of money flexibility, after some

rearrangement:

.EH
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5; = (l/y)AZk(bk — 1)wk

So that the income flexibility, O, is given by:

O = -l + 2k bkwk

In the case of indirect addilog utility, then, the money

flexibility follows Frisch's conjecture. As income rises,

high income elasticity goods occupy larger shares of the

budget. Thus, both bk and wk rise together, with the re-

sult that Zkbkwk rises with income; and hence, ¢ rises

with income [Goldberger, 1967, p. 91].

In conclusion, we might mention again that unlike

its counterpart, direct additivity, indirect additivity

is hard to justify on inutitive grounds. It is, in fact,

unclear what behavioral implications of indirect additivity

are. Thus, the relevance of the indirect additivity hypo-

thesis as a source of meaningful models of demand is

restricted. Further, the estimation of the set of demand

equations under indirect addilog utility function is quite

cumbersome. Houthakker [1960] took ratios of quantities

to suppress the nonlinearity in parameters that is inher-

ent in the model. This leads, of course, to several es—

timates of the parameters. The estimation of the indirect

addilog model was solved by Parks [1969], who proposed

that the system of (n—l) equations obtained by taking

ratios of quantities be estimated jointly, with restrictions
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across equations being imposed in order to yield unique

estimates of the parameters. Preliminary empirical results

indicate that the model does not compare favorably with

models like SLES, or the Rotterdam models. It might be

noted that Houthakker arrived at the indirect addilog spec-

ification in attempting to adjust the CEDS to satisfy the

adding-up criterion. In doing so, unfortunately, the

model became nonlinear in parameters, and hence lost its

only desirable property: linearity.

To conclude this chapter, we recall that of all

the empirical models suggested, only the linear expendi-

ture systems, and the Rotterdam models are both theoreti-

cally plausible, and give rise to cogent empirical

explanations. Among these, the only model which is linear

in parameters is the linear expenditure system proposed

by Leser. Unfortunately, LLES has the disadvantage that

it has a rather large number of parameters to be estimated.

To correct for this the elasticities of substitution may

be equated for each pair of distinct goods. However, this

solution is far from attractive. Thus, the empirical

worker in demand theory is almost inevitably confronted

with parametrically nonlinear models, if his choice is to

be plausible on theoretical grounds.

To partially remedy this situation, we propose in

the next chapter a modification of the CEDS which renders

it consistent with the classical utility maximizing theory
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developed in Chapter 1. In addition, this model is linear

in parameters and is relatively easy to estimate for a

small number of commodities. The model also has the ad-

vantage that the results of additivity theory may be

introduced (at the expense of nonlinearities) for the

reduction in the number of parameters. The model is

applied to U.S. data, and results presented.





CHAPTER 4

A MODIFICATION OF THE DOUBLE-LOGARITHMIC

SYSTEM OF DEMAND EQUATIONS

4.1 Introduction
 

In the previous chapter we have examined all of

the theoretically plausible functional forms for a com-

plete set of demand equations that have been utilized in

the empirical work on demand analysis. This class of

admissible demand equations is further restricted by the

criterion of empirical plausibility. Thus, in a direct

comparison of three of the alternative models, Parks [1969]

reports that estimates based on a fairly long time series

on Swedish data reveal that the Rotterdam model has a

slight advantage over SLES, while the Indirect Addilog

model gives extremely poor fits. The evidence against the

Indirect Addilog model is confirmed by Yoshihara's [1969]

estimates based on Japanese data. These results were,

in fact, anticipated by Houthakker [1960], who admitted

that the lack of an intuitive interpretation of the In-

direct Addilog model and the restrictive features inherent

in it, led him to believe that the model may not be of

great empirical relevance. A consensus has, therefore,

161
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seemed to emerge that the "Linear Expenditure Systems"

and the Rotterdam models are the only theoretically

plausible models which are known to be consistent both

with the theory and with the data. Even among these two

models, only the Rotterdam model admits of a parametrically

80

 

linear version if the number of commodities is small.
 

For a large number of goods in the consumer's budget, both

these models become nonlinear in parameters, and are not

easy to estimate.

Clearly, a need exists for the development of

additional theoretically plausible models, which also

meet the test of data. In this chapter we propose two

such models, based upon the CEDS and bearing a great degree

of formal resemblance to the Rotterdam models. The models

proposed in this chapter share the linearity property of

the Rotterdam model for a small number of commodities,

and can be extended in the fashion of the Rotterdam models

to nonlinear versions. Using a four—commodity breakdown

of U.S. expenditure data from 1929-1968 utilized by Pollak

and Wales [1969] in the estimation of SLES, we estimate

 

80The parametrically linear version of the Rotter-

dam model is estimated by Parks [1970]. This version does

not involve any spearability or additivity assumptions, as

was done in the original formulations. For this reason

each demand equation contains as many explanatory variables

as the number of commodities under analysis. Multicollin-

eauity in price variable and the lack of extensive data

therefore restrict its use to a "small" number of commodi-

ties. Roughly speaking, n may be considered small whenever

l/2(n +n-2), (the number of free parameters to be estimated),

is less than the number of independent observations.
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both the models proposed here, the Rotterdam model,.and

Leser's LES. The models are then compared with respect

to the negative definiteness of the matrix of the Slutsky

substitution terms, the plausibility of the values of

marginal budget shares, and two measures of goodness of

fit. On the basis of these comparisons, conclusions are

drawn with regard to the potential empirical usefulness

of the two models proposed.

4.2 Two Theoreticallnylausible

Demand Models

 

 

Before proceeding to derive the models proposed

in this section, we examine briefly the principles under-

lying the construction of demand models. From Chapter 1

we know that under appropriate assumptions we can be

certain of the existence of a continuous and differenti-

able complete set of demand functions:

xi = h'(y.pl.....pn) (i=1,...,n)

which are determined entirely by the preference ordering

of the consumers, in the sense that they are invariant

with respect to an arbitrary monotonic transformation of

any specific utility function representing the preference

ordering. In addition, we have shown that these functions

satisfy certain partial differential equations in quanti-

ties, prices and income. In other words, we know that a

complete set of demand equations constitute a specific
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solution to a set of partial differential equations, which

are usually formulated in terms of logarithmic partial

81 The search for theoretically plausiblederivatives.

functional forms is, therefore, a search for specific

solutions to a set of partial differential equations.

With restrictions expressed in logarithmic partial deri—

vatives, and using our earlier notation with xi referring

to quantity, pi to price, and y to income, we seek func—

tions hl(i=l,...,n),

i

xi = h (y,pl,...,pn)

which satisfy the following logarithmic partial differen-

tial equations:

2 w.E. = l

1 ll

Zj eij = Ei (i=1,...,n)

sij = Sji (i,j=l,...,n)

 

81It has sometimes been argued that nothing would

be lost if demand analysis were to rid itself of the classi—

cal notions of "elasticity" and logarithmic derivatives

and adopt the more mathematically conventional concept of

partial derivatives. It must be pointed out, however,

that the logarithmic partial derivatives are well-defined

mathematical functions that have the added advantage of

being without dimension. (For a discussion of the concept

of dimension, which has been used to great advantage in

the natural sciences, see de Jong [1967]. de Jong also

points out [pp. 139-142] that Samuelson's statement [1947a,

p. 126n.] that the elasticity concept is not dimension-

less, may be in error.)
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and the linear equation Zipixi = y, where wi is the budget

share of the iéth good, Ei the income (Engel) elasticity,

eij the price (Cournot) elasticity, and sij the Slutsky

price elasticity of demand. Strictly speaking, the func-

tions hi must also satisfy the condition that the matrix

of Slutsky terms Kij be negative definite. However, in

practice, this condition is difficult to satisfy in this

general a form. The practice has been to estimate the

sample values (evaluated at a specific value of expendi-

tures and prices), of the Slutsky terms, after estimation,

and then use the negative definiteness criterion as a

check on the empirical validity of the models.

With this formulation, it is easy to identify two

lines of attack. First, we can generate a wide variety

of demand models by specifying a specific utility function

and then deriving the demand functions. From the results

in Chapter 1, it is clear that this procedure would yield

demand functions which meet the criteria outlined above.

Indeed, examples of this approach are the quadratic util—

ity demand model, the direct and indirect addilog demand

specifications, and to some extent, the linear expenditure

system due to Stone. There are two weaknesses in this

approach. First, it often happens that the resulting

demand functions possess a functional form which is not

trivial to estimate. Secondly, it is unclear what be—

havioral implications result from the assumption that the
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consumer is maximizing the class of utility functions

which admit the specific utility function as a monotonic

transform.

For these reasons, we prefer the second approach

in which functional forms of demand equations are speci-

fied on a priori grounds first, and are then subjected to

the classical restrictions. Indeed, the two leading func-

tional forms are derived on these principles. The SLES

model is the result of restricting the GLES in order to

satisfy the classical restrictions, while the Rotterdam

model is based on a similar approach with respect to a

differential expansion of the demand functions. In de-

veloping our models, we use as our starting point the CED

system discussed in Chapter 2. The CED system is particu-

larly easy to estimate, and its parameters being elastici-

ties are dimensionless, and easy to interpret.82 Of

course, the model is not theoretically plausible. Our

purpose, in brief, is to remedy this situation.

To motivate the formulation of CED system, we note

that the concept of "elasticities" of demand possesses the

 

82For these reasons Houthakker [1965] was willing

to overlook the theoretical deficiencies of the CEDS, and

claim that the CEDS was "without serious rivals in respect

of goodness of fit, ease of estimation, and immediacy of

interpretation." [1965, p. 278]. Goldberger and Gamales-

tos [1967] took issue with this claim and offered that

SLES, "while not without its share of weaknesses, retains

some attraction as a rival to constant elasticity of

demand models. . ." [1967, p. 73].
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desirable feature of being without dimension, and have

been used extensively in the literature on demand analysis.

Thus, we may define, without loss of generality, the elas-

ticity functions:

. 3h.

1 1 .

E1 = f (Yipll°°°lpn) = Hi '33;- (1=1I---In)

ij Pj ahi . .
and, eij "' g (Y’pl’OOO’pn) -' E“; 533' (i,j—1,...,n)

and, s.. = e.. + w.E.

ij ij j i

where, the Ei’ eij’ sij are respectively the Engel, Cournot,

and Slutsky elasticities, and wi are the budget shares.

Now, since these equations are definitional, they are

satisfied by all functions hi which may be considered as

demand functions. Hence, we may look at a particularly

simple functional form for hi in which the elasticities,

Ei’ eij' Sij’ (if assumed constant) appear as coefficients

of the independent variables. This is the familiar CED

system of demand equations: (in Slutsky form)

log xi = Ei[(log y) - ijj(log pj)] + Zj sij(log pj)

Notice, however, that if the Bi and sij are assumed to be

functions, and not parameters, then the demand function

given above becomes merely a particular solution to the

n(n+l) definitional partial differential equations given

above. Thus, the CED system violates the classical
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restrictions only when it is assumed that these elastici-

ties are constant. There is, however, no need to para-

metrize at this stage.

We consider, therefore, the function given above,

where it is understood that the Ei and sij are some gen-

eral functions of prices and income, defined by the equa-

tions given above. In all generality, we multiply through

by wi, the budget share, to get:

wi (log Xi) = wiEi(log y) + Zj wisij(log pj)

where

(log §> = (log y) - Ej wj(log pj)

With this formulation, several parametrizations are pos-

sible. First, it may be assumed that the income elastic-

ity, Ei’ varies as a rectangular hyperbola with respect

to variations in the budget shares, wi, i.e., let wiEi =

bi' where bi (i=l,2,...,n) is a constant. This is the

assumption that marginal budget shares, which are the

slopes of the Engel curves, are constant with respect to

variations in expenditures and prices. This assumption of

linearity of each Engel curve is crucial for aggregation

to go through, as we have seen in section 1.6, and is, in

fact, utilized both by Stone, and by Theil and Barten in

the formulation of their models. Denoting by bi' the

respective marginal budget shares, we obtain a partial
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parametrization of the model. If, in addition, we assume

that the quantity (wisij) is constant with respect to

variations in expenditures and prices, as the Rotterdam

models do, we obtain the following specification, which

may be called the "double-logarithmic Rotterdam elasticity

specification" model

(DOLRES) ... wi(log xi) = bi(log y) + Zj cij(log pj)

where, Cij’ denotes the constant (wisij), by assumption.

Notice, that the above specification is, in fact, identi-

cal to the Rotterdam model, if the logarithms of the

variables are replaced by changes in the logarithms of

these same variables.

Before proceeding to discuss further similarities

between the DOLRES and the Rotterdam models, an alterna-

tive specification may also be derived. Note that the

Hicks-Allen "elasticity of substitution" between goods,

d.., is related to the Slutsky price elasticity, s.., by

13 13

the following relation:

dij 13' 3"

Thus, the Rotterdam assumption that the cij are constant

with respect to variations in expenditures and prices,

reflects the belief that the elasticity of substitution

between goods is determined solely by the budget shares
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of the two goods, and is, in fact, given by the ratio of

a constant and a product of the two budget shares. Form-

ally:

where, cij is constant. Although, with the exception of

Leser's LES, demand models have not been formulated in

terms of the elasticity of substitution, we see that this

can easily be accomplished in this model. The constancy

of the elasticity of substitution between factors has been

hypothesized in the theory of production and has been used

to great advantage. Incorporating the same assumption for

consumer goods, we propose the following double-logarithmic

(constant elasticity of substitution) model, (DOLCES):

(DOLCES) ... wi(log Xi) = bi(log y) + Zj dij wiwj(log pj)

where, dij is the (constant) elasticity of substitution

between goods i and j.83

Having given two parametrizations of the tradi-

tional double-logarithmic model, we consider the implica-

tions of the classical restrictions on the parameters.

These are easy to derive. Engel aggregation implies that

 

83It might be mentioned that a similar version Of

the Rotterdam model may also be constructed if it is so

desired. In fact, the theory of production is rich in

hypotheses with regard to the elasticity of substitution,

and it may, perhaps, be a useful source of alternative

parametrization for demand models.
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the marginal budget shares, bi’ sum to unity. The symmetry

condition implies that the coefficients c.. = for the
1] Cji

DOLRES model, and the dij = dji for the DOLCES model, for

all i, j. For the DOLRES model, the homogeneity condition,

implies that the cij sum to zero for each equation:

Zj cij = 0; while, for the DOLCES model the condition is

that Zj w.d.. = 0, for all i. For both models, the

J 1]

homogeneity condition may be incorporated into the func-

tional form, by deflating all prices by one of the prices.

Without loss of generality, we may deflate all prices by

the nth price to obtain the following specifications for

the two models:

(DOLRES) ... wi(log x.)l bi(log y) + Zj cij(log pj- log pn)

(DOLCES) ... wi(1og xi) bi(1og y)

+ Z. d.. w.w. lo .— lo3 l] 1 j( g P3 9 Pn)

where the summation over the index j is understood to be

from 1 to (n-l).

In this version, with the bi's restricted by

Zibi = l, the DOLRES and DOLCES models satisfy all the

classical restrictions other than the adding-up criterion,

and, of course, the negative definiteness condition on

the matrix of Slutsky terms. The DOLRES model, in particu-

lar, is identical to the preliminary formulations of the
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Rotterdam models if the logarithms are replaced by changes

in logarithms. Thus, the parameters of the DOLRES models

have exactly the same interpretations as the parameters

of the Rotterdam models, and provide a useful basis of

comparison. This similarity between DOLRES and the

Rotterdam model is not surprising. The Rotterdam model

uses an exact expansion of the logarithmic differential

of the demand function and approximates the infinitesimal

changes by finite changes, while the DOLRES model is de-

rived by considering a particular solution to the set of

partial differential equations defining the logarithmic

partial derivatives which appear as coefficients in the

Rotterdam model. Thus, in a sense, we have merely formu-

lated the Rotterdam model in an absolute, rather than

differential, version. It is this similarity between the

two models which we exploit to the advantage of the DOLRES

and the DOLCES models, in attempting to solve the problem

of the non-additivity of the demand equations.

Recall that a similar problem arose with respect

to a preliminary version of the Rotterdam model, in which

the adding-up criterion was also not met. In the Rotter-

dam model the solution was found by replacing the log-

change in real income by an index of the log-change in

the volume of consumption. This procedure was justified

[Theil, 1967, p. 224ff.] by noting that both the log-

change in real income and the log-change in the volume of
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consumption were local quadratic approximations to the

true cost of living index, involving errors of third

order in logarithms of changes in prices and income. Thus,

the two approximations were considered interchangeable for

empirical purposes. This would suggest, admittedly on

intuitive grounds, that an index of the absolute level of

the volume of consumption--similar to the log-change volume

index--may provide an adequate approximation to the level

of real income. Replacing the logarithmic real income

term (log §), by a log-volume index of the level of con-

sumption, x*= kwktlog th' we may rewrite the DOLRES and
t

and DOLCES models in their final non-stochastic form:

(DOLRES) ... wit(log x. = *
lt) b. x

II C
"

>
4 x
-

(DOLCES) ... wit(log x )
it i t

+3: d.. witwjt(log p.t- log pnt)

113 3

where the index i ranges over commodities, and the index

t refers to time. Note that in doing this the bi may no

longer be interpreted as marginal budget shares. We may,

however, still consider them as approximations to the

marginal budget shares.
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To gain additional insight into the nature of ap-

proximation involved, we might consider the relationship

between the absolute log-volume index utilized here, and

the log-change volume index used in the formulation of

the Rotterdam models. The Rotterdam volume index is

given by:

= * _
Dxt 2k wkt(log xkt log Xk,t—l)

where, w*kt l/2(w +

kt wk,t-l)°

Note that the use of arithmetic means of the budget shares

as weights in the construction of the Rotterdam index in—

sures that the index meets the time-reversal test. This

is in fact, the reason why the Rotterdam model, in its

current formulation, utilizes the arithmetic means of the

budget shares as the common multiple corresponding to the

role of the current period budget shares used in this sec-

tion in the derivation of DOLRES and DOLCES models. An

additional feature of the Rotterdam index is its purely

"statistical" prOperty of being zero for the case when

xkt = xk,t-l for all k.

In comparison, the index we propose is an "econo-

mic" index, and is given by:

* =x 2k wkt(log xkt).





175

Even if all quantities were to remain unchanged, on purely

statistical grounds it would be possible for the budget

shares wk to change due to changes in prices, thus mak-
t

ing the volume index proposed by us to fluctuate due to

variations in prices even though the volume of consumption

does not change. Clearly, this would be an undesirable

prOperty for a volume index to possess. To insure that

the log-volume index proposed above does not change if

all quantities remain unchanged, we must invoke the homo—

geneity condition of economic theory, which insures that

if 211 quantities remain unchanged, then the budget shares

of the respective commodities could not have changed

either.

The log—volume index proposed here bears an expli-

cit relation to the log-change in volume index utilized

in the Rotterdam models.84 Using the notation developed

above, it may be easily verified that the following re-

lationship exists between the two indices:

Dx = x* - x - 2i l/2(log (x
t t t-1 )( wi’t_l)itxi,t—l) “it"

Thus, we see that the change in the log-volume index pro-

posed in this section diverges from the log-change in the

Rotterdam volume index by a weighted average of the geo—

metric means of the volume of consumption in the current

and the preceding period; the weights being the differences

 

841 am indebted to Professor Henri Theil for point-

ing out this relation in correspondence.
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in the budget shares of the respective commodities over

the two periods. This weighted average term reflects the

difference in the two indices due to the use of absolute

budget shares in one, and the arithmetic means of the bud-

get shares in the other index, and, in fact, may be con-

sidered to be the degree of error involved in approximating

the Rotterdam log-change index by changes in the log-

volume index. Although the relative magnitude of the

term,

))] (w - w
Zil/2[log (xi it i,t-ltXi,t-l

is not immediately obvious, we may still justify the use

of the log-volume index on two grounds. First, since the

Rotterdam index is itself an approximation, the degree of

divergence of the log-volume index from the Rotterdam in-

dex is not directly relevant. Secondly, this difference

arises due to the use of arithmetic means of budget shares

instead of the budget shares themselves. Thus, the volume

index proposed here does not seem an unreasonable approxi-

mation to the true real income.

4.3 Stochastic Specification

and Estimation

 

 

The stochastic specification of complete sets of

demand equations has not been given the degree of atten-

tion that it merits. The notable exceptions to this state-

ment are the Rotterdam models, for which the "marginal
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utility shock model" (discussed in section 3.2) is deve10p-

ed with the aim of incorporating a stochastic element in

the utility maximizing behavior itself; and the Pollak-

Wales versions of the LES (discussed in section 3.3) for

which a similar attempt has been made. Although the for-

mal similarity between the Rotterdam model and the DOLRES

and the DOLCES models could, perhaps, have been exploited

with the intent of developing a stochastic model aprallel

to the marginal utility shock model, we have chosen not

to do so. Instead, we adopt the most convenient stochas-

tic specification available, and assume that the disturb-

ance term enters additively into the demand equations.

With this specification, the disturbance terms in each of

the demand equations may be interpreted as the allocation

discrepancy due to random factors.

To facilitate exposition, we shall write the

demand equations for both the DOLRES and the DOLCES models

as:

(i=1,...,n)

= b- yt + 23. k. . Z. + u. (j=l'ooopn-l)

(27) yit 1 ij jt it (t-l T)
'"pooo,

where the bi and kij are constants, yit is the t-th ob-

servation on the i-th dependent variable, and yt (=Xiyit),

and xit are the t-th observation on the non-stochastic

independent variables, y, and Xi' respectively. The uit

are interpreted to be the t-th value of the i-th disturb-

ance terms, and are assumed to possess a specified
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variance-covariance structure. It is readily seen that

with a suitable interpretation of the parameters and

variables, (27) gives rise to both the DOLRES and the

DOLCES models.

If the uit are to be interpreted as allocation

discrepancies, as we have suggested, then the sum of

these allocation discrepancies in any time period must

be zero. This can also be seen by recalling that the

bi sum of unity and the kij are symmetric, and in the

case of DOLRES, the ki. sum to zero for each equation.

3

Then adding over the i, (27) yields:

21 uit = 2i Yit ’ yt ' zizj kij zjt

= Zj(zjtzikij)

= zj(zjtzikji) = 0

A similar proof for the DOLCES is readily constructed.

Thus, it has been shown that the disturbances in the

demand equations sum to zero, and hence are not mutually

independent. This is the cause of the singularity of the

covariance matrix of the disturbance terms which must be

present in any model of consumer demand which seeks to

allocate total expenditure into its various components.

Adopting the simplest assumptions with regard to

the moments of the distribution of the disturbances,
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uit’ the complete model may be formulated as follows:

(i=1,...,n)

(28a) yit = b. yt + Zj kij zjt + uit Ej:l:::::g;l)

(28b) Zibi = l; kij = kji (for all i,j);

(28c) ziuit = 0 (for all t)

(28d) E(uit)= 0 (for all i,t)

(28e) E(uisujt)= 0 (for i#j, s#t)

(28f) E(uitujt) = Oij (for all i,j,t)

(289) E(uisuit) = 0 (for all s¢t).

In this formulation the set of equations (28) have a con-

venient matrix representation due to Zellner [1962]:

[Y1 x1 0 ' ' ' 0 81 u1

yn 0 X2 - - - 0 82 u2

(20) . = . . . . + :

Ynj 0 0 ‘ ‘ ‘ Xn 8n un        
where, for all i=1,...,n:
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?11—' Pyl z11 z21 . . znl_ I11;

in y2 z12 z22 . ° ° zn2 u12

2 = 2
Em- YT le 221' ° ° ' 7‘an fir      

with yit’ yt, zij defined as in (28).85 Even more compact-

ly, (29) may be written as:

(30) y = X8 + u

where, y is the (nTxl) vector of observations on all of

the dependent variables, and X is the (nT x n2) matrix of

observations on the non-stochastic explanatory variables,

8 is an (n2 x 1) vector of parameters, and u is an (nTxl)

vector of disturbances with mean zero, and covariance

matrix,

E(uu') = X.

With this notation, the model represented by the equations

(28a—g) may be completely represented as:

y = XB + u

(31) R8 = r

E(uu') = Z, and £1 uit = 0, for all t.

 

85Note that the ells of xi do not depend on i, so

that xi = xj
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where, R is an appropriate restrictions matrix which to-

gether with the vector r expresses the restrictions (3.3.2b),

and Z is the covariance matrix whose elements are defined

by the equation (28e,f,g).86

The derivation of a best linear unbiased (restrict-

ed) estimator, which is a maximum-likelihood estimator

under the assumption of normality of the disturbances, is

trivial in the case that Z_1 exists, and is a direct ex-

tension of the simple restricted least squares estimator

outlined for example in Goldberger [1964, pp. 256-258].

Unfortunately, the restriction that the budget discrepan-

cies, sum to zero for each period imply the singular—
uit'

ity of the covariance matrix 2. Thus, neither the

likelihood function exists, nor is the "generalized sum

of squared deviations" [Goldberger, 1964, p. 233]

(y - XB)’ 2‘1 (y — XS)8

defined. In a pathbreaking paper, Powell [1969] considered

the set of all restricted estimators of B,{E}, and showed

that a specific estimator, say 80, of any independent sub—

set of the parameters, possesses the property that the

generalized sum of the squared deviations associated with

this estimator (which is defined by construction) is equal

 

86The y and x of (31) should not be confused with

the earlier notation in which y was income and x referred

to quantities of goods!



w
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to the following generalized sum of squared deviations

n n

associated with 88 {B}:

n + n

S*= (y-XB) Z (y-XBM

where 2+ is the unique Moore—Penrose generalized inverse

of the covariance matrix 2. The Moore-Penrose inverse of

a matrix of less than full rank is defined as

1 1

2+ = Q' (QQ')' (T'TA‘ T'

where, T is any column basis for Z, and Q is a matrix

which satisfies the condition:

Z=TQ

The Moore-Penrose generalized inverse, is a g-inverse in

the sense that:

The procedure suggested by Powell [1969] is computation-

ally equivalent to deleting as many equations as are

necessary to render the covariance matrix to be of full

rank, then estimating the remaining parameters using the

conventional restricted least squares estimator, and

finally recovering the left out parameters by the use of

the restrictions matrix R. The force of Powell's result,

which derives from the uniqueness of the Moore-Penrose

inverse, is that the estimates of the parameters so
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obtained are numerically invariant with respect to the

choice of the equation to be deleted. We omit the details

of Powell's proof, but heuristically derive an alternative

formulation of the same result.87

Instead of looking at the generalized sums of

squared deviations, we may alternatively consider the

following generalized "likelihood" function which may be

defined when the disturbances are assumed to be multi-

variate singular normal, with the covariance matrix, 2,

of less than full rank:

L* = -l/2n(1og 2n) - l/2(y-XB)' 2+ (y—XB)

where, 2+, as before is the Moore-Penrose generalized in-

verse. We might seek a restricted maximum "likelihood"

estimator which maximizes L* subject to an arbitrary

linear constraint on the parameters:

Note that the "likelihood" function L* is well—defined in

the sense of being single valued. Thus, the solution of

the constrained maximization of the "likelihood" function

will give rise to an estimator which is also unique and

 

87It ought to be mentioned that Powell [1969] did

not present his results for the case of arbitrary linear

restrictions, but considered instead, some specific re-

strictions on the parameters. However, his results seem

to hold for the general case which we have presented

above.
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well-defined. The derivation is strightforward. Construct

the Lagrangean function:

L = - l/2n(1og 2n) - l/2(y-XB) 2+ (y-XB) + 2 A'(RB - r)

where, A, is the vector of Lagrange multipliers of dimen-

sion (Jxl), where J is the rank of the restriction matrix

R. To maximize L, take partial derivatives with respect

to B,

5? = X'Z+y - (X'Z+X)B + R'A

Equating to zero, we have:

1
8 = (X'Z+X)-1(X'Z+y) + (x'z+X)' R'A

Utilizing the fact that R8 = r, we have from this equation

by multiplying through by R, and rearranging,

1

= (R(x'z+x>’ R')’1(r - Rb).>
J
Z

(x'z+X)'l(x'z+y)where b

Substituting for A in the original equation we have the

restricted maximum "likelihood” estimator which is equiva-

lent to Powell's estimator:

E = (X'Z+X)'l(x'z+y)

1 l
+ (x'z+X)" R'(R(X'Z+X)— R')-l(r-Rb)
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Since 2+ is numerically invariant with respect to the

choice of any column basis, we may for computational con-

venience delete arbitrarily the last equation, and esti-

mate the following reduced system of demand equations:

(32) = b. yt + zj k.. z. + u. (i,j=l,...,n-1;
yit i ij jt it t=1,...,T)

with the restriction that kij = kji for all i,j=l,...,n-l.

The parameters of the n-th demand equation may be recovered

by the left out restrictions of symmetry, and the Engel.

aggregation conditions. Powell's theorem insures that

this procedure gives rise to the same numerical estimates

of the parameters.

To estimate the reduced system of equations (32)

we note first that the disturbances are correlated across

equations. This would suggest using Zellner's (asympto-

tically) efficient two-stage Aitken procedure. However,

as is well known, in the case where the eXplanatory vari-

ables in each equation are the same, Zellenr's procedure

(ZEF) reduces to the ordinary least squares procedure

(OLS). To impose the symmetry restrictions, however, we

must once again resort to the Zellner-Aitken procedure.

The formulation (289) restricts the disturbances to be

non-autoregressive. Since the data utilized in the pre-

sent study are time series, some sort of autocorrelation

may be present. If it is assumed that the disturbances
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follow a first-order autoregressive (Markov) scheme, then

a modification of the Zellner procedure due to Kmenta and

Gilbert [1970] may be utilized. This is a four-stage pro-

cedure in which the Zellner-Aitken two-stage residuals

are utilized to obtain a weighted first-differencing of

the relevant variables before estimating the parameters

by the two-stage ZEF-again.

Formally, we consider the case where (289) does

not hold, but instead we have:

I .—

1289 ) E(uitui,t-s) ‘ pi Oii

which is the specification which results if the disturb-

ances uit follow a first—order autoregressive scheme:

uit = piui,t—1 + Vit

with the vit distributed independently and with zero mean,

and constant variance: Var (Vi = (1 -p§)cii. The de-t)

mand model may then be written as:

+ Z. k.. z. + u.

yit — i yt j ij jt it

(33)

uit = 0i ui,t-1 + Vit

with vit satisfying the assumptions of the classical linear

regression model. To estimate the DOLRES and DOLCES models,

we use the direct extension of the Kmenta-Gilbert four-

stage procedure, ZEF-ZEF.
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First, OLS residuals are used to get consistent

estimates of the covariance matrix of the system of (n-l)

equations obtained by deleting the last equation. Second-

ly, using these estimates we obtain the restricted least

squares estimates of the parameters, where the restric-

tions imposed are those of symmetry. Thirdly, assuming

that the scheme of autocorrelation is a first-order Markov

scheme, we used the residuals of the restricted ZEF esti—

mates to estimate the autocorrelation parameters, pi.

Finally, we obtain once again the two-stage restricted

ZEF estimates of the parameters, after correcting for

autoregression by lagging the variables in the usual man-

ner. 88

4.4 Data and Variables
 

The data utilized in the empirical section of

this study are from The National Income and Product Ac—
 

counts of the United States, 1929-1965: Statistical Tables.
 

The basic sources are Tables 2.6 and 8.6. The former give

constant dollar expenditure on some forty-six expenditure

 

88Some small sample results by Kmenta and Gilbert

[1968] reveal that the use of ZEF residuals, instead of OLS

residuals for the estimation of the 9. lead to considerably

more efficient results in small samplés. Indeed, the most

efficient procedures found by Kmenta and Gilbert [1968] is

to estimate the p. jointly on the basis of ZEF residuals,

(called JOINTEST procedure by them). This procedure was,

in fact, considered by Parks [1967, p. 503, n.], but was

rejected as unnecessary.
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categories, and the latter lists implicit price deflators

(1958:100) for the same categories. From this data we

constructed four aggregates: Food, Clothing, Shelter, and

Miscellaneous. These aggregates were used by Pollak and

Wales [1969], who estimated several variants of SLES from

the same series that we have used. Pollak and Wales, how-

ever, used only the data from 1948-1965 for the major part

of their study, although they made comparisons between pre-

war and post-war data, and found significant differences

in the two samples. In this study, we have used the en-

tire series from 1929-1964, but have constructed our

aggregates exactly as Pollak and Wales [1969] did. We

have also used the additions to the time series that be-

came available recently. Thus, we added to our 1929-1964

data, additional data covering the period 1965-1968, which

are provided in the July, 1969 issue of the Survey of
 

Current Business.
 

In the construction of the four commodity aggre-

gates, Pollak and Wales excluded all durable goods,

transportation services, and gasoline and oil. The

classifications of expenditures that were aggregated into

the four commodities are listed below: (the numbers in

the parentheses refer to the two tables cited above).

I. Food:

1. Food and Beverages (15)
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II. Clothing:

1. Clothing and shoes (21)

2. Shoe cleaning and repair (54)

3. Cleaning, dyeing, pressing, etc. (55)

III. Shelter:

Housing (35)

Household operation services (39)

Semidurable housefurnishings (29)

Cleaning and polishing preparations, etc. (30)

Other fuel and ice (31)W
D
W
N
H

o
o

o
o

0

IV. Miscellaneous:

Tobacco products (27)

Toilet articles and preparations (28)

Nondurable toys and sport supplies (33)

Barbershops, beauty parlors, and baths (56)

Medical care services (57)

. Admission to specified spectator amusements (61)

. Drug preparations and sundries (32).\
l
m
L
fl
-
b
W
N
I
—
J

The price index for the aggregates were constructed by

taking a weighted average of the implicit price deflators

for each primary expenditure item. The weights used were

the ratios of expenditures on the primitive items to the

total expenditure on the aggregate.

In the definition of variables, we differ somewhat

from the procedure used by Pollak and Wales. First, un—

like Pollak and Wales, we estimate community demand

functions in the aggregate, instead of estimating per capita

expenditure functions. Secondly, we define the quantity

of the i-th commodity, (xi), as the constant dollar ex-

penditure divided by the implicit price deflator for the

commodity. Pollak and Wales, on the other hand, chose to

consider the constant dollar expenditures as "quantities"
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(xi). Both procedures seem perfectly acceptable to us,

thought, it appears that our definition might be a more

natural one.

4.5 Empirical Results
 

In this section we present the estimates, based

on the four commodity data for the United States, for the

parameters of the DOLCES and the DOLRES models proposed

in sections 4.2 and 4.3. For the purposes of comaprison,

we have also estimated from the same data, the Rotterdam

model and Leser's linear expenditure system. Before con-

sidering each model in turn, we make a few remarks with

regard to some statistical peculiarities of the data under

consideration. In the estimation of SLES models from the

same data, Pollak and Wales [1969] assumed the data to be

free of serial correlation. It seemed to us that this was

not a plausible specification for any time series. How-

ever, our results lead us to believe that if autocorrela-

tion is present, it does not seem to follow a first-order

Markov scheme. This is because our corrections for first—

order autocorrelation were not very effective for most of

the models considered. Specifically, even after we trans-

formed the data, the estimates obtained showed the Durbin-

Watson statistic to be significantly indicative of the

presence of first order autocorrelation. A cursory visual

examination of residuals plotted against time failed to
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reveal any quadratic or higher order pattern. This would

suggest then that the Durbin-Watson statistic is inappro—

priate for the data under consideration. In the presenta-

tion of our results, however, we continue to give the

Durbin-Watson statistic, although it should be realized

that its use as a test statistic may be limited.89

As it was indicated in the previous sections, the

DOLRES model is estimated from the following specifica-

tion:

wit(log X.
It) = bi(Zk wktlog th)

+ Zj cij(log pjt - log pnt) + uit

where, i=1,...,n-l; t=1,...,T; k=1,...,n.

The parameters bi are approximations to the marginal bud-

get shares, due to the fact that the real income term has

been replaced by a volume index, although we shall continue

to use the term "marginal budget shares" to describe them.

The cij are the income compensated (Slutsky) price elas-

ticities, weighted by the budget share of the i-th

commodity. Alternatively, the cij may be interpreted as

the Hicks-Allen elasticity of substitution between goods

1 and j, weighted by the inverse of the product of the

 

891t would have been extremely interesting to ex—

amine the applicability of some specification error tests

devised by Ramsey [ ] for single equation estimates.

Further research in this direction will be followed in

another study.
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respective budget shares. These parameters with the same

interpretations, also appear in the Rotterdam model, which,

it may be recalled, is specified as follows:

w? Dx.

i

_ I

1t — bi Dx + Z. c.. Dpjt + u
t t j 13 it

)Iwhere, w?

it = l/2(wit+
), Dxi = (log x.

t it - log Xiwi,t—i ,t-l

I _ _ _ .-

and Dpjt — (log pjt log pnt) (log pj,t-1 log pn,t-1)°

The parameters bi are once again approximations to the

marginal budget shares, though they are slightly different

from the bi in DOLRES, by Virtue of the fact that we have

used an absolute index instead of a differential index

(see pp. 3-10ff.). The two models may, therefore, be

compared directly with respect to the values of the para—

meter estimates of Cij’ and to some degree with respects

to the estimates of bi' The estimates of DOLRES obtained

by using a restricted ZEF-ZEF (Kmenta-Gilbert) procedure,

are reported in Tables 1.1, 1.2, and 1.3.

It should be noted that at each step of the esti—

mation procedure, the marginal budget shares are all posi-

tive and lie between zero and one, as we should expect.

In addition, the income compensated own-price (Slutsky)

elasticities are all negative, as theory would lead us to

believe, and the matrix (estimated) of the coefficients

cij is negative definite. The DOLRES model, therefore,
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Table l.l.--OLS/ZEF Estimates of Unconstrained DOLRES Model.

 i

J  

 

"Income" Food Clothes Shelter

Food 0.1532 -0.4643 0.1643* 0.1014. R2=0.7328

(0.0138) (0.1479) (0.1501) (0.0699) Dw=o.1125

Clothes 0.3143 0.1373 -0.0894* 0.1544 R2=0.7796
(0.0048) (0.0508) (0.0516) (0.0240) DW=0.1809

2-
Shelter 0.2176 0.2101 —0.1711 -0.4563 R —0.9487

(0.0056) (0.0594) (0.0603) (0.0281) DW=0.2064

 

*Indicates that coefficients are less than twice

their standard errors, and hence are not significantly dif-

ferent from zero. Note: Although parameter estimates are

identical for OLS and ZEF, the estimates of standard errors

differ. This table records OLS estimates of the standard

errors.

Table 1.2.--ZEF Estimates of Unconstrained DOLRES Model

Correcting for First Order Autocorrelation.

 

 

"Income" Food Clothes Shelter

 

0.2978 —0.3575 0.0965* -0.0315* R2=0.9350

(0.0269) (0.0413) (0.0526) (0.0790) DW=0.6058

Clothes 0.2707 0.1283 -0.1170 0.2022 R2=0.8231

(0.0112) (0.0221) (0.0285) (0.0446) DW=0.9145

0.2214 0.1411 —0.0367* —0.3463 R2=0.8421

(0.0114) (0.0230) (0.0296) (0.0488) DW=0.6100

Food

Shelter

 

*indicates coefficients not significantly dif-

ferent from zero.
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Table l.3.—-ZEF Estimates of Constrained DOLRES model

(With Correction for Autocorrelation).ar

 

 

 

"Income" Food Clothes Shelter

Fo d 0 2300 -0 3737 0 1432 0 1123* R2=°°9266

0 ° ' ° ' DW=0.4953

Cl th 0 2659 -0 1693 0 0304* R2=°°76°3

0 es ° ' ° DW=0.5295

2
R =0.79l6

Shelter 0.2266 -0.2328 DW=O.2564

 

aThe missing entries may be recovered by symmetry.

bAsymptotic F statistic for restrictions:

F2'99 = 12.052 (Sig. Prob. < 0.005).

*indicates coefficients not larger than twice

the standard errors of the unconstrained estimates. See

text for a discussion.

fulfills the negative definiteness criterion (for this

sample) which it should be recalled, was the only aypriori
 

knowledge that we held but did not impose in estimation.

Note, also, that the demand equation for the

fourth commodity group "Miscellaneous" may easily be ob-

tained from the Tables above, by virtue of the fact that

we restrict the marginal budget shares to sum to unity,

and the cij to be symmetric and sum to zero for each

equation. In Table 1.3, it should be pointed out, that

the standare errors of the parameters are not reported due

to the unavailability of this feature in the statistical
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computer programs available at M.S.U. As an alternative,

we used the well-known result (see Goldberger, 1964, p.

257) that the standard errors of the unrestricted estima-

tors is an upper bound to the standard errors of the

restricted estimators. With the use of this result, we

see that with the exception of two parameters (about which

we may not say anything), the rest of the parameters in

Table 1.3 are significantly different from zero.

In Tables 3.1 and 3.2 we report, respectively,

the unconstrained and constrained estimates of the Rotter-

dam model. No correction for autocorrelation was attempted

for the Rotterdam model, which uses a differenced version

of the data. We assumed that the differencing procedure

would reduce the presence of any autocorrelation in the

original time series. (This was, in fact true of Swedish

data employed by Parks [1969], who reported that although

the data indicated the presence of high serial correlation,

the Rotterdam model indicated values of the Durbin-Watson

statistic which were not indicative of the presence of

serial correlation in its residuals.) In the case of our

data, however, two of the three equations yield values of

the Durbin—Watson statistic which would indicate the pre—

sence of first-order autocorrelation, if such a scheme

was assumed to exist. We attribute this result, once again,

to the peculiar nature of our data, for which the hypothesis

of first-order autocorrelation may not be tenable.
 



within the theoretically expected range.
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For the Rotterdam model also, the estimates lie

The estimates

indicate, once again, the negative definiteness of the,

estimated matrix of Slutsky terms. More interesting, how-

ever, is the considerable similarity in numerical magnitude

of the estimated cij

DOLRES model.

for the Rotterdam model and the

This is, indeed, what we had expected.

Although we have not tested the hypothesis of equivalence

of the parameter estimates under the two models, a cursory

comparison seems to suggest that this might, in fact, be

the case. Note also the differences in the estimates of

the bi' which we had also anticipated.

Table 3.l.--Unconstrained OLS/ZEF Estimates of the Rotter-

 

 

 

dam Model.

”Income" Food Clothes Shelter

Food 0.4626 -0.3358 0.1978 0.1064 R2=0.9618

(0.0376) (0.0344) (0.0444) (0.0688) DW=0.8002

Clothes 0.2174 0.1299 -0.1638 0.1739 R2=0.8596

(0.0267) (0.0243) (0.0314) (0.0486) DW=1.8211

Shelter 0.1856 0.1340 -0.0619 -0.3120 R2=0.4732

(0.0372) (0.0339) (0.0437) (0.0676) DW=O.9556
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Table 3.2.--Constrained ZEF Estimates of the Rotterdam

 

 

 

Model.a

"Income" Food Clothes Shelter

R2=0.9599
Food 0.4491 -o.3075 0.1420 0.0979 Dw=0.7306

Clothes 0.1816 —0.2217 0.0435* EZZEIE§23

Shelter 0.2328 —0.1750 3;:813égé

 

aAsymptotic F statistic for restrictions: F3 99=3.764.

Corresponds to Sig. Probability of 0.013. ’

In Table 2.1, 2.2, and 2.3 we present the estimates

of the parameters of the DOLCES model, which, it might be

recalled, is specified by:

wit(log X.
11:) = 1Di (2k wktlog th)

+ Zj dij(1og pjt - log pnt) + uit

where the bi are to be interpreted as identical to their

counterparts in the DOLRES MODEL, and hence are approxi—

mations to the marginal budget shares; and the dij repre-

sent the (constant) Hicks-Allen elasticities of

substitution in the DOLCES model. It should also be noted

that the assumption of constancy of the elasticities of

substitution, will affect the parameter estimates of the

b-,
1
 

so that the estimates of the bi should be expected to
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Table 2.l.--OLS/ZEF Estimates of Unconstrained DOLCES

 

 

 

Model.a

"Income" Food Clothes Shelter

Food 0.1545 —3.4778 3.8905 0.7654* R2=0.7683

(0.0121) (0.7854) (1.9128) (0.5759) Dw:0.1254

Clothes 0.3143 2.3113 -3.9855 3.0470 R2=0.8175

(0.0040) (0.6270) (1.5654) (0.4151) DW=0.2109

Shelter 0.2266 1.8475 -3.0030 -5.1947 R2=0.9431

(0.0055) (0.5632) (1.4068) (0.3288) DW=0.1586

 

aAlthough OLS and ZEF yield identical estimates of

the coefficients, they differ on estimates of the standard

errors 0

standard errors.

*

In this Table we report OLS estimates of the

indicates coefficient not significantly different

from zero.

Table 2.2.—-ZEF Estimates of Unconstrained DOLCES Model

Correcting for First Order Autocorrelation.

 

 

"Income" Food Clothes Shelter

Food 0.2855 -2.l652 1.3156* -0.6238* R2=0.9296

(0.0330) (0.2573) (0.7564) (0.8084) Dw=0.7031

Clothes 0.1729 1.1809 —5.0622 1.8112 R2=0.9783

(0.0039) (0.1100) (0.3343) (0.3418) Dw=0.7436

Shelter 0.1736 0.9274 -0.5776* -3.6817 R2=0.8511

(0.0132) (0.1818) (0.5452) (0.4470) DW=1.2317

 

*Indicates coefficients not significantly different

from zero.



199

Table 2.3.--Constrained ZEF Estimates of DOLCES Model

(with Correction for Autocorrelation).a

 

 

"Income" Food Clothes Shelter

R2=0.9254
Food 0.2777 -2.1017 1.1731* 0.4770* DW=0.6552

Clothes 0.1738 -5.0854 1.1051 fi;:3:§;§§

Shelter 0.1806 -3.6738 fi;:2;§3$2

 

aAsymptotic F statistic for restrictions:

F = 4.740 (Sig. p. = 0.004).
3,99

differ for the DOLRES and DOLCES models, although the

economic meaning of the parameter is identical for the two

models.

In evaluating the parameter estimates, we might

note that for the DOLCES model, as before, the marginal

budget shares lie between zero an unity as should be ex—

pected. Also, the Hicks-Allen own-elasticities-of-

substitution, which are equivalent to the income compensated

own (Slutsky) price elasticities, are all negative as

should be expected. The magnitude of the estimates of the

dij parameters may be compared to the estimates of cij in

the Rotterdam model and the DOLRES model, only for specific

values of the budget shares, by using the relationship

c.. w.w.d...
ij 1 j ij
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Before making this comparison, we shall examine the esti-

mates of Leser's LES, for which direct estimates of the

cross-elasticities of substitution are obtained. We pre-

sent these results in Table 4.1.

Leser's linear expenditure system, LLES, is esti-

mated by the following specification:

pit(xit ' Xi) = bi(zk pkt(xkt ' §k1)

+ Z d z + c t + u

jsi ij ijt i it

where, xi = (l/T)Zt xit' and if we denote

wi = (l/T)ZIt wit ,

zijt = (wipjtxj ‘ wjpitxi)°

Here, the dij are directly comparable to the dij of the

DOLCES model. In the DOLCES model, however, we imposed

the homogeneity condition by deflating one of the prices

by the last price. This is not the case for LLES. In

the LLES, the homogeneity condition is imposed only at

the sample means of the expenditures, prices, and budget

shares. Thus, the own-elasticity of substitution can be

obtained in LLES by the following relation:

d.. = -(1/6 ) z fild..
ii i j#i j 13
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This is somewhat inconvenient for the purposes of direct

comparison. Also, we might note that the DOLCES model

imposes all of the classical restrictions globally, while

LLES imposes only the adding-up restriction globally.

Thus, the similarity between the DOLCES and LLES is not

as great as for example between the DOLRES and the

Rotterdam model.

We estimated LLES by a direct parallel to the

estimation procedure used for DOLRES and DOLCES models.

The ZEF/ZEF procedure was extended to the case of restricted

estimation, where the restrictions were those of symmetry

of dij’ Once again, we did not correct for the presence

of autocorrelation, due to the peculiar nature of the

time series under consideration, despite the fact that

the Durbin-Watson statistics indicated the presence of

first-order autocorrelation, if such a specification was

assumed to exist.

Although the estimates of LLES may not be directly

compared to the DOLCES model because of the fact that

own-elasticities of substitution are absent in LLES, we

may still observe that the estimates of the cross-

elasticities of substitution show a marked difference for

the two models. Within LLES itself, the elasticities of

substitution between two goods show considerable varia-

tions in their unconstrained estimates. Thus, a cursory

examination of LLES in its unconstrained form reveals,
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for our data, that the elasticities of substitution do not

appear to be symmetric. We may test the linear hypothesis

of symmetry by observing the value of the (asymptotic) F-

statistic, which is, in our case, associated with a proba—

bility value of less than 0.0005. Using the asymptotic

F-statistic as a proxy for our small sample test, we would

reject the hypothesis of symmetry conditional on Leser's

specification of the functional form. Although we impose

the restriction, despite its implausibility, we note that

this result raises some doubts with regard to the empirical

plausibility of LLES. Anotherconsequence of imposing re-

strictions, which are implausible, may be seen in the

values of the restricted estimates of the elasticities of

substitution which are all considerably less than twice

the geometric means of the standard errors of the corre-

sponding unconstrained parameter estimates. Of course,

this latter conclusion must be tempered by the fact that

the geometric means of the standard errors are at best an

approximation to the upper bound on the actual standard

errors .

4.6 A Comparison of the Models
 

In the previous section we have reported the re-

sults of the estimation of the Rotterdam, DOLRES, and

DOLCES models, and Leser's LES, on the basis of U.S. data.

In this section we compare these models, both with regard
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to differentiating between plausible and unplausible

specifications, and with respect to comparing the values

of the income and price elasticities implied by these

models.

Several criteria may be used in the comparison of

consumer demand models. The most obvious criterion is the

comparison of the R2 values for each equation, under.the

alternative specifications. These values give the pro—

portion of variation in the dependent variable about its

mean, explained by the explanatory variables. Alterna-

tively, Parks [1969] and others have looked upon (l-R2),

as a measure of "badness of fit" in opposition to the

conventional "goodness of fit" criterion. The problem

with R2 comparisons lies in the upward bias of R2 as an

estimator of the population squared multiple correlation

coefficient. This has been pointed out by Barten [1962].

An alternative criterion, prOposed by Theil [1965],

and Theil and Mnookin [1966], is the "average information

inaccuracy of prediction" criterion, used with consider-

able success by Theil himself, Goldberger and Gamalesos

[1967], Parks [1969], and others. This is based upon

looking at budget shares, as probabilities that a
wit’

given dollar in the consumer's budget will be spent on the

ith commodity at time t. Thus, the wit can be treated as

prior probabilities, and their predicted values as





206

posterior probabilities, w . With this interpretation,
it

the "information inaccuracy of prediction" at time t is

defined to be

It = wit log (wit/wit)

Thus, a measure of how well a model predicts over the

sample period is the arithmetic mean of the information

inaccuracy of prediction, or the "average information

inaccuracy of prediction"

T

I = (l/T) Z wit log(wit/wit)

 

Unfortunately, the estimation procedure does not ensure

that the predicted values of budget shares will not be

negative. This has, in fact, been the case for the models

estimated with our data. The first reason for this is

that we are not, in fact, predicting budget shares direct—

ly, but the logarithms of quantities weighted by budget t

shares. Thus, the estimates of the budget shares are

second round estimates, which turn out to be negative in

several cases.

Yet another index of the plausibility of the model

suggests itself from the paper by Parks [1969]. Parks'

procedure has been to test the symmetry hypothesis for

each model before imposing the symmetry restriction.

Actually, the test of the symmetry hypothesis is conditional
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on the validity of the functional specification. However,

since our belief in the symmetry of the Slutsky terms may

be stronger than our belief in the validity of the specif-

ic functional form, we may consider the significance

probability of the asymptotic F statistic for the test of

the (linear) symmetry hypothesis itself as an indicator of

the plausibility of the model. Roughly speaking, this view

of the F statistic expresses the belief that if it were

known that either the functional form or the symmetry of

the Slutsky terms (or both) were not valid, then we would

be willing to reject the validity of the functional form

before we reject the symmetry hypothesis.

In Table 5 we present the (l—R2), and the signifi—

cance probability of the F statistic under the alternative

specifications. On the least "badness of fit" criterion,

the DOLCES model clearly dominates all the other models,

with the exception of LLES on Shelter. The Rotterdam

model seems to do better than the DOLRES model, with the

exception of the estimates for the Shelter equation, for

which the Rotterdam model has an extremely low R2. Leser's

LES seems to outperform the Rotterdam model on all but

the Food equation. However, this must be tempered by the

realization that the estimates for LLES violate the nega-

tive definiteness of the Slutsky matrix, implied by

theory. This can readily be seen from Table 4.2, where

the diagonal elements are not all negative. For this
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reason we shall omit further discussion of LLES. It seems,

then, that on the basis of the "badness of fit" criterion,

DOLCES clearly dominates all models, while the Rotterdam

model seems to outperform the DOLRES model. On the "con-

cordance with the symmetry hypothesis" criterion, reflected

by significance probabilities of the asymptotic F statistic

for symmetry, the Rotterdam model ranks highest. The DOLCES

model is also plausible, but the DOLRES model does not ap—

pear to be a serious competitor.

Table 5. —-A Comparison of the Models with Regard to Badness

of Fit and Significance Probability of the

Asymptotic F statistic for the Symmetry

 

 

 

 

Hypothesis.

(1-R2) a

(Sig. P.)

Food Clothing Shelter

Rotterdam 0.0401 0.1770 0.6528 0.013

DOLRES 0.0734 0.2397 0.2084 <0.005 “

DOLCES 0.0745 0.0232 0.1920 0.004

LLES 0.2183 0.0440 0.0475 <0.0005

 

aA high Sig. P. indicates that the Symmetry

hypothesis is not rejected, and hence indicates a better

model.
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The three models may also be compared with respect

to the implied values of the price and income elasticities,

and the elasticities of substitution. In Tables 6.1, 6.2,

6.3 and 6.4 we present respectively, the income (Engel)

ealsticities, the income compensated (Slusky) price elas-

ticities, the price (Cournot) elasticities, and the Hicks—

Uzawa elasticities of substitution, evaluated at the

sample mean values of the budget shares, for the alterna—

tive models.

In comparing the income elasticities, it should be

recalled that for the Rotterdam model, the DOLRES and the

 

DOLCES models, the "income" elasticity is, in fact, ap-

proximated by a volume elasticity. This is not true for

the Leser's LES. Apart from LLES, then, the estimates of

the income elasticities show considerable uniformity in

the DOLCES and DOLRES models, and even in the Rotterdam

model. With the usual definitions, Food and Shelter come

out as "necessities" under all three models, while Cloth-

ing is a "luxury" under all three models. The DOLRES and

DOLCES models would lead us to classify the Miscellaneous

items as "luxury" while the Rotterdam model would not.

Clearly, then, while the numerical values of the estimates

are comparable, differences do exist across models.

Tables 6.2, 6.3 and 6.4 provide estimates of the

price elasticities and the elasticities of substitution.

Leser's LES is easily seen to violate the condition that

is. J



 



Table 6.l.-—Income (Engel) Elasticities Evaluated at Sample
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Means of the Budget Shares.

 

 

 

 

 

. Miscel—

Food Clothing Shelter laneous

Rotterdam 0.1242 1.1202 0.7792 0.9774

DOLRES 0.5757 1.6403 0.7585 1.9871

DOLCES 0.6952 1.0721 0.6045 2.6344

LLES 0.8514 1.2436 1.0554 1.0240

Table 6.2.--The Slutsky Matrix Evaluated at Sample Means

of Budget Shares.

. Miscel-
Food Clothing Shelter laneous

Rotterdam -0.7697 0.3555 0.2451 0.1692

rd DOLRES -0.9355 0.3585 0.2811 0.2959

8 DOLCES -0.8396 0.1902 0.1425 -0.5069

m LLES —0.0503 -0.0015 0.4857 0.4339

g Rotterdam 0.8760 -l.3676 0.2683 0.2233

g DOLRES 0.8834 —l.0444 0.1875 —0.0265

0 DOLCES 0.4686 —0.8244 0.3302 -0.0256

8 LLES -0.0036 0.0392 -0.2912 -0.2556

3 Rotterdam 0.3277 0.1456 -0.5858 0.1125

:1 DOLRES 0.3759 0.1018 -0.7792 0.3016

’2 DOLCES 0.1906 0.1791 -1.0976 -0.7279

m LLES 0.6495 -0.1580 0.1727 0.6641

. Rotterdam 0.4841 0.2592 0.2406 -0.9839

0 DOLRES 0.8464 —0.0308 0.6452 -l.4608

.fl DOLCES -l.4501 -0.0297 -1.5572 -3.0370

2 LLES 1.2412 -0.2967 1.4208 2.3653

 

 

W
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Table 6.3.—-The Cournot Price Elasticity Matrix Evaluated

at Sample Mean Values of Budget Shares.

 

 

 

. Miscel-
Food Clothing Shelter laneous

Rotterdam —l.2188 0.1732 —0.0908 0.0122

c DOLRES -l.1655 0.2651 0.1091 0.2155

0 DOLCES —l.ll73 0.0775 -0.0652 -0.6040

,9, LLES —0.3904 —o.1395 0.2314 0.3150

m Rotterdam 0.4284 —1.5492 —0.0663 0.0669

g DOLRES 0.2281 —1.3103 -0.3025 -0.2556

8 DOLCES 0.0403 —0.9982 0.0099 -0.1753

3 LLES -0.5004 —0.l624 —0.6627 -0.4292

3 Rotterdam 0.0164 0.0193 —0.8l86 0.0036

u DOLRES 0.0729 —0.0212 -1.0058 0.1957

'3 DOLCES -0.0509 0.0811 -l.2782 -0.8123

g LLES 0.2279 -0.3291 —0.l426 0.5167

Rotterdam 0.0936 0.1008 -0.0514 -l.1204

O DOLRES 0.0526 —0.3529 0.0515 -1.7383

m DOLCES -2.5025 -0.4568 -2.3442 -3.4049

E LLES 0.8322 -0.4627 1.1149 2.2223

the matrix of Slutsky terms be negative definite. This

 

would cast serious doubt on the plausibility of the LLES

specification. The values reported for the double—

logarithmic models show considerable concordance as well

as a few marked divergences. For all of the three double—

logarithmic models, the signs of the income compensated

own—price elasticities are negative. In fact, all three

models seem plausible on theoretical grounds. For only

three price (Slutsky) elasticities (in the Miscellaneous

column) the three models differ in sign from each other.
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Table 6.4.—-The Hicks-Uzawa Elasticity of Substitution

Matrix Evaluated at Sample Mean Values-of

Budget Shares.

 

 

 

. Miscel-

Food Clothing Shelter laneous

Rotterdam 2.1927 0.8203 1.2177

'3 DOLRES 2.2113 0.9409 2.1187

0 DOLCES 1.1731 0.4770 -3.6299

F LLES -0.0091 1.6258 3.1071

3 Rotterdam 0.8982 1.2117

(g DOLRES 0.6277 -0.1899

'3 DOLCES 1.1051 -0.1833

0 LLES -0.9747 -1.8302

g

3 Rotterdam 0.8053

H DOLRES 2.1595

g DOLCES -5.2121

m LLES 4.7556

. Rotterdam

g DOLRES

TIDOLCES

z LLES

 

 

Thus, there seems to be a fiar degree of concordance among

the three models in the classification of the commodity

groups as "substitutes" and "complements" on the Hicks-

Allen definition.

variations between estimates,

The Cournot elasticities show wider

from one model to the other.

Remarkably enough, however, all Cournot own-price elas-

ticities are negative, lending credance to the belief

that "demand curves are downward sloping." The values of

the Hicks-Uzawa elasticity of substitution may be looked
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as the curvature of the indifference curves. These values

vary considerably across models, and is positive in all

but four cases.

4.7 Summary and Conclusions

To summarize, then, of the four models estimated,

the Rotterdam model, the DOLRES and DOLCES models seem

all to provide theoretically plausible estimates of the

parameters; while Leser's LES seems to be deficient on

this count. The Rotterdam model and the DOLCES model

seem to be comparable in terms of desirable properties,

while the DOLRES model seems to be in some conflict with

the symmetry hypothesis with regard to the Slutsky terms.

It would appear, then, that the constant elasticity of

substitution hypothesis, which proved to be of so much

value in the theory of production may hold some answers

to the choice of an efficacious functional form for a

complete set of demand equations. It would indeed by

interesting to compare the performance of the Rotterdam

model under its original specification, to the CES specifi-

cation to which it can easily be transformed. For the

non-differential double logarithmic case, the CES specifi-

cation seems to do clearly better, and the question with

regard to the differential double—logarithmic (Rotterdam)

model seems quite open.
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