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ABSTRACT

ON ORTHOGONAL ARRAYS OF STRENGTH FOUR

AND THEIR APPLICATIONS

by Rita Zemach

An orthogonal array (N,k,s,t) of 3 levels, k constraints,

strength t, and index Q, is a k X N matrix with entries from a set

of 5 elements, 5 3 2, such that each t X N sub-matrix contains

all possible t x 1 column vectors with the same frequency Q. The

array serves as a design for a factorial experiment, with k factors,

each occurring at 5 levels, and N treatments. If the array is of

strength t = 2v, all interactions involving v or fewer factors can

be estimated, assuming there is no interaction of more than v factors.

If t = 2v + 1, all interactions involving v or fewer factors can

be estimated even if interactions of v + 1 factors are present, but

estimates of interactions of v + 1 factors may be confounded with

one another. Thus arrays of strength four have the smallest strength

which allows estimation of main effects and all first-order interactions,

assuming that higher order interactions are negligible.

The main problem of interest for orthogonal arrays is to determine

the maximum possible number of constraints for given N, s and t.
9

Chapter I is devoted to a general discussion of orthogonal arrays,

and the method of analysis. An iterative bound on the maximum number

of constraints for an array (Qst,k,s,t) is given, which depends on the

n ‘ . t—
maX1mum number of constraints for an array (Qs l,k,s,t—l).



Rita Zemach

The main theorem of Chapter II gives a method of constructing an

t+1 t

,k+l,2,t+l) from an array A" = (Q2 ,k,2,t), whenarray A = (02

t = 2v. If k is the maximum number of constraints possible for A',

then R + l is the maximum possible number of constraints for A.

In addition, the structure of arrays (Q2t,t+l,2,t) is analyzed,

and for Q: q2n , a method of extending any array (Q2t,t+1,2,t) to

t + n + 1 constraints is described.

Chapter III describes a method of constructing arrays by matrix

multiplication, due to Bose, for the case s = pu, Q = pv, p a prime.

The algebraic properties of arrays of this class are discussed, and

bounds on the maximum possible number of constraints are reviewed. A

bound is given for arrays of strength four which can be constructed

by matrix multiplication, when s = 3, Q = 3U.

In Chapter IV, the maximum possible number of constraints is

determined, when s = 2, t = h, for arrays with N = 32, £8, 6A and

80. In each case, arrays with the maximum number of constraints are

constructed. A detailed examination of the structure of most of the

arrays is included.

The last Chapter is devoted to a brief discussion of the relation

of orthogonal arrays to information theory.
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CHAPTER I

INTRODUCTION

1.1 Factorial Design
 

Frequently in statistical investigations it is known that the

characteristic being studied is affected by several different factors,

F1, ..... ’Fk' Each factor may assume ssexrer‘al different levels,

e.g. Fi assumes si levels, i = l, ..... k. Estimation of each of the

main effects is desired, as well as information about interactions

among the various factors.

I shall call a complete factorial design one which includes each
 

of the possible 31 . 52 ° .... . sk treatments exactly once. A

treatment in which F1 occurs at level a,, i = l,....,k will be desig—

nated by (a1, a2,....,ak).

In a symmetrical factorial design all factors assume the same
 

number of levels, i.e. s1 = 52 r ..... = s = s. In this case a
,

complete factorial design consists of the set of all sk possible

k-tuples of 5 elements. It will be referred to as a complete sk

design.

The true yield of a treatment in a factorial design is in general

regarded as the sum of an over—all mean u, the effects of the k fac—

tors, and the effects of interactions of all orders among these

factors.

The special case s r 2 occurs when each of the k factors

assumes 2 levels, which may be the presence or absence of the factor,

or its existence at high or low intensity, or in two different forms.



If the number of factors is very large, the number of treatments

necessary for a complete sk design reaches a prohibitive size. This

problem arises, for example, in exploratory experiments, where the

researcher cannot, for the time being, ignore the effect of any factor

which may influence the characteristic under investigation. At the

same time, although the complete sk design provides estimates of

interactions of all orders, in most practical situations the higher

order interactions may be assumed to be negligible.

These considerations have given rise to the use of fractional

replication of complete factorial designs. In a l/sn replication

of a complete sk factorial design, the 5k treatments are partitioned

into blocks of sk_n treatments, satisfying certain properties. This

type of design is discussed in section 3.1. One block may be represented

by a k X sk_n matrix representing k factors and sk_n treatments.

The term block of a design will hereafter imply a block of a parti—
 

tioning as described.

The partitioning of a complete sk design is said to be of strength

t if no interaction of t or fewer factors is confounded with the

block effect. The prOperties of a single block as a design will be

described under the more general topic of orthogonal arrays.

1.2 Orthogonal Arrays
 

An orthogonal array (N,k,s,t) of 5 levels, R constraints,

strength t and index Q , is a k x N matrix A with entries
)

from a set S of 3 elements, s Z 2 such that each t X N sub-
)

matrix of A contains all possible t x 1 column vectors of S with
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the same frequency Q. Clearly N = Qst. The set S may be taken

as the set of integers (0,1, ..... ,s—l).

If A is of strength t , then any k“ x N sub—array, t‘f k9 f k
)

is also of strength t . Hence, if no array (Qst, k', s, t) exists,

then neither does any array (Qst, k, s, t) for k > k'.

If A is of strength t , it is also of strength tY for

every t7 f t.

An orthogonal array serves as a design for a factorial experiment,

with k factors at s levels, and N treatments.

Arrays of the form (52, k, s, 2) may be derived from k-2

mutually orthogonal Latin squares of side 5 , the rows of one square

providing one row of the array. The remaining two rows are derived

from the following orthogonal (but not Latin) square and its transpose:

 

O O ....... O

I l ........ l

2 2 ....... 2

(5—1) (3—1) ....... (s—l) 
Orthogonal arrays were introduced by C. R. Rao, [17], who first

discussed these factorial designs in terms of ”hypercubes” of strength

t .

If the design of a factorial experiment is an orthogonal array

of strength t , then no estimate of a main effect is confounded with

any interaction of (t—l) or fewer factors, and in general, no inter-

action involving m factors, m < t, is confounded with an interaction

involving (t-m) or fewer factors.



 



A

By using an array of strength 2t, all interactions involving

t or fewer factors can be estimated, assuming there are no inter—

action of more than t factors. With an array of strength 2t+l,

interactions of t factors can be estimated, even if interactions of

t+l factors are present. However, interactions of t+l factors may

be confounded with one another.

Thus arrays of strength A, which will be the subject of par-
,

ticular study in this thesis, allow estimation of all main effects

and all first-order interactions, assuming that interactions of

second or higher order are negligible. (An interaction is "of nth

order" if it involves n+1 factors.)

If no interaction of more than (t—l) factors is present, a suf—

ficient condition to measure all main effects only is that an array

be of strength t.

It should be noted that while a block of a factorial design of

strength t (see Sec. 1.1) is an orthogonal array of strength t,

the converse is not true. The array need not satisfy all the condi-

tions imposed on the block, and may still be of strength t.

In particular, a complete sk factorial design is an array of

strength k.

The main problem of concern with respect to an array A=(N,k,s,t)

is the maximum value of k for a given t, N, and s or the maximum
9

number of factors which can be accomodated in a design of strength t

and index Q.

The maximum number of constraints for orthogonal arrays of

strength 2 and 3, when s=2, has been determined for many cases.
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For the case t=2, it was shown by Plackett and Burman [16] that for

an array (Qsz,k,s,2)

2
< Qs — l

k ‘ s - l

which reduces to k 5 AQ — 1 for the case s=2. Construction of

arrays which achieve this bound for all Q up to Q=SO, except for

the cases 0:29, A7, has been determined by Paley [15], Williamson [23],

and Baumert and Hall [3]. A method of construction is given whenever

n
O = 2 . (See [5, 11, 15]). For the case t=3, Rao [17] shows that

for an array (Q83,k,5,3)

Qs2 - 1<

k _ s - 1

+ 1

which reduces to k 5 AQ when s=2. Again it was shown by Bose [5]

that arrays can be constructed with k=hQ when Q=2n. Seiden [19]

gives a method of construction of arrays (Q23,hQ,2,3) whenever an array

(Q22,hQ-l,2,2) exists.

For the case t=h, the bound of Rao becomes

 

(s-3)+ i/(s-Bi2 + 8(Qs4-1)

k E 2(s-1)

 

which gives the following bounds for s=2:

 

N Q R

(l) 16 1 5

(2) 32 2 7

(3) 118 3 9

(A) on t 10

(5) 8o 5 12
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It will be shown that for the cases listed, this bound can be

achieved only for case (1). Moreover, in the remaining cases, the

exact maximum for R will be established.

Bush [9] has shown that, in general, if Q=l,

k,f s + t — 1 3 even

k s + t - 2 3 odd.I
/
\

If s fft, then the bound is attained, for s=pn, p a prime.

The following inequality can be established between the max—

imum number of constraints k' and k of orthogonal arrays

t—l
s

t
(O ,k',s,t—l) and (Q5 ,k,s,t):

Let k' be the maximum number of constraints

possible for an array of index Q and strength t—l.

Then for an array of index Q and strength t, k f k' + 1.

Proof: Let A = (Qst,k,s,t) be an orthogonal array of strength t.

th

The i row of A, i=1,....,k, contains each element O,l,2,...,s—1

repeated Qst-l times. Without loss of generality, consider the

first row. Let A' be any sub—matrix of t—l rows from among the

last k—l rows. Each of the st—1 (t—l)-tuples must appear exactly

Qs times in A' and these must be arranged so that each one appears
9

exactly Q times following each of the elements O,1,...,s—l in the

first row. Therefore the last k—l rows may be partitioned into s

t_1,k_1,s,t—1). Hence if k' is the maximum number ofarrays (Qs

constraints possible for an array of strength t-l, the maximum for

an array of strength t is less than or equal to k'+l.
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1.3 Some Conditions Necessary for the Existence of Arrays
 

For any orthogonal array A = Gfl,k,s,t) of index Q, let nij

denote the number of columns (other than the 1th) having j coin-

cidences with the 1th column, i=1 N; j=O,... R. It is shown by’0...) ’

Bose and Bush [7] that for each i , the k variables nij must

satisfy a set of t+l linear equations:

: (g) n,, = (i) (Qst‘h-i) 1 5 h < t

where (g) = O for j < h. These equations will be used in several

proofs and will be referred to as the "necessary equalities.”

Some additional properties will prove useful for the construc-

tion of orthogonal arrays.

PrOperty 1: For an array A = (Qst,k,s,t), let gik be the maximum

value of nik among all solutions to the necessary equations. Then

for any array it is necessary that

n.. < (i?) (91J _ J ik + l) J=O,l,...,H-l.

Proof: Suppose a particular column having j coincidences with the

.t . A .

1 h column is repeated more than nik+l times. Then an array would

exist whose solution yields nik > gik' There are at most (g) columns

having j coincidences with the 1th column.
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Property 2: If no solution exists with nik > 0, then every array

(Ost,k,s,t) has Qst distinct columns. This follows from property 1.

Property 3: If for some k, nik

k',s,t) with k' > k must have n

= O for all solutions, then every
 

O.array OQst,
ik

For the case t=h, the equations take the form:

 

k

E n.. = QS4 - l

1J

j=

k

° = 3-
E Jnij MOS 1)

le

R

J = k 2-E 1pm,, (2) (OS 1)

i=2

k

j _ k
n.. — s — lE (3) ,, (3)(Q >

i=3

R

J = k _E (1,) n1, 9,) (Q n

J=A

l.h Analysis of Orthogonal Arrays

Consider k factors Fl, ..... ’Fk’ Let A = (N,k,2,h) be the

array. Let dijm_ _ be the true yield of the treatment with F,

at level i, F2 at level j, F3 at level m, etc., where each i
9

j, m, —, -, is either 0 or 1, and ijm——— takes on at most only those

N distinct values indicated by the N columns of the array A.
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The main effects of factors F1, F2, F3, —-- will be denoted

by the lethzs a b c etc., , , and the interactions by pairs (ab),
)

(ac), (be), etc. It is assumed that no interactions of three or more

factors are present. The parameters to be estimated are the over-all

mean u, k main effects, and k(k—l)/2 first-order interactions.

Assume that:

m
-
; I
I

I!

Q

Q

I
ll

(
3
2

1
—
4

a

I
I
M

Q

[
\
3

.
_
.
.

E
L
"

a l l

-
1

Q

I

Q

l l. ..... (1 flxed) le--" .....

b. = a - a

J .J .....

(ab).. = a - a. — a + a
lJ lJ 1. J .....

(In practice it is customary, with only two levels, to define each

effect at twice the value given here, so that, for example, with

one factor the effect is

a = a, — do

rather than

a1 = a1 — l/2(al + co)

= 1/2(c1l — do) = 1/2(a)

a0 = do - l/2(c1O + d1)

1/2(do — a1) = — 1/2 (a)

as indicated above.)

Let Y = yijm--- denote the l X N vector of observations

for (ijm-——) contained in A.
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The assumptions of the model are:

(1) yijmn- = u +{ai + bj + cm + —-—} (k main effects)

+<(ab)ij + (ac)im + 4} ((2) interactions)

+ 8..

1Jm——-

i,j,m,-,—,-, contained in (0,1)

(ijm—-—) contained in A

(ii) {e.,m___> are normally distributed with mean zero and co-

2

variance matrix I 0'

Because of the assumptions about the effects we have

1

a0 = -al for each main effect a;

(ab)ll = - (ab)lO

(ab)ll = - (ab)Ol

(ab)10 = — (ab)00

(ab)Ol = - (ab)OO for each interaction.

Hence, (ab)ll = (ab)OO = — (ab)lo = — (ab)01.

Therefore the estimates may be derived as follows: Let A%

be the k x N matrix derived from A by substituting -1 for O.

Construct the following m x N matrix X, m = (2) + k + l,

where each row of X corresponds to one of the parameters of the

model:

The first row of X consists of all 1's, and corresponds to u,

The next k rows are the rows of A%, and correspond to the

main effects of the k factors,



11

The row corresponding to an interaction (ab) is obtained as

follows: let i(a) be the ith element in the row cor-

responding to a , and let i(b) be the ith element in the

th

row corresponding to b. Then 1(a). i(b) is the i

element in the row corresponding to (ab), i = l N.,....,

Because the array A is of strength A, A* has the property that in

each four-rowed sub-matrix, each possible column h—tuple of le and

—l's appears the same number of times. Thus the matrix X has the

property that any two rows are mutually orthogonal, and each row

except the first contains Qst“l 1's and Qs — —l‘s. These rows

of X therefore are the coefficients of a set of mutually orthogonal

contrasts.

Let B be the l x m vector

(u, a1, b1: cl,—-—, (ab)ll, (ac)ll, (bc)11:“')~

Then assumption (i) may be stated

E (Y) = O X.

In minimizing (Y — BX)‘(Y - BX) the normal equations, in matrix

form, are

XX'B' = XY'.

The matrix XX' is a diagonal matrix with N's along the diagonal

and zeros elsewhere.

Solving the normal equations yields

'év = (XX')—l XY'.

These least-square estimates are

:E yijm——— : y .....
A7?

Z
l
i
—
a

A

LL:
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g.l E -1
i N yijm--- N yijm——-

i fixed —i fixed

= yi — fl,:> for k main effects,

’\ _ l l :E

{:(ab)ij ‘ N :E yijm-—— ‘ N yijm---

ioj fixed -(i~j) fixed

_ +A

‘ymu.'yrn. %M. u

for (g) interactions, where i,j,m,—,—, are contained in (—l, l).

The estimate of an interaction of three or four factors, should

it be present, may be found by adding to the X matrix those rows

of A* which correspond to the factors involved. However, in arrays

of strength A, if three-factor interactions are present, two-factor

and three—factor interactions may be confounded. Similarly, if a

four—factor interaction is present, it may be confounded with a main

effect.

Each estimate has variance CTZ/N} If the experiment is

replicated m times, each effect or interaction is estimated by the

mean of m individual estimates, and thus has variance O'Z/TmN).

In a factorial experiment with k factors, each at 8 levels,

and N treatments, each main effect carries (8 — 1) degrees of

freedom, and each first—order interaction (3 - 1)2 degrees of free—

dom. The number of degrees of freedom for error is thus

N - 1 — k(s - l) - (g) (s - 1)2.



 

CHAPTER II

THEORENS ON CONSTRUCTION OF ARRAYS

2.1 Construction of Arrays of Strength t+l from Arrays of Strength

t When t = 2v, 5 = 2

 

 

Lemma: Let A be an array (Qst,t+l,s,t) with s = 2, of strength
 

t and t+l constraints. Then any two columns differing in an even

number of coordinates will appear the same number of times, and any

two columns differing in an odd number of coordinates will appear

together a total of Q times.

Proof: Let (a1, a2, )Y be any column (t+l)—tuple,where each0..)at+l

ai is O or 1. Let a; be O if ai is 1 , and 1 if ai is O.

Let X(al,. denote the number of times the column (a1,
'°’at+1) °°°’at+1)v

appears in A. Since A is of strength t and index Q , for any

two coordinates ai and aj,

x(al,..,a,,..,aj,.,at,l)+ x(al,..,a:,..,aj,..,at+l) = Q;

X(a,,..,a:,..,a,,..,at+l)+ X(al,..,a:,..,a§,..,at+l) = O.

Therefore

x(a,,..,a,, .,aj,..,at+l) = x(a,,..,a?,,.,aj,..,at+l).

Hence two columns differing in two coordinates must appear the same

number of times, and two columns differing in one coordinate must

appear together Q times. By successive applications of this rule,

two columns differing in an even number of coordinates muat appear

the same number of times, and two columns differing in an odd number

of coordinates must appear together Q times.

13
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The following theorem is proved by Seiden in [19]:

Let S be an ordered set of 5 elements e0, el,.., For

any integer t consider the 5 different ttuplesSof the

elements of S. They can be divided into st 1 sets, each con-

sisting of s t—tuples and closed under cyclic permutation of

the elements of S Denote these sets by S i = 1,2, ,st 1.

Suppose that it is possible to find a scheme of r rows with

elements belonging to S

all 312 ... a1n

t—l

(n=QS)

a a ... a

r1 r2 rn

such that in every t—rowed sub-matrix the number of elements

belonging to each Si is the same, say, equal to Q; then one

cantuse this scheme in order to construct an orthogonal array

(Qst ,r, s ,t). If in addition this scheme consists of an array

of strength t—l, then one can construct an orthogonal array

(Qst, r+l,s,t).

Theorem: Let A = (Ost,k,s,t) be an array of strength t , where

t = 2v and s = 2. Then A may be used to construct an array of

strength t+l with n+1 constraints, and index 0. If k is

the maximum number of constraints possible for the array A, then

k+l is the maximum number of constraints possible for the new

array.

Proof: Let A? be any sub-matrix of A consisting of t+l rows.
 

Let (al,.,.,a ) be any (t+l)-tuple of the elements (0,1), and let
t+l

. . " " 1
X(al,...,at+l) be the number of times (a1,..,at+l) appears in A .

By the previous lemma, since t+l is odd,

I, ‘X’ 1“ .-

x\al,...,at+l) + X<a1""’at+1) ~ Q.

The array thus forms a scheme satisfying the conditions of the

theorem quoted. The second statement of the theorem follows from

the inequality proved in Section 1.2
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This theorem shows that in considering the maximum number of

constraints possible for orthogonal arrays, for fixed values of 0,

it is sufficient to consider strengths t = 2v. The maximum number

of constraints for strength t = 2v+l will be exactly one more.

The previous theorem has the following application. It frequently

happens that after an experiment has been performed, it may seem de-

sirable to include one or more additional factors. Then either (1)

an entierly new experiment may be performed and the original informa—

tion disregarded, or (2) additional treatment combinations may be

designed so that information on the additional factors is obtained,

while information from the original treatments is preserved. For (2),

it must be assumed, of course, that there is no "block effect" of the

time lag between parts of the experiment.

Suppose one additional factor is to be included, where each factor

is at two levels, and suppose the original design was an orthogonal

array (Qst,k,s,t), s = 2, t = 2v. The obvious way to achieve (2) is

to consider the original experiment as half of an array (Qst+1,k+l,s,t)

and to add the remaining half-array in which the new factor will ap—

pear constant at the 1 level [1].

The problem may arise that while in the original experiment there

were no v+l—factor interactions, the introduction of a new factor

makes this assumption questionable.

The previous theorem shows that the additional treatment combina—

tions may be designed so that the augmented experiment is of strength

2v + l.
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2.2 Structure of Arrays of Strength t with t+l Constraints
 

Let A = (2t,t+l,2,t) be an array of index 1, t: 2. By a

theorem of Bush [9], t+l is the maximum possible number of constraints.

By the lemma of section 2.1, each column differing from the first

column in an even number of places must appear once, and there are

no columns differing from the first column in an odd number of places.

The total number of columns differing in an even number of places is

2t-l , and there are no other columns. This also proves the unique—

ness of the array A up to the permutation of the elements 0 and 1.

This proves: there is exactly one array of strength t , with

t+l constraints, and index 1, s=2, up to a permutation of the ele—

ments (0,1).

Hereafter this array will be denoted by D , and it will be

assumed that the first column consists entirely of 0's. Then if t

is even (odd), each (t+l)—tuple with an odd (even) number of 0's is

repeated exactly once in the array, where zero is considered even.

Let D' be the array of index one derived from D by per—

muting the elements (0,1) in any row. Since each column has the num-

ber of 0's increased or decreased by one, D' has the following

structure: there is no column of all 0's; if t is even (odd),

each column of D' has an even (odd) number of 0's. Since each

column is distinct, D' must contain each possible column with an

even (odd) number of 0's, because the total number of columns is

2t.

When t is even, interchanging 0 and 1 in one row is

equivalent to interchanging 0 and 1 in the entire array.
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Example: For the case t=h , the two forms of the array

A = (24,5,2,h) are:

D:

O O O O O O O l l l l O l l l l

O O O O 1 1 1 O O O l l O l l l

O O l 1 O O l O O 1 O l 1 O l l

O l O l O 1 O O 1 O O 1 1 l O 1

O l 1 O 1 O O l O O O 1 1 1 1 O

D!

O O O O O O O l 1 l l O l l 1 1

O O O O l 1 1 O O O l l O 1 l 1

O O 1 1 O O l O O l O l l O l l

O l O 1 O 1 O O l O O l 1 l O l

1 O O 1 O l l O l 1 l O O O O 1

Theorem: Let A = (Q2t,t+l,2,t) be an array of strength t and

t+l constraints. A can be decomposed into 0 repetitions of the

array (2t,t+l,2,t), each repetition of the form D or D‘.

Proof: It follows from the lemma in section 2.1 that each (t+l)—tup1e

differing from the first column in an even number of coordinates must

appear the same number of times, say x, l f x E Q , forming x

arrays of type D° Each of the (t+l)-tuples differing by an odd

number of coordinates will have to appear 0 — x times, forming

Q — x arrays of type D'.

Assume that Q = q2n, q odd (q 3 1). Then any array

A = (Q2t,t+l,2,t) may be extended to one with t+n+l constraints

in the following way. We have shown that the array consists of

q2n component arrays, each of which is type D or D'. We take

an n—tuple of the elements (0,1) and add it to all the columns of a

particular component array. This is done for all the component arrays

n

in such a way that each of the possible 2 n—tuples has been added

to all the columns of q such component arrays.
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We show below that this gives (Q2t,t+n+l,2,t).

For t rows all belonging to the original array A each t-tuple
)

appears 0 times.

If n Z.t it is clear that for a set of t rows, all of which
3

are among the added rows, each t-tuple must appear with the same

frequency 0.

Consider a set of t rows, of which t-m belong to A and

m belong to the added rows. For a t-tuple from these rows, let y

denote the first t—m elements, which are in A and let 2 denote
)

the m elements in the added rows. We note that the (t—m)-tuple

y occurs exactly 2m times in each component array of A and each
)

m-tuple 2 occurs below q2n_m component arrays. Thus the t—tuple

(y,z) occurs 2m X q2n—m times in the extended array.

n

9
It follows from a theorem of Bush [9] that if Q = q2

an array of type (Q2t,t+n+l,2,t+n) can be constructed. However,

our method describes a way of extending any (Q2t,t+l,2,t) to

(Q2t,t+n+l,2,t).

Let A = (024,5,2,h) where Q is odd. If A is the array

consisting of Q repetitions of the array D then A cannot be
)

extended.

Proof: Suppose A is extended to an array A' of six constraints.

The columns of A satisfy the equations nis = (Q—l), ni4 = 0,

: l = _ = ' lniOCL Then A must have ni5 + ni6 (Q l), ni0 0. But 1n A ,

solving the necessary equations in terms of the dependent variables,

we must have:
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niO = (Q24 —1) - 6(023 -1) + 15(022 —1) — 20(02 -1)

+ 15(Q - l) - n15 - SH.
16

: 3Q _ 5 T nis _ Sni6

Thus niO = 0 implies nis + Sni6 = 30 — 5.

The system of equations

n,+n. =Q-l

-5 16

1 c- = _
p15 .,6 3Q 5

has the solution 1116 = 0/2 - l . There is no integer solution if

Q is odd.



CHAPTER III

GROUP ARRAYS

3.1 Relation of Orthogonal Arrays to Finite Projective Geometry

Consider a factorial design for k factors, each occurring at

5 levels, where s = p“, p a prime. The 3 levels may be repre-

sented by the elements of the Galois Field GF(pn). Then each

treatment vector (al,....,a ) may be taken as a point of a finite

projective geometry of dimension (k—l). This geometry will be

denoted by PG(k—1,pn).

In this setting, R. C. Bose, in his definitive paper of 19h?

[5], made a study of the problem of confounding in the blocks of a

factorial design (see Sec. 1.1).

A complete symmetrical factorial design SR is said to be of

m)the class (SR, 5 if it is partitioned into sm blocks (m f k)

k-m

sof treatments each. The block size is sr , where r = k—m.

Bose shows that if mt(r,s) denotes the maximum number of

factors that it is possible to accommodate in a symmetrical factorial

experiment in which each factor is at s = pn levels, and each

block of size sr , so that no estimate of an interaction involving

t or fewer factors is confounded with blocks, then mt(r,s) equals

the maximum number of rows it is possible to take in a matrix of r

columns of elements of GF(pn) so that no t rows are dependent.

Equivalently, mt(r,s) is given by the maximum number of points

it is possible to choose in PG(r-l,s) so that no t are conjoint

(t points are said to be conjoint if they lie in the same t—2 dimen-

sional subspace).

20
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It was pointed out in Section 1.2 that a block of a complete

factorial design of strength t is an orthogonal array of strength t.

Thus, for those arrays which are blocks of a complete factorial de—

sign, Bose has made the problem of determining the maximum number of

constraints a geometric problem.

The following theorem of Bose and Bush [7] gives explicitly a

method of constructing orthogonal arrays of strength t .

Theorem: Let C be a matrix of k rows and r columns, such that

every t X r sub—matrix is of rank t , with entries from a Galois

Field GF(pn). Then an orthogonal array (sr,k,s,t) may be con-

structed, where s = p“.

Prggf: Let Br be the r X sr matrix whose columns are the sr

different r-tuples of elements of GF(pn). (Br is the complete sr

array). The k x sr matrix A = C x Br is the required array.

If A' is a t x sr sub-matrix of A , and C' is the corres—

ponding sub—matrix of C of rank t ,

each column (al,...,at)i of A' is obtained from sr—t different

columns of B . The array A obtained is of index sth.

3.2 Bounds on the Number of Constraints of Arrays of Strength Four
 

 

of Type C x Br

Following the notation of the previous section, let Br be the

r X sr matrix whose columns are the sr different r-tuples of ele—

ments of GF(s) , where s = pn. Let C be a k x r matrix with

entries from GF(s) , such that every t x r sub-matrix is of rank

t. It follows from the theorems of Bose (Sec. 3.1) that the maximum



22

number of constraints possible in an array (sr,k,s,t) of the form

C x B is equal to the maximum number of points in PG(r—l,s) such
r

that no t are conjoint. This number is denoted by mt(r,s).

When t = 2 all distinct points of PG(r-l,s) can be chosen,
)

so that m2(r,s) = (3r — 1)/(s - 1). As we have indicated (Sec. 1.2)
3

this is the maximum number of constraints possible in any array of

strength 2 and sr columns.

When t = 3, s = 2 m3(r,2) = 2r—1_, This has been shown by

Bose [5] to be the maximum number of points in PG(r—l,2) such that

no three are colinear. Bose and Bush [7] have also shown this to be

the maximum number of constraints possible in any array of strength 3,

r
and 2 columns, when s = 2.

Bose also proves the following [5]:

n

m3(3,s) = s + 2 when s = 2 3

m3(3,s) = s + 1 when s = pn,p an odd prime;

m3(h,s) = s2 + 1 when s = pn,p. an odd prime.

Seiden [2h] proves m3(h,3) = s2 + l for the case s = 22. Qvist [25]

proves m3(h,s) = s2 + l, s = 2n, n > 1. In particular, 32 + l is

the maximum number of constraints possible in any array when s = 3,

t = 3, N = 34, i.e., (hi, 10, 3, 3) [20].

A bound for m4(r,2), r 3 8, and the values of m4(r,2) for

r h,5,6,7, and 8 are presented in [2b]. We may assume in each case

that the coordinates of the first r points chosen form the rows of

the r x r identity matrix Ir'

(1) In PG(3.2). m4(h.2) = S.

The only point which can be added to I, is (l,l,l,l).

(2) In PG(A,2), m4(5,2) = 6.
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Again, only one point may be added to I5. This point must

have either five coordinates equal to l, or four 1's and one 0.

(3) In PG(5.2). m4(6,2) = 8.

If the point (l,1,l,l,1,l) is added to I6, no more points may

be added. There are essentially two different sets of two points

which may be added:

1 l 1 l 1 0 l l l l 0 0

l l l 0 0 l 1 l 0 0 l l

(h) In PG(6,2), m4(7,2) = 11.

Nine possible sets of four points are exhibited in [21] which

may be added to I7, such that no four are dependent. In each case,

the set of 11 points contains a subset of 8 points lying in the same

5 dimensional subspace.

(S) In PG(r'192); I“ Z 8 m4(r,2) _<_ 3(2r-6 —l) + 8
D

This bound follows from the fact that a S-dimensional subspace

in PG(r—l,2) passes through (2r—6 —1) 6—dimensional subspaces.

To the 8 points in the S-dimensional subspace, 3 points may be

added in each 6—dimensional subspace.

(o) In PG(7,2), m4(8,2) - 17.

The bound in (E) is 17 when r = 8 . Seventeen points have been

found in PG(7,2) such that no four are dependent.

Using a similar method, we can show that the maximum number of

points, no four in a plane, in PG(r—l,3) is at most 3(3r‘4 —1) + 5,

for r 3 6.

Lemma 1: The maximum number of points, no A in a plane, in PG(3,3)

is S.
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3329f: Any point added to I4 must be a linear combination, with

non-zero coefficients, of the four basis points. Two such points

can differ in at most two coordinates, or be alike in one coordinate;

hence one point may be written as a linear combination of the other

point and two basis points. Then exactly one point may be added.

Therefore, m4(h,3) = 5.

Lemma 2: The maximum number of points, no A in a plane, in PG(h,3)
 

is 11.

Prggf: There are 5 different sets of four basis points among the

points of I5. By the previous lemma, at most one point may be added

for each such set of four basis points. At most one point can be

added with five non—zero coordinates. Two such points can differ in

at most two places, and can be alike in at most two places, which is

impossible. Thus at most 6 points can be added to the basis points.

The following set of 11 points of PG(A,3), with no four in a

plane, is the maximum number which may be found. Therefore,

m4(5,3) = 11.

l 1 I l I I O O O O

I 2 l 2 O O l O O O

1 2 2 O l O O l O O

l l O 2 2 O O O I O

l O 2 I 2 O O O O l

O l 2 2 i

This set of points is unique, up to an interchange of rows or

columns, or multiplication of a column by a non-zero element. Let

us assume that the point with five non—zero coordinates has a 1 in

each place. Assume also that the other points added to I5 , with

four non-zero coordinates, each have a 1 as the leading non-zero
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coordinate. There must then be two 2's and one 1 among the other

non-zero coordinates. In each PG(3,3), therefore, there is a choice

of three points: (1 2 1 2), (l 2 2 1), or (1 l 2 2). In addition,

any pair of these points chosen must differ in one or two of the places

where both are non—zero. There are then five additional ways of

selecting one point from each PG(3,3). The six sets shown may be

obtained from one another by interchanging columns.

1 2 l 2 O l 2 2 l O 1 2 2 1 O l 1 2 2 O 1 l 2 2 O

1 1 2 O 2 l 2 l O 2 1 1 2 O 2 1 2 2 O l 1 2 l O 2

1 2 O l 2 1 l O 2 2 l 2 O 2 1 l 2 O l 2 l 2 O 2 l

1 O 2 2 1 l O 2 2 1 1 O l 2 2 1 O l 2 2 1 O 2 l 2

O 1 1 2 2 O l 2 l 2 O 1 2 2 1 O 1 2 1 2 O 1 1 2 2

Theorem: The maximum number of points, no four in a plane, in

PG(r-l,3), is at most 3<3r-4 -l) + S, r 2 6.

Proof: Clearly any set of 11 points in a PG(A,3) contains five

points lying in the same PG(3,3). A three-dimensional Space in

PG(r-1,3) is contained in exactly (1/2)(3r-4 —l) four—dimensional

Spaces. Five points may be selected in the three-dimensional space,

and at most six additional points may be selected in each four—

dimensional space. Therefore

miirms 6[(1/2><3r‘4 -1)1 + s.

 

3.3 Structure of Arrays of Type C X Br

The theorem of Bose and Bush in Sec. 3.1 describes a method of

constructing arrays by matrix multiplication. Let us consider the

T-X sr matrix Br used in the construction of the array A =

C3F,k,s,t). The S levels are regarded as members of the Galois

F3€31d. GF(s) , and the columns of Br are the sr r—tuples of ele-

mernhsof GFb).
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We may consider the columns of Br as the elements of an r-

dimensional vector space. In particular, the columns form an Abelian

group under coordinate-wise addition(modulo 3). Let A = C x Br

be the array constructed by the method of Bose and Bush. It follows

that, if repeated elements are identified, the columns of A form a

subgroup of B the group of k—tuples of elements of GF(s). In
R)

addition, if A is an array (Sr,k,8,t), k > r, then so is each coset

of A in Bk.

To show that A is a group, consider any two columns hi’hj of

A. By the construction of A (see Sec. 3.1), h1 = Cbi and hj = ij

for two columns bi’ bj of Br' Hence,

h. + h. = Cb. + Cb.

1 J 1 J

= C(bi + bj)

= Cb

m

for some column b in B . Similarly, -h. = —Cb. = C(—b.).
m r l 1 1

Therefore the columns of A form a group.

We will now Show that every coset of A in Bk is also an

array of strength t. Let A' be any t x sr sub-matrix of A.

r—t r r—t

Since A is of index S , the 5 columns of A' contain s

repetitions of each t-tuple of elements of GF(s). A' thus consists

Of Sr-t repetitions of the group Bt'

Let (al,...,ak)' be a k-tuple of Bk which is not in A.

The addition of (al,.. a to each column of A leaves the
k)9

EHVDup Bt in the columns of A' invariant.

‘ )
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It is also clear that if nij is the number of columns in A

having j coincidences with the ith column, then any array which is

a coset of A has the same parameters n i = 1 N’00.) ,I .0. n-

10’ ’ 1k’

providing that the transformed columns of the coset remain in the same

order as the original columns of A . For suppose the element ai

of GF(s) is added to each member of the ith row of A. Then only

those columns which had matching elements in the 1th row of A will

have matching elements in the ith row of the new array.

We have thus shown that each array A = (Sr,k,S,t), k_Z r, of

the form C x Br’ constructed from a k X r matrix C, is a subgroup

of Bk which has sk_r —l coset arrays. A and its cosets in turn

form a group of arrays of order Sk_r under the usual definition of

coset operations. If the sr columns of A are distinct, then the

sk—r elements of this group are the blocks of a class (sk,sk-r)

design of strength t.

We will now show that in any array of the form C x Br , the

number of times each column is repeated depends on the rank of the

matrix C.

If C is of rank v v E r, each column which appears
3

in A is repeated exactly Sr—v times.

Suppose the first v rows of C are linearly independent.

Without loss of generality assume the 1th row of C consists of the

Vector with l in the ith place and 0's elsewhere, i = 1 2 v.
3 3")

T1hen the first v rows of A are identical with the first v rows

, the group of sr column vectors. HenceOf‘ the matrix formed by Br
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each column v—tuple is repeated sf—V times. Each succeeding row of

A is a linear combination of the first v rows; therefore columns

will be identical if and only if they have matching elements in the

first v rows.

It follows from this proof that the array A = C X Br will

have Sr distinct columns if and only if C is of rank r. If A

is to be of strength t, then the rank of C must be at least t.

We have shown previously that if A is an array of the form

C x Br’ the columns of A form a group, if repeated columns are

identified. The theorem which follows characterizes a larger class

of arrays whose columns form groups, with identification of repeated

columns. Conditions will then be given under which arrays of this

class are of the form C x Br'

Theorem: Let A = (N,k,s,t) be an array with exactly Sr distinct

columns, srlf N. Then, with identification of repeated columns,

the columns of A form a group if and only if A is a matrix of

rank r.

2329f: Let A be of rank r. A set of r linearly independent

columns may be selected, and every other column of the array must be

a linear combination of the r linearly independent columns. Since

A contains sr distinct columns, it must contain all linear combina—

tions of the r independent columns. Then the columns of A form

the group generated by the r linearly independent columns.

Suppose A is a group, and let the rank of A be v. A set

Of v linearly independent columns may be chosen, and every other

COlumn must be a linear combination of the v linearly independent
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columns. Furthermore, since A is a group, it must contain every

linear combination of the v independent columns, therefore the

r v

number of distinct columns is SV. It follows that s = s , and

since 5 2,2, r = v.

If A is of rank r , then r rows, say the first r , are

linearly independent, and the elements of the last k-r rows are

linear combinations of the elements of the first r rows. Thus

if A has sr distinct columns, there are sr distinct columns

in the first r rows. It follows that the first r rows must con-

sist of the group Br , with possible repetition of columns. We

will now Show that if each column of A is repeated sV times, then

A is of the form C x Bm for some m 3,r.

m

Suppose A is of rank r , with N = S , m 3 r and each column
3

is repeated the same number of times, say sV , where v = m—r. It

has been shown that r rows of A , say the first r , consist of

the group Br . Since each column of A is repeated sv times, it

follows that in the first r rows of A , each column of Br is

repeated sV times. The first r rows of A then consist of r

rows of the matrix formed by the column group Bm' 'We now show that

the array A is of the form C X Bm’ where C is a k x m matrix.

Let the first r rows of the matrix C consist of the unit

vectors with l in the 1th place and 0 elsewhere, i = l,.. r.
' 3

The last k—r rows of the array are linear combinations of the first

r rows. Let ( ), j = r+l,...,k, be the coefficients ofaji""’ajr

these linear combinations. Then the last k—r rows of C may have

(a. ... . ) as the first r elements and 0's elsewhere.
J1) ) Jr 5
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The first r rows of A may be written as the product of the

first r rows of C with the matrix Bm' Let (aj1"" a. 0 ..,0)

be one of the remaining k—r rows of C. The aji are the coef-

ficients of the appropriate linear combination of the first r rows

which yields the jth row of A, j = r+l,... k.
3

We will demonstrate in Chapter IV that there exist arrays

(2r,k,2,t), k > r, containing 2r distinct columns, which are neither

subgroups of B nor cosets of subgroups. Thus they cannot be de-

k

rived from construction of the form C x Br' A method of construction

is described which yields such arrays, and examples will be given.

 

3.h Confounding in Arrays of the Form C x Br

In any array A = (2r,k,2,t) of the form C X Br’ the pattern

of confounding may immediately be determined by the structure of the

matrix C used to generate the array.

We will assume the rank of C is r. We may take as the first

r rows of C the identity matrix Ir' The array constructed will

then be a complete 2r factorial design for the first r factors

Fl,...,Fr. Let the last k—r rows of C correspond to the factors

F ,...,F . Among these k—r rows the structure of the ith row

r+1 k ’

indicates the interaction with which the estimate of the ith effect

is confounded, for i = r+l,... R.
J

Let (cl,...,c ), c. = 0 or 1, be one of the k-r rows added to
r 1

Ir to form C. Then the estimate of the effect corresponding to

(C1"°°’Cr) is confounded with the estimate of the interaction of

those factors Fi for which ci = l, in (C1"'°’Cr)' Then, using

"identities” derived from the confounding with respect to factors

T+1"°°’Fk’ all other confounding in the array may be determined.
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For example, if the (r+1)th row of C is of the form (l,l,l,l,

0,0,...,O), the estimate of the effect of Fr+1 is confounded with

the estimate of the interaction of F1,F2,F3,F4, denoted as l23h, if

such an interaction should be present. The "identity" in this case

is expressed as r+1 = i l23h, or I = i 123h(r+1). The method follows

that of Box and Hunter [8].

The parity of the confounding may be determined as follows: if

the row of C corresponding to Fi has an even number of 1's,

the confounding is negative; if the row has an odd number of 1's,

the confounding is positive. (See Sec. l.h.)

An example may be given for the case of the array A = (128,ll,2,h)

constructed with a matrix C taken from [21]. Let C be the follow-

ing matrix:

F 17 T

l l l l l l O

l l l l O O 1

l l O O l l 1

  O 1 O l O 1 1_J

L.

The identities derived from the last four rows of C are

I = — 123h568

I = 123A79

I = 12567 10

I = — 2A6? 11.

These identities may now be combined, using the order two

prOperty xx I, so that, for example, (123b79)(l2567 10) = 3hS69 10.

This yields the additional identities



I

I

56789

3A78 10

'1378 ll

3&569 10

1369 ll

INS 1O 11
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From these identities, we can determine

confounded. For example, from

1

12

125

I = 12567 10

2567 10

567 10

67 10,

etc.

1289 10

2L589 11

2368 10 11

23579 10 11

116789 10 11

which interactions are

it follows that
D

It is easily seen that since each identity contains at least

five factors, no main effect is confounded with any interaction of

three of fewer factors, and no interactions of two factors are confounded

with one another.

described in Sec. 1.2.

This is the property of arrays of strength A, as



CHAPTER IV

ARRAYS or 32, AB, 6t and 80 COLUMNS, s = 2, t = A

A.l Arrays of 32 Columns, 3 = 2, t = h
 

Theorem: The maximum number of constraints for an array (32, k, 2, A)

is six.

Proof: Consider the equations whose solution is necessary for the
 

existence of an array with 7 constraints (see Sec. 1.3). Solving

them in terms of the dependent variables yields

1110 = 3 - ni5 - 5ni6 - 15 ni7

ni3 = —35 + 10 nis + NO ni6 + 105 ni7

According to the first equation, ni6 = ni7 = 0 , and His-5 3. There

is then no non-negative solution for ni3 , and thus an array of 7

constraints cannot exist.

Using the following method, two different arrays (32, 6, 2, A)

may be constructed. We may assume that the first column must consist

entirely of 0's. Let the first five rows consist of two arrays

(16, 5, 2, h) of the form D or D', as described in Section 2.2.

The columns of D are made up of all five-tuples with an odd number

Of 0's, and the columns of D' are made up of all five—tuples with

an even number of 0's. A row of 0's may be added to one array D ,

and a row of 1's to the other array. The two arrays constructed are:

(1) (2)

33
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The number 1 below a D or D' indicates that a row of sixteen

i's is to be added to the five—rowed array.

Array (1) has solution

nlo = 0: r111 = 5; n12 = 5: n13 = 10: “14 = 10; n15 = 1: n16 = 0:

Array (2) has solution

) n12 = 15: n13 = on n14 = 15: n15 = 0: n16 = 0-nlo = 1: nll = 0

These are the only solutions possible to the necessary equations for

an array (32, 6, 2, A).

A.2 Arrays of A8 Columns, 5 = 2, t = A
 

Theorem: The maximum number of constraints for an array (A8, k, 2, A)

is five.

Proof: The necessary equations of Section 1.3 may be solved in terms
 

of the dependent variables for the case k = 6. We then have

“10 2 h ‘ Snio ’ “15'

Any solution must have ni6 = 0 for all i . It follows that if an

array of six constraints exists, all columns are distinct.

Consider the complete array (26, 6, 2, A) consisting of all 26

distinct 6—tuples. In any four rows, each A—tuple appears exactly

four times. If A8 distinct columns can be chosen to form an array of

index 3, then in any four rows of the remaining 16 columns, each A—tuple

must appear exactly once. This would yield an array of 16 columns

with k = 6 , contradicting the fact that an array (16, k, 2, A) can

have at most five constraints [9].

It follows from the theorem of section 2.2 that every array

(A8, 5, 2, A) is composed of three arrays of the form D or D’.
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A.3 Arrays of 6A Columns, s = 2,7t = A 

We will prove in this section that the maximum number of constraints

for an array (6A, k, 2, A) is eight.

When k = 7 no solution to the necessary equations exists with
J

n. > 0. It follows that n17 i7 = 0 for all k greater than 7, by

Property 3 of section 1.3. The following table gives all solutions

which must be considered for k = 6, 7, 8 and 9

Solutions for k = 6, 7, 8, 9; N = 6A.

T1. 1'1. n II n. 1'1. n. 1'1 n I]

 

fiiifififififlfifi

6-1: 0 10 10 2o 20 2 1

6-2: 1 5 2o 10 25 1 1

6-3: 2 o 30 o 30 o l

6-A: o 11 5 3o 10 7 o

6-5: 1 15 2o 15 6 o

6-6: 2 1 25 10 2o 5 0

7-1: 0 A 15 5 3o 6 3 o

7-2: 1 0 2o 5 25 10 2 o

7-3: 0 5 10 15 2o 11 2 o

7-A: o 6 5 25 10 16 1 o

7—5: 1 1 15 15 15 15 1 o

7-6: 0 7 o 35 o 21 o o

7-7: 1 2 lo 25 5 2o 0 o

8-1: 0 2 9 12 15 18 7 o 0

8-2: 0 1 1A 2 25 13 8 o o

8—3: 0 3 A 22 5 23 6 O 0

9-1: 0 o 9 6 l8 9 21 o o o

9-2: 0 1 A 16 8 1A 20 o ‘ o o
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Theorem: Every array (6A, 8, 2, A) has solution 8-1.

nggfz We assume the first column of an array consists entirely of 0's.

Solution 8—2 has ni1 = l . Let i = 1. Suppose the single 0

in this column is coincident with a 0 in any of the columns with two

0's. This would result in two columns with seven coincidences, contra—

dicting the fact that if k = 8, ni7 = 0. Thus the single 0 in the

column with one 0 cannot be coincident with a 0 in any column with

two 0's. The array then has a sub—array of seven rows with n10 = l,

nll = 0. This sub-array would have solution 7-2 with respect to the

first column, with 1112 = 20 . 0f the columns with two 0's in the

sub-array, six would have to have 0's added in the extension. But

in solution 8-2, nis = 2. Because of this contradiction, no array

can exist with solution 8-2.

Suppose an array exists with solution 8-3. This solution has

1111 = 3, and the columns having one coincidence with the 1th column

must be distinct. Thus the array would contain a sub—array of seven

rows with nio = l, nil 3 2. The only such solution is 7-7 with

niO = l, nil = 2. But in 8-3, ni5 + ni6 + 1117 + n18 = 29. In any

seven—rowed sub-array, these columns have four or more coincidences

with the 1th column. However, in 7-7 , n. + n. + n. + n. = 25,

14 15 16 17

Hence an array with solution 7—7 cannot be extended to an array with

solution 8-3. Because of this contradiction, no array can exist with

solution 8—3.

This leaves 8—1 as the only solution for an array of eight

constraints.
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Theorem: The maximum number of constraints for an array (6A, k, 2, A)

is eight.

Proof: We first prove that solution 9—2 cannot correSpond to an
 

array. Such an array would have one column having one coincidence

with the 1th column, since nil = 1. It would then contain a sub-

array of eight constraints with nio 2 1. No such array exists.

An array with solution 8—1 cannot be extended to antarray with

solution 9-1. Consider the solutions with respect to the first column

of all 0's. Solution 8—1 has nil = 2. These two columns with one

0 have six coincidences. Since solution 9—1 has ni1 = 0, each

of the two columns must have a O in the ninth row. The two columns

would then have seven coincidences, contradicting the fact that

n. = 0 for all i.

17

Theorem: Arrays (6A, k, 2, A) of seven constraints with solutions

7-1, 7-2, 7-A, 7-6, and 7—7 cannot be extended to eight constraints.

Proof: We consider the solutions with respect to the first column of 0's.

(1) Suppose an array has solution 7—1. Since ni6 = 3, we may

assume there are four columns as in (a).

A

D
)

V A

C
“
v

O
O
O
O
O
O
O

H
O
O
O
O
O
O

O
H
O
O
O
O
O

O
O
I
—
‘
O
O
O
O
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Suppose one of the last three rows of (a) is deleted. In each case

the remaining six rows have n16 = l and n15 = 2, and hence must form

an array of six constraints with solution 6-1.

The array of seven constraints with solution 7—1 must now have

since n. = 6.six columns consisting of five 0's and two 1's , 15

However, deleting one of the last three rows must leave each of these

columns with only four 0's. Therefore, in the last three rows, these

six columns have only 0'3 , as in (b).

Suppose the array is extended to eight rows. Four of the columns

in (b) must coincide with the first column in the eighth row, since

solution 8-1 has ni6 = 7. We would then have the A-tuple (O O O 0)

appearing five times in the last four rows. Thus the extension is

impossible.

(ii) Suppose an array with solution 7—2 is extended to eight

rows. According to 7—2 , the extension must have nio + ni1 = 1

Since the unique solution for k = 8 has nio + 1111 = 2 , this is

impossible.

(iii) Consider an array with solution 7—A. The array must have

six columns with exactly one 0 . If an eighth row is added, these

as in (c).columns will be followed by two 1's and four 0's ,

(c) (d)

011111 11111

101111 11111

110111 -----

111011 -----

111101 -----

111110 -----

111111 -----

110000 -----



39

The eight-rowed array must now have five more columns with exactly

two 0's . All of these columns must have 1's in the first two rows

as in (d); otherwise, there would be a column having seven coincidences

with at least one of the first two columns.

If any one of rows 3 through 8 is deleted, the remaining

seven-rowed array would have nlo = 0 , and hence n11 2 5. This

implies that if any one of rows 3 through 6 is deleted, then at

least two of the columns of (d) must have only one 0 in the remain—

ing rows, while if row 7 is deleted, at least three of the columns

of (d) must have only one 0 in the remaining rows. Therefore the

five columns of (d), with two 0's in each column, must have at least

(A)(2) + 3 = 11 0'3 . This is clearly a contradiction.

(iv) An array with solution 7—6 can be extended only to an

array of eight conStraints with ni5 + ni6 = 21. Solution 8—1 has

nis + ni6 = 25.

(v) Suppose an array with solution 7—7 is extended to eight

rows. Solution 7—7 has n. = l, n. = 2. Let i = l. The column

10 11

with no 0 and one of the columns with one 0 must both have a O
) J

in the eighth row. This would result in two columns of the eight—rowed

array having seven coincidences, while solution 8—1 has ni7 = 0.

Construction of Arrays with Seven and Eight Constraints
 

An array (6A, 8, 2, A) of the form C x B6 may be constructed

by the method of matrix multiplication, as described in section 3.1.

To form the rows of the matrix C, there are essentially two dif-

ferent sets of eight points which may be chosen in PG(5,2) such that
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no four are conjoint. We may assume in each case that the first six

rows of C form the 6 X 6 identity matrix Is. The matrices C

which result are:

— ‘1

I6

c1: 111100

110011
L __

r 16

C2: 111110

111001   
In addition, the following set of seven points may be chosen,

which cannot be extended to eight points:

16

03: 111111

The array C3 X B6 of seven constraints, has solution 7—6 ,
5

and thus cannot be extended to eight constraints by any method.

If a seven-rowed matrix C is used which consists of 16 and

a row with four non-zero coordinates, for example the first seven

rows of C1 the array formed will have solution 7-3. If the seventh
9

row has five non—zero coordinates, as in the first seven rows of C2,

the array will have solution 7—5.

We may also construct arrays of seven constraints by the method

described in section 2.2. Since 0 = 22 , any array of five con-

straints can be extended by this method to seven constraints.

Any array (6A, 5, 2, A) is composed of four arrays of the form D

or D' . It may be extended by adding one of the pairs (0 0), (0 l),

(l 0), (l l) to the columns of one D or D’ the same pair being
9

added to all the columns of a single D or D'.
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We may assume that in each array constructed by this method, there

is a five—rowed array of the form D followed by (0 0), so that the

seven—rowed array has a column of all 0’s. Using all possible

arrangements of the remaining five-rowed component arrays, we may con—

struct six different arrays by this method. These six arrays are dis-

played below, where

D

i

j

indicates that the pair (i j) is to be added to all the columns of

the array D (or D').

  

(l) [D D D D l

0 0 l 1 Solution 7-3

L0 1 0 1 g

(2) 7D D D D7

0 0 l 1 Solution 7—2

0 l 0 l

(3) TD D D' D I

0 0 l 1 Solution 7—A

0 1 0 1
_ .1

(A) _D D’ D D'—

0 0 l 1 Solution 7-5

0 l 0 1 _

(5) 7D D' D' D I

O O l 1 Solution 7—6

0 l 0 1 . 
(6) TD D' D' D"

0 0 l 1 Solution 7—7  
This method thus yields seven—rowed arrays with each possible

solution except 7—1. An array with solution 7-1 may be constructed

in the following form.
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(7) The first 32 columns consist of

D D

0 l

l 0

while the last 32 columns are:

(i) (ii)

0 O O O l 1 l 1 O O O O l l 1 1 O O O O l 1 1 l O O O O l l l l

O O 1 1 O O 1 1 O O l l O O 1 1 O O 1 1 O O l 1 O O 1 l O O l 1

O 1 O l O l O l O 1 O l O l O l O l O l O 1 O 1 O l O l O 1 O l

O l 1 O 1 O O l O l l O 1 O O l 1 O O 1 O l l O l O O l O l l O

O O O O O O O O l 1 l 1 l 1 l l 1 1 1 l 1 l 1 1 O O O O O O O O

O O O O O O O O O O O O O O O O l l l l l 1 1 l l l 1 l l l l l

O O O O O O O O O O O O O O O O 1 l l 1 l l 1 1 l 1 l l 1 l l 1

One can easily verify that (7) is an orthogonal array of strength A.

We note first that rows 1 through 5 form a five—rowed array of

type D D D D'. We must now show that if we take either (a) two of

the first five rows, together with rows 6 and 7, or (b) three of

the first five rows together with either row 6 or row 7, each A—tuple

appears four times.

Consider (a). In any two rows of D , each possible pair of the

elements 0,1 appears four times. Thus in the first 32 columns of

array (7), each A—tuple ending in (O l) or (1 0) appears four times.

In the last 32 columns, the 16 columns of (i) end in (0 0), while

the 16 columns of (ii) end in (l 1). It is now sufficient to check

that in any two of the first five rows, each possible pair appears

four times in (i) and four times in (ii). It should be noted that rows
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1, 2, and 3 of (i) and (ii) are exactly alike, while the remaining

four rows are the same except for an interchange of 0 and 1.

Next consider (b). In the first 32 columns, rows 1 through

5 , together with either row 6 or row 7 clearly form an array
)

(32, 6, 2, A). It remains to be shown that the same property is true

for the last 32 columns. It is therefore sufficient to check that

in any three of the first five rows, each possible 3—tuple appears

twice in (i) and twice in (ii).

Two of the seven-rowed arrays shown above, arrays (A) and (5),

with solutions 7—5 and 7-6 , are actually arrays of strength five.

Using the method of the theorem of section 2.1, they can be constructed

from arrays of the form (32, 6, 2, A). We may choose one of the arrays

(32, 6, 2, A) displayed in section A.l, adjoin the same array with 0

and l interchanged, and add a seventh row of 0's and 1's as in-
9

dicated in section 2.1. By this method, array (1) of section A.l

will yield the array (A) shown above, and array (2) of section A.l will

yield (5). It follows also, from the same theorem of section 2.1,

that the maximum number of constraints for an array (6A, k, 2, 5) is

seven.

We will now examine the algebraic properties of the seven—rowed

arrays constructed, considering 0 and l as members of the Galois

Field GF(2).

First consider the five—rowed arrays D and D'. D consists of

all columns with an odd number of 0's and an even number of 173;

the columns of D9 are those with an even number of 015 and an odd

number of 1's. We thus have the following property: using coordinate
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addition (modulo 2), a column of D added to a column of D' yields

a column of D' while the sum of two columns both from either D or
3

D' , is a column of D. Using this property, it is easily seen that

the columns of arrays (l), (A) and (5) have closure, and thus form
)

subgroups of B7 the group of all possible seven-tuples of the ele-
D

ments 0 l.
3

Using the same property, it can also be shown that the columns of

arrays (2), (3), (6), and (7) do not have closure. In each of these

arrays, consider the two component arrays D or D' which are followed

by (0 l) and (l 0). The sum of two columns, one ending in (0 l) and

one ending in (l 0), will clearly be a column ending in (l 1). To have

closure, arrays (2) and (6) would have to have an array D followed

by (l 1), while array (3) would have to have D' followed by (l 1).

These requirements are not net. In array (7), we note that part (i)

contains columns of the D' type followed by (0 0). The sum of such

a column, and any column chosen from the first 32 columns of the

array, will not be a column of the array.

Since each of the arrays constructed contains the identity column,

arrays (2), (3), (6) and (7) are neither groups, nor cosets of groups,

and thus cannot be derived from the method of construction discussed

in Chapter III, using matrix multiplication. These four arrays have

solutions 7-2, 7-A, 7-7, and 7-1 respectively, hence none of them can

be extended to eight rows.

In section 3.3 it was proved that an array with sr distinct

columns forms a group if and only if the array is a matrix of rank r.

It can easily be shown that the four arrays discussed in the previous
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r = 6.paragraph form matrices of rank seven, while for N = 6A,

Arrays (2), (3) and (6) contain the five columns:

1 O O O O

O l O O O

O O l O O

O O O l O

O O O O 1

O O O O O

O O O O O

In addition, (2) contains (0 O O 0 0 1 0) and (0 O 0 O O O l); (3)

contains (0 0 0 0 O l l) and (0 0 0 0 O 0 l); and (6) contains

(0 0 0 0 l l 0) and (0 0 0 0 l O 1). In (7) we may choose the

following set of independent columns:

1 O O O O O O

O l O O O O O

O O 1 O O O O

O O O l O O O

O O O O l O O

O O O O O l O

1 l 1 1 1 O 1

The group generated by a set of seven indepndent columns contains

27 distinct columns, while the arrays have only 26 columns, indicat-

ing once again that these arrays cannot form groups.

A.A Arrays of 80 Columns, 3 = 2 t = A_I

In this section it will be proved that the maximum number of

constraints for an array (80, k, 2, A) is six.

The solutions to the necessary equations for an array with N = 80,

for k = 5 and k = 6 are given in the table on the next page.
9

It will first be shown that only two of the arrays with five

constraints can be extended to arrays with six constraints.



 

Solutions for N = 80, k = 5, k = 6

5—1: 0 25 O 50 O A

5-2: 1 20 10 A0 5 3

5-3: 2 15 20 30 10 2

5-A; 3 10 30 20‘ 15 1

5-5: A 5 A0 10 20 0

6-1: 0 12 15 20 30 0 2

6-23 0 13 10 30 20 5 1

6-3: 1 8 20 20 25 A l

6—A: 2 3 30 10 30 3 1

6-5: 0 1A 5 A0 10 10 0

6-6: 1 9 15 30 15 9 0

6-7: 2 A 25 2O 2O 8 O

Lemma 1: The arrays with solutions 5—1, 5—2, and 5-5 cannot be

extended to six-rowed arrays.

2322f: There is a unique array with solution 5—1, i = l,...,5. Since

solutions 5-2 and 5—5 represent the same array up to a permutation

of the elements (0,1), it is sufficient to consider either 5—1 and

5-2, or 5-1 and 5—5.

Any array of six rows obtained by extending 5—1 would have to

have nio = 0, nis + ni6 = A. No such solution exists.

Consider an array admitting solution 5—5 with respect to a

first column of all 0V3. If an array with solution 5-5 could be

extended to an array of six rows, the six—rowed array would have to

have nl6 = 0. Solving the necessary equations in terms of the dependent
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variables then yields

nll = —36 + 5 his, which implies n15 3 8

(i) n15 = 8 implies nlo = 2, nll = A

(ii) n15 = 9 implies nlo = l, n11 = 9

(iii) n15 = 10 implies n10 = O, nll = 1A.

But any extension of an array with solution 5—5 must have

1110 + 1111 f 9. Then (i) is the only possibility, with complete solution

nlo : 2; n11 = A: n12 = 25: “is = 20, n14 = 20: n15 = 8; n16 = 0-

An array of type 5—5 has four columns of all 1's one column
J

of each type with one 0 , and four columns of each type with four 0's.

The first 5 rows of the following matrix are part of such an array,

and the sixth row is the extension, if an extension is possible.

1 l 1 l O l l 1 1 O O O O

H 1 1x1 1 O l l l O O O O

1
.
.
.

l l 1 l l O l l O O O O

p
.
.
.

l l 1 l l 1 O l O O O O

H l 1 1 1 l 1 1 O l l l 1

 

l l 0 0 0 0 0 1 l l l l 0

The elements added to the first nine columns are determined by

the solution 1110 = 2, nll = A, for the extension. Then if the fifth

row is deleted, a five-rowed array remains with n10 = 3, which can

only be of type 5-A. In 5—A, each column with four 0's is repeated

three times, and n15 = 1. Therefore the last four columns above must

have three 1's and one 0 added.



A8

Now suppose the fourth row is deleted. Again the same array with

solution 5—A is obtained, and should have each column with three 0's

repeated twice. Since (0 0 0 l 1) appears three times in this sub-

array, this leads to a contradiction. Hence the extension is not an

array. Since array 5-5 cannot be extended, neither can array 5-2.

Note that solutions 5-3 and 5—A represent the same array with

0 and l interchanged. We have shown that arrays with these solu—

tions are the only ones which can be sub—arrays of a six-rowed array.

Lemma 2: Solutions 6—A and 6-5 do not correspond to arrays.

Proof: Consider an array having solution 6-A with respect to a first

column of 0's. Since ni6 = l and ni5 = 3, there must be another

column of all 0's and three columns with five 0's and one 1.
)

It follows from lemma 1 that the columns with five 0's must be

distinct, since no five—rowed sub-array may have more than three

columns which are all 0's. Thus the array would have the following

columns:

0
0
0
0
0
0

0
0
0
0
0
0

O
O
O
O
O
H

O
O
O
O
H
O

O
O
O
H
O
O

To complete the requirement that the four—tuple (0 0 O 0) appear

five times in each four-rowed sub-array, the columns (0 0 O 0 l l) and

(O O 0 l 0 1) must each appear three times. However, the four—tuple

(O O O l ) would then appear six times in rows 1, 2, 3, 6.



A9

Suppose an array has solution 6—5. With nis = 10 , it must

have a sub—array with solution 5—A. Consequently, it would be neces—

sary that ni0 + nil be less than or equal to 13, but 6—5 has

nil = 1A.

Construction of Arrays (80, 6, 2, A)
 

The construction of an array with solution 6—1 will now be

described, and it will be shown that the construction of an array having

solution 6-1 with respect to a first column of 0's is unique.

Further, it will be shown that this array admits each of the remaining

solutions with respect to some column.

An array having solution 6—1 with respect to the first column

of 0's may be constructed as follows.

a) There are three columns with six 073 (1116 = 2).

b) The four-tuples of 0‘s must be completed by the columns with

four 0's; hence each possible column with four 0's appears twice

(mm = 30).

c) Each four—tuple consisting of three 0's and one 1 appears

in two distinct columns with four 095 , and each of these distinct

columns appears twice. For example, (0 0 0 l) in rows 1, 2, 3, A

appears in (O O O l l O) and (O O O l O 1). To complete the four—

each type of column withtuples consisting of three 0's and one 1 ,

three 0‘s must appear once (n13 = 20).

d) Each four—tuple consisting of two 0's and two 1's appears

in one type of column with four 0's (repeated twice) and in two

distinct columns with three 0's , so it must appear once more. For
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example, (0 0 l l) in rows 1, 2, 3, A appears in (0 0 l 1 0 0),

(O O l l l O), and (O O l 1 O 1). Hence, each type of column with

two 0's and four 1's must appear once to complete the four-tuples

with two 0's and two 1's (n12 = 15).

e) Each of the four—tuples with three 1's and one 0 appears

in one of the columns with three 0's , and two of the columns with

two 0's. For example, (0 l l l) in rows 1, 2, 3, A appears in

(0 l l l 0 0), (0 l l l 0 l), and (0 l l l l 0). Then each type of

column with one 0 must appear twice to complete the four-tuples with

three 1's and one 0 (n11 = 12).

f) The four-tuple consisting of four 1's appears in two distinct

columns with one 0 , each repeated twice, and in one column with two

0's . Thus the array is complete (nlo = 0).

It can now be shown that the array just constructed also has

solutions 6-2, 6-3, 6-6, and 6-7 with respect to different columns.

Let a column with one 0 , say (0 1 l 1 l 1), be the ith column.

This column is repeated twice; hence ni6 = 1. Since no column with

five 0's and one 1 appears, nio = 0, and the solution must be 6-2.

Suppose a column with four 0's and two 1's , say (0 0 0 0 l l),

is the 1th column, so that ni6 = 1. Since (1 1 1 l 0 0) appears

once, nio = l and the solution is 6-3.

th

Let a column with three 0's , say (0 0 0 l l 1), be the 1

column. Since each column with three 0's appears once, the solution

has n. = 0, n. = 1. This solution must be 6-6.
16 10

If (1 l 1 l 0 0) is the ith column, the array has 1116 = 0,

nio = 2, since columns with two 0's appear once, and columns with

four 0's appear twice. The solution is therefore 6-7.
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We will now prove that an array (80, k, 2, A) with k = 7 does

not exist. It will first be shown that an array of Six constraints

having solution 6-1 with respect to some column cannot be extended

to seven constraints. We then show that every six—rowed array has

solution 6—1 with respect to some column.

Theorem: The maximum number of constraints for an array (80, k, 2, A)

is six.

Lemma 3: An array admitting solution 6—1 with reSpect to.some

column cannot be extended to seven rows.

Proof: A seven—rowed extension of an array with solution 6—1 must
 

have n. +16 ni7 = 2. There are only two solutions to the necessary

equations which might correspond to such an extension.

nio “ii “i2 “is “i4 “is “is “iv

7-1: 0 A 23 0 A0 10 1

7-2: 0 8 A 35 10 20 2 0

First consider 7—1. An array with solution 7—1 could be constructed

only by extending an array with solution 6—1. But an array with solu—

tion 7-1 must have a six-rowed sub-array with ni0 > 0. This is a

contradiction; hence no array can exist with solution 7—1.

An array with solution 7—2 has n.1,O = 0, ni1 = 8. Therefore

it could not be an extension of an array with solution 6—7, since 6-7

has nio + nil = 6. Moreover, Since ni1 = 8 , the array with solution

7-2 would have to have at least two of the columns having one coinci-

dence with the ith column alike. Crossing out the row including
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these coincidences would leave six rows with nio > 1. Hence the

array could not be an extension of any of the remaining six-rowed

arrays.

Since neither of the possible extensions of an array with solu-

tion 6-1 exists, the array cannot be extended.

Lemma A: An array (80, 6, 2, A) must have solution 6—1 for some

value of i.

 

Proof: Solution 6-1 is the only solution with n£6 = 2. We will

show that any array (80, 6, 2, A) must have some column repeated three

times. The array must then have solution 6-1 with respect to this

column.

An array with solution 6-2 must have one of the columns having

one coincidence with the 1th column repeated three times.

Solutions 6—3, 6-6, and 6—7 will be considered with i = 1,

assuming the first column to be all 0's.

Solution 6-3 has nis = A. It follows from lemma 1 that the

columns with five 0's must be distinct. Therefore an array with

this solution must have six columns as follows:

0 O 1 O O O

O O O 1 O O

O O O O l O

O O O O O 1

O O O O O O

O O O O O O
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Then the column (0 0 0 0 l 1) must appear three times.

An array with solution 6—7

tion 6—3, with O and l

is the same as an array with solu-

interchanged.

An array with solution 6—6 must have columns as follows:

O 1 1 O O O O O

O O O l 1 O O O

O O O O O l 1 O

O O O O O O O 1

O O O O O O O O

O O O O O O O O

Consider the first 10 columns

leaves a five-rowed array with

with five 0's ,

coordinates must

0'sthree must

(1 l O O 0) must

O O

O O

O O

O O

shown.

1115 = 2.

l l 1

l l l

1 1 l

O O O

O O O

O O O

Deleting the first row

Since there are three columns

and Since columns differing in an even number of

appear the same number of times, each column with

appear three time

appear three times in the last five rows.

it must be preceded each time by a

S.

1

In particular, the column

Further,

in the first row, since the

four-tuple (0 0 0 0) already appears in rows 1, A, 5 and 6 five times.

Proof of Theorem:
 

Lemmas 3 and A together prove the theorem.



CHAPTER V

RELATION OF FACTORIAL DESIGN TO INFORMATION THEORY

This chapter will briefly describe the relation between the con—

struction of orthogonal arrays by the method of matrix multiplication

(described in section 3.1) and the construction of t—error correcting

codes.

A signalling alphabet A(k,v,s) is a set of v distinct k-place
 

sequences of members of a set of 3 elements. A(k,v,s) is a subset

of Bk , the set of all sk possible sequences of k elements. An

encoder E(k,v) is a 1-1 correspondence between a set of v distinct

messages and the v sequences of A(k,v,s). A message is transmitted

by presenting the k elements of the corresponding sequence in suc—

cession. The output is some member of Bk'

A decoder D(k,v) is a 1—1 correspondence between the members

al,.. a of A(k,v,s) and v disjoint subsets of B whicha .
3

form a partition SO, Sl"'”"Sv—1 of Bk' If an element bi in Si

is received as output, it is read as ai. E(k,v) and D(k,v) together

form a kjplace s-ary code.

Let s = p“, p a prime. Then the elements of Bk may be re-

garded as the group of vectors with coordinates from GF(s).

For each sequence b in Bk let w(b) be the number of non-

zero coordinates in b. The Hamming distance [13] between two sequences
 

b1, b2 is defined to be

d(bl, b2) = w(hl - b2).

Hamming distance clearly satisfies all the properties of a metric.

5A
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Suppose ai is an element of A(k,v,s) transmitted, and bi is

the element of Bk received. Then

is called the noise vector. The number of errors in transmission is
 

then

w(ei) = d(ai, bi)'

 

The code is said to be t—error—correcting if bi is contained

the set corresponding to ai whenever w(ei) f t, for
3 3

,...,v-l. This implies that the received sequence is correctly

interpreted when there have been t or fewer errors of transmission.

Group Codes
 

I‘

9

I“

Let v = s and let A(k,v,s) be a subgroup of order s of

Bk' Assume a0 = (0 0 0...0). A decoder may be constructed as follows:

let the group B be partitioned into the 8m cosets of A(k,v,s),
k

where m = k - r. In the jth coset, choose an element bj with the

t

property that w(bj) f w(b) for all b in the j h coset, and call

bj the coset leader. In particular, bO = a0. Now let Sj be the

set

The v-l sets Sj form the required partition of Bk'

The code obtained is called a (k,r) s—ary group code. This class
 

of codes was first considered by Slepian [22] for the binary case, and

by Bose [6] for the s—ary case. The scheme described may be displayed

as follows:
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Alphabet: a0 a1 — — - - — aV l

/

_

bl (bi + 511) - - - — — (bl + av-l)

Coset b2 (b2 + a1) _ _ _ _ _ 032 + aV—l)

leaders <

\b.-. (b.-. + .1)- — — — — (13,,le

1 1 i

<5.) <5.) — - — — — (SW)

The transmitted message is correctly received if and only if the

error vector is a coset leader. Thus the code is t—error-correcting

if and only if for each b in Bk , w(b) f t implies b is a coset

leader.

Bose proves that a (k,r) s-ary group code is t—error-correcting

if and only if w(a) 3 2t + l for every a in A(k,v,s) , except a0.

This was first proved by Hamming for the binary case. Finding a t—error-

correcting (k,r) s-ary group code is thus equivalent to finding a

subgroup Br of B of order Sr , such that each element of Br
k 3

has weight at least 2t + l. Naturally it is of interest to maximize

I‘.

Relation of Group Codes and Orthogonal Arrays
 

Let C be a k X r matrix of rank r with entries from GF(s),
3

r‘f k. Suppose C has property P that any d x r submatrix of C
d

is of rank d d: r. It was shown in section 3.1 that C generates
3

an array A = (Sr,k,8,d).
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Without loss of generality, let C be the matrix

I
r

M

where Ir is the r X r identity matrix, and M is the (k—r) x r

matrix of rows added to Ir which satisfy the property Pd stated

above.

Consider a sequence b = (Xl,....,X ) in B which is orthogonal
k

to the columns of C. The sequence b defines a linear dependence

among the rows of C,

Since every set of d or fewer rows of C are linearly independent,

bC = 0 implies that b is a sequence of weight d + l or greater.

Therefore the group of sequences orthogonal to C is an alphabet of

minimum weight d + l. The matrix C thus serves to define two mutually

orthogonal subspaces of B one constituting an array of strength d,
k 3

and the other a group alphabet of minimum weight d + l.

The alphabet may be derived from C as follows:

Let

C* is a k X (k-r) matrix of rank (k—r), and

[(C*)' C] = [M —Ik_r] r
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The columns of CR generate a subgroup .A of sequences of minimum

weight d + l.

The existence of a matrix C with property P is shown by
d

Bose [5,6] to be sufficient for the existence of an array (Sr,k,5,d)

and necessary and sufficient for the existence of a t—error—correcting

group code with alphabet A , where d = 2t.
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