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ABSTRACT

DYNAMIC PROPERTIES OF COMBINED

MDOF PRIMARY AND MDOF SECONDARY SYSTEMS

By

Yan Zhang

In nuclear pOWer plants and other structures, light equipment is

often attached to the primary structure. The dynamic analysis of the

combined structure-equipment system is prone to numerical problems,

because of the combination of the large mass and stiffness matrices of

the primary structure with the much smaller matrices corresponding to

the secondary equipment. The increase in the size of the problem due to

the addition of equipment is also undesirable in practice. Perturbation

techniques that overcome these hurdles have recently been proposed.

A new perturbation method, that has some advantages over existing

methods, has been employed to determine the dynamic properties of struc-

tural systems composed of multi-degree-of—freedom (MDOF) primary and

MDOF secondary systems. As in previous methods, the dynamic properties

of the individual subsystems are utilized to estimate the properties of

the combined system. High order perturbations of the mode shapes and

frequencies are developed, and numerical results can be obtained to any

order of accuracy by considering higher-order terms. Sharp error bounds

for the estimated mode shapes and frequencies are also derived. The

technique is extended to nonclassically damped systems.
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1. INTRODUCTION

1.1 General Remarks

Composite systems composed of light secondary system attached to

heavier primary system are frequently encountered in civil engineering

practice. There are many instances in which the secondary system must

always remain operational since its failure may compromise the safety of

the whole system. Piping in industrial structures, drilling and ex-

ploration equipment on offshore platforms, and communication and control

devices on space vehicles are examples of such systems.

1.2 Problem Statement

Composite systems consists of different subsystems with vastly

different characteristics. The most fundamental property is that the

mass of the secondary system is considerably smaller than that of the

primary system. There are two major kinds of composite systems, they

are distinguished by their damping properties:

1. Classically-Damped System: The primary and secondary systems are

viscously and classically damped. The composite system is also

assumed to be viscously and classically damped. This assumption is

quite true when the two subsystems are made of the same material

with approximately the same damping ratio.

2. Nonclassically-Damped System: The primary and secondary systems are

viscously and nonclassically damped. The composite system is also
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viscously and nonclassically damped. It is known (Igusa and Kiure-

ghian, 1985) that the composite system composed of two classically

damped subsystems may be nonclassically damped if there exists a

significant difference between the damping ratios of the two subsys-

tems.

The dynamic properties of composite systems can be complex. The

main dynamic properties are as follows:

1. Tuning (resonance) Characteristics: Any number of the frequencies

of one subsystem may be arbitrarily close to or coincident with the

frequencies of the other subsystem. This condition is know as

tuning.

2. Complex Eigenvectors and Eigenvalues of the Composite System: This

occurs when the system is nonclassically damped (Hurty and Rubin-

stein, 1964). Under this condition, the composite system will

vibrate freely in a set of "modes" in which all points in the system

undergo exponentially damped motion at the same frequency, but at

differing phase angles.

For stochastic seismic analysis of composite systems, the cross-

correlations between modal responses is significant, especially when

tuned modes are encountered. Also, when the composite system is non-

classically damped, the modal displacements and velocities are cross

related. This may significantly influence the mean and extreme values

of the responses.

1.3 Common Restrictions

In principle, the exact response of a general secondary system can

be obtained by using standard methods of analysis on the composite



system. -However, this procedure presents a number of numerical dif-

ficulties. The large number of degrees-of—freedom, and the vast differ-

ences in magnitudes of the stiffness, damping, and mass terms pose

serious problems. Exact solutions are therefore practically impossible

to obtain and various approximation techniques have been developed in

recent years. These are reviewed in the next section.

1.4 Literature Survey

A simple method used often is the floor response spectrum method.

In this the motions of the support points of the secondary system are

calculated by time history analysis of the primary system. Descriptions

of. these motions are then used to design the secondary systems. This

method, however, is very costly and inefficient. Several researchers

have developed more direct methods of finding floor response spectra

using the modal properties of the primary system and the ground response

spectrum. But neither method takes into account the interaction between

the secondary and primary systems.

Realizing the importance of interaction, the perturbation method

(Nayfeh, 1981) has been introduced to estimate the modal properties of

composite systems. Sackman and Kelly (1979) were among the first to use~

this approach in the analysis of primary-secondary systems. In their

study, the natural frequency of the equipment modeled as a single-de-

gree-of-freedom system (SDOF), is considered to be close to or equal to

one of the natural frequencies of the N-degree-of—freedom primary struc-

ture. Considering the secondary system and the tuned mode of the prima-

ry system as an equivalent two—DOF system, the closed form expressions

for the frequencies are obtained. Sackman and Kiureghian (1983) employ-
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ed perturbation methods to determine the dynamic properties of a com—

posite system composed of a MDOF structure and a light SDOF equipment.

Closed-form expressions were derived for natural frequencies, mode

shapes, and modal dampings. The effect of tuning and interaction were

included in the analysis. The expressions for detuned modes were rela-

tively complicated, and only the lowest order of perturbation was ob-

tained. These expressions were directly reduced to apply to tuned

modes, resulting in very rough approximations. Igusa and Kiureghian

(1985) extensively studied a two-DOF equipment-structure system. Three

important characteristics of the system were identified: tuning, inter-

action, and nonclassical damping. The results obtained were extended to

a more general P-S system composed of MDOF secondary system and MDOF

primary 'system (1985). For the detuned case, the first order of mode

shapes are obtained, but the perturbations of natural frequencies are

ignored which result in relatively large errors when the natural fre-

quencies are closely spaced but not tuned. For singly tuned modes, the

results obtained from the two-DOF equipment-structure system are used by

neglecting the effect of all other modes.' The analysis of multiply

tuned modes are proposed. A small eigenvalue equation is formulated by

neglecting the effect of all other. modes. Suarez and Singh (1987)

obtained closed-form expressions to calculate the approximate complex

eigenvalues and eigenvectors of a system composed of a nonclassically

damped primary structure and a SDOF oscillator. The perturbation method

they used is general and rigorous which is readily extendable for more

general P-S systems composed of MDOF secondary systems and MDOF primary

systems. For tuned modes, the authors assume the lowest order of per-

turbation is 68. This approach is practically invalid for multiply

tuned cases.
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All- the studies mentioned above have not given too much attention

to error analysis. Error bounds, which are highly desirable in prac-

tice, were not derived for the approximate solutions. The tuning cri-

terion was based only on two modes and the effect of other modes was not

taken into account. Higher order perturbations have also not received

much attention.

1.5 Scope of Investigation

In this study the perturbation method is employed to determine the

dynamic properties of structural system composed of MDOF primary and

MDOF secondary systems. The effects of nonclassical damping and multi-

ple tuning are considered in detail. Error bounds for the approximate

solutions are derived. A synopsis of the approach of the analysis

follows:

In Chapter 2 the perturbation method for classically damped systems is

derived.

In Chapter 3 nonclassically damped systems are investigated.

Numerical examples for each of the cases considered are presented in

Chapter 4.

The report ends with a summary of the main conclusions of the study.



 

 

 



2. CLASSICALLY DAMPED SYSTEMS

2.1 Modal Synthesis

A n+m-degree-of-freedom (n+m-DOF) composite system is composed of

two subsystems: a m-DOF light secondary subsystem supported on a n-DOF

primary subsystem. Figure 2-1 shows the individual subsystems and

composite system.

 

 

 

  

      N «J4. as ‘ L

n-DOF primary system msDOF secondary system (m+n)-DOF;-cbmposite

System

Figure 2-1 : Individual Subsystems and Combined System

The dynamic properties (frequencies and mode shapes) of individual

subsystems are assumed to be known. The elements connecting the two

systems is to be included with the secondary system as shown in Figure

2-1. The method of mode synthesis is used to formulate the (m+n)—DOF
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model of— the composite system for dynamic analysis. By this method,

only dynamic properties of individual subsystems are involved.

The equation of free motion for the composite system (C-system) is

[M]{fi} + [C]{fi} + [K]{u} = {0} (2-1)

where [M], [C] and [K] are mass, damping and stiffness matrices of C-

system. For a classically damped system, the corresponding eigenequa-

tion may be written as

Ai[M]{¢i} = [’K]{¢i} ’ i=1:2:--.,n+m (2'2)

where Ai are the square of the circular undamped natural frequencies and

{d1} are the mode shapes. The matrices [M] and [K] may be written in

partitioned form as

[M] = [mp] [M 1] (2-3)
s

[K] -= [[Kp] [K 1] + [KPS] (24)
S

where [Mp] and [KP] are the physical properties of the primary system

(P~system) and [MS] and [KS] are those of secondary system (S-system).

The matrix [Kps] is a coupling stiffness matrix which depends on

the configuration of the attachments between the two systems. [Kps] is

a (n+m) x (n+m) matrix partitioned as

[Kp:1)]n x n [Kp:2)]n x m

[K I =
ps

[Kps ] [O] (n+m) x (n+m)

(2-5)

[K;:1)] contains only diagonal elements. In some studies (Igusa

& Kiureghian, 1985), [Ké:l)] is ignored. Since the S-system is light in

relation to the P-system, [Ké:1)] is of small order and is not needed in
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the lowest order perturbation analysis. However, [Ké:l)] could substan-

tially influence higher order perturbation analysis. For a C-system as

th th
shown in Figure 2-2, the 5 and 6 DOF of the S-system are attached to

nd

the ISt and 2 DOF of the P-system, respectively.

 
Figure 2-2 : Attachment of Secondary System

The matrix [Kps] will be

1 2 n n+1 n+5 n+6 n+m

1 k1 0 -k1 O 0 ]

2 k2 0 0 0 —k2 0

[K S] - n ________ 9_,[_9 ___________________ 9_ (2-6)

p n+1

Symmetric [O]

n+mL _   
To facilitate analysis, we introduce the transformation

{u} - Mm} (2-7)

{961} - [¢]{<pi} (2-8)

where {q} is the vector of displacements in the transformed coordinate

system. The vector {$1} is the mode shape of the C-system in the trans—

formed coordinate system. The transformation matrix is

w] = [Mp] [9,5]] <2-9>
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where [¢p] and [¢S] are eigenvector matrices of the P- and S-systems,

respectively. The eigenvectors {¢p } and {d3 } are assumed to be nor-

i i

malized such that their largest value is unity. Substitution of eq. (2—

8) into eq. (2-2) and premultiplication by M]T yields

A, [diag (M1)]{¢i} = [diag (Ki) + [¢]T[KPS][¢]]{¢1} <2-10>

where

[diag (M1)] = [diag (MI’M2"°"Mn+m)] = [diag (Mpl,...Mp ,MS ,...,Ms )]

n 1 m

and Mp , i-1,..,n, are the modal masses of the P-system, and MS , i=1,

i i

..,m, are those of the S-system. Eq. (2-10) is a generalized eigenequa-

tion. We can convert from the generalized eigenequation to the standard

form but must exercise care as noted below.

Premultiplication of eq. (2-10) by [diag (M1)].l yields a standard

form of the eigenequation. But the matrix [diag (Mi)]-1[diag (Ki) +

[¢]T[Kps][¢]] is usually not symmetric. This problem can be overcome by

decomposing [diag (M1)] into [diag (M1)] = [diag (jM;)][diag (JM;)] and

introducing another vector {yi} defined through the transformation

mi} = [diag (frfifl'lum (2-11)
1

where [diag dip] — diag (Jr—41......m ) and [diag (fm‘i‘n‘l = [diag
n+m

(1/./M1 ,...,1/JMn+m)]. Substitution of eq. (2-11) into eq. (2-10) and

premultiplication by [diag (l/JM1)] yields the standard form

Where [P] is now a symmetric matrix given by

[P] = [diag (w§)] + [E] (2-13)

. 2 . 2 2 2 2
[diag (wi)] = [diag (wp1,...,wpn,wsl,...,wsm)] , and
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[E1 = [diag (l/Jfi;)][¢]T[KPS][¢][diag (l/Jfi;>1.

The theory of linear algebra can be used to show that the trans-

formations described in equations (2-8) and (2-11) do not change the

eigenvalues. The eigenvectors of eq. (2—10) are recovered from the

vectors {yi} by using equations (2-8) and (2-11).

The matrix [P] contains two matrices. The first one, [diag (w§)],

fully represents the eigenproperties of subsystems, while the second

matrix, [E], represents the deviation of the dynamic properties of the

C-system from those of the subsystems. The matrices [diag (wi)] and [E]

have vastly different orders of magnitude. We can use the norm

"IAIN = max lai I <2-14>
1,3 3

to measure the magnitude, or size, of matrix [A]. By this norm we have

"[diag 00%)] = max w: = 000?) (2-15)

i
  

where 0(wi) stands for the order of mi. For the matrix [E] we have

"[Elfl = ”[diag <1/Jfi;>1[¢1T[KpS][¢1[diag (Jfi;>1H

The matrices [diag (l/JMi)], [$1 and [KPS] can be partitioned, so that

[... Mp7] ' _- WT [Is] [4?]

[... my] [Is]: [M m

[¢p] [diag (l/Jfi;;>]

[¢S] [diag <1/Jfi;;)]
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Thus we have

1 . ,— T <11) .
"[13]" max [“[dlag <1/ Mpi>][¢p1 [Kps ][¢p][d1ag (”lip—3]“

“[diag (l/JrTg;>][¢p1TIKI§:2)1[¢SI[diag (l/ATQ]
 ]

There is an order of difference between the two terms in the above

expression. For the first term:

  

[diag (l/JMP.)]l¢p1TlKé:1)][¢b][diag (1/‘Mp-)]“
1

l

"[1... “II—>1 0 [mp 1 ll [Us               
[diag (l/JM;;)]“

—0[1//b1—i] 0H.) M511]0[1/./ITI)_1]-0':%wi

The last reduction is due to [¢p ] being a normalized matrix, for

which "Mp ]" — 1.0. Similarly, for the second term:

"[diag (INTI—1)]I 45p 1 T[K(12)][¢s][diag (1//M_)]"

[WE] I: I] II] = . M_. I

Since the S-system is much lighter than the P-system the following

statement holds true:
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Ms

1 -
Mp << 1.0 (2 16)

i

Hence the order of the second term is larger than that of the first, and

MS 8

i 2

HIEJH s 0 fi“ wi (2-17)

P1

The difference in the order of magnitude between [diag (w?)] and

[E] can be expressed through

8
M

IIIEHI Si
0 ———-—-———§——— 5 0(6), in which 6 = ——— (2-18)

diag (w.) Mp.
1 1

Letting

[E] = 6 [B] (2-19)

and substitution eq. (2.19) into eq. (2.13) yields

[P] = [diag (w§)] + e [B] (2-20)

where matrices [diag (w?)] and [B] have the same magnitude. It is now

quite clear that matrix [P] contains elements with vastly different

orders of magnitude. This poses a major numerical problem when perform-

ing an eigen-analysis of matrix [P]. Conventional eigen-analysis

schemes give poor or erroneous solutions. Intuitively, the dynamic

properties of the C-system should be quite close to those of the P-

system, since the S-system is much lighter. This motivates the use of

perturbation techniques to determine the dynamic properties of the C-

system. The use of such techniques avoids the numerical pitfalls of

conventional eigen-analysis of matrix [P].
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2.2 Perturbation Approach for Detuned Modes

In this section, we discuss approximate solution of eq. (2-12).

The eigenvalues and eigenvectors of [P] = [diag (Ai)] + e [B] depend on

the small parameter c. When 6 = 0, [P] reduces to

[P1 = [diag (xi>1 <2-21)

[diag (Ai)] is called the unperturbed matrix whose eigenvalues are Ai,

i=l,...,n+m, and whose corresponding eigenvectors are {ei}, i=l,...,n+m,

which are elementary vectors. When 6 is small but finite, we expect the

eigenvalues of [P] to deviate slightly from the Ai's. If A1 is a simple

eigenvalue which is well separated from other eigenvalues, the cor-

responding perturbed eigenvalue, A:, is assumed to be of the form of a

convergent power series in e:

if — A. + e kgl) + €2k§2) + e3k§3) + ... (2-22)
1 1 1 1 1

where kéJ) is a constant, and the superscript (j) denotes the coeffi-

*

cient of the jth order term. Clearly xi 4 Ai as e 4 0. Note that

7%

[A1 '
Ail - 0(6) (2-23)

A similar form can be extended to the corresponding perturbed

* *

eigenvector {e1}. We assume each element of {ei} is represented by a

convergent power series in e;

{e:} = {ei} + 6 (2:1)
(2)

} + €2{zi } + ... (2-24)

Where each component of the vector series is a convergent power series

in 6. Corresponding to the result of eq. (2-23) for the eigenvalues,

for the eigenvectors we have the result

I{e:} - {ei}| = 0(a) (2-25)



In eq. (2-24) {z§k)} is a n+m dimensional vector (where n =

P-system DOF and m = no. of S-system DOF).
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ofno.

Since the vectors {ei},

i=l,2, .,n+m, form a basis in the n+m dimensional space, we can express

each vector {z(k)} in the form

n+m

(k) _ a(k)
{zi } _ Z aji {ej} (2-26)

j=l

we have

n+m n+m

* - a(l) 2 a(2)
{e1} {ei} + e 2: aji {ej} + e E: ajl {ej} + ... (2-27)

J-l J=

and collecting together the terms in {ei}

n+m

= (1)+62H(2) a(1)
{e: l (1 + eai1i aii ..){ei} + e §:J {ej }

j=

jsi

n+m

2 {11(2)
+ 5 E2831 {ej } + ... (2-28)

j=l

jsi

The relative scaling of {e:} is arbitrary and for convenience we

redefine it by dividing by (l + e aéi) + 628(2)++...). This gives

n+m n+m

* _ (1) 2 (2)
{e1} {ei} + e E:aaji {ej } + e §:aaji {ej } + ... (2-29)

i=1 i=1

jsi jsi

where {e:} is not normalized.

We now write eq.(2-l2) in terms of xi and {et } as

. >1” * >‘c

[[diag (Ai)] + e [B]]{ei} — A1 {ei} (2-30)

Substituting eq. (2-22) and eq. (2-29) into eq. (2-30) and collecting

terms

coefficients k()and a]: to be determined.

in the same power of e on each side of this equation enables the

Collecting terms in 6 yields
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n+m n+m

. (1) .. <1) <1) _
[diag (Ai)] E: aji {ej} + [B]{ei} Ai E: aji {ej} + k1: {ei} (2 31)

3‘1 i=1

jsi jsi

Pre-multiplying eq. (2-31) by {ei}T yields

(1) = T _ _
ki {ei} {31181} — bii ' (2 32)

Pre-multiplying eq. (2-31) by {e£}T, 2¢i results in

 

T

agi) = (8‘: [[1:6i) - I—E%i:— , £=1,...,n+m (2-33)

1 2 i 2 £¢i

The first order perturbation is therefore determined for A1 and

the corresponding {e1}. For sufficiently small 6, the main term in the

perturbation is the first order term which can give an approximate

solutions to reasonable accuracy. It is of interest to take a closer

look at the first order term in the perturbation. Assume A1 is a simple

eigenvalue. Then from eqs. (2-22) and (2-32) the first order term is

ebll' From eqs. (2-29) and (2-33) the first order term in the perturba-

tion of {e1} is given by

 

bzl‘ez} b31‘e3} bn+m-l{en+m}
e A _ A + A - A + ... + A _ A (2-34)

1 2 l 3 l n+m

Notice that we have the factors (A1 - A1) in the denominators.

This shows that if A1 is close to any of the other eigenvalues the

perturbation could be very substantial. The perturbation of A1 is

therefore strongly influenced by close modes. When A1 is well separated

from the other eigenvalues, the eigenvector {e1} is comparatively insen-

sitive to the perturbation. In practice, the first order perturbation

is often not sufficiently accurate, and higher order perturbations are

required. The higher order perturbations are obtained by collecting



l6

terms of the higher powers of e in eq. (2—30). Collecting coefficients

in 62 yields

1diag<A>1JZ1aJ< )j1e1+[BJJZ1a§ 1e}

j7‘i j7éi

= A1 E: a(2){ej 1 + k(l) E: a§1){ej ) +k(2)(ei 1 (2-35)

j=I j==1

jsi 3¢i

Premultiplying by {e£}T, £=1,2,...,n+m gives

 

 

n+m

kgz) = E: a§})b.. (2—36)
1 31 13

j=1

j¢i

n+m

[slam - I .91.]
1 £1 31 13

j=l

GEE): i#i , £=1,..,n+m (2—37)

A2 - xi Esi

By the same manner, we have the coefficients of 63:

n+m

k§3> — E: a§?) b..
1 31 13

j=l

j¢i
,

n+m (2'38)

k§1)a(?) + k§2)a(¥) - ag?)b..
1 £1 1 £1 31 13

j=l

a§3)= i¢i , [#1

1 A - x.
2 1

For the coefficients of any order perturbation, the general formulas

are I

n+m

k$h> = E: afib-II b.. and
1 31 13

j=l

j¢i
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h-l n+m . (2-39)

Z k9) 01(1)?) - X 0.9.”) b..
1 £1 31 13

j=1 j=1

.3? = 1.1
A2 ~ A.

1

It can be seen that the approximate solutions of any order pertur-

bation can be obtained recursively. The formulas obtained here are

quite simple for practical implementation. (In practice, the require-

ment of higher order perturbations beyond the third is rare.)

The above formulas can be applied to any detuned mode independent

of the tuning of other modes. However, the formulas are invalid for

tuned modes themselves. It is easy to see that from eq. (2-34) if A1

and Aj are tuned, then as xi 4 23’ a§%) 4 w, implying that the perturba-

tion of {e1} or {ej} goes to infinity. This is not really true, but the

fact is that the perturbation of tuned mode involves fractional powers

of e, and hence the basic assumption in eq. (2-25) no longer holds. A

special scheme for the tuned case is developed later.

2.3 Identification of Tuned Modes by Gerschgorin's Theorem

Gerschgorin's theorem plays an very important role in this study.

It gives an accurate estimation of the distribution of eigenvalues of a

diagonally dominated matrix such as [P] — [diag (A1)] + e[B].

Gersdhgorin's thhceemm: Every eigenvalue of the matrix [A] lies in at

least one of the circular discs Di with centers aii and radii E: laijl'

jsi

Applying the thereom for matrix [P] yields quite accurate loca-

tions of the eigenvalues, which lie in the union of all discs. (For a

real matrix [P], Gerschgorin's discs degenerate to line segments.)

Di - center: (Xi + e bii)’ rad1us: e E: Ibijl

j¢i
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The radii are small since 6 is very small. Quite often, we can further

reduce the radii of Gerschgorin discs by the following simple scheme.

If we multiply the 1th column of [P] by 6 and its 1th row by l/fi,

then its eigenvalues are unaltered. Let us apply this for i=1 to matrix

[P], taking 5 > 1.0. We have

-

1 I 1

b11 5 b12 a b13 '°' 5 b1,n+m

[diag (Ai)] + 5 fl b21 b22 b23 ... b2,n+m (2-40)

bn+m,1 bn+m,2 bn+m,3 ... bn+m,n+m_ 
The first Gerschgorin disc Dl becomes

. - . é.
D1 - center. (A1 + cbll), radius. fl E: Ibijl'

j¢i

We wish to choose fl so as to make the first Gerschgorin disc as

small as possible while keeping the other discs sufficiently small to

avoid overlapping the first. This will be true for all small 6 if we

choose 6 to have the largest value consistent with the inequalities

Ifibill s 7 [Al - Ail , i=2,...,n+m (2-41)

where 7 is a number less than unity.

For the matrix [P], some of the Gerschgorin discs can overlap each

other. We could reduce their radii to some extent. Assume the first S

Gerschgorin discs are overlapped, we write [P] in partitioned form

' ' [B 1 1B 1
[diag (11)] + e [ 11 T 12 ] ‘ (2-42)

[312] [322]

where [B11], [B12] and [822] are s x s, s x (n+m-s) and (n+m-s) x (n+m-

s) submatrices, respectively. Multiplying the first 5 rows by l/fi and

the first 3 columns by 6 yields

1

[B 1 -[B 1
[diag (1.)] + e 11 4 12 (2-43)

1 13121T [322]
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The first 5 discs are reduced by this procedure, and sometimes each one

is isolated.

We now turn to the main problem of the identification of tuned

modes. The identification is important in practice. Since we know from

the last section that perturbation schemes cannot be applied directly to

tuned modes, special treatment is required. Therefore, first we wish to

identify the tuned modes.

We apply Gerschgorin's theorem to matrix [P]. If the Gerschgorin

disc DJ.- is isolated from other discs, then Ai is a detuned mode. When

discs overlap, we can try to separate these discs as outlined earlier.

If overlapping discs cannot be separated by choosing a suitable scaling

factor 6, we define them as tuned modes. Sometimes we can find a scal-

ing factor fl which separates joint discs and keeps others from overlap-

ping. Then these modes are still defined as detuned modes and perturba-

tion schemes can be applied directly. The physical meaning is clear

here. Two closely spaced modes (Gerschgorin discs are overlapped) may

or may not be tuned modes. If they are well separated from all other

modes, they will often be detuned modes. Consider, for example the

matrix [P] defined by

0.1206 .0193 .0170 .0126 -.007 -.1313

1.000 .0149 4.0111 -.0059 -.1155

2.347 + 0.2236 .0082 .0044 .0857

3.532 .0023 .0456

0.200 sym 0.000

whose Gerschgorin discs are specified in Table 2—1. The discs D2, D3

and D are well separated but D and D overlap. We multiply the first
4 1 5

and the fifth columns by 5 and the first and the fifth rows by 1/5. The

new Gerschgorin discs are all isolated from each other as is apparent
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from Table 2-2. Hence all modes may now be considered to be detuned

modes.

Table 2-1 : Original Gerschgorin Disks of Matrix [P]

 

Disk

 

Center 0.1249 1.0033 2.3491 3.5326 0.2000

 

Radius 0.0375 0.0334 0.0254 0.0140 0.0845

     
 

Table 2-2 : Gerschgorin Disks of [P] After Scaling 5th Row and Column

 

Disk

 

Center 0.1249 1.0033 2.3491 3.5326 0.2000

 

Radius 0.0310 0.1518 0.1133 0.0608 0.0404      
 

2.4 Tuned Modes

As noted in previous sections, the analysis of tuned modes re-

quires special treatment. The solution of a small eigenequation is

required. This eigenequation, which is related to the tuned modes only,

is specially formulated to avoid numerical problems.

Consider the matrix [P] = [diag (Ai)] + e[B]. The case may be

sufficiently illustrated by assuming the first two modes to be tuned,

i.e., A and A1 2 must be very close and separated by a quantity of order

6. We partition [P] in the form

I l

..... g+______ +6 ---------+ (2—44)

If we write
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b b
[C] = [ 11 12 ] (2-45)

b21 b22 + (*2 ' *1)/6

then eq. (2-44) may be expressed as

l

I

...... +------ + e ------+----- (2-46)

I Tl

|[An-2] [312] |[322]

The order of elements in the second matrix of eq. (2-46) is uni-

form. The eigenequation for [G] is

p

[XITIG][X] = [ 1 p2] <2-47)

where [X] is the eigenvector matrix of [G] and ”1’ p2 are the eigen-

values of [G]. Letting

We obtain

[T1T[[diag <11>1 + e131]1T1

— [diag (*1)] + e[B'] (2-49)~

The Gerschgorin discs of [diag (Ai)] + e[B'] are now disjoint and

the case becomes detuned. By the perturbation scheme which has been

developed in the Section 2.2 we can obtain the eigenvalues 1’: and the

eigenvectors {e':} of [diag (Ai)] + e[B']. Since the matrices

[diag (Ai)] + e[B] and [diag (Ai)] + e[B'] are similar, the eigenvalues

and eigenvectors of [diag (Ai)] + e[B] can be easily obtained by

(2-50)
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. * *

and {ei} = [T]{e'i} , i=1,...,n+m

In general when a group of r modes are tuned, we will need to

solve an eigenequation of order r using the same precision of computa-

tion as in the main problem. Hence numerical problems are not encoun-

tered. For the case where two or more modes are actually coincident the

corresponding discs will continue to overlap, but the radii will be

reduced sufficiently enabling us to compute the mode shapes and fre-

quencies of the tuned modes to required accuracy. For example, if the

first two modes of eq. (2-44) are actually coincident in the C-system,

the submatrix [X]T[B12], which represents the radii of the first two

modes, will be very small.

In general the solution of a small eigenequation does not give

results of sufficient accuracy, but it separates the joint discs by

shifting the centers and reducing the radii of joint discs which gives

rise to an ideal model for applying perturbation schemes.

2.5 Error Bounds for Approximate Solutions

In previous sections, the fundamental theories have been estab-

lished and technical schemes were developed. It is of practical impor-

tance to evaluate the accuracy of the approximate solutions. From the

structural response point of view, we wish the accuracy of eigenvalues

and that of eigenvectors to be consistent. When high order spectral

moments are required, we need a higher degree of accuracy in the eigen-

values than in the eigenvectors. Let us examine the perturbation for-

mulas of (2-22) and (2-29). For the first order approximation for the

eigenvalues eq. (2-22) reduces to

(1) -
Ai(e) = A1 + ski (2 51)
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and we know kél) = bii from eq. (2-32). The first order approximation

for the eigenvalues does not improve the accuracy at all, since bii = 0

for i=n+l,...,n+m. This reflects the fact is that eigenvectors are more

sensitive to perturbation than eigenvalues, so that the lowest order

term of eigenvectors is 6 while the lowest order term of eigenvalues is

62. To speed up the convergence of eigenvalues, we introduce the well-

known Rayleigh's quotient, defined as

* *

{ei1TIP11ei1

*1T1ef1
i 1

 

R({e:1) = (2-52)

{e

O * O O O O 0

Hence, if {ei} is the first order approx1mation of the eigenvector then

1* — * 2 53

will be the second order approximation of the eigenvalue (Meirovitch,

1986). ' The convergence of eigenvalues is greatly improved. With the

low order eigenvectors we can obtain high order eigenvalues.

In practice sharp error bounds are highly desirable. For eigen-

values, we employ Gerschgorin's discs. We compute the perturbated

*

eigenvectors {e1}, i=1,..,n+m, then form the perturbated eigenvector

matrix

* * *
* a -

.[I 1 [{el}. {82},-~., {en+m }] (2 54)

By the following computation we obtain

[31 = [1*1T1P1[I*1 <2-55>

It is clear that the diagonal elements of [S] are identical to

that of eq. (2-53). The off diagonal elements are very small. The

Gerschgorin discs can be easily obtained and the radii serve as error

bounds. Of course, we can use the schemes mentioned in Section 2.3 to
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reduce the radius of each disc, then even sharper error bounds can be

obtained.

The derivation of error bounds for the eigenvectors {e:} is only

slightly more difficult. If the eigenvectors of [S] are (ui), then the

eigenvectors of [P] are [1*](ui). Hence we only need to find the error

bounds of {ui] to obtain those of (e:]. We illustrate this technique by

means of a numerical example. Suppose we have

0.1174

1.014

[S] - 2.352

3.533

0.456

0.0 -1.40 .915 .476 -.016

-1.40 .0 —.707 -.325 -.226

+ 10-2 .915 -.707 .0 .972 .076 (2-56)

.476 -.325 .972 .0 _.036

-.016 -.226 .076 .036 .0

By the Gerschgorin's theorem we may show that the first eigenvalue p

satisfies

lp - 0.1174] 5 0.028 (2-57)

Let {u} be the corresponding eigenvector normalized so that its largest

element (the first one) is unity. We write {u} = [1,u2,u3,u4,u5]T and

the eigenequation as

[S](u1 = p (u) (2-58)

From the second equation of eq. (2-58) we have

2u3—0.325x1o'2u -o.226x1o‘2u = p u-l.4x10 2+1.014u -o.7o7x1o‘ 4 52 (2-59)
2

Since luzl, |u3|, lual and [us] are all less than unity, the above

equation together with eq. (2-57) gives
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11.4 + 0.707 + 0.325 + 0.226)xlo‘2

Iu2I < Ip - 1.014l

(1.4 + o 707 + 0.325 + 0.226)x10‘2

< |o.1174 - 0.028 - 1.014]
= 0.029 (2.60)

From the other equations of eq. (2-58), we can similarly obtain

crude bounds for the other elements of {u}

lu3| < 0.008, [u4l < 0.003, |u5| < 0.011 (2-61)

Using these crude bounds we may now return to eq. (2-59) and the other

equations of eq. (2-58) to recursively obtain much closer bounds for u2,

u3, u4 and us. In this study, however, the crude bounds from (2-60) and

(2-61) are sufficient.



3. NONCLASSICALEY.DAHPED SYSTEMS

3.1 General Theory

Modal superposition is a common method used to solve dynamic

equations of motion of linear systems, such as

[M] [01 + [011111 + [K11u1 = {p} <3-1)

If the system is classically damped, we can uncouple eq. (3-1) by the

undamped real-valued mode shapes. But if the system is nonclassically

damped, the undamped mode shapes can no longer uncouple the damping

matrix. To solve eq. (3-1) by modal superposition for the nonclassi-

cally damped system, we need to find more general mode shapes which are

complex-valued (Hurty & Rubinstein, 1964). Each component of the mode

shape is distinguished not only by its amplitude but also by its phase.

Equation (3-1) can always be transformed into an equivalent system

of first order differential equations with double size:

1° ”11“} 1”” °]{“"’} {‘°’}
. + - (3-2)

[M1 [01 {u} 0 [K1 {u} [p1

This equation can be written as

[A161 + [81130 = {p1 (3-3)

where

0 [M] -[M] 0 [11} [01

[A] = [ ], [B] ' [ J, {y} = { }, and {P} = { }

[M] [C] 0 [K] N) {p}

Equation (3-3) implies a linear eigenvalue problem of the form

HAHN = - [B]{¢} (3-4)

26
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Therefore, to solve equation (3-4) techniques very similar to those used

for classically damped systems may be used. It should be noted, how-

ever, that the matrices [A] and [B] are not positive definite; hence,

the eigenvalues and corresponding eigenvectors are generally complex-

valued.

The complex eigenvalues will occur in conjugate pairs. For ex-

.th

ample, if the 1 and jth eigenvalues are complex conjugate, they may be

written as

(3-5)

and their corresponding eigenvectors will also be conjugate pairs, i.e.,

{¢i} - {¢j} (3'6)

The mode shape {¢i} has 2n components which may be partitioned as

1¢§1

(¢i} a {¢d} (3'7)

The n component eigenvectors {¢:} and {¢:} are related through

1¢§1 = *1 1¢§1 <3-8)

Eq. (3-4) leads to a set of Zn eigenvalues and corresponding eigenvec-~

tors. In a manner similar to that used for the classically damped

system we transform eq. (3-3) to a new coordinate system spanned by the

eigenvectors of eq. (3-4). The transformation is given by

{y} - [<I>]{z} (3-9)

The transformation matrix [é] is constructed by 2n eigenvectors

[21 = [1¢111¢21 ... 1¢2n11 (3-101

substituting eq. (3—9) into eq. (3-3) and then premultiplying it

by [0]T yields
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[¢1T[A1[¢1121 + [Q]T[B][¢](z} = [01T191

which may be written as

[diag (ai)][2) + [diag (fii)](z} = (q) (3-11)

where

[diag <a,>1 = [01T1A1101

[diag (8,11 = [@1T[B1[¢1

and [q1 = [81T1P1

Eq. (3-11) is a set of uncoupled equations which may be written in

scalar form as

aizi + flizi = qi i=1,2,...,2n

or

. _ = q. .= _
zi Aizi 1/02.l 1 1,2,...,2n (3 12)

Since

fii = - Aiai i=1,2,...,2n (3-13)

the solution to eq. (3-11) is

i 1 t Ai(t-7)

z.(t) - e z.(0) + —— I e z.(r) d7 , i=1,2,...,2n (3-14)
1 1 a. 1

1 0

Modal analysis for nonclassically damped systems is very costly.

The matrices [A] and [B] are real and symmetric, but neither of them is

positive definite. The presence of complex eigenvalues and eigenvectors

increases the amount of computation substantially and the numerical

algorithms are not efficient. In practice the Zn x 2n matrices [A] and

[B] may be extremely large. A different approach appears highly desir-

able.
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3.2 Modal.Sygthesis

A n+m-DOF C-system is composed of two subsystems - a m-DOF light

secondary subsystem supported on a n-DOF primary subsystem. Figure 2-1

shows the individual subsystems and the C-system. Generally the in-

dividual subsystems are assumed to be classically damped in which case

the damped eigenproperties are directly related to the undamped eigen-

properties. For example, solving the undamped eigenequation for the P-

system

2
= '= ... - 3-1wpiIMp]{¢pi} [KP] MP1} . 1 1. n ( 5)

we obtain the undamped eigenvalues w2 and eigenvectors {¢p }, i=1,2,

i i

.,n. The eigenvectors are normalized with respect to the mass matrix

T

1¢p1 [Mp1[¢p1 = [I1 (3il6)

thus

[1 1T[c 11¢ 1 = [diag <2w fl 1] <3-171
p p p P1 91

and

T . 2

[2p] [Kp1[¢p1 = [dxag (wp 1] <3-181
i

where flp is known as the modal damping ratio. The damped eigenvalues

1

AP and eigenvectors {¢p }, i-1,2,...,2n are obtained as follows

1 1

A — - + iw Jl- 7 , i=1,2,...,n

pi flpiwpi pi flpi
(3-19)

A = X i=1,2,...,n

pi+n p1

A {45 1

{¢ 1 = { pi P1 } , i=1,2,...,n

pi [41p 1

1 (3-20)

= _ , i=1,2,...,n11p. 1 1¢p1
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AP,-and {¢P,} automatically satisfy the damped eigenequation (3-4)

1 1

0 [M 1 -[M ] 0

*p P 11p 1 = - P [1p 1 , i=1,...,2n <3-211

’ M C ' 0 K '1 [ pl [ p] 1 [ p] 1

Exactly the same statements apply to the S-system. The damped

eigenproperties and the undamped eigenproperties are related as

Asi = - fisiwsi + iwsijl-flgi , i=1,2,...,m

(3-22)

As = is , i=1,2,...,m

i+m i

A {¢ }

{$5 1 = { s1 S1 } i=1,2,...,m

1 1¢s 1
1

(3-23)

{168 1- [711's 1 , i=1,2,...,m

i+m i

Now let us consider the C-system in a manner quite similar to that

used in Section 2.1. The physical properties of the C-system are repre-

sented by the matrices [M], [C] and [K] which can be written in parti-

tioned form as

[Mp]

[M] = [ 1 (3-24)

M
s

[GP]

[01 - [C 1 + [cps] = [cc] + [cps1 <3-2s1

s

[KP]

[K1 — [ 1 + [Kpsl = [Kc] + [Kpsl <3-261
K

s

'where [Kps] and [CPS] are coupling matrices. [Kps] has been mentioned

in Section 2.1. [CPS] is similar and partitioned as

[C(11)] [C(12)]
ps n x n ps n x m

[cps] = (12) T (3-27)

[C ] [0]
p8
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Even though the subsystems are classically damped the C—system may

be nonclassically damped (Igusa and Kiureghian, 1983). Thus, in general

we need to solve the damped eigenequation

* * * ,

*1 [A]{¢i} = - [B]{¢i1 1=l,2,..,2(n+m) (3-28)

where

0 [M] 0 [M ] 0 0

M 1-1 11 1[M] [C] [M] [CC] 0 [CPS]

-[M] -[M] 0 0

1 H 11 1[K] [KC] 0 [RPS]

In the theory of linear algebra, A1 and {$1} are defined as the

eigenvalue and eigenvector of the pair ([A],-[B]). Two pairs, for

example ([A1],[Bl]) and ([A2],[B2]), are said to be equivalent if there

exist invertible matrices [E] and [F] such that (Parlett, 1980)

[A21 = [E11A111F1. [821 = [E1[Bl11F1 <3-291

The eigenvalues of two equivalent pairs are the same and the

eigenvectors are simply related through

To find a simple pair equivalent to ([A], -[B]), we construct an

invertible matrix [T]

[QJIdiag (Ai)] [511diag (31)] -

[T] = ' _ (3-31)

[Q] [Q] 2(n+m) x 2(n+m)

in which

[diag (11)] = Pn A (3—32)

  





 IIIIIIIII""""""""""""—————————————---------—-=—==;~A
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[o 1 .

[0] = [ p ][diag [————l—;—l——]] (3-33)

[151 2<w11153§1 .

where

131—?“i 112(a)i l-fii)

[ 1 - 1 ] 1

2(w./1-82 1

1 Pi \ [ 1 — 1

2(w.Jl-fi§ 1 ]
= 1 Pn (3-34)

[_le'1 12(wi 1-85 )

i \ 1 - 1

1
[2(wiJl-fi: 1 1

n -

* *

Then an equivalent pair ([A ],[B ]) may be obtained as follows:

[A*1 = [T1T[A11T1

T 101 [M] T 10] [01

= [T1 [T] + [T1 [0] ] [T] = [I] + [F] (3-35)

[M1 [cc] [cps

where

T T —

[Q] [C 11¢] 19] [C 11¢]

[F] = [ _ T ps _ T ps _ ] (3—36)

[81 [cps1[¢1 [11 [cps1[¢1

and

* T .

[B 1 = -1T1 [B11T] = [diag (11)] + [E] (3-37)

where

T T —

Q K é @] K ][Q][E] = _ [1_1T[ ps11 1 [_ T1 p3 _ ] (3_38)

[11 [Kps1[¢1 [11 [Kps1[¢1

The eigenequation may now be written as

A: {[11 + [F1} [xj1 = {[diag <1i11 + [81} 1xj1 <3-391



 

The eigenvectors of eq. (3-28) can be easily recovered through

* * _

{$11 = 1T11xi1 , i=1. ..2(n+m) (3-40)

From eq. (3-39) we can see that [E] and [F] represent the devia-

tion of the dynamic properties of the C-system from those of the subsys—

tems. We use the same norm as the one used in Section 2.1 to measure

the magnitude of [E] and [F]. From eq. (3-33) and (3-38) we have

11E11 = 11¢1T[Kps1[¢11

T (11) (12)

1m {—1—71111”“ 11““ 111”“ 12<wi l-fli) [<I>S1T sym [01 [151

1'1—1—11‘11
x diag

2(a)i l-fii)

  

 

 

 

 

 

   

2 T (11) (12)
S [diag [ 1 _ 1 ]] [[ép1 [Kps 1[¢p1 [<I>p1[Kps 1[¢S1 ]“

2(wiJl-fll?) sym [0]

Since [ép] and [@s] are normalized as in eq. (3-16), "[Qp]”

0(1/Jfip) and ||[<1>s]|| = 0(1/J17[s). We also have ||[KI():2)]H = “KEEN" =

0[Msw: ]. The following results are therefore obtained:

8
M M

(12) _§ 2 (11) _§ 2

11¢p11Kps 1[¢S11 = 0[[Mp] “31] > 111,1[Kps 1[¢p11 = 01M? ”51]

2

    [ l l - i ]]

diag

[2(wiJl-fig)

thus

or

11E11 = 0[cwi] (3-411

where
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M 5

e = RE << 1.0

P

Since "[diag (Ai)]“ = 0(wi), we have

E
—

_

"[diag (1111M ‘ 0(6) (3 421

Therefore, the two matrices on the right side of the eq. (3-39) have

different orders of magnitude.

(12)
Since ”[Cps ]“ = 0(a)s fls ), we can obtain the order of magnitude

i i

for [F] in a similar manner:

M k

111F111 s 0&2] ()[E] . fisiwsi] = 0(61951 (3-431

F

[I] = 0(efli) (3-44)

Therefore, the two matrices on the left side of eq. (3—39) also have

different orders of magnitude. The typical damping ratio fis is general-

ly of order 0(6), so that "[F]” x 0(62) is generally true. Let

*

[E1 = 6 [E 1

2 *

[F] = 6 [F 1

Substituting into eq. (3-39) yields

* * * * *

1. [[1] + 62[F ]]{x.) = [[diag (1.1] + e[E ]](x.} (3-45)
1 1 1 1

The matrices on both sides now have uniform magnitudes. Eq. (3—

45) is called the generalized eigenequation which is generally more

difficult to solve. We prefer to change the problem into a standard

eigenequation, so that all the methods used in the Chapter 2 may also be

utilized here. To perform this we premultiply eq. (3-45) by [[1] +

62[F*]]~1 on both sides, thus
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* * 2 * -1 , * *

_A.{x.} = [[1] + e [F ]] [[diag (A.)] + e[E ]](x.} (3—46)
1 1 1 1

Conventional numerical algorithms for the computatio% of [[1] +

* -

€2[F ]] 1 are extremely difficult in this case, but an alternative

approach can be used by expanding this as a power series. In the theory

of matrix algebra we have

[I1 + [A1 + [A12 + ... » ([I1 - [1111'1 <3-471

subject to a sufficiency condition that any norm of [A] is less than

*

unity. The matrix [F] = €2[F ] satisfies this condition because 6 <<

* -

1.0 and "[F 1" z 1. Thus [[I] + €2[F*]] 1 can be expressed in a conver-

gent series

{[1] + €2[F*]}'1 = [I] - 52[F*] + 64[F*]2 - ... (3-48)

Substituting eq. (3-48) into eq. (3-46), we have  
A:(x:} = [[diag (11)] + e[A1] + €2[A2] + e3[A3] + 64[A4] + ...](x:)

i=1,2,..,2(n+m) (3-49)

where

[A11 = [8*]

[A21 = -[F*1[diag <1i11

= -[F*1 [8*][A31

2 .

[A4] = [F] [diag (21)]

[Aj] are complex matrices. In the next section we use perturba-

tion techniques to solve eq. (3-49).

3.3 Perturbation Approach For Detuned Modes

In the Section 2.2 we have discussed about the perturbation theory

in details. The fundamental principles apply here too. We rewrite eq.

(3-48) as
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V >
4

1
X
-

1|

* *

[P ] {xi} , i=1,...,2(n+m) (3-50)

where

[2*] = [diag (1i)] + 6 [A1] + €2[A2] + ... (3—51)

The matrix [P*], diagonally dominated by [diag (Ai)], is similar to [P]

in eq. (2-13). However, we should note the main differences that [P*]

is a non-Hermitian complex matrix, and the eigensolutions are generally

complex.

Letting e = 0 in eq. (3—51) reduces it to [P*] = [diag (Ai)] and

the eigensolutions of eq. (3-50) are then obviously

* .
A1 = Xi , 1=l,2,...,2(n+m)

and

*

(xi) = [ei] , i=1,2,...,2(n+m) (3-52)

When 6 ¢ 0, we expect the eigensolutions for the 1th detuned mode

to be as follows (see Section 2.2)

A? - 1. + e kgl) + 52k12) + 63k13) + ... (3—53)
1 1 1 1 1

and

2(n+m) 2(n+m)

[x:} — {e1} + 6 E: a§i)(ei] + 62 E: a§§){ej) + ... (3-54)

3‘1 j=1

jai jsi

where kgl) and a(l) are all complex constants.
ji

By substituting eq. (3-53) and (3-54) into eq. (3-50) and collect-

ing the terms in e, 62, 63, etc., we obtain the perturbation equations

for any order of solution. For the first order eigensolutions, we have

2(n+m) 2(n+m)

. l 1 1
[diag (Ai)] E: a§1)(ej) + [Al]{ei) = Xi E: a§1)(ej) + k: ){ei)

j=l j=1

3*1 j¢i
(3—55)

premultiplying by {ei}T yields



 

 

37

(1) ~ T _
ki — {e11 [A111ei1 — al.. (3-56)

1.1.

Premultiplying by {ej}T, j¢i yields

T a

(1) {81} [A111e1’ 111 j=1,...,2(n+m)
a.. = = , . . (3—57)
j1 Al — A. A. - A. j¢1

J 1 J

. . . .th
The first order eigensolutions for the 1 mode are

A? = A. + ekgl)

1 1 1
(3—58)

2(n+m)

* = (11
(xi) {ei} + e aji (ej1

j=1

j¢i

For the second order equations, we have

2(n+m) 2(n+m)

. (2) (1)
[d1ag (Ai)] E: aji (ej) + [Al] E: aji (ej) + [A2](ei)

j=1 , j=1

j¢i j¢i

2(n+m) 2(n+m)

c (2) (l) (l) (2) _
Ai E: aji {ej} + k1 E: aji {ej} + ki {ei} (3 59)

j=1 j=1

j¢i j¢i

Premultiplying by {e11T yields

2(n+m)

(2) T (l) T
k1 = {e11 [A1] E: aji (ej) + {e11 [A211ei}

j=1

j¢i

2(n+m)

(1) _
= 81.2021 + aZii (3 60)

i=1 1

£¢i

Premultiplying by {ej1T j¢i yields
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2(n+m)

a a(1) + a - k(l) a(1)
1.! 2i 2.i 1 ji .=1 2(n+m)

cg?) = 2=1.2¢1 J J ’ 1 .""’ (3-61)

j1 Ai - Aj j¢1

For the third order eigensolution, we have

2(n+m) 2(n+m)

. (3) (2)
[d1ag (Ai)] E: aji {ej} + [A1] E: aji {ej}

j=1 j=1

j#i j¢i

2(n+m)

+[A] a(l){e} +[A11e1
2 ji j 3 i

j=1

j¢i

2(n+m) 2(n+m)

_ (3) (1) (2)
Ai zaji {ej} +ki Zaji1ej}

J-l j-l

jfii j¢i

2(n+m)

(2) (1) (3)
+ k1 E: aji {ej} + k1 {ei} (3-62)

j=1

j¢i

By the same procedures, we obtain

2(n+m) 2(n+m)

(31 = (21 (11 -ki E: alilali + E: azilali + a3ii (3 63)

1=l 1=l.r

1¢i l¢i

2(n+m) 2(n+m)

a a(?) + E: a a(¥) — kgl) cg?) - k(2) agi)

1.2 21 2.2 £1 1 j1 1 31

(3) 2=1.1¢1 J 2=1,2¢1 J
a.. =
j1 A. - A.

1 J

j=1,...,2(n+m) (3-64)

j¢i

. . . .th
The th1rd order e1gensolut1ons for the 1 mode are
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A? = A. + e kgl) + 62kgz) + 53kg3) (3-65)

1 1 1 1 1

and

2(n+m) 2(n+m)

* __ (l) 2 (2)
{xi} — {ei} + e E: aji {ej} + e E: aji {ej}

j=1 j=1

j¢i j¢i

2(n+m)

3 (3)
+ e E: aji {ej} (3—66)

j=1

j¢i

The higher order solutions can be obtained by a similar manner,

but it is barely necessary in practice.

3.4 Identification of Tuned Modes

All the methods discussed in the Section 2.3 can be applied here.

The so called "Gerschgorin’s discs" in Section 2.3 are actually an

intervals on the real axis. But in this section, since the matrix [P*]

is complex, Gerschgorin’s discs are actual discs and all the eigenvalues

lie within the union of all discs.

D.- center: A. + ea + e a + ...

1 1 1.. 1..

11 11

(3—67)

2(n+m)

radiuS' lea + 628 + 63a + I

' 11' 2i' 3i' "'

j=1 J J J

j¢i

i=1,...,2(n+m)

Figure 3-1 shows the distribution of Gerschgorin's discs. Any disc,

being isolated from others, corresponds to a detuned mode. When discs

overlap, we can try to separate them. Only those that cannot be separa-

ted correspond to tuned modes.
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Di

%@“‘D4
J

Figure 3-1 : Illustration of Gerschgorin's Discs

 

3.5 Tuned Modes

Consider the matrix [P*] = [diag (Ai)] + e[Al] + €2[A2] + ... and

assume that the first two modes are tuned, i.e., A1 and A2 are very

close and separated by a quantity of order 5 or less. Let [R] = [A1] +

€[A2] + ..., then we have [P*] = [diag (Ai)] + 6[R]. We partition [P*]

in the form

A I I

1 A2| IR111|IR121

............ + 6 --—--§----- (3-68)

I I

[[An-Z] [R21]|[R22]

If we write

r r

[G] E 11 12 (3_69)

r21 r22 + (*2"‘1)/E

Then eq. (3-68) may be expressed as:

A I I1 *1' [G] I[3121

...... +0---- +6 -------+- <3-70>

I I

IIAn-z] [B21]|[322]

The order of elements in the second matrix of eq. (3-70) is uni-

form. The eigensolution of [G] is



 

Al

[G][Y] = [Y][”1 #2] (3-71)

where [Y] is the eigenvector matrix and pl, #2 are the eigenvalues.

Since [G] is not a Hermitian matrix, [Y] is not a unitary matrix (i.e.

[Y]T[G][Y] is not diagonal). However, we have

-1 _ p _
[Y] [G][Y] — [ l ”2] (3 72)

Constructing a transformation matrix

[Q] = [[Y][I]] (3-73)

We obtain

[Q1'1[[diag (Ai)1 + 6[R]][Q]

- [diag (Ai)] + e[R’] (3-74)

The Gerschgorin discs of [diag (Ai)] + e[R’] are now disjoint and

*

the case becomes detuned. The eigensolutions of [P ] can be easily

* *

obtained from those of [diag (A£)] + e [R'], Ali and {x'i), since

A? - x'f

1 1 (3-75)

<x§> = [QJKX':} . 1=l,2,...,2(n+m)

3.6 Error Bounds For Approximate Solutions

As was discussed in the Section 2.5, we can obtain higher order

eigenvalues through Rayleigh's quotient

* T * *

* {Xi} [P )(Xi)

A. — ————————————— (3-76)

1 * T *

(Xi) (Xi)
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The- development of error bounds for eigenvalues and eigenvectors

are somewhat complicated for the nonclassically damped case. Suppose an

approximate eigensolution has been determined from eq. (3-53) and (3-

54). We denote all the eigenvalues by [diag (A:)] and the eigenvectors

*

by [X ]. If the residual matrix [F] is defined as

[P*1[x*1 = [x*1[diag <A§>1 + [F1 <3-77)

then

[x*1‘?[P*1[x*1 = [diag (A:>1 + [E] <3-78)

where

[E] - [x*1'1[F1 <3-79)

The residual matrix [F] can be easily obtained, and we wish to

*

compute [E] as accurately as is convenient. Since each column of [X ]

*

is from eq. (3-54), we conclude that [X ] is a diagonal dominant matrix

{_Which can be expressed as

[x*] = [I] + e[Z] (3-80)

in which [I] is the identity matrix and e[Z] contains all the off-diago-

* -l
nal elements of [X*]. [X ] = ([I] + e [Z])-1 can be expressed as a

convergent series

[x*1'1 — [I] - e [21 + 621212 -

and therefore

21[E] = [F] - e [F][Z] + e F][Z]2 - (3-81)

Once a sufficiently accurate estimate of [E] is obtained, the

*

analysis of [diag (Ai)] + [E] will be carried out as discussed in Sec-

tion 2.5.



4. NUMERICAL EXAMPLES

4.1 Numerical Example For Classically Damped System

A simple four DOF model representing a shear building is chosen as

the P-system. A single DOF S-system is attached to the fourth floor as

shown in Figure 4-1. The dynamic properties of the P-system are tabu-

lated in Table 4-1.
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Figure 4-1 : Classically Damped Composite System

Three cases are analyzed. The mass ratios of the S-system to the

P-system are the same in all cases, but the frequencies of the S-systems

43
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are different. Table 4-2 lists the properties of the S-system for these

cases .

Table 4-1 : Dynamic Properties of the Primary System

 

Mode i l 2 3 4

 

Eigenvalue 0.12061 1.0000 2.34730 3.53209

 

0.65654 0.57735 -0.42853 -0.22801

0.57735 0.00000 0.57735 0.57735

Eigenvector

0.42853 -0.57735 0.22801 -0.65654

0.22801 -0.57735 -0.65654 0.42853       
Table 4—2 : Dynamic Properties of Secondary Systems

 

 

 

Case 1 2 3

Mass Ratio (MS/Mp) 0.05 0.05 0.05

A - k /M 0.45 0.20 1.00
s s s       

It should be noted that this example is idealized and may not

necessarily resemble C-systems encountered in practice. Nevertheless,

it possesses the essential dynamic properties of such systems and is

simple enough to provide a clear demonstration of the method.

The results for Case 1, which is a detuned system, are presented

in Tables 4-3 and 4-4. Case 2 is a closely detuned system, where the

frequency of the S-system is close to the first frequency of the P-

system. Results for this are tabulated in Tables 4-5 and 4-6. Case 3

represents a tuned system, with the S-system being tuned to the second
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mode of -the P—system. Results for Case 3 are presented in Tables 4-7

and 4-8. Both first order and higher order perturbation results are

presented in each example to show the accuracy of the high order pertur-

bation results. The estimate error bounds are compared with exact error

bounds. The estimate error bounds are very close to the real error

bounds, especially for high order perturbations.

Table 4-3 : Eigenvalues of the Composite System - Case 1

(Ms/Mp - 0.05, AS - kS/MS - 0.45)

 

st .

1 Order Perturbation

 

Mode l 2 3 4 5

 

Eigenvalue .11736 1.01363 2.35246 3.53344 0.45574

 

Est. Error

Bound (%) 0.28 0.27 0.00 0.00 0.00

 

Exact Error

Bound (%) 0.16 0.00 0.00 0.00 0.00        
 

3rd Order Perturbation

 

Mode -1” 2 3 4 5

 

Eigenvalue 0.11719 1.01367 2.35246 3.53344 0.45574

 

Est. Error

Bound (%) 0.00 0.00 0.00 0.00 0.00

 

Exact Error

Bound (%) 0.00 0.00 0.00 0.00 0.00        
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Table 4-4 : Eigenvectors of the Composite System - Case 1

st .

1 Order Perturbation

M d 1 2 3 4 5 Err°r
o e Bound

.48348 .52593 -.43013 -.23000 -.01323 0.1

.43143 .00783 .57168 .57753 -.02975 0.2

Eigenvector .32316 -.51810 .22921 -.65550 -.03288 0.4

.17283 -.52201 -.65223 .42752 -.02121 0.3

.66769 -.42710 .10112 .03327 .99870 0.8

Exact Error
Bounds (%) 0.95 0.64 0.52 0.39 0.48

Est. Error 9 7

Bounds (%) '

3rd Order Perturbation

Error

Mode 1 2 3 4 5 Bound *

.49231 .53003 -.43013 -.23033 -.01272 .0004

.43041 .01425 .57096 .57760 -.02969 .0006

Eigenvector .31824 -.51594 .22979 -.65538 -.03312 .0004

.16896 -.52310 -.65194 .42739 -.02145 .0004

.66525 -.42312 .10195 .03361 .99870 .0003

ExaCt Err°r o 03 o 01 o 02 o 02 o 00
Bounds (%) ' ' ' ' '

Est. Error

Bounds (%) 0'10

* Note: Estimated absolute error bounds are given for the first

eigenvector only.
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Table 4-5 : Eigenvalues of the Composite System - Case 2

(MS/Mp = 0.05, AS = kS/MS = 0.20)

ISt Order Perturbation

Mode l 2 3 4 5

A1 0.11493 1.00418 2.34931 3.53264 0.20906

Est. Error

Bound (%) 1.7 0.5 0r04 0.00 0.03

Exacc Err°r o 13 o oo o oo o oo o oo
Bound (%) ° ° ' ' °

3rd Order Perturbation

Mode l 2 3 4 5

xi 0.11478 1.00418 2.34931 3.53264 0.20909

Est. Error

Bound (%) 0.03 0.00 0.00 0.00 0.00

ExaCt Err°r o oo o oo o oo o oo o oo
Bound (%) ' ' ' ’ '
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Table 4-6 : Eigenvectors of the Composite System - Case 2

st .

1 Order Perturbation

M d 1 2 3 4 5 Err°r*
o e Bound

.33805 0.57333 -O.42988 -0.22893 -0.04895 0.01

.29921 0.00381 0.57568 0.57752 -0.04912 .004

Eigenvectors .22299 -0.56952 0.22889 -0.65618 -0.03948 .01

.11892 -0.57142 -0.65560 0.42814 -0.02193 .01

.85576 -0.14286 0.03988 0.01368 0.99657 .03

Exact Error

Bound (%) 2.0 1.3 0.77 0.34 1.5

Est. Error 3 5

Bounds (%) ’

3rd Order Perturbation

Error
Mode l 2 3 4 5 Bound*

.36143 0.57380 -0.43004 -0.22899 -0.04474 0.001

.31446 0.00477 0.57556 0.57753 -0.04580 0.0005

Eigenvectors .23181 -0.56905 0.22899 -0.65616 -0.03721 0.001

.12286 -0.57l44 -0.65555 0.42812 -0.02079 0.001

.83765 -0.14271 0.04002 0.01374 0.99704 0.003

Exac‘ Err°r o 34 0 23 o 14 o 01 0 27
Bounds (%) ' ' ' ° '

Est. Error

Bounds (%) 0'35

* Note: The error bounds are for the first eigenvector.
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Bound (%)      

Table 4-7 : Eigenvalues of the Composite System - Case 3

(MS/Mp = 0.05, AS - kS/MS = 1.00)

ISt Order Perturbation

Mode 1 2 3 4 5

31 0.11786 0.88771 2.36373 3.53581 1.14525

Est. Error

Bound (%) 0.26 0.34 0.01. 0.01 0.27

ExaCt Err°r o 11 o 05 o oo o oo o oo
Bound (%) ' ' ' ' '

rd

3 Order Perturbation

Mode l 2 3 4 5

Ai 0.11773 0.88729 2.36377 3.53582 1.14539

Est. Error

Bound (%) 0.00 0.00 0.00 0.00 0.00

ExaCt Err°r 0.00 0.00 0.00 0.00 0.00
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Table 4-8 : Eigenvectors of the Composite System - Case 3

lSt Order Perturbation

Mode 1 2 3 4 5 Err°r
Bound

0.52439 0.10015 -0.4l950 -0.23237 -0.l4767 0.005

0.46613 -0.03086 0.54323 0.57608 0.03495 0.007

Eigenvectors 0.34169 ~0.l3475 0.22579 -0.65173 -O.ll753 0.004

0.17860 -0.12020 -0.61836 0.42567 -0.l3630 0.007

0.59923 0.97796 0.30910 0.09051 -0.97l90 0.005

Exact Error

Bounds (%) 1.2 0.61 1.1 1.1 0.47

Est. Error 1 3

Bounds (%) '

3rd Order Perturbation

Mode 1 2 3 4 5 Err°r
Bound

0.52783 0.11015 -0.42177 -0.23375 0.14150 0.0002

0.46193 -0.03089 0.53863 0.57646 0.03519 0.0002

Eigenvectors 0.34201 -0.l4451 0.22580 -0.65159 -0.11141 0.0001

0.18180 -0.12988 -0.62076 0.42426 ~0.l3038 0.0002

0.59832 0.97425 0.30929 0.09217 -0.97433 0.0002

ExaCt Err°r o 04 o 02 o 04 o 04 o 02
Bounds (%) ' ' ' ' '

Est. Error

Bounds (%) 0’04

* Note: The error bounds are for the first eigenvector.
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4.2 Numerical Examples for Nonclassically Damped System
 

To illustrate application of results presented in Chapter 3, a 7-

DOF system shown in Figure 4-2 is analyzed. The P-system is a 3—DOF

shear building and the S-system is modeled as a 4-DOF beam (with rota-

tional DOF condensed out) attached to the P-system through two support

members.

 

P-system S-system

 

 

  “In 1%:

Figpre 4—2 : Nonclassically Damped Composite System

Two cases are selected to examine the effects of interaction:

Case 1: MS/Mp = 0.01

Case 2: M /M = 0.05

S P

The other physical and dynamic properties are tabulated in Tables

4-9 and 4-10.

In both cases the 1St frequency of the P-system and the 1St fre-

quency of the S-system are tuned. Tables 4-11 and 4-12 show the esti-

mated complex eigenvalues of the C-system obtained with the present

approach (to the third perturbation term). The results are compared

with exact results.
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The lower half of the eigenvectors are given in Tables 4-13 and 4-

hC
St and 4 are tuned14. Only three eigenvectors are listed. The 1

modes; the 3rd is a detuned mode. These are all results of the 3rd

order perturbation. The results are compared with exact solutions and

error bounds are derived by H{A¢)"/"{¢)". The results obtained from the

perturbation method agree very well with the exact solutions.

Table 4-9 : Physical Properties of Primary and Secondary Systems

 

 

 

 

Systems Properties

. 2 2
Primary kp/MP — 400 rad /sec

k /M - 380 rad2/sec2
s s

Secondary

EI/(L3MS) = 90.0 rad2/sec2    
Table 4-10: Physical Properties of Primary and Secondary Systems

 

 

 

Systems Modes Frequency {Egg} Damping Ratio

1 8.90 0.05

Primary 2 24.93 0.05

3 36.04 0.05

1 8.91 0.02

2 18.26 0.02

Secondary

3 22.73 0.02

4 42.97 0.02      
It is also of interest to examine the relative importance of the

nonclassical damping phenomenon. In order to examine this, two other

cases with different damping properties are presented in Table 4—15 and
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Table 4-16. The components of any eigenvector differs in magnitude as

well as in phase. Note that the larger the difference in phase, the

more nonclassically damped the system is. The results of case 3 (Table

4-15) show that tuned modes will be basically classically damped if the

damping ratios of the subsystems are the same. (Large phases corres—

ponding to very small modulus values are not physically meaningful.

Estimates of the phase are poor when the corresponding modulus is very

small, and for this situation the small component could be ignored and

the phase is not important anyway.)

It should be noted that the small changes in either 85 or 6p do

not significantly affect the modulus of the eigenvectors.

Overall, the nonclassical damping phenomenon will be influenced by

tuning, difference in damping ratios and the magnitude of the damping

 

 

  

 

ratios.

Table 4-11: Complex Eigenvalues - Case 1: MS/Mp = 0.01

lSt Order 3rd Order

Eigenvalues Exact Eigenvalues Exact

Error Error

Mode Real Imaginary Bound (%) Real Imaginary Bound (%)

1 -0.3189 9.276 0.11 -0.3174 9.286 0.00

2 -1.246 25.05 0.01 -1.246 25.05 0.00

3 -1.804 36.03 0.00 -1.804 36.03 0.00

4 -0.3039 8.520 0.10 -0.3040 8.512 0.00

5 -0.3718 18.17 0.01 -0.3698 18.16 0.00

6 -0.4623 22.74 0.02 -0.4583 22.74 0.00

7 -0.8600 42.97 0.00 ~O.8599 42.97 0.00        
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Table 4-12: Complex Eigenvalues - Case 2: MS/MP = 0.05

 

 

  

 

       

1St Order 3rd Order

Eigenvalues Exact Eigenvalues Exact

Error Error

Mode Real Imaginary Bound (%) Real Imaginary Bound (%)

1 -0.3353 9.688 1.0 -0.3263 9.787 0.01

2 -1.244 25.56 0.03 -1.248 25.57 0.00

3 -1.814 36.17 0.01 -1.811 36.17 0.00

4 -0.2855 8.067 0.90 -0.2886 8.000 0.07

5 -0.3981 17.85 0.15 -0.3819 17.83 0.01

6 -0.4918 22.84 0.10 -0.4723 22.83 0.01

7 -0.8623 42.97 0.00 -0.8616 42.97 0.00

Table 4-13: Complex Eigenvectors - Case 1

Ms/Mp - 0.01, BS - 0.02, flp = 0.05

Mode 1St 4th 3rd

DOF Modulus Phase Modulus Phase Modulus Phase

1 0.11 0.00° 0.11 0.00f 0.45 0.0°

2 0.08 -0.00° 0.09 0.00° 1.0 0.0°

3 0.05 0.00° 0.05 0.00° 0.81 0.0°

4 0.17 -33.0° 0.36 13.2° 0.25 -2.2°

5 0.97 -20.1° 1.00 18.3° 0.10 2.8°

6 1.00 -19.5° 0.98 18.9° 0.04 13.9°

7 0.24 -22.2° 0.29 16.6° 0.34 3.4°

% Error 0.1 0.1 0.0
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Table 4-14: Complex Eigenvectors - Case 2

MS/M.p = o 05, as — 0.02, pp = 0.05

 

 

 

        
 

 

 

    

Mode ISt 4th 3rd

DOF Modulus Phase Modulus Phase Modulus Phase

1 0.24 0.0° 0.22 0.0° 0.45 0.0°

2 0.19 0.0° 0.18 0.0° 1.0 0.0°

3 0.10 0.0° 0.10 0.0° 0.83 0.0°

4 0.05 2.2° 0.47 1.7° 0.26 -1.7°

5 0.93 -1.8° 1.00 1.8° 0.10 1.7°

6 1.00 -1.8° 0.95 1.8° 0.05 1.9°

7 0.20 -l.9° 0.32 1.7° 0.34 -1.7°

% Error 1.0 1.0 0.01

Table 4-15: Complex Eigenvectors - Case 3

MS/Mp - 0.05, fig - 0.02, flp = 0.05

Mode 1St 4th 3rd

DOF Modulus Phase Modulus Phase Modulus Phase

1 0.24 0.0° 0.22 0.0° 0.45 0.0°

2 0.19 0.0° 0.18 0.1° 1.0 -0.2°

3 0.10 0.0° 0.10 0.0° 0.83 0.1°

4 0.01 0.0° 0.47 -0.5° 0.26 6.5°

5 0.93 0.2° 1.00 -0.4° 0.10 6.9°

6 1.00 0.3° 0.95 -0.3° 0.05 6.9°

7 0.20 -0.4° 0.32 ~0.3° 0.34 6.3°

% Error 1.0 1.0 0.0    
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Table 4-16: Complex Eigenvectors - Case 4

Ms/Mp = 0.05, as = 0.05, pp = 0.08

 

 

 

     

Mode ist 4th 3rd

DOF Modulus Phase Modulus Phase Modulus Phase

1 0.24 0.0° 0.22 0.0° 0.45 0.0°

2 0.19 -0.1° 0.18 -0.2° 1.0 -0.1°

3 0.10 0.3° 0.10 0.2° 0.83 0.0°

4 0.05 9.1° 0:47 3.9° 0.26 1.7°

5 0.93 -9.2° 1.0 7.4“ 0.10 7.4°

6 1.0 -8.6° 0.95 8.0° 0.05 1.8°

7 0.20 1.2° 0.32 6.3° 0.34 0.2°

% Error 1.0 0.8 0.0     



5. CONCLUSIONS

Classically and nonclassically damped primary-secondary systems

are studied in detail. The eigenproperties of the C-system are esti-

mated from those of the individual subsystems through a perturbation

approach. All cases, including detuned systems, closely detuned systems

and tuned system, are studied. By utilizing Gerschgorin's discs, any

general system can be easily classified into one of these three cases.

The eigenvectors of the C-system are more sensitive to the inter-

action between the P-system and the S-system than the eigenvalues. Once

a perturbed eigenvector is found, corresponding eigenvalues can be

obtained quite accurately through Rayleigh's quotient.

In this study, higher order perturbations are derived, and can be

obtained recursively. The computations are not difficult. When closely

detuned modes, tuned modes and high frequency interactions exist, higher

order perturbations are necessary to obtain satisfactory results.

For tuned modes, a special transformation is introduced to trans-

form the problem into a detuned one. This method greatly facilitates

the numerical algorithm.

It is well known that the solution of eigenproblems for nonclassi-

cally damped systems involves much greater numerical effort than the

solution for classically damped systems. However, by using the pertur-

bation methods presented in this report the numerical effort can be

reduced substantially.
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Sharp error bounds are derived for the approximate eigenvalues and

eigenvectors.

The methods and equations are verified through numerical examples,

and sufficiently accurate approximate solutions have been obtained.

In summary, the complex dynamic characteristics of the C-system

can be accurately determined by the presented method. The major steps

are as follows: (1) mode synthesis; (2) identification of detuned and

tuned modes; (3) treatment of tuning modes; (4) perturbation method; and

(5) error analysis. The method can be applied to very general C-sys-

tems .
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