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ABSTRACT

DYNAMIC PROPERTIES OF COMBINED

MDOF PRIMARY AND MDOF SECONDARY SYSTEMS

By

Yan Zhang

In nuclear power plants and other structures, light equipment is
often attached to the primary structure. The dynamic analysis of the
combined structure-equipment system is prone to numerical problems,
because of the combination of the large mass and stiffness matrices of
the primary structure with the much smaller matrices corresponding to
the secondary equipment. The increase in the size of the problem due to
the addition of equipment is also undesirable in practice. Perturbation
techniques that overcome these hurdles have recently been proposed.

A new perturbation method, that has some advantages over existing
methods, has been employed to determine the dynamic properties of struc-
tural systems composed of multi-degree-of-freedom (MDOF) primary and
MDOF secondary systems. As in previous methods, the dynamic properties
of the individual subsystems are utilized to estimate the properties of
the combined system. High order perturbations of the mode shapes and
frequencies are developed, and numerical results can be obtained to any
order of accuracy by considering higher-order terms. Sharp error bounds
for the estimated mode shapes and frequencies are also derived. The
technique is extended to nonclassically damped systems.
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1. INTRODUCTION

1.1 General Remarks

Composite systems composed of light secondary system attached to
heavier primary system are frequently encountered in civil engineering
practice. There are many instances in which the secondary system must
always remain operational since its failure may compromise the safety of
the whole system. Piping in industrial structures, drilling and ex-
ploration equipment on offshore platforms, and communication and control

devices on space vehicles are examples of such systems.

1.2 Problem Statement

Composite systems consists of different subsystems with vastly
different characteristics. The most fundamental property 1is that the
mass of the secondary system is considerably smaller than that of the
primary system. There are two major kinds of composite systems, they
are distinguished by their damping properties:

1. Classically-Damped System: The primary and secondary systems are
viscously and classically damped. The composite system is also
assumed to be viscously and classically damped. This assumption is
quite true when the two subsystems are made of the same material
with approximately the same damping ratio.

2. Nonclassically-Damped System: The primary and secondary systems are

viscously and nonclassically damped. The composite system is also
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viscously and nonclassically damped. It is known (Igusa and Kiure-
ghian, 1985) that the composite system composed of two classically
damped subsystems may be nonclassically damped if there exists a
significant difference between the damping ratios of the two subsys-
tems.
The dynamic properties of composite systems can be complex. The
main dynamic properties are as follows:
1. Tuning (resonance) Characteristics: Any number of the frequencies

of one subsystem may be arbitrarily close to or coincident with the

frequencies of the other subsystem. This condition is know as
tuning.
2. Complex Eigenvectors and Eigenvalues of the Composite System: This

occurs when the system is nonclassically damped (Hurty and Rubin-
stein, 1964). Under this condition, the composite system will
vibrate freely in a set of "modes" in which all points in the system
undergo exponentially damped motion at the same frequency, but at
differing phase angles.

For stochastic seismic analysis of composite systems, the cross-
correlations between modal responses 1is significant, especially when
tuned modes are encountered. Also, when the composite system is non-
classically damped, the modal displacements and velocities are cross
related. This may significantly influence the mean and extreme values

of the responses.

1.3 Common Restrictions
In principle, the exact response of a general secondary system can

be obtained by using standard methods of analysis on the composite
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system. -However, this procedure presents a number of numerical dif-
ficulties. The large number of degrees-of-freedom, and the vast differ-
ences in magnitudes of the stiffness, damping, and mass terms pose
serious problems. Exact solutions are therefore practically impossible
to obtain and various approximation techniques have been developed in

recent years. These are reviewed in the next section.

1.4 Literature Survey

A simple method used often is the floor response spectrum method.
In this the motions of the support points of the secondary system are
calculated by time history analysis of the primary system. Descriptions
of these motions are then used to design the secondary systems. This
method, however, is very costly and inefficient. Several researchers
have developed more direct methods of finding floor response spectra
using the modal properties of the primary system and the ground response
spectrum. But neither method takes into account the interaction between
the secondary and primary systems.

Realizing the importance of interaction, the perturbation method
(Nayfeh, 1981) has been introduced to estimate the modal properties of
composite systems. Sackman and Kelly (1979) were among the first to use
this approach in the analysis of primary-secondary systems. In their
study, the natural frequency of the equipment modeled as a single-de-
gree-of-freedom system (SDOF), is considered to be close to or equal to
one of the natural frequencies of the N-degree-of-freedom primary struc-
ture. Considering the secondary system and the tuned mode of the prima-
ry system as an equivalent two-DOF system, the closed form expressions

for the frequencies are obtained. Sackman and Kiureghian (1983) employ-
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ed perturbation methods to determine the dynamic properties of a com-
posite system composed of a MDOF structure and a light SDOF equipment.
Closed-form expressions were derived for natural frequencies, mode
shapes, and modal dampings. The effect of tuning and interaction were
included in the analysis. The expressions for detuned modes were rela-
tively complicated, and only the lowest order of perturbation was ob-
tained. These expressions were directly reduced to apply to tuned
modes, resulting in very rough approximations. Igusa and Kiureghian
(1985) extensively studied a two-DOF equipment-structure system. Three
important characteristics of the system were identified: tuning, inter-
action, and nonclassical damping. The results obtained were extended to
a more general P-S system composed of MDOF secondary system and MDOF
primary ‘system (1985). For the detuned case, the first order of mode
shapes are obtained, but the perturbations of natural frequencies are
ignored which result in relatively largé‘errors when the natural fre-
quencies are closely spaced but not tuned. For singly tuned modes, the
results obtained from the two-DOF equipment-structure system are used by
neglecting the effect of all other modes.  The analysis of multiply
tuned modes are proposed. A small eigenvalue equation is formulated by
neglecting the effect of all other modes. Suarez an@ Singh (1987)
obtained closed-form expressions to calculate thewapproximate complex
eigenvalues and eigenvectors of a system composed of a mnonclassically
damped primary structure and a SDOF oscillator. The perturbation method
they used is general and rigorous which is readily extendable for more
general P-S systems composed of MDOF secondary systems and MDOF primary
systems. For tuned modes, the authors assume the lowest order of per-
turbation is eh. This approach 1is practically invalid for multiply

tuned cases.
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All- the studies mentioned above have not given too much attention
to error analysis. Error bounds, which are highly desirable in prac-
tice, were not derived for the approximate solutions. The tuning cri-
terion was based only on two modes and the effect of other modes was not
taken into account. Higher order perturbations have also not received

much attention.

1.5 Scope of Investigation
In this study the perturbation method is employed to determine the

dynamic properties of structural system composed of MDOF primary and
MDOF secondary systems. The effects of nonclassical damping and multi-
ple tuning are considered in detail. Error bounds for the approximate
solutions are derived. A synopsis of the approach of the analysis
follows:

In Chapter 2 the perturbation method for classically damped systems is

derived.

In Chapter 3 nonclassically damped systems are investigated.

Numerical examples for each of the cases considered are presented in

Chapter 4.

The report ends with a summary of the main conclusions of the study.






2. CLASSICALLY DAMPED SYSTEMS

2.1 Modal Synthesis

A ntm-degree-of-freedom (n+m-DOF) composite system is composed of
two subsystems: a m-DOF light secondary subsystem supported on a n-DOF
primary subsystem. Figure 2-1 shows the individual subsystems and

composite system.

Y
TRt ‘JiL
n-DOF primary system m;DOF secondary system (m+n) -DOF - -composite

System

Figure 2-1 : Individual Subsystems and Combined System

The dynamic properties (frequencies and mode shapes) of individual
subsystems are assumed to be known. The elements connecting the two
systems 1is to be included with the secondary system as shown in Figure

2-1. The method of mode synthesis is used to formulate the (m+n)-DOF
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model of- the composite system for dynamic analysis. By this method,
only dynamic properties of individual subsystems are involved.

The equation of free motion for the composite system (C-system) is

M]{a} + [C]{a} + [K]{u} = (O} (2-1)
where ([M], [C] and [K] are mass, damping and stiffness matrices of C-
system. For a classically damped system, the corresponding eigenequa-

tion may be written as

A [(MI(5) = [KI(4;) , i=1,2,...,nim (2-2)

where Ai are the square of the circular undamped natural frequencies and
{¢i) are the mode shapes. The matrices [M] and (K] may be written in

partitioned form as

(k) =[] [Ks]] + K ) (2-4)

where [Mp] and [Kp] are the physical properties of the primary system

(P-system) and [Ms] and [Ks] are those of secondary system (S-system).
The matrix [Kps] is a coupling stiffness matrix which depends on

the configuration of the attachments between the two systems. [Kps] is

a (n+m) x (n+m) matrix partitioned as

11 12
[K( )] (k12);
PS ‘nxn PS ‘nxm
Wos = | gaot 0] (2-3)
Ps (n+m) x (n+m)
[K;il)] contains only diagonal elements. In some studies (Igusa

& Kiureghian, 1985), [Kéil)] is ignored. Since the S-system is light in

relation to the P-system, [K;ll)] is of small order and is not needed in
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the lowest order perturbation analysis. However, [K;il)] could substan-
tially influence higher order perturbation analysis. For a C-system as

th

shown in Figure 2-2, the 5™ and 6th DOF of the S-system are attached to

the 15% and an DOF of the P-system, respectively.

Primary
System

Figure 2-2 : Attachment of Secondary System

The matrix [K_ ] will be
pPs

1 2 n n+l n+5 n+6 n+m
1 ki 0 -ki 0 0
2 k2 0 0 0 -k2 0
(K S] -n | oo . 0. (2-6)
p n+l
Symmetric [0]
n+m| J

To facilitate analysis, we introduce the transformation
(u} = [¥]{q) (2-7)
(6;) = [¥](e;) (2-8)

where (q)} is the vector of displacements in the transformed coordinate
system. The vector (wi) is the mode shape of the C-system in the trans-

formed coordinate system. The transformation matrix is

(4] = [["‘p] [¢s]] (2-9)
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where [¢p] and [¢s] are eigenvector matrices of the P- and S-systems,

respectively. The eigenvectors (¢p } and {¢S } are assumed to be nor-
i i

malized such that their largest value is unity. Substitution of eq. (2-

8) into eq. (2-2) and premultiplication by [1/:]T yields

A [diag (Mi)](¢i) = [diag (K;) + [¢]T[Kps][¢1]{¢i) (2-10)

where
[dlag (Mi)] = [dlag (Ml’MZ"“’Mn+m)] = [dlag (Mp ,...Mp ,MS ,...,MS )]
1 n 1 m
and Mp , 1i=1,..,n, are the modal masses of the P-system, and MS , i=1,
i i

.,m, are those of the S-system. Eq. (2-10) is a generalized eigenequa-
tion. We can convert from the generalized eigenequation to the standard
form but must exercise care as noted below.

Premultiplication of eq. (2-10) by [diag (Mi)]'1 yields a standard
form of the eigenequation. But the matrix [diag (Mi)]'l[diag (Ki) +
[¢]T[Kps][¢]] is usually not symmetric. This problem can be overcome by
decomposing [diag (M,)] into [diag (M,)] = [diag (/ﬁ; )] [diag (frq )] and

introducing another vector {yi) defined through the transformation
(o) = [atag (D] Moy (2-11)

where [diag (/)] = diag (JH,...,/M_) and [diag (JH)] ' - [diag

n+m

(1/./M_1 ,...,1/./Mn+m)1. Substitution of eq. (2-11) into eq. (2-10) and

premultiplication by [diag (1/jﬁi)] yields the standard form

A; (yp) = [BlUy;) (2-12)

where [P] is now a symmetric matrix given by

[P] = [diag (w?)] + [E] (2-13)
2 . 2 2 2 2
[diag (wi)] = [dlag (wpl,...,wpn,wsl,...,wsm)] , and
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[E] = [dlag (L//H) (4] [K ) (4] (diag (1//)].

The theory of linear algebra can be used to show that the trans-
formations described in equations (2-8) and (2-11) do not change the
eigenvalues. The eigenvectors of eq. (2-10) are recovered from the
vectors {yi) by using equations (2-8) and (2-11).

The matrix [P] contains two matrices. The first one, [diag (w?)],
fully represents the eigenproperties of subsystems, while the second
matrix, [E], represents the deviation of the dynamic properties of the
C-system from those of the subsystems. The matrices [diag (wi)] and [E]
have vastly different orders of magnitude. We can use the norm

leal] = max |ai
i,j

J.| (2-14)

to measure the magnitude, or size, of matrix [A]. By this norm we have
e )

where O(wi) stands for the order of wi. For the matrix [E] we have

2 2
= m?x wy = O(wi) (2-15)

IE1| = idiag (/) 118)" (K ) [¥][diag (FOD1]

The matrices [diag (1/Jﬁ:)], [¥] and [KPS] can be partitioned, so that

o]l )
e arpl | Il

[4,] |aiag <1/Jﬁ;;>]

4] |aiag <1//ﬁ;;>]
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[a1ss ][] ) s 0] |

Ps

Thus we have

_ . T, (11) .
I E1] = max ["[dxag s |1, kG 14, [etes s ]|,

|[atas <1//ﬁ;;)][¢p1T[K§§2’1[¢sl[diag (1/Jﬁ;;>]

|

There 1is an order of difference between the two terms in the above

expression. For the first term:

latag 1/ ] 18,1 IV 116, ) [atag (1/JMQT>]“
1 1

A

|leses D] o] e

|aiag (1/Jﬁ;;>]

I

M
3 S.
- 0[1/./M ] O[wi M_ 0[1/./M ] - o[t wi
Ps 3/ Py P;

The last reduction is due to [¢ ] being a normalized matrix, for

whlch "[¢ 1| = 1.0. Similarly, for the second term:

“[diag (1//ﬁ;f> CRRTSUITN diag <1/JMS,>]"
i 1

\

IA
o

(1) ]o[wim 0[1/,/Ms] -0 M—l w2
\ pi i

S5

Since the S-system is much lighter than the P-system the following

statement holds true:
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MS
P
N << 1.0 (2-16)
Py

Hence the order of the second term is larger than that of the first, and
M e
il 2
el = o o I (2-17)

Py
The difference in the order of magnitude between [diag (w?l)] and

[E] can be expressed through

leexl

]"] < 0(e), 1in which € =

T =T (2-18)
“ [diag (wi)
Letting
[E] = € [B] (2-19)
and substitution eq. (2.19) into eq. (2.13) yields
(p] - [diag (w?)] + ¢ (B] (2-20)

where matrices [diag (wi)] and [B] have the same magnitude. It is now
quite clear that matrix [P] contains elements with vastly different
orders of magnitude. This poses a major numerical problem when perform-
ing an eigen-analysis of matrix [P]. Conventional eigen-analysis
schemes give poor or erroneous solutions. Intuitively, the dynamic
properties of the C-system should be quite close to those of the P-
system, since the S-system is much lighter. This motivates the use of
perturbation techniques to determine the dynamic properties of the C-
system. The use of such techniques avoids the numerical pitfalls of

conventional eigen-analysis of matrix [P].
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2.2 Perturbation Approach for Detuned Modes
In this section, we discuss approximate solution of eq. (2-12).
The eigenvalues and eigenvectors of [P] = [diag (Ai)] + ¢ [B] depend on
the small parameter e¢. When ¢ = 0, [P] reduces to

[P] - [diag (1))] (2-21)

[diag (Ai)] is called the unperturbed matrix whose eigenvalues are Xi’
i=1,...,ntm, and whose corresponding eigenvectors are (ei), i=1,...,n+m,
which are elementary vectors. When e is small but finite, we expect the
eigenvalues of [P] to deviate slightly from the Ai’s. If Ai is a simple
eigenvalue which is well separated from other eigenvalues, the cor-
responding perturbed eigenvalue, A:, is assumed to be of the form of a

convergent power series in e€:

* 1 2 3. (3
Ai-,\i+ek§)+ek§2>+ek§)+... (2-22)

where k§J) is a constant, and the superscript (j) denotes the coeffi-

*
cient of the jth order term. Clearly Ai i Ai as ¢ - 0. Note that

*

1A

- | =00 (2-23)

A similar form can be extended to the corresponding perturbed
* *
eigenvector {ei]. We assume each element of (ei) is represented by a

convergent power series in ¢;

* (1) 2, _(2) 3
{ei) (ei) + € [zi } + € [zi } + ... (2-24)
where each component of the vector series is a convergent power series

in €. Corresponding to the result of eq. (2-23) for the eigenvalues,

for the eigenvectors we have the result

*
I(ei.) = (ei.)l = 0(6) (2-25)



In eq. (2-24) {zgk)) is a n+m dimensional vector (where n

P-system DOF and m no.

i=1,2, ..,n+m, form a basis in

each vector {zgk)) in the form

of S-system DOF).

14

no. of
Since the vectors {ei},

the n+m dimensional space, we can express

n+m
(k), _ (k) -
j=1
we have
n+m n+m
* a2 2 a$2)
(ei} (ei) + € }C Jl (e } + € }: J (e Y + ... (2-27)
j=1 j=1
and collecting together the terms in (ei)
n+m
* . (1) 2 (2) (1)
(ei) (1 + eaii + € a;y + ..){ei} + € }: {e }
j=1
j=i
n+m
2 a$2)
+ € }: Jl {e } o+ ... (2-28)
j=1
ji
The relative scaling of (e:) is arbitrary and for convenience we
redefine it by dividing by (1 + ¢ ai}) + ezagi) + .). This gives
n+m n+m
* @D 2 (2)
(ei} - (ei) + € }: Jl (e } + € }: Jl (e } + ... (2-29)
j=1 j=1
j=i j=i
where (e:) is not normalized.
We now write eq.(2-12) in terms of Af and (e?} as
. * * *
[[dlag (A)] + e [B]](ei) = A (e)) (2-30)
Substituting eq. (2-22) and eq. (2-29) into eq. (2-30) and collecting

terms

O

and aJ to be

0

coefficients

in the same power of ¢ on each side of this equation enables the

determined. Collecting terms in e yields
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n+n n+m
. (1) _ (1) (1)
[diag (Ai)] }: aji (ej) + [B]{ei} Ai }: aji {ej} + ki {ei) (2-31)
j=1 j=1
j=i j=i

Pre-multiplying eq. (2-31) by {ei)T yields
(1) _ T _
k, (e;)7[Blle;) = b, | (2-32)
Pre-multiplying eq. (2-31) by {ez}T, 2#i results in

T
(e,) " [B]le.) b,.
oD o —A—L M 1o (2-33)
172 172 i

The first order perturbation is therefore determined for Ai and
the corresponding {ei}. For sufficiently small e, the main term in the
perturbation is the first order term which can give an approximate
solutions to reasonable accuracy. It is of interest to take a closer
look at the first order term in the perturbation. Assume Al is a simple
eigenvalue. Then from eqs. (2-22) and (2-32) the first order term is
ebll. From eqs. (2-29) and (2-33) the first order term in the perturba-

tion of {el) is given by

b21{62} b31(e3) bn+m.1{en+m}
IVRIEY + . - A oot (2-34)
1 2 1 3 1 n+m
Notice that we have the factors (Al - Xi) in the denominators.

This shows that if Al is close to any of the other eigenvalues the
perturbation could be very substantial. The perturbation of Al is
therefore strongly influenced by close modes. When A is well separated
from the other eigenvalues, the eigenvector (el) is comparatively insen-
sitive to the perturbation. In practice, the first order perturbation

is often not sufficiently accurate, and higher order perturbations are

required. The higher order perturbations are obtained by collecting
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terms of the higher powers of ¢ in eq. (2-30). Collecting coefficients

in €2 yields

n+m n+m
ldiag (A))] Z ajf?(ej) + [B] Z aﬁ)(ej)
=1 =1
Jei j=i
n+m n+m
_ @ MY W @ )
X Z o ey + 1 Z ol a0 + 1P ey (2-35)
=1 521 i
j=i j=i
Premultiplying by (eI)T, £=1,2,...,n+m gives
n+m
K - Z aj?bij (2-36)
=1
j=i
n+m
D N @,
i% 31 Pij
=1
a2 - [ . 2=1,..,m¢m (2-37)
* P 21

Y 3
By the same manner, we have the coefficients of ¢

n+m

k3 - Z al® b
i o8 ij

j=1
j=i

n+m
(1) _(2) (2) (1) (2)
[ki agy- thky eyt Z %51 bij]

j=1
aiz) - jzi b 21

Ap oAy

(2-38)

For the coefficients of any order perturbation, the general formulas

are
n+m
k™ Z ey ana
i i ij
j=1
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h-1 n+m (2-39)
IR e SN R
i 2i ji ij
j=1 j=1
a( et
Ay - A
£ i

It can be seen that the approximate solutions of any order pertur-
bation can be obtained recursively. The formulas obtained here are
quite simple for practical implementation. (In practice, the require-
ment of higher order perturbations beyond the third is rare.)

The above formulas can be applied to any detuned mode independent
of the tuning of other modes. However, the formulas are invalid for
tuned modes themselves. It is easy to see that from eq. (2-34) if Ai
and Aj are tuned, then as A; Aj’ ag;) + o, implying that the perturba-
tion of {ei) or {ej) goes to infinity. This is not really true, but the
fact is that the perturbation of tuned mode involves fractional powers

of €, and hence the basic assumption in eq. (2-25) no longer holds. A

special scheme for the tuned case is developed later.

2.3 Identification of Tuned Modes by Gerschgorin’s Theorem
Gerschgorin’s theorem plays an very important role in this study.
It gives an accurate estimation of the distribution of eigenvalues of a
diagonally dominated matrix such as [P] = [diag (Ai)] + €[B].
Gerschgorin’s thherenm: Every eigenvalue of the matrix [A] lies in at
least one of the circular discs D, with centers a,, and radii E: laijl'
j=i
Applying the thereom for matrix [P] yields quite accurate loca-
tions of the eigenvalues, which lie in the union of all discs. (For a

real matrix [P], Gerschgorin’s discs degenerate to line segments.)

D, - center: (A\; + ¢ b,.), radius: e }; lbijl

j=i
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The radii are small since ¢ is very small. Quite often, we can further
reduce the radii of Gerschgorin discs by the following simple scheme.
If we multiply the ith column of [P] by B and its ith row by 1/8,
then its eigenvalues are unaltered. Let us apply this for i=1 to matrix

[P], taking 8 > 1.0. We have

1 1 1
11 8 °12 P13 - BPLnm
[diag (Ai)] + ¢ |B b21 b22 b23 ... b2,n+m (2-40)
bn+m,1 bn+m,2 bn+m,3 e bn+m,n+m

The first Gerschgorin disc D1 becomes

D1 - center: (Al + cbll), radius:

™ |

) byl
j=i

We wish to choose B so as to make the first Gerschgorin disc as
small as possible while keeping the other discs sufficiently small to
avoid overlapping the first. This will be true for all small ¢ if we
choose B to have the largest value consistent with the inequalities

leby ol = v Ixay - 20, i=2,...,nm (2-41)
where v is a number less than unity.

For the matrix [P], some of the Gerschgorin discs can overlap each
other. We could reduce their radii to some extent. Assume the first S
Gerschgorin discs are overlapped, we write [P] in partitioned form

' (B,,] (B,,]
[diag (Ai)] + € 11 T 12 (2-42)
[512] [522]

where [Bll], [B12] and [B22] are s Xx s, s X (ntm-s) and (n+m-s) x (n+m-
s) submatrices, respectively. Multiplying the first s rows by 1/8 and

the first s columns by B yields

1

(B,,]  L(B.,]

[diag (A.)] re 117 p12 (2-43)
1 (B,1° (Bl
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The first s discs are reduced by this procedure, and sometimes each one
is isolated.

We now turn to the main problem of the identification of tuned
modes. The identification is important in practice. Since we know from
the last section that perturbation schemes cannot be applied directly to
tuned modes, special treatment is required. Therefore, first we wish to
identify the tuned modes.

We apply Gerschgorin’s theorem to matrix [P]. If the Gerschgorin
disc Di is isolated from other discs, then '\i is a detuned mode. When
discs overlap, we can try to separate these discs as outlined earlier.
If overlapping discs cannot be separated by choosing a suitable scaling
factor B, we define them as tuned modes. Sometimes we can find a scal-
ing factor B which separates joint discs and keeps others from overlap-
ping. Then these modes are still defined as detuned modes and perturba-
tion schemes can be applied directly. The physical meaning is clear
here. Two closely spaced modes (Gerschgorin discs are overlapped) may
or may not be tuned modes. If they are well separated from all other
modes, they will often be detuned modes. Consider, for example the

matrix [P] defined by

0.1206 .0193 .0170 .0126 -.007 -.1313
1.000 .0149 -.0111 -.0059 -.1155

2.347 + 0.2236 .0082 .0044 .0857

3.532 .0023  .0456

0.200 sym 0.000

whose Gerschgorin discs are specified in Table 2-1. The discs DZ' D3
and D, are well separated but Dy and Dy overlap. We multiply the first
and the fifth columns by 5 and the first and the fifth rows by 1/5. The

new Gerschgorin discs are all isolated from each other as 1is apparent
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from Table 2-2. Hence all modes may now be considered to be detuned

modes.

Table 2-1 : Original Gerschgorin Disks of Matrix [P]

Disk
Dl D2 D3 DA D5

Center | 0.1249 | 1.0033 | 2.3491 | 3.5326 | 0.2000

Radius | 0.0375 | 0.0334 | 0.0254 | 0.0140 | 0.0845

Table 2-2 : Gerschgorin Disks of [P] After Scaling Sth Row and Column

Disk

Center | 0.1249 | 1.0033 | 2.3491 | 3.5326 | 0.2000

Radius | 0.0310 | 0.T518 | 0.1133 | 0.0608 | 0.0404

2.4 Tuned Modes

As noted in previous sections, the analysis of tuned modes re-
quires special treatment. The solution of a small eigenequation is
required. This eigenequation, which is related to the tuned modes only,
is specially formulated to avoid numerical problems.

Consider the matrix [P] = [diag (A;)] + ¢[B]. The case may be
sufficiently illustrated by assuming the first two modes to be tumed,
d.6:y ’\l and AZ must be very close and separated by a quantity of order
€. We partition [P] in the form

A el “‘11’}“’12]
...... HERERE [ S ) IR T (2-44)
:[An-Z] [312]I[522]

If we write
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b b
(6] = [ 11 12 } (2-45)
b21 b22 + (A2 - Al)/e

then eq. (2-44) may be expressed as

I

------ 1------ + € |------}----- (2-46)
: [An-Z] [B12]T= [By,]

The order of elements in the second matrix of eq. (2-46) is uni-

form. The eigenequation for [G] is

n
x17 61 1x) - [1;@] (2-47)

where [X] is the eigenvector matrix of [G] and By» KB, are the eigen-

values of [G]. Letting

We obtain
T .
(11" [(atag A1 + e(a1] (1)

Ay + e p I
1 1
Ay + ep
= |ecccccccceaa ]-. ----- g -------- + € |- mem- l ----------

T
I[An+m-2] (Byo] [X}| (Byyl

= [diag (Ai)] + €[B’] (2-49)

The Gerschgorin discs of [diag (Ai)] + €¢[B’'] are now disjoint and
the case becomes detuned. By the perturbation scheme which has been
developed in the Section 2.2 we can obtain the eigenvalues A': and the
eigenvectors (e':) of [diag (Ai)] + €[B']. Since the matrices
[diag (Ai)] + €¢[(B] and [diag (Ai)] + ¢[B’'] are similar, the eigenvalues

and eigenvectors of [diag (Ai)] + €[B] can be easily obtained by

* ¥
A, = A",
i i

(2-50)
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. * *
and {ei) = [T]{e'i} , i=1,...,n+m

In general when a group of r modes are tuned, we will need to
solve an eigenequation of order r using the same precision of computa-
tion as 1in the main problem. Hence numerical problems are not encoun-
tered. For the case where two or more modes are actually coincident the
corresponding discs will continue to overlap, but the radii will be
reduced sufficiently enabling us to compute the mode shapes and fre-
quencies of the tuned modes to required accuracy. For example, if the
first two modes of eq. (2-44) are actually coincident in the C-system,
the submatrix [X]T[Blzl, which represents the radii of the first two
modes, will be very small.

In general the solution of a small eigenequation does not give
results of sufficient accuracy, but it separates the joint discs by
shifting the centers and reducing the radii of joint discs which_gives

rise to an ideal model for applying perturbation schemes.

2.5 Error Bounds for Approximate Solutions

In previous sections, the fundamental theories have been estab-
lished and technical schemes were developed. 1t is of practical impor-
tance to evaluate the accuracy of the approximate solutions. From the
structural response point of view, we wish the accuracy of eigenvalues
and that of eigenvectors to be consistent. When high order spectral
moments are required, we need a higher degree of accuracy in the eigen-
values than in the eigenvectors. Let us examine the perturbation for-
mulas of (2-22) and (2-29). For the first order approximation for the
eigenvalues eq. (2-22) reduces to

(L)
Ai(e) = Ai + eki (2-51)
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and we know kgl) = bii from eq. (2-32). The first order approximation
for the eigenvalues does not improve the accuracy at all, since bii =0
for i=n+l,...,n+m. This reflects the fact is that eigenvectors are more
sensitive to perturbation than eigenvalues, so that the lowest order
term of eigenvectors is e while the lowest order term of eigenvalues is
62. To speed up the convergence of eigenvalues, we introduce the well-
known Rayleigh’s quotient, defined as

* *
(e [P (e})

1T Ty

i i

R((e})) = (2-52)

{e
e * rd e . I
Hence, if {ei) is the first order approximation of the eigenvector then

* *
A; = R({eg ) (2-53)

will be the second order approximation of the eigenvalue (Meirovitch,
1986). ~ The convergence of eigenvalues is greatly improved. With the
low order eigenvectors we can obtain high order eigenvalues.

In practice sharp error bounds are highly desirable. For eigen-

values, we employ Gerschgorin's discs. We compute the perturbated
eigenvectors (e:), i=1,..,n+m, then form the perturbated eigenvector
matrix
* * *
[(I*] = [(e)), (ey), ..., (e, )] (2-54)

By the following computation we obtain

(s1 - (11 ey (1™ (2-55)

It is clear that the diagonal elements of [S] are identical to

that of eq. (2-53). The off diagonal elements are very small. The
Gerschgorin discs can be easily obtained and the radii serve as error

bounds. Of course, we can use the schemes mentioned in Section 2.3 to
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reduce the radius of each disc, then even sharper error bounds can be
obtained.

The derivation of error bounds for the eigenvectors (e:) is only
slightly more difficult. If the eigenvectors of [S] are (ugd, then the
eigenvectors of [P] are [I*](ui). Hence we only need to find the error
bounds of (ui) to obtain those of (e:]. We illustrate this technique by

means of a numerical example. Suppose we have

0.1174
1.014
[s] = 2.352
3.533
0.456

0.0 -1.40 2915 476  -.016

-1.40 .0 -.707 -.325 -.226
+10°2 e1s -.707 .0 972 .076 (2-56)

.476 -.325 972 .0 .036

-.016 -.226 .076 .036 <0,

By the Gerschgorin’'s theorem we may show that the first eigenvalue p

satisfies

|p - 0.1174] < 0.028

Let {u) be the corresponding eigenvector normalized so that its

element (the

the eigenequation as

first one) is unity.

[S]{u) = p {u)

From the second equation of eq.

2 2

-1.4x10"

Since |u2| : |u3| 3

+1.014u2-0A707x].0- uy-

(2-58) we have

0.325x10"2

equation together with eq. (2-57) gives

-2
u4-0,226x10 ug = gy,

(2-57)

largest

. T
We write (u) = [l,uz,u3,u4,u5] and

(2-58)

(2-59)

[u,| and |u5| are all less than unity, the above
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(1.4 + 0.707 + 0.325 + 0.226)x10" 2

lu,| < [ - 1.014]

< {1.4 +0,707 + 0.325 + 0. 226)x10"
[0.1174 - 0.028 - 1.014|

= 0.029 (2.60)

From the other equations of eq. (2-58), we can similarly obtain

crude bounds for the other elements of {(u})

lus| < 0.008, fu,| <0.003, |ug| < 0.011 (2-61)

Using these crude bounds we may now return to eq. (2-59) and the other
equations of eq. (2-58) to recursively obtain much closer bounds for u,,
uy, u, and ug . In this study, however, the crude bounds from (2-60) and

(2-61) are sufficient.



3. NONCLASSICALLY DAMPED SYSTEMS

3.1 General Theory

Modal superposition is a common method used to solve dynamic
equations of motion of linear systems, such as

[M] (&) + [C](u) + [K](w) = (p) (3-1)

If the system is classically damped, we can uncouple eq. (3-1) by the
undamped real-valued mode shapes. But if the system is nonclassically
damped, the undamped mode shapes can no longer uncouple the damping
matrix. To solve eq. (3-1) by modal superposition for the nonclassi-
cally damped system, we need to find more gen;ral mode shapes which are
complex-valued (Hurty & Rubinstein, 1964). Each component of the mode
shape is distinguished not only by its amplitude but also by its phase.

Equation (3-1) can always be transformed into an equivalent system

of first order differential equations with double size:
[0 [Ml] {{ﬁ}} [-[M] 0] {(&)} {(0}}
.t - (3-2)
el L o )] lw) Ll
This equation can be written as

[A](y) + [B](y) = (p) (3-3)

where

0 [M] -[M] 0 (u) (0)
(A] = [ }, (B] = [ ], {y) = { }, and (P} = { }
(M] [C] 0 [K] {u) {p)

Equation (3-3) implies a linear eigenvalue problem of the form

A[A] (¢} = - [B]{¢) (3-4)

26
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Therefore, to solve equation (3-4) techniques very similar to those used
for classically damped systems may be used. It should be noted, how-
ever, that the matrices [A] and [B] are not positive definite; hence,
the eigenvalues and corresponding eigenvectors are generally complex-
valued.
The complex eigenvalues will occur in conjugate pairs. For ex-

th and jth eigenvalues are complex conjugate, they may be

ample, if the i
written as
Xi = u; + ivi
(3-5)
A, = A, = u, - iv,
j i i i
and their corresponding eigenvectors will also be conjugate pairs, i.e.,

(651 = (&) (3-6)

The mode shape {¢i} has 2n components which may be partitioned as

(6

The n component eigenvectors {¢z) and (¢g} are related through

u d
(651 = 2, (4D (3-8)

Eq. (3-4) leads to a set of 2n eigenvalues and corresponding eigenvec-
tors. In a manner similar to that used for the classically damped
system we transform eq. (3-3) to a new coordinate system spanned by the
eigenvectors of eq. (3-4). The transformation is given by

{y} = [®](z} (3-9)
The transformation matrix [®] is constructed by 2n eigenvectors

(2] = [{$)(y) ... (¢ )] (3-10)

Substituting eq. (3-9) into eq. (3-3) and then premultiplying it

by [<1>]T yields
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(217 (a1 (21(2) + (@17 (B (@] (2) = (#1T(P)

which may be written as

[diag (a;)](2) + [diag (;)](z) = (q) (3-11)
where
laiag (a1 = (217 (a) (2]
. T
[diag (B;)] = [2] [B][®]
and () - (21%2)

Eq. (3-11) is a set of uncoupled equations which may be written in

scalar form as

TR L R

or

: = 9 3

z; - ,\izi 1/¢zi (3-12)
Since

By = - Aoy (3-13)
the solution to eq. (3-11) is

Ait 1 [t Ai(t-f)
Zi(:) -e zi(O) + ;:IO e z;(r) dr , i=1,2,...,2n (3-14)

Modal analysis for nonclassically damped systems is very costly.
The matrices [A] and [B] are real and symmetric, but neither of them is
positive definite. The presence of complex eigenvalues and eigenvectors
increases the amount of computation substantially and the numerical
algorithms are not efficient. In practice the 2n x 2n matrices [A] and
[B] may be extremely large. A different approach appears highly desir-
able.
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3.2 Modal .Synthesis

A n+tm-DOF C-system is composed of two subsystems - a m-DOF light
secondary subsystem supported on a n-DOF primary subsystem. Figure 2-1
shows the individual subsystems and the C-system. Generally the in-
dividual subsystems are assumed to be classically damped in which case
the damped eigenproperties are directly related to the undamped eigen-
properties. For example, solving the undamped eigenequation for the P-

system

2
- i-1,.., ©(3-1
wpi[Mp]{¢pi} [Kp](¢pi) , i=1,..,n (3-15)

we obtain the wundamped eigenvalues w§ and eigenvectors {¢p }y, i=1,2,

i i

.,n. The eigenvectors are normalized with respect to the mass matrix

T
d M][®.] =1 3-16
(e 1 (M 1(& ] = (1] (3-16)
thus
T
d C J[®. ] = |di 2 3-17
(0,1716,110,1 = [atag (20, 4,0 (3-17)
and
(@ 17k 1(2 ) = [diag (w2 )] (3-18)
P PP P;
where ﬂp is known as the modal damping ratio. The damped eigenvalues
i
Xp and eigenvectors {wp }, i=1,2,...,2n are obtained as follows
i i
A = - + iw JI-BZT , i=1,2,...,n
P ﬂpiwpi “p; ﬂpi
(3-19)
A -2 i=1,2,...,n
Pitn  Pi
A (¢ )
(p_ ) = { Pj Py } , i=1,2,...,n
Py (¢ 1
P
(3-20)
- ), i=1,2,...,n
{¢p. ) (¢p )
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AP,.and {¢P,} automatically satisfy the damped eigenequation (3-4)
1 1

0 [M] -M] O
A Pl ) = - P W), i=1,...,2n (3-21)
Pi M) [c 1] Pi o [kl Pi

P’ P P

Exactly the same statements apply to the S-system. The damped

eigenproperties and the undamped eigenproperties are related as

As, = " P9t iws.jirﬁgj ’ i-1,2,...m
1 1 1 1 1 (3_22)
A -, . i=1,2,...,m
i+m i
A, (¢, )
(b ) = { ®i %1 } i=1,2,...,m
i (¢, )
i
(3-23)
b, ) =¥, ), i=1,2,...,m
i+m i

Now let us consider the C-system in a manner quite similar to that
used in Section 2.1. The physical properties of the C-system are repre-
sented by the matrices [M], [C] and [K] which can be written in parti-

tioned form as

-[Mp] -
(M] = M ] (3-24)
M

L s )

-[cp] -
[c - BN RACHESNRRLS (3-25)

L s’

-[Kp] -
K] - | T Bes? T LD+ Ky (3-26)

L sl
where [Kps] and [Cps] are coupling matrices. [Kps] has been mentioned

in Section 2.1. [Cps] is similar and partitioned as

(11) (12)
[CPS ]n X n [CPS ]n X m

(c,,1 - (3-27)
G [0
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Even though the subsystems are classically damped the C-system may
be nonclassically damped (Igusa and Kiureghian, 1983). Thus, in general

we need to solve the damped eigenequation

A[ (A1) = - [BI(])  i-1,2,..,2(n+m) (3-28)
where

o M]] [o 311 [o o ]

[A] = | = +
) o] L el Lo qe ]l
-M] 1 [-M) 1 [o o0 ]

[B] = = +
SR €57 [ A €501 A R €S 1

In the theory of linear algebra, Ai and (¢i} are defined as the
eigenvalue and eigenvector of the pair ([A],-[B]). Two pairs, for
example ([Al],[Bl]) and ([A2],[B2]), are said to be equivalent if there

exist invertible matrices [E] and [F] such that (Parlett, 1980)

(4,1 = (E](A,][F], [B,] = [E][B](F] (3-29)

The eigenvalues of two equivalent pairs are the same and the

eigenvectors are simply related through
(¢,) = [Fl{4]) (3-30)

To find a simple pair equivalent to ([A], -[B]), we construct an
invertible matrix [T]
[[Q][diag (Pl [(B)diag ()] '
(T] - | _ (3-31)
(2] (2] 2(n+m) x 2(n+m)

in which

[diag (Ai)] - Pn o (3-32)
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(2,1 izl
@) =-| P diag [~——]
i 2(wi./1'l3l¥>

b i)
2(03 JT-BT)

where

=y
Z(wi l-ﬂpi) &

[reim )
Z(wi l-ﬂp )
a

=gy
20y 1-,ssi) s

[ S
\_ 2(w; /T2 )
n

A

(3-33)

(3-34)

*
Then an equivalent pair ([A*] ,[B ]) may be obtained as follows:

81 = (m7alT)

o[101 1) r[to1 (0]
- [T] (1] + [T] [T] = [1] + [F]
i) [c.] [oj [c

Ps
where
i [MT[CPS]M mT[cps][S]}
izt =T =
@17e, lie]  B1C, @)
and
(8] = (11" (8117 - (diag O] + [E]
where
T I =
i et [[f]T[Kpslm [f]T[Kpsnf]]
ORCSIOEENCRTSIC

The eigenequation may now be written as

XF {[1] + [F]} o) = {[diag a1+ [s}} o)

(3-35)

(3-36)

(3-37)

(3-38)

(3-39)
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The eigenvectors of eq. (3-28) can be easily recovered through
W) = (TGD L e, 200 (3-40)

From eq. (3-39) we can see that [E] and [F] represent the devia-
tion of the dynamic properties of the C-system from those of the subsys-
tems. We use the same norm as the one used in Section 2.1 to measure
the magnitude of [E] and [F]. From eq. (3-33) and (3-38) we have

i
IEIl = fer vy el

T an, 12
o ™ o o 1l
2(0, JT-AD) 21" sy (0] [C]

e G|
x |diag
2(4«;i 1-;9i)

2 T oo (11) (12)
. [diag[ 3o ]] [[fbp] CSg IR R C R C S ICN) H‘
20, T sym (01
Since MP] and [@s} are normalized as in eq. (3-16), ||[QP]||
0C1//H) and [1e,]] = 0L/, We also have ||[K}()i2)]|1 - ||{1(;§1)]|| e

O[Mswz ] The following results are therefore obtained:
b
M M
(12) | ,2 (11) - ol-= ,2
[ICRTE N [CR] I O[M “’Si] L ICRICSas [LN]| O[M s,]
2

2
P i
W,
i

|: - p== ]]
diag
[Z(wi/lv[il?)

thus
3
M
1 s

(El] s o] - O]l

ot =oft) - o] 4
or

[ten] = O[wi] (3-41)

where
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v 1"

e = || <10
P,

Since ||[diag ('\i)]n = O(wi), we have

E

[taiag OpIN ~ ¢ )

Therefore, the two matrices on the right side of the eq. (3-39) have
different orders of magnitude.

Since | [C(lz)

b5 ), we can obtain the order of magnitude

1l = oto, 8
1

for [F] in a similar manner:

¥
M
el = 0[},—] OHM—S] . Bg wg ] = 0(eB,) (3-43)
ft P i 51

H - 0(e;) (3-64)

Therefore, the two matrices on the left side of eq. (3-39) also have

different orders of magnitude. The typical damping ratio ﬂs is general-

ly of order O(e), so that |[F]| = 0(62) is generally true. Let
*
[E] = ¢ [E']
2. %
[F] = ¢7[F]

Substituting into eq. (3-39) yields
* * *
X [[1] + 2[F ]](xi) 2 [[diag OGPl * e[E*]][x:) (3-45)
The matrices on both sides now have uniform magnitudes. Eq. (3-
45) is called the generalized eigenequation which is generally more
difficult to solve. We prefer to change the problem into a standard
eigenequation, so that all the methods used in the Chapter 2 may also be
utilized here. To perform this we premultiply eq. (3-45) by [[I] +

52[17*]]-1 on both sides, thus
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* % 2. % 1.1 , * *
A {x;) = |[I] + €7 [F ] [diag (A;)] + €[E ]|(x}) (3-46)
1 1 ¥ & - 8
Conventional numerical algorithms for the computatio{ of |[I] +

52[1“*]]-1 are extremely difficult in this case, but an alternative
approach can be used by expanding this as a power series. In the theory
of matrix algebra we have

(1] + (a] + (12 + ...+ ((1] - (AD7! (3-47)
subject to a sufficiency condition that any norm of [A] is less than
unity. The matrix [F] = ez[F*] satisfies this condition because e <<

1.0 and "[F*]H ~ 1. Thus [[I] + 52[1'-‘*]]_1 can be expressed in a conver-

gent series

{[1] + ez[F*]}'l - 111 - 21F*1 + HF2 - L. (3-48)
Substituting eq. (3-48) into eq. (3-46), we have

e - [[diag OP1 + elag] + 2lay) + Sag) + “la ] + .

: ](xi)
i=1,2,..,2(n+m) (3-49)
where
(a,) = (E%]
(a,) = -[F"][diag ()]
18,1 = -[F"] (E")
(a,] = (717 (diag ()
[Aj] are complex matrices. In the next section we wuse perturba-

tion techniques to solve eq. (3-49).

3.3 Perturbation Approach For Detuned Modes
In the Section 2.2 we have discussed about the perturbation theory
in details. The fundamental principles apply here too. We rewrite eq.

(3-48) as
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A - 2] T TR 3-50
g (X)) = [B] {x5) ,  i=1,...,2(n¢m) (3-50)
where

* : 2

(P] = [diag (xi)] +e [A]] + eT[A)] + .. (3-51)
The matrix [P*], diagonally dominated by [diag (Ai)], is similar to [P]
in eq. (2-13). However, we should note the main differences that [P*]
is a non-Hermitian complex matrix, and the eigensolutions are generally
complex.

Letting ¢ = 0 in eq. (3-51) reduces it to [P*] = [diag (Ai)] and

the eigensolutions of eq. (3-50) are then obviously

A i-1,2,...,2(n+m)
and
G5 = teg) . i=1,2,...,2(ntm) (3-52)

When € » 0, we expect the eigensolutions for the ith detuned mode

to be as follows (see Section 2.2)

PR kil) + szkgz) + 53k§3) & (3-53)
and
2(n+m) 2(n+m)
(x]) = (e) + ¢ }: a§i)(ei) + &2 }: u;i)(ej) 2:. 7 «(3E55)
j=1 j=1
j=i jei

where kil) and aji) are all complex constants.

By substituting eq. (3-53) and (3-54) into eq. (3-50) and collect-
20550

ing the terms in €, ¢°, ¢, etc., we obtain the perturbation equations

for any order of solution. For the first order eigensolutions, we have

2(ntm) 2(n+m)
(diag (A))] }: n;%)(ej) + [A))Mey) = A }: a;i)(ej) + kP e
31 51
Imt Imi

(3-55)

premultiplying by (ei)T yields
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(1) T =
ki = leg) (A Iley) = ay (3-56)
L
Premultiplying by (ej)T, j#i yields
(es) (a1(e) 71,
o eyl Sl L 2w
PR (3-57)
e 1 PYEEW R jei
] 24, J
The first order eigensolutions for the i h mode are
Af = + ckgl)
i i 1 (3-58)
2(n+m)
*
(xi) - (ei) + € aji (ej)
j=1
=i
For the second order equations, we have
2(n+m) 2(n+m)
: (2) 1)
[diag (Ai)] Z aji (ej) + [Al] Z (eJ) + [Azl(ei’
J=L j=1
Jei =i
2(n+m) 2(n+m)
(2) 1) (1) (2) =2
Z aji (ej) +ki Z aji (ej) +ki (ei) (3-59)
j=1
i j=i
Premultiplying by (e;)” yields
2(n+m)
(2) T (1) T
k™ = (eg) [AL] Z ayy (e) + (ey) [Ay]ley)
j=1
jri
2(n+m)
- a, alV+a (3-60)
11'.2 A zii
2=1
Ari

Premultiplying by (ej)T jui yields
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2 (n+m)
a; oD wa kD oD
1.2 2i 2.i i ji o1 2 (n+m)
RONYE WE N J I=heeeen (3-61)
31 Ai - Aj ’ J#i
For the third order eigensolution, we have

2(n+m) 2(ntm)
atag 01| ) alPien |+ ] ) afPren

j=1 j=1

j=i jei

2(n+m)

+ (4] Z (1)(e} + [Ag)le;)

3#1
2(n+m) 2(n+m)
(3) (1) (2)
}: {e 3|+ ki }: aji {ej)
j=1
J#l h!
2(n+m)
(2) (1) (3)
+ ki }: Jl (e Y| + k (e ) (3-62)
j=1
j=i
By the same procedures, we obtain
2 (n+m) 2 (n+m)
(3) (2) (1)
ki = }: a; o0 F }: a, o)y’ tag (3-63)
1-1 il 1-1 - il ii
11 1<i
2(n+m) 2 (n+m)
(2) oD 1) (2) (2) (L)
1., %1 7 Z 2., %21 R T
(3) A=l _a=i g=1 fxi 3
x. . =
ji A, - A,
1 J
j=1,...,2(n+m) (3-64)
j=i

The third order eigensolutions for the ith mode are
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ool e kD g 2D (3 (3-65)
i i i i i
and
2 (n+m) 2 (n+m)
* (1) 2 (2)
{xi) {ei} + € E: aji {ej) + € }: aji {ej)
j=1 j=1
j=i j=i
2 (n+m)
3 (3)
+ € }: aji {ej) (3-66)
j=1
j=i

The higher order solutions can be obtained by a similar manner,

but it is barely necessary in practice.

3.4 Identification of Tuned Modes

All the methods discussed in the Section 2.3 can be applied here.
The so called "Gerschgorin’s discs" in Section 2.3 are actually an
intervals on the real axis. But in this section, since the matrix [P*]
is complex, Gerschgorin’s discs are actual discs and all the eigenvalues

lie within the union of all discs.

D.- center: A, + €a + eza + ...
i i 1.. 1..
ii ii
(3-67)
2 (n+m)
radius: |ea + eza + e3a + |
’ 1., 21. 31. e
j=1 1] J J
j=i
i=1l,...,2(n+m)

Figure 3-1 shows the distribution of Gerschgorin’s discs. Any disc,
being isolated from others, corresponds to a detuned mode. When discs
overlap, we can try to separate them. Only those that cannot be separa-

ted correspond to tuned modes.
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Re

Dj

Figure 3-1 : Illustration of Gerschgorin’'s Discs

3.5 Tuned Modes

Consider the matrix [B*] = [diag (A))] + e[A;] + 52[A2] qith7 . Sand
assume that the first two modes are tuned, i.e., '\1 and ”\2 are very
close and separated by a quantity of order ¢ or less. Let [R] = [Al] +
e{Az] + ..., then we have [P*] = [diag (’\i)] + €[R]. We partition [P*]

in the form

| |
Lol [Ry1]) [R5l
------------ + € |-----fe---- (3-68)
la, ) (Ryy)][Ryy)
If we write
T r
(6] - 11 12 (3-69)
Tyy Tyy *+ (A2<A1)/e
Then eq. (3-68) may be expressed as:
A | |
Lol (6] |18,,)
------ IR B A R e St (3-70)
| |
[8n-2) (By1] | [Byy]

The order of elements in the second matrix of eq. (3-70) is uni-

form. The eigensolution of [G] is
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(61[Y] = [¥] ["1 ] (3-71)
)
where [Y] is the eigenvector matrix and Ky, M, are the eigenvalues.

Since [G] 1is not a Hermitian matrix, [Y] is not a unitary matrix (i.e.

[Y]T[G] [Y] is not diagonal). However, we have
&1 n
(Y] “[eiry] = |1 (3-72)
]
Constructing a transformation matrix

@ - [ 3-73)
We obtain
(@1 atag (a1 + er1] @
Apren

|
Atenl i [ (01 107 Ry,
Ryy) (Y11 [Ryy)

= [diag (Ai)] + €[R'] (3-74)

The Gerschgorin discs of [diag (A;)l + €[R'] are now disjoint and

the case becomes detuned. The eigensolutions of [P*] can be easily
obtained from those of [diag (X'i)j + ¢ [R'], A': and (x':), since
-y
(3-75)
6D = QUL 11,2, 200k

3.6 Error Bounds For Approximate Solutions
As was discussed in the Section 2.5, we can obtain higher order

eigenvalues through Rayleigh's quotient

* T % *
(= N 0[R) (%, )
a1 (3-76)
i * T %
(Xi) (x5)
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The - development of error bounds for eigenvalues and eigenvectors
are somewhat complicated for the nonclassically damped case. Suppose an
approximate eigensolution has been determined from eq. (3-53) and (3-
54). We denote all the eigenvalues by [diag (A:)] and the eigenvectors

*
by [X ]. If the residual matrix [F] is defined as

(P*11x") = [(X"11diag D] + [F) (3-77)

then
(X1 MY 18] = raiag O] + [E) (3-78)

where
(E] = (X"17M(F) (3-79)

The residual matrix [F] can be easily obtained, and we wish to

*

compute [E] as accurately as is convenient. Since each column of (X ]
*

is from eq. (3-54), we conclude that [X ] is a diagonal dominant matrix

‘which can be expressed as

(X"] = (1] + ef2] (3-80)
in which [I] is the identity matrix and e[Z] contains all the off-diago-
nal elements of [X*]. [X*]-1 = ([I] + € [Z])-1 can be expressed as a
convergent series

x*)1

- 1] - e (2] + f(z)? -
and therefore
[E] = [F] - € [F1[Z] + ¢2(F]{z]® - ... (3-81)
Once a sufficiently accurate estimate of [E] 1s obtained, the

*
analysis of [diag (Ai)] + [E] will be carried out as discussed in Sec-

tion 2.5.



4. NUMERICAL EXAMPLES

4.1 Numerical Example For Classically Damped System

A simple four DOF model representing a shear building is chosen as
the P-system. A single DOF S-system is attached to the fourth floor as
shown in Figure 4-1. The dynamic properties of the P-system are tabu-

lated in Table 4-1.

Figure 4-1 : Classically Damped Composite System

Three cases are analyzed. The mass ratios of the S-system to the

P-system are the same in all cases, but the frequencies of the S-systems

43
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are different. Table 4-2 lists the properties of the S-system for these

cases.

Table 4-1 : Dynamic Properties of the Primary System

Mode i 1 2 3 4

Eigenvalue 0.12061 | 1.0000 2.34730 | 3.53209

0.65654 | 0.57735 [-0.42853 |-0.22801
0.57735 | 0.00000 | 0.57735 | 0.57735
Eigenvector
0.42853 |-0.57735 | 0.22801 |-0.65654

0.22801 |-0.57735 [-0.65654 | 0.42853

Table 4-2 : Dynamic Properties of Secondary Systems

Case 1 2 3
Mass Ratio (MS/MP) 0.05 0.05 0.05
A =k /M 0.45 0.20 1.00
s s’’'s

It should be noted that this example is idealized and may not
necessarily resemble C-systems encountered in practice. Nevertheless,
it possesses the essential dyﬁamic properties of such systems and is
simple enough to provide a clear demonstration of the method.

The results for Case 1, which is a detuned system, are presented
in Tables 4-3 and 4-4. Case 2 is a closely detuned system, where the
frequency of the S-system is close to the first frequency of the P-
system. Results for this are tabulated in Tables 4-5 and 4-6. Case 3

represents a tuned system, with the S-system being tuned to the second
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bation results.

P-system.
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Both first order and higher

The

estimate

error bounds

order perturbation results

are very close to the real error

bounds, especially for high order perturbations.

Results for Case 3 are presented in Tables 4-7

presented in each example to show the accuracy of the high order pertur-

The estimate error bounds are compared with exact error

Table 4-3 : Eigenvalues of the Composite System - Case 1
(MS/MP = 0.05, A =k /M_ = 0.45)
15% Order Perturbation
Mode 1 2 3 4 5
Eigenvalue | .11736]1.01363]2.35246|3.53344(0.45574
Mound (o5 |0-28  [0.27  o.00 |o.00 0.00
ound a5 [0-16 .00 [0.00 [0.00 |0.00
3rd Order Perturbation
Mode 1 2 3 4 5
Eigenvalue |0.11719|1.01367|2.35246(3.5334410.45574
o (a5 |0-00 .00 [0.00 [0.00 |0.00
oond (5 |0-00 .00 [0.00 [0.00 |0.00
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* Note:

eigenvector only.

Table 4-4 : Eigenvectors of the Composite System - Case 1
st .
1 Order Perturbation
Mod 1 2 3 4 s  |Brror
ode Bound
.48348| .52593|-.43013|-.23000|-.01323 0.1
.43143| .00783| .57168| .57753]-.02975 0.2
Eigenvector |.32316|-.51810| .22921|-.65550]|-.03288 0.4
.172831-.52201}|-.65223| .42752]-.02121 0.3
.66769|-.42710| .10112} .03327| .99870 0.8
Exact Error
Bounds (%) 0.95 0.64 0.52 0.39 0.48
Est. Error 9.7
Bounds (%) :
3rd Order Perturbation
Error
Mode 1 2 3 4 5 Bound *
.49231| .53003|-.43013|-.23033(|-.01272] .0004
.430411 .01425| .57096| .57760|-.02969| .0006
Eigenvector |.31824|-.51594| .22979|-.65538]-.03312| .0004
.16896|-.52310|-.65194] .42739|-.02145] .0004
.665251-.42312| .10195| .03361| .99870| .0003
Exact Error | , o3 | 901 | 0.02 | 0.02 | 0.00
Bounds (%) ’ : : ’ ’
Est. Error
Bounds (%) 0.10
Estimated absolute error bounds are given for the first
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Table 4-5 : Eigenvalues of the Composite System - Case 2
(M /M) = 0.05, A = k /M = 0.20)
ISt Order Perturbation
Mode 1 2 3 4 5
A 0.11493|1.00418|2.34931|3.53264(0.20906
E;gt'mﬁrfg’)f 1.7 0.5 0.06 |0.00 |0.03
Exact Errorfs 13 19 00 [0.00 [0.00 |0.00
Bound (%) :
3rd Order Perturbation
Mode 1 2 3 4 5
A 0.11478|1.00418|2.34931|3.53264|0.20909
E;g‘;nﬁr’(f:; 0.03 [0.00 [0.00 [0.00 [0.00
fxact dE’(f:‘)’r 0.00 |0.00 |0.00 |0.00 [0.00
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Table 4-6 : Eigenvectors of the Composite System - Case 2
st .
1 Order Perturbation
Mode 1 2 3 4 5 Error
Bound
0.33805] 0.57333}-0.42988|-0.22893|-0.04895] 0.01
0.29921( 0.00381| 0.57568| 0.57752{-0.04912 .004
Eigenvectors|0.22299|-0.56952] 0.22889(-0.65618(-0.03948 .01
0.11892|-0.57142|-0.65560| 0.42814}|-0.02193 .01
0.85576|-0.14286| 0.03988] 0.01368| 0.99657 .03
Exact Error
Bound (%) 2.0 1.3 0.77 0.34 1.5
Est. Error 3.5
Bounds (%) :
3rd Order Perturbation
Error
Mode 1 2 3 4 5 Bound*
0.36143| 0.57380|-0.43004]-0.22899]-0.04474| 0.001
0.31446| 0.00477| 0.57556| 0.57753|-0.04580| 0.0005
Eigenvectors|0.23181}|-0.56905| 0.22899|-0.65616|-0.03721| 0.001
0.12286|-0.57144|-0.65555] 0.42812|-0.02079| 0.001
0.83765(-0.14271| 0.04002| 0.01374| 0.99704| 0.003
Exact Exrror | , 5, | .23 0.14 0.01 0.27
Bounds (%) : ’ ’ : '
Est. Error
Bounds (%) 0.35
* Note: The error bounds are for the first eigenvector.
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Table 4-7 : Eigenvalues of the Composite System - Case 3

(/M = 0.05, A =k /M_ = 1.00)

1St Order Perturbation

Mode 1 2 3 4 5

A 0.11786|0.8877112.36373|3.53581]1.14525

Est. Error

Bound (%) 0.26 0.34 0.01. (0.01 0.27

Exact Error 0.11 0.05 0.00 0.00 0.00

Bound (%)
I
3rd Order Perturbation
Mode 1 2 3 4 5
. 0.11773]0.88729|2.36377]13.53582|1.14539

1

Est. Error

Bound () |0-00 [0.00 j0.00 Jo.00 f0.00

Exact Error

Bound (3) |0-00  [0.00 o.00 [0.00 f0.00
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Table 4-8 : Eigenvectors of the Composite System - Case 3
1St Order Perturbation
Mode 1 2 3 4 5  |Error
Bound
0.52439] 0.10015 -0.41950 -0.23237|-0.14767| 0.005
0.46613]-0.03086| 0.54323| 0.57608| 0.03495| 0.007
Eigenvectors|0.34169]-0.13475| 0.22579]-0.65173}-0.11753| 0.004
0.17860|-0.12020|-0.61836| 0.42567|-0.13630| 0.007
0.59923| 0.97796| 0.30910| 0.09051|-0.97190| 0.005
Exact Error
Bounds (%) 1.2 0.61 1.1 1.1 0.47
Est. Error 1.3
Bounds (%) :
3rd Order Perturbation
Mode 1 2 3 4 5  |Brror
Bound
0.52783] 0.11015(-0.42177]-0.23375| 0.14150] 0.0002
0.46193]-0.03089| 0.53863| 0.57646| 0.03519| 0.0002
Eigenvectors|0.34201}-0.14451| 0.22580]-0.65159|-0.11141| 0.0001
0.18180]-0.12988]|-0.62076] 0.42426]-0.13038]| 0.0002
0.59832) 0.97425| 0.30929| 0.09217]-0.97433] 0.0002
Exact Error | 4 o, [ ¢ 02 0.04 0.04 0.02
Bounds (%) : : : : :
Est. Error
Bounds (%) 0.04
* Note: The error bounds are for the first eigenvector.
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4.2 Numerical Examples for Nonclassically Damped System

To 1illustrate application of results presented in Chapter 3, a 7-
DOF system shown in Figure 4-2 is analyzed. The P-system is a 3-DOF
shear building and the S-system is modeled as a 4-DOF beam (with rota-

tional DOF condensed out) attached to the P-system through two support

members.

P-system S—-system

nn nyy
Figure 4-2 : Nonclassically Damped Composite System

Two cases are selected to examine the effects of interaction:

Case 1: Ms/Mp - 0.01
Case 2. M /M = 0.05
s P

The other physical and dynamic properties are tabulated in Tables

4-9 and 4-10.

In both cases the 1°° frequency of the P-system and the 15t

fre-
quency of the S-system are tuned. Tables 4-11 and 4-12 show the esti-
mated complex eigenvalues of the C-system obtained with the present

approach (to the third perturbation term). The results are compared

with exact results.
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The -lower half of the eigenvectors are given in Tables 4-13 and &4-

st

14. Only three eigenvectors are listed. The 1 and 4th are tuned

3rd is a detuned mode. These are all results of the 3rd

modes; the
order perturbation. The results are compared with exact solutions and
error bounds are derived by [(4a4)[/[(4}]. The results obtained from the

perturbation method agree very well with the exact solutions.

Table 4-9 : Physical Properties of Primary and Secondary Systems

Systems Properties
- 2 2
Primary kp/Mp = 400 rad”/sec
k /M = 380 rad2/sec?
Secondary
/(M) = 90.0  rad’/sec?

Table 4-10: Physical Properties of Primary and Secondary Systems

Systems Modes | Frequency [:_:S] Damping Ratio

1 8.90 0.05
Primary 2 24.93 0.05

3 36.04 0.05

1 8.91 0.02

2 18.26 0.02
Secondary

3 22.73 0.02

4 42.97 0.02

It is also of interest to examine the relative importance of the
nonclassical damping phenomenon. In order to examine this, two other

cases with different damping properties are presented in Table 4-15 and
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Table 4-16. The components of any eigenvector differs in magnitude as

well as in phase. Note that the larger the difference in phase, the

more nonclassically damped the system is. The results of case 3 (Table

4-15) show that tuned modes will be basically classically damped if the

damping ratios of the subsystems are the same. (Large phases corres-

ponding to very small modulus values are not physically meaningful.

Estimates of the phase are poor when the corresponding modulus is very

small, and for this situation the small component could be ignored and

the phase is not important anyway.)

It should be noted that the small changes in either ﬂs or ﬂp do

not significantly affect the modulus of the eigenvectors.

Overall, the nonclassical damping phenomenon will be influenced by

tuning, difference in damping ratios and the magnitude of the damping

ratios.
Table 4-11: Complex Eigenvalues - Case 1: MS/Mp = 0.01
15% order g5e Order
Eigenvalues Exact Eigenvalues Exact
Error Error
Mode Real Imaginary Bound (%) Real Imaginary Bound (%)
1 -0.3189 9.276 0.11 -0.3174 9.286 0.00
2 -1.246 25.05 0.01 -1.246 25.05 0.00
3 -1.804 36.03 0.00 -1.804 36.03 0.00
4 -0.3039 8.520 0.10 -0.3040 8:512 0.00
S -0.3718 18.17 0.01 -0.3698 18.16 0.00
6 -0.4623 22.74 0.02 -0.4583 22.74 0.00
7 -0.8600 42.97 0.00 -0.8599 42.97 0.00
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Table 4-12: Complex Eigenvalues - Case 2: MS/Mp = 0.05

ISt Order 3rd Order
Eigenvalues Exact Eigenvalues Exact
Error Exrror
Mode Real Imaginary Bound (%) Real Imaginary Bound (%)
1 -0.3353 9.688 1.0 -0.3263 9.787 0.01
2 -1.244 25.56 0.03 -1.248 25.57 0.00
3 -1.814 36.17 0.01 -1.811 36.17 0.00
4 -0.2855 8.067 0.90 -0.2886 8.000 0.07
5 -0.3981 17.85 0.15 -0.3819 17.83 0.01
6 -0.4918 22.84 0.10 -0.4723 22.83 0.01
7 -0.8623 42.97 0.00 -0.8616 42 .97 0.00
Table 4-13: Complex Eigenvectors - Case 1
Ms/Mp = 0.01, ﬁs = 0.02, ﬁp = 0.05
Mode 1st 4th 3rd
DOF Modulus Phase Modulus Phase Modulus Phase
1 0.11 0.00° 0.11 0.0Q° 0.45 0.0°
2 0.08 -0.00° 0.09 0.00° 1.0 0.0°
3 0.05 0.00° 0.05 0.00° 0.81 0.0°
4 0.17 -33.0° 0.36 13.2° 0.25 -2.2°
5 0.97 -20.1° 1.00 18.3° 0.10 2.8°
6 1.00 -19.5° 0.98 18.9° 0.04 13.9°
7 0.24 -22.2° 0.29 16.6° 0.34 3.4°
% Error 0.1 0.1 0.0




55

Table 4-14: Complex Eigenvectors - Case 2

MM = 0.05, f_=0.02, p = 0.05

Mode ISt ath 3rd
DOF Modulus Phase Modulus Phase Modulus Phase
1 0.24 0.0° 0.22 0.0° 0.45 0.0°
2 0.19 0.0° 0.18 0.0° 1.0 0.0°
3 0.10 0.0° 0.10 0.0° 0.83 0.0°
4 0.05 2.2° 0.47 1.7° 0.26 -1.7°
5 0.93 -1.8° 1.00 1.8° 0.10 1.7°
6 1.00 -1.8° 0.95 1.8° 0.05 1.9°
7 0.20 -1.9° 0.32 1.7° 0.34 -1.7°
% Error 1.0 1.0 0.01
Table 4-15: Complex Eigenvectors - Case 3
MS/Mp = 0.05, ﬁs = 0.02, ﬂp = 0.05
Mode 1St ath 3rd
DOF Modulus Phase Modulus Phase Modulus Phase
1 0.24 0.0° 0.22 0.0° 0.45 0.0°
2 0.19 0.0° 0.18 0.1° 1.0 -0.2°
3 0.10 0.0° 0.10 0.0° 0.83 0.1°
4 0.01 0.0° 0.47 -0.5° 0.26 6.5°
5 0.93 0.2° 1.00 -0.4° 0.10 6.9°
6 1.00 0.3° 0.95 -0.3° 0.05 6.9°
7 0.20 -0.4° 0.32 -0.3° 0.34 6.3°
% Error 1.0 1.0 0.0
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Table 4-16: Complex Eigenvectors - Case 4

M /M, = 0.05, p = 0.05, B = 0.08

Mode 18t ath 3%d
DOF Modulus Phase Modulus Phase Modulus Phase
k& 0.24 0.0° 0.22 0.0° 0.45 0.0°
2 0.19 -0.1° 0.18 -0.2° 1.0 -0.1°
3 0.10 0.3° 0.10 0.2° 0.83 0.0°
4 0.05 9:1° 0.47 3.9° 0.26 1.7
5 0.93 -9.2° 1.0 7.4° 0.10 7.4°
6 1.0 -8.6° 0.95 8.0° 0.05 1.8°
7 0.20 1.2° 0.32 6.3° 0.34 0.2°
% Error 1.0 0.8 0.0




5. CONCLUSIONS

Classically and nonclassically damped primary-secondary systems
are studied in detail. The eigenproperties of the C-system are esti-
mated from those of the individual subsystems through a perturbation
approach. All cases, including detuned systems, closely detuned systems
and tuned system, are studied. By utilizing Gerschgorin’'s discs, any
general system can be easily classified into one of these three cases.

The eigenvectors of the C-system are more sensitive to the inter-
action between the P-system and the S-system than the eigenvalues. Once
a perturbed eigenvector 1is found, corresponding eigenvalues can be
obtained quite accurately through Rayleigh’s quotient.

In this study, higher order perturbations are derived, and can be
obtained recursively. The computations are not difficult. When closely
detuned modes, tuned modes and high frequency interactions exist, higher
order perturbations are necessary to obtain satisfactory results.

For tuned modes, a special transformation is introduced to trans-
form the problem into a detuned one. This method greatly facilitates
the numerical algorithm.

It is well known that the solution of eigenproblems for nonclassi-
cally damped systems involves much greater numerical effort than the
solution for classically damped systems. However, by using the pertur-
bation methods presented in this report the numerical effort can be

reduced substantially.
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Sharp error bounds are derived for the approximate eigenvalues and
eigenvectors.

The methods and equations are verified through numerical examples,
and sufficiently accurate approximate solutions have been obtained.

In summary, the complex dynamic characteristics of the C-system
can be accurately determined by the presented method. The major steps
are as follows: (1) mode synthesis; (2) identification of detuned and
tuned modes; (3) treatment of tuning modes; (4) perturbation method; and
(5) error analysis. The method can be applied to very general C-sys-

tems.
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