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ABSTRACT

RADICALS IN STANDARD RINGS

By

Larry J. Zettel

A standard ring is a non-associative ring,0l. , which

satisfies:

(1, y, z) + (z, x, y) - (x, z, y) = 0;

(x, y, wz) + (w, y, xz) + (z, y, wx) = 0; and

(x, y, x2) = O

for all w, x, y, z in a, where (a, b, c) = (ab)c - a(bc).

We consider standard rings 0!. for which if 16 Q, a

su‘bring of 02,, then there exists a unique y 6 3 fdr which

2y = x0

In this paper we consider various radicals for standard

rings.

A radical property is a prOpertwahich a ring may

possess which satisfies the following:

1, A homomorphic image of a ring which has propertyp

also has property 51

2s Every ring contains a P-ideal which contains all

other P—ideals. This ideal is called tbsp-radical.

3c Any ring modulo its P-radical has zero P—radical.

We begin by deriving the basic identities which we will

use throughout the paper. We then prove theorems which are

applicable for any choice of a radical property. Finally, we

list known results for the nil, Behrens, and Smiley radicals

for general non-associative rings.
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In chapter 2, we define a prime ideal and show the

existence of a prime radical in a standard ring. We charac-

terize the prime radical of a standard ring CZLas the mini-

mal ideal 0 such that 01/0. has no non-zero nilpotent ideals.

We show that if the standard ring has a maximum nilpotent

ideal, then it is equal to the prime radical.

In chapter 3, we prove the equivalence of local solva-

bility and local nilpotence in a standard ring. This leads

t6 the existence of a maximal locally nilpotent ideal,

called the Levitski radical. We show that the Levitski

radical contains the prime radical and is contained in the

nil radical. Also, we show that the Levitski radical con-

tains all locally nilpotent one-sided ideals.

In chapter u, we give two generalizations of the

Jacobson radical for associative rings. The first stems

from the definition of an element, x, as being quasi-

regular if there exists an element y such that x + y - xy =

O, and follows that for Jordan rings. The radical obtained

by this process is called the Jacobson-MacCrimmon radical.

The second generalization is that of Brown's, and is true

for any non-associative ring. This is called the Jacobson-

Brown radical. We show that in a standard ring, it makes no

difference if the Jacobson-Brown radical is defined in terms

of left or right ideals. we show that the Jacobson-

MacCrimmon radical contains the nil radical, and is con-

tained in both the Behrens and Jacobson-Brown radicals.

Finally, we show that the Smiley radical contains all other
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radicals considered.

In chapter 5, we consider the relationship of the

different radicals under various chain conditions. If the

ring satisfies the descending chain condition on right

ideals, then the prime and Levitski radicals are equal, as

well as the Jacobson-Brown and Smiley radicals. If every

subring of the ring satisfies the descending chain condi—

tion on right ideals, then in addition to the above, the

nil, Jacobson-HacCrimmon, and Behrens radicals are equal.

If the ring satisfies an ascending chain condition on sub-

rings, then the prime, Levitski, and nil radicals are equal.
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INTRODUCTION

A standard ring 01 is a non-associative ring satis-

fying:

1) (x, y, z) + (z, x, y) - (x. z. y) = 0;

2) (x, y, wz) + (w, y, xz) + (z, y, wx) = O; and

3) (x, y, 12) = 0

for all x, y, z, w in 01, where (x, y, z) = (xy)z - x(yz).

It is easy to compute that in any non-associative

ring, the following identity holds:

(x,y,z) + (z,x,y) - (x,z,y) = [xy,z] - [x,a]y - x[y,a]

where lx,y] =axy - yx. Thus identity(l’is equivalent to:

h) [xy,z] = [x,i]y + xfy,z].

That is, for each 2 in 0L, the mapping xq[x,z] is a deriva-

tion of fit.

Identity (3) is known as the Jordan identity, for a

commutative ring which satisfies identity (3), is called a

Jordan ring. Also, identity (3) is equivalent to identity

(2) unless 0!. possesses an element a a‘ 0 such that

a + a + a = 0. Thus it is clear from the definition that

any associative ring and any Jordan ring are standard rings» A

In addition throughout the paper we shall assume that

if 3 is any subring of a and x 68, then there exists a

unique y 58 such that 2y = x.
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The concept of a standard ring was first introduced

by Albert [1] where he considered a finite dimensional

standard algebra over a field. He showed that a finite

dimensional standard nil algebra is nilpotent and in a

finite dimensional standard algebra over a field of

characteristic # 2, an ideal is solvable if and only if it

is nilpotent. Then he called the maximal solvable ideal

of 01, the radical of 0! and showed that if’dl is any

finite dimensional standard algebra over a field of charac-

teristic if 2, then the quotient algebra al/R where R is the

radical of 01, is semisimple. Furthermore, any semisimple

standard algebra is a finite direct sum of simple ideals.

Kleinfeld [7] showed that a simple standard ring is

either associative or commutative Jordan. Thus, combining

these, we see that a finite dimensional standard algebra

modulo its radical is the finite direct sum of simple

associative or commutative Jordan algebras.

The problem we consider is derived by removing the

condition of an algebra over a field. Hith the relaxation

of this condition we have various choices for the radical

of the ring. All of our choices will be made so as to

furnish information about the structure of the ring in the

following manner. We introduce the radical as an ideal such

that the ring modulo its radical has zero radical. Then we

characterize rings which have zero radical. Since we have

dropped Albert's condition of a finite dimensional algebra,

we can no longer hope for a result such as a finite direct

sum of simple rings. However, we are able to represent
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rings with zero radicals as subdirect sums of certain types

of rings. Thus we study the structure of a standard ring a,

by characterizing an ideal I, then investigating 62/1.

Several radicals have been studied for associative rings

and we can show the existence of similar ones in.a standard

ring. The prime radical, Q(0[), is the intersection of all

prime ideals (Chapter 2). The Levitski radical, Md), is

the maximal locally nilpotent ideal (Chapter 3). Corres-

ponding to the Jacobson radical of associative rings, we

have two radicals for standard rings. One, JH(0[), follows.

that considered by HacCrimmon [6] and Tsai [11] for Jordan

rings, and the other, JB(01), has been introduced by Brown[3]

for a general non-associative ring. In addition, there are

other radicals which have been studied for arbitrary rings:

3(a). the Smiley radical [10]; 3(a), the Behrens radical

[2]; and l(0l), the maximal nil ideal or nil radical [2].

For an arbitrary standard ring, the relationship of these is

shown by the following diagram where each radical is contained

in those above it in the diagram.

3(a)
/ \JB(a)

\Jn(a)/

B(0L)
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When various chain conditions on the ideals of 61 are

present, we have the following.

If 01 satisfies a descending chain condition on right

ideals, then:

stat.) = JB(OZ)

B(dZ)

mm)

N(0£)

Ltoz.) = QM.)

If 0! satisfies a strong descending chain condition [9],

that is each subring of OZ satisfies a descending chain con-

dition on right ideals, then:

3(a) = JBML)

B(dll = JH(€R) = N(61)

Lm.) = am.)

1:02 satisfies an ascending chain condition on sub-

rings, than:

Mm) = Mon) = QM!)

 



Chapter 1. Foundations

A. Basic Identities

We begin by deriving some identities which will be used

in the remainder of the paper. Recalling the defining

identities, (1-3), we see that by setting x = z in (1) we

obtain that a standard ring is flexible and this combined

with (2) gives that a standard ring is a non-commutative

Jordan ring, in particular it is power-associative.

Using flexibility, we may rewrite (2) as

5) (wx,y,z) - (w,y,xz) + (wz,y,x) = O or as

6) (wx,y,z) + (xz,y,w) - (x,y,wz) = O.

Interchanging x and a in (2) and subtracting, we see that

7) (w,y,[x,z]) = 0.

Using (7) and flexibility on (6), we see that

8) (x,y,zw) - (xz,y,w) + (z,y,xw) = 0.

Now by considering (6) and (8) as operations of left and

right multiplications, we have:

9) Ry(xz) = Rnyz + Rx(Ryz - Rsz) + 32(Ryz'Rny) and

10) L(xz)y = Lnyz * Lx(Lzy - LzLy) + Lz(ny~Lny).

Identity (1) considered as operating on 3 gives:

- + - - =11) ny Lny Rny ny Lny + Rny O.

B. General Radical Theory

Before studying standard rings, we discuss some general

properties of radicals. Let P be a preperty which a ring

may possess. A ring is a P-ring if it possesses property P.

An ideal I of at is aP-ideel if I is aP-ring. A ring

5
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which does not contain any nonpzero FLideals is itsemisimple.

"is called a radical property if the following hold:

1) A homomorphic image of aP-ring is a P-ring.

2) Every ring R contains a P-ideal S which contains

every other P-ideal of the ring.

3) The quotient ring, R/S, is P-semisimple.

We will use two methods for specifying a radical

preperty. The first is to explicitly define the property.

This will be done in Chapters 3 and h. The second is to

begin with a class of rings N and construct a new class of

rings N'as follows. A ring is said to be of degree one over

N if it is zero or a homomorphic image of some ring in N. A

ring, R, is said to be of degree two over N if every homo-

morphic image of R contains a non-zero ideal which is a ring

of degree one over N. For any ordinal number [3, if fi-l

exists, a ring is said to be of degree 3 over N if every

non-zero homomorphic image of R contains a non-zero ideal

which is a ring of degree 5-1 over N. Iffi is a limit

ordinal, then R is of degree 3 over N if it is of degree

over N for some “(fl. If N is the class of all rings which

are of any degree over N, then define a ring to be 3 Pi]- ring

if it belongs to N. It can be shown [11,, p. 12] that pfi is a

radical preperty. The radical determined by this property is

called the lower radical determined by the class N. We shall

use this approach at the end of Chapter 2 with N as the class

of nilpotent rings. We shall show that this process yields

the same result as the prime radical and thus in this special

case is a radical preperty.
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Using the concept of a radical property, we can avoid

reproving the same theorems several times.

Theorem 1.1: If Rad(m) is the P-radical of OZ and if
 

I is any ideal of OZ such that “/1 is P-semisimple, then

IQ Rad(oz).

2.13292:

Let R = Rad(01). Since (I + R)/I i; isomorphic

to R/(IDR), it is aP-ring by preperty 1) and thus is

aP-ideal of 01/1. However, since “/1 is P—semisimple,

(I + R)/I = 0, that is, 12 a.

We will characterize semi-simple rings as subdirect

sums. A subdirect sum is a subring of the complete direct

sum such that the natural projections are onto each co-

ordinate summand. The following theorem which we use to

obtain our representations is well-known [13,, p. 6h].

Theorem 1.2: A ring 0L is isomorphic to a subdirect
 

sum of rings 01‘.‘ if and only iffll contains a class of

ideals {8‘} such that max = o and m/gfi sag.

Theorem IQ: A subdirect sum ofP-semisimple rings is
 

‘lsemisimple.

m:

Let ”L be a subdirect sum of ”(it where each 01“

contains no non-zero p-ideals. Let 77“ be the pro-

jection map onto 0L4. Let R be the p-radical of 0L.

Then 77“(R) is the homomorphic image of aP-ideal and

thus is ap-idesl of a“ . Thus 77“(R) = O for cachet and
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so R = 0 and 01. is P-semisimple.

C. Known Results

Behrens [2] showed that being nil is a radical prop-

erty, that is, if NML) is the sum of all nil ideals of a

ring 01, then N(OZ) is a nil ideal and N(0Z/N(az)) = 0.

One method of obtaining radical properties is to

assign to each element a of a ring 61 an ideal F(a) for

which F(a+b)§. F(a) + F(b) for each a and b in a. An

element, a, is called F-regular if a E F(a) and an ideal is

F-regular if all its elements are F-regular. For each

choice of F(a), there is an F-radical R(0l), which con—

sists of all elements, a, of 6n.for which the ideal (a)

is F-regular, where (A) is the smallest ideal of containing

the set A.

Behrens showed that the choice of F(a) = (a2 - 8)

satisfies the desired property and leads to the Behrens

radical 3(01), which is the set of all elements, a, such

that b G (b2 - b) for each b e’ (a). He also showed that a

ring 61.18 B-semisimple if and only if it is a subdirect sum

of rings 6%“ where U@‘ has a non-zero idempotent generating

its minimal ideal. In his paper, it follows easily that

8(01) contains no non-zero idempotents.

Smiley [10] chose for F(a), the ideal (f ax — x +

ya - y I x, y€ 0?. }). Thus 8(a), the Smiley radical of

a is the set of all elements a of m such that if ‘66 (a),

thenb£( {bx-x+yb-yl x, yéQI). He showed

the following:

 



Theorem 1.4:

a) 3(02/S(OZ)) = 0.

b) azis S-semisimple if and only if it is isomorphic

 

to a subdirect sum of simple rings with identity.

c) If the descending chain condition holds for ideals

of an S-semisimple ring 61, then 62 is isomorphic

to the full direct sum of a finite number of

simple rings with identity.

Behrens also showed [2] that, for any non-associative

ring mans, swag 3(a).

 



Chapter 2. The Prime Radical

In this chapter, we shall first introduce the concept

of prime ideals which generalizes that of associative rings

and that of Jordan rings given in {13]. The prime radical

of a standard ring 01, which is defined to be the inter-

section of all prime ideals of 6!, will be investigated.

Finally, a characterization of the prime radical will be

given.

Lemma 2.1: If A and s are ideals of oz, A*B = A82 +
 

B2A + B(BA) + B(AB), and A#B = A32 + 13% + (AB)B + (BA)B,

then A*B = A#B.

319.93.:

It suffices to show that B(BA) and B(AB) are con-

tained in A#B, and that (AB)B and (BA)B are contained

in A*B.

Let a 6 A, b, b'é B. Then by the flexible law,

(b, b', a) + (a, b', b) = 0, we have b(b'a)€ 132A +

(AB)B + AB2_C_ A#B, i.e. B(BA)§ A#B. Furthermore, by

identity (1), (b, a, b') + (b', b, a) - (b, b', a) = 0,

thus we have b(ab')é (BA)B + 82A + B(BA) + (AB)BQ

A#B. Thus B(AB) is also contained in A#B.

The same identities also show that (AB)B and (BA)B

are contained in AfiB.

Theorem 2.1: If A and B are any ideals of 62, then
 

AeB is an ideal of’OZ.

10
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3.13.292:

We first show that A*B is a left ideal of 02.

Let x601, aé A, and b, b' 6 B. Then x(a(bb')) =

1R8(bb') = ”‘(Ranbb' ” RbRab' ' RbRaRb' * Rb'Rab "

Rb'RaRb) by identity (9). Hence, x(a(bb')) = F(bb') +

'b'(ab') — (ba)b' + b"(ab) - (b'a)b A-aB where 3 =

xa, b = xb, and "5' = xb'. Thus x(ABZ)_C_ A-N-B. Using

the same identity with the apprOpriate substitutions,

we obtain x(B(AB)) S A-R-B and x(B(BA)) .5 Ail-B.

In order to show that AsB is a left ideal, it

remains to show that x(BZA) _C_ A*B. The following two

steps are used for that purpose:

(a) x(Rbb.Ra - Lbb'Ra)€ A-n-B; and

(b) xL(bb,)a€A*B for all b, b'€ B and a 6 A.

We can verify (a) by direct computation using identity

(1), for «(va38 - Lbb,Ra) = -[x(bb') - (bb')x]a

=[+ (x, b, b') 4» (xb)b' + (b, b', x) + b(b'x)] a =

+[(h, x, b') d» (xb)b' + b(b'x)] a = {[(bxlb' - b(xb')

d- (xb)b' + b(b'x)]a 6 82A S A*B. Identity (b) can be

verified using identity (10), for xL(bb')a = x(LaLbb,

+ Lear. - the. + vaLba - Leigh) = (W)? +

(b'afi; - a(b'b) + (bal'b' - b(a"5')€ A-X-B where 'a- = ex,

"5 = bx, and '5' = b'x.

We now return to showing that x(BzA )S A-K'B. Let

b, b' e B and at A. Then, by identity (11), we have

x((bb')a)l= JLR(bb')a = x l:‘(bb')a ' Lat‘bbt I Rbb'Ra

' Lbb'Ra " RaI‘bb' = XI«time " x(Rbb' " Lbb'Ra) "

(bb')? + (bb')a* where '5 = ex and a* = xa. Thus by
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(a) and (b) we see that x((bb')a)€ A*B.

A*B can be shown to be a right ideal by similar

techniques.

Corollary 24; If A is an ideal of at, then A3 = Asa
 

and A3 is an ideal of 01.

We now proceed to define a prime ideal and the prime

radical for a standard ring.

Lemma 2.2: Let P be an ideal of 01. Then the follow-

ing are equivalent:

a) Whenever A and B are ideals of dtlwith A*B S P, then

A S P or BEE P.

b) Whenever A and B are ideals of a with A n c(P) #¢

and B n c(P) ,9 ¢, then (Ail-B) n c(P) #¢where c(P)

is the complement of P.

c) If a, b e c(P), then ((a)*(b))n c(P) at ¢, where

(x) is the smallest ideal of 01 containing x.

PROOF:

aléb):

 

Mfr-)0):

c)§ b):

One is merely the contrapositive of the

other.

Let A = (a), B = (h). Then a 6 A I) c(P)

M and b€ s n c(P) 26¢. Thus ((a)*(b))

n em = (are) n c(P) as ¢.

Let A and B be ideals with an c(P) # ¢ and

En c(P) # ¢. Thus we may choose a G An

c(P), he s n c(P). Then by c)¢# ((a)s

(tn/t c(P) g Ass 0 c(P). Thus b) holds.
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Definition 2.1: An ideal P of a standard ring is a
 

prime ideal if it satisfies any one of the statements in

Lemma 2.2. An ideal P of an associative ring 6! is an A-

prime ideal of 6! if whenever A and B are ideals of 0! such

that ABS P, then A S P or Big P. An ideal P of a Jordan

ringfll is J—prime if whenever A and B are ideals of a such

that AUB S P, then A S P or B S P where AUB is the set of

all finite sums of elements of the form aiUbi for s1 E‘ A

and b1€ B and Ux is the quadratic Operator defined by

Ux = 23x3 - 3x2.

Theorem 2.2: If 01 is an associative ring, then an

ideal P is a prime ideal if and only if it is an A-prime

ideal. If 0! is a Jordan ring, then an ideal P is a prime

ideal if and only if it is a J-prime ideal.

213.922:

a) Let 0! be an associative ring.

Assume that P is a prime ideal of’OZ and that

A and B are ideals of at such that AB S P. Now

(BAH-(BA) = (BA)3 = B(AB)ABA S“ BPABAS P. Thus

BAS P. So A*BS P and hence A g P or B S P. That

is, P is an A-prime ideal of 01.

Conversely, assume that P is an A-prime ideal

of OZ and that A and B are ideals of 0! such that

AaBS P. Then, since A1325 Are and both A and 132

are ideals, we have AS P or 329. P. But if BZS P

thenBS P, soAS P orBS P. That is, P is a

prime ideal.
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b) Let 0! be a Jordan ring.

Assume that P is a prime ideal of 0L and A and

B are ideals of 01 such that AUBS P. Then C =

A (1 B is an ideal of 02. contained in P or else C3 =

Cit-C = Cch AUB S P contradicts the fact that P is

a prime ideal. However, if C = An BS P, then

Ail-BS CSP so either A S P or BS P. Thus P is a

J—prime ideal.

Now, assume that P is a J-prime ideal of 62 and

that A and B are ideals such that A-n-BS P. Then

AU EA‘R’B S. P and so either A S P or B g P. Hence P

is a prime ideal of 02.

Definition 2.2: A non-empty subset, M, of OZ is a 0,-

system if whenever A and B are ideals of 02. such that A I) M

and B n M are non-empty, then (As-B) n M is non-empty.

Theorem 2.3: If P is an ideal of 6?, then c(P) is a

Q-system if and only if P is a prime ideal.

PROOF:

This is part b) of Lemma 2.2.

Definition 2.3: Let A be an ideal. The radical of A

is AQ = (r ' any Q-system containing r meets A ).

Theorem 2.h: Let A be an ideal of’dl. The radical of

A is the intersection of all prime ideals containing A.

PROOF:
 

Let b E AQ and let P be a prime ideal containing

A. Then c(P) is a Q-system missing A and so bf c(P).
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Thus b €‘P and hence b is in the intersection of all

prime ideals containing A.

Now assume b¢ AQ. Thus there exists a Q-system M

with b e M and M n A = :5. Let& be the family of

ideals of 01. containing A but disjoint from ‘the set

M. New A is an ideal withAS A and A!) M =¢ so

A SJ and‘g is non-empty. Next, let 11 S 12 S °°° - ’

be a chain of elements urge. Let I =(IIJ. Since A

S 11, A S I. Also if x G I n M, then there exists a

,1 such that x E 11 and the 11 n M ,5 ¢, so 1;} ¢J which

is a contradiction. Thus I 58, and; is an inductive

set, and Zorn's Lemma may be applied to obtain a maxi-

mal element P. We claim that P is a prime ideal. Let

B and c be ideals with B $ P and c g P, thus P; a +

P and P; C + P. So, by the maximality of P, (B + P)

n are ¢, and (c + P)/) M#¢. Then, since u is a

Q-system, (B + New + P)/) M r ¢. But ((B + P)*

(c + Png (Be-c) + P, thus (asc)$ P or else Phi.

But then P is a prime ideal and b 6 M and M n P = ¢

means that bf P. Thus b is not in the intersection of

all prime ideals containing A.

Definition 2.h: An ideal P is semi-prime if for any

ideal A with MIA 5 P, we must have A SIP. A non-empty sub-

set S odeis an SQ-system if for any ideal A with A f) S

5‘ ¢, then (seam s as ¢.

Note that any prime ideal is also semi-prime.
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Lemma 2.3: If P is an ideal, the following are equiva—
 

lent:

a) P is semi-prime.

b) c(P) is an SQ-system.

c) If a E c(P), then (a)*(a) n c(P) 5‘ ¢.

M:

Similar to Lemma 2.2.

Definition 2.§: Let A be an ideal, AQ = [r G 02, any

SQ-system containing r meets A} .

Theorem 2.6: Let A be an ideal of 4!. Then
 

a) AQ is the intersection of all semi-prime ideals

containing A.

b) AQ is a semi-prime ideal.

c) A is semi-prime if and only if A = Aq.

2.13192:

a) If b E AQ and P is a semi-prime ideal with A S P,

then c(P) is an SQ-system missing A and thus b¢

c(P) or b i P. Thus b is in the intersection of

all semi-prime ideals containing A.

If b¢ Aq, let S be an SQ-system missing A with

b€ 3. Now let; be the family of all ideals con-

taining A which are disjoint from S. A $3 80.2 is

non-empty and we can also show as in Theroem 2.h

that Zorn's Lemma may be applied to get a maximal

element P. Since b€ S and PI] S = ¢ , bfP. To

show that P is a semi-prime ideal, suppose that B is
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an ideal with B¥ P. Thus P; B + P, so by the

maximality of P, (B + P) ll S 5‘ ¢. Now since S is

an SQ-system, (B + P)*(B + P) I) S# ¢. If (Ba-B)

SP, we would have ¢¢ (B + P)*(B + P) n S§((B*B)

+ PM) 3 g Pn s, which would imply that P¢J.

Thus P is semi-prime.

b) By part a) , AQ is an ideal and if B is an ideal

with BfiB S AQ = 0 Ps- where Pfi, runs over all semi-

prime ideals containing A, then Bit-BS Pa, and thus

BS Pg, for each R}. Thus B S n P* = Aq, that is,

AQ is semi-prime.

c) Since AQ is semi-prime, AQ is the smallest semi-

prime ideal containing A. So A is semi-prime if

and only if A = Aq.

Lemma 2J4: If a C a and S is an SQ-system with a C S,

there is a Q-system M with a 6 M and MS S.

PROOF:

Construct M = lal, a2, m} as follows. Let a1 =

a. Choose a2€ (81)*(81)n 8. "’. 8k.“ € ((ak)*(8k)l

n S. This is always possible since S is an SQ-system.

Clearly, a = a1€ M and ME 3. We now show that M is

a Q-system, that is, ((ai)*(aj)) A M 75¢. Now °t+l

€ ((Btl‘flatll E (at). 80 that (at+1) S (at) and more

generally, (ak) S (at) whenever t S 1:. Now let r =

"181(1. 3). “n+1 € ((ar)*(ar))n S C ((81)*(aJ))n S

since (ar) S (a1) and (er) S (a3).

Theorem 2.7: For any ideal A of ”Z. AQ = AQ.
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PROOF:
 

Each prime ideal is also semi-prime so, AQ = I) Pg,

S ()P* = AQ where P.” runs over all semi-prime ideals

containing A and P* runs over all prime ideals which

contain A.

Also, if x€ AQ and if S is an SQ-system containing

x, then by Lemma 2.li, there is a Q-system, M, with

x: M and M53. But chQ implies that ¢¢ An M

QA n S, that is,x€ AQ. Therefore, AQ1= Aq.

Definition 2.6: For any ideal A, AQ ( =AQ) is the prime

radical of A. The prime radical, CH“), of a standard ring 6

01 is the prime radical of the zero ideal in a. A standard

ring is Q-semisimple if and only if Q,(dl == 0.

Theorem 2.8: Ifdl is a standard ring, and I is an
 

ideal of a, the quotient ring, all is Q-semisimple only

if 12 Q(a,).
I

PROOF:
 

Let‘7: gig-)i = all be the natural homomorphism.

Consider the correspondence between the ideals of

all and the ideals of a which contain 1. Suppose P

is a prime ideal of a: containing I. Let P = P/I.

Suppose A and B are ideals of ”a, with KfiB S P. Then

=7L'lfA'), B =7z'1(B) are ideals of d with A-aB =

’L’1(K)*1[1(§) =2'1(A*B)S 72'1”) =7Z'1(?z (PDQ P +

I S P. Now since P is prime, either A S P or B S P,

but then either As P or BS P, that is, P = P/I is a

prime ideal of 01/1. Now suppose P/I is a prime ideal
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of 61/1 and A and B are ideals of 61 with A*B QIP.

Then (A + I)/I 9:- (B + I)/I S ((Ax-B) + I)/I S P/I and

so by the primeness of P/I either (A + I)/I SfP/I or

(B + I) S P/I, so either A S P that is,.(A + I)§P or

(B + I)SP, or B S P. Thus we have shown that if I S P

Q“, then P/I is a prime ideal in 4/1 if and only if

P is a prime ideal of“.

Now, MI is Q-semisimple if and only if /) P/I = 0

where the intersection runs over all P/I, prime ideals

of 61/1, if and only if’ltP = I where the intersection

is over all prime ideals P which contain I. Thus, if

Ol/I is Q-semisimple, (1(a), the intersection of all

prime ideals of a is contained in 1.

Corollary 2.2: The quotient ring, 62/Q(6l), is Q-

semisimple, that is, Q(a/Q(a.)) = O.

25.99::

In the previous proof, it was shown that 62/1 is

Q-semisimple if and only if I contains the intersection

of all prime ideals which contain I. Now let I = Q(6Z).

Q(61) is the intersection of all prime ideals, so each

prime ideal of 0(- contains CH“) and thus a/Q(a) is

Q-semisimple.

Definition 2.7: A ring is a prime ring if and only

if (0) is a prime ideal.

Theorem 2.9: A prime ring is Q-semisimple.

PROOF:
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If (0) is a prime ideal, then Q(Cl), the inter-

section of all prime ideals is zero, that is,6lis Q-

semisimple.

Theorem 2.10: An ideal P of“ is prime if and only if
 

is a prime ring.

PROOF:
 

If fil/P is a prime ring, suppose A and B are ideals

with A-n-BQ P. Then Adi-BS P = 0, so A = O or B = O,

that is, A.S P or B Q P.

If P is a prime ideal and K and B are ideals of

“JP with 1.41% = 0, then since EMS = U = P, we have A-aB

EPandthusASPorBSP, thatis,-A-=Oorl_3'=0.

Theorem 2.11: A ring is Q—semisimple if and only if
 

it is a subdirect sum of prime rings.

f
c
‘
,

PROOF:

Apply Theorem 1.2.

Lemma 2.5: If A is an ideal 01302 and r 6 A then
 

Q)

A for some positive integer k.

PROOF:
 

We will show that M = {‘r, r3, r32,oo-,r3k-o-}

is an SQ-system. If C is an ideal and r336 C I) M,

then r3j+l € (C*C)I) M. So M is an SQ-system contain-

ing r and thus Mr) A # ¢, so rke A for some k.

Theorem 2.12: Q(OZ) is a nil ideal of 6C.
 

PROOF:
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If r 6 (2(a) = (0)Q, then for some k, rké (O),

that is rk = 0.

Definition 2.8: An ideal I of 02 is nilpotent if
 

there exists a positive integer k such that the product of

any k elements of I in any association is equal to zero,

that is,lk = 0.

Theorem 2.13: 6l.is Q-semisimple if and only if
 

contains no non-zero nilpotent ideals.

that

mass:

61 is Q-semisimple if and only if (0) = (0)Q if and

only if (0) is semi-prime. Suppose K is a non-zero

nilpotent ideal. Then there is a t such that K3t = 0,

but x3t'1 r 0. Hence x3t-1sx3t-1 = (x3t-1)3 = x3t = 0,

which shows that (O) is not semi-prime. Now if (0) is

not semi-prime, then there exists a non-zero ideal K

with K3 = K-fiK = 0.

Corollary 2.3: OJ“) is the smallest ideal I of“ such

61/1 has no non-zero nilpotent ideals.

£39.92:

Since Q(6Z/Q(6[)) = O, 6z/Q(6Z) has no non-zero

nilpotent ideals. If 61/1 has no non-zero nilpotent

ideals, then 61/1 is Q—semisimple, and by Theorem 2.8,

I 2 (Ma).

Theorem 2.1g: A prime standard ring 62,13 either
 

associative or Jordan.

PROOF:
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If in identity (2), we interchange x and z and then

subtract, we obtain: (w, y,[x, z] ) = 0. Thus each

standard ring is an accessible ring as investigated

by Kleinfeld [7], and thus we have:

(a) [(w, x, y), z] = O for all w, x, y, z ind.

Now,following Kleinfeld, let A be the set of all

finite sums of elements of the form (x, y, z) or of

the form w(x, y, 2). Let B consist of all finite sums

of elements of the form [x, y] or of the form [x, yjz.

Then in a standard ring A and B are ideals such that

a/A is associative and MB is Jordan. Kleinfeld

showed that if 0! possesses no non-zero nilpotent

ideals, then AB = 0.

Now suppose that AB = 0. We claim that BA = 0.

Let 9 represent any associator, that is, a = (x, y,

2). Then A consists of sums of elements of the form

either a or we. By (a) be = ab for any h EB, and

since AB = 0, we have Ba = 0. Also, b(wa) = [b, we] +

(wa)b = [b, we] = -[wa, b] = -w[a, b] - [w, b]a 6‘ Ba

= 0. Thus if AB = 0, BA = 0, and hence A*B = 0.

Now, since a prime ring is Q-semisimple, it has no

non-zero nilpotent ideals and thus AB = O = A*B. But

then the primeness of a means that A = 0 or B = 0.

If A = 0, then a is associative, and if B = O, filis

Jordan.

we now proceed to give another characterization of the

prime radical. Given a ring 6!, let N0 = 2:18 such that IS
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is a nilpotent ideal of a» Next choose Nl such that NlNO

= {I‘d/NO where I" is a nilpotent ideal of a/NO. In

general, suppose that a is any ordinal number. If a is not

a limit ordinal, select Na such that Na/Na-l is the sum of

all nilpotent ideals of CZ/Na_1. If a is a limit ordinal,

let Na =z'Nfl for all p<a. If a has ordinal number Y, then

this process stops in at most Yateps. Let’z'be the smallest

ordinal such that N7= 11.8,]. ( = “1+2 = ...), Let NT: N.

UZ/N has no non-zero nilpotent ideals and is the smallest

ideal in this chain with this property.

Lemma 2.6: N = n Q1 where Qi is such that a/Qi has

no non-zero nilpotent ideals.

25903.:

am has no non-zero nilpotent ideals, so [1 Q1 Q N.

Let Q1 be an ideal such that a/Qi has no non-zero

nilpotent ideals. Thus No S Qi' We will show by

transfinite induction that N‘SQi. If a is a limit

ordinal, N.3 = 2P:8Nfl S Q1. 11' a is not a limit

ordinal, by induction Na-l S Q1 and if Na f Q1, then

there is a nilpotent ideal I/Na_1 S a/Na-l with

I/Na_1¢ Q1/N8_1, so I g Q1 and (I + Q1VQ1 ;£ 0. Now

I is nilpotent and thus so is I 0 Q1, but then (I +

Q1)/Q1 (92’ I/(I fl Qi) is nilpotent which contradicts

the choice of Q1. Thus Na S Q1 for each ordinal

number a. Hence NSf Q1 for each i, and thus Nani'

Theorem 2.15: The prime radical offl is equal to N.
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PROOF:
 

Q(0l) is the intersection of all prime ideals of 62.

If P is a prime ideal, then CZ/P is a prime ring and

hence Q-semisimple. Thus by Theorem 2.13, “JP has no

non-zero nilpotent ideals. So by the preceeding lemma,

N S P. Thus NS QM.) = 0?.

Also, if Qi is such that CR/Qi has no non-zero nil-

potent ideals, then by Theorem 2.13, OZ/Qi is Q-semi-

simple and then by Theorem 2.8, Q1 2 Q(m). Thus

ma) S ”Q1 = N.

Corollary 2.1+: The prime radical of Ulcontains all
 

nilpotent ideals of 01..

PROOF:
 

By definition, each nilpotent ideal ofidzis con-

tained in No S ma).

Corollary 2.5: If Olpossesses a maximal nilpotent

ideal, w(oz). then mar.) = mm).

PROOF:

 

 

U(6KJ = NO and CZ/NO has no non-zero nilpotent

ideals, that is, N1 = N0 = ch). So w(oz) = sz).



Chapter 3. The Levitski Radical

In this chapter, we show first that a finitely gener-

ated standard ring is nilpotent if and only if it is solvable.

This implies the existence of a maximal locally nilpotent

ideal called the Levitski radical. Thus local nilpotence is

a radical property in the sense of chapter 1. ‘We charac-

terize rings with zero Levitski radical and show the rela-

tionship between the Levitski and prime radicals. Finally,

it is shown that the maximal locally nilpotent ideal contains

all locally nilpotent one-sided ideals.

Let X be an ordered subset of a standard ring OZ, and

let 'X- be the set of all words generated by X. If a 6 i,

then let deg a be the X-length of a. Order X'as follows:

If a, a'e X, then a“ a' if

1) deg a < deg a'; or

2) deg a = deg a', a = a1a2' a' = al'az', and al<f al'

or a1 = a1' and az< az'.

e.g. ((x1x2)x3)xu) (y1y2)(y3yh) for all xi, yi in X since

deg (1112)X3> deg (ylyz). Let Y be the set of right and

left multiplications by elements of X, that is, Y = f.

R 1'1: ' x6 1' and let T be the set of all (associative)
x,

words generated by Y. For a e I, let Ta denote either R8 or

L e 3: 000a If W’ Tleszy3 Tyn is an element of Y} then deg

H =Zrdeg yi and t(W) = n = the T-length of w. Order Y and

Y as follows:

1) If y1< y2 are elements of X, then Ry1< Ly1< Ryz;

25
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= .g. ' = 00.2) If w Tleyz Tyn and w Tlezz sz, then

W<W' if

a) n< m, or

b) m = n, Tyl = T21 = T21, Tyz = T22, .00, Tyk =

Tyk+1 and Tyk+1<Tzk+1 for some k = 0, 1, 2: '°

131-1.

A word W in’Y is normal if V = Tleleszzz'HTynTZn where

OOO<T
T yn3'1 < Tye < and Tzl< T

does not appear.)
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can be written as a sum of normal

< . . .< Tzn ( possibly Tyl

A word'w in Y'can be normalized if gzkw

words each of degree

equal to dog W, for some non-negative integer k.

For the following, let x be a generating set for“, .

Lemma 3.1:
 

If a' is a product of at least 2n + 1

elements of X, then a' = azwi for some a ed, W1€ Y where

t‘"i)2f no

PROOF:

It is possible to choose a such that a' = aw where

deg H'= 2n. Thus it suffices to show that if b is a

product of three elements of x, then Tb can be written

as a combination of words of T-length 2 or 3, each of

degree equal to deg b.

Rewriting identities (9) and (10), we have:

Rx(yz) = Rnyz + Ry(sz- Rsz) + Rzmxy - Rny) and

L(xy)z = Lzny + Lk(LYZ - LzLy) + Ly(sz - LzLx)°

From (11) we obtain: ny - ny = (Lx - Rx)Ry + (Ly -

Ry)Lx.

Replacing y by yz we obtain:
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+ (Lx - Rx)Ryz + (L - Ryz)Lx and
Lx(yz) = Rx(yz)

replacing x by xz:

R(xz)y = L(xz)y + (sz ' sz)Ry + (Ly ' Ry)sz'

Thus the first two cases imply the desired result for

yz

the remaining two cases.

Lemma 3.2: For every 9, b, c 561, we have the follow—
 

ing:

a) RaLch = ’LcLbLa + RbRca ' Rb(ca) + Rach + LcLab3

b) RaRb - Rab = LaLb " Lbs;

c) LaR‘b ’ RbLa = Lab ” Rab + RaRb ‘ LbLa°

PROOF:
 

a) This is (2) considered as operating on x with the

following substitutions: z = a, y = b, w = c.

b) This is the linearized flexible law.

c) This is (1) operating on 2 with x = a and y = b.

Lemma 3.3: If we Y, then w =2 wiL +z 881 +231: where

WiL is a word involving only Ly's and Sk is either a RyLz

or a Ly 2’

we shall prove this by induction on the T-length of

W.

If‘H = Rny, we use Lemma 3.2b. For all other cases

where t(W) equals 1 or 2, the result is immediate.

Now assume the result is true for all words of T-

length less than n. Let S denote any word (or sum of

words) of T-length less than n, that is, words to

which the induction hypothesis may be applied.
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Let w = Tszc-oTn, where nqz 3 and each Ti is either

8i

L or R .

81

CASE

CASE

CASE

CASE

1: Tn-lTn =LyLz

If each Ti is equal to an in, then we are done

immediately. If not, let Tk = R8 be the last

right multiplication occuring in w, that is, Tt =

Rd implies t: k, k< n-l. Using Lemma 3.2a, we

have

V = T1T2"'Tka+lTk€2°°'Tn =

= T1''°Tk-1(RaLch)Tk+3”'Tn

= Tl'°°Tk-l(‘LcLbLa + RbRca ’ Rb(ca) + Rach

+ LcLab)Tk+3"'Tn

= Tl'°'Tk-1LcLbLaTk+3°”Tn + S

New repeat the above process on the first term of

the above mud continue until k = 0, that is

= L11L12"'an + S.

2: TNT. = 15R.

Apply Lemma 3.2b.

w = T1---Tn-1(LyLz - Lzy + Byz) = Tl-ooTn_2LyLz+ s.

New apply Case 1.

3: Tn-2T ~1Tn = RnyLz

Apply Lemma 3.2b.

H'zT1n”H.11-3(LXLY- 911+ ny’Lz

= T:~-v n-BLxLyLz + 8.

Apply Case 1.

h: Tn-zT -1Tn = LnyLz

Apply Lemma 3.2c.

w’= Tlooo n-3‘Rny + ny - ny + Rny- Lny)Lz
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= T1---Tn-3(Rny + Rny - Lny)Lz + S.

Apply Cases 1 and 3.

CASE 5: Tn_2Tn_1Tn = LxLsz

Apply Lemma 3.2b.

W = Tlo-oTn_3(Rny - ny + Lyx)Rz

Apply Case 2.

CASE 6: Tn-2Tn_1Tn = RxLsz

Apply Lemma 3. 2c .

w :2 T1. 0 oTn-3

Apply Cases 2 and 5.

(LyRx - Lyx + Ryx - Rny + LxLy)Rz

Thus we have considered all possibilities for the

final factors of W and have either proven theses cases

or reduced them to ones already proven, and therefore

the proof is complete.

Lemma 3.Q: Any word W'in Y involving only left multi-
 

plications can be normalized.

PROOF:
 

This follows by induction on t(W) by using:

LxLyLz = ’LzLny * Lnyz + LxLzy + Lzny ' L(xz)y and

ZLxLny = Lnyz + 2Lxny - szy-

These are both merely restatements of identity (10).

Note that in the resulting words which are of the same

T-length as that we started with, none of the subscripts

increase in degree. Thus if H = LalLblLasz2'°°Laann,

suppose that by is the largest element of b1, b2,---bn

with respect to the ordering of 3. Then using the

above identities we obtain 12kw’= LclLdl"‘Landn + S

where c1, c2, ---,cn is a reordering of a1,--',an,
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d1,...,dn is a reordering of b1, ---, bn, (1n = bN and

S is a sum of words of T-length less than t(W) (perhaps

the first word does not appear.) Then the induction

hypothesis may be applied to LclLd1"'Ldn L Since

-1 cn'

(1D is larger than any other d1, we have the desired

result.

Theorem 3.1: Any word in Y’can be normalized.
 

PROOF:
 

Any word of length l or 2 is normal, so the

result follows from the two preceding lemmas.

Definition 3.1: 010 = a,a1 =.ad‘§, ---a1,1 =az13.

Also, let “(0) =6! and dun-)4; a”) a”). For any

integer k.2 l, tlk is the set of all sums of elements which

are products of 1: elements of 4. Thus in agreement with

Definition 2.8, a is nilpotent if there exists a positive

integer k such that CIR = O. 61 is solvable if there

exists a positive integer t such that 61(t) = 0. Clearly,

iffiz.is nilpotent, it is solvable. Also for each n,

dznsgdz(n)'

Note: By Theorem 2.1, each ‘11 is an ideal of 62L

Theorem 3.2: Ifmis a standard ring generated by a
 

finite set X, then for each integer m, there exists an

integer f(m), depending onIXI, such that Ulf(m)£am.

28.922:

By induction on m.

If m = 1, let f(1) = 3.
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Now assume the existence of f(m-l), so that

“f(m'lg Olm_1. Let Pk be the number of distinct

words of length 1:: generated by X, and let M =z{(m"1)Pk

and let N = az§(m‘1)kPk. Thus M is the number or dis-

tinct words of length less than or equal to f(in-l) and

N is twice the number of elements of X used in the

expression of these M words. Suppose W 6' Y is a word

with t(W)2_ [2N(M+2) + f(m-l)] . By inserting paren-

thesis, write W as WOW1W2°HWM+2 where t(wi) = 2N,

i = 1, 2, N, n+2 and t(w0)2 f(m-l). Each wi can be

normalized by words of the form u = TleleszzZ’

TYszk where deg u = deg W12 t(Wi) = 2N. ThusZ' deg y1

+[deg 21 2 2N, so eitherfdeg yi 2 N orz deg 212 N.

21 < T22 < "'(Tzk and

because of the ordering of Y each yi and each 21 can

Now T31 < Tyz ( "-(Tyk and T

occur at most twice in each sequence. If we assume

that each sequence contains only elements offll which

are of degree less that f(m-l) and that each of these

elements actually occurs twice in each sequence, we

have deg yi =f {(m-1)-1 2kPl,( N and similarly: deg

21< N, which is a contradiction. Thus either deg

ykz f(m-l) or deg 21:2 f(m-l)., that is, ykeam-l

or 2,, a 62,“. Hence u = Ttth2"’TtsTths+l with b

6 aim-l and where Ttsfl need not appear. So the sub-

word, wle-uwmz is a sum of words of the form J =

2n(J)Tt(O,l)Tt(O,2)"'Tt(0,kO)Tb1Tt(l,l)Tt(l,2)'°'TbZH'

TbM+2Tt(M+2’1) where t(i, NS“ , bkEdm-l and

possibly Tt(M+2,1) does not appear.



32

Lemma 3.5: TbTxTy' b an element of an ideal B of OZ,

x, y EWOZ can be written as a sum of words of the form

 

Tvaytht, TbsTxI, Txthv, Tb' where x'Ed , b'e B.

PROOF: I
 

This is proven by considering all combinations of

left and right multiplications possible in TbTxTy'

‘He do this by first considering the case involving

only left multiplications or only left multiplications.

This is done by using (9) and (10).

RxBsz z'RzRny + Rnyz + Rnyz + RzRyx ' Ry(xz)

LxLyLz = 'LzLny + Lnyz + LxLzy + Lzny ' L(xz)y'

We check the remaining cases by reducing them to

ones already considered by means of the identities

used in the proof of Cases 3-6 in Lemma 3.3.

Now apply this lemma repeatedly toe), starting with

T T T th t JbM+l t(H+l,l) t(M+1,2)’ so a may be written as a sum

of words of the type:

I. :J' = STbTb.S'; or

I . I! = S T see [

I J lel 31Tb2T32 TbM+1T3H+lTbM+25

where S, S' G Y and b, b', bk 6 dm_1, 8k¢dm-1' Thus

W’= “0(‘W1' + NJ”) where "i. are of type I and W3“ are

of type II.

Let J be a word of type II. (J = STb1T31---Tbn+2S',

31 ¢ $314.. By the choice of H and since ”(NM-1E aim-1’

there are less than M possible distinct choices for the 3i»

so two of the Si must be equal.

 

Lemma 3.6: TblTsTstthfl = TbuTslTstTbfl plus words
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of type I.

2.13292:

Similar to the proof of Lemma 3.5 by considering

possibilities for TsTst..

Lamma3.7: Tb:T8TstTbn is a sum of words of type I.
 

PROOF:
 

Similar to the above.

Applying the last two lemmas and the previous

comment about equality of two sk's, we see that W =

wag-vii), where each wi' is of type I.

Now, let f(m) = [;2(2N(M+2) + f(m—l))]+ l and let

a'Gaf(m). Then by Lemma 3.1, a' is a sum of words

of the form aw where t(W) 2 2N(M+2) + f(m-l). Now

applying the above, a' is a sum of words of the form

awowi' where the W1' are of type I and t(WO) 2 f(m-l).

Thus awo Ed Now let wi' = STbTb:S', b, b'C
m-l'

%.1. Since and is an ideal, (aw0)S E dm_1, so a'

fawowi' 6 am_1TbTb:S'S (madam-1’ fl.m-1+ flm-1

(am-l film-lm' S “ms. Q “m'

Thus a f(m) Q mm.

Theorem 3.3: If“ is a finitely generated standard

ring, then 02, is nilpotent if and only if 02 is solvable.

PROOF:

0: “Mg 02m €d(m)§012"’.

Definition 3.2: A standard ring 0?. is locally nil-
 

potent if every finitely generated subring is nilpotent.
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It is locally solvable if every finitely generated subring

is solvable. An ideal I oral is locally solvable (nil-

potent) if it is locally solvable (nilpotent) when con-

sidered as a ring.

Lemma 3.8: Let 61 be e finitely generated standard
 

ring. Then for any m, 61m is finitely generated.

“VI

23.9%.:

It suffices to show that 621 is finitely generated,

for then the result follows easily by induction.

Let X = {'31: x2, ---, xnl' be a finite generating

set for 61. By Theorem 3.2, there is an integer f(2)

such that armada, = (alalml + 621(021021).

Now let Y be the set of words in.621 of X-degree less

than f(2). Since X is finite, Y is a finite subset

of 07.1. Also, if aédll, a = u + v +...+ w is a finite

sum of X-words of all. Suppose deg u.2 f(2), then by

the choice of f(2), u Ede, so u =Z(risi)t1 +Zri'

(si'ti')' r1, si, ti, ri', ’1' ti'GECZl and deg r1 +

deg s1 + deg ti = deg ri' + deg 31' + deg ti' = deg u.

Continuing this process, we see that e is an element of

the subring of “1 generated by the elements of 031

which are of X-length less than f(2), that is, 621 is

finitely generated.

Theorem 3.1:: If I is locally solvable ideal oral and
 

is locally solvable, then CE is locally solvable.

PROOF:

Let B be a finitely generated subring of 61. B =
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(B + I)/I is a finitely generated subring of 52/1 and

hence solvable. Thus, there is an N so that (B)N =‘5,

that is BNSI. By the preceding lemma, BN is a

finitely generated subring of the locally solvable

ideal I. Thus BN is solvable, so there exists an M

so that (BN)M = 0. Thus BN+M = 0.

Corollary 3.1: If I is a locally nilpotent ideal and
 

OL/I is locally nilpotent, then 52 is locally nilpotent.

Theorem 3.5: The sum of two locally solvable ideals
 

is a locally solvable ideal.

PROOF:
 

Let I and I' be locally solvable ideals. I/(I I')

is the homomorphic image of the locally solvable ring

I and hence is locally solvable. Thus (I + I')/I'

(3' III (I I') is locally solvable. Since I' is locally

solvable, by the preceding Theorem, we have that I + I'

is locally solvable.

Corollary 3.2: A finite sum of locally solvable ideals

is locally solvable.

Theorem 3.6: The sum of all locally solvable ideals is

the unique maximal locally solvable ideal of 62 .

23.99.11:

Let{I‘} be the collection of locally solvable

ideals of 01 . Let ma) =21“. Clearly, if L(J£)

is locally solvable, then it is the unique maximal

such ideal of 62. Let A be a finitely generated



36

subring of L(UZ). Since A is finitely generated,

n
A521 I!a1 for some choice of the all. But by the

above,2iJ I81 is locally solvable. Thus A is solvable.

Therefore, 1461) is a locally solvable ideal.

Definition 3,3: The maximal locally solvable (nil-
 

potent) ideal of a standard ring 02, L(0Z), is called the

Levitski radical of 01. OZ is L-semisimple if M6!) = 0.

Theorem 3.7: The quotient ring, 62/L462) is L-

semisimple, that is, L(62/L(0£)) = 0.

2119.92:

Suppose that I/L(dl) is a locally nilpotent ideal

of a/sz). Since M0!) is locally nilpotent, I is

locally nilpotent by Corollary 3.1. Hence by the

maximality of L(dl ), I E Md) or I/L(a) = 0.

Corollary 3.3: Local nilpotence is a radical property.
 

PROOF:
 

The only part of the definition given in Chapter 1

which we have not shown is the easily verified fact

that the homomorphic image of a locally nilpotent ideal

is locally nilpotent.

Corollary 34: If UZ/I is L-semisimple, then 12 HQ).
 

PROOF:

Since local nilpotence is a radical property, this

follows from Theorem 1.1.

Theorem 3.8: The Levitski radical of a standard ring
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02. is equal to the intersection of all prime ideals P8 such

that 61/?8 is L—semisimple.

PROOF:
 

By the preceding corollary, L(DZ) is contained in

each Pa, so L(CY)S/) Pa“

Now assume that xf L(0l). We will find a prime

ideal P, such that a/P is L-semisimple and xfi‘ P.

By the maximality of ma ) and since x¢ L(az ), (x)

is not locally solvable, so there is a finitely

generated subring S S (x) with S not solvable. Now

let}. be the collection of all ideals Q, such that Sm;

Q for all m. Since (0) EXDJis non-empty and to see

that Zorn's Lemme may be applied, let A1 5 A25 be

a chain of elements ofJ. Let A =UA1. A is an

ideal and if SmS A, then since Sm is finitely gener-

ated, SmS Ak for some 1:, which is a contradiction.

Thus A £3. Now let Q be a maximal element of 4. SO

8 S (x), x; Q.

We claim that Q is a prime ideal, for if not, there

are ideals A and B with A$ Q and a; Q but sass Q.

TheanA +Q=A' andQSB +Q=B' so by the maxi-

mality of Q, A', B' i J. . Thus for some m and n,

3015 A' and SnS B'. Without loss of generality, m<

n so SnS SmS A' and thus Sn S A'n B'. Now Sn+1 =

(Sn)3 = Sn*SnS A'*B' S (A-x-B) + Q S Q which contra-

dicts the choice of Q.

We now claim that a/Q is L-semisimple. If not,

let (0) 75 N = N/Q be a locally solvable ideal oféz/Q.
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The maximality of Q means that St S N for some t. St

is finitely generated by Lemma 3.8 and hence (St + Q)/Q

SN/Q = N is finitely generated and thus solvable. So

for some m, (St 4' Q/Q.)m = O, that is, (St + Q)m S Q

so (St)m S Q or St”, S Q which is a contradiction.

Corollary 3.5: For a standard ring 62, the prime
 

radical, Q(0[), is contained in the Levitski radical 1462).

PROOF:

Since Q(6[) is the intersection of all prime ideals,

the result follows from the above.

Corollary 3.6: Ulis L-semisimple if and only if it is
 

a subdirect sum of prime L-semisimple rings.

PROOF:

Theorem 1 e 2 e

LemmL3.9: If“ is L-semisimple, then OZ contains no
 

non-zero locally nilpotent one—sided ideals.

m:

Suppose A i O is a locally nilpotent one-sided

ideal of 02. Since Hal) = 0, “is a subdirect sum of

672/Pa where él/Pa is L-semisimple and prime wittha =

0. By Theorem 2.1a, each ”UPa is either associative

or Jordan. Now, (A + Pa)/Pa is a locally nilpotent

one-sided ideal of 63/P8. If 61/?8 is Jordan, then

A + PB/Pg is a locally nilpotent two-sided ideal of

the L-semisimple ring fil/Pa. Thus A.S P If6Z/Pa

is associative, then it contains no locally nilpotent
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one-sided ideals, [14, p. 127], so ASPa. Thus for

eacha,ASPa orASflPa=O.

Theorem 3.9: The Levitski radical, L(OZ) contains all
 

locally nilpotent one-sided ideals of 01.

111923:

If A is a locally nilpotent one-sided ideal of 6?,

then (A + Han/M01) is a locally nilpotent one-

sided ideal of the L-semisimple ring fll/LMZ) so

(A + MOM/ma) = 0, or A S LMZ).



Chapter h. The Jacobson-MacCrimmon Radical and the Jacobson-

Brown Radical

In this chapter, we obtain two generalizations for the

Jacobson radical of associative rings. The first follows

that for Jordan rings given by MacCrimmon [6], and is true

for any non-commutative Jordan ring. The second is that

given by Brown [3] for any non-associative ring. We show

that the possibility illustrated by Brown for any arbitrary

non-associative ring, the inequality of the radical defined

in terms of right ideals with that defined by left ideals,

cannot hold in a standard ring. Finally, the position of

each of these radicals in relation to other radicals is

Shown 0

Definition u.l: If 01 is a non-commutative Jordan

ring with identity, 1, then an element a 601 is regular

with inverse b G'Cl if ab = be = l, and (a, a, b) = 0.

Note that is a is regular according to the above,

then a2b = (a, a, b) + a(ab) = a'l = a, and be2 = (ba)a -

(b, a, a) = 1-a + (a, a, b) = a. Thus this definition

corresponds to the definition given by MacCrimmon [8] where

he showed:

Theorem 4.1: If a G 02, then a is regular with in-
 

verse b if and only if a is regular in 01+ with inverse b.

For each element a of a non-commutative Jordan ring,

consider the operator Us = RaLa + Ra2 - R82. By identity

hO
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(11) we also have, Ua = LaRe + La2 - La2° In the com-

mutative Jordan ring 01*, we have the quadratic operator

U8+ = 2Ra+2 - R82+, where Rx+ is right multiplication by

x in 61f. Since Rx+ = !5(Rx + Lx)o we have: Ua+ = 2R8+2

- 392* = 2pm, + La)2] - Jame + L92) = emf + Rate +

Lea, + L,2 - 3,2 - L92) = Jamaal.a + 3,2 - R32) + (LaRa +

L82 - La2)] = Us: Thus the identities for quadratic

Operators in Jordan rings are also true in the non-

commutative JOrdan case.

Theorem h.2: Let a, b be elements of a non-commutative
 

Jordan ring with 1. Then the following are equivalent:

a) a is regular with inverse b;

b) l is in the range of Us;

c) U '1 exists;

d) $(ab + be) = 1, bU = a;

PROOF:
 

This follows since it is true in.0[*’(See Tsaifll] )

and each of the stated conditions is valid in 6? if

and only if it is valid in UL".

Lemma u.l: Lat 62 be a non-commutative Jordan ring

with 1. Let a, b E 01. Then an is regular if and only if

both a and b are regular.

PROOF:
 

Again this is true in 61*, thus it is true in 6!,

Definition h.2: An element a of 01 is quasi-regular

with quasi-inverse b if a + b = ab = ba and (a, a, b).
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Lemma Uzi: If 1 E CZ, a is quasi—regular with quasi~

inverse b if and only if (1 — a) is regular with inverse

(l - b).

PROOF:

(l-a)(l-b) = l - (a + b - ab) and (l-b)(l-e)

l - (a + b - be). Thus (l~a)(l-b) = (l-b)(1-a) 1

if and only if a + b = ab = be. Also, (l-a, l-a, l-b)

= —(a, a, b) since the associator is linear and any

associator involving 1 is equal to zero.

Given a standard ring 62, we can embed.62 in a ring

with identity, 02.1, as follows: Let 021 =Z@ OZ. Define

additicn component wise and multiplication by (n,a)(n',a')

= (nn’, na’ + n'a + 28'). Elements of 611 will be denoted

by n + a where 1162 and a 607..

EemerLLti. If K is an ideal of (5:, WU“). = (021/10

and (62+)1 2 (Jfll)+. If 62 is a non—commutative Jordan

(standard) ring, then éql is a non~commutative Jordan

(standard) ring.

The first isomorphism is given by: n + (a +'K)°9

(n - a) + K. The second statement is true since both

are composed of the same vector space and it can

easily be verified that the multiplication is the

same. The last part is also easily verified.

: If a<ECZ and a is quasi regular inéfl,Lemma h.h
u.-. *u—Wv -_—

then a is quasi-recular in Cfis
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PROOF:

 

Since a is quasi-regular in 511, l-a is regular

with inverse x E (11. Now it = n + x‘ where x' 5 OZ.

1 = (l-a)(n+x') = n + x' - an - ax' so n = l and thus

the quasi—inverse of a, l-x = x' is inél, and so a is

quasi-regular in CZ.

Theorem h.3: If a 661, then a is quasi-regular in 01
 

if and only if a is quasi—regular in 6[+.

PROOF:

 

Since (02,1)+ ='(6[+)1, the following statements are

equivalent:

a is quasi-regular in fl;

e is quasi-regular in 021:

(l-a) is regular in Oil;

(l-a) is regular in (621)+ = (01+)13

a is quasi~regular in 62+l;

a is quasi-regular in 62+.

Definition h.3: An ideal is quasi-regular if each of

its elements is quasiuregular.

Theorem ugh: No non-zero idempotent of 01 is quasi-

regular. Every nilpotent element is quasi—regular. If for

n, 2“ is quasi-regular, then z is quasi-regular. TheOm (
D3

sum of two quasi-regular ideals is a quasi-regular ideal.

PROOF:
 

This follows from the preceding theorem and the

fact that they are all known to be true in a Jordan

ring [11].
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Corollary h.l: The sum of all quasi-regular ideals
 

of a standard ringc2.is the unique maximal quasirregular

ideal.

Definition h.h: The maximal quasi-regular ideal of
 

will be denoted by JM(61) and called the Jacobson-MacCrimmon

radical. OZ is JM-semisimple if JMKdZ) = 0.

Lemma h.5: If 1 5:62 and K is a quasi-regular ideal of
 

01., suppose that a"; is a quasi-regular element offi = al/K.

Let w be any pre—image of w'in 62. Then w is quasi-regular

in 61,

PROOF:
 

Since a is quasi-regular, (I:w)is regular in

so there exists 2 €352 with (1:5)Usz = T’or equiva-

lently (l—w)U1_.Z = l - y for some y€ Ki. Since K is

a quasi-regular ideal, l-y is regular and thus by

Lemma n.1, both l-w and l-z are regular, thus w is

quasi—regular.

Theorem ll.5: UZ/JMM’L) is JM-semisimple.
 

PROOF:

 

Let K'be a quasi-regular ideal offii = CZ/JM(62).

Let AS563 be the pre—image of A} ‘We will show that A

SEJM(01) and thus A = 0. Clearly, A is an ideal so

it suffices to show that A is quasi-regular. But A =

(A + Jh(ol))/JM(0Z) is quasi-regular in al/JM(6Z) and

hence in (fl/JM(€Z))lgflll/JM(JL). So by the preceding

lemma, A is quasi-regular in 621 and thus by Lemma h.h,

quasi-regular in 52.



1:5

Corollary h.2: Quasi-regularity is a radical prOperty
 

of standard rings.

PROOF:
 

This follows from Corollary n.1, Theorem h-S. and

the easily verified fact that the homomorphic image

of a quasi-regular element is quasi-regular. Thus all

conditions for a radical prOperty given in Chapter 1

are satisfied.

Theorem tho: If an is J'M-semisimple, then 12 JM
 

(01).

PROOF:
 

Corollary h.2 and Theorem 1.1.

We now turn to the generalization of theXJacobson

radical given by Brown [3]. we begin by listing some of

his results.

Definition Qg5:
 

a)

b)

e)

d)

e)

Let I be a right ideal of 01. I' = [a 601 I (a)£ 1)}.

I} 01 =r{.a(E61'02a5; I}.

If a601, Q(a) is the minimal right ideal containing

{ax - x | xGOZ}.

An element a of'OZ is Brown quasi-regular (B.q.r) if

a E Q(a).

An ideal (right, left, or two-sided) is Brown quasi-

regular if each element is B.q.r.

JB(UZ) = ( a €01, (a) is B.q.r.}.

f) A right ideal I is modular if there is an element

eefl with ex - x6 I for each x6“.
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g) m is primitive if“ contains a modular maximal

right ideal M such that M' = 0.

Theorem h.7:

a) If I is a right ideal ofCZ, then I' is the largest

two-sided ideal of 61.contained in I.

b) If I is a right ideal and no: S I, then I' =

1:61.

c) If I is a modular right ideal, then I:6H.S I and

hence I:61.= I'.

d) JB(0l) = n H' such that M is a modular maximal

right ideal of 0!.

e) JB(0[) is the maximal B.q.r. ideal of'6Q.

f) JB(0L/JB(01)) = 0.

g) Ja(al) = O if and only if 62.1: isomorphic to a

subdirect sum of primitive rings.

Theorem h.8: Brown quasi-regularity is a radical

property.

Corollary h.3: If w(a/I) = 0, then JBWZ) S I.

PROOF:

Theorems 1.1 and h.9.

Theorem h.9: A primitive standard ring is either

primitive associative or a simple Jordan ring with indentity.

21329::

Kleinfeld [7] showed that a primitive standard ring

is either associative or commutative. If 61 is

associative, then it is primitive associative. If
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is commutative, it is thus Jordan and primitivity

implies that Clicontains a modular maximal right

ideal M containing no non-zero two-sided ideals. But

under commutativity the concepts of one-sided and two-

sided ideals are equivalent and thus (0) is a modular

maximal ideal of 01. (0) being maximal means that

has no non-trivial ideals, that is, 0?. is simple.

(0) being modular implies that there exists cell such

that ex - xi= O for all x631, that is, ex = x = xe,

or e is an identity for .

As Brown states, a similar theory can be derived in

terms of left ideals. He presents an example to show that

for an arbitrary non—associative ring, the left radical and

the right radical may not be equal. We now show that this

is not possible fer standard rings.

Theorem h.10: A right (left) JB-semisimple standard
 

ring is a subdirect sum of right (left) primitive standard

rings. A right (left) primitive standard ring is either

associative or Jordan.

PROOF:

 

The statement with "right" is merely Kleinfeld's

result and the proof for "left” is similar.

Lemma h.6: Let 0! be a standard ring. 6? is right
 

JB-semisimple if and only if it is left JB-semisimple.

EROOP:

 

The proof follows from the facts that for commuta-

tive rings the two concepts coincide and that for
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associative rings the result is known [5, p. 13].

Thus if at is right JB-semisimple, it is a subdirect

sum of commutative and associative right primitive

rings which-are both right and left JB-semisimple.

Thus 62 is a subdirect sum of left JB-semisimple

rings and hence left semisimple itself. Similarly,

if 01 is left semisimple, it is right JB-semisimple.

 

Theorem hill: Let JBP be the radical in terms of

right ideals and let J31 be the radical in terms of left

ideals, then JBP = J31.

€39.93:

6l/JBr is right JB-semisimple and thus by the above

lemma, it is left JB-semisimple. Hence JBr:2 JBl by

Corollary h.3. Similarly, J31 2 JBP. Thus equality

11016.3 0

We now show the position of these two generalizations

in relation to the radicals we have previously considered.

Recall that the nil radical of OZ is the largest ideal of

5% containing only nilpotent elements. Also the Behrens

radical is the ideal such that“ is a subdirect sum of rings

in which every ideal contains a non-zero idempotent.

Finally, the Smiley radical of a ring is zero if and only

if the ring is a subdirect sum of simple rings with identity.

Theorem 14.12: 3““) contains Md), the nil radical

of 62.

PROOF:
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By Theorem h.h, each nilpotent element is quasi-

regular. Thust) is a quasi-regular ideal and con-

tained in the maximal quasi-regular ideal, JFK“).

Theorem Ll}: J'Md) is contained in the Behrens

radical, B(d).

mast:

We first assume that a is B-semisimple. Then

is a subdirect sum of a. where a, has a non-zero

idempotent generating its minimal ideal. Thus each

ideal of d‘contains a non-zero idempotent and thus

cannot bequasi-regular. Thus Mada) = 0, and hence

mm = o. '

Now let. a. be an arbitrary standard ring. d/B(0L)

is B-semisimple and thus by the above, Jud/Na” =

0. So by Theorem 14.6, JIM“) S B(a).

Theorem h.15: J'B(a.) contains JM(flZ,).

sass:

“(01.) is a quasi-regular ideal and we will show

that a quasi-regular element is B.q.r., and thus the

result will follow from the maximality of JB(UZ).

Let a be a quasi-regular element of ”1. Then there

exists an element b €01, with a + b - ab = O, that is

a = ab - 13. Thus a is an element of Q(a), the right

ideal generated by {ex - x ' x 602}. Thus a is

B.q.r.

Theorem L13: (8(a) contains JB(OZ.).



SO

PROOF:
 

First, letabe S-semisimple, that is, 3(a) = 0.

Then 01. is a subdirect sum of a.“ , simple rings’with

identity. Since a“ is simple, JB(d-“) = O or ”(a .

But Q(l) 8 ( { l-x - x‘} ) = 0 so 1 is not B.qtr. Thus

B(m‘) = O and each ”I“ is J'B-semisimple. Therefore

01 is JB-semisimple. :

Now if 0! is an arbitrary standard ring, JB(6Y/S(62))

= O, and so JB(a) S 3(a).

Thus we have completed all parts of the diagram given

in the introduction and reproduced below.

/s(a)\

3(a) ' l JBML)

Rim)

LMU

«2(a)



Chapter 5. Chain Conditions

In this chapter, we study the relationship of the

radicals we have previously considered when the ring satis-

fies a chain condition. a is said to satisfy the DCC if

every descending chain of right ideals of 0L has a minimal

element. a is said to satisfy the strong DCC [9] if every

subring of a satisfies the DCC.

Theorem 5.1: If 4 satisfies the DOC, than QM!) =

L(01).

£13922:

We have that Q(a )1 5 ma).

Now let a = JUQMZ). fl is Q-semisimple and thus

is a subdirect sum of my; = a/P,‘ where 0P“ = O and

each 6”“ is either prime associative or prime Jordan.

Now since ”L, is Q-semisimple and satisfies the DCC, if

01,, is either associative [1;] or Jordan {121then LWZK)

= Q(62‘) = 0. Thus Oi is a subdirect sum of L-semi-

simple rings and thus L-semisimple itself, i.e. L(6Q)

= Ida/CHO!“ = 0. So, MUDS GHQ). Thus equality

holds.

Theorem 5.2: If ”2 satisfies the DCC, then JB(€Z) =

3(01).

m!

We have Jam) S 8(a).

Consider oz/JB(a). Since this is Brown semisimple,

it is a subdirect sum of simple commutative Jordan

51



, 52

rings with l, and primitive associative rings. But

since the DCC is preserved under homomorphisms, each

of thesubdirect summands satisfies the DCC. Also,

a primitive associative ring is a simple ring with 1.

Thus CE/JB(CZ) is a subdirect sum of simple rings

with 1 and thus by Theorem 1.3b, S(OZ/JB(0I)) = O,

or 8(a) S JB(a.). Thus equality holds.

Thus if 01 satisfies the DCC we have the following

diagram.

3(a) = JBMZ.)

3(a)

mm.)

mm.)

Md) = M02.)

Corollary_§;l: If 6! satisfies the strong DCC, then

szl = QM!) and 3(a) = Jame).

2.59.92:

This is true since if asatisfies the strong

DCC every subring of 62, including 67.1tself satis-

fies the DCC. Thus we merely apply the above.

Theoremg5.3: If 6! satisfies the strong DCC, then

a(fll) = JIM“) == Mac).

3.3.993:

we have ma) 5 mm )9. EMU.
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Now suppose that xf Na ). t; We will show that

x¢ B(a). x¢ NW) implies thatw(x) is not a nil

ideal so there exists y Q (x) which is not nilpotent.

Since“ is power-associative, {yk} generates an

associative subring of“ which according to our

hypothesis satisfies the DCC. But then this subring

contains a non-zero idempotent,e, [5, p.221. Since

e E (y)-S (x) and 3(a) is an ideal which contains no

non-zero idempotents, x; B(OL). Thus B(fl)£ Mal),

and the stated equality holds.

Thus if ”L satisfies the strong DCC, we have the

following.

3(a) = JBwL)

mm) = JMML) =Nwz)

ma) = cm.)

Theorem 5-H: If a satisfies an ascending chain

condition on subrings, that is, every ascending chain of

subrings has a maximal element, then M“) = Mal) =

1““).

mass:

We have cud) S LMZ) S MOI).

Let 0.1.: a/Q(01). It suffices to show that Mil)

= O, that is i has no non-zero nil ideals. Since

0.1. is Q-semisimple, it is a subdirect sum ofdg‘:

fl/Pd where 02“ are either associative or Jordan.

Each 0?.“ is Q-semisimple and thus possesses no
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non-zero nilpotent ideals. Let K be a nil ideal of

07.. (K + P.,)/P‘ is a nil ideal oral“. I: 02.: is

Jordan then (K +R, HP" is nilpotent [114.1 and thus

K + P = O or K,S)B‘. If 62‘ is associative then

(K + P)/P is nilpotent [u] and so again K S sP,‘ .

Thus for sachet, K S P,‘ or KS!) Pa = 0. Therefore,

Ma) = mat/cum) = 0.

Hence if a satisfies an ACC on subrings, we have:

8(a)

awz) JB(0L)

\ /
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