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ABSTRACT

A PARALLEL COMPUTATION METHOD
FOR DYNAMIC SYSTENS

VWITH COUPLED NONLINEAR DISSIPATION

Tong Zhou

Nonlinear algebraic loops in system equations may prevent the
subsequent reduction of the equations to an explicit state-space form.
It may make system simulation very difficult to accomplish. The inci-
dence of nonlinear algebraic loops in mathematical system equations
often is associated with the existence of mnonlinear dissipative

effects in physical systeams.

A computation method for nonlinear algebraic loops stressing par-
allelism has been developed. The bond graph augmentation method
converts an algebraic loop field into a dynamic subsystem that exhi-
bits the proper static characteristics at steady state and employs a
tvo-time—scale integration technique. In seeking computational effi-
ciency, minimizing the augmentation order and optimizing the parameter
selection play key roles. An augmentation sequence and a gemeral rule
for parameter selection for arbitrary n-th-order subsystems have been

suggested and numerically tested in several cases.
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1 INTRODUCTION
1.1 The Problem of Algebraic Loops in System Equations

A dynamic system consisting of a number of lumped-parameter ele-—
ments may be described by ordinary differential equations in which
time is the independent variable. By using vector notation, an =n-th
order differential system may be expressed as a set of first-order
vector differential equations. This is the state-space representa-

tion.

Because the modern trend in engineering systems is toward greater
complexity due mainly to the requirements of performing complex tasks
with good accuracy, the state—space representation has come to play a
very important role in modern system control and system dynamics. The

general form of explicit state—-space equations is
X(t) = Gg( X(t),U(t) ) (1.1)

where the X is an n-dimensional vector, U is an m-dimensional vector,
and G is a vector function. The superdot demotes time differentia-

tion.

If the system is linear, Eq.(1.1) takes on a simpler form, as

shown below

X = [AlX + [B]U (1.2)



where X and U are defined as before and [A] and [B] are matrices of

appropriate dimensions.

In formulating equations for a dynamic system the explicit
state-space equations often are preferred. If there are intermediate
variables which are introduced in the initial problem formulation,
there is the possibility that algebraic loops may exist in the system
of equations. This situation may make it impossible to find an expli-
cit form. More generally, the system equations can be written in the

form

X(t) = Gg( X, U, B ) (1.3a)

B(t) = G (X, U, H) (1.3b)

where H is a vector of dimemsion r.

For a linear constant-coefficient system, an explicit state-space
representation usually can be obtained by eliminating the intermediate
variables from the equations. However, if even one of the G functions
is a nonlinear function, it might make the elimination of H difficult,
or even impossible. The existence of mnonlinear algebraic 1loops in
system equations may prevent subsequent reduction of the system equa-
tion set to an explicit state-space form. That leads us to search for

efficient computational techniques to treat such problems.

1-2 Previous Research VWork



The problem of algebraic loops has been studied by many research-
ers and many simulation programs are available that will diagnose the
existence of algebraic loops in the equation set. Among those are
CSNP 111, CSSL-1V, DARE, and SCEPTRE [1,2,3,4]. Operationally, a loop
diagnostic occurs following the equation sorting process. In this
process,as the system equation set is manipulated , mutual algebraic
loops are identified. Typically, execution of the program is termi-

nated and appropriate modifications must be performed.

Most methods of numerical solution for mnonlinear algebraic
equations are extended from those used for solving linear systems.
The Jacobi method, the Gauss-Seidel method , the successive overrelax-
ation method and the symmetric successive overrelaxation method are

examples[5].

Among the methods for linear systems one which may be applicable
to the nonlinear case is the use of an iterative procedure, each step
of which involves the solution of linear algebraic equations. For

example, consider the system

4u, - u, + (1 /10)e®2 =1 (1.4a)

-u, + 4u, + (1/8)u} =0 (1.4v)

An iterative method can be designed such that

(n)
w(Et) Cg(m4) Lg/30)e% " =1 (1.5a)

—u{2*) C 4o {0*1) 4(1/8) (iB))? = 0 (1.5b)



To determine ﬂ§‘+x) and ui‘*l) from previous ull) and of®

involves solving a system of two linear equations with two unknowns.

Another method is the Newton method for solving a nonlinear sys-

tem. Consider the case

f;(ll,_ .ll‘ ) = o (1.6.)

f,(u;, ,u;, ) =0 (1.6b)

which we may write as Fu = 0.

The Newton method is defined by
u(n+1) = n(n) - (F'n(n))Fn(n) (1.7)

where F'u'®) is the Jacobian matrix.

The Jacobian method is one of the basic methods for conducting

the iteration. For a nonlinear system of equations

fy(uy; ,u; ,u; ) =0 (1.8a)
f,(n,_ »83 ,U, ) =0 (1.8b)
fy(uy ,u; ,u; ) =0 (1.8¢)

We find u£‘+’) ,n£n+1) ,usn*1) by

f,u{e*?) (@) g ) - (1.9a)

£,({®) ofo+t) ) - (1.9b)

f,(u{®) o{@) g(0+2)y o (1.9¢)



At each time step , one has to solve a single nonlinear equation

for one unknown.

The Gauss-Seidel method is the same as the Jacobi method except
that at each time stage one uses the latest available values. Thus

for the above case

£,(u{®*?) g 4(@) ) _ (1.10a)
£,(u{B*?) o2 (@) ) o (1.10b)
£,(u{n*?) g(n+1) G(o+1) ) (1.10c¢)

The successive overrelaxation method and symmetric overrelaxation

method are both slight modifications of the Gauss-Seidel method.

Two methods frequently used in common are the Secant method for
simultaneous mnonlinear equations developed by Wolfe and Phillip[6],
and quadratically convergent Newton-like method based upon Gaussian
elimination developed by Brown[7]. The two have been implemented in
code as ZSCNT and ZSYSTM respectively and collected into the IMSL

subroutine liberary[8].

In Wolfe'’'s method (ZSCNT) at each step of the iterative process
there are n+l trial solutions x* ,x2 , ..., x(n+‘) . Multipliers 2

j=1,2, ... ,n+l are determined by solving the linear system



jsl
nt+1
D a;e;(ad) = 0 i=1,2,....2 (1.12)
j=1

Then the new trial solution is defined by

n+1
x = 2 84X (1.13)
j=3

The Brown’s method is based on Gaussian elimination in such a way
that the most recsent information is always used at each step of
algorithm., The modification suggests linearization of the components
sequentially, wusing each linear equation to eliminate a single compo-
nent of the solution from the remaining non-linear equations, as in
Gauss elimination. The system eventually reduces to a single
non-linear equation in a single unknown to which one step of the New-
ton iteration is then applied. The new values of all eliminated
components are then obtained in the reverse order by back substitu-

tion.
1.3 Bond Graphs and Algebraic Loops

The existence of algebraic loops in the equations of a physical
system may not be detected until the sorting or reducing process
starts in most traditional simulation approaches. But their existence
can be verified even before equation formulation when the bond graph

approach is employed. Bond graphs, which are based on energy storage



and power flow, allow system analysts and engineers to comstruct
models of electrical, magnetic, mechanical, hydraulic, pneumatic,
thermal and other systems using only a rather small set of ideal ele-

ments[9].

The functional nature of the parts of a bond graph model can be
classified into the source field, emergy storage field and dissipation
field, while the manner in which the parts interact can be represented
by the junction structure. All of this is done in a graphical format.
A bond graph model and its key vectors may be represented schematical-
ly as shown in Figure 1-1. The key vectors are labeled on each arrow:
U is the input to the junction structure from the source field; V is
the output from the junction structure to the source field; Z is the
co-energy variables vector; X is the time derivative of the energy
variables vector; D, is the input to the junction structure from the
dissipation field (generally a mixture of efforts and flows) and D, is
the input to the dissipation field from the junction structure (genmer-
ally s mixture of efforts and flows). From the fiqure we see that X

is found from the junction structure as follows

bde

= G¢(Z, D,, U) (1.14a)

bde

if TF and GY elements are constant.
For the storage and dissipation field vectors, we have

Z = Qg(X) (1.15)

D, = @ (D;) (1.16)



SOURCE FIELD
( SE, SF )
U A
]
(C, I) X JUNCTION STRUCTURE Di (R)
(0,1, TF, GY )
F Z Do L
STORAGE DISSIPATION
FIELD FIELD

Figure 1-1 Bond graph structure and key variables



and U= 0(t) (1.17)

for the source field.

From the above schematic diagram , D; , the input to the dissipa-

tion field from the junction structure is given by

D; = 6.(Z, Dy, U) (1.18s)

if the TF and GY elements are constant.

Combining Eqs.(1.16) and (1.18b) we get

Depending upon the interaction between S;, and Qp it may or may
not be possible to solve for D; from Eq.(1.19) and then find D,. To
illustrate a case let us first consider a physical device shown in
Figure 1-2(a). 1In Figure 1-2(b), the corresponding bond-graph model
has been built. The I element represents the inertial effect and the
compliance effect is indicated by a C element in the mechanical sys-
tem. The R elements represent emergy dissipative effects. The SF
element indicates an imposed velocity on the left (massless) plate as

an input,

Associated with every bond are two power variables --—- effort and

flow, which are force and velocity in this mechanical device, respec-



1 i "
_,\/WV\_ Ry
N
i a
(a)
1 %r
1| v, 1tV
3 4 3 0 F
SF|—VOA 0 — Rb SFt_vT; l Rb
5 5i
1 1
2 6 ‘,j/)\ 6
C R, c R
(b)) (c)

Figure 1-2 R-field in a physical system
(a) Physical system
(b) Bond graph model with acausal bonds
(c) Bond graph model with causality assigned
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tively. In this example there are six bonds; hence, there are six
force variables and six velocity variables. In addition there are two
(energy) state variables, p and 8, representing the momentum and the
spring deflection, respectively. There are 14 equations imposed by
the bond-graph structure through junction constraints and the field
constitutive relationships. It is desired that the state-space equa-

tions be obtained in an explicit form as follows

Pi = 81(pi1, 85, V,) (1.20a)
63 = la(P;a 630 v.) (1.20")

where superdot denotes a time derivative.

Causality can be assigned to the bond-graph of Figure 1-2(b)
according to the general rules[9). After finishing the first step
(assigning required causality to the source SF) and the second step
(assigning the integral causality to the storage elements C and I), we
find that the causality does not fully extend through the graph. Some

acausal bonds (bonds 4,5,and 6) will be left (Figure 1-2(b)).

At this stage, we realize that an R-field exists in this system.
This implies that there will be an algebraic loop in the system equa-

tions.

Suppose we continue the causality assignment by imposing an
arbitrary causal orientation on one of the two R elements, say, R,.

Then we extend the causal implication through the graph using the con-
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straint elements (0’'s and 1’s). Now the causality assignment has been
completed(Figure 1-2(c)). The state vector X and input vector U are

identified as follows

pl u = [ v° ] (1-21)

L)

If we define F, and V¢ as auxiliary variables, then the system

equations are

P, = F, (1.22a)

and the constitutive equations are

F‘ = “(v‘) = "(v° - p;/.l - v‘) (1.22.)

V, = g¢(Fg) = g¢(F, - kb, ) (1.22pb)

Assume that both R, and Ry are linear,that is,

F, = R,V, (1.23a)

Ve = R, 'F, (1.23b)

After some manipulations to eliminate the auxiliary variables F,

and V., an explicit state-space equation set can be developed; namely,

P, = -[R,R;/(R,+R()mlp, + [R,k/(R,+R()16, + [ReR, /(R +R{6]})]V,
(1.24a)
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63 = -[R4/(R4+R.)ll]p; - [k/(l.-m.)]&, + [R./(R.+R.)]V.
(1.24b)

Now, suppose that the R, and R, are non-linear. Then we may have
difficulty solving the auxiliary equations to get an explicit state
form. In general explicit anmalytic solutions of non-linear coupled

equations are difficult, if not impossible, to achieve.

From the development above, we see that the process of causality
assignment is an aid in the process of identifying the algebraic loops
in dynamic systems. Furthermore, algebraic loops in the mathematical
sense are physically related to the existence of dissipation fields.
Reading the partial causally-assigned bond-graph, we easily can iden-
tify the R-fields from other (dynamic) fields. This work can be dome

by a digital computer automatically.

1.4 An Approach Stressing Parallelism

An approach to the simulation of this kind of systems containing
non-linear algebraic loops is the bond graph augmentation method[10].
The basic philosophy is to convert an algebraic loop subsystem into a
dynamic subsystem that conserves the intrinsic static characteristics
at its steady state and to employ a two-time-scale integration techni-

que.

This approach divides a large coupled mnonlinear system into a
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group of static subsystems and a group of dynamic subsystems. Every
subsystem in the static group is independent of the others, as is
every subsystem in the dynamic group. However the members of one
group will communicate with the members of the other group. At each
global time step, the static characteristics of every augmented sub-
system at its steady state can be computed independently by the same
algorithm, Therefore they may be done concurrently or in parallel.
The parallelism also can be applied to the computation of the dynamic
performances of the dynamic group at each global time step. The
two-time-scale integration technique places special emphasis on the
parallelism, which will become more practical with advent of the par-

allel computers.

The method includes mainly the following steps:

1) Make a bond-graph model for the nmon-linear system;

2) Identify and isolate the algebraic loops before equation
formulation;

3) Dynamically augment the isolated static subsystems;

4) Select the proper parameters for the dynmamicizers;

S5) Use a two-time-scale integration scheme to get simulation results.

In the following chapters we will discuss the details of this

approach.
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2 BOND GRAPH AUGMENTATION METHOD

2.1 Identification and Partitioning of R-fields

A bond graph gives a topological picture of how the power (or
energy) flows in a particular physical system. Since every bond con-
tains the power varigblcs (effort and flow) and the causality shows
input/output relationship between the element pair, we can identify
R-fields readily. Let us consider an example. The bond-graph model
is shown in Figure 2-1(c), which represents a mechanical system (Fig-

ure 2-1(b)) or an electrical system (Figure 2-1(a)).

After assigning causality to the source element SF and energy
elements C and I, an R-field has been revealed. In this example , to
the right of bond 12 is a causally complete segment, while to the left
is a causally incomplete segment (Figure 2-2). The two segments share
bond 12. If we break the bond-graph into two subgraphs at bond 12 ,
we see that at any instant the output of the dynamic subsystem
represented by the right part is just the input to the static subsys-
tem indicated by the 1left part, and vice versa. The subsystems
interface at bond 12. For example , at time t=t,, e,, is obtained
from the dynamic field and input as an effort source to the static
field. If the output of the static field can be calculated in some
way which will be discussed in the later section, then the output will
act as a flow source at time t=t+AT to the dynamic field, by integrat-

ing one time step, AT, the dynamic field produce a new output to the
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Figure 2-1 Physical systems with a coupled R-field
(a) Electrical Circuit
(b) Mechanical system

(c) Bond graph model
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static field again. In this manner, the simulation of the global sys-
tem may be completed by interaction of its two subsystems as long as

the static field can be manipulated easily and efficiently.

In the general sense a global bond-graph can be partitioned into
causally complete and incomplete segments. The causally complete seg-
ments generally are comprised of energy elements (C and I,
dissipative elements (R), input elements (SE and SF) and the junction
structure (0,1, TF,GY), while the causally incomplete segments contain
the dissipation fields, input fields and associated junction struc-

ture.

In Figure 2-3 the concept of a general partitioned bond-graph is
illustrated. The interaction between the i-th dynamic subsystem and
the j—th static subsystem can be defined inm vector mnotationm. Each
subsystem may be viewed as an independent system with both input and

output vectors ascribed to it.

2.2 Dynamic Augmentation of Static Subsystems

The Basis of Augmentation

The basic idea in solving the algebraic loops is to convert a

coupled static field into a dynamic subsystem by introducing some

dynamic effects, to find the steady state output under a set of con-

stant inputs, and then to interact with other subsystems in the global
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f1
- J
————
Sa Dy

Figure 2-3 The interactions among the
partitioned subsystems
Sj : the i-th static subsystem
D5 ¢ the j—th dynamic subsystem
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system,

The dynamic augmentation can be dome by introducing I- and C-
elements in such a way that the causality of the static field is fully

completed and the boundary conditions are not changed.

Consider a static field and a proposed dynamically augmented sub-
system associated with the static field (figure 2-4). From the

definitions of the junction elements the following statement can be

made:
} efforts = 0 1-junction (2.1a)
} flows = 0 0-junction (2.1b)
for the static field,
} efforts = p, 1-junction (2.2a)
2 flows = q, 0-junction (2.2b)

and for the augmented system. Note that p, and q, measure the emnergy

in I and C, respectively.

The condition of steady state requires that

l.);'O

éz‘O

Consequently at steady state the state equations will be identi-

cal to the junction constraint equations in the static field; i.e.



21

SFb—= g —= 1 |— SE

|

R R

(a)

C I[q] I [p)

SFk—=— 0 ——={ 1 }——= SE
R R
(b)

Figure 2-4 A static field and its augmentation
(a) A partitioned static field

(b) The sugmented subsystem
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} efforts = 0

} flows = 0

From this result it is evident that the algebraic character of
the static subsystem is preserved at the steady state of a properly
augmented dynamic subsystem. At steady state the output e, and f; of
the subsystem which are treated as inputs to the adjacent subsystems

can be easily determined by

e; = (1/C)q (2.32)

f, =(1/I)p (2.3b)

To understand the nature of dynamic augmentation, let us inter-

pret the bond graph as a physical device as shown in Figure 2-5.

Consider Figure 2-5(a), where A is a massless element being acted
upon by a force F, a velocity source V through a damper, and by anoth-
er resistive force from the ground. This really is a static system.
If a mass effect I and an elastic effect C are added into the system ,
the sum of the forces at any instant is equal to the change in momen-
tum of the mass, and the sum of the velocities at any instant is equal
to the change in the length of the spring. At steady state, the rates
of change of momentum and length are zero; hence the dynamic system

represents the unaugmented static subsystem at equilibrim.

Only adding I elements to 1-junctions and C elements to
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(a) (b)

Figure 2-5 Schematic diagrams
(a) Static system

(b) Modified system

b
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O-junctions facilitates the completion of the causality assignment and
does not change the original causality orientation at the boundary

bonds. So, the principle should be

(1) Add I elements to the 1-junctions

(2) Add C elements to the O-junctions

The added I and C elements are assumed to be linear, comservative

energy storage elements.

Some Definitions

For convenience in the development later on , it is wuseful to

define some terminology which is used frequently in this chapter.

Definition: An R-field or static field , is a collection of dis-
sipative elements (R), source elements (SE and SF) and junctions
(0,1,TF and GY), in which the causality assignment is not able to be

finished uniquely.

Definition: A dynamic field is a segment of the global
bond-graph in which there is at least one dynamic element and the cau-

sality can be assigned completely.

The dynamic field may be a collection of some basic elements
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(C,I,R,SE,SF,0,1,TF,GY) or it may contain only one single dynamic ele-

ment (C or I).

Definition: An jinteracting bond is the commecting bond between

an R-field and a dynamic field in the global bond-graph.

Definition: An acting junction is a junction with ome or more

interacting bonds attached.

Definition: A multi-branch type junction is a junction which

possesses more than two internal bonds.

Definition: A single-R type junction is a junction to which only

one R element is attached .

Definition: A multi-R type junction is a junction to which more

than one R element is attached.

Definition: An jimaginary gsource is a constant effort or flow
source whose magnitude eoquals that of the output of the adjacent

field.

An example is shown in Figure 2-6. The global bond-graph model
has been partially assigned in causality and then partitioned into two

dynamic fields and one R-field. Bond 8 connects dynamic field 1 and
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the R-field, while bond 11 connects the R-field and dynamic field 2.
All the interactions among these subsystems occur on these two bonds,
so they are the interacting bonds. Nodes (9), (11) and (15) are act-
ing junctions because interacting bonds 8 and 11 attach to them.
Nodes (6), (9) and (11) are single-R type junctions, while node (4) is
a multi-R type junction. In the partitioned subsystems, SE12, SF21,
SE11 and SF11 are introduced to the subgraphs for graph completion and

input functions. They are defined as imaginary sources.

Order of the Augmented Subsystem

It is evident that every added enmergy storage element will intro-
duce a new state variable and a corresponding parameter. Hence it

will increase the dynamic order of the subsystem by ome.

For a large R-field with a number of non-linear resistive ele-
ments, by increasing the number of added dynamic elements, the dynamic
order will be increased considerably. This increase may benefit us in
one way, in that it increases the flexibility in satisfying the
desired causality orientations of all R elements in the subsystem.
However, the computational efficiency may be decreased with the
increase of the dynamic order. Furthermore, the higher the dynamic
order, the more difficult parameter selection will be, because an
improper selection of parameters for the added elements may cause a
considerable delay in the field reaching its steady state .

Consequently augmentation greatly affects the computational efficiency



28

and the accuracy. Parameter selection will be discussed in detail in

the next chapter.

Augmentation could be donme according to at 1least two different
considerations. One of them is to make the causality orienmtation
satisfy the nature of every particular R element. Reconsider the sub-
system containing an algebraic loop represented by the bond-graph in
Figure 2-7(a). By adopting the principle mentioned before, we have
three possibilities to augment the subsystem by (1) adding only ome I
element, (2) adding only one C element, or (3) adding one I and one C
element to each 1- and 0—junction, respectively. If the comstitutive

functions of the resistive elements in the system are

e, = R, (f,)

e, = R, (f,)

choice (1) satisfies the required nature of these R elements. The
causality would be assigned as shown in Figure 2-7(b). Other choices

are shown in parts (c) and (d).

In this case there are two single-R type junctions; omne is the
O-junction and the other one is 1-junction. The maximum number of
useful added dynamic elements is two; that is, it equals the sum of
the number of O-junctions and 1-junctions. However, in a general case
with more single-R type or multi-R type junctions, it could be visual-
ized that a number of possibilities to introduce the storage elements

exist. The number of useful ways depends upon the type of resistive
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elements in the algedbraic loop. If some of them are mon-linear and
their preferred causality is required, then the anumber of ways in

which the C and I elements are selected is reduced.

Suppose that the causality orientations of all R elements in a
a—-field are not of concern. That is, the inverse expressions of dis-
sipation functions are easy to get. Then the causality orientations
could be any combination. But the maximum order of augmentation would

be sum of the numbers of the 0- and 1-junctioms.

Carefully studying the example above(Figure 2-7) reveals the fact
that only three causal arrangements are available through selective
dynamic augmentation. However, the dissipative elements may exhibit
four different causal arrangements. For the fourth situation,
part(e), the method of dynamic augmentation is inadequate to force the

preferred causal orientation on both R elements.

Generally, for translational and rotational dissipative elements
and for most fluid resistive effects we have the case in which a dis-
sipation is the function of flow. But some cases, such as
semiconductors in electromics and fluid 1leakage in hydraulics and
pneumatics, have the inverse dissipation function. Fortunately, many
non-linear dissipation functions are not too complicated and their
inverse forms may be found without much effort. But important excep-
tions exist. For example, in mechanical systems the dry friction is

not allowed to be a function of force.
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Augmentation Procedure

Assume that every dissipation function can be expressed either as
e = R(f) or £ = G(e). Then it will be possible for a computer to aug-
ment the subsystem automatically without regard to the preferred

causality orientations. The procedure is designed as follows.

First we note that every subsystem needs to compute the interact-
ing bond variables as output to the adjacent dynamic subsystems.
These bond variables as outputs always are the common forces or flows
associated with the O-junctions or 1-junctions. Therefore, if we add
energy elements to the acting junctions, we mot only facilitate the
causality assignment but also obtain the output vector from the
co-energy variables without invoking more complicated algebraic output
equations, So adding the I or C elements to the acting junctions

possesses the highest priority.

For example, the subgraph in Figure 2-8(a) represents a static
field containing a real source SE1l and an imaginary source SE18. Bond
18 is an interacting bond and node (18) is an acting junction. At
certain global time instant, e,, is the input from an adjaceant dynmamic
field which holds constant during the integration in the 1local time
scale.When the augmented subsystem reaches its local steady state, f,,
will be the output to the dynamic field. This output is just the com-
mon flow on the acting junction., If we add an I element to the acting

junction (18) (Figure 2-8(b)), then the output can be calculated from
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fi4 = fi9 = Pyy /my,

Second, the bonds associated with the multi-R type junction can
not be expected to complete a causal assignment by extending from
neighbor junctions. We complete the causal assignment by adding a
dynamic element directly to this type of junction. Imn Figure 2-8(c),
a C element has been added to node (12) and an I element has been
added to node (13). In a computer program it should be donme in des-

cending order until no multi-R type junctions exist.

Third, if there exist some multi-branch type junctions in the

static field, it is desireable to add dynamic elements to thenm.

Fourth, add the dynamic elements only to the remaining unassigned
single-R type O- or 1-junctions, whichever is fewer in number. If
these two kinds of unassigned junctions have the same number, either

kind can be chosen for augmentation.

In this example, there are two single-R type O-junctions and one
single-R type 1-junction unassigned. For the lower order augmentation
adding one I element is enough to complete the causality assingment

for this subsystem (Figure 2-8(d)).

After assigning and extending the required causalities for all
the sources and the preferred causalities for all the storage

elementes (C or I), the program PART will begin to identify the dynam-
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ic fields and the static fields, then partition them into subsystems
by using the imaginary sources to preserve the boundary conditions.
All the information will be stored in matrix form where every column
or row contains a dynamic or static subsystem. The program AUGMEN
finds the most appropriate 0— or 1-junction to add the corresponding C
or I element according to the precedure discussed before. They will
be incorporated into the ENPORT-6 program. The calling tree is shown

in Appendix A and the program listings are given in Appendix B.

2.3 Two-time-scale Integration

The solution for the steady-state vector X in the case of 1linear
dissipative fields can be achieved by simple linear algebra, provided

the local [A] matrix is nonsingular.

X = -[A1"*[BlU

HBowever, in the case of non-linear dissipative fields we can not
use this approach to get a solution. Although we can employ a linear-
ization method to get a constant [R] matrix at a certain time instant,
then use the formula sbove to calculate steady state, it will reduce
the accuracy of computation. For example, we can calculate X at time

t through

X, = -[A13%,,[BlU,
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The [A] matrix is not the present value. If we can use
non-linear integration to get the steady-state in the local time
scale, the computation result will be more accurate and so will the

output vector.

The augmented subsystems need to reach steady state by integra-
tion under a set of constant inputs which are the outputs from
adjacent dynamic subsystems at global time T . It seems that when the
dynamically augmented subsystem is under the process of integration in
local time , t , the global time is ’'frozen’. After the steady state
has been reached, the output vector of augmented subsystem will be
sent to the adjacent dynamic subsystems and the global time will warm
up and make a step (AT) forward for the global integration. A new
output vector from the one-step integration refreshes the input vector
of the augmented subsystems. These subsystems will integrate again in
their local time scales to get a new steady-state . This process is
repeated for the total global time interval and the desired simulation
results. Since there are two time scales in the whole simulation pro-
cess , one for the local subsystems and the other one for the global
system, we call this scheme two-time-scale integration. A schematic

diagram is shown in Figure 2-9.
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Output fj; (or e;;)
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Global system integrated
over time step dT

T+dT

Figure 2-9 Schematic diagram of two-time-scale integration
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3 SOME COMPUTATIONAL CONSIDERATIONS
3.1 Effect of Eigenvalues on Computation Efficiency

Our ultimate goal is to simulate the dynamic response of
non-linear systems, but the following discussion on linear systems may

benefit this.

For a dynamically augmented subsystem, the system representation

is readily arranged into an explicit state-space form

X = [AIX + [BlU (3.1)

Structurally, the [A] matrix may be resolved further into the
following form since no dependent energy variables exist (i.e., all

integral causality):

m=-[r][w*] (3.24)
for the augmented subsystems by adding only I elements,
or mr=-[e] x] | (3.2b)

for the augmented subsystems by adding only C elements.

The [R] and [G] matrices are derived from the bond-graph topology
and dissipative elements, while the [M~*] and [K] matrices comsist of

the free parameters introduced through the dynamic augmentation.
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The [M™*) or [K] matrix corresponding to the energy-storage
fields is diagonal and positive definite for integral causality. all
non-zero terms in the [M~*] or [K] matrix are positive. For the
R-fields to dissipate energy for any possible port condition, the
resistance parameters should be positive . This is true because only
the 1-port resistors can dissipate power and the junction elements
conserve power. From the preceding statements, it follows that the

[R] matrix will be positive definite.

The question that arises is "How should the free parameters be
selected to provide computationally efficient convergence to the

steady state?”

As mentioned before, during the local time integration the input
vector is a constant vector. Ve want the augmented state variables of

each subfield to follow a path like below to reach their steady state

X= U oAt [t o727 BU 4« (3.3)

where A is an n n matrix with real negative eigenvalues and eAt ig the
fundamental matrix of the system, B is a n®m matrix and U is the input

vector with dimension m.

Let us call this form "diffusion”-type convergence. Graphically,
the "diffusion” convergence has the exponential feature as in Figure
3-1(a) and 3-1(b).The n®n matrix [A] has n eigenvalues. Suppose that

the augmented subsystem is a "diffusion”-type, that is all the eigen-
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values are negative real numbers. They are s,, s,, ..., L To
achieve reasonable accuracy the integration duration should be set to
at least five times ( 1/|s|p;,) and the time-step should be set 1less
than one third of 1/|s|,,. (Figure 3-1). From these considerations,
we hope all eigenvalues are clustered. This means that all the eigen-
values lie within a amall region in the s-plane, so that the number of

integration steps can be minimized .

Mathematically, we can state the objective as trying to choose
kii such that the normalized "spread” of the eigenvalues, p, be minim-

ized, namely

P= (|8|nax = I8]|min ) / C |$|max * |$|min ) (3.4)

where s;:, and are the minimum and maximum among the all

S$max
eigenvalues,respectively. The value of the ”"spread” varies between

zero and ome .

The eigenvalues of the [A] matrix are determined by the charac-
teristics of the [R] matrix, which is intrinsic to the field , and the
[K] matrix, in which every diagonal term is the parameter of an added
dynamic element. Although the minimum of the "spread” p is determined
by the [R] matrix itself, getting to the minimum depends upon how we

select the parameters of the added elements.
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3.2 Parameter Selection in Linear Dissipative Fields

Now let us discuss the issue of how to select the parameters of
the added elements starting from the simplest first-order case to get

some feeling about the general rule for the n-th order case.

First—-order Augmented Subsystems

The first—-order augmentation has one free parameter to be select-
ed. It is the simplest case in R-field augmentation. Consider the
R-field shown in Figure 3-2(a) and (b). The state equations for the

augmented R-fields (a) and (b) are given by Eq.(3.5a) and Eq.(3.5b),

respectively:
P¢ = -(R, + R)pg/mg + R,V, - F, (3.5a)
ps, = -(R, + R,)p,/m; + F, - F, (3.5b)

where the [A] matrix is

(Al = -[R, + R,](1/m) (3.6)

The eigenvalues of both equations have the same form

s = -(R, +R,)/m (3.7)

If we set s to be an arbitrary constant, n , for example, s = -1,

the parameter m may be determined by
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m=R, +R, (3.8)

Using the eigenvalue s = -1, we can choose the time interval and

the duration for the local time integration

At = (1/3)%(1/s ) = 1/3 (3.92)

and tg =5¢(1/s ) =5 (3.9b)

which requires 15 steps for "reasonable” accuracy.

Second-order Augmented Subsystems

A typical second-order dynamic augmented subsystem is shown in

Figure 3-3. The state equations in matrix form are

i;o -(Rz "'R‘ +R‘) l. ,.‘o 0 Pio Ra 0 V; (3.10)
= +
P,, B¢ -(BR, +B, )| |0 1/my,|[Pss o -1||F,
where the [A] matrix is
[A] = |-(R, +R, +R,)/m,, Ry/my,
Ry/m,yo -(R¢ +R,)/m,,

At this point it is the appropriate time to apply the Gershgorin

circle theorem to study the eigeanvalue distribution.

The Gershgorin circle theorem[11] states that:



44

Let [A] be an n®n matrix, and let Ci, i=1,2, ..., n be the
n
discs with centers a.. and radii Ri= 2 a8 - Let D denote the union

ii
k=1, kAi
of the discs C;. Then all the eigenvalues of [A] lie within D.

If we inspect the [R] matrix, which is generated from the
second-order linear system, we may find the off-diagonal terms are
less than the corresponding diagonal terms. This implies that the
locations of the circle centers are more important than the radii in
estimating the distribution of eigenvalues for this type matrix.
Generally we expect that if all the circle centers are located at the
same point in the s-plane and all the radii are as similar as possi-
ble, then the distribution region would be reduced. Therefore, the

"spread” of eigenvalues may be the minimum.

For simplicity, let all centers be at -1.0. The conditions are

R, 4R, +R, = m,, (3.11a)

R, +R, = m,, (3.11b)
then the [A] matrix becomes
[A] = -1 R;/(Rg +R,)

R,/ (R, +R, +R,) -1

The characteristic polynomial p(s) would be
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p(s) = det(sI - A)

= 8% + 25 + 1 - B}/[(R,+R,+R,) (R(+R,)) = 0 (3.12)

The roots of p(s) are

s1,, = -1 & [R}/(R, 4R 4R, (R,+R,) |*/* (3.13)

’

Because the radical term is always greater than zero and less
than one, two negative real eigenvalues are produced. Therefore

¥diffusion” dynamics could be realized.

We also can analytically verify the correctness of applying the
Gershgorin circle theorem using a general second-order augmented case

in which the [A] matrix has the following form

(Al = - |842, 81 ||ka ©

812 8312 | |0 Kk,

where the [G] matrix is symmetric, positive definite and the [K]
matrix is positive diagonal because of the topology characteristics of

R-field. Another property of matrix [G] is that the diagonal terms

8;; are dominant.

The characteristic polynomial p(s) would be
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p(s) = det(sI - A )

=3’ + 8(81:k, + §5,k;) + (g33Kk,8,,k; - l:zkxk:) (3.14)

The roots of p(s) are
85,2 = ~(Ba1ky + 833K3)/2 * [(g4,3k, + g3,k,)°
- 408,k 8,,k,; - l:akak:)]xl‘/z
(3.15a)
or 81,2 = (811K + 833k;)/2 * [(g,3k, - 81aka)® - 43:zk1kz]‘/”2

(3.15b)

Eq.(3.15) shows that the roots will be real and negative. Ve

simplify the notation of s, , as follows

s1,, = -B/2 & (B* - 40)/?/2 (3.16)
where

B = 8,:k, + 813k, (3.17)

C = 8y:k,85:k; - s:,k;k, (3.18)

Then the "spread” is

p = (1 - 4c/B?)?/3 (3.19)

Since p > 0, we can minimize p? with respect to k, and k,;, namely

d(P’)/dkz = ‘4(lsxlaska°l::kz'2cl;a/3)na
(3.20a)
d(p®)/dk, = -4(g,,8,,k,-83,k,-2Cg,,/B)B>

(3.20b)
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These equations yield

2c‘1; - Bclk; =0 (3.21a)
and 2Cg,, - BC/kx, =0 (3.21b)
Finally we have

k;1811 = k38,3, (3.22)

To ensure a minimum we also can show that d’(p’)/dk: > 0 and

d*(p*)/dx] > 0 . So if we choose k, = 1/g,,, then k, would be 1/3,,

from the above relation, i.e., one of the optimal selection will be

k, = 1/g3, (3.23a)

k, =1/g,, (3.23b)

This coincides with the result obtained by using the Gershgorin
circle theorem. Let k, = 1/g;; and k; = 1/g3,, then "spread” p will

be

P = 813(1/811852)"2 (3.24)

Since 83, < §11835, 30 P> = 83,/812822 < 1; hence p < 1 .

The above observation has been illustrated by an arbitrary numer-

ical example in TABLE 1. The [A] matrix is
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[A] = [-210/m,, 10/m,,

10/.‘0 -110/.1‘

Three different parameter sets of m,, and m,, have been used. Their
eigenvalue distribution regions are shown in Figure 3-4. Obviously

the parameter pair in case 1 e the optimal selection among the choices

shown.

General n th-order Augmented Subsystems

Experience indicates that many physical systems containing alge-
braic 1loops may be adequately handled with only first or second order
augmentation. But it is still possible for higher order augmentations
to emerge in some complicated systems. A useful rule may be general-
ized from the discussion above on the first and the second-order cases
to the general nth-order case. In genmeral, the augmentation by adding
only I or C elements will produce the resolvent [R] and [M~*] or [G]

and [K] matrices as follows

T3y T3, cesees Tag| f2/my ..... O
T,y I,, cevess o . lUm,

[A] =-[RIDN?) = -], . . . .
Ths  eeceee Ton \? cevee  1/my
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Figure 3-4 The eigenvalue distribution
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i 1 '
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831 B3a cocssce o . k3
[A] = -[G]IK] = - |. . . . .
-ln; cecsnse 'nn_ .0 cecas kn_

The general [R] or [G] matrix has following properties as men-

tioned before:

1) The [R] or [G] matrix is symmetric and positive definite;

2) The diagonal terms r;; or 8jj are dominant among the terms in

the same row.

The idea that the free parameters should make the diagonal terms
s,, and a,, in the tvo dimensional product matrix [A] be minus ome so
that the "spread” of eigenvalues is the minimum, may be extended to a
general n-th order augmentation. So the general rule for optimal

parameter selection may be stated as that:

The optimal parameters should make all the diagonal terms 854 in

the product matrix [A] be an identical number, more precisely, m; =

r;; for adding only I elements or k; = 1/g;; for adding only C ele-

ments.
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The most common junction structure of R-fields is so-called
"chain” type 0/1 junction structure (Figure 3-5) in which the junction
elements O and 1 are arranged in alternation. It may be worth paying
& little more attention to it., Obviously every added dynamic element
increases the number of eigenvalues of the [A] matrix by ome. The
additional eigenvalue will be determined principally by the parameter
of the dynamic element itself and the values of the dissipative ele-

ments in the neighborhood.

The [R] matrix produced from a general n-th-order dynamic
augmented static field with ’chain’ junction structure by adding I or

C elements possesses a banded form:

r
-(R,+R,+R,;) R, 0 0 0 0 0
R' ’(R;+R‘+R5) R‘ 0 0 0 0
-[R] = 0 . . . . . .
. . - Bj_, -(Rj_,*R;+R;,,) Ry,, .

0 . . . . Rn_; ‘(Rn_g*l\n)

b o

An explicit rule of parameter selection for "chain” type junctiom

structure may be stated as



53

'/.11
SFp—=0 .... — =0 —=1}—=0—= .... 1}—= SE

TR T

By Biaa B; Bag R,

Ij = R2j-1 + R2j + Ry 49y
(a)

/ G

s;Ft—m=0 .... —1}—0—=1}— .... 1}—SE

A A A T

Ry Ryi-1 R2ig1 Raja Rp

Ci = 1/R2i_1 + 1/R2i + 1/R2i+1
(b))

Figure 3-5 General n—-th-order augmentation
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1) for augmentation by adding only I elements, use
m; =Ry, Ry Ry, (3.25a2)
2) for augmentation by adding only C elements, use
1/k; = 1/Ry;_, + 1/Ryy + 1/R, (3.25b)
where m; ———- the m parameter of the i-th introduced I element;
k; =——— the k parameter of the i-th introduced C element;

j ———— linear resistance in the field.

An example for general case is shown in Figure 3-6. The [G] and

[K] can be derived from the topology of the bond graph model as below

-(1/R,+1/R,+1/R,+1/Rs) 1/R, 1/R; kys 0 O
-[G]IK] = 1/R, -(1/R,+1/R,) (i 0 k6 O
1/R, (] -(1/R;+1/Rg)| |0 O k,,

Some numerical results are tabulated in Table 2. It shows that

the optimal parameter set is obtained by using the suggested rule.

It has been noticed that for those [R] matrices in which some of

the T;j terms (i=j ) are greater than zero, the eigenvalue “spread”
obtained by the general rule is not the minimum. Howev;t. employing
the general rule still makes the parameter set result in a satisfac-
tary eigenvalue distribution in the s-plane. Although the
mathematical proof has not been given, the genmeral rule still can be

applied to such [R] matrices. An example is given in Figure

3-7(notice that this case is not of the least augmentation). The [A]
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1 2 3 4
1 Ry 3 4
(a)
1
e
11 5
SE— 1 —= g,
1 1
13 12 V‘
6 7 8 9 10
SE—= 1 |—= 0 —=~J 1 }—= 0 —={ SF
1 z]- 3 4-[
Ry Ry R3 R,

Figure 3-7 An R-field: examlpe 2

a2) Before augmentation

b) After augmentation
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matrix is derived as below

-(R,+R,+R,) -R, R, 1/mg, 0 O
[A] = -R, -(R,+R,) R, 0 i/m,, O

R, R, -(R,+R,) | |0 0o 1/m,,

Some numerical computational results on the eigenvalue “spread”
are tabulated in Table 3. It shows the parameter selection by using
the general rule is rather close to the possible best omne; therefore

it is acceptable.

The general rule for a "chain” type lttnctu;e has been applied to
a number of arbitrary [R] matrices with different dimensions and
numerical conditions. Figure 3-8 represents a third-order augmented
R-field by adding three I elements which introduce three free parame-
ters: m,, m, and m,;. Three different cases have Dbeen
investigated(Table 4). For the first case the parameter values of all
R elements are equal or close each other; we call this the normal
case. For the second case the parameter values of R elements are dif-
ferent in such a way that the R elements attached to the junctions to
which the dynamicizers are added have relatively large parameter
values compared with their neighbors. The third case is just the

opposite of case 2.

In every case, if we choose parameter values for m,, m, and m,

according to the general rule obtained before, then the "spread” p
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I I I3
SFp—= 0 —=~{1 }—=~0 —~1 }—=~0 —={ 1 |—= SE
Ry Ry R3 R4 Rs Rg

Figure 3-8 A third-order augmentation
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will be the smallest. Furthermore, among the three cases the smallest
one is achieved from case 2. Case 2 is called one with favorable con-
dition. Generally we hope the R-fields are in such favorable
condition which will make the local integration be more efficient.
The opposite case shows a much worse result, so it is called the case

with adverse condition.

3.3 Parameter Selection in Nonlinear R-fields

Linearization of R Elements

In a nonlinear dissipative problem the "parameters” of mnomnlinear
K elements vary. The eigenvalues of the associated [A] matrix change
during simulation. Consequently the parameters of the added dynamic
elements may need adjustment during simulation. Otherwise they may
cause integration in the local time scale to be unstable or lead to a

considerable error.

One technique for applying previous results to mnomlinear system
problems is 1linearization. At selected times and states, the equi-
valent R-field parameters can be found by linearizing the dissipative

element characteristics. That is, we find the local tangent

R = de/df (3.27)

where e = g . (f). (3.28)
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Alternatively a chordal approximation based on the global e and f

can be used, namely,

R =c¢e/f (3.29)

For example, s nonlinear dissipasi&e R element possesses the fol-

lowing constitutive function

e = 0.15¢%-2 (3.30)

By using the chordal definition for the parameter of a linear R

element, the equivalent parameter of R would be calculated by

B, =c¢ / f=0.15¢*%/f = 0.15¢°:? (3.31)
whereas the tangent approximation yields

R, = de/df = 0.18£°°* . (3.32)

Reference R-Matrix for Integration Coatrol

Partitioned static and dynamic fields are shown in Figure 2-2,
One of the possible augmented subsystem is proposed im Figure 3-9,
with the state vector, X, the input vector, U, and the output vector,

V. The constitutive dissipation functions are
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/‘ [Py yl [pyy
6 7 8 9
SFI-—- 0 —=1 }p—= 00— 1 }—=SE
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P10 £5
X = U= V=[f9 ]
P11 9

Figure 3-9 A nonlinear R-field
(a) Before augmentation

(b) After augmentation
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e, = 2,0SIGN(f,)f}-? (3.332)
e, = SIGN(f,)f} (3.33b)
e, = 3TANH(f,) (3.33¢)
e, = 2.0f, (3.33d)

The equivalent parameters of the R elements linearized by the

chordal approximation would be

R, = 2.0SIGN(f,)f3? (3.34a)
R, = SIGN(f,)f, (3.34b)
R, = 3TANH(f,)/f, (3.34c)
R, = 2.0 (3.344)

The state equations for the nonlinear subsystem can be derived
from the bond graph model as usual. Remember that the added I ele-

ments are linear with constant parameters m,, and m,,.

Pijo = 2.OSIGN(f,-p;./ll;.)(f;-p;o/l;Q)L’ - SIGN(P;./I;.)(p;./lxg)’
- 3 TANH(p,,/m, - pys/mss) (3.352)

i’11 = 3 TANH(p,o/m,0 = P3a/m3;3) = 2.0p,,/my, — e,
(3.35b)

If we arrange the above equations as follows
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2.0”3'1’;./1!;.)"’ (Pxo/mxo)’
= (f, - / ) - ( / )
(fs'P:o/ﬂ;.) s Pao/B3p (p‘./n,.) Pio/Byo

Pio

3TANH(p,,/mye = P3a/m,,)

(Pio/B30 = P1a/my,) Pie/mio = Pis/my,)

(3.36a)

3TANH(p, /39 = P1a/m;,)
- (Pyo/Byo = Pas/myy) = 2.0py,/my, — @
(pt.,nio - p;:/m;‘) 10 10 pl‘ i1 pll 11 9

Pia
(3.360)
Further manipulating yields
Pio = - [2-°(f| - Pxo/‘zo)O" + Pio/mye + E ]Pxo/'xo
+ Ep,,/my, + 2.0(f, - pye/mye)* e,  (3.370)
ix; = Epye/myg = [ E+ 2.0 ]pyy/my, - ¢,
(3.37v)

where E = 3TANH(p,o/m30=P13/my3)/(P1e/Mm1e=P11/my;)

Comparing the terms in the brackets with the equivalent
parameters of these R elements defined by the chordal approximation it
turns out that they are identical. At a certain global time the state
equations in matrix form would be

Pio| [-(Ry+R;+R,) R, |{1/ms0 O ||pso | Kfs—Ps1a/mss®°?) Of[f, |(3.38a)
Pia ) R, ~-(R,+R,)||0 1/m,,l|p., ()} 1|le, |(3.38b)
(A)

where R,, R,, R,, R, are defined by Eqs.(3.34a,b,c,d).

With the equivalent linear resistances, an estimate of the
instantaneous dynamics of the nonlinear system can be obtained by the

extraction of the eigenvalues from the above [A] matrix. The [R]
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matrix is analogous to the omne of linear case described earlier.
Although this analogous [R] matrix can not be used for direct simula-
tion, it may serve to predict the local dynamics in the two-time-scale
integration technique. It will help in parameter selection for the
dynamicizers and the local integration controls. Therefore, such an

[R] matrix is named the reference [R] matrix.

By using the instantaneous values for the bond variables or state
variables available from the previous global time step, a set of
instantaneous equivalent linear resistances can be computed. In this
example, at a certain global time step the state variables p;o and p;,
are known as ¥ , and p,,. The reference [R] matrix would be calculat-

ed as follows

[R) = - |[(¥,-p,,/m,,)°* +P,,/m,, +E] E
E -[E+2.0]
where T,, p,o,P,1, By, and m,, are the values at the previous global

time step, and E is as in Eq.(3.37).

In many cases a set of R parameters could be used for several
global time steps before re-evaluation would become necessary. This
must be judged from the rate at which the local field input variables

are changing.

At steady state the equivalent resistance parameters virtually

may be the functions of only the input vector to the R-field; namely
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R; = v;(D) (3.39)

If the change of the input vector is not too large the equivalent
resistance R; will not change dramatically, provided the nonlinear
dissipative element is well-behaved; for instance, the effort is a low
order power of flow. For many physical systems, the nonlinear dissi-
pative elements possess fairly moderate characteristics. The changes
in equivalent parameters over the dynamic range of interest are not
very large. In the mechanical systems such nonlinear dissipation
effects come from static friction, columb friction and other nomlinear
frictions which have small degree of mnonlinearity. Therefore, the
reference [R] matrix will not change the local dynamics too much and

will not require the freqent re-selection of added dynamicizers.

The process described in the preceding paragraphs can be repeated
as the global time variable increases; that is, the free parameters
could be reselected intermittently throughout the global simulation in

prescribed fashion.

The technique of parameter selection for the n—-th-order nonlinear

subsystem is summarized below:

1) At t=t,, set all free parameters to be an arbitrary constant,
say, unity, set arbitrary initial conditions for the added dynamic
elements and choose a small time step and a long duration for 1local

time scale, then integrate the subsystem to steady state.
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2) Compute the instantaneous equivalent 1linear resistances for

each nonlinear dissipative element in the augmented subsystenm.

3) Form the reference [R] or [G] matrix.

4) Select the optimal free parameters following the general rule.

5) Compute the eigenvalues of -[G][K] or -[R][M"*] matrix, reset

the local time scale.

7) Integrate the subsystem to the steady state in the new local

time scale.

8) Compute the output vector of the subsystem.

9) Continue with the global integration forward ome step.

10) Repeat the parameter selection process according to the error

control criteria.
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4 NUMERICAL EXAMPLE

To illustrate the effectiveness of the bond graph augmentation
method discussed in the preceding chapters, a demonstration example is
presented in Figure 4-1. The subroutine PART identified the system
and partitioned it into one dynamic field and one static field. Then
subroutine AUGMEN automatically determined which nodes should be aug-
mented and what kind of dynamicizers should be added. After the
sugmentation process was finished, the augmentation information was
printed out for inspection (Figure 4-2). The augmented subsystem and
the dynamic subsystem are shown in Figure 4-3. The bonds and the
nodes in both subsystems have been renumbered regarding the initial

descending numbering sequence.

For different purposes a linear case and a nonlinear case have
been simulated. The existing program for linear systems can be used

as an examiner.
4.1 Linear Case

If the all dissipative elements in the R-field are 1linear, then

the state equations of the sugmented subsystem are

Pio| [|-(R,+R,) R, |1/m;6 O] lps0 o -1]l|f, (4.1)
+

Paal | Ry -(Ry+R,+R) |0 1/mg,||psa] [R: O}le,
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(8) (9) (10) (11) (12) (13) (14) (7)

SFl—Bm o —2m gy 100 o M. G120 By 1 g

R R R R C R
(1) (2) (3) (4) (5) (6)

Figure 4-1 The global bond graph

model for the example
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e R ARIE 1 R=FIELDS IN THE GIVEN SYSTIEEM

ROFLERLD NUMAGLR 1
NODREES
9 O 8 1 9
8 SF 8
1 R 1
10 9 2 10
2 R 2
11 O 10 .3 11
3 R 3
12 1 11 4 12
4 R 4
13 SE 12
Nanrrs
12

MHERE ARE O JUNCTION STRUCTURE COMPLEXES
MHERE ARE 1 DYNAMIC FIELDS IN THE GIVEN SYSTEM

DYMAMIC IFIELD NUMBER 1
HANES .
13 0 12 S 13
12 SF 12
5 C 9
14 13 6 7
é& R é
7 1 7
PERTS
12

ADD C/1 ELEMENT TO THE ACTING JUNCTIONS

ADD 1 ELEMENT TO NEW NODE 8 (THE OLD NODE 12 )
ADD C/1 LELLEMENT 70 THE SINGLE-TYPE JUNCTINS

ADD I ELEMENT TO NEW NODE 4 (THE OLD NQDE 10 )

THERE ARE 2 STATE VARIABLES
AND 2 INPUT VARIABLES.

THE STATE VECTOR. ..
X 1 =P 10
X 2 =P 11

THE INPUT VECTOR. ..

u 1 =F B
Uu 2=E 9

Figure 4-2 Tho Augmentation Result for the Example
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I =y, I :my,
11 :2/i\
sik——=0 —S g1 To o 2 g1 T s

P £
10 5 s

Xs = Us = = f9
P11 %

(a)

[p3]

s~ 0 2o =1 W
1 1
| C :k R

[qll
(b))

Figure 4-3 The subsystems
a) Augmented subsystem
b) Dynamic subsystem
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If all the elements in the dynamic field are linear, the state

equations of the dynamic sybsystem are

q, = f, - p,/m, (4.2a)

i’l = kax = glp]/-’ (4.2b)

Assume the parameters of the elements are

R, = R} = 10.0 R, = R} = 20.0

R, = R} = 5.0 R, = R} = 10.0

x, = x4 = 20.0 R, = B = 5.0
d

m, =m; =2.0
where the superscripts s and d denote the augmented subsystem and the

dynamic subsystem, respectively. The [R] matrix of the augmented subsystem is

[R) = |-15.0 5.0

5.0 -35.0

Acoording to the general rule we choose 15 and 35 for parameters

m,, and m,,, respectively, so the [A] matrix appears

(A} = |-1.0 0.1429
0.3333 -1.0
The eigenvalues of the [A] matrix are
s, = -0.7818
s, = -1.2182

We may set the local time scale as follows
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At = 1/(3s,;,) = 1/(3¢1.2182) = 0.273 sec

te = 5/8-.x = 5/0.7818 = 6.395 sec

If you want to change the scale by a factor n, you may change the
parameters m,, and m;; by the factor. For instance, let m;, and m,,

be 1.5 and 3.5, respectively, then

s, = -7.818
s, = -12.182
then the time interval and integral duration will be

At = 0,0275 sec
te = 0.6395 sec

In the execution we set At = 0,025 sec and ty = 0.65 sec.

The global time scale may also be determined from the eigenstruc-

ture, s, , = -1.95 + 3.114j, as follows

AT = 0.05 - 0.10 sec

Tf = 5.0 sec

Suppose that all the initial conditions are equal to zero at T =

0, and the flow input from source SF8 is a constant, say, f: = 10.0.

Since T = 0, q, = 0, and p, = 0, therefore e = ¢4 =0 . These
two subsystems interact through bond 12 in the initial system

model ,DOhat is the output of the augmented subsystem, f:, is the input
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to the dynamic subsystem, f9, yhile the output of the latter, %, is
the input to the former, e:. Besides the input to a augmented subsys-—
tem at present global time step from the adjacent dynamic subsystem
would be the output of the latter at the just previous step. So, at
global time T = 0.05 sec, the input e: = 0. Integrating in the local

time scale that has been set earlier yields the output f: at T = 0.05,

f: = ;u/‘xo° (4.3)

It will be the input to the dynamic subsystem at T = 0.05.
Figure 4-4 shows the local time scale integration process at the glo-
bal time T = 0.05, and Figure 4-5 displays the next local integrationm.
The dynamic subsystem then integrates ome time step in the global time
scale. The steady states of the augmented subsystem serve as initial
conditions for next local-time-scale integration and also the states
of dynamic subsystems become the initial condition for the next
global-time-scale integration. These two subsystems interact in this
manner throughout the entire global time so that the system simulation

can be realized.

To demonstrate that this procedure canm lead to correct results,
we have used the DIFFEQ[12] package that can solve either linear and
nonlinear differential equations. The numerical results and a plot
are shown in Figure 4-6 and Figure 4-7, respectively. Comparing these
with the results obtained by the ENPORT-5[13] package (Figure 4-8 and

Figure 4-9) shows that they are almost identical. The small differ-
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TIME P10 P11
0. OO0E 00 0. OO0O00E 00 0. O00O0OE 00
0. SO00E-01 0. 4B095E-01 0. 233B6E-01
0. 100E 00 0. 91862E-01 0.87213c-01
0. 150E 00 0. 13073E 00 0. 18237E 00
0. 200E OO 0. 16437E 00 0. 30038E 00
0. 250E 00 0. 1926%9E 00 0. 43361E 00
0. 300E 00 0. 21577E 00 0. 57527 00
0. 350E 00 0. 233B2E 00 0. 71954E 00
0. 400E 00 0.24716E 00 0.8615SE 00
0. 450E 00 0. 2562%E 00 0. 9973&6E QO
0. SOOE 00 0. 2616CE 00 0.1123%E 01
0. 559 00 0. 26354E 00 0. 123%90E V1
0. 600t 00 0. 26292E 00 0. 13411E 01
0. 659E 00 0. 259945 00 0. 14294E 01
0. 7COE OO0 0. 25521E 00 0. 15034E 01
0. 750E 00 0. 24918E 00 0. 15640 01
0. 800E 00 0. 242246E 00 0. 16112E 01
0. 850E 00 0. 234825 00 0. 16461E O1
0. ?00E 00 0. 22718BE 00 0. 16697E 01
0. 950E 00 0. 21961E 00 0. 16834E 01
0. 100E 01 0. 21232E 00 O. 16885E 01
0. 105E 01 0. 20550E 00 0. 16B&4E 01
0.110€ O1 0. 19927E 00 0. 16784E 01
0.115E 01 0. 19371E 00 0. 1645BE O
0. 120 01 0. 1BBB7E 00 0. 16497E O1
0. 125 01 0. 1847BE 00 0. 16314E 01
0. 130E O1 0. 18143E 00 0. 16117E 01
0. 135 01 0. 17873E 00 0. 15916E 01
0. 140E O1 0. 17682 00 0.15716E O1
0. 145 O1 0. 17543E 00 0. 15524E 01
0.1S0E O1 0. 174S5E 00 0. 15345E 01
0. 155E 0O1 0. 17423E 00 0. 151B1E 01
0. 160E 01 0. 17427E 00 0. 15035E 01
0. 165 01 0. 17464E 00 0. 14908E O1
0. 170 O1 0. 17526E 00 0. 14801E O1
0.175E 01 0. 17608E 00 0.14713c 01
0. 180 O1 0.177G3E 00 0. 14444E 01
0. 185E 01 0. 17B06E 00 0. 14592 01
0. 190 O1 0. 17912E 00 0. 14556 01
0. 195 O1 0. 1B019E 00 0. 145355 O1
0. 209 01 0. 18121E 00 0. 14526E 01

Figure 4-8 Numerical result obtained by the ENPORT-S
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ence (about 1.0 - 2.0 % ) comes from the different algorithms employed
in these two programs. It, however, has clearly illustrated how the

two-time-scale integration technique works and how well.

4.2 Nonlinear Case

If some of the dissipative elements in the augmented subsystem
are nonlinear, the simulation process will follow the steps summarized
in the preceding chapter. Suppose the dissipation functions are the

same as Eqs.(3.34a,b,c,d). The state equations are rewritten as below

il‘ = 3TANB(P;;/II11‘D‘./I;.) - 2.opx.lm1° - °’ (4.5.)
Pis = Z-OSIGN(fs'an/‘xx)(fc'Pxx/'x;)"’ - SIGN(P,0/m34) (Pao/mye)?
- 3TANH(p,,/my,-P3e/ms,)

(4.5b)

The reference [R] matrix may be

-(R,+R,) R,
[R] =|-[ E + 2.0 ] E
E ~[(f,-p10/m10)° *+Pso/mye+ E ]
R, -(R,+R,+R,)

where E = 3TANH(p,,/m,; = P3o/m;0)/(Paa/myy = Pao/my,)

The initial parameters m;,, m,, and the initial conditions p;,,

Py, may be any reasonable numbers as long as there is no zero divide

implied, say, m,, = 1.0, m;,, = 1.0, p,, = 1.0 and p,, = 2.0.
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Choose At = 0.01 and tg; = 3.0 as the 1local time scale.
Integrating in the local time scale produced the steady state values
P,o and p,,, and then all the bond variables can be calculated from
the constraint equations. They are used to compute the instantaneous
equivalent linear resistances for R, R,, R, and R,. The referece [R]

matrix, then is formed as below

[R] = |-23.351 0.7223
0.7223 -2.7223
For a smaller time scale, we set
m,, = 2.3351
m,, = 0.27223
Then the [A]) matrix is
[A] = }-10.0 2.653
0.3093 -10.0
The eigenvalues of [A] are
s, = -9.0941
s, = -10.9659
Reset the local time scale by
At = 1/(3%10.9059) = 0.03056 =)> 0.030 sec
te = 5/9.0941 = 0.5498 => 0.60 sec
For comparison the eigenvalues and the local-time-scale have been
computed when parameters m,, and m;; are arbitrarily set
to be one. they are listed below:
$, = -2.697
s, = -23.376

and At = 0.01425 sec
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tf = 1.854 sec

Figure 4-10 displays the local integration process when the free
parameters are selected arbitrarily, while Figure 4-11 shows the local
integration at the same global time after the parameters have been
optimized. From these plots we can see that the optimal parameters
make the "diffusion” process quicker and the local integration steps
fewer. The remaining process would be the same as that in the linear
case discribed in preceding section. The only difference is that the
nonlinear case needs to control the local time scale by detecting the
change rate of the subsystem input vector or the equivalent resis-
tances. Fortunately, the equivalent resistances, R,, R,, R, and R, in
the particular example change only a little, so the local time scale
needs not to be modified in the later 20 global time steps. The
numerical output and a plot of this nonlinear case are shown in Figure

4-12 and Figure 4-13, respectively.

Comparing Figure 4-13 with Figure 4-9 obtained in 1linear case
shows that they have a similar appearance aside from the different
y—-axis scales. It means that both cases have almost the same dynamic
characteristics. This may be explained by the fact that the nonmlinear
dissipative field changes are very small in the particular system

because of the constant input SF8.
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Figure 4-12 Numerical result obtained by the

two-time-scale integration
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5 CONCLUSION

5.1 Summary

The bond graph augmentation method for simulation of a dynamic
system containing coupled nonlinear dissipative fields has been

developed.

The causality assignment process is very useful for identifying
R-fields. The order of augmented subsystems has been briefly dis-
cussed and it has been shown that to get the least augmentation order
and to make the parameter selection as easy as possible, adding only
one type of dynamic element ( C or I ) is desirable. An augmentation
sequence has been suggested. By adding only ome type of dynamic ele-
ment the augmented subsystem will reach its steady state in a
"diffusion” manner. To obtain the best computation efficiency the
selection of parameters for the dynamicizers is the key. The discus-
sion on parameter selection in linear subsystems has been extended to
nonlinear subsystems through the concepts of instantaneous equivalent
linear resistance and the reference [R] matrix. A genmeral rule for
parameter selection for arbitrary n-th-order subsystems has been sug-
gested and numerically verified by several cases with different orders

and numerical conditions.

The partition of dynamic fields and dissipative fields and the

augmentation process are automatically accomplished by the subroutines
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PART and AUGMET.

An example with linear and nonlinear cases has demonstrated the
effectiveness of the new approach. The results obtained by this
approach and by the existing ENPORT-5 program from 1linear case bhave
been compared. It shows that the two-time-scale integration technique
is valid for dynamic study. As the dissipative effects in the same
system are reset to be nonlinear, the simulation result has shown the

expected system dynamic behavior.

The approach to simulate a system with coupled nmonlinear dissipa-

tive fields proposed above has several advantages. Among them are:

1) The parallelism in this approach is well-suited for parallel

computers.

2) The manner in which we break up the whole problem into parts

may be used to simulate large systems in a small capacity computer.

3) The coupled algebraic loop in system equations will be solved
and the system dynamics can be investigated without mnecessarily

approximating the nonlinear dissipative effect as a linear one.

On the other hand, the use of this approach based on omly C or

only I augmentation caries with it certain possible limitations:
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1) For the adverse numerical condition of a dissipative field(its
"spread” of eigenvalues is close to ome), the computational efficiency

would deteriorate.

2) The general rule for parameter selection may mot apply to cer-
tain nonlinear static fields containing junction loops or GY elements
because sometimes it is impossible to complete the causality by adding

only C or I elements.

5.2 Future Development

The complete implementation of the approach is not possible until
the program NONLIN, which can simulate uncoupled nonlinear systems, is
available for use. This program is currently under development. The
remaining work mainly is to design the control of the data flow among

subsystems and the data assembly.

Basically the mixed C and I augmentation is not preferred becuse
it might cause complex eigenvalues. But it still remains for futher

investigation.

Some interesting problems are the sensitivity of the eigenstruc-
ture of an augmented subsystem to the change of its input vector and
the influence of the augmentation order on the sensitivity.
Investigation into these problems may benefit the control of the local

time scales and therefore computational efficiency.
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Until this stage, it is still too early to give a definite con-
clusion on the computational efficiency of this approach. The
efficiency is commonly defined to be inversely proportional to the CPU
time consummed during the execution of the computer program. Ome
needs to compare the CPU time that is used to obtain the solution for
different class problems by this approach with those used by other
traditional methods, such as mentioned in chapter 1. It would be pos-

sible when the program NONLIN is available.
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(ENPORT6)

(CAUSE)

PAR AUGMEN

RFIELD DFIELD PRDFID REARRG UNINAM BAENAM ADELMT

CALLING TREE



APPENDIX B
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COPART®¢88838883838880803088000008000308008008080880800800800808088580880808

C
SUBROUTINE PART

JX  —- JUCTION STRUCTURE COMPLEX INDEX

C

C —- PROGRAMMER -- TONG ZHOU, AUG. 1983

C

C ——= PART FINDS AND SEPARATES THE R-FIELDS AND THE JUNCTION
C STRUCTURE COMPLEXES FROM THE ORIGINAL BOND-GRAPH.
C

C MR  -—— R-FIELD INDEX

C MD  -——— DYNAMIC FIELD INDEX.

C NJ  ——— CAUSAL BRANCH INDEX

C

C

Ceess DECLARATIONS
C
SINSERT SYBGBK
SINSERT CAUSBK
SINSERT UTILBK
SINSERT PARTBK
C
C.O.‘.‘00‘.‘.0.‘00.0"OO..“0“.000....O..“.“t““““0‘.‘.“‘0‘
C

MR=0

MD=0

NI=0

IBD1=0

IBR1=0

NELR=0

NELD=0

INN=0

NBD2=NBD*2

DO 2 I=1,NBD2
ICMXT (I)=ICMX(I)
CONTINUE

2
C
C -—— FIND THE FIRST JUNCTION
C
5

DO 10 Ni1=1,NEL
IF(IELLST(N1).GE.6) GOTO 15
10 CONTINUE

15 NP1=NPTR (N1)
NP2=NPTR (N1+1)-1
C
C ——— DETERMINE IF ALL THE BONDS INCIDENT TO THE JUNCTION
C ARE CAUSAL ASSIGNED
C
DO 25 I=NP1,NP2

IF(ICMXT(I).EQ.1) GOTO 30
25 CONTINUE
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C —— GET THE ALL INFORMATION FOR THE PRESENT DYNANIC FIELD
C

IF (MD.EQ.0) MD=1

CALL DFIELD(MD,MR,N1,NP1,NP2)

GOTO 35

C —— GET THE ALL INFORMATION FOR THE PRESENT R-FIELD
0 MR=MR+1
CALL RFIELD (MD,MR,N1,NP1,NP2)
C
C
C —- EXTEND TO THE NEXT ADJUCENT FIELD
C
3

5 IF(IXBD.EQ.0) GOTO 40

N1=JBD (IXBD)
IXBD=IXBD-1
GOTO 15
C
40 IF (IXBR.EQ.0) GOTO 90
N1=JBR(IXBR)
IXBR=IXBR-1
GOTO 15
C
C —— FIND THE JUNCTION STRUCTURE COMPLEX FROM R-FIELDS
C
90 JX=0
DO 110 I=1,MR
L=LR(I)
DO 100 J=1,L

IF (IRLST(I,J).EQ.3) GOTO 110
100 CONTINUE
JX=JX+1
JCOMX (JX)=I
110 CONTINUE
INO=INN
C
C——REARANGE THE DATA ARRAYS
C
DO 120 I=1,MR
MD1=0
IBR1=IBR(I)
NELR=LR(I)
CALL REARRG ( I,MD1,IBR1,NELR, IBMXR,NBIMXR, IBMXRN,
+ NBIXRN, INDXRE)
120 CONTINUE

DO 130 I=1,MD

MR1=0

IBD1=IBD(I)

NELD=LD (I)

CALL REARRG ( MR1,I,IBD1,NELD, IBMXD,NBIMXD, IBMXDN,
+ NBIXDN, INDXDE)
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130 CONTINUE

C
C —— PRINT R-FIELDS AND JUNCTION COMPLEXES
C
CALL PRRFLD (MR,MD)

C

MRT=MR

NDT=MD

RETURN

END
C
C
C
CRFIELD$$¢¢8808088888888000084848¢000008804888000008888088888800¢
C

SUBROUTINE RFIELD (MD,MR,N1,NP1,NP2)

—— RFIELD GETS ALL INFORNATION FOR THE R-FIELDS( zUNCTION
STRUCTURE COMPLEX IS TREATED AS A R-FIELD ) FROM THE ORIGINAL
BOND-GRAPH.

INPUT --- N1,NP1,NP2

OF THE BEGEINING JUNCTION OF THE R-FIELD
OUTPUT -— N1,NP1,NP2

OF THE END JUNCTION OF THE R-FIELD

L == NODE INDEX

IB =—— BOND INDEX

IP === PORT INDEX

NUMJ  —- BRANCH INDEX

INDXRE -— NODE SERIEL NUMBER

IRLST --- ELEMENT TYPE LIST

IRNAM --- ELEMENT NAM LIST

NPTRR --- POINTER LIST FOR NBIMXR (START OF BOND GROUP)
NBIMXR --- LIST OF BONDS INCIDENT TO EACH ELEMENT
JUNCIR --- LIST OF BRANCHES IN THE R-FIELD

LR =—— NODE NUMBER STORRAGE ARRAY FOR EACH R-FIELD
IBR == BOND NUMBER STORAGE ARRAY

IPR ==~ PORT NUMBER STORAGE ARRAY

(r N e NeNoeNeNe N e N e N Ne Ne Ko Nrs e N N Ko Ko Ko R Ko Ke

Cee¢e DECLARATIONS
C
$ INSERT SYBGBK
SINSERT CAUSBK
SINSERT UTILBK
SINSERT PARTBK
c -
C
c.‘0........‘....O“...O.C‘....t“‘.t...."...“‘O‘..‘..O...‘..O
C
C —— INITIALIZATION
C
L=0
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IB=0

IP=0

NUMJ =0
NN2=0
NBD2=NBD*2

C —— GET JUNCTION DATA

10 L=L+1
NPTRR (MR, L) =IB+1
II=1B
DO 20 I=NP1,NP2
IF (ICMXT(I).EQ.0) RETURN
IB=II+I-NP1+1
NBIMXR (MR, IB) =NBINX(I)
ICMXR (MR, IB) =ICMX(I)
IBOND=NBIMX(I)
IBMXR (MR, IBOND, 1)=IBMX (IBOND, 1)
IBMXR (MR, IBOND, 2) =IBMX (IBOND, 2)
20 CONTINUE

C
INDXRE (MR, L)=N1
IRLST (MR, L)=IELLST(N1)
IRLNAM(MR,L)=IELNAM(N1)
IF(L.BEQ.1) GOTO 50

C

DO 30 I=1,L-1

IF (INDXRE (MR, I) .EQ.INDXRE(MR,L)) GOTO 40
30 CONTINUE

GOTO 50
40 IB=IB-NP2+NP1

L=L-1

GOTO 185

C -— GET ADJOINING NODE DATA

50 DO 180 I=NP1,NP2
IBOND=NBIMX (I)
NA=IBMX (IBOND,1)
NB=IBMX (IBOND,2)
N2=NA
IF(N1.EQ.NA) N2=NB

NUM=0
DO 55 J=1,60
IF(NBIMXR (MR,J) .NE.IBOND) GOTO 55
NUM=NUM+1
IF(NUM.NE.2) GOTO 55
ICMXT (I)=0
GOTO 180
55 CONTINUE
C
C ——- SAVE BOUNDARY INFORMATION
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IF (IELLST(N2).EQ.3) GOTO 95
IF (IELLST(N2).EQ.4) GOTO 95
IF (IELLST(N2).EQ.5) GOTO 95
IF (ICMXT(I).EQ.1) GOTO 95
NN2=NN2+1
MD=MD+1
DO 60 J=1,NBD2
IF(J.EQ.I) GOTO 60
IF(NBIMX(J) .EQ.IBOND) GOTO 65
60 CONTINUE
65 IF(IELLST(N2) .EQ.1.0R.IELLST(N2) .EQ.2) ICMXT(J)=0
IF(ICMXT(I).EQ.6) GOTO 70
IF(ICMXT(I).EQ.3) GOTO 75

C-——- SINGLE C- ELEMENT

70 ICMXT(I)=0
ISOURL (NN2,1) =5
ISOURL (NN2,2) =4
ISOURN(NN2,1)='SF’
ISOURN(NN2,2)="'SE’
ICMXD (MD, 1) =6
ICNXD (MD, 2) =3
IF (IELLST(N2).GT.5) GOTO 85
GOTO 80

c

C-— SINGLE I- ELEMENT

C

75 ICMXT(1)=0
ISOURL(NN2,1)=4
ISOURL(NN2,2)=5
ISOURN(NN2,1)='SE’
ISOURN(NN2,2)='SF’
ICMXD (MD,1)=3
ICMXD (MD, 2) =6
IF (IELLST(N2).GT.5) GOTO 85

C —— GET THE DATA FOR THE SINGLE DYNAMIC SUBSYSTEM

80 NPTRD (MD,1)=1
NPTRD (MD, 2) =2
NPTRD (MD, 3)=3
INDXDE (MD, 1)=N1
INDXDE (MD, 2) =N2
IDLST (MD, 2)=IELLST(N2)
IDNAM (MD, 2)=IELNAM(N2)
IDLST(MD,1)=ISOURL(NN2,2)
IDNAM(MD,1)=ISOURN(NN2,2)
NBIMXD (MD,1)=NBIMX(I)
NBIMXD (MD, 2)=NBIMX (I)
IBMXD (MD,1,1)=N1
IBMXD (MD,1,2)=N2
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C
IBD (MD)=2
IBD1=2
LD (MD) =2
NELD=2

C

C ——- CHECK IF THE JUNCTION HAS BEEN TAKEN

85 IF(IELLST(N2) .EQ.1.0R.IELLST(N2) .EQ.2) GOTO 90
IF(ICMXT(J) .EQ.0) MD=MD-1
NUMJ =NUMJ +1
JUNCTR (NUMJ ) =N2

90 IP=]P+1
IPORTR (MR, IP) =IBOND
L=L+1
IB=IB+1
NPTRR (MR,L)=IB
INDXRE (NR,L)=N2
IRLST(MR,L)=ISOURL(NN2,1)
IRLNAM(MR,L)=ISOURN(NN2,1)
NBIMXR (MR, IB)=NBIMX (I)
ICMXR (MR, IB)=ICMX (J)
INN=INN+1
INTER (INN, 1)=IBOND
INTER (INN, 2)=IBOND
INTER (INN, 3)=MR
INTER (INN, 4) =MD
INTER (INN, 5)=ISOURL(NN2,1)
GOTO 180

95 ICMXT(I)=0
IF(IELLST(N2).GT.5) GOTO 110
IF(IELLST(N2) .EQ.1.0R.IELLST(N2).EQ.2) GOTO 180

L=L+1
IB=IB+1
NPTRR (MR, L)=IB
INDXRE (MR, L)=N2
IRLST(MR,L)=IELLST(N2)
IRLNAM (MR, L)=IELNAM(N2)
NBIMXR (MR, IB) =NBIMX (I)
DO 100 J=1,NBD2
IF (J.EQ.I) GOTO 100
IF (NBIMX(J).EQ.IBOND) GOTO 105
100 CONTINUE
105 ICMXR(MR,IB)=ICMX(J)
ICMXT (J)=0
IF(IELLST(N2).LT.6) GOTO 180

110 DO 115 K=1,L

IF (INDXRE(MR,K).EQ.N2) GOTO 180
115 CONTINUE

NUMJ =NUMJ +1
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JUNCTR (NUMJ ) =N2
180 CONTINUE
NT=N1
C
C —— NEXT JUNCTION
C

200 IF(NUW .EQ.0) GOTO 210
185 N1=JUNCTR (NUMJ)
NUMJ=NUMJ -1
NP1=NPTR (N1)
NP2=NPTR (N1+1)-1
DO 205 I=NP1,NP2
IF(ICMXT(I).EQ.1) GOTO 10
IF (ICMXT(I).EQ.0) GOTO 200
205 CONTINUE

IXBD=IXBD+1
JBD (IXBD)=N1
GOTO 200
C
C —— STORE THE SIZE DATA
c
210 IPR(MR)=IP
LR(MR)=L
IBR(MR)=IB
IBR1=IB
NELR=L
NPTRR (MR, L+1)=IB+1
C
C
RETURN
END
C
c
c
CSPRRFLD®$608808880002808008000080300800084880008008800888880888888
C

SUBROUTINE PRRFLD (MR, MD)
C
C —— PRRFLD PRINTS OUT THE INFIRNATION ABOUT THE R-FIELDS AND
C JUNCTION STRUCTURE COMPLEXES.

g —— DECLARATION

gINSERT PARTBK
goooooooo“.coonoonoo“otcooo.onooooocooco.ooooo.oooou.oooooo
g ——- PRINT R-FIELD

€ OPEN (UNIT=5,FILE="'SHOW')

C

IR=MR-JX
WRITE(*,1000) IR
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1000 FORMAT(/'THERE ARE ',I2,' R-FIELDS IN THE GIVEN SYSTEM')
IF(IR.EQ.0) GOTO 300
DO 100 I=1,MR
IF(JX.NE.O) GOTO 950
N=0
GOTO 960
950 DO 900 N=1,JX
IF(I.NE.JCOMX(N)) GOTO 900

GOTO 100
900 CONTINUE
960 IN=I-N

WRITE(*,1010) IN
1010 FORMAT(/'R-FIELD NUMBER ',I4,' :')
WRITE(*,1020)
1020 FORMAT(/'NODES :')
DO 150 K=1,LR(IN)
I1=NPTRR(I,K)
I2=NPTRR(I,K+1)-1
150 WRITE(*,5030) INDXRE(I,K),IRLNAM(I,K), (NBIMXR(I,J),J=I1,12)
5030 FORMAT(7X,13,2X,A4,2X,514)
WRITE(*,1050)
1050 FORMAT(/,'PORTS :',/)
WRITE(*,1060) (IPORTR(I,J),J=1,IPR(I))
1060 FORMAT(7X,13)
100 CONTINUE

C

C ——— PRINT JUNCTION STRUCTURE COMPLEXES
C

300 CONTINUE

WRITE(*,1100)JX
1100 FORMAT(/'THERE ARE ’',I2,' JUNCTION STRUCTURE COMPLEXES')
IF(JX.EQ.0) GOTO 260
DO 200 I=1,JX
JXN=JCOMX(I)
WRITE(*,1210) I
1210 FORMAT(/'THE JUNCTION STRUCTURE COMPLEX NUMBER ’',I2,’ :')
WRITE(*,1020)
DO 250 K=1,LR(JXN)
I1=NPTRR(I,K)
I12=NPTRR(I,K+1)-1
250 VWRITE(*,5030) INDXRE(I,K),IRLNAM(I,K),(NBIMXR(I,J),J=I1,12)
WRITE(*,1050)
WRITE(*,1060) (IPORTR(JXN,J) ,J=1,IPR(I))
200 CONTINUE

C——— PRINT DYNAMIC FIELDS

260 VWRITE(*,1300) MD

1300 FORMAT(/'THERE ARE ’,I2,’' DYNAMIC FIELDS IN THE GIVEN SYSTEM')
DO 400 I=1,MD
WRITE(*,1310) I

1310 FORMAT(/'DYNAMIC FIELD NUMBER ',I4,' :')
WRITE(*,1020)
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DO 310 K=1,LD(I)
I1=NPTRD(I,K)
I2=NPTRD(I,K+1)-1
310 WRITE(*,5030) INDXDE(I,K),IDNAM(I,K),(NBIMXD(I,J),J=I1,12)
WRITE(*,1050)
WRITE(*,1060) (IPORTD(I,J),J=1,IPD(I))
400 CONTINUE

C

CLOSE (UNIT=5, STATUS='KEEP')

RETURN

END
c
C
C
CODFIELD##%8808088888808888888880000808488000000008480808888088888
c

SUBROUTINE DFIELD (MD,MR,N1,NP1,NP2)

== DFIELD GETS ALL INFORMATION FOR THE DYNAMIC ORSOURCE FIELDS
AJDASENT TO THE R-FIELDS FRON THE ORIGINAL SYSTEM.

C

c

C

C

C INPUT --- ND, MR ,N1,NP1,NP2 .

C OUTPUT -—— MND,MR,N1,NP1,NP2 .

C OF THE END JUNCTION OF THE D-FIELD.

C

C L —=- NODE INDEX

C 1B === BOND INDEX

C IP === PORT INDEX

C NUMJ  --- BRANCH INDEX

C INDXDE --- NODE SERIEL NUMBER

C IDLSTD -—- ELEMENT TYPE LIST

C IDNAN --- ELEMENT NAME LIST

C NPTRD --- POINTER LIST FOR NBIMXD (START OF BOND GROUP)
c NBIMXD -— LIST OF BONDS INCIDENT TO EACH ELEMENT
C JUNCTD - LIST OF BRANCHES IN THE D-FIELD

C LD ——— NODE NUMBER STORAGE ARRAY FOR EACH D-FIELD
C IBD ———— BOND NUMBER STORAGE ARRAY

C IPD ——— PORT NUMBER STORAGE ARRAY

c

Cee+ DECLARATIONS
c

SINSERT SYBGBK
SINSERT CAUSBK
SINSERT UTILBK
SINSERT PARTBK

C

Ceo8820202008003888300038080080838200800083508888000383808880888¢83808¢80000888000

C
C —- INITIALIZATION
C

L=0

IB=0

IP=0
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NUMJ =0

C

C —— GET JUNCTION DATA

C

10 L=L+1
NPTRD (MD, L) =IB+1
II=IB

DO 30 I=NP1,NP2

IF (ICMXT(I).EQ.0) RETURN

IB=II+I-NP1+1

NBIMXD (MD, IB)=NBIMX (1)

ICMXD (MD, IB) =ICMX (1)

IBOND=NBIMX(I)

IBMXD (MD, IBOND, 1)=IBMX (IBOND, 1)

IBMXD (MD, IBOND, 2) =IBMX (IBOND, 2)
30 CONTINUE

C
INDXDE (MD, L) =N1
IDLST(MD,L)=IELLST(N1)
IDNAM(MD,L)=IELNAM(N1)
IF(L.EQ.1) GOTO 50

C

DO 40 I=1,L-1
IF (INDXDE(MD, I) .EQ.INDXDE(MD,L)) GOTO 45
40 CONTINUE

GOTO 50
45 IB=IB+NP1-NP2
L=L+1
GOTO 85
C
C ——— GET ADJOINING NODE DATA
C
50 DO 80 I=NP1,NP2
IBOND=NBIMX (I)
NA= IBMX(IBOND,1)
NB= IBMX(IBOND,2)
N2=NA
IF(N1.BEQ.NA) N2=NB
C

C——— FIND THE NODE WHICH HAS BEEN INCLUDED.
C
NUM=0
DO 55 J=1,20
IF(NBIMXD (MD,J) .NE.IBOND) GOTO 55
NUM=NUM+1
IF(NUM.NE.2) GOTO 55
ICMXT (I)=0
GOTO 80
55 CONTINUE

DO 56 J=1,NBD2
IF (J.EQ.I) GOTO 56
IF(NBIMX (J) .EQ.IBOND) GOTO 57
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56 CONTINUE

57 IF(ICMXT(J).EQ.0) GOTO 65
IF(IELLST(N2) .GT.5) GOTO 59
ICMXT(I)=0
ICNXT(J)=0
L=L+1
IB=]IB+1
NPTRD (MD, L) =IB
INDXDE (MD, L) =N2
NBIMXD (MD, IB)=NBIMX (I)
ICMXD (MD, IB)=ICMX(J)
IDLST(MD,L)= IELLST(N2)
IDNAM (MD, L) =IELNAN(N2)
GOTO 80

59 DO 75 K=1,L

IF (INDXDE (MD,K) .EQ.N2) GOTO 80
75 CONTINUE

ICMXT(I)=0

NUMJ =NUMJ +1

JUNCED (NUMJ ) =N2

JUNCB2 (NUMJ) =1

JUNCB (NUMY ) =IBOND

JUNCOL (NUMJ ) =N1

GOTO 80

65 ICMXT(I)=0
L=L+1
IB=IB+1
NPTRD (MD, L) =IB
INDXDE (MD, L) =N2
NBIMXD (MD, IB) =NBIMX (I)
IBOND=NBIMX (I)
DO 651 J=1,NBD2
IF (J.EQ.I) GOTO 651
IF (NBIMX(J).EQ.IBOND) GOTO 652

651  CONTINUE

652  ICMXD(MD,IB)=ICMX(J)
IP=IP+1
IPORTD (MD, IP) =IBOND
IF (IELLST(N2) .EQ.6) GOTO 67
IF (IELLST(N2).EQ.7) GOTO 68
GOTO 80

67 IDLST(MD,L) =4

: IDNAM(MD,L)="SE’

GOTO 80

68 IDLST(MD,L)=5
IDNAM(MD,L)='SF’

80 CONTINUE

C

C ——- NEXT JUNCTION

C
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NT=N1
85 IF(NUMJ .EQ.0) GOTO 120
N1=JUNCED (NUMJ)
NUMJ =NUMJ -1
NP1=NPTR (N1)
NP2=NPTR (N1+1)-1
DO 90 I=NP1,NP2
IF(ICMXT(I) .EQ.1) GOTO 100
90 CONTINUE
GOTO 10

100 IXBR=IXBR+1
JBR(IXBR)=N1
N2=N1
L=L+1
IB=1B+1
NPTRD (D, L)=IB
INDXDE (MD, L) =N2
NBIMXD (MD, IB) =NBIMX (JUNCB2 (NUMJ+1))
IBOND=JUNCB (NUMJ +1)
DO 653 J=1,NBD2
IF (J.EQ.JUNCB2 (NUMJ+1)) GOTO 653
IF (NBIMX(J).EQ.IBOND) GOTO 654
653 CONTINUE
654 ICMXD(MD,IB)=ICMX(J)
IP=]IP+1
IPORTD (MD, IP)=NBIMX (JUNCB2 (NUMJ+1))
IF(IELLST(N2) .EQ.6) GOTO 110
IF(IELLST(N2) .EQ.7) GOTO 115
GOTO 120
110 IDLST(MD,L)=4
IDNAM(MD,L)="'SE’
GOTO 120
115 IDLST(MD,L)=$§
IDNAM(MD,L)="'SF'
120 IF(NUMJ.NE.O) GOTO 85
IPD (MD)=IP
LD(MD)=L
IBD(MD)=IB
NELD=L
IBD1=IB
NPTRD (MD, L+1)=IB+1
N1=NT

a0

RETURN
END

C
C
C
COREARRG*¢¢¢88208000880808083008882808080288808003808038008800880088000800380080
c

SUBROUTINE REARRG (MRR,MDD, IB,NELS, IBMXS, NBIMXS, IBMXSN,
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+ NBIXSN, INDXES)
C -——- REARRG REARRANGE ALL THE ARRAY IN SEQUENCE.
c
Cese¢ DECLARATIONS
C

INTEGER IA(60),IBB(60),NBIMXS(5,60),IBM(5,30,2),

+ IBMXS(5,30,2) ,NBIXSN(5,60) , IBMXSN(5,30,2) ,INDXES(5,30)
C

SINSERT PARTBK
SINSERT SYBGBK
c
c
C...“‘““.."“"“...‘.“‘...““.‘."“‘..“..“““.‘..0‘....‘
C

IF (NRR.EQ.0.AND.MDD.EQ.0) RETURN

IF (MRR.EQ.0) GOTO 2

MS=MRR
KK=1
GOTO 5
2 MS=MDD
KK=2
C
5 DO 10 I=1 50
IA(I)=0
IBB(I)=0
10 CONTINUE
C
C
NBDS2=1B
NBDS=NBDS2/2
DO 100 I=1,NBDS2
IA(I)=NBIMXS(MS,I)
100 CONTINUE
C

DO 120 I=1,NBDS2-1

L=I+1

DO 120 J=L,NBDS2

IF(IA(J)-IA(I)) 110,120,120
110 ITEMP=IA(I)

IA(I)=IA(J)

IA(J)=ITEMP
120 CONTINUE

DO 130 I=1,NBDS2

X=1/2.0

K=1/2

Y=X-K

IF(Y.EQ.0) IBB(K)=IA(I)
130 CONTINUE

DO 160 I=1,NBDS2
DO 150 J=1,NBDS
IF(NBIMXS(MS,I).NE.IBB(J)) GOTO 150



150
160

170

180
190

193
194
192
191

200
210
220

110

NBIXSN(NS,I)=J
GOTO 160
CONTINUE
CONTINUE

DO 170 I=1,NBD
IBM(MS,I,1)=IBMXS(MS,I,1)
IBM(MS,I,2)=IBMXS(MS,I,2)
CONTINUE

DO 190 I=1,NBD

DO 180 J=1,NBDS
IF(IBM(MS,I,1).EQ.0) GOTO 190
IF(I.NE.IBB(J)) GOTO 180
IBMXSN(MS,J,1)=IBM(MS,I,1)
IBMXSN(MS,J,2)=IBM(NS,I,2)
CONTINUE

CONTINUE

DO 191 J=1,NBDS

DO 192 K=1,2

DO 193 I=1,NELS

IF (IBMXSN(MS,J,K).EQ.INDXES(MS,I)) GOTO 194
CONTINUE

IBMXSN(MS,J,K)=1

CONTINUE

CONTINUE

DO 220 N-=1,5
IBOND=INTER (N, KK)

IF (IBOND.EQ.0) GOTO 220
K1=4

IF (EK.EQ.1) K1=3

IF (INTER(N,K1).NE.NS) GOTO 220
DO 200 M=1,NBDS

IF(IBB(M) .EQ.IBOND) GOTO 210
CONTINUE

INTER (N,KK) =M

CONTINUE

RETURN
END
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C
C—AUGMEN-%$%88848880888080080880880008030083088883888800088464808800888¢
C

SUBROUTINE AUGMEN (IR)

g ——— PROGRAMMER -- TONG ZHOU, AUG. 1983

g —— AUGMEN CONVERTS A STATIC SUBSYSTEM TO A DYNAMIC SUBSYSTEN BY
C INTRODUCING C OR I ELEMENTS FOLLOWING A GENERAL RULE.
g“‘DECLARATIONS

: DIMENSION NR(35),JZERO(10),JONE(10),IN10(35)

SINSERT SYBGBK
SINSERT PARTBK
SINSERT CAUSBK
SINSERT UTILBK
c

Ce888838383588080883808880808380880808835808808000380880838030808080808000808800

C
C———- RESTORE THE SUBSYSTEM DATA FOR PROCESSING.
C

NEL=LR(IR)

NBD2=IBR(IR)

NBD=NBD2/2
C

CALL UNINAM(IR, IRLST, IRLNAN,NPTRR, IBMXRN, ICMXR,NBIXRN)
C
C———— ADD DYNAMIC ELEMENTS TO ACTING JUNCTIONS.
C

WRITE(*,5)

DO 10 J=1,INN

IF(INTER(J,3) .NE.IR) GOTO 10
N1=IBMX (INTER(J,1),1)
N2=IBMX (INTER(J,1),2)

IF (IELLST(N2).EQ.6.0R.IELLST(N2).EQ.7) JNOD=N2
IF(IELLST(N1).EQ.6.0R.IELLST(N1) .EQ.7) JNOD=N1
IF (JNOLD.EQ.JNOD) GOTO 10
GOTO 15

C
5 FORMAT(/,'ADD C/1I ELEMENT TO THE ACTING JUNCTIONS')
15 CALL ADELMT (JNOD, IR)

JNOLD=JNOD
C
10 CONTINUE
C
C
C-——- TEST FOR COMPLETED CAUSALITY ON THE GRAPH.
C

400 DO 20 J=1,NBD2
IF (ICMX(J).EQ.1) GOTO 30
20 CONTINUE



112

GOTO 800
C —= ADD C- OR I- ELEMENTS TO THE MULTI-R TYPE JUNCTIONS.

30 WRITE(*,40)

40 FORMAT(/,'ADD C/I ELEMENT TO THE NULTI-R TYPE JUNCTIONS')
200 DO 50 I=1,NEL

50 NR(I)=0

DO 60 I=1,NEL
NP1=NPTR(I)
NP2=NPTR (I+1)-1
IF (NP1.EQ.NP2) GOTO 60
DO 55 K=NP1,NP2
IBOND=NBIMX (K)
IF (ICMX(K).NE.1) GOTO 55
NA=IBMX (IBOND,1)
NB=1BMX (IBOND, 2)
N2=NA
IF (I.EQ.NA) N2=NB
IF (IELLST(N2).EQ.3) NR(I)=NR(I)+1
55 CONTINUE
60 CONTINUE

JOLD=1
DO 70 J=1,NEL
IF (NR(J).LE.NR(JOLD)) GOTO 70
JOLD=J
70 CONTINUE

IF(NR(JOLD) .EQ.1) GOTO 85
IF (NR(JOLD).EQ.0) GOTO 800
JNOD=JOLD

CALL ADELNT (JNOD, IR)

GOTO 200

C
C
C —— ADD C- OR I- ELEMENTS TO THE O- OR 1- JUNCTIONS WHICH
C POSESSES THE MOST INTERNAL BONDS.
C
85

WRITE(*,90)
90 FORMAT(/,'ADD C/I ELEMENT TO THE MULTI-BRANCH JUNCTIONS')
95 DO 100 I=1,NEL

IN10(I)=0
100 CONTINUE

DO 120 N1=1,NEL

NP1=NPTR (N1)

NP2=NPTR (N1+1)-1

IF(NP1.EQ.NP2) GOTO 120

DO 105 K=NP1,NP2

IF (ICMX(K).EQ.1) GOTO 110
105 CONTINUE
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GOTO 120
110 DO 115 K=NP1,NP2

IBOND=NBIMX (K)

NA=IBMX (IBOND, 1)

NB=IBMX (IBOND, 2)

N2=NA

IF(N1.BEQ.NA) N2=NB

IF (IELLST(N2) .BQ.6 .OR.IELLST(N2) .EQ.7) IN10(N1)=IN10(N1)+1
115 CONTINUE
120 CONTINUE

JOLD=0
DO 130 I=1,NEL
IF (IN10(I).LE.2) GOTO 130
IF (IN10(I).LE.IN10(JOLD)) GOTO 130
JOLD=I
130 CONTINUE

IF (JOLD.EQ.0) GOTO 300
JNOD=JOLD

CALL ADELMT(JNOD, IR)
GOTO 95

C
C
C ——- ADD C- OR I- ELEMENTS TO THE SINGLE-R TYPE JUNCTIONS.
C
3

00 JO=0

J1=0
WRITE(*,301)

301 FORMAT(/,’ADD C/I ELEMENT TO THE SINGLE-R TYPE JUNCTINS')
DO 310 N=1,NEL
IF (IELLST(N).EQ.6.0R.IELLST(N).EQ.7) GOTO 320
GOTO 310

320 NP1=NPTR(N)
NP2=NPTR (N+1)-1
DO 330 K=NP1,NP2
IF (ICMX(K).EQ.1) GOTO 340

330 CONTINUE

GOTO 310
340 IF(IELLST(N).EQ.7) GOTO 345
JO=J0+1
JZERO(JO)=N
GOTO 310
345 J1=J1+41
JONE(J1)=N
310 CONTINUE
C
J10=J1
IF(J1.GT.JO) J10=JO
C

DO 350 J=1,J10
JONE(J)=JONE(J)
IF (J1.GT.JO) JONE(J)=JZERO(J)
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NP1=NPTR (JONE(J))

NP2=NPTR (JONE(J) +1)-1

DO 355 K=NP1,NP2

IF (ICMX(K).EQ.1) GOTO 360
355 CONTINUE

GOTO 350
360 JNOD=JONE(J)

CALL ADELNT (JNOD, IR)
350 CONTINUE

GOTO 800

800 DO 850 J=1,NBD2
IF (ICMX(J).EQ.1) GOTO 900
850 CONTINUE

CALL BAEKNAM(IR, IRLST, IRLNAN, NPTRR, IBMXRN, ICMXR , NBIXRN)

900 RETURN
END

C—=UNINAM-920883808083808808080800880088000800080080808038300808008880008888088

C
SUBROUTINE UNINAM(IRD, ILST,INAN,NPT, IBM, ICM,NNBINM)
C
C ——- UNINAM STORES THE DATA OF A SUBSYSTEM INTE THE NMATRICES
C WHICH ARE COMPATIBLE WITH THE PROGRAM ENPORTS (GLOBAL FORN).
C
DIMENSION ILST(5,30),NPT(5,31),IBM(5,30,2),
CHARACTER*32 INAM(5,30)
SINSERT SYBGBK
$INSERT PARTBK
INSERT CAUSBK
SINSERT UTILBK

Co880888880800¢880008080880808808000800803020008000380080802808082808808080000 2
C

C

C
DO 10 I=1,NEL
IELLST(I)=ILST(IRD,I)
IELNAM(I)=INAM(IRD,I)

10 CONTINUE
DO 15 I=1,NEL+1
NPTR (I)=NPT (IRD, I)
15 CONTINUE

DO 20 I=1,NBD
IBMX(I,1)=IBM(IRD,I,1)
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IBMX(I,2)=IBM(IRD,I,2)
20 CONTINUE

DO 25 I=1,NBD*2

ICMX (I)=ICM(IRD,I)
NBIMX (I)=NNBIM(IRD,I)
CONTINUE

an
W

RETURN
END

—~BAEKNAM-90888888888880280808083808288800800088820000888008838800888000ss¢s

s N NeoNeNel

SUBROUTINE BAKNAM (IRD, ILST,INAM,NPT, IBN, ICN,NBIM)

——— BAENAM RESTORES THE DATA OF THE SYBSYTEN BACK TO ITS LOCAL
MATICES.

anna

DIMENSION ILST(5,30),NPT(5,31),IBN(5,30,2),ICN(5,60),
+ NBIM(5,30)
CHARACTER®*32 INAM(S,30)
SINSERT SYBGBK
SINSERT PARTBK
SINSERT CAUSBK
$ INSERT UTILBK
C
c.“‘.‘0‘..“‘0.t‘.O...t..“0‘0‘0“"O‘.O0.0.0‘O‘O“O...O....0“‘0“

C

C
C
NBD2=NBD*2
DO 10 I=1,NEL
ILST(IRD,I)=IELLST(I)
10 INAM(IRD, I)=IELNAM(I)
C

DO 15 I=1,NEL+1
15 NPT (IRD, I)=NPTR(I)

C
DO 20 I=1,NBD
IBM(IRD,I,1)=IBMX(I,1)
20 IBM(IRD,I,2)=IBNX(I,2)
C
DO 25 I=1,NBD2
ICM(IRD,I)=ICMX(I)
25 NBIM(IRD, I)=NBIMX(I)
C
RETURN
END
c
C

C~ADELNT-9888808888082888880888808008880080008088088383800838800080880800080s
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C
SUBROUTINE ADELNT (JNOD, IR)

c

C ——— ADELMT ADDS THE I OR C ELEMENT TO AN APPROPRIAT JUNCTION.
c

SINSERT SYBGBK

SSNSERT PARTBK

SINSERT CAUSBK

c
COe2080808000880888080800088000838000008080838880808080888488800888888
c
c
IF(IELLST(JNOD) .EQ.6) GOTO 110
NENAME='1"
IBTD=1
GOTO 120
110  NENAME='C’
IBTD=-1
120 NEL=NEL+1
NBD=NBD+1

WRITE(*,1000) NENAME, JNOD, INDXRE (IR, JNOD)
1000 FORMAT(/,’ ADD ',A2,’ ELENENT TO NEW NODE ’,I2,
+ * (THE OLD NODE ',I2,' )')
IF (IBTD.EQ.-1) IELLST(NEL)=1
IF(IBTD.EQ.1) IELLST(NEL)=2
IELNAM (NEL ) =NENAME

IBMX (NBD, 1)=JNOD
IBMX (NBD, 2)=NEL
N1=NPTR (JNOD)
N2=NPTR (NEL) -1
J=N2
DO 50 N=N1,N2
NBIMX (J+1)=NBIMX (J)
ICMX (J+1)=ICMX(J)
J=J-1

50 CONTINUE

NBIMX (N1)=NBD
NBIMX (N2+2)=NBD
NBIT=6
IF(IBTD.EQ.1) NBIT=3
ICMX (N1)=9-NBIT
ICMX (N2+2)=NBIT
N1=JNOD+1
DO 60 N=N1,NEL
NPTR (N) =NPTR (N) +1
60 CONTINUE
NPTR (NEL+1)=NPTR (NEL) +1

MNSTEN=40
MNSTEM=40
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LEVEL=2
IF(IELLST(NEL) .EQ.1) THEN
IT=6
ELSEIF (IELLST(NEL).EQ.2) THEN
IT=3
ELSE
GOTO 280
ENDIF
NP1=NPTR (NEL)
NP2=NPTR (NEL+1)-1

DO 270 K=NP1,NP2

ICMX (K)=1

CALL TWPASS(NEL,K,IT)
270 CONTINUE
280 CONTINUE

RETURN
END



