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ABSTRACT

The Effect of Constant Illumination on the Hypothalamo-

Hypophysial-Gonadal Axis of the Female Rat

By

Robert John Mioduszewski

1. Mature Sprague-Dawley female rats were exposed to a 14:10 h

light:dark regimen (LB) or constant light (LL) for at least 5 weeks.

LL rats showing at least 10 consecutive days of vaginal estrus, or

regular 4-day cycling LD rats selected on proestrus were used in these

studies. Morning (0900-1000 h) and afternoon (1600—1700 h) serum

samples were obtained by decapitation from all animals. Basal serum

levels of follicle stimulating hormone (FSH) and prolactin (Prl), but

not luteinizing hormone (LH), were elevated in LL rats. In addition,

an afternoon serum FSH rise, but no preovulatory LH or Prl surge,

was seen in LL rats. These results suggest that constant illumination

may differentially block preovulatory LH and Prl surges while maintaining

a daily afternoon FSH release mechanism.

2. The pituitary response to single or multiple doses of syn-

thetic gonadotropin releasing hormone (GnRH) was compared in LL and

proestrous, estrous and diestrous LD rats in 3532, LL rat pituitary

LH and FSH release was not different from that of LD proestrous (PM)

rats, which showed the greatest pituitary sensitivity among those

groups of LD rats tested. It was concluded that constant light results

in a sensitization of the pituitary to GnRH.
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3. Luteinizing hormone releasing hormone (LHRH) content was

measured in the anterior hypothalamic area (AHA) and medial basal hypo-

thalamus (MBH) of LL rats and LD proestrous rats in the morning and after-

noon. LHRH content was greater in LL than LD rats in both hypothalamic

areas and at both times. AHA LHRH content showed a decrease in the

afternoon of both LL and LD rats. However, whereas LD rat MBH LHRH

content decreased slightly in the afternoon, no change in MBH LHRH

content was seen in the afternoon in LL rats. These results suggest that

in the LL rat LHRH is synthesized and released from its site of synthesis

(AHA), but does not appear to be released from the MBH storage site.

4. Hypothalamic sensitivity to both positive and negative feed-

back by gonadal steroids was examined in ovariectomized LL or LD rats

primed with estradiol benzoate (EB) or progesterone (P). LL rat pitui-

tary LH, but not FSH, response to both negative and positive estrogen

feedback was less than in LB rats. In contrast, FSH, but not LH, re-

sponse to progesterone positive feedback was less in LL than LD rats.

These results suggest that LL rats may have a decreased sensitivity to

both positive and negative feedback by gonadal steroids on hypothalamic

control of gonadotropin release.

5. Plasma estradiol, progesterone and testosterone levels were

measured in LL and LD proestrous rats in the morning and afternoon.

Morning levels of serum estradiol were not different between LL and

LD rats; but unlike LD rats, LL rats showed no afternoon rise in plasma

estradiol. Plasma progesterone levels were higher in LD than LL rats

at both time periods. Plasma testosterone levels were low in the

morning as compared to the afternoon in LD rats, but the opposite pattern
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in testosterone release was seen in LL rats. It was concluded that LL

rats have altered levels and patterns of plasma gonadal steroid release

which may contribute to an insufficient positive feedback effect on

hypothalamic gonadotropin‘ release.

6. Biogenic amine turnover index (T1) in LL rats was compared

with LD proestrous rats. Morning and afternoon biogenic amine TI was

measured in the preoptic-anterior hypothalamic area (AHA) and medial

basal hypothalamus (MBH) of all animals. Constant illumination resulted

in: a) a depression in norepinephrine (NE) TI and an increase in seroto-

nin (5-HT) in the AHA (AM), and b) a depression in the morning NE and

afternoon 5-HT TI in the MBH. It was concluded that constant light

may induce changes in hypothalamic biogenic amine metabolism associated

with a failure of LH release and increased Prl release.
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INTRODUCTION

Light indicates time of day and time of year, and many species of

mammals appear to depend on its diurnal and annual variations for syn-

chronizing their reproductive activities (Hoffmann, 1973). The many

examples of continuation of reproductive function in the absence of

external cues suggest that endogenous rhythms are merely entrained to

one or more environmental signals, of which light seems to be the prin-

ciple one, but animals are not totally dependent on the external environ-

ment. The result is a reproductive cycle that provides the best chance

of survival for the species.

The system upon which light acts involves ultimately the gonads,

which produce the gametes and also the gonadal steroids. The gonads

are stimulated to grow and secrete steroid hormones by gonadotrophic

hormones released from the anterior pituitary gland. The pituitary

synthesizes and releases its gonadotrophic hormones under the influence

of neurohormones produced in the hypothalamus and released into the

hypothalamo-hypOphysial portal system in the region of the median emi-

nence. The neurohormones may stimulate or inhibit synthesis or release

of the gonadotropins from the pituitary. Although there is some evi-

dence for a direct effect of certain agents on the gonads, for the most

part the influences on the reproductive system act on the pituitary

itself or on the hypothalamic control centers.
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The questions addressed by the experiments in this study relate to

the nature of changes that occur in several components of the hypothalamo~

hypophysial-gonadal axis in response to the absence of photoperiodic

change produced by constant illumination (LL) and resulting in persistent

estrus. Gonadotropin release is reported to be altered after constant

light exposure (Fink, 1975). There appear to be elevated levels of

serum follicle stimulating hormones (FSH) and prolactin (Prl), but no

pre-ovulatory luteinizing hormone (LH) Surge in light induced persistent

estrous rats. The latter may well be the major cause by which gonadal

function is altered. There may be other reasons for a change in the

"normal" pattern of gonadotropin release, not the least of which could

be an interruption of the neurochemical signals for gonadotropin release,

i.e., the gonadotropin releasing hormones (GnRH) of the hypothalamus.

There is a question of whether or not GnRH is synthesized and/or re-

leased from the hypothalamus into the portal blood system to stimulate

the pituitary in light induced persistent estrus. Therefore, hypothala-

mic GnRH content of LL rats was measured in these experiments. Another

possible cause for failure of ovulation could be reduced LH release due

to decreased sensitivity of the pituitary to GnRH. The proestrous stage

of the estrous cycle is characterized by an increase in pituitary sensi-

tivity to GnRH (Aiyer 35 al., 1973). If the pituitary of the LL rat is

not sensitive to the GnRH present, adequate LH release would not be

expected to occur. The pituitary sensitivity of LL rats to synthetic

GnRH was examined in 2339 in these experiments.

Since the gonadal steroids exert positive and negative feedback

effects on gonadotropin release (Everett, 1969; Brown—Grant, 1974),
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constant light exposure may influence gonadotropin release indirectly

through changes in the amounts or ratios of serium estradiol, pro-

gesterone or perhaps even testosterone levels. Therefore, morning and

afternoon serum levels of these steroid hormones were measured in LL

rats.

The feedback effects which gonadal steroids have on gonadotropin

release is exerted both on the pituitary and the hypothalamus (Chowers

and McCann, 1967; Bogdanove, 1963). A change in sensitivity of the

hypothalamus to positive and negative feedback of gonadal steroids may

determine their effectiveness in inducing gonadotropin release or

inhibiting it at the proper time and in a cyclic pattern. Hypothalamic

sensitivity to estrogen and progesterone priming was examined in

ovariectomized rats under constant light (LL) or regular lightzdark

(LD) conditions.

Finally, there have been numerous reports implicating hypothalamic

monoaminergic neuronal control of gonadotropin release (Fuxe and

H6kfelt, 1969). The activity of hypothalamic monoaminergic neurons is

in turn influenced by steroidal feedback. Steroid feedback of gonado~

tropins may occur through mechanisms involving hypothalamic monoaminer-

gic neurons (Kalra gt 31., 1972). Constant light induced changes in

hypothalamic monoaminergic neuronal activity could eventually result

in a persistent estrous condition. Therefore, the hypothalamic turn-

over index (TI) of norepinephrine (NE), dopamine (DA) and serotonin

(5-HT) was determined in LL rats.

Functional changes in the above components of the hypothalamo-

hypophysial-gonadal axis were examined in light induced persistent
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estrous rats, with the hope that this may contribute to a further

understanding of the mechanisms by which light influences reproductive

functions.



LITERATURE REVIEW

I. Hypothalamic Control of Anterior Pituitary Secretion
 

A. Early Observations
 

Early in the 20th century, clinicians recognized that pituitary

insufficiency might be related to damage in the region of the hypothala-

mus, but were unable to resolve whether the effects were those of direct

damage to the adjacent pituitary gland (Anderson and Haymaker, 1974;

Evans, 1935). On the basis of careful pathologic study, Erdheim (1909)

concluded that these changes could be caused by hypothalamic damage

alone, and Aschner (1912) demonstrated that gonadal insufficiency (now

recognized as being due to gonadotropin failure) could be produced in

dogs by hypothalamic lesions which spared the pituitary. Over the

following four decades, many workers studied the effects of "denervation"

of the pituitary by surgical section of the pituitary stalk, but the

results were ambiguous and controversial. In a series of classic experi-

ments, Harris and Jacobsohn (1952) demonstrated the crucial role of the

blood vessels of the stalk in this regulation. Stalk section in the rat

caused loss of sexual function, which returned when the hypophysial—

portal vessels regenerated. When a paper plate was inserted into the

stalk section so as to prevent regeneration of the vessels, sexual

function failed to return. In all animals, stalk section caused perma-

nent destruction of neural connection. They also repeated and extended

the earlier studies of Creep, who had shown that pituitaries transplanted



6

to the pituitary fossa function normally, whereas pituitary transplants

to other sites apparently were devoid of activity (Anderson and Hay-

maker, 1974). These observations showed that the pituitary fossa was a

privileged site for the growth and function of the pituitary, and indi—

cated that the crucial factor was the special blood supply from the hypo—

thalamus. Some criticized the results of the Harris-Jacobsohn experi-

ments as being due to damage to the pituitary caused by transplantation.

This reservation was resolved convincingly in the double transplantation

experiments of Nikitovitch-Winer and Everett (1958), who demonstrated in

rats that the pituitary failure resulting from tranSplantation of the

same pituitary to the region beneath the basal hypothalamus was not seen

if anatomic reconnection of the blood vessels occurred. Reconstitution

of pituitary function did not occur in control experiments in which the

pituitary was re-transplanted to the temporal lobe.

The local trophic function of the hypothalamus was also demonstrated

in the early 1960's by transplantation of pituitary fragments directly

into the hypothalamus. As reported independently by Halasz §£_al,

(1962) and by Knigge (1962), there is a region of the basal hypothalamus

that contains trophic substances capable of maintaining the cellular

structure and secretory function of the implants. The term "hypophy-

siotropic area" was applied to this region.

The hypophysial vessels themselves, now known to be the conduit

of the hypothalamic hypophysiotrophic hormones, were first described

in 1930 by a Roumanian medical student, Popa (1930), following the lead

given by his teacher, Ranier, in Bucharest. The vessels were charac-

terized by a peculiar group of coiled capillaries at the inferior extent



of the hypothalamus that left the brain and joined to form long vessels

that traversed the pituitary stalk. The blood in these vessels was in-

correctly asserted by POpa, and his subsequent coworker Fielding (pope

and Fielding, 1930), to flow from the pituitary upwards to the base of

the brain. In 1936, Wislocki and King described similar vessels in the

monkey and suggested on the basis of anatomic features that blood pro-

bably flowed from the hypothalamus to the pituitary. In 1947, Green

and Harris confirmed this suggestion by direct observation in the rat

that blood in the hypothalamic portal vessels did indeed flow to the

anterior pituitary, an observation which had been made independently

and previously in the toad by Houssay 33 31. (1935). Green and Harris

proposed that the hypothalamus secretes into the portal capillaries of

the median eminence specific pituitary-regulatory substances which are

transported to the adenohypophysis by the portal vessels. A similar

proposal was also made at about the same time by Friedgood (1936) in a

then unpublished lecture, and the earliest germs of this idea may be

found in the writings of Hinsey and Markee a decade before (Anderson

and Haymaker, 1974). However, more recent evidence by Hungarian (Palko-

vits, 1978) and American workers (Oliver g£_§1,, 1977; Bergland and Page,

1978) indicates that there is some retrograde flow of blood from the

pituitary to the hypothalamus. The significance of this retrograde

flow remains to be established.

Vesalius, in De Humani Corporis Fabrica (1543) described the

drainage of cerebrospinal fluid through the floor of the third ventricle

(named "infundibulum" because of its resemblance to a funnel) into the

pituitary and thence into the nose to form mucous (pituita) from which

our modern term pituitary is derived. More recent studies indicating
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that certain hypophysiotrophic hormones may find their way to the an—

terior pituitary by way of the cerebrospinal fluid through the floor of

the third ventricle and median eminence indicate how leisurely, at

times, is the progress of scientific discovery.

Although the anterior pituitary gland lacks a direct nerve supply,

the secretion of each of its hormones is under the control of the central

nervous system. The pituitary and, in turn, its target glands respond

to changes in the external and internal environments through specialized

secretory neurons localized in the ventral hypothalamus. In addition,

the neurohumoral connections of the anterior pituitary are important in

the feedback regulation of a number of hormones, such as cortisol, the

gonadal steroids, and thyroxine, and serve as part of the integrated

mechanism by which behavior and metabolism adapt to the external environ-

ment.

B. Landmarks in Hypothalamic Anatomy
 

1. General Anatomy;
 

By definition, the hypothalamic region, though somewhat

ill defined, lies below the level of the thalamus. In effect, it

comprises the lateral walls of the lower part of the third ventricle,

below the level of the hypothalamic sulcus, which, in the adult human,

is a shallow and not very conspicuous groove running almost horizontally

along the lateral walls of the third ventricle. The rostral boundary

of the hypothalamus is indefinite, but may be taken as a plane lying

slightly rostral to the optic chiasm (the preoptic area). Its caudal

boundary may be taken as a coronal plane immediately posterior to the

mamallary bodies. The lateral boundaries of the hypothalamus are the

most difficult of all to define. At various coronal levels the
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following structures may be found situated laterally; the very lowermost

part of the thalamus, the internal capsule, the globus pallidus, the

ansa lenticularis, and the optic tract. Below, the lowermost parts of

the gray matter making the walls of the third ventricle form, in man, a

funnel-shaped cavity, the infundibulum or tuber cinereum, a part of the

hypothalamus, which is clearly visible as a protuberance at the base of

the brain and which is prolonged downward as the pituitary stalk. This

region varies much in shape in other species of mammals, the part

corresponding to the anterior wall of the tuber cinereum and uppermost

part of the neurohypophysis having come to be called in most animals the

median eminence (Tilney, 1936). The pituitary gland is attached to

this region, either by means of a long, free-lying stalk, as in man,

primates, and the rat, or with virtually no stalk, as in the cat and dog.

2. (Hypothalamic Nuclei and Their Afferent and Efferent

Connections:

 

 

Within the confines of this rather vague region, the

hypothalamus, there are a number of very well-defined nuclear masses and

a number of remarkably ill-defined nuclear groups. There are also

several well-defined nerve fiber tracts and some diffuse tracts. One of

the most striking nuclei to be seen in the hypothalamus is the supra-

optic nucleus. This nucleus, which is extremely well defined and which

has a sharp outline, straddles the rostral extremity of the optic tract,

just caudal to the Optic chiasm. The axons of the nerve cells of the

supraoptic nucleus form a nerve tract composed of fine, unmyelinated

nerve fibers which pass through the rostral part of the tuber cinereum

or median eminence to run down in the neural part of the pituitary

stalk into the infundibular process or neural lobe of the pituitary
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gland. These axons form the supraoptico—hypophysial tract. It is

clear that a large number of these axons end in the infundibular pro-

cess, because when the pituitary stalk is cut many of the nerve cells

in the supraoptic nucleus degenerate, and disappear.

The paraventricular nucleus lies beneath the ependymal lining of

the third ventricle, dorsal and caudal to the supraOptic nucleus.

The axons of the cells of the paraventricular nucleus take a curved

course which passes toward the median eminence. This nerve tract com-

posed of fine unmyelinated nerve fibers is convex rostrally and passes

near or even through the supraoptic nucleus. The nerve tract formed by

the axons of these paraventricular nerve cells also forms part of the

hypothalamo-hypophysial tract and passes down through the median emi-

nence into the infundibular stem and the infundibular process (Daniel,

1966).

Ramon Cajal (1911) who first described the hypothalamo-hypophysial

tract, thought that it might have a sensory function. There was much

uncertainty about the tract until the work of the Scharrers (1954)

and Bargmann (1954) clarified its function. It was found that neuro-

secretory activity with specific staining properties was produced by

the cells of these two nuclei and that along the nerve fibers making

up the hypothalamo-hypophysial tract there could be found small bead

like swellings which also gave a specific staining reaction.

A prominent landmark at the base of the human brain, lying in

the interpeduncular space and immediately posterior to the tuber

cinereum is made by two prominent rounded swellings, the pair of

mammillary bodies. Two striking tracts of myelinated nerve fibers,

which are easy to see with the naked eye and can be easily dissected
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out, are related to these nuclei. First, the fornix, a massive column

of myelinated nerve fibers, sweeps down obliquely through the hypo-

thalamic region from the superior rostral area to end in the mammillary

nucleus. This massive tract originates from the hippocampus and dentate

gyrus. The second massive and macroscopically visible nerve tract

associated with the mammillary nuclei is the mammillothalamic tract,

the main out-going tract which springs from the superior aspect of the

mammillary nucleus, passing upward and forward to enter and pass

through the lower parts of the thalamus. It ends in the anterior

nucleus of the thalamus. From the lowermost part of the mammillothalamic

tract a bundle of nerve fibers leaves the main tract to pass toward the

tegmental region of the midbrain as the mammillotegmental tract, which

joins the dorsal longitudinal fasciculus through which some of its

fibers are distributed through the reticular formation of the brain

stem.

The three nuclei so far described - supraoptic, paraventricular,

and mammillary, are easily identified histologically, being clearly

demarcated from the adjacent areas of the hypothalamus. The remaining

hypothalamic nuclei are far less well defined. In fact, some of them

only have been identified by using fetal material for preliminary

studies, since certain nuclei are well demarcated in the fetus although

become ill-defined in the adult.

The gray matter forming the walls of the third ventricle in the

region just above the tuber cinereum may be divided into two vertically

flattened plate-like nuclei, the ventromedial hypothalamic nucleus

and the dorsalmedial hypothalamic nucleus. These two nuclei lie in
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the wall of the third ventricle between the attachment of the tuber

cinereum and the site of the paraventricular nucleus.

The ventromedial and dorsomedial nuclei do not seem to have any

particularly well-defined tracts of nerve fibers connected with them,

but there seems little doubt that they have connections with the other

hypothalamic nuclei by means of the extensive periventricular system

of nerve fibers and by means of the medial forebrain bundle, an ill-

defined sheet running anteroposteriorly along the length of the hypo-

thalamus and lateral to those hypothalamic nuclei which lie beneath

the ependyma of the third ventricle.

Above the mammillary nucleus and immediately caudal to the dorso-

medial and ventromedial hypothalamic nuclei, lies the posterior hypo-

thalamic nucleus also situated beneath the ependyma of the wall of the

third ventricle. The posterior hypothalamic nucleus appears to make a

considerable contribution to the periventricular system of fine nerve

fibers. These nerve fibers appear to form a pathway connecting many

of these hypothalamic nuclei with the ventricular aspect of the thalamus

above and with the brain stem below, the dorsal hypothalamic nucleus

perhaps providing the largest contribution. These seem to be some of

the main efferent pathways of the hypothalamus.

One more nucleus of ill-defined outline and composed of small

fibers may perhaps be mentioned. This is the preoptic nucleus lying

anterior to and above the level of the supraoptic nuclei.

3. _Hypothalamo-Hypophysial Blood Supply:

a. The Blood Supply of the Hypothalamus
 

The vascular supply for this region comes from

small arteries arising from the vessels of the circle of Willis (1e Gros
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Clark, 1938) which, in effect, outlines the hypothalamic region on the

base of the brain. Some of the arterial twigs come from the superior

hypophysial arteries, some from the middle and anterior cerebral ar-

teries, and some from the posterior cerebral and communicating arteries.

b. The Blood Supply of the Pituitary Gland

The earliest useful work on the blood supply of the

human pituitary gland was that of Luschka in 1860, but it was not until

1930 that the subject of pituitary blood Supply became of special

interest. In this year, Popa and Fielding (1930) described a set of

vessels running along the pituitary stalk which were of a type not pre-

viously found in relation to the nervous system. These vessels formed

a connection between two capillary beds and thus had to be described

as portal vessels. Popa and Fielding (1930) considered that these

portal vessels carried blood from the pars distalis to the region of

the hypothalamus. These studies led to much work on the blood supply

of the pituitary, for it was at once obvious that a unique arrangement

of blood vessels such as they had described must be of considerable

functional importance. There was some evidence that the blood in the

portal vessels of the pituitary stalk did not flow from the gland

toward the brain, but in the opposite direction. Wislocki and King

(1936) studying the blood supply of the pituitary gland of the rhesus

monkey, came to the conclusion, on morphological grounds that the

direction of flow must be from the capillary bed at the top of the

stalk to the sinusoidal bed of the pars distalis. The direction in

which blood flowed along the portal vessels of the stalk was observed

in living animals, first by Houssay 55 El. (1935) and later by Green
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23 31. (1947). However, as already mentioned, there is growing evidence

for some retrograde flow of blood from the pituitary to the hypothala-

mus.

Of all the advances in our knowledge of the pituitary gland over

the last thirty years, one of the most important has been that relating

to the control of its hormone secretion. The theory advanced by Harris

(1955, 1960) that the control of anterior lobe hormones is exercised,

at least in part, by means of neurohumors which are elaborated in the

hypothalamus and carried to the cells of the pars distalis by the blood

in the portal vessels, is now generally accepted. The importance of

this portal system throughout the vertebrate series was shown by Green

(1951) who studied a wide range of animals and found portal vessels

were present in all of them.

Two small arteries, the superior hypophysial arteries, spring

directly from the trunks of the internal carotid arteries in the sub-

arachnoid space, near to the origin of the opthalmic arteries. In

some cases these arteries arise not as a single small trunk, but as

twin arteries. In other cases the single trunk runs medially toward

the tuber cinereum or median eminence, dividing into two from an arterial

ring which encircles the upper extremity of the pituitary stalk. From

this arterial ring arises a series of branches, some of which supply

the optic chiasm and hypothalamic region. Others downward and inward,

penetrating the neural tissue of the median eminence and upper

infundibular stem, where they break up into a capillary bed of

complex patter. This had forms part of the first or primary capillary

bed of the portal system. The blood which has passed through these
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coiled capillaries is collected into long portal vessels which pass

down the stalk. These superficial long portal vessels run through the

pars tuberalis. Other portal vessels pass down in the substance of

the neural tissue of the stalk. When the portal vessels enter the

pars distalis of the pituitary gland, they break up into the sinusoids

which form the blood supply of the epithelial cells of this lobe.

The neural tissue of the infundibular process or posterior lobe

of the pituitary gland is supplied by two arteries which spring from

the internal carotid arteries where these lie within the cavernous

sinuses, at the place where the carotid arteries turn sharply rostrally.

In the human, the artery of the trabecula passes through the epithelial

cells of the pars distalis to enter the lower infundibular stem, anasta-

mosing with a branch of the inferior hypophyseal artery and usually

taking part in some supply of the coiled capillaries which give rise

to the short portal vessels.

4. Transmission of the Hypothalamic Impulses to the

Pituitary:

When considering the connections between the hypothalamus

and the pituitary, the following well-established facts should be taken

into account: 1) There are no nerve endings of hypothalamic origin -

or at least occurring only exceptionally - in the pars distalis of the

hypophysis. An abundant hypothalamic innervation of the anterior lobe

tissue has been described by earlier authors, but a careful analysis

of their descriptions and illustrations proves undoubtedly that reti-

cular fibers have been mistaken for nerve elements. 2) The principal

blood supply of the anterior lobe is the portal system, which is charac—

terized by the intimate contact of the blood vessels with the nervous
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tissue of the hypothalamus. 3) Hormone secretion of the anterior lobe

returns to normal after pituitary stalk section, if the vascular

connections between the hypothalamus and the pituitary have regenerated,

while pituitary and target organ atrophy develops, if for some reason

vascular regeneration does not occur (for details see Harris, 1955;

Szentégothaiugtial., 1968).

Based on the above-mentioned findings, Harris and Green (1947)

formulated the neurovascular hypothesis of adeno—hypophysial regulation.

They assumed that the hypothalamus produced some substances which,

after being released in the median eminence, enter the portal circula—

tion by which they are carried to the pituitary.

C. _Hypothalamic-Hypophysiotrophic Releasing and Inhibiting Factors
 

It has been shown by several authors that hypothalamic extracts

have a direct effect on pituitary function. Such an action was first

demonstrated on ACTH secretion (Saffran and Schally, 1955; Guillemin

and Rosenberg, 1955). The active principle was named corticotrOpic

releasing factor (CRF). Further studies suggested that hypothalamic

extracts contain substances which also influence the secretion of

other pituitary hormones. It was reported that hypothalamic extracts

stimulate the release of pituitary thyroid-stimulating hormone (TSH)

(Shibusawa gtflal., 1956a,b; Schreiber gt a1., 1961; Guillemin st 31.,

1962), luteinizing hormone (LH) (McCann gtflal., 1960; Campbell g£_al,,

1961; Nikitovitch-Winer, 1962), and follicle—stimulating hormone (FSH)

(Igarishi and McCann, 1964; Mittler and Meites, 1964). These substances

have been called TSH—releasing factor (TRF), LH releasing factor (LRF),

and FSH releasing factor (FRF), respectively. There is also evidence
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that the hypothalamus produces a substance which exerts a tonic inhibi-

tory effect on prolactin release (prolactin-inhibiting factor, PIF)

(Pasteels, l96la,b; Meites SE 21., 1962; Talwalker g£_al,, 1963), a

growth hormone release inhibiting factor (GIF) (Krulich and McCann,

1968). The existence of these substances has been corroborated in

various laboratories by in 2222.33 well as in_vi££g_studies (see McCann

and Dhariwal, 1966; Schally gt 31., 1968a; McCann and Porter, 1969).

The functional significance of these factors is underlined by

the fact that concentration of the substances in the hypothalamus varies

in connection with changes in pituitary function. It has been shown

that during the sexual cycle of female rats there is a fluctuation

in hypothalamic LRF content (Ramirez and Sawyer, 1965; Chowers and

McCann, 1965). Suckling or estradiol treatment, besides influencing

prolactin secretion, cause a decrease in PIF activity of the hypothala-

mus (Ratner and Meites, 1964). Hypothalamic CRF activity shows a

diurnal rhythm similar to pituitary ACTH secretion. The daily peak of

CRF concentration in the hypothalamus is 3 hours earlier than the

daily corticosterone peak in the blood (David-Nelson and Brodish,

1969; Hiroshige g£_§13, 1969). Thyroidectomy was reported to produce

an increase in hypothalamic TRF and pituitary TSH content (Sinha and

Meites, 1965-66). There is more GRF in the hypothalamus of young

(30-day-old) than in old (2-year-old) rats (Pecile gt 31., 1965).

It appears that the hypothalamic hypophysiotropic substances are

responsible for both the structural as well as functional maintenance

of the cells of the anterior lobe. By tranSplanting it under the

kidney capsule or into the anterior ocular chamber, its structure
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becomes dedifferentiated and composed mainly of chromophobic cells,

while its hormone content is markedly reduced (Cutuly, 1941; Cheng 33

'31., 1949; McDermott 25 31., 1950; Fortier, 1951; Harris and Jacobsohn,

1952; Siperstein and Greer, 1956; Goldberg and Knobil, 1957; Nikito—

vitch-Winer and Everett, 1959). Normal histology as well as function

of the dedifferentiated pituitary graft under the renal capsule can be

restored by retransplantation under the median eminence Nikitovitch-

Winer, 1958). These findings are consistent with the view that the

hypothetical hypothalamic substances exert a trophic influence on the

pituitary cells. It seems very likely that the action of the hypo-

thalamic substances are not only limited to release of the trophic hor-

mones, but that they also stimulate hormone synthesis. This is indicated

by the significant increase of pituitary TSH (Sinha and Meites, 1966;

Mittler gt 31., 1969) ACTH (Uemura, 1968), FSH (Justiz and de la Llosa,

1967), LH (Justiz £5 21,, 1967) and GH content (Symchowicz gt $1.,

1966; Schally gt_al,, 1968b) when under in 31532 conditions, hypothala-

mic extract or the appropriate releasing factor is added to the medium.

Median eminence extract administered intracarotidly causes a two to

five-fold increase in pituitary ACTH content (Vernikos-Danellis,

1965).

The chemical structure of three of the hypothalamic hormones has

been identified to date (TRF or TRH, LRF or LRH and GIF or somato-

statin). This has stimulated much investigation regarding their

localization and physiological action. TRH is found throughout the

hypothalamus and is not limited to any particular region. The

isolation and finally the chemical synthesis in 1969 of TRH (pyro
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Glu-His-Pro-NHZ) (Schally 32 21., 1973; Guillemin £5 31., 1971) made it

possible to develop radioimmunoassays for this compound and methods

for detecting its biosynthesis. The highest hypothalamic concentration

of TRH was found in the median eminence. However, it is believed that

as much as 80% of TRH is found outside of the hypothalamus (Jackson

and Reichlin, 1974) mostly in cortical areas.

The decapeptide LRH (PYro-Glu-His—Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-

NH2) (Schally, 1971) is concentrated in the median eminence, extending

from the preoptic area (Alpert £5 31., 1976) and also the premammillary

area. It was found by immunocytochemical techniques that cells rostral

to the anterior commissure and paraolfactory area stain with anti-LRH

antibody. The lamina terminalis also contains LRH (Alpert g£_a1., 1976).

The third hypothalamic hormone to be chemically identific is soma-

tostatin (SRIF or GIF), a tetradecapeptide. The formula of this compound

is H-Ala-Gly-Cys-Lys-Asn-Phe—Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys-OH with a

bridge between the two cysteine groups (Guillemin §£_al,, 1973). In

the relatively short time since its discovery, somatostatin has been

found to possess a surprising range of biological effects, to have an

unexpectedly wide anatomical distribution, and to be effective in all

species of mammals in which it has been tested. Somatostatin has been

shown to decrease TSH (Borgeat 25 a1., 1974), ACTH (Hall, 1973), GH

(Hansen, 1973), glucose and insulin (Koerker, 1974) and glucagon (Gerich

£5.2l3: 1975). Extrahypothalamic sites of somatostatin include the

pineal (Patel 33 31., 1975), pancreas, stomach, duodenum and jejunum

(Arimura gt 31., 1975).
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Blood coming from the transected pituitary stalk has been demon-

strated to contain LRF (Fink 35 31,, 1966, 1967; Fink, 1967; Kamberi 35

31., 1969), FRF (Kamberi 25 31., 1970a), TRF, GRF (Wilber and Porter,

1970), CRF (Porter, 1970) and PIF (Kamberi 35 31., 1970b) activity.

According to Harris (1969), LRF is present in the portal blood during

all phases of the sexual cycle except estrus, and electrical stimulation

of the hypothalamus causes an increase in LRF activity of this blood.

It should be mentioned that in the peripheral blood of intact

animals the presence of these substances has not been conclusively demon-

strated, although earlier studies reported their presence in systemic

blood. This was only possible under special experimental circumstances

such as hypophysectomy, when presumably the releasing factors are re-

leased in larger amounts from the hypothalamus because of removal of the

inhibitory "short feedback 100p" from the AP hormones (CRF, Shapiro gt

.El" 1956; Eik-Nes and Brizzee, 1958; Brodish and Long, 1962; LRF,

Nallar and McCann, 1965; FRF, Negro-Vilar §£.E£" 1968a; GRF, Krulich

and McCann, 1966; Muller 33 31,, 1967; CRF, Redding and Schally, 1969;

PIF, Chen gt $1., 1970). If the medial basal hypothalamus is destroyed,

the releasing or inhibiting activity in the peripheral blood of the

hypophysectomized animals was not evident, suggesting a hypothalamic

origin of the active principles.

II. Hypothalamic Monoamines
 

A. Pathways

The regional distribution of catecholaminergic neurotrans-

mitters in the brain and spinal cord was determined imprecisely, using

biochemical assays, many years ago; however, the more recent application
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of histochemical fluorescence methods has made it possible for these

compounds to be visualized within specific neuronal tracts and cell

bodies (Dahlstrom and Fuxe, 1964; Fuxe, 1965; Andén 33 31., 1966). With

the use of this approach, dOpamine appears to be concentrated in three

major groups of brain neurons: nigrostriatal neurons terminating in the

basal ganglia; meso-limbic neurons, with cell bodies localized in the

upper brain stem and axon terminals in the nucleus accumbens, olfactory

tubercles, and cerebral cortex; and tuberoinfundibular neurons, located

entirely within the hypothalamus and having their most prominent set

of terminals in the external layer of the median eminence (Fuxe and

Hokfelt, 1969; Jonsson 25.31., 1972). Nerve tracts that appear, by

histochemical fluorescence assay to contain norepinephrine as a neuro-

transmitter are also grouped into three main fiber bundles; a descending

system, with cell bodies localized in the medulla oblongata, whose

axons course through the spinal cord to form synapses with ventral and

dorsal horn neurons; and two ascending tracts, one with cell bodies

located in the locus coeruleus and terminals in the cerebral cortices

and the hippocampus, and a second tract with cell bodies in the medulla

and pons and axons terminating largely within the hypothalamus. Within

the hypothalamus, norepinephrine can be detected by microenzymatic

assay in each nucleus, with the highest concentrations in the median

eminence and arcuate nucleus (Palkovits g£_al,, 1974).

Serotonin-containing neurons are only poorly visualized with the

histochemical fluorescence method; however, available data seem ade-

quate to justify the conclusion that virtually all of the serotonin

cell bodies in brain are confined to the mid-line raphé nuclei of the
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medulla and pons. Fibers from these cell bodies descend to terminate

in the spinal cord gray matter and ascend in the brain (mainly via the

medial forebrain bundle, along with dopaminergic neurons and noradre-

nergic axons) to innervate most of the telencephalon and diencephalon.

Most hypothalamic nuclei contain serotonin (and thus, probably 5-HT

terminals), as assayed by microenzymatic techniques (Saavedra §£_a1.,

1974). The highest concentrations are found in the arcuate and supra-

chiasmatic nuclei, with smaller, but nonetheless substantial amounts

are present in the median eminence.

B. Metabolism of the Brain Amines
 

l. Biosynthesis
 

a. Catecholamines:
 

The synthesis of catecholamines takes place within

neurons from tyrosine. The distribution of tyrosine hydroxylase which

converts tyrosine to dopa parallels the distribution of catecholamines

in the brain; its concentration is high in the hypothalamus, midbrain,

pans and striatum and low in the cortex (McGreer g£_al,, 1967). It is

found partially free and partially bound to membranes, the latter form

being more active (Costa and Meek, 1974). L-aromatic amino acid decar-

boxylase is found only in the soluble fraction of nerve tissue and is

present in all parts of the central nervous system (CNS). Dopamine-B-

hydroxylase which converts dopa to noradrenaline is associated with

the synaptic vessicles in which the amines are stored. It is found in

high concentrations in the midbrain and hypothalamus, but is low in the

striatum (Basal ganglia) where dopamine is the main transmitter

(Iversen and Glowinski, 1966).
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The rate-limiting step for catecholamine synthesis depends on the

activity of tyrosine hydroxylase which is under a negative feedback

control exerted by "releasable" noradrenaline. When this is removed,

not only does the activity increase but there is also an increase in

synthesis of tyrosine hydroxylase (Spector 25 $1., 1967; Weiner and

Rabadjija, 1968). This negative feedback effect was first shown by

Costa and Neff (1966); they raised noradrenaline levels in the brain by

inhibition of monoamine oxidase and within 1 or 2 hours of this treat-

ment noted a fall in turnover rate. Similar effects have been shown for

dopamine (Javoy £5 31., 1972). Thus, it can be expected that the turn-

over rate will differ in the various areas of the brain, since the sizes

of the storage pools are different. For example, the turnover rate for

noradrenaline is slowest in the hypothalamus (t% = 4 hours), where its

storage and uptake is greatest (Iversen and Glowinski, 1966).

The pattern of control of catecholamine synthesis in the brain is

very similar to that in the adrenal medulla, where the first investi-

gations were made. The adrenals differ, however, in that they contain

high concentrations of phenylethanolamine-N-methyl-transferase (PNMT),

the enzyme which converts noradrenaline to adrenaline (Axelrod, 1962).

Although levels of adrenaline in the brain are negligible, the

enzyme PNMT is present especially in the hypothalamus and olfactory

bulb. In addition, an inhibitor of PNMT can be found in the same areas,

which may explain the low levels of adrenaline in the brain. The pre-

sence of the enzyme and its inhibitor suggest that adrenaline is syn-

thesized in the brain, it is locally regulated and is not stored

(Ciarnello gt $1,, 1969; Pohorecky g£_al., 1969).
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b. 5—Hydroxytryptamine
 

The synthesis of 5-hydroxytryptamine from tryptophan

also takes place inside the neurones, under the control of tryptophan

hydroxylase and L-aromatic amino acid decarboxylase. The distribution

of tryptophan hydroxylase correlates with the distribution of neurones

liberating 5-hydroxytryptamine at their synapses (Ichiyama §£_al,,

1970). The hydroxylation was thought to be the rate-limiting step of

the synthesis (Moir and Eccleston, 1968), but recent evidence has shown

that the rate depends on the availability of tryptophan and its transport

across the neuronal membrane since normal brain levels of tryptophan

do not saturate the tryptophan hydroxylase (Grahame-Smith, 1971; Taglio-

monte gt 31., 1971).

Whether the level of 5-hydroxytryptamine at nerve terminals can

exert a negative feedback effect on its own rate of synthesis is yet

to be elucidated. Administration of a monoamine oxidase inhibitor re-

duces the conversion of 3H—S-hydroxytryptophan to 3H—S-hydroxytryptamine

(Macon E£.§l:: 1971); however, this result has been questioned (Costa

and Meek, 1974) since the change in specific activity with time was not

taken into consideration. Indeed, Costa and Meek (1974) have shown that

there is no change in turnover rate after increasing 5-hydroxytryptamine

brain levels by monoamine oxidase inhibition.

2. Storage

The storage of amines in the brain is similar to that in

peripheral nerves; they are stored either in a "bound" form or in an

"easily-releasable", that is to say "functional" store (Aprison and

Hingtgen, 1972). As the most newly synthesized transmitter is the most
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easily released (Hamon £5 31., 1970; Farnebo §t_al,, 1971), it seems

that the amines must fill the "functional" store before filling the

"bound" store. Electron microscope studies have shown that the amines

are present in small granulated vessicles in "boutons" (swellings) of

the nerve terminals, and these are presumably the storage sites

(Kobayashi and Matsui, 1969), although the anatomical distribution of the

bound and functional stores are not known. The storage granules are

thought to be formed in the cell bodies of the neurones and to pass down

the axon to the nerve terminals. This has been shown by noting changes

in histofluorescence after ligaturing noradrenergic axons (Dahlstrom,

1967).

3. Release

Each amine is released from its nerve terminal after an

action potential. This has been shown to occur igflyitgg after stimula-

tion of cortical slices (Baldessarini and Kopin, 1967). The release of

both noradrenaline and S-hydroxytryptamine from the brain is dependent

on calcium ions (Goodwin g£_§1,, 1969). Release of the amines after

electrical stimulation has also been shown in_!izg, Stimulation of

the ventral noradrenergic bundle in the midbrain causes a fall in nor-

adrenaline in the hypothalamus (Arbuthnott 35 al., 1970) and stimulation

of the midbrain raphé causes a fall in 5-hydroxytryptamine in the fore-

brain with a concomitant rise in its degradation product, 5-hydroxy-

indole acetic acid (5-HIAA) (Aghajanian g5_§l,, 1967; Sheard and

Aghajanian, 1968).

Electron microscopy shows that the amines are released from their

storage sites by a process of exocytosis in which the contents are

released into the extraneuronal space; for example, at noradrenergic
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nerve terminals, noradrenaline, dopamine—B-hydroxylase and Specific

proteins have been shown to be discharged after stimulation (Malamed gt

‘al., 1968).

The free or active transmitter, after its release, acts on the

receptor sites of the post-synaptic neuron or organ.

4. Catabolism

Noradrenaline and depamine are removed from their sites

of action mainly by an efficient uptake system back into the nerve ter-

minals, where they are either restored or metabolized by the intra-

neuronal enzyme, monoamine oxidase, which is found associated with the

mitochondria (Schnaitman gt_al,, 1967). Monoamine oxidase has no re-

gional Specificity but has its highest concentrations in the hypothalamus

(La Motte 35 31., 1969). Approximately 10 percent of the catecholamines

are metabolized extraneuronally by catechol-O-methyltransferase (COMT)

(Axelrod, 1959) which converts noradrenaline to normetanephrine and

dopamine to 3-methoxytyramine.

The system is similar for 5-hydroxytryptamine in that there is a

specific reuptake system, so that 5-hydroxytryptamine is either restored

or metabolized by monoamine oxidase to 5-HIAA. There are differences

as COMT does not degrade tryptophan derivatives, but enzymes are found

almost exclusively in the pineal gland for converting 5-HT to melatonin.

Mere recently, two other enzymes that metabolize 5-HT have been

found in the brain. One is N-methyltransferase enzyme (Mandell and

Morgan, 1971) which has been identified particularly in the pituitary

and the pineal and overts 5—hydroxytryptamine to its methyl derivatives,

which may be psychogenic (Himwich, 1971). The other enzyme is 5-hydroxy-

tryptamine sulphotransferase which has been found in the soluble
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fraction of neuronal tissue and which convert 5-HT to 5-HT-O-su1phate

(Hidaka £5 31., 1969).

5. Uptake

Uptake mechanisms for inactivation of noradrenaline were

first shown in peripheral nerve endings (Iversen, 1965) but have since

been shown to occur in the brain for noradrenaline, dapamine and 5-

hydroxytryptamine. Uptake in zi!g_was demonstrated either by accumula-

tion of radioactivity labeled amines at specific sites in the brain

after intraventricular injection (Glowinski g£_a1,, 1965; Glowinski and

Iversen, 1966) or by noting the increase in fluorescence in specific

sites after intraperitoneal injection of the amines (Lichtensteiger and

Langemann, 1966; Fuxe 25.31., 1968b). These sites were usually those

which normally contained high endogenous levels of the particular trans-

mitter. In the case of noradrenaline 80 percent of the uptake of exo-

genous amines occurs into brain nerve terminals, the rest is accumulated

by a low affinity mechanism into other brain tissue (Baldessarini and

Vogt, 1971).

Dopamine can be taken up by noradrenergic neurons in the central

nervous system and either converted to noradrenaline within 15 to 30

minutes (Glowinski and Axelrod, 1966) or possibly act as a false trans-

mitter (Farnebo st 21., 1971). Dopamine also has a specific uptake

system of its own. The uptake of 5-HT in the brain has been demon-

strated in gizg and in 23533 (Schanberg, 1963). The uptake occurs at

two sites; in low concentrations it enters specifically into tryptami-

nergic nerve endings, but in higher concentrations it accumulates into

catecholaminergic neurons and catecholamines and 5-HT compete for the

same uptake sites (Shaskan and Snyder, 1970).
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III._Hypothalamic Control of Luteinizing Hormone (LH) and Follicle

Stimulating Hormone (FSH) Secretion

 

 

A. Neural Control Centers for Gonadotropin Release; "Cyclic"

vs. "Tonic" Centers

 

 

There is considerable evidence that a structure adjacent to

the hypothalamus is of importance for the normal cycling activity in

female rats. This area, the parvicellular medial preoptic area (MPO),

receives rich input from limbic and mesencephalic nuclei (limbic-midbrain

circuit) (Nauta, 1958; Szentagothai g£.al., 1962; Heimer and Nauta, 1969;

Nauta and Haymaker, 1969). The medial preoptic area of female rats

binds labeled estradiol (Stumpf, 1971; Pfaff and Keiner, 1973) and shows

in electron micrographs distinct differences in the distribution of

different types of synapses when compared to the MP0 of the male rats

(Raisman and Field, 1971). Electrolytic lesion of the MPO stops estrous

cycle activity (Everett and Radford, 1961) and electrochemical or elec-

trical stimulation results in increased pituitary gonadotropin and pro—

lactin release (Wuttke g£_al,, 1972; Kalra gt 31., 1973). If the fibers

connecting the MPO and the medial basal hypothalamus (MBH) are dis-

connected by the use of a small bayonet-shaped knife (Halasz-knife),

normal cyclical activity also disappears (Taleisnik.g£flal., 1970; Koba-

yashi and Miyake, 1971). Whereas a more rostral cut, which disconnects

the fiber inputs to the MPO but leaves the fibers between the MPO and

MBH intact, has no severe effects on the estrous cycle (Koves and Halasz,

1970).

For all these reasons it seems reasonable to consider the MPO as

an important structure regulating the cyclical release of LH and possibly

prolactin. Thus, the MPO is usually referred to as the "cyclical" center

as opposed to the "tonic" center, which is located in the MBH and
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regulates tonic pituitary LH release (Gorski and Wagner, 1965). Both

areas, the MPO and the MBH are sites of feedback interactions (Stumpf,

1970). Lesions in the MBH (tonic center) result in anovulation asso-

ciated with permanent anestrus indicating reduced pituitary gonadotropin

release (Igarashi and McCann, 1964; Bishop £5 31., 1972). Lesions of

the MPO (cyclic center) also stop cyclical activity but lead to a con—

stant estrus syndrome with polyfollicular ovaries but no corpora lutea

(D'Angelo and Kravatz, 1960; Flerko and Bardos, 1960).

The MBH is the part of the diencephalon where the releasing and

inhibiting factor (RF and IF) producing neurons are considered to be

located. With the help of two different methods, Halasz and associates

gave evidence that the hypothalamic hormones are produced in the so-

called hypophysiotropic area of the hypothalamus. Stereotaxic implanta-

tion of pituitary fragments into various hypothalamic structures of

hypophysectomized and castrated rats results only in the occurrence of

castration cells in the fragments if hypothalamic hormones exert their

action on these fragments. Thus, regions which contain hypothalamic

hormones could be mapped. It was demonstrated that only the mediobasal

part of the hypothalamus has hypophysiotropic properties (Halasz gt

.al., 1962; Knigge, 1962). Later, using his knife technique, Halasz

and Pupp (1965) and Halasz and Gorski (1967) isolated the mediobasal

hypothalamus from the rest of the brain. This complete deafferentation

resulted in disruption of estrous cycle activity because the medial

preoptic area had been disconnected from the mediobasal hypothalamus.

Basal pituitary hormone secretion was unchanged though, indicating that

the basal secretion of the hypothalamic hormones was still intact.
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Whether the LH release controlling neurons are only present in the

mediobasal hypothalamus or whether these neurons are also present in

the preoptic areas as suggested by Wheaton gt 21. (1975) in the rat and

by Barry g£_al, (1974) in the guinea pig remains questionable. The

presence of LRH containing neurons in the preoptic area, however, does

not necessarily mean that it is these neurons that are involved in pre-

ovulatory gonadotropin secretion because the synthetic decapeptide LHRH

has been shown to have effects on mating behavior (Moss and McCann,

1973, 1975).

The very basal part of the MBH is the arcuate nucleus where clusters

of dopaminergic neurons are located with fiber projections into the median

eminence (ME) (Carlsson gt 31., 1962; Fuxe, 1963). Other axon terminals

from noradrenergic and possibly serotonergic fibers arriving from mesen—

cephalic structures are also found in the ME (Fuxe, 1965; Andén g£_al,,

1966; Ungerstedt, 1971). These terminals and most likely axonal endings

from hypothalamic factor-producing neurons form intimate contact with

the portal vessels that run along the ME and the pituitary stalk linking

the hypothalamus and the anterior pituitary gland.

It has been shown that spontaneous activation of the "cyclical"

center occurs a relatively short time before the preovulatory LH surge

is released. This spontaneous activation can be inhibitied by drugs

such as anesthetics (e.g., pentobarbital), and also drugs that modify

the metabolism of certain monoamines (Everett g£_al,, 1949; Everett and

Sawyer, 1950). If pentobarbital anesthesia is initiated prior to the

activation of the cyclic center, this activation will be inhibited, the

preovulatory LH and Prl surge is abolished and ovulation will not occur

(Wuttke and Meites, 1970). The most effective period for pentobarbital
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inhibition 0 f the cyclic center is the early afternoon, a few hours

prior to the time when the LH surge normally occurs. The most effective

period has been called the "critical period". These pentobarbital-

blocked proestrous rats provide a good model to study the effects of

electrical stimulation of the MPO or hypothalamic structures (Bunn and

Everett, 1957). Critchlow (1958) was the first to do this type of

experiment. Electrical stimulation of the MBH proved to be effective in

restoring ovulation in pentobarbital-blocked rats. Later Everett and

Radford (1961) demonstrated the same effect after stimulation of the MPO.

It is now well established that electrical or electrochemical stimula-

tion of the female MPO results invariably in pituitary gonadotropin re-

lease, which is probably due to increased release of hypothalamic LRH

into the portal vessels (Harris and Ruf, 1970). The magnitude of

response, however, varies with the stage of the estrous cycle (Kalra

and McCann, 1973). Highest post-stimulatory LH levels were found in

proestrous rats, which again demonstrates the priming effect of

estrogens (Kalra and Kalra, 1974). It was also shown that injection of

progesterone into rats on the mroning of proestrus advanced the

critical period and the time of preovulatory gonadotropin release

(Zeilmaker, 1966; Nallar gt 31., 1966; Caligaris g£_§1,, 1968; Lawton,

1972). These observations certainly suggest that differences in

neuronal activity in the MPO should be demonstrable at different re-

productive stages. A number of attempts have been made to record such

neuronal activities under different endocrine conditions.
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B. Monoamines as Transmitters of Gonadotropin Release
 

1. Dapamine

The results obtained after altering levels of hypothalamic

dopamine fall into two categories. The earlier work of McCann and his

coworkers suggested that this amine stimulates gonadotropin release,

while there is now accumulating evidence Suggesting it inhibits gonado-

tropin release.

In 1969 McCann and his coworkers started an extensive investigation

into the effects of amines on gonadotropin release. They incubated

rat pituitaries with each of the three amines in turn and found that

dopamine had no direct effect on the release of gonadotropins but that

adrenaline enhanced the release of FSH and LH, and noradrenaline only

enhanced FSH release (Schneider and McCann, 1969a; Kamberi and McCann,

1969a,b; Van Loon and Kragt, 1970; Quijada 25.31., 1974). When portions

of the stalk-median eminence area of the hypothalamus were added to

the incubation, the release of both FSH and LH was enhanced by dopamine

even at very low concentrations (0.5-5 ug/ml) while noradrenaline and

adrenaline had no effect (Schneider and McCann, 1969b; Kamberi 35 31.,

1970a). Dopamine must have acted in these experiments by stimulating

the discharge of LH and FSH-releasing hormone from the hypothalamic

fragments since it did not potentiate the action of exogenous LH/FSH

releasing hormone added to the incubation mixture. aeAdrenergic and

dopaminergic blocking agents (phenoxybenzamine, phentolamine and halo-

peridol) inhibited the release, and a B-adrenergic blocking agent (pro-

pranolol) did not (McCann ggnal., 1972). The prior addition of estradiol

to the incubation also blocked the releasing effect of dopamine and

Schneider and McCann (1970a) suggested that estradiol exerts its negative
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feedback effect in physiological conditions by inhibiting the stimulating

action of dopamine on LH/FSH-RH release.

The stimulating effect of dopamine has also been shown in ig_!igg

experiments. Intraventricular injection of 1-4 ug of dOpamine increased

the LH/FSH releasing hormone activity in the plasma taken from the hypo-

physial portal system (Kamberi ggflal., 1969a, l970b,c, 1971a) as well as

the peripheral plasma of hypophysectomized rats (Schneider and McCann,

1970c), and this stimulatory effect was prevented by pretreatment with

estradiol (Schneider and McCann, 1970c). Similarly, dopamine stimulated

the release of LH and FSH into the circulating blood of intact male and

female rats and in ovariectomized female rats pretreated with ovarian

hormones (Schneider and McCann, 1970d; Kamberi 35 51., l970a; Porter gt

.31., 1972). In the intact female rat, dopamine was particularly effec-

tive on the second day of diestrus and on proestrus, and these effects

were reversed by a-adrenergic blocking agents (Schneider and McCann,

1970d). Parallel experiments using adrenaline and noradrenaline re—

vealed that both amines given intraventricularly stimulated gonadotropin

release but that slightly higher doses (2.5-5 ug) were required and

that doses of 100 ug or more were required for the two amines to be

effective in intact males (Schneider and McCann, 1970b,c,d; Kamberi 35

31., 1970b).

When the effective intraventricular dose of dopamine was injected

directly into the portal hypophysial system, release of gonadotropins

was not Stimulated, thus demonstrating as in the in_zi££g_experiments

that dopamine did not act directly on the pituitary (Kamberi g£.a1.,

1970b). Dopamine was also inactive when perfused into the arteries
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supplying the anterior and posterior areas of the median eminence,

indicating that the median eminence is probably not the site of action

either (Porter 25 31., 1972).

Other experiments have confirmed that depamine is of major impor-

tance for the release of gonadotropins. Kordon and Glowinski (1969,

1970) injected a-methyltyrosine and a-methyldopa into immature rats

induced to superovulate by pretreatment with PMS and HCG. They found

that these inhibitors of catecholamine synthesis blocked ovulation when

given during the critical period but not if given a few hours before.

This is strange as these compounds have an onset of action of 2-3 hours

and a duration of up to 24 hours. DOpa (which restores the levels of

both dopamine and noradrenaline) partially reversed the effect of a-

methyltyrosine, and dihydroxyphenylserine (DOPS) (which restores nor-

adrenaline levels only) had no effect on the ovulation. These experi—

ments suggest that a-methyltyrosine inhibited ovulation due to a reduc-

tion of dopamine synthesis during the critical period. Kordon (1971)

also found that an intrahypothalamic implantation of a-methyltyrosine

inhibited ovulation, but only when placed in the arcuate nucleus-median

eminence region, the site where, in fact, the dopamine neurons termi-

nate. In a separate study pimozide (a DA receptor blocker) was shown

to inhibit the release of LRH in hypophysectomized rats (Corbin and

Upton, 1973).

A directly opposite role for dopamine has been suggested by Fuxe

and his coworkers. They showed that there was an increased dopamine

activity in the median eminence at the times when gonadotropin release

was inhibited. It is possible, as has been suggested by Fuxe and
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Hfikfelt (1970) and even by McCann (Donoso SE 31., 1971), that dopamine

is converted into noradrenaline after intraventricular injection and

only appears to be more active than noradrenaline because injected nor-

adrenaline is rapidly metabolized. This idea is supported by the fact

that phenoxybenzamine, which blocks a-adrenergic and not dopaminergic

receptors (Fuxe and Hfikfelt, 1970), antagonized the gonadotropin releasing

action of dopamine. Also, dopamine infusions are effective in releasing

gonadotropins only when infused into the median eminence where dopami-

nergic nerve terminals are situated (Porter 22 31., 1972). Porter 25 31.

(1972) has found that intraventricular injection of saline can induce

gonadotrOpin release perhaps due to mechanical stretching of the ven-

tricles. It is possible that the results obtained with dopamine in 3119

are due to this artifact.

The results Supporting the hypothesis that dopamine stimulates the

release of the gonadotropins have been widely published, but in fact

all the experiments in which dopamine itself was used, either ig_zigg

or in gigrg, came from McCann's laboratory between 1969 and 1971. In

1974 they repeated their in zi££g_experiments by adding dopamine to

incubating pituitaries and hypothalamic fragments and found no effect

on gonadotropin release; the only difference between this experiment

and the previous ones was that three hypothalamic fragments were used

instead of two (Quijada 35 31., 1974). In a Similar type of experiment

in which pituitaries attached by an intact portal system to a median

eminence were superfused, the presence of 2.5 ug/ml of dopamine inhi-

bited gonadotropin release (Miyachi 23 31., 1973).

Some ig_yigg_experiments have also shown that dopamine can inhibit

gonadotropin release. In an acute experiment, 80 ug of dopamine was
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infused into the arcuate nucleus during the critical period in cyclic

rats and found to inhibit ovulation (Craven and McDonald, 1973). In

another report, implants of dopamine were placed into the median emi—

nence area (as well as other parts of the hypothalamic) and were shown

to have an inhibitory effect. Uemura and Kobayashi (1971), found that

implants of dopamine in cholesterol (2:1) left for two weeks in the

posterior part of the median eminence (which included part of the arcuate

nucleus) appeared to suppress the cyclic release of LH, and both the

cyclic and tonic release when the proportion of 5 to 1. These two im-

plants were estimated to release 80-100 ug dopamine daily, respectively.

Oral administration of 500 mg L-dopa to humans caused a fall in

plasma LH levels within one hour. The decline was never below the

physiological range, but it was suggested that the ovulatory LH surge

in women may be suppressed (Boden £3 31., 1972).

In conclusion, it seems that dopamine may have some inhibitory

function in controlling gonadotropin release. The earlier work showing

its stimulatory effect cannot, as yet, be ignored and perhaps it has a

dual role depending on endogenous endocrine conditions. In addition,

Ojeda and McCann (1973) obtained evidence that dopamine may be involved

with FSH but not LH release. They showed that pimozide (a dopamine re-

ceptor blocker) selectively lowered plasma FSH levels in the castrated

rat, while diethyl-dithiocarbamate (DDC), which lowers noradrenaline

by inhibiting the conversion of dopamine to noradrenaline, lowered

plasma LH. Correlated with this Choudhury 25 El: (1973) have shown

that activating dopamine receptors with apomorphine stimulated FSH

release.



37

2. Noradrenaline
 

All the results obtained after altering levels of nor-

adrenaline in the hypothalamus indicate that it is concerned in the

tonic and cyclic release of LH and that it acts as a stimulatory

transmitter.

When rats are unilaterally ovariectomized, the remaining ovary

undergoes compensatory hypertrophy due to an increase in gonadotropin

release because of the reduction in ovarian secretion and therefore in

negative feedback effects. Inhibition of catecholamine synthesis by a-

methyltyrosine prevented this compensatory growth in immature rats

(Mfiller g£_§1,, 1972) and selective destruction of noradrenergic nerve

terminals by 6-hydroxydopamine prevented this growth in adult rats (Zolo-

vick, 1972). The effect of a-methyltyrosine was reversed by both DOPA

and DOPS. These results indicate that noradrenaline is involved in the

tonic release of gonadotropin after unilateral castration. Similar

results were obtained in bilaterally castrate males Where administration

of either a-methyltyrosine or DDC lowered plasma LH levels. In this

preparation their effects were reversed by DOPS but not by DOPA (Ojeda

and McCann, 1973).

Additional evidence supporting the noradrenergic control of tonic

gonadotropin release was shown in rats in which the hypothalamus com-

pletely deafferentated. In these rats there was a fall in hypothalamic

noradrenaline levels to 38 percent of the normal concentration and at

the same time plasma and pituitary LH levels fell significantly, while

dopamine levels remained normal. When only the anterior portion of

the hypothalamus was deafferentated there was only a small decrease in
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hypothalamic noradrenaline and only a slight fall in plasma LH (Blake

‘gtngl., 1972; Weiner ES 31., 1972b).

Noradrenaline may also be concerned with the cyclic release of the

gonadotropins in that Kalra and McCann (1973b) have shown that noradrena—

line may be the synaptic transmitter in the pathway between the preoptic

area and the median eminence, because the LH surge obtained after stimu-

lation of the preoptic area was reduced by a—methyltyrosine (which lowers

noradrenaline and dopamine levels in the hypothalamus) and by dopamine-

B-hydroxylase inhibitors (which lower noradrenaline levels only). The

LH surge in these animals was restored by DOPS, which selectively raises

noradrenaline levels but not by a dose of DOPA which raises mainly

dopamine levels. The LH surge after stimulation of the median eminence

was not affected by the synthesis inhibitors (Kalra and McCann, 1973b).

This type of experiment was also carried out in ovariectomized rats.

When these animals are primed with estrogen and then treated two days

later with a single injection of progesterone or estrogen there is a

surge of LH, which can be prevented by the synthesis inhibitors and can

be reversed by selectively raising noradrenaline levels, but not dopamine

levels (Taleisnik g£_al., 1970; Kalra gt 31., 1971, 1972; Kalra and

McCann, 1973a).

Craven and McDonald (1971) have shown that infusion of noradrenaline,

but not of dopamine, into the arcuate nucleus in rats pretreated with

a monoamine oxidase inhibitor can advance the critical period and

therefore the time of the LH surge before ovulation. On the other hand,

neither noradrenaline nor dopamine placed in the arcuate nucleus was

able to overcome the anti-ovulatory effect of pentobarbital or reserpine

(Craven and McDonald, 1971, 1973). They suggested that noradrenaline
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may be involved in the changes occurring early on the day of proestrus

leading up to the LH surge, rather than in the release of LH itself.

In this connection, Kanematsu £5 31. (1972) found that intraventricular

administration of noradrenaline stimulated the release of LH in rabbits

but with a different onset and duration from that produced by coitus

or electrical stimulation, suggesting that while noradrenaline was in-

volved with LH release it was not via the same mechanisms as that pro-

ducing the ovulatory surge of LH.

3. Serotonin

Inhibitory Effects
 

Since the administration of 5-HT caused atrophy of the

reproductive organs and delayed puberty in immature mice, Robson and

Botros (1961) considered it likely that 5-HT was an inhibitor of gonado-

tropin release. This was supported by the findings of Vaughan E£.§Er

(1970) who showed that intraperitoneal administration of 5-HT prevented

the compensatory ovarian hypertrophy normally seen after unilateral

ovariectomy in rats. Subcutaneous or intraperitoneal injections of 5-HT

were also found to inhibit ovulation both in adult rats and immature

rats induced to ovulate with PMS (O'Steen, 1964, 1965; Endersby 33.31.,

1970; Labhsetwar, 1970; Time 25 al., 1973). Similar results were ob-

tained by raising levels of 5-HT in the body, including the brain, by

administering monoamine oxidase inhibitors; this was shown in the

hamster, rat and immature rat (Alleva gg al., 1966; Kordon gt 31,,

1968; Kordon, 1969; Labhsetwar, 1970).

The hypothesis that S-HT inhibits gonadotropin release, however

does not explain all the results. Most drugs that inhibit ovulation by

a central action do so by suppressing the hypothalamic Stimulation of
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pituitary that occurs just before the critical period. However, sub—

cutaneous administration of 5-HT had no effect just before the critical

period but only inhibited ovulation when given after the critical

period, or late in diestrus (Endersby and Wilson, 1973). The timing of

the inhibitory effects correlates well with the times in the cycle when

ovarian hormones are secreted and Wilson and McDonald (1973, 1974),

suggested that the anti-ovulatory effect of the 5-HT is due to a peri—

pheral vasoconstrictor action preventing the passage of the ovarian

steroids away from the ovary to the hypothalamus. The main support of

this hypothesis is that S-HT can antagonize the ovulatory action of

exogenous LH and that the anti-ovulatory effect of the 5-HT on sponta-

neous ovulation is reversed by a vasodilator (dipyradimole). A vaso-

dilator compound (apresoline) has also been shown to prevent the atrophy

of the reproductive organs in male rats caused by 5-HT (Boccabella g3

a1,, 1962). The experiments in which monoamine oxidase inhibitors

Showed an anti-ovulatory effect may be due to raised levels of peripheral

5-HT, although the authors correlate the effect with raised brain

levels.

In spite of all these findings there is still much evidence that

5-HT may be a central inhibitory transmitter. Firstly, there is the

presence of 5-HT nerve terminals in the hypothalamus, particularly the

suprachiasmatic nuelcus, retrochiasmatic area and the median eminence;

this latter area is capable of synthesizing S-HT from tryptophan and

this is known to occur only in tissues containing tryptaminergic

neurons (Andén gt 31., 1965; Hamon g£_§1,, 1970). Secondly, there is a

tryptaminergic tract from the midbrain to the hypothalamus (Ungerstedt,

1971; Fuxe g£_al,, 1968b) and electrochemical stimulation of the ventral
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tegmentum and raphé in the midbrain, or tracts leading from these areas

to the hypothalamus, inhibits spontaneous ovulation in rats and also

reduces plasma LH levels. This inhibitory effect can be prevented by

lesioning the tracts between the two areas (Carrer and Taleisnik, 1970,

1972).

Changes in 5-HT concentrations and metabolism in the hypothalamus in

different endocrine states have been noted, although the work is not as

extensive as that on the catecholamines. In the intact ewe, 5-HT levels

in the median eminence fall significantly just before the LH surge

(Wheaton 35 al., 1972). When ovarian steroids were administered to

castrated rats so that they exerted a negative feedback effect on gonado-

tropin release, there was a rise in hypothalamic tryptophan levels

(Bapna gt_al,, 1971), and also in S-HT levels in the midbrain area

(which included the hypothalamic area in this particular work) (Tonge

and Greengrass, 1971). A Single injection of estradiol either on day

one or eleven of life raised 5-HT brain levels in immature males and

females (Guilian 25 31., 1973). Kato (1960) found a similar effect

after chronic administration of estradiol to immature rats. Conversely,

ovariectomy of neonatal females reduced brain 5-HT levels. As well as

brain S-HT being influenced by the steroids, the metabolism of the

steroids is altered by 5-HT. Pretreatment with 5-HTP increased the

accumulation of 3H-estradiol in the hypothalamus and pituitary after

intravenous injection of the labeled steroid (Kordon g£_al., 1972).

Treatment with progesterone may inhibit the synthesis of 5-HT, because

accumulation of 3H-tryptophan was reduced in castrated rats pretreated

with progesterone (Kordon and Glowinski, 1972).
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Intravenous injection of 5—HT can inhibit ovulation in rabbits if

given just before the expected LH surge, indicating a central effect

(Currie gt 31., 1969) and intraventricular administration of 5-HT inhi-

bited LH and FSH release in both intact and castrated male and female

rats (Kamberi_gEHal., 1970b, 1971a; Kamberi, 1973; Schneider and McCann,

1970d), and caused atrophy of the gonads in immature rats (Corbin and

Schottelius, 1961). 5-HT had no effect on the pituitary itself (Kamberi

and McCann, 1969a,b).

Reports on the effect of intraventricular 5-HT on spontaneous

ovulation differ. When high doses of 5-HT (50-200 pg per rat) were in-

jected at various times of the day of proestrus, there was no effect on

ovulation (Rubinstein and Sawyer, 1970; Schneider and McCann, 1970d;

Wilson and McDonald, 1974). However, recently Kamberi (1973) found

that 1-5 ug of 5-HT injected intraventricularly just before the critical

period inhibited ovulation; it was ineffective when given by the intra—

cardiac route, while its precursor 5-HTP, which passes through the

blood-brain barrier, was effective. Intraventricular 5-HT also inhibited

the facilitatory effect of prOgesterone on induced ovulation (Zolovick

and Labhsetwar, 1973). Implants of a monoamine oxidase inhibitor

(nialamide) in the median eminence were also effective in blocking ovu-

lation, but this may be due to the compound itself and not the raised

S-HT levels (Kordon and Vassent, 1968).

Wilson (1974) injected 5-HT into the ventrolateral part of the

anterior hypothalamus, e.g., in the medial forebrain bundle, and showed

that it inhibited induced ovulation in immature rats. This suggests

that the tracts from the midbrain that Carrer and Taleisnik (1970) showed
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could inhibit ovulation may be stimulated by the 5-HT injections and

this may be the site for inhibition of cyclic release.

In 1959, Brodie and Shore suggested that 5-HT and noradrenaline

were transmitters in Opposing systems, which were in dynamic balance.

Lippmann (1968) suggested that gonadotropin release was controlled, not

by individual levels of the amines, but their relative proportions, so

that when 5-HT levels were high compared to noradrenaline, or when nor-

adrenaline levels were 1ow compared to 5-HT, then gonadotropin release

was inhibited. Labhsetwar (1971) made a similar comment and showed that,

when both amines were reduced to the same extent, there was no effect

on gonadotropin release. He also showed that dopamine can reverse the

inhibitory effects of 5-HT on ovulation induced by PMS and progesterone

(Zolovick and Labhsetwar, 1973).

5-HT is a precursor of the pineal hormone, melatonin, which has

been shown to inhibit gonadotropin release and activity (Wurtman SE 31.,

1968; Debeljuk ggflal., 1970; Kamberi §£_§1,, 1971a) and also to inhibit

ovulation (Longenecker and Gallo, 1971; Ying and Greep, 1973) and delay

puberty (Collu £5 31., 1973). Conversely removal of the pineal can

induce ovulation (Mess SE 31., 1973). Martini and his coworkers

(1968) investigated the various pineal principles and noted that they

had a selective effect on LH and FSH release. They found that implants

of melatonin and S-hydroxytryptophol in the median eminence of castrated

male rats reduced pituitary and plasma LH but did not affect levels of

FSH. On the other hand, 5-HT and 5-methoxytryptophol implants only

reduced FSH levels in the pituitary. The pineal principles have a

diurnal rhythm; in the dark period melatonin concentration is high and

5—HT low and during the day the levels are reversed. Fraschini (1970)
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suggested that this pineal rhythm controls the rhythm seen in pituitary

gonadotropins which peak daily in the afternoon. He suggested that

the pineal substances travel to the basal hypothalamus via the cerebro-

spinal fluid and then alter releasing hormone activity.

The Stimulatory_Effect of 5-HT
 

Although the majority of the results Show that S-HT acts

as an inhibitor of gonadotropin release, there is also some evidence

that 5-HT can stimulate both tonic and cyclic gonadotropin release.

Most of the evidence has been obtained after administration of p-chloro-

phenylalanine (PCPA), a compound known to inhibit synthesis of brain

5-HT by antagonizing the action of tryptOphan hydroxylase (Roe and

Weissman, 1968). It has been shown that PCPA prevents the onset of

puberty (Fajer ggflal., 1970) and the Sudden release of FSH normally seen

at puberty (Brown, 1971). It also reduces reproductive weights in hemi-

castrated male mice (Fawke and Brown, 1970) and reduces testosterone

levels in the plasma of intact male rats (Bliss 35 31., 1972). At the

same time PCPA raises pituitary FSH levels in intact and castrated male

rats (Brown and Fawke, 1972). All these results indicate that the re-

lease of FSH stores in the pituitary is inhibited after PCPA and there-

fore the gonads are not Stimulated to grow or secrete steroids. PCPA

also inhibits induced ovulation if given 20 hours before the critical

period (Kordon g£_§13, 1972), that is at a time stradiol secretion is

taking place, in order to eventually stimulate the release of the LH

surge. Kordon suggested that S-HT is necessary for the positive feedback

effect of the estradiol, perhaps by enhancing its uptake into particular

hypothalamic sites.



45

Complete deafferentation of the hypothalamus lowers S-HT levels

within this area by 70 percent, as well as significantly lowering nor—

adrenaline. It is possible that the reduction in gonadotropin release

seen after the operation is due to the reduction in tryptaminergic

activity (Weiner, 1973).

S-HT itself has been shown to stimulate gonadotropin release. For

instance, chronic subcutaneous administration of 5-HT for 12 weeks in-

creases spermatogenesis in adult male rats (Kinson and Lui, 1973);

intraocular or subcutaneous 5-HT induces ovulation in persistent estrous

rats (Takahashi SE El., 1973); a single intravenous injection of 5-HT

raises plasma LH levels in ovariectomized rats pretreated with ovarian

steroids (McCann 35.3l" 1960).

Interesting results have been reported on the immature animal

induced to ovulate with PMS. Brown (1967, 1967) showed that subcuta-

neous injections of 5-HT potentiated induced ovulation in immature mice,

while anti-S-HT compounds, such as LSD and methylsergide, inhibited

ovulation. Similar results were obtained in immature rats treated with

PMS. Thirty-day old rats underweight for their age did not ovulate

after PMS treatment, but if 100 mg/kg of 5-HT was given subcutaneously,

just before critical period, then 50 percent ovulated (Jaitley SE 31.,

1967). One mg/kg of 5-HT intraventricularly administered also induced

ovulation in both immature and underweight rats. The stimulatory site

of action of 5-HT appears to be the paraventricular nucleus, as injec-

tions of 2 pg per rat Specifically into this nucleus Stimulated ovulation

in 77 percent of underweight immature rats; injections into the arcuate

nucleus, the suprachiasmatic nucleus and the atnerior hypothalamus were

ineffective (Wilson and MacDonald, 1973). In adult rats, however,
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the suprachiasmatic nucleus may be the stimulatory site, as this nucleus

contains high levels of 5-HT, and while lesions in this region pre-

vented ovulation (Artnes-Rodrigues and McCann, 1967), stimulation of

this nucleus induced ovulation (Critchlow, 1958).

As mentioned previously, Fraschini §£_§1, (1971) suggested that

the circadian rhythm of gonadotropin release is controlled by the pineal

principles. Quay (1963) has shown 5-HT levels in the pineal are at

their highest daily at midday and higher on the day of proestrus, than

on other days. He also showed that hypothalamic levels of 5-HT have a

circadian rhythm with a peak each day in the late afternoon, at the

expected time of the critical period, and when pituitary levels of the

gonadotropins are at their highest. It is possible, therefore, that

S-HT is involved in the control of the release of the ovulatory surge

of LH (Quay, 1968).

A most interesting finding by Ladosky and Gaziri (1970) and also

confirmed by Guilian £3 31, (1973) is that 5-HT may be involved in

sexual differentiation. They found that between days 10-14 of life,

there is a rise in brain levels of 5-HT in females which can be pre-

vented by administration of testosterone, or by ovariectomy on day one

of life. Hardin (1973a) obtained rather different results in that the

5-HT levels in the females were higher only on day two and not later in

life. Injections of estradiol in the neonatal period can raise S-HT

levels in both male and female rats (Kato, 1960). The alteration in

S-HT levels may be due to the effect of the steroids on monoamine oxi-

dase (MAO) activity; for instance, activity on day 12 is reduced by

testosterone given on day one of life and raised after castration

(Ladosky and Gaziri, 1970; Gaziri and Ladosky, 1973). On the other
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hand, the differences may be due to the higher levels of 5-HTP decar-

boxylase found in 2-day-old females compared to their male litter mates

(Hardin, 1973b).

Conversely, Vaughan g£_§1, (1969) have shown that early administra-

tion of 5-HT can antagonize the androgenizing effects of neonatal testos—

terone in the female. This would indicate that the prevention of the

cyclic release of gonadotropins by neonatal androgens, as seen in the

normal male or after exogenous administration of testosterone to the

female occurs via raising MAO levels and thus reducing 5-HT levels in

the brain. These findings can be correlated with some fluorescent

studies, which showed that when sexual differentiation is prevented in

males by neonatal castration or the administration of an anti-androgen

(cyproterone acetate) there was an increase in fluorescence in most

hypothalamic nuclei due to raised amine levels (Hyppa and Rinne, 1971).

C. Gonadal Steroid Feedback in Rggulatigg_Gonadotropin Release

1. .Nggative Feedback

When the ovaries or testes are removed in the rat, both

plasma and pituitary levels of LH show a marked rise (Gay and Midgley,

1969 and Yamamoto 35 31., 1970). In the case of FSH, the situation

appears to be quite similar, the only difference being that the eleva-

tion in plasma levels of FSH is less dramatic than the elevation of LH.

Also, repeated sampling and measurement by radioimmunoassay have re-

vealed oscillations in the castrate rat (Gay and Midgley, 1969) and

rhesus monkey (Dierschke £5 31,, 1970) which have been termed circhoral

fluctuations. Probably these represent a periodic pulsatile release

of gonadotropin-releasing factors into the porta1 vessels. This effect
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of ovariectomy could be inhibited by the administration of estrogen or

progesterone (Ramirez 25 21., 1964; Smith and Davidson, 1974). The

effects can be noted within one day and become maximal after two or

three days. The sensitivity to the inhibitory effect of estrogen on

gonadotropin release appears to be somewhat less in castrate males

(Kalra SE 31., 1971).

2. Positive Feedback
 

Estrogen and administration to regular cycling rats during

diestrus has been shown to advance the time of ovulation (Everett, 1948;

Brown-Grant, 1969; Weick g£_§1,, 1971). This effect can be blocked as

well as ovulation itself by estrogen antibody administration (Ferin SE

.31., 1969, 1974; Knobil gt 31., 1974). Estrogen administration to long

term ovariectomized rats causes a daily LH surge (Legan and Karsch,

1975).

Progesterone administration by itself, inhibits LH secretion in

early diestrus (Everett, 1948) and interferes with the LHRH induced LH

release (Martin g£_§1,, 1974). However, if progesterone is administered

in an estrogen environment, such as is present in proestrus, an LH surge

can be stimulated (Everett, 1948; Zeremaker, 1966; Brown-Grant and

Naftolin, 1972). This facilitatory effect of progesterone upon estrogen

action is seen when progesterone is given to estrogen primed, long term

ovariectomized rats. Under these conditions an LH surge is seen which

is Similar in magnitude and timing of the preovulatory LH surge (Cal-

garis £5 31,, 1971). In addition, surges of FSH and Prl accompanied

this LH surge correlating it with those changes occurring during pro-

estrus (Calgaris gt 21., 1974). Recent studies have shown daily morning

progesterone peaks during the estrous cycle (Mann and Barraclough, 1973)
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and a large progesterone surge on the morning of proestrus (Kalra and

Kalra, 1974). Thus, a synergistic interaction between progesterone

and estrogen may normally occur during the estrous cycle.

Under the influence of FSH (and a low basal level of LH), the

ovarian follicles mature and at a certain stage secrete estradiol

(Schwartz, 1969; Ely and Schwartz, 1971). Following a peak level of

plasma estradiol at around midday (Shaikh, 1971) on the day before ovula-

tion, there is a sudden surge of LH, FSH and prolactin from the pituitary

in the late afternoon on the day before ovulation, lasting two to four

hours (Naftolin SE 23., 1972; Mahesh and Goldman, 1971; Freeman 33.33,,

1972). The surge of LH (but probably not of FSH or porlactin) is

necessary for ovulation to take place. It initiates (l) the secretion of

progesterone from the follicles and/or interstitial cells (Leavitt 33

33,, 1971) and (2) changes in the follicle walls so that the follicles

rupture about 12 hours later, each follicle releasing an ovum. Luteal

tissue then grows to fill the follicles to form corpora lutea which are

capable of producing progesterone, although they do not secrete high

levels unless fertilization takes place.

In the rat the stimulation of LH release by the rise in plasma

estradiol can only occur during a critical period of two hours during

the afternoon of the same day. The exact time is controlled by the time

of commencement of the light period for that day. For example, on a

fixed regime of 14 hours of light starting at 0600 h, the critical

period occurs between 1400 and 1600 h (Everett 35.33,, 1949). The actual

release of LH into the blood after stimulation occurs between 1200 and

2000 h with a peak at 1800 h.
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The rise in progesterone levels occurring simultaneously, or just

after the LH surge, is stimulated by the LH (Barraclough 3£_3l,, 1971;

Piacsek 3£_3l,, 1971) and only declines slowly over the following dark

period. It is thought to be necessary for inducing sexual receptivity

(Boling and Blandeau, 1939) in the rat and may also help control the

duration of the LH surge (Kobayashi 3£_3l,, 1970). In the rat, all

these changes occur over a period of four or five days (the estrous

cycle).

In the human, an analogous series of change occur over a period of

approximately 28 days (the menstrual cycle). During the first half of

the cycle (or follicular phase) low levels of FSH and LH stimulate the

ovarian follicles to secrete estrogen which reaches a peak concentra-

tion just before mid-cycle, and then, either on the same day or one day

later, there is a dramatic increase in LH secretion (and to a lesser

extent FSH) which lasts one or two days. This is equivalent to the

LH surge in the rat and ovulation takes place at some time towards the

end of this mid-cycle period. After ovulation the corpus luteum formed

from the ruptured follicle secretes progesterone and also some estrogen

in the second half of the cycle (the luteal phase) near the time of im—

plantation. If fertilization does not occur, the corpus luteum re-

gresses approximately two weeks after its formation and the steroid

secretion falls to zero (Ross 3£H3l., 1970; Vande Weile 33.33., 1970).

3. _Hypothalamic Sites of Feedback

The sites of steroidal feedback effects in the hypotha-

lamus have been the object of much work. It is now considered that

there is a tonic center in the arcuate nucleus and median eminence area
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which controls low tonic secretion of gonadotropin necessary for main-

taining gonadal weight and function. In the female there is an addi-

tional center in the preoptic area, which controls the cyclic release

of LH just before ovulation (Gorski, 1966). It is thought that the

cyclic center sends pulses at a regular time each afternoon to stimulate

the tonic center in the median eminence (Tejasen and Everett, 1967;

Gorski, 1968), but the latter only responds on the day before ovulation

when the estradiol levels are high. It is suggested that the estradiol

lowers the threshold of Stimulation of the median eminence (McDonald

and Gilmore, 1971; Sawyer and Hilliard, 1971). Everett (1964) has

shown that there is a neural pathway connecting the two centers. Stumpf

(1968) demonstrated by autoradiography that estradiol is taken up in

significant quantities in the anterior hypothalamus, especially in the

preoptic and median eminence areas, and Kato (1973) showed that there

are significantly higher concentrations of estrogen receptors in these

areas. Implants of estradiol are more effective in inducing gonado-

tropin release when placed in the median eminence, although implants

in the preoptic area are also active in some situations (Smith and

Davidson, 1967; Davidson, 1969). The site of the negative feedback

effect of the steroids also appears to be at the median eminence

levels (Chowers and McCann, 1967; Smith and Davidson, 1968; Taleisnik

3£H3l., 1970). Possibly the steroids have biphasic effects on the

threshold of stimulation of the median eminence, first lowering and

then raising it (Beyer and Sawyer, 1969).
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IV. The Effect of Light Upon Reproductive Function
 

A. General

1. Light as an Environmental Constituent
 

Each human organism receives a finite number of inputs

from the world beyond its integument. These inputs, collectively termed

"environment", include chemical, physical, biological, and informational

factors; they presumably exerted the major influence on man's develop—

ment throughout his evolutionary history, and continue to affect him

now.

Solar radiation constitutes a ubiquitous and essential component of

man's environment. Besides serving as the ultimate source of his food

and energy, it has also acted directly upon man to alter his chemical

composition, control the rate of his maturation, and drive or entrain

his biological rhythms.

2. Characteristics of Natural Lighting
 

The spectral composition of sunlight at the earth's sur—

face approximates that of the white light emitted by a theoretical

black body heated to about 5600°K, minus the ultraviolet radiation

below 290 nm that is unable to penetrate the ozone layer and atmospheric

shield surrounding the earth. Hence the solar spectrum is continuous

and the relative intensities of any of its component visible wave-

lengths do not differ by more than two-fold; the ratios of the radiant

fluxes of red, blue, and yellow bands contained in the white light of

the typical midday sun approximate 1:1:1.

Incandescent light sources emit spectra that approximate those of

heated black bodies. Their color temperature (the termpature to which

a theoretical black body would have to be heated in order to emit a
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comparable spectrum) is considerably lower than that of sunlight, hence

a larger fraction (about 90%) of their total radiant power consists of

infrared radiation that provides heat rather than light (Thorington

33H3l., 1971). Within the visible portions of incandescent spectra,

the relative fluxes at different wavelengths are, as expected, maximum

in the red and minimum in the blue. The identity of those wave lengths

of light that are most important for the reproductive responses to light

has not been established for the mammal. Allardyce 95.2l: (1942)

studied the fertility rate of rats exposed to different colors of light

and found that most young were born in yellow light and none were born

in blue light; the effects of red light and green light were interme-

diate. In the duck, Benoit and Assenmacher (1966) found that yellow

light directed at the eyes did not cause gonadal stimulation but that

red light was strongly stimulatory. As pointed out by Wurtman (1967),

sunlight and both incandescent and fluorescent artifical lighting emit

a range of wavelengths much broader than that perceived by mammalian

photoreceptors, so that the quality of a light source has not been an

important issue. However, certain types of fluorescent lighing that

parallel more closely the emission pattern of sunlight have been shown

to be more stimulating to the gonads than the usual cool-white fluorescent

bulbs (Wurtman and Weisel, 1969) and thus the light source should be

identified in reports of light effects.

B. Effects of Photoperiod on Rgproductive Function

The system upon which light acts involves ultimately the

gonads, which are producing the gametes and also the gonadal steroids.

The gonads are stimulated to grow and secrete by gonadotropic hormones

from the anterior pituitary gland. The pituitary synthesizes and
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releases its gonadotrOpic hormones under the influence of neurohormones

produced in the hypothalamus and released into the hypothalamic-hypo-

physial system in the region of the median eminence. The neurohormones

may stimulate or inhibit synthesis or release of the gonadotropins from

the pituitary. Although there is some evidence for a direct effect of

certain treatments on the gonads, for the most part whatever acts on the

reproductive system acts through an influence on the pituitary itself or

on the hypothalamic control centers. The first problem then is to trace

the pathway of the light stimulus from its external source to the hypo-

thalamus.

1. Pathways of LiEEE Impulses Affectinngeproduction
 

In adult mammals the receptor for light is the retina of

the eye, even though measurable light does penetrate the skull (Ganong

.E£Hél°’ 1963). Whether light is excluded by covering the whole head

with a hood (Bissonette, 1936), by severing the optic nerve (Bissonette,

1938), by destroying the retina (Thomson, 1951), or by removing the eye

(Corbin and Daniels, 1969; Hoffmann, 1967; Hoffmann 3£H3;., 1968) the

result is the same; treated animals do not respond to altered or added

external lighting. Lisk and Kannwischer (1964) have reported that im-

plantation of glass fibers into the hypothalamus so that light could be

conducted there from the outside caused some increase in ovarian weight

in blinded animals exposed to constant light, compared to blinded

animals in which the glass fiber was Shielded. However, these experi-

ments have not been purused further, and it is possible that energy

in any form would have a stimulatory effect when conducted to appro-

priate areas of the hypothalamus.
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Impulses initiated by light impinging on the retina are conducted

back toward the brain via the optic nerves, which then join briefly at

the optic chiasm. Some of the fibers cross there, and the majority Of

the fibers continue back toward the lateral geniculate bodies in bundles

known as the optic tracts. However, sOme crossed fibers, which form the

inferior accessory optic tract, leave the primary optic tracts imme-

diately behind the chiasm and join the median forebrain bundles to termi-

nate in the medial terminal nucleus of the midbrain (Hayhow, 1960).

These accessory fibers have proven to be the most important fibers for

reproductive responses to light. Destruction Of the inferior accessory

optic tract blocks the effect of added light on reproduction, whereas

total destruction Of the primary Optic tracts does not (Critchlow and

DeGrOOt, 1960).

Beyond this point the pathway has been established no further. That

is not to say that other areas of the brain have not been implicated

in responses to light, but only that clear-cut neuron-to-neuron pathways

have not been traced.

Information about light ultimately reaches some center in the hypo-

thalamus, where it is probably integrated with other information related

to reproduction and translated into changes in amount and nature of

neurohormones released to the pituitary.

Between the medial terminal nucleus of the midbrain and the hypo-

thalamus the light information undoubtedly follows many pathways, and

the information is probably used in different ways by many systems. One

loop in this circuit that has been identified involves the pineal gland.

Although the actual role Of the pineal in reproduction is not yet clear,

it does show morphological and functional changes in response to light,

which suggest that it may mediate some of the effects of light on



56

reproduction. More detailed discussions of the pineal can be found in

recent reviews (Quay, 1969, 1970; Reiter and Fraschini, 1969; Reiter and

Sorrentino, 1970).

2. Correlation with Reproductive Activity
 

Bissonette (1932) in one of the earliest demonstrations of

the stimulatory effects of light, showed that female ferrets came into

heat in January instead of March, if they were exposed to about six

hours of extra light per day in November and December. Subsequently,

other workers have shown this stimulatory effect of increased photoperiod

in the horse (Burkhardt, 1947), mink (Enders and Enders, 1963), racoon

(Bissonette, 1937), cat (Scott, 1959), and vole (Clark and Kennedy, 1967).

Conversely, keeping female ferrets in short daily photoperiods can delay

the onset of estrus (VanDerWerfften Bosch, 1963). As might be expected,

such species as the sheep, and goat, which normally exhibit estrus in

the Fall, have been shown to advance their sexual activities when exposed

to artificially shortened days and to go into anestrus earlier if photo-

period is increased in the Fall (Bissonette, 1941; Hafez, 1951).

Alternating light and dark is sometimes more stimulatory than con-

tinuous light. In the ferret, for example, exposure to 14 or 16 hours

of light per day has a greater stimulatory effect than does constant

exposure to light (Donovan, 1967; Hammond, 1951). This led Hammond

(1951) to conclude that dark played an important role.

Some species, including the domestic rabbit (Clegg and Ganong,

1969) the cow (Asdell, 1964), and the pig (Clegg and Ganong, 1969) have

been domesticated for so long that they seem to have escaped from the

seasonal variations in breeding activity. Seasonal variations in fer—

tility remain in most of these Species (Clark and Kennedy, 1967) but
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breeding season is no longer well defined. Laboratory animals also tend

to show continuous cycles in the unvarying lighting conditions of the

animal quarters; hamster (Orsini, 1961), rat (Everett, 1961), and mouse

(Bingel and Schwartz, 1969).

3. Effect on Reproductive Cycle Length
 

The length of the reproductive cycle in the rat can some-

times be altered by the length of the photoperiod. Rats exposed to 12

hours of light and hours of darkness (12L:12D) show four day cycles

while rats exposed tO a (14L:10D) or (16L:8D) regimen show predominantly

five day cycles (Hoffmann, 1968, 1969). In 24 hours of light per day

(LL), the animals eventually go into persistent estrus. Differences

in sensitivity of day length are apparent among various strains of rats

(Hoffmann, 1970).

4. Effect on Sexual Maturation
 

An effect of photoperiod on the time of occurence of

sexual maturation has been frequently demonstrated. Exposing immature

female rats to constant light advances vaginal Opening (Fiske, 1939;

1941; Moszkowska and DesGouttes, 1962; Piaseck and Hautzinger, 1974),

and light deprivation by blinding or exposure to constant dark delays

it (Fiske, 1939, 1941; Truscott, 1944). Constant light decreased the

age at which large ovulatory follicles appeared therefore facilitating

GnRH induced Ovulation at an earlier age (Steger 33.33,, 1975).

5. Effect on Timing of Ovulation and Mating Behavior
 

Probably the first indication that estrus and ovulation

occurred at a specific time of day related to the light—dark cycle was

the report by Dempsey 33,33. (1934). They found that behavioral estrus

in guinea pigs occurred only in darkness and that the time of estrus
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tended to shift as day length varied, so that the occurrence of estrus

remained in the dark period. Subsequently, Hemmingsen and Krarup (1937)

did a similar study in the rat. As in the guinea pig, estrus in the rat

occurred during the dark, and a complete reversal of the light-dark

schedule resulted in a reversal in the time of onset Of estrus within a

few cycles. In a similar experiment with the mouse, Snell 3£_33, (1966)

not only found that mating behavior predictably occurred at a particular

time of day but also that ovulation occurred between midnight and 0400 h.

Later, Everett, and Sawyer (1949, 1950) found that the release of ovu-

lating hormone in the rat could be checked by barbiturates but only

during a limited period of time--between 1400 and 1600 h on the day of

proestrus (lights on at 0500 h and off at 1900 h; 14L:10D). As long as

the time is measured from the midpoint of dark, the critical period

for ovulation blockade occurs between 1400 and 1600 h, whether the length

of the daily photoperiod is 12, 14 or 16 hours. Thus, the onset of the

critical period and the resulting ovulation seem to be associated with

the midpoint of dark or light, rather than with the beginning of dark

or light (Alleva 3£_3l,, 1970; Hoffmann, 1969). When the light to dark

ratio is held constant but the photoperiod is shifted relative to solar

time, the time of maximum ovulation blockade (Everett, 1952; Everett

and Tajasen, 1967) and the time Of ovulation (Alleva 33 33., 1970;

Austin and Braden, 1954; Carlysle and Carter, 1961) shift a correspon-

ding number of hours.

Psychoyos (1966) has suggested that the lighting schedule can also

affect the sensitivity of the ovary to LH. He gave PMS to 28-day-Old

rats, placed them in conditions varying from 0 to 24 hours of light per

day, and administered exogenous LH 2 days later. All the animals



59

ovulated, but the 18L:6D group shed twice as many ova, when compared to

all the others.

6. Effect on Luteal Phase of the Reproductive Cycle

Little, if any, data are available to suggest that the

length of the luteal phase in infertile cycles is affected in any way by

light. The length of pregnancy, however, can sometimes be altered by

light. In most cases the reason for the effect is not yet known. In

the mink, delayed implantation is quite common, and females mating early

in the season tend to have a longer delay and therefore a longer total

gestation than those breeding later. Furthermore, increasing the photo-

period to which mink are exposed can cause earlier implantation (Pearson

and Enders, 1944). This is also true of the marten and the sable (Far-

ner, 1961). The exact mechanism of the delay in these species is not

clear. In the rat delayed implantation is seen during lactation, and

implantation can be induced by giving a single injection of estrogen

(Krehbiel, 1941); however, no hormonal regimen has been successful in

inducing implantation in the wild species that normally show the delay

(Canivenc and Bonnin-Laffarque, 1963; Hammond, 1951). All that can be

said is that the corpora lutea remain in a state of quiescence until

some external signal or internal clock turns them on.

The total length of gestation in the horse is known to vary with

the season. Mares delivering in winter have a gestation period as much

as 20 days shorter than mares delivering in spring (Asdell, 1964).

Whether this is due to a difference in time of implantation or to rate

of development of the foal is not known.
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C. Effect of Constant Light or Constant Dark on Reproduction
 

In the complete absence of a light-dark alternation--in constant

light or constant dark--reproductive cycles may continue undisturbed or

may be profoundly altered. The rat and mouse go into a state or per-

sistent estrus fairly soon after exposure to constant light (mouse, Chu,

1965; Murthy and Russfield, 1970; rat, Browman, 1937; Everett, 1939, 1942;

Hardy, 1970; Hoffmann, 1970; Jochle, 1956; Lawton and Schwartz, 1965,

1967; Takahashi and Suzuki, 1969). Follicles develop to the preovulatory

stage and secrete estrogen, but ovulation does not occur, so that after

a time the ovary contains no corpora lutea. Only the follicles in various

stages of development are seen, and the constant secretion of estrogen

causes a continuous vaginal cornification, a high uterine weight, and

almost continuous sexual receptivity. If, instead of constant light,

the animals are in constant dark (by being housed in lightless quarters

or by blinding), the picture is entirely different. Browman (1937)

reported that rats kept in continuous dark showed normal estrous cycles,

but he apparently kept them in these conditions for only a few weeks.

J6ch1e (1956) kept animals in constant dark for 80 days and reported

that their cycles became longer, with more diestrus smears. Hoffmann

(1967) found that 20 percent of female Wistar rats blinded or placed

in continuous darkness as adults went into complete anestrus. Those

animals showed continuously leukocytic smears and at autopsy had very

small ovarian and uterin eweights, no recent corpora lutea, and only

small follicles in the ovaries. Females that were blinded at 21 days

of age, on the other hand, showed only a slight delay in reaching

puberty and later showed completely normal estrous cycles and organ

weights. It is important to note that light deprivation can have
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quite different effects depending on the origin of the rats under study

and the age of the animals when treatment beings (Hoffmann, 1970).

In the hamster, constant light was first reported to have no effect

on the estrous cycle (Greenwald, 1963). However, the animals were

studied for only 60-70 days (16-18 cycles). When exposure was continued

for 6-14 months, hamsters also showed persistent estrus and failure of

ovluation (Kent 35 31., 1968). In constant dark, lL:23D or after

blinding, male and female hamsters show a very severe atrOphy of repro-

ductive organs (Reiter, 1974). This greater sensitivity to light depri-

vation in comparison to the rat is perhaps a reflection of the more

recent domestication of the golden hamster or perhaps due to the fact

that the hamsters studied have been pigmented animals, whereas most of

the rats studied have been albino strains.

Relatively little information is available on the effects of con—

stant light or dark in other species. Dempsey $5.31. (1934) reported

that guinea pigs continued to cycle in constant dark and reproduced

normally, although the onset of heat no longer could be correlated with

a specific time of day. Terry and Meites (1951) reported that sheep

kept in constant light for 7 weeks in the summer continued to cycle.

Waddill g£_al, (1968) exposed young pigs to constant light for one

complete estrous cycle and found no difference in ovulation rate.

In the experiments of Mennin and Gorski (1974), constant light

exposed ovariectomized rats did not respond to the positive feedback

action of estrogen and showed a different response to progesterone

priming than LD ovariectomized rats in terms of their serum LH release.

Constant light exposure may act by increasing serum levels of FSH

(Fink, 1975) or by increasing estrogen levels (Negro-Vilar 35 31.,



62

1968). The effect of estrogen in increasing the pituitary response to

GnRH has been demonstrated in zigg_and in zi££g_(Libertun ££H§£., 1974;

Arimura and Schally, 1971). The fact that estradiol benzoate accele—

rates vaginal opening more effectively in LL than LD rats (Piaseck and

Struer, 1975) suggests that the LL female is more sensitive to estrogen

than the LD female. However, constant light inhibited the ovulatory

response to PMS in the immature rat (Steger 35 31., 1975) suggesting

that LL alters the ability of the hypothalamus to regulate endogenous

GnRH injection. In a later study, Steger gt 31. (1976) have shown that

LL enhanced the pituitary's LH response to synthetic GnRH in the imma-

ture rat. However, in the mature female rat (Smith and Davidson, 1974)

an ovulation stimulus such as mating does not result in high LH release

due to a sensitivity of the pituitary to LHRH.

Even though female rats show continual vaginal cornification and

cease ovulation a few weeks after they are exposed to continuous light,

this condition is not irreversible. Takahashi g£_al, (1977) found

that when these animals were replaced in the darkness for ten hours,

80 percent of the animals ovulated approximately 46 hours later.

Furthermore, according to Brown-Grant (1974) light induced persistent

estrous rats show an extensive loss of photoreceptors but nevertheless

resume regular ovarian cycles when returned to a light-dark regimen.

Apparently retinal changes are not necessary to cause persistent estrus.

Pigmented rats may become anovulatory without any retinal changes at

the light microscopic level. Lambert (1975) has found that constant

light intensities of 5 or 25 uw/cm2 significantly prolonged estrus but

at these levels of LL no retinal pathology was apparent with the light

microscope in an albino strain of rat. Both white LL and red LL
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prolong vaginal cornification at 100 uw/cm2 but only white LL produces

degeneration of retinal photoreceptors.

There are other changes in the hypothalamo-hypophysial-gonadal axis

which occur in response to constant light exposure. Fink (1974) reported

that the pituitary of LL eXposed rats was just as sensitive as that of

the LD exposed rat on the morning of proestrus in terms of LH response

to a single injection of synthetic GnRH.

The generalization has frequently been made that many if not all

effects of light upon reproductive processes occur through changes in

the release of various pineal substances which in turn affect the

homeostasis of the hypothalamo—hypophysial-gonadal axis. In the pheno-

menon of light induced persistent estrus in the rat, this is probably

not the case (Reiter, personal communication). Light itself creates

changes in the functioning of the neuroendocrine system that are inde-

pendent of involvement of the pineal gland (Ifft, 1962). Light may

induce a deficiency of catecholamines and an excess of serotonin in

hypothalamic areas a shypothesized by Kledzik and Meites (1974) in

light light persistent estrous female rats.



MATERIALS AND METHODS

I. Animals, Treatments and Blood Collection
 

Mature female rats used in these studies were obtained from Spartan

Research Animals, Haslett, MI. Animals were housed in light 14 h on,

10 h off (14L:10D) and temperature (25°:1°C) controlled rooms and pro-

vided with Purina Rat Chow (Ralston Purina Co., St. Louis, MO) and tap

water ad libitum. For the induction of persistent estrus, a group of

female rats was kept under constant illumination with an intensity of

10-15 foot candles as measured at floow level of plastic cages (Weston,

Model 915 light meter). After at least 5 weeks of constant light expo—

sure, those animals showing 10 consecutive days of vaginal cornifica—

tion were considered to be in persistent estrus and selected for these

experiments. Animals kept under 14L:10D conditions which showed regular

4-day cycles were selected on the day of proestrus unless otherwise

indicated. .

Blood samples were taken by decapitation or cardiac puncture under

light ether anesthesia. Blood samples were stored at 4°il°C for 24 h

to allow clot formation and serum was separated by centrifugation and

stored at —20°C until assayed for hormone concentration.

Alpha-methyl-para-tyrosine methyl ester HCl (Regis Chemical Co.,

Morton Grove, IL) and pargyline hydrochloride (Sigma Chemical Co.,

St. Louis, M0) were dissolved in 0.85% NaCl just before use. Estradiol

benzoate (EB) and progesterone (P) (Nutritional Biochemicals Corp.,

64
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Cleveland, OH) were dissolved in corn oil. Synthetic gonadotropin re-

leasing hormone (GnRH, Abbot, Chicago, IL) was dissolved in 0.85% NaCl.

II. Radioimmunoassay of Serum Hormones
 

Serum concentrations of luteinizing hormone (LH), follicle stimu-

lating hormone (FSH) and prolactin (Prl) were determined using standard

double antibody radioimmunoassay procedures. Serum prolactin was

assayed using the method of Niswender at El- (1969), while serum LH and

FSH were determined by the methods described in the NIAMDD kits. Hormone

concentrations are expressed in terms of the standard reference prepara—

tions NIAMDD rat-prolactin-RP-l, NIAMDD rat -LH-RP-l, and NIAMDD rat-FSH-

RP—l. All serum samples were assayed in duplicate. Samples from indi-

vidual experiments were all tested in the same assay to avoid inter-

assay variability.

Methods used for ether extraction of plasma estradiol, progesterone

and testosterone, separation of bound from free steroids by charcoal

dextran and scintillation counting were previously described by Campbell

35 a}, (1977). Anti-progesterone-ll-BSA, GDN #337, 1:2500; anti-estra-

diol-6-BSA, GDN #244, l:20,000, and anti—testosterone-ll-BSA, GDN #250,

l:40,000; were provided through the courtesy of Dr. G.D. Niswender

of Colorado State University. Specificity of the estradiol anti-serum

was determined by Campbell 25 31. (1977).

III. Assay of Hypothalamis Luteinizing,Releasing;Hormone (LHRH)

A. Isolation and Preparation of Brain Tissue

Rats were decapitated and their brains immediately removed

from the cranium. A block of hypothalamic tissue constituting the

region lying between the rostral borders of the optic chiasm and
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mammillary bodies and medial from the optic tracts were dissected to a

depth of about 2 mm. This was considered to be the medial basal hypo-

thalamus (MBH). Another block of tissue anterior to the MBH along the

same lateral borders and posterior to the anterior commisure was

dissected and considered to be the preoptic-anterior hypothalamic area

(AHA) (Figure l). The average weight of each of these hypothalamic

pieces was about 19 mg. Samples were stored on dry ice following their

dissection and then weighed and homogenized in 1 ml of 0.1 N HCl and

neutralized with 1 ml of 0.1 N NaOH. After centrifugation at 5000 g

for 20 minutes in a Sorvall refrigerated centrifuge at 4°C, the super—

natants were diluted with 0.1% gelatin in a phosphate-buffered saline

(PBS) to an appropriate concentration. Both serum and hypothalamic

extracts were stored at -20°C until assay.

B. Radioimmunoassay of LHRH
 

Hypothalamic LHRH was measured by the double antibody RIA

described by Nett 23 31. (1973). Anti-GnRH serum, R-42 pool, was pro-

vided by Dr. G.D. Niswender (Colorado State University), and was used at

a final dilution of 1:280,000. Synthetic LHRH (Lot 0, CN-79, 479-11K,

TM 10455 x 151-2, Parke-Davis Co., Detroit, MI) was used as a reference

preparation.

IV. Assay of Dopamine (DA), Norepinephrine (NE), and Serotonin (S-HT)

in Brain Tissue

 

 

A. Isolation and Preparation of Brain Tissue
 

Following decapitation, brains were removed and placed on

ice. The medial basal hypothalamus (MBH) and preoptic anterior hypo-

thalamic area (AHA) was dissected and frozen on dry ice. Tissue samples
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were then weighed and homogenized in 20 ul of 0.4 N perchloric acid

(containing 10 mg EGTA/lOO ml). The MBH used in this study corresponded

roughly to that described in Materials and Methods, section III. Cuts

were made at the hypothalamic sulci, the mammillary bodies and caudal

to the optic chiasm. The AHA included the area medial to the hypo-

thalamic sulci, and caudal from the anterior commisure to the MBH

(Figure l).

B. Radioenzymatic Assay of Catecholamines
 

Dopamine (DA) and norepinephrine (NE) were assayed by the

radioenzymatic method of Coyle and Henry (1973) using catechol-O-methyl-

transferase (COMT) isolated from the rat liver by the method of Nikodi-

jevic £3 31, (1970). The assay was sensitive to 320 pg DA and 500 pg NE

and linear to at least 4 ng for both catecholamines. The presence of

tissue has been reported to reduce the activity of COMT (Coyle and

Henry, 1973). Since samples of hypothalami were all diluted to the same

concentration (1 mg/lO ul), values were not corrected for tissue inhibi-

tion. Results are expressed as ng DA or NE per gram wet weight.

Normetanephrine and methoxytyramine were separated utilizing the

solvent extraction and thin layer chromatography method of Ben-Jonathan

and Porter (1976). Amine content of samples were determined after

separation by counting chromatographic spots containing the 3H-labeled

metabolites in glass scintillation vials containing 10 ml of Scintiverse

(Fisher Scientific Products, Livonia, MI). Samples were counted in a

New England Nuclear, Mark II, scintillation counter.

C. Radioenzymatic Assay of Serotonin
 

Hypothalamic 5-HT concentrations were assayed according to the

method of Saavedra 35 31° (1973). Tissue samples were homogenized in
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100 pl 0.1 N HCl (containing 10 mg EGTA/lOO ml). Rat liver N—acetyl

transferase was prepared by the method of Weissbach 33 21, (1961).

Hydroxyindole-O-methyl transferase extracted from bovine pineals (Pel-

Freez Biologicals, Inc., Rogers, ARK), was prepared by the method of

Axelrod and Weissbach (1961). Results are expressed as ng 5-HT per

gram wet weight.

Data were analyzed statistically by analysis of variance and the

Student-Neuman Keuls multiple range test (Sokal and Rohlf, 1969).

The level of significance chosen was P<0.05.
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Figure l. DeGroot Atlas Section showing PreOptic-Anterior Hypo-

thalamic Area (AHA) and Medial Basal Hypothalamus (MBH).

Tissue sample weight was 18:2.4 mg (AHA) and 2011.8 mg

(MGR) (N-54).



EXPERIMENTAL

I. Effect of Constant Light on Morning_and Afternoon Serum Levels of

Luteinizing Hormone (LH), Follicle Stimulatinngormone (FSH) and

Prolactin (Prl) in the Mature Female Rat

 

 

 

A. Objective

Critchlow (1963) postulated that exposure of rats to constant

illumination blocks the cyclic mobilization of LH essential for ovula-

tion, and that the retained follicles probably are responsible for the

continuous secretion of estrogen which causes persistent vaginal corni-

fication. A temporary state resembling these prolonged estrous condi-

tions can be produced in the rat by neural blocking agents presented

before the time of onset of the critical period for LH release (2-4 PM).

If such injections are repeated for several days, the animals appear to

continue secreting estrogen until atresia occurs (Everett, 1961).

Light induced persistent estrus appears to resemble the proestrous

stage of the estrous cycle, except for the cornified vaginal cytology.

With a strong stimulus such as mating, ovulation occurs in these animals.

Therefore it was of interest to determine whether light induced per-

sistent estrous rats showed daily patterns of LH, FSH, and Prl release

similar to those seen in proestrous.

B. Methods and Materials
 

Mature Sprague-Dawley female rats weighing 225-275 grams were

either housed under 14:10 1ight:dark conditions or under constant light

70
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as described in the Methods section. Rats kept in the light:dark regimen

(LD) were selected on the day of proestrous of a normal 4-day estrous

cycle. Animals kept in constant light (LL) for at least 5 weeks and

showing 10 consecutive days of vaginal cornification were considered to

be in persistent estrus, and used for this experiment. Blood samples

were collected by cardiac puncture under light ether anesthesia in the

morning (0900—1000 h) and afternoon (1600-1700 h). Serum levels of LH,

FSH, and Prl were determined by radioimmunoassay as described in the

Materials and Methods section.

C. Results

Morning levels of serum LH were not significantly different in

LL and LD rats (22:10 ng/ml vs. 20:8 ng/ml), respectively (Figure 2).

A significant increase in LH was seen in the LD proestrous rat in the

afternoon but not in the LL rat (508:115 ng/ml vs. 24:6 ng/ml (Figure 2)

(P<0.05). These results indicate that the times measured, no preovula-

tory LH surge was seen in rats exposed to constant light.

Morning levels of serum FSH were slightly higher in LL rats than

in LD rats (233:16 ng/ml vs. 196:8 ng/ml) (Figure 2) (P<0.05). However,

both groups of animals showed an afternoon rise in FSH which was of

equal magnitude (510:26 ng/ml vs. 526:54 ng/ml). These results demon-

strate that unlike LH, constant light apparently does not suppress the

ability of FSH serum levels to surge in the afternoon. Prl morning

serum levels were elevated in LL rats as compared to LD rats (38:8

ng/ml vs. 7:4 ng/ml) (Figure 2) (P<0.05). In contrast to the afternoon

surge of Prl seen in the LD rats (317:124 ng/ml), LL rats showed no

significant difference between AM and PM serum levels. These results

suggest that although LL may induce elevated basal levels of serum Prl
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Figure 2. The Effect of Constant Light on Serum LH and FSH

Levels in the Morning (AM) and Afternoon (PM).

Serum LH and FSH concentrations at 0900-1000 h (AM)

and 1600-1700 h (PM) were compared in proestrous rats

kept under 14L:10D conditions (LD) (open bars) and

light induced persistent estrous rats (LL) (striped

bars). Each bar represents the mean determination

of 6-8 rats. Vertical lines indicate :1 SEM.
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Figure 3. The Effect of Constant Light on Serum Prl Levels

in the Morning (AM) and the Afternoon (PM).

Serum Prl concentrations at 0900-1000 h (AM) and

1600-1700 h (PM) were compared in proestrous rats kept

under 14L:10D conditions (LD) (open bars) and light

induced persistent estrous rats (LL) (striped bars).

Each bar represents the mean determination of 6-8

rats. Vertical lines indicate :1 SEM.
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as compared to LD proestrous rats, the afternoon Prl surge was not seen

at this sampling time. It is however, possible that a Prl surge may

have occurred at some other time.

D. Discussion
 

From these data, it might be suggested that constant light

exposure may have a differential effect on LH and FSH release. The

characteristic proestrus afternoon surge of LH was not seen in the LL rat.

This is what might be expected based on the previous observations of

Daane and Parlow (1971) who reported a greatly reduced incidence of the

normal proestrous LH surge even during the first vaginal cycle following

exposure to constant light. Serum FSH levels have been reported to be

elevated in LL rats (Fink, 1975), but the present data are believed to

be the first observations of a proestrous type afternoon "surge" of FSH

in LL rats. Since all of the LL rats showed a rise in FSH on the same

day, it is likely that this may be a daily occurrence in light induced

persistent estrus. Perhaps this daily pulse of FSH release participates

in maintaining a constant secretion of estrogen. This effect could in

turn disrupt gonadal steroid positive feedback of LH release if the

control mechanism for that release was rate dependent.

The differential effect of LL on LH and FSH release is also in-

teresting from the standpoint that it supports the theory for separate

releasing factors for LH and FSH rather than a common one. This obser-

vation might also suggest that constant light may be selectively

affecting hypothalamic neuronal centers associated with LH and Prl

positive feedback. Possibly these separate gonadotropin control systems

are desynchronized and unmasked by the LL treatment. In support of the
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differential effect which LL has on gonadotropin release are the obser—

vations of Piacsek §£_al, (1966). They observed a release of FSH from

pituitary transplants in hypophysectomized rats when placed in constant

light. These investigators also found that serum levels of FSHRH (as

measured by bioassay) were elevated in those rats.

Anterior hypothalamic lesions can accelerate the onset of the breeding

season in ferrets (Donovan g£_§l,, 1956). It is possible that the lesions

produce estrus by the destruction of a neural mechanism which, during

sexual quiescence, would restrain gonadotropin secretion. Stimuli such

as constant light, might have this same effect by depressing this neural

mechanism, and a discharge of gonadotropin (primarily FSH) in an amount

sufficient to stimulate the gonads would follow.

According to Legan and Karsch (1975), a neural signal for the LH

surge is emitted each day throughout the estrous cycle of the rat, and

prolonged maintenance of elevated circulating estradiol is essential

for the expression of these signals. Perhaps a rate sensor exists for

the rapid increase in circulating estradiol which can be remembered for

at least several days afterwards.

Unlike the proestrous rat, no afternoon Prl surge was seen in the

LL rat. It is not clear what role Prl plays in maintenance of the

estrous cycle. Therefore, the significance of the absence of a Prl

surge in the LL rat is difficult to determine. It cannot be concluded

at this point whether the lack of a Prl surge is the result or one of

the contributing factors in the light induced persistent estrous

syndrome.

Although light induced persistent estrus is somewhat sbmilar to

proestrus, the afternoon surges of LH and Prl are not seen in this
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condition. In contrast, a surge of FSH is seen in the afternoon of LL

rats. Although the etiology of light induced persistent estrus is

still unclear, the changes in gonadotropin release observed in this

experiment probably reflect effects rather than causes of this condition.

II. Effect of Constant Light on the Sensitivity of the Pituitary to

Exogenous GnRH In Vivo in the Mature Female Rat; Single and Multiple

 

 

Injections of §ynthetic GnRH
 

A. Objective

In normal cycling mature female rats the reSponsiveness of the

anterior pituitary to ex0genous or endogenous luteinizing hormone re—

leasing hormone (LHRH) changes with the various stages of the estrous

cycle (Aiyer g£_§l,, 1973, 1974; Cooper g£_al,, 1973; Fink and Aiyer,

1974; Gordon and Reichlin, 1974). The timing and magnitude of the in-

crease in pituitary responsiveness indicates that it plays a major role

in the development of the LH surge. Conceivably, constant exposure of

rats to light may also lead to an increase in pituitary responsiveness

to LHRH which would facilitate the rapid reflex release of LH after

mating (Brown-Grant 25 31., 1973) and the postulated increase in the

secretion of FSH (Critchlow, 1963) in this type of animal. Fink (1975)

has shown that the pituitary of the constant light exposed rat responded

to synthetic doses of LHRH similarly to regular cycling rats on the

morning of proestrus. The purpose of this study was to further in-

vestigate the possibility that increased pituitary responsiveness to

LHRH occurs in constant light, especially the pituitary response to

single and multiple priming doses of synthetic LHRH.
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B. Materials and Methods
 

Experiments I and II
 

Female Sprague-Dawley rats weighing 225-275 g were exposed to

constant light for about five weeks. Only rats showing at least 10 con-

secutive days of vaginal estrus were considered to be in persistent

estrus and used in this study. Control animals of this study were female

rats of the same age, strain and weight as above and selected on their

ability to show a regular 4-day estrous cycle under 14L:10D lighting con-

ditions. The control group was divided into proestrus, estrus, and

diestrus (I and II). All experimental procedures were done between 0900

and 1000 h.

Synthetic gonadotropin releasing hormone (GnRH) (Abbot, Chicago, IL)

was dissolved in 0.89 percent NaCl in concentrations of 450 ng or 50 ng

GnRH/0.1 ml. After pretreatment blood samples were obtained by cardiac

puncture under light ether anesthesia, the animals were given a single

injection of 450 ng GnRH/100 g body weight (Experiment I) or six injec-

tions of 50 ng GnRH/100 g body weight every 30 minutes for a period of

two and one-half hours (Experiment II). All injections were administered

subcutaneously in a volume of 0.1 m1/100 g body weight.

In Experiment I, blood samples were taken at 45 minutes prior to a

single injection of 450 ng GnRH/100 g body weight and at 15 and 75

minutes thereafter.

In Experiment II, serial blood samples were taken at -15, +30, 60,

120, and 180 minutes following the initial injection of 50 ng GnRH/100

g body weight. An additional proestrous group was added and was bled

and injected according to the same schedule as above between 1500 and

1700 h.
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Serum LH and FSH were measured by standard double-antibody radio-

immunoassay procedures using NIAMDD kits. Results are expressed as

ng/ml serum in terms of the reference standards, NIAMDD rat LH-RP-l and

NIAMDD rat FSH-RP-l.

C. Results

Effect of a Single GnRH Injection on Serum LH in LL and LD Rats

Pre-injection serum LH levels were not significantly different

among any of the groups in this experiment. The LH response to a single

injection of 450 ng GnRH/100 g body weight is shown in Figure 4. Serum

LH rose in the LL rats from 21:5 ng/ml to 442:19 ng/ml at 75 minutes

after injection of GnRH. Proestrous and estrous rats showed an LH

response of similar but lesser magnitude at 75 minutes (19:4 ng/ml to

234:23 ng/ml and 18:2 ng/ml to 240:45 ng/ml, respectively). In contrast,

the diestrous group responded to the GnRH injections with a serum LH

increase from 19:1 ng/ml to 51:12 ng/ml at 75 minutes. There was no

significant difference in serum LH concentration changes among control

groups between 15 and 75 minutes after GnRH injection. Serum LH levels

of LL rats, however, appeared to continue rising even at 75 minutes

(442:19 ng/ml) and was significantly greater than serum LH levels of

any of the control groups (P<0.05) at that time. This would indicate a

greater pituitary LH response to GnRH in LL rats.

Effect of Multiple GnRH Injections on Serum LH in LL and LD

Rats

 

The effects of a series of six injections of 50 ng GnRH/100 g

body weight are shown in Figure 6. Serum LH rose from 19:3 ng/ml to

1226:206 ng/ml in LL rats and from 19:4 ng/ml to 1128:194 ng/ml in pro-

estrous (PM) rats in 180 minutes following the initial GnRH injection.
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Figure 4. The Effect of Constant Light on Pituitary LH Response

to a Single Synthetic GnRH Injection In_Vivo.

Synthetic GnRH (450 ng/kg body weight) was injected

s.c. into constant light (LL), and in proestrous (Pro),

estrous (Est) and diestrous (Diest) rats (14L:10D).

Each bar represents the mean determination of 6-8 rats.

Vertical lines indicate :1 SEM.
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to a Single Synthetic GnRH Injection Ig_Vivo.

See Figure 4 for explanation.
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The Effect of Constant Light on Pituitary LH Response

to Multiple Synthetic GnRH Injections 12_Vivo.

Synthetic GnRH (50 ng/kg body weight x 6) was injected

s.c. into constant light (CL) rats and in proestrous

(AM), (PM), estrous, and diestrous rats kept under

14L:10D conditions. Blood samples were collected at

-15, +30, 60, 120, and 180 minutes following the initial

injection of a series of six GnRH injections given every

30 minutes (arrows). Each point represents the mean

determination of 6-8 rats. Vertical lines indicate

:1 5m.
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Figure 7. The Effect of Constant Light on Pituitary FSH ReSponse

to Multiple Synthetic GnRH Injections ln_Vivo.

See Figure 6 for explanation.
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The LH responses of these two groups to the GnRH injections were not

significantly different from one another. Pretreatment serum LH levels

of proestrous (AM) (16:2 ng/ml), estrous (14:3 ng/ml), and diestrous

(12:3 ng/ml) rats rose to 413:185 ng/ml, 130:7 ng/ml, and 152:6 ng/ml,

respectively, in 180 minutes following GnRH injections. This would

suggest that the priming effect of GnRH is greater in LL rats and pro-

estrous (PM) rats than in proestrous (AM), estrous and diestrous rats

in terms of pituitary LH response.

Effect of a Single GnRH Injection on Serum FSH in LL and LD

Rats

Basal levels of serum FSH in the control groups of animals

were not significantly different from one another. Basal levels of LL

rat serum FSH was significantly greater than those of any of the control

groups (Figure 5). There was no difference in the magnitude of increase

in serum FSH in any of the groups 15 minutes following a single injec-

tion of GnRH. However, 75 minutes after the GnRH injection LL rats had

significantly higher (P<0.05) serum FSH levels (561:91 ng/ml) than pro-

estrous (428:22 ng/ml), estrous (456:31 ng/ml) or diestrous (412:43

ng/ml) rats.

Effect of Multiple GnRH Injections on Serum FSH in LL and LD

Rats
 

Pituitary FSH response to six injections of 50 ng GnRH/100 g

body weight in LL and LD rats is shown in Figure 7. Basal levels of

serum FSH in LL rats was 310:20 ng/ml which was not different from pro-

estrous (PM) (29l:62 ng/ml), proestrous (AM) (288:88 ng/ml) but greater

than estrous (225:18 ng/ml) or diestrous (227:7 ng/ml) rats (P<0.05).

At 180 minutes after the start of the GnRH injection series, serum

FSH levels rose to 770:72 ng/ml in LL rats. This was not different from
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proestrous (PM) rats (652:48 ng/ml) but significantly greater than pro-

estrous (AM) (581:33 ng/ml), estrous (404:41 ng/ml) or diestrous

(345:28 ng/ml) rats.

D. Discussion
 

The LL rats showed a greater pituitary LH and FSH response to

a single injection of 450 ng GnRH/100 g body weight than any of the LD

control groups. Furthermore, there appeared to be a difference in the

time course of the response of pituitary FSH and LH to single GnRH

injection between LL and LD control groups. While LD control rats

showed their maximum serum levels of FSH and LH within 15 minutes

following GnRH injection, the highest serum levels of FSH and LH did not

appear until 75 minutes following the GnRH injection in LL rats. This

difference may suggest a greater pituitary reserve of LH and FSH in

the LL rat but not necessarily a greater rate of release of these gonado-

tropins. In contrast, Fink (1975) found that the increments in plasma

LH and FSH of LL rats 60 minutes following a 50 ng dose of synthetic

GnRH were similar to those of proestrous animals. The difference in

results of these two experiments could be due to differences in the

doses of GnRH used or to route of administration or blood sampling

times.

In animals exposed to constant light, mating causes a prompt in-

crease in serum LH which results in ovulation (Brown-Grant gt $1.,

1973; Smith and Davidson, 1974). However, this particular sensitivity

of the LL rat to ovulation-inducing stimuli is not the result of a

supersensitive pituitary to LHRH (Smith and Davidson, 1974). In order

to elicit an LH response to GnRH in LL rats which was comparable to
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that response seen in the LD rat during the proestrous preovulatory

period (PM), Fink (1975) found that it was necessary to inject 4-5

times the dose of GnRH. Therefore, Fink suggested that in contrast to

the normal animal, in which only a small fraction of the readily re—

leasable pool of LHRH is discharged during the Spontaneous preovulatory

surge, the mating reflex surge of LH in LL rats involves the release of

most of the readily releasable pool of the hypothalamic hormone.

According to Aiyer E£.§l° (1974), the magnitude of the LH response is

related in a positive manner to the secretory activity of the pituitary

before administration of GnRH. This relationship may be due to a priming

effect of GnRH on the pituitary.

The priming effect of GnRH on pituitary LH and FSH release was also

compared between LL and LD control rats in this study. LL rat pituitary

LH and FSH release was not significantly different from that of pro-

estrous (PM) rats in response to multiple priming doses of GnRH but

significantly greater than proestrous (AM), estrous, or diestrous rats.

Therefore, the magnitude of the LH and FSH response to priming doses of

GnRH in LL rats is comparable if not greater than regular cycling

animals in proestrus.

Fink (1975) suggested that the increased responsiveness of the

anterior pituitary in rats exposed to constant light may be related to

the levels of circulating estradiol which are higher than at estrus

but lower than at proestrus in rats with 4-day cycles (Naftolin st 31.,

1972).

The results of this study would argue against the possibility that

in the constant light exposed rat, the failure of spontaneous
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preovulatory LH release and corresponding ovulation is due to a de-

creased pituitary sensitivity to LHRH.

III. Effect of Constant Light on the Content of LHRH in the Anterior

Hypothalamic Area (AHA) and Medial Basal Hypothalamus (MBH) of the

Mature Female Rat on Morning and Afternoon Time Periods

A. Objective

Exposure of the pituitary to increased amounts of hypothalamic

LH releasing hormone (LHRH) is believed to be a direct stimulus for the

preovulatory LH release in the normal cycling female rat. Unfortunately,

LHRH secretion cannot be measured without severely stressful hypophysial

portal vessel cannulation procedures. An alternative approach to in-

vestigating the role of LHRH is to measure its content in the hypothala-

mus. A depletion of LHRH content in the hypothalamus occurring prior to

an event such as the preovulatory LH surge may suggest release of hypo-

thalamic LHRH into the portal circulation to stimulate the LH surge.

Since light induced persistent estrous rats fail to show any LH

surge to stimulate ovulation, it was of interest to test the hypothesis

that these animals had either a deficiency of LHRH in the hypothalamus,

or that the hypothalamic LHRH was not being released into the portal

vessels to stimulate pituitary LH release.

B. Methods and Materials
 

Mature female Sprague—Dawley rats weighing 225-275 g were kept

under constant light for 5 weeks. Those animals showing at least 10

consecutive days of vaginal estrus were considered to be in persistent

estrus and used in this experiment. A control group of rats was kept

under 14L:10D light conditions and selected on the day of proestrus of

a regular 4-day cycle.
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Rats were killed by decapitation in the morning (0900-1000 h) or

afternoon (1600-1700 h). Brains were removed from the cranium imme-

diately after killing and dissected according to the procedure outlined

in the general Materials and Methods section. Hypothalamic LHRH was

measured by the double antibody RIA method of Nett £5 21, (1973).

C. Results

Anterior hypothalamic area (AHA) concentrations of LHRH in LL

rats was higher than LD proestrous rats in the AM (817:96 pg/hypothala-

mus vs. 494:24 pg/hypothalamus) and in the PM (551:68 pg/hypothalamus

vs. 244:20 pg/hypothalamus) (Figure 8). Medial basal hypothalamus (MBH)

concentrations of LHRH were also higher in the LL rat than LD control

at both AM (6.4:0.4 ng/hypothalamus vs. 4.8:0.2 ng/hypothalamus) and

PM (6.5:0.7 ng/hypothalamus vs. 3.8:O.2 ng/hypothalamus) time periods

(Figure 8).

These results suggest that no deficiency of LHRH exists in the LL

rats as compared to the LD proestrous rat. In fact an apparent surplus

of LHRH is seen in both areas of the hypothalamus examined in the LL

rat .

AHA LHRH concentrations were significantly smaller in the PM than

AM (244:20 pg/hypothalamus vs. 494:24 pg/hypothalamus) (P<0.05) in the

LD proestrous rats. This same pattern was seen in the AHA of the LL

rat. Afternoon (PM) concentrations of LHRH were smaller than AM con-

centrations (551:68 pg/hypothalamus vs. 817:96 pg/hypothalamus) (P<0.05)

in LL rats (Figure 8). These results suggest that AHA LHRH concentra-

tions change with time in both types of animals. This change in

content with time may imply movement of LHRH from one area of the
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Figure 8. Effect of Constant Light on LHRH (GnRH) Content of

the Preoptic-Anterior Hypothalamic Area (AHA) and the

Medial Basal Hypothalamus (MBH) in the Morning (AM)

and Afternoon (PM).

GnRH content of both hypothalamic areas was measured in

constant light (LL) rats and proestrous rats kept under

14L:10D conditions (LD) in the morning (AM) and after-

noon (PM). Each bar represents the mean determination

of 6—8 rats. Vertical lines indicate :1 SEM.
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hypothalamus to another during the time course of hypothalamic events

associate with the estrous cycle.

Medial basal hypothalamic LHRH content was smaller in the PM than

AM (3.8:0.2 ng/hypothalamus vs. 4.8:0.2 ng/hypothalamus (P<0.05) in the

LD controls (Figure 8). This pattern was not seen in the MBH of LL

rats comparing PM to AM levels of hypothalamic LHRH (6.5:0.7 ng/hypo—

thalamus vs. 6.4:0.4 ng/hypothalamus). These results suggest that while

LHRH is removed from the MBH by the afternoon time period (i.e., pre-

sumably partially released to the portal vessels) in the LD proestrous

rat, no such release of LHRH was seen in the LL rat.

D. Discussion
 

The results of this experiment suggest that LHRH is present

in the hypothalamus of LL rats in quantities which exceed those of the

LD proestrous rat. However, the data also infer that unlike the LD

rat, the LL rat showed no apparent "release" of LHRH from the MBH. It

should be noted that since LHRH was measured at only one time in the

PM in this experiment, a different time course of LHRH release in the

LL rat cannot be ruled out. It is unlikely that this occurred since

ovulation did not follow.

As an alternative to increased LHRH release, the preovulatory

surge of LH may result from an increase in pituitary sensitivity to

LHRH. This hypothesis was tested and discussed in Experimental section

II of this thesis. To summarize, it was found that the pituitary of

the LL rat was equally or more sensitive than the pituitary of the LD

proestrous rat to priming doses of GnRH in zigg. Therefore, endogenous

hypothalamic LHRH content of LL rats was examined in this experiment

and compared to that of the proestrous rat.
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One feature of the rat exposed to constant light is that is is

quite sensitive to ovulation-inducing stimuli. Smith and Davidson (1973)

found that 100 percent ovulation occurred following stressful stimuli

in these rats. They observed a decline in LHRH activity of the basal

hypothalamus of LL rats which reached a low point 20 minutes after the

onset of mating, followed by a return toward the initial level, suggesting

rapid release of stored LHRH followed by resynthesis. These observations

would support the hypothesis that no deficiency of hypothalamic LHRH

exists in the LL rat but that its "spontaneous" (but not "reflex")

release may be impaired.

Another characteristic of constant light exposure is the advancement

of the average age of vaginal opening and the first appearance of large

follicles in immature rats (Steger 23 31., 1975). These effects may be

associated with alteration in follicle stimulating hormone releasing

hromone (FSHRH) levels in the immature LL rat as described by Negro-

Vilar gt_§;, (1968). These workers found elevated levels of FSHRH

activity in plasma of hypophysectomized rats exposed to constant light

which were greater than that of LD hypophysectomized rats. Increased

FSHRH activity could presumably release FSH which could stimulate

follicular growth and estrogen production by ovaries to result in

advancement of vaginal openings, but ovulation does not occur. This

latter effect may be due to an inability of the LL rat to spontaneously

release LHRH. Since FSH serum levels are elevated in the adult LL rat

while no change in LH serum levels is seen, this differential release

of gonadotropin releasing factors may be occurring in the adult LL rat

as well.
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This experiment has presented at least some indirect evidence which

suggests that LHRH is present but not released from the hypothalamus in

light induced persistent estrus.

IV. Effect of Constant Light on Hypothalamic Sensitivity to Positive

and Negative Feedback by Gonadal Steroids: LH and FSH Response to

Estradiol Benzoate (EB) and Prqgesterone (P) Priming

A. Objective

There is abundant evidence that ovarian steroids can facilitate

 

or inhibit luteinizing hormone (LH) secretion and ovulation depending

on the dose administered and the physiological conditions at the time

of the hormone treatment (Everett ggngl., 1969; Brown-Grant, 1974).

The preovulatory release of gonadotropin in cycling rats is also in-

fluenced by a neural mechanism which is cued by the light-dark cycle

(Everett ggflal., 1949; Critchlow, 1963). Phase shifts in the onset of

the light period cause a corresponding temporal shift in the activation

of the control mechanism and consequently of pituitary LH discharge.

In ovariectomized rats, the timing of estrogen—induced LH release can

also be altered by advancing the onset of the light period (Columbo g;

.31., 1974). Thus, the environmental light cycle acts as an external

signal for synchronizing the pituitary discharge of LH in both cycling

and estrogen-primed ovariectomized animals.

The preovulatory rise in estrogen titers is known to be an impor-

tant factor in spontaneous LH release and ovulation (Brown-Grant, 1974;

Schwartz, 1969). A number of factors could affect estrogen secretion

rate and LH-release threshold, although no specific data are available

to distinguish between these two sites of action. The effects of

photoperiod on cycle length might be due to changes in the LH-release
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threshold (Hoffmann, 1975). In the extreme conditions of constant

light, the LH release threshold may be raised and estrogen secretion

rate slowed.

It was the objective of these experiments to compare the thresholds

for positive and negative feedback of estrogen and progesterone on LH

and FSH release between ovariectomized rats exposed to constant light

and ovariectomized rats exposed to a 14L:10D light cycle.

B. Methods and Materials
 

Female Sprague-Dawley rats weighing 225-275 g were housed

under constant illumination for a period of about five weeks. A second

group of Sprague-Dawley females was kept in a 14L:10D lighting regimen.

Those animals showing persistent estrus in the constant illumination or

those control animals showing regular cycles in the 14L:10D regimen

were then ovariectomized. Two to three weeks later, blood samples were

taken by cardiac puncture under light ether anesthesia. Serum was

separated by centrifugation and stored at —20°C. Serum LH and FSH was

measured by RIA as outlined in the general Materials and Methods section.

Estrpgen and Prpgesterone Priming

Experiment I — Twenty ug of estradiol benzoate (BB) in 0.2 ml
 

corn oil was administered S.C. to each group of rats. Seventy-two hours

later a second injection of 20 ug EB was given. Thirty hours after the

second injection, a blood sample was taken by cardiac puncture under

light ether anesthesia.

Experiment II - Twenty ug of EB in 0.2 ml corn oil was admini—
 

stered 8.0. to each group of rats. This was followed seventy-two

hours later by 5 mg progesterone (P) administered S.C. in 0.2 ml corn
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oil. Six hours after the P injection, a blood sample was taken by

cardiac puncture under light ether anesthesia.

C. Results

Experiment I
 

The effects of castration and EB positive and negative feed-

back on serum levels of LH and FSH in LL and LD rats is seen in Figure

9. Post-castration levels of LH were not different between LL and LD

rats (560:161 ng/ml and 419:92 ng/ml, respectively). Seventy-two hours

following 20 ug EB, serum LH was depressed to a lower level in LB rats

(86:17 ng/ml) than LL rats (352:170 ng/ml (P<0.05). In response to a

second injection of EB, LD rats showed a small but significant increase

in serum LH (273:167 ng/ml) while serum LH levels continued to fall in

LL rats (104:39 ng/ml) at this time.

No differences were seen in serum FSH levels between LL and LD rats

in response to castration nor after negative or positive EB stimuli.

Experiment II
 

The effects of castration, EB negative and P positive feedback

on serum levels of LH and FSH in LL and LD rats is seen in Figures 10

and 11. Serum LH levels of LL and LD rats did not differ prior to nor

at 1 or 12 days postcastration (Figure 10). Although LL rats showed a

greater EB negative feedback on serum LH than LD rats, comparing post-

castrate and post-EB serum LH levels, both groups of rats responded

similarly to progesterone treatment with an elevation of serum LH

(Figure 10). This would indicate that progesterone can overcome any

difficulty in positive feedback of serum LH release under constant

light conditions.
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The Effect of Constant Light on Estradiol Benzoate (EB)

Induced Negative and Positive Feedback Effects on Hypo-

thalamic Control of Pituitary LH and FSH Release.

Constant light rats (LL) and rats kept under 14L:10D con-

ditions (LD) were ovariectomdzed and injected with EB

(20 ug) s.c. at 72 hr intervals after which gonadotropin

response to negative (72 hr) and positive (30 hr) feed-

back of EB was measured. Each bar represents the mean

determination of 6-8 rats. Vertical lines indicate
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Constant light (LL) rats and rats kept under 14L:10D

conditions (LD) were ovariectomized and injected with

estradiol benzoate (EB) (20 ug) followed 24 hr later

by progesterone (P) (5 mg) s.c. Gonadotropin response

to P positive feedback was measured 6 hr following P

injection. Each bar represents the mean determination

of 6-8 rats. Vertical lines indicate :1 SEM.
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Basal serum FSH levels were not different between LL and LD rats

(Figure 11). However, 1 day following castration LD rats had higher

serum FSH levels than LL rats (755:44 ng/ml vs. 568:31 ng/ml). Similar-

ly at 12 days post-castration serum FSH levels in LD rats were still

higher than those of LL rats (2912:39 ng/ml vs. 2256:93 ng/ml). Six

hours following an injection of P (5 mg) serum FSH levels of LD rats

rose to a higher level than in LL rats (4637:872 ng/ml vs. 2727:226

ng/ml). This would suggest that, at six hours after progesterone

injection serum FSH levels of LL rats were not as sensitive to positive

feedback by progesterone.

D. Discussion
 

Since spontaneous ovulation does not occur in light-induced

persistent estrus, it was of interest to test the response of gonadotro-

pin release in the LL rat to negative and positive feedback effects of

gonadal steroids.

The ability of EB to exert a negative feedback effect on the post-

castration serum LH rise was demonstrated in LB rats but not LL rats in

exerpiment 1 (Figure 9) 72 hr after injection. In contrast, the results

of experiment 2 show the opposite LH response but at 24 hr after EB

injection (Figure 10). The discrepancy in LH response between these

two experiments is probably due largely to a difference in sampling

times following EB injection. This also suggests that in the LL rat,

there may be a different time course for steroid negative feedback on LH

release. Alternatively, if LH responses between LL and LD rats were

compared only at 72 hr after EB, the data may suggest that the sensi-

tivity of the LH control system to the negative feedback effects of

gonadal steroids was decreased in constant light. This latter



98

alternative is in agreement with the findings of Hoffmann and Cullin

(1977) demonstrating a decreased negative feedback sensitivity of the

LH control system to estrogen negative feedback with increased photo—

period length. Unlike LH, the FSH response to negative feedback by EB

was not different between LL and LD rats.

Estrogen not only has negative feedback effects on LH release, but

also can induce the release of a surge of LH comparable to the ovulatory

surge in rhesus monkeys (Karsch g£_al., 1973; Legan g£_§l,, 1975).

Differences between the LH response to the positive feedback effects of

estrogen were also seen between LL and LD rats. In contrast to LD

rats, LL rats failed to show a serum LH increase following a second EB

injection in experiment 1 (Figure 9). Since serum was collected at

only one time period following the second EB injection, it cannot be

concluded whether or not the sensitivity of LH release control to

positive feedback by EB is decreased in the LL rat or whether the time

course of LH response was different in the LL rats. However, in a

related study, Mennin and Gorski (1975) found no elevation of serum LH

following a second EB injection in ovariectomized light-induced persis-

tent estrous rats at time periods ranging from six to fifty-six hours

following the EB injection.

Mann 2; a1. (1976) have shown that in the ovariectomized rats in

a 14L:10D light cycle: a) EB produces an LH rise in the absence of any

circulating progesterone (P), b) and P potentiates and advances the

serum LH surge in response to EB. These findings are in agreement

with our observations in experiment 2. In addition, Mann fig 2;. (1976)

have shown that rats maintained in constant light were less sensitive

to the positive feedback actions of EB and P than LD rats. In
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experiment 1, the LL rats failure to respond to the positive feedback

of EB is in agreement with the results of Mann.££ El: (1976). However,

in experiment 2, in contrast to the findings of Mann gg'gl. (1976), a

decreased sensitivity to the positive feedback effect of P in LH was

not seen. A possible explanation for this discrepancy may be the

difference in doses of P used in the experiments of Mann ggmgl. (1976)

and experiment 2. Since almost twice as much P was used in our experi-

ment 2 as compared to theirs, a higher serum level of P may have been

able to overcome a decreased sensitivity of the LL rat to the positive

feedback effects of P on LH.

It is interesting to note that in the studies of Mann 35-21: (1976),

the degree to which sensitivity of positive feedback of EB and P on LH

was reduced was dependent on whether or not the animals had adrenal

glands. Rats that were both ovariectomized and adrenalectomized showed

an enhanced sensitivity to EB and P in both LL and LD rats. No expla-

nation was given for this finding.

The results of these experiments would suggest that LL induces an

alteration in the sensitivity of the control system for LH release to

negative and positive feedback by gonadal steroids. This may contri-

bute to a lack of spontaneous ovulation in the light induced persistent

estrous rat.

V. Effect of Constant Light on Morning and Afternoon Plasma Levels of

Estradiol, Progesterone and Testosterone in the Mature Female Rat

A. Objective

The sequence of changes in plasma gonadal steroids which occurs

in the normal cycling female rat are believed to contribute to positive
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and negative feedback effects on gonadotropin secretion (Everett, 1964;

Kalra and Kalra, 1974). They participate in the regulation of hormonal

events occurring during the estrous cycle. The persistent estrus

resulting from constant light exposure is associated with an absence of

the preovulatory surge.

It was of interest to measure plasma estradiol, progesterone and

testosterone levels in light induced persistent estrous rats. It has

been suggested that the receptivity of the constant light exposed rat

to a mating stimulus and its effectiveness in inducing ovulation may be

due to suprabasal but constant secretion of estrogen maintaining the

estrous vaginal cytology and priming the pituitary to respond to an LHRH

stimulus (Smith and Davidson, 1974).

B. Methods and Materials
 

Mature Sprague-Dawley female rats were maintained under 14L:10D

or constant light (LL) conditions. LD rats showing a regular 4-day

estrous cycle were selected for this experiment on the day of proestrous

of the estrous cycle. LL rats which showed ten consecutive days of

vaginal estrus were also selected for this experiment. Blood samples

were collected by cardiac puncture under light ether anesthesia in the

morning (0900-1000 h) and afternoon (1600-1700 h). Plasma steroids

were measured according to the procedure described in Appendix D.

C. Results

Plasma estradiol levels of LL rats were not significantly

different from LD proestrous rats in the AM (34:4 Pg/ml vs. 28:8 pg/ml).

However, while estradiol levels in proestrous rats rose to 44:7 pg/ml in

the afternoon, LL rats showed no significant change in estradiol levels

at this time (Figure 12).
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Plasma progesterone levels were significantly lower in LL rats than

proestrous rats at morning (12:4 ng/ml vs. 26:8 ng/ml) (P<0.05) and

afternoon (16:4 ng/ml vs. 34:9 ng/ml) (P<0.05) time periods (Figure 12).

Plasma testosterone levels were higher in LL rats than LD proestrous

rats in the morning (203:38 pg/ml vs. 84:12 pg/ml) (P<0.05), but this

relationship was reversed in the afternoon when LL plasma testosterone

levels fell to 130:9 pg/ml while LD proestrous levels rose to 324:41

pg/ml (Figure 13).

D. Discussion
 

Data on plasma estradiol levels in this experiment show that at

those time periods when samples were collected, LL rats had plasma

estradiol levels which were neither much higher nor lower than the range-

of estradiol concentrations found in the normal cycling rats. This

observations is supported by the findings of Takahashi SE 2;. (1977)

where ovarian vein plasma levels of estradiol were of an intermediate

value between those of diestrous night and proestrous morning in normal

cycling rats.

The interpretation given by various investigators concerning the

basis for persistent estrus that develops after exposure to constant

light centers around the concept of a persistent mild elevation in

gonadotropin secretion (FSH) (Daane and Parlow, 1971; Mann £5 31.,

1973, 1974) that drives a slightly elevated estrogen secretion (Nafto-

lin ggflgl., 1972) hovering at a level intermediate between the peaks and

troughs of the normal cycle. There is also a reduction in estrogen

binding capacity at various estrogen target tissues in long-term 1ight-

sterilized rats (Allei-Donhoffer g£_§l,, 1974) which may be related to

a failure of the normal feedback regulation of ovulation.
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Figure 12. Effect of Constant Light on Plasma Estradiol and

Progesterone Levels in the Morning (AM) and After-

noon (PM).

Morning and afternoon levels of plasma estradiol and

progesterone were measured in constant light (LL) rats

and in proestrous rats kept under 14L:10D conditions

(LD). Each bar represents the mean determination of

6-8 rats. Vertical lines indicate :1 SEM.
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Figure 13. Effect of Constant Light on Plasma Testosterone in

the Morning (AM) and Afternoon (PM).

See Figure 12 for explanation.
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Not only are minimum levels of plasma estradiol necessary for posi-

tive feedback effects on preovulatory LH release, but dynamic changes

in estradiol may play a significant role as well. Kalra (1975) found

that following the initial "priming" of central sites with low levels of

circulating estradiol during diestrus II, rapid elevations in the ovarian

estrogen secretion between 2300 h of diestrus II and 0300 h of proestrus

facilitated the neural "trigger" of pituitary LH release during the

critical period on proestrus. In addition, Turgeon and Barraclough

(1977) have studied the possible consequences of the abrupt decrease in

estradiol secretion that occurs following the initiation of the gonado-

tropin surge. They found that the pituitary responsiveness to exogenous

LHRH was doubled after decreased circulating estradiol secondary to

ovarian removal. The abrupt decrease in estradiol coupled with the

degree of LHRH presensitization of the pituitary may determine the mag-

nitude of the LH surge. The above types of dynamic changes in estradiol

were not examined in this experiment and thus cannot be ruled out as

possible contributory factors in light induced persistent estrus.

The results of this experiment regarding plasma progesterone levels

also suggest that LL rats may have an insufficient level of progesterone

released as compared to the LD proestrous rat. This is in agreement

with the findings of Takahashi §£_gl, (1977) who also found very low

levels of ovarian vein plasma progesterone but elevated levels of l7-OH—

progesterone in LL rats. These comparative steroid levels (continuous

but low levels of estrogen and low levels of progesterone) are in

accord with the morphological state of the ovary in LL rats since no new

corpora lutea are observed and follicles are at the preovulatory state.
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Ramaley and Bartosik (1975) found that the rhythmic release of

progesterone and corticosterone which are first seen in immature female

rats at 29 days of age was eliminated by exposing the rats to constant

light from weaning age. Since progesterone levels in their control rats

were greatly reduced by adrenalectomy, they believed the source of the

progesterone rhythm was probably the adrenal.

Nequin and Schwartz (1971), Feder g£_§l, (1971) and Lawton (1972)

suggested that the adrenal secretion of P before the critical period is

involved in facilitating the release of LH on the evening of proestrus.

Progesterone injection into light induced persistent estrous rats re-

initiates cycling (Everett, 1948). It might be implied that if plasma

progesterone levels reached some threshold level in the LL rat, preovu-

latory LH surges should have occurred.

The pattern of changes in plasma testosterone levels in LL rats

appeared to be opposite to that in LB proestrous rats. It might be

implied that plasma testosterone changes in the LL rat are out of

phase with the LD proestrous rat. These are only speculations since

only two time periods were sampled. The role of testosterone in the

normal estrous cycle has not been clearly defined. Mori §£_§l, (1977)

found that injection of antibodies produced against testosterone into

HCG primed rats decreased the number of ova per ovulation to normal.

Androgen has been implicated in the control of follicular maturation

(Louvet 35 gl., 1975). Production of androgen in the follicular fluid

may participate in the regulation of oogenesis in the rat.

Changes in plasma estradiol, progesterone and testosterone secre-

tion seen in LL rats could be a response to constant light or a
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contributing factor in light induced persistent estrus. Due to the high

degree of integration of the various components of the estrous cycle, it

may be difficult to separate cause from effect unless a thorough time

course of these and other component changes are investigated.

VI. Effect of Constant Light on Hypothalamic Monoamine Metabolism on

Morning and Afternoon Time Periods: Determination of Turnover Index

of Norepinephrine (NE), Dopamine (DA) and Serotonin (5-HT)pin the

AHA and MBH

A. Objective

After exposure to constant illumination (LL), female rats exhi-

 

bit an alteration in gonadotropin release, and enter a persistent

estrous state (Browman, 1937; Hemmingsen.g£_§l,, 1937; Everett, 1942).

The control of gonadotropin release and their corresponding regulation

of ovarian function is in turn influenced by hypothalamic monoamines

(Coppola, 1968; Kamberi ggugl., 1970; Schneider and McCann, 1970).

Kledzik and Meites (1974) have shown that light induced persistent

estrous rats could be induced to resume regular estrous cycles by injec-

tion of L-DOPA and PCA (a drug combination which increases catechol-

amine metabolism and decreases serotonin metabolism). These workers have

hypothesized that constant illumination may induce a persistent estrous

condition by causing a depletion of catecholamine and an excess of sero-

tonin activity.

In order to investigate this hypothesis, norepinephrine (NE),

dopamine (DA) and serotonin (5-HT) turnover index (TI) were measured

in the preoptic-anterior hypothalamic area (AHA) and the medial basal

hypothalamus (MBH) of light induced persistent estrous rats on morning

and afternoon time periods.
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B. Methods and Materials
 

Mature Sprague-Dawley rats were housed under constant light

conditions for 5-7 weeks. Only those animals exhibiting 10 consecutive

days of vaginal estrus were selected for this experiment. A control

group of rats was housed under 14L:10D lighting conditions. Control

animals used in this study were rats showing a regular 4-day cycle and

selected on the day of proestrus.

Measurement of Hypothalamic Monoamines
 

Catecholamines: Rats were injected intraperitoneally with 200

mg a-methyl-para-tyrosine (aMPT)/kg body weight or its vehicle, 0.85%

NaCl. One hour later, the rats were killed by decapitation, brains

were removed and placed on ice. The medial basal hypothalamus (MBH)

and preoptic-anterior hypothalamic area (AHA) were dissected and frozen

on dry ice. Tissue samples were then homogenized in 20 ul of 0.4 N

perchloric acid (containing 10 mg EGTA/lOO ml).

Dopamine (DA) and norepinephrine (NE) were assayed by the radio-

enzymatic method of Coyle and Henry (1973) as described in the general

Materials and Methods section. The turnover index of catecholamines was

calculated as the percent depletion of NE or DA one hour after a-MPT

injection.

Serotonin: Rats were injected intraperitoneally with 75 mg pargy-

line-HCl/kg body weight or its vehicle, 0.89% NaCl. Thirty minutes

after injection, animals were killed by decapitation, the brains removed,

and the hypothalamus was dissected as above and frozen on dry ice.

Tissue samples were homogenized in 100 pl of 0.1 N HCl (containing 10

mg EGTA/lOO ml). Hypothalamic S-HT was assayed according to the
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radioenzymatic method of Saavedra 2g 21. (1973). The turnover index of

serotonin was calculated as the percent accumulation of 5-HT following

pargyline injection.

C. Results

Although DA concentrations were significantly greater in the

AHA of LL rats as compared to LD rats (Figure 14) (P<0.05), DA depletion

one hour following o-MPT injection was in most cases not significantly

different between LL and LD rats. The exception to this was found in

the MBH at the AM measurement where DA depletion was higher in LD than

LL rats (57.8:l.9% vs. 46.0:1.9%)(P<0.05). This may suggest that LL

rats have a lower DA metabolism than LD rats in the MBH in the morning.

The AHA norepinephrine concentration was significantly greater in

the AM of LD rats as compared to the PM (Figure 15) (P<0.05). The

opposite trend in AHA NE concentration was seen in LL rats (Figure 15).

Likewise, one hour following a-MPT injection, LD rats showed a greater

AHA NE depletion in the AM than PM (45.9:5.7% vs. 21.3:7.7%) (P<0.05).

In contrast, AHA NE depletion was lower in the AM.than PM (7.5:3.9% vs.

22.2:3.3%) (P<0.05), in LL rats. Furthermore, LD rats showed a greater

NE depletion than LL rats in the AHA (45.9:5.7% vs. 7.5:3.9%) (P<0.05)

in the AM, and in the MBH (55.4:6.5% vs. l6.4:6.0% (P<0.05) at this

time. These results suggest that a decreased NE metabolism exists in

LL rats in the AHA.and MBH during the morning.

The concentration of AHA serotonin was greater in LD than LL rats

in the AM (Figure 17) (P<0.05). MBH serotonin concentration was greater

in LL than LD rats at the PM sampling time (Figure 16) (P<0.05). Thirty

minutes following pargyline injection, LD rats showed a greater AHA

accumulation of 5-HT in the PM than the AM (64.5:9.l% vs. l9.2:3.0%)
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Effect of Constant Light on Dopamine Turnover Index in

Two Areas of the Hypothalamus in the Morning and

Afternoon.

Catecholamine content was measured in the preoptic-

anterior hypothalamic area (AHA) and the medial basal

hypothalamus (MBH) of constant light (LL) rats and pro-

estrous rats kept under 14L:10D (LD) conditions. Morning

(AM) and afternoon (PM) measurements were made 60 minutes

after alpha~methyl paratyrosine (a-MPT) (200 mg/kg) i.p.

or its vehicle 0.89% saline. Turnover index was calcu-

lated as percent depletion of amine after o-MPT. Each

bar represents the mean determination of 6-8 rats.

Vertical lines indicate :1 SEM.
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See Figure 14 for explanation.
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Effect of Constant Light on Serotonin Turnover Index

in the Medial Basal Hypothalamus in the Morning and

Afternoon.

Serotonin content was measured in the medial basal hypo-

thalamus (MBH) of constant light (LL) rats and proestrous

rats kept under 14L:10D (LD) conditions. Morning (AM)

and Afternoon (PM) measurements were made 30 minutes

following pargyline i.p. (75 mg/kg) or its vehicle 0.89%

saline. Turnover index was calculated as percent accumula-

tion of amine following pargyline. Each bar represents

the mean determination of 6-8 rats. Vertical lines indi-

cate :1 SEM.
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Figure 17. Effect of Constant Light on Serotonin Turnover Index

in the PreOptic-Anterior Hypothalamic Area (AHA) in

the Morning and Afternoon.

See Figure 16 for explanation.



113

(P<0.05). This was also true of PM vs. AM accumulation of 5-HT in the

MBH (94.7:8.0% vs. 57.5:18.4% (P<0.05) of LD rats. No such changes in

5-HT turnover index were seen in PM vs. AM of LL rats. LL rats showed

a greater 5-HT T1 in the AM of the AHA than LD controls (61.8:10.0%

vs. l9.2:3.0%), but a smaller 5-HT TI in the PM of the MBH than LD

controls (54.6:ll.2 vs. 94.7:8.0%). These results suggest an apparent

attenuation of the diurnal 5-HT metabolic rhythm in rats exposed to

constant light.

D. Discussion
 

In general, the present results indicate that a depression in

NE and an increase in S-HT metabolism may occur during the morning in

the AHA of light induced persistent estrous rats. Also a depression in

NE (AM) and 5-HT (PM) metabolism was seen in the MBH together with a

DA (AM) metabolic decrease of questionable significance in this condi-

tion.

Few differences in DA turnover were seen between LL and LD controls

rats in this study. However, DA steady state concentrations were higher

in LL rats than in LD rats. A possible explanation for this may be that

in rats exposed to constant light, the rate limiting enzyme for DA syn-

thesis, tyrosine hydroxylase, may be less sensitive to end produce inhi-

bition, i.e., DA accumulation, together with a decreased release or

decreased reuptake of the amine. In addition, LL may induce a decrease

in the activity of MAO or COMT in this DA system. This selective effect

of constant light on the AHA DA metabolism might also suggest that the

activity of the incerto-hypothalamic DA system in the AHA is affected

by the constant illumination more than the MBH tubero-infundibular DA

system.
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The LD control rats exhibited a greater morning NE turnover index

than LL rats in either MBH or AHA. Changes in hypothalamic concentra-

tion and metabolism of NE have been reported to occur during stages of

stimulatory steroid feedback. On proestrus of the estrous cycle, an?

terior hypothalamic (Stefano and Donnoso, 1967; Coppala, 1969) and median

eminence (Selmanoff g£_§l,, 1976) NE concentration and whol brain NE

turnover increase (Zacharek and wurtman, 1973). During the first

estrous cycle, hypothalamic NE turnover increases during early proestrous

and decreases in late proestrous and estrus (Advis ggflgl., 1978). The

data of this experiment on AM vs. PM NE turnover index in LD rats is in

agreement with the above reports. Most studies indicate that NE has a

stimulatory effect on LH secretion (Sawyer, 1975; Krieg and Sawyer, 1976;

Kalra g£_§l,, 1972). The absence of this stimulatory hypothalamic input

in the constant light exposed animal may contribute to the persistent

estrous condition in which the stimulation for ovulation, i.e., LH

release, is also missing.

Comparing the AHA diurnal rhythmi of NE turnover index in the LL

rats with the LD controls, it appears that constant light results in a

phase shift of the NE metabolic rhythm during the day (Figure 15).

Since measurements of NE TI were made at only two time periods, this

hypothesis needs to be tested further at additional time periods. Per-

haps the light-dark cycle synchronizes central neuronal activity rhythms

which could involve NE turnover. Induction of an IR surge during the

estrous cycle may depend on the synchronous activity of multiple monoami-

nergic neurons. The absence of the external signal entraining these

rhythms may result in failure of a preovulatory LH surge to occur.
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The diurnal rhythm in serotonin turnover index (low in the AM and

high in the PM) seen in both areas of the brain in LD rats was not

apparent in the LL rats in this study. These data are in agreement

with the observations of Meyer and Quay (1976a) who reported that a

diurnal variation in 5-HT uptake occurs in the suprachiasmatic nuclear

region (SNR) of male and female rats $2;21££29 with a peak during the

late light to early dark period. They suggested that this increase in

SNR uptake of 5-HT may serve to limit free 5—HT and its inhibitory

effects on the gonadotropin release hormone system. In addition, Meyer

and Quay (1976b) have found that rats exposed to continuous light show

no significant difference in serotonin uptake by the SNR at 1000 or

2200 h. In the present study, the AHA S-HT turnover index was greater

in the LL than LD rat in the AM. In contrast to the LD rat, the LL rat

showed no change in AM vs. PM serotonin turnover index. This elevation

in morning serotonin TI and/or arrhythmic diurnal variation in the LL

rat may have an inhibitory influence on LH release.

Kueng SE 31. (1976) examined S-HT concentrations in 18 brain

regions during the estrous cycle of the rat. They found that in the

lateral preoptic area, the 5-HT concentration was elevated in the

morning of proestrus and then decreased in proestrous afternoon, estrus

and metestrus. The LD rat serotonin concentrations in the AHA showed the

same pattern of changes during the day in these studies. Kueng 22 El.

(1976) proposed that there may be increased release of 5-HT in the

afternoon of proestrus. In support of their hypothesis, these studies

also suggest an increased 5-HT turnover in proestrous afternoon, but a

constant high level of 5-HT turnover during the day in LL rats.
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In constrast to the AHA, LL rat 5-HT turnover index was lower than

that of LD rats in the MBH. These differences in S—HT metabolism in

two areas of the brain in the same type of animal appear very unusual

but are not necessarily mutually exclusive. Just as different areas of

the brain may have opposite effects on a physiological function, the

same neurotransmitters in those areas could have opposite effects as

well. Perhaps the AHA 5-HT center is inhibitory to LH release during

most of the estrous cycle while the MBH 5-HT center is stimulatory.

Alternatively, MBH 5-HT metabolism may not play any significant role

in control of the preovulatory LH surge.

In any brain region, the metabolism of a neurotransmitter is in-

fluenced by the activity and metabolism of other neurotransmitters,

and by the activity of free amino acids which may act both as putative

neurotransmitters and as precursors for monoamine transmitters. It

is therefore difficult to ascribe abnormalities in brain function to

alterations in a single specific neurotransmitter substances inasmuch

as overall brain activity ultimately depends on the sum of changes in

all neurotransmitters.

It has been postulated that the hypothalamus exerts a dual control

over ovulation--its inhibitory influence being transmitted via a 5-HT

pathway and a stimulatory one through a catecholaminergic (CA) path—

way. It is believed that the balance between these contrasting in-

fluences determines the occurrence of ovulation--a critical balance

in favor of the CA pathway promoting ovulation, and the opposite

inhibiting it (Labhsetwar and Zolovick, 1973).
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There appear to be similarities in neuroendocrine changes occurring

in the reproductive state of constant estrus as induced either by old

age or constant light in the rat. In general, the results of these

studies suggest that a depression in AHA NE metabolism and MBH 5-HT

and NE metabolism but an increase in AHA 5-HT metabolism (AM) may occur

in light induced persistent estrus. Huang (1978) showed that old (20

month) female rats in constant estrus show a lower turnover index of

NE in the AHA than younger regular cycling animals on proestrus or

estrus. Previously it has been observed that chronic stimulation of

catecholamine or depression of serotonin metabolism in old female rats

in constant estrus results in improved reproductive function (Clemens

g£_§i,, 1969; Quadri g£_§1,, 1973). Finally, Everett (1970) has shown

that when old constant estrous rats were placed in an environment with

less than 10 hours of light, regular cycling resumed. Although it

would be tempting to speculate that the light induced persistent estrous

condition may be a useful model in which to study the effects of aging

on neuroendocrine control of reproduction, further work is necessary

to evaluate the possible relationship between these two phenomena.



DISCUSSION

This report explains some of the changes which occur at various

levels of the hypothalamo-hypophysial-gonadal axis in the light

induced persistent estrus rat. A common neuroendocrine change seen in

various states of noncyclicity (such as light induced persistent estrus)

is the absence of a preovulatory LH surge. Therefore, attention was

focused on those processes directly or indirectly involved in initiating

and maintaining this surge and considers possible mechanisms for the

effect of constant light on reproductive function in the rat.

Based on experiments where the daily administration of a barbitu-

rate delayed ovulation by 24 h intervals, Everett and Sawyer (195) con-

cluded that preovulatory secretion of LH in the rat displayed in a

definite 24 h periodicity. Since the time of the preovulatory surge

of LH in plasma was advanced or delayed in response to corresponding

shifts of the photoperiod (Everett, 1970; Blake, 1975), it became obvious

that the 24 h periodicity was synchronized to the light-dark schedule.

The fact that cyclic ovulation occurred for long periods in rats kept in

continuous darkness suggests that daily light-dark cues are not essen-

tial for maintaining the cyclic mechanism of the LH surge and suggests

the synchronizer may be endogenous. In the absence of a light-dark

cycle, changes in temperature or humidity (Wurtman, 1967) may furnish

sufficient stimulus for establishing the phase of the estrous cycle.

The possibility of a spectrum or hierarchy of environmental cues

118
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complicates claims of inherent rhythmicity of reproductive functions.

McCormack and Sridaran (1978) found that after exposing rats which had

been allowed to "free run" in an environment of very dim constant light,

to a light:dark regimen, the rats resynchronized to the new lighting

schedule. This may suggest that the lightzdark regimen may "cue" some

endogenous synchronizer for LH release or that it is a stronger synchro-

nizer than some other environmental cue.

Whereas rhythmic changes in environmental lighting exert a synchro—

nizing effect on estrous cycles, conditions of continuous light or dark

may result in aberrant vaginal cyclicity. Rats under constant illumina-

tion, with possible strain differences in sensitivity, commonly show

persistent vaginal cornification (Hoffmann, 1973). These distrubances

in the estrous cycle resulting from constant illumination or dark

suggest that light is more intimately involved in mechanisms controlling

gonadotropin secretion than is generally implied in its accepted role as

synchronizer or monitor of reproductive functions in mammals (Critchlow,

1963).

Among the effects of constant light on reproduction is the eleva—

tion in serum FSH and Prl levels while serum LH levels are decreased or

unchanged. In accordance with previous studies (Kledzik and Meites,

1974) no preovulatory LH surge was seen in LL rats in Experiment 1.

Morning serum FSH levels were not elevated in LL rats but rose in the

afternoon, just as in LD proestrous rats. This differential effect of

constant light on gonadotropin release is interesting in that it

supports the theory for separate hypothalamic releasing hormones for

LH and FSH. It also suggests that constant light may be selectively
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inhibiting neuronal areas which are more closely involved with LH

release.

Administration of testosterone proprionate (TP) to 5-day old female

rats produces a syndrome characterized by anovulatory ovaries and

vaginal cornification (Barraclough, 1961). Barraclough (1966) also has

demonstrated that neonatal TP treatment deleteriously affects neural

mechanisms responsible for the cyclic discharge of LH. These effects

are similar to those found in constant light induced persistent estrus.

Recent studies by Chappel and Barraclough (1976) have shown that electro-

mechanical stimulation of the medial preoptic area (MPOA) induces the

release of both LH and FSH whereas a selective release of pituitary FSH

can be elicited by dorsal anterior hypothalamic area (DAHA) stimulation.

Chappell and Barraclough (1976b) have also shown that neonatal steroid

exposure does not affect those DAHA components involved in FSH release

but significantly less LH was released after MPOA stimulation in

these animals. Perhaps constant light is selectively affecting these

same hypothalamic areas in a similar pattern.

The present studies have ruled out the possibility of a decreased

pituitary sensitivity to GnRH as a probable cause for absence of a

preovulatory LH surge in the LL rat. On the contrary, the LL rat pi-

tuitary was found to have comparable sensitivity to GnRH as the LD pro-

estrous rat pituitary as reported by Fink (1975). This increased pi-

tuitary sensitivity would in turn explain the greater effectiveness

with which ovulation occurs in LL rats in response to mating (Smith and

Davidson, 1974). This ability to ovulate in response to mating, to a

brief period of darkness (Takahashi g£_§l,, 1977) or even to stress

(Smith and Davidson, 1974) also suggests that LHRH is still synthesized



121

in the hypothalamus of LL rats and furthermore can be released to

affect pituitary LH release under these conditions. In an LL rat not

exposed to these stimuli, however, spontaneous release of LHRH into the

pituitary portal system would not be expected to occur. The results

of hypothalamic LHRH content measurements in the LL rat (Experimental

III) suggest that this may indeed by the case.

One of the factors involved in the physiolOgical regulation of

spontaneous and cyclic LHRH release is the sensitivity of the hypothala-

mus to positive and negative feedback by estrogen (E) and progesterone

(P). Hoffmann (1973) has postulated that in light induced persistent

estrus, just as in persistent estrus due to old age, the hypothalamic

sensitivity to estrogen positive feedback may be decreased. Huang 22

‘31. (1978) have shown that a decreased positive feedback sensitivity to

estrogen occurs in old (24 month) constant estrous rats. Similarly,

neonatal androgen induced persistent estrous rats fail to demonstrate

positive feedback release of LH in response to estrogen priming (Mennin

and Gorski, 1974). The same effect was seen in light induced persistent

estrous rats in Experimental section IV in this thesis. Furthermore,

in all three of the above types of persistent estrous states, estrogen

priming followed by progesterone administration was found to be effec-

tive in inducing a positive feedback release of LH. It would appear

then that progesterone was able to overcome whatever changes occurred

in hypothalamic positive feedback sensitivity to estrogen in these

persistent estrous states. Presumably then, if progesterone were present

in sufficient levels at the proper time, spontaneous LH release should

occur in these animals. Exogenous progesterone administration at

appropriate times during the 4 or 5 day estrous cycle will advance
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ovulation 24 hours in intact rats (Everett, 1948; Brown-Grant, 1969).

Progesterone synergizes with subthreshold dosages of ethanol estradiol

to induce an ovulatory LH surge in castrate female rats (Swerdloff £1_

21,, 1972).

Ovarian progesterone secretion does not increase prior to the pro-

estrous release of gonadotropin (Barraclough g£.§1,, 1971; Piacsek g;

31,, 1971). Consequently, if this steroid synergizes with estrogen to

facilitate this event, it must originate from some extra-ovarian source.

Feder g£_§1, (1968) have demonstrated that the rat adrenal glands secrete

substantial amounts of progesterone. Furthermore, in a recent investiga-

tion Mann and Barraclough (1973) have shown that a diurnal rhythm exists

in adrenal progesterone secretion during the rat estrous cycle; being

high during the early morning hours (0100-0500 hr) and then falling to

a nadir between 1000 and 1400 hr. A possible role of adrenal proges-

terone in the regulation of LH secretion on proestrus in the rat has been

proposed by several investigators (Nequin and Schwartz, 1971; Feder'gg

31,, 1971; Lawton, 1972). Mann and Barraclough (1976) have reported

that progesterone was necessary in order to stimulate an LH rise in EB

primed ovariectomized-adrenalectomized rats. Moreover, these investi-

gators have prOposed that adrenal progesterone secretion is responsible

for synchronizing the timing of the LH surge and thus the critical

period. Since adrenal progesterone secretion is controlled by ACTH

(Resko, 1968) and release of this trophic hormone is synchronized by

the light-dark cycle, then perhaps the timing of the critical period

for LH release actually is indirectly regulated via circadian adrenal

progesterone rhythms.
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Persistent estrus induced by old age or constant light is accom-

panied by an apparent cessation in the rhythm in steroid secretion.

Huang g1 El: (1978) observed low and arrhythmic secretion of estradiol

and progesterone secretion in old constant estrous rats as compared to

young regular cycling rats. Takahashi g£_§1, (1977) reported that con-

stant light induced persistent estrous rats had plasma estradiol levels

which were intermediate between proestrus and diestrus levels but also

very low levels of progesterone. Constant light has been shown to

abolish the rhythm of corticosterone secretion, which is presumably

a response to a change in ACTH release in this condition (Critchlow,

1963; Takahashi g£_§1,, 1977). In accordance with the results of Taka-

hashi g£_§1,, 1977), intermediate estradiol levels and low levels of

progesterone were seen in light induced persistent estrous rats in

Experimental section V of this thesis. Since both adrenal cortico—

sterone and progesterone release respond to ACTH secretion, which is in

turn synchronized to the light-dark cycle, constant light might be

expected to result in a disturbance in the progesterone rhythm. The

low levels of progesterone seen in light induced persistent estrous

rats in Experimental section IV may be one of the major contributing

factors inducing the persistent estrous condition. Progesterone injec-

tion has been reported to induce cycling in LL rats (Everett, 1948)

and old constant estrous rats (Huang g£_§1,, 1976). Perhaps under con-

ditions such as constant light, hypothalamic sensitivity to positive

feedback by estrogen is decreased and therefore the facilitatory

support of progesterone becomes necessary although absent in this

condition.
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The sensitivity of the hypothalamus to positive and negative feed-

back by steroids may be interpreted mechanistically as the effective-

ness with which steroids affect hypothalamic monoaminergic neuronal

activity. The activity of these neurons directly or indirectly affects

GnRH neurosecretory neurons and their corresponding release of gonado-

tropins. Kalra 35‘51. (1971) have shown that the stimulatory effects

of progesterone on LH and FSH release involve noradrenergic neurons.

In Experimental section VI, it was seen that light induced persistent

estrous rats showed a decreased morning NE turnover index in the anterior

hypothalamic area and medial basal hypothalamus as compared to LD pro-

estrous controls. Also, morning 5—HT turnover index was higher in

the AHA of LL rats along with an apparent loss of daily 5-HT metabolic

rhythm. These results support the hypothesis of Kledzik and Meites

(1974) that LL may result in decreased catecholamine and increased sero-

tonin metabolism. They were able to reinitiate cycling in LL rats by

administration of catecholamine precursor and 5-HT inhibitor drugs.

Not unlike light induced PE, Huang (1978) demonstrated that old constant

estrous animals showed a decreased hypothalamic NE turnover index as

compared to young proestrous or estrous rats.

NE has been reported to stimulate release of gonadotropins (Kalra

and McCann, 1973b) and 5-HT has been reported to be inhibitory (Kamberi

.ggug1., l970b) or stimulatory to LH release (Takahashi 91 31., 1973).

Therefore an alteration in the function of these hypothalamic neuronal

systems in response to constant light exposure, as seen in Experimental

section VI, could result in the blocking of the preovulatory LH surge.

It is possible that constant light could directly affect the function

of these neuronal systems and thus affect gonadotropin release.
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Alternatively, it is also possible that constant light could alter ACTH

release rhythm and its corresponding influence on adrenal progesterone

rhythm which in turn could alter activity of hypothalamic neuronal

systems to block preovulatory LH release. Regardless of which of these

routes constant light takes to affect gonadotropin release, its initial

effect on reproduction appears to be at the level of the brain.

Reviewing the data presented in this thesis, no clear hypothesis

regarding a cause and effect relationship between constant light and

its effect on reproductive cyclicity can be made. Although some

mechanisms for this effect have been ruled out in these experiments,

only correlations between hypothalamic and hormonal changes in light

induced persistent estrous can be made at this time. Due to the complex

integration of components involved in maintaining this "cycle", it may

be difficult to distinguish cause from effect after persistent estrus

is established. Nevertheless, these experiments have shed some light

on which pieces of this puzzle are of importance and will hopefully

stimulate further inquiry into the etiology of light induced persistent

estrus.

Some effects of light and photOperiod appear to have a direct

influence on human reproductive cycles (Dewan, 1967) and on domestic

animals important as a human food source (Peters ggflg1., 1978). Investi-

gation of the full potential of light in these circumstances could be

very beneficial. Since it would be important to know about the mecha-

nisms by which light may induce these responses, a study of the mecha-

nisms in light induced persistent estrus may offer some clues about

the mechanism involved in the above light effects as well.
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APPENDIX A

Coyle and Henry Catecholamine Assay Procedure

Homogenize pieces of brain tissue in desired volume of 0.4 N per-

chloric acid (plus 10 mg% EDTA) using matched glass microhomogeni-

zers (Micrometric Instruments, Cleveland, Ohio).

Transfer homogenate to microcentrifuge tubes (Kew Scientific, Inc.,

Columbus, Ohio) and centrifuge for 45 sec in a microcentrifuge

(Coleman Instruments, Oak Brook, Illinois).

Transfer 10 u of supernatant (or of working NE and DA standard

solution) to glass culture tubes and add 25 ul of the following

mixture:

 

Reagent Proportion

20 mM EGTA-Na salt (0.760 gm/lOO m1 1

H 0 and pH to 7.2)
2

Pargyline Solution (to 4 mg pargyline add 25 ul

B-mercaptoethanol and 225 pl H20) 1

l M Tris base (with 3 mM MgCl ) (to 6.05 gm

Tris add 50 ml H20 plus 30.5 %g MgClz) 6.5

S-adenosyl-l-methionine(Methyl-3H) [11.6 Ci/m

mole in Sulfuric acid:ethanol solution (90:10,

v:v), pH 1-3] _ 3'0

Catecholamine-o-methyl transferase (COMT, par-

tially purified by the method of Nikodijevic

21-31,, 1970) 2.5

1 mM sodium phosphate buffer 2.5

Incubate for 40 min at 37°C.

Add 30 ul of mixture of 5 volumes 0.45 M borate buffer (pH 10.0)

and 1.0 volumes of carrier methoxyamine mix prepared as follows:

add 5.0 m1 H20 to the following salts:

50 mg 3~methoxytyramine, 50 mg DL—metanephrine, 50 mg

DL-normetanephrine and 5 mg Na-bisulfite
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Add 500 pl to toluene:isoamyl alcohol solution (3:2, v:v), vortex

for 30 sec and centrifuge for 5 min at 3,000 RPM (RC2-B, Sorvall,

Dupont Instruments, Newtown, Connecticut).

Transfer 400 pl of organic phase to conical centrifuge tubes con—

taining 400 pl borate buffer (pH 10.0), vortex for 30 sec and

centrifuge at 5/7 speed in IEC clinical centrifuge (International

Equipment Co., Needham Hts., Mass.).

Transfer 300 pl of organic phase to conical centrifuge tubes con-

taining 500 pl of 0.1 N HCl, vortex for 30 sec and centrifuge as

in step 7.

Aspirate organic phase.

To remaining aqueous phase add 7 m1 toluene:isoamyl alcohol (3:2,

v:v), vortex, centrifuge as in step & and discard organic phase.

To remaining aqueous phase neutralize with 500 pl of 0.5 M sodium

phosphate buffer (pH 7.5), add 50 ul of 3% sodium metaperiodate

wait 2 min and add 50 pl of 10% glycerol.

Add 10 m1 toluene, vortex for 30 sec, centrifuge as in step 7.

Transfer 9 ml of organic phase to conical centrifuge tubes con-

taining 1 m1 of l N NaOH for final extraction of NE metabolites.

Vortex for 30 sec, centrifuge and discard organic phase. Add

100 pl glacial acetic acid, 10 ml Scintiverse (Fisher Scientific,

Livonia, Michigan) and transfer to 20 ml glass scintillation

vials for counting.

From the remaining aqueous phase of step 12, the residue toluene

is aspirated, 500 p1 of l M borate buffer is added and tubes are

vortexed. Add 8 ml of toluene:isoamyl alcohol (3:2, v:v), vortex

and centrifuge. 0.6 ml of the organic phase is added to 10 ml of

Scintiverse in 20 ml glass scintillation vials and counted for

dopamine.



APPENDIX B

Ben—Jonathan and Porter Catecholamine Assay Procedures
 

Same as step 1 in Appendix A.

Same as step 2 in Appendix A.

Transfer 10 pl of supernatant (or of working NE and DA standard

solutions) to conical centrifuge tubes and add 25 pl of the

following mixture:

 

Reagent Pppportion

20 mM EGTA-Na salt (0.760 gm/lOO m1 H20 and

pH to 7.2) l

Pargyline solution (to 4 mg pargyline add 25 pl

B-mercaptoethanol and 225 p1 H20) 1

l M Tris base (with 3 mM MgC12) (to 6.05 gm

Tris add 50 m1 H20 plus 30.5 mg MgClz) 6.6

S-adenosyl methionine (Methyl-3H) (11.6 Ci/m

mole diluted 1:3.5 with H20) 3.0

Catecholamine-o-methyl transferase (COMT;

partially purified by the method of Nikodijevic

g£_a1,, 1970) 5.1

Incubate for 60 min at 37°C.

Add 30 pl of 0.45 M borate buffer (pH 10.0) and 5 pl of carrier

methoxyamine mix (50 mg 3-methoxytyramine, 50 mg DL-metanephrine

and 50 mg DL-normetanephrine; 10 mg of each amine/ml of 0.1 N

HCl). Add 500 p1 of toluene:isoamyl alcohol (3:2, v:v), vortex

for 30 sec, and centrifuge at 5/7 speed on IEC clinical centri-

fuge (International Equipment Co., Needham Hts., Mass.).

Transfer 400 p1 of organic phase to conical centrifuge tubes

containing 40 pl of 0.1 N HCl. Vortex for 30 sec and centrifuge

as in step 5. Carefully aspirate organic phase.
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Apply 25 pl of acid phase to LQ-6O silica gel plates previously

spotted with 5 pl of carrier methoxyamine mix. Allow plates to

dry.

Place plates in thin-layer chromatography tanks containing chloro-

form, ethanol and methylamine (40:18:5 by volume). Allow plates

to run 1-1/2 to 2 h and remove from tank to allow for drying.

Visualize and outline spots under ultraviolet light.

Scrape plates and place scrapings into scintillation vials con-

taining 1.0 ml of ethylacetate, acetic acid and H20 (3:3:1 by

volume) and shake for 30 min. Add 10 ml of Scintiverse and count.



APPENDIX C

Serotonin Microassay
 

Assay:

l. Homogenize tissue in 100 pl 0.1 N HCl. (with 10 mg EGTA/lOO m1)

2. Centrifuge 6,000 RPM (RC2-B) 5 min.

3. Add 10 pl supernate to 5 ml disposable culture tube containing

10 pl P04 buffer - NaOH.

4. Add 20 pl of a mixture of equal parts of Acetyl CoA, 1 mg/ml (PO4

buffer) + NAT.

Incubate 37°C/30 min.

. Add 25 pl of a mixture containing 14.5 parts PO

HIOMT, 0.5 parts SAM-H3.

7. Incubate 37°C/10 min.

8. Stop reaction: note - stop ASAP. Place on ice and add 100 pl

Borate Melatonin (5 mg/ml).

9. Extract in 2 ml toluene.

10. Vortex 30 sec.

11. Spin at 6,000 RPM/5 min (RCZ-B).

12. Aspirate 1.5 ml supernate (organic phase) and transfer to a scin-

tillation vial containing 2 ml fresh toluene.

13. Dry overnight at 80°C (hot plate - time - 25%) in hood (in pan).

14. Add 1 ml EtOH + 10 ml scintiverse.

15. Count.

O
‘
U
‘

4 buffer, 10 parts

Std.:
 

Serotonin 10 pg/ml 0.1N HCl (free base). Weigh out 21.48 pg serotonin

creatinine sulphate/m1 0.1N HCl.

Working Soln. Take 5 pl stock serotonin:

5 pl -qs + 1 ml (0.5 ng/lO pl)

10 pl -qs +'1 ml (1.0 ng/lO pl)

20 pl -qs + 1 ml (2.0 ng/lO pl)

 

Reagents:

PO, buffer 0.2M pH 7.9 Titrate dibasic (2.84 g/100 ml) with Monobasic

I (2.76 g/100 ml) such that pH = 7.9

 

Borate Melatonin ‘Mix 9 parts Borate 0.5M pH 10 (6.2 g/200 ml H20

brought to pH 10 with 5N NaOH pellets) with 1 part Melatonin 5 mg/ml

(50 mg Melatonin/2.5 ml EtOH....bring up to 10 ml with H20).
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0.1N HCl (containing 10 mg EDTA/lOO ml).

PO, buffer - NaOH (22.5 ml PO buffer + 2.5 ml 1N NaOH).
—1-9 4

Scintiverse (Fisher).



APPENDIX D

Steroid Radioimmunoassaprrotocol

Extraction of Serum.

lO.

Pipette desired amount of serum into 18x150 mm test tubes.

Add 1 ml ether/0.1 ml serum to serum tubes.

Vortex (30 sec).

Place tubes in dry ice-ethanol bath until serum fraction is

frozen.

Decent ether fraction (which now contains the extracted

steroids) into 16x125 mm test tubes.

Dry ether fraction with air.

Wash tube walls with ether (about 1 ml) and dry with air.

Add 1 ml PBS-gel to tubes when completely dry.

Vortex tubes for 30 seconds and allow to stand at room tempera-

ture for 30 min.

From the 1 m1 PBS-Gel, pipette desired dilution into assay

PBS-Gel so that the total volume is .5 ml.

Recovery, Tracer and Solvent Blank Tubes.

1.

2.

Tracer tubes: add 100 pl labeled steroid to scintillation

vials, then add 100 pl PBS-Gel and 5'ml counting fluid.

Recovery tubes: add 100 p1 labeled steroid to serum samples

not to be assayed and extract as above (steps 1-9, use 200

pl).

Solvent blank: extract distilled water (1 ml) as in steps 1-9.
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Standard (Estradiol, Progesterone and Testosterone).

l.

2.

Standards are made in 100% EtOH (5 pg/pl).

Standard curve: 2.5, 5, 10, 20, 40, 60, 80, 100, 200, 400,

800 pg.

Dry standard in air.

Add 0.5 m1 PBS-Gel to all standard tubes. Add 0.6 m1 PBS-Gel

to total count and non-specific binding tubes.

Hormone Assay.

1. Add 100 pl antibody to assay tubes and standard, except TC and

NSB tubes.

Vortex and incubate at room temperature for 30 minutes.

Add 100 pl of labeled steroid to all tubes.

Incubate at 4°C overnight.

Add 200 pl charcoal dextran on ice (vortex).

Incubate 10 minutes on ice.

Centrifuge at 1000 g in 4°C.

Take 0.5 ml supernatant and add to 3 ml scintillation fluid.

Count.
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