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ABSTRACT 

SHAPE OPTIMIZATION USING FINITE ELEMENT ANALYSIS IN EDDY CURRENT 

TESTING AND ELECTRO-THERMAL COUPLED PROBLEMS 

  

By 

 

Victor Uthayakumar Karthik 

The inversion of electro-heat problems is important in areas such as electrical machine design, 

the metallurgical processes of mixing, and hyperthermia treatment in oncology. One of the 

important computations involves synthesizing the electromagnetic arrangement of coils to 

accomplish a desired heat distribution to achieve mixing and reduce machine heat, or to burn 

cancerous tissue. Two finite element problems need to be solved, first for the magnetic fields 

and the joule heat that the associated eddy currents generate, and then, based on these heat 

sources, the second finite element problem for heat distribution. This two part problem needs 

to be iterated on to obtain the desired thermal distribution by optimizing the shape of the 

current source. This represents a heavy computational load associated with long wait-times 

before results are ready. The graphics processing unit (GPU) has recently been demonstrated 

to enhance the efficiency of finite element field computations and to cut down solution times. 

In our work, given the heavy computational load from the two-part problem and the attendant 

optimization, we use the GPU to perform the electro-heat optimization by the genetic 

algorithm launched on several parallel threads to achieve computational efficiencies.  

 

To avoid the complexities of a two-physics problem, we first develop the shaping algorithms 

on a single physics problem for nondestructive evaluation. This shape optimizing concept is 

developed for defect characterization in a steel plate. When a steel plate in a ground vehicle is 

found to be defective, it is usually taken out of service for repair without determining if the 



 
 

defect warrants withdrawal. We investigate and establish a procedure so that a decision to 

withdraw a vehicle may be justifiable and ensures the safety of the vehicle and its passengers.  

 

To test our algorithms and seek novel use, they were employed in a semester’s course on finite 

elements and optimization with true device design. Flip-teaching was introduced to tackle the 

challenges of time. The traditional order of a) delivering theory b) programming ancillary tools 

(mesh generators, solvers) is flipped to do real design.  

 

 After the algorithms were understood from use in NDE and the flip-teaching experience, we 

successfully developed them for the two-physics system with reduced computational time with 

the speedup (CPU Time to GPU time ratio) of 28 and increased accuracy established through 

the problem of shaping a current carrying conductor so as to yield a constant temperature 

along a line. Finally we applied the electro-thermal software to hyperthermia treatment 

planning by a numerical model of a human thigh with a tumor treated by current carrying 

conductors to be shaped to produce the desired temperature at the tumor. The bio-heat 

equations under steady state condition are solved and the heat removal due to blood perfusion 

is also taken into account to determine the shape yielding the desired temperature profile. An 

efficient methodology for multi-physics systems has been developed with applications in flip-

teaching, NDE and hyperthermia. 
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1 INTRODUCTION 

1.1 Motivation 

1.1.1 The Electro-Thermal Coupled Problem 

In electromagnetic field problems, optimization methods have usually been successfully 

developed and efficiently applied on a single processor. Most of these methods only deal with 

the single-physics problem. However, real problems are more complex and often coupled. 

Coupled field problems often are where one field system with the shapes to be optimized 

influences another field system in which the objects of design are defined. A good example is 

electro-heating [1]. The electrical system providing the joule heating has to be shaped so as to 

produce a particular heat distribution in the thermal system. An example application in 

industry is metal forming, where molten metal is heated through heavy currents to produce the 

forces that make the molten metal subject to the extrusion or turning forces we want [2], [3]. A 

second example is hyperthermia treatment for oncology where exterior electrodes attempt to 

burn interior cancerous tissue [4]. The inversion of these two electro-heat problems involves 

synthesizing the electromagnetic arrangement of coils so as to accomplish a desired heat 

distribution. To this end two finite element problems need to be solved, first for the magnetic 

fields and the joule heat that the associated eddy currents generate and then, based on these 

heat sources, the second problem for heat distribution. This two part problem needs to be 

iterated on to obtain the desired thermal distribution by optimization. This problem represents 

a heavy computational load associated with long wait-times before results are ready. The 

graphics processing unit (GPU) has recently been demonstrated to enhance the efficiency of 

finite element field computations and cut down solution times [5]. In this work, given the 
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heavy computational load from the two-part problem and optimization, we use the GPU to 

perform the electro-heat optimization by the naturally parallel Genetic Algorithm (GA) [6] to 

achieve computational efficiencies far better than those reported for a finite element problem 

on a single processor. The methodology established has direct applications in electrical 

machine design, metallurgical mixing processes, and the treatment of cancer by hyperthermia. 

In these three practical applications, we need to compute the coil arrangement that would 

accomplish a desired heat distribution to achieve mixing, reduce machine heat or to burn 

cancerous tissue. Particularly the above-mentioned application will alleviate human suffering 

through use in hyperthermia treatment planning. 

 

1.1.2 Reconstructing and Classifying Damage in a Steel Plate 

Our main object is to optimize shape in two-physics problems. To avoid the complexities and 

verify the design optimization algorithm, our algorithm is experimented first on a single-

physics problem to identify and characterize the internal defects in a steel plate using Non-

Destructive Evaluation (NDE) Methods. When a steel plate in an army ground vehicle is found 

to be defective, it is usually taken out of service for repairing without determining if the defect 

warrants withdrawal or not, whereas the defect might be minor and withdrawal wasteful. On 

the other hand the defect might be invisible, yet warranting replacement. The methodology at 

present examines the response of the hull under test to an excitatory signal from an eddy 

current probe [7]. Knowing the response when there is no defect, if the response is different 

because of the defect, the test object is presently flagged as defective and the vehicle is sent for 

repairs without assessing if the defect is serious enough for removal of the vehicle from 

service. In our work, we characterize defects by parametrically describing them and then 
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optimizing the parameters to match computed fields to measurements. Therefore knowing the 

shape of the defect, any decision to withdraw may be thought-out, justifiable and ensuring of 

the safety of the vehicle and its passengers. We also backup our computational work with 

laboratory experiments.  

 

1.2 Inverse Problems for Design 

The direct problem with which the finite element method started has a device governed by a 

particular differential equation, the Poisson equation in our case 

 −ϵ∇2φ = ρ                                                       (1-1) 

 as was solved by the finite element method  by Zienkiewicz and Cheung in their classic paper 

[8]. Once we have φ – which may be electric potential, pressure, magnetic vector potential etc. 

depending on the system – we may compute performance descriptions like inductance, force, 

etc. as shown in Figure 1-1.That is, from the system description, we compute performance. 

This is analysis. 

 

Figure 1-1 Typical Forward Problems: Analysis  

 

The inverse problem – the more practically realistic problem, which is synthesis – goes from 

the right hand side of Figure 1-1 to its left. That is, wanting a performance, computing the 

system description from it. Thus the computational design assignment may be this: compute 

the size and other descriptions of a motor that can produce so much torque. In industry this 
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was done by the cycle of design-make-test-redesign. This required an expert to redesign and 

took long. In time by the 1970s instead of making and testing, it was analyzed, solving the 

direct problem by the finite element method. 

 

It was left to engineers dealing with stress analysis and fluids to couple optimization with the 

finite element method [9]–[11], and the second half of the 1970s and 1980s would be the time 

for true synthesis – solving for geometric shape and material values from design criteria.  The 

earliest persons to automate this cycle in magnetics were Marrocco and Pironneau in 1978 

[10]. 

 
 

Figure 1-2 Pole-Faces to be shaped 

 
 

 
 

Figure 1-3 Minimal Problem of Figure 1-2 using Symmetry 
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They attempted to optimize the shape of the magnetic pole of a recording head so that the 

fringing effect at the edges of a pole could be countered so as to realize the object of constant 

flux density B in a recording head. Figure 1-2 gives a similar problem with a repeating 

alternating pole system from electric machinery where a constant flux density is required on 

top of each pole to facilitate alternating waveform generation. The minimal boundary value 

problem for analysis is shown in Figure 1-3.  

 

Marrocco and Pironneau [10] located their work in the latter’s 1976 doctoral thesis at 

Université Pierre-et-Marie-Curie (also known as UPMC and Paris VI), optimizing structural 

and fluid systems. That is, their work may be seen as parallel to the 1976 work of Arora and 

Hang [11] who established finite element optimization in a journal. They approached this 

problem by defining an object function F consisting of the square of the difference between the 

computed and desired flux densities. Thus the problem is one of optimizing – i.e., minimizing 

– F which is a function of parameters 𝑝1, 𝑝2, ⋯ defining the geometry and which are computed 

in device synthesis so as to minimize F: 

𝐹 = 𝐹({𝑝}) =  
1

2
∑ [𝑩𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑑

𝑖 − 𝑩𝐷𝑒𝑠𝑖𝑟𝑒𝑑
𝑖 ]

2𝑚
𝑖=1     (1-2) 

 

Figure 1-4 Jagged Pole Face of Right Half of Recording Head 
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Their results are shown in Figure 1-4. The nonsmooth jagged contour in Figure 1-4-b that they 

realized is practically not a manufactural shape. This they addressed by manually smoothening 

the pole face as in Figure 1-4-c. However, Marrocco and Pironneau, aware of the problem of 

jagged contours, have further addressed it to permit smoothening by allowing nodes to move 

only along prescribed paths. Although the comprehensive 1984 book by Pironneau on 

optimization [12] deals with the theory of imposing constraints and applies them to many 

systems, the results presented from magnetics are the same as presented by Marrocco and 

Pironneau much earlier without constraints. Pironneau, a widely experienced pioneer scientist 

in optimization and finite element analysis, particularly in fluids, was not focused on 

magnetics. He with Marrocco solved this problem to demonstrate the broad applicability of 

their methods of finite element optimization and then moved on.  

 

1.3 Shape Optimization of Two-Physics Systems: Gradient and Zeroth Order Methods 

In the optimization of a single physics problem as in magnetostatics [9], [12]–[16] or eddy 

current analysis [17] where the design variables are defined in the vector {p}, we construct one 

finite element mesh, solve for the magnetic vector potential 𝑨, and then change {p}. The 

method by which we change {p} depends on the method of optimization we employ [9]. In 

coupled problems like the electro-heat problem under discussion, two different meshes are 

often required [18]. For example, at a copper-air boundary in magnetics, both regions are 

nonmagnetic and therefore have the same permeability, the permeability of free space 𝜇0. 

However, for the thermal problem, they need to be modeled as two different regions because 

air has little thermal conductivity whereas copper is highly conductive. 
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Moreover, the optimization process too imposes huge difficulties depending on the method 

employed. In the simpler zeroth order methods, only the value of 𝐹, given {p}, needs to be 

computed. This takes simply a finite element solution for a mesh constructed for the present 

value of {p}. In the more powerful first order methods, however, defining symbols, the 

gradient vecotor 

 ∇𝐹 =
𝜕𝐹

𝜕{𝑝}
= {

𝜕𝐹

𝜕𝑝𝑖
} = [

𝜕𝐹

𝜕𝑝1

:
𝜕𝐹

𝜕𝑝𝑛

]                                                              (1-3) 

needs to be computed [9]. This may be by finite differences – that is, to get the derivative of F 

with respect to 𝑝𝑖, we need to evaluate F(𝑝𝑖), then adjust 𝑝𝑖by a very small amount 𝛿𝑝𝑖, redo 

the finite element solution (which means a new mesh have to be generated for the changed 

geometry), and then evaluate F, which would give us  

𝛿𝐹(𝑝𝑖 + 𝛿𝑝𝑖) = 𝐹(𝑝𝑖 + 𝛿𝑝𝑖) − 𝐹(𝑝𝑖)                                        (1-4) 

 thereby leading to the derivate by finite difference, 𝛿𝐹/𝛿𝑝𝑖. This is computationally 

expensive because of having to be done for all m parameters 𝑝𝑖, which means the first finite 

element solution at {p} and evaluation of F({p}) has to be followed by m finite element 

solutions with only a particular 𝑝𝑖 adjusted by 𝛿𝑝𝑖 and then the evaluation of m values of 𝛿𝐹. 

That is, m+1 finite element meshes and solutions are required at great cost. Furthermore, even 

after all that work, it is known that the derivative by this finite difference process has poor 

accuracy [19]. The less approximate way to obtain accurate derivatives is from the derivative 

information inherent to the finite element solution through the finite element trial function; that 

is, although the solution for the magnetic vector potential 𝑨 is explicitly in terms of the values 

of 𝑨 at the finite element nodes, we are really solving for 𝑨(𝑥, 𝑦) as given by the trial function 
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which is expressed through the nodal values of 𝑨 [20]. That is, in solving the finite element 

Dirichlet matrix equation 

[𝑃]{𝐴} = {𝑄}                                                                  (1-5) 

although we explicitly solve for the nodal values {A}, it is really for the trial function A(x,y) 

that we are solving. Both the Dirichlet matrix [P] and right hand side {Q}in (1-5)  are 

expressed as known functions of the vertex coordinates of the finite elements of the mesh, 

permeability, and current density. After solving for {A} in (1-5), differentiating the equation 

with respect to 𝑝𝑖 we obtain [12–14, 17, 19] 

[𝑃]
𝑑{𝐴}

𝑑𝑝𝑖
=

𝑑{𝑄}

𝑑𝑝𝑖
−

𝑑[𝑃]

𝑑𝑝𝑖
{𝐴}                                                     (1-6) 

where {A} has already been solved for, and 𝑑{𝑄}/𝑑𝑝𝑖 and 𝑑[𝑃]/𝑑𝑝𝑖 are computable. There is 

further computational efficiency to be reaped [19] by using the Cholesky factorization method 

of splitting [P] into its lower triangular and upper triangular Cholesky factors  [L] and [U] 

 [𝐿][𝑈] = [𝑃]                                                                     (1-7) 

which for symmetric [P] as in both magnetic and thermal  field problems by finite elements, 

reduces to  

 [𝐿][𝐿]𝑡 = [𝑃]                                                                  (1-8) 

so that solving (1-4), in its new form 

 [L][U]{A} = {Q}                                                            (1-9)  

reduces to first solving 

 [𝐿]{𝑧} = {𝑄}                                                                (1-10) 

for {z} where  

 [𝑈]{𝐴} = {𝑧}                                                              (1-11) 
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and then, having found {z}, solving (1-11) for {A}. The computational efficiency lies in the 

fact that the main work in Cholesky’s scheme for matrix equation solution is in finding [L] by 

solving (1-8). Thereafter the forward elimination in solving (1-10) and back substitution in 

solving (1-11) are trivial [15]. That is, once [L] and [U] = [𝐿]𝑡 are in hand, solving (1-6) with 

the same coefficient matrix [P] as (1-5) for the m gradients 
𝑑{𝐴}

𝑑𝑝𝑖
 is trivial since only forward 

elimination and back substitution are required. 

 

Be that as it may, while solving (1-6) is trivial, forming (1-6) is not because computing 

𝜕{𝑄} 𝜕𝑝𝑖⁄  and 𝜕[𝑃] 𝜕𝑝𝑖⁄  to form (1-6) is, in terms of programming, an arduous task that is not 

easily amenable to building up as general purpose software. As a particular 𝑝𝑖 changes, some 

vertices of a few triangles will move [15], [20] and the analyst needs to keep track of whether 

one, two or all three of the vertices of a triangle move by 𝛿𝑝𝑖. Very complex coding is required 

that is problem-specific rather than general purpose. In a coupled problem, computing the 

derivatives of the finite element equations for temperature with respect to parameters in the 

magnetic problem is prohibitively complex although there are ways around it [21]. 

Programming the problem specific computations of 𝜕{𝑄} 𝜕𝑝𝑖⁄  and 𝜕[𝑃] 𝜕𝑝𝑖⁄  is ill-advised 

because of the complexities.  

 

Therefore zeroth order optimization methods, which are more slowly convergent than gradient 

methods, are the best route to go for optimizing coupled electro-heat problems.  Simkin and 

Trowbridge [22] aver that simulated annealing and the evolution strategy (a variant of the 

genetic algorithm [23]) take many more function evolutions. Although they are 

computationally intensive, they are far easier to implement, especially as general purpose 
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software. Indeed commercial codes that need to be general purpose use zeroth order methods 

not necessarily because they are superior to gradient methods, but because once a finite 

element analysis program is developed by a company, giving it optimization capabilities only 

takes coupling it with an optimization package to which object function evaluations can be fed 

– whereas feeding both the object function and its gradient (as would be required when 

gradient methods are in use) would take extensive code development. In the context of single 

physics problems, Haupt [24] advises that the genetic algorithm is best for many discrete 

parameters and the gradient methods for where there are but a few continuous parameters.  We 

rationalize this position on the grounds that gradient computation though difficult is more 

manageable when there are fewer parameters to optimize with respect to. Indeed, we have 

gone up to 30 continuous parameters using gradient methods without problems. 

 

But we are now dealing with multi-physics electro-heat problems to which these 

considerations based on single physics systems do not apply. 

 

1.4 Method of Optimization – The Genetic Algorithm 

1.4.1 Decision to use the GA 

Having settled on a zeroth order method of optimization that does not need gradient 

information about the object function, we take cognizance that most zeroth order methods are 

statistical so that several-fold more object function computations need to be made. The 

Random Search method is too random in its searching and we need something more 

systematic in its searching of the domain space so as to not lead to excessive computation 

times in relation to gradient methods.  
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The practicable alternatives are simulated annealing and the genetic algorithm, both good 

methods widely used in industry and a part of commercial software [25]. Going by the 

literature Preis, Magele and Biro [26], staunch advocates of the zeroth order evolution strategy, 

merely say it is competitive with its higher order deterministic counterparts (which we take to 

mean the same in time at best), but claim that its “robustness and generality” are superior. This 

we agree with because search methods will never see mesh-induced artificial local minima as a 

problem [15]. The weight of evidence seemed to favor the genetic algorithm over simulated 

annealing but not firmly so.  So we did a quick study, the results of which, shown in Figure 

1-5, support the genetic algorithm. This study was done on the coupled electro-heat problem 

described in greater detail in chapter 3. We note that in results from other disciplines besides 

finite element optimization, Manikas and Cain [27] also say that “the genetic algorithm was 

shown to produce solutions equal to or better than simulated annealing” in their work. A 

search of recent literature also confirms this finding [28]. We therefore decided to work 

exclusively with the genetic algorithm. 

 

 
 

 Figure 1-5 Genetic Algorithm Speed Compared with Simulated Annealing 
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1.4.2 The Genetic Algorithm  

1.4.2.1 Introduction 

The Genetic Algorithm (GA) is a zeroth order search optimization tool, which works 

differently when compared to other search optimization methods. Because of its broad 

applicability, ease of use, computational inexpensiveness and the global perspective it receives 

[6], GA has been increasingly applied to various search and optimization problems. The 

genetic algorithm concept was first introduced by John Holland of University of Michigan, 

Ann Arbor. From that time he and his students contributed much to develop this field. Most of 

the initial works can be found in several conference proceedings and journals [29 - 30]. 

However there are several text books that now exist for GA [28–34] as it matured. In this 

section, the basic GA working principle is described.  

1.4.2.2 Basic Concepts – Biological Background 

Man made many things gaining inspiration from nature such as the crane (the machine) from 

the crane (the bird), the submarine from fishes, the aircraft from birds, the micro-processor 

from the brain processor, and artificial neural networks from biological neural networks. 

Likewise GA was developed by inspiration from the reproduction process seen in nature. The 

name, GA borrows its working principle from natural genetics. GA’s search and optimization 

procedures are motivated by principles of natural genetics and natural selection. It is 

interesting to see terminologies in GA which originated from a biological background.  Every 

organism consists of cells. A cell consists of a set of chromosomes. Chromosomes consist of 

genes which are the blocks for DNA. The complete set of chromosomes is called a genome. 

GAs borrow the same terminology too. Moreover when two organisms mate they share their 

genes. The resultant offspring will have both parents’ genes. A child may be more father-like 
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or mother-like. In GA this process is called crossover. The evolutionary process can be 

expedited by improving the variety of the genes. This means the resultant offspring’s DNA 

may change in bit error. Likewise in GA there might be bit error in the offspring. This is called 

mutation. There is important inspiration from nature in the survival of the fittest concept.  

Powerful, wealthy, good looking, educated people get more opportunities than the others to 

bear offspring. But this is random. Approximately 10% of couples do not have children 

biologically or they do not want to have them. In GA the chromosomes with better fitness 

score have more opportunity to create the next generation.  

1.4.2.3 Working Principle 

GAs begin with a set of solutions (represented by chromosomes) called the population. 

Solutions from a population are taken and used to form a new population. This is motivated by 

the possibility that the new population will be better than the old. Solutions are selected 

according to their fitness to form new solutions; the more suitable they are the more the 

chances they have to reproduce. The GA’s performance is largely influenced by two operators 

called crossover and mutation. These operators are used to create a new population. 

 

 Let us consider the can problem which is used by Deb [36] to explain the GA working 

principle. Consider a cylindrical can which has diameter 𝑑 and height ℎ. This can needs to 

have a volume of at least 300 ml. The object of the design is to minimize the cost of the can 

material. For this we first write the object function 𝐹 corresponding to the area of tin required. 

Minimize        𝐹(𝑑, ℎ) = 𝑐  (
𝜋𝑑2

2
+  𝜋𝑑ℎ)                                            (1-12) 

Subject to 𝑔1(𝑑, ℎ) =
𝜋𝑑2ℎ

4
 ≥ 300                (1-13) 
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Variable bounds are    𝑑𝑚𝑖𝑛 ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥       (1-14) 

ℎ𝑚𝑖𝑛 ≤ ℎ ≤ ℎ𝑚𝑎𝑥       (1-15) 

Here 𝑐 is the cost of the material per square cm, and the upper and lower boundaries of 𝑑 and 

ℎ are [𝑑𝑚𝑖𝑛, 𝑑𝑚𝑎𝑥], [ℎ𝑚𝑖𝑛 , ℎ𝑚𝑎𝑥]. 

1.4.2.4 Representing a Solution 

Binary encoding is the most common way to represent information contained in a 

chromosome. In GAs, it was first used because of its relative simplicity. Let us say that a five 

bit code is used to represent each design parameter. Then design parameters 𝑑 and ℎ will be 

represented by a string of length 10. The following string represents a can of 𝑑 =  8 𝑐𝑚 

and ℎ =  10 𝑐𝑚 (Figure 1-6 [36]). The cost of the can is marked as 23 currency units. 

 

Figure 1-6 A typical chromosomal representation 

 

The lower and upper limits are considered to be zero and 31 respectively. Choosing the lower 

and upper limits like this allows GAs to consider only integer values in the range (0, 31). But, 

GAs are not restricted to using only integer values in the above range, in fact GAs can be 

assigned to use any other integer or non-integer by changing the string length and the upper 

and lower limits by the following mapping function: 

𝑥𝑖 = 𝑥𝑖
𝑚𝑖𝑛 +

𝑥𝑖
𝑚𝑎𝑥−𝑥𝑖

𝑚𝑖𝑛

2𝑙𝑖−1
𝐷𝑉(𝑠𝑖)     (1-16) 
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where 𝑙𝑖 is the string length used to code the 𝑖-th parameter and 𝐷𝑉(𝑠𝑖) is the decoded value of 

the string 𝑠𝑖. The above mapping function in (1-16) allows us to take any arbitrary level of 

precision to be achieved by using a long enough string and also to take positive and negative 

values.  

1.4.2.5 Assigning a fitness score 

Once a solution is created by genetic operators, it is necessary to evaluate it, particularly the 

object function and constraint function. For example, the object function 𝐹 of the above can 

will be 

𝐹 =  0.0654(
𝜋(8)2

2
+ 𝜋(8)(10)) = 23     (1-17) 

assuming c = 0.0654 unit. Since the object is minimizing 𝐹, the solution with lower fitness 

score 𝑓 will be the better solution. The fitness score 𝑓 is defined in terms of the object 

function 𝐹.  In most cases the fitness score is made equal to the object function. In some cases 

fitness score 𝑓 might be defined as 

𝑓 =
1

1+𝐹
                                                                      (1-18) 

Here 𝐹 is to be minimized and the fitness score 𝑓 has to be maximized for the genetic 

algorithm. The working principle of a GA is shown by a flowchart in Figure 1-7. In Figure 

1-7, first we randomly generate hundreds of solutions (𝑑 and ℎ) as vectors {𝑝}  (each called a 

chromosome) and this set is termed the initial population. With parallels to evolution, a new 

generation is to be created based on the best of this population. Then the fitness score for each 

{p} is calculated and checked as to whether there is a score at 1 or close enough for our 

purposes. This computation involves computing the object function 𝐹 according to (1-12) and 

evaluating with the constraint function 𝑔1(1-13). If the termination criterion is not satisfied, the 
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population of solutions is changed by three operators called selection, crossover and mutation, 

and a new population is created.  

 

Figure 1-7 Flowchart of the working principle of a GA 

 

Figure 1-8 A random population of six cans 

 

Figure 1-8 [36] shows the random population of six cans. The fitness score of each can is 

marked on the relevant can. The two cans which have fitness score of 11 and 9, though they 

have a good fitness score, do not satisfy the constraint function 𝑔1 (1-13). This means they do 
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not have 300 ml volume. Therefore these cans are penalized by adding the extra artificial cost, 

so as a result their fitness score will bad.  

1.4.2.6 Selection 

Chromosomes are selected from the population to be parents to crossover. The problem is how 

to select these chromosomes. According to Darwin's evolution theory, the best ones should 

survive and create new offspring. There are many methods on how to select the best 

chromosomes; for example roulette wheel selection, Boltzman selection, tournament selection, 

rank selection, steady state selection, elitism and some others [37]. In the following we 

illustrate the tournament selection and elitism selection. 

 

As the name suggests, tournaments are played between two solutions and the better solution is 

chosen and placed in a new population set. If done systematically, each solution can be made 

to participate in exactly two tournaments. The best solution in a tournament will win both 

times; therefore there will be two copies of the best solution in the new population. In this 

way, the worst solution will lose both times; therefore it will be eliminated from the new 

population. It has been shown that tournament selection has better convergence and 

computational time than the other selection methods [37]. 

 

Figure 1-9 [36] shows the six different tournaments played between population members. 

When cans with a cost of 23 units and 30 units compete in a random tournament, 23 units is 

chosen. It is interesting to note that the better solutions have made themselves to have more 

than one copy and the worst solutions have been eliminated from the population. 
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In elitism selection, the new generation is based on elitism which first copies the best half of 

the chromosomes to the new population without any changes (Figure 1-10). Elitism can very 

rapidly increase the performance of GA because it prevents losing the best found solutions. 

The remaining half of the population will be replaced by offspring of the best half after 

crossover, and mutation as shown in Figure 1-10. 

 

Figure 1-9 Tournaments played between six population members 

 

 

Figure 1-10 Changing design parameters in GA 

 

1.4.2.7 Crossover  

Crossover is a genetic operator that combines two chromosomes to produce a new 

chromosome. The idea behind crossover is that the new chromosome may be better than the 
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parents if it takes the best characteristics from each of the parents. Like selection, there exist a 

number of crossover and mutation operators in the GA literature [38]. In single point 

crossover, we randomly select one crossover point and then copy everything before this point 

from the first parent and then everything after the crossover point from the second parent. Let 

us illustrate the crossover operator by two solutions from the new population created by the 

selection operator.  

 

Figure 1-11 An illustration of the single-point crossover operator 

The cans and their strings are shown in Figure 1-11. The crossover point is taken at the third 

string at random and these contents after that point are swapped between the two strings. The 

created children solutions are likely to be good strings. However, every crossover may not 

create better solutions. But, if bad solutions are created, they will be eliminated in the next 

iteration and will have a short life.  

1.4.2.8 Mutation  

After a crossover is performed, mutation takes place. Mutation is an important part of the 

genetic search: it helps to prevent the population from stagnating at local optima. The mutation 

operator simply inverts the value of a randomly chosen gene of a chromosome. Figure 1-12 

shows how a string which has gone through selection and crossover operators has been 

mutated to another string. 4th bit of this string is mutated by a small mutation probability 

hoping that a slight change in the string would keep the diversity of the population.  
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 Figure 1-12 An illustration of the mutation operation 

 

There are indeed many variants in operators of the genetic algorithm [39], but here we are 

interested in using any robust GA approach that works.  

1.4.2.9 Real-coded GAs 

We have discussed GAs where a solution is represented by a binary string. However, this is 

not the case always and variables taking real values can be used directly without conversion to 

binary form. In real-coded GAs, selection operators work the same as with binary-coded GA. 

But, using efficient crossover and mutation operators is different [37, 38]. The real-coded GAs 

eliminate the difficulties of arbitrary precision in decision variables and the Hamming cliff 

problem [6] associated with binary string representation of real numbers.  A drawback of 

encoding variables as binary strings is the presence of Hamming cliffs: large Hamming 

distances between the codes of adjacent integers. For instance, 01111 and 10000 are integer 

representations of 15 and 16, respectively, and have a Hamming distance of 5 because 5 bits 

are different. For the genetic algorithm to change the representation from 15 to 16, it must alter 

all bits simultaneously. Such Hamming cliffs present a problem for the algorithm, as both 

mutation and crossover cannot overcome them easily.  

 

There are three properties of binary single-point crossover operators which have been observed 

and the SBX operator for real-coded GAs has been developed [40]. These properties are i) 

both child solutions lie on either inside (contraction crossover) or outside (expanding 
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crossover) of the region bound by the parents’ solutions, ii) the distance from one child from a 

parent is exactly the same as the distance from the other child to the other parent, and iii) the 

overall probabilities of contracting and expanding crossovers are the same. In order to 

implement this crossover operator for any two parent solutions p1 and p2, the spread factor β 

has been defined as the ratio of the spread of created child solutions c1 and c2  

𝛽 =  |
𝑐1−𝑐2

𝑝1−𝑝2
|      (1-19) 

If 𝛽 ≤ 1, it will use the contracting crossover and if 𝛽 > 1, it will use the expanding crossover. 

It is possible to calculate the probability of creating a pair of child solutions having a certain β. 

That probability distribution has been approximated by a polynomial probability distribution 

as follows: 

𝑃(𝛽) =  {
0.5(𝑛 + 1)𝛽𝑛,             𝑖𝑓 𝛽 ≤ 1

0.5(𝑛 + 1)
1

𝛽𝑛+2 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                         (1-20) 

 

Figure 1-13 Probability distributions used in SBX crossover with different index n 

In (1-20), n is any non-negative integer. If n is large, there is a higher probability for creating 

solutions near the parents. If n is small, it allows us to create distant solutions from the parents. 
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The following procedure is used to create child solutions c1 and c2 from the parent solutions p1 

and p2 using the probability distribution (1-20) [40].  

 Create a random number u between 0 and 1. 

 Find a 𝛽′ for which the cumulative probability  

∫ 𝑝(𝛽)
𝛽′

0
𝑑𝛽 = 𝑢     (1-21) 

 Knowing the value of 𝛽′, the child solutions are calculated as 

𝑐1 = 0.5[(𝑝1 + 𝑝2) − 𝛽′|𝑝2 − 𝑝1|]

𝑐2 = 0.5[(𝑝1 + 𝑝2) + 𝛽′|𝑝2 − 𝑝1|]
     (1-22) 

This is how SBX crossover for the real-coded GA works. The main difference between binary-

coded GA and real-coded GA is that, for real-coded GA, an explicit probability distribution is 

used. Kalyanmoy Deb has liberally made his well-commented generic code available on the 

web [42] which we adapted and applied for the first time to finite element coupled problem 

optimization [43]. 

 

1.5 Computer Aided Design 

1.5.1 In pursuit of Accuracy 

In today’s context, numerical models constitute the core of computer-aided design. Classical 

methods have been referred to as exact methods whereas numerical methods are called 

approximate methods. Classical methods are limited by the mathematics by which the 

solutions are expressed [44]. 
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Figure 1-14 The Solution Process 

 

As shown in Figure 1-14 [44], for every problem, first a model is chosen and the problem is 

solved based on that model instead of the actual problem. When the solution is not reasonable, 

the model will be reexamined with a view to improving it. For example in the mechanics of 

projectiles, the model may be an equation based on Newton’s laws. It works most of the time. 

But when it comes to space travel, the solutions may not match measurements and will be 

modified to incorporate Einstein’s laws to improve the model with better accuracy. Likewise 

in electromagnetics, in classical electrodynamics modeling, say of a transmission line, the 

assumption is made about symmetry in the direction of the line so that the problem is two 

dimensional. Thereafter it might be further assumed that the transmission line is circular. 

These assumptions permit the reduction of the problem to a simple one-dimensional 

differential equation of the form, 

−
𝑑𝜑

𝑑𝑟
=

𝐼

2𝜋𝜖

1

𝑟
      (1-23) 

where 𝐼 is the current in the line. The solution of the model is as exact only as much as the 

model is exact; 

𝜑 = −
𝐼

2𝜋𝜖
 𝑙𝑛

𝑟

𝑟𝑜
+ 𝜑0     (1-24) 

where 𝑟 = 𝑟𝑜 is the reference point for 𝜑 =  𝜑0. To get a more accurate solution, the model 

needs to be improved. For example the model of the earth above which this infinitely long line 
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runs might be modelled by considering the images of the line. This makes the problem two 

dimensional. With superposition, this too can be handled by our model and the corresponding 

solution method. Should this also prove inadequate for purposes of the required accuracy, we 

go further and allow for nearby transmission towers and their equipment like insulator strings, 

and the sag of the wire from tower to tower. At this point the model breaks down as the 

problem is no longer two dimensional and truly three dimensional. Although many three 

dimensional problems have classical solutions, they rely upon some form of neatness such as 

spherical shapes, homogeneous systems and so on. This complex transmission line has no 

known classical solution. At this point a numerical solution is a must. Numerical solutions by 

definition are approximate insofar as derivatives and integrals assume linear variation over 

small discrete distances. An example of the approximation is for the derivative and integral 

[44]: 

𝑑𝜑

𝑑𝑥
= 𝑙𝑖𝑚

𝑥2→𝑥1

 
𝜑2−𝜑1

𝑥2−𝑥1
≈ 

𝜑2−𝜑1

𝑥2−𝑥1
    (1-25) 

∫ 𝜑𝑑𝑥 ≈
𝑥2

𝑥1
 (

𝜑1+𝜑2

2
) (𝑥2 − 𝑥1)    (1-26) 

Although a linear change of φ is assumed over the interval (𝑥1, 𝑥2) this so called 

approximation is increasingly more accurate for smaller such intervals. That is, while classical 

solutions are only as accurate as the models on which they are based, the numerical 

approximations for derivatives and integrals can be made as accurate as we want by our 

resorting to finer subdivisions of the relevant intervals over the domain. 

 

This means the accuracy of numerical methods depends on the number of subdivisions. This 

involves data preparation (pre-processing), solving the problems, facing an excessive amount 
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of data corresponding to the numerous points of discretization, make meaning of numbers and 

post processing.  

 

1.5.2 Methods of Approximate Solution  

 Numerical methods can be divided into two classes based on whether solving integral 

equations or differential equations [44]. Each method has advantages and disadvantages based 

on problem type. 

 

The Boundary Element Method (BEM) [45] is a popular integral method. For example in 

electrostatics, the Coulomb equation becomes the basis of the boundary element method. 

𝜑 = ∭
1

4𝜋𝜖
 
𝜌

𝑟
 𝑑𝑅     (1-27) 

Here (1-27) is discretized and the potential φ is expressed in terms of the charge distribution ρ. 

But, on material boundaries there is a surface charge density σ according to the derivatives in 

the normal direction n at the interface separating regions 1 and 2: 

𝜖1
𝜕𝜑1

𝜕𝑛1
− 𝜖2

𝜕𝜑2

𝜕𝑛2
=  𝜎     (1-28) 

Equation (1-28) states that difference in normal flux density across the interface is the surface 

charge density. Therefore the integral Poisson equation relates φ at each point to the known 

charge distribution ρ and φ’s normal derivative at all material interfaces. The charge 

distribution too may be unknown as the charges rearrange themselves because of Coulomb 

forces. Thus every discrete point has an unknown related to the unknowns at all other discrete 

points. The resulting matrix equation is fully populated and not necessarily symmetric. Thus 

although, unlike in differential methods relating every point only to others in its neighborhood 
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thereby measuring rates of change, every point in the domain has a relationship with all other 

points in the domain of solution when solving integral equations. However, here with integral 

methods, we have unknowns only where there are conductors and material interfaces – that is 

we have fewer unknowns. Yet the method is not too popular especially because of the non-

symmetric nature of the matrix associated with the solution equation, besides the fully 

populated nature of the matrix equation [44]. 

 

The best known differential methods are the finite difference and finite element methods. The 

finite difference method is best suited to homogeneous problems and therefore is very popular 

in solving the wave equation solving which usually involves modeling in free homogeneous 

space. It is not so popular in the many problems where inhomogeneous materials are present. 

Here this thesis will focus on the finite element method because of its wide applications and 

we use the finite element method to solve the coupled problem. 

 

1.5.3 The Finite Element Method 

The finite element method is one of the most powerful numerical methods available for 

solving partial differential equations which apply over complex shapes. Very often, in 

engineering science, it is difficult to solve a partial differential equation, which applies over a 

complicated shape. Unlike integral methods and the finite difference method, it always yields 

symmetric sparse matrices which allow the use of the most powerful and elegant matrix 

solvers available for use. It allows us to use a fine mesh in parts where fine detail has to be 

incorporated or high accuracy is required, while a sparse mesh may be used in other parts. 
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Inhomogeneities are not a problem and are handled by ensuring that an element is always 

entirely in a homogeneous region.  

 

To describe the finite element method it is good to note that it has certain ingredients and to 

spell them out: 

Ingredient 1 

A trial or test function on the domain of solution (the x-y plane in our 2-dimensional 

demonstration) consisting of many interpolation functions αiwith i =1 … n. The test function 

would be a weighted sum of all the αis and the αs are functions that we prudently choose so as 

to best model the solution. This means having some knowledge of the solution. In this form 

the method was known as Ritz’s method and was not quite successful since we do not usually 

know the form of the solution. So our postulates based on our choice of αs is that the solution 

is of the form 

φ = ∑ ciαi
n
i=1       (1-29) 

Our task then would be to determine the numbers ci so as to yield the best fit of the actual 

solution that can be made by the trial functions chosen. 

 

Ingredient 2 

A mesh of finite elements of the domain involves a tessellation of the area of solution. 

Commonly the domain of solution is subdivided into triangles or quadrilaterals. In this lies the 

brilliance of the method. Once we divide the domain into small regions, in place of the 

complicated functions, our αs, we may go for simple functions such as linear or quadratic 

polynomials. In simple terms, to approximate a squiggly function y(x) on a large domain, we 
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may need to add several αs of different forms; but if we divide the domain into small bits 

called finite elements, a straight line on each bit or element would suffice. When the elements 

are smaller, our model will be more accurate. Thus on a triangular linear finite element, we 

have 

φ = a + bx + cy     (1-30) 

where the functions 1, x and y take the place of the three 𝛼s we need for the small triangular 

domain. As we divide the domain into smaller and smaller triangles, the modeling of the actual 

shape of the unknown would become more and more accurate. This linear model is an 

approximation of the potential because 𝜑 may not vary linearly and may have a complex 

relationship with x and y. However, x and y are linear first order functions. This is the key to 

determining a, b and c in a triangle.  

 

 Figure 1-15 A Triangle with Three Nodes 

Usually from one triangle to its neighbor we would need continuity conditions so that the trial 

functions match on the edge common to two adjacent elements. For this a, b and c of one triangle 

need to have a relationship with the a, b and c of any adjacent triangle. This relationship being 

complicated, instead of a, b and c we deal with the three vertex potentials 𝜑𝑖, i =1, 2 & 3. So at 

each vertex of a triangle (𝑥𝑖 , 𝑦𝑖), where values are known because we are solving the Poisson 
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equation in a specific domain divided into a specific mesh of known vertices connected into a 

triangular mesh, applying the linear approximation (Figure 1-15): 

𝜑1 = 𝑎 +  𝑏 𝑥1 +  𝑐𝑦1 

𝜑2 = 𝑎 +  𝑏 𝑥2 +  𝑐𝑦2 

𝜑3 = 𝑎 +  𝑏 𝑥3 +  𝑐𝑦3 

Or 

[

𝜑1

𝜑2

𝜑3

] =  [

1 𝑥1 𝑦1

1 𝑥2 𝑦2

1 𝑥3 𝑦3

] [
𝑎
𝑏
𝑐
]     (1-31) 

Solving by Cramer’s rule 

𝑎 =  

|

𝜑1 𝑥1 𝑦1
𝜑2 𝑥2 𝑦2
𝜑3 𝑥3 𝑦3

|

|
1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

|

     (1-32) 

𝑏 =   

|
1 𝜑1 𝑦1
1 𝜑2 𝑦2
1 𝜑3 𝑦3

|

|
1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

|

=
1

∆
 {𝜑1 (𝑦2 − 𝑦3) + 𝜑2 (𝑦3 − 𝑦1) + 𝜑3 (𝑦1 − 𝑦2) } =  

= ∑ 𝜑𝑖  
(𝑦𝑖1−𝑦𝑖2)

∆

3
𝑖=1 = ∑ 𝑏𝑖𝜑𝑖  

3
𝑖=1    (1-33) 

𝑐 =   

|
1 𝜑1 𝑦1
1 𝜑2 𝑦2
1 𝜑3 𝑦3

|

|
1 𝑥1 𝑦1
1 𝑥2 𝑦2
1 𝑥3 𝑦3

|

 = 
1

∆
 {𝜑1 (𝑥3 − 𝑥2) + 𝜑2 (𝑥1 − 𝑥3) + 𝜑3 (𝑥2 − 𝑥1) } 

= ∑ 𝜑𝑖  
(𝑥𝑖2−𝑥𝑖1)

∆

3
𝑖=1 = ∑ 𝑐𝑖𝜑𝑖

3
𝑖=1    (1-34) 

where ∆ is twice the area of the triangle provided the nodes 1, 2 and 3 go counter-clockwise 

(and the negative of that if the nodes go clockwise); the numbers 𝑖, 𝑖1 and 𝑖2 are the numbers 

1, 2, and 3 in cyclic order (that is, the integers 𝑖, 𝑖1 and 𝑖2 respectively are 1,2,3 if 𝑖 is 1, or 2, 
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3, 1 if 𝑖 is 2 or 3, 1, 2 if 𝑖 is 3; or put another way 𝑖1 = 𝑖 mod 3 +1 and 𝑖1 =  𝑖2 mod 3 +1 

where the mod 3 or modulo 3 function gives the remainder when divided by 3); and 

𝑏𝑖 =
𝑦𝑖1−𝑦𝑖2

∆
       (1-35) 

and 

𝑐𝑖 =
𝑥𝑖2−𝑥𝑖1

∆
      (1-36) 

 

Ingredient 3 

A functional (a function of a function, in this case of φ) ℒ(φ), minimizing which is the same 

as satisfying the differential equation [44]. There is an alternative approach called the Galerkin 

formulation relying on the theory of function spaces going into minimizing the residual when 

our trial function is put into the differential equation being solved but we will not get into that 

here. A limitation of the approach we describe, the variational calculus approach, is that to take 

it we must have a functional corresponding to the solution of the differential equation which is 

sought. Suffice it to say that the Poisson equation does have a functional corresponding to it: 

ℒ(φ) = ∭[
1

2
𝜖(𝛁𝜑)2 − 𝜌𝜑] dR    (1-37) 

We can justify this intuitively. Since the electric field strength 𝐄 = −𝛁φ and the flux density 

𝐃 = ϵ𝐄 = −ε𝛁φ, we see that the first term is the stored energy density ½ 𝐃 ∙ 𝑬 times 

elemental volume dR. Since by definition the potential φ is the work done in bringing a unit 

charge to where it is, the second term is the work done in bringing the charge ρdR, the charge 

density times elemental volume, to where it is. The essence of the functional is that it says that 

the difference between the two co-energies ought to be a minimum when the Poisson equation 

is satisfied. But let us see this more precisely in mathematical terms. 
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Let the potential 𝜑 take a small excursion to 𝜑 + 𝜅𝜂(𝑥, 𝑦, 𝑧), where 𝜅 is a constant and 𝜂(𝑥, 𝑦, 𝑧) 

is a small arbitrary function. The modified functional then is  

ℒ(𝜑 + 𝜅𝜂) = ℒ + 𝛿ℒ = ∭[
1

2
𝜖(∇𝜑 + 𝜅∇𝜂)2 − 𝜌(𝜑 + 𝜅𝜂)] 𝑑𝑅  

= ∭[
1

2
𝜖(∇𝜑 ∙ ∇𝜑 + 2𝜅∇𝜑 ∙ ∇𝜂 + 𝜅2∇𝜂 ∙ ∇𝜂) − 𝜌(𝜑 + 𝜅𝜂)] 𝑑𝑅  (1-38) 

Subtracting (1-37) from (1-38), the change is 

𝛿ℒ = ∭[𝜖(𝜅∇𝜑 ∙ ∇𝜂) − 𝜌𝜅𝜂] 𝑑𝑅 +𝑂2(𝜅𝜂)   (1-39) 

where for small changes, the terms of order 2 (designated 𝑂2) in 𝜅𝜂 may be dropped for being 

negligibly small but are retained to make a point we will encounter soon [44]. We note that 

𝑂2(𝜅𝜂) is from (∇𝜂)2 which is strictly positive. To proceed we need to use a vector identity 

expressing the divergence of a vector �⃗�  scaled by a scalar s: 

∇ ∙ (𝑠�⃗� ) = ∇s ∙ �⃗� + 𝑠∇ ∙ �⃗�      (1-40) 

together with the divergence theorem: 

∭∇ ∙ �⃗� 𝑑𝑅 = ∬ �⃗� ∙ 𝑑𝑆⃗⃗⃗⃗      (1-41) 

where the surface S bounds the domain R. Integrating the vector identity just encountered and 

applying the divergence theorem to it 

∭∇ ∙ 𝑠�⃗� 𝑑𝑅 = ∭(∇s ∙ �⃗� + 𝑠∇ ∙ �⃗� ) 𝑑𝑅   

or 

∬𝑠�⃗� ∙ 𝑑𝑆⃗⃗⃗⃗ = ∭(∇s ∙ �⃗� + 𝑠∇ ∙ �⃗� ) 𝑑𝑅    (1-42) 

Now set s = 𝜂 and �⃗� =∇𝜑 

∬𝜂∇𝜑 ∙ 𝑑𝑆⃗⃗⃗⃗ = ∭(∇𝜂 ∙ ∇𝜑 + 𝜂∇2φ)𝑑𝑅   (1-43) 

We note further that the elemental surface vector points in the normal direction so that 𝑑𝑆⃗⃗⃗⃗ =

𝑑𝑆�⃗� 𝑛 where �⃗� 𝑛 is a unit vector in the normal direction. Further since ∇𝜑 = �⃗� 𝑥
𝜕𝜑

𝜕𝑥
+ �⃗� 𝑦

𝜕𝜑

𝜕𝑦
+
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�⃗� 𝑧
𝜕𝜑

𝜕𝑧
 and therefore �⃗� 𝑥 ∙ ∇𝜑 =

𝜕𝜑

𝜕𝑥
, and since the direction x is arbitrary according to how we 

orient the axes, we may write �⃗� 𝑛 ∙ ∇𝜑 =
𝜕𝜑

𝜕𝑛
. So the above equation upon rearranging becomes 

∭(∇𝜂 ∙ ∇𝜑)𝑑𝑅 =  ∬𝜂
𝜕𝜑

𝜕𝑛
𝑑𝑆 − ∭(𝜂∇2φ)𝑑𝑅  (1-44) 

Using this in the expression for the change in the Lagrangian functional 

𝛿ℒ =  {∬𝜖𝜅𝜂
𝜕𝜑

𝜕𝑛
𝑑𝑆 − ∭(𝜂∇2φ)𝑑𝑅}∭[−𝜌𝜅𝜂] 𝑑𝑅 +𝑂2(𝜅𝜂)  (1-45) 

Now the boundary S has either Dirichlet or Neumann conditions on each point of it. Where the 

Dirichlet condition applies 𝜂 = 0 since the potential is specified and cannot vary. On those parts 

of S where the Neumann condition is specified, 
𝜕𝜑

𝜕𝑛
= 0. Therefore the surface integral vanishes 

because the integrand is zero at every point on S, thereby leading to 

𝛿ℒ =  {∭𝜅𝜂(−𝜖∇2φ − 𝜌) 𝑑𝑅} +𝑂2(𝜅𝜂)   (1-46) 

Now we are in a position to say 

a) If the functional is at an extremum, whether a minimum or a maximum, the left hand side 

is zero since changes are flat at the point of extremum. Further the second order terms 

𝑂2(𝜅𝜂) may be neglected so that 

∭𝜅𝜂(−𝜖∇2φ − 𝜌) 𝑑𝑅 = 0    (1-47) 

But since the change in potential 𝜅𝜂 is arbitrary, this is possible only if the other factor of 

the integrand 

−𝜖∇2φ − 𝜌 = 0 

or 

−𝜖∇2φ = 𝜌     (1-48) 

meaning that the Poisson equation is satisfied at the extremum. 
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b) We need one more consideration to show that the extremum is a minimum.  At that 

extremum since the residual of the Poisson equation −𝜖∇2φ − 𝜌 = 0, we must have  

𝛿ℒ =   𝑂2(𝜅𝜂)     (1-49) 

which is a strictly positive quantity as we have noted so that any changes in φ about the 

extremum of ℒ will make ℒ rise, meaning that extremum has to be a minimum. 

 

1.5.4 Two Dimensional, Linear, Triangular Finite Elements 

We used two dimensional triangular finite elements in this thesis; therefore this thesis will 

present this model through an example. Figure 1-16 [44] shows a two dimensional system 

governed by the Poisson equation −𝜎𝑡𝛻
2𝑇 = 𝑞 with zero Neumann conditions along the upper 

and lower boundaries and Dirichlet conditions on the left and right boundaries, where 𝜎𝑡 is the 

thermal conductivity and 𝑞 is the heat distribution. Demonstrating through this example, this 

heat flow problem (Figure 1-16) has  𝜎𝑡 = 4 and 𝑞 = 1 in the shaded region and 𝜎𝑡 = 1 and 

𝑞 = 0 elsewhere. Although this is a problem governing the flow of heat, the equations are 

similar to those developed for an electrostatic system with 𝜎𝑡 = 𝜀 and 𝑞 = 𝜌. Let us see how T 

will be solved everywhere using hand calculations.  

 

Figure 1-16 Heat Flow Problem 
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By linear approximations or trial functions, we have  

𝑇 = 𝑎 + 𝑏𝑥 + 𝑐𝑦      (1-50) 

The first order approximation 𝑇 = 𝑎 + 𝑏𝑥 + 𝑐𝑦 on a triangle leads to  

𝑏 =   ∑ 𝑏𝑖𝑇𝑖
3
𝑖=1 ;     𝑐 =   ∑ 𝑐𝑖𝑇𝑖

3
𝑖=1      (1-51) 

Now 

∇𝑇 =  �⃗� 𝑥
𝜕𝑇

𝜕𝑥
+ �⃗� 𝑦

𝜕𝑇

𝜕𝑦
= �⃗� 𝑥𝑏 + �⃗� 𝑦𝑐    (1-52) 

The functional 

ℒ(𝑇) = ∬([
1

2
𝜎𝑡(∇𝑇)2 − 𝑞𝑇])𝑑𝑅 = ∑ ∬[

1

2
𝜎𝑡(b

2 + c2) − 𝑞𝑇]𝑑𝑅𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠   

= ∑ {
1

2
𝜎𝑡(b

2 + c2)𝐴𝑟 − 𝑞0
𝑇1+𝑇2+𝑇3

3
𝐴𝑟}𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠   (1-53) 

where 𝜎(b2 + c2) is a constant that may be pulled out of the integral sign so that the integral of 

dR is simply the triangle area 𝐴𝑟. Likewise, by assuming that q is a constant at q0 in a triangle, 

that too comes out of the integral sign so that the integral of the linearly varying T is the average 

of T at the three vertices times a measure of the integration area which is 𝐴𝑟; this is a variant of 

Simpson’s rule in 1-dimension for 2-dimensions. Thus we have, substituting for b and c, while 

noting that 

𝑏 =   ∑ 𝑏𝑖𝑇𝑖
3
𝑖=1 = 𝑇𝑡𝑏     (1-54) 

𝑐 =   ∑ 𝑐𝑖𝑇𝑖
3
𝑖=1 = 𝑇𝑡𝑐      (1-55) 

With notation for 𝑇, 𝑏 𝑎𝑛𝑑 𝑐 defined by correspondence for terms, and noting that a scalar b is 

its own transpose, we have 

𝑏2 = 𝑏. 𝑏 = 𝑏. 𝑏𝑡 = (𝑇𝑡𝑏)(𝑏𝑡𝑇) = 𝑇𝑡𝑏𝑏𝑡𝑇 = 𝑇𝑡 [

𝑏1
2 𝑏1𝑏2 𝑏1𝑏3

𝑏2𝑏1 𝑏2
2 𝑏2𝑏3

𝑏3𝑏1 𝑏3𝑏2 𝑏3
2

] 𝑇   (1-56) 
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where the brackets have been dispensed with in the absence of there being multiplicative 

compatibility. Similarly 

𝑐2 = 𝑐. 𝑐 = 𝑐. 𝑐𝑏𝑡 = (𝑇𝑡𝑐)(𝑐𝑏𝑡𝑇) = 𝑇𝑡𝑐𝑐𝑡𝑇 = 𝑇𝑡 [

𝑐1
2 𝑐1𝑐2 𝑐1𝑐3

𝑐2𝑐1 𝑐2
2 𝑐2𝑐3

𝑐3𝑐1 𝑐3𝑐2 𝑐3
2

] 𝑇  (1-57) 

Therefore 

ℒ(𝑇) = ∑ {
1

2
𝜎𝑡(b

2 + c2) 𝐴𝑟 − 𝑞0

𝑇1 + 𝑇2 + 𝑇3

3
 𝐴𝑟}

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

 

= ∑

{
  
 

  
 

1

2
𝑇𝑡𝜎𝑡 𝐴

𝑟 [

𝑏1
2 + 𝑐1

2 𝑏1𝑏2 + 𝑐1𝑐2 𝑏1𝑏3 + 𝑐1𝑐3

𝑏2𝑏1 + 𝑐2𝑐1 𝑏2
2 + 𝑐2

2 𝑏2𝑏3 + 𝑐2𝑐3

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏3
2 + 𝑐3

2

] 𝑇 − 𝑇𝑡

{
 
 

 
 
𝑞0 𝐴

𝑟

3
𝑞0 𝐴

𝑟

3
𝑞0 𝐴

𝑟

3 }
 
 

 
 

}
  
 

  
 

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

 

= ∑ {
1

2
𝑇𝑡[𝑃]𝑇 − 𝑇𝑡𝑄}𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠     (1-58) 

where, in corresponding notation, the local matrices 

[𝑃] =  𝜎𝑡 𝐴
𝑟 [

𝑏1
2 + 𝑐1

2 𝑏1𝑏2 + 𝑐1𝑐2 𝑏1𝑏3 + 𝑐1𝑐3

𝑏2𝑏1 + 𝑐2𝑐1 𝑏2
2 + 𝑐2

2 𝑏2𝑏3 + 𝑐2𝑐3

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏3
2 + 𝑐3

2

]  (1-59) 

and 

𝑄 =

{
 
 

 
 

𝑞0 𝐴𝑟

3
𝑞0 𝐴𝑟

3

𝑞0 𝐴𝑟

3 }
 
 

 
 

      (1-60) 

Now let us consider the first triangle of the mesh as shown in Figure 1-17. Where we start 

numbering the nodes (whether 8-3-7 or 3-7-8 or 7-8-3) does not matter but that the order should 

be counter-clockwise is important. 
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Table 1-1 The Local Matrices of the Six Elements of Figure 1-16 

Ele. 

1 

PMatrix  QMatrix 

Verts 8 3 7   

8 4 -2 -2  1/6 

3 -2 2 0  1/6 

7 -2 0 2  1/6 

 

Ele. 

2 

PMatrix  QMatrix 

Verts 1 7 3   

1 4 -2 -2  1/6 

7 -2 2 0  1/6 

3 -2 0 2  1/6 

 

  

Ele. 

3 

PMatrix  QMatrix 

Verts 3 4 1   

3 1 -0.5 -.5  0 

4 -0.5 0.5 0  0 

1 -0.5 0 0.5  0 

 

Ele. 

4 

PMatrix  QMatrix 

Verts 2 1 4   

2 1 -0.5 -.5  0 

1 -0.5 0.5 0  0 

4 -0.5 0 0.5  0 

 

  

Ele. 

5 

PMatrix  QMatrix 

Verts 4 6 2   

4 1 -0.5 -.5  0 

6 -0.5 0.5 0  0 

2 -0.5 0 0.5  0 

 

Ele. 

6 

PMatrix  QMatrix 

Verts 5 2 6   

5 1 -0.5 -.5  0 

2 -0.5 0.5 0  0 

6 -0.5 0 0.5  0 

 

 



37 
 

 

Figure 1-17 Triangle with internal generic numbers  

For this triangle 

∆= |

1 𝑥1 𝑦1

1 𝑥2 𝑦2

1 𝑥3 𝑦3

| = |
1 0 0
1 1 0
1 0 1

| = 1    (1-61) 

Therefore area A = ½. We could have said Area = ½ x base x height = ½ but this is not general 

enough an approach for triangles whose sides are not parallel to the Cartesian axes. We have 

𝑏 =

{
 

 
𝑦2−𝑦3

∆
𝑦3−𝑦1

∆
𝑦1−𝑦2

∆ }
 

 

=

{
 
 

 
 

0−1

1
1−0

1
0−0

1 }
 
 

 
 

= {
−1
1
0

}     (1-62) 

𝑐 =

{
 

 
𝑥3−𝑥2

∆
𝑥1−𝑥3

∆
𝑥2−𝑥1

∆ }
 

 

=

{
 
 

 
 

0−1

1
0−0

1
1−0

1 }
 
 

 
 

= {
−1
0
1

}    (1-63) 

Observe that only relative coordinates are important since we are dealing with differences in 

coordinate values which fact makes the actual values of the coordinates irrelevant. Now 
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[𝑃] =  𝜎 𝐴𝑟 [

𝑏1
2 + 𝑐1

2 𝑏1𝑏2 + 𝑐1𝑐2 𝑏1𝑏3 + 𝑐1𝑐3

𝑏2𝑏1 + 𝑐2𝑐1 𝑏2
2 + 𝑐2

2 𝑏2𝑏3 + 𝑐2𝑐3

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏3
2 + 𝑐3

2

]= = 4x0.5[
1 + 1 −1 + 0 0 − 1

−1 + 0 1 + 0 0 + 0
0 − 1 0 + 0 0 + 1

]  

=[
4 −2 −2

−2 2 0
−2 0 2

]     (1-64) 

𝑄 =

{
 
 

 
 

1𝑥0.5

3
1𝑥0.5

3
1𝑥0.5

3 }
 
 

 
 

=

{
 
 

 
 

1

6
1

6
1

6}
 
 

 
 

     (1-65) 

 

Table 1-2 The Six Local Matrices Added into the 4x4 Matrix 

The 4x4 Matrix [𝑃𝑔]  𝑄𝑔 of size 4x1 

0 4 

0.5 0.5 

0 0 
 

0 0 

0 -0.5 

0 0 
 

0 -
2 

-
0.5 

0 

0 0 
 

0 0 

0 0 

0 0 
 

 
200+1/6 0 0 

0 0 0 
 

0 0 

0 -0.5 

0 0 
 

0 0 

0 1 

0.5 0.5 
 

0 0 

0 0 

0 0 
 

0 0 

0 -
0.5 

-
0.5 

0 

 

 
0 0 0 

0 0 0 
 

0 -2 

-0.5 0 

0 0 
 

0 0 

0 0 

0 0 
 

2 2 

1 0 

0 0 
 

0 0 

-0.5 0 

-0.5 0 
 

 
1/6 200+1/6 0 

0 0 0 
 

0 0 

0 0 

0 0 
 

0 0 

0 -
0.5 

-
0.5 

0 

 

0 0 

-
0.5 

0 

0 0 
 

0 1 

0 0 

1 0 
 

 
0 0 0 

0 0 0 
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The local matrices of the six elements of are shown in Figure 1-16. The 4 rows and columns of 

the matrix [P] are filled up as shown in Table 1-2. For clarity, each position of the global 

matrix [𝑃𝑔] is divided into 6, each sub-location corresponding to the contribution from one of 

the six elements.  Similarly the column vector 𝑄 shows its contributions from the 6 elements 

as it is built up. 

 

The numbers 200 in the right hand side column vector 𝑄 come from the two additional 

columns of [P] corresponding to the known T values at 100. The numbers zero when they need 

to be added are not reflected. Thus we have from Table 1-2, 

[

5 −0.5
−0.5 2

−2.5 0
0 −1

−2.5 0
0 −1

5 −0.5
−0.5 2

]{

𝑇1

𝑇2

𝑇3

𝑇4

} =

{
 
 

 
 

1201

6

0
201

3

0 }
 
 

 
 

    (1-66) 

Solving  

𝑇𝑡 = [88.99 44.50 89.01 44.50]     (1-67) 

So finally the solution gives the temperature at nodes 1, 2, 3 and 4.  
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2 EDDY CURRENT BASED DEFECT DETECTION AND CHARACTERIZATION  

2.1 Single Physics Problem 

Our intention is to study and establish the most efficient, GPU based methodologies for shape 

optimization in two-physics systems. To avoid the complexities of a two-physics problem and 

learn the issues, we begin our study by examining shaping algorithms on a single physics 

problem for nondestructive evaluation with the view to extending the principles to two-physics 

systems. Eddy Current Testing (ECT) is a widely accepted, cheap and portable method for the 

detection of cracks and other defects in conductive materials [46]. In NDE problems, the test 

measurements have to be matched with the computed results whereas in inverse design 

problems, the desired performance results have to be matched with computed performance 

results (Inverse design problems have been discussed in 1.2). Therefore when an object 

function is defined for NDE problems, 𝑩𝐷𝑒𝑠𝑖𝑟𝑒𝑑
𝑖  has to be replaced by 𝑩𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑖  in (1-2).  

Otherwise, NDE problems and design problems are mathematically similar [7]. This then is 

the foundation for studying NDE shape optimization and then extending it to two-physics 

shape optimization. In particular we will study defect characterization where we will optimize 

the shape of a postulated defect to make the measured and computed fields match. 

 

It has been established that low frequency testing can distinguish “all the different levels” of 

corrosion when a sample is exposed to a very corrosive environment for 3 months [47] while 

other researchers have established that eddy current testing can identify corrosion to depths 

down to 15 mm [48], [49]. For submarines and aircraft, engineers employ eddy current probes 

for testing thin (up to 1 inch) conducting systems [50], and ultrasound  for thicker submarine 
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hulls [51].  For deeper penetration, pulsed eddy currents [52], [53] or remote field eddy 

currents are used [54]. ECT Technology is therefore perfect for the purpose at hand. 

 

2.2 Introduction to Eddy Current Testing 

2.2.1 Eddy Current 

Eddy currents are found in any conducting material which is subject to time varying magnetic 

fields. If there is a defect present inside the conducting material, the flow of eddy current will 

be interrupted. Due to this interruption and changes in magnetic field, one can get information 

about the defect inside the material. A thorough analysis about eddy currents and their 

behavior can be found in [55]. 

 

2.2.2 Basis of eddy current testing 

When an AC current flows in a coil which is in close proximity to a conducting surface, the 

magnetic field from the coil will induce eddy currents in that surface (Figure 2-1.a [56]). The 

eddy currents will affect the loading on the coil and thus its impedance. 

 

Figure 2-1 Eddy current flow on a surface with (a) and without (b) crack 
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Assume there is a crack on the surface of the material (Figure 2-1.b). This will interrupt or at 

least reduce the eddy current flow. Therefore it will decrease the loading of the coil and 

increasing the effective coil impedance. Further, the voltage induced in an exterior sensing coil 

will be changed. This is the basis of eddy current testing; by monitoring the voltage across the 

coil in such an arrangement we can detect the defects inside the material.  

 

There are some factors which will affect the eddy current response in a probe. The 

conductivity of material has a direct effect on the eddy current flow. If the conductivity is high, 

the flow of the eddy current also will be high. The material permeability (𝜇) also has a direct 

effect on eddy current flow. This may be described as the ease with which a material can be 

magnetized. For non-ferrous metals such as copper, brass, and aluminum, 𝜇 is the same as that 

of air. For ferrous metals the value of 𝜇 will be several hundred times that of air, and this has a 

very significant influence on eddy current flow. Eddy current flow is greatly affected by the 

frequency we choose for the exciting system. The effect of frequency on eddy current flow is 

discussed in section 2.3.4. The proximity of the probe to the material also has to be considered. 

The closer a probe coil is to the surface, the greater will be the effect on that coil. Other than 

these factors, the geometry of the defect plays an important role in eddy current testing. This 

will be discussed in the following section. 

 

2.3 Detection of Defect 

2.3.1 Field Changes 

Our goal in this chapter is characterizing the shape of the defect using eddy current. But, 

before we move into defect characterization, a study on defect detection has to be done.  
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Defects can be in many different orientations. Some of these defect orientations make it hard 

for the defect to be detected, and therefore such defects will be impossible to characterize by 

our inverse algorithm. Therefore in this section we analyze the defect orientations and its 

relation to detectability. So this study will be useful for the defect characterization later in this 

chapter. 

 

Even though ECT is a good and effective method to detect a defect, the reality is that, thinking 

qualitatively about the three situations in Figure 2-2, the depth for detection depends on defect 

orientation. In the first situation, when a defect is parallel to the surface, the defect will be 

detectable through the interruption of the eddies. In the second situation, it is perpendicular to 

the surface but not reaching the surface; we would expect the skin-effect to allow the currents 

to flow along the surface. So it will be hard to detect the defect in this second case. Whereas in 

the third situation if the defect is perpendicular to the surface without a gap for the eddy 

current to flow along the surface, the defect would interrupt the flow of eddy currents which 

would find it difficult to go deep because of the skin effect. Therefore this will be easily 

detectable. On the other hand if the defect is thin and long, a 3D model will show no current 

interruption.  

 

Figure 2-2 Penetration of Eddy Currents in the Presence of Defects 
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This interruption, if it occurs, would make the presence of defects easily detectable. Different 

types of defect models with the ECT coil are shown in Figure 2-3 [57]. Defects a, b, c, d and e 

in Figure 2-3 show the difference in angle, depth and length.  The defects a, b, and c are at 

different angles, whereas c and e are at different depths. At the same time, though defects d 

and e are at same depth, they vary in length. Moreover, if the axis of the external exciting ECT 

coil is parallel to the surface, our considerations need to be entirely different.  This study 

therefore through a series of finite element analyses of parameterized geometries of a single 

defect, seeks to identify the limits of eddy current testing in NDE.  This study is confined to 

steel plates for army ground vehicle armor [57].  A qualitative relationship between the depth 

of a detectable defect, the frequency of excitation and the geometric parameters is sought to 

help engineers choose whether or not to use ECT.  

 

Figure 2-3 Defect Model: The model has defects in different angle, depth and length  

 



45 
 

A defect in a material can be varied in shape and location. The defect detection method should 

concentrate on the characteristics of the defect. These effects are analyzed in this work for 

varying size, shape and location of a defect in materials. An iterative approach is presented 

that repeatedly employs the finite element technique for modeling the forward problem to 

calculate the effect caused by the defects in a steel plate. 

We calculate the magnetic flux density for the known defects from the forward problem using 

the finite element method [48] and examine the extent to which the exterior field is altered by 

the defect to see if the presence of the defect can be discerned through the changes in the 

measurable external field.  

2.3.2 Main Equations  

2.3.2.1 Maxwell Equations 

The electromagnetic field equations are the basic equations to deal with for design analysis 

purposes. Though there are many basic laws in electromagnetics such as by Coulomb, Lenz, 

and Ampere, the general Maxwell equations are more relevant and appropriate to discuss here 

as they are directly involved with our work. The four Maxwell equations [58], [59] are;  

𝛁.𝑫 = 𝜌    (2-1) 

𝛁.𝑩 = 0     (2-2) 

𝜵 × 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡
     (2-3) 

𝜵 × 𝑬 = −
𝜕𝑩

𝜕𝑡
     (2-4) 
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where 𝑫 is electric flux density, 𝜌 is the electric charge density, 𝑩 is the magnetic flux 

density, 𝑯 is the magnetic field intensity,  𝑱 is the current density, and 𝑬 is the electric field 

intensity. Here 𝑱 is related to 𝑬 by the constitutive relationship  

𝐉 = 𝜎𝑒𝑬     (2-5) 

where 𝜎𝑒 is the material electric conductivity. 𝑩 is related to 𝑯 by the constitutive relationship 

𝐁 = 𝜇𝑯     (2-6) 

where 𝜇 is the permeability. In the same way 𝑫 is related to 𝑬 by the constitutive relationship 

𝐃 = 𝜀𝑬     (2-7) 

where 𝜖 is the permittivity. In addition to these equations, based on (2-2) the magnetic vector 

potential 𝑨 is defined by 

𝐁 = 𝜵 × 𝑨     (2-8) 

Now for the vector 𝑨 to be unique and therefore determinable, its divergence has to be defined. 

This we do by the Coulomb gauge: 

𝛁. 𝑨 = 0     (2-9) 

The subject of computational electromagnetics may be divided into low and high frequency 

electromagnetics. It is a natural separation in view of the governing equations and the 

specialized nature of the division between low and high frequency electromagnetics. Typical 

low frequency devices are electrical machines, electronic devices, transmission lines, and 

magnetic recording heads whereas high frequency devices are waveguides, resonant cavities, 

and radiating devices such as antennae. In terms of equations, the difference between these two 
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systems is that in low frequency devices, the displacement current is negligible while in high 

frequency devices it is not.  Therefore, for low frequency devices, (2-3) will reduce to  

𝜵 × 𝑯 = 𝑱     (2-10) 

In contrast, for high frequency devices, although 𝐃 is small, its rate of change is high, making 

𝜕𝑫

𝜕𝑡
 of (2-3) directly applicable. However in many problems in lossless media, since the 

medium has zero conductivity 𝜎𝑒, no conduction current may exist in keeping with (2-5). 

 

2.3.2.2 Eddy Current Equation 

In magnetostatics, an electric field causes current and the current causes a magnetic field. If 

time variation is introduced, the resulting magnetic field does affect the initial electric field via 

(2-4). In the same way the electric field affects the magnetic field with the extra displacement 

current term (2-3). Let us consider (2-4), the non-divergent 𝑩 may be modelled by a vector 

potential 𝑨 as in (2-9): 

𝜵 × 𝑬 = −
𝜕𝑩

𝜕𝑡
= −

𝜕𝜵 × 𝑨 

𝜕𝑡
 

𝜵 × 𝑬 = 𝛁 × −
𝜕𝑨

𝜕𝑡
     (2-11) 

The two vectors 𝑬 and −
𝜕𝑨

𝜕𝑡
 have the same curl, which is possible only if:  

𝑬 = −
𝜕𝑨

𝜕𝑡
− 𝛁𝜑    (2-12) 

It is realized that the term –𝛁𝜑 is the externally imposed electric field driving the current and 

−
𝜕𝑨

𝜕𝑡
 is the induced electric field. Combining (2-5) and (2-10), and substituting (2-6), (2-8) and 

(2-11), 
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𝜵 × 𝑯 = 𝑱 = 𝜎𝑒𝑬     (2-13) 

so that 

𝜵 × 𝑯 = 𝜎𝑒 (−
𝜕𝑨

𝜕𝑡
− 𝛁𝜑)     (2-14) 

and  

𝜵 ×
𝟏

𝜇
𝜵 × 𝑨 = 𝜎𝑒 (−

𝜕𝑨

𝜕𝑡
− 𝛁𝜑)     (2-15) 

Setting imposed current density, 

𝑱𝟎 = −𝜎𝑒𝛁𝜑   (2-16) 

and using the vector identity for thecurl of the curl and (2-9), 

𝜵 × 𝜵 × 𝑨 = 𝛁(𝛁.𝑨) − 𝛁2𝑨 

= −𝛁2𝑨     (2-17) 

we finally have, using (2-16), (2-17) and using phasor representation, where differentiation 

with respect to time is the equivalent of pre-multiplication by 𝑗𝜔 

−
1

𝜇
𝛁2𝑨 = 𝑱 = 𝜎𝑒𝑬 = 𝜎𝑒[−𝑗𝜔𝑨 − 𝛁𝜑]   (2-18) 

This reduces to our final equation 

−
1

𝜇
𝛁2𝑨 = 𝑱𝟎 − 𝑗𝜔𝜎𝑒𝑨     (2-19) 

For eddy current problem, (2-19) is the key equation to be solved to find the magnetic vector 

potential 𝑨 for a given imposed current density 𝑱𝟎. Once we find 𝑨, the magnetic flux density 

𝑩 can be calculated using (2-8) and the electric field intensity 𝑬 can be calculated using (2-12) 

according to the requirement of the problem. Calculating 𝑨 from (2-19) using the finite 

element method is described in detail in the following section.  
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2.3.2.3 Finite Element Computation for Eddy Current Problem 

Magnetic fields in a ferromagnetic material can be generated by placing an AC (Alternative 

Current) coil on top of the material.  For AC magnetization, the magnetic vector potential 𝑨, 

and the exciting current density 𝑱 at angular frequency ω, are related by −
1

𝜇
𝛁2𝑨 = 𝑱𝟎 −

𝜎𝑒𝑗𝜔𝑨 as described in (2-19). 

The corresponding functional can be written, similar to the way we derived  (1-53); 

ℒ(𝑨) = ∬([
1

2𝜇
(𝛁𝑨)2 − 𝑱𝟎𝑨 +

1

2
𝑗𝜔𝜎𝑒𝑨

2]) 𝑑𝑅 

= ∑ ∬[
1

2𝜇
(b2 + c2) − 𝑱𝟎𝑨 + 

1

2
𝑗𝜔𝜎𝑒𝑨

2] 𝑑𝑅

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

 

= ∑ {
𝟏

𝟐𝝁
(𝐛𝟐 + 𝐜𝟐)𝑨𝒓 − 𝑱𝟎

𝑨𝟏+𝑨𝟐+𝑨𝟑

𝟑
𝑨𝒓 +

𝟏

𝟐
𝒋𝝎𝝈𝒆𝑨

𝟐}𝑬𝒍𝒆𝒎𝒆𝒏𝒕𝒔    

= ∑

{
 
 

 
 

1

2𝜇
𝑨𝑡 𝐴𝑟 [

𝑏1
2 + 𝑐1

2 𝑏1𝑏2 + 𝑐1𝑐2 𝑏1𝑏3 + 𝑐1𝑐3

𝑏2𝑏1 + 𝑐2𝑐1 𝑏2
2 + 𝑐2

2 𝑏2𝑏3 + 𝑐2𝑐3

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏3
2 + 𝑐3

2

] 𝑨 − 𝑨𝑡

{
 
 

 
 

𝑱𝟎 𝐴𝑟

3
𝑱𝟎 𝐴𝑟

3

𝑱𝟎 𝐴𝑟

3 }
 
 

 
 

+𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

1

2
𝑗𝜔𝜎𝑒𝑨

𝟐

}
 
 

 
 

               (2-20) 

Since the first two parts of (2-16) are similar to the terms we have already derived in (1-58), 

the last part of (2-16) which is 
1

2
𝑗𝜔𝜎𝑒𝑨

𝟐 is computed as follows;  

∬(
1

2
𝑗𝜔𝜎𝑒𝑨

2) 𝑑𝑅 = ∬(
1

2
𝑗𝜔𝜎𝑒𝑨

𝑡𝑨)𝑑𝑅 
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= ∬(
1

2
𝑗𝜔𝜎𝑒[𝑨𝟏 𝑨𝟐 𝑨𝟑] [

𝜁1
𝜁2
𝜁3

] [𝜁1 𝜁2 𝜁3] [

𝑨𝟏

𝑨𝟐

𝑨𝟑

])𝑑𝑅 

= ∬(
𝟏

𝟐
𝑗𝜔𝜎𝑒𝑨

𝒕  [

𝜁1
2 𝜁1𝜁2 𝜁1𝜁3

𝜁2𝜁1 𝜁2
2 𝜁2𝜁3

𝜁3𝜁1 𝜁3𝜁2 𝜁3
2

] 𝑨)𝑑𝑅     (2-21) 

where 𝑨 in a triangle element has been written in triangular coordinates 𝜁1, 𝜁2 and 𝜁3, But, 

∬(𝜁1
𝑖𝜁1

𝑗𝜁1
𝑘) 𝑑𝑅 =

𝑖!𝑗!𝑘!2!

(𝑖+𝑗+𝑘+2)
𝐴𝑟    (2-22) 

By applying (2-22) in (2-21), and rearranging 

∬(
1

2
𝑗𝜔𝜎𝑒𝑨

2) 𝑑𝑅 =
1

2
𝑗𝜔𝜎𝑒𝑨

𝑡 𝐴𝑟

12
 [
2 1 1
1 2 1
1 1 2

] 𝑨   (2-23) 

Now, substituting (2-23) in (2-20), 

ℒ(𝑨) = ∑

{
 
 

 
 

1

2𝜇
𝑨𝑡 𝐴𝑟 [

𝑏1
2 + 𝑐1

2 𝑏1𝑏2 + 𝑐1𝑐2 𝑏1𝑏3 + 𝑐1𝑐3

𝑏2𝑏1 + 𝑐2𝑐1 𝑏2
2 + 𝑐2

2 𝑏2𝑏3 + 𝑐2𝑐3

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏3
2 + 𝑐3

2

] 𝑨 − 𝑨𝑡

{
 
 

 
 
𝑱𝟎 𝐴

𝑟

3
𝑱𝟎 𝐴

𝑟

3
𝑱𝟎 𝐴

𝑟

3 }
 
 

 
 

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

+
1

2
𝑗𝜔𝜎𝑒𝑨

𝑡
𝐴𝑟

12
 [
2 1 1
1 2 1
1 1 2

]𝑨

}
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= ∑

{
  
 

  
 

1

2
𝑨𝑡  (

𝐴𝑟

𝜇
[

𝑏1
2 + 𝑐1

2 𝑏1𝑏2 + 𝑐1𝑐2 𝑏1𝑏3 + 𝑐1𝑐3

𝑏2𝑏1 + 𝑐2𝑐1 𝑏2
2 + 𝑐2

2 𝑏2𝑏3 + 𝑐2𝑐3

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏3
2 + 𝑐3

2

] + 𝑗𝜔𝜎𝑒

𝐴𝑟

12
 [
2 1 1
1 2 1
1 1 2

])𝑨

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

− 𝑨𝑡

{
 
 

 
 
𝑱𝟎 𝐴

𝑟

3
𝑱𝟎 𝐴

𝑟

3
𝑱𝟎 𝐴

𝑟

3 }
 
 

 
 

}
  
 

  
 

 

= ∑ {
1

2
𝑨𝑡[𝑃]𝑨 − 𝑨𝑡𝑄}𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠     (2-24) 

where, in corresponding notation, the local matrices 

[𝑃] =  
𝐴𝑟

𝜇
[

𝑏1
2 + 𝑐1

2 𝑏1𝑏2 + 𝑐1𝑐2 𝑏1𝑏3 + 𝑐1𝑐3

𝑏2𝑏1 + 𝑐2𝑐1 𝑏2
2 + 𝑐2

2 𝑏2𝑏3 + 𝑐2𝑐3

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏3
2 + 𝑐3

2

] + 𝑗𝜔𝜎𝑒
𝐴𝑟

12
 [
2 1 1
1 2 1
1 1 2

]  (2-25) 

and 

𝑄 =

{
 
 

 
 

𝑱𝟎 𝐴𝑟

3
𝑱𝟎 𝐴𝑟

3

𝑱𝟎 𝐴𝑟

3 }
 
 

 
 

      (2-26) 

Finite element analysis [20] provides the solution to (2-19) by applying certain boundary 

conditions. The local matrices of elements will be added to the corresponding positon of the 

global matrix to be solved for 𝑨. This leads to the finite element matrix equation 

[𝑃𝑔]𝑨 = 𝑄𝑔     (2-27) 

Equation (2-27) is solved in the same way as explained in section 1.5.4, calculating local 

matrices and adding them to the global matrix equation to be solved for 𝑨. 
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2.3.3 Problem Statement  

The numerical example in Figure 2-4 [57] is used to study the detectability of defects in 

different orientations. The coil (with 𝜇𝑟  = 1.0, current density  𝑱𝟎 = ± 1 𝐴/𝑚2 , and 𝜔 =

10 𝑟𝑎𝑑/𝑠) excites the magnetic field in the steel plate (with 𝜇𝑟  =  100.0 and current 

density 𝑱𝟎 = 0.0). The conductor is surrounded by air (with 𝜇𝑟  = 1.0 and current density 𝑱𝟎 =

0.0 ). Any defect in the material should affect the magnetic flux density 𝑩 between the AC coil 

and the material. The magnetic flux density in the 𝑦 ̂direction 𝐵𝑦  is calculated at 10 points as 

shown in Figure 2-4 labeled as the measuring line.  

 

First, 𝐵𝑦   for the steel plate with no defect is calculated at the measuring line and 

named 𝑩𝑛𝑜𝑑𝑒𝑓𝑒𝑐𝑡
𝑖 . Here 𝑖 is the number of a particular point on the measuring line. Since our 

study is about whether the defect is detectable or not, we defined a single defect with 

parameterized geometries {𝑥, 𝑑, 𝑙, 𝑤, 𝜃} as shown in Figure 2-4. By changing the parameters of 

the defect, we change the position of the defect as shown in Figure 2-5. and calculate 𝐵𝑦  at the 

measuring points, which we name 𝑩𝑑𝑒𝑓𝑒𝑐𝑡
𝑖 . Then the effect on flux density 𝑅(𝜃,𝑑,𝑙)

𝐵  as described 

by 

𝑅(𝜃,𝑑,𝑙)
𝐵 = 𝑚𝑎𝑥𝑖=1..𝑚 (|

𝑩𝑛𝑜𝑑𝑒𝑓𝑒𝑐𝑡
𝑖 − 𝑩𝑑𝑒𝑓𝑒𝑐𝑡

𝑖

𝑩𝑛𝑜𝑑𝑒𝑓𝑒𝑐𝑡
𝑖 |)     (2-28) 

(2-28) was calculated for each defect and tabulated. By considering the maximum of 𝑅(𝜃,𝑑,𝑙)
𝐵 , 

we establish the defect detecting quantity which is measured. 𝑅(𝜃,𝑑,𝑙)
𝐵  is the maximum value of 

flux density ratio between flux changes caused by the defect and flux without the defect, where 

a defect with length 𝑙 is at depth 𝑑 from the material surface and rotated by angle 𝜃 clock-wise 

from the “horizontal” line parallel to the steel surface (Figure 2-4). 
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 Figure 2-4 Numerical Model 

 

Figure 2-6 shows how the ratio 𝑅(𝜃,𝑑,𝑙)
𝐵  varies with defect locations. When 𝑅(𝜃,𝑑,𝑙)

𝐵  is high, there 

is a higher chance that the defect will be detected. Figure 2-6.a shows the results for a 

horizontal defect (𝜃 = 00) when the depth d increases, 𝑅(𝜃,𝑑,𝑙)
𝐵 decreases. So that means when 

the depth of the defect is higher, it would be harder to detect as to be expected. Figure 2-6.b 

shows when the defect is vertical (𝜃 = 900) how 𝑅(𝜃,𝑑,𝑙)
𝐵 varies with depth. Here also when d 

increases 𝑅(𝜃,𝑑,𝑙)
𝐵  decreases. Here 𝑑 =  0 corresponds to the right-most part of Figure 2-2. 

Anyway when we compare a horizontal defect and vertical defect, the horizontal defect has a 

higher chance to be detected, for the given 𝑑 value  
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This is to be expected because a horizontal defect will interrupt flux more since the flux flow 

is along the surface. Fig.6.c shows how 𝑅(𝜃,𝑑,𝑙)
𝐵  varies with angle 𝜃: 𝑅(𝜃,𝑑,𝑙)

𝐵  goes to a maximum 

when 𝜃 = 450. So we could say that when the angle of the defect is 450, there is a higher 

chance to be detected.  

 

  

a.No defect b. 𝑑 = 0.3 and 𝜃 = 0° 

  

c. 𝑑 = 0.3 and 𝜃 = 30° d.  𝑑 = 0.3 and 𝜃 = 90° 

  

Figure 2-5  Equipotential lines for the defects at various positions and orientations 
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a. 𝑅(𝜃,𝑑,𝑙)
𝐵  varies with d for horizontal defect 

 

b. R(θ,d,l)
B varies with d for vertical defect 

 
c. R(θ,d,l)

B varies with θ 

 

Figure 2-6 R(θ,d,l)
B with defect location 
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2.3.4 Experimental Work in Defect Detection  

 

Figure 2-7 Rectangular defect on steel plate 

Experimental work was done to verify the computational work of defect detection. The coil 

was moved along the x axis of the steel plate (Figure 2-9) and the voltage induced was 

measured as shown in Figure 2-8. We created a rectangular defect on a steel plate as shown in 

Figure 2-7. A close-up look of the defect is shown in Figure 2-9. Alternating sinusoidal current 

was excited in the coil with 300 mV at 1000 Hz using the waveform generator. A pick up coil 

was wound on top of the AC coil to measure the voltage induced. Since the voltage induced is 

very small, we used the lock-in amplifier to measure voltage. We moved the coil along the 

surface of the steel and measured the induced voltage at the measuring points indicated in 

Figure 2-7. According to Faraday’s equation, the voltage induced 𝑉𝑖𝑛𝑑 is proportional to the 

change in flux 𝜑 (2-29).  

𝑉𝑖𝑛𝑑 ∝  𝑗𝜔𝜑         (2-29) 

The results were tabulated and plotted in Figure 2-10. From the plot, when the coil is just 

above the defect, the voltage induced is at its maximum. The test was repeated with different 

input voltages and different frequencies and we obtained the same behavior as in Figure 2-10. 

In this way we established that we could detect the defects and therefore moved to the defect 
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characterization part of this study. The frequency of excitation also plays an important role in 

detecting the defect. As in equation (2-25), when frequency  𝜔 goes high, 𝑉𝑖𝑛𝑑 will be high 

and can be measured easily. But the eddy current will flow close to the surface due to the skin 

effect. Therefore we cannot detect defects which are deeply embedded inside the plate.  

 

Figure 2-8 Lab setup 

 

 

Figure 2-9 Close-up-look of the defect 
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Figure 2-10 Voltage induced on pickup coil 

 

2.4 Defect Characterization 

2.4.1 Design Parameters 

After detecting the defect, we investigated more on defect characterization. It is important to 

know the size and character of the defect after establishing that there is a defect inside. So in 

our work we investigate and establish a procedure for defect characterization so that a decision 

to withdraw a defective part may be thought-out, and be justifiable. 

 

The methodology at present [7] examines the response of an army ground vehicle hull under 

test to an excitatory signal from an eddy current probe. By knowing the response when there is 

no defect, if the response is different because of the defect, the test object is presently flagged 

as defective and the plate is sent for repairs without assessing if the defect is serious enough 

for removal from service. In our work, we extend that methodology to defect characterization. 

An iterative approach is presented that repeatedly employs the finite element technique for 

modeling the forward problem to characterize the shape of defects in a steel plate. 
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Figure 2-11 Defect Model 

 

We can calculate the magnetic flux density for known defects from the forward problem. But 

in our inverse problem we need to know the characteristics of the defect for that field 

configuration. In design optimization, the problem geometry is defined in terms of design 

parameters contained in a vector ℎ̅ = { 𝑥1, 𝑦1, … , 𝑥𝑛, 𝑦𝑛} (Figure 2-11). An object function 𝐹 is 

defined as the sum of the squares of the difference between computed and measured (defect) 

performance values at measurement points i,  

F(𝑥1, 𝑦1, . . , 𝑦𝑛) =  ∑ (𝐁Calculated 
i − 𝐁Measured 

i )
2
        i    (2-30) 

𝐹 is a function of defect shape. By minimizing the object function F with respective to the 

parameters by any of the optimization methods, the characteristics of the defect can be 

estimated. 

 

The computational process in the defect identification system is shown in Figure 2-12. It needs 

to solve the design parameters ℎ̅. First, the mesh needs to be generated for the given design 

parameter. Mesh generation is a very important part of finite element analysis based design 

optimization. We need to use a parameter based mesh generator, because in every iteration, the 
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mesh has to be generated automatically when design parameters change. Therefore we use a 

special script-based parametric mesh generator [60] using as backend the single problem mesh 

generator Triangle [61] to get the corresponding finite element solution for the magnetic vector 

potential 𝑨. Triangle had to be modified for seamless, nonstop optimizations by a colleague in 

our research group [60], [62]. His work is used here. After computing 𝑨 by finite elements, the 

magnetic flux density (𝐁Calculated 
i ) is computed and the object function 𝐹 is evaluated. When 

the object function 𝐹 is minimum, the parameters ℎ̅  will be found.  If 𝐹 is not minimum, the 

design parameters will be changed using the optimization method being employed.  

 

Figure 2-12 Design Cycle for the computation process 

 

For the known defect which is known as true profile, 𝐁Measured 
i was calculated first. Then 

faking that we do not know the shape of the defect, we generated hundreds of different shapes 

of defects using our algorithm. 𝐁Calculated  
i was calculated each time. Comparing 𝐁Measured 

i and 

𝐁Calculated 
i , the object function 𝐹 is evaluated each time and optimized. When 𝐹 is minimum, 

the reconstructed shape of the defect is generated.   
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2.4.2 Numerical Model  

The numerical model in Figure 2-13 [57] is used to validate the proposed algorithm. The coil 

(with 𝜇𝑟   =  1.0, and current density  𝑱𝟎 = ± 5 ×  104 A/m2 ) excites the magnetic field in 

the steel plate (with 𝜇𝑟   =  100.0 and current density 𝑱𝟎 = 0.0). The conductor is surrounded 

by air (with 𝜇𝑟   =  1.0 and current density 𝑱𝟎 = 0.0 ). The magnetic flux density in the 

y ̂ direction By is measured at  y =  4.5 cm, 8 cm ≤ x ≤ 12 cm using 10 points in the 

interval as shown in Figure 2-13 labeled as the measuring line. 

 

 

Figure 2-13 Numerical Model for defect characterization 

 

On each node on the defect, the vertical displacements are selected as design parameters 

Figure 2-11. In our numerical model we have 8 geometric parameters contained in the vector h̅ 

(h1, h2, h3, h4, h5, h6, h7, h8). The measuring line located at y = 4.5 cm, is sampled into 10 

equally spaced points and tolerance boundaries on h̅ value are set to 0.5 cm ≤ h ≤ 3.5 cm. 
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Each design variable is represented by 10 bits. For testing we took a particular defect h̅ as  h̅ = 

{2.0. 1.2, 2.4, 2.2, 2.7, 3.0, 3.2, 3.5} cm and computed the field (𝑩𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑
𝑖 ).  

 

Now our algorithm has to reconstruct ℎ̅ to match the “measurements” (𝐁Measured 
i ). The design 

parameters are changed and the magnetic flux density is calculated (𝑩𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 
𝑖 ) along the 

measuring line. The object function 𝐹 is evaluated by comparing 𝑩𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 
𝑖  with 𝐁Measured 

i .  

 

2.4.3 Constraints Handling 

In inverse problem design optimization, getting a practically manufacturable shape is 

important. An erratic undulating shape with sharp edges arose when Pironneau optimized a 

pole face to achieve a constant magnetic flux density [12]. Since our design optimization is in 

defect characterization, there is no need to impose constraints to get a smooth manufactural 

shape. But we have to get a single defect with a realistic shape. This problem was overcome by 

imposing constraints [63]. So as to maintain a realistic shape with a single defect, node 8 is on 

top of node 1, node 7 on top of node 2, node 6 on top of node 3 and node 5 on top of node 4 as 

in Figure 2-14, we had imposed the constraints as h8>h1, h7 >h2, h6 >h3 and h5 >h4; Therefore 

we could get a single and realistic defect as shown in Figure 2-16.  

 

2.5 Results and Discussion 

Several simulations of the defect characterization problem were run and the results were 

tabulated. The best fitness score was achieved when the population size is 200 and for 200 

iterations. Figure 2-14 shows the optimum shape of the defect after 200 iterations for a 
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population size of 200. To measure the error in the reconstruction of the defect, using e, the 

length from the centroid of the true profile to each point was calculated: 

𝑒 =
∑

𝑟𝑡𝑟𝑢𝑒
𝑖 −𝑟𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑

𝑖

𝑟𝑡𝑟𝑢𝑒
𝑖

𝑛
𝑖=1

𝑛
     (2-31) 

where  𝑟𝑡𝑟𝑢𝑒
𝑖  is length from the centroid to the true profile, and 𝑟𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑

𝑖  is the length from 

the centroid to the reconstructed profile as shown in Figure 2-15 and 𝑛 is the number of 

coordinates in the profile. The calculation process for our numerical model is shown in  

Table 2-1. This calculation gives error 𝑒 = 12%, which means an efficiency of 88% in the 

average reconstruction of the defect. For the reconstructed profile, the finite element solution 

of the magnetic vector potential is shown in Figure 2-16. 

 

 

 Figure 2-14 Optimum shape of the Reconstructed Defect 
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Figure 2-15 Calculating efficiency of reconstruction 

 

 

Figure 2-16 Solutions in Equipotential lines for the Numerical Model 
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Table 2-1 Calculating the efficiency of reconstruction 

true profile Reconstructed Profile 
𝑟𝑡𝑟𝑢𝑒

𝑖 − 𝑟𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑
𝑖

𝑟𝑡𝑟𝑢𝑒
𝑖

 
No x y 𝑟𝑡𝑟𝑢𝑒

𝑖  x y 𝑟𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑
𝑖  

1 8.00 2.00 1.589222 8.00 1.89 1.628872 0.0249 

2 9.00 1.20 1.416201 9.00 1.35 1.276959 0.0983 

3 10.00 2.40 0.515388 10.00 2.11 0.649788 0.2608 

4 11.00 2.20 1.534805 11.00 2.38 1.506992 0.0181 

5 11.00 2.70 1.510174 11.00 2.61 1.502406 0.0051 

6 10.00 3.00 0.689656 10.00 2.65 0.515388 0.2527 

7 9.00 3.20 0.840015 9.00 2.81 0.575522 0.3149 

8 8.00 3.50 1.789029 8.00 3.57 1.828121 0.0219 

 

It is important to know the efficiency of the algorithms we develop and the efficiency of our 

coding before we move into more complex and time consuming problems like the coupled 

problem which is our ultimate goal. To study the efficiency of our inverse algorithm, several 

tests are required and also different numerical models have to be checked besides the 

numerical test model we have tested here. First we started our test with the optimization 

method we use, the genetic algorithm. We have already discussed (in section 1.4.2) that in GA, 

solutions can be represented by a binary string or real numbers. There are advantages and 

disadvantages to whether we use binary or real numbers to represent the solution. Therefore 

we did the tests with both binary and real numbers for the same numerical model problem we 

discussed. Tests were carried out for the different population sizes and different number of 

iterations and measured the time taken to compute the problem and tabulated these in Table 
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2-2. In the same way for the different population sizes and different number of iterations, the 

best fitness score is measured and tabulated in Table 2-3. From Table 2-2 and Figure 2-17, we 

can see that solutions that are represented by real numbers give solutions faster than the 

solutions that are represented in binary numbers. Especially as the number of iterations and the 

number populations are increased the time gap between real and binary solution times is 

increased. The reason would be that, in the binary based genetic algorithm, every time the 

solution is evaluated, the encoding and decoding processes have to be done; whereas in the 

real number based genetic algorithm implementation, this process in unnecessary as the 

solution is already a real number. When comparing the best fitness score achieved by real and 

binary solutions in Table 2-3, the binary solutions give slightly better solutions than the real 

number solutions. But if we consider 2 digit approximations, both real and binary solutions 

give almost the same fitness score.  Therefore we conclude that the real number based genetic 

algorithm is more efficient than the binary implementation in our problem. So we decided to 

work with real number based genetic algorithm for all future problems.  

 

After testing the genetic algorithm with real and binary solutions, we also tested with different 

shapes of the defect. For the known defect which we term the true profile, faking that we do 

not know the shape to measure the convergence, many different shapes were generated using 

the optimization algorithm we use and matched using the objective function. When the 

objective function is minimum, the reconstructed profile is generated and matched with the 

true profile. We tested this process with two different defects, Defect-1 and Defect-2 to check 

the efficiency of the algorithm as shown in Figure 2-18. We get 87.5 % of average 

reconstruction for Defect-1, and 92.7 % of average reconstruction for Defect-2. 
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Table 2-2 Real and binary solutions time need to compute 

 

 

Table 2-3 Real and binary best fitness score achieved 

 

 

 

 

 

 

 

 

Population Size 

30 iterations 40 iterations 50 iterations 

Time Taken(s) Time Taken(s) Time Taken(s) 

Real Binary Real Binary Real Binary 

10 274.33 311.97 346.58 408.29 413.16 503.43 

20 540.68 661.79 695.28 891.06 866.47 1105.42 

30 861.79 1024.65 1095.82 1258.17 1588.32 1749.10 

40 1319.36 1431.34 1666.79 1950.36 2024.03 2390.25 

50 1583.73 1769.60 1994.77 2302.99 2323.93 2891.94 

60 1757.78 2131.94 2199.26 2534.36 2656.53 3303.85 

Population Size 

30 iterations 40 iterations 50 iterations 

Best Fitness Score Best Fitness Score Best Fitness Score 

Real Binary Real Binary Real Binary 

10 0.0123 0.0019 0.0091 0.0020 0.0091 0.0015 

20 0.0084 0.0012 0.0084 0.0008 0.0084 0.0008 

30 0.0040 0.0009 0.0040 0.0009 0.0040 0.0009 

40 0.0105 0.0017 0.0105 0.0017 0.0105 0.0017 

50 0.0111 0.0017 0.0068 0.0017 0.0068 0.0017 

60 0.0127 0.0017 0.0127 0.0016 0.0127 0.0000 
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a. 30 iterations  

 

b. 40 iterations  

 

c. 50 iterations  

Figure 2-17 Time required for real and binary solutions 
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a. Defect-1 b. Close-up look of defect-1 

 

 

c. Defect-2 d. Close-up look of defect-2 

Figure 2-18 True and Reconstructed shape of defects 

 

2.6 Experimental Work in Defect Characterization 

The frequency of excitation is a very important factor when it comes to experimental eddy 

current work which is where real testing occurs. When the frequency is high, like in the kHz 

range, the signal received is strong enough to measure by a pick-up coil. But, the depth of 

penetration was low for the high frequency signal. Therefore the defects which are not close to 

the surface of the steel would not be detected.  On the other hand, low frequency signals have 
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good depth of penetration, but the signals are too weak to measure by a pick-up coil.  Even 

when we use a lock-in amplifier to amplify them, the signals were found to be weak of the 

order of 10-6 V.  

 

Therefore we used an EC-GMR (Eddy Current Giant Magnetoresistive Sensor) to measure the 

signal. EC-GMR sensors have been used to enhance the sensitivity of EC testing. This sensor 

measures the magnitude of the magnetic flux directly [64], [65]. The EC-GMR sensor offers 

high sensitivity over a wide range of frequencies from DC to MHz [66]. An experimental 

study of automatic crack detection under a steel fastener using a low frequency EC-GMR 

sensor was done by Yang et al. [67]. We use the same experimental set up to measure the 

magnitude of the magnetic flux, and then use that measurement for the inverse problem 

solution of defect characterization.  

 

The EC-GMR detection system contains a planar multi-line coil and set of GMR sensors 

mounted on the line of symmetry as shown in Figure 2-19 [68]. The multi-line coil carrying 

current is employed as a sheet current source to induce the eddy current on the material we 

investigate. If there is a crack or defect in the material, the induced currents in uniform and 

linear patterns are distorted as shown in Figure 2-20 [68]. Figure 2-20-a shows the induced 

eddy current patterns when there is no discontinuity. Figure 2-20-b shows the patterns when 

there is a rivet and Figure 2-20-c shows when there is a rivet with a defect.  
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Figure 2-19 Planar coil and GMR sensor 

 

 

  

a. No discontinuity  b. A rivet  c. A river with defect  
 

Figure 2-20 Induced eddy current in the plate 

We used this experimental set-up for our work as shown in Figure 2-21. We started the 

experiment with an aluminum plate with a rivet to study and investigate the selection of 

frequency.  Figure 2-22-a shows the aluminum plate with a rivet. This aluminum plate is 

covered by another 5 mm thick aluminum plate like a second layer, so it will look like a plate 

with an internal defect. Figure 2-22-b and c show the scan images for the frequencies 1000 Hz 

and 100 Hz respectively. The testing material (aluminum plate) was scanned in the 𝑥 ̂direction 

from -30 mm to 30 mm distance considering the origin is approximately at the defect. There 
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are 32 GMR sensors fixed in the line of symmetry scanning the magnitude of the magnetic 

flux every mm distance. We found that at 1000 Hz, we get the scanned image with the least 

noise and magnitude of flux density with the range of 2 mT – 12 mT. 

 

Figure 2-21 Experimental set-up 

 

   
a. Aluminum plate 

with rivet 

b. Scanned image at 1000 Hz c. Scanned image at 100 Hz 

 

Figure 2-22 Scanned Images for the aluminum plate with rivet 
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Later we moved to a steel plate which has an internal defect as shown in Figure 2-23-a. In this 

experiment, we used only 3 sensors as our current computational work is limited to 2D. Here 

the steel plate was scanned in the 𝑥 ̂direction from -10 mm to 30 mm distance considering that 

the origin is approximately at the defect. From the readings, the middle GMR sensor readings, 

which was named Sensor-2 readings, were filtered out and plotted in the 𝑥 ̂direction as in 

Figure 2-23-b.  

 

 

 

 
 

 

 

a. Steel plate with internal defect b. Reading of Sensor no.2  

 

Figure 2-23 Readings for the steel plate with defect 

Then we worked on our computational model that would match the experimental model. In the 

experimental work a multi-line coil is considered to be a current sheet. But in our 2D 

computational model, the current sheet will be a single line and this is impossible to compute 

using a 2D finite element method. Therefore the current sheet is assumed to have thickness and 

we designed our model as shown Figure 2-24-a. The solution for the magnetic vector potential 

is shown in Figure 2-24-b.  
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a. 2D Model b. Equi-potential lines for the model 
 

Figure 2-24 2D model to match the experimental setup 

The solution (magnitude of magnetic flux density) of the experimental model and 

computational model did not match to progress further. There can be two reasons for this 

mismatching. One reason is that our approximating the current sheet to be a thick infinite layer 

is not a good assumption. The second possible reason is that the GMR sensor is moving with 

the coil in the experimental model, but it is not in the computational model. In a 3D 

computational model, the experimental setup including the current sheet can be modeled to get 

better results.  

 

2.6.1 Future Work 

Matching experimental and computational work in defect characterization work is in progress 

as we are developing the 3D mesh generator [62] and validating the solutions. Once we match 

both in the objective function, 𝐁Measured 
i will be taken from the experimental setup. Then 

using the computational setup, the defect characterization will be effected.  
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2.7 Conclusion 

Our goal in this chapter was characterizing the shape of the defect. But, before move into 

defect characterization, a study on the defect detection has been done.  Defects in many 

different orientations and the detectability of these defects were tested. According to our 

investigations when the depth of the defect increases, it is hard to detect. While that may be as 

to be expected, we also found that, when we compare horizontal and vertical defects, a 

horizontal defect has a higher chance of being detected. Our results further showed that when a 

defect is at an angle of 450, it has the highest chance of being detected.  

 

This chapter also presents a finite element technique for solving inverse problems in 

magnetostatic NDE [69]. Defect shape reconstructing using the genetic algorithm optimization 

method is presented and validated using a numerical model. We also imposed constraints in 

the system to get a realistic single defect reconstruction that is smooth.  The efficiency of the 

genetic algorithm was checked with real and binary solutions. We conclude that for our 

problem, real numbers based genetic algorithms take less computation time. Therefore we 

decided to work with only real numbers based genetic algorithms in all future problems in this 

thesis. We also did many tests for the different shape of the defects and made sure of the 

accuracy of our inverse algorithm. Experimental work was done to measure the magnetic flux, 

so in our computational set up, experimental readings (𝐁Measured 
i ) can be given as input to 

find the defect characteristic. Shaping algorithms on a single physics problem give confidence 

to work with the two-physics problem. So we moved to the electro-thermal coupled problem 

[43] which is discussed in the chapter 3.  
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3 FLIP-TEACHING TO TEACH FINITE ELEMENT OPTIMIZATION 

3.1 Introduction - Flip Teaching 

To test our algorithms and seek novel use for them, they were employed in a semester’s course 

at Michigan State University that teaches the finite element method and optimization with true 

device design [70]. Flip-teaching was introduced to tackle the challenges of limited class time. 

The traditional order of a) delivering theory and next b) developing the ancillary programming 

tools (mesh generators, solvers and equipotential plotter) is flipped to do real design. Giving 

students the ancillary tools created the efficiencies to cover finite elements and optimization, 

usually taking two courses, in the same single course [70]. To do real design, pre-constructed 

meshes are given to students described by design parameters and ancillary programs (mesh 

generator, solvers and equipotential plotters) are also given to them to do the homework and 

final project. In the last three weeks of the semester, each student mastered one optimization 

method and presented his or her results and taught that specific method to others.  

 

The problem now is that to teach this process of design we need to teach two courses, one on 

finite element analysis and the other on optimization because in the world of design the one is 

not too useful without the other. Taking multiple courses needs specialist commitment from 

the student such as at graduate level. Therefore we need a single course to address the 

curricular crunch. And within that course we need to teach finite elements and optimization 

and pack in programming exercises. We do that by flip teaching. Flip teaching was resorted to 

as a solution. Flip teaching [71], in alternative phraseology is reverse-teaching [72]. By these 

terms what is broadly meant is the instructor recording lectures on video for the students to 

watch at home, thereby freeing valuable class time for face-to-face (F2F) discussions between 
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the instructor and class. It flips the order of homework and F2F teaching.  While Bergman and 

Sams [73] and just 2 journal articles in the Web of Science [71], [72] define flip teaching, the 

popular literature is clearer in defining flip teaching [16], [53], [74]. In the New York Times’ 

words [74]: “In a flipped classroom, teachers make videos of their lectures introducing new 

concepts and assign them as homework. That frees up precious class time to work directly 

with students on projects, exercises or problem sets — the stuff that students would 

traditionally do at home. Now instead, of struggling alone, students can do the most important 

work with a teacher or peers who can help.” 

 

In the normal two-semester order of developing code, students would write their finite element 

code which includes the matrix solver in the first course. Thereafter in the optimization part 

they would first develop ancillary code like a mesh generator as a function call, plotting 

routines for object functions and then codes pertaining to optimization routines using the finite 

element code and the ancillary codes. The ancillary codes takes a lot of F2F time with the 

instructor for students to develop themselves, and that time does not inculcate much by way of 

optimization theory. In this course the term flip teaching is extended to the instructor preparing 

such relevant ancillary computer codes for the students as do not directly apply to the task of 

optimization. Students use and familiarize themselves with the ancillary code by themselves 

and then become free to switch away from the mesh generation concepts not directly relevant 

to the pedagogy of the course, to focus during F2F teaching on those concepts directly relevant 

to the material of the course like the optimization methods and the synthesis process.   
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3.2 Teaching Engineering Optimization: Real Design 

To illustrate using a bench mark design problem that is used to test commercial optimization 

programs [75], Figure 3-1, and Figure 3-2 describe the problem at the initial design. Figure 3-2 

gives the minimal boundary value problem based on symmetry that would yield a unique 

solution [20]. The target is a uniform 1 T vertical flux density along the dotted line shown in 

Figure 3-2. The design question is this: what should be the shape of the pole face shown in 

Figure 3-2, to overcome the effects of fringing and make the flux density constant along the 

measuring line? 

 

The initial flux flow of Figure 3-3 for the starting configuration shows that fringing diminishes 

the flux at the corner from its value at the center-line; and to raise it, the reluctance at the left 

edge needs to be diminished – which is done by reducing the length of the reluctance of air 

from the corner to the steel above. 

 

 

Figure 3-1 Pole-faced to be shaped 
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Figure 3-2 Minimal problem using symmetry 

 

For optimization through automatic computation of the shape, we would designate measuring 

points (9 in this case, shown as dots in Figure 3-4) where the vertical 1 T flux density required 

is computed [70]. Thus we define the object function 

𝐹({𝑝}) =
1

2
∑ (𝐵𝑖 − 1)29

𝑖=1      (3-1) 

where the descriptions {p} would involve the heights of the pole-face at various points going 

from left to right, the current in the coil and, as necessary, the permeability of the steel. 

 

Figure 3-3 Fringing in initial geometry 
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 Figure 3-4 The shaped pole face 

 

The teaching of optimization is kept to a minimum – genetic algorithm, simulated annealing, 

steepest descent, search methods and Powell’s [9], [25] with only a week devoted to the 

lectures by the instructor but a total of three weeks thereafter for a synthesis project on 

engineering optimization – making up a total of 4 weeks in the semester for optimization.  

 

Figure 3-5 Stretched Spring 

 

 

k1=8 N/cm 

K2=1 N/cm 

l1=10 cm 

l2=10 cm 

X1 

X2 
P2 = 5 N 

P1 = 5 N 

P2 = 5 N 

P1 = 5 N 
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The stretched spring problem of Figure 3-5 (with values shown) is an ideal problem whose 

energy-based object function is given by the work stored in the spring minus the work 

expended by the two forces, 

ℒ =
1

2
K1 {√X1

2 + (l1 − X2)2 − l1}
2

+
1

2
K2 {√X1

2 + (l2 − X2)2 − l2}
2

− P1X1 − P2l2   (3-2) 

This function is from Vanderplaats who has shown its properties to bring out the strengths of 

the various methods [9]. The equal-F lines plotted by us are shown in Figure 3-6. This object 

function allows us to see how the different methods work with different starting points. 

Venkataraman [25] gives several programs with his book so that with the MATLAB toolbox 

on optimization [76], students have an invaluable aid to problem solving 

 

 

Figure 3-6 Object function for spring (on the 𝐗𝟏 − 𝐗𝟐 plane)  

 

3.3 A Useful Tin Problem 

The trivial tin problem from a high school calculus book [77] was also used as a tool for 

students to play with. The exercise is simply to determine the radius r and height h of a 
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cylindrical tin of volume V such as to minimize the area A of the tin sheet to be used. Thus the 

object function becomes, the sum of the areas for the two lids and the curved surface 

𝐴 = 2𝜋𝑟2 + 2𝜋𝑟ℎ    (3-3) 

subject to the equality constraint that volume 

𝜋𝑟2ℎ = 𝑉    (3-4) 

This problem may be discussed as a three dimensional optimization problem subject to the 

equality constraint added to the object function with a Lagrange multiplier λ [9, 25] 

𝐹 = 2𝜋𝑟2 + 2𝜋𝑟ℎ + 𝜆(𝜋𝑟2ℎ − 𝑉)2     (3-5) 

Alternatively it may be cast as a one-dimensional problem in r by substituting V/(πr2) for h in 

A using the constraint to obtain the one-dimensional object function 

𝐴 = 2𝜋𝑟2 +
2𝑉

𝑟
   (3-6) 

and solved by setting: 

𝑑𝐴

𝑑𝑟
= 4𝜋𝑟 −

2𝑉

𝑟2
= 0 → 𝑟 = (

𝑉

2𝜋
)

1

3
    (3-7) 

For volume V = 10 cm3, we obtain r = 1.1675 cm and h = 2.34 cm.  

 

Knowing the solution, the former three-dimensional approach helps students to deal with 

constraints through penalty functions with understanding. The theory is [9], [25] that as the 

Lagrange multiplier λ gets to infinity the total augmented object function settles down to the 

minimum of the unconstrained object function, but because of stability issues λ has to be 

increased progressively. As a very short assignment students may bypass the stability problem, 

understand how λ works and verify the approach by random search. Using random numbers to 

generate r and h within a window with a large λ = 100,000, and searching for lower values 

of 𝐹, we get convergence to the correct answers r = 1.1683 cm h = 2.3322 cm or something 
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similar fairly quickly. But with smaller or negative λ, r and h converge to the highest values of 

the window. 

 

An understanding also emerges from this tin problem of how the shape of the object function 

determines convergence. When plotted without the constraint, Figure 3-7.a shows long vertical 

strips around the same h value where solutions are possible with very slight variations in the 

object function. Figure 3-7.b and Figure 3-7.c show the effect of the constraint confining the 

solution. The large blank area can numerically accommodate many solutions where the object 

function varies but slightly with small gradient, and emphasizes the numerical stability of 

methods which may be judged knowing the exact solution when students play with the various 

tools [25, 72]. In this case, the random method works very well. 

 

  

 

 
 

a.  𝜆 = 0  b. 𝜆 = 0.2 c. Constraint h2 only 

 

Figure 3-7 Object function 

 

3.4 Design of complex devices: The challenge 

The second difficult class assignment is automatic mesh generation. In finite element 

optimization, we start with a design {p} and iteratively change it towards the optimum. After 
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{p} changes, there corresponds a new geometry for which a new mesh has to be generated and 

the problem solved to evaluate the object function again. For practicable, seamless, nonstop 

optimization, given {p}, the mesh needs to be constructed without stopping the optimization 

iterations. While many commercial finite element mesh generators exist, they are incapable of 

being used as a function call – that is, given the parameter set {p}, the function must return for 

the next solution the new mesh data [78]. After years of focused research on optimization for 

electromagnetic device synthesis as well as NDE, there is to date no general purpose mesh 

generator capable of this reported in the literature although there are commercial codes with 

this capability [60]. 

 

 

 

 Figure 3-8 A simplified 5-parameter mesh generator 

 

Thus a problem-specific (as opposed to general purpose) mesh generator was prepared for the 

design problem of Figure 3-4. Figure 3-8 shows a 5-parameter mesh generator where a 
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different but equally valid line of symmetry is used. The steel is shown in white and the coil 

and air in different shades of dark. The mesh is crude but suffices for the problem at hand. The 

five parameters are the heights of the white pole-face at x = 0, 2.5, 5.0, 7.5, and 10 as 

measured up from y = 5.0 (these scales being relative). Mesh description {p} then consists of 

each height hi as a component of {p}. Each height is divided into 5 equal pieces. As a height is 

changed from one iteration to the next, the length above that pole-face going up to 𝑦 = 20 cm 

where the measuring points are) is appropriately adjusted and divided into three equal pieces 

as seen in Figure 3-8. The mesh generator, handled as a MATLAB function, takes these 5 

heights and the permeability of the steel and current in the coil as input and returns the mesh 

data. 

3.5 The Assignments 

 

Figure 3-9 The final optimum shape 
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After every week’s 3 hours of lectures of the 45-hour course, an assignment was given with a 

mix of analysis and programming problems. It is really the latter that helped students 

understand the numerical method. Given the difficulties and the immense workload, the 

programming assignment could be done by two students together. The eleventh week was 

devoted to lectures on optimization. During the last three weeks of class each student was 

asked to take over one particular method of optimization, become familiar with it, develop 

MATLAB code for it, do the the pole-face shaping with it and present it to the whole class 

through a 20 minute lecture. The experience helped even the instructor hear of methods (such 

as the taxi-cab method on which Powell’s method is based [20]) that a student came up with 

and used. The optimum, yielding 𝐵𝑦 =  1.06 𝑇 and 1.04 𝑇 in the two triangles where the 

design goal was measured is shown in Figure 3-9 obtained by simulated annealing [25]. 

Gradient methods, random search, taxicab, Powell’s, simulated annealing and the genetic 

algorithm were presented and thoroughly discussed. 

 

3.6 Conclusions 

Finite elements and mathematical optimization have been taught together in a semester to 

make up a true course on engineering optimization involving shape synthesis. Flip teaching 

was effectively used to give pre-prepared programs dealing with the ancillary, mundane tasks 

associated with finite element optimization. Students learned by themselves how to use these 

programs. As a result the more detailed and complex programming assignments were taken up 

immediately for face-to-face teaching. The end of the course saw each student armed with a 

suite of programs for engineering optimization. Through this course our algorithms were tested 

and this gives confidence to work on coupled problem optimization.   
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4 ELECTRO-THERMAL PROBLEM 

4.1 Introduction 

 In electromagnetic field problems, optimization methods have been successfully developed 

and applied efficiently. But, most of these methods only deal with the direct problem. 

However, real problems are more complex and often coupled, with two or more physical 

systems interacting.  

Heavy currents always lead to heating through the joule effect. This heat is often undesirable 

as in electrical machinery like alternators where the heat not only diminishes the efficiency of 

the generator but also can damage the insulation [79]. In other cases this heat can be beneficial 

as in a) the metallurgical industry where the heat is used to melt the ore and mix it through 

electromechanical forces [3], [80], [81] or b) hyperthermia treatment in oncology where 

cancerous tissue is burnt off albeit with lower currents, achieving the heating by stronger eddy 

currents through a higher 1 kHz frequency [4], [82], [83]. Whatever the situation, it is often 

desirable to accomplish a particular thermal distribution – whether to save an alternator from 

overheating or to accomplish the necessary melting of the ore or to burn cancerous tissue 

without hurting healthy tissue. 

 

As shown in Figure 4-1, the design process involves setting the parameters {p} that describe 

the electro-heat system (consisting of geometric dimensions, currents in magnitude and phase, 

and material values), solving the eddy current problem for the magnetic vector potential  𝑨 

[84]: 

−
1

𝜇
𝛁2𝑨 = 𝑱 = 𝜎𝑒𝑬 = 𝜎𝑒[−𝑗𝜔𝑨 − 𝛁𝜑]    (4-1) 
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where μ is the magnetic permeability, σe is the electrical conductivity, 𝑬 the electrical field 

strength and −∇φ is the externally imposed electric field driving the current [79] (see section 

2.3.2 for the origin of this equation). The frequency ω is relatively low (50 Hz to 1 kHz) so 

that the current density 𝑱 has only the conduction term σe𝐄  and no displacement term 

𝑗𝜔𝜖𝑬. After finding 𝑨 [18] -the finite element computation for finding 𝑨 for the eddy current 

problem is described in section 2.3.2.3- we compute the joule heating density 𝑞 from 

 𝑬 = −𝑗𝜔𝑨 − 𝛁𝜑                                                               (4-2) 

and 

 𝑞 =
𝜎𝑒

2
𝑬2                                                                     (4-3) 

 

Figure 4-1 Finite Element Analysis and Optimization of Coupled Magneto-Thermal Problems. 

 

Once we have the heat source distribution q, the second problem of finding the resulting 

temperature is addressed by solving [85]  

 −𝜎𝑡∇
2𝑇 = 𝑞                                                                (4-4) 
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where 𝜎𝑡 is the thermal conductivity [18]. Here we assume that 𝜎𝑡 is isotropic (meaning that 

heat flow in all directions is at the equivalent rate). We also assume 𝑞 is only from Joule 

heating. Therefore radiation and convection effects at the boundaries are neglected. We avoid 

more exact details because our purpose here is to establish the feasibility of the numerical 

methods we use. 

For solving (4-4), the electro-thermal finite element computational work is explained in 

section 4.3. Since the problem began with defining the parameters of system description {p}, 

we note that T = T({p}) since the computed T will depend on the values of {p}. When a 

particular temperature distribution 𝑇0(𝑥, 𝑦) is desired, the problem is one of finding that {p} 

which will yield 

 T({p}) = 𝑇𝑜                                                           (4-5). 

This is recognized as inverting (4-5) to find {p} and therefore it is referred to as the inverse 

problem which is now well understood in the literature, particularly when we are dealing with 

one branch of physics like electromagnetics [10], [11], [13]–[16], [86]. 

  

In multi-branch, coupled physics problems like the electro-heat problem under discussion, {p} 

is often defined in the electromagnetic system and F in the thermal system [18]. Further, when 

dealing with numerical methods such as the finite element method, T is given at the nodes 

(although technically T(x,y) may be derived from the finite element trial functions using the 

nodal values) and 𝑇𝑜, rather than being a function of x and y, is more conveniently defined at 

measuring points i,  numbering say m.  The design desideratum then may be cast as an object 

function F to be minimized with respect to the parameters {p} 

 𝐹 = 𝐹({𝑝}) =  
1

2
∑ [𝑇𝑖 − 𝑇0

𝑖]
2𝑚

𝑖=1                                           (4-6) 
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where 𝑇𝑖 is 𝑇 as computed at the same m points i where 𝑇0 is defined. The optimization 

process, by whatever method [9], keeps adjusting {p} until F is minimized, making 𝑇𝑖 come as 

close to 𝑇0
𝑖 as it can – as close as it can rather than exactly to 𝑇0

𝑖 because our design goal as 

expressed in (4-6) may not always be realistic and achievable. At that point {p} would 

represent our best design. The computational process in inverse problem solution as it relates 

to Figure 4-1 is shown in Figure 4-2. It requires solving for the vector of design 

parameters{p}. We first, generate the mesh from the latest parameter set {p} and get the 

corresponding finite element solution for 𝑨. Then from 𝑨, we compute the rate of heating Q. 

Thereafter we find the finite element solution for the temperature T. From T we evaluate the 

object function F. The method of optimization used will dictate how the parameter-set of 

device description {p} is to be changed depending on the computed F.  

 

Figure 4-2 The Design Cycle for the Coupled Magneto-Thermal Problem. 
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4.2 Context and Novelty 

To set this work in context, we note that this two-part optimization problem has been worked 

on before and we need to state what is novel here. In our work the design vector {p} includes 

geometric dimensions. This is what is new [43]. That is, we do shape optimization by an 

accurate finite element eddy current problem followed by another accurate finite element 

temperature problem and this two part finite element problem is cyclically iterated on by the 

inherently parallel genetic algorithm. The inherent parallelism of the genetic algorithm was 

recognized as far back as 1994 by Henderson [87] and done on parallel computers. In 2009 

Wong and Wong [88] and Robilliard, Marion-Poty, and Fonlupt [89] took that parallelization 

work on single field problems to the Graphics Processing Unit, working still with single field 

systems. We apply their work to the coupled field problem where solutions can take very long 

and reducing solution times is critical in creating practicably quick engineering design systems 

without sacrificing accuracy.   

 

The coupled electro-heat optimization problem has indeed been tackled before as we found in 

a Web of Science Core Collection literature search, but with key differences. Pham and Hoole 

[18] have used two finite element solutions and done shape optimization. But as pointed out 

below, that process is difficult to build general purpose software with because of difficulties 

with the gradient optimization; that deficiency is being rectified here. Siauve et al. [90] solve 

eddy current and thermal problems sequentially but, what they optimize is not shape but the 

antenna currents to obtain a specific absorption rate (SAR) for hyperthermia treatment. It is not 

shape optimization that they do. Thus the same mesh suffices for every optimization iteration 

and they do not need to tackle the problem of changing meshes in every iteration and along 
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every line search within an iteration as we do [9], [25]. Likewise in the electro-heat 

optimization work of Nabaei et al. [91] too, the current distribution in furnace transformers is 

being optimized using an impedance model on MATLAB and there is no shape optimization. 

Similarly Battistetti et al. [92] avoid a two-part finite element solution by using an analytical 

solution for the electromagnetic part and a finite difference solution for the thermal part. Di 

Barba et al. [93] similarly use circuit models where they find the axial position of coils, 

avoiding accurate field computation. What we present therefore is very complex, new material. 

 

4.3 Finite Element Computation for the Electro-Thermal Problem 

Finite element computation for the electro-thermal problem is a little more complex than the 

example thermal problem derived in section 1.5.4. The difference is in section 1.5.4, where 𝑞 

is given.  But here we have to find 𝑞 in terms of  𝑱. This thesis demonstrates this procedure by 

the hand calculation below.  

By combining  𝑱=𝜎𝑒𝑬 (4-1) and 𝑞 =
𝜎𝑒

2
𝑬2(4-3), 

𝑞 =
𝑱2

2𝜎
       (4-7) 

For the thermal problem governed by −𝜎𝑡∇
2𝑇 = 𝑞 , (4-4), the functional will be 

ℒ(𝑇) = ∬([
1

2
𝜎𝑡(∇𝑇)2 − 𝑞𝑇])𝑑𝑅     

= ∑ {
1

2
𝜎𝑡(b

2 + c2)𝐴𝑟 − ∬𝑞𝑇 𝑑𝑅}𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠   (4-8) 

Let us consider∬𝑞𝑇 𝑑𝑅, substituting (4-7) using the first order interpolation for 𝑱 

∬𝑞𝑇 𝑑𝑅 = ∬𝑇𝑡
𝑱2

2𝜎
𝑑𝑅 
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= ∬𝑇𝑡
1

2𝜎
𝑱𝑡𝑱 𝑑𝑅 

= ∬
1

2𝜎
[𝑇1 𝑇2 𝑇3] [

𝜁1
𝜁2
𝜁3

] [𝑱𝟏 𝑱𝟐 𝑱𝟑] [
𝜁1
𝜁2
𝜁3

] [𝜁1 𝜁2 𝜁3] [
𝑱𝟏

𝑱𝟐

𝑱𝟑

] 𝑑𝑅 

= ∬
1

2𝜎
𝑇𝑡 [

𝜁1𝑱𝟏 𝜁1𝑱𝟐 𝜁1𝑱𝟑

𝜁2𝑱𝟏 𝜁2𝑱𝟐 𝜁2𝑱𝟑

𝜁3𝑱𝟏 𝜁3𝑱𝟐 𝜁3𝑱𝟑

] [

𝜁1
2 𝜁1𝜁2 𝜁1𝜁3

𝜁2𝜁1 𝜁2
2 𝜁2𝜁3

𝜁3𝜁1 𝜁3𝜁2 𝜁3
2

] [
𝑱𝟏

𝑱𝟐

𝑱𝟑

] 𝑑𝑅 

By applying ∬(𝜁1
𝑖𝜁1

𝑗𝜁1
𝑘) 𝑑𝑅 =

𝑖!𝑗!𝑘!2!

(𝑖+𝑗+𝑘+2)
𝐴𝑟,  

=
1

2𝜎
𝑇𝑡 𝐴𝑟

60
[

6𝑱𝟏
2 + 2𝑱𝟐

2 + 2𝑱𝟑
2 + 4𝑱𝟏𝑱𝟐 + 4𝑱𝟏𝑱𝟑 + 2𝑱𝟐𝑱𝟑

2𝑱𝟏
2 + 6𝑱𝟐

2 + 2𝑱𝟑
2 + 4𝑱𝟐𝑱𝟏 + 4𝑱𝟐𝑱𝟑 + 2𝑱𝟏𝑱𝟑

2𝑱𝟏
2 + 2𝑱𝟐

2 + 6𝑱𝟑
2 + 4𝑱𝟑𝑱𝟏 + 4𝑱𝟑𝑱𝟐 + 2𝑱𝟏𝑱𝟐

]   (4-9) 

Now substituting (4-9) in (4-8), 

∑ {
1

2
𝑇𝑡𝜎𝑡𝐴

𝑟 [

𝑏1
2 + 𝑐1

2 𝑏1𝑏2 + 𝑐1𝑐2 𝑏1𝑏3 + 𝑐1𝑐3

𝑏2𝑏1 + 𝑐2𝑐1 𝑏2
2 + 𝑐2

2 𝑏2𝑏3 + 𝑐2𝑐3

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏3
2 + 𝑐3

2

] 𝑇

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

−
1

2𝜎
𝑇𝑡

𝐴𝑟

60
[

6𝑱𝟏
2 + 2𝑱𝟐

2 + 2𝑱𝟑
2 + 4𝑱𝟏𝑱𝟐 + 4𝑱𝟏𝑱𝟑 + 2𝑱𝟐𝑱𝟑

2𝑱𝟏
2 + 6𝑱𝟐

2 + 2𝑱𝟑
2 + 4𝑱𝟐𝑱𝟏 + 4𝑱𝟐𝑱𝟑 + 2𝑱𝟏𝑱𝟑

2𝑱𝟏
2 + 2𝑱𝟐

2 + 6𝑱𝟑
2 + 4𝑱𝟑𝑱𝟏 + 4𝑱𝟑𝑱𝟐 + 2𝑱𝟏𝑱𝟐

]} 

= ∑ {
1

2
𝑇𝑡[𝑃]𝑇 − 𝑇𝑡𝑄}𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠     (4-10) 

where, in corresponding notation, the local matrices 

[𝑃] =  𝜎𝑡 𝐴
𝑟 [

𝑏1
2 + 𝑐1

2 𝑏1𝑏2 + 𝑐1𝑐2 𝑏1𝑏3 + 𝑐1𝑐3

𝑏2𝑏1 + 𝑐2𝑐1 𝑏2
2 + 𝑐2

2 𝑏2𝑏3 + 𝑐2𝑐3

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏3
2 + 𝑐3

2

]   (4-11) 

and 

𝑄 =
1

2𝜎

𝐴𝑟

60
[

6𝑱𝟏
2 + 2𝑱𝟐

2 + 2𝑱𝟑
2 + 4𝑱𝟏𝑱𝟐 + 4𝑱𝟏𝑱𝟑 + 2𝑱𝟐𝑱𝟑

2𝑱𝟏
2 + 6𝑱𝟐

2 + 2𝑱𝟑
2 + 4𝑱𝟐𝑱𝟏 + 4𝑱𝟐𝑱𝟑 + 2𝑱𝟏𝑱𝟑

2𝑱𝟏
2 + 2𝑱𝟐

2 + 6𝑱𝟑
2 + 4𝑱𝟑𝑱𝟏 + 4𝑱𝟑𝑱𝟐 + 2𝑱𝟏𝑱𝟐

]    (4-12) 
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Finite element analysis [20] provides the solution to (4-4) by applying certain boundary 

conditions. The local matrices of elements will be added to the corresponding positon of the 

global matrix to be solved for 𝑇. This leads to the finite element matrix equation 

[𝑃𝑔]𝑇 = 𝑄𝑔     (4-13) 

Equation (4-13) is solved in the same way as explained in section 1.5.4, calculating local 

matrices and adding them to the global matrix to be solved for 𝑇.  

 

4.4 GPU Computation for Genetic Algorithms for Electro-heat Problems 

Naturally the computational work in two-physics electro-heat problems in finite element GA 

optimization is far beyond that for a single finite element solution. We have a 2-part coupled 

problem, and we have to solve the magnetic field for A and then the thermal problem where 

we solve for the temperature. For realistic problems this has to be done several times – indeed 

tens of thousands of times – in searching the solution space for the minimum object function. 

Wait times can be excessive, making optimization practicably infeasible. 

 

To cut down solution time, parallel processing needs to be resorted to [94]–[97]. From the 

1990s multiprocessor computers have been tried out. Typically with n processors (or 

computing elements), solution time could be cut down by almost a factor of (n-1) – that is (n-

1) rather than n because one processor is reserved for controlling the other (n-1), and almost a 

factor of (n-1) rather than exactly (n-1) because of the additional operations of waiting while 

one processor accesses the data being changed by another [94]–[98]. Although much of this 
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parallelization work was moved to cheaper engineering workstations by the late 1990s [98], 

the restrictions on processors remained. 

 

Recently the graphics processing unit, endowed with much computing prowess to handle 

graphics operations, has been exploited to launch a computational kernel as several parallel 

threads [99]. This is ideally suited for object function evaluation as the kernel so that multiple 

threads can perform the finite element analyses and evaluation of 𝐹 for each {p} in parallel. 

NVIDIA Corp’s GPUs invented in 1999 and the Compute Unified Device Architecture 

(CUDA) [100] are today available on practically every PC as a standard and are increasingly 

exploited with more and more applications being ported thereto. Significantly the number of 

parallel threads is not limited as on a shared memory supercomputer. Wong and Wong [88],  

Robilliard, Marion-Poty and Fonlupt [89] and Fukuda and Nakatani [101] have shown that the 

genetic algorithm with its inherently parallel structure may be efficiently implemented on the 

GPU to optimize magnetic systems. We extend that here to coupled problems. 

 

Cecka et al. [102] have also created and analyzed multiple approaches in assembling and 

solving sparse linear systems on unstructured meshes. The GPU coprocessor using single-

precision arithmetic achieves speedups of 30 or so in comparison with a well optimized 

double-precision single core implementation [15]. We see that this is far better than the factor 

of just below 7 possible on a very expensive 8 processor supercomputer. So this is the way we 

will go, using the GPU to process the GA algorithm in parallel.  
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We fork the fitness value computations as in Figure 4-3. This fitness value calculation is the 

time consuming part as it involves both mesh generation, and finite element calculation. This 

forms a kernel that will be launched in parallel threads. Therefore we divide the GPU threads 

and blocks of the same number as the population size and compute fitness values 

simultaneously (Figure 4-3). Since we have 65,536 blocks (216) and 512 threads in a general 

GPU, we can go up to a population size of 65,536 × 512 = 33,554,432  using the one GPU 

card on a PC. Since we do not need such a large population size for effective optimization, this 

is not restrictive. All the finite element calculation parts were programmed on the GPU in the 

CUDA C language. So when, given each {p}, we launch the fitness computation kernel as 

several threads (one for each {p}). The fitness score for all chromosomes is thereupon 

calculated at the same time in parallel. But for each chromosome, the finite element calculation 

will be done sequentially (Figure 4-3) and not parallelized along the lines of Cecka, Lew, and 

Darve [102] because that would be attempting to fork within a fork (for the ability to fork an 

already forked thread is discussed in a companion paper [103]).  

 

Figure 4-3 The Parallelized Process of the GPU 
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4.5 Test Problem: Shaping an Electro-heated Conductor 

The test problem chosen [43] is a simple one on which the method can be demonstrated and its 

feasibility established. Shown in Figure 4-4 a) is a rectangular conductor which is heated by a 

current through it. The equi-temperature profiles would be circle-like around the conductor. 

But we want a constant temperature along two lines parallel to the pre-shaping rectangular 

conductor’s two opposite edges which are to be shaped (Figure 4-4). The question is this: how 

should that edge be reshaped to accomplish a constant temperature along the lines on either 

side of the conductor? This is the same problem that has been solved by the gradient method 

which, as noted [18],  needs an alternative computational process because of the difficulties in 

constructing general purpose software yielding gradient information for the coupled problem 

and the mesh induced fictitious minima which cause problems [21] and need special mesh 

generators to address [104]. 

 

a) Electrically Heated Conductor: The Actual Geometry 

 

Figure 4-4 Numerical Model for Coupled Electro-heat Problem 

 



98 
 

Figure 4-4 (cont’d) 

 

 

b) Symmetric Quarter: Boundary Value Problem (nominal values shown for magnetic 

permeability electrical conductivity  and thermal conductivity k) 

 
 

Figure 4-4 b) presents the associated boundary value problem formed from a quarter of the 

minimal system for analysis consisting of a square conductor (with 𝜇𝑟 = 10, 𝜎𝑒 = 15 S/m, 

𝑎𝑛𝑑 𝜎𝑡 = 0.1 W/m/ 𝐶 
𝑜 ). A current density 𝑱𝟎 = 10 + 𝑗0  𝐴/𝑚2 has a relatively low frequency 

of  𝜔 = 10/𝑠, which has been kept deliberately low to avoid a very fine mesh, our purpose 

here being to investigate and establish methodology rather than to solve large problems in their 

full complexity. The top edge of the conductor has to be shaped to get a constant temperature 

profile of 60 o C, at 𝑦 =  6 𝑐𝑚, 𝑎𝑛𝑑 at 10 equally spaced measuring points in the interval 

4 𝑐𝑚 ≤ 𝑥 ≤ 8 𝑐𝑚 as shown in Figure 4-4 along the measuring line. We define the object 
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function from (4-6), and for testing we set the desired temperature as 60oC. Therefore 𝑇0
𝑖 = 60 

and the 𝐹 will be 

  𝐹 =
1

2
∑ [𝑇𝑖 − 60]

210
𝑖=1                                                 (4-14) 

 

Figure 4-5 The Parameterized Geometry 

 

An erratic undulating shape with sharp edges arose when Pironneau optimized a pole face to 

achieve a constant magnetic flux density [12] and this was overcome by the others through 

constraints [63]. Haslinger and Neittaanmaki  [105]suggest Bezier curves to keep the shapes 

smooth with just a few variables to be optimized, while Preis, Magele and Biro [26] have 

suggested fourth order polynomials which when we tried gave us smooth but undulating 

shapes.  As such we follow a radiant of the method by Subramaniam et al. [63] and extend 

their principle, so as to maintain a non-undulating shape by imposing the constraints 
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 h1>h2 > h3 >h4 >h5 >h6 >h7                                         (4-15) 

to ensure a smooth shape. Penalties were imposed by adding a penalty term to the object 

function F in (4-14) whenever it fails to satisfy the conditions for constraints [9]. Tolerance 

boundaries of each ℎ𝑖were set to 

 1.5 𝑐𝑚 ≤ ℎ ≤ 5.5 𝑐𝑚                                         (4-16) 

 

The parameterized problem-specific mesh is shown in Figure 4-5 where the device descriptive 

parameter set {p} consists of the 7 heights ℎ𝑖. The numerical model was uniformly meshed 

with 234 nodes and 408 elements. This was deliberately kept crude to control debugging; after 

succeeding with the method and establishing that it works as a method and as programmed on 

the GPU.  

 

In the process of optimization, as these heights ℎ𝑖  change, the mesh connections remain the 

same but the element sizes and shapes change. For the specific example shown in Figure 4-5, 

the heights ℎ𝑖  are divided into six pieces so the locations of the seven equally spaced seven 

nodes along the height ℎ𝑖 would change smoothly [104]. Accordingly the length from above 

the edge of the conductor being shaped to the vertical boundary will be adjusted and divided 

into 11 equal lengths as shown in Figure 4-5. 

 

4.6 Results and Discussion Thereof 

Figure 4-6 shows temperature profile at different iterations. By the images we can see that 

when the iteration number increases, we get the desired constant temperature along the 

measuring line and move towards the optimum shape. Figure 4-7 shows the optimum shape of 
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the conductor and temperature profile after 40 iterations for a population size of 512.  The 

corner of the conductor rising toward the line where the constant 60 𝐶 
𝑜  temperature is desired 

is as to be expected. For as seen in Figure 4-8 [43] (which shows the design goals being 

accomplished), the constant 60 𝐶 
𝑜  temperature is perfectly matched.  The lower graph giving 

the initial temperature shows that the temperature drops above the corner of the conductor. 

Therefore to address this, the corner has to rise close to the line of measurement to heat the 

line above the corner and Figure 4-7 shows that this is what the optimization process has 

accomplished. 

  

Iteration -1 Iteration -2 

  

Iteration -10 Iteration -21 

 

Figure 4-6 Equi-Temperature Lines at different iterlations 

 



102 
 

 

Figure 4-7 Optimal Shape by the Genetic Algorithm 

 

 

Figure 4-8 Temperature Distribution: Desired, Initial and Optimized 

 

Significant speedup was accomplished with GPU computation as seen in Figure 4-9. No gains 

in speedup beyond a factor of 28 were seen after a population size of 500. The meandering 
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nature of the gain after that may be attributed to the happenstance inherent to a statistical 

method like the genetic algorithm.  

 

 

Figure 4-9 Speedup: GA Optimization GPU Time: CPU Time 

 

4.7 Conclusions  

Shape optimization for the electro-heat problem using GA has been presented and validated 

using a simple geometry and neglecting radiation and convection. Real-coded object functions 

give faster more accurate solutions. This is the first two-stage finite element solution of a 

magnetic field problem and then a thermal problem repeated in optimization iterations for 

finding both shape and currents and is amenable to implementation as a general purpose 

software tool. This avoids the need to use circuit models or analytical solutions to obviate the 

difficulties of optimization in a two-stage finite element solution process. The procedure 

provides for shape optimization whereas the extant limited literature on two-stage electro-heat 

problem optimization shows only the current magnitude and phase being optimized without 

change of shape.  
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This problem was computed using parallel GPU computing techniques whereby speedups of 

28 were demonstrated. This is comparable to the speedup of 30 recently demonstrated in the 

literature for a single finite element solution. Yet we have demonstrated a speedup of 148 for a 

single finite element matrix equation solution [62].  A companion paper shows how such an 

immense speedup was achieved [99]. 
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5 HYPERTHERMIA TREATMENT PLANNING  

5.1 Introduction 

In chapter 4, the electro-thermal problem was explained including how it would be solved and 

the shape of the current source optimized to get the desired temperature at the locations of 

interest. In this chapter, this electro-thermal problem is extended on its application side, 

particularly to the treatment of tumors using hyperthermia.  

 

Historically, the treatment of cancerous tumors with hyperthermia can be traced back to 3000 

B.C. when soldering sticks were inserted in tumors. Coley’s toxin [106] was introduced in the 

19th century. This produced whole body hyperthermia which resulted in tumor regression. In 

recent years, using hyperthermia or related forms of therapy has increased tremendously. 

Currently hyperthermia is an experimental treatment and usually applied to late stage patients. 

There are many heating methods such as whole body heating using wax, hot air, hot water 

suits, infrared or partial body heating using radiofrequency (RF), microwave, ultrasound and 

hot blood or fluid perfusion. Clinical and experimental results show a promising future for 

hyperthermia. However, the main problem is the generation and control of heat in tumors. An 

extremely important issue is to control the temperature distribution in the treated area to avoid 

excessive temperatures in the normal tissues surrounding the tumor [107]. There are many 

studies on the treatment of cancer using hyperthermia which demonstrate that this aspect is 

still important and more research is needed in this matter [108]–[111]. 

 

Successful applications of electro-thermal stimulation with the aid of a low frequency field to 

treat the tumors have been reported [107]. There is evidence that hyperthermia can 
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significantly reduce/treat the tumor, but it is not clear how it works and how it should be 

applied [112]. Some clinical studies have demonstrated the efficiency of thermal therapy in 

suspending tumor growth [113]. Therefore numerical modeling to distribute the optimal 

temperature in hyperthermia can be helpful in identifying the better treatments. 

 

Hyperthermia treatment involves heating the tumor tissue to a temperature greater than 42oC 

without exceeding the normal physiologic temperature which is lower than 44oC – 45oC. 

Therefore the working temperature margin is very small. If the temperature at the tumor is 

lower than 42oC, there is no therapeutic effect. On the other hand, if the temperature is greater 

than 44oC – 45oC, both healthy and tumorous cells are damaged [114]. The blood vessels in 

tumor cells have a greater diameter than in healthy cells, and therefore occupy a greater 

volume. The temperature at a tumor is greater than at the surrounding tissue during 

hyperthermia treatment. This is caused by the fact that the healthy cells have usually greater 

conductivity than the cancerous cells. In other words, we may say that tumor tissues are more 

sensitive to heat. The temperature rise in tumors and tissues is determined by the energy 

deposited and the physiological responses of the patient. When electromagnetic methods are 

used, the energy deposition is a complex function of frequency, intensity, the polarization of 

the applied fields, geometry and size of the applicator, and the geometry and size of the tumor. 

The final temperature elevations are not only dependent on the energy deposition but also on 

blood perfusion which carries away heat and affects thermal conditions in tissues. Generally, it 

is not easy to obtain an accurate temperature distribution over the entire treatment region 

during clinical hyperthermia treatment. Furthermore, to ensure that the temperature is within 

the desired range, the clinician usually monitors the temperature every few seconds. Thus it is 
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desirable to develop a mathematical model that can determine design parameters to optimize 

the temperature distribution in the target region before treatment. In this way the treatment 

efficiency can be assessed more precisely [115]. 

 

5.2 Problem Statement  

 

Figure 5-1 Cross section of the human thigh with a tumor 

Let us consider a cross section of the human thigh, shown in Figure 5-1 [109]. It is assumed 

that the human thigh and bone inside have an ellipsoidal shape and that the tumor has a 

circular form. Kurgan and Gas [109] solved this problem with a numerical model. In their 

model, the tumor inside the human thigh was heated by external RF hyperthermia with the 

frequency of 100 MHz. A similar model was used by Tsuda and Kuroda [115]. Here they 
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optimize the electrode configuration, particularly driving voltages for radio frequency of 10 

MHz using the gradient method.  

 

In our work, this model is extended to a low frequency field such as at 1 kHz to 5 kHz. Here 

we optimize the shape of the current carrying conductor to get the desired temperature 

distribution at the tumor. The numerical model of the problem to be solved is shown in Figure 

5-2. [116]. The geometrical dimensions of the numerical model are described in Table 5-1. 

The dimensions are taken from Gabriel et al. [117]. 

 

Figure 5-2 Numerical model of the problem 
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Table 5-1 Geometrical dimensions of the model 

Human body- length of semi axes 𝐴 = 15 𝑐𝑚, 𝐵 = 12 𝑐𝑚 

Tumor radius 𝑅 = 1.25 𝑐𝑚 

Skin thickness 𝑑 =  1.5 𝑐𝑚 

Bone - length of semi axes 𝑎 = 3.5 𝑐𝑚, 𝑏 = 2.5 𝑐𝑚 

Current carrying conductor Square shaped 𝑙 = 5 𝑐𝑚 

 

Near the human thigh a coil with the exciting current is placed. The exciting current in the coil 

generates a sinusoidal electromagnetic field which induces eddy currents in the human body. 

These currents act as sources of Joule heat and after some transient time a temperature 

distribution in the body is established. This final, steady state temperature distribution is what 

we shall seek to solve for.  

 

5.3 Main Equations 

5.3.1 The Finite Element Equation 

As discussed in chapter 2, for a given current 𝑱, magnetic vector potential 𝑨 will be found by 

solving the eddy current problem  

−𝛁 ×
1

𝜇
 𝛁 × 𝑨 =  𝑱𝟎 − 𝑗𝜔𝜎𝑒𝑨     (5-1) 

The frequency ω is relatively low (1 kHz to 5 kHz) so that the current density J has only a 

conduction term 𝜎𝑒𝑬  and no displacement term 𝑗𝜔𝜖𝑬. Solving for 𝑨 using the finite element 
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method is explained in section 2.3.2.2. After finding 𝑨 we compute the joule heating density q 

from 

 𝑬 = −𝑗𝜔𝑨 − 𝛁𝜑                                                               (5-2) 

and 

 𝑞 =
𝜎𝑒

2
𝑬2                                                                     (5-3) 

Once we have the heat source distribution q, the second problem is finding the resulting 

temperature. In chapter 3, for the electro-thermal problem, we solved the heat equation [85].  

 −𝜎𝑡∇
2𝑇 = 𝑞                                                                (5-4) 

But when it comes to electric currents in a human body, no clear consensus exists for an 

appropriate mathematical model for the evaluation of the temperature field distribution in 

biological tissues. An extremely important work is that by Pennes [118] in modeling the heat 

transfer in biological tissues. The equation he derived is named the bio-heat equation and this 

can be derived from the classical Fourier law of heat conduction. Pennes’s model is based on 

the assumption of the energy exchange between the blood vessels and the surrounding tumor 

tissues. It may provide better information about the temperature distributions in the whole 

body. The Pennes model states that the total heat exchange between the tissue surrounding a 

vessel and the blood flowing in it is proportional to the volumetric heat flow and the 

temperature difference between the blood and the tissue. The expression of the bio-heat 

equation in a body with uniform material properties in transient analysis is given by [119], 

[120].  

𝜌𝐶
𝜕𝑇

𝜕𝑡
− 𝜎𝑡∇

2𝑇 = 𝜌𝑏𝐶𝑏𝜔𝑏(𝑇𝑏 − 𝑇) + 𝑞 + 𝑄𝑚𝑒𝑡    (5-5) 
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where 𝑇 is the body temperature, 𝜎𝑡 is the thermal conductivity, 𝜌 is the density, 𝐶 is the 

specific heat, 𝑇𝑏 is the blood vessel temperature, 𝜌𝑏 is the blood density, 𝐶𝑏 is the blood 

specific heat, 𝜔𝑏 is the blood perfusion rate, 𝑞 is the heat generation by the external heat 

source which is responsible for the changing of temperature inside the body according to the 

equations (5-3), (5-2) and (5-1), and 𝑄𝑚𝑒𝑡 is the metabolic heat generation rate. Metabolic heat 

production is caused by the chemical factors in the body.  The specific dynamic action of food 

is often mentioned, especially protein, that results in a rise of metabolism; and a high 

environmental temperature that, by raising temperatures of the tissues, increases the velocity of 

reactions and thus increases heat production.  

 

In our problem, we only consider steady state analysis. Therefore the transient part of the bio-

heat equation will be neglected. For the rest of the bio-heat equation, the functional will be 

ℒ(𝑇) = ∬([
1

2
𝜎𝑡(∇𝑇)2 − 𝑞𝑇 − 𝑄𝑚𝑒𝑡𝑇 − 𝜌𝑏𝐶𝑏𝜔𝑏𝑇 (𝑇𝑏 −

𝑇

2
)]) 𝑑𝑅     

= ∑ {
1

2
𝜎𝑡(b

2 + c2)𝐴𝑟 − ∬𝑞𝑇 𝑑𝑅 − ∬𝑄𝑚𝑒𝑡𝑇 𝑑𝑅 − ∬𝜌𝑏𝐶𝑏𝜔𝑏𝑇 (𝑇𝑏 −
𝑇

2
)𝑑𝑅}𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠   (5-6) 

In (5-6), the first two parts we have already calculated in the finite element computation for the 

electro-thermal problem in section 4.3. Therefore in this section, heat generation due to the 

metabolic effects and heat removal because of the blood circulation will be solved.  

Let us consider heat generation due to the metabolic effects, 

−∬𝑄𝑚𝑒𝑡𝑇 𝑑𝑅 = −∬𝑄𝑚𝑒𝑡[𝑇1 𝑇2 𝑇3] [
𝜁1
𝜁2
𝜁3

] 𝑑𝑅 

= − 𝑇𝑡𝑄𝑚𝑒𝑡
𝐴𝑟

3
[
1
1
1
]      (5-7) 
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Let us now consider heat removal because of blood circulation, 

−∬𝜌𝑏𝐶𝑏𝜔𝑏𝑇 (𝑇𝑏 −
𝑇

2
)𝑑𝑅 = −∬𝜌𝑏𝐶𝑏𝜔𝑏𝑇 𝑇𝑏 𝑑𝑅 + ∬

1

2
𝜌𝑏𝐶𝑏𝜔𝑏𝑇

2 𝑑𝑅 

−∬𝜌𝑏𝐶𝑏𝜔𝑏𝑇 (𝑇𝑏 −
𝑇

2
)𝑑𝑅

= −∬𝜌𝑏𝐶𝑏𝜔𝑏 𝑇𝑏[𝑇1 𝑇2 𝑇3] [
𝜁1
𝜁2
𝜁3

] 𝑑𝑅

+ ∬
1

2
𝜌𝑏𝐶𝑏𝜔𝑏[𝑇1 𝑇2 𝑇3] [

𝜁1
𝜁2
𝜁3

] [𝜁1 𝜁2 𝜁3] [

𝑇1

𝑇2

𝑇3

] 𝑑𝑅 

By applying ∬(𝜁1
𝑖𝜁1

𝑗𝜁1
𝑘) 𝑑𝑅 =

𝑖!𝑗!𝑘!2!

(𝑖+𝑗+𝑘+2)
𝐴𝑟,  

−∬𝜌𝑏𝐶𝑏𝜔𝑏𝑇 (𝑇𝑏 −
𝑇

2
) 𝑑𝑅 = − 𝑇𝑡𝜌𝑏𝐶𝑏𝜔𝑏 𝑇𝑏

𝐴𝑟

3
[
1
1
1
] +

1

2
𝑇𝑡𝜌𝑏𝐶𝑏𝜔𝑏

𝐴𝑟

12
 [
2 1 1
1 2 1
1 1 2

] 𝑇    (5-8) 

By substituting (5-7) and (5-8) in (5-6), 

ℒ(𝑇) = ∑ {
1

2
𝜎𝑡(b

2 + c2)𝐴𝑟 − ∬𝑞𝑇 𝑑𝑅 −  𝑇𝑡𝑄𝑚𝑒𝑡

𝐴𝑟

3
[
1
1
1
]  −  𝑇𝑡𝜌𝑏𝐶𝑏𝜔𝑏 𝑇𝑏

𝐴𝑟

3
[
1
1
1
]

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

+
1

2
𝑇𝑡𝜌𝑏𝐶𝑏𝜔𝑏

𝐴𝑟

12
 [
2 1 1
1 2 1
1 1 2

] 𝑇} 

The full equation using (3-10) then is, 
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ℒ(𝑇) = ∑ {
1

2
𝑇𝑡𝜎𝑡𝐴

𝑟 [

𝑏1
2 + 𝑐1

2 𝑏1𝑏2 + 𝑐1𝑐2 𝑏1𝑏3 + 𝑐1𝑐3

𝑏2𝑏1 + 𝑐2𝑐1 𝑏2
2 + 𝑐2

2 𝑏2𝑏3 + 𝑐2𝑐3

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏3
2 + 𝑐3

2

] 𝑇

𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

−
1

2𝜎
𝑇𝑡

𝐴𝑟

60
[

6𝑱𝟏
2 + 2𝑱𝟐

2 + 2𝑱𝟑
2 + 4𝑱𝟏𝑱𝟐 + 4𝑱𝟏𝑱𝟑 + 2𝑱𝟐𝑱𝟑

2𝑱𝟏
2 + 6𝑱𝟐

2 + 2𝑱𝟑
2 + 4𝑱𝟐𝑱𝟏 + 4𝑱𝟐𝑱𝟑 + 2𝑱𝟏𝑱𝟑

2𝑱𝟏
2 + 2𝑱𝟐

2 + 6𝑱𝟑
2 + 4𝑱𝟑𝑱𝟏 + 4𝑱𝟑𝑱𝟐 + 2𝑱𝟏𝑱𝟐

] −  𝑇𝑡𝑄𝑚𝑒𝑡

𝐴𝑟

3
[
1
1
1
]  

−  𝑇𝑡𝜌𝑏𝐶𝑏𝜔𝑏 𝑇𝑏

𝐴𝑟

3
[
1
1
1
] +

1

2
𝑇𝑡𝜌𝑏𝐶𝑏𝜔𝑏

𝐴𝑟

12
 [
2 1 1
1 2 1
1 1 2

] 𝑇} 

By arranging the same coefficients at one place,  

ℒ(𝑇) = ∑ {
1

2
𝑇𝑡 (𝜎𝑡𝐴

𝑟 [

𝑏1
2 + 𝑐1

2 𝑏1𝑏2 + 𝑐1𝑐2 𝑏1𝑏3 + 𝑐1𝑐3

𝑏2𝑏1 + 𝑐2𝑐1 𝑏2
2 + 𝑐2

2 𝑏2𝑏3 + 𝑐2𝑐3

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏3
2 + 𝑐3

2

]

 𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠

+ 𝜌𝑏𝐶𝑏𝜔𝑏

𝐴𝑟

12
 [
2 1 1
1 2 1
1 1 2

]) 𝑇

− 𝑇𝑡 (
1

𝜎

𝐴𝑟

120
[

6𝑱𝟏
2 + 2𝑱𝟐

2 + 2𝑱𝟑
2 + 4𝑱𝟏𝑱𝟐 + 4𝑱𝟏𝑱𝟑 + 2𝑱𝟐𝑱𝟑

2𝑱𝟏
2 + 6𝑱𝟐

2 + 2𝑱𝟑
2 + 4𝑱𝟐𝑱𝟏 + 4𝑱𝟐𝑱𝟑 + 2𝑱𝟏𝑱𝟑

2𝑱𝟏
2 + 2𝑱𝟐

2 + 6𝑱𝟑
2 + 4𝑱𝟑𝑱𝟏 + 4𝑱𝟑𝑱𝟐 + 2𝑱𝟏𝑱𝟐

] − 𝑄𝑚𝑒𝑡

𝐴𝑟

3
[
1
1
1
]  

− 𝜌𝑏𝐶𝑏𝜔𝑏 𝑇𝑏

𝐴𝑟

3
[
1
1
1
])} 

= ∑ {
1

2
𝑇𝑡[𝑃]𝑇 − 𝑇𝑡𝑄}𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠     (5-9) 

where, in corresponding notation, the local matrices 

[𝑃] =  𝜎𝑡𝐴
𝑟 [

𝑏1
2 + 𝑐1

2 𝑏1𝑏2 + 𝑐1𝑐2 𝑏1𝑏3 + 𝑐1𝑐3

𝑏2𝑏1 + 𝑐2𝑐1 𝑏2
2 + 𝑐2

2 𝑏2𝑏3 + 𝑐2𝑐3

𝑏3𝑏1 + 𝑐3𝑐1 𝑏3𝑏2 + 𝑐3𝑐2 𝑏3
2 + 𝑐3

2

] + 𝜌𝑏𝐶𝑏𝜔𝑏
𝐴𝑟

12
 [
2 1 1
1 2 1
1 1 2

]  

 (5-10) 
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and 

𝑄 =
1

𝜎

𝐴𝑟

120
[

6𝑱𝟏
2 + 2𝑱𝟐

2 + 2𝑱𝟑
2 + 4𝑱𝟏𝑱𝟐 + 4𝑱𝟏𝑱𝟑 + 2𝑱𝟐𝑱𝟑

2𝑱𝟏
2 + 6𝑱𝟐

2 + 2𝑱𝟑
2 + 4𝑱𝟐𝑱𝟏 + 4𝑱𝟐𝑱𝟑 + 2𝑱𝟏𝑱𝟑

2𝑱𝟏
2 + 2𝑱𝟐

2 + 6𝑱𝟑
2 + 4𝑱𝟑𝑱𝟏 + 4𝑱𝟑𝑱𝟐 + 2𝑱𝟏𝑱𝟐

] + 𝑄𝑚𝑒𝑡
𝐴𝑟

3
[
1
1
1
] + 𝜌𝑏𝐶𝑏𝜔𝑏 𝑇𝑏

𝐴𝑟

3
[
1
1
1
]  

  (5-11) 

    

Finite element analysis [20] provides the solution to (5-6) by applying certain boundary 

conditions such as the Dirichlet and Neumann conditions [20]. The local matrices of elements 

will be added to the corresponding positon of the global matrix to be solved for 𝑇. This leads 

to the finite element matrix equation 

[𝑃𝑔]𝑇 = 𝑄𝑔     (5-12) 

Equation (5-12) is solved in the same way as explained in section 1.5.4, calculating local 

matrices and adding them to the global matrix equation to be solved for 𝑇. 

5.3.2 A note on electrical and thermal conductivity changes 

5.3.2.1 Electrical conductivity 

In general when temperature increases, electrical conductivity reduces. The electrical 

conductivity (𝜎𝑒) of most materials changes with temperature. If the temperature 𝑇 does not 

vary too much, we  typically use the approximation [121].  

𝜎𝑒(𝑇) =  
𝜎𝑒0

(1+𝛼 (𝑇−𝑇0))
     (5-13) 

where  𝛼 is the temperature coefficient of resistivity, 𝑇0 is the fixed reference temperature 

(20oC), and 𝜎𝑒0 is the electrical conductivity at 𝑇0. Isaac Chang [122] has done a study with 

temperature-dependent electrical conductivity 𝜎𝑒(𝑇) and constant electrical conductivity 𝜎𝑒0 
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for the electro-thermal coupled problem using finite element analysis. His results show that in 

temperatures below 45oC, the change in electrical conductivity is less than 10% [122].  In 

hyperthermia treatment, the temperature does not exceed 43-45oC [123]. Therefore in our 

computation, we approximate electrical conductivity as a constant.  

5.3.2.2 Thermal conductivity 

The effect of temperature on thermal conductivity is different for metals and non-metals. In 

metals, the conductivity is primarily due to free electrons. The thermal conductivity in metals 

is proportional to a multiple of the absolute temperature and electrical conductivity [124]. 

σt(T)  ∝  |T| σe(T)     (5-14) 

In metals σe(T) decreases when the temperature increases. Thus the product of (5-

14), |T|σt(T), stays approximately constant. σt(T) in nonmetals is mainly due to lattice 

vibrations (phonons). Except for high quality crystals at low temperatures, the phonon mean 

free path is not reduced significantly at higher temperatures. Thus, the thermal conductivity of 

nonmetals is approximately constant at low temperatures. At low temperatures well below 

the Debye temperature, the thermal conductivity decreases, as does the heat capacity. 

Therefore the thermal conductivity in both metals and non-metals is approximately constant at 

low temperatures. So in our hyperthermia problem too we consider thermal conductivity as a 

constant.  

 

5.4 The Algorithm for the Inverse Method  

In this problem we define the shape of the conductor as a design parameter {p}. In our 2D 

model, we have two conductors, both carrying current in opposite directions to each other. For 

http://en.wikipedia.org/wiki/Phonon
http://en.wikipedia.org/wiki/Debye_model#Debye_temperature_table
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practical implication purposes, we have the same design parameters for both conductors as 

shown in Figure 5-3. The design desideratum then may be cast as an object function F to be 

minimized with respect to the parameters {p} 

 𝐹 = 𝐹({𝑝}) =  
1

2
∑ [𝑇𝑖 − 𝑇0

𝑖]
26

𝑖=1                                           (5-15) 

The optimization process, using the genetic algorithm, keeps adjusting {p} until F is 

minimized, making 𝑇𝑖 come as close to 𝑇0
𝑖 as it can – as close as it can rather than exactly to 

𝑇0
𝑖 because our design goal as expressed in (5-15) may not always be realistic and achievable. 

At that point {p} would represent our best design. In out model, since the tumor needs to be 

treated, the desired temperature 𝑇0
𝑖 is set to be 𝑇0

𝑖 = 42.5oC.  

 

Figure 5-3 Design parameters 
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The computational process of this hyperthermia treatment problem is similar to the problem of 

electro-thermal problem which has been described in Figure 4-4. But, instead of the heat 

equation, we have to solve the bio-heat equation.  

 

5.5 Simulation Results 

The main purpose of this work is to shape the heating coil, so as to get the treatment 

temperatures at tumors without damaging the healthy cells. In analyzing with our model, the 

human body, tumor and conductor are considered as homogeneous media with these typical 

material properties. For simplicity we assumed a constant value for the blood perfusion rate in 

various biological tissues. Electrical and thermal properties are taken from [117] and presented 

in Figure 5-2. The physical parameters of the blood are given in Table 5-3 

 

Table 5-2 Physical properties of the numerical model 

Material 𝜇𝑟 𝜎𝑒(S/m) 𝜎𝑡(W/(mK)) 𝑱𝟎(A/m2) 

Air 1 3 × 10−8 0.0257 0 

Tumor 1 0.07 0.56 0 

Muscle 1 0.15 0.22 0 

skin 1 0.1 0.22 0 

Bone 1 0.7 0.013 0 

Coil-1 1 6 × 107 401 30 

Coil-2 1 6 × 107 401 -30 
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Table 5-3 Physical parameters of blood 

Tissue 𝑄𝑚𝑒𝑡(𝑊/𝑚3) 𝜌𝑏(𝑘𝑔/𝑚3) 𝐶𝑏(𝐽/𝑘𝑔/𝑘) 𝑇𝑏(𝐾) 𝜔𝑏(1/𝑠) 

Muscle/skin 300 1020 3640 310.15 0.0004 

Tumor 480 1020 3640 310.15 0.005 

bone 120 1020 3640 310.15 0.00001 

 

 

Figure 5-4 Mesh for the numerical model 

The exciting current density in one conductor which is carrying current is set to 30 𝐴/𝑚2and 

the other conductor is set to -30 𝐴/𝑚2. The exciting frequency is kept relatively low in the 60 

Hz – 5 kHz range to avoid a very fine mesh. The parameterized mesh for the initial shape of 

the numerical model is shown in Figure 5-4. The numerical model is meshed with 1625 nodes 
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and 3195 elements. The radiation and convection effects at the boundaries are neglected, 

taking the boundary temperature to be the room temperature at 20 𝐶 
0  and the magnetic vector 

potential 𝑨 = 0 at boundary.  

 

The simulation result for the numerical model is shown in Figure 5-5. This shows the equi-

temperature lines for the human thigh with tumor. The temperature is measured on muscle and 

inside the tumor along the 𝑥 axis where the measuring line is marked (in green). The 

measuring line is divided into 10 points where readings were taken and tabulated as in Table 

5-4. For hyperthermia treatment, the temperature at a tumor should be greater than 42oC and 

should not be greater than 44oC. Therefore the desired temperature is set to be 42.5oC and to 

achieve that the edges of the conductors are shaped as shown in Figure 5-5.  

 

In the optimization process using the genetic algorithm, multiple solutions were created and 

checked as to whether it is minimizing the objective function (5-15). The tolerance boundaries 

for each 𝑝𝑖were set to 1.5 𝑐𝑚 ≤ 𝑝𝑖 ≤ 8.5 𝑐𝑚 for the conductor at the top and −1.5 𝑐𝑚 ≤ 𝑝𝑖 ≤

−8.5 𝑐𝑚  for the conductor at the bottom. As such we follow, like follow, Subramaniam et al. 

[63] and extend their principle, so as to maintain a non-undulating shape by imposing the 

constraints 

𝑝1 ≤ 𝑝2 ≤ 𝑝3 ≤ 𝑝4 ≤ 𝑝5 ≤ 𝑝6                                          (5-16) 

to ensure a smooth shape. The penalties were imposed by adding a penalty term to the object 

function 𝐹 in (5-15) whenever it fails to satisfy the conditions for constraints. The optimization 

process using GA was experimented with different population sizes and numbers of iterations.  

Figure 5-6 shows the optimum shape of the conductors for the population size of 160 and 40 
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iterations which minimize the object function 𝐹 to a value of 0.97. When the conductor is at its 

optimum shape, the temperature at the measuring line is measured and tabulated as the last 

column of Table 5-4 

 

 

Figure 5-5 Equi-Temperature lines for the initial shape 

 

 

Figure 5-6 Optimum shape of the conductors to treat tumor 
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Table 5-4 Reading at the measuring line 

Measuring 

point x(cm) y(cm) 

Initial Shape 

𝑇(℃) 

Optimum Shape 

𝑇(℃) 

1 -11 0 53.92 43.08 

2 -10.75 0 53.37 42.99 

3 -10.5 0 52.70 42.91 

4 -10.25 0 51.92 42.82 

5 -10 0 51.13 42.74 

6 -9.75 0 50.91 42.65 

7 -9.5 0 50.69 42.57 

8 -9.25 0 50.48 42.49 

9 -9 0 50.26 42.41 

10 -8.75 0 49.92 42.33 

 

5.6 Conclusions  

The temperature inside the tumor for the initial and optimum shapes of the numerical model is 

plotted with the measuring line points shown in Figure 5-7. For comparison, the desired 

temperature is also plotted in the figure. The temperature for the optimum shape is in a very 

good range to treat the tumor as it is not beyond 44oC and not below 42oC. It is impossible to 

keep the temperature everywhere in a tumor the same. Our results show that we can keep it in 

the temperature range which would treat the tumor effectively.  

 

Theoretical studies of temperature distributions with magnetic induction methods of achieving 

hyperthermia have been presented.  The most appropriate application for the electro-thermal 

coupled problem is to be in hyperthermia treatment planning. Our numerical model studies 

show that the proposed inverse algorithm can optimize the heating conditions in hyperthermia 
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treatment. In treatment planning, once the tumor is located, this system synthesizes the coils to 

give 42oC-44oC at the tumor. It is very difficult to measure the temperature inside the tumor 

from the medical point of view. Therefore this system is useful to burn the tumor for late stage 

patients who have no other choice of treatment.  

 

 

Figure 5-7 Initial, optimum and desired temperature 
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6 SUMMARY AND CONCLUSIONS  

 

The predominant contribution of this thesis is in exploiting the capabilities of the graphics 

processing unit (GPU) to analyze and synthesize two-physics systems, where given the desired 

design criterion, we determine the geometric shape of the system. We show that GPU 

parallelization gives us a speedup of 28, an important feature in solving two physics inverse 

problems in reasonable time. The software system and its shape synthesis capabilities have 

been successfully applied a) to hyperthermia treatment planning; b) to defect characterization 

in the non-destructive testing of army ground vehicles; and c) to realize curricular efficiencies 

using flip teaching for a course on finite elements and optimization.  

 

Expanding on the above paragraph, the goal of this this thesis has been to solve the electro-

thermal coupled problem to get a desired solution by shape optimization with reduced 

computational time and with more accuracy. That has been accomplished. One of the 

important applications of the electro-thermal problem is in hyperthermia treatment planning; 

shaping the conductor to accomplish a desired heat distribution to burn cancerous tissue. Two 

finite element problems need to be solved, first for the magnetic fields and the joule heat that 

the associated eddy currents generate, and then, based on these heat sources, the second finite 

element problem for heat distribution. This two part problem needs to be iterated on to obtain 

the desired thermal distribution by optimizing the shape of the current source. From the studies 

and experiment, we found that the genetic algorithm would be a suitable optimization method 

for our problem. Particularly the solutions represented by real numbers give better and faster 

results. So we decided to use real number based genetic algorithm for optimizing the problem.  
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To avoid the complexities of a two-physics problem, we first develop the shaping algorithms 

on a single physics problem for nondestructive evaluation. This shape optimizing concept is 

developed for defect characterization in a steel plate. But, before we moved into defect 

characterization, a study on defect detection had to be done. Defects can be in many different 

orientations. Some of these defect orientations make it hard for the defect to be detected, and 

therefore such defects will be impossible to characterize by our inverse algorithm. According 

to our investigations when the depth of the defect increases, it is hard to detect. While that may 

be as to be expected, we also found that, when we compare horizontal and vertical defects, a 

horizontal defect has a higher chance of being detected. Our results further showed that when a 

defect is at an angle of 450 to the surface, it has the highest chance of being detected. After 

studying defect detectability, we moved into defect characterization. Defect shape 

reconstructing using the genetic algorithm optimization method has been presented and 

validated using a numerical model. We also imposed constraints in the system to get a realistic 

single defect reconstruction that is smooth.  We also did many tests for the different shape of 

the defects and got reconstruction that is matching more than 85 % of true profile.  

 

To test our algorithms and seek novel use, they were employed in a semester’s course on finite 

elements and optimization with true device design. Flip-teaching was introduced to tackle the 

challenges of time. The traditional order of a) delivering theory b) programming ancillary tools 

(mesh generators, solvers) was flipped to do real design. Flip teaching was effectively used to 

give pre-prepared programs dealing with the ancillary, mundane tasks associated with finite 

element optimization. Students learned by themselves how to use these programs ahead if 

class.  
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 After the algorithms were understood from use in NDE and the flip-teaching experience, we 

successfully developed them for the two-physics system with reduced computational time with 

the speedup (CPU Time to GPU time ratio) of 28 and increased accuracy established through 

the problem of shaping a current carrying conductor so as to yield a desired temperature 

profile along a line. This is the first two-stage finite element solution of a magnetic field 

problem and then a thermal problem repeated in optimization iterations for finding both shape 

and currents and is amenable to implementation as a general purpose software tool. 

 

Finally we applied the electro-thermal software to hyperthermia treatment planning by a 

numerical model of a human thigh with a tumor treated by current carrying conductors to be 

shaped to produce the desired temperature at the tumor. Theoretical studies of temperature 

distributions with magnetic induction methods of achieving hyperthermia have been presented. 

Numerical model studies show that the proposed inverse algorithm can optimize the heating 

conditions in hyperthermia treatment. In treatment planning, once the tumor is located, this 

system synthesizes the coils to give 42oC-44oC at the tumor. An efficient methodology for 

multi-physics systems has been developed with applications in flip-teaching, NDE and 

hyperthermia. 
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Appendix A: First-Order Interpolations Using Triangular Coordinates 

For two-dimensional analysis we have decided to use the triangle as our basic element shape. 

Considering the triangle of Figure A-1 [20], the symmetry of the triangle results upon our 

changing to triangular coordinates defined by:  

𝜁𝑖 =
ℎ𝑖

𝐻𝑖
       (A-1) 

(𝑥, 𝑦) = (𝜁1, 𝜁2 , 𝜁3)       (A-2) 

 

The three ζ’s, although dimensionless, are first-order functions of distance since they vary with 

the first power of altitude ℎ𝑖 in (A-1). 

 

Figure A-1 Triangular Coordinates 

The best and natural first-order interpolation to use within the triangle is  

𝜑(𝑥, 𝑦) = 𝜁1𝜑1 + 𝜁2𝜑2 + 𝜁3𝜑3       (A-2) 
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