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ABSTRACT 

A STUDY OF BREAST CANCER 

 HETEROGENEITY AND MOLECULAR MECHANISMS OF METASTASIS 

By 

Daniel Patrick Hollern 

The biggest challenges clinicians face during treatment of breast cancer are tumor 

heterogeneity and tumor metastasis. With breast cancer tumor heterogeneity, the problem is that 

the genomic variability within tumors and between patients limits the efficacy of breast cancer 

therapy. Directed therapies for specific types of breast cancer improved breast cancer survival 

times, yet due to the molecular complexity of breast cancer, treatment is still inadequate; with 

tumors initially regressing only to reoccur and become resistant to therapy. Many reoccurring 

tumors manifest as distant metastasis. It is these metastases that lead to breast cancer lethality. 

To simplify the molecular complexity of breast cancer, researchers have taken advantage of 

mouse models where different cancer-causing events found in human breast cancer are used to 

initiate mammary tumors in mice. However, the degree to which mouse models are reflective of 

the heterogeneity of human breast cancer needed to be demonstrated. If mouse models with 

relationships to individual types of human breast cancer could be identified, such a finding 

would represent a major breakthrough and enhance the research of mechanisms and treatments 

for drivers of breast cancer progression using mouse models.   

To test the hypothesis that genomic similarities exist between mouse models of breast 

cancer and human breast cancer, I characterized MMTV-Myc initiated tumors that had 

demonstrated histological heterogeneity. Using bioinformatic analysis of tumor gene expression 

data from MMTV-Myc mouse mammary tumors and human breast cancer samples, molecular 

similarities and mouse human counterparts were identified. As a result, I hypothesized that 



 
 

molecular similarities between mouse and human breast cancer are widespread. To this end, I 

generated and analyzed a database of gene expression data from over 1000 mouse mammary 

tumors and over 1000 human breast tumors. I detected relationships between individual mouse 

model tumors and specific types of human breast cancer through gene expression patterns.  This 

was extended to predict which signaling pathways were activated in both human breast cancer 

and the mouse models.  This novel approach established relationships between individual mouse 

mammary tumors and human breast cancer, identifying shared pathways that may contribute to 

tumor progression in mouse and human breast cancer. 

 Using this database as a predictive resource, I developed the hypothesis that the E2F 

transcription factors regulate breast cancer metastasis. Using a genetic test in the MMTV-PyMT 

mouse model, I show that E2F1 and E2F2 are critical for progression through multiple stages of 

metastasis. Using predictive informatics and gene expression analysis, I show that multiple pro-

metastatic features are impacted with E2F loss, including tumor angiogenesis and activation of 

the pro-metastatic hypoxia response gene expression program. As part of uncovering E2F1’s role 

in tumor metastasis, I uncover new regulators of metastasis: Adm and Fgf13. 

 Collectively, the work in this dissertation demonstrates that integrating gene expression 

analysis, bioinformatics, mouse models and multiple experimental  techniques provide the 

unique capacity to study the complex molecular differences and mechanisms across the spectrum 

of human breast cancer. Importantly, these strategies have allowed us to credential mouse 

models for relevance to human breast cancer and identify mechanistic features of breast cancer 

metastasis. 
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GENE EXPRESSION MICROARRAYS 

 The advent of high throughput technologies has become an integral tool in understanding 

biological systems. Indeed, the use of gene expression technology and sophisticated data analysis 

methods has provided a global view of the genetic changes that occur with the development and 

progression of cancer. Amongst the various gene expression analysis tools, two of the most 

frequently used platforms are the Agilent and Affymetrix microarrays. 

 Agilent gene chips can measure the expression of tens of thousands of messenger 

ribonucleic acid (mRNA) transcripts. Agilent offers both one color and two color 

arrays.  However, since two-color arrays were utilized to generate the data for my work and for 

brevity, two color arrays will be the focus of this brief overview of Agilent array gene expression 

profiling. Current Agilent gene chips are built by printing oligonucleotide molecules on the glass 

surface of a chip [1, 2]. Typically Agilent oligonucleotide probes are 60 nucleotides (also 

referred to as 60-mer) in length. These printed molecules are designed to construct unique 

complimentary sequences to serve as annealing probes for tens of thousands of individual gene 

products. Further, each probe is printed according to specific coordinates, so that the signal 

detected during scanning can be assigned to the probe for each specific gene. Preparing mRNA 

for array hybridization requires several steps[3]. First, mRNA is converted to complementary 

deoxyribonucleic acid (cDNA) using a reverse transcriptase enzyme. Following this step, 

complementary RNA (cRNA) is transcribed using a RNA polymerase enzyme. To label cRNA 

with fluorescent dyes, two separate tubes are prepared for each sample. In one tube, cyanine 3-

labeled cytidine triphosphate (cy3, a green fluorescent dye) is added so that it can be 

incorporated to the cRNA. In a separate tube, cyanine 5-labeled cytidine triphosphate (cy5, a red 

fluorescent dye) is added and incorporated into the cRNA. At this point, cRNA is purified to 
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remove unincorporated dye-labeled nucleotides which could cause background signal on the 

array each tube of labeled and the cRNA is assessed for concentration and quality. Next, the cy3 

and cy5 labeled cRNAs are pooled and simultaneously hybridized onto the gene chip. After 

hybridization, the chip will be scanned using a confocal laser scanner on two channels :  at 

635nm wavelength to capture the cy5 signal and at 532nm wavelength to capture the cy3 signal.  

The intensity of fluorescence is relative to the abundance of the original mRNA transcript. Along 

with quantitation, intensity readings are corrected for background signal and noise. Next 

intensity readings for each channel are normalized. Normalization corrects for technological 

biases that cause non-biological perturbations to data. Although a variety of approaches are 

available here, Lowess normalization, which corrects for differences in how the cy3 and cy5 

dyes impact cRNA hybridization and therefore  intensity readings [4-7] , was the method utilized 

in the Agilent data used in this dissertation. Finally, to obtain actual expression values for each 

sample the log (2) ratio between the cy5 and cy3 channels are calculated. Frequently used 

software for normalization and intensity calculations of Agilent chips includes LIMMA [8] and 

other commercial products like Agilent’s Feature Extraction Software.  

 Although somewhat similar in the approach there are key differences in how Affymetrix 

gene expression arrays work. For example, Affymetrix analysis differs from Agilent at the in 

vitro transcription step. Instead of dye labelled nucleotides, Affymetrix protocols utilize biotin-

labelled nucleotides for incorporation into the cRNA molecules[9]. Taking advantage of 

streptavidin’s binding affinity for biotin, cRNA hybridization to oligonucleotide probes is 

detected by staining with a fluorescent dye that is coupled to streptavidin. The Affymetrix 

oligonucleotide probes are synthesized on silicon wafers by photolithography. Affymetrix 

oligonucleotide probes are 25-mer and there are multiple pairs of probes (16-20), perfect match 
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and mismatched probes, for each gene. The perfect match probe contains sequence exactly 

complimentary to unique regions of the 3’ end of its corresponding gene and measures the 

expression of the gene. The mismatch probe differs by a single base at the center of the probe 

and as a result the binding of the corresponding gene transcript is disrupted. This allows the 

background and nonspecific hybridization signal to be calculated for the perfect match 

oligonucleotide [10]. The mismatch probes assist with normalization and calculation of intensity 

values. One method that utilizes mismatch probes is Mas5 normalization. At the most basic 

level, Mas5 normalization adjusts each array independently for background and non-specific 

hybridization by subtracting the signal of the mismatch probes from the signal of the perfect 

match probe to obtain the expression value for each probe [11]. Another common normalization 

method for Affymetrix gene chips is robust multi-array analysis (RMA). While this method 

ignores the mismatch probes it is still able to remove background and deal with probe specific 

affinity effectively [12]. This method is meant to be employed for multiple chips all from the 

same batch (samples processed together under the same methods, settings, same facility, etc…). 

There are basic three steps of RMA normalization: background adjustment, quantile 

normalization, and median polish summarization. After background is adjusted, intensity values 

for perfect match probes are log transformed (log (2)). Next is quantile normalization; where the 

distribution of the intensity values amongst chips is measured and is corrected so that each chip 

has an equal distribution of intensity values [13]. Finally, median summarization identifies and 

removes outliers [14]. Conveniently, RMA normalization and Mas5 normalization to obtain gene 

expression levels can be done utilizing Affymetrix Expression Console Software [15] .   
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BIOINFORMATIC METHODS 

 With differences between microarray platforms, as well as differences in technical 

settings during array analysis, computational methods had to be developed that would remove 

this artificial variance between microarray studies ( also referred to as batch effects) to allow for 

datasets to be combined. To remove, measure, and visualize these batch effects, one common 

method is principle components analysis [16]. One of the initial challenges in microarray data 

analysis and adjusting for batch effects is the high dimensionality of the data that comes with 

having tens of thousands of probes on an array and often a large number of samples in a dataset.  

At the most basic level, principal component analysis reduces this dimensionality of large 

datasets by calculating vectors (or principle components) that describe variability in the dataset 

[17]. To identify and describe each principle component, a mathematical method known as 

singular value decomposition is often employed. Singular value decomposition works to break 

down high dimensional expression data using linear reduction. In this way, singular linear 

vectors are calculated that simplify and summarize the both samples and genes [18]. A simplified 

way to think about this is that singular value decomposition identifies genes that correlate with 

one another across samples and describes them as a linear vector, these vectors are often referred 

to as “eigengenes”. Similarly, samples that correlate with one another can also be described as 

mathematical vectors, and these are often referred to “eigenarrays”. As mentioned, most 

principle components analysis methods rely on singular value decomposition. With this 

approach, the vector that describes the greatest amount of the variability in the data is the first 

principle component. The remaining maximal variance not described by the first principle 

component will be described with a second vector (the second principle component). This trend 

continues, with left over variance being described by subsequent vectors until the dataset’s 
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variance is completely described. Applying this, a 2008 publication by Ringner used principle 

components analysis to summarize a 105 sample, 8,534 probe microarray dataset. He found that 

only 104 principle components were needed to describe the variance in the entire dataset [16]; 

thus illustrating how this method reduces dimensionality into more manageable units. 

 As to how principle component analysis assists with identifying and removing batch 

effects, consider that differences in chip type, protocol differences amongst labs, and 

cRNA/cDNA synthesis can cause large disparities in the scaling and variance between separate 

gene expression datasets. As a result, the perturbations of batch effects on the data is likely to be 

captured within the initial first several principle components. This makes mapping samples to 

their position on even the first three principle components a useful approach for visualizing and 

predicting batch effects between studies. Indeed, labs working to identify and correct batch 

effects frequently relied on singular value decomposition and principle components analysis [18-

20]. While good as starting point, new batch adjustment correction approaches were developed 

that have been shown to outperform the singular value decomposition / principle components 

analysis method [21]. However, principle components analysis is still frequently used for 

viewing combined datasets to predict the presence of batch effects.  

 Developing robust methods for mediating batch effects continues to be a major goal 

within the field of bioinformatics. Amongst the wide variety of methods, Distance Weighted 

Discrimination (DWD),  Combatting' Batch Effects When Combining Batches of Gene 

Expression Microarray Data (COMBAT), and Bayesian Factor Regression Modelling (BFRM) 

have all proven to be reliable tools for removing technical artifacts from microarray data. 

 Distance Weighted Discrimination was demonstrated to correct for technical biases in 

microarray data [21]and is based on an algorithm known as Support Vector Machines. The 
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Support Vector Machines algorithm is a supervised approach that builds a hyperplane in infinite-

dimensional space [22]. Perhaps an easier way to think about this, is the algorithm identifies a 

line or plane in space that features the maximal difference/separation between to gene expression 

datasets. Distance weighted discrimination takes advantage of this strategy to remove batch 

effects by first projecting the different batches on the hyperplane (also referred to as the distance 

weighted discrimination plane). Next, then the mean is calculated for all genes within each batch 

separately. Finally, the distance weighted discrimination plane is subtracted out for the samples 

in each separate batch and multiplied by the projected mean for each gene. Essentially, this evens 

the scale of gene expression values between two datasets and removes the distance between each 

dataset so that Support Vector Machine could no longer identify differences between batches. 

One weakness of Distance Weighted Discrimination is that it does not work well when only a 

few samples are featured in a batch [23]. 

 In the case of dealing with smaller datasets, an appropriate option would be to use 

COMBAT. COMBAT can deal with both small and large batch sizes and utilizes an Empirical 

Bayes approach to removing batch effects [24]. Importantly, this method assumes that batch 

effects are having the same impact on gene expression values. In the context of COMBAT, 

Empirical Bayes is being used to estimate degree of batch effects between two datasets based on 

the distribution of the data within each batch. As part of COMBAT a location and scale 

adjustment method is employed, where genes across each batch are analyzed and this 

information is used to establish the batch effect parameter describing the mean and variance for 

each gene. Together, distribution and batch estimates are then used to establish the correction the 

data for batch effects. Thus in overly simplified terms, COMBAT compares the variance of 

genes expression values between each batch to then establish model for adjusting gene 
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expression values in each batch so that there is similar degree of variance in the expression 

values across all batches. 

 While COMBAT and DWD can be used for correcting gene expression data for any 

microarray platform, the BFRM method was built specifically to work with Affymetrix datasets. 

BFRM takes advantage of probes for housekeeping genes. These 60-100 probe sets are present 

on Affymetrix chips and are used as controls because they will have no biological or 

hybridization variation across samples. As a result, this information can be utilized for measuring 

and correcting batch effects across microarray studies. With BFRM, a principal components 

analysis strategy is used to measure the variance between batches on the basis of these 

housekeeping genes and establishes the model for removing this variance between each batch 

[25]. Importantly, after employing BFRM, COMBAT, or distance weighted discrimination it is a 

good idea to use principal components analysis to test and measure batch correction. Once batch 

effects have been removed, samples in the dataset are ready to be tested for biologically 

significant relationships.  

 One of the most common ways to analyze the relationships amongst samples is by way of 

unsupervised hierarchical clustering. Unsupervised hierarchical clustering relies on a machine 

learning strategy referred to as unsupervised learning. The strategy of unsupervised learning 

dictates that patterns in the data are assembled without the input any information beyond the raw 

data [26]. Hierarchical clustering treats each data point, whether it be a gene or sample, as a 

single cluster. The most similar pair of clusters are merged are sequentially merged until all 

points have been merged into a single remaining cluster and are typically represented as a 

dendrogram [27]. Putting these concepts together in the context of gene expression analysis, this 

means that clusters of samples, for example, are assembled without any user input on sample 
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type or group. Instead, samples are arranged merely on the basis of having similar gene 

expression profiles. Similarly, when genes are clustered, the ordering of genes into various 

clusters is dependent on genes sharing similar patterns of covariance across samples in the 

dataset. In this way, unsupervised hierarchical clustering provides a non-biased approach for 

measuring and detecting similarities and differences amongst samples in a gene expression 

dataset.  

 In addition to measuring the similarities in gene expression patterns, it is also of great 

interest to identify genes that are altered in expression between groups of samples. The 

identification of these altered genes and their degree of variation is often referred to as a fold 

change analysis. Fold change analysis is especially useful for identifying genes that change 

between two biological states. However, when dealing with multiple samples in each biological 

condition, it is important to measure the statistical significance of the gene expression changes. 

To achieve this, an approach and software referred to as Significance Analysis of Microarrays or 

SAM was developed [28]. This method relies on t-tests and calculates how much the expression 

of each gene changes in relationship to the standard deviation of repeated measurements. For 

genes with changes greater than a user defined threshold, SAM measures the false discovery rate. 

The false discovery rate relates to the percentage of genes identified by chance. In this way, the 

uniformity of the gene expression changes can be assessed.  

 Once a list of significantly altered genes is obtained, additional discovery and prediction 

tools can be utilized that go beyond single gene analysis. For example, to explore the relationship 

of differentially expressed genes to categories relating to cellular functions can be achieved using 

a gene ontology analysis [29]. The current gene ontology system was developed with the 

motivation to establish a uniform system for annotating genes according broad categories such as 
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the biological process, molecular function and cellular component the gene most significantly 

associates with.  There are a variety of free online tools for conducting gene ontology analysis 

including DAVID [30] and GATHER [31]. One of the weaknesses of gene ontology analysis is 

that the categories for gene association are broad and thus limits making more specific 

predictions about the gene expression changes. 

 Despite the limits of gene ontology analysis, GATHER has several additional predictive 

tools that can assist in making mechanistic predictions based on gene expression changes. For 

example, GATHER allows users to test lists of altered genes for significant overlap with KEGG 

pathways.   KEGG pathways are a collection of major cell signaling pathways that are annotated 

for which gene products are participants and serves as an excellent prediction tool for querying 

gene lists to predict alteration of specific pathways [32]. In addition to KEGG pathways, 

GATHER also offers a tool to query the TRANSFAC database. The TRANSFAC database 

allows users to access and predict the presence of transcription factor binding sites for their gene 

of interest [33]. Importantly, GATHER contains measures of statistical significance for gene list 

queries for overlap with specific KEGG pathways, transcription factor binding sites, and 

association with gene ontologies. This statistical measure is reflected in the Bayes score. This 

score reflects the degree of relationship of a particular annotation with the list of genes, where 

the higher the Bayes score, the stronger the likelihood that the annotation corresponds to the list 

of genes being queried than other genes in the genome. Together, GATHER provides 

comprehensive tool for investigating gene lists to predict what the alteration of the listed genes 

may represent at a more functional level.   

 Another useful tool for investigating and understanding gene expression changes between 

two groups of samples is Gene Set Enrichment Analysis (GSEA) [34]. GSEA utilizes a database 
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of wide variety of gene sets derived from scientific investigations.  For example there are gene 

sets that specify the genes that are up or down regulated in response to pathway activation in 

specific cells ( i.e. genes upregulated in response to AKT activation). There are other gene sets 

that have identified genes that are up and downregulated in specific cell types. For example, a 

gene set that identifies the genes up-regulated in comparison of CD4 positive T cells versus 

myeloid cells. There also gene sets that define the genes that correspond to very specific 

processes, such as tumor angiogenesis, metastasis, and hypoxia. For statistical analysis, genes are 

ordered on the basis of fold change between two user defined groups, thus establishing a ranked 

list. Then, gene sets are mapped on to the ranked list. Each time a gene in the gene set is 

encountered it drives up the enrichment score, therefore, the higher the rank of the gene 

(meaning the higher the fold change), the greater the degree that the enrichment scores will 

increase. In addition, a false discovery rate is also included.  Thus, gene sets that have a high 

degree overlap with the genes that are consistently the most up or down regulated genes are those 

that will have the highest enrichment score and have the greatest statistical significance. All in 

all, this collection provides a comprehensive tool for making very specific bioinformatic 

predictions and measuring the statistical significance of those predictions.  

 Each of the previous methods have focused on computationally comparing groups of 

samples. However, it is also desirable to make predictions on each sample individually. One of 

the more powerful bioinformatic methods to be developed is the gene signature approach to 

activation of major cell-signaling pathways on individual samples that was developed by the 

Nevins lab [35]. To establish pathway activation gene expression profiles, key cell signaling 

molecules are overexpressed in plates of human mammary epithelial cells using adenovirus. As a 

control, adenovirus is used to overexpress GFP. By comparing gene expression profiles between 
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the pathway activated samples and the GFP control cells, a transcriptional signature of pathway 

activation is obtained and is used to establish a gene signature. This transcriptional response of 

pathway activation is used to build a model that can be used to query other samples and predict 

whether or not a cell signaling pathway is active or not. 

 Building the model for predicting pathway activation integrates multiple statistical 

methods [35]. Specifically, for each training dataset signature genes are identified using singular 

value decomposition and principle component analysis [36]. With this the user is offered the 

opportunity to adjust the parameters of the model they are about to build for signature setup and 

pathway activation prediction. For example, the user can choose how many genes and metagenes 

the signature model should contain. A metagene is derived using SVD and is a group of genes 

that show a constant pattern of expression in relation to a discernable phenotype [35-37]. Thus, 

this approach allows the genes that define pathway activation to be identified. The reason a user 

should adjust the number of metagenes in the model is to enhance discrimination of the GFP 

overexpressing cells from the pathway activated cells. During model assembly, metagene scores 

are calculated are calculated for genes and training samples alike. Metagene scores reflect the 

ability to differentiate or predict the pathway on state from the pathway off state.  Thus, to 

calculate the probability of pathway activity in a sample, the sample is mapped to the metagene 

signature ( based on the same genes and metagenes in the signature model). Based on the 

metagene score for the sample that was mapped to the model, a probability of pathway activation 

is assigned using probit binary regression. At this step, probit regression predicts the probability 

of a binary outcome: zero, where the pathway is off and one, where the pathway is on. As 

mentioned, this is based on metagene scores. As a result, there is a correlation between the 

metagene score and probability that the pathway is activated. Samples that map to high metagene 
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scores have a high probability of pathway activation and samples with a low metagene score 

have a low probability of pathway activation [35]. This is done on training data on its own, on 

the training data during leave one out cross validation (more on this later) and similarly on non-

training data samples that are being tested for probability of pathway activation.  

 To go into more detail, the process of mapping samples to the metagene score is achieved 

by Bayesian fitting of probit binary regression models. More specifically, the Bayesian analysis 

applied in this scenario is known as iterative Markov chain Monte Carlo (MCMC) simulation 

methods[36]. This approach uses multiple simulations (or iterations) to assess probability of a 

particular outcome out of a multiplicity of choices. Inherent to Bayesian approaches, application 

of MCMC works to generate probabilities based on prior knowledge [36, 38, 39]. The prior 

knowledge in this case is that we know which samples in the training data the pathway is 

activated in. Therefore, we also know the metagene structure that defines pathway activation. 

Therefore, the MCMC model is informed as to the conditions where pathway activation is more 

likely. Using MCMC, we can simulate thousands of iterations of fitting the regression models to 

the metagene signature to both predict probability of pathway activation and calculate the degree 

of certainty for each of these predictions (since it reports the range of the probabilities calculated 

over the multiple simulations)[36, 40].  

 With the application of predictive bioinformatic methods, an important issue to consider 

is overfitting. The term overfitting refers to a category of technical issues that can be experienced 

with computational modeling [41, 42]. The reason overfitting is problematic is the risk of 

generating non-predictive models that do not replicate or validate; or a simpler way to put it: 

overfitted models do not describe real life.  Overfitting error stems from datasets that contain 

measurements for an abundant number of features, but contain disproportionately fewer 
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replicates ( ie, the training dataset size is small). Generating models on datasets containing high 

dimensional measurements on relatively few cases runs the risk of invalid feature selection. As a 

result the model is describes random error. As a result, the assembled model only works on the 

training data and fails to accurately predict or validate when applied to separate, but similar data 

scenarios.  Using a more concrete example, such as model assembly from gene expression 

microarray datasets, the concept of overfitting can be made clear. 

 The risk for overfitting is elevated in microarray datasets, where gene expression for tens 

of thousands of genes are measured, but often times a small number of samples are measured.  In 

particular, problems can manifest from “noisy” genes that have large, but irrelevant deviation. 

Some examples where this can arise from are probe sets that have poor affinity (an issue that can 

be addressed by mismatch probes), or transcripts that have higher tendencies to form secondary 

structures, or transcripts with a shorter half-life. In the end, this results in false positives in the 

identification of truly differentially expressed genes [43, 44] and increases the risk of overfitting 

in classification and signature generation methods [45]. Providing an example for how 

measuring random error can generate invalid models, take for example an analysis using a 

training dataset of only two samples: one sample where the Egfr pathway is activated and one 

sample where it is not. One might be tempted to think that due to the differences between these 

two sample types, a model to describe activation of the Egfr pathway can be assembled. 

However, due to the high number of genes measured for each sample and the limited number of 

samples, there is a high likelihood that random selection of genes (many of which could be 

variable due to noise and probe set efficiency) could generate model that describes the variance 

between the Egfr activated and non-activated samples. However, due to overfitting the genes 

selected would not be likely to be biologically significant to Egfr signaling. In this scenario, the 
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model would be unique to the training dataset only and would therefore fail during predictive 

analysis and validation on other datasets. These types of overfitting issues can be encountered in 

a number of modeling approaches including regression, fold change analysis, and gene signature 

approaches to modeling specific features. While overfitting tends to occur more frequently with 

supervised analysis [46] highly variable probe sets can cause overfitting in unsupervised 

approaches as well, such as in unsupervised hierarchical clustering.   However, for each of these 

methods, there are a number of strategies that can be employed to reduce the frequency and 

magnitude of overfitting.  

 One strategy is to increase the number of samples used to inform model assembly. Take 

for example, using a regression strategy to identify genes that correlate with metastatic outcome; 

it is easy to find genes that by chance correlate with metastatic outcome with limited 

observations. If you have two samples, one with no metastasis, and one with ten metastasis, even 

random selection of genes find an incredibly large number genes that correlate with metastasis 

given those two data points. However, if you had a thousand samples with metastatic 

annotations, random selection would be unlikely to identify genes that correlate with metastatic 

outcome and instead the subset of genes that did correlate with increasing metastatic outcome 

would have a higher likelihood of being biologically significant. Increasing sample size is also 

especially useful for reducing overfitting while developing gene signatures and conducting fold 

change analysis.  By increasing the sample size we reduce the likelihood that randomly selected 

genes can distinguish two known groups decreases. In many cases increasing the number 

samples gives a better indication of the false discovery rate (which is measured during SAM 

analysis) for each gene. As a result, false discovery rate is an important measure to pay attention 

to during fold change analysis as genes with a lower false discovery may have a better chance of 
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being biologically significant (and not noise). Similarly, increasing sample size reduces the false 

discovery of genes that define a given feature and this increases the likelihood that gene 

signature models are predictive outside of the training dataset. Likewise, for unsupervised 

hierarchical clustering, having a higher sample size is important to reduce overfitting. With low 

sample numbers, there is a better chance that “noisy” probe sets to be selected and inform cluster 

assembly. This could lead to incorrect predictions about genes that distinguish sample types or 

incorrect indication of sample to sample relationships.  

 Sometimes it is not economically feasible to include additional samples. As a result a 

number of statistical approaches have been developed to address specific issues with overfitting. 

For example to deal with noisy probe sets that cause overfitting issues, Talloen et al. developed a 

method for filtering out these non-informative “noisy” genes [44]. Their approach makes use of 

the multiple probes for the same target mRNA on an Affymetrix gene chip. By utilizing these 

repeated measures, they obtain a signal to noise ratio for each probe set on the chip. They 

combine this information to inform a factor analysis (similar to principle component analysis) 

that summarizes the variance of each gene based on its probe sets across microarrays. 

Importantly, to test their approach they used a dataset with spike-in transcripts for specific 

probesets. Since, spike-ins provide a known amount of RNA, they can measured degree of 

hybridization between the spike-ins and the control probes to calculate hybridization efficiency. 

In addition, they can detect coordinate changes in signal across the probets with increases in 

RNA concentration across arrays. A probe set was deemed informative if the probes showed the 

same decrease or increase in intensity readings with the changed in RNA concentration. Those 

probes that did not meet this criteria were called non informative as the signal did not exceed the 

noise for this probeset, supporting exclusion. They use this information to establish parameters 
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for a Bayesian model for identifying non-informative genes. As a result, this method may reduce 

overfitting and prove useful as a pre-processing tool that can be employed prior to other 

bioinformatic applications such as clustering, regression, signature development.  

 Importantly, the method described by Nevins and colleagues [35-37, 47] for developing 

gene signatures to predict pathway activation has built in steps that reduce and assess overfitting. 

The first approach that reduces overfitting is the use of SVD to select metagenes that consistently 

discriminate pathway on from pathway off conditions. As reported, this approach eliminates non-

discriminatory genes that often contain noise [36]; therefore limiting a major source to 

overfitting. To assess possible overfitting, Bayesian fitting of the binary regression models and 

the metagene signature is featured. This allows for metagene signature to be tested for its ability 

to classify training data samples correctly and measure the degree of certainty by which it does 

so [37]. An additional overfitting assessment feature is leave one out cross validation [48]. In 

leave one out cross validation, one sample in the training dataset is left out, the metagene model 

is regenerated from the remaining samples and the new model is used to predict remaining 

training dataset[35, 47]. This is performed continuously, until all samples have been left out and 

classified. By performing leave one out cross validation, the error rate of the model can be 

determined. As a result, this gives an indication as to how strong the training dataset is and its 

error rate during generation of a predictor (where models with high error rates would reveal 

possible overfitting).  

 Together, the previously mentioned methods and strategies highlight a few amongst 

many of the approaches that have been developed to deal with overfitting. While these methods 

offer promise to reduce false discovery, there are additional steps following application of 

predictive models to test for overfitting. One tactic is to test the model on an independent dataset 
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containing the appropriate corresponding sample types. In the context of gene signatures and fold 

change analysis, this would determine the degree to which model is correct by identifying the 

proportion of genes that were consistently detected. Those that passed criteria on both datasets 

could establish a consensus gene set carrying more biological significance.  Similarly, in the 

context of unsupervised hierarchical clustering, testing on an independent dataset would 

determine whether or not the same relationships amongst sample types are upheld and whether or 

not specific genes are critical to the detected relationships. An additional control for overfitting 

in unsupervised hierarchical clustering is using principle components analysis. This would test 

whether or not the detected relationships were specific to the hierarchical clustering approach, or 

hold up to an additional test.  

 While many of the approaches previously discussed can reduce the likelihood for 

overfitting, the best way to deal with overfitting is validation. While validation goes beyond 

testing multiple independent datasets, there are some ways to validate using bioinformatics 

approaches. For example, if you generate a signature that predicts the probability of Egfr 

activation in tumor samples, the signature could be bioinformatically validated on gene 

expression data for tumor samples where Egfr signaling was inhibited. If the samples where Egfr 

was inhibited show consistently low probability of pathway activation, there is evidence that the 

gene signature is validated. The other validation approach relies of biochemical means. For 

example, the Egfr activation signature could be tested on a dataset of tumor samples with a 

corresponding tissue bank. Examining to the samples with the highest and lowest probability of 

Egfr pathway activation, the signature could be validated by doing a western blot for the active 

version of phosphorylated Egfr.   
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BREAST CANCER 

 The use of microarray technology and sophisticated bioinformatic methods has enhanced 

our understanding of breast cancer tremendously. Breast cancer refers to the transformation of 

cells in the breast to a state of abnormal cellular behavior resulting in the formation of malignant 

tumors. The breast consists of milk producing lobules, and ducts that serve as connective tubes 

for transporting the milk to the nipple. The remainder of the breast consists of adipose tissue, 

connective tissue (for example, blood vessels, extracellular matrix, and other individual cell 

types like immune cells) and lymphatic tissue.  The cells that give rise to breast cancer are those 

cells of the lobules and cells of the ducts. Importantly, the incidence ductal carcinoma is higher 

than lobular carcinoma [49]. Overall, a recent epidemiological report shows breast cancer affects 

one in eight women, with more than 230,000 new cases each year [50]. The molecular basis of 

these tumors are known for some of the heritable cancers, with BRCA1 and BRCA2 mutations 

occurring in less than 10% of breast cancers [51].  Other cancers are a result of gene 

amplification and overexpression, one of the most well studied being the amplification of HER2 

[52] [53]. In addition, to high incidence, breast cancer is second leading cause of cancer death 

among women with nearly 40,000 deaths each year[50].  This high mortality rate is largely due 

to tumor heterogeneity and tumor metastasis to distant organs.  

TUMOR HETEROGENEITY 

 In fact, one of the hallmarks of breast cancer is tumor heterogeneity. This refers to the 

detail that there are many different tumor types across the individual cases of breast cancer. 

Among the variable features is tumor histology (the histological type of the tumor refers to the 

morphological and cytological patterns evident within a tumor such as lobular carcinoma versus 

ductal carcinoma), genetic events (for example, the presence of Her 2 amplification), and 
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hormone receptor status (estrogen receptor, or ER, status). Each of these differences impact the 

overall genomic context and phenotype of the tumor. As such, not every tumor can be treated the 

same way. Traditionally, breast cancer heterogeneity is largely based upon 

immunohistochemistry for the clinically relevant markers HER-2, ER, and progesterone receptor 

or PR. To be sure, tumor heterogeneity has provided major challenges for breast cancer therapy, 

with some success being realized in treating tumors according to their unique features. For 

example, without pre-selecting breast cancer patients for the Her-2 biomarker, only a small 

percentage of patients benefit from therapy with Herceptin (a monoclonal antibody targeting 

Her-2). On the other hand, when Herceptin is assigned exclusively to Her-2 positive patients, a 

significant improvement in the clinical response is realized [54]. Importantly, diagnostic gene 

expression assays have been developed to predict clinical outcomes and tailor therapies for 

breast cancer patients. Such tools have been able to predict the benefit from chemotherapy and 

have improved life expectancy for patients with estrogen receptor positive breast cancer [55, 56]. 

While some tumors present molecular alterations that present opportunities for therapies 

targeting those alterations( for example, Herceptin for Her-2 positive tumors and Tamoxifen for 

ER positive tumors), there are other tumor types ( the triple negative breast cancers, which do not 

express Her-2, ER, or progesterone receptor) that are limited to surgery, radiation therapy, and 

general chemotherapy. As a result, one of the major goals of researchers is to expand targeted 

therapies to triple negative breast cancers and to improve targeted therapy approaches for ER and 

Her-2 positive patients. This requires a better understanding of the tumor heterogeneity at the 

genomic level.  

 Disentangling the heterogeneity of breast cancer has been largely significantly by the use 

of microarray technology. One of the ground breaking works using this technology, established 
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the classification of breast tumors into their molecular subtypes based on unique gene expression 

profiles [57]. As a result of this work, tumors are now described according to their “intrinsic 

subtype”: basal, luminal A, luminal B, her-2 positive, and normal-like breast group. In  more 

recent work, an additional subtype was discovered, the claudin low intrinsic subtype [58]. 

Relating these intrinsic subtypes back to their clinically relevant markers,  the luminal A and 

luminal B tumors are ER positive, the Her-2 subtype is Her-2 +, while the claudin low and basal 

subtypes are triple negative [58-60]. Further dissecting triple negative breast cancer, it was found 

that claudin low tumors have gene expression features resembling mesenchymal cells, while 

basal breast cancer retains a more epithelial cellular identity [58].  In terms of overall survival, 

luminal A tumors carry the best prognosis with longer survival times than the other intrinsic 

subtypes [58, 60]. Importantly, these intrinsic subtypes of breast cancer now serve as the 

fundamental basis by which researchers classify tumor heterogeneity.  

 Since the development and identification of the intrinsic subtypes of breast cancer, 

researchers have expanded on this work to further define tumor heterogeneity. Among these, an 

important study detailing the pathway activation profiles within the intrinsic subtypes, 

demonstrated molecular complexity beyond the six subtypes of breast cancer [47]. Specifically, 

this work identified subgroups within the intrinsic subtypes, totaling up to 17 subtypes of breast 

cancer on the basis of predicted pathway activation profiles. Importantly, pathway classification 

and separation of luminal tumors identified a subgroup of tumors that correspond to better 

overall survival. Similarly, this analysis separated out a subtype of basal breast cancer that had 

lower activity of the Src signaling pathway that better overall survival than two other subsets of 

basal breast cancers.  
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 It is also important to note, that this expanded view of tumor heterogeneity was upheld in 

a large genetic and molecular profiling effort known as The Cancer Genome Atlas (TCGA) 

project [61]. In this study, breast tumors were analyzed by DNA copy number arrays, DNA 

methylation, exome sequencing, messenger RNA arrays, microRNA sequencing and reverse-

phase protein arrays.  In agreement with an expanded number of breast cancer subtypes, 

sequence and copy number analysis showed that event profiles were largely variable within 

intrinsic subtypes. Illustrating the utility of gene expression profiling, gene expression analysis 

was able to capture all of the heterogeneity within the tumors. Expanding upon this work,  

researchers found a significant correlation between pathway activity and the corresponding copy 

number alteration[62]. For example, a signature for Her-2 signaling correlated with actual Her-2 

amplification events. In addition, this work revealed new potential therapeutic opportunities for a 

subset of luminal tumors. Taken together, these gene expression profiling studies are important 

because they not only unravel and characterize tumor heterogeneity but also may serve as a 

launch pad for new personalized therapeutic strategies.  

METASTASIS 

 In addition to tumor heterogeneity, gene expression analysis has been a powerful tool for 

investigations into the mechanistic features of breast cancer metastasis. Metastasis is a multi-step 

process by which tumor cells leave the primary tumor and colonize the local and regional tissues 

as well as distant organs in the body [63]. First, a metastasizing tumor cell acquires invasive 

characteristics. The acquisition of metastatic phenotypes is still not completely understood, as 

multiple factors have been demonstrated to be involved at the early initiation steps of metastasis. 

However, once this shift to increased invasive potential does occur, tumor cells can begin to 
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invade local tissue, or enter the lymphatic system where they typical spread to local or regional 

lymph nodes, or enter the circulation to spread to distant organs. Thus, one of the first rate 

limiting steps of metastasis to distant organs is the recruitment and development of tumor 

vasculature. This process by which the tumor cell develops a blood supply is referred to as 

angiogenesis. A tumor cell will enter the bloodstream in a process known as intravasation. Once 

in the blood stream a tumor cell must evade a variety of factors that could cause cell death. 

Finally, as a tumor cell becomes trapped in a capillary bed, tumor cells must extravasate out of 

the vasculature and into the organ to begin colonization of the distant organ.  The most common 

distant organs for breast cancer metastases to colonize are the bone, liver, brain and lungs [64] ; 

though metastasis does occur at other organs [65]. While this is a very simplified overview of the 

steps of metastasis, the mechanism at the molecular and cellular interaction level is incredibly 

complex; with gene expression changes, molecular alterations, and coordination with companion 

cells occurring to enable tumor cells to transition throughout each of these steps.  

 At the clinical level there is a great deal of interest in the metastatic status of the tumor, 

mainly due to the implications that metastasis has on overall prognosis. In fact, there is staging 

criteria that in large part is a measure of the degree to which tumor cells have spread[66]. To 

review this staging criteria, stage 0 breast cancer is also referred to as either ductal carcinoma in 

situ or lobular carcinoma in situ depending on the location of the tumor. Ductal carcinoma in situ 

means that cancer cells began to grow abnormally and fill the duct. Similarly, in the case of 

lobular carcinoma in situ, cancer cells remain localized within the lobule. At stage 0, the cancer 

cells have not invaded surrounding tissues and as such surgery has a high success rate of 

removing all of the tumor cells. As a result, nearly 99% breast cancer patients with Stage 0 breast 

cancer survive for at least five years after being diagnosed [67]. Stage 1 breast cancer refers to 
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tumors that are either two centimeters or smaller (stage 1A) or where no very small (0.2 

millimeters) or no tumor is found however tumor cells are found in local lymph nodes. Similar to 

stage 0, this type of breast cancer is more readily managed by surgery and carries a five year 

survival rate of nearly 99% [67]. Stage 2A breast cancer describes tumors that become larger 

than two centimeters but are still less than five centimeters with no spread to the lymph nodes. 

Or, the tumor may be smaller than two centimeters with cancer cells found in less than three 

axillary lymph nodes. For stage 2B, tumor are larger than 2 centimeters but not larger than 5 

centimeters and cancers cells are found in the lymph nodes. Another condition that is 

characterized as 2B is tumors that are larger than 5 centimeters but have not spread to the lymph 

nodes. Patients with stage 2 types of breast cancer have a five year survival rate of 93% [67]. 

Stage 3 breast cancer has several subcategories as well. Conditions that meet stage 3A criteria 

include tumors of any size where cancer cells are found in four to nine axillary lymph nodes. 

Stage 3B cancer describes cancers where cells have invaded the chest wall and spread to nine 

axillary lymph nodes. For stage 3C breast cancer, cancer cells have spread to more than ten 

axillary lymph nodes. Altogether, 72% of the patients with stage 3 breast cancer survive for five 

years from the time of diagnosis [67]. Stage 4 breast cancer refers to cancers that have spread to 

distant organs. This stage carries the worse overall prognosis, with 5 year survival rates 

plummeting down to 22% [67]. As a result, there is great deal of interest in understanding the 

process of metastasis so that strategies to limit metastatic potential and treat tumors that have 

formed in distant organs can be realized.  

 As mentioned earlier, what actually causes tumor cells to become metastatic is still not 

completely clear, as multiple factors have been demonstrated to be involved at the early initiation 

steps of metastasis. This includes molecular alterations and gene expression changes to facilitate 
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invasion and cell migration [68]. There are also the molecular changes that occur for production 

and secretion of pro-angiogenic factors to recruit blood vessels [69], expression of matrix 

metalloproteases to digest the extracellular matrix [70], and epigenetic and global genomic 

changes for a transition to a mesenchymal cell state [69, 71]. Other factors include clonal 

interaction [72], acquisition of mutations [73], and a large variety influences from the tumor 

microenvironment including response to hypoxia [74] and immune cell [75, 76]. In addition, 

there are clear differences amongst the intrinsic subtypes for metastatic potential [77]. More 

specifically, luminal A tumors exhibited the lowest incidence of metastasis and that were Her-2 

positive had the highest incidence.  

 Similarly, there are a variety of factors that have been identified to be critical for the later 

steps of metastasis where tumor cells invade and colonize a distant organ. For example, cancer 

cells have the ability to transition the distant organ microenvironment to a vulnerable, tumor 

fostering state [78]. Other processes involve recruitment of pro-tumor immune cells [79] and 

interaction with companion cells, such as the interaction of circulating tumor cells (CTCs) with 

platelets [80]. Taken together, these multiple factors demonstrate metastasis as a highly 

coordinated process with a complex molecular and cellular mechanism. Further, while we know 

of some of these factors involved in metastasis, our understanding is far from complete.  

 Due to the complexity of metastatic progression at the molecular level, powerful tools are 

needed to identify the gene expression changes associated with metastatic ability. As such the 

use of gene expression analysis has been a vital tool in uncovering the molecular participants 

associated with multiple facets of metastatic progression.. For example, gene expression analysis 

has allowed for the identification of genes that predict the potential for metastasis [81], genes 
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whose expression is correlated with the epithelial to mesenchymal transition [82], genes that 

predict metastasis for specific tumor types [83] and genes associated with organ specific 

colonization [84, 85].  Perhaps one of the most useful utilizations of tumor gene expression data 

is with the development of the online Kaplan-Meier-Plotter tool [86]. This tool makes use of the 

analysis of over 4,000 human breast cancer patient tumors that have been analyzed on 

microarray.  These patients have been observed for a number of clinical observations, such as ER 

status, intrinsic subtype, overall survival, and metastatic status. By stratifying patient tumors on 

the basis of high or low expression of a given gene, a Kaplan Meier analysis allows for 

differences in the time it took for a patient to develop metastasis to be detected. Thus, for 

example, if a high expression of gene separates out tumors where patients experienced earlier 

metastasis, that gene might be predicted to function in metastasis.  

HUMAN BREAST CANCER CELL LINES AND MOLECULAR BIOLOGY 

 Verifying these predictions have largely relied on the use of human breast cancer cell 

lines [87]. Typically, a potential metastatic regulator can be tested for functionality by 

transfecting or viral injection human breast cancer cells with constructs for expression of short-

hairpin RNAs that can diminish expression of a target gene [88].  One weakness of this approach 

is that it does not completely eliminate the expression of such genes. This leaves for the 

possibility of false negatives in hypothesis testing especially for genes that are regulated far more 

at the level of protein stability. An alternative approach without this weakness is an option 

known as CRISPR (clustered regularly interspaced short palindromic repeats)  and has the ability 

to eliminate the expression of genes in cells [89]. Briefly, CRISPR takes advantage of plasmids 

expressing a Cas9 nuclease and an expression guide RNA that the user can design to direct Cas9 
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to a target gene. Cas9 will cleave DNA normally 3 nucleotides upstream from sequence of DNA 

known as a PAM (protospacer adjacent motif) motif. The PAM motif is typically any nucleotide 

followed by two guanine nucleotide. This will generate double-strand breaks at target sites and 

DNA repair process leads to insertions, deletions or substitutions at target sites. As a result, this 

technology has the ability to completely knock out the gene of interest.  

 Regardless of the technology used to alter gene expression in human breast cancer cell 

lines, validation experiments for metastasis typically utilize both in vitro and in vivo strategies. 

Examples of in vitro investigations with relevance to metastasis include wound healing assays to 

measure cell migration ability and transwell invasion assays. Transwell invasion assays have the 

flexibility to be adjusted to test multiple characteristics relevant to metastasis including invasion 

through the extracellular matrix, migration toward specific chemokines, and the ability to 

migrate through endothelial cells. While in-vitro assays are an excellent screening tool with a 

high level of user control, it is also preferential to test cancer cells ability to metastasize in vivo. 

Testing human breast cancer cell lines in vivo requires the use of immuno-compromised mice. 

One way of testing metastatic ability involves injection of cancer cells into the mammary gland, 

allowing a tumor to develop, and then monitoring metastasis at end stage. An alternative strategy 

is to inject tumor cells directly into the bloodstream by way or tail vein or retro-orbital injection 

and observing metastasis at a set time point.  In this way early rate limiting steps are bypassed 

and the later colonization steps can be tested. These in vivo strategies also offer the advantage for 

enhanced detection methods, for example bioluminescent or fluorescently tagged 

cancer cells  can be monitored using advanced imaging systems such as IVIS which allow 

metastatic progression to be monitored while the mouse is still alive. One of the major 

weaknesses of the using human cell lines in immuno-compromised mice is that the immune 
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system has been shown to be a major player in tumor progression and metastasis [90]. In light of 

this, the use of genetically engineered mouse models of cancer offers the advantage and the 

opportunity to study tumor progression in an immuno-competent system.  

MOUSE MAMMARY TUMOR MODELS 

 The study of mouse mammary tumor models began several decades ago with the study of 

inbred strains of mice presenting an elevated incidence of mammary tumor formation. This study 

led to the discovery of the mouse mammary tumor virus (MMTV) [91]. After the discovery of 

the virus, methods were then established to harness its promoter activity as a means for 

discovering mammary transforming oncogenes [92]. The ability of the MMTV promoter to 

target oncogene expression to the mammary gland, along with other mammary specific 

promoters, has enabled the study of a variety of genetic pathways in mouse models for effects on 

mammary tumorigenesis [93]. In addition to overexpression of specific genes, gene deletions in a 

mouse model have also helped demonstrate the impact of heritable gene mutations, such as 

BRCA1, BRCA2 and p53 mutations, to breast cancer development [94-96]. By combining 

oncogene overexpression and gene deletions, mouse models have become a powerful tool for 

detecting and testing pathway interactions in the course of mammary tumor development [97-

99]. Moreover, more recent models with inducible oncogene expression has allowed the 

dependency on specific oncogenes to be examined [100-103]Taken together, previous work in 

mouse models has been integral to advancing our understanding of breast cancer to its current 

state. Further, by integrating the advances in technology with bioinformatic methods, the 

capacity of mouse models to dissect key features of human breast cancer has the potential for 

new directions and possibly development of new therapeutic strategies. 
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 Given that extensive heterogeneity has been noted in human breast cancer through 

genomic methods, it is important to examine the heterogeneity of the mouse model systems.  

Given that mouse models are usually induced by the overexpression of a critical oncogene, one 

may have expected a lack of tumor heterogeneity.  However, the integration of mouse model 

studies with bioinformatic analysis of mouse mammary tumor gene expression data has 

demonstrated significant heterogeneity in mouse models, analogous to human breast cancer. 

While some models, such as MMTV-Neu model display characteristic gene expression profiles 

with minimal heterogeneity, other models have been shown to induce tumors with wide ranging 

genomic and histological heterogeneity [104]. While no single mammary tumor model has been 

able to capture the full-spectrum of heterogeneity of human breast cancer, bioinformatic methods 

provide a means of defining the similarities and differences between mouse models and subtypes 

of human breast cancer. For example, just as human breast cancers have been classified into 

intrinsic subtypes, mouse models have also been characterized in this manner [105]. In this way, 

similarities between human breast cancer subtypes and mouse mammary tumor models were 

identified and validated with immunohistochemistry for specific markers. However, by 

combining mouse and human mammary tumor gene expression data, analysis of the gene 

expression profiles distinguish mouse and human mammary tumors; perhaps due to the limited 

number of tumor samples for mouse mammary tumors within each mouse model.  

 Even though the full spectrum of human breast cancer heterogeneity was not present in 

previous mouse model studies, continued bioinformatic analysis of heterogeneity within a mouse 

model presents the opportunity to detect relationships to human breast cancer. For example, 

differences in Myc expression and stability have led to divergent histological and genomic tumor 

types [106]. Another example of using bioinformatic analysis to dissect heterogeneity and 
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establish relationships to human breast cancer comes from the MMTV-Met model [107]. 

Dissecting heterogeneity to establish relationships between mouse models and human breast 

cancer can be important when testing for the clinical significance of specific observations within 

a mouse model. For example, in the study of MMTV-Met tumors, mouse mammary tumor gene 

expression data was used to construct a gene expression signature of Met receptor tyrosine 

kinase signaling. By applying this signature to probe human breast cancer gene expression data, 

samples were stratified as being either positive or negative for the Met signature. Importantly, 

this showed that most Met positive samples were of the basal type, correlating with a poor 

prognosis. As an additional demonstration, the importance of predicted pathway activation has 

been tested in the examination of the E2F transcription factors in the MMTV-Myc mouse model 

[108]. The E2Fs are broadly classed into transcriptional activators (E2F1-3) and transcriptional 

repressors (E2F4-8) and have been classically studied for their role in cell cycle progression 

[109]. In the mouse model study, E2F2 was predicted to be active in Myc tumors.  Testing this 

hypothesis, a knockout of E2F2 was found to reduce Myc’s proliferative effects on the mammary 

gland and delayed tumor onset. In demonstrating the relevance of the E2F effects in human 

breast cancer, a gene signature was applied to predict E2F2 signaling across a dataset featuring 

various human breast cancer subtypes. It was found that in Her-2 positive and basal breast 

cancers, E2F2 signaling was predicted to be significantly altered. While no differences in 

Luminal B breast cancers existed, in Luminal A breast cancers in E2F2 levels were predicted to 

be significantly lower. Importantly, these results carried clinical significance as low E2F2 levels 

were correlated with an increase in relapse free survival time in human breast cancer.  

 Bioinformatics is important for establishing relationships between mouse models and 

human breast cancer, but these methods can also help identify mechanistic features of tumor 
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metastasis. One model that is commonly utilized is the Polyoma Virus Middle T (PyMT) model. 

This model is characterized by a high incidence of pulmonary metastasis [110], making it an 

efficient platform for studies of metastasis.  Integration of bioinformatic approaches to analyze 

the PyMT model have led to the identification of molecules that promote metastasis. For 

example, the importance of the interaction between mammary tumors and stromal adipocytes 

were detailed in a genetic test in the MMTV-PyMT model [111]. In this experiment adiponectin, 

a protein secreted by adipocytes, was ablated to determine its effects on mammary 

tumorigenesis.  The knockout of this adipocyte factor led to delays in mammary tumor onset, 

with delays related to impaired angiogenesis. To further describe these tumors, gene expression 

profiles of late stage tumors from adinopectin deficient mice were analyzed. These tumors were 

found to contain gene expression profiles descriptive of aggressive tumor phenotypes. Not 

surprisingly, later studies in human breast cancer found that low levels of this adipocyte factor 

correlated with increased breast cancer mortality [112]. 

 Not only has integrating bioinformatics with mouse models assisted the identification of 

molecular participants in metastasis, but it can also help illustrate the mechanistic relevance to 

human breast cancer. For example, a genetic test of the role of the Snf1-Kinase, Hunk, in the 

Myc model revealed that Hunk is required for the metastasis of Myc induced tumors [113]. A 

Hunk signature from the resulting tumors was used to predict whether human breast tumors had 

similarities to Myc in the presence or absence of Hunk.  In agreement with the observations of 

metastasis in the Myc model, human breast tumors that were predicted to be wild type for Hunk 

carried a significantly higher incidence of metastasis. After identification of these effects in the 

mouse model, and demonstration of its clinical relevance, further studies demonstrated the 

mechanism behind these metastasis effects in human breast cancer[114]. In a different model, 



 

32 
 

mammary specific inactivation of the tumor suppressor protein PTEN, coupled with Her-2 

overexpression, revealed a metastasis suppressor function for PTEN[115]. By analyzing gene 

expression data from the resulting tumors, tumors were noted to share molecular features with 

luminal types of human breast cancer. These examples show the utility of integrating mouse 

model studies and bioinformatic methods as a means to uncover mechanistic features of human 

breast cancer metastasis. Going forward, similar studies should provide more details about the 

metastasis mechanism and which features are deregulated in specific subtypes of human breast 

cancer.  

RATIONALE FOR DISSERTATION 

 Collectively, the previous technology and data described displays the power of gene 

expression analysis for dealing with the complexity of breast cancer and highlights the critical 

areas of need for breast cancer research. One area of need concerns dissecting tumor 

heterogeneity. Here the major problem is that the genomic variability within tumors and between 

patients limits the efficacy of breast cancer therapy. To date, some success in understanding this 

variability has been achieved, with breast cancer cancers being organized into different subtypes 

on the basis of both key markers and gene expression profiles that contribute to tumor 

progression. Directed therapies for specific types of breast cancer have improved breast cancer 

survival times, yet due to the molecular complexity of breast cancer, treatment is still inadequate; 

with tumors initially regressing only to reoccur and become resistant to therapy. The second 

major factor impacting clinical outcome is breast cancer metastasis. As previously, discussed 

metastasis to distant organs has clear implications on breast cancer survival times. Identification 

of additional regulators of this process may uncover new therapeutic opportunities. As a result, 
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my dissertation research focused on addressing these challenges to breast cancer survival: tumor 

heterogeneity and tumor metastasis.  

 Clearly, understanding the genomic and histological heterogeneity of human breast 

cancer is an essential goal in order to improve diagnostic tests and for successful, targeted 

treatment of breast cancer patients. Pre-clinical mouse models need to be credentialed for their 

ability to model human breast cancer and the heterogeneity that is a hallmark feature of human 

breast cancer. However, the degree to which mouse models are reflective of the heterogeneity of 

human breast cancer has yet to be demonstrated with gene expression studies on a large scale. If 

mouse models with human breast cancer-like complexity and relationships to individual types of 

human breast cancer could be identified, such a finding would represent a major breakthrough 

and enhance the research of mechanisms and treatments for drivers of breast cancer progression 

using mouse models. To meet these needs, I developed a research plan that would integrate 

bioinformatic analysis, classic molecular techniques, and genetic tests in mouse models.  

 The goal was to first build off of the findings in an initial analysis in a MMTV-Myc 

model with demonstrated histological and genomic heterogeneity. The advantage inherent to this 

study as compared to others, was that our lab had generated gene expression data for a large  

number of samples, had a clear understanding of histological heterogeneity, and even knew of 

some of the mutations that occurred in this mouse model. We hypothesized that this would allow 

for more statistical power in detecting relationships between tumors in this mouse model to 

human breast cancer. Further, we could make more precise conclusions about the similarities and 

differences between tumor types by integrating mutation status, pathway activation predictions, 

and the histological annotations into the comparisons. In support of our hypothesis we found, 

MMTV-Myc mice with tumors of an EMT-like histology develop similar gene expression 
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patterns and signaling pathway utilization as a subtype of human claudin-low breast cancer. 

Refining the understanding of human tumor heterogeneity, our results point out a clear division 

in human claudin-low tumors based on Myc pathway activation and target genes. Moving 

forward, this work highlighted the possibility that a similar analysis for other mouse models was 

needed.  

 As a result, I decided to assemble an expansive database of gene expression data of all of 

the publicly available mouse mammary tumors spanning 23 major mouse models. With this, 

there were a number of different ways the information of this expansive database could be 

harnessed. We could test the degree of heterogeneity within mouse models, make comparisons 

between models, make a number of bioinformatic predictions to springboard additional 

hypotheses, and test for relationships between mouse models and human breast cancer at both 

the level of gene expression and predicted signal pathway activity. One the major outcomes of 

this was the identification of mouse models that do and do not have similarities to human breast 

cancer at the level of gene expression. Thus, this date highlights the importance of fully 

characterizing mouse tumor biology at molecular, histological and genomic levels before a valid 

comparison to human breast cancer may be drawn. In addition, it provided a major bioinformatic 

resource to research community with a large number of predictions regarding important 

molecular players in tumor progression in each mouse model. Using the predictions from this 

work, I was able to develop additional projects and meet the other major objective for my 

dissertation: identifying additional molecular regulators of metastasis. 

 Using bioinformatic predictions from the database, I identified an elevation in predicted 

activity for E2F1 in the MMTV-PyMT mouse model. This mouse model is widely known for the 

enhanced metastatic capacity of the tumors that give rise. This directed a further interrogation of 
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the activator E2F in human breast cancer to test for an association patient metastasis data. With 

these predictions, I hypothesized that E2F transcription factors regulate breast cancer metastasis. 

By genetically testing these predictions, I found that loss of E2F1 and E2F2 severely limited the 

metastatic potential of tumor cells. Further investigation showed an association with defects at 

multiple steps of the metastatic cascade. Since the E2F are transcription factors, it is logical to 

believe that regulation of metastatic ability occurs by controlling expression of multiple genes 

that promote metastasis. As such, the focus was to expand on our discovery that the E2Fs 

regulate metastasis and highlight the mechanism by identifying E2F target genes integrating a 

number of computational strategies and assays.    

 Moving back to utilizing the gene expression database of mouse mammary tumor 

models, one of the weaknesses for many tumor samples was the lack of a histological annotation. 

For tumors where histological annotations existed, we are able to be more specific regarding 

which tumor types from a mouse model resemble a specific subset of human breast cancer. As 

such, there was a need to provide annotations for nearly a thousand tumor samples in the 

database without a histological annotation. To meet this need, I have begun to develop gene 

expression signatures that can accurately predict tumor histology. The outcome of this work has 

several payoffs. The first is that we are able to predict and annotate tumor histology using gene 

expression data. The second, it will allows for the genomic markers of specific tumor histologies 

that arise in mouse to be tested for their relevance in specific human breast cancer subtypes and 

other cancer types with similar histologies.  

  Taken together, the big picture of the work that I have completed during my dissertation 

demonstrates the absolute complexity of human breast cancer and how existing strategies and 

technologies can be used to solve the problems this complexity imparts on our ability to 
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understand breast cancer heterogeneity and metastasis. Importantly in doing this work, there 

were major findings that have furthered our understanding of mouse models of breast cancer, 

tumor heterogeneity, and tumor metastasis. These major findings are described in more detail in 

chapters that follow. 
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CHAPTER 1:  

A MOUSE MODEL WITH T58A MUTATIONS IN MYC REDUCES THE 

DEPENDENCE ON KRAS MUTATIONS AND HAS SIMILARITIES TO CLAUDIN 

LOW HUMAN BREAST CANCER  
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ABSTRACT 

 Expression of c-Myc is highly prevalent in human breast cancer and stability of the 

oncoprotein is regulated through Ras regulated phosphorylation at serine 62 and threonine 58.  

Previous studies have illustrated the importance of accumulation of KRas mutations in Myc 

mediated tumor formation.  To examine Myc dependence upon Ras mutations we have generated 

MMTV regulated Myc and Myc T58A transgenic mice. Expression of the more stable T58A 

Myc allele resulted in a reduction in KRas activating mutations.  However, in a low level 

expression T58A Myc transgenic, the majority of the tumors were squamous or epithelial to 

mesenchymal (EMT) in nature and accumulated KRas mutations at a higher frequency.  

Interestingly, we show that these mice develop similar gene expression patterns and signaling 

pathway utilization as a subtype of human claudin low breast cancer.  Indeed, our results 

demonstrate a clear division in human claudin low tumors based on Myc pathway activation and 

target genes.  Together, our results demonstrate that Myc expression and stability has critical 

effects on molecular heterogeneity in mouse mammary tumors that parallel subtypes of human 

breast cancer. 

INTRODUCTION 

 Human breast cancer is a collection of remarkably diverse neoplasms. The combination 

and context of the events that initiate transformation lead to varied regulation of cellular 

processes and give rise to tumor heterogeneity.  This is reflected in gene expression, allowing the 

categorization of tumors into molecular subtypes[57, 59, 116].   In addition, these molecular 

subtypes of breast cancer differ in terms of differentiation, response to therapy, and overall 

survival [58]. For some subtypes, associations have been made with specific oncogene activity. 

For example,  the basal molecular subtype has been associated with high expression of the Myc 
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oncogene [117]. Myc is amplified in 15% of human breast cancers [118] and the degree of Myc 

amplification has been shown to correlate with mRNA levels and protein levels of Myc [119]. 

Moreover, when large cohorts of human breast cancers were examined for Myc pathway 

activation, nearly 25% of the tumors showed a high probability of Myc signal activation [47, 

104], correlating with previous reports [120, 121]. 

 The half-life of Myc is brief and the stability of Myc is regulated by phosphorylation 

events at key serine and tyrosine sites [122, 123]. The first phosphorylation event is mediated by 

Ras signaling through Erk, leading to phosphorylation at Ser62.  This stabilizes Myc and allows 

subsequent phosphorylation by GSK3β at Thr58, targeting Myc for ubiquitination. This GSK3β 

phosphorylation event may be blocked through Ras activation of PI3K / AKT, extending the 

half-life of Myc.  The active Ser62 phosphorylated Myc initiates transcription by forming 

heterodimers with the Max transcription factor [124]. Once activated, Myc has been 

demonstrated to regulate a wide range of transcriptional targets [125]. Thus, Myc initiated 

changes in gene expression have a variety of effects resulting in the formation of breast cancer. 

 Myc effects on mammary development and cancer has been examined through mouse 

models. Myc was initially overexpressed in the mouse mammary gland using the MMTV 

promoter, resulting in the formation of adenocarcinomas [126]. The importance of Ras in these 

tumors was demonstrated by the synergistic reduction in tumor latency observed by 

interbreeding MMTV-Myc and MMTV-Ras transgenic mice [127].  Additionally, in a 

conditional Myc model, KRas mutations were detected with Myc withdrawal, correlating with 

tumor progression and recurrence [101].  Subsequently, a synergy with KRas was detected in 

Myc initiated tumors where Ras was seen to be a more dominant oncogene [103]. In recent work, 

a knock-in approach to overexpress Myc at low levels demonstrated that decreased stability of 
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Myc by S62A mutation abrogated Myc’s transformation ability.  In contrast, a T58A mutation 

enhanced the formation of tumors [128]. However, the majority of mice in this study developed 

brain tumors, preventing examination of T58A Myc in breast cancer.  Taken together, these 

mouse models illustrate the role of Myc in mediating breast cancer and the importance of the Ras 

pathway in this process. 

 In previous work, we demonstrated that Myc expression affected tumor heterogeneity at 

the genomic and histological level[106]. In light of these results, we hypothesized that a 

stabilizing T58A mutation in Myc would decrease the dependence upon activating mutations in 

KRas for tumorigenesis. To test this hypothesis, Myc and Myc T58A transgenic mice were 

generated.  We noted a decrease in activating mutations in KRas in Myc T58A strains with high 

levels of Myc expression. Through comparative gene expression analysis, we established 

similarities between the EMT type T58A Myc tumors and human claudin low breast cancer.   

RESULTS 

MOUSE MODEL CHARACTERIZATION 

 Mammary tumors initiated by Myc in transgenic mice result in the accumulation of 

activating mutations in KRas.  We hypothesized that tumor formation in transgenic mice with a 

stabilizing T58A version of Myc would not be dependent upon accumulation of activating 

mutations in KRas.  To test this hypothesis we generated Myc transgenic mice with the 

constructs shown in FIGURE 1.1A.  For the wild type Myc transgenics, a total of 4 lines were 

generated and T58A resulted in an additional 11 lines.  An RNase protection assay was 

completed in virgin and lactating mice to assess transgene expression (FIGURE 1.1B).  This 

revealed that two wild type Myc lines (WT13 and WT21) were expressing the transgene at a 

high level in the virgin mammary gland with a significant increase in expression levels in the 
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lactating samples.  In the T58A Myc genotype, two lines were noted to have comparable levels 

of transgene expression (TA14 and TA41).  In addition, we retained TA39 transgenic mice to 

assay for effects of Myc expressed at lower levels. We also assessed mammary glands for both 

HA-Myc (FIGURE 1.1C and D) and total Myc protein (FIGURE S 1.1A and 1C) levels. Western 

blot results show that the T58A mutation stabilized Myc in the mammary gland. This resulted in 

higher protein levels of Myc in the mammary gland given similar levels of mRNA when 

comparing the T58A to the wild type transgenic lines. In addition, we quantified total Myc levels 

in the mammary glands of non-transgenic FVB mice to assess the degree of protein 

overexpression in the T58A transgenic lines, demonstrating at least 3.5 fold more total Myc 

protein in the transgenic mice compared to non-transgenic FVB mice (FIGURE S 1.1E-F). 

 To determine the initial effect of the transgene expression on mammary gland 

development in these lines, wholemounts of the mammary glands were assessed at 8 weeks of 

development. In comparison to the wild type control (FIGURE 1.1 E), we assessed the WT13, 

WT21, TA14, TA41 and TA39 lines (FIGURE 1.1 F-J respectively).  This revealed that the lines 

with elevated transcript levels had abnormal sidebud formation in comparison to the wild type 

control.  The most prominent alterations were noted in the two strains with high levels of Myc 

expression, WT13 and TA14, noted with arrowheads relative to the control in FIGURE 1.1E, F 

and H.  In addition, the low expressing TA39 transgene had minimal phenotypic effects on 

mammary development.   

 To determine the effects of the T58A mutation on tumor latency, females from the five 

lines were maintained in a constant breeding program.  We observed a large number of mice for 

each strain including; WT13 n=70, WT21 n=49, TA14 n=60, TA41 n=52 and TA39 n=62.  

Surprisingly, there was no difference in tumor latency between the high level of Myc WT 
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expression and the high expressing MycT58A strain (FIGURE 1.2A).  However, we did note a 

significant increase in tumor latency for the low expressing Myc T58A TA39 strain (p<0.001 

relative to WT and p<0.0001 relative to the other T58A strains).    Measuring the number of 

tumors in each mouse revealed no difference between the wild type MMTV-Myc and high 

expressing T58A Myc transgenics (FIGURE 1.2B).  Consistent with the tumor latency effects we 

noted that there was a reduction in tumor burden in the TA39 line with the majority of mice 

harboring a single tumor (FIGURE 1.2B) (p =0.0002 compared to WT and 0.0005 compared to 

T58A high). 

REDUCED KRAS MUTATION IN T58A TUMORS 

 To ascertain whether T58A mutations reduced the frequency of activating mutations in 

KRas, we sequenced for KRas activating mutations at codons 12, 13 and 61.  An example of a 

wild type sequence trace for codons 12 and 13 is shown in FIGURE 1.3A.  In contrast, a 

sequence trace harboring a heterozygous mutation in codon 12 is shown (FIGURE 1.3B).  Of 

note is that heterozygosity has been preserved in 59 of the 61 tumors containing activating 

mutations in KRas.  We then compared the KRas activation in the five transgenic lines.  KRas 

mutations were observed in 22.4% and 25.6% in the two wild type Myc lines (n=24 mutant 

KRas alleles for 107 tumors in WT13 and 10 mutations for 39 tumors in WT21) (FIGURE 1.3C).  

A T58A mutation in Myc significantly lowered the percentage of tumors containing an activating 

mutation with rates of 14.6% and 16.1% in the T58A high expressing lines (n=13 mutations in  

89 tumors for TA14 and 11 mutations in 68 tumors for TA41) (p=0.042 by Fisher’s Two Tailed 

t-test).  Interestingly, there was an increase in the number of mutations observed in the low 

expressing TA39 line relative to the high expressing lines with 22.2 % of tumor bearing 

mutations (n=27 tumors).  Together this data suggests that the T58A mutation reduces the 
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dependence upon accumulation of KRas mutations.  However, the wild type transgenic line 

mutation rate does not concur with previously published data for Ras mutations in the wild type 

strain where 44% of MMTV-Myc tumors were found to have Ras mutations [101].  To 

investigate this, we examined 21 of the original MMTV-Myc strain tumors and found 11 

activating mutations in KRas, equal to 52% of tumors with mutations.  To examine the 

difference between our MMTV-Myc WT13 line (22.4% mutation rate) and the original MMTV-

Myc (52% mutation rate), we measured transgene levels through QRT-PCR.  This revealed that 

Myc expression was nearly fourfold higher in lactating mammary gland of the WT13 line 

compared to original MMTV-Myc mice. (FIGURE S 1.2A).  Thus, we find a reduction in KRas 

mutation rates (FIGURE S 1.2B) from 52% to 22.4% with a fourfold elevation of Myc 

expression in the mammary epithelium.  Interestingly, in the TA14 line, Myc was found to be 

expressed at similar levels to the original MMTV-Myc line and had the expected reduction in 

KRas mutation frequency (FIGURE S 1.2B).   

 To examine whether the generation of an activating mutation in KRas was associated 

with alterations to latency, transgenic mice with and without activating mutations were 

compared.  For wild type MMTV-Myc lines, we observed a significant reduction in latency for 

mice with tumors containing a KRas mutation relative to mice with tumors without a mutation 

(p=0.0384) (FIGURE 1.3D).  Interestingly, the latency acceleration due to KRas mutations was 

not observed in the T58A lines with high levels of Myc expression (FIGURE 1.3E). To compare 

these mouse mutations to human breast cancer, the COSMIC database was searched for breast 

cancers with mutations in KRas.  Interestingly, the mouse tumors and human breast cancers 

shared the same pattern of KRas mutations with a range of mutation types in the mice (FIGURE 

S 1.3 and TABLE 1.1).  



 

44 
 

GENOMIC CHARACTERIZATION OF T58A TUMORS 

 We previously demonstrated that there was significant heterogeneity in the development 

of tumors in a subset of Myc and Myc T58A lines (WT13, WT21, TA14 and TA41) [106].  To 

assess the KRas mutation status in the heterogeneous tumors, we examined the KRas mutation 

rate in the various histological subtypes of tumors, grouped into WT, T58A High and T58A Low 

expressing strains (FIGURE 1.3F) and individually (FIGURE S 1.4).  This revealed that the vast 

majority of tumor types, and all transgenic lines, had tumors with activating mutations in KRas 

(FIGURE 1.3F).  However, we noted an elevation in the frequency of activating mutations in 

KRas in the Epithelial to Mesenchymal Transition (EMT) subtype of tumors.  Moreover, the 

majority of the tumors in the low expressing TA39 T58A transgenics were either squamous or 

EMT in nature. 

 We then assayed gene expression for the low expressing T58A tumors in relation to the 

gene expression data from the other Myc samples [106]. After batch effects were removed 

(FIGURE S 1.5), unsupervised hierarchical clustering showed that differences in tumor histology 

are reflected in gene expression. It is important to note that the number of tumors analyzed by 

microarray are not proportional to the number of tumors in each class. However, the addition of 

new gene expression data from TA39 transgenic refined prior clustering analysis and allowed the 

separation of EMT tumors and squamous tumors (FIGURE 1.4A and 1.4B). In addition, we 

observed that the majority of tumors clustered into the subtypes predicted by their histological 

classifications (FIGURE 1.4B).  Cell signaling pathway signatures were applied to the entire 

dataset with the samples maintained in the order established through unsupervised clustering 

(FIGURE 1.4C).  This revealed patterns of signaling pathway activation associated with the 

various histological subtypes.  Importantly, the distinction between the EMT and Squamous 
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subtypes noted in unsupervised clustering was maintained and we noted significant differences 

between these subtypes in RhoA, AKT, p63, E2F1 and Beta- Catenin pathways (FIGURE 1.4C 

and FIGURE S 1.6). Importantly, we predicted a low probability of Myc signaling in tumors of 

the EMT histology compared to microacinar and papillary tumors.  To validate the genomic data, 

tumors from the various subtypes and transgenic lines were assessed for levels of Myc.  This 

revealed that the EMT tumors had significantly lower levels of Myc expression (FIGURE 1.4D, 

FIGURE S 1.7).  Quantification of this result supported these findings (FIGURE 1.4E, FIGURE 

S 1.8).  Confirming the accuracy of our gene signature approach, probability values for Myc 

activation show a positive correlation with western blot quantification of total and exogenous 

Myc levels in corresponding tumor samples (FIGURE S 1.9).   

 As noted above, when the Myc transgenic tumors were examined for activation of the 

Myc pathway, we observed variable levels of Myc activation in the various subtypes (FIGURE 

1.4C). We hypothesized that this difference in predicted Myc signaling would result in 

differential activation of Myc target genes.  To test this hypothesis we analyzed expression levels 

of Myc target genes using previously published ChIP-chip data to identify Myc target 

genes[125].  In addition, by using Significance Analysis of Microarrays (SAM)[28] we identified 

genes that were upregulated in human mammary epithelial cells (HMECs) that overexpress Myc 

relative to controls [37]. A Venn Diagram reveals that of the 118 genes identified, only 31 were 

Myc targets (FIGURE 1.5A). Subsequently, we compared gene expression between samples 

from each histological cluster. In this analysis, we found 1,958 significantly upregulated genes, 

of which 110 were Myc targets. Together, these results indicate that there is differential 

expression of Myc transcriptional targets in histological subtypes (FIGURE 1.5A).  To visualize 

the difference in activation of Myc target genes we extracted Myc targets as identified by Chip-
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Chip from the Myc tumor gene expression data for SAM analysis.  By minimizing the false 

discovery rate and ranking genes on fold change, we identified the top 70 differentially regulated 

genes within each histological cluster. By using these 280 genes in unsupervised hierarchical 

clustering, we illustrate that tumors extracted from the histological clusters defined in FIGURE 

1.4 differentially activate unique Myc target genes (FIGURE 1.5B). 

COMPARISONS TO HUMAN BREAST CANCER 

 To compare these mouse models to human breast cancer we combined our mouse gene 

expression data with human breast cancer gene expression data after removing batch and 

platform effects (FIGURE S 1.10). Through unsupervised hierarchical clustering, we compared 

Myc mediated mouse mammary tumors and subtypes of human breast cancer that were 

annotated with the intrinsic classification [58, 59].  This revealed that Myc tumors with 

microacinar histology clustered with a subset of human luminal B tumors (FIGURE 1.6A). In 

addition, we observed that EMT subtype of Myc mouse tumors clustered with a subset of human 

claudin low tumors. These EMT type tumors with similarities to claudin low tumors were found 

in both the WT and T58A strains (FIGURE S 1.11), although the TA39 strain did have a greater 

percentage of tumors with the EMT histological pattern (FIGURE 1.3F). Importantly, this 

clustering approach split the claudin low tumor subtype into two distinct groups.  When we 

assessed Myc targets for gene expression in the listed genes we observed a significant decrease 

in expression levels of Myc targets in the human breast cancer claudin low samples clustered 

with the EMT samples relative to the other main cluster of claudin low human breast cancers 

(Fisher’s Exact p<0.001).  A comparison of marker expression levels between EMT-type tumors 

and other types of Myc-induced tumors shows that the EMT subtype largely parallels human 

claudin low tumors (FIGURE S 1.12).  For example, EMT mouse tumors show low expression 
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of cell-cell adhesion genes characteristic of human claudin low tumors (FIGURE 1.6B, FIGURE 

S 1.12).  Like claudin low tumors, Myc induced EMT tumors show high expression of the 

mesenchymal marker vimentin, as well as the angiogenesis marker VEGFC (FIGURE 1.6B), as 

well as other markers of claudin low tumors (FIGURE S 1.12). Importantly, we note a difference 

in Myc target expression levels in these claudin low tumors, split into two clusters.  In agreement 

with this result, these two clusters of claudin low tumors also significantly differed in predicted 

Myc signal pathway activation (FIGURE 1.6C). As a result, we define these two subclasses of 

human claudin low tumors on the basis of Myc activity: the Myc-low claudin low tumors and the 

Myc-high claudin low tumors.  

 In addition, previous work has shown that claudin low tumors have stem cell-like 

characteristics [129]. Given the gene expression similarities between the mouse EMT-type 

tumors and the human Myc-low claudin low tumors, we hypothesized that the mouse EMT-type 

of tumors also have stem cell-like characteristics. To test this hypothesis we utilized gene set 

enrichment analysis (GSEA) and employed two gene sets derived from previously published 

gene expression data from mammary stem cells[130]. By comparing EMT-type with the 

remaining histologies of Myc-induced tumors, we found that the EMT-type of tumors are 

significantly enriched (p=0.021) for expression of genes that are upregulated in mammary stem 

cells (FIGURE S 1.13A). Likewise, EMT-type Myc induced tumors are significantly enriched 

(p<0.0001) with low expression of genes that are downregulated in mammary stem cells 

(FIGURE S 1.13B). Together, these results show that the EMT-type of Myc tumors match 

human claudin low tumors for expression of claudin low markers and features of stem cells.     

 In comparing the EMT-type Myc initiated tumors to the Myc-low claudin low human 

breast cancers , we also noted significant similarities at the pathway activation level (FIGURE 
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1.6C).  AKT, β-catenin, E2F1, Myc and p110 pathways are predicted to have low activity in 

EMT and the Myc-low claudin low tumors while TNF-alpha signaling is similarly activated in 

these two tumors types. These same pathways are predicted to have significantly different 

activity between the Myc-low claudin low tumors from the claudin low tumors that did not 

cluster with the mouse tumors (FIGURE 1.6 C, FIGURE S 1.14). In a similar experiment for 

microacinar tumors, we revealed that similar activation patterns of the β-catenin and Stat3 

pathways occur between the mouse and largely luminal B human breast cancers within the 

cluster (FIGURE 1.6D). In addition, these pathways distinguish the microacinar-like luminal B 

tumors from other luminal B tumors where β-catenin is predicted to a significantly lower activity 

and Stat3 is predicted to have a significantly higher activity (FIGURE 1.6D, FIGURE S 1.15). 

Taken together, these data reveal that there are striking similarities between subtypes of Myc 

induced mouse tumors and subsets of primary human breast cancers. 

 Given the molecular similarities between the EMT-type of mouse mammary tumors and 

human claudin low tumors, we sought to determine whether the results for KRas mutations in the 

EMT-type of mouse mammary tumors also extended to human claudin low breast cancer. KRas 

mutations occur in 3% of breast cancers contained within the COSMIC database. However, the 

molecular subtype of the primary tumors with these mutations is not reported, precluding an 

examination of Ras mutation status in subtypes. Alternatively, we predicted the probability of 

Ras signal pathway activation in human breast tumors. We find that nearly 80% of the claudin 

low tumors predict an elevation in Ras signaling activity (FIGURE S 1.16). This may indicate 

that KRas mutations occur more frequently in claudin low tumors, similar to EMT tumors in the 

MMTV-Myc mouse model. To further establish the significance of KRas mutations to the human 

claudin low tumors and the EMT-type of MMTV-Myc initiated tumors they are tightly 
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correlated with, we used GSEA and a signature for KRas addiction[131]. A comparison between 

KRas mutant EMT-type tumors and all other KRas mutant mouse mammary tumors showed that 

while MMTV-Myc EMT-type of tumors develop KRas mutations, they have a low probability of 

dependence upon this mutation for tumorigenesis (FIGURE S 1.17A). Likewise, claudin low 

tumors, compared to human basal tumors which also feature high levels of predicted Ras 

signaling, also predict low probability of KRas addiction (FIGURE S 1.17B). This is in 

agreement with the previously published work that shows that KRas mutant tumors with a 

mesenchymal phenotype are not dependent upon KRas signaling during tumorigenesis[131].  

Together, these data show a clear link between the Ras mutation findings in the mouse model 

EMT tumors and the claudin-low subtype.  

DISCUSSION 

 Here we have characterized mammary gland development in T58A transgenic mice and 

observed mammary gland effects that correlate with elevated Myc expression. The increased 

sidebud formation we see in mice with high Myc expression is similar to mammary gland effects 

in other studies featuring elevated Myc [101, 132].  Although no mammary effects were 

observed in the TA39 line at these early time points, all strains developed mammary tumors. 

Surprisingly, the tumor onset in the high expressing WT and T58A strains was virtually identical 

with a delay observed in the TA39 strain.  We had anticipated that the increased Myc stability 

would result in more rapid tumor onset. A possible explanation for the similarities in tumor onset 

between the T58A and WT strains is that signaling conditions during the time when the MMTV 

promoter is most active, facilitate phosphorylation of S62 in the WT Myc strains, mimicking a 

T58A mutation under these circumstances.  
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 Our hypothesis that an increase in Myc stability through T58A mutation would result in a 

reduction in dependence upon KRas mutations was validated. We observed a 1.5 fold reduction 

in the number of KRas activating mutations in the T58A lines relative to the wild type Myc 

transgenic lines.  In addition, we observed that tumors with the lowest levels of Myc protein, 

tumors with EMT histology, also had the highest frequency of KRas mutations. Moreover, there 

was a selective advantage in the wild type mice that accumulated KRas mutations that was 

absent in the T58A strain.  When our wild type Myc transgenic mice are compared to previous 

studies with Myc mouse models, we note that our lines have far fewer KRas mutations, but this 

can be attributed to the lower levels of Myc in the previously characterized Myc strain [126].  

However, the original Myc mice have equivalent Myc transcription to the T58A strains, 

demonstrating a far more impressive reduction in the requirement for activating KRas mutations 

with the stable T58A form of Myc. Yet, by comparison to WT strains, it is not readily apparent 

that T58A tumors express high levels of Myc. This suggests the possibility that K-Ras mutation 

incidence may extend beyond Myc levels. This hypothesis is reinforced by the distinct pathology 

of Myc induced tumors; for example tumors from T58A strains exhibit primarily a papillary 

histology.   

 Amongst the histological clusters, we noted diverse probability of activation of the Myc 

signaling pathway. We hypothesized that this difference would result in differential activation of 

Myc target genes in the different subtypes. Interestingly, we note that tumors with differences in 

histology and Myc stability also have differences in Myc target utilization. This suggests that 

differences in Myc expression and stability influence divergent tumor histologies by differential 

activation of direct Myc targets.  We also noted variability in Myc pathway activation in human 

breast cancer samples. While HER2 and luminal subtypes show sporadic activation of Myc 
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signaling, we see that basal and a subset of claudin low tumors are predicted to have high 

activation of the Myc signaling pathway. In agreement with this, we noted high expression of a 

cluster of genes made up of mainly Myc targets in this subtype. Illustrating the validity of our 

approach, other studies have established have established that Myc is highly expressed in basal 

tumors [117].  Together, this data suggests that Myc may play a role influencing tumor 

heterogeneity both in mouse and human breast cancers.  

 Mouse models have been compared to human breast cancer through histology, signaling 

pathway activation and through genomic means [105]. In addition, recent work has identified a 

p53 mutant mouse model with similarities to the claudin low subtype [129]. However, our work 

is unique in that we have stratified human claudin low tumors into two subclasses based on Myc 

expression levels.  With these results, we report remarkable similarities between the EMT-type 

of Myc-induced tumors and human claudin low tumors. Not only do we identify a  

correspondence in gene expression and signal pathway activation between EMT-type tumors and 

Myc-low claudin low tumors, but we also show that EMT tumors match claudin low tumors for 

stem cell characteristics and expression patterns  of markers for claudin low tumors. Along with 

expression patterns for markers cell-cell adhesion, we show EMT-type tumors match human 

claudin low tumors for high expression of mesenchymal markers. This mesenchymal identity 

may be critical to the understanding of the significance of KRas mutations or increased Ras 

signaling in both the mouse model EMT-type tumors and the human claudin low tumors. 

Previous work has shown that KRas mutant epithelial tumors are addicted to KRas, while KRas 

mutant mesenchymal tumors are not dependent upon KRas for tumor proliferation [131]. Using a 

gene signature for KRas derived from this study, we used GSEA to predict whether the claudin 

low tumors and KRas mutant EMT-type tumors were independent of KRas. Consistent with their 
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mesenchymal identities, both the human claudin low tumors and the mouse model tumors are not 

predicted to be “KRas addicted”. It is important to note that the mouse model EMT-tumors that 

clustered with the Myc-low claudin low tumors were found in all strains (FIGURE S 1.11). This 

suggests that the presence of EMT, and not a T58A mutation, drives the similarities between 

mouse model EMT tumors and claudin low tumors. Furthermore, with the human claudin low 

tumors split on the basis of Myc signaling, the low levels of Myc, along with the presence EMT, 

found in the mouse model EMT tumors likely drive the similarities to Myc-low human claudin 

low subclass.   Taken together, these data suggest that the EMT subtypes of the Myc transgenic 

mice are a model for human claudin low breast cancer.  

 Overall, our results show the importance of Myc stability and expression in mammary 

gland development and tumorigenesis. We show that differences in oncogene expression and 

stability can significantly alter molecular features of mammary tumors. The reduced dependency 

upon KRas mutations in T58A strains, as well as differential activation of Myc target genes, 

makes it clear that the context of oncogene expression plays a critical role in molecular features 

of the tumor. Here we have identified Myc induced mouse mammary tumors with remarkable 

similarities to human luminal B tumors and claudin low tumors. Particularly, the similarities in 

gene expression, Myc target utilization, and signaling pathway activation between EMT tumors 

and claudin low tumors support the use of this model as a means for experimental study of this 

molecular subtype of human breast cancer.  

METHODS 

ANIMAL WORK 

 All animal work has been conducted according to national guidelines. All mice are from 

the FVB background. The transgenic mice were generated using the MMTV promoter as 
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previously described[106].  Comparison to the existing MMTV-Myc model [126] was conducted 

on mice obtained from the Mouse Models of Human Cancer Consortium.  Upon genotyping, the 

transgenic mice were maintained in a constant breeding program to accelerate tumor formation.  

Tumors were detected through weekly palpation and tumor growth was routinely measured.   

RNA AND MICROARRAY 

 Preparation of RNA samples from flash frozen tumors was done using the Qiagen 

RNeasy kit after roto-stator homogenization. RNA from 17 Myc induced tumors was submitted 

to the Duke Microarray Core facility for gene expression analysis using Mouse 430A 2.0 

Affymetrix arrays. 

 Mutations in KRas were assessed after RT-PCR using Qiagen One-Step RT-PCR with 

the following primers; 5’ GGAGAGAGGCCTGCTGAA and 3’ TCTTCTTCCCATCTTTGC 

TCA.  PCR products were gel purified and the samples were sequenced with a nested primer 

with the following sequence; 5’ TAGAAGGCATCGTCAACA C 3’.   

WESTERN BLOT ANALYSIS 

 Western blot analysis was conducted using antibodies for Grb2 (Cell Signaling 3972), C-

Myc (Ab Cam ab32072), and HA-Myc (ABM G036) and HRP-conjugated anti-mouse (BD 

Biosciences 554002) and anti-rabbit (Ab Cam ab97051) were used for detection of the specified 

protein. HA-Myc and C-Myc levels were standardized to Grb2 using image-J software.  

COMPUTATIONAL METHODS 

 Microarray gene expression data has been submitted to the Gene Expression Omnibus 

(GEO) as GSE30805. New gene expression data was combined with previously published mouse 

gene expression data from GSE15904. In a separate experiment, this combined dataset was 

analyzed with previously published human breast cancer gene expression datasets GSE6532, 
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GSE14020, GSE2034, GSE2603, and GSE4922. Annotation of human breast cancer samples 

with intrinsic subtypes used previously described methods [57, 58, 105].  All datasets were RMA 

or MAS5 normalized using Affymetrix Expression Console software depending on the 

application. When combining datasets, Bayesian factor regression methods were used to remove 

batch and platform effects [25, 47]. Principle components analysis and plots were generated 

using Matlab to assess batch and platform removal effects.  Unsupervised hierarchical clustering 

was completed with Cluster 3.0 and results were visualized using Java Tree View. Significance 

analysis of microarrays (SAM) was conducted [28]. The gene lists for Venn diagram using ChIP-

Chip Myc target data from [125] and other lists were created by using results from SAM 

comparing HMECs that overexpress Myc (GSE3151) and by comparing histological types of 

Myc induced tumors.  Pathway predictions were conducted as previously described [37, 47, 106, 

133]. Specific settings for unsupervised hierarchical clustering, gene signature application and 

input /output files are available at https://www.msu.edu/~andrech1/.  All statistical tests and 

Kaplan-Meier plots were performed using GraphPad Prism 4 software.  
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CHAPTER 2:  

A GENOMIC ANALYSIS OF MOUSE MODELS OF BREAST CANCER REVEALS 

MOLECULAR FEATURES OF MOUSE MODELS AND RELATIONSHIPS TO 

HUMAN BREAST CANCER 
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ABSTRACT 

 Genomic variability limits the efficacy of breast cancer therapy. To simplify the study of 

the molecular complexity of breast cancer, researchers have used mouse mammary tumor 

models. However, the degree to which mouse models model human breast cancer and are 

reflective of the human heterogeneity has yet to be demonstrated with gene expression studies on 

a large scale. To this end, we have built a database consisting of 1,172 mouse mammary tumor 

samples from 26 different major oncogenic mouse mammary tumor models. In this dataset we 

identified heterogeneity within mouse models and noted a surprising amount of interrelatedness 

between models, despite differences in the tumor initiating oncogene. Making comparisons 

between models, we identified differentially expressed genes with alteration correlating with 

initiating events in each model. Using annotation tools, we identified transcription factors with a 

high likelihood of activity within these models. Gene signatures predicted activation of major 

cell signaling pathways in each model, predictions that correlated with previous genetic studies. 

Finally, we noted relationships between mouse models and human breast cancer at both the level 

of gene expression and predicted signal pathway activity. Importantly, we identified individual 

mouse models that recapitulate human breast cancer heterogeneity at the level of gene 

expression. This work underscores the importance of fully characterizing mouse tumor biology 

at molecular, histological and genomic levels before a valid comparison to human breast cancer 

may be drawn and provides an important bioinformatic resource. 

INTRODUCTION 

 Breast cancer is a heterogeneous disease with significant mortality associated with 

metastatic progression. Classification subdivides human breast cancer into six categories 

including Luminal A, Luminal B, HER2+, Basal, Claudin-low and normal-like [58]. Recent 
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work suggests additional subclasses exist within each intrinsic subtype including three basal 

subtypes with striking differences in overall survival [47]. Further, the TCGA and ENCODE 

projects show remarkable variability in genetic alterations beyond gene expression both across 

and within subtypes of human breast cancer. Together these genomic analyses demonstrate the 

complex nature of human breast cancer. 

 To more readily study mechanisms leading to breast cancer, research has turned to the 

mouse as a model. Mouse models of breast cancer have employed various methods of initiation, 

including MMTV infection, chemical mutagenesis and genetically engineered mice (GEM). This 

pioneering work identified and tested the role of many oncogenes in breast cancer. With the 

insertion of MMTV into the genome, numerous key oncogenes were uncovered [91, 92]. The 

later development of MMTV driven transgenics allowed for development of spontaneous 

models. With the identification of HER2 amplification in human breast cancer [52, 53], the 

observation that MMTV driven expression of the activated rat form of HER2 (NeuNT) resulted 

in breast cancer reinforced the importance of HER2 as a driving oncogene [134]. More recently, 

models have been refined to include tissue specific activation resulting in gene amplification, 

analogous to human HER2+ breast cancer [135], as well as temporal control where transgene 

expression can be activated or inactivated [101]. 

 Individual mouse models have been used to model aspects of human breast cancer and 

the selection of the appropriate model to compare to human breast cancer has been directed by 

phenotype or known genetic events. For instance, the MMTV-PyMT model is widely used to 

examine metastasis [136] while P53 knockout mammary epithelium transplanted into wild type 

hosts results in tumors with various genetic mutations [129]. Another aspect is the histological 

subtype associated with various tumors in GEM models and the metastatic ability can be altered 
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with background [137]. Indeed, similarities between mouse models such as Neu and Wnt as well 

as their human counterparts have been previously noted [138, 139]. Importantly, in both human 

breast cancer and in many GEM models, there is significant histological heterogeneity [106, 107, 

140]. These attributes illustrate the importance and utility of mouse models to examine breast 

cancer. 

 With the number and variety of GEM models, it is important to consider how accurately 

these various systems model human breast cancer. Initial studies using intrinsic clustering 

revealed similarities between mouse models and human breast cancer, albeit in a limited 

numbers of samples[105]. Yet, a more detailed characterization of a larger number of p53 null 

tumors revealed a variety of subtypes with strong similarities to human breast cancer [129], 

revealing the importance of examining a large number of samples to capture tumor heterogeneity 

and variability. Further, expanding the number of Myc induced tumors revealed that a 

subpopulation of Myc induced tumors had similarities to Claudin-low human breast cancer 

[141]. Taken together, recent comparative studies[108, 129, 140-143] highlighted a clear need 

for a comprehensive examination of the genomic features of mouse models of breast cancer and 

their relation to human breast cancer. To this end, we assembled an expansive dataset of mouse 

models of breast cancer. This dataset reveals the genomic heterogeneity of mouse models and 

offers a predictive resource for essential cell signaling pathways. Importantly, all comparisons 

between all models are made available with our report. These data demonstrate the similarities 

and differences of the various subtypes of mouse models to the key subtypes of human breast 

cancer and underscore the necessity for an informed choice of the appropriate mouse model for 

studying specific types of human breast cancer. 
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RESULTS 

DATABASE ASSEMBLY 

 We assembled a database contained 1,172 samples from mouse mammary tumor models, 

cell types, and normal mammary gland. The major mouse models and descriptions are listed in 

TABLE 2.1. Within a number of these models, variants exist with different alleles, promoters, 

and genetic backgrounds. In assembling the database, we measured the non-biological variance 

between gene expression studies and batch correction with principle components analysis (PCA) 

(FIGURE S 2.1 A-D). PCA demonstrated that normalization successfully removed artificial 

variance between datasets (FIGURE S 2.1 B, D). As a control, we confirmed batch correction 

utilizing Neu-initiated tumors spanning the Affymetrix and Agilent platforms from several 

studies. Prior to normalization (FIGURE S 2.1 E) PCA demonstrated that Neu tumors varied by 

platform. After correction, Neu tumors clustered together in PCA, demonstrating that artifactual 

variance has been removed (FIGURE S 2.1 F). With platform and batch effects eliminated, we 

began to explore relationships in the mouse model database. 

GENE EXPRESSION HETEROGENEITY IN MOUSE MODELS 

 Using unsupervised hierarchical clustering, we examined mouse mammary tumors 

initiated by various oncogenes. Unsupervised hierarchical clustering generated four major 

clusters (FIGURE 2.1A). We observed remarkable variability in gene expression profiles, 

including within model heterogeneity. For example, Myc initiated tumors span each of the major 

clusters in the dendrogram. In contrast, some models show uniformity in gene expression from 

tumor to tumor, including Ras initiated tumors that ordered into a single cluster. Interestingly 

there was significant interrelatedness between tumor models initiated with different oncogenes. 

Annotations for individual tumors revealed that similarities in tumor histology correlated with 
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relationships in gene expression profiles. For example, MMTV-Myc, MMTV-Met and a subset 

of DMBA induced tumors of the adenosquamous histology shared gene expression profiles. 

These data reveal mouse models with various levels of heterogeneity and illustrate some of the 

tumor phenotypes that drive relationships between different mouse models. We used SAM to 

identify differentially regulated genes that define tumors within each cluster (Additional file 6, 

https://www.msu.edu/~andrech1/BCR_Supplemental/BCR_Supplemental.html).  

 To describe each gene lists for possible functional gene ontologies we used GATHER 

(Additional file 6,  https://www.msu.edu/~andrech1/BCR_Supplemental/BCR_Supplemental.html). For 

instance, FIGURE 2.1B shows the gene ontologies for the upregulated genes in the blue cluster 

in FIGURE 1A. Ontological categories included genes involved in biological processes and 

metabolism. To refine these results, tumors from each cluster were examined with GSEA 

(Additional file 7, https://www.msu.edu/~andrech1/BCR_Supplemental/BCR_Supplemental.html).  

Focusing on tumors in the black cluster, GSEA showed enrichment for gene sets separating 

mesenchymal cells from luminal cells (FIGURE 2.1C, FIGURE S 2.2 A), including low 

expression of Zeb1 target genes (FIGURE S 2.2 B). Gene lists that define mammary stem cells 

demonstrated that this cluster also had a gene expression profile enriched for mammary stem 

cell-like features (FIGURE S 2.2 C, D). In agreement, the majority of EMT like tumors were 

observed in the black cluster (FIGURE 2.1A, FIGURE S 2.3). GSEA also demonstrated that 

tumors from the other clusters had gene expression profiles consistent with luminal cells 

(FIGURE S 2.4 ). For example, tumors within the blue cluster correlated with gene signatures for 

luminal progenitor cells and the orange cluster had similarities in gene expression to mature 

luminal cells. Together, these results define the characteristics of the tumors contained in the 

major clusters. 
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FOLD CHANGE ANALYSIS 

 Given that unique initiating events in the tumor models should cause characteristic 

responses associated with the tumor initiating event, we used SAM to identify genes significantly 

altered within each model compared to all other models (Additional file 2, 

https://www.msu.edu/~andrech1/BCR_Supplemental/BCR_Supplemental.html). 

Fold change differences were also calculated between the tumors within a model and normal 

mammary glands in the corresponding genetic background (Additional file 3, 

https://www.msu.edu/~andrech1/BCR_Supplemental/BCR_Supplemental.html). As an example, 

we determined fold change gene expression differences for Neu initiated tumors (FIGURE 

2.2A). Collectively, SAM analysis provided a collection of genes that are differentially 

expressed in each model. 

 To identify possible transcription factors that could be active in mediating these gene 

expression changes, we annotated fold change results for each model using TRANSFAC 

(Additional file 2, 3, https://www.msu.edu/~andrech1/BCR_Supplemental/BCR_Supplemental.html). For 

example, genes regulated by Neu (FIGURE 2.2A), we predicted that a significant number of 

genes had predicted binding sites for the Krox family of transcription factors (FIGURE 2.2B). 

The complete results for the transcription factor binding predictions are included in the 

additional data for each of the models. 

 We also annotated fold change differences between each model using gene ontologies 

(Additional files 2, 3, https://www.msu.edu/~andrech1/BCR_Supplemental/BCR_Supplemental.html). As an 

example of the utility of the method, we examined the similarities and differences in gene 

ontologies in the Neu and Tag models (FIGURE 2.2C). Both Neu and TAG tumors featured 

biological processes, metabolism, and nucleic acid-related metabolism as major ontological 
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categories. Key differences included Neu tumors with genes related to transport, ion transport, 

and biosynthesis, categories not found with TAG gene expression changes. TAG tumors had 

major ontologies representing genes involved in cell cycle, cell organization, cytoskeleton 

organization and biogenesis, and cell organization and biogenesis. To expand ontology results 

we compared each model to all other models and separately to normal mammary gland using 

GSEA (Additional file 11, https://www.msu.edu/~andrech1/BCR_Supplemental/BCR_Supplemental.html). 

This analysis predicted unique features for all models including specific information on 

metabolism, microenvironment, metastasis, and possible pathway activation (FIGURE 2.3). For 

example, TAG tumors had down regulation of genes significantly enriched for the TCA cycle 

(FIGURE 2.3A). Wnt tumors were predicted to have upregulation of tumor angiogenesis 

(FIGURE 2.3B). Not surprisingly, PyMT tumors show enrichment for gene sets that predict 

metastasis (FIGURE 2.3C). Finally, GSEA results predict that p53 mutant tumors may have 

increased TNF signaling activity (FIGURE 2.3D). Together, these results provide a catalogue of 

possible important features corresponding to the transcriptional outcomes of an initiating 

oncogene event. 

PATHWAY ANALYSIS 

 To expand the predictive analysis, we utilized a gene signature approach to predict 

pathway activation across mouse mammary tumors. The pathway prediction relationships 

between the various models were organized with unsupervised hierarchical clustering (FIGURE 

2.4). Using this approach, we noted a large degree of heterogeneity within models. Myc tumors 

showed extensive variation in pathway activation profiles, spanning the spectrum of clusters. To 

understand heterogeneity and pathway activity within each model, we show pathway predictions 

(Additional file 12, https://www.msu.edu/~andrech1/BCR_Supplemental/BCR_Supplemental.html). For 
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example, in PyMT induced tumors, there is a significant difference in predicted pathway activity 

between tumors from a FVB and AKXD genetic background (FIGURE S 2.5). In Myc induced 

tumors with an EMT or squamous histology had distinct predicted pathway activities relative to 

tumors of papillary or microacinar histology (FIGURE S 2.6). In Neu-induced tumors, we 

observed a major difference in predicted pathway activity between Neu tumors using the MMTV 

promoter and a Tet-on system to drive oncogene expression (FIGURE S 2.7). Taken together, 

these data demonstrate that tumor type, genetic background, and promoter result in key 

differences in pathway activity. 

 To validate and illustrate the utility of pathway activation predictions for developing 

hypotheses about pathways that function in tumor progression, we identified models with clear 

pathway activity predictions. Previous genetic studies that correlate with these predictions are 

noted (TABLE 2.2). Demonstrating the validity of the gene signatures, we observe a large degree 

of agreement between pathways with predicted activity and results from previous investigations. 

COMPARISONS TO HUMAN BREAST CANCER 

 With identification of pathways that function in tumor progression in mouse models, it is 

important to understand whether the given model is reflective of human breast cancer. To this 

end, we combined datasets for human breast cancer and the mouse mammary tumors in our 

database, removing both batch and platform effects (FIGURE S 2.8). To investigate the 

relationships between the mouse mammary tumors and human breast tumors, we used 

unsupervised hierarchical clustering. We identified a large number of mouse mammary tumor 

models that had similarities in gene expression profiles to human breast cancer (FIGURE 2.5). 

Importantly, Myc and Met induced tumors both recapitulate the heterogeneity observed in 
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human breast cancer. Using histological annotations, specific relationships between Myc tumor 

types and human breast cancer subtypes were observed (FIGURE S 2.9). For example, Myc 

tumors with EMT histology clustered together with human claudin low breast cancer. Extending 

this to the cluster of tumors predicted to have mesenchymal gene expression features (FIGURE 

2.1C), we observed that a large majority of these tumors also clustered with claudin low breast 

cancer. Importantly, further investigation of these tumors matched marker expression for claudin 

low tumors (FIGURE S 2.10). Together these data demonstrated that there are mouse models 

that share human breast cancer heterogeneity with individual tumor types that are closely related 

to subsets of human breast cancer at the level of gene expression. 

 In addition to comparing mouse mammary tumors and human breast cancer with gene 

expression, we tested relationships using pathway activation predictions. Using a mixture 

modeling approach, we clustered human breast cancer into ten different groups based on 

pathway activation profiles (FIGURE 2.6). The pie chart above each heatmap shows the 

spectrum of the intrinsically annotated samples in each group. No single group was made up of 

one intrinsic subtype, illustrating the heterogeneity of pathway activation within and between 

intrinsic subtypes of breast cancer. After groups of human tumors were identified, the probability 

that an individual mouse mammary tumor belonged to a group of human breast cancer was 

calculated using the pathway activation profile of the mouse mammary tumor sample. Observing 

these probabilities with a heatmap, we noted that no single group of human breast cancer was 

modeled by a single mouse mammary tumor type at the pathway level. Instead, for each group of 

human breast cancer, multiple mouse models showed similar predicted pathway activation 

profiles. Further, these results demonstrated that mouse model relationships to human breast 

cancer extended beyond the initiating oncogene. For example, mouse tumors initiated by Myc 
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overexpression contained several different tumor types, each modeling a different group of 

human breast cancer including those groups that have lower predicted Myc activity. Moreover, 

Neu initiated tumors using an inducible promoter frequently model a single group of human 

breast cancer (FIGURE S 2.11), while other Neu models have diverse pathway activation 

profiles leading to relationships with several different groups of human breast cancer. These 

results considered together highlight the similarity and differences between mouse models and 

human breast cancers. 

DISCUSSION 

 Here we have described the genomic analysis of a dataset composed of publicly available 

gene expression data for mouse models of breast cancer. These data have been analyzed through 

a variety of mechanisms to ask how mouse models are distinct, what properties they share and 

how they reflect human breast cancer. These data indicate that great care should be taken to 

appropriately choose the mouse model to use and that a genomic and histological 

characterization of tumors should be completed following experimentation. 

 In the examination of mouse models in the database, unsupervised hierarchical clustering 

revealed significant heterogeneity both between models and within models and was pronounced 

in tumor models with a large number of samples. Between model differences were fully expected 

given the unique initiating events causing tumor formation. However, prior studies with 

relatively few samples for each model did not demonstrate extensive within model heterogeneity 

[105]. In comparison, we have demonstrated extensive heterogeneity within many models. In 

part this is due to differences between intrinsic clustering methods [144] and unsupervised 

hierarchical clustering. However, given that we have noted corresponding differences in fold 

change, GSEA predictions and pathway signature probabilities, it is likely that this is a reflection 
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of the number of samples used in the analysis. As such, this provides an important caution to 

characterize a sufficiently large population of tumors to capture heterogeneity in the analysis. 

 Given that there is typically a predominant histological pattern associated with a given 

GEM tumor type [145], it was not surprising that there was a predominant genomic pattern. 

Indeed, we noted for many models that histology is predictive of the genomic subtype. 

Interestingly, this histological and genomic interaction is capable of spanning tumor initiating 

events from different mouse models. Indeed, EMT and spindle-type tumors from diverse models 

clustered together and were distinct from the non-EMT samples originating in the same model 

system. Thus, it is also critical for investigators to analyze all tumors from a given model for 

both histological and genomic patterns. 

 Mouse models were also investigated individually in comparison to the entire dataset 

using a variety of methods. This revealed characteristic gene expression patterns at the fold 

change level, specific GSEA enrichment effects, and key pathway signature differences. In many 

cases, these results correlated with prior studies. For instance, annotation of fold change results 

predicted that Neu induced tumors upregulated Krox 20 which was consistent with previous 

ChIP results [146]. When pathway signatures were examined, there were a large number of 

predictions that could be made for pathways used in specific GEM tumor models. Importantly, 

while these pathway signatures have previously been validated [47], the model by model 

pathway predictions shown in TABLE 2.2 were highly consistent with previously published 

tests. For instance, the pathway signatures predicted a high probability of Src activation in PyMT 

tumors in the FVB background and recent work has demonstrated the necessity for c-Src in 

PyMT induced tumors [147]. Collectively, for the pathways listed in TABLE 2.2, we note 

agreement between the pathway signature predictions and the reported genetic crosses. 
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Moreover, the pathway signature predictions are also reflective of additional mutations that 

accumulate in the samples. This was noted in the Myc and TAG induced tumors were the Ras 

signature was predicted to be elevated, consistent with the large number of Ras activating 

mutations in these strains [106, 148]. Given that numerous published genetic tests are in 

agreement with the pathway predictions, the remaining cell signaling pathway predictions offer a 

large number of testable hypotheses. In the future, pathway predictions in the various models 

should prove to be an important resource for initiating studies into investigating the importance 

of various signaling pathways in tumor biology. 

 One of the key aspects of this study was the comparison between mouse models and 

human breast cancer. These data demonstrated similarities and differences between the two 

groups and should serve as an important consideration when attempting to extend the 

comparison of mouse models to human cancer. Taking into account the clustering data, we 

readily noted that the heterogeneity between human breast cancer samples was present within 

individual mouse models. Despite capturing the genomic diversity of the samples, we noted 

several samples with no genomic similarity to human breast cancer, including tumors from 

strains with other samples that had clear similarity to human breast cancer. This clearly suggests 

that if conclusions are to be drawn from mouse models of breast cancer, that the mouse samples 

should be compared and clustered with a variety of human tumors. 

 In addition to clustering of genomic data, we compared mouse models to human breast 

cancer through signaling pathway activation predictions. These results showed that for any given 

group of human breast cancer samples, there was a mouse model with similar pathway activation 

profiles. Using these results, it is possible to select the mouse model that most closely represents 

a group of human breast cancer for the signaling pathways of interest. However, it is critical to 
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consider both clustering and pathway activation and to combine these methods to choose the 

most appropriate model to mimic human breast cancer. For example, to model HER2+ breast 

cancer and to study the role of HER2 in tumor development, research initially used the MMTV-

Neu mice [134]. However, the gene expression data reveals that this strain does not associate 

with the HER2+ human samples through genomic clustering. However, mixture modeling 

indicated that a proportion of HER + human cancers did group with the MMTV-Neu samples at 

the level of pathway activation. This indicates that in some aspects the mouse model is 

appropriately related to human HER2+ breast cancer. Further, recent reports demonstrate that a 

strain of mice with conditional activation of Neu under the control of the endogenous promoter 

which undergo amplification [135] far more closely recapitulate human HER2+ breast cancer 

[149]. Taken together, these data illustrate the importance of fully characterizing and using all 

genomic information to select the appropriate model for examination. 

 Recent reports have described the development of serially transplantable human breast 

cancer samples that are grown in a murine host with clear genomic similarity to the primary 

human breast cancer samples [150] and obviously this is an optimal model for specific studies. 

However, there is clear utility for GEM models, especially with regard to the ability to ask 

defined genetic questions with regard to key signaling pathways in tumor biology. As such, the 

prior characterization of mouse and human breast cancer similarities was a critical development 

[105]. The expanded number of samples and methods of analysis in this report have clearly 

illustrated additional components of mouse breast cancer biology that require careful 

consideration. Indeed, the extent of genomic heterogeneity was only appreciated previously for 

select models [106, 107, 137, 140], but our work indicates that this is a general characteristic 

across the majority of breast cancer model systems. As such, this work underscores the 
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requirement to fully characterize mouse tumor biology at histological and genomic levels before 

a valid comparison to human breast cancer may be drawn. Thus, we have provided the complete 

files for all of the comparisons made in this manuscript, from fold change between models to 

GSEA and pathway predictions, with the intent of this being used as a resource to choose and 

compare mouse models in breast cancer research. 

 Collectively, our work demonstrates genomic heterogeneity in mouse mammary tumor 

models. As an additional outcome of this research, we have provided a large scale predictive 

resource for each of the mouse models in the database. With heterogeneity driving a variety of 

relationships between individual mouse mammary tumors and human breast cancer, this work 

highlights the necessity of fully characterizing mouse tumor biology at molecular, histological 

and genomic levels before a valid comparison to human breast cancer may be drawn. 

METHODS 

COMBINATION OF DATASETS 

 Datasets (GSE10450, GSE11259, GSE13221, GSE13231, GSE13259, GSE13553, 

GSE13916, GSE14226, GSE14457, GSE14753, GSE15119, GSE15263, GSE15632, GSE15904, 

GSE16110, GSE17916, GSE18996, GSE20465, GSE20614, GSE21444, GSE22150, GSE22406, 

GSE23938, GSE24594, GSE25488, GSE27101, GSE30805, GSE30866, GSE3165, GSE31942, 

GSE32152, GSE34146, GSE34479, GSE6453, GSE6581, GSE6772, GSE7595, GSE8516, 

GSE8828, GSE8863, GSE9343, GSE9355 GSE37954, GSE2034, GSE2603, GSE4922, 

GSE6532, AND GSE14020) were downloaded from Gene Expression Omnibus. E-TABM-683 

and E-TABM-684 were downloaded from Array Express. For Affymetrix data, Bayesian Factor 

Regression Methods (BFRM) [25] was used to combine datasets and remove batch 

effects.(http://www.stat.duke.edu/research/software/west/bfrm/download.html). Agilent data was 
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merged with Affymetrix data using Chip Comparer (http://chipcomparer.genome.duke.edu/) and 

Filemerger (http://filemerger.genome.duke.edu/)To remove platform effects between Affymetrix 

and Agilent data and batch effects between individual Agilent studies we used COMBAT [24] 

(http://www.bu.edu/jlab/wp-assets/ComBat/Download.html). Batch effects and batch correction 

were visualized by principle component analysis in Matlab (for code see Additional file 1, 

https://www.msu.edu/~andrech1/BCR_Supplemental/BCR_Supplemental.html). 

DATA ANALYSIS 

 Unsupervised hierarchical clustering was done using Cluster 3.0 and exported using Java 

Tree View. The color scheme for the heatmap and sample legends were made using Matlab . 

Human breast cancer sample intrinsic subtypes were classified according to protocol [58]. Prior 

to clustering mouse models with human breast cancer, we clustered the human breast tumor 

samples on their own, to identify genes that would organize the breast tumors according to their 

intrinsic subtype in the combined dataset. We used these genes to filter the mouse and human 

combined gene expression dataset for unsupervised hierarchical clustering. 

 Significance analysis of microarrays [28] was used for fold change analysis. Settings for 

each comparison can be found in the excel download for each model (Additional files 2, 3, 

https://www.msu.edu/~andrech1/BCR_Supplemental/BCR_Supplemental.html). Gene ontology 

and TRANSFAC predictions were made using GATHER (http://gather.genome.duke.edu/). 

GSEA was done using Genepattern (http://genepattern.broadinstitute.org/gp/pages/login.jsf). The 

gene-set describing mammary cell-types was derived from [151]. 

 Pathway activation was predicted according to previous studies [37, 47] . For mouse 

samples, specific conditions for each pathway signature can be found in Additional file 4. For 

human breast tumor samples, pathway activation was predicted using Score Signatures 
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(https://genepattern.genome.duke.edu/gp/pages/login.jsf) and conditions can be found [47]. 

Mixture modeling was implemented according to[47]. 
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CHAPTER 3: 

THE E2F TRANSCRIPTION FACTORS REGULATE TUMOR DEVELOPMENT AND 

METASTASIS IN A MOUSE MODEL OF METASTATIC BREAST CANCER. 
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ABSTRACT 

 While the E2F transcription factors have a clearly defined role in cell cycle control, 

recent work has uncovered new functions.  Using genomic signature methods, we predicted a 

role for the activator E2F transcription factors in the MMTV-PyMT mouse model of metastatic 

breast cancer.  To genetically test the hypothesis that the E2Fs function to regulate tumor 

development and metastasis, we interbred MMTV-PyMT mice with the knockouts of E2F1, 

E2F2 and E2F3.  With the ablation of individual E2Fs we noted alteration of tumor latency, 

histology, and vasculature.  Interestingly, we noted a striking reduction in metastatic capacity 

and circulating tumor cells in both E2F1 and E2F2 knockout backgrounds. Investigating E2F 

target genes that mediate metastasis, we found that E2F loss led to decreased levels of Vegfa, 

Bmp4, Cyr61, Nupr1, Plod 2, P4ha1, Adamts1, Lgals3, and Angpt2. These gene expression 

changes indicate that the E2Fs control expression of genes critical to angiogenesis, remodeling of 

the extracellular matrix, tumor cell survival and tumor cell interactions with vascular endothelial 

cells to facilitate metastasis to the lungs. Taken together, these results reveal that the E2F 

transcription factors have key roles in mediating tumor development and metastasis in addition 

to their well characterized roles in cell cycle control. 

INTRODUCTION 

Breast cancer remains a leading cause of death for women, with high mortality rates 

attributed to distant metastasis [65]. To simplify the examination of signaling pathways 

requirements in metastatic breast cancer, research has turned to mouse model systems.  Previous 

studies in mouse models of breast cancer have begun to reveal the mechanistic features of breast 

cancer metastasis and in vivo selection has demonstrated the ability to select for tumors that 

metastasize to a specific location [64, 84, 85, 152]. Yet, we lack a complete understanding of the 
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pathways that govern the molecular circuitry of metastatic breast cancer.  One model that has 

been integral in examining metastatic progression is the MMTV-Polyoma Virus Middle T 

(PyMT) model.  Originally described with rapid tumor onset and a high degree of pulmonary 

metastasis [110], this model has since been used to examine a number of facets of metastasis. For 

example, work using the MMTV-PyMT model led to the discovery of the prometastatic 

signaling exchange between tumors and macrophages [153]. In addition, the metastatic 

contribution of individual signaling molecules, such as TGF-beta, AKT, and adiponectin, has 

also been uncovered using this model [111, 154, 155]. Given that PyMT can activate multiple 

signaling pathways with relevance to human breast cancer [136] there is clear utility in this 

model for characterizing  pathways contributing to breast cancer metastasis. 

Identification of signaling pathways contributing to tumor progression has been enhanced 

by recent progress in bioinformatic methods. One such method is the development of genomic 

signatures for determining signaling pathway activation status [36, 37]. By generating gene 

expression training data for cell signaling pathways, a signature can be created and applied to 

subsequent gene expression datasets to predict whether the pathway in question is activated.  

This method has demonstrated heterogeneity in human breast cancer [47], moving beyond and 

refining the intrinsic classification of breast cancer [57, 59].  In addition, this method 

demonstrated tumor heterogeneity in mouse models of breast cancer [106, 141]. As a predictive 

tool, genetic signatures allow the identification of signaling pathways that may contribute to 

tumor development. Indeed, applying genomic signatures to Myc induced tumors revealed that 

E2F transcription factors were predicted to function in tumorigenesis and a genetic test of this 

prediction demonstrated that E2Fs were involved in tumor onset and progression [108]. Using a 
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similar approach, our current study predicted a role for the activator E2F transcription factors in 

MMTV-PyMT induced tumorigenesis.  

 The E2F transcription factor family is broadly classed into transcriptional activators 

(E2F1-3A) and repressors (E2F3B-8) and the family members have been well characterized as 

regulators of the cell cycle [156-158]. Prior implications in human cancer show that E2Fs are 

important regulators of apoptosis and proliferation [159]. However, recent work has identified 

roles for E2Fs beyond simple cell cycle regulation [160]. For example, a xenograft study 

utilizing shRNA knockdown of E2F1 in melanoma cell lines, showed that knockdown of E2F1 

significantly reduced the size of pulmonary metastases [161].  In esophageal squamous cell 

carcinoma, it was shown that patients with tumors that immunostained positive for E2F1 had a 

worse overall survival rate than patients with E2F1 negative tumors [162]. Similarly, in prostate 

cancer patients with detectable nuclear staining for E2F3 have worse prognosis than patients 

where E2F3 is undetectable [163].  Furthermore, we recently demonstrated that E2Fs also play a 

role in human breast cancer relapse free survival time [108].  Together, these prior studies 

demonstrate the clinical significance of the E2Fs in human cancer. Here we used genomic 

signatures to predict that E2F transcription factors are involved in a mouse model of breast 

cancer metastasis. We then genetically demonstrated that E2F loss in MMTV-PyMT tumors 

alters tumor development, progression, and metastasis. Taken together, these data indicate that 

there is a critical role for E2F transcription factors in the regulation of metastasis. 

RESULTS 

To identify signaling pathways associated with the metastatic progression of breast 

cancer, we applied a number of genomic signaling signatures to gene expression data from 

mouse models of breast cancer.  Using previously described training data and methods [36, 37, 
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47, 106], we predicted signaling pathway activity across these models, which included the highly 

metastatic PyMT tumors.  When we examined the pathway activation predictions in the PyMT 

tumor model (FIGURE 3.1A), we noted activation in a number of pathways known to be critical 

in PyMT tumors, such as AKT [155].  We also observed a surprising degree of genomic 

heterogeneity in the tumor samples.  Despite this heterogeneity, we found that virtually all 

samples had high levels of predicted activity for the E2F1 transcription factor.  The two other 

activator E2Fs were also observed to have elevated probability of activation in a subset of tumor 

samples.  With activation of E2F signatures in the majority of samples, this indicated that the 

E2F transcription factors may be involved in PyMT-mediated tumorigenesis.   

 PyMT induced tumors are highly metastatic and have previously been used to examine 

the metastatic process.  Accordingly, we used the Kaplan-Meier Plotter tool (kmplot.com) to 

screen human breast cancer Distant Metastasis Free Survival (DMFS) clinical data for 

association between E2F1, E2F2, and E2F3 individual probes and upregulated signature genes 

with DMFS times in human breast cancer.  Importantly, elevated expression levels of either 

E2F1 (Hazard ratio: 1.52, 95% CI: 1.22-1.88, p=0.00016), E2F2 (Hazard ratio: 1.33, 95% CI: 

1.07-1.66, p=0.012), or E2F3 (Hazard ratio: 1.41, 95% CI: 1.15-1.74, p=0.00095) were 

individually associated with reduced time to distant metastasis in breast cancer compared to 

patients with tumors with low levels of expression (FIGURE 3.1B-D, respectively ).  Similarly, 

we assessed the upregulated genes in E2F1, E2F2, E2F3 pathway signatures. Elevation of E2F1 

signature genes (Hazard ratio: 1.46, 95% CI: 1.19-1.79, p=0.00024) and E2F2 signature genes 

(Hazard ratio: 1.52, 95% CI: 1.25-1.87, p=0.000037) also correlated with reduced time to distant 

metastasis in breast cancer patients compared to patients with low expression of these genes 

(FIGURE S 3.1 A, B). In contrast, high expression of E2F3 signature genes (Hazard ratio: 0.73, 
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95% CI: 0.59-0.91, p=0.0052) correlated with a prolonged time to distant metastasis in breast 

cancer patients (FIGURE S 3.1 C). Taking into account intrinsic subtype status, we found that 

high levels of E2F1 and E2F1 signature genes associated with a decreased time to distant 

metastasis in luminal A and luminal B breast cancers (FIGURE S 3.2). High levels of E2F2 

predicted a decrease time to metastasis in luminal A breast cancer while E2F2 signature genes 

were similarly associated in both luminal subtypes (FIGURE S 3.3). For E2F3, elevated probe 

levels and signature genes did not associate with a decreased time to metastasis in a particular 

subtype (FIGURE S 3.4).   Considered with the PyMT mouse model data, this strongly suggested 

that activator E2F transcription factors have a functional role in breast cancer progression and 

metastasis.  

To test the hypothesis that E2Fs regulate metastatic breast cancer, we interbred MMTV-

PyMT mice into E2F1, E2F2 and E2F3 knockout backgrounds.  Due to embryonic lethality, 

E2F3 mice were maintained in the heterozygous state.  To study E2F function in mammary 

tumor development, we examined mammary whole mounts of 35 day old MMTV-PyMT virgin 

mice in the various E2F backgrounds (FIGURE 3.2A-D). In all E2F backgrounds transformation 

of the ductal tree was evident through whole mount analysis.  In comparison to the E2F wild type 

control background (FIGURE 3.2A), normal ductal epithelium was consistently absent as 

indicated by representative E2F1
-/-

 mammary glands (FIGURE 3.2B).  Unlike E2F1, loss of 

E2F2 or E2F3 did not result in mammary glands appreciably different from the control (FIGURE 

3.2C-D respectively).  

Given that loss of E2F1 resulted in transformation of the entire mammary epithelium we 

postulated that this should result in acceleration of tumor onset. Mammary glands were regularly 

palpated for the presence of mammary tumors.  Consistent with the mammary whole mount 
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results, we noted a significant (p<0.0001) acceleration in tumor onset in the E2F1
-/-

 mice 

compared to the control wild type E2F background (FIGURE 3.2E). Indeed, 50% of control mice 

had developed tumors by 42 days while the loss of E2F1 resulted in tumors in 50% of mice by 

35 days (MMTV-PyMT median latency= 42 days, MMTV-PyMT E2F1
-/-

 median latency= 35 

days, hazard ratio= .2507, 95% CI= .02660-.1458). In contrast, no latency differences were 

associated with the loss of E2F2 (median latency = 40 days, hazard ratio= .8195, 95%CI= .4109-

1.461) (FIGURE 3.2F).  However, E2F3 heterozygous (+/-) mice were noted to have a 

significant delay in tumor onset (p=0.004, median latency= 48 days, hazard ratio= 1.955, 95% 

CI= 1.297-4.124) (FIGURE 3.2G).  Together these data demonstrate the differential roles of the 

E2Fs during the initiation of tumor development. 

In order to examine the role of the E2F transcription factors in tumor proliferation, we 

compared the growth rate of the PyMT induced primary tumors in the various E2F backgrounds.  

Despite the differences in tumor onset, no significant alterations in the time from tumor palpation 

to end stage were observed with loss of the E2Fs (FIGURE S 3.5A).   In addition, we assessed 

tumor burden at endpoint when the primary tumor reached 20 mm in the largest dimension.  

While no differences were observed for the E2F1
-/-

 or E2F2
-/-

 background, fewer tumors 

developed in the E2F3
+/-

 background (p=0.01) (FIGURE S 3.5B).  However, when total tumor 

volume was observed the E2F3 mutants were indistinguishable from the wild type E2F 

background (FIGURE S 3.5C).  Moreover, KI67 (FIGURE S 3.6) and TUNEL (FIGURE S 3.7) 

staining in early stage (tumor diameter =6mm) and end-stage tumors indicated that E2F1 loss 

had no effect on tumor cell proliferation or apoptosis. Together these data indicate that despite 

alterations to tumor latency there were surprisingly few effects of E2F loss on growth rate, tumor 

burden, proliferation or apoptosis in MMTV-PyMT tumors. 
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Since E2F loss had no impact on these features of tumor growth, we investigated whether 

compensatory upregulation of other E2F family members had occurred. To do this, we assayed 

levels of E2F1, E2F2, E2F3A, and E2F3B by qRT-PCR across tumor genotypes (FIGURE 3.3). 

Compared to E2F
WT/WT

 (n=4) tumors, E2F1
-/-

 tumors (n=4) showed similar levels of E2F2 and 

E2F3B, but had significant upregulation of E2F3A (p=0.0232). In E2F2
-/-

 tumors (n=4), we 

detected a significant decrease in E2F1 levels (p=0.0016) and significant upregulation of E2F3A 

(p=0.0105). In E2F3
+/-

 tumors, expression levels of E2F1 and E2F2 were similar to E2F
WT/WT

 

tumors. Interestingly, E2F3
+/-

 mice had upregulation of E2F3A bordering statistical significance 

(p=.0641) and significant downregulation of E2F3B (P=0.0175). E2F3
+/-

 35 day old mammary 

glands (n=4) show a modest decrease in E2F3 protein levels in E2F3
+/-

 mice compared to 

E2F
WT/WT

 mammary glands (n=4) (FIGURE S 3.8A). In early stage E2F3
+/-

 tumors (n=3, 6mm 

diameter), we detected similar levels of E2F3 as E2F
WT/WT

 tumors (n=3, FIGURE S 3.8B). 

Similar observations were made in end stage tumors (n=4 for each genotype, 20 mm diameter), 

though E2F3 protein levels were more variable (FIGURE S 3.8C). As a whole, these results 

demonstrate that E2F loss in these tumors led to compensatory upregulation of the E2F3A 

isoform. 

 In addition to effects on latency, histological patterns observed in the tumors indicated 

that the E2F transcription factors play a role in tumor heterogeneity.  In all backgrounds the most 

common histological type of tumor was the microacinar subtype (FIGURE 3.4A).  In addition, 

we frequently noted adenosquamous tumors (FIGURE 3.4B) as well as a number of other types 

at reduced frequency across genetic backgrounds (FIGURE 3.4C).  The frequency of 

adenosquamous tumors was noticeably affected in the E2F1
-/-

 and E2F2
-/-

 mice.  Indeed, loss of 

E2F1 significantly reduced the frequency of adenosquamous tumors from 8% to 1% (p=0.001) 
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(FIGURE 3.4D).  Conversely, loss of E2F2 significantly increased the proportion of 

adenosquamous tumors to 21% of all tumors (p=0.0003).  In contrast to the alterations in 

histology found with E2F1 and E2F2, no effects on tumor histology were noted for E2F3 

mutants. 

Given that we predicted a high probability of E2F activation in the highly metastatic 

MMTV-PyMT mouse model and that we noted high E2F levels being associated with decreased 

time to distant metastasis in human breast cancer, we hypothesized that the E2Fs were involved 

in breast cancer metastasis.  To test this hypothesis we examined the lungs of MMTV-PyMT 

mice in the various E2F backgrounds at endpoint.  Metastatic tumors were readily observed on 

the surface of the lungs in control MMTV-PyMT mice (FIGURE 3.5A).  Interestingly, we did 

not observe these metastases in the E2F1
-/-

 or E2F2
-/-

 backgrounds (FIGURE 3.5B, C 

respectively) but did note metastatic tumors on the surface of the lungs in the E2F3
+/-

 

background (FIGURE 3.5D).  Histology for matched sections of the lungs was examined, 

demonstrating widespread metastasis in the lungs of E2F
WT/WT

 mice (FIGURE 3.5E) with the 

histology for the median number of metastatic lesions being shown.  Consistent with the gross 

observations, there was a readily apparent decrease in the number of metastatic lesions in the 

E2F1
-/-

 and E2F2
-/-

 mice (FIGURE 3.5F, G) but not in the E2F3 mutant mice (FIGURE 3.5H).  

Metastases in the boxed areas are shown at higher magnification (FIGURE 3.5I-L).   To 

quantitate the number of metastases, a representative section of the lung was counted for each of 

the tumor bearing mice (n=37 for E2F
WT/WT

, n=21 for E2F1
-/-

, n=21 for E2F2
-/-

, n=23 for E2F3
+/-

).  This revealed a significant reduction in the number of metastases observed in the lung in both 

E2F1
-/-

 (p<0.0001) and E2F2
-/-

 (p=0.002) backgrounds (FIGURE 3.5M).  Given that many of the 

noted metastases were smaller in the E2F1
-/-

 and E2F2
-/-

 backgrounds, we also examined the area 
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occupied by the metastases as a function of the total lung area.  This demonstrated that loss of 

either E2F1 or E2F2 significantly reduced metastatic burden (p<0.0001 for both) (FIGURE 

3.5N). 

 To determine the stage at which E2F1 or E2F2 loss blocked metastasis, we assayed the 

number of circulating tumor cells (CTCs) at endpoint in the tumor bearing mice.  To detect 

CTCs, we collected blood from a cardiac puncture and cultured the CTCs in a colony forming 

assay.  Compared to age matched wild type tumor free controls (n=6) where no colonies were 

detected (FIGURE 3.6A), the MMTV-PyMT strain (n=14) was found to have a number of 

discreet colonies (FIGURE 3.6B).  The number of CTCs was visibly reduced in both the E2F1
-/-

 

(n=7, FIGURE 3.6C) and in the E2F2
-/-

 mice (n=10, Fig 3.6D) but not in the E2F3
+/-

 (n=10) mice 

(FIGURE 3.6E).  Quantitation revealed that this was a significant decrease in CTC colonies 

relative to the PyMT control in the E2F1
-/-

 (p=0.02) and in the E2F2
-/-

 (p=0.006) mice (FIGURE 

3.6F). A reduction in CTCs was confirmed by extracting RNA from blood at tumor end stage 

and using qRT-PCR to assay transgene expression as an indicator of circulating tumor cells. This 

demonstrated that E2F1
-/-

 mice had a 4.8 fold reduction in transgene levels in blood compared to 

controls (FIGURE S 3.9), indicating a reduction in circulating tumor cells. Further, in FVB 

negative controls we observed no amplification of the transgene. Taken together, these results 

strongly suggest that loss of E2F1 or E2F2 inhibits metastasis by reducing the number of 

circulating tumor cells. 

To test whether E2F1 or E2F2 also regulate colonization ability, we injected 5.0 X 10
5
 

cells derived from E2F
WT/WT

 PyMT, E2F1
-/-

 PyMT, and E2F2
-/-

 PyMT tumors into the circulation 

of wild type control mice. In mice injected with E2F
WT/WT

 PyMT cells (n=8), we observed robust 

lung colonization (FIGURE 3.7A). In contrast we observed a vast reduction in colonization for 
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mice injected with E2F1
-/-

 PyMT tumor cells (n=9) and E2F2
-/-

 PyMT tumor cells (n=7) 

(FIGURE 3.7 B and C). Mice injected with E2F
WT/WT

 PyMT tumor cells contained an average of 

8.5 metastases per section of lung, while a significant reduction was observed in mice injected 

with E2F1
-/-

 (average number of metastases=1.9, p=0.01) and E2F2
-/-

 tumor cells (average 

number of metastases=0.85, p=0.02) (FIGURE 3.7D). Additionally, we measured the area of the 

occupied by metastasis in these mice and observed a 18-fold reduction for mice injected with 

E2F1
-/-

 tumor cells and a 50-fold reduction for mice injected with E2F2
-/-

 tumor cells in 

comparison to mice receiving E2F
WT/WT

 PyMT tumor cells (FIGURE 3.7E). Interestingly, the 

reduction in circulating tumor cells (FIGURE 3.6) or in tumor cell colonization ability (FIGURE 

3.7) was not related to defects in cell migration measured through scratch assays (FIGURE S 

3.10) and transwell migration assays (FIGURE S 3.11) as these experiments revealed no 

difference in motility between E2F
WT/WT

 and E2F
-/-

 tumor cells. Nonetheless, these data provide 

a clear demonstration that E2F1 and E2F2 are necessary for tumor cell metastasis. 

To further illustrate the significance of the E2Fs for pulmonary colonization, we 

performed qRT-PCR to compare E2F1 and E2F2 levels in E2F
WT/WT

 pulmonary metastases 

relative to E2F
WT/WT

 primary tumors. Interestingly, E2F1 expression levels were nearly 7 times 

higher in lung metastases compared to primary tumors (p=0.0004, FIGURE 3.8A).  E2F2 levels 

were similar between lung metastases and primary tumors (FIGURE 3.8B). We also applied our 

gene signatures for E2F1 and E2F2 activity to previously published gene expression data for 

MMTV-PyMT tumors and lung metastases [164]. Consistent with qRT-PCR results, predicted 

E2F1 activity was significantly higher (p=0.0007) in lung metastases compared to primary 

tumors (FIGURE 3.8C), while no differences in activity were observed for E2F2 (FIGURE 

3.8D).  
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To test whether metastatic regulation by E2F1 or E2F2 is cell autonomous or is a result of 

E2F-associated tumor microenvironment defects, we assayed metastatic progression utilizing a 

tumor transplant study. For this experiment, viable frozen tumor samples (E2F
WT/WT

, n=4; E2F1
-

/-
, n=4; E2F2

-/-
, n=4) from transgenic mice were transplanted into MMTV-Cre E2F

WT/WT
 control 

mice. At primary tumor endpoint, metastasis was analyzed. Histological sections of lungs of 

mice implanted with an E2F
WT/WT

 tumor demonstrated extensive metastasis (FIGURE 3.9A). In 

contrast, metastatic lesions were rarely observed in lungs of mice receiving an E2F1
-/-

 (FIGURE 

3.9B) or PyMT E2F2
-/-

 (FIGURE 3.9C) tumor. These results revealed a significant reduction in 

the number of metastases observed in the lungs of mice implanted with an E2F1
-/-

 (p=0.003) or 

E2F2
-/-

 (p=0.01) tumor compared to mice implanted with an E2F
WT/WT

 tumor (FIGURE 3.9D). 

Further, these metastatic defects also resulted in a dramatic reduction in the proportion of the 

lungs occupied by metastasis in mice implanted with E2F1
-/-

 or E2F2
-/-

 tumors compared to mice 

receiving E2F
WT/WT

 tumors (FIGURE 3.9E).  

To determine if compensation by other E2F family members was occurring, E2F 

expression in transplanted tumors was analyzed (FIGURE S 3.12).  PyMT E2F1
-/-

 tumors (n=4) 

were observed to have a significant increase in E2F2 (p=0.0032) and E2F3A (p=0.0254) 

expression with a significant decrease in E2F3B (p=0.0358). Similar to the spontaneous tumors, 

E2F2
-/-

 transplanted tumors had a significant decrease in E2F1 expression (p=0.0046). 

Interestingly, E2F3A upregulation in E2F2
-/-

 tumors was not statistically significant. However, 

there was significant downregulation (p=0.0024) of E2F3B in these tumors.  

To test for tumor microenvironment effects, we also performed F4/80 staining. 

Consistent with observations from the tumor transplant study, we observed no differences in 

macrophage infiltration across E2F mutant backgrounds (FIGURE S 3.13). Together, this data 
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suggested that metastatic defects associated with E2F1 or E2F2 loss were intrinsic to the tumor 

cells.   

To begin to investigate the intrinsic mechanistic features of metastatic defects, we 

performed CD31 staining to assay tumor vasculature in end stage tumors. In PyMT E2F
WT/WT

 

tumors (n=5), we observed well defined and continuous staining for CD31, indicating well 

developed vasculature structure (FIGURE 3.10A). In contrast, PyMT E2F1
-/-

 tumors (n=5) 

showed remarkably altered tumor vasculature (FIGURE 3.10B).  This was accompanied by a 

significant reduction (p=0.0002) in gene expression of the pro-angiogenic signaling molecule 

Vegfa in E2F1
-/-

 tumors (n=6) compared to E2F
WT/WT

 (n=6)  tumors (FIGURE 3.10C). Jointly, 

these results indicate that loss of Vegfa expression in E2F1
-/-

 tumors has altered blood vessel 

development.  

To further investigate potential mechanisms of metastasis, we utilized an informatics 

approach to identify potential E2F targets mediating metastatic potential. As outlined in FIGURE 

3.11A, we utilized E2F signature gene expression data with published ChIP-Seq and ChIP-Chip 

data to identify direct E2F target genes. Next, we filtered our potential targets using gene sets for 

metastasis available on MSigDB. Testing potential target genes via qRT-PCR we found that 

E2F1 (n=6) and E2F2 (n=6) tumors have significantly lower levels of; Bmp4 (p=0.0002, 

p<0.0001 , respectively), Cyr61 (p=0.0009, p=0.0006 , respectively), and Nupr1 (p<0.0001, 

p<0.0001 , respectively), Plod 2 isoform 1(p<0.0001 , E2F2
-/-

 only), Plod 2 isoform 2(p=0.0122, 

p=0.0015 , respectively), P4ha1(p=0.0006, p<0.0001 , respectively), Adamts1 (p<0.0001, 

p<0.0001 , respectively), Lgals3(p<0.0001, p<0.0001 , respectively), and Angpt2 (p=0.0065, 

E2F1-/- only) (FIGURE 3.11 B-J). These results show which E2F target genes associated with 

metastatic function are downregulated in E2F1
-/-

 and E2F2
-/-

 tumors. In addition, these results 
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provide important mechanistic insight into the molecular basis of E2F regulation of tumor 

metastasis. 

DISCUSSION 

In this study we applied genomic signaling pathway signatures to mouse tumor model 

microarray data and predicted a role for the E2F transcription factors in PyMT induced tumors. 

By genetically testing this prediction, we found that E2F1 loss enhanced ductal transformation 

and accelerated tumor onset. In contrast to this, we noted delayed tumor onset in E2F3
+/-

 mice. 

Histologically, we observed that loss of E2F1 resulted in a significant decrease in the incidence 

of adenosquamous tumors, while E2F2 loss led to an increase in the frequency of this tumor 

type. In some of the most striking findings, we identified a role for the E2F transcription factors 

in tumor metastasis. Indeed, loss of E2F1 or E2F2 dramatically reduced the metastatic capacity 

of MMTV-PyMT tumors. These metastatic defects were associated with a reduction in 

circulating tumor cells and were cell autonomous. Together, these data demonstrate a significant 

role for individual E2Fs in tumor development and progression.  

E2F transcription factors have previously been associated with defined roles in cell cycle 

control, proliferation and apoptosis.  While exploring the role of E2F1 in tumor development, we 

found that loss of E2F1 enhanced ductal transformation and accelerated tumor onset. In a 

previous study of Myc-mediated tumorigenesis, we noted a similar acceleration of tumor onset 

with loss of E2F1 [108].  Consistent with E2F1’s role in Myc induced apoptosis [165], we noted 

that loss of E2F1 reduced apoptosis and caused Myc tumors to grow more quickly. Unlike the 

Myc model, we did not observe any effects on apoptosis with E2F1 loss (FIGURE S 3.7). This 

suggests that E2Fs can respond to different pathway stimulus uniquely to differentially regulate 

specific genes and separate cellular processes.  
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With a delay in tumor onset in E2F3
+/-

 mice and previously defined roles for the E2Fs in 

cell cycle progression and apoptosis, alterations in tumor growth were expected but not observed 

in E2F mutant mice. However, levels of the various E2F alleles indicated that there was 

significant compensation in the E2F3
+/-

 strain.  Given the previously noted potential for E2F 

compensation [166], the lack of defects associated with tumor growth in the E2F mutant mice 

may not be surprising. Consistent with our data, it has been shown that with E2F1 loss E2F3A is 

upregulated [166].  Further work has also demonstrated that E2F3A can compensate for the loss 

of E2F1 to sustain cell proliferation [167], while E2F3A is necessary cellular proliferation [167, 

168].  With upregulation of E2F3A in each of the E2F mutant tumors, this previous data supports 

our tumor growth and proliferation observations.  

In addition to tumor development, we found that loss of E2F transcription factors altered 

tumor heterogeneity. As apparent in FIGURE 3.4C, PyMT induced tumors with wide 

histological heterogeneity. Interestingly, E2F1 and E2F2 had opposite effects on the incidence of 

adenosquamous tumors. Together the latency, histological differences and metastatic capacity 

clearly illustrate that the E2Fs have unique and individual roles. Given that the E2F DNA 

binding site is conserved in all E2Fs [169] and ChIP-seq studies have demonstrated that various 

E2Fs bind the same targets [157], this reinforces the idea that cooperating transcription factors 

such as YY1 are required for specificity of function [170].   

Perhaps most notable of the experimental findings was the identification of E2Fs as 

regulators of breast cancer metastasis.  Importantly, high levels of E2F1, E2F2, and E2F3 were 

predictive of accelerated onset of distant metastasis in human breast cancer. While our data for 

E2F1
-/-

 and E2F2
-/-

 mice corroborate these predictions, we did not observe metastatic impairment 

in the E2F3
+/-

 mice. However, E2F1, E2F2, and E2F3 levels were maintained in the E2F3
+/-

 mice 
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(FIGURE 3.3), potentially allowing other E2Fs to compensate, resulting in normal regulation of 

metastatic progression. Importantly, our tumor transplant study provides evidence that the E2Fs 

regulate tumor metastasis in a cell autonomous manner.  Indeed, E2F loss had no effects on 

tumor growth rate, tumor burden, proliferation, apoptosis, and macrophage staining while 

reducing metastatic potential. This indicated that the metastatic defects are not a result of altered 

tumor development but are due to inherent properties of the tumor.   

While E2F1
-/-

 and E2F2
-/-

 mice each present a reduction in tumor metastasis, our data 

suggest that E2F1 loss is responsible for the metastatic deficiency.  Indeed, E2F1 levels and 

activity were elevated in lung metastases compared to primary tumors. In addition, PyMT E2F1
-/-

 

tumors transplanted into wild type recipients had significantly higher levels of E2F2, yet still had 

significantly lower number of metastases. Meanwhile, both spontaneous and transplanted PyMT 

E2F2
-/-

 tumors had significantly lower levels of E2F1 while failing to metastasize. Interestingly, 

E2F1
-/-

 and E2F2
-/-

 tumors shared expression patterns for most metastatic target genes we 

surveyed.  Together, this may indicate the mechanism behind metastatic defects noted in both 

E2F1
-/-

 and E2F2
-/-

 tumors may be mediated primarily by E2F1 regulated genes. 

Noting both the reduction in CTCs and tumor cell colonization ability, our data suggests 

E2Fs regulate metastasis in early and late stages of metastatic progression. Through qRT-PCR of 

E2F target genes that have noted metastatic properties, we have identified molecular features of 

metastasis regulated by E2Fs. In the early steps of metastasis, we found that E2F1
-/-

 tumors had a 

reduction in Vegfa and as a result, the tumor vasculature was altered. Indeed, previous reports 

have shown that E2F1 controls angiogenesis through the VEGF signaling axis [171].  In 

addition, we detected other altered E2F target genes noted to function in tumor angiogenesis. 

Previous studies have demonstrated Angpt2 is able to promote angiogenesis [172, 173] and 



 

88 
 

tumor cell invasion [174].  In addition, E2F1 tumors have significantly low levels of Cyr61 

(cysteine-rich angiogenic inducer 61) and blocking Cyr61 function decreased metastasis in a 

xenograft of the MDA-MB231 human breast cancer cell line [175]. Further, given the finding 

that Cyr61 can regulate tumor angiogenesis independent of Vegfa expression [176], it seems that 

loss of Cyr61 together with loss of Vegfa and Angpt2 provides a molecular context for the 

pronounced tumor vasculature effects associated with E2F loss. With blood vessel recruitment 

being a key rate limiting step for metastasis [177], these data reveal the molecular alterations 

contributing to the angiogenesis defects associated with E2F loss and indicate one of the 

mechanisms by which E2Fs are involved in mediating the early steps of metastasis. 

In addition to tumor angiogenesis, we detected gene expression changes that indicate that 

loss of E2F1 or E2F2 may impact tumor cell remodeling of the extracellular matrix (ECM). 

Specifically, we noted E2F1
-/-

 and E2F2
-/-

 tumors had a 2-fold reduction in the extracellular 

metalloprotease, Adamts1. Adamts1 has been ablated in the MMTV-PyMT mouse model, 

revealing the requirement for Adamts1 during tumor metastasis [178]. Importantly, this work 

demonstrated that Adamts1 remodels the ECM to facilitate the transition from ductal carcinoma 

in-situ to invasive and metastatic disease. Also critical to remodeling of the extracellular matrix 

to facilitate a metastatic niche is collagen deposition [179]. The PyMT tumors in the E2F1
-/-

 and 

E2F2
-/-

 background had significantly lower expression of P4ha1 and Plod2, whose products both 

function as collagen hydroxylases. Recent work has demonstrated the necessity for these genes 

in tumor cell collagen deposition [180]. Further, knock down of these genes in metastatic human 

breast cancer cell lines reduced the number CTCs in the blood, as well as pulmonary and 

lymphatic metastasis in a xenograft study [181]. Taken together, these data indicate the reduction 
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in metastatic potential in E2F1
-/-

 and E2F2
-/-

 may be due to an inability to form extracellular 

fibrillar collagen resulting from loss of expression of E2F target collagen hydroxylase genes. 

In addition to molecular signals that recruit blood vessels and remodel the extra-cellular 

matrix, we found that major cell-signaling pathways were impacted by E2F loss. Our qRT-PCR 

analysis suggests that pathways related to the TGF-β super family and Smad activation have 

been impacted by loss of E2F1 and E2F2. BMP4 expression was reduced more than 3 fold in the 

E2F1
-/-

 and E2F2
-/-

 tumors.  BMP4, a member of the TGF-β super family, leads to the activation 

of Smad1, Smad5, and Smad8 [182, 183] and studies have illustrated a role for BMP4 breast 

cancer cell invasion [184, 185].  These data may indicate loss of BMP4 signaling has reduced the 

invasive potential of the MMTV-PyMT tumor cells and thus contributing to the observed 

reduction in CTCs. In addition, we also detected over a 3 fold reduction in Nupr1. Nupr1 

expression has been shown to increase in response to TGFβ1 and helps facilitate Smad 

transactivation [186]. The pro-metastatic functions for Nupr1 were originally identified in work 

that showed that Nupr1 supports the growth of human breast cancer cells after seeding a distant 

organ [187].  In light of these findings, loss of NUPR1 expression may lend itself to the observed 

defects in tumor cell colonization of the lungs in tumors lacking E2F1 or E2F2.  

We also detected significantly lower expression levels of Lgals3 expression in E2F1
-/-

 

and E2F2
-/-

 tumors. A wide array of pro-metastatic functions have been described for LGALS3 

with relevance to early and late steps of the metastatic cascade [188]. For instance, it has been 

shown that the LGALS3 protein, galectin-3, mediates tumor cell adhesion to the ECM [189] and 

promotes the dissemination of tumor cells from the primary tumor [190]. Galectin-3 has also 

been shown to be critical for recognition and interaction of human breast cancer cells with 

endothelial cells of the vasculature [191, 192] and those tumor cell-endothelial cell interactions 
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are necessary for tumor cell invasion and metastasis [193]. In the later steps of metastasis, 

galectin-3 induces apoptosis in T-cells and monocytes [188]. This suggests that LGALS3 

deficiency in E2F1
-/-

 and E2F2
-/-

 tumor cells may have allowed immune cells to reduce the 

number CTCs and eliminate cells before they could colonize the lungs in our study using retro 

orbital injection of tumor cells into the bloodstream.  

In conclusion, these data demonstrate that E2F1 and E2F2 play a critical role in MMTV-

PyMT mediated tumorigenesis with E2F loss leading to alterations in tumor latency, histology, 

and metastasis. Importantly, E2F1 and E2F2 were shown to be critical regulators of intrinsic cell 

signaling that allows tumor cells to progress through both early and late steps of metastasis. 

Importantly, we identified the potential E2F target genes that associate with these changes in 

metastatic ability. These gene expression changes suggests that the E2F transcription factors 

mediate expression of genes critical to tumor angiogenesis, tumor cell remodeling of the 

extracellular matrix, tumor cell survival and tumor cell interactions with vascular endothelial 

cells to facilitate metastasis to the lungs. Taken together, these findings indicate E2Fs regulate 

key functions involved in metastasis in both mouse models and human breast cancer and as such, 

add to the paradigm of E2F function. 

METHODS 

BIOINFORMATICS  

 Gene expression data for MMTV-PyMT tumor samples and cell lines was obtained from 

the Gene Expression Omnibus (GEO) under accession numbers GSE13553, GSE13221, and 

GSE14457. This data was combined with other mouse mammary tumor models with accession 

numbers GSE11259, GSE13230, GSE15904, GSE24594, GSE22406, GSE6246, GSE6453, 

GSE6581, GSE7595, GSE8516, GSE8828, GSE8863, GSE9343, GSE9355, GSE10450, 
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GSE13259, GSE13916, GSE14226, GSE14457, GSE14753, GSE15119, GSE15263, GSE15632, 

GSE16110, and GSE17916 . Batch effects were removed between Affymetrix derived datasets 

using BFRM [25]. COMBAT [24] was used to remove batch effects between Agilent and 

Affymetrix datasets. Pathway predictions were conducted as previously described using a gene 

signature approach [37, 47, 133].  Briefly, pathway predictions were made using gene expression 

training data for individual oncogenic pathways. By comparing oncogene overexpression to 

control samples, the training data provided the transcriptional response of oncogenic pathway 

activation. For each training dataset, metagene scores were calculated and signature genes were 

identified. Bayesian fitting of probit binary regression models were used to map MMTV-PyMT 

tumors to the metagene signature and calculate probability of activation of individual oncogenic 

pathways utilizing BINREG software in Matlab. Metastasis gene sets were downloaded from 

MSigDB (www.broadinstitute.org). ChIP-seq data and ChIP-chip data for E2F1, E2F2, and E2F3 

were obtained from their respective publications [194-197]. Unsupervised hierarchical clustering 

was performed with Cluster 3.0 and results were visualized with JavaTreeView. Figures were 

converted to a full-spectrum color scale using Matlab.  To examine human breast cancer, we 

used kmplot.com [198] to examine distant metastasis free survival.  

ANIMAL STUDIES 

All animal work has been conducted according to national and institutional guidelines. 

All mice were in the FVB background. MMTV-PyMT634 mice were obtained from Jackson 

Labs.  PyMT transgenics were interbred with E2F1
-/-

 [199], E2F2
-/-

 [200], or E2F3
+/-

 [168] mice. 

A very small number of mice with runted growth from each genotype were excluded from the 

experiment due to failure to thrive. Tumors were detected through weekly palpation and tumor 

growth was measured twice per week. Kaplan–Meier curves for tumor latency were generated 



 

92 
 

using GraphPad Prism. Tumor growth rate was measured by the amount of time for the primary 

tumor to reach a volume of 2,000 mm
3
 after palpation.  

Mammary whole mounts were conducted as previously described [133]. Once the 

primary tumor reached the approved endpoint the number of lung metastases and the percent 

area of the lungs occupied by metastasis were quantified across both lobes of a single section of 

H&E stained lungs. GraphPad Prism was used to conduct the Mann-Whitney statistical test. 

Immunohistochemistry was performed on sections of mammary glands and 

representative end-stage tumors using the following antibodies; F4/80 rat monoclonal antibody 

from Serotec (Q61549), Ki67 from Abcam (Ab15580) and CD31 from HistoBioTec (Dianova 

DIA-310).  TUNEL staining was done using the In Situ Cell Death Detection Kit from Roche 

(11684817910) and a DAB substrate kit from Vector Labs (SK-4100). For western blots 

assessing E2F3 protein levels, the primary antibody was purchased from Santa Cruz (sc-878) and 

was imaged using a Licor goat anti-rabbit secondary antibody (Licor 326-32211).  

A colony forming assay was conducted based upon previously published methods [201]. 

For this experiment, mice with end stage tumors are used. Blood is collected by cardiac puncture 

from the right atrium using a 25 G 5/8 syringe tip. Blood was put in heparin coated tubes (BD 

Microtainer tubes with lithium heparin REF 365965 ) and then 200 uL of blood was added into 

800 uL of DMEM , 3.5 g/L D-glucose , 3.7 g/L NaHCO3,  Ab/Am 15% FBS media in sterile 

Eppendorf tube to be centrifuged at 1000rpm for 5min. The supernatant is discarded, and the 

remaining is cultured in the media described above with regular maintenance for 10 days. On the 

11
th

 day, equilibrate plate with 1X PBS for 1 minute, then fix with 10% formalin for 5 minutes. 

Wash away formalin using 1X PBS, and stain with hematoxylin. To wash away hematoxylin, use 
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1% acetic acid. Colonies were quantified using Image J software. GraphPad Prism was used to 

conduct the non-parametric t-test using Mann-Whitney methods. 

RNA extraction from mammary glands, tumors, and blood cells was performed using the 

QIAamp RNA blood mini kit (Qiagen 52304). Quantitative RT-PCR was performed using 

the QuantiTect SYBR Green RT-PCR kit (Qiagen 204243). Primer sequences for the SV40poly-

A transgene marker are SV40-F: GGAACCTTACTTCTGTGGTGT; SV40-

R:  GGAAAGTCCTTGGGGTCTTCT. Primer sequences are Actin-F: 

CATCATGCGTCTGGACCTG; Actin-R: CTCACGTTCAGCTGTGGTCA; Adamts1-F: 

GATAATGGACACGGGGAATG;  Adamts1-R: GATAATGGACACGGGGAATG; Angpt2-F: 

GCCCAAGTACTAAACCAGACG; Angpt2-R: CACTGGTCTGATCCAAAATCTG ;Bmp4-F: 

CAATGGAGCCATTCCGTAGT; Bmp4-R: CATGATTCTTGGGAGCCAAT; Gapdh-F: 

TCATGACCACAGTGGATGCC; Gapdh-R: GGAGTTGCTGTTGAAGTCGC; Cyr61-F: 

ACGAGGACTGCAGCAAAACT; Cyr61-R: TGAGCTCTGCAGATCCCTTT; Lgals3-F: 

CAACGCAAACAGGATTGTTC; and Lgals3-R: CGTGTTACACACAATGACTCTCC Nupr1-

F: CAATACCAACCGCCCTAGC; Nupr1-R: CCTTATCTCCAGCTCCGTCTC; P4ha1-F: 

ACCTGTGAAGTTCCCCAAGA; P4ha1-R: CAGTCATCTGACCAATTGACGTA; Plod2 

Isoform 1-F: CCCCAAAGGGTGTGTTTATG; Plod2 Isoform  1-R: 

TTCAAAAATCTGCCAGAAGTCA; Plod2 Isoform 2-F: TCAAGGAAAGACACTCCGATCT; 

Plod2 Isoform 2-R: AACACACCCATATCTCTAGCATTG; and Vegfa-F: 

CAGGCTGCTGTAACGATGAA; Vegfa-R: GCATTCACATCTGCTGTGCT. 

Tumor cells were obtained from viably frozen tumor tissue [202] and cultured for two 

passages prior to colonization assays. Adherent proliferating tumor cells were counted and 5.0 x 

10 
5 

cells were injected retro-orbitally into MMTV-CRE wild-type control mice. Mice were 
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examined 35 days post injection and lungs were paraffin embedded prior to routine H&E 

staining.  

Tumor transplant studies were conducted using viable frozen tumor samples generated 

during the study of tumor development and metastasis using the transgenic mice. Tumors (E2F 

WT, E2F1
-/-

, or E2F2
-/-

) were implanted into the mammary fat pad of MMTV-CRE wild-type 

control mice. Once the primary tumor reached endpoint, lung metastases and the percent area of 

the lungs occupied by metastasis was examined with routine histology and was quantified. 

GraphPad Prism was used to conduct the non-parametric t-test using Mann-Whitney methods. 

IN VITRO ASSAYS 

Tumor cells were obtained from viable frozen tumor tissue and cultured for use in a 

wound healing assay in the presence of 2ug/mL Mitomycin C using standard methods  [203]. 

Photomicrographs were taken at 0 hour, 12 hour, 24 hour, 36hour, and 48 hours.  

Tumor cells were obtained from viable frozen tumor tissue, cultured, and serum starved 

for 24 hours for use in a transwell invasion assay according to standard protocols [203]. Serum 

starved cells were re-suspended in serum free media with 2ug/mL Mitomycin C and seeded at a 

density of 3.0 x 10 
5
 cells on the insert. DMEM with 10% FBS and 2ug/mL Mitomycin C was 

used as a chemo attractant. Cells were allowed to migrate for 6 hours prior to 3% 

paraformaldehyde fixation and crystal violet staining. 
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CHAPTER 4:  

IDENTIFYING THE MECHANISTIC FEATURES BY WHICH THE E2F1 

TRANSCRIPTION FACTOR REGULATES BREAST CANCER METASTASIS. 
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ABSTRACT 

In human breast cancer, the major cause of lethality is the metastasis of tumor cells to distant 

organs. Because of this, current research has revealed many of the molecular features that 

promote distant metastasis, yet we lack a complete understanding of the circuitry that regulates 

progression to metastasis. Previously, we used genomic signatures to predict that E2F 

transcription factors are involved in a mouse model of breast cancer metastasis. Testing these 

predictions, we genetically demonstrated that loss of E2F1 in MMTV PyMT tumors inhibits 

metastatic potential at multiple steps of metastatic advancement including a reduction in tumor 

angiogenesis, circulating tumor cells, as well as the ability of tumor cells in the bloodstream to 

colonize the lungs.  In addition, using a tumor transplant approach we found that the metastatic 

defects associated with E2F1 loss occurred in mechanisms intrinsic to the tumor cells. 

Collectively, these data illustrate E2F1 as a key regulator of the gene expression changes 

required to progress tumor cells to distant organ metastasis. In more recent work, we identify the 

genes by which E2F1 coordinates tumor cell metastasis by using Affymetrix gene expression 

arrays to compare metastatic E2F WT MMTV-PyMT tumors with non-metastatic E2F1 KO 

tumors. These results revealed differential expression of known regulators of tumor metastasis. 

In addition, several potential E2F target genes that have not been tested for driving metastasis to 

the lungs were identified. Importantly, these genes had multiple E2F binding sites within their 

promoter region and high expression of these genes correspond to early human breast cancer 

metastasis events in a large clinically annotated dataset. As a result, we hypothesized these genes 

are also key effectors of E2F1’s regulation of metastasis.  To test this hypothesis, we utilized 

CRISPR to knockout expression of these genes in a MMTV-PyMT cell line. Using cell 

migration assays, we show that elimination of these E2F1 target genes stunt cell migration. More 
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importantly, we tested tumor cells in vivo via tail vein injection and find that knockout of these 

genes block tumor cell colonization of both the lungs and liver of recipient mice. The 

significance of this work is twofold: we reveal the genomic features by which E2F1 regulates 

metastasis and identify new functions for several E2F1 target genes by highlighting their 

contribution to the metastatic ability of tumor cells. 

INTRODUCTION 

 Stage 4 breast cancer is exemplified by distant organ metastasis and corresponds to poor 

overall prognosis, with only 22% of patients surviving for at least five years [67]. Comparatively 

patients with less advanced stages carry a considerably more favorable prognosis. This illustrates 

that metastasis to distant organs as a major cause of breast cancer fatality. As a result, there is 

great deal of interest in understanding the process of metastasis so that strategies to limit 

metastatic potential and treat tumors that have formed in distant organs can be realized.  

 In previous work, we uncovered a new function for the E2F transcription factors [204] .  

Using genomic signature methods, we predicted a role for the activator E2F transcription factors 

in the MMTV-PyMT mouse model of metastatic breast cancer.  Genetically testing the 

hypothesis that the E2Fs function to regulate metastasis, we interbred MMTV-PyMT mice with 

the knockouts of E2F1, E2F2 and E2F3 and noted that the ablation of individual E2Fs were 

associated with alteration of tumor latency, histology, and vasculature.  More importantly, we 

found that tumors from the E2F1 and E2F2 knockout backgrounds had severely diminished 

metastatic capacity. For example, we detected that tumor bearing E2F1 and E2F knockout mice 

had a significant reduction metastasis to the lungs and this was accompanied by a significant 

decrease in circulating tumor cells. Bypassing the invasion defects, we tested the ability E2F 

knockout tumor cells to colonize the lungs by injecting tumor cells into the bloodstream. This 
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experiment showed that E2F1 and E2F2 were critical for tumor cells to colonize the lungs. This 

also suggested that the E2F transcription factors regulation of metastasis was associated with 

mechanisms intrinsic to the tumor cells and not the tumor microenvironment. We confirmed this 

notion using a tumor transplant strategy; finding that E2F1 and E2F2 knockout tumors failed to 

metastasize in wild type recipient mice. This led to the hypothesis that the E2F transcription 

factors regulate gene expression programs within tumor cells that are critical throughout 

metastatic progression. Using qRT-PCR to investigate E2F target genes that have been 

demonstrated to mediate metastasis, we found that the E2Fs control expression of genes critical 

to angiogenesis, remodeling of the extracellular matrix, tumor cell survival and tumor cell 

interactions with vascular endothelial cells to facilitate metastasis to the lungs. 

 While have uncovered some of the molecular aspects associated with the E2Fs regulation 

of metastasis, our previous study did not incorporate analysis of global analysis of transcriptional 

alterations associated with E2F loss. Given that these transcription factors have been 

demonstrated to bind thousands of individual target genes [205], we sought to characterize the 

gene expression profiles of MMTV-PyMT tumors using microarray technology. We 

hypothesized that this approach would allow us to identify the genes that are controlled by E2F1 

that contribute to metastatic ability. In testing this hypothesis, we had two primary goals. One 

was to identify genes that are differentially regulated with E2F loss that correspond to human 

breast cancer metastasis events and have been demonstrated to regulate metastasis. The second 

was to test altered target genes that have not yet been demonstrated to regulate breast cancer 

metastasis. In support of our hypothesis, we reveal the E2F1 target genes that are associated with 

E2F1’s metastasic function and identify new functions for several E2F1 target genes by showing 

their contribution to the metastatic ability of tumor cells. This chapter reflects work currently in 
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progress and data obtained at the time of writing the thesis. Additional controls and experiments 

will be done to ensure the accuracy of the conclusions presented here. For example, as a control 

for non-specific effects associated with Crispr, lentiviral expression contructs have been 

assembled to reintroduce Fgf 13 and Adm  into their respective knockout cells. Characterization 

of these cells for rescue phenotypes will confirm if this genes truly block metastasis. 

RESULTS 

GENOMIC COMPARISON OF E2F 
WT/WT

 TUMORS AND E2F 
-/-

 TUMORS 

 To determine the global gene expression response to E2F loss, we analyzed MMTV-

PyMT from E2F 
WT/WT

, E2F1 
-/-

, E2F2 
-/-

, and E2F3 
+/-

 backgrounds on Affymetrix microarrays. 

Using unsupervised hierarchical clustering, we investigated the gene expression relationships 

amongst the various tumors (FIGURE 4.1A). Interestingly, tumors with squamous histology 

showed a distinct gene expression profile, separating into their own cluster. Co-clustering 

amongst the E2F2 
-/-

 , E2F3 
+/-

, and a subset of the E2F 
WT/WT

 tumors was observed. However, 

tumors with a E2F1 
-/-

 genotype tended to cluster with one another separating from a majority of 

the E2F 
WT/WT

 tumors; indicating prominent gene expression differences between E2F1 
-/-

 and 

E2F 
WT/WT

 tumors.  

 To test if these differences corresponded to activation major cell signaling pathways, we 

utilized gene signatures to predict pathway activation across the mouse mammary tumors. 

Unsupervised hierarchical clustering again separated out squamous tumors and led to co-

clustering amongst E2F2 
-/-

 , E2F3 
+/-

, and a subset of the E2F 
WT/WT

 tumors (FIGURE 4.1B). In 

this analysis more E2F 
WT/WT

 tumors clustered with E2F1 
-/-

 tumors. Focusing in on the cluster 

where the majority of E2F1 
-/- 

tumors were found indicates that E2F1 
-/- 

tend to have high activity 

of E2F4, E2F5, and p53 pathways and low activity of Src, p110, EGFR, Ras, RhoA, beta-
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catenin, and Tgfb signaling pathways.  

 To test for the genes that were significantly differentially regulated between E2F1 
-/-

 and 

E2F 
WT/WT

 tumors we used significance analysis of microarrays or SAM [28]. Using SAM, we 

identified the statistically significant gene expression changes between E2F1 
-/-

 and E2F 
WT/WT

 

tumors (FIGURE 4.1C). Since we hypothesized that E2F1’s role in regulating metastasis was by 

transcriptional activation of target genes, we were particularly interested in the 226 genes that 

were significantly downregulated in the E2F1 
-/-

 tumors . To begin characterizing these genes for 

metastatic potential, we used Kaplan Meier analysis of clinically and intrinsically annotated  

human breast cancer gene expression data [86]. To identify E2F1 target genes, we used 

ChIPBase [206]. This database contains results from a variety of ChIP-Seq experiments 

including those for E2F1 [205]. Out of the 226 differentially regulated genes, 98 were E2F1 

targets.  

 To characterize E2F1’s role in regulating metastasis by transcriptional activation of target 

genes, we focused on genes where high expression in tumors correlated with a decreased time to 

distant metastasis across all breast cancers as well as within with individual intrinsic subtypes of 

tumors. We found that 94/226 were associated with earlier metastasis in at least one subtype of 

breast cancer, although many genes were not uniform when comparing predictions from one 

subtype of breast cancer to the next. Eliminating any conflicting predictions left 55 genes with 

pro-metastatic predictions (TABLE 4.1); 34 of which had demonstrated E2F1 binding E2F1 

[205]. By using a fisher’s exact test, we saw that the distribution of direct E2F1 targets was 

significantly higher in the genes concordant human breast cancer predictions (p=0.001) than 

genes either discordant or not predictive of human breast cancer metastasis.  This illustrates that 

the E2F1 target genes altered in these tumors are associated with human breast cancer metastatic 
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potential. 

 Investigating these 55 genes for possible function, we tested for overlap with gene sets on 

the molecular signatures database from the broad institute. The top scoring overlap corresponded 

to gene sets for hypoxia with 16 direct target genes and 22 total genes being upregulated in 

response to hypoxia (p- value =6.01 e 
-25

, FDR q-value = 2.84 e 
-21

, marked in TABLE 4.1). In 

addition, we found a significant association with glycolysis (p-value=9.03 e 
-12

, FDR q-value = 

8.54 e 
-15

). Importantly, all eight of the glycolysis genes were also associated with hypoxia 

response. We also tested whether hypoxia response was significantly associated the 55 genes 

with pro-metastatic associations as opposed to the genes that have either no or discordant 

metastatic predictions. This revealed hypoxia response was significantly (p<0.0001) associated 

with the gene expression changes in E2F1 
-/-

 tumors that are concordantly predictive of human 

breast cancer metastasis.    This data illustrates that E2F1 
-/- 

tumors have a defect in their ability 

to activate genes of the hypoxia response gene expression programs.    

 We also detected significant overlap with other gene sets as well. Importantly, amongst 

the top scoring gene sets were those for cell signaling pathways that we had predicted low 

activity for in the E2F1 
-/-

 tumors. For example, 13 genes (9 direct targets) corresponded to gene 

that upregulated in response to Tgfb1 stimulation (TABLE 4.1, p-value = 6.18 e 
-16

, FDR q-

value= 7.3 e 
-13

 ). We also identified 13 genes that correspond to the RhoA signaling 

pathway(TABLE 4.1, p-value =  1.23 e 
-12

, FDR q-value =
 
5.83 e 

-10
).  In agreement with lower 

EGFR activity, E2F1 
-/-

 tumors have reduced expression of 13 genes normally upregulated by 

Egfr signaling. Importantly, among these genes were Egfr ligands amphiregulin (AREG) and 

heparin-binding EGF-like growth factor (HBEGF) [207]. To further investigate how our fold-

change data corresponds with the pathways that showed low activity in E2F1 
-/-

 tumors , we 
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mapped the altered genes and pathways to an interaction network  including Rb1 and E2F1 using 

string-db[208]. Out of the 55 genes that regulate metastasis, 34 genes mapped to the interaction 

network with Rb1, E2F1, Src, p110, EGFR, Ras, RhoA, and Tgfb pathways (FIGURE 4.1D. 

Meanwhile, many of the genes associated with hypoxia and glycolysis appeared in a node mostly 

associated with an Rb1, Tgfb, Egfr, p110, beta-catenin and Vegfa node. Importantly, EGFR, 

CTNNB1, TGFB1 also appear in hypoxia gene sets on MSigDB. Collectively, this data shows 

which pathways the pro-metastatic genes altered by E2F1 loss are coordinated with.   

 To further detail the metastatic defects in E2F1 
-/-

 tumors, we cross referenced the 55 

genes associated with human breast cancer metastasis with the literature to identify which of the 

molecular changes have already been demonstrated to regulate breast cancer metastasis in vivo.  

As depicted in TABLE 4.2, Vegfa [209], Hbegf [210], Hspb1[211], Flt1[212], L1cam [213], and 

Plaur [214] have all previously been shown to regulate breast cancer metastasis in vivo.  As 

summarized in TABLE 4.2, we see that a number of the cell signaling pathways with low 

activity in E2F1 
-/- 

tumors, the Tgfb [215], Src [216], beta-catenin [142], RhoA [217] and Egfr 

[218] pathways have been shown to function in breast cancer metastasis in vivo.  Additionally, 

there were genes that had been shown to have pro-metastatic features in vitro such as Areg  

[219],  Tead1 [220],  Coro1C [221],  Lama5 [222], Tgm2 [223], and Fgf 7 [224] Taken together, 

this shows that E2F1
-/-

 tumors have low expression of genes and low activation of pathways 

demonstrated to promote breast cancer metastasis.  

TESTING ADDITIONAL GENES FOR METASTATIC FUNCTION 

 To identify candidate genes for further testing and possibly reveal new metastatic 

regulators, we focused in on genes that had not been demonstrated to regulate breast cancer 

metastasis in vivo, that were E2F target genes, and properly correlated with a decreased time to 
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distant metastasis across several human breast cancer human breast cancer subtypes. With this 

approach, we noted that high expression of adrenomedullin (Adm) was associated with earlier 

onset of distant metastasis across all (FIGURE 4.1E, HR=1.88 (1.53-2.3), Log rank P= 5.6 e -

10), basal, luminal A and Luminal B subtypes of breast cancer. Importantly, this E2F1 target 

gene was part of the hypoxia response network and expressed  2.2 times lower in E2F1 -/- 

tumors ( q-value =.007). In addition to being shown to be bound E2F1 in a chip-seq experiment, 

analysis of the 500 bp sequence upstream of the transcriptional start site (TSS), we found six 

E2F binding motifs in human and one in mouse for this gene. A second E2F1 target gene with a 

compelling association with human breast cancer metastasis was fibroblast growth factor 13 (Fgf 

13). This gene was associated with earlier onset of distant metastasis across all (FIGURE 4.1F, 

HR=1.59 (1.28-1.97), Log rank P= 2 e -05), basal, Luminal B, and Her-2 positive subtypes of 

breast cancer. Also demonstrated to be bound by E2F1 in a chip-seq experiment, analysis of the 

500 bp sequence upstream of the transcriptional start site (TSS), we found seven E2F binding 

motifs in human and ten in the mouse sequence for this gene. 

 To test these genes for metastatic behavior, we utilized a PyMT-derived cell lines (PyMT 

419 cells) [225] and a CRISPR (clustered regularly interspaced short palindromic repeats) 

approach to create Adm and Fgf 13 knockout cells. FIGURE 4.2A shows an example of 

sequence trace for Adm 
WT/WT

 cells and for Adm 
-/-

 cells . In total we generated four Adm 
-/-

 

clones and the sequence alignment is shown in FIGURE 4.2B. FIGURE 4.2C shows an example 

of sequence trace for FGF13 
WT/WT

 cells and for FGF13 
-/-

 cells and FIGURE 4.2D shows the 

sequence alignment for the two FGF13 
-/-

 clones that were identified.  

 To characterize the impact of Adm and Fgf13 loss, we began with in vitro assays. We 

started by seeding 100,000 cells and performed cell counts over 3 days to study the doubling 
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times of the Adm 
-/-

 clones (FIGURE 4.3A). As a trend, cell counts were variable amongst the 

clones, with two clones closely resembling the control and two having fewer cells at day 4. 

Using a similar approach, we studied the Fgf 13 
-/-

 clones and found that Fgf13 loss led to 

reduced cell counts over the 3 day period (FIGURE 4.3B).  

 An important feature to metastasis is cell migration, as such we measured the migratory 

ability of Adm 
-/-

 and Fgf 13 
-/- 

clones. Monitoring the control cells, the wound was fully closed 

by 18 hours following the scratch.  In Adm 
-/-

 clones, cell migration was variable amongst the 

clones, two clones were able to close or mostly close the wounds by 18 hours and two clones 

showed a prominent decrease in wound closure (FIGURE 4.3C,D).  For Fgf 13-/- clones, we 

observed a significant defect in cell migration, with both clones failing close the wound by 18 

hours (FIGURE 4.3 E,F). This data suggests that Adm loss does not impact migration 

mechanisms. Meanwhile, this data supports the possibility that Fgf13 loss may impact 

mechanisms associated with cell migration.  

 To test the clones for metastatic capability in vivo, we utilized a tail vein injection 

strategy. For this experiment, we injected 50,000 cells monitored metastasis after 21 days 

following injection. In mice receiving control cells, metastasis was observed predominately at 

the lungs (FIGURE 4.4A) and liver (FIGURE 4.4B). In addition, metastatic tumors were found 

sporadically throughout the mouse at other sites (data not shown).  Results for the Adm KO 

clones revealed that loss of Adm severely limited the ability of the tumor cells to form 

metastases at the lung as depicted by representative photos in FIGURE 4.4A, with only small 

micro metastasis (FIGURE 4.4A blue arrowheads, inset) observed in two mice from two separate 

clones. No metastases were observed in the liver (FIGURE 4.4B) or other sites (not shown) for 

the mice receiving Adm KO cells. Similarly for mice receiving Fgf 13 KO clones, loss of Fgf 13 
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dramatically limited the ability of the tumor cells to form metastases at the lung as illustrated by 

representative sections in FIGURE 4.4A, again with only small micro metastasis (FIGURE 4.4A 

blue arrowheads, inset) observed in three mice receiving the 3H1 clone. No metastases were 

observed in the liver as shown by representative examples in FIGURE 4.4B or other sites (not 

shown) for the mice receiving Fgf 13 KO cells. Quantifying metastatic outcomes for Adm KO 

and Fgf 13 KO clones showed that significantly fewer mice presented metastasis at the lungs 

(FIGURE 4.4C) or liver (FIGURE 4.4D). Similarly, looking at the number of metastases, mice 

receiving Adm KO and Fgf 13 KO clones presented a dramatic reduction in the number of 

lesions present in the lungs (FIGURE 4.4E) and liver (FIGURE 4.4F). Together, these results 

show that Adm and Fgf 13 are key participants in E2F1’s regulation of metastasis and reveal new 

roles for these genes.   

INVESTIGATING ADM FUNCTION 

 To begin investigating which parts of the metastatic circuitry these genes are part of, we 

used a weighted correlation network analysis also known as WGCNA [226] for Adm and Fgf13 

in MMTV-PyMT E2F 
WT/WT

 tumors.  The rationale for this approach is that genes with 

expression patterns that go up or down together across a large collection of samples are likely 

coordinated in expression due to participating in similar molecular response networks to control 

key cellular functions. As a result, WGCNA will allow us to identify the molecular response 

networks Adm and Fgf 13 are part of and relate these networks to the cellular functions they are 

associated with. WGCNA for Adm identified 114 probes with gene significance score higher 

than 0 .6 (p-value < 0.008). After removing duplicate gene results, we had 81 genes that are part 

of the Adm covariance network.  
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 Testing for significant association with functional gene sets on the broad institute’s 

MSigDB, we detected significant overlap with a number of gene sets for hypoxia, including the 

hallmark hypoxia gene set (p-value =2.34 e 
-50

, FDR q-value 1.12 e 
-46

). In addition, we detected 

a significant association with glycolysis (p-value = 4.04 e 
-29

, FDR q-value 1.17 e 
-48

). 

Association with functional gene sets is summarized in FIGURE 4.5A and illustrates the Adm 

network is strongly associated with hypoxia and hypoxia related glycolysis gene expression 

programs.  

 To identify if the Adm network was associated with any of the pathways altered in E2F1
-

/-
 tumors, we first used string-db to create an interaction network for the altered pathways and the 

Adm network (FIGURE 4.5B). Importantly, 50 of the Adm network genes mapped to these 

pathways. Most of the hypoxia response genes sat in a node shared by PI3K, Egfr, Src, Ras, 

Tgfb, and beta-catenin. While the glycolysis genes were in this same network, they were more 

removed from these nodes. To further investigate the relationship between the Adm network and 

these pathways, we tested whether any of these genes were upregulated by these pathways by 

combining gene sets for each pathway using data from MSigDB. In doing this we found that the 

Adm network was not closely related to gene expression responses from the Src (only one gene 

overlap), beta-catenin (only one gene overlap), or PI3K pathways (only two gene overlap). 

Instead, the Adm network maybe more tightly associated with Egfr (16 gene overlap),Ras (5 

gene overlap), RhoA (16 gene overlap), and Tgfb (12 gene overlap)signaling pathways. As 

illustrated by FIGURE 4.5C, there was a large degree overlap between which of these pathways 

the genes corresponded to.   In addition, there was a large degree of overlap between ADM 

network genes that corresponded to RhoA, Egfr, and TGFB pathways and the ADM network 

genes that corresponded to hypoxia and glycolysis (FIGURE 4.5 D).  Testing these genes as a 
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signature for association with human breast cancer metastasis events, we found that high 

expression of these genes were significantly associated with a shorter time to distant metastasis 

across all breast cancers (FIGURE 4.5E, HR=1.49 (1.22-1.83) Log rank P= 9.4 e -05) as well as 

in basal, luminal A, and luminal B breast cancer. Altogether this data suggests that Adm is part 

of the pro-metastatic hypoxia response and is possibly associated with Tgfb, RhoA, EGFR, and 

Ras activation upstream of E2F1.   

INVESTIGATING FGF13 FUNCTION 

 As a result of investigating Fgf13’s network with WGCNA, we identified 38 probes 

corresponding to 35 genes that tightly correlate with Fgf 13 expression (gene significance 

threshold =0 .6, p-value <0.0005). Testing for significant association with functional gene sets on 

the broad institute’s MSigDB, we didn’t detect significant overlap with hypoxia pathways for the 

Fgf 13 network. Further, manually testing for overlap combined gene sets for hypoxia, 

angiogenesis, and glycolysis showed only two genes overlapping with these gene sets, indicating 

Fgf13 operates in a separate mechanism. Instead and in agreement with our scratch assay results, 

testing for overlap on MSigDB revealed a significant association with the Rac1 cell motility 

pathway (p-value = 5.38 e 
-7

, FDR q-value = 1.27 e 
-3

). Key to this association, was strong 

covariance with the Rac1 g-protein, the GTPase activating protein chimerin 1 (Chn1), and Wasf1 

(which acts downstream of Rac1 to regulate the cytoskeleton). In support of this association, 

FGF13 was part of the Kegg pathway for regulation of the actin cytoskeleton. Testing these 

alterations for the presence in an interaction network with Rb-E2F1 and the pathways altered in 

E2F1 
-/-

 tumors, illustrated a relationship between these pathways (FIGURE 4.6A). Importantly, 

this also included the expected interaction with RhoA and Rac1. Importantly, testing these genes 

as a signature for association with human breast cancer metastasis events, we found that high 
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expression of these genes were significantly associated with a shorter time to distant metastasis 

across all breast cancers (FIGURE 4.6B) as well as in basal, luminal A, luminal B, and Her-2+ 

breast cancer.   Together, this data suggests that Fgf 13 functions in metastasis mechanisms 

associated with cell movement and cytoskeleton control. 

DISCUSSION 

 By using a gene expression microarrays, we expanded on previous work where we 

identified that the E2Fs regulate breast cancer metastasis [204]. Here we used bioinformatic 

analysis to compare global gene expression differences between E2F 
WT/WT

 MMTV-PyMT 

tumors and E2F1 
-/-

 MMTV PyMT tumors. Leveraging clinical annotations and gene expression 

data from tumors from breast cancer patients, we identify which of the genes downregulated with 

loss of E2F1 are properly correlated with a shorter time until distant metastasis. By focusing in 

on genes with no opposing associations across intrinsic subtype, we identified 55 genes 

correlating with a faster progression to metastatic disease. Importantly, we also identified that 

loss of E2F1 led to decreased activity in several key signaling pathways previously demonstrated 

to regulate metastasis. Perhaps most important of our findings, was that the genes correlating 

with a faster progression to metastatic disease were significantly associated with the gene 

expression response to hypoxia, proving a context for why E2F1 -/- tumors fail to metastasize. 

Also of note, we demonstrate two E2F1 target genes that were downregulated in E2F1 
-/-

 tumors 

as new molecular participants in breast cancer metastasis.   

 In comparing global gene expression differences between E2F 
WT/WT

 MMTV-PyMT 

tumors and E2F1 
-/-

 MMTV PyMT tumors, we identified which genes were downregulated in 

response to E2F1 loss and separated genes into categories: those that correspond to human breast 

cancer metastasis events with no opposing predictions and those that do not. Here we found that 
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a majority of the genes that were direct targets were distributed in the category of genes that 

correctly predict human breast cancer metastasis. This illustrates the gene expression changes 

associated with metastasis are due to E2F1’s direct regulation of target genes as opposed to 

indirect effects.  

 Focusing in on the altered pro-metastatic genes in the literature, we identified a number 

of genes that been previously tested in vitro and in vivo that can explain the metastatic defects we 

observed in E2F1 
-/-

 tumors. The in vitro studies showed that Areg [219] , Tead1 [220] , Coro1C 

[221], Lama5 [222], Tgm2 [223] and Fgf 7 [224] are involved in cell migration and invasion 

features of tumor cells. The reduced expression of these genes involved in invasion phenotypes 

may provide a mechanistic relationship to our previous finding that E2F1 
-/-

 tumors had possible 

invasion/intravasation problems indicated by a reduction in circulating tumor cells [204].     

 The gene expression results also further explain the stunted and reduced tumor 

vasculature we observed in E2F1 
-/-

 tumors. Indeed, in our previous report we observed a 5-fold 

reduction in Vegfa levels using qRT-PCR which provided a preliminary look into the molecular 

basis for the angiogenesis defects. Indeed, microarray analysis also showed reduced Vegfa 

expression in E2F1 -/- tumors. However, we also now see these defects were compounded by 

reduced expression of other E2F1 target genes associated with angiogenesis. This includes 

adrenomedullin and  Flt1. Flt1 is a vascular endothelial cell growth factor receptor that binds 

Vegfa and placental growth factor and mediates endothelial cell migration [227]. While our 

report focused on adrenomedullin’s regulation of breast cancer metastasis to the lungs and liver, 

previous studies have described adrenomedullin’s angiogenic roles  [228-230].  As a result our 

gene expression analysis identified additional genes associated with the angiogenesis defects we 

observed in E2F1 -/- tumors. Furthermore, the pro-metastatic gene expression changes depict a 
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much larger picture illustrating a defect in the hypoxia response pathway with E2F1 loss.  

 By testing the 55 genes that correlate with human breast cancer metastasis for function, 

we detected a significant association with hypoxia response gene sets. Importantly, the majority 

of the genes associated with hypoxia were also direct E2F1 target genes. Hypoxia has been 

described as a master regulator of metastasis due to the result of gene expression changes 

brought about by hypoxia response[231]. These gene expression changes enable tumor cells to 

progress through a variety of rate limiting steps in metastasis.  This includes promoting the tumor 

angiogenesis, epithelial to mesenchymal transition, tumor cell invasion, remodeling of the extra 

cellular matrix, and increasing cell migration [231-234].  In addition, hypoxia also activates 

genes associated with facilitating tumor cell intravasation, survival in the blood stream, 

extravasation and colonization at distant organs [231]. Consistent with processes associated with 

hypoxia response, we observed angiogenesis defects, a decrease in circulating tumor cells 

suggesting intravasation defects, and inability of E2F1 -/- tumor cells to colonize the lungs even 

when injected into the bloodstream. Altogether, this lends to the possibility that these metastatic 

defects could be attributed to the lack of expression of key hypoxia response genes that facilitate 

metastatic progression.  

  In support of this, all but one (hspb1) of the genes that had all already been shown to 

regulate metastasis in vivo corresponded to MSigDB gene sets for the hypoxia gene expression 

response. Looking at these genes in more detail paints a picture as to how the inability to 

properly respond to hypoxia has led to an inability of the E2F1 -/- tumors to metastasize. E2F1 
-/-

 

tumors showed a significant reduction in Vegfa. While this clearly played a role in tumor 

angiogenesis, Vegfa has other pro-metastatic functions such as increasing vascular permeability 

to enable intravasation and extravasation that also factor in to metastatic ability[235].  Another 
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hypoxia response gene altered was Flt1. Importantly, treating mice  with a Flt-1 inhibiting 

peptide decreased metastasis of MDA-MB-231 cells in a xenograft study [212]. In addition to 

blocking metastasis, inhibition of Flt 1 also resulted in decreased cell migration and invasion 

through matrigel. Importantly, hypoxia can promote invasion through the extracellular matrix by 

upregulating proteases [231]. E2F1-/- had reduced expression of the plasminogen activator, 

urokinase receptor gene which is also known as UPAR or Plaur. Plaur converts the zymogen 

plasminogen to plasmin [236]. Plasmin is a wide-reaching protease and promotes remodeling of 

the extracellular matrix. Importantly, a study of overexpressing this Plaur in breast cancer cells 

from rat displayed increased metastasis to the lungs following orthotopic injection and increased 

invasion through matrigel [214]. .Another hypoxic response gene with reduced expression was 

L1Cam. Importantly this gene was shown to have increased expression during hypoxia and 

function in metastasis to the lungs using a tail vein injection [213]. Further, this work showed 

that L1Cam mediates metastasis to the lungs in part by facilitating adherence to endothelial cells, 

possibly providing further context for why E2F1 -/- cells fail to colonize the lungs when injected 

into bloodstream. Taken together, these studies highlight how the hypoxia responsive E2F1 

target genes contribute to metastasis and may explain the invasion and colonization deficits of 

E2F1
-/-

 tumors.    

 Importantly, we did not detect any fold change in for the hypoxia inducible factors with 

E2f1 loss. And yet, we detect low expression of hypoxia related genes with loss of E2F1, while 

this can be explained by the fact that they are E2F1 target genes. However, what is still unclear is 

what upstream pathways couple E2F1 to the hypoxia response. Importantly, we observed 

reduced activity of cell signaling pathways associated with breast cancer metastasis as 

summarized in TABLE 2.2. By mapping the metastatic gene expression changes to these 
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pathways using gene sets from MSigDB and interaction networks, we were able to begin piecing 

together the gene expression changes associated with hypoxia and metastasis with what 

pathways they are possibly associated with. While few of the metastasis associated genes were 

mapped to the Ras, Src, PI3K, and beta-catenin pathways.  We did find a strong overlap between 

the hypoxia response/metastasis genes with gene sets for genes upregulated by the Tgfb, RhoA, 

and Egfr pathways. While we did not detect alteration of known activators for the Tgfb and 

RhoA pathways, it may be possible that E2F1 acts downstream of these pathways carrying out 

the transcriptional consequences of pathway activation during hypoxia. This possibility is 

supported by the fact that both pathways are activated by hypoxia[231, 237, 238] and a number 

of the hypoxia related genes that mapped to these pathways were also E2F1 target genes.    

 Another potential model for directing E2F1 to hypoxia response involves the Egfr 

pathway, a pathway critical to invasion and metastasis[218]. As shown in FIGURE 1B, predicted 

that E2F1 
-/-

 tumor have low Egfr activity. Illustrating Egfr signaling as a key portion of hypoxia 

response, it has been shown that Egfr is upregulated in response to hypoxia [239] Related to the 

low Egfr activity in E2F1 
-/- 

tumors, was the reduced expression of Hbegf and Areg, both Egfr 

ligands [207]. Hbegf  mapped to hypoxia response using MSigDB, and while Areg did not, 

literature supports this gene as part of the hypoxia gene expression response [240]. Further, 

Hbegf was an E2F1 target gene determined by a chip-seq experiment [205] and Transfac analysis 

of Areg shows E2F1 binding sites in both mouse and human. This could suggest that E2F1 loss 

contributes to low Egfr activity from an inability to initiate high transcription of these Egfr 

ligands during hypoxia. In addition, the number of genes that mapped to gene sets (shown in 

TABLE 4.1) for by induced by Egfr signaling like Adm and Plaur could also therefore be 

impacted by this; with E2F1 target genes being impacted in a feedback loop. Furthermore, this 
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mechanism may be acting upstream of RhoA, as Egfr has been shown to regulate RhoA [241]. 

Thus providing an explanation for the large degree of overlap for genes mapping to Egfr and Rho 

A pathways as shown in TABLE 4.1.  Taken together, these results suggest one possible 

molecular mechanism for reduced metastatic capacity with loss of E2F1.  

 In addition to this genomic characterization, we tested two E2F1 target genes that at the 

time of the study had not yet been demonstrated to function in metastasis. One gene we tested 

was Adm, a secreted protein that was part of the hypoxic response with published roles in tumor 

angiogenesis [228-230, 242]. Importantly, we found that that knockout of Adm significantly 

reduced metastasis to the lungs and liver in a tail vein injection; illustrating its role in tumor 

metastasis. In support of this, a recent publication has detailed that Adm also regulates breast 

cancer metastasis to the bone [243]  As a result, our study and the aforementioned one 

complement each other to depict Adm as a key factor for enabling metastasis to multiple 

metastatic sites. In addition, we show that Adm is relevant to multiple subtypes of human breast 

cancer, with an association to basal, luminal A, and luminal B breast cancer.  

 By investigating Adm using WGCNA, we observed a number of genes related to hypoxia 

gene expression response with strong overlaps with the Egfr, RhoA, and Tgfb pathways. 

However, adrenomedullin on its own mapped to the Egfr and RhoA pathways, possibly 

implicating the potential Egfr model described above. While it is clear that Adm is part of the 

hypoxia response, what is not completely clear is how Adm functions in metastasis to the lungs 

and liver. One possibility is that, similar to hypoxia response genes, that it acts on these distant 

organs to facilitate changes to promote a suitable microenvironment. Never the less, these results 

add another dimension to E2F1’s regulation of metastasis as part of the hypoxia response by 

demonstrating that Adm is required colonization of the lung and liver.  
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 We also demonstrated new metastatic roles for Fgf 13. Importantly, knockout of Fgf13 

reduced cell migration and metastasis to the lungs and most prominently the liver.  FGF13 is a 

nonsecretory protein of the FGF family [244]. Predicting Fgf13 molecular function using 

WGCNA depicted its participation in the chimerin, Wasf1, and Rac1 pathway. Importantly, this 

pathway is described for its role in cell motility  and shows an interaction with another cell 

migration participant RhoA [245]. In agreement with Fgf13 being a key participant in the cell 

migration process, both Fgf13 knockout clones exhibited impaired cell migration in a scratch 

assay. Furthermore, deletion of FGF13 in mice resulted in neuronal migration defects,  through 

stabilization of microtubules [244]. In agreement with this function, we found Mtap1B 

(microtubule-associated protein 1B) and Tubb6 (tubulin, beta 6) as part of the Fgf 13 network. 

Importantly, Map1B has also been shown to increase microtubule stability [246]. In light of the 

fact that microtubule stabilization activates Rac1 [247], one possible mechanism of how Fgf13 

can control cell migration becomes apparent: Fgf13’s stabilization of microtubules leads to 

activation of Rac1, Rac1 activation leads to the formation of lamellipodia at the leading edge of 

migrating cells to drive cell movement [248]. Importantly, using the that genes tightly correlate 

with Fgf13 expression as a signature depicted the Fgf13 network a general pro-metastasis 

mechanism as significant metastatic associations were detected in each intrinsic subtype; which 

is fitting for a network that regulates control of cell motility. Together, our data illustrates new 

functions Fgf13 in breast cancer metastasis to the lungs and liver, possibly through regulation of 

cell migration mechanisms.  

 As a whole this study shows that the metastatic defects associated with E2F1 loss are 

largely associated with an inability to properly initiate a gene expression response to hypoxia. 

Importantly, many of the genes downregulated in E2F1 
-/-

 tumors associated with hypoxia 
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response have been shown as regulators breast cancer metastasis. In addition, we illustrate new 

roles for the E2F1 target gene Adm in regulating metastasis to the lungs and liver; furthering our 

understanding of the hypoxia response to breast cancer metastasis. In addition, we identified that 

the E2F1 target gene Fgf 13 controls metastasis to the lungs and liver, potentially through a cell 

migration mechanism; possibly providing a means for E2F1 to regulate cell migration. 

Collectively, this study furthers our initial characterization of E2F1s regulation of metastasis by 

identifying the metastasis associated gene expression response to E2F1 loss.   

METHODS 

RNA AND MICROARRAY 

 Preparation of RNA samples from flash frozen tumors was done using the Qiagen 

RNeasy kit after roto-stator homogenization. RNA from 17 Myc induced tumors was submitted 

to the Michigan State University Genomics Core facility for gene expression analysis using 

Mouse 430A 2.0 Affymetrix arrays. 

GENE EXPRESSION ANALYSIS 

 Raw intensity .CEL files were processed and RMA normalized using Affymetrix 

Expression Console. Unsupervised hierarchical clustering was done using Cluster 3.0 and 

exported using Java Tree View. Pathway activation was predicted according to previous studies 

[37, 47, 249]. Significance analysis of microarrays [28] was used to compare E2F 
WT/WT

 and 

E2F1 
-/-

 tumors in a fold change analysis. Direct E2F1 target genes were identified using ChIP-

base [206] and data from a previous ChIP-seq experiment [205]. Kaplan-Meier plots were 

generated using Correlation with human breast cancer. Significant overlaps with previously 

established gene sets were detected using the molecular signatures database (MSigDB)  

http://www.broadinstitute.org/gsea/msigdb/annotate.jsp. Gene annotations for Hypoxia response, 
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angiogenesis, and cytoskeleton as well as being responsive to Egfr, Tgfb, Src, Ras, RhoA, and 

PI3K pathways were generated by combing gene sets from MSigDB for each term, using only 

upregulated genes. For example, by combining all of the genes from gene sets that identify the 

genes that are upregulated during hypoxia. Interaction networks were assembled using 

www.string-db.org [208]. Weighted correlation network analysis was implemented according to 

published protocols [226] and using a gene significance score threshold of 0.6 to select genes for 

further analysis.  

CELL CULTURE 

 A MMTV-PyMT derived cell line, PyMT 419 cells, were used for in vitro and in vivo 

experiments and have been previously characterized  [225].  All cells were cultured in 

Dulbecco's Modified Eagle's Medium, 3.7 g/L of NaHCO3, 3.5 g/L d-glucose, 5ug/mL insulin, 

1ug/mL hydrocortisone, 5ng/mL Egf, 35ug/mL BPE, 50ug/mL gentamicin, 1X 

Antibiotic/Antimycotic, and 10% fetal bovine serum. Media was set to a pH of 7.4. 

CRISPR   

 Sequence for Fgf13 and Adm was obtained from the UCSC genome browser [250]. 

Guide sequences for each gene were done by submitting exon (using only those that were 

common across isoforms for each gene) sequence using the CRISPR design tool at: 

http://crispr.mit.edu/. Oligos for guide sequence assembly were designed by adding a ‘G’ 

followed by ‘CACC’ at the 5’ end of the guide sequence. For the complementary DNA to the 

guide, add ‘CAAA’ to the 5’ end.  Oligonucleotide sequences are as follows:  

ADM 5’: CACCGGATAAGTGGGCGCTAAGTCGT 

ADM3’: AAACACGACTTAGCGCCCACTTATCC 

Fgf 13 5’: CACCGTCAGCAGCAATCCGGCCGA 
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Fgf 13 3’: AAACTCGGCCGGATTGCTGCTGACC 

Oligonucleotides for guide sequence assembly were ordered from integrated DNA technologies 

https://www.idtdna.com/site. Oligos were diluted to a concentration of 100uM. To anneal the 

oligonucleotides 5 uL of the forward and 5uL of the reverse oligo are incubated in 10uL of 2X 

annealing buffer (10 mM Tris, pH 7.5–8.0, 50 mM NaCl, 1 mM EDTA) at 95 degrees Celsius for 

4 minutes.  The annealed oligonucleotides were inserted into the PX458 vector from Addgene 

http://www.addgene.org/48138/.This vector is ampicillin resistant and contains a selectable 

marker for EGFP.  

 To digest the vector,  2.5 ug of the vector was incubated with 10X BBSI reaction buffer 

(NEBuffer 2.1), 5ul of the BBS1 restriction enzyme, and adding enough ddH2O for a total of a 

25uL volume and incubated for 1 hour at 37 degrees Celsius. After one hour the digested vector 

was treated with  2μL of calf intestinal alkaline phosphatase (CIP). After 30 additional minutes, 

another 1 uL of CIP was added and allowed to incubate for an additional 30 minutes.  

 To phosphorylate the guide sequence DNA, 4 uL of the annealed oligonucleotides were 

added to 2 uL of PNK (polynucleotide kinase) buffer,  2uL of T4 PNK ((polynucleotide kinase), 

and 12 uL of ddH20 for a 30 minute 37 degree Celsius incubation. After 30 minutes, 80 uL of 

ddH20 was added to the phosphorylated nucleotides.  

 The digested vector was gel purified by gel electrophoresis on 0.7% agarose gel to 

separate the cut vector (the single band that appears at approximately 10kB).  The digested 

vector was purified using the Qiagen QIAquick Gel Extraction Kit . 

 To ligate the vector and guide sequence DNA, we incubated 1uL of the gel purified 

vector with 2uL of the phosphorylated guide sequence, 5uL of T7 ligase buffer, 1uL T7 ligase, 

and 5uL of ddH20. For negative control and control for self-annealing, we set up a similar 
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incubation without the 2uL of the phosphorylated guide sequence and increased the ddH20 to 

7uL. Incubation took place at room temperature for at least 1hour.  

 To clone the vector, we used heat shock delivery of the vector into competent e. coli. To 

each ligation tube ( as described in the paragraph above), 200 uL of competent cells were added 

and incubated on ice for 30 minutes. To heat shock, tubes were transferred to 42 degrees Celsius 

for exactly 90 seconds. Following 90 seconds, tubes were brought back to ice for 2 minutes. 

After 2 minutes 500 uL of pre-warmed to 37 degrees Celsius SOC media (2% tryptone, 0.5% 

yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose) 

was added to each tube and allowed to recover on a shaker at 37 degrees Celsius for 2 hours. 

After recovery, each culture was plated onto bacterial culture plates (LB agar with ampicillin) 

using aseptic technique and allowed to grow overnight at 37 degrees Celsius. Any colonies on 

the  plate that received the negative control ( as described in the paragraph above) are self-

ligations and are false positives. Colonies were selected from the positive control plate and 

inoculated in to 2mL of LB with ampicillin. Tubes were placed on a shaker at 37 degrees Celsius 

overnight. Miniprep was then done using the Qiagen QIAprep Miniprep kit and protocol. 

 Confirmation of the vector was done using a double digest. Double digest was set up 

using a master mix of 1uL of the BBS1 enzyme, 1uL of the  EcoR1-HF enzyme, 5uL of 10X 

NEB buffer 2.1and 39 uL of ddH20 for each sample. 23uL of master mix was combined with 

2uL of purified vector and incubated at 37degrees for 1 hour. Digest product is separated by gel 

electrophoresis on a 1% agarose gel. Clones with the guide sequence inserted will display bands 

at 9KB and 1KB and clones without the guide sequence inserted will display bands at 6.5KB and 

3.5KB. 

 Next, for samples where the double digest suggested our guide sequence was inserted, 
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confirmation of the guide sequence was done using Sanger sequencing. For sequencing, we used 

1ug of the vector containing the guide sequence, 3uL of primers for the U6 promoter, and add 

ddH20 to bring the total volume up to 12uL. Confirmed plasmid was expanded by expanding 

corresponding clones and using either multiple mini preps or a maxi prep.  

 PyMT 419 cells were transfected using the Life Technologies Lipofectamine 3000 

protocol https://tools.lifetechnologies.com/content/sfs/manuals/lipofectamine3000_protocol.pdf . 

To select clones, GFP positive cells were sorted into 96 well plates using fluorescence activated 

cell sorting. Knockouts were identified by isolating DNA from individual clones, using 

polymerase chain reaction of the region of a 300bp region DNA containing the area targeted by 

the sequence centrally located, and gel purified using gel electrophoresis on 3% agarose gel and 

Qiagen QIAquick Gel Extraction Kit. Primers for amplification are as follows: 

Adm 5’: CTGAGAGATGGTCTGGAGGTG 

Adm 3’: CAATCCCCAGGGTCAGAGTA 

Fgf 13 5’: TGTTCTAACTTCCAGAAAGGCATA 

Fgf 13 3’: CAGTGGTTTGGGCAGAAAAT 

For sequencing, nested primers were used with sequences as follows:  

Adm 5’: GGCTGGGACATCACTTGAAC  

Fgf 13 5’: CACACCCATATAAGTATTGACTTTCA. 

IN VITRO ASSAYS 

 For cell counts over 3 days, 100, 000 cells were seeded into 6- well plates. On each day 

cells were trypsinized and counted on a Nexcelom Cellometer T4 automatic cell counter. Each 

clone was counted in triplicate for each day.To measure cell migration, we did wound healing 
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assays in the presence of 2ug/mL Mitomycin C using standard methods  [203]. 

Photomicrographs were taken at 0 hour and 18 hours. 

IN VIVO ASSAYS 

 All animal work has been conducted according to national and institutional guidelines. 

All mice were in the FVB background. For tail vein injection, MMTV-Cre control mice were 

used to avoid immune response to the middle T antigen [136, 251, 252]. For control cells and 

each knockout clone, 50,000 cells were injected into the bloodstream via the tail vein. After 21 

days, mice were euthanized. Lungs and liver were resected for routine H&E staining to detect 

metastases.  
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CHAPTER 5: 

GENE EXPRESSION SIGNATURES PREDICT TUMOR HISTOLOGY AND 

HIGHLIGHT SIMILARITIES AND DIFFERENCES BETWEEN MOUSE MAMMARY 

TUMORS AND HUMAN BREAST CANCER. 
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ABSTRACT  

 The heterogeneity present in breast cancer establishes a complex array of distinct 

subtypes of tumors. With this, modeling the disease in vivo requires numerous preclinical 

models that effectively mimics the multiple factors inherent to human breast cancer progression 

and parallel the molecular profiles of human breast cancer subtypes. Using a gene expression 

database of mouse models and human breast cancer, we identified mouse models that parallel 

gene expression profiles of specific subtypes of human breast cancer. However, there are 

different tumor histologies observed in mouse models from those observed in human breast 

cancer. As such there is a need to identify how differences in tumor histology impact 

comparisons between mouse mammary tumors and human breast cancer.  Further, much of the 

publicly available gene expression data for mouse mammary tumors comes without histological 

classification. Together, this illustrates the need to identify the genes that are intrinsic to mouse 

mammary tumor histology. We hypothesize that gene expression signatures can be generated to 

accurately predict tumor histology of mouse mammary tumors across different tumor initiating 

events. Using gene expression data from histologically annotated mouse mammary tumors 

initiated by different oncogenic events, we have developed gene expression signatures that 

define tumors with squamous or adenosquamous tumor histology and a signature that defines 

tumors with epithelial to mesenchymal transition (EMT)-like tumor histology. Testing these 

signatures in human breast cancer we found that human breast cancers do not have squamous 

gene expression features; however this signature was able to identify histologically annotated 

squamous tumors in other human cancer types such as lung cancer. Interestingly the EMT-like 

signature was conserved in a subset of human claudin low breast cancer, splitting tumors into 

mesenchymal and non-mesenchymal tumor types. Together, this data demonstrates robust 
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signatures that can used to characterize tumor histology and further our understanding of human 

breast cancer heterogeneity. 

INTRODUCTION 

 One of the hallmarks of breast cancer is tumor heterogeneity. Breast cancer heterogeneity 

is evident at both the histological and genomic level. The histological type of the tumor refers to 

the morphological and cytological patterns evident within a tumor. There are a large number of 

distinct tumor histologies recognized for breast cancer [253, 254]. This includes ductal 

carcinoma in situ (DCIS), invasive ductal carcinoma, lobular carcinoma in situ (LCIS), invasive 

lobular carcinoma,  tubular carcinoma, cribriform carcinoma, invasive lobular carcinoma, 

mucinous carcinoma,  neuroendocrine carcinoma, papillary carcinoma, adenoid cystic 

carcinoma, secretory carcinoma, acinic-cell carcinoma, apocrine carcinoma, medullary 

carcinoma, metaplastic carcinoma with squamous metaplasia, metaplastic spindle cell carcinoma, 

and metaplastic matrix-producing carcinoma. The most frequently observed tumor histology is 

the invasive ductal carcinoma [255]. 

 Similarly, there is a large degree of genomic heterogeneity in human breast cancer, which 

has been classified using gene expression analysis. Classification of breast tumors into their 

molecular subtypes based on unique gene expression profiles has led to tumors being described 

according to their “intrinsic subtype”: basal, luminal A, luminal B, her-2 positive, claudin low 

and normal-like breast group [57-59]. Importantly, these intrinsic subtypes of breast cancer now 

serve as the fundamental basis by which researchers classify tumor heterogeneity. However, 

since the development and identification of the intrinsic subtypes of breast cancer, researchers 

have expanded on this work to further define tumor heterogeneity. Among these, an important 

study detailing the pathway activation profiles within the intrinsic subtypes, demonstrated 
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molecular complexity beyond the six subtypes of breast cancer [47]. Specifically, this work 

identified subgroups within the intrinsic subtypes, totaling up to 17 subtypes of breast cancer on 

the basis of predicted pathway activation profiles.  

 Importantly, recent work has connected the dots between intrinsic subtypes of human 

breast cancer and specific histological types of breast cancer [254].Chief amongst their findings 

was that within intrinsic subtypes of cancer were multiple histological types of cancer. For 

example, two histological tumor types were categorized as claudin low: medullary and 

metaplastic breast cancer. Further, individual tumors of the same tumor histological types 

corresponded to different intrinsic subtypes of breast cancer. For example, some medullary 

tumors  were classified as basal and others were categorized as claudin low. These findings, 

might suggest that gene expression methods may do better job of organizing tumors into similar 

disease entities. Collectively, these studies demonstrate that histological and genomic 

heterogeneity present in breast cancer establishes a complex array of distinct subtypes of tumors. 

 With this, modeling the disease in vivo requires numerous preclinical models that 

effectively mimics the multiple factors inherent to human breast cancer progression and parallel 

the molecular profiles of human breast cancer subtypes. While the use of human cell lines and 

patient derived xenografts offer the opportunity to study human breast cancer in-vivo, they rely 

on immunocompromised hosts. The use of genetically engineered mouse models of cancer offer 

the advantage and the opportunity to study tumor progression in an immuno-competent system. 

As a result, a major focus has been to establish which genetically engineered mouse models have 

parallels in human breast cancer. For example, work from the Perou lab identified similarities 

between human and mouse mammary tumors using immunohistochemistry for key biomarkers 

[105]. Expanding upon these findings with additional tumor models and samples, numerous 
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reports have documented mouse and human counterparts at the level of gene expression [129, 

140, 141, 249, 256]. Despite gene expression similarities one aspect that needs to be addressed is 

how the tumor histology of mouse mammary tumors factor into these relationships. 

 As seen in human breast cancer, a large number of tumor histologies are observed for 

mouse mammary tumors  [257] . This includes glandular, acinar, cribriform, papillary, solid, 

squamous, fibroadenoma, adenomyoepithelioma, adenosquamous, microacinar, adenocarcinoma, 

comedoadenocarcinoma, and medullary [141, 204, 225, 257] . The prevalence of  tumor 

histology is dependent on the particular mouse model, for example tumors initiated by activated 

Neu tend to form comedoadenocarcinas [106, 141] . In comparison of mouse and human 

histologies there are noticeable differences, for example, squamous tumors are not observed in 

human breast cancer [253, 255]. As such, it is important to begin to understand how mouse and 

human tumor histology impact the genomic relationships between mouse models and human 

breast cancer. 

 With this in mind our goal was to identify the genes that define specific tumor histologies 

in the mouse. In previous work, we observed that unsupervised hierarchical clustering of Myc 

initiated tumors organized tumors into subclasses that correlated with their histology [106]. 

Further, even in the presence of loss of the activator E2F transcription factors, clustering 

arranged tumors according to histology, rather than genotype[108]. This suggests that there are 

unique gene expression components inherent to individual tumor histologies. We hypothesize 

that gene expression signatures can be generated to accurately predict tumor histology of mouse 

mammary tumors across regardless of differences in tumor initiating oncogenic events. Using 

gene expression data from histologically annotated mouse mammary tumors initiated by 

different oncogenic events, we have developed gene expression signatures that define tumors 



 

126 
 

with squamous or adenosquamous tumor histology and a signature that defines tumors with 

epithelial to mesenchymal transition (EMT)-like tumor histology. Testing these signatures in 

human breast cancer we found that human breast cancers do not have squamous gene expression 

features; however this signature was able to identify histologically annotated squamous tumors in 

other human cancer types such as lung cancer. Interestingly the EMT-like signature was 

conserved in a subset of human claudin low breast cancer, splitting tumors into mesenchymal 

and non-mesenchymal tumor types. Further, applying these signatures to our published database 

[249] of mouse mammary tumors we identified additional tumors that have are of either a 

squamous or a EMT-like histology. Together, this data demonstrates robust signatures that can 

used to characterize tumor histology and further our understanding of human breast cancer 

heterogeneity. 

RESULTS 

ASSEMBLY OF THE SQUAMOUS HISTOLOGY SIGNATURE 

 To build a gene expression signature that could identify squamous tumors, we utilized 

histologically annotated tumors from a MMTV-PyMT mouse model that had several different 

genotypes. In this dataset there were tumors that were either E2F 
WT/WT 

or E2F2 
-/-

. Using a 

significance analysis of microarrays (SAM) we executed the following comparisons: E2F
 WT/WT

 

squamous tumors compared to E2F
 WT/WT 

non-squamous tumors, E2F2 
-/- 

squamous tumors 

compared to E2F2 
-/- 

non-squamous tumors, E2F2 
-/- 

squamous tumors compared to E2F 
WT/WT 

non-squamous tumors, and E2F
 WT/WT

 squamous tumors compared to E2F2
 -/- 

non-squamous 

tumors. In this way any of the genotypic differences can be filtered out and the genes that were 

consistently differentially regulated in this analysis would be the genes intrinsic to squamous 

identity. FIGURE 5.1 illustrates the identification of consistently differentially regulated in 
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squamous tumors. Focusing only on the genes detected in all four comparisons, we identified 

179 genes were upregulated in squamous tumors. We did not detect any genes that were that 

were consistently downregulated in this comparison. As a result, we found 179 genes that 

potentially define squamous tumor histology.  

ASSEMBLY OF THE EMT-LIKE HISTOLOGY SIGNATURE 

 We used a similar approach to generate a signature that defines tumors with EMT-like 

tumor histology. Using gene expression data from histologically annotated MMTV-Myc tumors, 

we used a SAM analysis to identify the genes intrinsic to tumors with an EMT-like histology 

making the following comparisons: EMT-like tumors compared to all non-EMT-like tumors, 

EMT-like tumors compared to squamous tumors, EMT-like tumors compared to papillary 

tumors, and EMT-like tumors compared to microacinar tumors. Signature genes focused on 

genes that were differentially regulated in each comparison. FIGURE 5.2A shows the 

overlapping genes that were upregulated in each of the comparisons. FIGURE 5.2B shows the 

overlapping genes that were downregulated in each of the comparisons. In total, the analysis 

revealed 185 genes consistently upregulated in EMT-like tumors and 175 genes consistently 

downregulated in EMT-like tumors. 

VALIDATING THE SQUAMOUS HISTOLOGY SIGNATURE 

 To validate the 179 genes that define squamous histology, we tested our signature in 

independent datasets where squamous tumors developed in mouse mammary tumor models 

initiated by other oncogenes. The first test was to determine if the squamous signature could 

separate squamous tumors from other tumors within the MMTV-Myc mouse model using 

unsupervised hierarchical clustering limited to the squamous signature genes. As depicted in 

FIGURE 5.3A, clustering on our signature genes accurately splits out squamous tumors from the 
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other tumor histologies. To measure the statistical significance of this signature, we compared 

squamous tumors to all non-squamous tumors using gene set enrichment analysis (GSEA). As 

evident in FIGURE 5.3B, the squamous signature genes derived from MMTV-PyMT tumors 

were significantly enriched in MMTV-Myc squamous tumors ( NES 1.48, nominal p-value=0.0, 

FDR q-value =0.029, FWER p-value=0.016). Together, this data shows the validity of the 

squamous signature by its ability to predict the tumor histology in tumors initiated by different 

oncogenes.  

VALIDATING THE EMT-LIKE HISTOLOGY SIGNATURE 

 To validate the 185 genes upregulated in EMT-like tumors and 175 genes downregulated 

in EMT-like tumors, we tested these genes on gene expression data annotated MMTV-Met 

tumors. Using a similar validation approach, we tested if the EMT-like signature could separate 

EMT-like (also referred to as splindoid) tumors from other tumors within the MMTV-Met mouse 

model using unsupervised hierarchical clustering limited to the signature genes. As depicted in 

FIGURE 5.4A, the EMT-like signature genes separated out the EMT-like tumors from other 

Met-induced tumors. Testing for enrichment of the signature genes with GSEA illustrated a 

significant enrichment for upregulation of the upregulated EMT-like signature genes in Met-

induced EMT-like tumors compared to non EMT-like tumors (FIGURE 5.4B, NES=1.76, 

nominal p-value=0.0, FDR q-value= 0.009, FWER p-value = 0.011).  Likewise,  GSEA found 

significant enrichment for downregulation of the downregulated EMT-like signature genes in 

Met-induced EMT-like tumors compared to non EMT-like tumors (FIGURE 5.4C, NES=-1.66, 

nominal p-value=0.006, FDR q-value= 0.009, FWER p-value = 0.018). As a whole, this data 

shows the validity of the EMT-like signature.  
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CLASSIFYING MOUSE MAMMARY TUMORS  

 With validation of both the squamous and EMT-like signatures, we wanted to use this 

data to classify tumor samples in our previously published mouse mammary tumor model gene 

expression database [249]. This database contained over 1,0000 mouse mammary tumor samples 

across 26 major mouse models of breast cancer. In assembling this database, only subset of 

samples contained histological annotations and a majority lacked histological annotations. As a 

result, development of these signatures presented the opportunity to predict whether tumor 

samples in this database had EMT-like or squamous tumor histology. 

 To predict which tumor samples were squamous or EMT-like we used unsupervised 

hierarchical clustering using our signatures for EMT-like tumors and squamous tumors 

(FIGURE 5.5). In this way, we could visualize expression patterns for signature genes as well 

use existing annotations to both predict tumor histologies for other tumor samples and to monitor 

the performance of the signatures. Importantly, each set of signature genes clustered tightly 

together. Observing expression patterns for the squamous signature genes, we identified a cluster 

of samples that had high expression of these genes (FIGURE 5.6A); suggesting squamous tumor 

histology. Indicating the validity of this prediction, Myc tumors noted to have squamous 

histology were found in this cluster. Amongst the other tumor found in this cluster were a subset 

of tumors from the MMTV-PyMT, MMTV-Wnt, large T-antigen, Cre-ETV6-NTRK3, DMBA 

treated, IGFIR, BRCA and p53 mutant, and p53 mutant mouse models. To test the statistical 

significance of this prediction, we compared tumors from this cluster (our predicted squamous 

cluster) to all other tumors in the database using GSEA (FIGURE 5.6B). Supporting the 

prediction that these tumors are squamous, GSEA detected a significant enrichment for 
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upregulation of the squamous genes for tumors predicted from the squamous cluster (NES=1.99, 

nominal p-value = 0.0, FDR q-value=0.0029, FWER p-value = 0.002).  

 Observing expression patterns for the EMT-like signature genes, we identified a cluster 

consisting of the majority of the tumor samples with an annotation for an EMT-like histology 

spanning several oncogenic models (FIGURE 5.7A). In agreement, tumors in this cluster had 

high expression of the genes upregulated in EMT-like tumors and low expression of genes 

downregulated in EMT-like tumors. This approach identified additional tumors with an EMT-

like histology from the Myc model that had not previously been annotated. For example, we 

identify a minority of tumors initiated by the Neu oncogene that EMT-like gene expression 

features. In addition, a subset of p53 mutant, BRCA mutant, BRCA and p53 mutant,Wnt, 

TNP8,Stat5, and LPA induced tumors  were found in this cluster. To test the statistical 

significance of this prediction, we compared tumors from this cluster (our predicted EMT-like 

cluster) to all other tumors in the database using GSEA (FIGURE 5.7B,C). Supporting the 

prediction that these tumors are EMT-like, GSEA detected a significant enrichment for high 

expression of the genes upregulated in EMT-like tumors (FIGURE 5.7B, NES=1.88, nominal p-

value = 0.0, FDR q-value=0.0071, FWER p-value = 0.016) and low expression of the genes 

downregulated in EMT-like tumors (FIGURE 5.7C, NES=-1.89, nominal p-value = 0.0, FDR q-

value=0.01, FWER p-value = 0.016). 

 Importantly, there were a large number of tumors that did not match expression patterns 

for squamous or EMT-like tumors. As shown in FIGURE 5.5, the majority of tumors in the 

database had high expression of genes that are down-regulated in EMT-like tumors and low 

expression of genes that are upregulated in squamous and EMT-like tumors. Among the tumor 

histologies found here, were the microacinar and papillary tumors from the MMTV-PyMT 



 

131 
 

mouse model. In addition, there were a number of tumors from other mouse models without 

histological annotations in the portion of the clustering including tumors from the MMTV-Neu, 

MMTV-PyMT, MMTV-Myc, and p53 mutant mouse models. Collectively, these results show 

demonstrate the squamous EMT-like signatures to pull out and predict tumors with 

corresponding histology without forcing non squamous or EMT-like tumors into the one or the 

other categories.  

TESTING HISTOLOGICAL SIGNATURES IN HUMAN CANCER 

 With the signatures ability to detect corresponding tumor histologies in a large database 

of mouse mammary tumors, wanted to answer whether these gene expression signatures are 

conserved in human cancer. To test the squamous signature in the context of human breast 

cancer, we brought our training dataset containing the MMTV-PyMT squamous tumors together 

with a database that we assembled of over 1,000 human breast cancer samples that were 

annotated for intrinsic subtype while mediating the batch effects between them [249] . Clustering 

on the basis of squamous genes in this setting accurately identified all of squamous tumors from 

the PyMT mouse model as expected. However, none of the human breast cancers showed 

activation of the squamous genes (FIGURE 5.8). This finding was also expected given the fact 

that squamous histology is rarely observed in human breast cancer [253, 255].  

 However, squamous tumors are found in other cancer types. This includes oral, lung, and 

esophageal cancers. As a result, we assembled a database consisting of human cancers that 

include breast, lung, colorectal, thyroid, oral, cervical, endometrial, melanoma, head and neck, 

ovarian, and merkell cell carcinomas using appropriate batch correction methods. This database 

consisted of over 3,000 human tumors. Clustering these tumors on the basis of the squamous 

gene signature organized squamous tumors from oral, lung, and esophageal cancer into the same 
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cluster that had markedly higher expression of the squamous genes than tumors from other 

clusters (FIGURE 5.9). Interestingly, subsets of samples from melanoma, cervical cancer and 

merkell cell carcinoma also ordered into this cluster suggesting a squamous component in these 

cancers (FIGURE 5.10A). Using GSEA to test for statistical enrichment of the squamous 

signatures in these samples indicted these samples demonstrated that this enrichment is 

significant (FIGURE 5.10B, NES= 1.93, nominal p-value 0.0, FDR q-value 0.003, FWER p-

value =.002).  Also important to note is that while a majority of the squamous genes were highly 

expressed in squamous tumors, there was a cluster of genes that did not vary across tumor types. 

These genes that did not change may be unique to squamous tumors in mouse. The remainder 

may indicate which of these genes are absolutely intrinsic to squamous tumors since their 

activation not only spans different oncogenic events, but are conserved in squamous cancers 

from multiple tissues, and extend over mouse and human cancers.   

 Similarly, we wanted to test whether aspects of the EMT-like signature was conserved in 

human breast cancer. To examine this we combined our MMTV-Myc tumors that were used to 

establish the EMT-like signature with our database of human breast cancer and used 

unsupervised hierarchical clustering limited to the EMT-like signature genes (FIGURE 5.11). 

This revealed a subset of human claudin low breast cancer tumors that showed high expression 

of the EMT-like signature genes and clustered with EMT-like tumors from the MMTV-Myc 

mouse model(FIGURE 5.12A).  Testing the significance of these gene expression patterns, 

GSEA revealed that the claudin low tumors that clustered with mouse EMT-like tumors were 

significantly enriched for high expression of genes upregulated in EMT-like tumors (figure 

5.12B, NES=1.87, nominal p-value =0.0m FDR q-value=.002, FWER p-value = 0.004) and 

enriched for low expression of genes downregulated in EMT-like tumors ( FIGURE 5.12C, 
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NES=-2.11, nominal p-value=0.0, FDR q-value =0.0, FWER p-value 0.0). As a result, the EMT-

like signature split claudin low tumors into two subclasses: tumors have EMT-like gene 

expression features and those that do not. 

DISCUSSION 

 We hypothesized that gene expression signatures can be generated to predict tumor 

histology. To this end, we have developed gene expression signatures that define tumors with a 

squamous or adenosquamous tumor histology and a signature that defines tumors with epithelial 

to mesenchymal transition (EMT)-like tumor histology across different oncogenic mouse models 

and human cancers. As a result, application of these signatures to gene expression data from 

mouse mammary tumors, we can annotate tumors that are of either a squamous or an EMT-like 

histology and those that are not. Testing these signatures in human breast cancer we found that 

human breast cancers do not have squamous gene expression features; however this signature 

was able to squamous tumors in other human cancer types. Interestingly the EMT-like signature 

was conserved in a subset of human claudin low breast cancer, splitting tumors into 

mesenchymal and non-mesenchymal tumor types. Together, this data demonstrates robust 

signatures that can used to characterize tumor histology and further our understanding of human 

breast cancer heterogeneity. 

 Using the squamous signature to predict the histology of non-annotated mouse mammary 

tumors, we separated out tumors with a significant enrichment for squamous gene expression 

features. This included tumors from the MMTV-Myc model previously annotated as squamous 

[141]. However, we also  predicted squamous tumors were present in the cluster highlighted in 

FIGURE 5.6  from the MMTV-PyMT, MMTV-Wnt, large T-antigen, Cre-ETV6-NTRK3, 

DMBA treated, IGFIR, BRCA and p53 mutant, and p53 mutant mouse models. In support of this 
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prediction, tumors with squamous components have been reported in tumors initiated by PyMT 

[204, 258]. Similarly, overexpression of the Wnt pathway in the mammary gland has been 

demonstrated to induce squamous tumors [259].  Also, indicating the predictions for a subset of 

tumors in the Cre-ETV6-Ntrk3 model are correct, tumors with squamous metaplasia were 

amongst the variety of histologies observed [260]. DMBA treated mammary tumors [261]and 

p53 mutant tumors [262] were also reported to exhibit squamous histology . In regards to large 

T-antigen tumors, inactivation of the tumor suppressor protein retinoblastoma resulted in tumors 

with a squamous component  [263]. Together, these previous studies support the prediction that 

squamous signature is accurately predicting squamous tumor histology in a large database of 

mouse mammary tumor samples supports labeling tumors in this cluster as squamous. 

 Like the squamous signature, the signature for EMT-like tumors showed a high degree of 

accuracy. Correctly, it identified tumors with a previous EMT annotation. In addition, this 

approach identified additional tumors with an EMT-like histology that had not previously been 

annotated. For example, we identify a minority of tumors initiated by the Neu oncogene that 

EMT-like gene expression features. Additionally, a subset of p53 mutant, BRCA mutant, BRCA 

and p53 mutant, Wnt, TNP8,Stat5, and LPA induced tumors  we predicted to have EMT-like 

histology. While Neu induced tumors are generally comedoadenocarcinomas, in unpublished 

work from in our lab we observed a minor subset of Neu induced tumors with EMT histology in 

tumors with displaying intra-tumor heterogeneity. Thus, it is possible that the tumors we detected 

in the EMT-like cluster resulted from array analysis of similarly EMT like portions of the Neu 

induced tumors.  In agreement with the predictions,  tumors characterized by elongated spindle 

shaped cells were observed amongst the mammary  tumors in initiated by Wnt[259], as well 

tumors from the p53 mutant mouse model  [262] . Taken together, this illustrates our EMT-like 
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signature is able to identify tumors with an EMT-like tumor histology across the expansive 

database of mouse mammary tumor samples and supports annotating tumors in this cluster as 

EMT-like. 

 Perhaps most important about this work is that we show signatures for tumor histology 

derived from mouse mammary tumors have conserved features in human cancer. Specifically, 

we identified a subset of human claudin low tumors that clustered with MMTV-Myc EMT-like 

tumors and we enriched for the EMT-like signature. In agreement, previous studies have found 

that there are claudin low tumors that resemble mouse mammary tumors with EMT-like 

histology at the level of gene expression [129, 140, 141] . This suggests these claudin low tumors 

indeed have mesenchymal identity. However, our signature split claudin low tumors into 

subgroups. In previous work, we observed a split in claudin low tumors, those that clustered with 

mouse EMT-like tumors and those that do no not while detecting key differences in Myc activity 

[141] .Importantly, this work expands upon those findings, subdividing claudin low tumors into 

those with mesenchymal gene expression features and those that are not mesenchymal. In 

agreement, previous work has found that claudin-low tumors correlate with two different tumor 

histologies: medullary and metaplastic [254] . Histologically, metaplastic tumors resemble the 

elongated spindle shaped cells that are typical of tumors with EMT-like tumor histology. In light 

of this, it is possible that the tumors enriched for the EMT-like signature are metaplastic and 

those that are not are medullary. As gene expression data for medullary tumors become available 

similar gene signature approaches would be able to confirm this speculation.  

 In addition to the EMT-like signature, we found that the squamous signature also 

translates to human cancer. The squamous signature was not enriched in any human breast 

cancer samples, however, this finding was expected and further shows the accuracy of the 
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signature as this histology is not common in human breast cancer [253, 255]However, the 

squamous signature did organize squamous tumors from oral, lung, and esophageal cancer into 

the same cluster. While demonstrating the signature can predict human cancer tumor histology, 

this finding lends itself to a far more important conclusion. The most critical lesson of this work 

is that it demonstrates the presence of unifying gene expression features for tumors of the same 

histology. This conclusion is upheld by the fact that our signatures were consistent in mouse 

mammary tumors of the same histology despite differences in the initiating event that leads to 

carcinogenesis in each of the mouse models. Further, they span the gap from mouse to human as 

observed for the enrichment of the EMT-like signature in claudin low tumors and the squamous 

signature in variety human squamous tumors. Finally, they spanned cancers from several 

different tissues, as observed for oral, lung, and esophageal cancer. This demonstrates that there 

are gene expression programs that are intrinsic to tumor histological types. The significance of 

this finding may have important clinical significance as it might suggest common pathway 

activation, metabolic, and extrinsic dependencies for these human tumors. As a whole, our 

findings demonstrate the utility of gene expression signatures to characterize tumor histology and 

further our understanding of human cancer heterogeneity. 

METHODS 

MICROARRAY DATA 

Details for assembling the mouse mammary tumor model and human breast cancer database can 

found [249] . Gene expression data from squamous and non-squamous MMTV-PyMT tumors 

were prepared by isolation of RNA samples from flash frozen tumors using the Qiagen RNeasy 

kit after roto-stator homogenization. RNA was submitted to the Michigan State University 

Genomics Core facility for gene expression analysis using Mouse 430A 2.0 Affymetrix arrays. 
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Gene expression data from MMTV-Myc EMT-like and non EMT-like tumors is described in 

previous work [141]. Gene expression data from human squamous and non-squamous tumors 

was accessed on the Gene Expression Omnibus under the following accession numbers: 

GSE10245, GSE10300, GSE14020, GSE17025, GSE18520, GSE2034, GSE20347, GSE21422, 

GSE21653, GSE2280, GSE2603, GSE27155, GSE27678, GSE29044, GSE30219, GSE30784, 

GSE3292, GSE33630, GSE3524, GSE35896, GSE37745, GSE39491, GSE39612, GSE43580, 

GSE45670, GSE4922, GSE50081, GSE51010, GSE6532, and GSE7553. These datasets were 

normalized using Affymetrix Expression Console. Bayesian Factor Regression Methods (BFRM) 

[25] was used to combine datasets and remove batch 

effects.(http://www.stat.duke.edu/research/software/west/bfrm/download.html). 

DATA ANALYSIS 

 Gene expression signatures were derived using significance analysis of microarrays [28] 

to detect the genes that were differentially regulated for each tumor histology. For the squamous 

signature we executed the following comparisons: E2F
 WT/WT

 squamous tumors compared to E2F
 

WT/WT 
non-squamous tumors, E2F2 

-/- 
squamous tumors compared to E2F2 

-/- 
non-squamous 

tumors, E2F2 
-/- 

squamous tumors compared to E2F 
WT/WT 

non-squamous tumors, and E2F
 WT/WT

 

squamous tumors compared to E2F2
 -/- 

non-squamous tumors. For the EMT-like signature, we 

made the following comparisons: EMT-like tumors compared to all non-EMT-like tumors, 

EMT-like tumors compared to squamous tumors, EMT-like tumors compared to papillary 

tumors, and EMT-like tumors compared to microacinar tumors. Unsupervised hierarchical 

clustering was done using Cluster 3.0 and Java Tree View. The color scheme for the heatmap 

and sample legends were made using Matlab. Gene set enrichment analysis [34] was done by 

converting our gene expression data and gene lists to the specified formats using Gene Pattern. 
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CHAPTER 6: 

POSSIBLE FUTURE DIRECTIONS 
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 While much of the work done during the course of this dissertation has been published, 

there are a number of possible avenues for extending the research presented in each chapter. As 

such, this section will highlight key directions and results that can be followed up on to lead to 

new discovery.  

 In chapter 1, A mouse model with T58A mutations in Myc reduces the dependence on 

KRas mutations and has similarities to claudin-low human breast cancer, there is more to learn 

regarding the significance of the molecular alterations in the EMT-like mouse mammary tumors. 

For example, as shown in FIGURE S 1.16, both the MMTV-Myc EMT-like tumors and human 

claudin low breast cancer show high probability of Ras activation. However, despite the high 

probability of Ras activation, both of these tumors predict that they are not dependent upon this 

pathway for tumorigenesis. Clearly, answering whether or not silencing/inhibiting this pathway 

has any consequence on tumor progression or viability is warranted due to this prediction. 

Further, this presents an opportunity to explore the functional significance of Ras activation in 

both the mouse EMT-like tumors and human claudin low breast cancer. Another potential 

avenue for investigation in this area deals with the effectors of Ras signaling in the EMT-like 

tumors where Myc shows low protein levels and activity (FIGURE 1.4). We know a majority of 

these tumors have activating mutations in KRas (FIGURE 1.3). As demonstrated by Rosie Sears 

group, a transcriptional effector of Ras signaling is Myc [122, 123]. This leads to the question: 

what transcription factors are now activated in KRas mutant tumors where Myc activity is low? 

Another interesting result to follow up on is the differential activation of Myc target genes across 

histological subtypes (FIGURE 1.5). This lends to a host of questions such as:  Why do the 

different lines of Myc feature different utilization of Myc target genes? Does the mutation of 

Myc at threonine 58 cause it? Does the half-life of Myc impact which targets Myc is able to 
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bind? Does Myc have access to specific promoters based on tumor histology? Do the different 

utilization of Myc target genes cause the changes in histology or is it a result of histological 

change? Answering these questions and further investigation of these results would add to our 

understanding of how Ras and Myc function in tumor progression. 

 Extending the work presented in the chapter 2, A genomic analysis of mouse models of 

breast cancer reveals molecular features of mouse models and relationships to human breast 

cancer, has a large number of possibilities. For example, the strategy used to assemble this 

database and the analytic approach could be mimicked to assess other mouse models outside of 

breast cancer. This could answer, for example, how well genetically engineered mouse models of 

prostate cancer reflect human prostate cancer.  

 In addition, the mouse model gene expression database itself could be subject to further 

analysis. For example, chromosomal alterations like amplifications and deletions could be 

predicted using existing software called ACE (analysis of copy number abnormalities by 

expression data)[264]. This approach arranges altered genes according to chromosomal location 

and scores them based on fold change and the degree to which they are nearby on the 

chromosome to predict amplification or deletion. This approach could identify “hot spots” for 

alterations in the mouse genome, identify common DNA events from mouse to human, and 

provide additional areas to test in the mouse model. Similarly, it would be desirable to 

complement the mouse gene expression data with sequencing data to identify mutations. 

Together these data would be well served to be integrated with the expression data analysis and 

made accessible with an online tool much in the image of cBIOPORTAL.  

 In addition to these big picture follow up projects, there are more specific areas for follow 

up as well. To begin, there are a number of individual bioinformatic predictions that can be 
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tested. For example, as shown in FIGURE S 2.5 beta-catenin has high activity in FVB 

background MMTV-PyMT mice. A genetic test, could reveal the role of beta-catenin in this 

mouse model. Similarly, p53 has high activity in nearly all MMTV-PyMT tumors. How do we 

reconcile this prediction, given that these tumors have rapid onset, low levels of apoptosis, and 

relatively fast growth rate? Again, a genetic test of p53 may provide some interesting insight into 

p53 functions in aggressive tumor types. 

 In chapter 3, The E2F transcription factors regulate tumor development and metastasis in 

a mouse model  of metastatic breast cancer, there were some results that could lead to follow up 

projects. In particular, we see that E2F1 KO tumors develop more quickly (FIGURE 3.2). Why? 

What is causing enhanced hyperplasia/transformation of the mammary gland? These results may 

support sequencing early stage transgenic mammary glands and tumors to determine if specific 

mutations are occurring in E2F1 KO tumors that are causing a fast tumor onset.  

 Another interesting result was the opposing impact of E2F1 and E2F2 on adenosquamous 

tumor formation. As depicted in FIGURE 3.4, E2F1 loss led to a reduction in formation of this 

tumor type and E2F2 loss increased adenosquamous tumor frequency. Why is E2F1 needed for 

adenosquamous tumor formation, and why does E2F2 seemingly inhibit these tumor types? One 

possible area for exploration is the role of the E2Fs in luminal progenitor cells. Preliminary 

bioinformatic analysis comparing E2F2 -/- adenosquamous tumors to non-adenosquamous 

tumors predicts that the adenosquamous tumors have enrichment for gene expression features of 

luminal progenitor cells (not shown). Perhaps, the E2F1 is needed for expansion of the luminal 

progenitor cell population that is needed for adenosquamous tumor development (likewise, 

maybe E2F2 represses luminal progenitor expansion). Investigating this possibility would 

provide insight into the non-overlapping functions of E2F1 and E2F2 and how they function in a 
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key mammary cell type.  

 Looking at other data from this project, I observed compensatory upregulation of E2F3A 

in each of the E2F -/- backgrounds (FIGURE 3.3). An interesting investigation may be to 

determine what knockout of E2F3A specifically in the mammary gland does to tumor 

progression. One possibility given that this isoform is important for cell cycle progression [167, 

168]is that it may slow tumor growth.  

 Moving on to the work presented in Chapter 4, identifying the mechanistic features by 

which the E2F1 transcription factor regulates breast cancer metastasis, there is still plenty of data 

that can be utilized for additional projects. The first is that the characterization focused on E2F1 
-

/-
 tumors. There still is fold change data for the E2F2 

-/-
 tumors that could feed new projects and 

further our understanding as to how E2F2 functions in tumor metastasis. In addition, there were 

many E2F1 target genes that I did not get to test for metastatic function, but had designed guide 

sequences and constructs for Crispr knockout that could be readily tested; this includes Trim24, 

Tgm2, Fzd5, Bmp4, MAFF, and Ttyh1. Like the investigation of Fgf13 and Adm testing these 

previously mentioned genes could identify new regulators of metastasis and further our 

understanding as to how E2F1 governs metastasis. 

 To extend the work from Chapter 5, gene expression signatures predict tumor histology 

and highlight similarities and differences between mouse mammary tumors and human breast 

cancer, it would be ideal to turn these signatures into a resource. One thing I am working on is 

developing additional signatures for other tumor histology. Once complete, it would be useful to 

develop a website where tumor gene expression data can be uploaded and screened using the 

signatures to predict and annotate tumor histology. Such a resource could provide annotations for 

previously unclassified data and also confirm H&E and based classifications of tumor types.  
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CHAPTER 7: 

CONCLUSION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

144 
 

 As a whole, the work that I have completed during my dissertation identifies specific 

mouse models for studying human breast cancer. Furthermore, I demonstrate an integrative 

approach and training that can be used to solve the complex problems inherent to tumor 

progression and metastasis. Importantly, this allowed me to demonstrate the usefulness of mouse 

models of breast cancer and reveal E2F1 and E2F2 as critical regulators of breast cancer 

metastasis.  
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FIGURE 1.1: GENERATION OF MYC AND MYC T58A TRANSGENIC MOUSE 

MODELS 

The construct to generate transgenic mice consist of Myc cDNA or Myc T58A placed under the  



 

147 
 

FIGURE 1.1 (cont’d) 

transcriptional control of the MMTV promoter enhancer and is followed by a HA tag and a SV40 

polyadenylation sequence (A). RNase protection assay for transgene expression in both 8 week 

virgin (v) and lactating (l) mammary glands is shown for the SV40 polyA signal with a PGK 

internal control (B). Western blot analysis for Myc and Grb2 from mammary glands from the 

various strains is shown (C). Standardization of Myc protein levels to the Grb2 control show 

Myc protein levels was completed (D). Mammary gland whole mounts in comparison to the wild 

type control (E) are shown for WT13, WT21, TA14, TA41 and TA39 lines at 8 weeks of age (F-

J respectively). Differences in sidebud formation relative to wild type control (E) in the WT13 

(F) and TA14 (H) strains are highlighted with arrowheads. 
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FIGURE 1.2: REDUCED TUMOR LATENCY IN LOW LEVEL T58A MYC 

TRANSGENIC MICE 

Tumor latency was monitored over time and is presented in a Kaplan Meier plot for the two Myc 

strains (WT13 and WT21), the two high T58A Myc strains (TA14 and TA41) and the low 
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FIGURE 1.2 (cont’d) 

expression T58A strain (TA39) (A).   The number of tumors per mouse was assessed in the  WT 

Myc, T58A high and T58A low transgenic strains (B). 
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FIGURE 1.3: REDUCED DEPENDENCE UPON ACTIVATING MUTATIONS IN KRAS 

IN T58A MYC TRANSGENIC MICE 
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FIGURE 1.3 (cont’d) 

To establish the frequency of activating mutations in KRas, we sequenced the RT-PCR KRas 

product. The sequence trace for codons 12 and 13 from a wild type (A) and tumor with a 

mutation is shown (B). The percentage of tumors with KRas mutations for WT13, Wt21, TA14, 

TA41, and TA39 strains was determined (C).   To examine tumor latency effects from activating 

mutations in KRas, Kaplan Meier plots comparing tumor onset between tumors with(n=26) and 

without KRas mutations (n=69) in the WT Myc  transgenic strains (WT13 and WT21) were 

generated (D). Similarly, Kaplan Meier plots comparing tumor onset between mice with (n=20) 

and without KRas mutations (n=71) in the T58A high level expression transgenic strains (TA14 

and TA41) was examined (E).  The histological subtype and percent of each tumor subtype with 

KRas mutations across the various tumor histologies and transgenic lines.  This was grouped into 

WT MMTV-Myc (WT), T58A high (TA14 and TA41) level (TA High) and low (TA39) level 

(TA Low) strains (F). 
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FIGURE 1.4: MOLECULAR HETEROGENEITY OF MYC INDUCED TUMORS 

Unsupervised hierarchical clustering of RMA normalized gene expression levels from various 

MMTV-Myc transgenic lines, as well as MMTV-Neu controls, is shown (A). The identity of the 

strain and histological type in the clustering analysis is represented with a vertical black bar (B). 

Maintaining the same order, we present the corresponding pathway activation probabilities for  
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FIGURE 1.4 (cont’d) 

tumor samples in a heatmap with high probabilities in red and low probabilities in blue (C). An 

example of variable Myc levels between tumor subtypes is shown through a Western blot of 

EMT, microacinar, and papillary tumor lysates from the TA41 strain (D). Standardization of 

Myc protein levels to the Grb2 control for each of the subtypes demonstrates relative Myc 

protein levels (E).  
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FIGURE 1.5: MYC TARGET UTILIZATION VARIES BETWEEN HISTOLOGICAL 

SUBTYPES OF MYC INDUCED TUMORS 

The Venn Diagram illustrates overlap between Myc target genes defined through a ChIP-Chip 

experiment, genes upregulated as a result of Myc overexpression in HMECs and genes that are 

differentially regulated between the major histological types of Myc induced tumors (A). 

Unsupervised hierarchical clustering of the top 70 differentially regulated potential Myc target 

genes from each of the papillary, microacinar, EMT, and squamous  histological subtypes,  
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FIGURE 1.5 (cont’d) 

representing a total of 280 genes is depicted(B). For the comparison of specific tumor-types 

versus other Myc tumors the FDR was minimized to 0. This is with the exception for the 

squamous tumors where the FDR was minimized to 7.05. The fold change of genes upregulated 

in the EMT-type of tumors ranged from a minimum of 1.254 to a maximum of 5.106; while 

genes upregulated in microacinar tumors ranged from 1.368 to 6.054. The fold change of the top 

70 upregulated genes in papillary tumors ranged from 1.272 to 7.333. Finally, the fold change of 

genes upregulated in squamous tumors ranged from 1.299 to 4.483. 

 

 

 

 

 

 

 



 

156 
 

 

FIGURE 1.6: MYC INDUCED MOUSE TUMOR MODELS GENE EXPRESSION 

SIMILARITIES TO HUMAN BREAST CANCER 
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FIGURE 1.6 (cont’d) 

Unsupervised hierarchical clustering of Myc induced tumors and human breast cancer reveals 

relationships between mouse models and human breast cancer(A).  The papillary tumors (blue in 

dendrogram) display unique gene expression patterns while a cluster of human luminal B tumors 

and microacinar mouse tumors (green in dendrogram) illustrate similar gene expression profiles. 

A subtype of human claudin low tumors and Myc induced EMT tumors cluster together (orange 

in dendrogram). Below the heatmap, tumors with a high probability (>60%) of Myc signaling are 

marked by red bars. Various subtypes of human breast cancer are labeled by black bars. The 

Myc-induced mouse mammary tumors are depicted with blue bars.  Putative Myc target genes 

are shown with the presence of a horizontal bar at the right of the heatmap (A).   RMA 

normalized expression levels for markers of claudin low tumors were compared between the 

various histological types of Myc-induced mouse mammary tumors(B). A comparison of signal 

pathway activation between EMT-type of mouse mammary tumors, Myc-Low human claudin 

low tumors, and Myc-High human claudin low tumors reveals key differences in human tumors 

and similarities to the mouse model (C). Likewise, a comparison of the microacinar Myc induced 

tumors, the human microacinar-like luminal B tumors, and other luminal B tumors for patterns of 

B-catenin and Stat3 pathway activation reveals similarities (D).  
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FIGURE S 1.1: MYC LEVELS IN FVB AND TRANSGENIC MAMMARY GLANDS 

Western blot analysis of total Myc protein (A) and exogenous HA-tagged Myc (B) for the 

mammary glands from the various strains of MMTV-Myc mice demonstrates Myc levels. 

Quantification of total Myc (C) and exogenous HA-tagged Myc (D) protein levels in relation to 

the Grb2 standard is shown.  Western blot analysis of lysates from non-transgenic FVB 

mammary glands and mammary glands from the transgenic T58A lines demonstrates the  
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FIGURE S 1.1 (cont’d) 

increase in expression relative to wild type controls (E). Quantification of Myc protein levels in 

the T58A transgenic lines is also shown(F). FVB Myc levels were standardized to 1.0 in order to 

reveal the degree of Myc overexpression in the transgenic lines.  
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FIGURE S 1.2: THE RELATIONSHIP BETWEEN MYC EXPRESSION AND KRAS 

MUTATIONS 

Quantitative RT-PCR reveals relative levels of Myc expression in virgin and lactating mammary 

glands of WT13, Leder Myc, and TA14 strains. Leder Myc refers to the original line of MMTV- 

Myc mice. Expression levels were standardized to the virgin WT13 strain and error bars 

represent the standard deviation between the three experimental replicates (A).  The percentage 

of tumors with KRas mutations in Leder Myc, WT13, and TA14 strains (B).   
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FIGURE S 1.3: TYPES OF ACTIVATING MUTATIONS IN KRAS IN MYC INDUCED 

TUMORS AND HUMAN BREAST CANCER 

The percentage and type of KRas mutations in tumors as reported by the COSMIC database 

(9056 total tumors) for human cancers as compared with wild type MMTV-Myc (33 tumors) and 

MMTV-Myc T58A (24 tumors). 
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FIGURE S 1.4: KRAS MUTATIONS OCCUR MOST FREQUENTLY IN THE TA39 

STRAIN OF EMT TUMORS 

The percentage of tumors featuring KRas mutations for each histological type is shown for the 

individual strains of MMTV-Myc tumor prone mice.  
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FIGURE S 1.5:  PRINCIPLE COMPONENTS ANALYSIS OF GENE EXPRESSION 

DATA FROM MYC INDUCED TUMORS  

Batch effects between separate array experiments are illustrated with a principle components 

analysis(A) . Using Bayesian factor regression methods, batch effects were removed as 

illustrated in the principle components analysis (B). 
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FIGURE S 1.6:  STATISTICAL ANALYSIS OF PATHWAY PROBABILITIES IN EMT 

AND SQUAMOUS TUMORS 

A statistical comparison between EMT and squamous tumors for AKT (p<0.001) (A), E2F1 

(p<0.001)(B), p63(p=0.0047)(C), and RhoA (p=0.0437)(D) signal pathway activation probability 

(A-D respectively). 
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FIGURE S 1.7: THE STABILIZATION OF MYC IN T58A MAMMARY GLANDS AND 

THE DECREASE OF MYC PROTEIN LEVELS IN EMT-TYPE TUMORS 

A Western blot analysis of total Myc protein and exogenous HA-tagged Myc for tumors from the 

various strains of MMTV-Myc mice is shown (A-J). Total Myc is shown on the left and HA-

Myc on the right for EMT, microacinar and papillary tumors (when available) for each strain. 
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FIGURE S 1.8: QUANTIFICATION OF WESTERN BLOT ANALYSIS REVEALS 

STABILIZATION OF MYC IN T58A MAMMARY GLANDS AND LOSS OF MYC IN 

EMT-TYPE TUMORS 

Quantification of protein levels from FIGURE S 1.7 for total Myc and HA-Myc are shown for 

tumors from the various strains of MMTV-Myc mice, in the same order as the previous figure 

(A-J).  
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FIGURE S 1.9: PROTEIN LEVELS OF TOTAL AND EXOGENOUS MYC 

CORRELATE WITH GENE SIGNATURES OF MYC PATHWAY ACTIVATION 

Protein levels of total Myc significantly correlate (p=.005, R=.5344) with predicted Myc 

signaling pathway activation by application of gene signatures (A). Similarly, protein levels of 

HA-Myc also significantly correlate (p<.0001, R=.7381) with predicted Myc signal pathway 

activation by application of gene signatures (B).  
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FIGURE S 1.10: PRINCIPLE COMPONENTS ANALYSIS OF GENE EXPRESSION 

DATA FROM MYC INDUCED TUMORS AND HUMAN BREAST CANCER 

Batch and platform effects between mouse tumor and human breast cancer gene expression data 

is illustrated with a principle components analysis (A). Using Bayesian factor regression 

methods, batch and platform effects were removed as illustrated in the principle components 

analysis (B). 
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FIGURE S 1.11: VARIOUS STRAINS OF MMTV-MYC MICE DEVELOP EMT-TYPE 

TUMORS THAT ARE SIMILAR TO MYC-LOW HUMAN CLAUDIN LOW BREAST 

CANCER 

MMTV-Myc tumors that are EMT-type and are similar to the Myc-low claudin low human 

breast cancer subtype contain a demographic of 21% of tumors from the WT21 strain, 29% of 

tumors from the WT13 strain, 14% of tumors from the TA41 strain, 22% of tumors from the 

TA39 strain, and 14% of tumors from the TA14 strain.  
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FIGURE S 1.12: EXPRESSION OF HUMAN CLAUDIN LOW TUMOR MARKERS IN 

MYC INDUCED EMT-TYPE TUMORS AND CLAUDIN LOW TUMORS 

A comparison of various tumor types of mouse mammary tumors for RMA normalized gene 

expression levels of markers of human claudin low tumors (A). Similarly a comparison between 

intrinsic subtypes of human breast tumors for expression levels of markers for human claudin 

low tumors (B). 
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FIGURE S 1.13: MMTV-MYC TUMORS OF THE EMT-TYPE FEATURE STEM CELL-

LIKE PROPERTIES 

Gene set enrichment analysis comparing EMT-types of MMTV-Myc tumors with other 

histological types of Myc induced using a signature for genes that are upregulated in mammary 

stem cells (A). Likewise, MMTV-Myc tumors of the EMT-type compared to other histological  
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FIGURE S 1.13 (cont’d) 

types of Myc induced tumors using a signature for genes that are downregulated in mammary 

stem cells(B). 
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FIGURE S 1.14: STATISTICAL ANALYSIS OF PATHWAY PROBABILITIES IN MYC-

LOW CLAUDIN LOW TUMORS AND MYC-HIGH CLAUDIN LOW TUMORS 

A comparison between the Myc-low and Myc-High human claudin low tumors statistical 

differences in predicted  pathway activation for Akt, β-catenin, E2F1, Myc, p110, and TNFα (A-

F respectively) probabilities. 
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FIGURE S 1.15: STATISTICAL ANALYSIS OF PATHWAY PROBABILITIES IN 

MICROACINAR-LIKE LUMINAL B TUMORS AND OTHER LUMINAL B TUMORS 

A comparison of β-catenin (p<0.001) and Stat3 (p=0.009) pathway activation between a cluster 

of predominantly human Luminal B breast cancers that are similar to Myc induced microacinar 

tumors and another cluster of mainly human luminal B breast cancer (A,B respectively). 

 

 

 

 

 

 



 

175 
 

 

 

FIGURE S 1.16: HUMAN CLAUDIN LOW BREAST CANCERS HAVE A HIGH 

PROBABILITY OF RAS SIGNALING PATHWAY ACTIVATION 

Ras pathway activation probabilities are shown for human claudin low breast cancer and reveal 

that nearly 80% of human claudin low tumors have greater than a 0.50 probability of Ras 

signaling pathway activation. 
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FIGURE S 1.17: HUMAN CLAUDIN LOW BREAST CANCER AND KRAS MUTANT 

MMTV-MYC TUMORS OF THE EMT-TYPE ARE NOT KRAS ADDICTED 

Gene set enrichment analysis with a KRas addiction signature compares MMTV-Myc KRas 

mutant tumors and MMTV-Myc EMT-type KRas mutant tumors by GSEA using a KRas 

addiction signature(A). A comparison between human claudin low tumors and  basal breast 

cancer (B). 
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TABLE 1.1: ACTIVATING MUTATIONS IN KRAS  
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FIGURE 2.1: ANALYSIS OF RELATIONSHIPS BETWEEN MOUSE MAMMARY 

TUMOR MODELS  

(A)The unsupervised hierarchical clustering analysis of gene expression data for mouse 

mammary tumors, cell types, and normal mammary gland is shown. The dendrogram across the 

top illustrates relationships between samples and is color-coded to itemize the four main clusters.  
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FIGURE 2.1 (cont’d) 

Below the dendrogram, black bars label samples from each corresponding model on the same 

line. Gene expression values are illustrated with the heatmap, according to the scale shown. The 

vertical dendrogram beside the heatmap illustrates genes with similar patterns of expression 

across the samples in the dataset.   (B) The pie chart illustrates the gene ontologies of the genes 

that are significantly (q=0, fdr=0) overexpressed as identified by SAM in the blue cluster of 

tumors compared to tumors in other clusters. (C) The gene set enrichment plot comparing tumors 

from cluster 4 (black) to tumors in the other clusters shows significant enrichment for high 

expression of a gene set that defines mesenchymal breast cancer (p=.004). 
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FIGURE 2.2: FOLD CHANGE ANALYSIS OF NEU INDUCED TUMORS COMPARED 

TO OTHER TUMOR MODELS 

(A)The expression pattern for the top 50 significantly (q=0, fdr=0) upregulated and down 

regulated genes for Neu-induced tumors as identified by SAM are illustrated with the heatmap.  
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FIGURE 2.2 (cont’d) 

Above the heatmap, black bars denote the model each sample corresponds to. Expression levels 

are depicted according to the color bar beside the heatmap. (B) The bar graph shows the Bayes 

factor measuring the enrichment of predicted binding sites for the Krox family of transcription 

factors within upregulated genes from each model. The dotted line indicates a Bayes factor of 

2.0. (C). Gene ontologies for upregulated genes in Neu induced tumors are depicted in the pie 

chart according to the color-coded categories. (D) Gene ontologies for upregulated genes in TAG 

induced tumors are depicted in the pie chart according to the listed color-coded categories. 
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FIGURE 2.3: GENE SET ENRICHMENT ANALYSIS OF MOUSE MAMMARY 

TUMOR MODELS 

(A)Gene set for genes involved in the TCA cycle are significantly enriched (P<.0001) for low 

expression in TAG tumors. (B) A gene set for genes upregulated during tumor angiogenesis are 

significantly enriched (p=.019) for high expression in Wnt induced tumors. (C)A gene set for 

genes upregulated in breast cancer metastasis is significantly enriched (p=.02) for high 

expression in PyMT induced tumors. (D) A gene set for genes that upregulated as a result of 

TNF signaling is significantly enriched (p<.0001) for high expression in p53 mutant tumors.   
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FIGURE 2.4: UNSUPERVISED HIERARCHICAL CLUSTERING OF PATHWAY 

ACTIVATION PREDICTIONS IN MOUSE MAMMARY TUMORS 

The dendrogram across the top illustrates the relationship between samples based on predicted 

pathway activation profiles. Below the dendrogram, the black bars mark tumor samples 

corresponding to the model listed on the same line. The heatmap illustrates the probability of  
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FIGURE 2.4 (cont’d) 

pathway activation according to the color bar provided below the heatmap. The vertical 

dendrogram beside the heatmap illustrates pathways with similar predicted activity across the 

samples in the dataset. 
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FIGURE 2.5: UNSUPERVISED HIERARCHICAL CLUSTERING OF MOUSE 

MAMMARY TUMOR AND HUMAN BREAST CANCER GENE EXPRESSION DATA 

Across the top, the dendrogram illustrates the relationship between human and mouse tumor 

samples on the basis of gene expression profiles. The red bars mark the intrinsic subtype of each 

human tumor sample according the annotation on the same line. The blue bars correspond to the 

mouse mammary tumor type. Below this, a heatmap shows the gene expression patterns for each  
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FIGURE 2.5 (cont’d) 

sample, with expression values illustrated according to the color bar on the right. The 

dendrogram beside the heatmap shows the correlation between genes based on expression 

patterns across the samples in the dataset.  
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FIGURE 2.6: MIXTURE MODELING ANALYSIS OF HUMAN BREAST CANCER 

PATHWAY HETEROGENEITY AND RELATIONSHIPS TO MOUSE MODELS OF 

BREAST CANCER 

Pie charts above each heatmap illustrate the distribution of the intrinsic subtype of samples in 

each group, according to the color-coded legend. The heatmap for groups 1-10 show predicted 

pathway activity with probabilities corresponding to the color bar at the bottom of the figure.  
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FIGURE 2.6 (cont’d) 

Below this black bars mark the samples corresponding to annotations on the same line. 

Following the samples down to the heatmap below the black bars, the probability that a mouse 

model has similar pathway activation profiles is shown for each group. Probabilities for this 

heatmap are shown according to the color bar at the bottom of the figure. 
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FIGURE S 2.1: REMOVAL OF BATCH EFFECTS FROM AFFYMETRIX DATASETS 

(A)Affymetrix datasets color coded according to the study of origin in a principle components 

analysis plot prior to BFRM batch effect correction.  (B) Affymetrix datasets color coded 

according to the study of origin in a principle components analysis plot after BFRM batch effect 

correction.  (C) Affymetrix datasets are color coded together in blue after BFRM batch effect 

correction, the various Agilent gene expression datasets are color-coded and plotted along with  
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FIGURE S 2.1 (cont’d) 

Affymetrix data on the three principle components to illustrate platform and batch variance. (D) 

Agilent and Affymetrix color-coded data plotted after COMBAT removed batch and platform 

technical variance.(E) Neu-induced tumors are color coded in blue and all other tumors are in 

green, illustrating variance between similar tumor types on the basis of platform and batch 

artifacts. (F) Neu-induced tumors are color coded in blue and all other tumors are in green 

illustrating mediation of batch and platform effects. 
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FIGURE S 2. 2: GENE SET ENRICHMENT ANALYSIS FOR MOUSE MAMMARY 

TUMORS IN THE BLACK COLOR-CODED CLUSTER 

 (A)A gene set for downregulated genes in mesenchymal breast cancer is significantly enriched 

(p<.0001) and downregulated in the black cluster (cluster4) of tumors. (B) A gene set for Zeb1 

target genes is significantly enriched (p=.005) for low expression for the tumors in the black 

cluster. (C) A gene set for genes highly expressed in mammary stem cells is significantly 

enriched (p=.016) and upregulated in tumors from cluster 4 (black). (D) A gene set for genes that 

are downregulated in mammary stem cells is significantly enriched (p<.0001) and also 

downregulated in the cluster 4(black) tumors. 
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FIGURE S 2.3: TUMORS THAT WERE CLASSIFIED FOR MESENCHYMAL 

HISTOLOGY CLUSTER INTO THE BLACK CLUSTER 

Highlighting prior histological annotations for mesenchymal or EMT-like tumors across the 

Myc, IGF-IR, DMBA, and p53 mutant models show that a large majority of these tumors cluster 

together in the black cluster.
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FIGURE S 2.4: GENE SET ENRICHMENT ANALYSIS FOR MAMMARY CELL TYPES ACROSS MAJOR CLUSTERS 

OF MOUSE MAMMARY TUMORS 

GSEA for tumors in blue cluster compared to all other clusters show significant enrichment for a mammary luminal progenitor cell 

gene expression signature (p=.006). Similarly, tumors from the green cluster associate with a mixture of luminal cell gene expression 
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FIGURE S 2.4 (cont’d) 

features, while tumors in the orange cluster are significantly enriched for gene expression 

features of mature luminal cells (p=.04). Lastly, tumors in the black cluster are significantly 

enriched for gene expression features of mammary stem cells (p=.01).  
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FIGURE S 2.5: UNSUPERVISED HIERARCHICAL CLUSTERING OF PATHWAY 

PROBABILITIES FOR PYMT INDUCED TUMORS  

The dendrogram across the top illustrates the relationship between PyMT tumor types on the 

basis of pathway activation profiles. Below the dendrogram black bars correspond to sample 

details on the same line, annotating the genetic background and sample type for each sample. 

The heatmap shows the predicted pathway activity according to the probabilities listed on the 

color bar below the heatmap. Directly beside the heatmap, a vertical dendrogram illustrates the 

degree of correlation between pathways across the samples. 
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FIGURE S 2.6: UNSUPERVISED HIERARCHICAL CLUSTERING OF PATHWAY 

PROBABILITIES FOR MYC INDUCED TUMORS 

The dendrogram across the top illustrates the relationship between Myc tumor types on the basis 

of pathway activation profiles. Below the dendrogram black bars correspond to sample details on 

the same line, annotating the tumor histology (if known), specific form of Myc expression, 

recurrence status, and additional modifications. The heatmap shows the predicted pathway  
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FIGURE S 2.6 (cont’d) 

activity according to the probabilities listed on the color bar below the heatmap. Directly beside 

the heatmap, a vertical dendrogram illustrates the degree of correlation between pathways across 

the samples. 
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FIGURE S 2.7: UNSUPERVISED HIERARCHICAL CLUSTERING OF PATHWAY 

PROBABILITIES FOR NEU INDUCED TUMORS 

The dendrogram across the top illustrates the relationship between Neu tumor types on the basis 

of pathway activation profiles. Below the dendrogram black bars correspond to sample details on 

the same line, annotating the specific form of Neu, and additional modifications. The heatmap 

shows the predicted pathway activity according to the probabilities listed on the color bar below 

the heatmap. Directly beside the heatmap, a vertical dendrogram illustrates the degree of 

correlation between pathways across the samples. 
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FIGURE S 2.8: REMOVAL OF BATCH EFFECTS BETWEEN MOUSE AND HUMAN 

BREAST CANCER DATASETS 

(A)Mouse (blue) and human (green) Affymetrix data gene expression variance plotted onto three 

principle components prior to BFRM. (B) Mouse (blue) and human (green) Affymetrix data gene 

expression variance plotted onto three principle components after BFRM. (C) Human (green) 

and mouse (blue) Affymetrix data after BFRM correction put together with mouse Agilent data 

(red) prior to COMBAT. (D) Human (green) and mouse (blue) Affymetrix data after BFRM 

correction put together with mouse Agilent data (red) after COMBAT artifact correction. 
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FIGURE S 2.9: UNSUPERVISED HIERARCHICAL CLUSTERING OF MYC MOUSE 

MAMMARY TUMORS AND HUMAN BREAST CANCER GENE EXPRESSION DATA 

Across the top, the dendrogram illustrates the relationship between human and mouse tumor 

samples on the basis of gene expression profiles. The red bars mark the intrinsic subtype of each 

human tumor sample according the annotation on the same line. The blue bars correspond to the 

Myc mouse mammary tumor type. Below this, a heatmap shows the gene expression patterns for 

each sample, with expression values illustrated according to the color bar on the right. The 

dendrogram beside the heatmap shows the correlation between genes based on expression 

patterns across the samples in the dataset.  
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FIGURE S 2.10: CLAUDIN LOW MARKER EXPRESSION IN THE BLACK CLUSTER 

MOUSE MAMMARY TUMORS 

Claudin low marker expression comparisons for cluster 4 (black) tumors compared to tumors in 

all other clusters as defined by FIGURE 2.1 A. (A-C) Cell adhesion markers that have low 

expression in claudin low human tumors are also downregulated in cluster 4(black tumors),  
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FIGURE S 2.10 (cont’d) 

p<.0001. (D-E) Genes that are involved with the immune system that are found to be highly 

expressed in claudin low human tumors are highly expressed in mouse cluster 4 tumors (black), 

p<.01 for CD79B and p<.0001 for VAV1. (F) chemokine [C-X-C motif] ligand 12, involved in 

cell communication and previously shown to be highly expressed in claudin low tumors, is 

upregulated in cluster 4(black) mouse mammary tumors, p<.0001. (G) Fibroblast growth factor 

7, an extracellular matrix related factor and previously shown to be highly expressed in claudin 

low tumors, is upregulated in cluster 4(black) mouse mammary tumors, p<.0001. (H-I) Cell 

migration markers previously shown to be highly expressed in human claudin low tumors are 

upregulated in mouse cluster 4 (black) tumors, p<.02 for moesin and p<0001 for integrin α5.  (K) 

Angiogenesis marker, VEGFC, was previously shown to be upregulated in human claudin low 

tumors and is highly expressed in mouse cluster 4(black) tumors.  
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FIGURE S 2.11: MIXTURE MODELING HIGHLIGHTING PATHWAY 

RELATIONSHIPS BETWEEN HUMAN BREAST CANCER AND SPECIFIC MODELS 

OF NEU MEDIATED TUMORIGENESIS  

Pie charts above each heatmap illustrate the distribution of the intrinsic subtype of samples in 

each group, according to the color-coded legend. The heatmap for groups 1-10 show predicted 

pathway activity with probabilities corresponding to the color bar at the bottom of the figure. 

Below this blue bars mark the samples corresponding to annotations on the same line. Following  
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FIGURE S 2.11 (cont’d) 

the samples down to the heatmap below the blue bars, the probability that a specific type of Neu 

model has similar pathway activation profiles is shown for each group. Probabilities for this 

heatmap are shown according to the color bar at the bottom of the figure. 
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TABLE 2.1 : LIST OF MOUSE MODELS IN THE DATASET 

Model Arrays Promoter Description References 

Myc 319 MMTV     

WAP / Dox 

Myc mammary tumors of various histological types, 

expression levels and stability with variable Kras 

mutations.  

[102, 106, 

108, 113, 141, 

265, 266] 

Neu 124 MMTV Induction of adenocarcinomas with pulmonary 

metastasis. 

[106, 115, 

129, 266-271] 

PyMT 119 MMTV             

K6/RCAS       

MMTV/RCAS 

Rapid induction of luminal-type mammary tumors 

with pulmonary metastasis.  
[110, 266, 

272-274] 

SV40 

Large T 

Antigen 

107 C3                                           

WAP 

Induction of mammary tumors with similarities to 

human basal type breast cancer. 
[129, 266, 

275-277] 

p53 92 Null Tumors with similarities to human basal type breast 

cancer. 

[129, 266, 

278, 279] 

CreEtv6 / 

NTRK3 

63 WAP Fusion oncoprotein transforms through activation of 

AP1. 
[260] 

MET 52 MMTV Diverse histologies with similarities to human basal 

breast cancer. 
[107] 

BRCA / 

p53 

46 WAP MMTV 

BLG 

CKO of BRCA1 in a p53 null background. Tumors 

similar to human basal breast cancer. 
[94, 266] 

Wnt 35 MMTV Induction of mammary tumors with diverse gene 

expression patterns. 

[266, 280-

282] 

IGF-IR 26 MTB Basal-like mammary tumors. Recurrent tumors 

resemble human claudin-low. 
[283] 

LPA 16 MMTV ER positive, metastatic tumors. [284] 

Stat5 16 BLG Induction of mammary tumors NA 

Brg1 (+/-) 14 Mutant Heterogeneous breast cancers. [285] 

DMBA 12 Chemical Mammary carcinomas with three phenotypes: 

adenocarcinoma, squamous cell carcinoma, and 

myoepithelial cell carcinoma. 

[286] 

Ras 10 MMTV Induction of mammary tumors with rapid tumor onset. [266] 

Int3 9 WAP Metastatic tumors. [287] 

RB/ p107 7 CKO Adeno and adenosquamous carcinomas similar to 

luminal B or basal. 
[263] 

APC CKO 6 K14-Cre CKO results in adenocarcinomas with histological and 

molecular heterogeneity. 
[288] 

Autotaxin 

(ATX) 

5 MMTV ER+ metastatic mammary tumors. 
[284] 

BRCA 5 CKO Tumors similar to human basal type breast cancer. NA 

STAT1 5 Knockout ERa+ PR+, hormone dependent like human ERa+ 

luminal. 
[289] 

Notch 4 Dox Induction of mammary adenocarcinomas. NA 

PDK1 2 MMTV Induction of mammary tumors [290] 

Normal 

Mammary 

Gland 

47 Not Applicable Normal mammary gland samples from FVB, BalbC, 

and CD1 genetic backgrounds. 
[107, 271, 

284] 

*Dox = Doxacycline inducible MMTV-Rtta system. CKO - conditional knockout   
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TABLE 2. 2 : VALIDATION OF PATHWAY PREDICTIONS 

Model Pathway Effect References 

APC cKO B-

Catenin 

Demonstrated high activation of β-catenin signaling in these 

tumors. 

[288] 

APC cKO Myc High levels of Myc demonstrated by IHC in these mammary 

tumors. 

[288] 

BRCA & 

P53 mut 

EGFR Using IHC, EGFR was shown to be overexpressed in this mouse 

model.  

[291] 

DMBA Ras Observation of H-Ras mutations in mammary hyperplastic 

outgrowths after treatment with DMBA 

[147] 

DMBA EGFR Using western blot and IHC, EGFR signaling was shown to be 

active in DMBA induced mammary tumors. 

[148] 

ETV6-

Ntrk3 

Src ETV6-Ntrk3 binds to and activates c-Src, and inhibition of c-Src 

activation blocks EN transforming activity using mouse engineered 

mouse embryonic fibroblasts. 

[292] 

Myc Ras Activating mutations in K-Ras found in a subset MMTV-Myc 

induced tumors with an predicted elevation of Ras signaling. 

[106] 

Myc B-

Catenin 

IHC analysis demonstrates higher expression of B-Catenin in the 

microacinar histology of Myc driven tumors. 

[106] 

Myc E2F1   

E2F2      

E2F3 

E2F loss altered tumor latency and Myc proliferative effects on the 

mammary gland. 

[108] 

Neu Akt Akt loss effects tumor development in the MMTV-Neu mouse 

model. 

[293] 

Neu B-

Catenin 

Using a beta-gal reporter, ß-catenin/TCF-dependent transcription 

was shown to be elevated in MMTV-Neu mouse mammary glands.  

[144] 

Notch B-

Catenin 

Knocking down Notch in a human breast cancer cell line also 

impacted levels of beta-catenin. 

[145] 

PyMT Tgfb Blockade of TGF-beta inhibits mammary tumor metastasis. [146] 

PyMT Src Loss of c-Src greatly reduced the occurrence of mammary tumors 

in the MMTV-PyMT mouse model. 

[150] 

Tag Ras K-ras amplifications observed in large t-antigen mediated 

tumorigenesis. 

[294] 

Tag E2F2     

E2F3           

RB KO 

Large T Antigen simulates loss of Rb by leading to deregulated 

activation of the E2F transcription factors. 

[295] 

Wnt p53 MMTV-Wnt1 mammary tumors with mutant p53 exhibited a 

superior clinical response compared to tumors with wild-type p53. 

[296] 
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FIGURE 3.1: PATHWAY SIGNATURES PREDICT E2F ACTIVATION IN 

METASTATIC BREAST TUMORS 

(A) Probability of pathway activation in transgenic MMTV-PyMT tumors are shown for the 

given signaling pathways listed on the right axis of the heatmap. Below the heatmap, a scale bar 

depicts the range of probabilities from 0 to 1. The probabilities were used in unsupervised 

hierarchical clustering of both pathways with clusters identified on the basis of pathway 

activation in the transgenic tumor samples.  (B) The Kaplan-Meier plot shows metastasis free  
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FIGURE 3.1 (cont’d) 

survival for breast cancer patients (n=1610) stratified on expression of E2F1, Affymetrix probe 

204947_at, p=0.00016 . (C) Patients are stratified based on E2F2, Affymetrix probe 207042_at, 

expression levels, p=0.012. (D) Patients are stratified on the basis of E2F3, Affymetrix probe 

203693_s_at, p=0.00095. Patient stratification was conducted using the www.kmplot.com auto 

selection option.  
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FIGURE 3.2: LOSS OF E2FS ALTER TUMOR ONSET 

Representative mammary whole mounts from 35 day old virgin MMTV-PyMT E2F
WT/WT

 (A), 

E2F1
-/-

 (B), E2F2
-/-

 (C), and E2F3
+/-

 (D) mice are shown. (E) Tumor Latency was compared in a 

Kaplan-Meier plot for PyMT induced tumors in a wild type (
WT/WT

) (n=34) and E2F1 -/- (n=22) 

background revealing a significant acceleration with loss of E2F1 (p<0.0001).  (F) Kaplan-Meier 

plot for tumor onset between E2F
WT/WT

 and E2F2
-/-

 backgrounds (n=34 and 20 respectively). (G) 

Kaplan-Meier plot for tumor onset between E2F
WT/WT

 and E2F3
+/-

 backgrounds (n=34 and 24 

respectively) with a significant delay (p=0.004). 
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FIGURE 3.3: E2F LOSS RESULTS IN GENE EXPRESSION CHANGES OF OTHER 

E2F FAMILY MEMBERS 

Quantitative PCR results are shown depicting relative expression of E2F1, E2F2, E2F3A and 

E2F3B in E2F
WT/WT

 (n=4) tumors, E2F1
-/-

 tumors (n=4), E2F2
-/-

 tumors (n=4),and E2F3
+/-

 

tumors (n=4). E2F1
-/-

 tumors had upregulation of E2F3A(p=0.0232). In E2F2
-/-

 tumors, a 

decrease in E2F1 levels (p=0.0016) and significant upregulation of E2F3A (p=0.0105) is shown. 

In E2F3
+/-

 tumors, significant downregulation of E2F3B (P=0.0175) is shown.   
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FIGURE 3.4: LOSS OF E2FS ALTERS TUMOR HISTOLOGY 

H&E staining revealed microacinar tumors (A) and adenosquamous tumors (B) among other 

tumor types. (C) The proportion of histological types of tumors in the corresponding genotypes 

of MMTV-PyMT mice are shown (MS Mixed = Microacinar and adenosquamous mixture). (D) 

The percentage of adenosquamous tumors within the population of the E2F wild type and mutant 

mice. Fisher’s exact test was used to compare E2F
WT/WT

 with E2F1
-/-

 populations (p=0.001), as 

well as with E2F2
-/-

 populations (p=0.0003). 
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FIGURE 3.5: LOSS OF E2FS DECREASE PULMONARY METASTASIS IN MMTV-

PYMT MICE 

Representative wet mount images for E2F
WT/WT

, E2F1
-/-

, E2F2
-/-

, and E2F3
+/-

 mice (A-D, 

respectively). White arrows indicate surface metastases. (E-H)Representative images are shown 

for H&E stained sections of lungs. (I-L) 10X images of the regions within black boxes in E-H  
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FIGURE 3.5 (cont’d) 

show histology of tumor metastases. (M) A comparison of the average number of lung 

metastases and SEM in pulmonary sections from E2F
WT/WT

 mice compared to E2F mutant 

backgrounds revealed significant differences in E2F1
-/-

 mice (p<0.0001) and E2F2
-/-

 mice 

(p=0.002). (N) A comparison of the average percentage and SEM of the lung occupied by 

metastasis in pulmonary sections from E2F
WT/WT

 mice compared to E2F1
-/-

 mice (p<0.0001), 

E2F2
-/-

 mice (p<0.0001), and E2F3
+/-

 mice is shown. 
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FIGURE 3.6: LOSS OF E2FS DECREASE CIRCULATING TUMOR CELLS IN MMTV-

PYMT MICE 

(A) Representative colony forming assay plate for negative control, non-transgenic FVB 

mice(n=6). Representative plates are shown for MMTV-PyMT E2F
WT/WT

 (n=14) (B), MMTV-

PyMT E2F1
-/-

(n=7) (C), MMTV-PyMT E2F2
-/-

(n=10) (D), and MMTV-PyMT E2F3
+/-

(n=10)(E) 

mice. (F) A comparison of the average number of circulating tumor cells and SEM detected in 

MMTV-PyMT E2F
WT/WT

 mice, MMTV-PyMT E2F1
-/-

 mice (p=0.02), MMTV-PyMT E2F2
-/-

 

mice (p=0.006), and MMTV-PyMT E2F3
+/-

 mice are shown. 
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FIGURE 3.7: LOSS OF E2FS DECREASE TUMOR CELL PULMONARY 

COLONIZATION 

Representative sections of lungs are shown for mice injected with E2F
WT/WT

 tumor cells, n=8 

(A), E2F1
-/-

 tumor cells, n=9 (B), and E2F2
-/-

 tumor cells, n=7 (C). (D) A comparison of the 

average number and SEM of metastases detected in sections of lungs of mice injected with 

E2F
WT/WT

 tumor cells, E2F1
-/-

 tumor cells (p=0.01), and E2F2
-/-

 tumor cells (p=0.02). (E)A 

comparison of the average percentage and SEM of the lung occupied by metastasis in pulmonary 

sections from mice injected with E2F
WT/WT

 tumor cells compared to mice injected with E2F1
-/-

 

and E2F2
-/- 

tumor cells is shown.  
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FIGURE 3.8: E2F1 EXPRESSION LEVELS AND PATHWAY ACTIVITY ARE 

ELEVATED IN LUNG METASTASES 

(A) Quantitative RT-PCR results showing the relative expression of E2F1 in primary tumors 

(n=6) compared to lung metastases (n=6, p=0.0004).  (B) Quantitative RT-PCR results showing 

the relative expression of E2F2 in primary tumors compared to lung metastases.  (C) Pathway 

signature for E2F1 shows predicted E2F1 activation in primary tumors (n=6) and lung 

metastases (n=4) within GEO dataset GSE43566, p=  0.0007.  (D) Pathway signature for E2F2 

shows predicted E2F2 activation in primary tumors and lung metastases within GEO dataset 

GSE43566. 
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FIGURE 3.9: TRANSPLANT OF TUMORS INTO E2F WILD TYPE MICE SHOWS E2F 

REGULATION OF METASTASIS IS CELL AUTONOMOUS 

Viable frozen tumor samples (E2F
WT/WT

, n=4; E2F1
-/-

, n=4; E2F2
-/-

, n=4) were used for 

transplant into E2F wild type MMTV-Cre control mice. (A) Representative histological sections 

for lungs of mice implanted with an E2F
WT/WT

 tumor, E2F1
-/-

 tumor (B) or E2F2
-/-

 tumor (C) 

tumor. (D)Quantification revealed a significant reduction in the number of metastases observed 

in the lungs of mice implanted with an E2F1
-/-

 (p=0.003) or E2F2
-/-

 (p=0.01) tumor compared to 

mice implanted with an E2F
WT/WT

 tumor. (E) Quantification of the percentage of lungs occupied 

by metastasis shows reduced metastatic burden in mice receiving E2F1
-/-

 and E2F2
-/-

 tumors. 
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FIGURE 3.10: E2F1 LOSS ALTERS CD31 STAINING AND REDUCES VEGFA 

EXPRESSION IN MMTV-PYMT TUMORS  

(A) Representative section of E2F
WT/WT

 tumor stained for CD31 to reveal vascular structure. (B) 

Representative section of E2F1
-/-

 tumor stained for CD31 to reveal vascular structure. (C)  
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FIGURE 3.10 (cont’d) 

Quantitative RT-PCR results depicting the relative expression levels of VEGFA in E2F
WT/WT

 

(n=6) and E2F1
-/-

 (n=6) tumors (p=0.0002).  
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FIGURE 3.11: ANALYSIS OF E2F TARGET GENES REVEALS EXPRESSION 

CHANGES IN PRO-METASTATIC GENES WITH E2F LOSS 

(A). Informatics pipeline for filtering candidate genes for qRT-PCR testing. Testing potential 

target genes via qRT-PCR we found that E2F1
-/-

 (n=6) and E2F2
-/-

 (n=6) tumors have 

significantly lower levels Bmp4 (p=0.0002, p<0.0001 , respectively), Cyr61 (p=0.0009, 

p=0.0006 , respectively), and Nupr1 (p<0.0001, p<0.0001 , respectively), Plod 2 isoform 

1(p<0.0001 , E2F2
-/-

 only), Plod 2 isoform 2(p=0.0122, p=0.0015 , respectively),  
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FIGURE 3.11 (cont’d) 

P4ha1(p=0.0006, p<0.0001 , respectively), Adamts1 (p<0.0001, p<0.0001 , respectively), 

Lgals3(p<0.0001, p<0.0001 , respectively), and Angpt2 (p=0.0065, E2F1
-/-

 only)(Fig 11 B-J). 
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FIGURE S 3.1: ASSOCIATION E2F SIGNATURE GENES WITH HUMAN BREAST 

CANCER DISTANT METASTASIS FREE SURVIVAL TIMES 

(A)Using the average expression of the upregulated genes in the E2F1 signature, a correlation 

(p=0.00024) with a shorter time to distant metastasis in human breast cancer patients (n=1610) 

was detected. (B) Using the average expression of the upregulated genes in the E2F2 signature, a 

correlation (p=0.000037) with a shorter time to distant metastasis in human breast cancer patients 

(n=1610) was detected. (C)Using the average expression of the upregulated genes in the E2F3 

signature, a correlation (p=0.0052) with a longer time to distant metastasis in human breast  
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FIGURE S 3.1 (cont’d) 

cancer patients (n=1610) was detected. Patient stratification was conducted using the 

www.kmplot.com auto selection tool.  
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FIGURE S 3.2: ASSOCIATION OF E2F1 LEVELS AND SIGNATURE GENES 

DISTANT METASTASIS FREE SURVIVAL TIMES WITHIN SPECIFIC INTRINSIC 

SUBTYPES OF HUMAN BREAST CANCER  
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FIGURE S 3.2 (cont’d) 

For each analysis using signature genes the average expression of the upregulated genes in the 

E2F1 signature were used during stratification. (A-C) The association of E2F1 levels and 

signature genes within the basal subtype of breast cancer are shown. (D-F) The association of 

E2F1 levels and signature genes with metastasis events in the luminal A subtype of breast cancer 

are shown(p=0.0049 for 2028_s_at, p=0.002 for 204947_at, and p=0.000073 for the analysis 

using the signature genes). (G-I) The association of E2F1 levels and signature genes with 

metastasis events in the luminal B subtype of breast cancer are shown(p=0.0055 for 2028_s_at, 

p=0.041 for 204947_at, and p=0.037 for the analysis using the signature genes). (J-L) The 

association of E2F1 levels and signature genes within the Her2 subtype of breast cancer are 

shown. 
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FIGURE S 3.3: ASSOCIATION OF E2F2 LEVELS AND SIGNATURE GENES 

DISTANT METASTASIS FREE SURVIVAL TIMES WITHIN SPECIFIC INTRINSIC 

SUBTYPES OF HUMAN BREAST CANCER  
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FIGURE S 3.3 (cont’d) 

For each analysis using signature genes the average expression of the upregulated genes in the 

E2F2 signature were used during stratification. (A-B) The association of E2F2 levels and 

signature genes within the basal subtype of breast cancer are shown. While high levels of E2F2 

are protective (p=0.043, high expression E2F2 signature genes predict faster onset of distant 

metastasis(p=0.028) (C-D) The association of E2F2 levels and signature genes with metastasis 

events in the luminal A subtype of breast cancer are shown(p=0.0041 for E2F2 levels, p=0.0014 

for the analysis using the signature genes). (E-F) The association of E2F2 levels and signature 

genes with metastasis events in the luminal B subtype of breast cancer are shown(p=0.0042 for 

the analysis using the signature genes). (G-H) The association of E2F2 levels and signature 

genes within the Her2 subtype of breast cancer are shown. 
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FIGURE S 3.4: ASSOCIATION OF E2F3 LEVELS AND SIGNATURE GENES 

DISTANT METASTASIS FREE SURVIVAL TIMES WITHIN SPECIFIC INTRINSIC 

SUBTYPES OF HUMAN BREAST CANCER 
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FIGURE S 3.4 (cont’d) 

For each analysis using signature genes the average expression of the upregulated genes in the 

E2F3 signature were used during stratification. (A-C) The association of E2F3 levels and 

signature genes within the basal subtype of breast cancer are shown. (D-F) The association of 

E2F3 levels and signature genes with metastasis events in the luminal A subtype of breast cancer 

are shown. (G-I) The association of E2F3 levels and signature genes with metastasis events in 

the luminal B subtype of breast cancer are shown. (J-L) The association of E2F3 levels and 

signature genes within the Her2 subtype of breast cancer are shown. 
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FIGURE S 3.5: LOSS OF E2FS DOES NOT AFFECT TUMOR GROWTH RATE OR 

TUMOR BURDEN 

(A)The average tumor growth rate is depicted by the days until the primary tumor reaches 

2,000mm
3
 from initial palpation.  At tumor endpoint, the number of tumors present on each 

mouse was counted. (B) The average number of tumors per mouse for each population of  
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FIGURE S 3.5 (cont’d) 

E2F
WT/WT

 or mutant mice. (C) The average volume (mm
3
) from the sum of each tumor present 

within a mouse. All error bars represent SEM. All comparisons were made between E2F wild 

type controls and E2F knockout mice using a T-Test. 
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FIGURE S 3.6: E2F1 LOSS HAS NO EFFECT ON KI67 STAINING IN EARLY OR 

LATE STAGED TUMORS 

(A) Representative IHC staining for KI67 in early stage (diameter=6mm) E2F
WT/WT

 tumors 

(n=5). (B) Representative IHC staining for KI67 in early stage (diameter=6mm) E2F1
-/-

tumors 

(n=5).(C) Quantification of IHC results showing the average number of KI67 positive cells per 

field in E2F
WT/WT

 and E2F1
-/-

 early stage tumors. (D) Representative IHC staining for KI67 in 

end stage (diameter=20mm) E2F
WT/WT

 tumors (n=5). (E) Representative IHC staining for KI67 

in end stage (diameter=20mm) E2F1
-/-

tumors (n=5). (F) Quantification of IHC results showing 

the average number of KI67 positive cells per field in E2F
WT/WT

 and E2F1
-/-

 end stage tumors. 
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FIGURE S 3.7: E2F1 LOSS HAS NO EFFECT ON TUNEL STAINING IN EARLY OR 

LATE STAGED TUMORS 

(A) Representative IHC staining for TUNEL in early stage (diameter=6mm) E2F
WT/WT

 tumors 

(n=5). (B) Representative IHC staining for TUNEL in early stage (diameter=6mm) E2F1
-/-

tumors (n=5).(C) Quantification of IHC results showing the average number of TUNEL positive 

cells per field in E2F
WT/WT

 and E2F1
-/-

 early stage tumors. (D) Representative IHC staining for 

TUNEL in end stage (diameter=20mm) E2F
WT/WT

 tumors (n=5). (E) Representative IHC staining 

for TUNEL in end stage (diameter=20mm) E2F1
-/-

tumors (n=5). (F) Quantification of IHC 

results showing the average number of TUNEL positive cells per field in E2F
WT/WT

 and E2F1
-/- 

end stage tumors. 
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FIGURE S 3.8: WESTERN BLOT ANALYSIS SHOWS E2F3 PROTEIN LEVELS AT 

VARIOUS STAGES OF MMTV- PYMT TUMOR DEVELOPMENT  

(A) A comparison of E2F3 protein levels in 35 day old mammary glands in E2F WT (n=4) and 

E2F3
+/-

 (n=4) glands. (B) A comparison of E2F3 protein levels in early stage (diameter= 6mm) 

tumors from E2F
WT/WT

 (n=3) and E2F3
+/-

 (n=3) mice. (C) A comparison of E2F3 protein levels 

in end stage (diameter= 20mm) tumors from E2F
WT/WT

 (n=4) and E2F3
+/-

 (n=4) mice. 
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FIGURE S 3.9: LOSS OF E2FS REDUCES TRANSGENIC SIGNAL FOR 

CIRCULATING TUMOR CELLS 

A comparison of qRT-PCR signal for expression of the transgene circulating tumor cell marker 

in transgenic control mice and E2F1 knockout mice reveals that loss of E2F1 significantly 

(p<.0001) reduces circulating tumor cells. 
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FIGURE S 3.10- WOUND HEALING ASSAY SHOWS MIGRATORY ABILITY OF 

TUMOR DERIVED CELLS FROM E2F
WT/WT

, E2F1
-/-

, AND E2F2
-/-

 MICE 

(A) Representative pictures of wound closure at indicated time points for E2F
WT/WT

, E2F1
-/-

, and 

E2F2
-/-

 tumor cells. (B) Quantification of wound closure at indicated time points for E2F
WT/WT

, 

E2F1
-/-

, and E2F2
-/-

 tumor cells. 



 

237 
 

 

FIGURE S 3.11: TRANSWELL INVASION ASSAY SHOWS MIGRATORY ABILITY 

OF TUMOR DERIVED CELLS FROM E2F
WT/WT

, E2F1
-/-

, AND E2F2
-/-

 MICE 

(A) Representative picture for E2F
WT/WT

 tumor cell migration in the transwell invasion assay. (B) 

Representative picture for E2F1
-/-

 tumor cell migration in the transwell invasion assay. (C) 

Representative picture for E2F2
-/-

 tumor cell migration in the transwell invasion assay. (D) 

Quantification of transwell invasion assay for E2F
WT/WT

, E2F1
-/-

 and E2F2
-/-

 tumor cells. 
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FIGURE S 3.12: RELATIVE EXPRESSION OF E2F1, E2F2, E2F3A, AND E2F3B IN 

MMTV-PYMT TRANSPLANTED TUMORS. 

E2F1
-/-

 tumors (n=4) had a significant increase in E2F2 (p=0.0032) and E2F3A (p=0.0254) 

expression with a significant decrease in E2F3B (p=0.0358). Similar to the spontaneous tumors, 

E2F2
-/-

 transplanted tumors had a significant decrease in E2F1 expression (p=0.0046) and a 

significant downregulation (p=0.0024) of E2F3B. 
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FIGURE S 3.13: E2F LOSS HAS NO EFFECT ON F4/80 STAINING IN END STAGE TUMORS 

(A) Representative IHC staining for F4/80  in end stage (diameter=20mm) E2F
WT/WT

 tumors (n=5). (B) Representative IHC staining 

for F4/80  in end  stage (diameter=20mm) E2F1
-/- 

tumors (n=5).(C) Representative IHC staining for F4/80  in end  stage 

(diameter=20mm) E2F2
-/- 

tumors (n=5) (D) Quantification of IHC results showing the average number of F4/80 positive cells per field 

across the various indicated genotypes. 
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FIGURE 4.1: GENE EXPRESSION ANALYSIS OF MMTV-PYMT TUMORS REVEALS GENOMIC RESPONSE TO E2F1 

LOSS AND POTENTIAL METASTATIC REGULATORS
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FIGURE 4.1 (cont’d) 

(A) Unsupervised hierarchical clustering of MMTV-PyMT tumor gene expression data. Black 

bars indicate the position of individual tumor samples and corresponding genotype and 

histology. The color bar depicts the range of expression values for the heatmap above. (B) 

Unsupervised hierarchical clustering of MMTV-PyMT tumor pathway activation predictions. 

Black bars indicate the position of individual tumor samples and corresponding genotype and 

histology. The color bar depicts the range of probability values for the heatmap above. (C) The 

significance analysis of microarrays plot illustrates the significant gene expression changes with 

loss of E2F1 in MMTV-PyMT tumors. The red bar indicates the genes that are upregulated with 

E2F1 loss and the green bar illustrates the genes that are downregulated with E2F1 loss. (D) 

Mapping the 55 genes that had concordant metastasis predictions to the Rb1, E2F1, Src, p110, 

EGFR, Ras, RhoA, and Tgfb pathways using the String-DB interaction network tool. (E) Kaplan 

Meier analysis of Adm using annotations for time until human breast cancer patients developed a 

distant metastasis. This analysis did not select for tumors of a specific intrinsic subtype. (F) 

Kaplan Meier analysis of Fgf13 using annotations for time until human breast cancer patients 

developed a distant metastasis. This analysis did not select for tumors of a specific intrinsic 

subtype. 
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FIGURE 4.2: SEQUENCE TRACE AND ALIGNMENT FOR CRISPR-MEDIATED ADM 

AND FGF13 KNOCKOUT 

(A) Sequence trace for Adm WT cells and Adm knockout clone 3D11. (B) Sequence alignment 

for the four Adm knockout clones. (C) Sequence trace for Fgf13 WT cells and Fgf 13 knockout 

clone 2H5. (D) Sequence alignment for the two Fgf 13 knockout clones. 
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FIGURE 4.3: IN VITRO CHARACTERIZATION OF ADM AND FGF 13 KNOCKOUT 

CLONES 

(A) Cell counts for 419 control cells and Adm KO clones over 4 days. For this experiment, 

100,000 cells were seeded on day one. Cells were counted on each of the three following days.  
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FIGURE 4.3 (cont’d) 

This experiment was done in triplicate. (B) Cell counts for 419 control cells and Fgf 13 KO 

clones over 4 days. For this experiment, 100,000 cells were seeded on day one. Cells were 

counted on each of the three following days. This experiment was done in triplicate. (C) 

Example wound healing assay results at 0 and 18 hours for 419 control cells and the Adm KO 

clone 3D3. (D) Quantification for wound healing at 18 hours for 419 control cells and Adm KO 

cells. This experiment was done in triplicate. (*= p>0.0001) (E) Example wound healing assay 

results at 0 and 18 hours for 419 control cells and the Fgf 13 KO clone 2H5. (F) Quantification 

for wound healing at 18 hours for 419 control cells and Fgf 13 KO cells. This experiment was 

done in triplicate. (*= p>0.0001) 
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FIGURE 4.4: KNOCKOUT OF ADM OR FGF 13 INHIBITS METASTASIS TO THE LUNGS AND LIVER
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FIGURE 4.4 (cont’d) 

(A) Representative histological sections for the lungs of mice receiving MMTV-PyMT 419 

control cells, Adm KO cells, and Fgf 13 KO cells by tail vein injection of 50,000 cells. Mice 

were euthanized 21 days following injection. Black boxes highlight the location of the inset. 

Inset photos were taken at 20X and blue arrow heads highlight the presence of a micro 

metastasis. (B) Representative histological sections for the liver of mice receiving MMTV-PyMT 

419 control cells, Adm KO cells, and Fgf 13 KO cells. (C) Quantification for the percentage of 

mice with lung metastasis detected in a single section of lungs or as detected during necropsy. 

(D) Quantification for the percentage of mice with lung metastasis detected in a single section of 

liver. (E) The number of lung metastases detected in a single section of lungs from mice 

receiving individual control, Adm KO, and Fgf 13 KO clones. (F) The number of liver 

metastases detected in a single section of liver from mice receiving individual control, Adm KO, 

and Fgf 13 KO clones. 
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FIGURE 4.5: ANALYSIS OF THE ADM COVARIANCE NETWORK REVEALS AN 

ASSOCIATION WITH HYPOXIA RESPONSE, MAJOR CELL SIGNALING 

PATHWAYS, AND ACCELERATION OF TIME UNTIL DISTANT METASTASIS IN 

HUMAN BREAST CANCER  

(A) Venn diagram analysis depicting the Adm covariance network association with hypoxia 

response, angiogenesis, glycolysis or other categories. (B) Interaction network analysis of the  
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FIGURE 4.5 (cont’d) 

Adm covariance network genes with the Egfr, Beta-catenin, Ras, Src, Rb, E2F1, PI3K, RhoA, 

and Tgfb pathways. (C) Venn diagram illustrating the number of Adm covariance network genes 

that are upregulated in response to RhoA, Egfr, Ras, or Tgfb pathways. (D) Venn diagram 

showing the relationship of the Adm covariance network genes that are upregulated in response 

to RhoA, Egfr, or Tgfb pathways that are also glycolysis or hypoxia response genes. (E) Kaplan 

Meier analysis of Adm covariance network genes as a signature to test for correlation with 

annotations for time until human breast cancer patients developed a distant metastasis. This 

analysis did not select for tumors of a specific intrinsic subtype. 
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FIGURE 4.6: THE FGF 13 COVARIANCE NETWORK ASSOCIATES WITH MAJOR 

CELL SIGNALING PATHWAYS AND EARLIER HUMAN BREAST CANCER 

METASTASIS EVENTS 

(A) String interaction network for Fgf 13 covariance network genes and cell signaling pathways 

with low activity in E2F1 
-/-

 tumors reveals an association for a subset of Fgf13 covariance  
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FIGURE 4.6 (cont’d) 

network genes and the Ras, Egfr, RhoA, Src, Rb, E2F1, and beta-catenin pathways. (B) Kaplan 

Meier analysis for the Fgf 13 covariance network genes as a signature shows these genes are 

significantly associated with earlier human breast cancer metastasis.  This analysis did not select 

for tumors of a specific intrinsic subtype. 
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TABLE 4.1: PRO-METASTATIC GENES SIGNIFICANTLY DOWNREGULATED IN E2F1 -/- TUMORS COMPARED TO 

E2F WT/WT TUMORS
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TABLE 4.1 (cont’d) 
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TABLE 4.2: A SUMMARY OF THE METASTATIC FUNCTIONS OF CELL SIGNALLING PATHWAYS WITH LOW 

ACTIVITY IN E2F1 -/- TUMORS 
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FIGURE 5.1: VENN DIAGRAM ILLUSTRATION OF THE IDENTIFICATION OF 

SQUAMOUS SIGNATURE GENES 

To identify  squamous genes we used significance analysis of microarrays to set up the following 

comparisons: E2F
 WT/WT

 squamous tumors compared to E2F
 WT/WT 

non-squamous tumors, E2F2 
-

/- 
squamous tumors compared to E2F2 

-/- 
non-squamous tumors, E2F2 

-/- 
squamous tumors 

compared to E2F 
WT/WT 

non-squamous tumors, and E2F
 WT/WT

 squamous tumors compared to 

E2F2
 -/- 

non-squamous tumors. The Venn diagram shows the overlap of all of the comparisons, 

revealing 179 genes that are consistently upregulated in squamous tumors from MMTV-PyMT 

mice. 
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A  

 

B 

 

FIGURE 5.2: VENN DIAGRAM ILLUSTRATION OF THE IDENTIFICATION OF 

EMT-LIKE SIGNATURE GENES 

To identify  EMT-like genes we used significance analysis of microarrays to set up the following 

comparisons: EMT-like tumors compared to all non-EMT-like tumors, EMT-like tumors 

compared to squamous tumors, EMT-like tumors compared to papillary tumors, and EMT-like  
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FIGURE 5.2 (cont’d) 

tumors compared to microacinar tumors. Signature genes focused on genes that were 

differentially regulated in each comparison. (A) The overlapping genes that were upregulated in 

each of the comparisons. In total, the analysis revealed 185 genes consistently upregulated in 

EMT-like tumors. (B) The overlapping genes that were downregulated in each of the 

comparisons, depicting 175 genes consistently downregulated in EMT-like tumors. 
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FIGURE 5.3: VALIDATION OF SQUAMOUS SIGNATURE GENES USING MMTV-

MYC TUMORS 

(A) Unsupervised hierarchical clustering using squamous signature genes accurately splits out 

squamous tumors from the other tumor histologies. (B) Gene set enrichment analysis (GSEA) 

comparing MMTV-Myc squamous tumors to all non-squamous tumors. The squamous signature 

genes derived from MMTV-PyMT tumors were significantly enriched in MMTV-Myc squamous 

tumors ( NES 1.48, nominal p-value=0.0, FDR q-value =0.029, FWER p-value=0.016). 
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FIGURE 5.4: VALIDATION OF EMT SIGNATURE GENES USING MMTV-MET 

TUMORS 
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FIGURE 5.4 (cont’d) 

(A) Unsupervised hierarchical clustering using squamous signature genes accurately splits out 

the MMTV-Met Emt-like (splindoid) tumors from the other tumor histologies. (B) Testing for 

enrichment of the signature genes with GSEA illustrated a significant enrichment for 

upregulation of the upregulated EMT-like signature genes in Met-induced EMT-like tumors 

compared to non EMT-like tumors (FIGURE 5.4B, NES=1.76, nominal p-value=0.0, FDR q-

value= 0.009, FWER p-value = 0.011).  (B)  GSEA found significant enrichment for 

downregulation of the downregulated EMT-like signature genes in Met-induced EMT-like 

tumors compared to non EMT-like tumors (FIGURE 5.4C, NES=-1.66, nominal p-value=0.006, 

FDR q-value= 0.009, FWER p-value = 0.018). 
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FIGURE 5.5 : UNSUPERVISED HIERARCHICAL CLUSTERING OF A MOUSE 

MAMMARY TUMOR MODEL GENE EXPRESSION DATABASE USING SQUAMOUS 

AND EMT-LIKE SIGNATURE GENES  

Unsupervised hierarchical clustering of a mouse mammary tumor model gene expression 

database using squamous and Emt-like signature genes organizes tumors into clusters with Emt-

like gene expression patterns, squamous gene expression patterns, clusters with tumors that have 

neither squamous or Emt-like gene expression patterns 
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FIGURE 5.6: IDENTIFICATION OF SQUAMOUS MOUSE MAMMARY TUMORS 

(A) Unsupervised hierarchical clustering of a mouse mammary tumor model gene expression 

database using squamous and Emt-like signature genes organizes tumors into clusters with Emt- 
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FIGURE 5.6 (cont’d) 

like gene expression patterns, squamous gene expression patterns, clusters with tumors that have 

neither squamous or Emt-like gene expression patterns. The red box highlights the cluster of 

tumors with squamous gene expression features. (B) Gene set enrichment analysis shows tumors 

in the cluster highlighted in A, are significantly enriched for squamous gene expression features.  
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FIGURE 5.7: IDENTIFICATION OF EMT-LIKE MOUSE MAMMARY TUMORS 

(A)Using unsupervised hierarchical clustering we observed expression patterns for the EMT-like 

signature genes. As marked by the red bar below the heatmap, the majority of the tumor samples  
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FIGURE 5.7 (cont’d) 

with an annotation for an EMT-like histology had high expression of the genes upregulated in 

EMT-like tumors and low expression of genes downregulated in EMT-like tumors. As a result, 

we call the cluster highlighted with the red box the Emt-like cluster. (B) GSEA detected a 

significant enrichment for high expression of the genes upregulated in EMT-like tumors 

(FIGURE 5.7B, NES=1.88, nominal p-value = 0.0, FDR q-value=0.0071, FWER p-value = 

0.016) and (C) low expression of the genes downregulated in EMT-like tumors (FIGURE 5.7C, 

NES=-1.89, nominal p-value = 0.0, FDR q-value=0.01, FWER p-value = 0.016). 
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FIGURE 5.8: TESTING HUMAN BREAST CANCER EXPRESSION PROFILES OF 

SQUAMOUS SIGNATURE GENES 

Unsupervised hierarchical clustering of human breast cancer samples and mouse mammary 

tumor samples on the basis of the squamous signature genes correctly identifies squamous 

tumors from the MMTV-PyMT mouse model and does not show high expression in human 

breast cancer.  
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FIGURE 5.9: UNSUPERVISED HIERARCHICAL CLUSTERING OF HUMAN 

CANCER GENE EXPRESSION DATABASE USING SQUAMOUS SIGNATURE GENES 

Unsupervised hierarchical clustering of human tumor sample (n=3186) gene expression data 

shows that squamous tumors from a variety of human cancers have high expression of squamous 

signature genes.  
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FIGURE 5.10: SQUAMOUS SIGNATURE GENES ARE HIGHLY EXPRESSED AND 

ARE ENRICHED IN A VARIETY OF HUMAN CANCERS OF SQUAMOUS 

HISTOLOGY 
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FIGURE 5.10 (cont’d) 

(A) Using unsupervised hierarchical clustering we observed expression patterns for the 

squamous signature genes. As marked by the blue color bar above the heatmap, the majority of 

the tumor samples with an annotation for a squamous histology clustered together had high 

expression of the squamous signature genes. As a result, we call the cluster highlighted with the 

red box the squamous cluster. (B) Using GSEA to test for statistical enrichment of the squamous 

signatures in these samples indicted these samples demonstrated that this enrichment is 

significant (FIGURE 5.10B, NES= 1.93, nominal p-value 0.0, FDR q-value 0.003, FWER p-

value =.002). 
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FIGURE 5.11: UNSUPERVISED HIERARCHICAL CLUSTERING OF HUMAN 

BREAST CANCER AND MMTV-MYC TUMORS USING THE EMT-LIKE GENE 

SIGNATURE 

Unsupervised hierarchical clustering of human breast cancer and MMTV-Myc tumors using the 

Emt-like gene signature shows high expression of the Emt-like genes in a subset of claudin low 

human breast cancer and in the MMTV-Myc Emt-like tumors. 
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FIGURE 5.12: IDENTIFICATION OF EMT-LIKE SIGNATURE ENRICHMENT IN A 

SUBSET OF HUMAN CLAUDIN LOW BREAST CANCER 

(A) Unsupervised hierarchical clustering revealed a subset of human claudin low breast cancer 

tumors that showed high expression of the EMT-like signature genes and clustered with EMT- 
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FIGURE 5.12 (cont’d) 

like tumors from the MMTV-Myc mouse model. As result, we call the claudin low tumors in this 

cluster Emt-like. (B)Testing for significant enrichment for the Emt-like gene expression patterns 

with  GSEA revealed that the claudin low tumors that clustered with mouse EMT-like tumors 

were significantly enriched for high expression of genes upregulated in EMT-like tumors 

(NES=1.87, nominal p-value =0.0m FDR q-value=.002, FWER p-value = 0.004) and 

(C)enriched for low expression of genes downregulated in EMT-like tumors (NES=-2.11, 

nominal p-value=0.0, FDR q-value =0.0, FWER p-value 0.0). 
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