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ABSTRACT
ON THE AUTOMORPHISM GROUP OF AN INTEGRAL GROUP RING
By

Gary Lee Peterson

Let G be a finite group and let Z(G) denote the integral
group ring of G. The primary purpose of this dissertation is to
study A(G), the group of ring automorphisms of 7Z(G).

If £ € A(G), we say that f 1is a normalized automorphism
if f(g) has augmentation one for all g € G. The set of normalized
automorphisms of 7Z(G) form a subgroup of A(G) denoted by NA(G).
Further, little generality is lost by studying NA(G) over A(G).

In Chapter I, we develop some basic facts about NA(G). It
is noted that the elements of NA(G) act as a permutation group on
the class sums of G, the representations of G, and the characters
of G. Next, some subgroups of NA(G) are introduced. First we
let CP(G) denote the subgroup of elements of NA(G) which fix every
class sum of G. It is well-known that the action of an element of
CP(G) 1is equal to conjugation by a unit in the group ring of G over
the rationals. We also let EA(G) denote the subgroup CP(G)Aut(G),
Aut(G) the automorphism group of G, and let I(G) denote the group
of inner automorphisms of Z(G). In addition, a normalized auto-
morphism which lies in EA(G) is said to have an elementary repre-

sentation and if EA(G) = NA(G) we say that G 1is an E.R. group.
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The questions of when NA(G), EA(G), CP(G) are each equal
to Aut(G) are considered in Chapter I. It was previously known
that NA(G) = Aut(G) 1is equivalent to (1) I(G) < Aut(G), (2) G
is either abelian or a Hamiltonian 2-group, and (3) Z(G) has only
trivial units of finite order. Here we extend the list of equi-
valences to (4) G is the only group basis of Z(G),

(5) [NA(G) : Aut(G)] 1is finite, and (6) I(G) is periodic.
Necessary and sufficient conditions are determined for Aut(G) to
equal EA(G), CP(G), and I(G).

Another topic considered in Chapter I is the following. 1In
his Ph.D. Thesis (Michigan State University, 1971), C.F. Brown showed
that Aut(G) has a normal complement in NA(G) when G is metabelian.
For N @G, let A(N) denote the kernel of the natural map from Z(G)

to 7Z(G/N) and set
W(G,N) = {f € NA(G)\f(g) = g mod A(N)A(G)} .

Then W(G,N) 1is a subgroup of NA(G). Further, if G 1is metabelian,
W(G,G') 1is exactly the complement Brown obtained. This led to the
question of when is W(G,N) a complement for Aut(G) in NA(G)? It
is shown that if one wants W(G,N) N Aut(G) = 1, one in general needs
N abelian. Then, if N 1is abelian, we obtain W(G,N) 1is a complement
for Aut(G) in NA(G) if and only if G/N 1is either abelian or a
Hamiltonian 2-group.

Finally in Chapter I, we consider the following. Let N «qG.
If f£(A(N)) = A(N) for all f 1in a subset S of NA(G), we say
N is S-admissible. If N 1is NA(G)-admissible we say that N is

NA-characteristic. The admissibility of some subgroups of G under
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various subgroups of NA(G) 1is studied. We also obtain that N QG
is NA-characteristic if and only if it is characteristic in G pro-
vided that G 1is either an E.R. group or contains an abelian normal
subgroup A such that W(G,A) 1is a complement for Aut(G) in
NA(G).

One of the major goals of this dissertation was to determine
E.R. groups. That is, when is EA(G) = NA(G), or alternately, when
can every element f of NA(G) be written in the form
£(x) = u(o(x))u"} for all x € Z(G) where o € Aut(G) and u is
a unit in the group ring of G over the rationals? In Chapter II,
part of Chapter IV, and in Chapter V, we consider this problem. It
was previously known that (1) class £ 2 nilpotent groups, (2) groups
containing a cyclic normal subgroup of index p, (3) groups G where
\G'\ = 2 or 3, (4) groups with at most one non-linear character, and
(5) Sn for n=1,...,10 are all E.R. groups. Some of the E.R.
groups obtained in Chapter II and IV are (6) groups G of the form
G = AB where A 1is a cyclic normal subgroup of G and B 1is an
abelian subgroup of G, (7) groups G where G/Z(G) 1is metacyclic,
Z(G) the center of G, (8) groups G where |G'| = p, (9) p-groups
containing a maximal abelian normal subgroup which is cyclic, and
(10) p-groups G of the form G = AB where A 1is an abelian normal
subgroup of G with A 2 2(G) and A/Z(G) elementary abelian of
order p2 and B is an abelian subgroup of G. Most of these results
are obtained by studying the action of W(G,G') on the irreducible
characters of G. Included in this is a crucial lemma on the faithful

irreducible characters of a metabelian group developed in Chapter II.
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Finally, in Chapter V, we show that Sn is an E.R. group for any
positive integer n.

One other problem considered in Chapter IV is when is
W(G,G') < CP(G) for a metabelian group G? This was known to be
true in cases (1), (3), and (4) of the previous paragraph. In Chapter
IV, we extend this to cases (6), (7), and (9) of the previous paragraph
provided that G 1is a p-group and p > 2.

Chapter III is concerned with normalized automorphisms of
direct products. Suppose G = G1 Xoe.oX Gn' It is shown that
NA(GI) XewoX NA(Gn) has a normal complement in NA(G) which lies in
CP(G) provided (\Gil,lcj\) =1 for i # j. A similar result is
obtained for W(G,A) 1if W(G,A) 1is a complement for Aut(G) in
NA(G) for an abelian normal subgroup A of G. In the above two
cases we also obtain that G 1is an E.R. group if each G1 is an
E.R. group.

In the final chapter, Chapter VI, a technique is presented
for extending the known groups for which the integral group ring
problem holds. Using this technique we solve the group ring problem
for 84' However, the technique used here involves lifting auto-
morphisms. The remainder of the chapter involves a discussion of

the problem of 1lifting automorphisms.
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INTRODUCTION

The study of the automorphism group of an integral group
ring Z(G) has previously received attention by Brown in [3], Hughes
and Pearson in [7], Hughes and Wei in [8], and Sehgal in [14]. The
primary purpose of this dissertation is to study the automorphism
group of Z(G).

Another problem in integral group rings that has received
considerable attention is the group ring problem. In Chapter VI,
we will see how knowledge of automorphisms of 7Z(G) may play a role
in solving this problem.

In Chapter I, we obtain some preliminary results about auto-
morphisms of 7Z(G). In studying the automorphism group of Z(G),
it suffices to study the group of normalized automorphisms of Z(G)
denoted by NA(G). It was first noted by Sehgal in [147] that if
f € NA(G) and g € G, then fdi;) = 6;1 for some gl € G. Hence
NA(G) acts as a permutation group on the class sums of G. Further,
fl(?:'g) = fz(é'g) for all g € G if and only if £ =T f, for some
unit u in 2(G). In Section 2 of Chapter I, we note that NA(G)
also acts as a permutation group on the representations and characters
of G. Finally, we use CP(G) to denote the subgroup
(f € NA(G)\f(é'g) = 68 for all g € G}.

In Section 3 of Chapter I, we introduce some subgroups of
NA(G). First, the automorphism group of G, Aut(G), is naturally

1



embedded in NA(G) and hence is a subgroup of NA(G). Next, we say
that f € NA(G) has an elementary representation if f = T.° for
some unit u in 2(G) and some ¢ € Aut(G). We use EA(G) to
denote the set of all elements of NA(G) which have an elementary
representation. Then EA(G) 1is a subgroup of NA(G) and in fact
EA(G) = CP(G)Aut(G). Also, if EA(G) = NA(G), we say that G 1is an
E.R. group. Finally, we let I(G) denote the group of inner auto-
morphisms of 7Z(G).

The question of when NA(G) equals Aut(G) was previously
studied by Brown in [3] and Hughes and Wei in [8]. 1In Section 3 of
Chapter I, this question is again studied and the previously known
results are extended. We are also able to obtain necessary and
sufficient conditions for Aut(G) to be equal to EA(G), CP(G) and
IG).

Sections 4 and 6 of Chapter I focus on the question of when
f(A(N)) = A(N) for f € NA(G) and N @ G. This question received
some attention by Brown in [3]. One of the major reasons for con-
sidering this question here is that if £(A(N)) = A(N), then f in-
duces a normalized automorphism on Z(G/N). For example, the above
fact is useful in cases where one wishes to use induction on \G\.

In Section 5 of Chapter I, we consider generalizing another
result of Brown's. Brown was able to show that Aut(G) has a normal
complement in NA(G) when G 1is metabelian. Here we are able to
generalize Brown's result by introducing some subgroups of NA(G),
one of which is exactly Brown's complement when G 1is metabelian.
Further, we are able to determine necessary and sufficient conditions

for one of these subgroups to be a complement.



Perhaps one of the outstanding questions in integral group
rings is what groups are E,R. groups? This question was first studied
by Sehgal in [14] and later by Brown in [3]. 1In Chapter II, part of
Chapter IV, and Chapter V we study this question and determine several
types of E.R. groups. For the most part, the previously known E.R.
groups were obtained by studying the action of normalized automorphisms
on class sums. In a similar manner, we use the action of NA(G) on
class sums to show that Sn is an E.R. group in Chapter V. However,
it is in general very hard to study the action of NA(G) on class
sums. An alternate method ;s to study the action of NA(G) on the
irreducible characters of G. This is the technique that we will use
in Chapter II and part of Chapter IV in determining our list of E.R.
groups. Included in this is a crucial lemma on the faithful irreducible
characters of metabelian groups in Section 3 of Chapter II. It should
be noted at this time that I know of no example of a group which fails
to be an E.R. group.

The other topic covered in Chapter IV consists of some cases
in which the normal complement that we have for Aut(G) in NA(G)
when G 1is metabelian lies in CP(G).

Chapter III is devoted to studying normalized automorphisms
in direct products. For the most part, the results of Chapter III
were motivated by the following question: if G =G, X...X Gn where

1
each Gi is an E.R. group, then is G and E.R, group? Using the
results of this chapter we can obtain a positive answer to the question
when either (lGi\,\Gj\) =1 for 1 #j or when Aut(G) has a normal
complement of the form described in Section 5 of Chapter I. We also

show that the converse to this question always holds.



Finally, we mention some open questions not considered in
this dissertation: the relationships between the results concerning
NA(G) and integral representations. For example, I(G) 1is always
contained in CP(G), but there are examples where they are not equal.
In [7], Hughes and Pearson obtain I(S3) = CP(S3) using integral
representations. Perhaps integral representations may be used to
study the question of how I(G) and CP(G) are related. Answers
to this question may also have some connection with our remarks in
Section 4 of Chapter VI towards solving the group ring problem. Con-
versely, there may also be some applications of our results on

NA(G) which would be useful in studying integral representations.



CHAPTER 1

PRELIMINARY RESULTS ABOUT AUTOMORPHISMS OF Z(G)

Section 1. Facts about Group Bases of Z(G). H 1is called a group

basis of Z(G) 1if H is a group of units in Z(G) whose elements
freely generate Z(G) and if 4(h) =1 for all h € H. In this
section we record some results concerning group bases.

The first result is due to Glauberman and its proof can be
found in [127] or [16].

Theorem 1.1.1: Let H be a group basis of Z(G). Then for each

h € H there exists a g € G such that E; = Cg

The next corollary follows easily from Theorem 1.1.1.

Corollary 1.1.2: If H 1is a group basis of Z(G), then Z(H) = Z(G).

Theorem 1.1.1, as shown in [12] and [16], yields a 1-1
correspondence between the normal subgroups of G and those of a
group basis H 1in the following manner. Let N @ G. Set
K= U{fhE€ H\EL = E;}. Then it can be shown that K 1is a normal

geN
subgroup of H.

We state some facts concerning this correspondence from [16].
Theorem 1.1.3: Let H be a group basis of Z(G), N a normal sub-
group of G, and let K be the corresponding normal subgroup of H.

(1) Let © be the natural map from Z(G) to Z(G/N). Then

K = {h € H{n(h) = 1} and m(H) is a group basis of Z(G/N).



(i1) aN) = A(K).
(iii) If M 1is another normal subgroup of G and if L 1is the
normal subgroup of H corresponding to M, then [L,K] corresponds
to [M,N7.

Another result concerning class sums, whose proof can be found
in (3] or [12], is the following:

Theorem 1.1.4: Let H be a group basis of Z(G). Let h € H and

let g € G such that 6; = Cg’ then Egn = Egn for every integer n.

Finally, we state more results from [16].

Theorem 1.1.5: Let K be a normal subgroup of a group basis H of

Z(G), then
K/K' == a(K)/a(K) A(H)

under the mapping ¢K(ﬁ) =k - 1+ a(K)a(H) where k = kK'. Hence,

if A 1is an abelian normal subgroup of G and if B 1is the correspond-
ing normal subgroup of a group basis H of 7Z(G), then A =B under

the mapping 451¢h-

Theorem 1.1.6: Let H be a group basis of Z(G), A an abelian

normal subgroup of G, and let n denote the natural map from Z(G)
to Z(G/A). 1If n(H) = n(G), then for each h € H there exists a
unique - € G such that h = g mod A(A)A(G). Further, the mapping
h - g defines an isomorphism from H onto G.

In the process of proving Theorem 1.1.6, Whitcomb actually
showed the following result.

Theorem 1.1.7: Let A be an abelian normal subgroup of G and let

H be a group basis of 7Z(G). Suppose h ,h2 € H such that

1

h1 = h2 mod A(A)A(G), then h1 = h2.



Section 2. Basic Facts about Automorphisms of Z(G). We begin this

section by reviewing some facts about automorphisms of Z(G). Let
A(G) denote the group of automorphisms of Z(G). By NA(G) we will
mean the subgroup of A(G) consisting of all £ € A(G) such that
2(f(g)) = 1 for all g € G. NA(G) 1is called the group of normalized
automorphisms of 2Z(G). As remarked in [3], little generality is

lost by studying NA(G) instead of A(G), since if f € A(G), the
mapping g - L(f(g))f(g) for g € G extended linearly to 7Z(G)

is in NA(G).

Let f € NA(G). 1It then follows that £(G) 1is a group basis

C .
£(g)
for some gl € G. Hence, we have that NA(G) acts as

of 7Z(G) and that f(E;) = Thus, by Theorem 1.1.1,

£C ) =C
g g1
a permutation group on the class sums of G.

One of the basic facts about this permutation representation

of NA(G) 1is the following result which is generalized from [14].

1
g €G if and only if £, = Tuf2 for some unit u in 2(G).

Theorem 1.2.1: Let f ,f2 € NA(G), then fl(cg) = fz(Cg) for all

It should be noted that the unit u in Theorem 1.2.1 must
necessarily normalize 7Z(G). That is, Z(G)u € Z(G). We also note
that u need not be a unit in Z(G) as Whitcomb has given an
example in [16] of an f € NA(G) such that f = T where u 1is a
unit in 2(G) but u cannot be taken to be a unit in Z(G) when
G 1is the dihedral group of order 8.

Let CP(G) denote the kernel of this permutation representa-

tion of NA(G) on the class sums of G, then by Theorem 1.2.1,



CR(G) = (£ ENA@)|EC) =C ]

= {¢u\u is a unit in 2(G) normalizing 7Z(G)].

Also, note that \NA(G)/CP(G)\ is finite since NA(G)/CP(G) 1is
isomorphic to a subgroup of Sk where k 1is the number of conjugacy
classes of G.

We next state two lemmas on how NA(G) acts on class sums.

Lemma 1.2.2: Suppose f € NA(G) and that f(Eg ) = Eg and

- - 1 2
f(Cg3) = Cg4 where 8y:89:83> and g, € G, then there exists x € G
such that f(C ) =C _ x.

8182 €38,
Proof: We have that f(E- C ) = c C .
gl g2 83 g4
Now, the class sum f(Cg g ) will appear as a summand in
1°2

f(C C ) when f(E- c ) 1is written as a linear combination of
81 gy g1 82

class sums. Also, Eé C is a linear combination of class sums of
- 3 84
the form Cg3x184x2 where X)X, € G. Hence, there exist X%y €G
such that
£CC__) =C C -1

8,8, Cg3x1g4x2 ) g3gax2x1
and so we have the result.
The second lemma appears in [3] and follows directly from
Theorem 1.1.4.
Lemma 1.2.3: Let f € NA(G) and suppose that f(E;) = 6;1 where

8,8y € é, then f(E;n) = E; n for every integer n. Further,
1

lg] = gy}~
NA(G) can also be viewed as a permutation group on the
representations or characters of G. For if [ 1is a representation

of G, we can then define another representation Ff of G by
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setting Ff(g) = I'(f(g)). (For the purposes of this dissertation

we will assume that our representations are over the field of complex
numbers.) Similarly, if x is a character, we can define another
character xf by setting xf(g) = x(£f(g)). Further, it follows

that Ff or xf is irreducible if and only if ' or y is
irreducible.

Lemma 1.2.4: 1If f(Egj = E; , then xf(g) = x(gl) for any character

1
x of G.
£ 1 f - 1 —
Proof: x (g8) =77 x (C) =71-—Fx(C ) =x(g,).
— ICgl ™ 8T lcgl Mgy 1

Lemma 1.2.5: If x 1is a faithful character of G, then xf is also
faithful.

f f f — -
Proof: If g € ker x , then ¥ (g) = X (1). Let f(Cg) = Cg , then

1
x(1) . Hence g, € ker x, so gl =1, Thus g =1

f
x(gy) = x (1)
and we are done.

Lemma 1.2.6: let f_,f., € NA(G), then
- _ 1772 f f

(1) fl(c_g) - fz(c?g) 1f and only if x M(g) = x 2(g) for every

irreducible character ¥ and

£ £
(1) £,€) =£,€) forall g€C if and only if X 1,2

for every irreducible character ¥.

g%@: (1% Let fl(Eg) =<':'g1 and fz(Eg) =C—82’ then

X 1(g) = x 2(g) for every irreducible character ¥ if and only if
x(gl) = X(Sz) for every irreducible character . But x(gl) = x(gz)
for every irreducible character ¥ 1if and only if Cgl = ng and

so we have (i).

(ii) follows directly from (i).
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Section 3. Some Subgroups of NA(G) and Conditions for Equality

with Aut(G). Let Aut(G) denote the automorphism group of G,
then Aut(G) is naturally embedded in NA(G) by extending every
group automorphism linearly to Z(G). We will henceforth use Aut(G)
to denote the image of Aut(G) in NA(G) under this embedding.

Another type of normalized automorphism which will play an
important role in what follows is contained in the following defini-
tion first used in [3].

Definition: Let f € NA(G). We say that lf has an elementary
representation if f = T, where g € Aut(G) and u 1is a unit in
2(G) normalizing Z(G).

Let EA(G) denote the set of f € NA(G) whose elements have
an elementary representation. Then EA(G) 1is a subgroup of NA(G)
and EA(G) = CP(G)Aut(G). If EA(G) = NA(G) we will say that G
is an E.R. group.

One basic result concerning elementary representations and
group bases is contained in the following lemma.

Lemma 1.3.1: Let H be a group basis of Z(G) such that H == G.
Then the following are equivalent:

(1) Every f € NA(G) such that £(G) = H is in EA(G).

(i1) There exists f € EA(G) such that £(G) = H.

(11i) There exists a unit u in 2(G) such that GY = {.

Proof: (1) = (i1) is clear.

For (ii) = (iii), let f € EA(G) such that f£(G) = H. Write
f = ¢uo where u 1is a unit in 2(G) and ¢ € Aut(G), then

-1
£(6) = 7,0(6) =1 (C) = ¢! =H.
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For (iii) = (i), let £ € NA(G) such that £(G) = H. Since
¢Y = ﬁ we have Tuf(G) = G, Hence, Tuf € Aut(G) and so
f = Tu_l('l'uf) € EA(G).

One final subgroup of NA(G) that we will introduce here
is the group of inner automorphisms of Z(G) which we will denote by
I(G). That is, I(G) = {7 |u 1is a unit in Z(G)}. Then I(G) = CP(G).
But in general they are not equal, as we have seen in the remarks
after Theorem 1.2.1.

We now turn our attention to the question when are the sub-
groups of NA(G) that we have so far defined equal to Aut(G).

The first question that we consider is when does Aut(G) = NA(G)?
This question was first partially solveé in (3] and later completely
solved in [8]. 1In fact, an even stronger statement can be made con-
cerning this question than was made in [8]. In the next theorem,
parts (1) - (4) appear in [8].

Theorem 1.3.2: The following are equivalent.

(1) NA(G) = Aut(G).
(2) I(G) s Aut(G).
(3) G 1is either abelian or a Hamiltonian 2-group.
(4) +g,g € G, are the only finite units of 7Z(G).
(5) G 1is the only group basis of 7Z(G).
(6) [NA(G):Aut(G)] is finite.
(7) I(G) 1is a periodic subgroup of NA(G).
Since (1) - (4) are equivalent and since clearly
(4) = (5) = (6) = (7), it suffices to show (7) = (3). To do this,

we use basically the same proof as was used in [87 to show (2) = (3).
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We begin with the following lemma. The technique used in
this lemma first appeared in [6].

Lemma 1.3.3: Let 818 €G and n be a positive integer. Let

2 k-1
R=1+g, + g, +...+ 2y where k = lgl\ and let P = g,(1 - gl).
Then 1 - nRP 1is a unit in Z(G). Further,

&2
for n 2 2, then g1 is a power of g1°

if Tl-nRP € Aut(G)
Proof: Since PR =0, it follows that 1 - nRP is a unit with in-
verse 1 + nRP.

Now, suppose € Aut(G) and n = 2, then

Tl-nRP
Qa - nRP)gl(l + nRP) € G. But since
a - nRP)gl(l + T©mRP) = 81 4+ n(RP - RPgl), it follows that

RP - RPg1 = 0 since gy + n(RP - RPgl) € G and since n 2 2. Thus

k-1

k-1
RP = (g, + 8.8 +...% 8, "8y - (g8 +...+ 8, 8,8))

=RPg

1
- k-1 2 k-1 2
= (8,8, +8,8,8) *...t 8, 88 - (8,8 +...F g, 88)).

It follows from the above equation that gy = gingl for
some 1i. Thus gzglgg1 = gil and we are done.
We now prove Theorem 1.3.2 by showing (7) = (3). To do this,
we assume G 1is not abelian and show that G is a Hamiltonian
2-group.
We first show G is Hamiltonian. To do this it suffices
to show that gfz is a power of g, for every 2189 €G. Let P
and R be as in Lemma 1.3.3. Since we are assuming I(G) 1is periodic,

we have ('rl_RP)n € Aut(G) for some integer n. Further, we may

assume n = 2.
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Since PR = 0, it follows that (L - RP)" =1 - ©RP. Hence

g
(TI-RP)n = T1-nRP € Aut(G) and so glz is a power of g, by Lemm

1.3.3. Thus G 1is Hamiltonian.

Now, suppose that G 1is Hamiltonian but is not a 2-group.
Let a and b be generators of the quaternion group of order 8 where
34 = b4 =1 and ab = a3. Let g € G of the form g = as where s

is an element of G of odd prime power order p. Finally, for every

positive integer d let €4 denote a primitive dth root of unity.
We have that 2(«<g>) 1is isomorphic to @ g .?,(ed) under
di4p
the mapping @ where 6(g) = T e,. Let R=® ¢ Z(e,). It
d d
d|4p d|4p

follows that 6(Z(<g>)) s R and we can find a positive integer m
so that mR < §(Z(<g>)).

By the Dirichlet Unit Theorem ([11], p. 128), we can find a
unit v 1in Z(eép) such that vi is not in Z(eZp) for any
integer 1i. Also, we can find an integer k so that
14+41+...+41+ vk is a unit in @§(Z<g>) since the ring R/mR 1is
finite.

Let u = e-l(l +...+1+ vk), then Tu € I(G). Since I(G)
is periodic, we can find an integer n so that .0 is the identity.
We will now show that this forces vkn to be in Z(szp), and hence
obtain a contradiction which will prove the result.

Since u" € Z(<g>) , we may write u" = o + gB where
a,p € Z(<32>9. But then b(o + gB) = (o + g8)b. It follows that
a - az)a = 0. Hence g = (1+ az)o where ¢ € Z(<32>). Thus,

W' =g +a(l +ad)os = £(g2) + (gP + g P)h(g2) where f and h

are polynomials over Z.
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Thus, if § denotes the projection from @ I 2(e
d\hp

d) onto

2(g4p), we have

2 - 2
Vo) = £e, ) + (ef + e, D8le,)

2 k
= £(e,) v,

Hence vnk € Z(eZp) and we have our contradiction.

We next treat the question of when does EA(G) = Aut(G)?
Clearly, if NA(G) = Aut(G), then EA(G) = Aut(G). Conversely, if
EA(G) = Aut(G), then (2) of Theorem 1.3.2 holds and hence
NA(G) = Aut(G). Thus we have

Corollary 1.3.4: EA(G) = Aut(G) 1if and only if NA(G) = Aut(G).

Finally, we answer the question of when Aut(G) equals
CP(G) or I(G). In fact, we can state the following.

Corollary 1.3.5: The following are equivalent.

(1) CP(G) = Aut(G).
(2) 1(G) = Aut(G).
3) |6} =1 or 2.
Proof: We first note that (1) = (3). For if CP(G) = Aut(G), then
EA(G) = Aut(G). But then G 1is either abelian or a Hamiltonian
2-group by Corollary 1.3.4 and Theorem 1.3.2. But all abelian groups
of order greater than 2 and all Hamiltonian 2-groups have non-class
preserving automorphisms. Hence |G| =1 or 2.

Similarly (2) = (3), since if I(G) = Aut(G), (7) of Theorem
1.3.2 holds. Thus G 1is abelian or a Hamiltonian 2-group. But
then again, |G| =1 or 2 since Aut(G) has non-class preserving

automorphisms except when |G| =1 or 2.
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Conversely, if (3) holds, then both (1) and (2) hold since

Aut(G) =1, I(G) =1, and CP(G) = 1.

Section 4. Admissibility. The purpose of this section is to define
what we mean by a normal subgroup of a group being admissible under
a set of normalized automorphisms.

If S 1is a subset of Aut(G) and if N 1is a normal subgroup
of G admissible under S, then every automorphism of S induces an
automorphism on the quotient G/N. In defining admissibility for
normal subgroups of G under a set of normalized automorphisms, we
define it in a manner so that we induce normalized automorphisms on
the quotient.

Definition: Let N @G and let S be a subset of NA(G). We say

that N 1is admissible under S or S-admissible if £(A(N)) = A(N)

for all f € S. If N 1is admissible under NA(G), we will say that
N 1is NA-characteristic.

Thus, if N QG and if N is admissible under S where S
is a subset of NA(G), we have that every element f € S induces a
normalized automorphism f of Z(G/N) by setting f(m(x)) = m(£(x))
where m 1is the natural map from Z(G) to Z(G/N) and x € Z(G).

We will give some NA-characteristic subgroups of a group G
and some admissible subgroups under particular sets of automorphisms.
However, before doing this, we state the following result.

Lemma 1.4.1: Let N QG and let f € NA(G). Then £(A(N)) = A(N)
if and only if f(N) is the normal subgroup of £f(G) corresponding

to N.
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Proof: If f£(A(N)) = A(N), then A(f(N)) = A(N). Hence (i) of
Theorem 1.1.3 tells us that £(N) 1is the normal subgroup of £(G)
corresponding to N.

Conversely, if f£f(N) is the normal subgroup of f£(G)

corresponding to N, then

£(AMN)) = A(£(N)) = A(N)

by (ii) of Theorem 1.1.3.

Using the above lemma, it follows that the terms of the
derived series are all NA-characteristic. For if £ € NA(G), then
£6™y = )™ . But £6)™ is the normal subgroup of £(G)
corresponding to G(n) by Theorem 1.1.3(iii). Hence, by Lemma
1.4.1, £06™)) = 46G™) and we have the result.

Similarly, one can use the same process to obtain that the
terms of the lower central series are all NA-characteristic.

We also mention at this time that the terms of the upper
central series are also NA-characteristic. Let £ € NA(G), then
£f(Z(G)) = Z(G) by Corollary 1.1.2, so certainly f£f(A(Z(G)) = A(Z(G)).
Since f 1induces an automorphism on Z(G/Z(G)), we can again use

Corollary 1.1.2 to obtain

£(Z,(G)) = Z,(G) mod A(Z(G))
and so

£(A(Z,(6)) 5 B(Z,(6)) + AZ(B)) = A(Z,(G))

Hence £(8(2,(G)) = 4(Z,(G)). Continuing in the above fashion,

f(A(Zn(G)) = A(Zn(G)) for any integer n.
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Thus we can state

Theorem 1.4.2: G(n), Fn(G), and Zn(G) are all NA-characteristic.
One result on admissibility that we can state is the follow-
ing restated from [3].

Theorem 1.4.3: Every normal subgroup of G 1is CP(G)-admissible.

Further, a normal subgroup of G is EA(G)-admissible if and only if
it is a characteristic subgroup of G.
Proof: Let N 4G and let Tu € CP(G). Since the class sums of
elements of TU(N) are all equal to class sums of elements of N,
TU(N) must be the normal subgroup of Tu(G) corresponding to N,
Hence by Lemma 1.4.1, TU(A(N)) = A(N) so that N is CP(G)-admissible.
Now suppose O € EA(G) where o € Aut(G), then
T,0(6M)) = 7 A(c(N)) = &(o(N)). Thus 1 o(A(N)) = A(N) if and
only if og(N) =N and the second part of the theorem follows.
It should be noted that NA-characteristic implies char-
acteristic. For if N @ G which is NA-characteristic, then for

all o € Aut(G),
o(A(N)) = &(c(N)) = &N)

Hence o(N) =N, so N 1is characteristic in G. Theorem 1.4.3 tells
us that the converse is true for E.R. groups. In Section 6 of this
chapter we will see an additional case where the converse holds.

We conclude this section with the following lemma which will
be useful later.
Lemma 1.4.4: Let G =G; XG, where (\Gl\,\Gzl) = 1. Then G,

and G are NA-characteristic.

2
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Proof: Let f € NA(G) and let H = f(G). Let H1 and H,

and G2

be

the normal subgroups of H corresponding to G1

respectively. Then

H=H xH,=£(G) X £(G,) .

But then Hl = f(Gl)

i =1,2 and since (\Hl\,\Hz\) =1, Then 1.4.1 yields the result.

and H, = £(G,) since lHi\ = \f(Gi)\ for

Section 5. On a Complement for Aut(G) in NA(G). In [3], Brown

showed that Aut(G) has a normal complement in NA(G) when G is
metabelian. In this section we will generalize Brown's result by
taking a slightly different approach.

The technique Brown used for constructing a normal complement
goes as follows. Let G be a metabelian group. Then, if f € NA(G)

and if g € G, there exists a unique B¢ € G such that
£(g) = g, mod A(G")A(G)

by Theorem 1.1.6. Then Brown showed that the mapping O¢ defined
by of(g) = 8¢ is an element of Aut(G). Further, he showed the
mapping B defined by Bg(f) = o¢ is a homomorphism of NA(G) onto
Aut(G) such that gi =1 where i 1is the injection of Aut(G)
into NA(G). Thus, ker 8 1is a normal complement for Aut(G) in
NA(G) .

Note that
ker B = {f € NA(G) |f(g) = g mod A(G')A(G) for all g € G}.

Because of the above characterization of ker g, we make the follow-

ing definition.
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Definition: Let N g G. Then we define
W(G,N) = {f € NA(G)\f(g) = g mod A(N)A(G)] .

Thus when G is metabelian, W(G,G') 1is a normal complement
for Aut(G) in NA(G). We will now determine when W(G,N) is a
complement for Aut(G) in NA(G) for N 4 G.
Lemma 1.5.1: Let N @ G. Then N is admissible under W(G,N)
and W(G,N) 1is a subgroup of NA(G). In addition, if N is NA-
characteristic, W(G,N) 1is normal in NA(G).
Proof: Let f € W(G,N). To show N 1is W(G,N)-admissible, it

suffices to show f(n - 1) € a(N) for all n € N. But
f(n - 1) =n - 1 +x
where x € A(N)A(G). Hence,
f(n - 1) € A(N) + A(N)A(G) = A(N)

To show that W(G,N) 1is a subgroup of NA(G), we first
show that W(G,N) 1is closed under multiplication. Let fl’fZ € W(G,N).
Since G 1is clearly NA-characteristic, fi(A(N)A(G)) = A(N)A(G)

for i =1,2. Hence,

£1£,(8) = £1(g + %) = £,(g) = g mod AM)A(G)

where x € A(N)A(G). Thus, flfz € W(G,N).

Next, let £ € W(G,N). First, note that
f-l(A(N)A(G)) = A(N)A(G) by applying £l to the equation
£(AMN)AG)) = AN)A(G). Let g €G and write f(g) = g + x where

x € AN)A(G). Then,
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-1 -1 _
f "(g) =g - f "(x) = g mod A(N)A(G)

Hence, f.1 € W(G,N) and so W(G,N) 1is a subgroup.
To show W(G,N) 4 NA(G) when N is NA-characteristic, let
f1 € W(G,N) and f € NA(G). Then there exists an x € A(N)A(G)

such that
-1 -1
£ £,£(@) = £ (f(g) + %)

since f1 induces the identity on Z(G)/A(N)A(G). Hence,

f'lflf(g) =g+ £ 1(x) = g mod AMN)AG)

since f-l(A(N)A(G)) = A(N)A(G) and we are done.

Lemma 1.5.2: Let N g G. Then
W(G,N) NAut(G) = {0 € Aut(G)|o(gN') = gN' for all g € G} .

Proof: Suppose o € W(G,N) N Aut(G). Then if g € G,

o(g) = g mod A(N)A(G), so that g(g) = g mod A(N). Thus
cr(g)g'1 = 1 mod A(N), so c:(g)g'1 € N. But then, since
0(8)8-1 = 1 mod A(N)A(G), ';y(g)g.1 € N' by Theorem 1.1.5. Hence

o(gN') = gN' for all g € G.

Conversely, suppose o(gN') = gN' for all g € G. Then,
cy(g)g.1 €N' for all g € G. Thus again by Theorem 1.1.5,
o(@)e ' = 1 mod AM)A(G). Hence, o(g) = g mod AMN)AG) and we
have the result.

As an immediate corollary to Lemma 1.5.2 we have

Corollary 1.5.3: Let A be an abelian normal subgroup of G. Then

(1) W(G,A) NAut(G) =1,

(ii) 1if fl,f2 € W(G,A) such that fl(G) = fZ(G)’ then f1 = f2'
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Proof: (i) is clear since A' = 1.

(ii) Suppose fl’fZ € W(G,A) such that fl(G) = fz(G).
Then f£1f1 € Aut(G) NW(G,A) = 1. Hence £, =f,.

Thus, if we want W(G,N) to be a complement for Aut(G)
in NA(G), we will need N abelian. Further, we will also have to
know when W(G,N)Aut(G) = NA(G). In order to answer this question,

we first prove a theorem similar in nature to Theorem 1.3.2.

Theorem 1.5.4: Let N @G and suppose for every group basis H of

Z(G) 1isomorphic to G, m(H) = n(G) where m 1is the natural map

from Z(G) to Z(G/N). Then G/N 1is either abelian or a Hamiltonian
2-group.

Proof: We assume that G/N 1is not abelian and argue that G/N is a
Hamiltonian 2-group.

We first show G/N is Hamiltonian. For x € Z(G) let

- -8 -
x denote m(x). It suffices to show glz is a power of g, for

any g, and g, € G.

k-1

2
Let R =1+ 8 + g, +...+¢g where k = |gl\, P = 32(1 - gl),

- - - -m- - -
and let H (G). Then, 1 - 2RP =1 - 2(%)(1 + g, +...+ 8 )gz(l-gz)

= T1-2rp
where m = \él\'

1+2RP

Since m(H) = m(G) = m(G) , we have € Aut(G/N)

T1-2RP
_8y -
and so g,” 1is a pover of 8, by Lemma 1.3.3. Thus G/N 1is
Hamiltonian.
We now show that G/N is a Hamiltonian 2-group. Suppose it
is not. Choose g € G such that g = as where s has odd prime
power order p and where a 1is the element of the quaternion group

of order 8 generated by a and b where 34 = b4 =1 and ab = a3.
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Let ¢, denote a primitive dth root of unity. Then 2(<g>)

is isomorphic to ® L 2(e;,) where n = |8| wunder the mapping ¢
din
defined by ¢(g) = }l: €4 Similarly, 2(<g>) is isomorphic to
din _
®L .2(ed) under the mapping @ defined by g(g) = £ e,
d
d\4p d‘l&p
Extend 1 to a mapping from 2(G) to 2(G/N). Then

n(2(<g>)) =.2(<§>). Further, it follows that

.2.(ed) if d < 4p
-1
ortep Q(ed)) = (*)
0 if d > 4p

To see (*), first note that en¢'1c2(ed)) is either some
,?,(ek) where k|4p or is O since it must be a minimal ideal in

@z .2(ed) and since .z(ed), d\l&p, are the unique minimal ideals

d\4p . .

of @ & .2(ed)- Further, if emg 1(,2(ed)) £0, artep 1 restricted
d|4p

to .z(ed) is an isomorphism since .2(ed) is a minimal ideal. Thus,

eﬂ'q;l(l(ed)) =0 if d > 4p. Also, err(p-l restricted to @® I .Z(ed)
dl4p
is then an onto isomorphism. Then, since \

-1 -
o (I ep = om(z) = 8(8) = T e ,
d|n d|4p
it must be the case that emp-l(l(ed)) = .2.(ed) when d < 4p.

Now, let v be a unit in Z(e4p) such that no power of v

2

lies in Z(%p)' Let u = d}\:n 5d’ where 6d
6d =v 1if d = 4p. Then, as in the proof of Theorem 1.3.2, we can

=1 if d # 4p and

find an integer m 8o that u"l is a unit in (Z(<g>)).
Then emp-l(um) will be an element of the form 1 +...+ 1 + v',
where v' 1s a unit in Z(eap) such that no power of v' 1lies in

Z(gzp). Further, we have that 1 +...+ 1 + v' will lie in
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S(Z(<§>)). Let w = 0-1(1 +...+1+v'). Then, as in the proof
of Theorem 1.3.2, no power of T, can be the identity or else some
power of v' would lie in Z(eip).

Let w = ¢-1(um) and set H = Gw. Then
m(H) = n(Gw) = ﬂ(G)G # m(G), a contradiction. Hence, G must be a
Hamiltonian 2-group.

We now can state

Corollary 1.5.5: If W(G,N)Aut(G) = NA(G) where N < G, then G/N

is either abelian or a Hamiltonian 2-group.
Proof: Let H be a group basis of 7Z(G) such that H 1is isomorphic

to G. lLlet f € NA(G) such that £(G) = H. Then, £ = f.o where

1
f1 € W(G,N) and g € Aut(G). Thus, fl(G) = H.

Since fl(g) =g mod A(N)A(G), n(H) = n(G) where w 1is the
natural map from Z(G) to Z(G/N). Thus, G/N 1is either abelian or
a Hamiltonian 2-group.

We can now state when W(G,A) 1is a complement for Aut(G)

when A is abelian and normal.

Corollary 1.5.6: Let A be an abelian normal subgroup of G. Then

W(G,A) 1is a complement for Aut(G) in NA(G) 1if and only if G/A

is either abelian or a Hamiltonian 2-group.

Proof: If W(G,A) is a complement for Aut(G), then G/A 1is either

abelian or a Hamiltonian 2-group by the previous corollary.
Conversely, if G/A is either abelian or a Hamiltonian 2-

group, let f € NA(G). Set H = £(G). Then by Theorem 1.3.2,

m(H) = n(G) where 1 is the natural map from Z(G) to 2Z(G/A).

Hence by Theorem 1.1.6, there exists f1 € NA(G) with fl(G) =H

such that fl(g) = g mod A(A)A(G). Then f1 € W(G,A) and
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filf € Aut(G). Hence f = fl(filf) € W(G,A)Aut(G). Thus W(G,A)
is a complement by Corollary 1.5.3.

Another question that arises here is when is W(G,N) a
supplement for Aut(G) in NA(G)? That is, when is
W(G,N)Aut(G) = NA(G)? Corollary 1.5.5 gives us necessary conditions
on G/N for this to occur. However, I have been unable to determine
necessary and sufficient conditions for W(G,N) to be a supplement

for Aut(G), although we will see one sufficient condition in Section

3 of Chapter VI.

Section 6. Some Further Results on Admissibility. In Section 4 of

this chapter we remarked that NA-characteristic implies characteristic
and that the converse is true for E.R, groups. In this section we
will see that the converse is also true if G contains an abelian
normal subgroup A such that W(G,A) 1is a complement for Aut(G)

in NA(G).

Suppose G 1is a group containing an abelian normal subgroup

A such that W(G,A) 1is a complement for Aut(G) in NA(G). Let

f € NA(G) and write f = f.g where g € Aut(G) and f1 € W(G,A).

1
If N 1is a characteristic subgroup of @G,

£(AM)) = £,0(AM)) = £,(a(c@)) = £, . (%)

Hence, if we could show that every normal subgroup of G 1is W(G,A)-
admissible, it would follow that every characteristic subgroup is
NA-characteristic by equation (*), and so we show this. In fact,
we will see that every solvable normal subgroup is W(G,A)-admissible

regardless of whether or not W(G,A) is a complement for Aut(G).
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We begin by showing that every solvable minimal normal sub-
group is W(G,A)-admissible.
Lemma 1.6.1: Let A be an abelian normal subgroup of G and let
M be a solvable minimal normal subgroup of G, then M 1is W(G,A)-
admissible.
Proof: Since M is solvéble, M is abelian. Further, MNA =1
or M <A and hence MA 1is abelian.

Now, let f € W(G,A), g € M, and let B be the abelian normal
subgroup of G corresponding to f(M) in f£f(G). By Theorem 1.1.5,

there is a b € B such that

f(g) -1 =b - 1mod a(B)AG) .

Also, B is a minimal normal subgroup of G and so BA 1is abelian.

Thus, since

b = f(g) mod A(BA)A(G) = g mod A(BA)A(G),

b =g by Theorem 1.1.7. Hence, M =B and so

a(M = A(B) = ACE(D) = £(a(D)) .

This completes the proof.

We now can prove
Lemma 1.6.2: Let A be an abelian normal subgroup of G and let
N be a solvable normal subgroup of G. Then N is W(G,A)-admissible.
Proof: Let f € W(G,A) and let M be a minimal normal subgroup
of G contained in N. Set G = G/M, A = AM/M, and N = N/M. Then
by the previous lemma, f induces an automorphism £ of Z(E) with

f e W((_;,X). Hence f(A(ﬁ)) = A(ﬁ) by induction on |G|. Therefore,
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£(aN))
or £(a(N))

A(N) mod A(M) ,
A(N) + a(M) .

n

Thus, f(A(N)) = A(N) since A(M) < A(N).

We now can prove
Theorem 1.6.3: Suppose A is an abelian normal subgroup of G such
that W(G,A) 1is a complement for Aut(G) in NA(G) and let N g G.
Then N 1is NA-characteristic if and only if N is a characteristic
subgroup of G.
Proof: By our previous remarks we only have to show that N is
W(G,A) -admissible. Now, by Corollary 1.5.6, G 1is solvable so N
is solvable. Hence, N 1is W(G,A)-admissible by Lemma 1.6.2.

As an immediate corollary one should note

Corollary 1.6.4: Let G be a metabelian group and let N @ G. Then

N is NA-characteristic if and only if N is a characteristic sub-

group of G.



CHAPTER II

SOME METABELIAN E.R. GROUPS

Section 1. Introduction. To my knowledge the previously known list

of metabelian E.R. groups are class < 2 nilpotent groups from [14]
and from [3] groups with a cyclic normal subgroup of index p, groups
with at most one non-linear irreducible character, and groups G 1in
which |G'| = 2 or 3. In this chapter we will extend this list.

We remark, as noted in [3], that in showing a metabelian
group is an E.R. group it suffices to show that every element of
W(G,G') has an elementary representation since W(G,G') 1is a

complement for Aut(G) in NA(G).

Section 2. The Action of W(G,G') on Class Sums and Characters.

In this section we develop some lemmas which will be useful later
concerning the action of W(G,G') on class sums and characters.

We also point out that the results do not depend on G being
metabelian, unless specifically stated.

Lemma 2.2.1: Let G be a metabelian group and let f € W(G,G').
Then

(1) f(z) = z for all z € Z(G),

(1) £C) = Eg for all g € Z,(G)

Proof: (i) By Corollary 1.1.2, £(Z2(G)) = Z(G). Thus, if 2z € Z(G),
f(z) € G. Since f € W(G,G'), £(2) = z mod A(G')A(G) so that

f(z) = z by Theorem 1.1.7.
27
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(ii) If g € Z(G), we are done by (i). Now suppose
g € Z,(G) - Z(G). Let x be an irreducible character of G. By
Lemma 1.2.6, it suffices to show xf(g) = x(g).

If ker x > 1, let N = ker x. Since N is W(G,G')-
admissible, f induces an automorphism on 2(65 where G = G/N
which is in W(E,E'). It then follows that xf(g) = x(g) by in-
duction on |G|.

If ker x = 1, let x € G such that g. # g. Then,

x(®) = x(&) = x(&)x(g,x])/x(1)

since [g,x] € Z(G). Hence x(g) =0. Similarly, xf(g) = 0 since
xf is also faithful. Thus, xf(g) =0 = x(g) and we are done.

It should be noted at this point that Lemma 2.2.1 immediately
gives us a result of [16]; namely that W(G,G') < CP(G) when G
has nilpotence class £ 2. Further, we then also have the result of
[14] that class £ 2 nilpotent groups are E.R. groups and so we state
this as a corollary.

Corollary 2.2.2: Let G be a class € 2 nilpotent group. Then

W(G,G') S CP(G) and so G 1is an E.R. group.

We also remark that if x is a linear character of G,
then Xf =¥ for all f € W(G,G') since elements of W(G,G') in-
duce the identity on 2Z(G/G') and since G' € ker ¥.

From this observation, we get an easy proof of the following
result of [37].

Theorem 2.2.3: If G has at most one non-linear irreducible char-

acter, then G 1is an E.R. group.
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Proof: By the results of [15], G is metabelian. Thus, if x is
an irreducible character and if f € W(G,G'), xf = y since all
linear characters are fixed by f and since the non-linear character
must be fixed if one exists. Thus, W(G,G') < CP(G) by Lemma 1.2.6
and we are done.

We conclude this section with two lemmas, the first of which
also appears in [3].
Lemma 2.2.4: Llet f € W(G,G'). If f(é'g) =c’g1, then g € gG'.
Proof: Since f(E?) =C = 6; mod A(G')A(G), we have

g1

6; 6? mod A(G'). But then, 8 = g mod A(G') for some x € G
1

and so g, = gxy for some y € G'. Hence, g = glg,x)y € sG'.

The second lemma tells us that we can pick the 3 of Lemma
2.2.4 so that g1 € gF3(G).

Lemma 2.2.5: Let f € W(G,G'). Then there exists an Xy S F3(G)

such that £(C ) =C__ .

g gxg
Proof: Let G = G/F3(G). Since F3(G) is NA-characteristic, f
induces an automorphism of Z(E} which will be in W(E;E“).

Let f(aé) = E; . Since G has nilpotence class € 2, we
1
have

C)=C = c d .
£@) =Gy = Cy mod AT;(@)

Therefore, g, = gxy for some y € F3(G) and x € G. Then

c =Cx =c x',
x-l
and so we have the result with xg =y
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Section 3. A Lemma on Faithful Characters of Metabelian Groups.

In this section we will obtain a useful lemma about normal subgroups
from which a faithful character is induced in a metabelian group.
Let A QG, let ¥ be an irreducible character of G, and

let M be an irreducible module affording x. As shown in §50 of

(47, if M1 is a homogeneous component of ﬂA and if

* *
A ={(g€ G\ng = Ml}, then M, is an irreducible (A ) -module
and Mg = M.

If in addition, A is abelian and contains G' we can state
*
the following result about A when x 1is faithful.
Lemma 2.3.1: Let x be a faithful irreducible character of G and
let A be an abelian normal subgroup of G containing G'. Then
A* c
< G(A).
*
Proof: Let [ denote the irreducible representation of A afforded
by Ml' Since M; 1is a direct sum of isomorphic ((A)-modules and
since A 1is abelian, it follows that ['(a) is a scalar matrix for
*
all a cA. Thus if g € A, I'(ag) = I'(ga) for any a € A.
*
Since A 2 G', A* a4 G and it follows that rg(ga) = FG(ag)
*

for all g €A and a € A. But FG is a faithful representation

*
of G. Hence, A < CG(A).

Section 4. Groups Containing a Cyclic Normal Subgroup with an Abelian

Supplement. In this section we begin by showing that if G = BA

where B is abelian and A 1is a cyclic normal subgroup of G, then
G 1is an E.R. group. This result was originally motivated by trying
to extend a result of [3], that any group with a cyclic normal sub-

group of index p is an E.R. group, to metacyclic groups.
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Theorem 2.4.1: Suppose G = BA where A 1is a cyclic normal sub-

group of G and B 1is abelian. Then G 1is an E.R. group.
Proof: Let A = <a>. Note that G' £ A, and hence G 1is metabelian.

Let f € W(G,G'), then f(E;) =C , where a° € aG' by
a
Lemma 2.2.4 and (s,|a|) =1 by Lemma 1.2.3. Let g € G and write

g = bai, b € B. We define a mapping o of G by setting

To see that ¢ is well-defined, we first note that if

ak € Z2(G), then akS = ak. This follows since f(ak) = ak by Lemma

2.2.1 and so

- - _ ek kK
£CC ) =C , = f@9H =a" .
a a

i 3
Hence, if bla = b2a where bl’b2 € B, we have

blbg1 = aj-i €B NA < Z2(G). Therefore,
i, _ is _ j-i_ is
o(bla ) = bla = bza a
_ js-is_is _ js _ ]
= b2a a = b2a = o(b28 )

and so g 1is well-defined.

o 1is also a homomorphism, since if b ,b2 €B and if

1

s N L

ioj
(b3 bya”) = o(bybya 1°2

i s i
= b,a™%,33% = o(bahyob )

Finally, ¢ is an automorphism of G, since if o(bai) =1,

then bais = 1. But then aiS €EBNA <£2(G), so a1 € Z(G) since

is ai and hence bai =1.

(s,lal) = 1. Thus, a
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If we can show that for any ¢ defined in the above manner,
xf = x? for every irreducible character x we will be done, so we
show this. We also remark at this time that ¢ 1is an automorphism
of G which has been constructed to agree with f on the class
sums of elements of A by Lemma 1.2.3.

Suppose ker x > 1. Let M be a minimal normal subgroup of
G contained in ker X. Set G = G/M. It follows that f induces
an automorphism on Z(E} by Lemma 1.6.2 which will be in W(E;E}).

We claim that ¢ also induces an automorphism on G. To
show this we show og(M) = M. If M £ A, then clearly o(M) = M.
Suppose M £A, then M NA =1. Further, [M,G] <MNA =1 and
so M < Z(G). Thus, if bai €M where b € B, we have ai must
commute with every element of B and hence a1 € Z(G). Thus,

ai = ais whence a(bai) = bais

= bai. Hence, O‘M =1 and so
o(M) = M.
Thus, f and ¢ both induce automorphisms on >Z(E). Further,

if f and 5 denote these induced automorphisms on Z(E}, we will

C_.s where a = aM and that 8 is defined in the
a

have f(Ca-)
same manner as ¢ 1is on G. Hence, by induction on |G\,
£C) - 5(°-g) for all § €G and so x& = x°.
*

Now, suppose ker x = 1. Let A be as in the setting of
Lemma 2.3.1. Then ¥ 1is induced from an irreducible character of
* *
A and A < CG(A).

*
Note that if g€ G - A , then x(g) = 0. Also, xf(g) =0
* - -

for g € G -A for let f(Cg) = Cg . Then g, € gG' and hence

* 1
8, ¢ A . Therefore,
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£
x (g) = x(gl) =0 .

Similarly, one sees that xc(g) =0 for g €G - A* since o(g) € gA,
so o(g) ¢ A*. Hence, xf =% on G - A"

Finally, suppose g € A*. If g € A, then xf(g) = xo(g)
since f and o agree on class sums of elements of A. If
g € A* - A, write g = bai where b € B. Since A* < CG(A), we have
[b,a] =1 and hence b ¢ Z(G). Thus,

f(C 1

) = £(€ Hb) = (€ Nb=(C ;)b =0C D .
ba a a a

ba
£ o
Therefore ¥ (g) = x (g), and the proof is complete.
In the following corollary, we mention some groups which
satisfy the hypothesis of Theorem 2.4.1.

Corollary 2.4.2: The following are E.R. groups.

(1) Any metacyclic group.
(2) Any group which contains a cyclic Hall subgroup containing G'.
(3) Any group which contains a cyclic Hall subgroup A such that
CG(A) =A.
(4) Any Frobenius group with cyclic Frobenius kernel.
Proof: (1) clearly satisfies the hypothesis of Theorem 2.4.1.

For (2), let B be a complement of the cyclic Hall subgroup
A2G'. Then, B' < B NG' =1 and hence B is abelian. Thus, one
can apply Theorem 2.4.1.

In (3), let B be a complement for A. Then B is
isomorphically contained in Aut(A) since CG(A) = A, But Aut(A)
is abelian since A 1is cyclic. Hence B 1is abelian, so G' <A.

Now apply (2).
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Finally in (4), one merely notes that if A 1is the Frobenius
kernel, A = CG(AJ. Thus one can apply (3).

In [37 Brown showed that if ‘G'\ =2 or 3, then G 1is an
E.R. group. This would lead one to wonder whether G is an E.R.
group when |G'| = p. By combining Corollary 2.2.2, Theorem 2.4.1,
and the following lemma from [10], whose proof we include for the
sake of completeness, we can obtain this result.
Lemma 2.4.3: Suppose G' 1is a p-group. Let K be a p'-Hall sub-
group of G. Then
(i) K 1is abelian and
(ii) there exists a subgroup Y of G such that G = K¥G', Y 1is
a p-group, and [K,Y] = 1.
Proof: (i) is easy since K' £ KNG' =1.

(ii) Since K 1is a Hall subgroup of KG',
= ' = ' =
G = N,(KKE' = N,(K)G' = Kp

where P 1is the p-Sylow of G. Also, NG(K) = K(NG(K) NP). Let
Y = NG(K) NP. Then, G = KXG' and [K,Y]< KNP =1.

Corollary 2.4.4: Suppose |G'| = p. Then G is an E.R. group.

Proof: Let K and Y be as in Lemma 2.4.3. If Y NG' =1, apply
Theorem 2.4.1 with B =KY, A =G'. If YNG'# 1, then K < Z2(G).
It then follows that G is nilpotent of class £ 2, so apply

Corollary 2.2.2,

Section 5. Groups in which G/Z(G) is Metacyclic. We have already

seen that any metacyclic group is an E.R. group. In this section

we will show that if G/Z(G) 1is metacyclic, then G 1is an E.R. group.
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We begin with the following lemma in which parts (2) and (3)
are generalized from [5] and part (4) appears in [5]. We will not
need part (4) in this section, although it will be used in Chapter IV,
Lemma 2.5.1: Let A be an abelian normal subgroup of G containing
Z@G).

(1) If G = AB where B 1is abelian, then CG(A) = A,

(2) If G/A is cyclic, then |G'| = |A/Z(G)|.

(3) If G/A and A/Z(G) are both cyclic, then G' = <[x,a]>
where x generates G/A and a generates A/Z(G).

(4) 1If, in addition to the hypothesis of (3), G 1is a p-group where

p > 2, then
|c'| = |A/z@G)| = |G/A| .

Proof: 1In (1), let g € CG(A). Write g = ba where b € B, a € A.
Then bGCG(A),so b € Z(G). Hence b €A, so g € A.

For (2), first note that if x generates G/A, the mapping
g - [2,x] 1is a homomorphism of A onto G' ([9], Aufgabe 2, S§.259).
Moreover, the kernel of this map is Z(G). Hence ‘A/Z(G)\ = |G'|.

In (3), one first notes that since a commutes with [x,a],

[x,a]m = [x,am] for every integer m. Thus,
|[x,a7| = |a/2(G)| = |G'|

and we are done.
Finally,for (4), let p = |G/A| and p = |A/Z(G)|. Since
G' 1is cyclic, G is a regular p-group ([9], Satz 10.2c.), S.322),

m m
Thus, [x,a]? =1 =[x? ,a] ([9], Satz 10.6b.), $.326) and hence
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and hence pn < pm. Again by Satz 10.6b.), we have
n n
[xP ,al=1-= [x,a]p . Thus p" < pn and we are done.

Theorem 2.5.2: Suppose G/Z(G) 1is metacyclic. Then G is an

E.R. group.
Proof: Let x, a € G such that x generates G/A and a generates

A/Z(G) where A 1is a normal subgroup of G containing 2(G) with

A/Z(G) and G/A cyclic. Also, suppose a. arzx where z_ € Z2(G).

r-1
Z .

Then, [a,x] = a <

Let f € W(G,G') and suppose fd? ) =C where a, € G'.
a aa1 1
Then,
o (-1 (k _ _k(r-1) k
a1 (a zx) a zx

for some integer k by Lemma 2.5.1(3). Also, note that if a" € 2G),

n
then a_ =1 since

1
o -~ _ n _ n
f(Cn)-Cnn-f(a)-a
a a a
1
Further,
£(C ;) = £(C i)z)=(cii)z—ci]L
a 2z a aal aalz

for any z € 2(G).

Let g € G. Write g = xiajz where 2z € Z(G). We define

a mapping ¢ on G by setting o(g) = xiajaiz and claim that this

is a well-defined automorphism of G.

ij { m

To see that ¢ is well-defined, suppose x'a z1 =xa z

€ Z(G). Then xi-L € A, so xi-L € Z(G). It then
-3

where zl,z2

follows that a” is also in Z(G). Thus, am-j =1 and so

1
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ij S S - i jom - A mm _ 4 m
o(xa zl) x a‘ajz, X a alz1 x"a a,z, = o(x™a zz) .
It follows that ¢ 1is a homomorphism, for let xiajz1 and
xLamzz, z1 and z, € Z(G), be any elements of G. Then,
. .4 4-1
ij 4 m _ it Jr 3 (™ T+ L A4r+l)
o(x a zlx a 22) = og(x "a zx zlamzz)
. 4.4 1-1
_ it 3™ J(rY T4 4r4l) mom
x “a a1 z, zla alz2
4
SRS S P § 4 m m
=xa (x"a aj x )zlx a azy -
Since
ij 4L m L1 33
o(xa zl)c(x a zz) X a alzlx a alz2 ,
Lt -4 _ 3 SRR
we see that we need x a X =a;, or X a.x = a for o
1 1 1 1
to be a homomorphism. But
S N O LT C 28 M L
1 x
_ kD sy PR ek

X

- ajk(r-l)rszer - aer .
X 1

so ¢ 1is indeed a homomorphism.

Finally, o 1is an automorphism, for suppose

i3 3

t jz) = x *ala 12 = 1. Then xi €A, so xi € 2(G). Thus,

o(x a

aa

] { = (al+k(r-1)z:)j €206) ,

aHEIDT ¢ 26). But (A + k(x-1), |A/Z@©)]) = 1, for let

f denote the automorphism f induces on Z(G/Z(G)). We have

fCy = C-(1+ k(r - 1))
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where a = aZ(G). Thus, (1 + k(r-1), |A/Z(G)|) =1 by Lemma 1.2.3.

Hence |A/Z(G)||j, so that aj € 2(G). Therefore, aj = 1 and hence

1
i3] i3
g(x a“z) = xa’z =1. Thus, g is 1-1 and we are done.
Next, we claim that for any ¢ defined in the above manner,
f
X = xo for every irreducible character ¥, from which it follows

that G 1is an E.R. group.

If ker x >1, let M be a minimal normal subgroup of G
contained in ker x and let G = G/M. Then f induces an auto-
morphism on Z(G) by Lemma 1.6.2 which we will denote by £. It
also follows that o(M) = M. For if M £ G', then M is characteristic
in G since G' 1is a cyclic characteristic subgroup of G. If
M£G, then MNG' =1 and hence [M,G] <sMNG' =1. Thus,

M < Z(G) so that O‘M = 1. Hence g(M) = M. Therefore, g also
induces an automorphism of G which we will denote by a.

It will follow that xf = x by induction on |G| provided
that g is defined in the same manner as ¢ is on G. Llet g
denote gM for g €G and let A = a,Z(G)>. Since fd:;) = 6;;1,

1232 -i-j-3=
1

it suffices to show o(x a'g) = x a-a g where g € Z(E} in order

to have g defined on 6‘ as ¢ 1s on G.

Write é = xiasz where 2z € Z(G). Then at € Z(E} so that

(@a™™m

armzmM = amﬁ .
x
Thus,

aTM = akm(r-l)z:mh =M.

Hence,
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o

E(QiQJi) = o(x alx"a"z)

i=3-g-tm- _ <ii-i

X a'ay_xaz =xa“a
1 18

and we have that ¢ is defined as g.

Thus we may assume ker x = 1. Since CG(A) = A by Lemma
2.5.1(1), we have that A* =A in Lemma 2.3.1. Hence, any faithful
character is zero on G - A since the character is induced from A.

f f
Therefore, x = xo on G - A. Also, x = x? on A since

£C€ ;) =C 4
a z aa,z

1
It is interesting to note at this point that Theorem 2.4.1

= 0'(6.i ) and the proof is complete.
a“z

follows as a corollary to Theorem 2.5.2 when the cyclic normal sub-
group A has odd prime power order by the next lemma.
Lemma 2.5.3: Suppose that G = BA where B 1is abelian and A is
a cyclic normal subgroup of odd prime power order. Then G/Z(G)
is metacyclic.
Proof: We have that Aut(A) 1is cyclic and that the mapping b - ™
is a homomorphism from B into Aut(A). Further, the kernel of this
map is B N Z(G). Hence, B 2(G)/Z(G) 1is cyclic and so
G/Z(G) = (BZ(G)/Z(G))(AZ(G)/Z(G)) 1is metacyclic.

It should be noted that the conclusion of Lemma 2.5.3 is not
true if A does not have odd prime power order. For example, let
A be a cyclic group of order 8 and let G be the holomorph of A.

Then one can easily verify that G/Z(G) 1is not metacyclic.

We will also find Lemma 2.5.3 useful in Chapter 1IV.



CHAPTER III

NORMALIZED AUTOMORPHISMS IN DIRECT PRODWCTS

Section 1. Introduction. One question that naturally arises is

the following: suppose G 1is a direct product of E.R. groups, then
is G an E.R. group? Indeed, this would be a useful result to
know if one wanted to determine whether nilpotent groups are E.R.
groups, since one would then have to only consider p-groups.

In this chapter, we will obtain a positive answer to this
question when G contains an abelian normal subgroup A such that
W(G,A) 1is a complement for Aut(G) in NA(G) or when the direct
summands have pairwise relatively prime orders. Notice that the
latter case will yield the sufficiency of studying only p-groups
in the nilpotent case. We will also obtain the converse of this
question (that is, if G 1is a direct product of groups and if G
is an E.R. group, then each summand is an E.R, group) without any
restriction on G.

When we use the notation E; in this chapter, we will mean
the subgroup G, X...X G X G XeooX Gn of G when

1 i-1 i+l
G = G1 XeooX Gn.

Section 2. The Containment of NA(GI) XeooX NA(Gn) in NA(G).

Suppose G =G, X...X G and let fi € NA(Gi). We then can extend

fi to an element Fi of NA(G) by setting

40
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Fi(B18p---8) = 818y -8y (808 4y 8,

where gj € Gj’ and then by extending Fi linearly to Z(G). Further,

the mapping fi -+ F, 1is an embedding of NA(Gi) into NA(G).

i

Also, 1if f1f2"'fn’ where f1 € NA(Gi), is an element of

NA(GI) XoooX NA(Gn), it follows that the mapping ¢ defined by

@£y oo £) =FF) ... F_

defines an embedding of NA(Gl) X.ooX NA(Gn) into NA(G).

We summarize these remarks with the following theorem.

Theorem 3.2.1: Suppose G = G1 XeooX Gn’ then every fi in NA(Gi)

can be extended to an Fi in NA(G) such that Fi is the identity

on Gi' Further, the mapping ¢ given by ¢(f1 ces fn) = F1 ce Fn
defines an isomorphism of NA(GI) XeooX NA(Gn) into NA(G).

Because of the embedding, we will also let NA(GI) XoooX NA(Gn)
denote its image under ¢.

We conclude this section with the following remark.

Suppose G = G  X...x G~ where (|G ,\Gjl) =1 for 1i#j.

i
Then

Aut (G) = Aut(Gl) XoooX Aut(Gn) .
This might lead one to conjecture that
NA(G) = NA(GI) XoooX NA(Gn) .

However, this later equation is not true.

For an example of this, let G = G1 X G2 where G1 is the

quaterion group of order 8 and G2 is the cyclic group of order 3.
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Then NA(G) # Aut(G) by Theorem 1.3.2. However, also by Theorem

1.3.2, NA(GI) = Aut(G and NA(GZ) = Aut(Gz). Thus,

1

NA(Gl) X NA(GZ) = Aut(G) # NA(G) .

Hence NA(GI) Xeo.X NA(Gn) is always contained in NA(G),
but they are not in general equal, even if the summands have

relatively prime orders.

Section 3. When the Summands have Relatively Prime Orders. In this

section we will show that if G = G1 XeooX Gn where
(\Gi\,|Gj\) =1 for i#3j and if each Gi is an E.R. group, then
G 1is an E.R. group.

To accomplish this we first show the following:

Theorem 3.3.1: let G =G

1 XX G where (\Gi\,\Gj\) =1 for

i#3j and let m denote the natural map from Z(G) to Z(Gi)°

Then, for any £ € NA(G), is in NA(Gi). Further, the

f
M \z(Gi)
mapping ¢ defined by

f) =n.f f .o f
VO = mtlepm iz, Mz
1 2 n
gives rise to an exact sequence

0 ~ ker y ~ NA(G) L NA(G)) X...x NA(G) = O

and ¢ 1is a splitting map for this sequence. In addition,
ker y < CP(G).

Proof: In order to show ﬂif\ is in NA(Gi) we first note

Z(Gi)
that ﬂif\Z(Gi) is clearly a homomorphism. Further, nif\Z(Gi) is

1-1, for suppose x € Z(Gi) such that nif(x) = 0, then
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£(x) € A(Ei). But G

; 1s NA -characteristic by Lemma 1.4.4. Hence,

x € £1(a@,)) = 8@,

and so x = 0. Finally, we show nif\Z(Gi? is onto Z(Gi)' Let
g, €G,. Since Z(G)/A(Ei) = Z(G)/A(£(A(G)) by Lemma 1.4.4, we

can write
g. = = a_f(g) +x
1 4
gEGi
where ag € Z and x € A(Ei). Hence,
mnf(Z ag) =n(g, -x) =g
i g€G g i=i i

and so "if\ is onto. Thus we have established that

Z(G 1)

o € NA(Gi).

f
i \Z(Gi)
Next, we show that the map § is a homomorphism. To do
this it suffices to show
f ‘! =g, (ff'
M1 \z(ci) T \z(ci) my ¢ )\Z(Gi)

for any f,f' in NA(G). Let x € Z(Gi) and write f£'(x) = X + X,

where 3 € Z(Gi) and X, € A(E;). Then,
' = =
niff (x) "if(xl + x2) nif(xl)
since f(x2) € A(Ei). Similarly,
' = =
ﬁifﬂif (x) ﬂifni(x1 + x,) "1f(x1)’

whence ¢ is a homomorphism.
It now follows that yop =1 from the definition of y and

¢. Hence, § is onto and ¢ splits the sequence.
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Finally, we have to show f € CP(G) for all £ € ker y.

In order to do this it suffices to show f(E;) =C for any
g

g<G,. For if g = 8.8 - B, where g, € Gi’

.

c ... C and hence if the class sums of elements of each
g 81 &2 L

Gi are fixed, every class sum is fixed.

o)
al

Suppose f € ker y and g € G,. Let f(E.) =C . Since
i g gl
Gi is NA-characteristic, f(A(Gi)) = A(Gi) and hence f(Gi) is the

normal subgroup of £(G) corresponding to Gi. Thus, since

f(g) € f(Gi) and since Cf(g) = Cgl, we must have g, € G . But
th f(C ) =C i f = d fC)=mn(C )=C
en m, ( g) . since m, |Z(Gi) 1 an uM ( g) ni( gl) g
Thus C = 6- and we are done.
g g

Since ker y 1is then a complement for NA(Gl) XewoX NA(Gn)

we can state

Corollary 3.3.2: If G =G, X...x G where (|G|
1 n i

i # 3, then NA(GI) XeooX NA(Gn) has a normal complement in NA(G).

,\Gj\) =1 for

Further, this normal complement can be taken to lie inside CP(G).
As another corollary we get the result we seek concerning

E.R. groups.

Corollary 3.3.3: Let G =G, X...X Gn where (\Gi\,\Gjl) =1 for

i # j and where each Gi is an E.R, group. Then G 1is an E.R.
group.

Proof: First note that if fi € NA(Gi) has an elementary representa-
tion, then @(fi) also has an elementary representation. Thus,

NA(GI) XeooX NA(Gn) < EA(G). Therefore,

NA(G) = (NA(G)) X...X NA(G_))ker ¥
< EA(G)CP(G) = EA(G)

and hence NA(G) = EA(G). Thus G 1is an E.R. group.
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Section 4. When W(G,A) is a Complement. In the previous section

we were successful in showing that a direct product of E.R. groups
of relatively prime order is an E.R. group since we could construct
the map . If G contains an abelian normal subgroup of G such
that W(G,A) is a complement for Aut(G) in NA(G), we can restrict
ourselves to W(G,A) when studying whether G 1is an E.R., group. In
this case we will show that a direct product of E.R. groups is an
E.R. group by carrying out the same procedure as in the last section
on W(G,A). Here our success will hinge upon the fact that the
summands are W(G,A)-admissible when W(G,A) 1is a complement for
Aut (G) .

We first state two lemmas about the map ¢.

Lemma 3.4.1: Suppose G = G, X...X Gn and let N = N_ X...X Nn

1 1

where N, @ G then

i i?
°P(W(G1’N1) XeooX W(Gn,Nn)) < W(G,N)

Proof: Let fi € w(Gi’Ni)‘ Il suffices to show ¢(fi) € W(G,N).

1If g € Gi’ then
£,(8) = g mod AN, )A(G))
in Z(Gi)' Hence by the definition of ¢,

mod A(N)A(G) .

m
0Q

o(£,) (8)
If g €G,, then o(f)(g) =g so

®(£,)(8) = g mod AN A(E) -
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The result now follows since it is true on a set of generators for
G.

Lemma 3.4.2: Let G =G, X...X Gn’ 1, denote the natural map from

1 i

G to Gi’ and let A be an abelian normal subgroup of G such that
W(G,A) 1is a complement for Aut(G) in NA(G). Then

W(G,A] X...x A ) = W(G,A) and
GW(G A7) Xo. X W(G,,A ) < W(G,A)

where Ai = ﬂi(A).

Proof: Since W(G,A) is a complement for Aut(G), G/A is either
abelian or a Hamiltonian 2-group. If G/A 1is abelian, certainly
G/A1 X...Xx A is abelian. If G/A is a Hamiltonian 2-group, then
G/A1 XoooX An is either an abelian 2-group or a Hamiltonian 2-group
since every subgroup of G/A; X...x A is normal. Thus,

W(G,A1 XeooX An) is a complement for Aut(G) and so

W(G,A; X...X A) = W(G,A). Also,
GW(G A1) X...x W(G,,A ) < W(G,A)

now follows from the previous lemma.
We next construct a map T similar to .
Theorem 3.4.3: Let G =G, X...XG_, m
1 n i
Z(G) to Z(Gi)’ A be an abelian normal subgroup of G, and Ai = ni(A).

denote the natural map from

Further suppose W(G,A) is a complement for Aut(G) in NA(G).

Then for every f € W(G,A), € W(G,Ai). Moreover, the

f
m \Z(Gi)
mapping 7T defined by

oo

WE) = ﬂlf\z(cl)“zf\z(cz) ’ 11nf\z(cm)



47

for £ € W(G,A) gives rise to an exact sequence
— — n Xeoo > -
0 - ker T\ » W(G,A) W(G1’A1) X W(Gn An) 0

such that ¢ restricted to w(Gl’Al) XoooX W(Gn’An) is a splitting
map. Also ker 7 < CP(G).
Proof: First note that G 1is solvable by Corollary 1.5.6. Hence
every normal subgroup of G 1is W(G,A) -admissible by Lemma 1.6.2.

Let f € W(G,A). Then f(A(Ei)) = “61)’ Thus, going through
the same steps as in the proof of Theorem 3.3.1,
uitdl

i 26
x € A(A)A(G) and so

€ NA(Gi). Further, if g € G,, f(g) = g + x where

i.’

mE(®) =g+ m(x) = g mod A(A)A(G,)

in Z(Gi). Thus € w(Gi’Ai)° Also, one can again mimic

"flz))
the proof of Theorem 3.3.1 to obtain that 1T is a homomorphism.

It then follows that My =1 on W(GI,AI) XeooX W(Gn,An)
and hence 1T is onto and ¢ is the splitting map.

Finally, it follows that ker T < CP(G). For if f € ker 71,
one can again go through the same steps as in showing ker y < CP(G)

in Theorem 3.3.1 to conclude f € CP(G) since f(A(Gi)) = A(Gi)'

Corresponding to Corollary 3.3.2 we can state

Corollary 3.4.4: let G = G1 XoooX Gn and suppose G contains an

abelian normal subgroup A such that W(G,A) is a complement for

Aut(G) in NA(G). Then, if m, denotes the natural map from Z(G)

i
to Z(Gi) and if Ai = ni(A), W(G1’A1) XeooX W(Gn,An) has a normal

complement in W(G,A). Further, this normal complement can be taken

to lie inside CP(G).
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Finally corresponding to Corollary 3.3.3, we have

Corollary 3.3.5: Let G = Gl XoooX Gn and suppose that G contains

an abelian normal subgroup A such that W(G,A) 1is a complement

for Aut(G) in NA(G). Then, if each Gi is an E.R, group, G is
an E.R, group.

Proof: It suffices to show W(G, A) < EA(G). Since each Gi is

is the

an E.R. group, w(Gi’Ai) < EA(Gi) where A, = "i(A) and

i i
natural map from Z(G) to Z(Gi)' Hence in NA(G), W(Gi,Ai) < EA(G).

Thus,

W(G,A) = (W(G ,Ap) X...x W(G_,A ))ker 1

"2}

EA(G)CP(G)

EA(G)
and we are done.
In concluding this section, one should also note that Theorem
3.3.3 and Corollary 3.3.4 will hold under the assumptions that G
is solvable and A 1is equal to Al XeooX An instead of assuming

W(G,A) 1is a complement.

Section 5. The Converse. We conclude this chapter by showing that

if G = G1 XesoX Gn and if G 1is an E.R. group then each Gi is

an E.R. group.

Theorem 3.5.1: Let G = G1 XoosX Gn and suppose that G 1is an E.R,

group, then each Gi is an E.R. group.

Proof: Let f € NA(Gi) and set H = f(Gi)' By Lemma 1.3.1, it
suffices to show the existence of an f' in NA(Gi) such that

' =
f (Gi) H

l— =_
i and f (Cg) Cg in Z(Gi) for all g € Gi.
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Set H = Hiai' Then H is a group basis of 7Z(G). Further,
H 1is isomorphic to G. Hence by Lemma 1.3.1, there exists f' € CP(G)
such that f'(G) = H since G 1is an E.R. group. Then, since Hi

is the normal subgroup of H corresponding to Gi and since

f'(A(Gi)) = A(Gi) by Theorem 1.4.3, f'(Gi) =H, by Lemma 1.4.1.

i
Hence f' restricted to Z(Gi) lies in NA(Gi), f'(Gi) = Hi’ and
f'(E;) = Eg for all g € G1 since the class sum of an element of
Gi in Z(Gi) is also its class sum in Z(G). This completes the

proof.



CHAPTER IV

ELEMENTARY REPRESENTATIONS IN p-GROUPS

Section 1. Introduction. We consider two problems in this chapter.

In Section 2 we will see some p-groups which are E.R. groups, al-
though all the E.R. groups obtained here will also be metabelian.

We also emphasize again that knowledge of p-groups which are E.R.
groups yields knowledge about nilpotent groups which are E.R., groups
by Corollary 3.3.3. 1In Section 3 we will consider the question of

when W(G,G') < CP(G) for p-groups.

Section 2. p-Groups which are E.R. Groups. One useful fact about

p-groups is the following. Let G be a metabelian p-group and let
A be a maximal abelian normal subgroup of G containing G'.
Since A 1is a maximal abelian normal subgroup of G, CG(A) = A,
Hence, if ¥ 1s a faithful character of G, x is induced from a
linear character on A by Lemma 2.3.1. Also, x 1is then zero on
G - A.

One immediate result we can obtain from the above observation
on faithful characters is

Theorem 4.2.1: Suppose G 1is a p-group such that Z(G) 1is cyclic,

‘F3(G)‘ = p, and G contains a maximal abelian normal subgroup such
that G' s A < ZZ(G)’ Then W(G,G') < CP(G) and hence G 1is an

E.R, group.

50
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Proof: Let x be an irreducible character of G and let f € W(G,G').
It suffices to show xf = X

If ker x >1, let N = ker x. Then N = F3(G) and N 1is
W(G,G') -admissible by Lemma 1.6.2. Hence, f induces an automorphism
on Z(E) which will be in W(E;EW) where G = G/N. Further,
xf = yx since G has class s 2.

If ker x =1, then xf = x since both xf and ¥ are zero
on G -A and since f fixes the class sums of elements of A. This
completes the proof.

In attempting to prove that a metabelian p-group is an E.R.
group, one might try to construct an automorphism of G that agrees
with a given f € W(G,G') on class sums of a maximal abelian normal
subgroup A containing G', as this would be similar to the technique
used in proving Theorems 2.4.1 and 2.5.2. One case in which one
might first try the above technique is when A 1is cyclic. However,
by the next lemma we will see that we have already treated this case
in Chapter II.

Lemma 4.2.2: Let G be a p-group such that G contains a maximal
abelian normal subgroup A which is cyclic. Then G = BA where B
is abelian.

Proof: Llet é denote gA for g € G. Since CG(A) = A, it follows
that G/A 1is isomorphically contained in Aut(A) under the mapping
g~ Tg'

We may assume G/A 1is not cyclic, or else we are done. Hence,
we have that p =2 and that |A| 2 23 since Aut(A) 1is cyclic

when p is odd or |A| < 22.
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Let A = <a> and suppose |A| = 2", m 2 3. Then
Aut (A) = <a> X <p> where g(a) = a5 and g(a) = a-l. Thus since
G/A 1is not cyclic, we can choose d and ¢ in G such that d

and c¢ generate G/A and so that 1T, is some power of @ and

d
Claim: There exists b € G such that b and c generate G/A
and [b,c] = 1.

Note that once we have established the claim, we are done
with B = <b,c>.
Proof of the claim: Let [d,c] = a". We first show that 2 . r.
Case 1: If |dA| = 2.

Let d2 = aj. Then 2|j, or else <d> would be an abelian

normal subgroup of G contradicting the maximality of A. We also

have
@) = @)© =2
2 2 M
= @H% = (@ahH” .
m=-2
Further, since |dA| =2 and since |a| =2 ~,
-3
2™ m-1
4.5 _ 12 . 2
Thus from (1) and (2),
-j ror 2 re2™ Yy g™l
a = da da =d a = a .

Therefore, r(2 + Zm-l) = -2j mod 2™, Since 4\-2j and since

41 2+ Zm-l, we have 2|r.
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Case 2: If |dA| > 2.

Suppose 2 { r in this case. Then a € G' and hence
$@G) = <d2,a>. Also, Z(3(G)) sCG(A) = A so that Z(3(G)) 1is
cyclic. But then §(G) is cyclic by Satz 7.8 c.), S.306 of [9],
a contradiction. Hence 2|r.

To complete the proof of the claim, let b = da . Then
b and c generate G/A and b and c¢ commute since
bC = (dar/Z)c - dara-r/2 - dar/2 -b.

Thus we get as a corollary to Theorem 2.4.1

Corollary 4.2.3: Let G be a p-group containing a maximal abelian

normal subgroup which is cyclic. Then G 1is an E.R. group.
Another type of p-group which is an E.R. group is contained
in the following result.

Theorem 4.2.4: Let G be a p-group and suppose that G = BA where

B 1is abelian and A is an abelian normal subgroup of G containing
Z(G). Further, suppose A/Z(G) 1is elementary abelian of order pz.
Then G 1is an E.R. group.
Proof: Let x and y be elements of A which generate A/Z(G).
We may further assume that y is chosen so that y € ZZ(G)' Since
x<y,Z(G)> 1lies in the center of G/<y,2(G)>, G/<y,Z2(G)> 1is abelian
and hence G has nilpotence class € 3. Further, if the class of
G is 3 then x € 2,(6).

Let b € B. Since G/<y,2(G)> is abelian, x°Z(G) = xy Z(G)
for some 0 £ j < p. Thus, if the class of G is 3, we can find
bx € B such that

b
x *Z(G) = xy z(G)
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where 0 < j < p. In the remainder of the proof we will assume

j =1, for if not replace y by yj.

Let £ € W(G,G'). Since y € Z,(G), we have f(E;) =c,
by Lemma 2.2.1. We also know that f(C—y) = Exz for some
) X
z, € F3(G) < Z(G) by Lemma 2.2.5. 1In addition, \zx\ < p since

xP € Z(G) and so

~ = | P _ ¢~

f p p M

« ) f(x") = x C
X X z

z where b E€B and z € Z(G).

i
We define a mapping o by setting o(g) = bxiyjzxz and claim that

Let g € G. Write g = bxlyj

g 1is a well-defined automorphism of G.

To see that g 1is well-defined, suppose

b xiyjz

_ k L
1 1 S P Yz,

_ -1
where bl’bZ € B, z),2, € 2(G). Then, blA = bZA and so b1b2 € 2@G).

ik _

Thus, xi-kyj.L € 2(G) and hence p|i-k. Therefore z 1. Hence
i] - i3 i _ ij k
c(blx y zl) blx y'z 2z, blx y zle
k 4 k k
= bzx yLszz = O(bzx yLzz) ’
so ¢ 1is well-defined.
. i3] k 4
o 1s a homomorphism, for if blx y z1 and bzx y’z, are
b
i
any elements of G, we have (x yj) 2 = xiymz for some integer m

and some 2z € Z(G). Then
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i +k e,

i K 1

o(byx ylz b)x ytz,) = (b byx Y vz, 2)2)
~ f+k itk mH
= blbzx zx y zlzzz

j i k 4 k
zlzx)(bzx y zxzz)

(byx'y

i k
o(b x'yIz) a0 ,xyz,)

and g 1is a homomorphism.
Finally, ¢ 1is an automorphism. For if
o(bxiyjz) = bxiziyjz= 1, thenb € A and hence b € Z(G). Thus,
xiyj € Z(G) so that xi € Z(G). Then, z: =1 and so bxiyjz = 1.
At this time, we remark that A 1is a maximal abelian normal
subgroup by Lemma 2.5.1(1) and that A 2 G'. Further, if G has
class 3, f and ¢ agree on class sums of elements of A. For let

g €A. Write g = xiyjz where z € Z(G), 0 < i <p,and 0 < j < p.

If i =0, then g € Zz(G) so that
£C ) =C_ = g(C
( g) g g)
If j = 0, then
f(Cg) = f(C i ) =C 11~ o(C i )
X z X zxz X z

Finally, if both i #0 and j # 0, let k be an integer such that

ki = j mod p. Then

bk

) *2(6) = x'y**z(6) = x'yz(0)
Lk

Hence xiyj = (xV) le for some z, € Z(G). Hence,

(xi

f(Cxiyjz) f(Cxizlz) i Cxizizlz
=C = cd?

) )
xlyjziz xiyjz
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We claim that x? = x9 for every irreducible character X
and for any ¢ defined as above, from which it will follow that G
is an E.R. group.

Suppose our claim is false. Let G be a minimal counter-
example and let x be an irreducible character such that xf ¢ xo.

We first show that ¥ is not faithful, for suppose it is.
If G has class < 2, then ¥, xf, and xd are all zero on G - Z(G)
since they are all faithful. From this observation it follows that
xf = xc since £ and o agree on Z(G). If G has class 3, then
the faithful characters ¥, xf, and x° are all induced from A.
But then xf = x7 since xf and x? are both zero on G - A and
since f and ¢ agree on class sums of A. Hence, X cannot be
faithful.

Thus we have ker x N Z(G) > 1. Let N = ker x N Z(G).
Then f and ¢ are both the identity on N. Therefore, f and ¢

induce automorphisms on Z(G) where G = G/N. Let f and g de-

note the induced automorphisms, g denote gN for g € G, ; the

character x induces on E, B = BN/N, and let A= <§,y, Z(E)>.
< -
X #x°-

Also, note that f € W(G,G'). Since xf # %, We will

obtain a contradiction by showing ;f = xc.

Suppose x € Z(E}. Since

f(Ci) =C;{; =C- ,
X

;x =1 and so g =1. Also, G has class 2 since E/Z(ES would

have to be abelian. Thus,
5 -
X X=X .
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1f § € Z(E}, then again G would have class < 2. Thus,

since

f(C)—() = C;; =C- ,
X

there exists a 51 € § such that x = xEx. We also must have

f(Cé) =C- for g € G since G has class < 2. Hence,

- — —_— — bl
f(C--i_j-) = C-_i_j- = (C__i_j_)
bx y z bx y 2z bx y 2z
=C_i44.=0C__13),
bx zy z bx y z

. —f
so again x =y~ .

Finally, suppose neither x nor y 1lies in Z(E). Since

f(Cc.) = C-- , 1f we can show
X Xz

I iyt
o(bx y g) =bxy 8z, (*)

where g € Z(E), we will again have xf = ;a since G 1is a minimal
counter-example.

To show (*), it suffices to show that o(g) = g. Write
g = Elik}.rLE where b1 ¢t B, z€ Z(G), 0 sk<p,and 0 €4 < p.

Then,
g =b.x

and so b, €2(G). But then x5 €2(G), so k=4 =0. Hence,
o(g) = g and so we have (*).

This completes the proof.
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Theorem 4.2.4 was originally motivated by the following
corollary.

Corollary 4.2.5: Let G be a p=-group where p > 3. Suppose that

every normal abelian subgroup of G 1is generated by at most two
elements. Then G 1is an E.R. group.
Proof: By Satz 12.4, S.343 of (9], G is one of the following types
of groups:
(1) G 1is metacyclic.

n n-1

P = [x’z] [y’z] = 1’ yx yzp

p__p_ _p sp” ! x
«,Ysz\x =Yy z = [y’z]

P

(2) 6 y

<x,y,z\xp

]
N

>.

(3 ¢ 1,y =yz ,Z. = zy>
where s =1 or is a quadratic non-residue mod p.

We already know that (1) is an E.R. group. (2) is easily
seen to have class 2 and hence is also an E.R. group. In (3), let
B =<x> and A = g,z>. Also in (3), Z(G) = <zp> and A {s an
abelian normal subgroup. Thus one can apply Theorem 4.2.4.

Finally we mention one more result.

Corollary 4.2.6: Suppose G contains an abelian normal subgroup

A such that G/A 1is cyclic, Z(G) < A, and \A/Z(G)‘ < pz. Then
G 1is an E.R. group.

Proof: Note that A/Z(G) is either cyclic or elementary abelian
of order pz. 1f A/Z2(G) 1is cyclic, apply Theorem 2.5.2. If

A/Z(G) 1is elementary abelian of order pz, apply Theorem 4.2.4.

Section 3. When is W(G,G') < CP(G)? An interesting question re-

lated to whether a metabelian group is an E.R. group is when is
W(G,G') < CP(G)? Certainly, if W(G,G') < CP(G) where G is

metabelian, then G 41is an E.R., group. In addition, one can obtain
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the following generalization of Lemma 2.2.5 by replacing F3(G)

by N 1in the proof of Lemma 2.2.5 when G 1is metabelian.

Lemma 4.3.1: Let N be a normal subgroup of the metabelian group
G. Further, suppose that W(E;E') < CP(E} where G = G/N. Then
for each f € W(G,G') and for each g € G, there exists an xg

in N such that f(Eg) =chg.

Thus we see that knowledge of when W(G,G') < CP(G) will
also increase our knowledge on how W(G,G') acts on class sums.

Up to this point, we have seen that W(G,G') £ CP(G) when-
ever G has nilpotence class £ 2, G has at most one non-linear char-
acter, and when G satisfies the hypothesis of Theorem 4.2.1. In
this section we will obtain some metabelian p-groups where this is
true.

Before obtaining some p-groups where W(G,G') < CP(G), one

should note that we do have the following result on direct products

as a corollary to Theorem 3.4.3.

Corollary 4.3.2: Let G = G1 XeooX Gn be a metabelian group. Then,
if W(Gi,Gi) < CP(Gi) for each i, W(G,G') < CP(G).

Proof: 1If W(Gi,G{) < CP(Gi), then W(Gi,G£) < CP(G). Hence,
W(G,G") =(W(Gl,cl') XeooX W(Gn,Gr'l))ker T s CP(G) .

Then in particular, studying the question of when
W(G,G') < CP(G) for metabelian nilpotent groups reduces to studying
this question for p-groups.

The major case in which we can get p-groups for which

W(G,G') S CP(G) 1is the following.
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Theorem 4.3.4: Let G be a p-group where p > 2 such that G/Z(G)
is metacyclic. Then W(G,G') < CP(G).
Proof: lLet x, a € G such that A =<, Z(G)> is a normal subgroup
of G and such that x generates G/A., By Lemma 2.5.1, we know
that \G/A\ = |G'|. Hence, \Ca\ = \G/CG(a)\ = \G/A\ = |G'|, so that
c,6 = aG'.

In the proof of Theorem 2.5.2, for an f € W(G,G'), we took
an a, € G' such that f(a;) = E;a , constructed an automorphism
o by setting c(xiajz) = xiajaiz éhere z € Z(G) , and showed that
f(E;) = O(Eé) for all g ¢ G. In this case we can actually take
a; =1 since C, = aG'. Then o =1 and we are dome.

Theorem 4.3.4 gives us some additional cases of when
W(G,G') < CP(G) which are contained in the following corollary.
Corollary 4.3.5: Let G be a p-group, p > 2. Suppose either
(1) G =AB where A 1is a cyclic normal subgroup of G and B
is abelian or
(2) G contains a maximal abelian normal subgroup A where A 1is
cyclic.
Then W(G,G') < CP(G).
Proof: (1) follows since Lemma 2.5.3 implies G/Z(G) is metacyclic.

(2) follows since, as we noted in the proof of Lemma 4.2.2,

G 1is metacyclic.
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CHAPTER V

ELEMENTARY REPRESENTATIONS IN Sn

In [3], Brown showed that §»n=1,...,10, are E.R. groups.
In this chapter, we will show that Sn is an E.R. group for any
positive integer n.

We begin by recording two lemmas about Sn’ the first of
which is Exercise 11.4.11 of [13]. The second lemma is a well-
known result about the order of conjugacy classes of Sn and can be
found, for instance, in [2].

Lemma 5.1.1: Let n >2,n # 6, then x € s, is a 2-cycle if and
only if |x| =2 and max\xxy\ = 3, where y € Sn'
Lemma 5.1.2: Let g € S, and suppose that g 1is the product of

disjoint al l-cycles, ay 2-cyc1es se ey an n-cycles. Then

n!
o o [0
1 2 n

ey =

In showing that Sn is an E,R, group, we will show that
NA(S ) = CP(Sn) for n>2, n# 6. (Note that this would have to
be the case if Sn is to be an E.R. group since Aut(Sn) = Inn(Sn)
for n # 6.) We first show that every normalized automorphism of
Z(S,) fixes the class sums of elements of order 2 for n > 2, n # 6.
Lemma 5.1.3: Let f be a normalized automorphism of Z(Sn) and
suppose that n >2, n # 6. Let g € S, be a product of disjoint

transpositions. Then f(E;) = Cg.
61
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Proof: Let t denote the number of transpositions appearing in g.
We may assume that g has the form g = (12)(34)...(2t-1,2t). Let
f(ai) =C_ . Toshow C =C we proceed by induction on t.
g 81 g1 g
If t =1, let y € S_. Then by Lemma 1.2.2, we can find

n

X € S such that fd; x) =C v Thus, lglg{\ = \ggx\ <3 by
g8 8181

Lemma 5.1.1. Next, let x € S, such that \ggxl = 3. Again by

Lemma 1.2.2, there exists y € Sn such that fd; x) =C .
g8 glg{
Hence \glg{\ = \ggx\ = 3. Therefore, max\glg{| = 3, so g, is a

transposition by Lemma 5.1.1 and we are done when t = 1.

In the general case we have that

£C€ 12y 38y ...(2¢-3,2¢-2)) = C12)(34)...(2t-3,2¢-2)

and f(E Hence,

(2t-1,2t)) = C(2t-1,2t)'

£CL) =C 2y (34)...(2t-3,2¢-2) (2t-1,2t)

for some x € Sn by Lemma 1.2.2.
If (2t-1,2t)x is disjoint from (12)...(2t-3,2t-2) we are
done. Suppose this is not the case. If (Zt:-l,2t)x has one letter
in common with (12)...(2t-3,2t-2), it follows that
(12) ...(2t-3,2£-2) (2t-1,2t)* is a product of disjoint cycles which
are transpositions and a 3-cycle. But then 3|]g1\ which is
impossible. Next, suppose (2t-1,2t)x has two letters in common
with one transposition of (12)...(2t-3,2t-2). It follows that g,
is a product of disjoint transpositions and has one less trans-
position than g. But then f fixes C so that f(E;) # Eé .

&1 1
The final possibility would be for (Zt-1,2t)x to have one letter
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in common with two different transpositions of (12)...(2t-3,2t-2),
But then (12)...(2t-3,2t-2)(2t-1,2t)* is a product of disjoint
cycles which are transpositions and a 4-cycle. Therefore 4\\g1]
which is impossible. Hence, (2t-1,2t)x is disjoint from

(12) ...(2t-3,2t-2) so that Eg =C .

&
Theorem 5.1.4: §, 1is an E.R. group for every positive integer n.

Proof: By the results of [3] we may assume n > 2, n # 6. Let
f € NA(G) and let N = (g € Sn|f(6;) # Eé]. We will show that
N = ¢, which proves the theorem.

Suppose N # 3. We pick a '"minimal element" g of N,
which satisfies the following properties in the order that they are
listed:

(1) Suppose that g has its largest cycle of smallest length among
the elements of N. Let h denote the length of its largest cycle.
(2) Suppose that g has the fewest number of cycles of length h
among the elements of N satisfying (1).
(3) Suppose that g has the fewest number of cycles of length
greater than or equal to two among the elements of N satisfying (2).
Note that we have h 23 by Lemma 5.1.3.
Write g = 3152 .o ar where the Bi are disjoint cycles

and 2 < \31\ < Also, assume that Br = (1,2,...,h). Let

18411

g' = (1,2,...,h-1). Then g = By -+ Br-IB;(l’h)' Also,

'
r

f((T v =C '
a1'”61'-161- e1'”Br-13r

by the minimality of g and

£FCan’ T C%a.m

.
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Hence by Lemma 1.2.2,

e =%y p pram

for some x € Sn' Let gy = al"'ar-la;(l’h)x' We will now show

that Eg = Eg, from which it follows that N = 4 and so we will
1
be done.

. X '
Case 1: Suppose (1,h) is disjoint from 31...Br_13r.

If (1',h)x is disjoint from 8,...8_ ,B', then C is
1 r-1r gl
fixed by f since it has fewer cycles of length h with its largest

cycle of length < h. But then f(ag) ¥ E; , so this case cannot
occur. !

Case 2: 1If (l,h)x has one letter in common with Bl"'ar-IB;°
Suppose that (l,h)x has one letter in common with

L
Bl'°°ar-16r and that (nl,nz,...,nt) is the cycle of

By---B

r-lB; where the common letter occurs. Then (l,h)x = (nj,a)

where a does not appear in al...ar_ls;. Also, note that

(nl,...,nt)(nj,a) = (nl,...,nj_l,a,nj,...,nt) .

If t <h-1, then g, would have fewer cycles of length

h with its largest cycle having length < h. Thus E; is fixed
- - 1
by f, so f(Cg) # cg . Hence, we must have t 2 h-1.
1
If t > h-1, then t = h. But then 8y has one more cycle

of length h-1 than g does. Thus, gtll has one more cycle of length
h-1 than gh does since (h,h-1) = 1. But E-h

g
since all cycles in gh have length less than h. Thus,

is fixed by f
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f(C h) =C h = c h
g g 8,
which is impossible.

Thus we must have t = h-1. But then 81 has the same
cycle structure as g does. Hence f(E;) =C = E? .
1

Case 3: 1If (l,h)x has two letters in common with 31...3r_13;.

First, suppose that (l,h)x has two letters in common with

one cycle of 51"'3r-13;' Let (nl,nz,...,nt) denote this cycle

and suppose (1,h)x = (nj,ns) where j < s < t. Then
).

(nl,---,nt)(nj,ns) = (nl,...,n. ,N_,N ee,

j-1""s s+1’°'°’nt)(nj’nj+1" s-1

But then g, has fewer cycles of length h with its largest cycle
having length <h. Thus, £ fixes C  and so f(E;) # Eg .

g
1 1
Therefore, (l,h)x must have its letters in common with two

cycles of 51"'°r-13£' Let (nl,nz,...,nt) and (n{,né,...,n;)
denote these cycles where t <s. Then (l,h)x has the form

1]
(ni,n ) and

]

' ] ] = ' ' e 1 \J e
(nl,...,nt)(nl,...,ns)(ni,nj) (nl"°"n1-1’nj’nj+1’ LU ,

nj-l’ni""’“t)

If s+t <h, then 2 has its largest cycle of length £ h,

has at most as many cycles of length h as g, and has fewer cycles

of length 22 than g. Thus f fixes C so that £(C ) # c .
&1 & &
Hence, we must have s + t > h.

If neither s nor t is h-1, then g, has one more cycle
of length h-1 than g. Therefore, 8, has at least one more cycle

of length h-1 than g does and so E.h # a.h' But f«; h) = E-h
81 g g g
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since gh has its largest cycle of length < h. Thus,

£C ) =C, =C, ,
g g 81

a contradiction. Hence either s or t must be h-1l.

Suppose that g has oy 1-cycles, @, 2-cyc1es,...,ah h-cycles.
Then,
1
o4l = - -
al' 02' 2" ... ! h
If s =h-1 and t < s, then
C | =n!/(a! 122 !(t-l)at-l( -1)1ca"-1 1(:+Da‘+1
| gl\ =0l /(o,la ey g o, LY ces
% -1 o, -1
! (h- -1)! .
% 1 (h-1) (ah th (s+t))
Thus since \C \ = \C \, we have
81 g

= h L]
s + t attah

But th >s + t, a contradiction.
If t = h-1 and s = h-1, then

-1 a, -1

o
12 2, (@ -Dh " (s + )

1

- “-
\Cg | =n!/(a -1)! (h-1)

ooy, _
1 h-1

)
Since \Cg | = \Cg\, we see that

1
s+t=q (h-Deh .

But (h-1)h > s + t, so we have a contradiction.

Finally, if t = h-1 and s = h, then

- *2 -1 %, -2
\cgl\ = n! /(all a,! 2 "'°’h-1! (h-1) (o -2)!h (s + t))
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Again, since |C_ | = |C_|, we have
g 8
= 1 h2
s+t = (qh )c:th .

2
But h > s + t, so we again have a contradiction and case 3 cannot

occur.

Thus we have now shown f£(C ) = Cg, so N =4 .
g






CHAPTER VI

A LOOK AT THE GROUP RING PROBLEM

Section 1. Introduction. Let R be a ring and let G and H

be two groups. A question which has received considerable
attention is when does R(G) = R(H) imply G == H? This is known
as the group ring problem or isomorphism problem.

In the particular case whem R = Z, the best general result
known at this time is that Z(G) = Z(H) implies G >=H when G is
a metabelian group. This result was shown by Whitcomb in [16] by
using Theorem 1.1.6. It should be noted at this time that in [10],
Jackson claims to have obtained a positive answer to the group ring
problem when G 1is either metabelian or nilpotent. However, the
nilpotent result depends on Lemma 4 of [10], which is false, and I
have been unable to follow Jackson's proof in the metabelian case.1
In this chapter, we will give some procedures which may prove fruit-
ful in extending Whitcomb's result.

Finally, we remark, as noted in [16], that in order to prove
the group ring problem when R = Z, it suffices to show that every

group basis of Z(G) 1is isomorphic to G.

Section 2. Lifting and a Generalization of Theorem 1.1.6. We begin

this section with the following definition.

Jackson uses Lemma 4 in his proof of the metabelian result, but
the use of it can be omitted.

68
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Definition: Let N <G and let f € NA(G/N). We say that f can
be lifted if there exists an f € NA(G) which induces £ on Z(G/N)
(that is, n(f(x)) = f(ﬁ(x)) for all x € Z(G) where n 1is the
natural map from Z(G) to Z(G/N)). We will also say that £ is
a 1ift of £,

Note that in the above definition it is implicit that
£(a(N)) = aA(N) 1if f is to be a 1ift of f,

Next, we state a generalization of Theorem 1.1.6.

Theorem 6.2.1: Let A be an abelian normal subgroup of G, let m

denote the natural map from Z(G) to 7Z(G/A), and let H be a group
basis of Z(G). Suppose that there exists an fe NA(G/A) such that
f(n(H)) = n(G) which possesses a 1ift f. Then for each h € H,

there is a unique 2 € G such that
£(h) = g, mod A(A)A(G)

Further, the mapping h - &, defines an isomorphism of H onto G.
Proof: Let h € H, then there exists g € G such that f(h) = g mod A(A).

Thus, f(h) =g+ % (a-1)t(a) where t(a) € Z(G). Then, computing
acA
as Whitcomb did in [16],

£(h) = g + gA(a-nc(a) = é‘[AaL(t(a))g mod A(A)ACG) .
a a

1 at(E@)

a€A
The mapping h - 2 will be a homomorphism since f 1is a

Letting g, = g, we have 2, is unique by Theorem 1.1.7.
homomorphism and since A(A)A(G) 1is an ideal. Further, h - & is
an isomorphism. For if ghl = ghz, then f(hl) = f(hz) mod A(A)A(G)

so that f(hl) = f(hz) by Theorem 1.1.7. But then h1 = hz.
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Theorem 6.2.1 can be used to solve the group ring problem for

S To see this, first note that S4 = S3V4 where

4
v, = <(1,2)(3,4),(1,3)(2,4)>. Thus, z(54/v4) - z(s3) .

Now, in [7] it is shown that NA(S3) = I(S Hence if

3"
fe NA(SA/V4), we can write f = T where u 1is a unit in

Z(SQ/V Since Z(Sy) < 2(84), we can then find a unit u in

4)'
Z(S3) such that m(u) = u where 7 is the natural map from Z(Sa)

to Z(Salva)' Therefore, Tu will be a 1lift of T Thus every
element of NA(SA/VA) can be lifted.

Finally, let H be a group basis of Z(§ Then,

4)'

n(H) = n(Sa) since S3 is metabelian. Hence, since V4

and since every element of NA(SA/VA) can be lifted, we can apply

is abelian

Theorem 6.2.1 to conclude H == S4.
More generally, one might attempt to use Theorem 6.2.1 in the
‘following manner to solve the group ring problem for solvable groups.
Let G be a solvable group, let A # 1 be an abelian normal
subgroup of G, and let 1 be the natural map from Z(G) to
Z(G/A) . Suppose H 1is a group basis of Z(G). Then by induction
on \G\, there exists £ € NA(G/A) such that f(n(ﬂ)) = n(G). Then,
if f can be lifted, we can apply Theorem 6.2.1 to conclude H =G,
Unfortunately, the success of the above process depends on
£ having a 1ift, and in general it is not true that every normalized
automorphism of Z(G/A) can be lifted from 7Z(G).
For an example of this, let G be the dihedral group of order
8 with generators a and b where a4 = b2 =1 and ab = 33. Let

2 -
A =<a > and let f denote the normalized automorphism of Z(G/A)

defined by E(é) =b and f(b) =a where a =aA and b = bA.
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Then f cannot be lifted, for suppose that f did have a lift f£.
Then, f(a) = b mod A(A), so that f(a) = b + (a2 - 1)t(a) where

t(a) € Z(G). But then

f(a) = b + (a2 - Dt(a) = a¥E@)y 1od aaraE) .

Hence f(az) 1 mod A(A)A(G), so that f(az) =1 by Theorem 1.1.7.
But \f(a)\ = 4, a contradiction. Thus f does not have a 1ift.

However, it should be noted that we do not have to be able
to 1lift every f such that f(ﬂ(H)) = n(G) to prove the group ring
problem for solvable groups. Rather, it would suffice to have the
existence of one f mapping mw(H) to w(G) which has a 1lift.

It is also interesting to note, that although not every
normalized automorphism of Z(G/N) can be lifted when N < G, they
can be lifted from 2(G). By this we mean the following. Let
f € NA(G/N). Extend f to 2(G/N) and let 7 be the natural map
from 2(G) to 2(G/N). Then, since 2(G) =~ 2(G/N) ® ker m, it
follows that any automorphism of the form f ® f', where f' 1is an
automorphism of ker m, will induce f on 2(G/N).

Let us at this time introduce some notation. For a group

G and a normal subgroup N of G, let L(G/N) denote the normalized

automorphisms of 7Z(G/N) which can be 1lifted.

Section 3. Groups of Solvable Length Three. Let G be a group

such that G" is abelian and set G = G/G". Let H be a group
basis of Z(E}. Then there exists f € W(E;E') such that

f(H) =G by Theorem 1.1.6. Hence, if W(G,G') s L(G/G"), we can
apply Theorem 6.2.1 to obtain that the group ring problem holds

for G.
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Whether every element of W(E;E') can be lifted is to my
knowledge unknown. However, we can state a necessary condition for
this to occur.

Theorem 6.3.1: Let G be a group such that G" 1is abelian and such

that W(G,G') < L(G/G") where G = G/G". Then W(G,G')Aut(G) = NA(G).
Proof: Let f € NA(G) and set H = £(G). Let El € W(E;Ew) such
that fl(n(H)) = n(G) where w 1is the natural map from 2Z(G) to
Z(G/G') and let £, be a lift of fl. Note that £ € W(G,c",
for let g € G. Then n(fl(g)) = n(g) mod A(Eu)A(E). Hence
fl(g) € g+ 4(G")A(G) + A(G"). But applying Theorem 1.1.5 with
K =G', we see A(G"™) < A(G")A(G). Thus, fl(g) = g mod A(G')A(G)
or fl € W(G,G'). Also, note that f induces a normalized auto-
morphism f on Z(E) since G' is NA-characteristic. Further,
nflf(G) = n(G) .

Now, we have flf(g) =g mod A(G") for some g, € G, or
flf(g) =8 + ¥ (a-1)t(a) where t(a) € Z(G). Again computing as

a€A
Whitcomb did in [16],

L}

L(t(a))8

££(e) =g+ T (a-lta) = T a mod 4(6™)A(C)

acA acG" 1
Thus for each g € G, we can find a s ¢ in G such that
1
f f(g) = g mod A(G'")A(G). Further, g is unique by Theorem
1 flf flf
1.1.7.

Let o be the mapping o(g) = B g° Since B ¢ is unique,
1 1

flf is an isomorphism, and since A(G")A(G) 1is an ideal, it follows

that ¢ € Aut(G). Also,

o't £(g) = g mod AG™MAE) -



-* -
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Hence o'lflf € W(G,G"), or

1

f € fi g W(G,G") < W(G,G")Aut (G)W(G,G")

But W(G,G") < W(G,G') so that f € W(G,G')Aut(G). Thus we have
W(G,G')Aut(G) = NA(G).

We remark at this time, that in Section 5 of Chapter I it
was mentioned that we would obtain a sufficient condition for W(G,N)
to be a supplement for Aut(G) in NA(G). Indeed, for any group
G satisfying the hypothesis of Theorem 6.3.1, we have W(G,G') is

a supplement for Aut(G) in NA(G).

Section 4. Lifting Units. In this section, we record another possible
procedure for attacking the group ring problem involving E.R. groups.
Our approach here is similar in nature to one presented in [167.

Let A be an abelian normal subgroup of G and suppose that
G/A is a metabelian E.R. group. Then, if H is a group basis of
Z(G/A), we can find a unit u in 2(G/A) such that Ta(ﬁ) = G/A
by Lemma 1.3.1. Thus, if CP(G/A) < L(G/A), we could apply Theorem
6.2.1 to conclude H =G for any group basis H of Z(G).

Indeed, the proof in Section 2 that the group ring problem
holds for S4 fits the above procedure. Thus, we are led to the
question of when do elements of CP(G/A) 1lie in L(G/A). In [16],
Whitcomb suggested using the ring of p-adic integers to consider
this question when G 1is a p-group. Here we will instead use the
ring Z for a suitable integer n.

pWe begin by recalling that

3z (©) = 8G) + pZ _(6)
P P
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when G is a p-group where J(Z n(G)) denotes the Jacobson radical

P
of Z n(G).

P
Next, we record the following result from [16].
Lemma 6.4.1: Let A be an abelian normal subgroup of G. Suppose
T (a-1)t(a) € an(G) where t(a) € Z(G) and where the exponent of

agA
A divides pn. Then I aL(t(a)) =1.

Now, let ¢ dezgﬁe the natural projection of Z(G) onto
Z n(G) where n 1is a positive integer. We next state
Lmea 6.4.2: Let u# 1 be a finite unit of 7Z(G) where G 1is a
finite group. Then ¢(u) # 1.
Proof: Suppose ¢(u) =1, then u €1 + an(G). But then the co-
efficient of the identity element of G in u 1is nonzero. Hence
u=1 by Lemma 7 of [10].

Another fact we can state is
Lemma 6.4.3: Let G be a p-group and let x € Z(G). Then, if p
does not divide 4(x), ¢(x) 1is a unit in Z n(G).
Proof: Since 4(x) 1is not divisible by p,p¢(x) is not in
J(Z n(G))’ but then ¢(x) 1is a unit.

P We now return to the problem of lifting elements of CP(G/A).

Although we will not directly lift elements of CP(G/A) here, we can

use an alternate procedure to obtain the following result.

Theorem 6.4.4: Let A be an abelian normal subgroup of a p-group

G and let 7 denote the natural map from Z(G) to Z(G/A). Suppose
H 1is a group basis of Z(G) such that n(H)u = n(G) where u is
a unit in 2(G) and u € Z(G). Then, if 4(u) is not divisible

by p, H>G.
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Proof: Let |G| = p° and let ¢ be the natural map from Z(G)
to Z n(G). By Lemma 6.4.2, (H) 1is isomorphic to H. Hence we
will get H denote (H) in Z n(G)’ Also, let us use w to
denote the natural map from 7Z nﬁé) to Z n(G/A) and let u de-
note the image of u in Z n(g/A).

Then by Lemma 6.&.3? u 1is a unit in Z n(G/A)' But then
if u 1is any element of Z n(G) such that n(s) = G, u is also a

|4 - -
unit since u € J(Z [(G)). Since n(H)u = um(G), we have for each

P
h € H there exists a g € G such that hu

ug mod A(A) or

h" = g mod a(A) in Z L(©). Writing W' =g+ ¥ (a-1)t(a) where
acA
t(a) € Z 6,
P

=g+ £ (a-De@ = 1@, n0d aayace)
afFA acA

Lee 5 = 1atC@)
acA

g is unique. To see this, suppose g, =g, mod A(A)A(G) where

As in the integral case, we claim

g1:8, € G. Then 8, = 8,a for some a € A since g, =8 mod A(A) .
Thus, a = 1 mod A(A)A(G) so that a-1 = g (x-1)t(x) where
t(x) € a(G). Considering the t(x)'s 1nxe;(c), we have
(a-1) - ¢ (x-1)t(x) € an(G). Thus anxL(t(x)) =a =1 by Lemma
6.4.1. ;Eﬁce g, = 8,, 80 & is unique.
It then follows, as in the integral case, that the mapping
h - g defines an isomorphism of H onto G.
It should be noted with regard to Theorem 6.4.4, that if
T € NA(G), u can be assumed to lie in 7Z(G) by mutliplying u

by an integer if necessary. Also, one should note that if f = o’

where u 1is a unit in 7Z(G), then Q(u) 1is not divisible by any
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prime dividing |G| since {(u) =+ 1. Thus Theorem 6.4.4 can be
applied when - € 1(G/A).

Theorem 6.4.4 also motivates some further questions on
normalized automorphisms which would lend themselves to the study of
the group ring problem. One question is what can one say about u
if T € CP(G). Another question is the following. Let £ € NA(G/N)
where N g G. Then f induces an automorphisms of Z n(G/N) for
any positive integer n. Then, when can the automorphgsm f induces
be lifted from an automorphism of Z n(G)? Indeed, our success in
proving Theorem 6.4.4 rests upon thepfact that the last question has

a positive answer when G is a p-group and when f has the form

T- where u € Z(G/N) and p | g(u).
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