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ABSTRACT

ON THE AUTOMORPHISM GROUP OF AN INTEGRAL GROUP Rmc

By

Gary Lee Peterson

Let G be a finite group and let Z(G) denote the integral

group ring of G. The primary purpose of this dissertation is to

study A(G), the group of ring automorphisms of Z(G).

If f 6 A(G), we say that f is a normalized automorphism

if f(g) has augmentation one for all g 6 G. The set of normalized

automorphisms of 2(6) form a subgroup of A(G) denoted by NA(G).

Further, little generality is lost by studying NA(G) over A(G).

In Chapter I, we deve10p some basic facts about NA(G). It

is noted that the elements of NA(G) act as a permutation group on

the class sums of G, the representations of G, and the characters

of G. Next, some subgroups of NA(G) are introduced. First we

let CP(G) denote the subgroup of elements of NA(G) which fix every

class sum of G. It is well-known that the action of an element of

CP(G) is equal to conjugation by a unit in the group ring of G over

the rationals. We also let EA(G) denote the subgroup CP(G)Aut(G),

Aut(G) the automorphism group of G, and let I(G) denote the group

of inner automorphisms of 2K6). In addition, a normalized auto-

morphism which lies in EA(G) is said to have an elementary repre-

sentation and if EA(G) = NA(G) we say that G is an E.R. group.
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The questions of when NA(G), EA(G), CP(G) are each equal

to Aut(G) are considered in Chapter I. It was previously known

that NA(G) = Aut(G) is equivalent to (l) I(G) s Aut(G), (2) G

is either abelian or a Hamiltonian 2-group, and (3) 2(6) has only

trivial units of finite order. Here we extend the list of equi-

valences to (4) G is the only group basis of Z(G),

(5) [NA(G) : Aut(G)] is finite, and (6) I(G) is periodic.

Necessary and sufficient conditions are determined for Aut(G) to

equal EA(G), CP(G), and I(G).

Another topic considered in Chapter I is the following. In

his Ph.D. Thesis (Michigan State University, 1971), C.F. Brown showed

that Aut(G) has a normal complement in NA(G) when G is metabelian.

For N 4 G, let A(N) denote the kernel of the natural map from Z(G)

to Z(G/N) and set

W(G,N) = {f E NA(G)\f(g) '=‘ g mod A(N)A(G)} .

Then W(G,N) is a subgroup of NA(G). Further, if G is metabelian,

'W(G,G') is exactly the complement Brown obtained. This led to the

question of when is W(G,N) a complement for Aut(G) in NA(G)? It

is shown that if one wants W(G,N) rlAut(G) = 1, one in general needs

N abelian. Then, if N is abelian, we obtain W(G,N) is a complement

for Aut(G) in NA(G) if and only if G/N is either abelian or a

Hamiltonian Z-group.

Finally in Chapter I, we consider the following. Let N <1G.

If f(A(N)) = A(N) for all f in a subset S of NA(G), we say

N is S-admissible. If N is NA(G)-admissible we say that N is

NA-characteristic. The admissibility of some subgroups of C under
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various subgroups of NA(G) is studied. We also obtain that N <1G

is NA-characteristic if and only if it is characteristic in G pro-

vided that G is either an E.R. group or contains an abelian normal

subgroup A such that W(G,A) is a complement for Aut(G) in

NA(G).

One of the major goals of this dissertation was to determine

E.R. groups. That is, when is EA(G) = NA(G), or alternately, when

can every element f of NA(G) be written in the form

f(x)=u(o(x))u-1 for all x€Z(G) where aeAut(G) and u is

a unit in the group ring of G over the rationals? In Chapter II,

part of Chapter IV, and in Chapter V, we consider this problem. It

was previously known that (1) class s 2 nilpotent groups, (2) groups

containing a cyclic normal subgroup of index p, (3) groups G where

\G" = 2 or 3, (4) groups with at most one non-linear character, and

(5) Sn for n = l,...,10 are all E.R. groups. Some of the E.R.

groups obtained in Chapter II and IV are (6) groups G of the form

G = AB where A is a cyclic normal subgroup of G and B is an

abelian subgroup of G, (7) groups G where G/Z(G) is metacyclic,

Z(G) the center of G, (8) groups G where \G" = p, (9) p-groups

containing a maximal abelian normal subgroup which is cyclic, and

(10) p-groups G of the form G =.AB where A is an abelian normal

subgroup of G with A 2 Z(G) and A/Z(G) elementary abelian of

order p2 and B is an abelian subgroup of G. Most of these results

are obtained by studying the action of W(G,G') on the irreducible

characters of G. Included in this is a crucial lemma on the faithful

irreducible characters of a metabelian group developed in Chapter II.
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Finally, in Chapter V, we show that Sn is an E.R. group for any

positive integer n.

One other problem considered in Chapter IV is when is

W(G,G') S.CP(G) for a metabelian group G? This was known to be

true in cases (1), (3), and (4) of the previous paragraph. In Chapter

IV, we extend this to cases (6), (7), and (9) of the previous paragraph

provided that G is a p-group and p > 2.

Chapter III is concerned with normalized automorphisms of

direct products. Suppose G = G1 X...x Gn' It is shown that

NA(G1) x...x NA(Gn) has a normal complement in NA(G) which lies in

CP(G) provided (\Gil,|Gj\) = 1 for i # j. A similar result is

obtained for W(G,A) if W(G,A) is a complement for Aut(G) in

NA(G) for an abelian normal subgroup A of G. In the above two

cases we also obtain that G is an E.R. group if each Gi is an

E.R. group.

In the final chapter, Chapter VI, a technique is presented

for extending the known groups for which the integral group ring

problem holds. Using this technique we solve the group ring problem

for 84. However, the technique used here involves lifting auto-

morphisms. The remainder of the chapter involves a discussion of

the problem of lifting automorphisms.



w THE AUTOMORPHISM GROUP OF AN INTEGRAL GROUP RING

By

Gary Lee Peterson

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DCI‘. TOR OF PHILOSOPHY

Department of Mathematics

1974



ACKNOWLEDGEMENTS

I would like to thank Professor Joseph E. Adney for his

patience and guidance in the preparation of this dissertation.

ii



Chapter

II

III

TABLE OF CONTENTS

INDEX OF NOTATION

INTRODUCTION

PRELIMINARY RESULTS ABOUT AUTOMORPHISPS OF Z(G)

Section

Section

Section

Section

Section

Section

U
1
9

6.

Facts about Group Bases of Z(G)

Basic Facts about Automorphisms

of Z(G)

Some Subgroups of NA(G) and

Conditions for Equality with Aut(G)

Admissibility

On a Complement for Aut(G) in

NA(G)

Some Further Results on Admissibility

SOME METABELIAN E.R. GROUPS

Section

Section

Section

Section

Section

Introduction

The Action of W(G,G')

Sums and Characters

A Lemma on Faithful Characters of

Metabelian Groups

Groups Containing a Cyclic Normal

Subgroup with an Abelian Supplement

Groups in which G/Z(G) is

Metacyclic

on Class

NORMALIZED AUTOMORPHISMB OF DIRECT PRODUCTS

Section

Section

Section

Section

Section M
b

Introduction

The Containment of

NA(Gl) x...x NA(Gn) in NA(G)

When the Summands have Relatively

Prime Orders

When W(G,A)

The Converse

is a Complement

iii

Page

10

15

18

24

27

27

27

30

30

34

4O

4O

40

42

45

48



Chapter

IV

VI

ELEMENTARY REPRESENTATIONS IN p-GROUPS

Section 1. Introduction

Section 2. p-Groups which are E.R. Groups

Section 3. When is W(G,G') SLCP(G)?

ELEMENTARY REPRESENTATIONS IN Sn

A.LOOK AT THE GROUP RING PROBLEM

Section 1. Introduction

Section 2. Lifting and a Generalization of

Theorem 1.1.6

Section 3. Groups of Solvable Length Three

Section 4. Lifting Units

BIBLIOGRAPHY

iv

Page

50

SO

SO

58

61

68

68

68

71

73

77



INDEX OF NOTATION

I. Relations:

3 Is a subset of

< Is a proper subset of

d Is a normal subgroup of

9' Is isomorphic to

h E g mod S Means h +’S = g +'S where h and g

can either be elements or subsets of

a ring and S is an ideal in the ring.

II. Operations:

S/T Quotient ring or group.

X Direct product of groups.

(«9 )3 Direct sum of rings.

< > The group generated by

(a,b) Greatest common divisor of a and b.

alb a divides b.

‘3‘ Number of elements of a set S.

\81 l<s>l

[G:N] Index of N in G.

EX.y] x 1y-1xy

xu u-lxu

Tu(x) The map x a uxu- .



L0!) The augmentation map defined by

L(x) = 2 a where x = 2 a g is an

366 5 566 3

element of the group ring R(G).

III. Groups, Rings, and Modules:

G

C

8

E'
a

[M]

N"

(n)

1“,n (G)

Z(G)

zn(c>

§(G)

CG(N)

R(G)

A(S)

R(e)

A finite group.

The conjugacy class of g 6 G.

The class sum of g E G defined by

C; = Z x.

xECg

<[n,m]\n e N, m e M)

[N,N]

[N'.N']

The nth term of the derived series of G

starting with C(l) = G.

th .
The n term of the lower central series

of G starting with P1(G) = G.

The center of G.

th .
The n term of the upper central series

of G starting with 21(6) = Z(G).

The Frattini subgroup of G.

The centralizer of a subset N of G.

The symmetric group on n letters.

The group ring of G over the ring R.

The 2-sided ideal of R(G) generated by

8-1, s E S, for a subset S of R(G).

The ring R with e adjoined.

vi



z..2.e.z n

P

ker Q

ker x

The integers, rationals, complexes, and

Z/pnz reapectively.

The induced C(G)~module where M is a

CKN)-module for a Subgroup N of G.

M viewed as a CKN)-module where N is

a subgroup of G and M is a CKG)-

module.

The induced representation of G where

F is a representation of a subgroup N

of G.

The kernel of a homomorphism (p.

The kernel of a character x of G.

vii



INTRODUCTION

The study of the automorphism group of an integral group

ring Z(G) has previously received attention by Brown in [3], Hughes

and Pearson in [7], Hughes and Wei in [8], and Sehgal in [14]. The

primary purpose of this dissertation is to study the automorphism

group of Z(G).

Another problem in integral group rings that has received

considerable attention is the group ring problem. In Chapter VI,

we will see how knowledge of automorphisms of Z(G) may play a role

in solving this problem.

In Chapter I, we obtain some preliminary results about auto-

morphisms of Z(G). In studying the automorphism group of Z(G),

it suffices to study the group of normalized automorphisms of Z(G)

denoted by NA(G). It was first noted by Sehgal in [14] that if

f E NA(G) and g E G, then f(Cg) = 6S1 for some g1 E G. Hence

NA(G) acts as a permutation group on the class sums of G. Further,

£1658) = 5326's) for all g e c if and only if £1 = Tufz for some

unit u in 2(G). In Section 2 of Chapter I, we note that NA(G)

also acts as a permutation group on the representations and characters

of G. Finally, we use CP(G) to denote the subgroup

{f e NA(G)\£((Tg) = 58 for all g e c}.

In Section 3 of Chapter I, we introduce some subgroups of

NA(G). First, the automorphism group of G, Aut(G), is naturally

l



embedded in NA(G) and hence is a subgroup of NA(G). Next, we say

that f 6 NA(G) has an elementary representation if f = TuO for

some unit u in 2(G) and some a 6 Aut(G). We use EA(G) to

denote the set of all elements of NA(G) which have an elementary

representation. Then EA(G) is a subgroup of NA(G) and in fact

EA(G) = CP(G)Aut(G). Also, if EA(G) =NA(G), we say that G is an

E.R. group. Finally, we let I(G) denote the group of inner auto-

morphisms of Z(G).

The question of when NA(G) equals Aut(G) was previously

studied by Brown in [3] and Hughes and Wei in [8]. In Section 3 of

Chapter I, this question is again studied and the previously known

results are extended. We are also able to obtain necessary and

sufficient conditions for Aut(G) to be equal to EA(G), CP(G) and

I(G).

Sections 4 and 6 of Chapter I focus on the question of when

f(A(N)) = MN) for f E NA(G) and N <)G. This question received

some attention by Brown in [3]. One of the major reasons for con-

sidering this question here is that if f(ACN)) = A(N), then f in-

duces a normalized automorphism on Z(G/N). For example, the above

fact is useful in cases where one wishes to use induction on \G‘.

In Section 5 of Chapter I, we consider generalizing another

result of Brown's. Brown was able to show that Aut(G) has a normal

complement in NA(G) when G is metabelian. Here we are able to

generalize Brown's result by introducing some subgroups of NA(G),

one of which is exactly Brown's complement when G is metabelian.

Further, we are able to determine necessary and sufficient conditions

for one of these subgroups to be a complement.



Perhaps one of the outstanding questions in integral group

rings is what groups are E.R. groups? This question was first studied

by Sehgal in [14] and later by Brown in [3]. In Chapter II, part of

Chapter IV, and Chapter V we study this question and determine several

types of E.R. groups. For the most part, the previously known E.R.

groups were obtained by studying the action of normalized automorphisms

on class sums. In a similar manner, we use the action of NA(G) on

class sums to show that Sn is an E.R. group in Chapter V. However,

it is in general very hard to study the action of NA(G) on class

sums. An alternate method is to study the action of NA(G) on the

irreducible characters of G. This is the technique that we will use

in Chapter II and part of Chapter IV in determining our list of E.R.

groups. Included in this is a crucial lemma on the faithful irreducible

characters of metabelian groups in Section 3 of Chapter II. It should

be noted at this time that I know of no example of a group which fails

to be an E.R. group.

The other topic covered in Chapter IV consists of some cases

in which the normal complement that we have for Aut(G) in NA(G)

when G is metabelian lies in CP(G).

Chapter III is devoted to studying normalized automorphisms

in direct products. For the most part, the results of Chapter III

were motivated by the following question: if G = G1 X...x Gn where

each G1 is an E.R. group, then is G and E.R. group? Using the

results of this chapter we can obtain a positive answer to the question

when either (lGil,\Gj\) = l for i i j or when Aut(G) has a normal

complement of the form described in Section 5 of Chapter I. We also

show that the converse to this question always holds.



Finally, we mention some open questions not considered in

this dissertation: the relationships between the results concerning

NA(G) and integral representations. For example, I(G) is always

contained in CP(G), but there are examples where they are not equal.

In [7], Hughes and Pearson obtain I(S3) = CP(S3) using integral

representations. Perhaps integral representations may be used to

study the question of how I(G) and CP(G) are related. Answers

to this question may also have some connection with our remarks in

Section 4 of Chapter VI towards solving the group ring problem. Con-

versely, there may also be some applications of our results on

NA(G) which would be useful in studying integral representations.



CHAPTER I

PRELIMINARY RESULTS ABOUT AUTOMORPHISMS OF Z(G)

Section 1. Facts about Group Bases of Z(G). H is called a group

basis of Z(G) if H is a group of units in Z(G) whose elements

freely generate Z(G) and if ((h) = l for all h E H. In this

section we record some results concerning group bases.

The first result is due to Glauberman and its proof can be

found in [12] or [16].

Theorem 1.1.1: Let H be a group basis of Z(G). Then for each

h 6 H there exists a g E G such that 6% = C8

The next corollary follows easily from Theorem 1.1.1.

Corollary 1.1.2: If H is a group basis of Z(G), then Z(H) = Z(G).

Theorem 1.1.1, as shown in [12] and [16], yields a 1-1

correSpondence between the normal subgroups of G and those of a

group basis H in the following manner. Let N14 G. Set

K = U {h 6 H‘C£ = 6;}. Then it can be shown that K is a normal

g€N

subgroup of H.

We state some facts concerning this correspondence from [16].

Theorem 1.1.3: Let H be a group basis of Z(G), N a normal sub-

group of G, and let K be the correSponding normal subgroup of H.

(i) Let n be the natural map from Z(G) to Z(G/N). Then

K = {h E H\n(h) = l] and n(H) is a group basis of Z(G/N).



(ii) A(N) ‘ A(K)-

(iii) If M is another normal subgroup of G and if ‘L is the

normal subgroup of H corresponding to M, then [L,K] correSponds

to [M,N].

Another result concerning class Sums, whose proof can be found

in [3] or [12], is the following:

Theorem 1.1.4: Let H be a group basis of Z(G). Let h E H and
 

let g E G such that 5% = Cg’ then an = an for every integer n.

Finally, we state more results from [16].

Theorem 1.1.5: Let K be a normal subgroup of a group basis H of

Z(G), then

K/K' =- A(K)/A(K)A(H)

under the mapping mk(k) = k - l + a(K)A(H) where k = kK'. Hence,

if A is an abelian normal subgroup of G and if B is the correspond-

ing normal subgroup of a group basis H of Z(G), then A.='B under

the mapping qglqht

Theorem 1.1.6: Let H be a group basis of Z(G), A an abelian

normal subgroup of G, and let n denote the natural map from Z(G)

to Z(G/A). If n(H) = n(G), then for each h E H there exists a

unique gh E G such that h a gh mod A(A)A(G). Further, the mapping

h a gh defines an isomorphism from H onto G.

In the process of proving Theorem 1.1.6, Whitcomb actually

showed the following result.

Theorem 1.1.7: Let A be an abelian normal subgroup of G and let
 

H be a group basis of Z(G). Suppose h ,h2 6 H such that

l

E d = ,h1 h2 mo A(A)A(G), then h1 h2



Section 2. Basic Facts about Automorphisms of Z(G). We begin this

section by reviewing some facts about automorphisms of Z(G). Let

A(G) denote the group of automorphisms of Z(G). By NA(G) we will

mean the subgroup of A(G) consisting of all f E A(G) such that

L(f(g)) - l for all g E G. NA(G) is called the group of normalized

automorphisms of Z(G). As remarked in [3], little generality is

lost by studying NA(G) instead of A(G), since if f 6 A(G), the

mapping g ~»L(f(g))f(g) for g E G extended linearly to Z(G)

is in NA(G).

Let f 6 NA(G). It then follows that f(G) is a group basis

of Z(G) and that f(Cg) = 5' Thus, by Theorem 1.1.1,

f(s)'

f(Cg) = C; for some g1 6 G. Hence, we have that NA(G) acts as

l

a permutation group on the class sums of G.

One of the basic facts about this permutation representation

of NA(G) is the following result which is generalized from [14].

1

g E G if and only if f1 = Tuf2 for some unit u in 2(G).

Theorem 1.2.1: Let f ,f2 6 NA(G), then f1(5g) = f2(Cé) for all

It should be noted that the unit u in Theorem 1.2.1 must

necessarily normalize Z(G). That is, Z(G)u s Z(G). 'We also note

that u need not be a unit in Z(G) as Whitcomb has given an

example in [16] of an E E NA(G) such that f = Tu where u is a

unit in 2(G) but u cannot be taken to be a unit in Z(G) when

G is the dihedral group of order 8.

Let CP(G) denote the kernel of this permutation representa-

tion of NA(G) on the class sums of G, then by Theorem 1.2.1,



CP(G) {f e NA(G)\f(C_g) = 58}

{¢u\u is a unit in 216) normalizing Z(G)}-

Also, note that \NA(G)/CP(G)\ is finite since NA(G)/CP(G) is

isomorphic to a subgroup of SR where k is the number of conjugacy

classes of G.

We next state two lemmas on how NA(G) acts on class sums.

Lemma 1.2.2: Suppose f e NA(G) and that f(Eg ) = 5g and

-— ._
l 2

f(083) = Cg4 where g1,g2,g3, and g4 E G, then there exists x E G

such that f(C ) = G x.

8182 8384

Proof: We have that f(C. CI ) = G- C- .

g1 g2 g3 84

Now, the class suni f(Cg g ) will appear as a summand in

l 2

f(C C ) when f(C- C. ) is written as a linear combination of

g1 g2 g1 g2

class sums. Also, 6; C. is a linear combination of class sums of

._ 3 84

the form Cg3xlg4X2 where x1,x2 E G. Hence, there exist x1,x2 E G

such that

f(C ) = _ E '1
gls2 Cg3xlgax2 = g3s4x2x1

and so we have the result.

The second lemma appears in [3] and follows directly from

Theorem 1.1.4.

‘Lemma 1.2.3: Let f E NA(G) and suppose that f(Cg) ==Cg1 where

8,81 E C, then f(an) =:Cg n for every integer n. Further,

l

\gl = lgll'

NA(G) can also be viewed as a permutation group on the

representations or characters of G. For if F is a representation

f

of G, we can then define another representation F of G by



setting Ff(g) = F(f(g)). (For the purposes of this dissertation

we will assume that our representations are over the field of complex

numbers.) Similarly, if X is a character, we can define another

character Xf by setting X;(g) = X(f(g)). Further, it follows

that Ff or Xf is irreducible if and only if F or X is

irreducible.

Lemma 1.2.4: If f(C?) ==Cé , then Xf(g) = X(g1) for any character

1

X of G.

f l f ‘ l _

Proof: X (g) = -- "X (C ) = -——_'XKC ) = X(8 )-

—— \c,\ g \c,\ s, 1

Lemma 1.2.5: If X is a faithful character of G, then Xf is also

faithful.

f f f ‘- -
Proof: If g E ker X , then X (g) = X (1). Let f(Cg) = C8 , then

1

x(l). Hence g1 E ker X, so g1 = 1. Thus 3 = 1
f

x(sl) = x (1)

and we are done.

Lemma 1.2.6: Let f ,f 6 NA(G), then

1 2 f f

(i) f1(Cg) = f2(Cg) if and only if X 1(g) = X 2(g) for every

irreducible character X and

f f

(ii) 13168) = £268) for all g e c if and only if x 1 = x 2

for every irreducible character X.

g%oo_f: (of Let 51(ag)=e'g1 and £263) =c-gz, then

X 1(g) = X 2(g) for every irreducible character X if and only if

X(g1) = X(g2) for every irreducible character X. But X(g1) = X(g2)

for every irreducible character X if and only if Cg1 ==ng and

so we have (i).

(ii) follows directly from (i).
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Section 3. figgg Subgroups of NA(G) and Conditions for Equality

with Aut(G). Let Aut(G) denote the automorphism group of G,

then Aut(G) is naturally embedded in NA(G) by extending every

group automorphism linearly to Z(G). we will henceforth use Aut(G)

to denote the image of Aut(G) in NA(G) under this embedding.

Another type of normalized automorphism which will play an

important role in what follows is contained in the following defini-

tion first used in [3].

Definition: Let f 6 NA(G). We say that 'f has an elementary

representation if f = Tug where o E Aut(G) and u is a unit in

2(6) normalizing Z(G).

Let EA(G) denote the set of f 6 NA(G) whose elements have

an elementary representation. Then EA(G) is a subgroup of NA(G)

and EA(G) ==CP(G)Aut(G). If EA(G) = NA(G) we will say that G

is an E.R. group.

One basic result concerning elementary representations and

group bases is contained in the following lemma.

Lemma;l,3.l: Let H be a group basis of Z(G) such that H‘” G.

Then the following are equivalent:

(i) Every f 6 NA(G) such that f(G) = H is in EA(G).

(ii) There exists f E EA(G) such that f(G) = H.

(iii) There exists a unit u in 2(G) such that Gu = H-

M: (i) =9 (ii) is clear.

For (ii) a (iii), let f 6 EA(G) such that f(G) = H. Write

f = Tug where u is a unit in .2(G) and a €.Aut(G), then

-1

f(c) -= Tuo(G) = Tu(G) = c“ = a.
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For (iii) =’(i), let f E NA(G) such that f(G) = H. Since

G‘1 = H we have Tuf(G) = G. Hence, Tuf 6 Aut(G) and so

f = Tu_1(Tuf) E EA(G).

One final subgroup of NA(G) that we will introduce here

is the group of inner automorphisms of Z(G) which we will denote by

I(G). That is, I(G) = {Tulu is a unit in Z(G)}. Then I(G) SCP(G).

But in general they are not equal, as we have seen in the remarks

after Theorem 1.2.1.

We now turn our attention to the question when are the sub-

groups of NA(G) that we have so far defined equal to Aut(G).

The first question that we consider is when does Aut(G) =‘NA(G)?

This question was first partially solved in [3] and later completely

solved in [8]. In fact, an even stronger statement can be made con-

cerning this question than was made in [8]. In the next theorem,

parts (1) - (4) appear in [8].

Theorem 1.3.2: The following are equivalent.

(1) NA(G) =.Aut(G).

(2) I(G) s Aut(G).

(3) G is either abelian or a Hamiltonian 2-group.

(4) jg,g 6 G, are the only finite units of Z(G).

(5) G is the only group basis of Z(G).

(6) [NA(G):Aut(G)] is finite.

(7) I(G) is a periodic subgroup of NA(G).

Since (1) - (4) are equivalent and since clearly

(4) a (5) =1(6) = (7), it suffices to show (7) =1(3). To do this,

we use basically the same proof as was used in [8] to show (2) a (3).



12

We begin with the following lemma. The technique used in

this lemma first appeared in [6].

Lemma 1.3.3: Let g1,g2 6 G and n be a positive integer. Let

2 k-

R = l +tg1 +g1 +3..+ g1 1 where k = lgll and let P = g2(l - g1).

 

Then 1 - nRP is a unit in Z(G). Further, if T

82
for n 2 2, then g1 is a power of 31.

l-nRP E Aut(G)

Proof: Since PR = 0, it follows that l - nRP is a unit with in-

verse 1 + nRP.

Now, suppose 6 Aut(G) and n 2 2, then
Tl-nRP

(1 - nRP)g1(l +- nRP) 6 G. But since

(1 - nRP)g1(1 +1 nRP) = 31 + n(RP - RPgl), it follows that

RP - RPg1 = 0 since g1 + n(RP - RPgl) 6 G and since n 2 2. Thus

k-l k-l
(g2 + glgz +-. + g1 g2) - (3231 +...+ 81 3231)RP

RPs
1

k-l 2 k-l 2
= ... - ...+ .(8281 + 313281 + + 31 szsl) (32g1 +- $1 szsl)

It follows from the above equation that g2 = gigzg1 for

some i. Thus gzglgg1 = g11 and we are done.

we now prove Theorem 1.3.2 by showing (7) = (3). To do this,

we assume G is not abelian and show that G is a Hamiltonian

2-group.

We first show G is Hamiltonian. To do this it suffices

8

to show that g12 is a power of g1 for every g1,g2 6 G. Let P

and R be as in Lemma 1.3.3. Since we are assuming I(G) is periodic,

we have n 6 Aut(G) for some integer n. Further, we may(T1_RP)

assume n 2 2.
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Since PR = 0, it follows that (l - RP)n = 1 - .nRP. Hence

8

(T1 RP)n = Tl-nRP 6 Aut(G) and so g12 is a power of g1 by Lemma

1.3.3. Thus G is Hamiltonian.

Now, suppose that G is Hamiltonian but is not a 2-group.

Let a and b be generators of the quaternion group of order 8 where

a4 = b4 = 1 and ab = a3. Let g E G of the form g = as where s

is an element of G of odd prime power order p. Finally, for every

positive integer d let ed denote a primitive dth root of unity.

We have that 2(<g>) is isomorphic to 69 2 2(ed) under

d‘4p

the mapping 9 where e(g) = z e . Let R =<® 2 2(3 ). It
d d

d 4p d\4p

follows that e(Z(<g>)) s R an we can find a positive integer m

so that mR s e(Z(<g>)).

By the Dirichlet Unit Theorem ([11], p. 128), we can find a

unit v in Z(e4p) such that v1 is not in Z(eip) for any

integer 1. Also, we can find an integer k so that

l +-l +...+ 1'+ vk is a unit in 9(Z<g>) since the ring R/mR is

finite.

Let u = e (l +...+ l + vk), then Tu 6 I(G). Since I(G)

is periodic, we can find an integer n so that run is the identity.

we will now show that this forces vkn to be in Z(gip), and hence

obtain a contradiction which will prove the result.

Since un 6 Z(<g>), we may write un - a‘+ g5 where

0:9 6 Z(<gz>). But then b(a +'85) = (a'+ ge)b. It follows that

(l - a2)3 = 0. Hence a = (l + a2)c where a 6 ZC<32>). Thus,

un = a + a(1 + a2)os = f(gz) + (gp + g-p)h(g2) where f and h

are polynomials over 2.
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Thus, if ‘1 denotes the projection from 63 2. 2(e

d‘4p

d) onto

Z(gap) , we have

2 - 2

Wu“) map) + (szp + 64:)8(34p)

f(gip) vnk .

Hence vnk 6 Z(eip) and we have our contradiction.

We next treat the question of when does EA(G) = Aut(G)?

Clearly, if NA(G) = Aut(G), then EA(G) = Aut(G). (Conversely, if

EA(G) = Aut(G), then (2) of Theorem 1.3.2 holds and hence

NA(G) = Aut(G). Thus we have

Corollagy 1.3.4: EA(G) = Aut(G) if and only if NA(G) = Aut(G).

Finally, we answer the question of when Aut(G) equals

CP(G) or I(G). In fact, we can state the following.

Corollary 1.3.5: The following are equivalent.

(1) CP(G) =.Aut(G).

(2) I(G) = Aut(G).

(3) \G‘ = l or 2.

2522;; We first note that (l) = (3). For if CP(G) = Aut(G), then

EA(G) = Aut(G). But then G is either abelian or a Hamiltonian

2-group by Corollary 1.3.4 and Theorem 1.3.2. But all abelian groups

of order greater than 2 and all Hamiltonian 2-groups have non-class

preserving automorphisms. Hence \G‘ = l or 2.

Similarly (2) a (3), since if I(G) = Aut(G), (7) of Theorem

1.3.2 holds. Thus G is abelian or a Hamiltonian 2—group. But

then again, \G\ = l or 2 since Aut(G) has non-class preserving

automorphisms except when \G‘ = 1 or 2.
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Conversely, if (3) holds, then both (1) and (2) hold since

Aut(G) = 1, I(G) B l, and CP(G) = 1.

Section 4. Admissibility. The purpose of this section is to define

what we mean by a normal subgroup of a group being admissible under

a set of normalized automorphisms.

If S is a subset of Aut(G) and if N is a normal Subgroup

of G admissible under 8, then every automorphism of S induces an

automorphism on the quotient G/N. In defining admissibility for

normal subgroups of G under a set of normalized automorphisms, we

define it in a manner so that we induce normalized automorphisms on

the quotient.

Defigition: Let N <lG and let S be a subset of NA(G). We say

that N is admissible under S or Snadmissible if f(A(N)) = A(N)

for all f 6 S. If N is admissible under NA(G), we will say that

N is NA-characteristic.

Thus, if N <3G and if N is admissible under S where S

is a subset of NA(G), we have that every element f 6 S induces a

normalized automorphism E of Z(G/N) by setting f(rr(x)) =n(f(x))

where 11 is the natural map from Z(G) to Z(G/N) and x6Z(G).

We will give some NA-characteristic subgroups of a group G

and some admissible subgroups under particular sets of automorphisms.

However, before doing this, we state the following result.

Lemma 1.4.1: Let N <6 and let f 6 NA(G). Then f(A(N)) = A(N)

if and only if f(N) is the normal subgroup of f(G) corresponding

to N.
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M: If f(A(N)) = A(N), then A(f(N)) = A(N). Hence (1) of

Theorem 1.1.3 tells us that f(N) is the normal subgroup of f(G)

correSponding to N.

Conversely, if f(N) is the normal subgroup of f(G)

corresponding to N, then

f(A(N)) = A(f(N)) = MN)

by (ii) of Theorem 1.1.3.

Using the above lemma, it follows that the terms of the

derived series are all NA-characteristic. For if f 6 NA(G), then

f(G(n)) = f(g)“). But f(G)(n) is the normal subgroup of f(G)

(n)
correSponding to G by Theorem 1.1.3(iii). Hence, by Lemma

1.4.1, f(A(G(n))) = A(G(n)) and we have the result.

Similarly, one can use the same process to obtain that the

terms of the lower central series are all NA-characteristic.

We also mention at this time that the terms of the upper

central series are also NA-characteristic. Let f 6 NA(G), then

f(Z(G)) = Z(G) by Corollary 1.1.2, so certainly f(A(Z(G)) = A(Z(G)).

Since f induces an automorphism on Z(G/Z(G)), we can again use

Corollary 1.1.2 to obtain

f(Zz(G)) ‘=' 22(6) mod A(Z(G))

and so

£(s(zz(c>> s A(ZZ(G)) + A(Z(G)) = M22<c>>

Hence f(A(ZZ(G)) = A(ZZ(G))- Continuing in the above fashion,

f(A(Zn(G)) = A(Zn(G)) for any integer n.
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Thus we can state

Theorem 1.4.2: G(n), Fn(G), and Zn(G) are all NA-characteristic.

One result on admissibility that we can state is the follow-

ing restated from [3].

Theorem 1.4.3: Every normal subgroup of G is CP(G)-admissible.

Further, a normal subgroup of G is EA(G)-admissible if and only if

it is a characteristic subgroup of G.

nggf; Let N <1G and let Tu 6 CP(G). Since the class sums of

elements of Tu(N) are all equal to class sums of elements of N,

Tu(N) must be the normal subgroup of Tu(G) correSponding to N.

Hence by Lemma 1.4.1, Tu(A(N)) = A(N) so that N is CP(G)-admissible.

Now suppose rug 6 EA(G) where a 6 Aut(G), then

Tuo(A(N)) = TuA(o(N)) = A(o(N))- Thus Tuo(A(N)) = A(N) if and

only if 0(N) =‘N and the second part of the theorem follows.

It should be noted that NA-characteristic implies char-

acteristic. For if N <1G which is NA-characteristic, then for

811 O 6 AUt(G) a

o(A(N)) = A(O(N)) = A(N)

Hence 0(N) =‘N, so N is characteristic in G. Theorem 1.4.3 tells

us that the converse is true for E.R. groups. In Section 6 of this

chapter we will see an additional case where the converse holds.

We conclude this section with the following lemma which will

be useful later.

Lemma 1.4.4: Let G = G1 X G2 where (\Gll,\62l) = 1. Then G1

and G2 are NA-characteristic.
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Proof: Let f 6 NA(G) and let H = f(G). Let H1 and H2 be

the normal subgroups of H correSponding to G1 and G2

reapectively. Then

H = H1 X H2 = f(Gl) X f(Gz)

But then H1 = f(Gl) and H2 = f(GZ) since ‘Hil = \f(Gi)‘ for

i = 1,2 and since (\Hll,\H2\) = 1. Then 1.4.1 yields the result.

Section 5. On a Complement for Aut(G) in NA(G). In [3], Brown

showed that Aut(G) has a normal complement in NA(G) when G is

metabelian. In this section we will generalize Brown's result by

taking a slightly different approach.

The technique Brown used for constructing a normal complement

goes as follows. Let G be a metabelian group. Then, if f 6 NA(G)

and if g 6 G, there exists a unique gf 6 G such that

f(g) E sf mod A(G')A(G)

by Theorem 1.1.6. Then Brown showed that the mapping of defined

by af(g) = gf is an element of Aut(G). Further, he showed the

mapping 3 defined by 5(f) = of is a homomorphism of NA(G) onto

Aut(G) such that ai = l where i is the injection of Aut(G)

into NA(G). Thus, ker a is a normal complement for Aut(G) in

NA(G).

Note that

ker B = {f 6 NA(G)\f(g) E g mod A(G')A(G) for all g 6 G].

Because of the above characterization of ker a, we make the follow-

ing definition.
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Definition: Let N <1 G. Then we define

W(G,N) = {f e NA(G)\f(s) a 3 mod A(N)A(G)} .

Thus when G is metabelian, W(G,G') is a normal complement

for Aut(G) in NA(G). We will now determine when W(G,N) is a

complement for Aut(G) in NA(G) for N <1 G.

Lemma 1.5.1: Let N 4G. Then N is admissible under W(G,N)

and W(G,N) is a subgroup of NA(G). In addition, if N is NA-

characteristic, W(G,N) is normal in NA(G).

11593;: Let f 6 W(G,N). To show N is W(G,N) -admissible, it

suffices to show f(n - 1) e MN) for all n e N. But

f(n -1) =n - l+x

where x e A(N)A(G). Hence,

f(n - 1) 6 MN) + A(N)A(G) = A(N)

To show that W(G,N) is a subgroup of NA(G) , we first

show that W(G,N) is closed under multiplication. Let f1,f2 6 W(G,N).

Since G is clearly NA-characteristic, fi(A(N)A(G)) = A(N)A(G)

for i = 1,2. Hence,

f1f2(g) = f1(g + x) f1(g) E 3 mod A(N)A(G)

where x 6 A(N)A(G). Thus, flf2 6 W(G,N).

Next, let f 6 W(G,N). First, note that

£"(A(N)s(c)) = A(N)A(G) by applying f'1 to the equation

f(ACN)A(G)) = A(N)A(G). Let g 6 G and write f(g) «'8 g + x where

x 6 A(N)A(G). Then,
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-1 -1 _

f (g) = g - f (X) = 3 mod A(N)A(G)

Hence, f.1 6 W(G,N) and so W(G,N) is a subgroup.

To show W(G,N) <NA(G) when N is NA-characteristic, let

f1 6 W(G,N) and f 6 NA(G). Then there exists an x 6 A(N)A(G)

such that

l

r‘ flag) = f"<f<s> + x)

since f1 induces the identity on Z(G)/A(N)A(G). Hence,

f-1f1f(g) = g + f"<x) a 3 mod comm)

since f_1(A(N)A(G)) = A(N)A(G) and we are done.

Lemna 1.5.2: Let N4G. Then

W(G,N) rlAut(G) = {a 6 Aut(G)‘o(gN') = gN' for all g 6 G} .

Proof: Suppose (I 6 W(G,N) n Aut(G). Then if g 6 G,

n(s) a 3 mod A(N)A(G), so that 0(g) e g mod MN). Thus

o(g)8-1 E 1 mod A(N), so o(g)g'1 6 N. But then, since

o(8)8-1 ‘5'- 1 mod A(N)A(G) , o(g)g-1 6 N' by Theorem 1.1.5. Hence

0(gi') = gN' for all g 6 G.

Conversely, suppose 0(gN') = gN' for all g 6 G. Then,

o(g)g-1 6 N' for all g 6 G. Thus again by Theorem 1.1.5,

0198-1 5 1 m0d A(N)A(G) . Hence, 0(3) 5 g mod A(N)A(G) and we

have the result.

As an inmediate corollary to Lemma 1.5.2 we have

Corollary 1.5.3: Let A be an abelian normal subgroup of G. Then

(i) W(G,A) nAut(G) = 1,

' = f = f .(ii) if f1,f2 6 W(G,A) such that f1(G) 2(G), then f1 2
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Prggf; (i) is clear since A' = 1.

(ii) Suppose f1,f2 6 W(G,A) Such that f1(G) = f2(G).

Then fglf1 6 Aut(G) FlW(G,A) = 1. Hence f1 = f2.

Thus, if we want W(G,N) to be a complement for Aut(G)

in NA(G), we will need N abelian. Further, we will also have to

know when W(G,N)Aut(G) = NA(G). In order to answer this question,

we first prove a theorem similar in nature to Theorem 1.3.2.

Theorem 1.5.4: Let N <IGr and suppose for every group basis H of

Z(G) isomorphic to G, n(H) = n(G) where n is the natural map

from Z(G) to Z(G/N). Then G/N is either abelian or a Hamiltonian

Z-group.

nggf; ‘We assume that G/N is not abelian and argue that G/N is a

Hamiltonian 2-group.

We first show G/N is Hamiltonian. For x 6 Z(G) let

- -8 -

x denote n(x). It suffices to show g12 is a power of g1 for

any g1 and g2 6 G.

k...2

Let R = 1 + g1 + g1 +...+ 81 1 where k = 181‘: P = 82(1 ‘ 81),

-- k - _m- - -

and let H = T (G). Then, 1 - 2RP = 1 - 2(fifi(l +g1 +...+ g1 )g2(1-g2)
1-2RP

2--

n(G) = n(G)1+ RP, we haveSince n(H) 6 Aut(G/N)

T1.2m?

and so glz is a power of g by Lemma 1.3.3. Thus G/N is

l

Hamiltonian.

We now show that G/N is a Hamiltonian 2-group. Suppose it

is not. Choose g 6 G such that g = as where s has odd prime

power order p and where a is the element of the quaternion group

of order 8 generated by a and b where a4 = b4 = l and ab = a3.
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Let ed denote a primitive dth root of unity. Then .2(<8>)

is isomorphic to (D Z .2(ed) where n - \gl under the mapping (9

d n

defined by tp(g) 8 IL, ed. Similarly, 2(<g>) is isomorphic to

d‘n

(432 .2(sd) under the mapping 9 defined by 9(g) = 2 e .
d

d‘4p d‘4p

Extend n toa mapping from 2(6) to 2(G/N). Then

1162(<g>)) = 2(<§>). Further, it follows that

.2(ed) if d 5 4p

81129-1C2(€d)) = (*>

0 if d > 4p

To see (it), first note that amp-1Q(ed)) is either some

2(ek) where k\4p or is 0 since it mist be a minimal ideal in

69(1):4 .2(ed) and since .‘2_( ed) , d‘4p, are the unique minimal ideals

of'g) 8 2(ed). Further, if encp-1(.2(ed)) 9‘ 0, amp-'1 restricted

to 2(2),?) is an isomorphism since .2(ed) is a minimal ideal. Thus,

amp-laud» = 0 if d >4p. Also, amp.1 restricted to 69 2 2(3 )

d‘4p d

is then an onto isomorphism. Then, since

-1 -

errep (2?. ed) = 911(8) = 9(8) = 8 ed .

d‘n d\4p

it must be the case that emp-1(.2(ed)) = .2(ed) when d s 4p.

Now, let v be a unit in Z(eép) such that no power of v

lies in Z(ez). Let u = 2 5 ,where 6 =1 if d$4p and

6d = v if d = 4p. Then, as in the proof of Theorem 1.3.2, we can

find an integer 111 so that u“1 is a unit in tp(Z(<g>)).

Then amp-I(um) will be an element of the form 1 +. ..+ l + v',

where v' is a unit in Z(e4p) such that no power of v' lies in

Z(‘:p)° Further, we have that l +...+ 1 + v' will lie in
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8(Z(<g>)). Let w = 6-1(1 +3..+ 1 + v'). Then, as in the proof

of Theorem 1.3.2, no power of Tw can be the identity or else some

power of v' would lie in Z(eip)°

Let w = m-1(um) and set H = Gw. Then

n(H) = n(Gw) = 1'r(G)'3 # n(G), a contradiction. Hence, G must be a

Hamiltonian 2-group.

We now can state

Corollary 1.5.5: If W(G,N)Aut(G) = NA(G) where N 4 G, then G/N

is either abelian or a Hamiltonian Z-group.

2529;; Let H be a group basis of Z(G) such that H is isomorphic

to G. Let f 6 NA(G) such that f(G) = H. Then, f = f o where

1

f1 6 W(G,N) and 0'6 Aut(G). Thus, f1(G) = H.

Since f1(g) a g mod A(N)A(G), n(H) = n(G) where n is the

natural map from Z(G) to Z(G/N). Thus, G/N is either abelian or

a Hamiltonian 2-group.

we can now state when W(G,A) is a complement for Aut(G)

when A is abelian and normal.

Corollary 1.5.6: Let A be an abelian normal subgroup of G. Then

W(G,A) is a complement for Aut(G) in NA(G) if and only if CIA

is either abelian or a Hamiltonian 2-group.

2322;; If W(G,A) is a complement for Aut(G), then G/A is either

abelian or a Hamiltonian 2-group by the previous corollary.

Conversely, if G/A is either abelian or a Hamiltonian 2-

group, let f 6 NA(G). Set H = f(G). Then by Theorem 1.3.2,

n(H) = n(G) where n is the natural map from Z(G) to Z(G/A).

Hence by Theorem 1.1.6, there exists f1 6 NA(G) with f1(G) = H

Such that f1(g) a g mod A(A)A(G). Then f1 6 W(G,A) and
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filf 6 Aut(G). Hence f = f1(f;1f) 6 W(G,A)Aut(G). Thus W(G,A)

is a complement by Corollary 1.5.3.

Another question that arises here is when is W(G,N) a

supplement for Aut(G) in NA(G)? That is, when is

W(G,N)Aut(G) = NA(G)? Corollary 1.5.5 gives us necessary conditions

on G/N for this to occur. However, I have been unable to determine

necessary and sufficient conditions for W(G,N) to be a supplement

for Aut(G), although we will see one sufficient condition in Section

3 of Chapter VI.

Section 6. ngg Further Results on Admissibility. In Section 4 of

this chapter we remarked that NA-characteristic implies characteristic

and that the converse is true for E.R. groups. In this section we

will see that the converse is also true if G contains an abelian

normal subgroup A such that W(G,A) is a complement for Aut(G)

in NA(G).

Suppose G is a group containing an abelian normal subgroup

A such that W(G,A) is a complement for Aut(G) in NA(G). Let

f 6 NA(G) and write f = f o where o 6 Aut(G) and f1 6 W(G,A).

1

If N is a characteristic subgroup of G,

mm) = flo(A(N)) = f1(A(o(N))) = f1(ACN)) . <*)

Hence, if we could show that every normal subgroup of G is W(G,A)-

admissible, it would follow that every characteristic subgroup is

NA-characteristic by equation (*), and so we show this. In fact,

we will see that every solvable normal subgroup is W(G,A)-admissible

regardless of whether or not W(G,A) is a complement for Aut(G).
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We begin by showing that every solvable minimal normal sub-

group is W(G,A)-admissible.

Lemma 1.6.1: Let A be an abelian normal subgroup of G and let

'M be a solvable minimal normal subgroup of G, then M is W(G,A)-

admissible.

‘ggggf: Since M is solvable, M is abelian. Further, M n.A = l

or M $.A and hence MA is abelian.

Now, let f 6 W(G,A), g 6 M, and let B be the abelian normal

subgroup of G correSponding to f(M) in f(G). By Theorem 1.1.5,

there is a b 6 B such that

f(g) - 1 a b - 1 mod A(B)A(G)

Also, B is a minimal normal subgroup of G and so BA is abelian.

Thus, since

b E f(8) mod A(BA)A(G) '=' 8 mod A(BA)A(G) ,

b = g by Theorem 1.1.7. Hence, M = B and so

A(M) = ME) = A(f(M)) = f(A(M))

This completes the proof.

we now can prove

Lemma 1.6.2: Let A be an abelian normal subgroup of G and let

N be a solvable normal subgroup of G. Then N is W(G,A)-admissible.

2592;; ‘Let f 6 W(G,A) and let M be a minimal normal subgroup

of G contained in N. Set G = G/M, A = AM/M, and N = N/M. Then

by the previous lemma, f induces an automorphism f of Z(G) with

f 6 W(Glxb. Hence f(A(N)) = A(N) by induction on ‘6‘. Therefore,



26

MN) mod A(M) .

A(N) + A(M) .

f(MND

or f(A(N)) I
A

Thus, f(A(N)) = A(N) since A(M) 5 MN).

We now can prove

Theorem 1.6.3: Suppose A is an abelian normal subgroup of G Such

that W(G,A) is a complement for Aut(G) in NA(G) and let N <1G.

Then N is NA-characteristic if and only if N is a characteristic

subgroup of G.

2592;: By our previous remarks we only have to show that N is

W(G,A)-admissible. Now, by Corollary 1.5.6, G is solvable so N

is solvable. Hence, N is W(G,A)-admissible by Lemma 1.6.2.

As an immediate corollary one should note

Corollary 1.6.4: Let G be a metabelian group and let N <IG. Then

N is NA-characteristic if and only if N is a characteristic sub-

group of G.



CHAPTER II

SOME METABELIAN E.R. GROUPS

Section 1. Introduction. To my knowledge the previously known list

of metabelian E.R. groups are class s 2 nilpotent groups from [14]

and from [3] groups with a cyclic normal subgroup of index p, groups

with at most one non-linear irreducible character, and groups G in

which \G'\ = 2 or 3. In this chapter we will extend this list.

We remark, as noted in [3], that in showing a metabelian

group is an E.R. group it suffices to show that every element of

W(G,G') has an elementary representation since W(G,G') is a

complement for Aut(G) in NA(G).

Section 2. The Action of W(G,G') on Class Sums and Characters.

In this section we develop some lemmas which will be useful later

concerning the action of W(G,G') on class sums and characters.

We also point out that the results do not depend on G being

metabelian, unless Specifically stated.

Lemma 2.2.1: Let G be a metabelian group and let f 6 W(G,G').

Then

(i) f(z) = z for all z 6 Z(G),

(ii) f(Eg) = 58 for all g 6 22m)

2599:; (i) By Corollary 1.1.2, f(Z(G)) = Z(G). Thus, if z 6 Z(G),

f(z) 6 G. Since f 6 W(G,G'), f(z) E 2 mod A(G')A(G) so that

f(z) = z by Theorem 1.1.7.

27
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(ii) If g 6 Z(G), we are done by (i). Now suppose

g 6 22(G) - Z(G). Let X be an irreducible character of G. By

Lemma 1.2.6, it suffices to show X[(g) = X(g).

If ker X > 1, let N = ker X. Since N is W(G,G')-

admissible, f induces an automorphism on Z(G) where G'= G/N

which is in w(E,E‘). It then follows that Xf(g) = X(g) by in-

duction on \G‘.

If ker X = 1, let x 6 G such that gx # g. Then,

X(g) = X(sx) = x<e>x<[s.x1)/x(1>

since [g,x] 6 Z(G). Hence X(g) = 0. Similarly, xf(g) = 0 since

Xf is also faithful. Thus, Xf(g) = O = X(g) and we are done.

It should be noted at this point that Lemma 2.2.1 immediately

gives us a result of [16]; namely that W(G,G') s CP(G) when G

has nilpotence class 5 2. Further, we then also have the result of

[14] that class s 2 nilpotent groups are E.R. groups and so we state

this as a corollary.

Corollary 2.2.2: Let G be a class 5 2 nilpotent group. Then
 

W(G,G') s.CP(G) and so G is an E.R. group.

We also remark that if X is a linear character of G,

then Xf = X for all f 6 W(G,G') since elements of W(G,G') in-

duce the identity on Z(G/G') and since G' s ker x.

From this observation, we get an easy proof of the following

result of [3].

Theorem 2.2.3: If G has at most one non-linear irreducible char-

acter, then G is an E.R. group.
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nggf: By the results of [15], G is metabelian. Thus, if X is

an irreducible character and if f 6 W(G,G'), Xf = X since all

linear characters are fixed by f and since the non-linear character

must be fixed if one exists. Thus, W(G,G') SLCP(G) by Lemma 1.2.6

and we are done.

We conclude this section with two lemmas, the first of which

also appears in [3].

Lemma 2.2.4: Let f e W(G,G'). If f(Cg) = Eaf then gl 6 gG'.

nggf: Since f(C?) = C. a C; mod A(G')A(G), we have

81

C8 mod A(G'). But then, g1 E gx mod A(G') for some x 6 G5'

81

and so g1 = gxy for some y 6 6'. Hence, g1 = g[g,x]y 6 gG'.

The second lemma tells us that we can pick the g1 of Lemma

2.2.4 so that g1 6 gF3(G).

Lemma 2.2.5: Let f 6 W(G,G'). Then there exists an x8 6 F3(G)

such that f(C ) = C .

8 gxg

Proof: Let G = G/F3(G). Since F3(G) is NA-characteristic, f

induces an automorphism of Z(G) which will be in W(G;G‘).

Let f(Cg) =:Cé . Since G- has nilpotence class s 2, we

1

have

_ =_ 56 d .f(Cg) Cg1 g mo A(P3(G))

Therefore, g1 = gxy for some y 6 F3(G) and x 6 G. Then

6 =€x =6.*,
81 8 Y 8y

x-l

and so we have the result with xg = y
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Section 3. A Lemma on Faithful Characters of Metabelian Groups.

In this section we will obtain a useful lemma about normal subgroups

from which a faithful character is induced in a metabelian group.

Let A o G, let X be an irreducible character of G, and

let M be an irreducible module affording X, As shown in §50 of

is a homogeneous component of M and if

1 A

* *

A = {g 6 G‘ng = M1], then M1 is an irreducible CKA )-module

[a], if M

G

If in addition, A is abelian and contains G' we can state

*

the following result about A when X is faithful.

Lemma 2.3.1: Let X be a faithful irreducible character of G and

let A be an abelian normal subgroup of G containing G'. Then

A* st:
C(A) '

*

Proof: ‘Let F denote the irreducible representation of A afforded

by M1. Since M1 is a direct sum of isomorphic CKA)-modules and

since A is abelian, it follows that F(a) is a scalar matrix for

*

all a 6 A. Thus if g 6 A , F(ag) = P(ga) for any a 6.A.

* , * , G G

Since A 2 G , A <|G and it follows that F (ga) - F (ag)

*

for all g 6 A and a 6 A. But TC is a faithful representation

*

of G. Hence,A SCG(A).

Section 4. Groups Containing a Cyclic Normal Subgroup with an Abelian

Supplement. In this section we begin by showing that if G = BA

where B is abelian and A is a cyclic normal subgroup of G, then

G is an E.R. group. This result was originally motivated by trying

to extend a result of [3], that any group with a cyclic normal aub-

group of index p is an E.R. group, to metacyclic groups.
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Theorem 2.4.1; Suppose G = BA where A is a cyclic normal sub-
 

group of G and B is abelian. Then G is an E.R. group.

Proof: Let A = <a>u Note that G' s.A, and hence G is metabelian.

Let f e W(G,G') , then f(C—a) = E S where as e aG' by

a

Lemma 2.2.4 and (s,\a‘) = l by Lemma 1.2.3. Let g 6 G and write

g = ba , b 6 B. We define a mapping a of G by setting

To see that o is well-defined, we first note that if

ak 6 Z(G), then ak8 = ak. This follows since f(ak) = ak by Lemma

2.2.1 and so

— — _ k _ k

a a

. i j
Hence, if bla = bza where b1,b2 6 B, we have

b1b21 = a"-1 6 B rlA s Z(G). Therefore,

i _ is _ j-i is

C(bla ) — bla - bZa a

_ js-is is _ js _ j

- bza a -— bza - g(b2a )

and so a is well-defined.

o is also a homomorphism, since if b ,b2 6 B and if

1

ik+j b aulcms
1 2

C(blbza ) = b

is s i

bla bzaj = 0(b1a )o(b2aj)

Finally, 0 is an automorphism of G, since if a(bai) = 1,

then bais = 1. But then a18 6 B FlA 5,2(G), so a1 6 Z(G) since

(s,\a\) = 1. Thus, a18 = a1 and hence bai = l.
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If we can show that for any a defined in the above manner,

X = X? for every irreducible character X ‘we will be done, so we

show this. We also remark at this time that o is an automorphism

of G which has been constructed to agree with f on the class

sums of elements of A by Lemma 1.2.3.

Suppose ker X > 1. Let M be a minimal normal subgroup of

G contained in ker X. Set G.= G/M. It follows that f induces

an automorphism on Z(G) by Lemma 1.6.2 which will be in W(G,Gw).

We claim that 0' also induces an automorphism on G: To

show this we show o(M) = M. If M slA, then clearly 0(M) = M.

Suppose M t A, then M n A = 1. Further, [M,G] s M nA = 1 and

so M s Z(G). Thus, if ba1 6 M where b 6 B, we have ai must

commute with every element of B and hence a1 6 Z(G). Thus,

a1 = a18 whence a(bai) = bais = bai. Hence, O'M = l and so

004) = M-

Thus, f and a both induce automorphisms on Z(G). Further,

if f and 5 denote these induced automorphisms on Z(G), we will

C s where ahave f(C?) aM and that 5 is defined in the

same manner as a is on G. Hence, by induction on ‘G\,

f(Cé) = 56g) for all g 6 G and so Xf = x0.

Now, suppose ker X = 1. Let A? be as in the setting of

Lemma 2.3.1. Then X is induced from an irreducible character of

A* and A* sCG(A).

Note that if g 6 c - A*, then x(g) = 0. Also, {(3) = o

for g 6 G - A* for let f(Cg) = C; . Then 31 6 gG' and hence

* l

31 6 A . Therefore,



33

f

X(g) =x(31)= 0-

*

Similarly, one sees that X°(g) = O for g 6 G - A since o(g) 6 gA,

*

X0 on G - A .so 0(g) 6 A*. Hence, Xf

Finally, suppose g 6 A*. If g 6 A, then X[(g) = Xo(g)

since f and 0’ agree on class sums of elements of A. If

g 6 A* - A, write g = bai where b 6 B. Since A* s.CG(A), we have

[b,a] = l and hence b 6 Z(G). Thus,

f(C 1L> = f((5 i)b) = (£6 1)» = (5 is» = o<€ i>

ba a a a ba

Therefore Xf(g) = X°(g), and the proof is complete.

In the following corollary, we mention some groups which

satisfy the hypothesis of Theorem 2.4.1.

Corollary 2.4.2: The following are E.R. groups.

(1) Any metacyclic group.

(2) Any group which contains a cyclic Hall subgroup containing G'.

(3) Any group which contains a cyclic Hall subgroup A such that

CG(A) =A.

(4) Any Frobenius group with cyclic Frobenius kernel.

3323;: (1) clearly satisfies the hypothesis of Theorem 2.4.1.

For (2), let B be a complement of the cyclic Hall subgroup

A 2 G'. Then, B' 5.3 FlG' = 1 and hence B is abelian. Thus, one

can apply Theorem 2.4.1.

In (3), let B be a complement for A. Then B is

isomorphically contained in Aut(A) since CG(A) =.A. But Aut(A)

is abelian since A is cyclic. Hence B is abelian, so 6' 51A.

Now apply (2).
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Finally in (4), one merely notes that if A is the Frobenius

kernel, A = CG(A). Thus one can apply (3).

In [3] Brown showed that if lG" = 2 or 3, then G is an

E.R. group. This would lead one to wonder whether G is an E.R.

group when ‘G'\ = p. By combining Corollary 2.2.2, Theorem 2.4.1,

and the following lemma from [10], whose proof we include for the

sake of completeness, we can obtain this result.

Lemma 2.4.3: Suppose G' is a p-group. Let K be a p'—Hall sub-

group of G. Then

(i) K is abelian and

(ii) there exists a subgroup Y of G such that G = KYG', Y is

a p-group, and [K,Y] = l.

nggf: (i) is easy since K' s K.F\G' = 1.

(ii) Since K is a Hall subgroup of KG',

= ' = ' =c NG(K)KG NG(K)G KP

where P is the p-Sylow of G. Also, NG(K) = KCNG(K) nP). Let

Y =NG(K) 0P. Then, G = KYG' and [K,Y] S K n? = 1.

Corollary 2.4.4: Suppose \G" = p. Then G is an E.R. group.

nggfg Let K. and Y be as in Lemma 2.4.3. If Y rlG' = 1, apply

Theorem 2.4.1 with B = KY, A = c'. If Y (16' ii 1, then K s Z(G).

It then follows that G is nilpotent of class s 2, so apply

Corollary 2.2.2.

Section 5. Groups in which G/Z(G) is Metacyclic. We have already

seen that any metacyclic group is an E.R. group. In this section

we will show that if G/Z(G) is metacyclic, then G is an E.R. group.
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We begin with the following lemma in which parts (2) and (3)

are generalized from [5] and part (4) appears in [5]. We will not

need part (4) in this section, although it will be used in Chapter IV.

Lemma 2.5.1: Let A be an abelian normal subgroup of G containing

Z(G).

(1) If G = AB where B is abelian, then CG(A) = A.

(2) If CIA is cyclic, then \c'\ = \A/2(c)\.

(3) If CIA and A/Z(G) are both cyclic, then G' = <[x,a]>

where x generates CIA and a generates A/Z(G).

(4) If, in addition to the hypothesis of (3), G is a p-group where

p > 2, then

\c'\ \A/Z(c)\ = \G/A‘ .

Egggf: In (1), let g 6 CG(A). Write g = ba where b 6 B, a 6 A.

Then b 6 CG(A), so b 6 Z(G). Hence b 6 A, so g 6 A.

For (2), first note that if x generates G/A, the mapping

g a [g,x] is a homomorphism of A onto G' ([9], Aufgabe 2, 8.259).

Moreover, the kernel of this map is Z(G). Hence \A/Z(G)‘ = \G".

In (3), one first notes that since a commutes with [x,a],

[x,a]m = [x,am] for every integer m. Thus,

\[x,a]\ = \A/Z(G)\ = ‘G'\

and we are done.

Finally,for (4), let p“ = \c/A\ and am = lA/Z(G)\. Since

G' is cyclic, G is a regular p-group ([9], Satz 10.2c.), S.322).

m m

Thus, [x,a]p = 1 = [xp ,a] ([9], Satz 10.6b.), 3.326) and hence
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and hence pn 3 pm. Again by Satz lO.6b.), we have

[xpn,a] = 1 = [x,a]pn. Thus pm s pn and we are done.

Theorem 2.5.2: Suppose G/Z(G) is metacyclic. Then G is an

E.R. group.

2529:; Let x, a 6 G such that x generates CIA and a generates

A/Z(G) where A is a normal subgroup of G containing Z(G) with

A/Z(G) and CIA cyclic. Also, suppose aX = arzx where 2x 6 Z(G).

Then, [a 9x] = ar-lzx.

Let f 6 W(G,G') and suppose f(C ) =»C' where a 6 G'.

a aa1 1

Then,

_ r-l k _ k(r-l) k
a1 (a zx) a 2x

for some integer k by Lemma 2.5.1(3). Also, note that if an 6 Z(G),

n

then 81 = 1 since

f(Cn)=Cnn=f(a)=a

a aa

1

Further,

H C
H

f(Ci) =f((€i)z)=(511)z

az a 8.31 aaz

for any z 6 Z(G).

Let g 6 G. Write g = xlajz where z 6 Z(G). We define

a mapping a on G by setting c(g) = xiajaiz and claim that this

is a well-defined automorphism of G.

To see that o is well-defined, suppose xlajz1 = xLamz2

where e Z(G). Then xi" 6 A, so xi" 6 Z(G). It then
zi’zz

follows that am.J is also in Z(G). Thus, am-11 = l and so
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o(xiajzl) = xajaiz21 = xiaja'i'z1 = xLamaTz2 = o(xLamzz) .

It follows that o is a homomorphism, for let xiajz1 and

xbamzz, 21 and 22 6 Z(G), be any elements of G. Then,

i j L m i+L jrsz(rb1+ ..+r+1) m
o(x a zlx a 22) = o(x a 2x zla 22)

= Xi+LaerHirLZi<rL-1+"°+r+1)z1amaTzz

= x iaj(x{’a irbx- )zlea'I'aTz2 .

Since

o(xiajzl)o(xLamzz) = xiajaizlx‘bam’aglz2 ,

we see that we need xLaier-L = a1, or x-LaixL = air"" for o

to be a homomorphism. But

x-Laixl' = X-Lajk(r-1) ZikXL

Jk(r-1)r" jk<r-1> (r4‘1+...+r+1) jk
a 2x z

. L L L
= ajk(r-l)r zikr = ajr ’

so 0 is indeed a homomorphism.

Finally, a is an automorphism, for suppose

q(x1an) = xiajajz = 1. Then X1 6 A, so x1 6 Z(G). Thus,

aja‘l' = (a1-'-k(r-1)z::)j 6 Z(G) ,

:i(""‘(r"))j 6 2(a). But (1 + k(r-l), \A/zmm = 1, for let

f denote the automorphism f induces on Z(G/Z(G)). We have

f(é'g) = 550+ k(r - 1))
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where a = aZ(G). Thus, (1 + k(r-1), \A/Z(G)\) = 1 by Lemma 1.2.3.

Hence \A/Z(G)‘\j, so that aj 6 Z(G). Therefore, aj = l and hence

1

ii 13
o(x a z) = x a z = 1. Thus, a is 1-1 and we are done.

Next, we claim that for any a defined in the above manner,

f

X = X0 for every irreducible character X, from which it follows

that G is an E.R. group.

If ker X > 1, let M be a minimal normal subgroup of G

contained in ker X and let G'= G/M. Then f induces an auto-

morphism on 2(5) by Lemma 1.6.2 which we will denote by E. It

also follows that 0(M) = M. For if M,s G', then 'M is characteristic

in G since 6' is a cyclic characteristic subgroup of G. If

M i G, then M nG' = l and hence [M,G] SM (16' = 1. Thus,

M s Z(G) so that O'M = 1. Hence a(M) = M. Therefore, 0' also

induces an automorphism of G. which we will denote by 5.

It will follow that Xf = X? by induction on ‘0‘ provided

that 6 is defined in the same manner as a is on G. Let g

denote gM for g 6 G and let A = <5,Z(G-)>. Since f(C-g) =C££ :

_ 1

it suffices to show 6(xiajg) = £153; 3 where g 6 Z(G) in order

1.

l

to have 5 defined on G as o is on G.

Write g = xLasz where z 6 Z(G). Then am 6 Z(G) so that

(am)xM = armz:M = aWM .

Thus,

amM = akm(r-1)Z:WM = M .

1

Hence,
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o(§'5 g) = 5(iWales;5)

-i-J-i-L-m - -i-j -j-
xaaxaz=xaa

1 1g

and we have that 5 is defined as 0-

Thus we may assume ker X = 1. Since CG(A) =.A by Lemma

2.5.1(1), we have that A* =.A in Lemma 2.3.1. Hence, any faithful

character is zero on G - A since the character is induced from A.

Therefore, Xf = X? on G - A. Also, Xf = X? on A since

f(C . ) = C . . = 0(6' ) and the proof is complete.
1 1 1 i

a z a alz a 2

It is interesting to note at this point that Theorem 2.4.1

follows as a corollary to Theorem 2.5.2 when the cyclic normal sub-

group A has odd prime power order by the next lemma.

Lemma 2.5.3: Suppose that G = BA where B is abelian and A. is

a cyclic normal subgroup of odd prime power order. Then G/Z(G)

is metacyclic.

11199;: We have that Aut(A) is cyclic and that the mapping b —» Tb

is a homomorphism from B into Aut(A). Further, the kernel of this

map is B n Z(G). Hence, B Z(G)/Z(G) is cyclic and so

G/Z(G) = (BZ(G)/Z(G))(AZ(G)/Z(G)) is metacyclic.

It should be noted that the conclusion of Lemma 2.5.3 is not

true if A does not have odd prime power order. For example, let

A be a cyclic group of order 8 and let G be the holomorph of A.

Then one can easily verify that G/Z(G) is not metacyclic.

We will also find Lemma 2.5.3 useful in Chapter IV.



CHAPTER III

NORMALIZED AUTOMORPHISMS IN DIRECT PRODUCTS

Section 1. Introduction. One question that naturally arises is

the following: suppose G is a direct product of E.R. groups, then

is C an E.R. group? Indeed, this would be a useful result to

know if one wanted to determine whether nilpotent groups are E.R.

groups, since one would then have to only consider p-groups.

In this chapter, we will obtain a positive answer to this

question when G contains an abelian normal subgroup A such that

W(G,A) is a complement for Aut(G) in NA(G) or when the direct

summands have pairwise relatively prime orders. Notice that the

latter case will yield the sufficiency of studying only p-groups

in the nilpotent case. We will also obtain the converse of this

question (that is, if G is a direct product of groups and if G

is an E.R. group, then each summand is an E.R. group) without any

restriction on C.

When we use the notation G] in this chapter, we will mean

the subgroup G1 X...X Gi-l x G1+1 x...x Gn of G when

Section 2. The Containment of NA(GI) x...x NA(Gn) in NA(G).

 

Suppose G = C1 x...x Gn and let f1 6 NA(Gi). We then can extend

fi to an element Fi of NA(G) by setting

40
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Fi(3182"'gn) = gng°°°gi-lfi(gi)gi+l'°°gn

where gj 6 Gj’ and then by extending Fi linearly to Z(G). Further,

the mapping fi 4 F is an embedding of NA(Gi) into NA(G).
i

Also, if flf2°"fn’ where f1 6 NA(Gi), is an element of

NA(Gl) x...x NA(Gn), it follows that the mapping m defined by

¢(f1f2 ... fn) = F1F2 ... Fn

defines an embedding of NA(Gl) X...X.NA(Gn) into. NA(G).

We summarize these remarks with the following theorem.

Theorem 3.2.1: Suppose G = G1 x...x Gn’ then every f1 in NA(Gi)

can be extended to an Fi in NA(G) such that F1 is the identity

on Gi' Further, the mapping m given by tp(f1 ... fn) - F1 ... Fn

defines an isomorphism of NA(Gl) x...x.NA(Gn) into NA(G).

Because of the embedding, we will also let NA(GI) X...x NA(Gn)

denote its image under m.

We conclude this section with the following remark.

Suppose G = G x...x Gn where (\G1 "Gj') = 1 for i 6 j.
,l

Then

Aut(G) = Aut(Gl) x. . .x Aut (cm)

This might lead one to conjecture that

NA(G) = NA(GI) x...x NA(Gn) .

However, this later equation is not true.

For an example of this, let G = G x G2 where G is the

l 1

quaterion group of order 8 and G2 is the cyclic group of order 3.



42

Then NA(G) # Aut(G) by Theorem 1.3.2. However, also by Theorem

1.3.2,NA(G1) =Aut(G and NA(GZ) =Aut(G2). Thus,1)

NA(Gl) x NA(GZ) = Aut(G) :4 NA(G) .

Hence NA(GI) x...x NA(Gn) is always contained in NA(G),

but they are not in general equal, even if the summands have

relatively prime orders.

Section 3. When the Summands have RelativelyiPrime Orders. In this

section we will show that if G = C1 x...x Gn where

(\Gi\,lGJ\) = l for i i j and if each G1 is an E.R. group, then

G is an E.R. group.

To accomplish this we first show the following:

Theorem 3.3.1: Let G = C1 x...x Gn where (\G1\,\GJ‘) = l for

i i j and let "1 denote the natural map from Z(G) to Z(Gi)°

Then, for any f 6 NA(G), is in NA(Gi). Further, thef

”i 'Z(Gi)

mapping W defined by

W(f) = filf'Z(Gl)n2f'Z(G2) ... TTnle(Gn)

gives rise to an exact sequence

0 a ker l ..NA(G) 1.NA(GI) x...x NA(Gn) a 0

and m is a splitting map for this sequence. In addition,

ker ill 3 CP(G).

Proof: In order to show nifl is in NA(Gi) we first note

mi)

that is clearly a homomorphism. Further,flif'Z(Gi) nif'Z(Gi) is

1-1, for suppose x 6 Z(Gi) such that nif(x) = 0, then
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f(x) 6 A(G-i). But G1 is NA-characteristic by Lemma 1.4.4. Hence,

-1 _ _

x 6 f (A(Gi)) = A(Gi)

and so x = 0. Finally. we show nif'Z(Gi) is onto Z(Gi)' Let

gi 6 Gi' Since Z(G)/A(GE) = Z(G)/A(f(A(G])) by Lemma 1.4.4, we

can write

8. = z a f(g) + x

1 366 g

i

where ag 6 Z and x 6 A(Gi). Hence,

n.f( Z: a g) =rr.(g. - x) =3
1 36G g 1 1 i

and so "if‘ is onto. Thus we have established that

Z(G i)

fiif'Z(Gi) 6 NA(Gi) .

Next, we show that the map W is a homomorphism. To do

this it suffices to Show

f - f' = ,ff'

TTi 'Z(Gi) "i luci) "1‘ ”2(61)

for any f,f' in NA(G). Let x 6 Z(Gi) and write f'(x) = x1 + x2

where x1 6 Z(Gi) and x2 6 A(Gi) . Then,

I = =

niff (X) 111150:1 + x2) Trif(x1)

since f(xz) 6 A(Gi). Similarly,

I .__ =
Trifnif (x) nifni(x1 + x2) n1f(x1) ,

whence ‘l is a homomorphism.

It now follows that (up = 1 from the definition of q; and

q). Hence, it is onto and q) Splits the sequence.
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Finally, we have to show f 6 CP(G) for all f 6 ker t.

In order to do this it suffices to show f(Cg) = C' for any

8

,-

g 6 G.. For if g = glg2 ... gn where gi 6 G1,
1

CI = CD 6' ... C' and hence if the class sums of elements of each

G1 are fixed, every class sum is fixed.

Suppose f 6 ker u and g 6 G’. Let f(C ) = C; . Since

1 g 1

Ci is NA-characteristic, f(A(Gi)) = A(Gi) and hence f(Gi) is the

normal subgroup of f(G) correSponding to Gi. Thus, since

f f d _ = c , .(g) 6 (Ci) an since Cf(g) 81 we must have g1 6 Ci But

then n,f C = C since f = 1 and n,f G = 11 C = C

Thus C = C and we are done.

8 81

Since ker W is then a complement for NA(GI)

we can state

Corolla;yfi3.3.2: If G = G1 x...x Gn where (‘Gil,\Gjl) = l for

1 ¥ j, then NA(GI) x...x NA(Gn) has a normal complement in NA(G).

Further, this normal complement can be taken to lie inside CP(G).

As another corollary we get the result we seek concerning

E.R. groups.

Coroliagy 3.3.3: Let G = G1 x...x Gn where (\Gi"'Gj') = 1 for

i i j and where each Gi is an E.R. group. Then G is an E.R.

group.

nggf: First note that if fi 6 NA(Gi) has an elementary representa-

tion, then m(fi) also has an elementary representation. Thus,

NA(Gl) X...X NA(Gn) S EA(G). Therefore,

NA(G) = (NA(Gl) x...x NA(Gn))ker W

S EA(G)CP(G) = EA(G)

and hence NA(G) = EA(G). Thus G is an E.R. group.
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Section 4. When W(G,A), is a Complement. In the previous section

we were successful in showing that a direct product of E.R. groups

of relatively prime order is an E.R. group since we could construct

the map 1' If G contains an abelian normal subgroup of G such

that W(G,A) is a complement for Aut(G) in NA(G), we can restrict

ourselves to W(G,A) when studying whether G is an E.R. group. In

this case we will show that a direct product of E.R. groups is an

E.R. group by carrying out the same procedure as in the last section

on W(G,A). Here our success will hinge upon the fact that the

summands are W(G,A)-admissible when W(G,A) is a complement for

Aut(G).

We first state two lemmas about the map m.

Lemma 3.4.1: Suppose G = G x...x Gn and let N = N x...x N
l l n

where Ni <1 G then
i,

tp(W(G1,N1) x...x W(Gn,Nn)) s W(G,N)

Proof: Let fi 6 W(G1,Ni). IL suffices to show m(fi) 6 W(G,N).

If g 6 61’ then

fi(s) =‘-— 3 mod A(N1)A(Gi)

in Z(Gi)' Hence by the definition of W:

o<£1><s> a g mod some) .

If a e 51, then being) SO

ll

0
0

coins) -=- a mod s<u>s<c>
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The result now follows since it is true on a set of generators for

G.

Lemma 3.4.2: Let G = G X...X Gn’ n denote the natural map from
 

l i

G to G1, and let A be an abelian normal subgroup of G such that

W(G,A) is a complement for Aut(G) in NA(G). Then

W(G,Al x...x An) = W(G,A) and

m(w(c1,A1) x...x W(Gn,An)) s W(G,A)

where A. = fi.(A).
l 1

Proof: Since W(G,A) is a complement for Aut(G), G/A is either

abelian or a Hamiltonian 2-group. If CIA is abelian, certainly

G/A1 X...X An is abelian. If G/A is a Hamiltonian 2-group, then

G/A1 x...x An is either an abelian 2—group or a Hamiltonian 2-group

since every subgroup of G/A1 x...x AD is normal. Thus,

W(G,A1 x...x A“) is a complement for Aut(G) and so

W(G,Al x...x An) = W(G,A). Also,

¢(W(GI,A1) x...x W(Gn,An)) s W(G,A)

now follows from the previous lemma.

We next construct a map n similar to 1-

Theorem 3.4.3: Let G = G1 x...x Gn’ "i denote the natural map from

Z(G) to Z(Gi)’ A be an abelian normal subgroup of G, and A1 = ni(A).

Further suppose W(G,A) is a complement for Aut(G) in NA(G).

Then for every f 6 W(G,A), nifl 6 W(G,Ai). Moreover, the

Z(Gi)

mapping n defined by

. nnf‘

“m I "1'E ‘ z(c:1)"2f 'Z(G2) Z(Gn)
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for f 6 W(G,A) gives rise to an exact sequence

.... —O I] X... w ,A "'9O ker n W(G,A) W(Gl’Al) X (Gn n) 0

such that m restricted to W(Gl,A1) x...x W(Gn’An) is a Splitting

map. Also ker Tl s CP(G).

nggf: First note that G is solvable by Corollary 1.5.6. Hence

every normal Subgroup of G is W(G,A)-admissible by Lemma 1.6.2.

Let f e W(G,A). Then tune-1)) = A(Ei). Thus, going through

the same Steps as in the proof of Theorem 3.3.1,

nifl 6 NA(Gi). Further, if g 6 Gi’ f(g) = g + x where

z<ci>

X 6 A(A)A(G) and so

nif(g) = g + ni(X) E 8 “Mi A(A1)A(Gi)

in Z(Gi)' Thus 6 W(Gi’Ai)' Also, one can again mimic

"if \zmi)

the proof of Theorem 3.3.1 to obtain that n is a homomorphism.

It then follows that nm = 1 on W(G1,A1) x...x W(Gn’An)

and hence n is onto and m is the splitting map.

Finally, it follows that ker n S.CP(G). For if f 6 ker n,

one can again go through the same Steps as in Showing ker t SLCP(G)

in Theorem 3.3.1 to conclude f 6 CP(G) since f(A(Gi)) = A(Gi)°

CorreSponding to Corollary 3.3.2 we can State

Corollary 3.4.4: Let G = C1 x...x Gn and suppose G contains an

abelian normal Subgroup A Such that W(G,A) is a complement for

Aut(G) in NA(G). Then, if n denotes the natural map from Z(G)

i

to Z(Gi) and if A1 = ni(A), W(G1,A1) x...x W(Gn,An) has a normal

complement in W(G,A). Further, this normal complement can be taken

to lie inside CP(G).
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Finally corresponding to Corollary 3.3.3, we have

Corollary 3.3.5: Let G = G1 x...x Gu and suppose that G contains

an abelian normal subgroup A such that W(G,A) is a complement

for Aut(G) in NA(G). Then, if each Gi is an E.R. group, G is

an E.R. group.

Proof: It suffices to Show W(G, A) s.EA(G). Since each Gi is

i="i(A) and "i is the

natural map from Z(G) to Z(Gi)' Hence in NA(G), W(G,,Ai) S EA(G).

an E.R. group, W(G,,Ai) s EA(Gi) where A

Thus,

W(G,A) = (W(G1,A1) x...x W(Gn,An))ker n

I
A

EA(G)CP(G)

EA(G)

and we are done.

In concluding this section, one should also note that Theorem

3.3.3 and Corollary 3.3.4 will hold under the assumptions that G

is solvable and A is equal to A1 x...x An instead of assuming

W(G,A) is a complement.

Section 5. The Converse. we conclude this chapter by showing that

if G = G1 x...x Gn and if G is an E.R. group then each Gi is

an E.R. group.

Theorem 3.5.1: Let G 8 G1 x...x Gu and suppose that G is an E.R.

group, then each G1 is an E.R. group.

Proof: Let f 6 NA(Gi) and set H = f(Gi)' By Lemma 1.3.1, it
i

suffices to Show the existence of an f' in NA(Gi) such that

f'(Gi) = H
I- =—

1 and f (cg) C8 in Z(Gi) for all g 6 oi.
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Set H = HiGi’ Then H is a group basis of Z(G). Further,

H is isomorphic to G. Hence by Lemma 1.3.1, there exists f' 6 CP(G)

such that f'(G) = H since G is an E.R. group. Then, Since H1

is the normal subgroup of H corresponding to G1 and since

f'(A(Gi)) = A(Gi) by Theorem 1.4.3, f'(Gi) = H by Lemma 1.4.1.

1

Hence f' restricted to Z(Gi) lies in NA(Gi), f'(Gi) = H , and
i

f'(C ) = C. for all g 6 G since the class sum of an element of

8 g i

G1 in Z(Gi) is also its class sum in Z(G). This completes the

proof.



CHAPTER IV

ELEMENTARY REPRESENTATIONS IN p-GROUPS

Section 1. Introduction. We consider two problems in this chapter.

In Section 2 we will see some p-groups which are E.R. groups, al-

though all the E.R. groups obtained here will also be metabelian.

We also emphasize again that knowledge of p-groups which are E.R.

groups yields knowledge about nilpotent groups which are E.R. groups

by Corollary 3.3.3. In Section 3 we will consider the question of

when W(G,G') s.CP(G) for p-groups.

Section 2. peGroups which are E.R. Groups. One useful fact about

p-groups is the following. Let G be a metabelian p-group and let

A be a maximal abelian normal subgroup of G containing G'.

Since A is a maximal abelian normal subgroup of G, CG(A) = A.

Hence, if X is a faithful character of G, X is induced from a

linear character on A by Lemma 2.3.1. Also, X is then zero on

G - A.

One immediate result we can obtain from the above observation

on faithful characters is

Theorem 4.2.1: Suppose G is a p-group such that Z(G) is cyclic,

\P3(G)[ = p, and G contains a maximal abelian normal subgroup such

that G' S.A s 22(G). Then W(G,G') stCP(G) and hence G is an

E.R. group.

50
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(2522;: Let X be an irreducible character of G and let f 6 W(G,G').

It suffices to Show Xf = X.

If ker X > 1, let N = ker X. Then N 2 F3(G) and N is

W(G,G')-admissible by Lemma 1.6.2. Hence, f induces an automorphism

on Z(G) which will be in W(G,G') where G=G/N. Further,

X; = X since 5- has class 5 2.

If ker X = 1, then X? = X since both X; and X. are zero

on G - A and since f fixes the class sums of elements of A. This

completes the proof.

In attempting to prove that a metabelian p-group is an E.R.

group, one might try to construct an automorphism of G that agrees

with a given f 6 W(G,G') on class sums of a maximal abelian normal

subgroup .A containing G', as this would be similar to the technique

used in proving Theorems 2.4.1 and 2.5.2. One case in which one

might first try the above technique is when A is cyclic. However,

by the next lemma we will see that we have already treated this case

in Chapter II.

Lemma 4.2.2: Let G be a p-group such that G contains a maximal

abelian normal subgroup A which is cyclic. Then G BA where B

is abelian.

m: Let g denote gA for g6G. Since CG(A) =A, it follows

that G/A is isomorphically contained in Aut(A) under the mapping

8 r 7g.

We may assume G/A is not cyclic, or else we are done. Hence,

we have that p = 2 and that \A‘ 2 23 since Aut(A) is cyclic

when p is odd or \A‘ S 22.
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Let .A = <a> and Suppose \A\ = 2m, m 2 3. Then

5 -

Aut(A) = <a> X <B>’ where a(a) = a and 5(a) = a 1. Thus since

G/A is not cyclic, we can choose d and c in G such that d

and c generate G/A and so that T is some power of a and
d

Claim: There exists b 6 G such that b and c generate G/A

and [b,c] = 1.

Note that once we have established the claim, we are done

with B I <b,c>.

Proof of the claim: Let [d,c] = ar. We first Show that 2 g r.

Case 1: If \dA‘ = 2.

2 i
Let d = a Then Z‘j, or else <d>: would be an abelian

normal subgroup of G contradicting the maximality of A. We also

have

(d2>° - (aj>° - a‘3

2 2 (I)

= (dc) = (da‘> .

. m-Z

Further, Slnce \dA\ = 2 and since ‘0‘ = 2 ,

-3

2m m-l

ad = a5 = al+2 . (2)

Thus from (1) and (2),

m-l m-l
-° 2a j = dar dar = dZar(2+2 ) = aj+r( +2 )

Therefore, r(2 + 2m-1) E -2j mod 2m. Since 4\-2j and since

4 I 2 + 2m~l, we have er.
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Case 2: If \dA\ > 2.

Suppose 2 Y r in this case. Then a 6 G' and hence

6(G) = <d2,a>. Also, Z(§(G)) SCG(A) = A so that Z(§(G)) is

cyclic. But then 6(G) is cyclic by Satz 7.8 c.), 8.306 of [9],

a contradiction. Hence 2\r.

To complete the proof of the claim, let b = da . Then

b and c generate GAA and b and c commute since

bc = (dar/2)c = dara-r/2 = dar/2 = b.

Thus we get as a corollary to Theorem 2.4.1

Corollary 4.2.3: Let G be a p-group containing a maximal abelian

normal subgroup which is cyclic. Then G is an E.R. group.

Another type of p-group which is an E.R. group is contained

in the following result.

Theorem 4.2.4: Let G be a p-group and suppose that G = BA where

B is abelian and A is an abelian normal Subgroup of G containing

Z(G). Further, suppose A/Z(G) is elementary abelian of order p2.

Then G is an E.R. group.

nggfig Let x and y be elements of A which generate A/Z(G).

We may further assume that y is chosen so that y 6 22(G). Since

x<y,Z(G)> lies in the center of G/<y,Z(G)>, G/<y,Z(G)> is abelian

and hence G has nilpotence class s 3. Further, if the class of

G is 3 then x 6 22(G).

Let b 6 B. Since G/<y,Z(G)> is abelian, be(G) = xij(G)

for some 0 s j < p. Thus, if the class of G is 3, we can find

bx 6 B such that

b .

x XZ(G) = nyZ(G)
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where O < j < p. In the remainder of the proof we will assume

j = l, for if not replace y by yj.

Let f 6 W(G,G'). Since y 6 ZZ(G), we have f(C;) = Cy

by Lemma 2.2.1. We also know that r(E’x) = c"xz for some

2x 6 F3(G) s Z(G) by Lemma 2.2.5. In addition? ‘zx\ s p Since

xp 6 Z(G) and so

f(Cxp) = f(xp) = xp = cxpzp .

X

J
Let g 6 G. Write g = bxly z where b 6 B and z 6 Z(G).

. . i i
We define a mapping a by setting a(g) = bx yjzxz and claim that

o is a well-defined automorphism of G.

To see that o is well-defined, suppose

blxiyjz1 = bzxkybz2

where b1,b2 e B, 21,22 6 Z(G). Then, blA = bZA and so blbgl e Z(G).

Thus, xi-kyj-L 6 Z(G) and hence p‘i-k. Therefore zi-k = 1. Hence

o(b1xiyjzl) = blxiyj :21 = blxiyjz:z1

= bzxkyLz:z2 = 0(b2xkyLzz) ,

so a is well-defined.

o is a homomorphism, for if blxiyjz1 and bzxkyLz2 are

b
i 2 i

any elements of G, we have (x yj) = x ymz for some integer m

and some 2 6 Z(G). Then
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j k L i+k th
zlbzx y 22) 5(b1b2x y 21222)

i

C(blx y

_ i+k i+k,m+L
— blbzx zx y zlzzz

ij i 1:11:

(blx y lexflbzx y 2x22)

ll

' k

o(blxlyjzl)o(bzx yLzz)

and g is a homomorphism.

Finally, a is an automorphism. For if

i j i i j _ -

0(bx y z) = bx zxy z-lq thenb 6 A and hence b 6 Z(G). Thus,

xiyj 6 Z(G) so that x1 6 Z(G). Then, 2: = 1 and so bxiyjz = 1.

At this time, we remark that A is a maximal abelian normal

subgroup by Lemma 2.5.1(1) and that A 2 G'. Further, if G has

class 3, f and 0 agree on class sums of elements of A. For 1et

g 6 A. Write g xiyjz where z 6 Z(G), O s i < p, and O s j < p.

If i = 0, then g 6 22(G) so that

f(c‘>=5 =o<5)
8 8 8

If j = 0, then

f(Cg)=f(Ci)=Cii =°(Ci)

x z x zxZ x 2

Finally, if both i i O and j # 0, let k be an integer such that

ki E j mod p. Then

bk

x i ik i j

) Z(G) = X Y Z(G) = X y Z(G)

bk

(xi

Hence xlyj = (x1) X21 for some 21 6 Z(G). Hence,

f(Cij) f(Ci )=Cii

x y z x z z x z z z

1 x 1

=6 =6
i j i °( i j ) °

x y zxz x y z
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We claim that Xf = X0 for every irreducible character X

and for any a defined as above, from which it will follow that G

is an E.R. group.

Suppose our claim is false. Let G be a minimal counter-

example and let X be an irreducible character such that Xf i x?.

We first Show that X is not faithful, for Suppose it is.

If G has class 3 2, then X, Xf, and X0 are all zero on G - Z(G)

since they are all faithful. From this observation it follows that

Xf = X0 since f and 0 agree on Z(G). If G has class 3, then

the faithful characters X, Xf, and X0 are all induced from A.

But then Xf = X0 Since X5 and X? are both zero on G - A and

since f and 0 agree on class Sums of A. Hence, X cannot be

faithful.

Thus we have ker X n Z(G) >.1. Let ‘N = ker X n Z(G).

Then f and 5 are both the identity on N. Therefore, f and o

induce automorphisms on Z(G) where G'= G/N. Let f and 5 de-

note the induced automorphisms, g denote gN for g 6 G, X: the

character X induces on G; B'= BN/N, and let A'= <§,y, Z(G)>.

Also, note that f 6 W(G,G‘). Since X; # X9, Xf # Xv. we will

obtain a contradiction by Showing X? = XO-

Suppose i 6 Z(G). Since

not) “52;. IC’ ’
x

Ex = l and so 5 = 1. Also, G. has class 2 since G7Z(G) would

have to be abelian. Thus,
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If y 6 Z(G), then again G. would have class 5 2. Thus,

since

f(G)?) =C;£ =C‘ ,

X

there exists a 61 6 B such that x = xfx. We also must have

f(Cé) = C; for g 6 G. since G has class 5 2. Hence,

f(C__i_j_) E;_i_j = (C i j )

bx y z bx y

, -f

so again X = X

Finally, suppose neither x nor y lies in Z(G). Since

f(C-) = C;— , if we can Show

x xzx

--i_j- __i-j-_i

o(bx y g) = bx y szx (*)

where g 6 Z(G), we will again have 'Xf =';U since G is a minimal

counter-example.

To Show (*), it suffices to Show that 5(g) = g. Write

- - -k-L-

g = blx y z where b1 6 B, z 6 Z(G), O s k < p, and O s L < p.

Then,

and so 61 6 Z(G). But then ikyf 6 Z(G), so k = L = 0. Hence,

5(g) = g and so we have (*).

This completes the proof.
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Theorem 4.2.4 was originally motivated by the following

corollary.

Corollary 4.2.5: Let G be a p-group where p > 3. Suppose that

every normal abelian subgroup of G is generated by at most two

elements. Then G is an E.R. group.

2392;: By Satz 12.4, 8.343 of [9], G is one of the following types

of groups:

(1) G is metacyclic.

(2) G <x,y,z\xP yp zp = [x,z] = [y,z] = l, yx = yzp >.

n n-l

x S X

«1),:z‘xp "' Yp zp = [y,2] 1: Y = yz P 92 = 2y)
(3) G

where s = 1 or is a quadratic non-residue mod p.

We already know that (l) is an E.R. group. (2) is easily

seen to have class 2 and hence is also an E.R. group. In (3), let

B = <x> and A = <y,z>. Also in (3), Z(G) = <zp> and A is an

abelian normal subgroup. Thus one can apply Theorem 4.2.4.

Finally we mention one more result.

Corollary 4.2.6: Suppose G contains an abelian normal subgroup

A such that G/A is cyclic, Z(G) s.A, and \A/Z(G)‘ 5 p2. Then

G is an E.R. group.

2329;; Note that A/Z(G) is either cyclic or elementary abelian

of order p2. If A/Z(G) is cyclic, apply Theorem 2.5.2. If

A/Z(G) is elementary abelian of order p2, apply Theorem 4.2.4.

Section 3. When is W(G,G') s.CP(G)? An interesting question re-

lated to whether a metabelian group is an E.R. group is when is

W(G,G') sCP(G)? Certainly, if W(G,G') sCP(G) where G is

metabelian, then G is an E.R. group. In addition, one can obtain



59

the following generalization of Lemma 2.2.5 by replacing F3(G)

by N in the proof of Lemma 2.2.5 when G is metabelian.

Lgmma 4.3.1: Let N be a normal subgroup of the metabelian group

G. Further, suppose that W(G,G') sCP(G) where G = G/N. Then

for each f 6 W(G,G') and for each g 6 G, there exists an xg

in N such that f(Eg) = ch .

Thus we see that knowledge of when W(G,G') $.CP(G) will

also increase our knowledge on how W(G,G') acts on class sums.

Up to this point, we have seen that W(G,G') s CP(G) when-

ever G haS nilpotence class 5 2, G has at most one non-linear char-

acter, and when G satisfies the hypothesis of Theorem 4.2.1. In

this section we will obtain some metabelian p-groups where this is

true.

Before obtaining some p-groups where W(G,G') s.CP(G), one

should note that we do have the following result on direct products

as a corollary to Theorem 3.4.3.

Corollary 4.3.2: Let G = G1 x...x Gn be a metabelian group. Then,

if W(Gi’Gi) SCP(G1) for each i, W(G,G') 5CP(G).

Proof: If W(Gi’ci) SCP(Gi), then W(Gi’ci') SCP(G). Hence,

W(G,G') =(W(cl,ci) x...x W(Gn,Gt"))ker n sCP(G) .

Then in particular, studying the question of when

W(G,G') s CP(G) for metabelian nilpotent groups reduces to studying

this question for p-groups.

The major case in which we can get p-groups for which

W(G,G') $.CP(G) is the following.



.
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Theorem 4.3.4: Let G be a p-group where p > 2 such that G/Z(G)

is metacyclic. Then W(G,G') s CP(G).

Proof: Let x, a 6 G such that A = <a, Z(G)>: is a normal subgroup

of G and such that x generates G/A. By Lemma 2.5.1, we know

that \G/Aj = \G". Hence, ‘Ca' = \G/CG(a)\ = ‘G/Aj = \G", so that

C = aG'.

a

In the proof of Theorem 2.5.2, for an f 6 W(G,G'), we took

an a1 6 G' such that f(Cg) = Eaa , constructed an automorphism

J 11 1
o by setting C(Xia z) = x a a z where z 6 Z(G), and showed that

J

l

f(C?) = 5(Cé) for all g 6 G. In this case we can actually take

a1 = 1 Since C8 = aG'. Then a - l and we are done.

Theorem 4.3.4 gives us some additional cases of when

W(G,G') s CP(G) which are contained in the following corollary.

Corollary 4.3.5: Let G be a p-group, p > 2. Suppose either

(1) G = AB where A is a cyclic normal subgroup of G and B

is abelian or

(2) G contains a maximal abelian normal subgroup A where A is

cyclic.

Then W(G,G') some).

LEQQL; (1) follows since Lemma 2.5.3 implies G/Z(G) is metacyclic.

(2) follows since, as we noted in the proof of Lemma 4.2.2,

G is metacyclic.
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CHAPTER V

ELEMENTARY REPRESENTATIONS IN Sn

In [3], Brown showed that Sn’ n = 1,...,10, are E.R. groups.

In this chapter, we will Show that Sn is an E.R. group for any

positive integer n.

We begin by recording two lemmas about Sn’ the first of

which is Exercise 11.4.11 of [13]. The second lemma is a well-

known result about the order of conjugacy classes of Sn and can be

found, for instance, in [2].

Lemma 5.1.1: Let n > 2, n i 6, then x 6 Sn is a 2-cycle if and

only if \x‘ = 2 and max‘xxy\ = 3, where y 6 Sn.

Lemma 5.1.2: Let g 6 Sn and suppose that g is the product of

disjoint a1 l-cycles, a2 2-cycles,..., an n-cycles. Then

n!

CY 0' 0'

1 2

\c,\ =

In showing that Sn is an E.R. group, we will show that

NA(Sn) = CP(Sn) for n > 2, n # 6. (Note that this would have to.

be the case if SD is to be an E.R. group since Aut(Sn) = Inn(Sn)

for n f 6.) We first Show that every normalized automorphism of

Z(Sn) fixes the class sums of elements of order 2 for n > 2, n H 6.

Lemma 5.1.3: Let f be a normalized automorphism of Z(Sn) and

suppose that n > 2, n 6 6. Let g 6 Sn be a product of disjoint

tranSpositions. Then f(Cg) = Cg.

61



A
l
i
t
.
‘



62

Proof: Let t denote the number of tranSpositions appearing in g.

we may assume that g has the form g = (12)(34)...(2t-1,2t). Let

f(G) = C- . To Show 6 = G we proceed by induction on t.

g 81 81 g

If t = 1, let y 6 S . Then by Lemma 1.2.2, we can find

c
u

m

x 6 S such that f(C. ) =
n x y

88 8181

Lemma 5.1.1. Next, let x 6 Sn Such that \ggx\ = 3. Again by

. Thus, ‘glgi‘ = ‘ggx‘ S 3 by

Lemma 1.2.2, there exists y 6 Sn such that f(C- x) = C. .

gs glgi

Hence 181811 = \ggxl = 3. Therefore, max‘glgil = 3, so g1 is a

tranSposition by Lemma 5.1.1 and we are done when t = 1.

In the general case we have that

f(C(12)(34)...(2t-3.2t-2)) ‘ C(12)<34>-~(2t-3:2t‘2>

and f(C' Hence,

(2t-l,2t)) = C(2t-l,2t)°

f(Cg) = C(12)(34)...(2t-3,2t-2)(2t-1,2t)x

for some x 6 Sn by Lemma 1.2.2.

If (2t-l,2t)x is disjoint from (12)...(2t-3,2t-2) we are

done. Suppose this is not the case. If (2t-l,2t)x has one letter

in common with (12)...(2t-3,2t-2), it follows that

(12)...(2t-3,2t-2)(2t-l,2t)x is a product of disjoint cycles which

are tranSpositions and a 3-cycle. But then 3|lgll which is

impossible. Next, Suppose (2t-l,2t)x has two letters in common

with one tranSposition of (12)...(2t-3,2t-2). It follows that g1

is a product of disjoint transpositions and has one less trans-

position than g. But then f fixes C. So that f(Cg) # C;

8l l

The final possibility would be for (2t-1,2t)x to have one letter
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in common with two different transpositions of (12)...(2t-3,2t-2).

But then (12)...(2t-3,2t-2)(2t-1,2t)x is a product of disjoint

cycles which are tranSpositions and a 4-cycle. Therefore “1131‘

which is impossible. Hence, (2t-l,2t)x is disjoint from

(12)...(2t-3,2t-2) so that C? = 6E1.

Theorem 5.1.4: Sn is an E.R. group for every positive integer n.

EEQQEF By the results of [3] we may assume n > 2, n i 6. Let

f e NA(G) and let N = {g e sn\£(6é) a 6;). We will show that

N = ¢, which proves the theorem.

Suppose N # g. We pick a "minimal element" g of N,

which satisfies the following properties in the order that they are

listed:

(1) Suppose that g has its largest cycle of smallest length among

the elements of N. Let h denote the length of its largest cycle.

(2) Suppose that g has the fewest number of cycles of length h

among the elements of N satisfying (1).

(3) Suppose that g has the fewest number of cycles of length

greater than or equal to two among the elements of N satisfying (2).

Note that we have h 2 3 by Lemma 5.1.3.

Write g = 3192 ... Br where the Bi are disjoint cycles

and 2 3 'Bi' s \6 Also, assume that er = (l,2,...,h). Let
r+1“

I ._.. - s 'Br (l,2,...,h 1). Then g 51 ... Br_18r(1,h). Also,

rd? .) = 5'

a1"'Br-19r Bl°°°Br-la'r

by the minimality of g and

f(C = C(1,h)

(1 .h)’
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Hence by Lemma 1.2.2,

_. =6 '

f(Cg) erueflerum)?‘

x .
for some x 6 Sn' Let g1 = 51...Br_15£(l,h) . We wlll now Show

that Eg = cg, from which it follows that N = s and so we will

1

be done.

. X. I
Case 1. Suppose (1,h) ls dLSJOlnt from 81"'Br-lar°

. x . . . u —

If (1,h) ls dlSjoint from 31...Br_13r, then Cg1 is

fixed by f Since it has fewer cycles of length h with its largest

cycle of length 5 h. But then f(C?) # C' , so this case cannot

gl

OCCUI‘ 0

Case 2: If (1,h)X has one letter in common with Bl"°Br-laf°

Suppose that (1,h)x has one letter in common with

I

31...B ler and that (n1,n2,...,nt) is the cycle of

61"°Br-16f where the common letter occurs. Then (1,h)x = (nj,a)

where a does not appear in 61°'°Br-lef' Also, note that

(n1,...,nt)(nj,a) = (n1,...,nj_1,a,nj,...,nt) .

If t < h-l, then g1 would have fewer cycles of length

h with its largest cycle having length s h. Thus C8 is fixed

._ ._ l

by f, so f(Cg) f Cg . Hence, we must have t 2 h-l.

1

If t > h-l, then t = h. But then g1 has one more cycle

of length h-l than g does. Thus, g: has one more cycle of length

h-l than gh does since (h,h-l) = 1. But E'h is fixed by f

8

Since all cycles in gh have length less than h. Thus,
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f(C h) “Ch‘ch

g s 81

which is impossible.

Thus we must have t = h-l. But then g1 has the same

cycle structure as g does. Hence f(Cé) = C. = 6E1.

Case 3: If (1,h)X has two letters in common with Bl'°'Br-lef°

First, Suppose that (1,h)x has two letters in common with

one cycle of. 81"'Br-lar' Let (n1,n2,...,nt) denote this cycle

and Suppose (1,h)x = (nj,ns) where j < s S t. Then

(n1,...,nt)(nj,ns) = (n1,...,n, ,n ,n ...,n ).

j-l s s+l’°°°’nt)(nj’nj+l’ 8-1

But then g1 has fewer cycles of length h with its largest cycle

having length S h. Thus, f fixes 6g and so f(Cg) 6 G

1 1

Therefore, (1,h)x must have its letters in common with two

cycles of 61"°Br-1Bf' Let (n1,n2,...,nt) and (ni,né,...,n;)

denote these cycles where t S s. Then (1,h)x has the form

I

(ni,nj) and

I I I = I I ... I, I,...,

(n1,...,nt)(n1,...,ns)(ni,nj) (n1,...,ni_1,nj,nj+1, ,n8 n1

nj-1,ni,...,nt)

If s + t S h, then g1 has its largest cycle of length S‘h,

has at most as many cycles of length h as g, and has fewer cycles

of length 2 2 than g. Thus f fixes C so that f(C ) i C. .

g1 g 81

Hence, we must have S + t >:h.

If neither 3 nor t is h-l, then g1 has one more cycle

h

of length h-l than g. Therefore, g1 has at least one more cycle

of length h-l than g does and so Eh :4 Eh' But f(C- h) = (T

81 8 8 8

h
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since gh has its largest cycle of length < h. Thus,

f(C h) I C h I C h ’

s a s1

a contradiction. Hence either 3 or t must be h-l.

Suppose that g has a l-cycles, a2 2-cycles,...,ah h-cycles.

 

1

Then,

t

\c,\ = “,2 ,h
all (12! 2 ah! h

If s = h-l and t < s, then

C = n! /( ! 12m2 l(t-1)atI1( -1)!ta't-1 !(t+ at“\ 81' 0 0’1 a2 oooat-1 at at+1 ...

ah-l O‘h'1
! - - I01h_1 (h 1) (oh 1) h <s+t>>

Thus since \C \ = \C \, we have

81 8

S + t = attahh .

But th > s-+ t, a contradiction.

If t = h-l and s = h-l, then

0’2 °‘h-1'1 "’h'1
\cg1\ — ni/(oltoziz °'°<ah-1")"h") (oh-1m (s + t»

Since \C \ = \C \, we see that

8 8

But (h-l)h >’S + t, so we have a contradiction.

Finally, if t = h-l and s = h, then

_ “2 O‘h-l "‘h‘2
\cgll — nl/(alla212 ...ah_1!(h-l) (ah-2)!h (s +-t))
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Again, since \Cgll = \Cg" we have

2

S + t = (ah " 1)ahh

2

But h > S + t, so we again have a contradiction and case 3 cannot

OC cur .

Thus we have now shown f(G) = Cg, so N = 95 .

8





CHAPTER VI

A LOOK AT THE GROUP RING PROBLEM

Section 1. Introduction. Let R be.a ring and let G and H

be two groups. A question which has received considerable

attention is when does R(G) ='R(H) imply G==‘H? This is known

as the group ring problem or isomorphism problem.

In the particular case when R = Z, the best general result

known at this time is that Z(G) =- Z(H) implies G 3‘ H when G is

a metabelian group. This result was shown by Whitcomb in [16] by

using Theorem 1.1.6. It Should be noted at this time that in [10],

Jackson claims to have obtained a positive answer to the group ring

problem when G is either metabelian or nilpotent. However, the

nilpotent result depends on Lemma 4 of [10], which is false, and I

have been unable to follow Jackson's proof in the metabelian case.

In this chapter, we will give some procedures which may prove fruit-

ful in extending Whitcomb's result.

Finally, we remark, as noted in [16], that in order to prove

the group ring problem when R = Z, it suffices to show that every

group basis of Z(G) is isomorphic to G.

Section 2. Lifting and g Generalization of Theoremfil.1.6. We begin

this section with the following definition.

 

Jackson uses Lemma 4 in his proof of the metabelian result, but

the use of it can be omitted.

68
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Definition: Let N 4G and let f 6 NA(G/N). We say that f can

be lifted if there exists an f 6 NA(G) which induces f on ZKG/N)

(that is, n(f(x)) = f(n(x)) for all x 6 Z(G) where n is the

natural map from Z(G) to Z(G/N)). We will also say that f is

a lift of f.

Note that in the above definition it is implicit that

f(A(N)) = MN) if f is to be a lift of If.

Next, we state a generalization of Theorem 1.1.6.

Theorem 6.2,L5 Let A be an abelian normal subgroup of G, let n

denote the natural map from Z(G) to Z(GIA), and let H be a group

basis of Z(G). Suppose that there exists an f 6 NA(G/A) such that

f(n(H)) = n(G) which possesses a lift f. Then for each h 6 H,

there is a unique gh 6 G such that

f(h) a gh mod A(A)A(G)

Further, the mapping h a gh defines an isomorphism of H onto G.

Proof: Let h 6 H, then there exists g 6 G such that f(h) a g mod A(A).

Thus, f(h) = g +: 2 (a-l)t(a) where t(a) 6 Z(G). Then, computing

a6A

as Whitcomb did in [16],

f(h) = g +' EA(a-l)t(a) E gAaL(t(a))g mod A(A)A(G).

a a

n aL(t(a))

86A

The mapping h a gh will be a homomorphism since f is a

Letting gh = g, we have gh is unique by Theorem 1.1.7.

homomorphism and since A(A)A(G) is an ideal. Further, h a gh is

an isomorphism. For if ghl = ghz, then f(hl) a f(hz) mod A(A)A(G)

so that f(hl) = f(hz) by Theorem 1.1.7. But then h1 = h2'
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Theorem 6.2.1 can be used to solve the group ring problem for

S To see this, first note that S4 = S3V4 where40

v4 = <(l,2)(3,4),(1,3)(2,4)>. Thus, 2(54/v4)=~ 2(33).

Now, in [7] it is shown that NA(S3) = 1(33). Hence if

f 6 NA(S4/V4), we can write f = T; where 6 is a unit in

Z(S4/V4). Since Z(S3) S 2(84), we can then find a unit u in

2(33) such that n(u) = d where n is the natural map from 2(84)

to Z(S4/V4). Therefore, Tu will be a lift of Ta. Thus every

element of NA(Sa/V can be lifted.4)

Finally, let H be a group basis of 2(84)' Then,

n(H)== “(34) since S is metabelian. Hence, since V is abelian

3

and Since every element of NA(S4/V

4

4) can be lifted, we can apply

Theorem 6.2.1 to conclude H=~ 54.

More generally, one might attempt to use Theorem 6.2.1 in the

following manner to solve the group ring problem for solvable groups.

Let G be a solvable group, let A i 1 be an abelian normal

subgroup of G, and let n be the natural map from ZKG) to

Z(G/A). Suppose H is a group basis of Z(G). Then by induction

on \G\, there exists f 6 NA(G/A) such that f(n(H)) = n(G). Then,

if f can be lifted, we can apply Theorem 6.2.1 to conclude H‘='G.

Unfortunately, the success of the above process depends on

f having a lift, and in general it is not true that every normalized

automorphism of Z(G/A) can be lifted from Z(G).

For an example of this, let G be the dihedral group of order

8 with generators a and b where a4 = b2 = l and ab = a3. Let

2 -

A = <a >' and let f denote the normalized automorphism of Z(G/A)

defined by f(5) = 6 and f(h) = a where a = aA and B = bA.



71

Then f cannot be lifted, for suppose that f did have a lift f.

Then, f(a) a b mod A(A), so that f(a) = b +(a2 - 1)t(a) where

t(a) 6 2(6). But then

b +-(a2 - 1)t(a) E a2L(t(a))b mod A(A)A(G)f(a)

Hence f(az) 1 mod A(A)A(G), so that f(az) = l by Theorem 1.1.7.

But \f(a)‘ = 4, a contradiction. Thus f does not have a lift.

However, it Should be noted that we do not have to be able

to lift every f such that f(n(H)) = n(G) to prove the group ring

problem for solvable grOUpS. Rather, it would suffice to have the

existence of one f mapping n(H) to n(G) which has a lift.

It is also interesting to note, that although not every

normalized automorphism of Z(G/N) can be lifted when N 4 G, they

can be lifted from .2(G). By this we mean the following. Let

f 6 NA(G/N). Extend f to .2(G/N) and let n be the natural map

from {A(G) to .2(G/N). Then, since 2(G) a-'.2,(G/N) 63 ker n, it

follows that any automorphism of the form f(Q f', where f' is an

automorphism of ker n, will induce f on .2(G/N).

Let us at this time introduce some notation. For a group

G and a normal subgroup N of G, let L(G/N) denote the normalized

automorphisms of Z(G/N) which can be lifted.

Section 3. Groups of Solvable Length Three. Let G be a group

such that G" is abelian and set G'= G/G". Let H. be a group

basis of Z(G). Then there exists f 6 W(G;GH) such that

f(H) = G. by Theorem 1.1.6. Hence, if W(G;GH) S'L(G/G"), we can

apply Theorem 6.2.1 to obtain that the group ring problem holds

for G.
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Whether every element of W(G,G‘) can be lifted is to my

knowledge unknown. However, we can state a necessary condition for

this to occur.

Theorem 6.3.1: Let G be a group such that G" is abelian and such

that W(G;G‘) S L(G/G") where G'= G/G". Then W(G,G')Aut(G) = NA(G).

nggj; Let f 6 NA(G) and set H = f(G). Let f1 6 W(G;GH) Such

that f1(n(H)) = n(G) where n is the natural map from Z(G) to

z(c/c") and let f be a lift of f1. Note that f1 6 W(G,G'),
l

for let g 6 G. Then n(f1(g)) a n(g) mod A(GH)A(G). Hence

f1(g) 6 g'+ A(G')A(G) + A(G"). But applying Theorem 1.1.5 with

K = G', we see A(G") S A(G')A(G). Thus, f1(g) E g mod A(G')A(G)

or f1 6 W(G,G'). Also, note that f induces a normalized auto-

morphism f on Z(G) since G' is NA-characteristic. Further,

nf1f(G) = n(G).

‘Now, we have f1f(g) a g1 mod A(G") for some g1 6 G, or

f1f(g) = g1 +' z (a-1)t(a) where t(a) 6 Z(G). Again computing as

a6A

Whitcomb did in [16],

L(t(a))g
f1f(g) = a, + z (a-1)t(a> n a mod A(G")A(G)

86A a6G" 1

Thus for each g 6 G, we can find a gf f in G Such that

1

f f(g) = g mod A(G")A(G). Further, g is unique by Theorem

1 flf flf

1.1.7.

Let a be the mapping 5(g) = gf f' Since gf f. is unique,

1 1

flf is an isomorphism, and since A(G")A(G) is an ideal, it follows

that o 6 Aut(G). Also,

o"f,f<g> a 3 mod s<c">s<c) .



1
‘
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Hence a-lflf 6 W(G,G"), or

1
f e f; a w<c,c") s W(G,G')Aut(G)W(G,G")

But W(G,G") S W(G,G') so that f 6 W(G,G')Aut(G). Thus we have

W(G,G')Aut(G) = NA(G).

We remark at this time, that in Section 5 of Chapter I it

was mentioned that we would obtain a sufficient condition for W(G,N)

to be a supplement for Aut(G) in NA(G). Indeed, for any group

G satisfying the hypothesis of Theorem 6.3.1, we have W(G,G') is

a supplement for Aut(G) in NA(G).

Section 4. Lifting Units. In this section, we record another possible

procedure for attacking the group ring problem involving E.R. groups.

Our approach here is Similar in nature to one presented in [16].

Let A be an abelian normal subgroup of G and suppose that

G/A is a metabelian E.R. group. Then, if H, is a group basis of

Z(G/A), we can find a unit 5 in 2(G/A) such that T5(fi) = G/A

by Lemma 1.3.1. Thus, if CP(G/A) s L(G/A) , we could apply Theorem

6.2.1 to conclude H 9' G for any group basis H of Z(G).

Indeed, the proof in Section 2 that the group ring problem

holds for 84 fits the above procedure. Thus, we are led to the

question of when do elements of CP(G/A) lie in L(G/A). In [16],

Whitcomb suggested using the ring of pnadic integers to consider

this question when G is a p-group. Here we will instead use the

ring 2 n for a suitable integer n.

pWe begin by recalling that

J(Z “(on = A(G) + p2 1n(c)

P P
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when G is a p-group where J(Z n(6)) denotes the Jacobson radical

P

of Z n(G) .

P

Next, we record the following result from [16].

Lemma 6.4.1: Let A be an abelian normal subgroup of G. Suppose

2 (a-l)t(a) 6 an(G) where t(a) 6 Z(G) and where the exponent of

86A

A divides pn. Then naL(t(8)) =1.

Now, let m dezgfe the natural projection of Z(G) onto

Z n(G) where n is a positive integer. We next state

Lzmma 6.4.2: Let u i 1 be a finite unit of Z(G) where G is a

finite group. Then (p(u) 1‘ 1.

giro—0;: Suppose tp(u) = 1, then u 6 1 + an(G). But then the co-

efficient of the identity element of G in u is nonzero. Hence

u = 1 by Lemma 7 of [10].

Another fact we can state is

Lemma 6.4.3: Let G be a p-group and let x 6 Z(G). Then, if p

does not divide L(x), qu) is a unit in Z n(G)'

M: Since L(x) is not divisible by p,p(p(x) is not in

J(Z n(G)), but then qu) is a unit.

p we now return to the problem of lifting elements of CP(G/A).

Although we will not directly lift elements of CP(G/A) here, we can

use an alternate procedure to obtain the following result.

Theorem 6.4.4: Let A be an abelian normal subgroup of a p-group

G and let n denote the natural map from Z(G) to Z(G/A). Suppose

H is a group basis of Z(G) Such that n(H)G = n(G) where 5 is

a unit in 2(G) and d 6 Z(G). Then, if L(d) is not divisible

by p,H="G.
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1229.63 Let ‘6‘ = pn and let (p be the natural map from Z(G)

to z n(G). By Lemma 6.4.2, qKH) is isomorphic to H. Hence we

will 1et H denote qKH) in Z n(G). Also, let us use n to

denote the natural map from Z n[6) to Z n(G/A) and let 6 de-

note the image of d in Z n(GD/A).

Then by Lemma 6.4.3? 5 is a unit in Z n(G/A). But then

if u is any element of Z n(G) such that 11(3) = 11, u is also a

unit since u 6 J(Z n(G)). pSince n(H)d = Gn(G), we have for each

P

h 6 H there exists a g 6 G such that hu ug mod A(A) or

hu 5 g mod A(A) in Z n(G). writing hu = g +' z (a-l)t(a) where

a6A

t(a) e z “(6),

P

h“ = g + z (a-1>t<a) a n a"(t‘a)'s mod A(A)A(G)
a6A a6A

L(t(a))
Let gh = H18 g.

a6A

gh is unique. To see this, suppose g1 a g2 mod A(A)A(G) where

As in the integral case, we claim

g1,g2 6 G. Then g1 = gza for some a 6 A since g1 5 g2 mod A(A)-

Thus, a s 1 mod A(A)A(G) so that a-l = z (x-l)t(x) where

t(x) 6 A(G). Considering the t(x)'s inxe;(G), we have

(a-l) - Z (x-l)t(x) 6 an(G). Thus anxb(t<x)) = a = l by Lemma

6.4.1. Hggce g1 = g2, so gh is unique.

It then follows, as in the integral case, that the mapping

h a gh defines an isomorphism of H onto G.

It Should be noted with regard to Theorem 6.4.4, that if

Tu 6 NA(G), u can be assumed to lie in Z(G) by mutliplying u

by an integer if necessary. Also, one Should note that if f = Tu:

where u is a unit in Z(G), then L(u) is not divisible by any



76

prime dividing \G\ since L(u) = i.1- Thus Theorem 6.4.4 can be

applied when T5 6 I(G/A).

Theorem 6.4.4 also motivates some further questions on

normalized automorphisms which would lend themselves to the study of

the group ring problem. One question is what can one say about u

if Tu 6 CP(G). Another question is the following. Let f 6 NA(GAN)

where N44 G. Then f induces an automorphisms of Z n(G/N) for

any positive integer n. Then, when can the automorphism f induces

be lifted from an automorphism of Z n(G)? Indeed, our success in

proving Theorem 6.4.4 rests upon thepfact that the last question has

a positive answer when G is a p-group and when f has the form

TG where d 6 Z(G/N) and P [ L(G)°
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