DETERMINATION OF A0 FOR DEUTERATED ME‘z‘HYL HALIDES Thesis far the fisgree of Ph. D. MICHEGM STATE UNWERSETY ' RiCHARD WAYNE PETERSON 1969 0.169 F] LIBRARV “- Michigan SLHU i L: University This is to certify that the thesis entitled DETERMINATI ON OF A0 FOR DEUTERATED METHYL HALIDES presented by Richard Wayne Peterson has been accepted towards fulfillment of the requirements for PhoDo degree inPhYSiCS W Major professor Date W 3g /;/; ABSTRACT DETERMINATION OF FOR DEUTERATED METHYL HRLIDES By Richard Wayne Peterson and 2v V4 4 vibration - rotation bands of CD31, CD3C1, and CD3Br have been obtained with the Michigan State University near-infrared spectro- High resolution absorption spectra of the meter. Molecular parameters have been determined by least squares fits of observed frequencies to generalized frequency expressions for symmetric top molecules resulting from the theoretical work of Amat and Nielsen. A simultaneous analysis of the v4 and 2v4 bands of CD31 led to a value of A0 = 2.5788 : 0.0004 along with other molecular parameters. A similar analysis of the unperturbed lines of CD301 yielded the value A0 = 2.5930 : 0.0006. The A0 values obtained for CD31 and CD3Cl were compared to those from zeta-sum work and were found to be an order of magnitude more pre- cise. A0 could not be obtained by a simultaneous analysis for 4; however a single-band fit of v4 resulted in values of DE, a2, 02, and CD38r because of the highly perturbed nature of 2v other linear combinations of parameters. Systematic perturbations have been observed on the low fre- quency side of the band of each molecule. Individual line V4 shifts due to these perturbations have been listed in all cases Richard Wayne Peterson where definite assignments were possible. Other perturbations were observed in 2v4(u) of CD3Cl and in 2V4(L and H) of CD3Br. DETERMINATION OF A0 FOR DEUTERATED METHYL HALIDES By Richard Wayne Peterson A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Physics 1969 €é/770’ 7%, 2.7-” TO MY PARENTS ii ACKNOWLEDGMENTS I would like to thank Professor T. H. Edwards for the guidance and encouragement which he has provided throughout the course of this work. His dedication to teaching and research has had a significant effect on my current goals and aspirations: l have enjoyed the experience of teaching under the direction of Professor C. D. Hause, and the experience gained has greatly affected my future plans for research and teaching. The excellent course on molecular structure which has been presented by Professor P. M. Parker has been very valuable in this work. I would particularly like to thank Dr. Lamar Bullock for the many times he provided assistance with experimental and computer- related phases of this research. The advice and assistance of fellow students Richard Blank, Paul Willson, and Peter Willson have also been real assets in this work. The excellent CDC 3600 and 6500 computer facilities of Michigan State University have been very valuable in many parts of this work. The Physics Shop staff has provided invaluable assistance with some of the experimental problems which have been encountered. A number of undergraduates in the Work-Study Program have made significant contributions. Donna Deming, Nancy Nickerson, and Jeannine Stetz all Spent many hours with theirfriendthe HYDEL machine. Jack Bosworth has provided competent assistance with the final changes in program SYMFIT and with the final analysis iii procedure. The financial assistance provided by a National Aeronautics and Space Administration fellowship was greatly appreciated. The National Science Foundation has also provided support through grants to Professors T. H. Edwards and C. D. Hause. Finally I would like to express an loveand appreciation to my wife, Donna, whose patience and moral support have helped bring this work to a successful conclusion. iv LIST OF LIST OF LIST OF Chapter I II III IV VI VII VIII IX LIST OF TABLE OF CONTENTS TABLES FIGURES APPENDICES INTRODUCTION DEVELOPMENT OF SYMMETRIC TOP THEORY METHODS OF A0 DETERMINATION EXPERIMENTAL PROCEDURE ANALYSIS OF DATA v4 AND 2v4 OF‘CD3I ANALYSIS OF v4 AND 2v4 OF CD3C1 v4 AND 2v4 OF CD38r ANALYSIS OF ANALYSIS OF CONCLUSION REFERENCES APPENDICES Page vii viii 22 29 38 45 56 66 74 77 79 Table WNNNNN 0‘ r~ ¢~ D~ Hump—a HU‘bWNt—J LIST OF TABLES Parameters of the D-D Hamiltonian Axially Symmetric Energy Expression Description of Energy Parameters Generalized Frequency Expression Single-Band Frequency Expression for v4 or 2vA Frequency Expression for a Simultaneous Fit of v4 and 2v4 Experimental Conditions - CD I 3 Experimental Conditions - CD3C1 Experimental Conditions - CD38r Molecular Constants of CD I Obtained from Single 3 Band Fits Molecular Constants Resulting from Simultaneous Fit of v4 pand 2v4 of CD31 Second Order Molecular Constants of CD3C1 from Single Band Fits Molecular Constants Resulting from a Simultaneous Fit of v4 and 2v4. of CD3Cl Molecular Constants from a Single Band Fit of v4 of CD3Br Summary of Constants for CD3X Molecules Page 11 12 14 17 23 3o 31 32 51 52 58 64 69 75 F igure 1. l. 1 LIST OF FIGURES CD3X Structure Normal Modes of Methyl Halides Detector Assembly Bias Circuit Block Diagram of SYMFIT Survey Spectra of v4 and 2v4 Survey Spectra of v4 and 2v4 Effective 04 from Subbands of of CD3C1 Deviations of Perturbed Subbands Survey spectra of V4 and ZVZ+ , B Effective 04 Subbands of CD3Br ValuesDetermined from of CD31 of CD3C1 v4 and 2v4 v4 of CD3C1 of CD3Br of 2V4(l) Page 36 36 41 47 57 61 67 71 [\ppendix A. B. LIST OF APPENDICES Listing of SYMFIT and Typical Data Set Least Squares Fits and Associated Statistics Results of a Simultaneous Fit for CD I 3 Results of a Simultaneous Fit for CD3C1 Results of a Single Band Pit of v4 of CD3Br viii Page 79 97 100 111 121 CHAPTER I INTRODUCTION The birth of quantum mechanics in the late 1920's led to a renewed interest in the near-infrared absorption spectra of small rnolecules. It was found that many features of infrared Spectra could be predicted by a quantum mechanical model of the molecule consisting of a rigid rotator and a set of uncoupled harmonic (oscillators. Symmetric top molecules (where IXX = Iyy * Izz) allow an exact determination of vibration-rotation energy levels for the zero-order model described above. Because of this, some of the first molecules studied experimentally and theoretically ‘Jere the methyl halides. The basic form of a deuterated methyl halide molecule (CD3X, ‘where X = F, Cl, Br, or I) is shown in Figure 1.1. In addition to their classification as symmetric tOps, the methyl halides have C3v symmetry, which means they have a threefold axis of symmetry and three vertical planes of symmetry. Figure 1.2 illustrates the atomic motions involved with each of the vibrational modes Of a thethyl halide molecule. The modes v4, v5, and v are doubly 6 degenerate. In Chapter II a summary is given of the modern quantum mechanical development of a fourth-order energy expression for a vibrating and rotating symmetric top molecule. This general model includes such effects as anharmonic forces, changes of moments of l X la la 0 0. fi 0 47013 = fl D D o 4wclg D FIG l-l CDBX STRUCTURE is we FIG l-2 NORMAL MODES OF METHYL HALIDES inertia with vibration, centrifugal distortion, and vibration- rotation interactions. Different frequency expressions of particular importance to this work are introduced and compared. Because of the selection rules which govern symmetric top transitions, the determination of the ground-state constant A . (where I is the principal moment of inertia about A A = h/4nc I 0 0 0 the unique symmetry axis) is a difficult but important problem. (Shapter III describes and compares the two most commonly used rnethods of determining A This work involves an application of 0' the more accurate of the two methods to CDBX molecules. The experimental procedures used in recording the v4 and 2v bands of CD I, CD Cl, and CD Br are described in Chapter IV. 4 3 3 Chapter V describes the computer programs used in determining accurate 3 frequencies of spectral lines recorded and in obtaining molecular parameters, Such as A0, from the observed frequencies. The remainder of the thesis describes the details of the analysis of the spectra for each of the three molecules. Molecular parameters obtained from the analysis are recorded and compared with those obtained from lower resolution spectra. In the cases of CD Cl and CD Br (Chapters VII and VIII) a number of Spectral lines 3 3 are found to correspond to transitions to perturbed upper-state energy levels. Whenever possible the magnitudes of these energy level shifts are determined. The concluding chapter summarizes the molecular parameters determined for each molecule and includes suggestions for future work. CHAPTER II DEVEIDPMENT OF SYMMETRIC TOP THEORY Among the problems which confront the beginner in high resolution spectroscopy is the complexity of an accurate analytical exqaression which is able to specify the energy of the quantum levels of a vibrating and rotating polyatomic molecule. The situation is further complicated for the experimentalist by the variety of expres- sions which have been used to predict the frequencies of radiation whixzh are absorbed when the molecule is excited to higher energy states. For example, some frequency expressions are convenient for the: rapid computation of approximate molecular parameters from gross features of the spectra, others apply only to small portions of a given absorption band, and Still others are general enough to allow a IJarge scale computer analysis of more than one band under very ‘11831 resolution. The goal of this chapter is to introduce a few 0f the frequency expressions which are presently used for symmetric tops and to facilitate their comparison. A brief development of a general energy expression which re- sults from the fourth-order Hamiltonian as developed by Amat and Nielsen is given first. After applying appropriate selection rules, tine generalized frequency expression for symmetric top molecules is cflatained. This complicated expression is then compared to fre- quency expressions which are commonly used experimentally at low to medium resolut ion . The development of a correct quantum mechanical form of the fiamiltonian has been presented in detail by H.H. Nielsen (1) in his (:omprehensive paper of 1951. Details of this development have been ggiven at Michigan State University in the lectures on molecular s;tructure by P.M. Parker, and an excellent summary is given in (Shapter I of a theoretical thesis by R.L. Dilling (2). The re- sxiltant Hamiltonian is commonly called the Darling-Dennison (D-D) llandltonian (3,4) and is written as follows: 2/ = gin}: 2(PQ, - Pam—10898 - pan} GB (2.1) 1 l 12; ‘K A 2 p50” 50 + psgu%] + V NIr—A TFat31e 2.1 contains a brief description of each of the quantities Lused.in the D-D Hamiltonian. More detailed information concerning tile basic relationships between these constants may be found in rezferences (1,2,3,4). In principle, the D-D Hamiltonian is quite applicable to any t)rpe of molecule. It is unfortunately a grievous task to solve the S<2hroedinger equation for this complex Hamiltonian to high orders Of? accuracy. The usual systematic approach is to first expand H if! the manner, H = H0 + H1 + H2 + H3 + ....... wllere expansions of V and ”a are S V=V +V +V +... O l 2 =1- 2 + K Q Q Q + V 2 Si XSQSC SE 50 SO’ Stat 8"0'" Slot 5 O" H n SIIOII S U (atlant it‘y’ “GB 30' 30' we”) Table 2.1 Parameters of the D-D Hamiltonian Description the inverse moments of inertia matrix, 2 de At t (0:08) range over (x,y,z) of the rotating coordinate system attached to the molecule in a manner Subject to the Eckart conditions (4,5) (5) is an index ranging over all normal modes; (0) ranges over the components of degenerate normal modes displacement of the a component of the normal mode (5), does not appear explicitly in H component of total angular momentum component of internal angular momentum; (p ) may be expressed as a linear combination 0 components of internal angular momentum as expressed in normal coordinate space: = fa pd E :58152 52 momentum conjugate to Q30 7% \ = - i a —Q—— so aQSc P potential energy of the molecule a nd _ 1 [Q(0)a3 3(1)GBQ + ...] 50‘ + QM where, if x,y,z are principal axes, 3(O)ap = I 6 - O’O’D WTith these, one can write for H0 (1,2) =H +H HO R V (2.2) F2 1 y 1 r 2 2 2 E I 2 Z LPso stso] CY 50 This Hamiltonian of a rigid rotor (HR) and a set of uncoupled harmonic oscillators (HV) is very important in the development e Which follows. The Schroedinger equation of H (where Ie = I ) 0 xx yy . . a has the well-known eigenfunctions YT _ YR Yv Where Y = K t> R \J t and = YV \vl>\v2> \VSLS> Where vl,v2 vS are the vibrational quantum numbers of the UI‘lcoupled harmonic oscillators, and J,K,M, and Ls are angular momentum quantum numbers defined by The quantum mechanics problem of the rigid symmetric rotor Was first solved by Dennison via matrix mechanics (6). Solutions by both wave mechanics and matrices are given in his paper of 1931 (7). PZYR = J(J+l)h2yR PZYR = K h YR (2.3) PZYR =Mh‘1’R ‘QsoYV = $8 h YV In the case of a symmetric top in zero order, vs, J, and \Kl are (Konsidered primary quantum numbers since they determine distinct eigenvalues; (,5, M, and the Sign of K are secondary quantum numbers and in zero order only designate degeneracies. A method of arriving at energies beyond zero order which has often been used is that of the contact transformation. This is essentially the perturbation approach as presented by Born, Heisen- berg, and Jordan in 1926 (8,9), and it was applied by Van Vleck in 1929 to higher order terms of diatomic molecules (10). Shaffer, Nielsen, and Thomas were the first to use the technique in the Case of polyatomic molecules (11), and in his paper of 1951 (l) Nielsen summarized first and second-order contributions to the energies of symmetric tops. One applies the transformation to the general D-D Hamiltonian as expanded to at least second-order, 21' =TIVT-1 =1v' +N’ +1V' + O 1 2 aruj one attempts to choose T such that u = v I = l (1) NO NO and (2) 0 for ni‘n In this way the transformation does not invalidate the highly prized eigEnfunctions of H but does remove the off-diagonal elements of 0) Hi- Detailed application of the T transformation necessitates that tine resulting terms be rearranged according to expected orders of «magnitude. The rearranged matrix is written as ‘I = I I h Nb +~h1 + h2 + ... . . - . , 0 Ifliern Since H0 has known eigenfunctions Y( ), we may apply second— ()rcier perturbation theory which states that if a) Y<0> z E<0>Y<0> 0 n n n then E50) = Eé1)== I II 2 (2) - ' ' ll En ~ +'Z E(O) (O) n n - n" but: by virtue of the contact transformation, = O for all n f n" anti therefore E<2) = ‘gsgs'/41 + 535' ALtAL , + Z 2 IX t t LELE' t tSt' ZSZS.ZSnySSvSnl(VS+gS/2)(VS:+85u/2)(Vsu+88n/2)-gsgsugSu/8] + sgs'SS” Z Z 2 .y s t t sittt. tSt' (vSmS/DMtMC. + AO[ (K+AK) 2-K2] + BOE(J+AJ)(J+1+AJ)-J(J+1) - (mmzflzj + z .m . r [-ZAeztgt Mt+£twt+£sntsws+gsn>IM’t1LK+AK1 + 2 -DOJ[ (J+AJ) 2 (J+1+AJ) 2-J 2 (J+1) ] + 2 2 -D3K[(K+AK) (J+AJ)(J+1+AJ)-K J(J+1)] + -DOK[(K+AK)A-K4] + A A [-23% vsfizszs 'Yss' (vSvS.-+vsgs./2+vs ,gS/Z) 335' A 2 F +Zt2tuYLtLt'MCMCJJK‘tAK) ] + tSt (continued on next page) 15 Table 2.4 (cont.) Generalized Frequency Expression F‘—Z a BV +£ Z V B (v v +v g /2+v g /2) L s s s s 5' 83' S s' S s' s' s B 2 +2: 2 .v MCM,tu]l(~.l+AJ)(J+1+AJ)-CK+AK) 1 + l ZcfltJMJ (K+AK) (J+AJ) (J+1+AJ)3 + K 3 :tnt MtUKfliK) ] + J 2 2 23535 vs[(J+AJ) (J+1+AJ) ] + .JK 2 _ :SBS vS[(K+AK) (J+AJ)(J+1+AJ)J + z; a Kv [(K+AK)4] + S S S HOJ E (J+AJ)3(J+1+AJ)3-J3 (J+1)3] + HgKE (K+AK)2(J+AJ)2 (J+l+AJ)2-K2J2(J+l)2] + HS‘JE (K+AK)4(J+AJ) (J+l+AJ)-K4J (J+1)] + HEE (K+AK) 6-K6] 16 = _ B B (2.5) Bv Be Easws‘th/Z) + SE! vss.(vs+gs/2)(vs.+gS./2) 953' + + B til YLt£t1£t£t' A e tst' m _ m m = (2.6) I)v De-Eas(vs+gs/2) for m J,K,JK Substitutions have been made for A0, B0, and D3 since these ground— state effects each have distinct rotational quantum dependencies which are quite independent of the upper-state vibrational level. n It will be noticed that the equilibrium constants Ae’ Be’ and D: [L still are not readily available even if their ground-state values are known - Well-known selection rules (18) specify that for symmetric tops, ‘ . AK = O for 1'} bands AK =il for .L bands and for both types of bands [3.1 = 0, 131 except that J = 0 to J = 0 transitions do not occur. In addition, selection rules on Lt can be inferred from symmetry considerations. In particular, for v4 m4 =Ax=il and for 2x)4 M4 = "ZAK = O, :2 Table 2.5 (19) shows the form which the generalized frequency expreSSion takes when it is applied to v or 2v . The effect of 4 4 the salad: ion rule on (Mt) has been put in terms of the parameter 17 Table 2.5 Single Band Frequency Expression for v4 or 2v4 , AKAJKU) = +{BO[(J+AJ)(J+1+AJ)-J(J+1) - (K+AK)2+K‘] -DOJ[(J+AJ)2(J+1+AJ)2-J2(J+l)2] “D3K[(K+AK)2(J+AJ)(J+1+AJ)-K2J(J+1)ll + M! ; v0(v4) or v (2v ») or 2 - r-k(AK)2(A Q z-l/Z+T‘ K)1 + O 4 * g L 84 Z J tv0(2v4 H) 2 2 [A0 - kAegaz - l/2kn4K3[(K+AK) -K j + K [-DO - l/Akflax][(K+AK)a-K I + 41 J [‘aaA + 3/2kn4Kll(Av4)(K+AK)2] + ['aaB][(AV4){(J+AJ)(J+1+AJ) - (K+AK)2}] + [“4J31(kAK)(K+AK)(J+AJ)(J+1+AJ)] + E J [(Av )(J+AJ)2(J+1+AJ)2] + 34 3 4 JR 2 [84 JEAv4)(K+AK) (J+AJ)(J+1+AJ)] + [64km (Ava) (“no") + [HOJ][(J+AJ)3(J+1+AJ)3-J3(J+1)3] + [HgKlE(K+AK)2(J+AJ)2(J+1+AJ)2—K2J2(J+1)2] + 4 [H§J3[(K+AK)4(J+AJ)(J+l+AJ)-K J(J+1)] + [HOK][(K+AK)6-K6] 1 for v4 k = -2 for 2v4 ‘me‘wr - - P.“ l A. j 18 (k), thus allowing the one expression to apply to both (1 or H). The expression is written in a form making for a large-scale computer fit of individual transition K A to obtain the unknown constants (A - kAegz, -DO, -a4, 0 Chapter V covers the computerized analysis procedure in One form of the single-band frequency expression v4 and 2v4 it convenient frequencies B etc ) -0 o o o o o 4 detail. which is often used at lower resolution is that in which AJ = 0, and third and fourth-order terms are ignored (20,21,22). This expression allows an approximate analysis from the Q branches of perpendicular bands (AK =.il) from symmetric top molecules. If, in addition, centrifugal distortion is ignored, the second-order frequency expression for these RQK and RQK lines is v(J,K,AK) = v + (Bv - BO)J(J+1) O T' _ r _ + ZLAV(1 gv) BVJKAK 2 + [(AV - A0) - (BV - 30)]K where the small second term determines the extent of the spreading of the unresolved lines. The usual approach is to fit branch peak to the formula, (2.7) v(K,AK) = v0 + ZEAV(1 - gv) - BV]KAK 2 + [(Av - A ) - (BV - BO)]K 0 where v0 contains all the non-rotational terms. A careful comparison of this expression for Q wit?) the general single-band expression as applied to the Q branch peaks or 2v V4 4 (Table 2.5) indicates that the two are compatible. Unfortunately, coefficients obtained from fits of the two forms are very difficult g!“- 19 to compare. For example, v0 of (2.7) contains all the terms which have constant quantum coefficients involving AK é :1; the generalized 2 v0 has put some of these (AK) terms in the coefficients of a4 and aaB. Likewise, the coefficient of KAK contains effects which become art of the coefficients of A -A Q 2 a A and B in the p - 0 e 4 ’ A ’ a4 generalized equation. The third term of (2.7) is equal to (GAB-04 ), but does not allow a determination of 04A or 04 separately. Such mixing of terms requires that great care be taken in comparing results of fits using the two forms. Two combination relationships from (K,AK) are often used in Q branch analyses. These result directly from the AK dependence of the second term. They are RQ +PQ 2ivO+Av<1-gv) -B] 2 + 2[(AV - A) - (13V - 30)]K O (2.8) R P - F - - 2 These combination relationships are most commonly found in papers written before the computer era, since they allow a simple graphical' deternfination of approximate molecular constants. Analysis of the parallel bands (AK = O) of symmetric tops is usually a difficult process due to difficulties in assigning the overlapping lines. The most common approach has been to measure series of QRK(J) and QPK(J) lines without attempting to identify true (hopefully) constant K value of the particular series (21,22). 1?“? resultant frequency expressions for QP‘K(J) and QRK(J) are 1 20 Q _ .2 _ . + - - + PK(J) v0 (AV A0 Bv BO)K -(B +3 -21<21) )J+(B -B)J2+4D J3 v 0 JK v 0 JJ Q J =~ +A -A - + 2 RK( ) VO ( v 0 Bv BO)K + Bv + (38 - B )J + (B - B )J2 — 4(J+1)3D - 2K2(J+1)D v 0 v 0 JJ JK If a given K series is followed (K = constant), then the two equa- tions can be put in compact form, viz., 2 3 (2.9) v(J) - a1 + blm + clm + dlm -J for the P branch where m m = J + l for the R branch 2 and a1 - v0 + (Av - AO - BV + BO)K b = B + B - ZKZD l v 0 JK _ B c - B - B = a for fundamentals l v 0 v (11 - ~4DJJ The QQK(J) lines (AJ = 0, AK = O) in the center of a parallel band are seldom completely resolved because of the small magnitude of a: A for the methyl halides; but, because of a much larger av, often they can be identified in K. This allows them to be described by the equation, 2 (2.10) v(K) = a + b K 2 2 where = _ a2 v0 + (Bv BO)J(J+1) = - - + b2 (Av A0 Bv BO) A - QB - a for fundamentals. v v 1r in. j: '. ' ' l.- —"‘ w" use i Thus from a complete analysis of a parallel band one can determine A B . av, av, and v0(h). Equations (2.7 - 2.10) have all been used extensively for moderate resolution spectra where it is difficult to resolve the R P . ‘ Q Q . R (J), P (J) lines of L bands and P (J) and R (J) lines K K K K of H bands. They can also be usefully applied where computer facilities are minimal, or where approximate molecular constants are desired without Spending much time and effort assigning in- dividual lines. When it is possible to resolve the individual R P Q Q . . . R (J), P (J), P (J), R (J) lines, it is best to use the K K K K appropriate form of the generalized frequency expression. The latter approach has been used exclusively in this work, except where a comparison of accuracies with previous work and differing methods has been made. The next chapter is concerned with differing methods of find- ing the ground-state constant A0. Two methods are treated in de- tail: the first uses a generalized frequency expression, the second uses the peak Q branch formula (2.7) and some of its equivalent forms. CHAPTER III METHODS OF A0 DETERMINATION A definition of A0 in terms of Ae is given in Eq. (2.4), and this definition is then used in a development of a single-band frequency expression as applied to V4 or 2v4 (Table 2.5). The n expression shows clearly that AO cannot be determined from a if single band. Two methods of obtaining A are the main topic of 0 this chapter. The first involves the use of frequencies of a fundamental band and its first overtone (e.g. v4 and 2v4); the second uses information from the three fundamental perpendicular bands of a methyl halide (i.e. v4, v5, and v6). In the analysis chapters which follow, a statistical study is included from experi- mental applications of both methods. If single—band fits of v4 and 2v4 are made, the particular combination of AO-Aegz and A + ZAEQZ can be obtained. These 0 constants can then be combined to determine a value of A0. An alternative approach is to fit the bands simultaneously to a fre- quency expression generalized to include both bands. This simul- taneous equation has been given by T.L. Barnett (l9) and is con- tained in Table 3.1. Barnett and Edwards applied the simultaneous fit approach to find A0 for CHBBr and CHBI (23,24,25). Barnett has also shown that A0 can be obtained by fitting a combination band of the form Vt + Vn simultaneously with 2vt (19). The simultaneous approach has a number of advantages over the method of combining two Single-band fits. These advantages are discussed in 22 23 Table 3.1 Frequency Expression for a Simultaneous Fit of v and 2v 4 4 meg) - {EOE (J+AJ)(J+1+AJ)-J (J+1)-(K+AK)2+K2] -DOJ[ (J+AJ) 2 (J+1+AJ) 2 -J 2 0+1) 2] 433% (1(+Ax) 2 (HM ) (J+1+AJ) ~K2J (J+1)]} = ‘30 (v4) 0; ”00% ,) org \20(2v4 H) _: [AO1[(K+AK)2—K2] + [-2Aeg42+n4][(m.4) (K+AK)1 + [-DOK][(K+AK)4-K4] + [-a4A1[(Av4)(K+AK)2] + [xi/4831. (Av4){ (J+AJ) (J+1+AJ> ~ 2}] + mfn (up (MK) 31 + magi (Av4+1) (M4) (mam + [MIR (M4) (mar) (J+AJ) (J+l+AJ)] + [afficmp u+m223 + [aixli (Ava) new 2 (HM) (J+1+AJ)] + [afiumpmuxf‘] + [HOfiE(K+AK)6-K6] + [HOJ] [ (J+AJ)3 (J+1+AJ) 35.13 (J +1) 3] + 2-K2J2(J+1)2] + ugh: (K+AK) 2 (J+AJ) 2 (J+1+AJ) [11ng [ (Ki-£3104 (J +AJ) (J +1+AJ) -K"J (J+l)] + [“21 (mp (Av4+2) <1<+m<>23 + A. 2 2 [yuan (M4) max) 1 + [YAZJE (4V4) (AV4+2){ (J+AJ) (J+1+M) - (K+AK) 2}] + [Y B ][(M )2{(J+AJ)(J+1+AJ)-(K+AK)2}] 44‘4 4 24 the chapters involving the A0 determination of CD31 and CD3C1. The method of a simultaneous analysis of individual transi- tions of a well-resolved vt and 2Vt(i) is believed to be the most accurate way to determine A0 for axially symmetric moelcules. However, for purposes of comparing statistical accuracy and method- ology, one needs to consider the time-honored procedure of obtaining A0 from the zeta-sum rule. Historically, for accidentally symmetric-top molecules, it was possible to predict infrared spectra without consideration of vibration-rotation interaction. The classic paper of D.M. Dennison (7), published in 1931, summarized the theoretical work up to that time which was done without considering Coriolis interactions. In 1934, E. Teller (26) pointed out that many features of the perpen- dicular bands of true symmetric tops can be explained if one con- siders the Coriolis interaction between rotation and the vibratiOnal motions of degenerate normal modes. Since the eigenvalues of in- ternal angular momentum are not necessarily integers, Teller intro- duced the constant Q as a proportionality factor in the expression for the component of internal angular momentum which results as a consequence of degenerate vibrations, _ z pzh’svs> . {’s‘Ti gslsZ ‘sts> ‘Teller then presented a theorem which States that the sum of the Q's for all the degenerate first-excited vibrational states is a function of only the individual masses and their relative distances in the molecule. Most important, Teller succeeded in Showing that this sum is not a function of the force field which binds the atoms in the undecule. By using this result, Johnson and Dennison (27) were able to Show that in the harmonic approximation, , 2 g: = (# of atoms on symmetry axis) -2 + Be/ZAe t or for methyl halides, (31) Z’z=B/2A ° t tat e e The theory behind the zeta-sum rule has since been more rigorously "1 developed by Boyd and Longuet-Higgins (28). Most zeta-sum work with the methyl halides has involved an Pact-t 2.4- HF?- application of an equation of the form (2.7), utilizing only the —- Q branches of v4, v5, and v6. Eq. (2.7) can be put in the form, (3.2) v = Cl(v) + C2(v)KAK + C3(v)K2 where C1(v) all terms independent of K 02(v) ZEAV(1 - c3) - Ev] c3(v) = [(Av - A0) - (av - 30)] If Q branches of v4, v5, v6, are fit, the constants Ci(v) for 'v = 4,5,6, can be obtained. Then, .. _ Z- 2 C2(V) - 2 ZCAV Avgv B v v 1 V ‘This sum can be approximated as at Z (3-3a) z C2(v) - 2 zEAv - BO - Aogv] v v or can,be approximated still further as ~ 2 (3.31:) 3:]: 02(v) - 2 EEAO - Bo 5A0Cv] 26 First consider the form (3.3a) which has been used in recent work on the methyl halides (20,21). It requires further information from C3(v) in order to arrive at A0, ~ A ZC3(V)-ZA-3A=-£or; v 0 v v v v substituting into (3.3a), = f' + _ _ Z 5 C2(v) 2L5 03(v) 3AO 3BO A0 5 fiv] but the zeta-sum rule may be approximated as 2 Be BO zg=.—__:.—_ v v 2 e 2 0 and thus, _ l. (3.4) A0 - €15 C2(v) - 2 E C3(v) + 7B0] The further approximation (3.3b)was used in earlier work on the methyl halides and is presented in standard reference books on the subject (18,29). The older treatments often obtained the value of C2 for each band by means of the combination relations (2.8) and graphical techniques. The expression for A0 which results from (3.3b) is identical to Eq. (3.4) if 2 C3(v) = 0. This V approxinmtion corresponds to a change in A0 of about 0.005 cm-l. Approxihmtions involved in arriving at Eq. (3.3a) are not as large as that described above. For example, in the case of CD3X molecules, the error in A0 which results is approximately 0.0002 cm-l. There is one other important source of error (apart from the harmonic approximation of the zeta-sum rule itself) and this involves the problem of where to measure Q branch peaks. Y. Morino and J. Nakamara consider this problem in their zeta-sum paper (20). ‘1 27 In Appendix I of that paper, an estimate of the change in Jmax corresponding to a Q branch peak is given as a function of the K. The uncertainty caused by this dependence is further complicated by the slit function of the instrument. They were only able to estimate the maximum effect on C2(5) to be‘: 0.04 cm“.1 for CD3C1 us (which was the poorest band they analyzed). Such a change in C2(5) corresponds to a change in A0 of i .006 cm-1. Morino and Nakamura concluded they could ignore any Jmax dependence on K since in most cases this systematic error would be less than their ...—fm;3‘mfij random experimental error. In summary, a zeta-sum determination of A0 under low to moderate resolution depends on the following approximations: (l) The zeta-sum rule is derived in the harmonic approximation. (2) The approximation, 2 z 2 Ava - A0 2 gv v v is made in obtaining Eq. (3.3a). (3) In all applications to CHSX or CD3X, Jmax has been assumed not to be a function of' K. The approximations (2) and (3) above could be removed by a high resolution study of v4, v5, and v6. Such a single-band analysis would yield the constants: 2‘ ‘erca Ca A-Az=c o 3A-A(z+gz+;z)=c+c +c o 255 5 r o e C4 5 6 4 5 6 z AO-Aéc6 C ‘Therefore, by summing these terms and by making the very small approximation B 3 Be’ a value of A. would be immediately avail- 0 0 able. However, the harmonic approximation (1) would remain; indeed 28 v4, v5, and V6 of the magnitude of this approximation if the resultant A.O were a high resolution study of could provide a measure compared to that obtained from a simultaneous analysis. It is apparent that even though the zeta-sum technique could gain accuracy under high resolution, it would still be subject to a source of systematic error which currently cannot be estimated. In comparison, the accuracy of A from simultaneous fits of unperturbed 0 bands is largely determined by the resolving power of the spectrometer .which is used. In much of this chapter the assumption has been made that un- perturbed Spectra are available. In practice, the chances of finding a pair of. vt and 2vt bands which are completely unperturbed is Slight (likewise for v4, v5, and v6). Accidental resonances are found to play a critical role not only in determining whether A.O can be obtained by a given method, but also in determining the accuracy of its value when it can be found. Examples of the effects of perturbations in particular cases are given in Chapters VII and VIII. CHAPTER IV EXPERIMENTAL PROCEDURE High resolution spectra of the v4 (4.5u) and 2v4 (2.2u) 3Cl, and CD3Br have been recorded on the Michigan State University near infrared spectrometer. Experimental regions of CD31, CD ll conditions for the individual runs are given in Tables 4.1, 4.2, and 4.3. Two or three spectra were recorded for each of the six A bands. The averaging procedures and results of individual cali- brations will be discussed for each of the molecules individually in the analysis chapters (VI, VII, and VIII). The Michigan State University spectrometer has continually been improved during the past 15 years, and consequently it bears the imprints of many contributors. The present state of the instrument has been particularly affected by the work of former graduate students, J.L. Aubel and D.B. Keck. The most current report on the major features of this instrument is given in the thesis of D.B. Keck (30), which includes references to earlier work. In this chapter a summary of recent changes made on the instrument is given, along with a description of some of the- problems unique to this work. Because of the expense of samples of CD3X gases, great care had to be exercised in handling them. If ordinary freeze- 'out procedures failed, the gases were slowly pumped out of‘the, labsorption cell through a liquid nitrogen cold trap. Memories of these freeze-out difficulties are less than fond, since they often 29 Experimental Conditions - CD Grating Calibration Paper Speed Detector Date of Runs Rod Current Pressures (torr) Path lengths Slits (approx. width) Best Chart Resolution 30 Table 4.1 v (44° - 38°) 4 300 grooves/mm lst Order - S.P. @500/1 CO (1-0) N20 (1,2,0) 4"/min PbSe - Type El @770K Chart #1 — 7/11/68 Chart #2 - 11/23/68 #1 - 360 amps #2 - 375 amps #1 - 19 #2 - 19,10,20 #1 - 3.2 m #2 - 6.4 m #1 - 60 microns #2 - 35 microns #2 - .05 cm”1 3 I 2vA (45° - 39.s°) 300 grooves/mm , 2nd Order - S.P. @500/1 CO (2-0) N 0 (2,0,1) 2 4"/min PbS - Type 0 @77°K Chart #1 - 6/20/68 Chart #2 - 7/24/68 Chart #3 - 12/11/68 #1 - 360 amps #2 - 360 amps #3 - 380 amps #1 - 20 #2 - 19 #3 - 25,19,30 #1 - 9.6 m #2 - 9.6 m #3 - 9.6 m #1 - 16 microns #2 - 11 microns #3 - 8 microns #3 - .04 cm’1 Experimental Conditions - CD Grating Calibration Paper Speed Detector Date of Runs Rod Current Pressure (torr) Path Lengths Slits (approx. width) Best Chart Resolution 31 Table 4.2 64 (44° - 38°) 300 groves/mm lst Order - S.P. @500/1 CO (l-O) N20 (1,2,0) 4"/min PbSe - Type El @ 77°K Chart #1 - 7/12/68 Chart #2 - 11/25/68 #1 - 360 amps #2 - 375 amps #1 - 8,4,8 #2 - 15,9,15 #1 - 3.2 m #2 - 3.2 m #1 - 62 microns #2 - 35 microns #2 - .05 cm"1 3 Cl 2v4 (45° - 39.5°) 300 grooves/mm 2nd Order . S.P. @500/1 00 (2-0) N20 (2,0,1) 4"/min PbS - Type 0 @770K 6/19/68 7/24/68 12/11/68 Chart #1 Chart #2 Chart #3 #1 - 360 amps #2 - 360 amps #3 - 375 amps #1 - 18 #2 - 24,18,24 #3 - 25,19,25 #1 - 9.6 m #2 - 9.6 m #3 - 9.6 m #1 - 16 microns #2 - 11 microns #3 8 microns #3 .04 cm-1 Experimental Conditions - CD Grating Calibration Paper Speed Detector -Date of Runs Rod Currents Pressures (torr) Path Lengths' (Slits (approx. width) Best Chart Resolution 32 Table 4.3 84 (44° - 38°) 300 grooves/mm lst Order - S.P. @500/1 CO (1-0) N20 (1,2,0) 4"/min PbSe - Type El @77°K Chart #1 — 8/19/68 Chart #2 - 11/25/68 #1 360 amps #2 - 375 amps #1 - 21,15,9,15 #2 - 20,15,20 #1 - 3.2 m #2 - 3.2 m #1 - 54 ndcrons #2 - 35 microns l #2 .05 cm- 3 Br 284 (45° - 39.s°) 300 grooves/mm 2nd Order - S.P. @500/1 00 (2-0) N20 (2,0,1) 4”/min PbS - Type 0 @77°K Chart #1 - 8/09/68 Chart #2 - 10/30/68 #1 - 360 amps #2 - 375 amps #1 - 25,40 #2 - 20,40 #1 - 12.8 m #2 - 9.6 m #1 - 13 microns #2 - 9 microns #2 - .05 cm-1 w'P-mf 1707—1. . . » 33 resulted in rather frantic glassware assemblage in the small time available between CD3X removal and calibration gas insertion. Initially a study of' CD3F was to be included in this work, but it was found that the only sample of this very expensive gas which remained in the laboratory was very small and impure. Moderate resolution runs were made using that sample, but a new sample arrived too late for any more runs during the winter of 1969. Future p1ans do include a study of 04 and 2v of CD F. Samples of CD CN 4 3 3 have also been obtained and could be studied in the future. The source of near infrared radiation in both.wavelength regions was an ohmic-heated carbon rod. The associated assembly has been described by D.B. Keck. The only changes were in the operation of the source: (1) It was found that the use of #17 copper wire for hold- ing the carbon rods provided trouble free starting. (2) If the rod being used had been exposed to the a‘tmOSphere, it was beneficial to flush the rod housing with argon after the rod has been heated for 10 or 15 minutes. This rids the chamber of the CO and 002 which are formed soon after the rod is heated. 00 lines, which were uSed in the calibration of both bands, could be seen to be considerably broadened by 00 in the housing. The lines immediately narrowed after flushing with argon. The White type multiple traverse cell as described by T.H. Edwards (31) was completely disassembled and cleaned. The spherical mirrors were stripped and realuminized by Liberty Mirror (anti- corrosive quartz finish No. 749). The foreoptics and cell system "“f. I: =‘ H : "'n ‘i. 34 were then carefully realigned and focused on the entrance Slit of the monochromator. All of the spectra eventually used were recorded with the monochromator in a single-pass configuration, using the 300 groves/mm grating between 450 and 380 (first-order for v4 and second-order for 2v4). The calibration fringes were an immense problem in this region. An apparent grating anomaly causes a sharp decrease in the intensity of ninth-order fringes between 43.50 and 430 and a similar Imu'v‘al‘lh “—5.3 I effect in the case of eighth-order fringes between 42.70 and 42.30. *3 This effect has been noticed by others and was certainly verified far too many times in the course of this work. Fortunately the bad fringes occurred in a region lying largely between our low-fre- quency calibration and the CD X region. It did however cause some 3 - "only fair" fringes on the extreme low-frequency Side of a few charts. This fringe problem was much worse in the case of double passing the grating. The already weak fringes became much weaker and could not be used. The infrared double-pass resolution was very good in the 2v4 region and so these spectra were run without fringes as high resolution references - if needed., (The problems associated with the previous detector system were described bereck. A new detector housing was designed which (allows a mounting of three detectors simultaneously in'a manner allowing a rapid transition from one to another while maintaining a temperature of 770K. The three detectors were mounted on a tri- angular head attached to the bottom of the liquid N2 dewar.* The dewar assembly can be rotated at leasf 1200 left or right of the center position. The dewar is supported by a knurled stainless steel top which keeps the critical top O-ring seal as isolated as 35 possible from the N2. The cold O-ring maintains a good seal under rotation from one detector to another, but does stick and cause a difficult transition from one detector to another if it is not lubricated periodically (approximately every 10 cold turns). When- ever possible, the detector should be changed before cooling. Sketches of the assembly are Shown in Figure 4.1 along with the variable bias system (Figure 4.2) which was constructed to allow the choice of a bias resistance to match the impedance of the detector currently in use. Although it is advisable to periodically check and r'V!‘ "Vati‘hg'a’ !. r ‘ '3 .8 record the cold detector resistances, the correct choice of bias resistance can be simply made by maximizing the recorder signal. Even though the recorder signal seems greatly dependent upon bias choice, it should be realized that the effect on S/N is quite small. Heat shields have been designed to limit the field of view of each of the mounted detectors. The shields slide into the large circular apertures in front of each detector and provide an adjust- able rectangular opening. They have been found to be particularly necessary for the type E detectors; typically raising the cold resistance from around 3 MD to 10 M0 and significantly increasing the detectivity. The detectors which are currently available are the same ' types that are deScribed by Keck. A new type E (PbSe) detector has been purchased from Kodak; however, its detectivity does not seem ito~match that of the previously used E type. The tri-detector system as described should be operated with a set of detectors to cover the entire 1 to 6 micron region. This can be accomplished by means of an N or 0 type in one position (1 to 2.8u), a P type in another (2.8 to 4.2u), and a type E (4 to 6p) in the third position. Such 36 Figure 4.1 Detector Assembly 0N~OFF 1 TYPE 0 (1+2.8 u) :.>_.o TYPE E 2 (4+6 u) .+ TYPE P (2.8+4.2 u) JL — Cr 1"— .5 M9 7° . 10 M9 2-5 M“ PREAMP Figure 4.2 Bias Circuit 9 VOLTS 37 a system was used during the summer and fall of 68’ and allowed runs of emission Spectra in the lu region by L.E. Bullock, separated only by hours from some of these absorption runs around 4.5g. Plans are being made for the purchase of an InSb detector which operates with peak detectivity in the 4 to 6 micron region. The present type B PbSe detector for that region has a significantly lower detectivity than any of our PbS devices or the InSb. The new ‘ detector should allow excellent resolution in the 5 micron region in comparison to the present maximum of 0.05 to 0.07 cm-1. Un- fortunately, the new detector will necessarily be mounted in an [ evacuated dewar which will not have immediate compatibility with the present system. Other plans for the near future include an improvement in the fringe detection system. Professor C.D. Hause's plans include use of a newly introduced phototube, the correSponding power supply, and a more sophisticated preamp. In addition Professor T.H. Edwards is investigating a tunable lock-in amplifier for the IR signal along with a digital voltmeter which will sample at least four channels of information and record them on magnetic tape. The advantages of such a data acquisition system would be numerous. Some of these advantages are discussed briefly in the first part of the next chapter which summarizes our current data analysis system. CHAPTER‘V ANALYSIS OF DATA After a high resolution spectrum has been obtained from the Spectrometer, a large amount of data reduction must be completed before observed frequencies are available from the chart. Part of this process involves an analog to digital conversion of the in- formation on the chart; the rest involves obtaining observed fre- quencies from this digital data. Thus it is the first step of this process which could be almost eliminated with a digital voltmeter to magnetic tape data acquisition system. Presently our data is digitized to five-place accuracy by the HYDEL system. A description of this process has been given by T.L. Barnett (19) and briefly by L.E. Bullock (32). The encoders, which are the heart of this digital process, were often unreliable during the past year. They were carefully cleaned a number of times but still cannot be completely trusted. Since the system had already seen considerable use when first acquired by this laboratory in the early 60's, the encoders may in fact simply be worn out. The tight financial situation has made overhauling the system quite infeasible at the present time. The state of the HYDEL system is thus another reason the magnetic tape system currently seems very inviting. The computer program SHAFT as developed by D.B. Rack (30) and lnE. Bullock (32) has been very helpful in this work. Its major purpose is to help obtain the best possible set of observed fre- quencies from many records of HYDEL digital data output., SHAFT 38 39 takes the recorded line and fringe positions, along with the input calibration frequencies, and from these determines the coefficients (A and B) of the linear equation, Line Frequency (cm-1) = A (Fringe #) + B Observed frequencies are calculated for all measurements of chart lines, and these are then averaged and output in formats useable in our other programs. The other options available in SHAFT are manifold and their usefulness is matched only by the initial complications in using them. However, for anyone who is about to Start a project which involves many charts and measurements, learn- ing to use the program is time well spent. Two HYDEL measurements were made of two individual charts for each of the six bands. Thus, four sets of data were available for each band. Unfortunately, the first charts which were run during June and July 68' were almost invariably significantly poorer in resolution. Only in the case of 2v4 of CD33r was it possible to average frequencies between charts without reducing frequency accuracy. In each case, however, the two HYDEL measurements were averaged. Because of the unreliable condition of the HYDEL system during the past year, the two HYDEL measurements were very necessary since the occasional HYDEL errors were erratic and usually ranged from 0.04 to 0.07 cm-l. The observed (averaged) frequencies are then ready to be fit 'by a frequency expression given in terms of molecular constants, (quantum.numbers, and changes in these quantum numbers. The fre- (quency expressions which have been used most extensively in this work are the single—band frequency expression (Table 2.5), the 40 v4 and 2v4 expression (Table 3.1), and to a much lesser degree, the Q branch frequency expression (Equation 2.7). simultaneous Program SYMFIT has been written to conveniently provide for the above fits. The remainder of this chapter is devoted to a des- cription of this program and instructions for its use.‘ The major goals in the construction of SYMFIT were: (1) It must be a general symmetric top fitting program - thus it must fit single bands, Subbands, double bands, Q branches, etc. (2) SYMFIT should Operate with formats compatible with the in- puts and outputs to program SHAFT. (3) It should be able to perform fits in less than 45 seconds (Priority 5 on the CDC 3600 at MSU). (4) For the convenience of other researchers, SYMFIT should utilize subroutine STEPFIT in order to lessen confusion when comparisons are made to other fitting programs currently in use in this laboratory. (5) SYMFIT should be compatible with the CDC 3600 and 6500. A Simplified block diagram of the final SYMFIT version which .accomplishes these goals is shown in Figure 5.1. A listing of SYMFIT along with a typical data set is given in Appendix A. The set up of a SYMFIT deck is described below. After a Fortran‘ IV or binary copy of SYMFIT (and the associated control cards), the following cards are read: (1) Option gggd - reads the variable IBAND in the last 8 columns (73-80) 41 eHezsm mo snowman xuoam H.m magmas 0» ooxmo we codum>ummoo umouoOQ use msouca mcofiumasoamo Hmouumuumum can use no muflsmou use museum I BDOBZHMm NZHfibommDm I * .ouo roam uo noduofi>oo oumocmum .wucofloflwwooo mo muouuo oumocmum neonasoauo i mm>Hma Bthwm LUHB COEEOU ca some means mofloconooum usdcw ou moaomwum> oofiuwuomm mo uflm monsoon unmoa omwsmoum m mEhOwuom coco .mCOMumsoo Hmsuo: meson 51g one cocwum o .mc L moaomHuo> no sumo no muom wuoe E o: 3 new a: . one 35 5 cum: 3 cu sum moanmfium> unaccomoocw scans momma MCOMuosuumcw mcwuouomo umzuo can .mmcwpooc .moocmuoaou uwu momma mucoumcoo usmcfi Enuw mowucooooum neonaaodoo :o«umofiuaucovw some HOu moaomfium> ucoocomoo one unaccoQOVCa wo xHuuME oumwudoummn do muom + so mu m u one: monusu use comm sou .uaauummoc anon - Ave couudo uom .coHum>uomoo powuwucoow some now < ucmwoz muw can oo>uwmoo hucwsooum momma .\ + owuwaflu: mcfion nodumo ecu u0w mucmumcoo Hows» am momma + uwm mwaofluou Ave one econ wansoo Ame sou ecmnasm so scan museum lac mZHBDOmmDm BHhmmBm ucouuno 688m mm>Hmn BHmZNm BHEZNm z 6. It is possible that a further study could result in a better understanding of this perturbation; however, since the perpendicular component did fit well, no more time was Spent on the parallel com- ponent in this study. The results from the final single-band fit (201 lines) are given in Table 7.1. As in the case of C031, only second-order terms were found to have statistically significant values. 56 m a , #0 no mo 9N com a; mo muuoonm xo>uom ~.m ouswwm HUEC On.oe 001mv omoe 80v 6 n . aviatiije1Wy S~.u oo ......W. aeaeeessssesee ‘ ......53 ~_oW WW _ W W. . . .. .W ”W. ...; WWW WWW), W so c .. W .1.. .W W. W .. .— ...WWEr — a W W W . .. .1. ... W W .W .W. ... g1 .. ,3 W Ooe , W W . W W. _ W W W aW WM co W W W W W W W co m a no: cox non A 750 ...oanr... 8.3 . on: W W .... W..W.. W. . We W fifivskxéja4 ;ess. . Wee:..... _.;.Wes. .... W .. W 3.}... WWEW. WWWWWW WWWWW WWW WWWWWWW WWWW. WWWWWWWW W WWWWWWWWWWWWWWW: W. .W. ~..W _ . .... W W ... .W W W ..W. W. W W. W W .. .. W. 1 W w. a .._._WWW..W.._.W5.W ... .. a: so... no: co... no mm. A 58 Table 7.1 Second Order Molecular Constants of CD3C1 from Single Band Fits (in cm-l) Constant v4(k = l) 204(k = -2) vo-k(AK)2(AeCZ) 2283.001:0.009 4552.175jp.006 A0 - kAegz 2.138:0.002 3.500Lj0.0006 K -6 17‘?" D (from 2v ) (28+4) X 10 0 4 —. i A -3 -3 5 a4 (12.110.2) X 10 (12.47i0.06) X 10 ;,_ a2 (101317) x 10'° (117:4) x 10'6 I Standard Deviations of Fits: v4 a 0.010 cm.1 20 - 0.008 cm'1 4 Average Microwave Values of Ground State Constants (37) -l Constant Value (cm 4) B 0.360127 0 J D0 0.000000359 DJK 0.00000339 59 In the 04 and 204 bands of CD3C1 there is little evidence of the two naturally occurring chlorine isotopes (Cl35 and 0137). Because of this, the values of BO, D3, and Bax which are avail- able for both isotopes from microwave work (37) were averaged with weights given according to the natural abundance of Cl35 and 0137 ' (approximately 3 to l). The PPRU) and RRK(J) assignments were easily made in the v4 band. However, when these 250 lines were put into a Single- band fit, the disappointing result was a standard deviation of over 0.02 cm-l, even though no lines seemed to be obviously perturbed. In an effort to determine the cause of the problem, the RRK(J) and PPk(J) lines were separated. It was found that the two halves of the band fit well separately (to about 0.008 cm-l) in each case. The major difference in the sets of constants determined by the two fits was in GE, which was much larger in the case of the PRKCJ) lines. The a: as determined by the RRK(J) lines was approx- imately equal to that found in the case of 2v4, whereas that from the PTk(J) lines was about twice as large. At this point one might guess that the PPK(J) lines of 04 are subject to a.J- dependent perturbation which shifts the upper states in such a way as to produce a new "effective 012". To further study this effect, the subbands of Va and 2v4 were analyzed individually. In such fits, the single-band frequency expression (with K and AK constant) takes the form, v B 00 (subband origin) + (microwave determined terms) - “2W0 (J + 1 + (mo + M) r-r‘ 1-97.- I 60 when third and fourth-order terms are ignored. To determine a statistically significant a: from a subband, approximately 10 to 20 lines of differing J values are required. All the subbands of v4 and 204 having a sufficient number of lines to individually . B . . . determine 04 were fit with the above expre381on, and the results of these fits are shown on the graph of Figure 7.2. It will be noticed that a: values determined by the RRKU) lines of v B and those from 204 are compatible; however, the effective a4 5 4 1!: values from the KAK s 0 subbands of 04 are clearly quite i different. The error bars given on the graph are‘: (Standard 3 errors of a2) and are therefore somewhat optimistic. Another effective and perhaps more direct way to determine exactly which subbands are perturbed is to perform a simultaneous fit of all the identified lines of 04 and Zva. When the perturbed lines of v4 are fit with the many unperturbed lines of both bands, they no longer have such a large effect on the constants from the fit. Therefore the perturbed lines no longer fit well, and the OBS-CALC values from the fit clearly indicate which subbands are perturbed. These lines are then given zero weights in the simulo taneous fit, and their OBS-CALC values from the fit indicate the magnitude and direction of the shifts in the upper levels: Figure 7.3 indicates the OBS-CALC values in the case of the four subbands on the far left of Figure 7.2. These deviations are seen to have a consistent J dependence, and also gradually become larger for higher K values. The V4 section of Appendix D in- cludes the smaller deviations of the other perturbed subbands. In P P the case of the P3 (J s 12) and P1 (J S 12) subbands, the 61 m Ho :0 «0 «pm one e) no monsooam scum Mo o>wuoomwm N.n ousmfim v>~ no man a+ all. I'll. ill in": . . . W W . . v o a NO KN pom q) mo muuomam xm>unm H.w ouswwm 7.5 on: come on? 32. v; tune .. .... 3.3. 3.3:...) ._ at. .. . w. _ N mo a... ..: .. .71.. y..- .. . cm on ._ . w. n Aas o co m c nfl» 7:8 09$ 83 om- . : . «A smog :.. up A . :... ;.. .... egg... ...... : .. .. . .. .. ...... .3... i. . .. . . . .... . . . . . . . __ _ . i .. _. . a . -. _. - .. . . . . . . .. .. . -. . .60 ~_ . _- .. w . . . .. .. .. a om_ _ .. _ R. g . _ _ we a m cm ox a a 68 subbands (KAK = -9 and -7). When the Pp7 and P99 lines were given zero weights, the constants resulting from a single-band fit of the 209 unperturbed .lines are given in Table 8.1. The OBS-CALC values for the perturbed subbands along with those of other lines are given in Appendix E. Assuming that the splittings of lines due to the isotopes of bromine (Br79 and Bral) would not be resolved, the microwave values 0’ D3, and Dgx to natural abundance. These average values were used in the v4 of B for the two isotopes were averaged according fit described above and are recorded in Table 8.1. We did, however, notice the effects of 339 and, 831 for high values of J in K series of PPI, PP2 and P93 subbands. For J > 20 the lines are broad and in some cases are split. The calculated line splittings for these cases is approximately 0.04 cm-1, and therefore this effect is barely resolved by the spectrometer. Because of this isotopic broadening, no lines of J > 28 were included in the v4 fit. The limited number of high J values reduces the precision of the a: value determined by the fit. Even before attempting to analyze the 2v4 band, the follow- ing characteristics were noted: (1) Host of the lines of the 2v4 band are split into two components of nearly equal intensities. (2) In the perpendicular component, the Q branch separations on the left side of 0Q? are different from those on the right. (3) Because of the overlap of subbands in the parallel com- ponent, our resolution is too low to determine if the 69 Table 8.1 Molecular Constants from a Single Band Fit of 04 CD33r Constant yglgg- 95% s.c.i. 00 - Aecz 2295.986 0.005 A0 - Act: 2.1289 0.0005 0% 10 x 10'6 2 x 10"6 «2 13.19 x 10‘3 0.07 x 10'3 a: 129 x 10"6 16 x 10"6 Standard Deviation of Fit = 0.009 cm“1 Average Microwave Values of Ground State Constants (37) Constant 22123 30 0.256775 03 0.0000001965 03K 0.000002115 .Previoua Results (cm-1): (A) Merino and Nakamura (20) (B) Wiggins, Shull, and Rank (38) A0 - 2.589 00(204u) = 4541.05 vo(v4) ' 2296.3 vo(2v41)= 4579.9 62 - 0.013 a: - o2 - -0.012 -. _ i 70 ka and QRK lines are Split; consequently line identifications are uncertain. The QQK lines are distinctly Split for K.< 6. The combination of these unusual features has prevented a satisfactory analysis of 204. A description of the methodology used in trying to analyze the band follows. The analysis started with an emphasis upon individual subbands of the parallel and perpendicular components. ISubband fits were made inthe perpendicular component using the lower frequency component of the double lines. values resulting from the more completely B “A assigned subbands are shown in Figure 8.2 with the "error bars" ‘1. m :oW‘I'q indicating standard errors. With the exception of the two subbands close to the RQ7 perturbation (0Q5 and RQ6)’ the a: values are concentrated in the region between (200 - 300) X 10"6 cm-l. If lines from these supposedly compatible subbands are then put into a single-band fit, the results (in cm-1) are: 90 +2Aegz = 4577.8 :1: .4 A0 + neg: = 3.5 1- .1 0:; = (201 i 120) x 10'6 a: = (20 i 10) x 10'3 0'2 =- (239 1 30) x 10’6 ,‘The poorly determined constants from this fit are the result of a .shift in. Q branch separations on different sides of the ‘07 perturbation. There appears to be no way to fit these lines (with our molecular model) without identification and inclusion of the Ieffects of the perturbation. In this case the perturbation seems 71 a... smmmo mo mvcmnnsm A4V¢?N Eouw omcflEumqu mw3Hm> No 0>Huoomwm ~.w mugwflm Amumum pmzofiv m 0H «H Na OH w o a N I4. q . I II _ I . ooa . CON ., com I ooq. A.IEuV ea c m 6>asoouam OH x 72 to be general enough to make it difficult to treat. Analysis of the parallel band has depended on the rather un- certain assignments of QRK lines. Present assignments result in the following a: determinations from the subbands indicated. a: X 106 cm-1(9SZ.s.c.i.) QR2 - 203 :t 10 QR3 - 235 i 14 QR6 - 181 j; 20 These a: values are not greatly different than those determined from RRK subbands, but a single-band fit of all the parallel- component lines results in a large standard deviation and very poorly determined coefficients of K dependent terms. Similar single-band fits were attempted using various combinations of lines from the parallel and perpendicular components without much success. The above analyses of the perpendicular and parallel com- ponents were repeated with the hypothesis that the lower frequency components of the double lines correspond to Br81 (using its associated microwave values). This lowers a: for each subband 6 ;‘by approximately 20 x 10- cm-l, but does not help the basic fitting problem with K-dependent terms. The following conclusions can be drawn from the above attempts to analyse 2V4: (l) a: values determined for major portions of the band.. vary smoothly in areas away from centers of perturbations 73 (see Figure 8.2). Except for subbands very close to strong perturbations, a: values obtained from dif- ferent parts of the band are not greatly different, but are considerably larger than those from the sub- bands of of CD Br or those of any other CDBX V4 3 molecule in this study. (2) Much higher resolution is needed to make assignments in the parallel component more certain. (3) The perturbation (or perturbations) which affects the band has a strong K dependence which makes a fit of I" the 2v4 frequencies impossible with the usual fre- quency expression. As a consequence of the perturbed nature of 2v4, an A0 value cannot be obtained by a simultaneous fit. The results of the zeta-sum work of Merino and Nakamura on CD Br (20), as quoted in 3 Table 8.1, include a value of A0 = 2.589 which is currently-the only value available in the literature. The value of a: from our analysis of v4 is believed to be an order of magnitude more accurate than the values previously determined at lower resolution (20, 38). Even though the values of a: and D: from our analysis are somehwat lacking in precision, they do have some significance since to our knowledge they have never been previously obtained. CHAPTER IX CONCLUSION Table 9.1 is a comparative summary of the best available ;,va1ues for the molecular constants which may be determined from V4 and 2v4 for the three molecules investigated. Except for l the cases indicated by superstripts, they are the results of single or double-band fits with program SYMFIT (see Chapters VI, VII, and 9 I VIII). Uncertainties specified in the table correspond to 95% simultaneous confidence intervals. For CD I, all the constants were well determined from a 3 simultaneous fit of v4 and 2V4. In the case of C03Cl, the con- ;stants are somewhat less precise because of a perturbation affect- ing the low frequency half of VA. A second perturbation in the parallel component of CD3Cl 2v4 prevents an accurate measurement of vo(u). The least well determined parameters are those of CDaBr. The band origins for both the perpendicular and parallel components of Zva could not be accurately determined because of the large effect of K-dependent perturbations. Because 2v“ is liighly perturbed, A0 of CDBBr is limited in accuracy by the nature of the zeta-sum technique (see Chapter III). A possible method of confirming the accuracy of the A0 values would be to perform a simultaneous analysis of other wt and 2v: bands of a synrnetric top.' Thus A0 as obtained from v“ and 204 could be confirmed or disproved by a simltaneous analysis 74 75 Anny as as .ueumwwzv Aouv auoaaxuz new ocuuoxu Nuo< I 0) mo 03Ha> neon caucus use scuba Amoewa xad cw cowumnusuuoo On our aIEU N.Qflv uusno uso Bonn ouuaewxouanda 6-0. x “mummy oIOH x Aeaflwmav o-o~ x Anflaaav N6 m-oH x Aso.oflo¢.-v «.03 x Aeo.qflma.nav nIoa x 16o.Qflmn.~Hv N8 0.03 x Amflomv oIOH x ANHoHV 6-0. x Amflmwv ma Nooo.Qfleoas.o uos.o Nooo.ofl~mns.o mama sooo.QHmmem.~ 6mmm.~ sooo.qflommm.~ o< moo.qflmsa.osms emo.sams 63.6Hma Asa>uvo> moo.9flsms.owms as.6ems oo¢.gfln-.amns “aspavo5 moo.QHo~m.ms- ems.so- woo.qwmms.mm~a Aspvo> mmmw cameo dunno “HIEUV moaauoao: unno sou nanosecoo uo assassm H.m manna 76 of high resolution spectra of 06 and 2V6. Such an approach has “recently become feasible with the advent of Fourier transform spectrometers which can offer excellent resolution over wide spectral ranges (e.g. 2% to 20p). A considerable amount of theoretical work has recently been done (33, 39, 40, 41) which may be applicable to the perturbations observed and recorded in this work. The perturbations found on the lower frequency sides of the 04 bands of each molecule appear to have very systematic deviations. The question as to whether these effects could be caused by the nearby fundamental v1 must be thoroughly investigated. Now that shifts in energy levels for all three v bands have been determined, such an investigation would 4 be feasible. Finally it should be possible to use the results of this work to determine certain of the anharmonic constants, and to im- prove the values of the structural parameters of these molecules. L...,_,| REFEREN CBS ~10. 11. 12. 13. 14. 15. 16. 17. 18. 19. LIST OF REFERENCES H. H. Nielsen, Revs. Mod. Phys., 23, 90 (1951). R. L. Dilling, thesis, Michigan State University, 1966. B. T. Darling and D. M. Dennison, Phys. Rev., 51, 128 (1940). E. B. Wilson and J. B. Howard, J. Chem. Phys., 4, 262 (1936). C. Eckart, Phys. Rev., 41, 552 (1935). D. M. Dennison, Phys. Rev., 23.3.» 318 (1926). n. M. Dennison, Revs. Mod. mys., 3, 280 (1931). M.. Born, W. Heisenberg, and P. Jordan, Zeit. fur Physik, 35, 587 (1926). W. Heisenberg, The Physical Principles of the Quantum Theory, Univ. of Chicago Press, Chicago, IllinOis, 1930, p. 138- 140. J. H. Van Vleck, Phys. Rev., 33, 467 (1929). W. H. Shaffer, H. H. Nielsen, and I. H. Thomas, Phys. Rev., 5_6_, 895 (1939). M. Goldsmith, G. Amat, and H. H. Nielsen, J. Chem. Phys., 24, 1178 (1956). G. Amat, M. Goldsmith, and H. H. Nielsen, J. Chem. Phys., 21, 838 (1957). G. Amat and H. H. Nielsen, J. Chem. Phys., 21, 845 (1957). G. Amat and H. H. Nielsen, J. Chem. Phys., 22, 665 (1958). G. Amat and H. H. Nielsen, J. Chem Phys., 36, 1859 (1961). W. B. Blass, thesis, Michigan State University, 1963. G. Herzberg, Molecular Spectra and Molecular Structure 1;; Infrared and Raman Spectra g; Polyatomic‘Molecules, Van Nostrand, New York, 1945, p. 414. T. l“ Barnett, thesis, Michigan State University, 1967. 77 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. '31. 32. ’ 33. 34. 35. 36. 37. 38. 39k 440; 41. 78 Y. Morino and J. Nakamura, Bulletin of Chemical Society of Japan, 38, 443 (1964). E. W. Jones, R. J. L. Popplewell, and H. W. Thompson, Proc. Roy. Soc., 288A, 39 (1965). C. Joffrin, N. Van Thanh, and P. Barchewitz, Journal de Physique, 21, 15 (1966). T. L. Barnett and T. H. Edwards, J. Mol. Spectry., 29) 347 (1966). ‘ '1‘. L. Barnett and T. H. Edwards, J. Mol. Spectry., _2__(_)_, 352 (1966). ' T. L. Barnett and T. H. Edwards, J. Mol. Spectry., 23, 302 (1966). B. Teller, Handb. J2. Chem. Phys., 9 II, 43 (1934). M. Johnson and D. M. Dennison, Phys. Rev., 48, 868 (1935). D. R. J. Boyd and H. C. Longuet-Higgins, Proc. Roy. Soc., A213, 55 (1952). H. C. Allen, Jr. and P. C. Cross, Molecular Vib-Rotors, John Wiley and Sons, Inc., New York, 1963. D. B. Keck, thesis, Michigan State University, 1967. T. H. Edwards, J. Opt. Soc. America, 21, No. l, 98 (1961). L. E. Bullock, thesis, Michigan State University, 1969. W. E. Blass, J. Mol. Spectry., 24, 38 (1967). 2 J. W. Boyd, thesis, Michigan State University, 1962. A. Ralston and H. S. Wilf (eds), Mathematical Methods for Digital Computers, John Wiley, New York, 1960. G. Herzberg, see Reference 18, p. 425. A. K. Garrison, J. W. Simmons, and C. Alexander, J. of Chem. Phys., 42, 412 (1966). T. An‘Wiggins, B. R. Shull, and D. H. Rank, J. of Chem. Phys., 2;, 1368 (1951). D. di Lauro and I. M.‘Mills, J. Mol. Spectry., 31, 339 (1966). R. L. billing and P. M. Parker, J. Mol. Spectry., 22, 178 (1967). R. L. billing and P. M. Parker, J. Mol. Spectry., 22, 340 (1968). APPENDICES | I COCO 0000 000 APPENDIX A P R 0 O R A M S Y M F I T PROGRAM SYMFIT (INPUT:OUTPUT) COMMON /12/ INFOIoINFOZIINFCS.VUMCUNoaUMPotFINaEFOUToT 10L:IDENT(2) COMMON /125/ IMPLIES USE IN valves. STEPFIT, AND PHINlOUT. COMMON /123/ NK(JO).NDELMAXaXDEVMAX,CCNST(JO)4ILEVtL COMMON /A/ NAME<30).INL(30).IEAMO COMMON /100/ JJ<650)aKK(850):uDFL<850),KOEL(850).NUDEL 1(860) DIMENSION CON<18,850). FOBSa FCALC(650). wT(850), 1 NUSECBSO) DIMtNSION IH<10) NAME CORRESPONDts T0 NAMES CF vARIARLES IN A SINGLt BAND FLT, 1NL 15 THE SAME FOR a DOURLtBAND r1? DATA (NAME=2HBOp6HDOJp4HDOJK:54NOZRO.EHAZRO-AEZ. 16H-DZROK,6H-ALFAA.6H-ALFAB,4HETLJ.5HBETAJ;6H8ETAJK. ZbHBtTAK,5HHZROJ:6HHZROJK,6HHZRJKJ.5HHZROK.7HNUZR0PL) DATA (INL=2HBO.3HDOJ;4HDOJK;7HVUZONU4o8HNUZOZNU o 14HAZRO,7HAEZETA+. 16H~DZR0K.8H-ALPHA4A.BH-ALPHA4B,SHETA4K,6HBETA4K, 25HHZR0K.4HETAJ.5HBETAJ.6HBETAJ<,7HNUZROPL) NUMCON=17 NCONP1=NUMCON+1 OPTION LABEL IBAND IS LABELED COMMON READ 180: IBAND 11(IBAND.NE,8HO BRANCH,AND.IBAND.NE.8PCOHIOL15)GO T0 5 NUMCON=5 NCONP1=18 INL(1)=4HC0N1 NAM&(1)=INL(1) INL(2)=4HC0N2 NAME(2)=INL(2) INL(3)=4HCON3 NAME(3)3INL(3) 79 OOOO OOOO OOOOO OOOCOO 10 lb 20 25 30 35 4U 45 50 55 60 65 80 INLC4)=4HCUN4 NAME(4)=1NL(4) INL(5)=4HCON5 NAME(b)=INL(5) JUMP = 1 ONLY NHtN NEW CONSTANTS (TPIAL) ARE BtING READ IN JUMP=0 RtAD 200, IH STATEMENTS 10. 15. AND 20 ARE THE MAIN DIVIDING PTS. FOR THE DRIVER LT IF (IH(10).EQ.8HLAST FIT) GO TO 175 ! GO TO 15 5 IF (IH(10>.EO.8HCONSTANT) GO T3 25 g _ GO TO 20 i 1 IF (IH(10).EO.BHNtw DATA) GO T3 65 GO TO 175 JUMP=1 READ 200: 1H PRINT 200: (IH(I):I=109) 1F (IH(10).EQ.8H:ND HEAD) GC 73 55 GO TO 30 PRINT 205 DO 60 J1=1aNUMC0N 1F (IH(1U),EQ.&HCNDCONST) G0 73 45 GO TO 40 READ 215: CONST(J1)oIH(10) GO TO 50 CUNST‘J173090 1F (IBAND.EQ,8HSINGLEBU) GO TC 59 PRINTS READ IN CONSTS AND THEIR LABFLS FOR SINGLE 0R DOUBLE BAND FITS. HILL SET ALL consTS, ZERO AFTER AN ENUCONST IS FOUND IN COLS. 73s80 PRINT 220: INLCJ171C0NST(J1) GO TO 60 PRINT 220: NANE(J1)aCONST(Ji) CONTINUE READ 200: 1H 60 TO 10 M=1 HERE WE READ IN CMANGE IN QUANTUM MUPBEHS, GROUND STATE QUANTUM NUNBERSA OBSERVED FREQ. AND RELATIVE WEIGHT FOR EACH SPECTRAL LINE. ’HILL KEEP READING UNTIL AN F 13 FOUND IN COLUMN 10 OOOO COO 81 70 READ 185. NDDEL(M>.KDEL¢M).JDE;.JJ(M).FOBS WILL TAKE NEW SET OF FREQS IF A (NEw DATA) CARD IS SEEN. THEREFORE USABLE FOR SLSBAND FITTING IF (IH(10)ONE08H ) GO TO 10 READ 2001 I“. PRINT 2000 (IHIM90M3119I IFLIIHI10IINELDHEND HEAD) GO T3 170 CALL STEPFIT (CONOFDBSoFCALCaNJSEpNTgkCONP1,INDATA) 90 To 165 CONTINUE PRINT 210 FORMAT (72XIA8) FORMAT (4Xo1104xoRloR10IZleoIZIJXIFISI4I7XIF402) FORMAT I4I514F10910X;I3I FORMAT I1711055XIA8) FORMAT (IOABI FORMAT (///) FORMAT I 1H5) FORMAT (FZOJSZXOABI FORMAT IA200F3001U) END COCO 10 lb 20 25 60 35 4U 84 S U B R O U T I N E S T E P F I T SUBROUTINE STEPFIT (DATA,FOES,FCALC.NLSE.NT.NCONP1.IND IATA) COMMON /12/ INFOIIINFOZIINFOS,VOMCON,.OMP,EFINFEFOUT.T 10LOIDENT(2) COMMON /23/ NOOATA.NOVMI,AVERLT,STDY,NOSTEP,N.RTN,FREO 1PHD.YPREU.OEV.XAZHO.XOZHO COMMON IA/ NAMEISOIIINLISOIFIPAND COMMON /12$/ NK(SO).NDELMAX.XCEVMAx.cCNST(30IaILEVEL DIMENSION N1(30); VECTOR(31.3III INDEXI30I. IDEX‘SU). ISIDMAIEDIIC 10tNI30). SIGMCO<60Ia NOTINISOII XCONSTISOI DIMENSION DATAINOONplaINDATA), FOBSIINDAIA), FCALCIIND 1ATAIINTIIND 1ATA), NUSEIINDATAI .SVECTOR(31ISIIISSIGMCOISDIFSCOEN(3 20) DIMENSION XNENCONIJDI TYPE DOUBLE VECTOR,SIOMA,cOFN.SIGrcD.SIGY.DEFRIVAR II (IDENT(1)I SIIDFS IOENTI1I=8HINPUT DA IDENTIZI=2MTA CONTINUE IF(EFOUT.E0.0.DIEFOUT=1.0E-8 IF (EFIN.E0.0.DI EFIN=EFOUT=1.0E-R IF (TOLqE0.0!D) TOL=0.001 NOVAR=1 DO 30 IzlaNUMCON HEDEFINES NAME AND INI IF (NK(I)) 15:30:15 N1INOVAR)=NAME(I) IF (IBANOgEO.8HDOUBLEBDI N1INOVARI=INL(II IF (JUMP) 20.25120 XCONSTINOVARI=CONSTIII NOVARzNOVAR¢1 CONTINUE NODATA=O DO 45 N=1:INDATA IF (HT(N)) 40:35:40 NUSE IN) IS AN INDEx OF ALL NON-ZERO wT, LINES NODATA = TOTAL NUMBER OF NONvZERo LINES NUSEINI=0 GO TO 45 NUSE(N)=1 E13 1 . III.| 4 l1 5 I‘ll-.IIIIIIIITIII‘III III. ' Ill‘ll‘l. III I4 [I‘ll-II .JI [JON 1-1 ‘11:}. . . H CO'DC 45 5O 55 60 65 7O 75 80 85 90 95 100 104 85 NODATAzNODATA¢1 CONTINUE NDEL=O FLEVEL=0.0 VAR=FLEVEL NOMAX=VAR NOMIN=NOMAX NOENT=NOMIN K=NOENT NOIN=K LOOP=U NOVMI=NOVAH-1 NOVPL=NOVAR*1 DU 55 I=1DNOVPL DO 55 J=1,NOVPL VtCT0H(IIJ)=000 IF (NOEL) 80.60.50 SUMWHT=OOO IDEXINOVARISNCONPl DO 75 N=111NDATA NUM=0 7 . U0 70 I=1INUMCON IF (NK(I)) 65.70.65 NUM=NUM¢1 IDEX(NUM)=1 ‘ I N E OgTIIINCONP1FN)= FOBS GO TO 105 110 CONTINUE NOMIN=1 NOMAx=NOVMI NGO=5 115 II (NUvMI.GT,NDOI NOMAx=NGO PRINT 5201 (IoIgNOMINDNOMAX) DO 120 J=NOMIN,NOVMI JJJ=J IF (JJJ.GT.NOMAXI JJJ=NOMAX DO 118 I=NOHIN,JJJ 118 SVECTORII.JI=VECTOR(ITJI DO 119 I=N0MINFN0MAX 119 SVECTOR(I.NOVAR)=VECT0R(IINOVA?) 120 PRINT 525. JIISVECTORIITJ).I=NDMINFJJOI PRINT 5301 (SVECTORII'NUVARIDIONUMIN,ROMAX) IF (NOMAx.EO.NOVMII GO TO 125 NOMIN=NOMAX¢1 NGO=NOO¢5 NOMAx=NOVM1 GO TO 115 125 CONTINuE SVECTOR(NOVAR,NOVAR)=VECTORIVCvARTNCVAR) PRINT 535.SVECT0RINOVAR.NOVART 130 NOSTEP=~1 ASSIGN 310 T0 NUMBER DEFR=VECTORINOVPLTNDVPLI-l.0 DO 150 I=1IN0VAR 1F IvEcToR(1.1)) 135,140,145 135 PRINT 550. I _ GO TO 485 140 PRINT 585. I SIGMAIII=1.D GO TO 150 145 SIGMA(I)=DSORT(VECTORIIIII) 150 VECTORIIIII=1.0 LOO 155 I=1aNOVMI IP1=I*1 DO 155 J=IP1,NOVAR VECTORIIIJI=VECT0HIIIJIIISIGMAIIItSIDPAIJII 155 VECTORIJIII=VECTORIIIJI 160 165 168 170 109 175 180 185 190 195 200 205 210 215 87 IF IINFOZ) 160.175.160 NOMIN=1 NOMAx=NDvM1 NGO=15 NOMINP=2 1F (NOVMI.DT,NDDI NOMAx=NGO PRINT 540. (IoI=N0MINaNOMAx) DO 170 I=NOMINP.NOVM1 III=I~1 IF (III.GT.NDMAXI III=NOMAx DO 168 4:1,111 f SVECT0R(IDJI=VECTOR(IOJ) PRINT 545. IITSVECTOHIITJ).D=1.III) L.I DO 169 I=NOMIN,NOMAX :' SVECTORII.NOVARI=VECTORII.NOVIRT E PRINT 550. (SVECTORIITNOVARI.[ENOM1N,N0MAXT IF (NOMAX.EQ,NOVMI) GO To 175 3 1 NOMIN=NOMAX+1 ' a NOMINP=NOMIN*1 NUD=NOO+15 NOMAx=NOVMI GO TO 165 NOSTEPzNOSTEP+1 IF (VECTOR(NOVAHINOVAR)) 180a150.185 NSTPMlzNOSTEP-l PRINT 600. NSTPMl GO TO 395 SIGY=SIGMAINOVAR)*DSQRT(VECTOR(NOVAP,AOVAR)/DEFR) DEFR=DEFR-1.o IF (DtFR) 19011900195 PRINT 605. NOSTEP GO TO 395 NOIN=0 VMAX=NOIN VMIN=VMAX DO 245 1:1,NOVMI IF (VECTORIIDIII 200.245.205 PRINT 6100 IDNOSTEP GO TO 395 IF (VECTORIIIII-TOL) 245.210.210 VAR=VECTORIIoNOVAR)*VECTORINOVIR.IIIVECTORIITI) IF (VAR) 215.245.265 NOIN=NOIN+1 INDEXINOINI=I COENINOINT=VECTOHIIaNOVAR)*SIGWA(NOVAR)/SIGMAII) SIDMCOINOIN)=ISIuY/SIGMA(1)).csORTIvECTORII,II) IF (VMIN) 230.225a220 PRINT 590 GO TO 485 VM1N=VAR NOMIN=I 250 235 240 245 250 255 260 265 270 275 280 285 290 295 300 7 so: 310 “515 620 525 330 635 640 545 350 GO TO 245 88 IF IVAR-VMIN) 245.245.225 IF (VAR-VMAXI 245.245.240 VMAX=VAR NOMAX=I CONTINUE IF (NOIN) 250,2550260 PRINT 595 GO TO 485 STDY=SIGY GO TO 320 IF (INFOS) IF (NOENT) PRINT 5700 GO TO 280 PRINT 575: IF PRINT 555a ILOOR.NE.0T FLEVEL=FL SSIGY=SIGY ?65p310o265 27002700275 NOSTEPJK NOSTEPoK KgFLEVELaSSIGY DO 285 J=1ONOIN N=INDEXIJI SCOENIJISCOENIJ) SSIGHCOIJIESIGMCOIJ) PRINT 560: IF IF PRINT 495 N.N1(N)aSCOENIJIISSIGMCOIJI (JUMP) 290.305n290 (LOOP) 29503050295 DO 300 J= 1. NOIN 7 N=INDEXIJI XNENCON(N)=COEN(JI¢XCONSTINI SSIGMCO(JI= PRINT 560: GO TO NUMBER, FL=FLEVEL SIGMCO‘J) N N1(N)p XNENCON‘N), SSIGMCOIJ) (310. 400) FLEVELEVMIN'DEFR/VEcTORINOVAR,NOVAR) IF (EFOUTOFLEVEL) 320;320.315 K‘NOHIN NOENTso GO TO 335 FLEVEL=VMAXPDEFHIIVECTOR(N0VAR,NOVAPIFVMAX) If (EFIN-FLEVEL) 590:3900330 IF (EFIN) K=NOMAX NOENT=K IF (K) 340 PRINT 615: GO TO 485 OD IF DO IF (J'K) (I'K) 650.325.390 340.545 NOSTEP 365 I=1ONOVAR 350;365,550 360 J=1aNOVAR 35503600555 555 660 $65 $70 675 680 $85 $90 395 400 401 405 410 415 420 425 430 89 VECTOHIIpJI=VECTORIIDJ)'VECTOR(IQK)*VtCTOR(KOJI/VECTOR 1(KDK) CONTINUE CONTINUE DO 375 1:1,NOVAR IF (I’K) 37013751570 VECTOR(I,K)=aVECIOR(InKI/VECTCRIKIK) CONTINUE DO 385 J=1pNOVAR IF IJ'K) 380.385.580 VECTOR‘KIJ)=VECTUH(KQJ)/VECTOR(K'K) CDNTINuE VECTORIKIKI=1oO/VECTOR(K,K) GO TO 175 PRINT 5651 IDENTI1)OIDEKTIZIIKDDATAJNCVMIINDELMAXIXDEV 1MAXDAVENHTDSTDYINOSTEP CONTINUE ASSIGN 400 TO NUMBER LO0P=1 GO TO 265 CONTINuE DU 401 L=1.NOVMI SVECTURILILI=VECTORIL0LI IF (INF03.NE,0) PRINT 6200 (L:SVtCTOR(LaLIaL‘1aNOVMI) IF (IBAND.EO,8HCOHIOLISI GO TO 410 IF (ILEVELqNE.OI GO TO 405 CALL pRINT2 GO TO 415 CALL PRINT4 (DATA:FOBS,FCALC,NT.NUSE,DCONP1,INDATA) GO TO 415 CALL PRINT6 XIR=OOO SWT=XIR DEVMAX=SHT VFIT=DEVMAX NOLINE=0 IF (IBAND.EO,8HDOU8LEBOI GO TO 420 XAZRO=CONSTISI XOZRO=~XNENCON 560 FORMAT(111.1X.A8.2F17.12) 565 FORMAT I 22H1LEAST SQUARES FIT PF ,2Aax. 5H FIT .14, 116H DATA POINTS T0 .12.10H VARIABLES./. * DELFTES UP . 2*TO t.12.23H POINTS IF IO~PI 15 GT .Fb,3/. . wHT NURMt 31x.F6.2/.17R SID DEV OF IO-CI,F8.4/, 11H COMPLETED .12 4: 6H STEPS, 57o FORMAT I BHOSTEP NO.I$/, 15H VAR, REMOVED.!3> 57b FORMAT BHOSTEP NOpISI, 15H VAR. ENTEREDAIS) 580 FORMAT 19H ERROR RESID SQ VARAISI 7H 13 NEG) 585 FORMAT 4H0VAR.151 9H IS CCVST) I I I :90 FORMAT I inOERRUR: VMIN P08) :9: FORMAT I 15ROERROR NOIN NEG) 600 FORMAT I 18HOY SOOARE NEG STEPglb) 605 FORMAT I 22ROZERO DEG FREEDOM STEP.13I 610 FORMAT I 9HSOUARE x-.12. 14R NEGAYIVE STEP.IS> 615 FORMAT I 8HK=0 STEP,13I 620 FORMAT I 16H0 DIAG ELEMENTs./; 16H VAR NO VALUta/l 1IIA.E14.4II o2: FORMATI 8H1LINE MO.IA.23R EEIIO DELETED FROM FIT ) END 92 S U B H O U T I N E P R I N T 0 U SUdROUTINE PRINTUU (DATAIFORS.RCALC,NT,NUSE,NC0NP11IND 1ATA) COMMON x123/ NKIAOI.NDELMAx.xDEVMAx.CONSTIsoI.ILEVEL COMMON /23/ NODATA.NOVMI.AVERRT.STOY.AOSTEP.NIMTN.IREG lpRDIYPREDIDEVQXAAHDOXDZRO COMMON /100/ JJ(O50),KK(850),;QEL(850).KUtLI850).NUDEL 1I850) DIMENSION DATA(NCUNPIIINDATA): FOBSIIADATAI. FCALCIIND 1ATA). NTIINDATA). NUSEIINDATAI ENTRY PRINT2 PRINT 20 RETURN ENTRY PRINT3 PRINT 25; NIKDELIN)IJDEL(N).KKINIIJJ(N)aNTN.FObSIN).FC 1ALCIN).FREOPRD.DATAINCONP1.AI.vaED.DEv RETURN ENTRY PRINT4 PRINT 5 RETURN ENTRY PRINTS XGRD=XAZRO*KK(N)**2+CONST(1)¢(JJ(N)0(JJ(N)*1)*KKIN)?*2 1I-CONSTI2)*J 2J*1’ S-XOZROwKKINth4 XUPPER=XGRD+FREOPRD PRINT 10a NOKDEL‘N)IJDEL(N>DKKfim’IJJ‘k,DWTNOFOBS(N"FC 1ALCIN),FREOP 1HDADATAINCONP1.N):YPREDIDEVIXGRDFXUPPER RETURNV ENTRY PRINT6 PRINT 15 RtTURN 5 FORMAT (*1 NO, NT OBS FREO CALC FREDA 1* PRED FREQ OUS-CALC FRED-SALC CBS-PREO GRD ENi 2*ERGY UP ENERGY*) _“ 10 FORMAT (15.x.2R1;12:1HooI2.3X.=6.2.RF11.4) 15 FORMAT ( 33H1 N0, K J UP NT (O-C)05Ht*2 o 1* ZEROS PRE* 2*0(0'C)*o5H**2 1* IGNORE IGNORE FIT DEVi) 20 FORMAT (*1 NO. RT 083 FREQ CAL! FREQ * 1*PRED FREQ OBS-CALC FRED-SALE CBS-PRFD') 25 FORMAT (ISJXOZRllIzalHl.12'3x';6Q2O6F11Q4) END WW , ‘v T Y P I C A L SINGLEBD ' CONSTANT - THIS IS THE INITIAL 1 END HEAD - 0.660127 0.000000659 0.000006699 4000.00 2.594 tNOCONST - Ntw DATA CDOCZNu4 CDOCZNU4 cosczNUA CD602NU4 CD6C2NU4 CDACZNUA CDJCZNU4 CDSCZNU4 CDJCZNU4 CD3C2NU4 CD3C2NU4 coscaNUA CD6C2NU4 CDSCZNU4 CDsczNUA CDACZNUA cosczNUA CDJCZNU4 CDJCZNU4 CosczNUA coaczNUA CD6C2NU4 CDJCZNU4 'CDACZNUA CDJCZNU4 CD5C2NU4 CDJCZNU4 CDSCZNU4 CD6C2NU4 cusczNuq CDJCZNU4 CDAczNUA CDSCZNU4 CDJCZNU4 P0 P0 P0 PO RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR IN IN 35 TO 37 IN IN COLUMNS COLUMNS FIT FOR COLUMNS COLUMNS COLUMNS 93 D A T A 450308080 451094474 451619591 4536.3361 459306840 4594.3735 4595.1176 4595.825? 4596.5446 4597.9716 4598.6701 459903722 4600.0848 4600.7945 460194998 460201981 460219030 460305916 460432975 4605.0018 4596,7789 4598.2018 459899217 4599.6380 460093502 460190561 4601;7755 460294878 460398980 460406061 460595074 460600332 460607386 460794502 73-80 73-80 ‘ NANCYS CD3LL 73-80 73-80 73980 0.02 0.02 0.02 0.02 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.?5 0.06 0.06 0.06 0.06 0.02 0.06 0.06 0.06 0.06 0.06 0.02 0.02 0.06 CD3C2NU4 CDdCZNU4 CD3CZNU4 CDJCZNU4 CDdCZNU4 CD3CZNU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD302NU4 CD302NU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CDJCZNU4 CD3C2NU4 CD3C2NU4 CDJCZNU4 CDSCZNU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD302NU4 CDJCZNU4 C03C2NU4 CDSCZNU4 CD3C2NU4 CD3C2NU4 CDJCZNU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD3C2NU4 CD3CZNU4 CD3C2NU4 CDJCZNU4 CD3C2NU4 CDéCZNU4 CD3CZNU4 CD3C2NU4 CD3C2NU4 RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR 6.22 6.24 6.25 6.26 6.27 6.28 6.29 6.30 6.32 6.33 6.34 7. 8 7. 9 7.10 7.11 7.12 7.13 7.14 7.16 7.17 7.18 7.19 7.20 7.21 7.22 7.24 7.25 7.26 7.27 7.28 7.29 7.30 7.31 7.32 7.33 7.34 7.35 7.36 7.37 7.38 7.39 8. 8 8. 9 8.10 3.11 8.12 6.13 8.14 8.16 6.17 8.18 94 4606.1430 4609.5419 4610.2426 461009551 4611.6539 4612.3554 4613.0409 4613.7456 “615.1388 4615.6386 4616.5065 4604.1030 4604.8143 4605.5258 “606.2395 “606.9482 4607.6561 460603772 4609.7593 461094974 461192196 4611.9236 4612.6311 4613.3320 “614.0381 4615.4505 4616.1430 4616.8358 “617.5633 4618.2382 4616.9471 4619.6269 “620.3413 462190296 4621.7314 4622.4122 4623.1026 4623.7690 4625.1693 4625.8468_ 4609.8933 461006864 4611.3611 4612.0740 4612.7757 “613.4896 4614.1926 74615.6419 4616.3578 4617.0569 0.02 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.06 0.06 0.06 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.06 0.02 0.02 0.02 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.25 0.02 0.06 0.06 0.06 0.06 0.06 0.06 0.02 0.02 CDJCZNU4 CDéCZNU4 CDSCZNu4 CDJCZNU4 C03C2NU4 CDSC2NU4 CDSCZNU4 CD3C2NU4 003C2NU4 CDJCZNU4 CDJCZNU4 CDSCZNU4 CDéCZNU4 CDéCZNU4 CDJCZNU4 CDJCZNU4 CDJCZNua CDJCZNU4 CDSCZNU4 CDéCZNU4 CDJCZNU4 CDJCZNU4 CDJCZNU4 CDSCZNU4 CDJCZNU4 CDSCZNU4 CDSCZNU4 CDJCZNU4 CDSCZNU4 CDJCZNU4 CDJCZNU4 CDJCZNU4 CDJCZNU4 CDJCZNU4 CDJCZNU4 'CDACZNUR CDJCZNU4 CD6C2NU4 CDJCZNU4 CDSCZNU4 CDSCZNU4 CDéCZNU4 CDJCZNU4 CDJCZNU4 CD6C2NU4 CDSCZNU4 CDJCZNU4 CDéCZNU4 CDJCZNU4 CDSCZNU4 CD302N04 RR RR HR HR HR RR RR RR RR RR RR HR RR HR RR RR RR RR RR RR RR HR RR RR RR RR RR HR RR RR RR RR HR RR RR RR 8.19 8.20 8.21 8.22 8.24 8.25 8.26 8.27 8.28 8.29 8.30 8.32 8.33 8.34 8.55 8.36 9. 9 9.10 9.11 9.12 9.13 9.14 9.16 9.17 9.21 9.22 9.24 9.25 9.26 9.27 9.28 9.29 9.30 9.31 9.52 9.33 RR10.10 HR10.11 RR10.12 RR10.13 RR10.14 RR10.16 RR10.17 RR10.18 RR11.11 RR11.12 RR11.13_ RR11.14 RR11.15 RR11.16 RR11.17 95 4617.7591 “618.4612 4619.1712 “619.8733 4621.2750 4621.9649 462296756 4626.3726 4624.0716 “624.7559 4625.4673 4626.8525 4627.5446 4628.2278 4628.9217 4629.6255 461604211 4617.1314 461798425 4618.5613 4619.2750 4619.9827 462194097 4622.1151 “624.9363 4625.6402 4627.0488 4627.7620 “628.4484 4629.1599 4629.8485 4630.5741 4631.2631 4631.9642 4632.6922 “633.3350 4622.8531 4625.5619 4624.2472 462510039 4625.7264 4627.1279 4627.8380 4626.5651 4629.2432 4629.9569 “630.6602 4631.3779 4632.0803 4632.7622 4633.4894 0.02 0.02 0.02 0.02 0.06 0.02 0.02 0.06 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.06 0.06 0.06 0.06 0.06 0.06 0.06 96 C06C2N04 HH12.12 4665.5688 0.06 CD602N04 RR12.13 4636.27b1 0.06 C06C2~u4 RR12.15 4637,7007 0.06 C06Cz~04 RR12-16 4638-4068 0.06 CD6C2N04 RR12.17 4639.1136 0.06 CDSCZNU4 RR12.18 4639.8145 0.06 006C2004 RR12.19 4640.5095 0,06 CD3CZNU4 RR12120 464102024 0.56 f 1 1 1 4 0.00000001 11111 lHlS IS A FIT OF 2NU4 UF CU3CL ~tTHOuT THt PARALLEL COMPONENT END HtAD - IN COLUMNS 76-80 111111111 IHIS IS A CHECK FOR TH: SIGNIFICANCE OF mnRt VARIABLES IN THE FIT END HtAD - IN COLUMNS 75-80 LAST FIT - IN COLUMNS 73'80 APPENDIX B LEAST SQUARES FITS AND ASSOCIATED STATISTICS The frequency expressions which concern us most (e.g. Table 2.5 or Table 3.1) are of the form, = , + . +... + y: x1151 x1232 “1po e1 where y ith observed frequency i I 1, 2,... n :3 II number of observations number of parameters to be determined '0 I xij = value of quantum coefficient of molecular parameter Bj for the ith observation ei - the random error associated with the ith measurement. The resultant set of equations for the n observations can be summarized in the vector-matrix form, 1=£fl+s which is shorthand notation for 'qu C311 x12...xlj...x1p7 {3;} E elj y2 x21 :52 gez s - ' i W + Y1 ' 53 e1 2 x11 x12.. x11...xip ° . Lyn-J .xnl xnzu x J . xnpd LBP‘J LenJ 98 In the thesis of J. W. Boyd (34), it is shown that the best estimate of the unknown parameter vector .fl is given by the least squares estimate (2) T25. n ms and 2;, 5}; transposed Thus the job of a least squares fitting program is to find a value of §:1. This corresponds to solving the set of normal equations, 92"” N 1. II2 This is exactly what the subroutine STEPFIT does. It first calculates the matrix g: and proceeds to invert it by the process of Gaussian elimination as described by Orden in Chapter 2 of Mathematical Methods £25.§igital Computers (35). The actual regression program used in subroutine STEPFIT is that written by M, A. Efroymson and . is described briefly in Chapter 15 of the same book. Once the vector of molecular parameters (2) has been determined, it is important to determine the statistical significance of the vector 2, The standard error (sb ) of any component bJ of ~2. is ‘ A J given by, 2 2 -1 s . s N bj JJ 2 l 2 where s - 3:3'E w1(y1-y1) n-p 3 degrees of freedom with “x - g _b_ and w1 = normalized weight of ith measurement such that z w = n 1 i Boyd showed that a simultaneous confidence interval for all com; Ponents of b_ is defined such that the probability is l - a for 99 all b. in {6.} that, J J b- ‘ J 83‘ S Sasb where Sa is a function of the well-known Fa (p, n-p) distribution SO! =pra(p. n-p) This simultaneous confidence interval [1 83a] is the mean- I ‘ ingful statistic to quote for the results of a least squares fit E. when variables are statistically dependent. The common test for the statistical dependence of two variables xij and xiq is the i5. correlation coefficient rjq’ ’f‘xij'xj) (“1(2) r I Jq /I£(xij-xj)§(xiq-iq) Subroutine STEPFIT prints out rjq for all variables. The coef- ficients (b) of variables having non-zero r are dependent 1‘! upon one another. For example, A is highly dependent on the 0 value determined for «2 and DE. In such a case it is important ' to know that the probability is led that all three parameters are simultaneously within a specified interval of their true values. In our work.we have chosen a 8 0.05. The manner in which standard errors of independent and .dependent variables are calculated in STEPFIT is described on pages 193 and 195 of Bfroymson's Chapter 17 (35). At first glance (or even many glances) it appears his definitions differ from those given above. However, when one carries through the normalization factors of the correlation coefficients (r ) to the very end, 11 agreement is reached. ; H t S U L T S NU4 NU4 N04 N04 N04 N04 NU4 N04 N04 NU4 N04 N04 NLJ4 NU4 NU4 N04 NU4 N04 NU4 N04 NU4 N04 NU4 N04 N04 N04 NU4 NU4 N04 N04 N04 N04 NU4 N04 N04 N04 NU4 0 F IDENT PP12114 PP1?,16 PP12,12 PP11113 PP11.12 PP 9,19 PP 9115 PP 9,17 PP 9,16 PP 9,15 PP 9,14 PP 9,15 PP 9,12 PP 9,11 PP 9, 9 PP 8,16 PP 5,15 PP 5,14 PP 5,16 PP 5,12 PP 5,11 PP 5, 9 PP 5, 5 PP 5' 7 PP 5, 6 PP 5, 5 PP 4,28 PP 4,2/ PP 4,26 PP 4,25 PP 4,24 PP 4,25 PP 4,21 PP 4,19 PP 4,15 PP 4,10 0 R APPENDIX C S I M U 4 - C D 3 I 085, FREE 2246,4937 2246,9074 2247,3034 2251,0347 2251.4425 2256,7635 2257.1704 2257,5683 2257.9765 2258,3804 2258,7847 2259,1862 2259,5872 2259,9934 2260,8079 2262.0221 2274.4411 2274,8471 2275,2569 2275.6610 2276.0695 2276,8709 2277.2833 2277,6790 2278.086} 2278,4992 2273.1313 2273.5429 2273.9424 2274.3437 2274,7492' 2275,1507 2275.5609 2275,9573 2276.7785 2277.1749 2277,9867 100 OSS'CALC .0,2074 .0,1971 p0,2044 .0,1467 «0,1424 .o,o969 no.0942 -0.1004 «0,0963 “000994 .o,o961 $0,0984 F“00101-3 .o,o9ss ”000915 .0,0750 -0.0153 .o,0133 90.0054 90.0086 90.0043 40.0110 .0.0024 '000105 ‘000068 0.0026 60.0000 0.0059 "000002 -o.0045 90,0055 .o,0064 ,0.0036 90.0123 P040014 “000100 -0.0079 T A N E U U S “T 0900 0000 0000 0400 0:00 0400 0000 0400 0:00 0100 0400 0900 0000 0.00 0000 0.00 0412 0012 0012 0903 0012 0,03 0403 0'03 0:03 0.03 0003 0003 0003 0903 0,03 0,03 0403 0903 0903 0903 0:03 N0. 38 39 40 41 42 46 44 46 46 47 48 49 60 61 62 53 64 66 66 67 66 69 60 61 62 63 64 66 66 67 66 69 70 71 72 7s 74 76 76 77 78 79 60 61 82 66 64 66 66 67 N04 N04 NU4 N04 NU4 N04 NU4 N04 N04 N04 NU4 NU4 N04 NU4 NU4 NU4 NU4 N04 N04 NU4 N04 N04 NU4 N04 N04 NU4 N04 N04 N04 NU4 N04 N04 N04 N04 NU4 NU4 N04 N04 NU4 N04 N04 NU4 N04 N04 NU4 N04 N04 N04 N04 NU4 IDFNT Pp Pp Pp Pp Pp Pp Pp Pp Pp Pp PP Pp Pp PP Pp pp PP PP Pp Pp Pp pp PP PP Pp Pp Pp PP Pp Pp Pp Pp Pp Pp Pp Pp Pp PP PP PP Pp PP Pp PP PP Pp Pp RR Pp pp 4,15 4,14 4,13 4,12 4,11 3,36 3,35 3,34 3,33 3,32 3,31 3,29 3,28 3,20 3,25 3,24 3,23 3,22 3,21 3,19 3,10 3,17 3,16 3,15 3,14 3,13 3,12 3,11 3, 9 3, 8 2,25 2,24 2,23 2,22 2,21 2,19 2,18 2,16 2,15 2,14 2,13 2,12 2,11 1:15 1,14 1013 1,12 1, 1 1, 2 1, 3 101 063, FRF] 2278,3883 2278.7913 2279.1925 2279.5892 2280.0017 2273,8050 2274,2093 2274,6182 2275,0222 2275,4196 2275,8377 2276,6493 2277,0584 2277,8648 2278,2714 2278,6885 2279,0789 2279,4877 2279,8791 2280,6929 2281.1037 2281,5041 2281,9113 2282,3280 2282,7357 2283.1301 2283.5271 2283,9316 2284,7417 2285,1639 2282,1609 2282,5623 2282,9702 2283,3794 2283,7853 2284.6019 2285.012? 2285,8244 2286,2272 2286,6300 2287,0393 2287,4459 2287,8464 2290,0854 2290,4830 2290,8818 2291,2858 2304,6125 2305.0276 2305.4366 DES-GALE I'000105 -0.0126 “000159 90,0236 .0,0154 0.0047 0.0026 0.0022 0.0060 -0.0058 0.0061 000056 0.0088 0.0035 0.0044 0.0158 0.0006 0.0040 '040101 .0,0068 “0,0011 -0.0058 .0,0030 0,0084 0.0114 0.0012 00.0063 90,0062 P0.0045 0.0136 “000016 9000091 90.0039 9000004 -0.0000 0,0058 0.0108 0.0128 0.0107 0.0086 0.0137 0.0152 000113 90.0068 90.0111 60,0171 .0.0178 “000124 000003 0.0070 NT 0903 0:03 0403 0903 0903 0,03 0,03 0903 0012 0:12 0312 0:03 0,12 0903 0,03 0,03 0,03 0103 0,12 0,03 0,03 0903 0.12 0903 0,03 0903 0:03 0903 0,03 0903 0012 0,12 0012 0,12 0,03 0,03 0,12 0912 0,03 0,12 0012 0,12 0,03 0003 0,12 0,03 0903 0103 0.03 0903 N0. 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127. 126 129, 160 161 162 166 164 165 166 167 NU4 0U4 NU4 N04 N04 N04 NU4 N04 N04 NU4 NU4 N04 NU4 NU4 N04 NU4 N04 NU4 N04 NU4 NU4 N04 N04 N04 N04 NU4 NU4 N04 NU4 NU4 NU4 NU4 NU4 NU4 N04 NU4 NU4 NU4 N04 NU4 NU4 NU4 N04 N04 NU4 NU4 NU4 N04 N04 N04 IDENT RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR 1, 4 1. 5 1, 6 1,12 1.16 1,14 1,15 1,16 2.19 2, 2 2, 3 2,20 2,21 2,22 2,23 3,14 3,15 3,16 3,15 3,19 3,20 3,21 3,22 3,23 3,24 3,25 3,26 3,30 3,31 3.52 4, 5 4, 6 4, I 4,10 4,12 4,13 4,15 4,16 102 OHS. FRED 2305,8387 2306,2496 2306,6543 2309,0478 2309.4353 2309,8304 2310.2353 2310.6363 2315.6368 2308.8106 2309.2150 2316.0421 2316.4492 2316,8395 2517.2358 2317.6306 2318.0135 2312,9852 2313.4001 2313.8063 2314.2038 2314,6076 2315.4188 2315.8030 2316.6101 2317.0044 2317.4006 2317.8006 2318.2028 2318.9815 2319,3846 2319.8115 2320.1908 2320.5917 2320.9925 2321,3856 2321.7816 2322,9836 2323,7695 2324,1556 2324,5592 2317,1452 2317.5387 2317.9355 2318,3417 2319.5398 2320.3326 2320,7471 2321.5383 2321.9445 Gas-CALC 0.0071 0.0101 0.0191 0.0067 60.0063 -0.0110 .0,0062 -0.0045 0.0043 “0.0120 -0.0098 0.0116 0.0204 0.0126 0.0111 0.0053 .o,0061 90.0070 0.0060 0.0101 0.0063 0.0058 0.0179 0.0014 0.00/7 0.0020 '0.0016 90.0012 0.0016 "0.0177 "0.0132 0.0153 "0.0055 “0.0005 0.0027 -0.0017 p0.0028 0.0094 0.0035 -0.0059 0.0024 0.0124 0.0042 v0.0005 0.0044 0.0000 .0,0077 0.0068 -0.0011 0.0058 01 0.03 0.12 0.12 0.12 0103 0.03 0.03 0.03 0.12 0.03 0.03 0.03 0.12 0.12 0.00 0.02 0.12 0.03 0.12 0.12 0.03 0.06 0.08 0.12 0.50 0.50 0.50 0.12 0.12 0.12 0.12 0.12 0.50 0.50 0.12 0.12 0.12 0.03 0.03 0.03 0.03 0.00 0.12 0.03 0.03 0.03 0.12 0.50 0.03 0.03 rf N0. 138 139 140 141 142 143 144 145 146 147 146 149 150 151 162 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 163 184 NU4 N04 N04 N04 N04 NU4 NU4 NU4 N04 N04 N04 N04 N04 N04 N04 N04 NU4 N04 N04 N04 N04 NU4 NU4 NU4 N04 NU4 NU4 NU4 N04 NU4 N04 N04 NU4 .NU4 N04 NU4 N04 N04 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 IUFNT RR 4,16 RR 4,19 RR 4,21 RR 4,22 RR 4,23 RR 4,24 RR 4,25 RR 4,28 RR 4,29 RR 4,31 RR 4,32 RR 4,34 RR 4,35 RR 5,10 RR 5,12 RR 5,13 RR 5,14 RR 5,15 RR 5,16 RR 5,18 RR 6, 6 RR 6, 7 RR 6, 9 RR 6,13 RR 6,14 RR 6,15 RR 6,16 RR 8, 9 RR 9, 9 RR 9,10 RR 9,11 RR 9,12 RR 9,13 RR10014 RR10,15 RR10117 RR10115 QR 3,44 0P 3,45 OR 3,42 UP 3,41 QR 3,40 QP 3339 UP 3,35 QR 3,37 QR 3,36 103 085. FRED 2322,7433 2323.1373 2323.9416 2324.3197 2324.7312, 2325.1256 2325.5308 2326.3136 2326.714? 2327.114? 2327,8816 2323.2783 2329.0703 2329,4936 2323.2443 2324.0364 2324.4390 2324.8421 2325.9504 2325,6495 2326.4388 2325.3227 2325.7293 2326.5224 2323.1164 2328.5183 2328.9098 2329.3159 2333.7780 2337.3626 2337.7700 2338.1724 2338.5655 2338.9576 2342.9304 2343.3226 2344.1093 2344.5032 4527.8835 4528.2985 4528,7163 4529.1306 4529,5401 4529.9517 4530.3545 4530.7753 4531.181? URS-CALC 0.0074 0.0024. 0,0105 '0,0091 0.0049 0.0021 0.0104 0.0001 0.0051 0,0088 -0u0147 P0:01.25 “000101 0.0191 90.0041 '0n0123 q0,0096 “0.0060 0.0029 0.0030 "0.0052 POIOOOB 0.0047 “0.0038 90.0100 1"0.0070 90.0152 '010081 "000100 '0n0073 0.0000 0.0026 n0.0038 90.0110 0.0156 0.0092 0.0001 p0,0043 0.0009 0.0015 0.0061 0.0053 0.0010 .0.0010 .o.0114 ”000049 -0.0102 WT 0.12 0.03 0012 0912 0.12 0:50 0.03 0.03 0.03 0103 0.12 0.12 0.03 0.03 0.03 0.12 0.12 0.12 0003 0:03 0903 0912 0.12 0.12 0.12 0.50 0912 0.00 0.12 0:12 0.03 0.50 0.50 0900 0906 _0.02 0.25 0.06 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.12 0.03 NO. 186 186 187 188 189 190 191 192 193 194 196 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 IuENT UP UP UP UP UP UP QP UP UP UP UP UP UP UP UP UP OF UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP UP 0P OF UP 09 UP UP UR UP UR UR UR UP 3,36 3,33 3,32 3,31 3,29 3,28 3,2/ 3,26 3,26 3,24 3,23 3,22 3,21 3,20 3,19 3,18 3,17 3,16 3,16 3,13 6,39 6,38 6,33 6,32 6,31 6,30 6,29 6,28 6,27 6,26 6,26 6,24 6,23 6,21 6,20 6,16 6,16 6,14 6,13 6,10 3,18 3,19 3,20 3,21 3,22 3,23 3,24 3,26 3,26 104 Obs, FREQ 4561.5996 4632,0100 4532.4274 4532,9407 4533.2594 4534,0847 4534,4991 4534.6964 4565.2997 4535.7193 4636.1307 4536,5459 4566,9543 4537,3666 4537.7799 4538.1800 4568.5813 4539.0023 4539,4044 4539.8105 4540.6255 4529,2649 4529,6795 4531.7285 4532.1415 4532,5662 4532,9783 4633,3879 4533.7953 4564.2093 4564.6115 4565.0265 4565.4333 4535.8576 4636,6783 4567,0866 4566.7200 4539.1227 4539,5342 4539.9353 4641.1618 4553,4727 4553,8623 4554,2553 4554,6553 4555,0547 4555,4453 4655.8528 4556.2330 4666,6273 OPS'CALC -0.0062 '0,0072 90.0021 -0.0008 0.0062 0.0087 0.0121 ”0.0014 .0,0086 “090003_ 0.0021 0.0076 0.0065 0.0096 0.0139 0.0054 -0.0017 0.0112 0.0054 0.0040 0.0048 0.0010 0.0027 '090113 9000105 0.0025 0.0032 0.0016 .0,0020 0.0014 «0.0069 10.0020 ~0,0047 090095 0.0117 0.0131 0.0119 0.0071 0.0114 0.0062 0.0133 '0,0007 .0,0063 “090092 90.0043 0.0005 '0.0001 0.0106 “0.0026 p0,0013 ”7 0950 0.12 0.12 0.12 0912 0.02 0902 0.02 0.12 0,12 0.12 0.12 0.12 0.12 0.03 0.12 0903 0.12 0.12 0.12 0912 0.03 0.03 0.12 0903 0.03 0.03 0.03 0.03 0903 0903 0.03 0.03 0903 0903 0.03 0.03 0.03 0903 0903 0.12 0912 0912 0.12 0.12 0112 0.12 0,03 0012 0.12 :1 —-—-"- Ymfiim'fi N0. 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 254 2NU4 2NU4 2NU4 2004 2NU4 2Nu4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2N04 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 IDENT QR 3,27 UP 3,29 PP11,15 PP11914 PP11913 PP11,12 PP11,11 PP10916 PP10,15 PP10,14 PP10913 PP10912 PP10,11 PP 9,13 PP 9,12 PP 9,11 PP 9,10 PP 9, 9 PP 2910 PP 2, 9 PP 2, 5 PP 2, 7 PP 1,19 PP 1,15 PP 1,14 PP 1913 PP 1,12 PP 1911 PP 1910 PP 1, 9 PP 1, 7 PP 1, 6 RR 0, 3 RR 0, 4 RR 0, 6 RR 0, 7 RR 0, 6 RR 0, 9 RP 0,10 PR 0,11 PR 0,12 RP 0,13 PR 0,16 PR 0,17 RR 0,16 PR 0,19 RR 0920 RR 0921 105 OBS, FREQ 4557.0090 4557,4055 4557,7949 4504,2293 4504,6497 4505,0527 4505,4639 4505,8670 4510.799? 4511.2185 4511.6289 4512.0343 4512.4367 4512,8363 4518.9842 4519,3777 4519.7819 4520.2048 4520.6024 4567,5155 4567.896? 4568.3163 4568,7171 4570,4055 4572.023} 4572,4315 4572,8452 4573,2579 4573,6752 4574.0726 4574,4934 4574,8849 4575,2851 4575,6946 4586,2455 4586,6521 4587,4492 4587,8579 4588.2453 I4588,647o 4589,0383 4589,4425 4539.836? 4590,2397 4991.4300 4591.8305 4592.2301 4592.6253 4593.0238 4593,4126 OBS-CALC “090123 '090078 9090103 ~0.0103 0.0054 0.0027 0.0084 0.0062 -0.0169 “0.00958 0.0003 090004 -0.0034 90.0092 0.0084 “090069 E090052 090124 0.0049 0.0053 no.01b3 00.0016 no.0064 no.0031 90,0171 '0,0160 9090094 60.0042 0.0076 .o,oo11 0.0139 -0.0000 80.0050 '0,0004 0.0035 090088 0.0044 0.0129 0.0005 0.0027 90.0052 090004 -0,0044 ,0.0010 90.0005 0.0034 0.0069 0.0064- 0.0095 0.0033 wT 0912 0.12 0903 0902 0.03 0903 0.03 0.03 0903 0903 0903 0903 0903 0903 0902 0903 0.03 0903 0912 0903 0903 0903 0903 0903 0912 0903 0903 0912 0903 0903 0912 0912 0912 0912 0,12 _0.03 0903 0903 0903 0903 0903 0903 0903 0903 0,12 0,12 0912 0912 0903 0,03 ' n. 4 h NO. 255 286 287 258 289 290 291 292 295 294 295 296 297 298 299 500 $01 602 306 304 605 606 607 608 609 610 $11 612 616 614 315 616 617 318 619 320 621 622 523 624 325 326 627 528 629 630 561 652 666 664 2NU4 2004 2NU4 2NU4 2NU4 2NU4 zwua 2Nu4 2NU4 2~u4 2NU4 2NU4 2NU4 2NU4 2~u4 2NU4 2NU4 2~04 2Nu4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2Nu4 2NU4 2NU4 2NU4 2NU4 2NU4 2~U4 2Nu4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2Nu4 2Nu4 2NU4 2NU4 IDENT RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR ' RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR 0.22 0.26 0.24 0.25 0.20 0.27 0.26 0.29 0.50 0.52 0036 0.34 0.55 1: 7 1: 5 11 9 1.11 106 4593,8051 4594.2055 4594,5957 4594.9853 4595,3716 4595.7846 4596.1703 4596,5679 4596,9640 4597.759? 4598,1467 4598,5243 4598.9164 4594.306; 4594.7037 459500924 4595,8950 4596.3007 4599.9005 4600.3110 4600.7133 4601,1074 4601,5189 4601,9072 4602.316? 4602.7092 4603.1030 4604.3197 4604.7080 4605,8713 4606.2740 4606,6694 4607.076? 4607,4707 4607,8658 4608.2676 4608.6694 4609.0705 4609,4711 4610.250} 4610,6536 4611.0559 4611.4445 4611.8369 4613.793? 4614.1659 4614.9908 4615.3824 4615.7770 4616.1725 ORS'CALC 0.0013 0.0076 0.0039 0.0007 90.0065 0.0169 0.0075 0.0154 0.0132 0.0321 0.0296 0.0173 0.0205 90.0021 90.0051 '000158 no.0110 90.0066 90.0193 '000093 '000071 90.0127 -0.0006 -0.0113 90.0009 .0,0061 90.0101 0.0154 0.0014 90.0061 90.0059 90.0089 -0.0021 '000073 9000114 .000055 90.0052 -0.00ZSfi 0.0006 '0I0145 90'0077 “000016 n0.0086 -0.0117 0.0122 —0,0148 0.0129 0.0065 0.0065 0.0018 NT 0.12 0903 0.03 0.03 0.03 0903 0.12 0.12 0903 0:03 0.03 0.03 0.03 0.03 0903 0303 0.03 0.12 0.03 0.03 0.02 0.03 0.03 0.03 0903 0.03 0903 0903 0903 0912 0912 0.12 0.12 0.12 0003 0.03 0912 0:12 0.12 0:03 0.03 0.03 0:12 0:12 0:12 0.03 0.03 0,12 0.12 0.02 NO. 665 666 667 668 669 640 641 642 646 644 645 646 647 648 649 650 651 652 656 654 655 656 657 658 659 660 661 662 666 664 665 666 667 668 669 670 671 672 676 674 675 676 677 678 679 680 681 682 686 684 2N04 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 IDENT RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR 4'15 4,16 4,11 4,18 4.19 4,20 5.16 5.17 5,18 5,19 5,20 5,21 5.22 5,26 5.24 5,25 5.26 5,27 5,26 107 Obs. FREQ 4616.5560 4616,9551 4617,6482 4617,7471 4618.1691 4618.5684 4626.2279 4626,6151 4624.0147 4624,4015 4624,7960 4625,1764 4625,5761 4625,9681 4626.3620 4626.7553 4627.1646 4627.560; 4627.9668 4625.4211 4625.8159 4626.2275 4626.6252 4627,0244 4627,4245 4627,8172 4628.2194 4629.0170 4629,4076 4629,7969 4660.1991 4661,6880 4661.7774 4662.1768 4662,5626 4662,9544 4636.3431 4666.7648 4664.1223 4634.5152 4664,8907 4665,2957 4665,6860 4666.0698 4666.4557 4666.8506 4667.264? 4637.6121 4667,9961 4668,7869 URS'CALC 90.0116 “0.0089 .0.0118 '0.0055 ”0.0117 '0.0071 0.0165 0.0079 0.0120 0.0069 0.0007 “0.0151 “0.0071 n0.0054 90.0044 P0.0069 90.0163 “0.0115 0.0003 -0.0017 «0.0067 0.0053 0.0042 0.0048 0.0067 0.0016 0.00b4 0.0105 0.0050 “0.0014 0.0055 0.0111 0.0069 0.0102 0.0065 0.0059 0.0028 0.0061 0.0002 0.0022 90.0126 0.0052 0.0044 '0.0004 p0,0026 0.0047 0.0018 -0.0077 P0.0129 0.0069 1"T 0.12 0.12 0.12 0.12 0.03 0.03 0.03 0.03 0.03 0.12 0.03 0.03 0.12 0.12 0.12 0.03 0.03 0.03 0.12 ,0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.03 0.03 0.12 0.12 0.12 0.12 0.12 0.12 0.03 0.03 0.12 0.12 0.03 0.03 0.03 0.03 0.03 0.03 0.03 N0, 685 686 667 668 659 690 691 692 696 694 69b 69b 69/ 698 699 400 401 402 406 404 405 406 407 408 409 410 411 412 416 414 415 416 417 418 419 420 421 422 426 424 425 426 427 428 429 460 461 462 466 464 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 IDENT RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR 6.41 6.42 6.46 7. 7 7. 8 7. 9 7.10 7.11 7.12 7.16 7.15 7.16 7.17 7.18 7.19 7.20 7,21 7.22 7.26 7.24 7.25 7.26 7.27 8. 9 8.10 8.11 8.12 8.16 8.15 8,16 8.17 8.18 8.19 8.20 8.21 8,22 8.26 8,24 8.25 8.26 8.28 8.60 8.61 8.62 8.66 9. 9 9.10 9.11 9.12 9.16 108 DES, FRFQ 4669,1702 4669,5516 4669,9241 4661.9520 4662.6565 4662,7599 4666,1584 4666,5561 4666,9482 4664,6466 4635.1312 4665,5426 4665,9657 4666.6642 4666.7214 4667,1257 4637,5149 4667.9021 4668,2990 4668,6854 4669,0750 4669,4689 4669,8573 4668,8261 4669,2600 4669,6290 4640,0291 4640,4297 4641.2185 4641.6154 4642,0096 4642,4109 4642,7871 4646,1923 4646,5807 4646,9714 4644.3732 4644,7667 4645.1616 4645,5441 4646.6669 4647,0914 4647,4869 4647,8700 4648,2544 4644,8629 4645.2568 4645,6501 4646,0566 4646,4455 URS-CALC 0.0084 0.0056 ’0.0057 “0.0061 “0.0009 0.0056 0.0067 0.0003 .0.0023 -0.0011 '0.0097 0.0057 0.0062 0.0066 “0.0009 0.0092 0.0045 '0.0016 0.0023 “0.0038 «0.0062 '0.0069 '0.0066 90.0076 00.0021 “0.0010 0.0016 0.0051 0.0009 0.0020 0.0008 0.0072 .000112 90.0000 90.0053 P0.0077 0.0013 90.0004 0.0054 no.0062 0.00:33 90.0167 P0.0132 n0.0156 '0.0193 0.0104 0.0061 0.0015 0.0106 0.0026 NT 0.03 0.03 0.03 0.12 0.12 0.12 0.12 0.12 0.12 0.03 0.12 0.12 0.12 0.03 0.03 0.06 0.06 0.06 0.03 0.12 0.12 0.03 0.03 0.12 0.12 0.12 0.12 0.06 0.12 0.12 0.12 0.12 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.06 0.03 0.12 0.12 0.06 0.03 0.03 N0. 465 466 467 468 469 440 441 442 446 444 445 446 447 440 449 450 491 452 456 454 455 456 457 458 459 460 461 462 466 464 465 466 467 466 469 470 471 472 476 474 475 476 477 478 479 480 481 482 486 484 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 IDENT RR 9.15 RR 9.16 RR 9.1/ RR 9.18 RR 9.19 RR 9.20 RR 9.21 RR 9.26 RR 9.24 RR 9.2/ RR 9.25 RR 9.60 RR 9.61 RR 9.62 RR 9.66 RR 9.64 RR 9.65 RR 9.60 RR 9.67 RR 9.68 RR 9.69 RR10.11 R910.12 RR10.14 RR10.15 RR10.16 RR10.17 RR10p15 R910119 RR10.20 RR10.21 RR10.22 R910.26 RR10.24 RR10.25 RR11.12 RR11.16 RR11.14 Rpllplb RR11.16 RR11.17 RR11.10 R911.19 RR12.12 RR12.14 RR12.15 RR12.16 RR12.17 R912.15 109 088. FRF] 4647,2276 4947.626. 4648.017} 4648,4101 4648,7989 4649,2113 4649,6119 4650.0045 4650,3968 4650,7837 4651.9661 4652,3463 4656.112} 4653,5081 4653,8939 4654,2728 4654,6748 4655.0602 4655,4557 4655.8379 4656.222“ 4656.605} 4651.615? 4652.0099 4652,7915 4653.1885 4656,5954 4653.9858 4654,3783 4654,7848 4655.1716 4655,5584 4655,9492 4656,6433 4656,7391 4957.1293 4657.9075 4658,3005 4658,6873 4659.0910 4659,4878 4659,8777 4660,2766 4660,6692 4663,7376 4664,5512 4664,9396 4665,3448 4665.7356 4966.1172 OES'CALC n0,0079 .0,0051 P0.0091 -U.0111 -0.0166 0.0019 0.0082 0.0087 0.0085 0.0066 0.0096 0.0029 -0.0106 -0,0066 -0.0060 90.0149 ”0.0002 90.0016 0.0076 0.0069 0.0061 0.0012 0.0076 0.0051 "0.0094 -0.0055 0.0060 0.0013 -0.0005 0.0116 0.0047 "0.0017 .0,0067 —0.0014 0.0021 0.0009 0.0042 0.0005 -o.0089 90.0010 0.0005 ”0.0044 0.0001 -0.0013 90.0066 0.0180 0.0109 0.0209 0.0171 0.0045 NT 0.12 0.06 0.06 0.12 0.12 0.06 0.1? 0.12 0.12 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.03 0.06 0.06 0.06 0.03 0.12 0.06 0.12 0.06 0.06 0.02 0.12 0.06 0.06 0.06 0.06 0.06 '6 l1'V“.'A'. L1 ‘AI’ ~"-.'.. I N0. 455 456 467 458 469 2NU4 2NU4 2NU4 2NU4 2NU4 IUENT R912;19 RR12:20 R912;2l R912:22 RRIZpZJ 110 OFS. FRFD 4666,5143 4666,9085 4667.282! 4667,6781 4608.071: ch'CALC 0.0078 0.0058 “0.0105 -0.0068 “000052 “T 0.03 0912 0012 0.03 0103 APPENDIX 0 R t S U L T S 0 F A S I M U . T A N E 0 U S F O R C D 3'C L NU. IDENT OBS. FREQ UBSVCALC UT 1 NU4 P912.14 2230,5253 9001152 0:00 2 NU4 P912113 2231.2480 l091149 0.00 3 NU4 PP12112 2231.9615 00.1206 0000 4 NU4 P911p23 2227,8271 u0.1227 0.00 5 NU4 PP11.22 2228.5498 a0o1191 0100 6 NU4 PP11o21 222902721 0031161 0900 7 NU4 PP11120 2229.9916 90.1159 0,00 8 NU4 P911p19 2230.7185 c0.1083 0:00 9 NU4 PP11015 2231:4485 .000979 0'00 10 NU4 P911017 2232,1656 v0.1004 0:00 11 NU4 PP1131D 2233.617? 9000874 0.00 12 NU4 PP11¢14 2234,3433 90.0818 0.00 13 NU4 Pp11a13 2235.0669 90.0779 0.00 14 NU4 PP11a12 2235,7901 u0.0745 0p00 15 NU4 P911111 2236.5020 00.0824 0'00 16 NU4 PP10.28 2227,9706 u0.1424 0000 17 NU4 P910127 2228,6992 I0.1328 0.00 18 NU4 PP10.26 2229,4225 u0.1285 0.00 19 NU4 Pp10.25 2230.1444 0001260 0.00 20 ,NU4 PP10024 2230.8860 0001038 0.00 21 NU4 P910023 2231.5985 I0l1108 0:00 22 _NU4 PP10122 2232.3225 I0.1063 0:00 23 NU4 P910121 2233.0511 00.0974 0:00 24 NU4 PP10,20 2233,7759 30.0924 0.00 25 NU4 PP10a19 2234,5034 00.0847 0100 26 NU4 P910a18 2235,2278 o0.0802 0.00 27 NU4 P910017 2235.9490 .090790 0'00 28‘ NU4 PP10016 2236.6637 I0.0342 0000 29 NU4 PP10015 2237,4011 00.0669 0.00 30 NU4 PP10p14 2235,1252 I0.0628 0:00 31 NU4 P910013 2238.8467 0000614 0000 32 ANU4 PP10.12 2239.5738 90.0544 0:00 33 NU4 P910311 2240.2920 00.0563 0.00 34 NU4 P910110 -2241.01361 0000548. 0000 35 NU4 PP 9.31 2229.5606 .011327 0900 36 NU4 PP 9.30 2230.2844 90.1280 0.00 37 NU4 PP 9.29 2231.0173 I0.1139 0:00 111 rag-I N0, 38 39 4o 41 42 43 44 45 46 47 48 49 so 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7o 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 NU4 N04 N04 NU4 NU4 NU4 NU4 N04 NU4 NU4 NU4 NU4 NU4 N04 NU4 NU4 NU4 NU4 N04 NU4 N04 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 N04 N04 NU4 N04 NU4 N04 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 IDENT PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP PP 9,28 9,27 9,26 9,25 9,24 9,23 9,22 9,20 9,19 9,18 9,17 9,16 9,18 9,14 9,13 9,12 9,11 9,10 9, 9 8,28 8,27 8,26 8.25 8,24 8,26 8,22 8.20 8.19 8,18 8,17 8,15 8,14 8.13 8,12 8,11 8,10 8, 9 8. 8 7,11 7.10 7, 9 7, 8, 3.20 3.19 3.18 3.17 3.16 3.14 3.13 3.12 112 OBS. PRES 2231,7392 2232,4486 2233,1767 2233,9007 2234,6251 2235,3534 2236,0787 2237,5256 2238,2515 2238,9772 2239,7076 2240,4442 2241,1583 2241,8862 2242,6123 2243,3342 2244,0610 2244,7748 2245,4983 2235,5280 2236,2055 2236,9259 2237,6393 2238,3620 2239,0835 2239,8059 2241,2647 2241,9965 2242,7244 2243,4509 2244,8896 2245,6223 2246,3538 2247,0696 2247,7983 2248,5135 2249,2309 2249,9560 2251,5033 2252,2431 2252,9578 2253,6841 2259,5767 2260,3035 2261,0304 2261,7508 2262,4768 2263,9323 2264,6567 2265,3797 Ops-CALC '0.1119 u0.1220 .081135 ID.1092 F0.1047 90.0963 00.0910 90.0844 I0.o787 90.0752 '0.0651 '0.0469 90.0552 no.0456 no.0399 80.0384 o0.0320 I0.0356 90.0354 l0.0416 I060841 no.0858 90.0906 90.0881 20.0870 «0.0850 00.0673 no.0560 30.0488 no.0429 90.0456 60.0336 '000228 £0.0276 '0.0196 90.0250 00.0232 '0.0256 60.0191 no.0002 l0.0062 90.0007 I0.0481 00.0456 90.0409 no.0427' 9000358 60.0269 a000250 9010238 HT 0900 0000 0:00 0900 0000 0000 0000 0.00 0:00 0:00 0.00 0300 0100 0.00 0400 0000 0:00 0900 0900 0.00 0900 0900 0.00 0300 0900 0300 0.00 0300 0.00 0000 0.00 0900 0.00 0:00 0.00 0000 0900 0.00 0000 0.00 0.00 0000 0900 0900 0.00 0:00 0.00 0300 0900 0:00 NO. 88 89 90 91 92 93 94 9b 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 N04 NU4 NU4 NU4 NU4 NU4 N04 N04 NU4 NU4 NU4 N04 NU4 NU4 N04 N04 NU4 NU4 N04 N04 N04 N04 NU4 NU4 N04 NU4 NU4 NU4 N04 NU4 N04 NU4 NU4 NU4 NU4 NU4 N04 NU4 NU4 N04 N04 N04 NU4 N04. NU4 NU4 NU4 NU4 NU4 NU4 [DENT PP PP PP PP PP PP PP PP PP PP PP PP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RP RR RP RR RR RR RR RR RR RR RR RR RR RR RR PP RR 3.11 U ~ ‘0-bCP‘JG 113 085, FRFD 2266,1055 2266,8419 2267,5602 2268,2871 2269,0043 2269,7428 2271.1857 2271,9029 2272,5482 2276,9011 2278,3273 2279,0525 2262,2811 2263,7356 2264,4675 2265,1934 2265,9132 2267,3679 2268,0972 2268,8178 2269,5499 2271,0067 2271,7360 2272,4559 2273,1833 2274,6486 2275,3783 2276,0970 2276,8292 2278,2813 2279,7223 2280,4419 2281,8765 2283,3277 2293,9625 2294,6755 2295,3784 2296,0863 2296,8321 2297,5648 2298,2868 2299,0001 2299,7132 2300,4418 2301,1468 2302,5955 2303,2944 2304,0138 2304,7348 2306,1620 OPS'CALC 90.0198 00.0050 I17000083 -080028 -0.0070 0.0104 0.0113 0.0073 -0.0192 0,0030 ~0.0126 '010059 90.0935 .o,0856 .o,o771 90,0745 P060761 90.0701 no.06‘1 .o,o667 90.0578 '0.0473' P000410 90.0440 90.0395 90.0196 Q0.0124 "000161 90.00b2 090018 l0.0007 90.0026 90.0104 -0.000833 0.0168 0.0106 00.0053 00.0154 0.0117 0.0265 080310 090271 0.0233 080354 080243 080418 000257 000305 000374 090375 WT 0:03 0103 0.03 0303 0:03 0.03 0103 0903 0103 0403 0.03 0:03 0.00 0.00 0000 0.00 0900 0:00 0.00 0.00 0.00 0000 0900 0.00 0.00 0.00 0003 0103 0903 0903 0.03 0103 0903 0.03 0903 .0.12 0:12 0903 0903 0:00 0900 0.00 0900 0100 0900 0.00 0100 0900 0900 0100 ~8. 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 f 179 180 ”181 182 183 184 185 186'“ 187 ~84 ~84 ~84 ~84 ~84 ~84 ~84 ~84 ~84 ~84 ~84 ~84 ~84 ~84 ~84 ~84 ~84 NU4 ~84 ~84 ~84 ~84 ~84 ~84 ~84 ~84 NU4 NU4 ~84 NU4 ~84 ~84 ~84 ~84 NU4 ~84 ~84 ~84 ~84 __NU4 N04 N04 N04 N04 NU4 NU4 NU4 N04 N04 N04 IDENT RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR 2.20 2.21 39 3. an 5.14 6.10 6.11 6.12 6.14 6.15 6.16 6.19 6.20 6.21 7. 9 7.10 7.11 7.12 7.14 7.15 7.16 7.18 7.19 7.20 114 08s, FPE3 2306,8718 2307,5908 2298,1453 2298,8638 2299,5843 2300,2992 2301.009? 2302.439} 2303,1541 2303,8818 2304,6077 2306.0276 2306.7300 2307,4343 2309,3015 2310.0153 2310,7342 2312,8809 2313,5913 2314.3023 2315,7332 2316,4496 2317,8863 2321.4334 2322.1387 2322,8415 2323,5401 2324.2586 2325,6562 2311.2253 2312.6814 2313.4030 2314.1201 2314.8336 2316.2534 2316,9835 2317,6930 2319,8257 2320,5397 2321,2457 2316,0348 2316,7496 2317,4589 2318.1785 2319,6148 2320,3188 2321,0314 2322,4604 2323,1805 2323,8929 OHS-CALC 0.0344 0.0409 090111 090109 0.0130 090093 090023 '090023 19090041 0.0073 090172 090065 n0.0059 90.0159 090044 090020 090050 090066 000028 090000 090043 090038 090222 090193 090163 090118 090032 090150 090010 9090245 #090015 0.0040 090055 0.0038 no.0055 090107 090067 090019 090044 9090007 “090053 90.0063 '090124 90.0077 090000 90.0096 90.0101 9090059 090025 0.0033 “T 0.00 0900 0912 0112 0.12 0912 0912 0912 0912 0912 0912 0.12 0912 0.12 0912 0912 0900 0912 0912 0912 0903 0912 0903 0903 0912 0903 0912 0912 0903 0903 0912 0912 0.12 0912 0912 0912 0903 0950 0912 0912 0912 0912 0912 0903 0912 0.50 0912 0903 0903 0.03 N0. 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 IUENT RR 7.21 RR 7.22 RR 7.23 RR 7.24 RR 7925 RR 8910 RR 8.11 RR 8.13 RR 8.14 RR 8.15 RR 8.16 RR 8.15 RR 8.19 RR 8.20 RR 8.21 RR 9. 9 RR 9.10 RR 9.11 RR 9.12 RR 9.16 RR 9.14 RR 9.15 RR 9.16 RR 9.17 RR 9.18 RR 9.19 RR 9021 RR 9.22 RR 9.23 RR 9.24 RR 9.26 RR 9.27 RR 9.28 RR 9.29_ RR10911 R810912 8810914 RR10.15 RR10916 8810.19 RR10.20 RR10.17 R811912 RR11.13 RR11.14 RR11.15 RR11917 8811918 RR11.19 RR11.20 115 085. FREE 2324.6060 2325.3123 2326.0145 252697239 2327.4320 2320.0683 2320.7808 2322.2317 2322.9483 2323,6633 2324,3679 2325,7921 2326,4970 2327.2015 2327.9211 2322.6566 2323.3769 2324.0893 2324,8019 2325,5163 2326.2244 2326,9312 2327.6577 2328,3515 2329.0830 2329.7897 2331.2222 2331.9255 2332,6522 2333,3479 2334.7535 2335,4637 2336.1627 2336.8596 2327,3515 2328,0773 2329,4980 2330,2135 2330.9432 2333,0780 2333.7864 2331,6488 2331,3144 2332.0213 2332.7416 2333,4550 233498748 2335,5884 2536.2920 233790143 ORS'CALC 0.0062 0,0024 .090052 .0,0047 -0,0051 .0,0152 -0.0178 0.0042 0.00/5 0.0058 0.0006 0.0007 .0,0057 '0.0120 90.0026 “090094 90.0044 90.0068 '090096 90.0061 “0.0154 "090196 90.0055 ”0.02956 '0.0056 .0.0078 0.0045 -0.0015 0.0165 0.0040 no.0050 “090012 ’090080 ~0.0163 90.0117 0.0001 90.0059 .0,0030 0.0146 0.0163 0.0147 0.0086 090015 “090049 0.0027 0,0038 0.0007 0.0037 90.0028 0.0100 NT 0903 0.12 0.03 0.03 0.03 0903 0903 0.03 0912 0.03 0912 0912 0912 0903 0903 0912 0950 0912 0.12 0950 0.50 0.03 0.03 0903 0112 0.03 0903 0903 0912 0912 0.03 0903 0903 0903 0.03 ,0.03 0903 0.03 0903 0903 0.03 0903 0903 0903 0.03 0912 0903 0903 0903 0903 N0. 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 IDENT RR12.15 RR12.16 RR12117 RR12.18 RR12019 RR12o20 RR12.21 RR12.22 RR 9.17 RR 9.16 RR 9.15 RR 9.14 PP 9.13 PP 9.12 RR 9.11 RR 9.10 RR 0. 9 RR 0.10 RR 0.11 RR 0.12 RR 0.13 RR 0.14 RR 0.15 RR 1. 5 RR 1. 6 RR 1. 8 RR 1. 9 RR 1.10 RR 1.11 RR 1.12 RR 1.13 RR 1.14 RR 2. 5 RR 2. 6 RR 2._8 RR 2. 9 RR 2.10 RR 2011 RR 2.12 RR 2.13 RR 2.14 RR 2.15 RR 2.17 RR 2.18 RR 2.19 RR 2.20 RR 3. 3 116 083, FRED 2336,6614 2337,3899 2338,0937 2338,7999 2339,4982 2340.2185 2340,9297 2341,6410 4484,9809 4485,7244 4486,4538 4487,1775 4487,8975 4488,6233 4489,3547 4490,0886 4562,4747 4563,1896 4563,9002 4564,6199 4565,3270 4566,0513 4566,7699 4565,8097 4566,5215 4567,9420 4568,6645 4569,3793 4570,1010 4570,8164 4571,5252 4572,2372 4571,9608 4572,6896 74574.1170 4574,8353 4575.538? 4576.255} 4576,9579 4577,6685 4578,3829, 4579,1013 4580,5310 4581.2310 4581.9358 4582,6496 4576,6255 ORS-CALC 0.0072 0.0244 0.0174 0.0134 0.0020 0.0133 0.0159 0.0193 00.0248 ”0.0053 0.0003 0.0004 P000029 -0.0003 0.0082 0.0195 0.0047 0.0049 0.0014 0.0075 0.0017 0.0136 0.0204 0.0001 90.0048 no.0161 90.0087 n0,0084 .0.0007 0.0014 no.0026 90.0028 .0,0019 0.0103 0.0062 0.0096 90,0014 0.0015 .o,0091 -0.0110 .0,0086 90.0015 0.0074 80.0020 '0.00597 -0.0002 90,0045 WT 0.03 0303 0.12 0.12 0203 0.03 0.12 0.12 0.03 0.12 0.12 0.03 0.03 0903 0.03 0.12 0.03 0.03 0.03 0.03 0.03 0.12 0.03 0.12 0.12 0.12 0.12 0.12 0.12 0.03 0g12 0.12 0.03 0.03 0.03 0.03 0.03 0912 0.03 0.03 0.03 0.03 0.03 0103 0.12 0.03 0.50 NO. 285 286 287 288 289 290 291 292 296 294 295 296 297 298 299 600 601 602 606 604 605 606 607 608 609 310 611 612 613 314 515 616 617 318 619 620 621 622 626 624 625 626 627 _628 629 660 661 662 666 664 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 IUENT RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR 3. 3. 3. 3. 3. 3.10 3.11 €020\Tb- 5.17 5.19 5.21 117 068, FREQ 4577,3433 4578,0579 4578,7714 4580,2016 4580.9248 4581.6371 4582,3548 4583,0684 4583,7833 4584,4892 4585.2070 4585,9162 4586,6264 4587,3246 4588,0407 4588,7469 4589,4586 4583,3854 4584,0991 4584,8264 4586.2600 4586,9730 4587,7021 4588,4057 4589.1240 4589,8452 4590,5452 4591.9598 4592,6623 4593,3679 4594,0921 ,4594,7833 4595.5045 4596,1957 4596,9215 4599.0083 4590,1197 4590,8389 4592,2640 4592,9683 4593,6840 4595,1176 4595,8257 4596,5446 4597,9716 4598,6701 4599.6722 4600.0848 4600,7945 4601,4998 ORS'CALC “000042 60,0067 .0,0096 “0.0107 I'000022 no.0041 0.0001 0.0007 0.0033 «0.0025 0.0042 0.0030 0.0064 .0,0075 0.0001 '0.0014 0.0032 ”0.0124 40,0156 .0,0046 F000019 “0.0035 0.0116 0.0019 0.0075 0.0166 0.0051 -0.0012 .0,0082 '000114 0.0046 v0.0116 0.0029 ~0.0120 0.005B .0,0162 0.0072 0.0102 0.0048 .o,0056 .0.0034 0.0046 0.0009 0.0086 0.0152 .0.0045_ .0,0019 0.0029 0.0056 0.0045 NT 0.12 0:50 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.03 0.03 0.03 0.03 0.12 0.12 0.12 0.03 0.03 0.03 0912 0.12 0.12 0.12 0.03 0.12 0.12 0.12 0.03 0.12 0.03 0.03 0.03 0.03 0.03 A0903 0.12 0.12 0.12 0.12 0.12 0.03 0.03 0.03 0903 0.03 0912 0903 0.03 0.03 ‘ twitm'iid. 2"} NO. 665 336 667 656 639 640 641 642 545 644 645 346 647 648 649 650 691 652 653 654 655 356 357 358 659 660 661 662 665 664 665 366 367 668 669 370 371 672 573 574 675 676 677 678 579 680 661 382 685 384 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 IUENT RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR RR 5.22 5,26 5,24 5,25 5,26 6, 6 6, 8 6, 9 6,10 6,11 6,12 6,16 6,14 6,16 6,17 6,18 6,19 6,20 6,21 6,22 6,24 6,25 6,26 6,27 6,28 6,29 6,60 6,62 6,66 7, 8 7, 9 7,10 7,11 7,12 7,16 7,14 7,16 7,17 7,18 7,19 7,20 7,21 7,22 7,24 7,25 7,26 7,27 7,28 7,29 7,60 118 083. FRFD 4602,1981 4602,9030 4603,5916 4604,2975 4605,0018 4596,7789 4598,2013 4598,9217 4599,6380 4600,3502 4601,0661 4601,7755 4602,4878 4603,8980 4604,6061 4605,3074 4606,0332 4606,7386 4607,4502 4608.1430 4609,5419 4610,2426 4910,9551 4611,6569 4612,3554 4613,0409 4613,7456 4615,1388 4615,8385 4604,1033 4604.8143 4605,5258 4606,2395 4606,9482 4607,6561 4608,3772 4609,7893 4610,4974 4911.2196 4611.9236 4612,6311 4613,3320 4614,0381 4615,4505 4616,1430 4616,8358 4617,5633 4618,2382 4618,9471 4619,6269 ORS'CALC “090029 '000029 9090155 '090160 .090144 090055 ’090018 090059 090067 090060 090097 0.0075 090059 -0.0007 .0.0015 .090053 090100 090087 090143 0.0013 90.0075 9090098 090004 "090022 .000014 9090153 '090102 90.0127 E090095 090085 090059 0.0041 090052 090019 90.0015 090090 090019 090015 090159 090128 0.0140 0.0092 090105 0.0154 090054 “090056 0.0229 ~0.0024 090071 ~0.0116 WT 0903 0.03 0403 0903 0903 0950 0912 0912 0912 0912 0903 0912 0112 0912 0912 0912 0903 0903 0912 0903 0.12 0903 0903 0903 0903 0903 0903 0903 0903 0912 0912 0912 0912 0903 0903 0.03 0.03 0903 0:03 0903 0903 0903 0903 0903 0912 0903 0.03 0903 0912 0903 "h. _ _ ____ NO, 685 386 687 688 689 690 591 692 596 694 695 396 597 698 599 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 451 462 433 434 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 IUENT RR 7.61 RR 7.32 RR 7.35 RR 7.64 RR 7.55 RR 8.10 RR 8.11 RR 8.12 RR 8.13 RR 8.14 RR 8.16 RR 8.17 RR 8.18 RR 8.19 RR 8.20 RR 8.21 RR 8.22 RR 8.24 RR 8.25 RR 8.26 RR 8.27 RR 8.28 RR 8.29 RR 8.60 RR 8.32 RR 8.36 RR 8.34 RR 8.55 RR 8.36 RR 9. 9 RR 9.10 RR 9.11 RR 9.12 RR 9.15 RR 9.14 RR 9.16 RR 9.17 RR 9.21 RR 9.22 RR 9.24 RR 9925 RR 9.26 RR 9.27 RR 9.28 RR10.16 R810.14 RR10.16 RR10.17, RR10916 RR11911 119 085. FRED 4620,6416 4621.0296 4621,7314 4622,4122 4623.1026 4611,3611 4612,0740 4612,7757 4613,4896 4614,1926 4615,6419 4616,3578 4617,0569 4617,7591 4618.4612 4619,1712 4619,8733 4621,2750 4621,9649 4622,6766 4623,3726 4924,0716 4624.7559 4625,4676 4626,8525 4627,5445 4628,2278 4628,9217 4029.6255 4616,4211 4617.1314 4417,8425 4618,5613 4619,2750, 4619.9827 4621,4097 4922.1151 4624,9363 4625,6402 4627,0488 4627,7620 4628,4484 4629.159? 4629,8485 4625.0039 4625,7264 4627,1279 4627,8380 4628,5651 4629,2432 OHS-CALC 0.0020 -0.0066 0.0022 “090122 -0.0162 0.0031 0.0037 “090093 P090054 '030107 0.0201 0.0194 0.0149 0.0110 090158 090135 0.0086 90.0036 0.0038 0.0023 090016 40.0130 0.0004 90.0050 ~0.0114 90.0228 00.0226 60.0117 90.0057 90.0081 -0,0091 90.0017 090013 90.0010 0.0051 0.0057 0.0032 0.0030 0.0060 0.0115 0.0061 0.0146 0,0040 0,0048 0.0176 0.0020 0.0046 0.0291 -0.0046 “T 0903 0103 0.03 0.03 0.03 0.12 0912 0912 0912 0.12 0912 0903 0903 0.03 0903 0903 0903 0912 0903 0.03 0.12 0912 0.03 0.03 0903 0.03 0.03 0.03 0.03 0912 0912 0912 0912 0912 0912 _0912 0.12 0.03 0903 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.12 N0. 465 458 467 466 469 440 441 442 446 444 445 446 447 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 2NU4 IUENT RR11.12 R811116 RR11014 R811915 RR11916 RR11017 RR12.12 8812915 RR12.15 RR12916 RR12.17 RR12918 RR12.19 120 OBS. FREQ 4629,9569 4660.6602 4631.3779 4632.0803 4632.782? 4633.4894 4635,5683 4636,2751 4637.7007 4638.4083 4669.1136 4639,8145 4640.5095 ODS'CALC .0.0017 .0.0084 -0.0001 ’0.0062 -0.0121 “090120 -0.0032 .0.0066 0.0018 0.0025 0.0007 .0.0043 .-0.0144 9T 0912 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 R E S U L T S VOCDVO‘U‘bOJNO-‘O NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 0 F IDENT PP13.15 P913017 PP13.14 PP13.13 PP12027 PP12026 PP12.25 P912.22 P912021 P912gl9 PP12.18 PP12217 PP12915 PP12014 9P12.13 P912.12 N A PP11026 ' PP11125 PP11.25 P911022 PP11.21 PP11.20 PP11.18 PP11.17 PP11515 PP11114 P211015 P911012 PP11011 PP10127 P910026 PP10025 PP10.24 PP10.23 PplDozl PP10020 P910019 U A 4 PPENDIX S I N G L O F 3 085, FREQ 2238,1461 2238,6528 2240,2005 2240,7113 2237,5325 2238,0451 '2238,5516 2240,1022 2240,6178 2241,6404 2242,1611 2242,6710 2243,7338 2244,2154 2244,7375 2245,2479 2242,0391 2242,5653 2243,5893 2244,0991 2244,6169 2245.1193 2246,1568 2246,6706 2247,6988 2248,2099 2248,7185 2249,2431 ”2249,7539 2245,5153 2246,0379 2246,5417 '2247,0601 2247,5686 2248,6023 2249.1150 '2249,6311 121 * E B A N D D 3 B R OBS'CALC 0.0108 0.0020 "0.0068 0.0037 0.0125 0.0093 0.0003 0.0047 0.0051" I0.0027 0.0030 90.0021 0.0310 n0,0022 ' "0.0054 0.0012 0.0056 010160 0.0086 000028 0.0050 90.0080 00.0012 00.0027 l0.°0‘6 .0.0085 I0.°147 -- I0.0048 00.0086 0.0234 0.0299 000176 000200 000125 000105 000115 000119 F ”T 0.03 0.03 0.03 w 0.03 0.03 0.03 0.03 0.03 0.12 ' 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0'03 I .0‘03“ 0:03' 0.03 0.03 0.03 0.03 0.12 0.12 0.03 0103 H 0.03 0.03 0.03 0.03'm 0.03 0.03 0.12 0.03 T 5 pm NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 PP NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4' NU4 NU4 NU4 NU4' NU4 NU4 NU4 N04 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 30”? IDENT PP10018 PP10017 PP10015 PP10.14 PP10013 PP10.12 PP10.11 PP10. 10 9. 35 PP 9. 34 PP 9.33 PP 9.52 PP 9.30 PP 9.29 PP 9.20 PP 9.27 PP 9.25 PP 9.26 PP 9.24 PP 9.25 PP 9.22 PP 9.21 PP 9.20 PP 9.19 PP 9.18 PP 9.17 PP 9.10 PP 9.14 PP 9.13 PP 9.12 PP 9.11 PP 9.10 9.29 PP 7.24 PP 7.22 PP 7.21 083, FREQ 2250,1420 _2350,6466 2251}679§ 2252,1893 2252,6990 2253,2170 2253,7386 2254,2544 2245,3752 2245,8885 2246.404. 2246,9183 2247,9425 2248,4630 2240:9502. 2249,4615 2250,5143 2250,0025 2251,0234 2291,5490 '225230530" 2252,5354 2253,0302 2253,3034 2254,1055 2254,3153 '222221324‘ 2256,1673 2253,3324 2257,1931 2257,7030 2253,2212 "225877339'222 2258,7936 2259,8382 2260,3463 2260:0664' 2261.3862 2262,4210 ‘2262,9415 2263,9650 2263.456? ’W' 2364,4801 “”225!~ 4 2265,5199 2266,0301 2266,5597 2271.1906 _3?!9;?i§i-- 4 .o. 0009 ' .0.024U’ _w:!:93}9__ OBS-CALC HT 0. 0075 .0. 0036 0.03 .030032270703“‘P 00.0066 .0,0140 I0.0009 .0. 0021 0.03 0112 0.12 0.12 0. 0559 0; 00 0. 0624 0. 00 0:061? 0.0587 0.0495 0005;,4 '2070320y 0.0308 0.0325 0.0434 0.0336 0.00 .0410 0. 00 0; 0295 ~0_00 0. 0251 0. 00 0:0240 0:00 000313 0000 0.0176 0.0122 0. 00 0:00 0100 0'00 0.00 0.00 0.037277 0.122 0. 00 7 FUTUU“'~ 0.01322 0.0173 0.0172 000158 020103“ 0.0111 0700 0.00 0.00 0.00 70.0077 0.00 ”’2 030021 '000301 0.00 0.00 .00027‘ .030238 .0. 0203 0'00 0. 00 .0. 0170 0. 00 ' I0u0130' 01°0'**”“”"‘ I0.0206 0'00 0.12 I u I I0I012a 0.12 .020097 0312 30.0031 0.12 "0.0037 0I03 Io.°139 “0 0?00"’2'V4—2 {02.01431 02.0Ti 3223“” 70700.7774222"’" W “““236I79002 00.0??3"0. 00 ' NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 PP PP IDENT 6.20 6.19 6.15 6.17 6.14 6016 6.12 6.11 6.10 6. 9 6. 7 6. 6 5.21 5.20 5.19 5.18 5.17 9.16 5.14 5.16 5.12 5.11 5.10 5. 9 5. 7 5o 6 5. 5 4.20 4.19 4.15 4.17 4.16 4.If "'" 4.15 4.12 4611 4. 9 4, 7 4. 6 4. 5 4. 4 3.28 3.27 3.26 3.25 3.24 3.22 3.21 3.20 3.19 123 083, 7883 2264,7451 2265,2741 2265,7814 2266,8114 2267,8472 2268,8711 2268,8852 2269,4048 2259,9172 2270,4825 2271,4642 2271,9765 2268,0980 2268,6186 “2269,1312 2269,6517 2270,1700 2270,6906 2271,7162 2272,2362 2273,2702 2273,7970 2274.3003 2275,3454 2275,8630 2270.37UF 2272,4568 2272,9743 2273,4914 2274,0123' 2274,5326 2275,5690 2276,0865 2276,5923 2277,1044 2278,1417 2279,1680 2279,6890 2280,2060 2280,7105 2272,1140 2272,6342 2273,1543 2273,6712 2274,1894 2275,2239 2275,7379 2276,2683 2276,7840 OBS-CALC .0,0258 -0.0133 '000225 '0.°°88 9000211 I000129 .0,0144 00.0102 9000131 .0,0129 '0'0109 I0.0132 .0,0122 0.0020 0003 0.03 0103 0.03 0.03 0.03 0.03 0.03 0112 0.12 0112‘ 0112 7 0103" 0112 0.03 0112 0112 0003 0.12 0.03 0103 0.12 0.03 0112 0.12 0112 0.12 0.03 N0, 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 153 157 158 159 160 161 162 183 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 NU4 NU4 N04 NU4 NU4 ~04 NU4 ~04 NU4 NU4 NU4 NU4 ~04 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 ~04 NU4 NU4 NU4 N04 N04 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 IDENT PP 3015 PP 3,17 PP 3,16 PP 3,18 PP 3,13 A124 OBS, FRED 2277,2938 2277,8149 2278,3258 2279,8682 2279,8759 2280,3995 2280,9130 2281,4261 2281,9391 2282,9787 2283,4894 2284,0116 2284,5000 2276,9509 2277TI‘I0'" 2277,9812 2278.5071 2279,5345 2280,0495 2280,5578 ZESITUUFT‘ 2281,5988 2282,1255' 2288,1596 2283,8737’ 2284,1815 "2288;7007 2285,2247 2285,7294 2286,7684 2287,2823 2287,8034 228f' I 2282,2605 2283,2810' 2283.812, ‘2284,3277_"‘ 2284,8275 2283} 2289,8789 “2286,9121 2287,4272 2287,9286 2288,9817 2289,4868 2290,5250 2291,0302 2291,5511 2307,6975 2307,3015 OBS'CALC '000052 00.0010 I0,0067 0,0038 .0'0057 080019 I0,000‘ no.0030 I0,0054 090059 '000003 0,0073 00,0107 000121 "7'0}0010" 080061 0101‘! 0,0061 0,0036 WT 0,12 0,12 0,12 0,12 0,12 0,12 0,03 0,12 0,03 0,03 0,0377 0,03 0,03 0,03 01:21, 0,03 0,03 0,03 N0. 188 189 190 191 192 193 194 199 196 197 198 199 200 201 202 203 204 205 206 207 “208 209 210 211 212 213 214 215 216 217 218 221 ”222 223 224 225 226 244 227 228 229 230 231 232 233 234 235 236 237 238 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 125 IDENT 035, FREQ 085*C4LC WT RR 2, 4 2307,7993 0,0063 0,12 RR 2, 5 2308,3107 0,0059 0,03 RR 2,'7 2309,3233 .0,0041 0,12 RR 2, 5 2309,8464 0,0051 0,12 RR 2, 9 2310,3478 00,0010 0,12 RR 2,10 2310,8660 0,0070 0,12 RR 2,11 2311,3728 0,0090 0,00 RR 2,15 2313,4089 0,0041 0,03 RR 2310 2513,9141 0,0011 0,03 RR 3, 4 2311,4487 0,0021 0,03 RR 3, 5 2311,9493 00,0070 0,03 RR 3, 7 2312,9699 00,0009 0,03 RR 3, 3 23(3,477SW 00,0120 0,03 W RR 3, 9 2313,9926 00,0073 0,03 RR 6,17”Rmm“3325,8390mmfl—3090175 '0i12_m“97;( RR 6,16 2323,3370 30,0124 0,12 RR 6,15_” —”2027,8275mw”m;0,0142 0,12H* RR 6,14 2327,3105 '0,0177 0,12 RR 6,13 2326,5289 0,0007 0,12 RR 6,12 2326,3089 00,0106 0,12 RR 5,11‘“ ““232597039_uu—7090195 ”v.12.“ RR 6,10 2025,2724 00,0268 0,03 RR 6, 9 '2324,7024_‘WW;0,0071 0,123— RR 6, 5 2324,2723 00,0072 0'50 RR 60—7 7 2323,7530 “90,0031 0,50_— RR 8, 8 2331,3546 0,0209 0,12 RR 8,'9 2331,8585' .010131 “0112"“ RR 8,11 2332,8803 0,0104 0,12 RR 3,13 2333,8937 0,0150 0,12 RR 3,19 2304,9027 0,0162 9903 RR 8,15 932334,90030 03070004wm0112m“ RR 9, 9 2335,3496 0,0176 0,00 RR 9,1I_UM_“2336,3785ummwm070303—_0700_fl‘ RR 9,13 2337,3790 0,0100 0,00 RR 9,14’mmfimz337,8357_lW0m0,0155w_0,00 “ RR 9,15 2338,4011 0,0233 0,00 RR 9,16 2330,9180 —0,0319 0,00-r RR 9,18 2039,9188 0,0224 0,03 RR 9,20 ' 2340,9374 000309” 0,00flu RR 9,21 2341,4396 0,0279 0,00 RR 9,22 2341,9348 '0a0189 "0,00— RR 9,23 2342,4344 0,0148 0,00 RR 9,24 7 2342,9363 0,0134 0,00— RR 9,26 2343,9399 0,0117 0,00 RR 9,20 2344,9120 'I0g0195 'U,00“' RR 9,29 2345,4149 I0o0176 0,00 RR 9,31 2346,4055 00,0275 0,00 RR 9,32 2348,9146 c0,0100 0,00 RR 9,33 2347,4038 ' 00,0278 0,00 RR 9,34 2347,9114 00,0187 0,00 mvcv- "c-u-wW—w- .0, . , ._ N0, 239 219 220 240 241 242 243 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 NU4 IDENT RR 9,35 RR10,11 RR10,13 RR10,14 0010,15— RR10016 0010,17 RR11011 RR11a13 RR11,14 R911015 RR11016 RR11,19 RR11021 RR12,12 RR12J14 RR12015 RR12016 R012,17 RR12018 RR12,19 RR12,20 RR12,23 RR12a24 RR13,15 RR13a16 R913a10 R013o22 126 033. FREQ OBS-CALC 2348,3876 00,0406 2339.8142 0.0120 2340,8903 000228 2341,3327 0,0073 2391,8417 000098 2342.3456 0.0073 2992,5533 000037 23,3.2354 0.007s 2344.2572 0.0137 2344.7590 0.0083 23‘5-2595 * 0.0020 2345,7679 0,0041 2347:2805 0.0003 "mm, 2348.2927 0.0035 ‘"?3?7.1013"“““:0.5254 23‘8-1422 -0.0051 2348.6535 .0.0004 2349.1612 0.0012 2349.6545 -0.0108 2350.1752 0.0044 2350,6586 .o.ou7u- 2351,1791 I0,0007 2352.697, 0.0072 2353,1904 00,0019 2352.023: 0.0024 2352,5269 0.000, 2353,5385 “ o,au,o 2355,5497 .o.oooz HT 0,00 0,03 0,03 0,03 0,03" 0,03 0,03 0,03 0,03 0,03 0,03" 0,03 0,03 0,03 0,030" 0,03 0,12 0,03 0,12 0,03 0,03 0,03 0,03' 0,00 0,03' 0,03 0,03 0,03 ”'TITI'IMIWIWMU]fiEflIlflflflW)flflMflj7fllT 1293