DETERMINATION OF A₀ FOR DEUTERATED METHYL HALIDES

Thesis for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY RICHARD WAYNE PETERSON 1969

This is to certify that the

thesis entitled

DETERMINATION OF A0

FOR DEUTERATED METHYL HALIDES presented by

Richard Wayne Peterson

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Physics

Molwards

Major professor

Date_Sept 30, 1969

O-169

ABSTRACT

DETERMINATION OF A FOR DEUTERATED METHYL HALIDES

Вy

Richard Wayne Peterson

High resolution absorption spectra of the v_4 and $2v_4$ vibration - rotation bands of CD₃I, CD₃Cl, and CD₃Br have been obtained with the Michigan State University near-infrared spectrometer.

Molecular parameters have been determined by least squares fits of observed frequencies to generalized frequency expressions for symmetric top molecules resulting from the theoretical work of Amat and Nielsen. A simultaneous analysis of the v_4 and $2v_4$ bands of CD₃I led to a value of $A_0 = 2.5788 \pm 0.0004$ along with other molecular parameters. A similar analysis of the unperturbed lines of CD₃Cl yielded the value $A_0 = 2.5930 \pm 0.0006$. The A_0 values obtained for CD₃I and CD₃Cl were compared to those from zeta-sum work and were found to be an order of magnitude more precise. A_0 could not be obtained by a simultaneous analysis for CD₃Br because of the highly perturbed nature of $2v_4$; however a single-band fit of v_4 resulted in values of D_0^K , α_4^A , α_5^B , and other linear combinations of parameters.

Systematic perturbations have been observed on the low frequency side of the v_4 band of each molecule. Individual line shifts due to these perturbations have been listed in all cases where definite assignments were possible. Other perturbations were observed in $2\nu_4(||)$ of CD_3C1 and in $2\nu_4(\perp$ and ||) of CD_3Br .

DETERMINATION OF A_O FOR DEUTERATED METHYL HALIDES

Вy

Richard Wayne Peterson

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department of Physics

G61770 4-27-70

TO MY PARENTS

ACKNOW LEDGMENTS

I would like to thank Professor T. H. Edwards for the guidance and encouragement which he has provided throughout the course of this work. His dedication to teaching and research has had a significant effect on my current goals and aspirations: I have enjoyed the experience of teaching under the direction of Professor C. D. Hause, and the experience gained has greatly affected my future plans for research and teaching. The excellent course on molecular structure which has been presented by Professor P. M. Parker has been very valuable in this work.

I would particularly like to thank Dr. Lamar Bullock for the many times he provided assistance with experimental and computerrelated phases of this research. The advice and assistance of fellow students Richard Blank, Paul Willson, and Peter Willson have also been real assets in this work.

The excellent CDC 3600 and 6500 computer facilities of Michigan State University have been very valuable in many parts of this work. The Physics Shop staff has provided invaluable assistance with some of the experimental problems which have been encountered. A number of undergraduates in the Work-Study Program have made significant contributions. Donna Deming, Nancy Nickerson, and Jeannine Stetz all spent many hours with their friend the HYDEL machine. Jack Bosworth has provided competent assistance with the final changes in program SYMFIT and with the final analysis

iii

procedure.

The financial assistance provided by a National Aeronautics and Space Administration fellowship was greatly appreciated. The National Science Foundation has also provided support through grants to Professors T. H. Edwards and C. D. Hause.

Finally I would like to express my love and appreciation to my wife, Donna, whose patience and moral support have helped bring this work to a successful conclusion.

TABLE OF CONTENTS

	Page	
LIST OF TABLES	vi	
LIST OF FIGURES	vii	
LIST OF APPENDICES	viii	
Chapter		
I INTRODUCTION	1	
II DEVELOPMENT OF SYMMETRIC TOP THEORY	4	
III METHODS OF A DETERMINATION	22	
IV EXPERIMENTAL PROCEDURE	29	
V ANALYSIS OF DATA	38	
VI ANALYSIS OF v ₄ AND 2v ₄ OF CD ₃ I	45	
VII ANALYSIS OF v_4 AND $2v_4$ OF CD_3C1	56	
VIII ANALYSIS OF V4 AND 2V4 OF CD3Br	66	
IX CONCLUSION	74	
LIST OF REFERENCES	77	
APPENDICES 79		

v

LIST OF TABLES

Tab le		Page
2.1	Parameters of the D-D Hamiltonian	6
2.2	Axially Symmetric Energy Expression	11
2.3	Description of Energy Parameters	12
2.4	Generalized Frequency Expression	14
2.5	Single-Band Frequency Expression for v_A or $2v_A$	17
3.1	3.1 Frequency Expression for a Simultaneous Fit	
	of v_4 and $2v_4$	23
4.1	Experimental Conditions - CD ₃ I	30
4.2	Experimental Conditions - CD ₃ Cl	31
4.3	Experimental Conditions - CD ₃ Br	32
6.1	.1 Molecular Constants of CD ₃ I Obtained from Single	
	Band Fits	51
6.2	2 Molecular Constants Resulting from Simultaneous	
	Fit of v_{Δ} and $2v_{\Delta}$ of $CD_{3}I$	52
7.1	7.1 Second Order Molecular Constants of CD ₂ C1 from	
	Single Band Fits	58
7.2	Molecular Constants Resulting from a Simultaneous	
	Fit of v_{Δ} and $2v_{\Delta}$ of $CD_{3}C1$	64
8.1	Molecular Constants from a Single Band Fit of	
	ν ₄ of CD ₃ Br	69
9.1	Summary of Constants for CD ₃ X Molecules	75

vi

LIST OF FIGURES

Page
2
2
36
36
41
47
57
61
62
67
71

LIST OF APPENDICES

A ppendix		Page
Α.	Listing of SYMFIT and Typical Data Set	79
В.	Least Squares Fits and Associated Statistics	97
С.	Results of a Simultaneous Fit for CD ₃ I	100
D.	Results of a Simultaneous Fit for CD ₃ C1	111
Ε.	Results of a Single Band Fit of v_4 of CD_3Br	121

CHAPTER I

INTRODUCTION

The birth of quantum mechanics in the late 1920's led to a renewed interest in the near-infrared absorption spectra of small molecules. It was found that many features of infrared spectra could be predicted by a quantum mechanical model of the molecule consisting of a rigid rotator and a set of uncoupled harmonic oscillators. Symmetric top molecules (where $I_{xx} = I_{yy} \neq I_{zz}$) allow an exact determination of vibration-rotation energy levels for the zero-order model described above. Because of this, some of the first molecules studied experimentally and theoretically were the methyl halides.

The basic form of a deuterated methyl halide molecule (CD_3X) , where X = F, Cl, Br, or I) is shown in Figure 1.1. In addition to their classification as symmetric tops, the methyl halides have C_{3v} symmetry, which means they have a threefold axis of symmetry and three vertical planes of symmetry. Figure 1.2 illustrates the atomic motions involved with each of the vibrational modes of a methyl halide molecule. The modes v_4 , v_5 , and v_6 are doubly degenerate.

In Chapter II a summary is given of the modern quantum mechanical development of a fourth-order energy expression for a vibrating and rotating symmetric top molecule. This general model includes such effects as anharmonic forces, changes of moments of

FIG 12 NORMAL MODES OF METHYL HALIDES

inertia with vibration, centrifugal distortion, and vibrationrotation interactions. Different frequency expressions of particular importance to this work are introduced and compared.

Because of the selection rules which govern symmetric top transitions, the determination of the ground-state constant $A_0 = \hbar/4\pi c I_0^A$ (where I_0^A is the principal moment of inertia about the unique symmetry axis) is a difficult but important problem. Chapter III describes and compares the two most commonly used methods of determining A_0 . This work involves an application of the more accurate of the two methods to CD_3X molecules.

The experimental procedures used in recording the v_4 and $2v_4$ bands of CD_3I , CD_3Cl , and CD_3Br are described in Chapter IV. Chapter V describes the computer programs used in determining accurate frequencies of spectral lines recorded and in obtaining molecular parameters, such as A_0 , from the observed frequencies.

The remainder of the thesis describes the details of the analysis of the spectra for each of the three molecules. Molecular parameters obtained from the analysis are recorded and compared with those obtained from lower resolution spectra. In the cases of CD_3Cl and CD_3Br (Chapters VII and VIII) a number of spectral lines are found to correspond to transitions to perturbed upper-state energy levels. Whenever possible the magnitudes of these energy level shifts are determined.

The concluding chapter summarizes the molecular parameters determined for each molecule and includes suggestions for future work.

CHAPTER II

DEVELOPMENT OF SYMMETRIC TOP THEORY

Among the problems which confront the beginner in high resolution spectroscopy is the complexity of an accurate analytical expression which is able to specify the energy of the quantum levels of a vibrating and rotating polyatomic molecule. The situation is further complicated for the experimentalist by the variety of expressions which have been used to predict the frequencies of radiation which are absorbed when the molecule is excited to higher energy states. For example, some frequency expressions are convenient for the rapid computation of approximate molecular parameters from gross features of the spectra, others apply only to small portions of a given absorption band, and still others are general enough to allow a large scale computer analysis of more than one band under very high resolution. The goal of this chapter is to introduce a few of the frequency expressions which are presently used for symmetric tops and to facilitate their comparison.

A brief development of a general energy expression which results from the fourth-order Hamiltonian as developed by Amat and Nielsen is given first. After applying appropriate selection rules, the generalized frequency expression for symmetric top molecules is obtained. This complicated expression is then compared to frequency expressions which are commonly used experimentally at low to medium resolution.

The development of a correct quantum mechanical form of the Hamiltonian has been presented in detail by H.H. Nielsen (1) in his comprehensive paper of 1951. Details of this development have been given at Michigan State University in the lectures on molecular structure by P.M. Parker, and an excellent summary is given in Chapter I of a theoretical thesis by R.L. Dilling (2). The resultant Hamiltonian is commonly called the Darling-Dennison (D-D) Hamiltonian (3,4) and is written as follows:

(2.1)

$$\mathcal{K} = \frac{1}{2} \left[\mu^{\frac{1}{4}} \sum_{\alpha\beta} (P_{\alpha} - P_{\alpha}) \mu^{-\frac{1}{2}} \mu_{\alpha\beta} (P_{\beta} - P_{\beta}) \mu^{\frac{1}{4}} + \frac{1}{2} \mu^{\frac{1}{4}} \sum_{s\sigma} P_{s\sigma}^{*} \mu^{-\frac{1}{2}} P_{s\sigma} \mu^{\frac{1}{4}} + v \right]$$

Table 2.1 contains a brief description of each of the quantities used in the D-D Hamiltonian. More detailed information concerning the basic relationships between these constants may be found in references (1,2,3,4).

In principle, the D-D Hamiltonian is quite applicable to any type of molecule. It is unfortunately a grievous task to solve the Schroedinger equation for this complex Hamiltonian to high orders of accuracy. The usual systematic approach is to first expand H in the manner,

$$H = H_0 + H_1 + H_2 + H_3 + \dots$$

where expansions of V and $\mu_{\alpha\beta}$ are

$$v = v_0 + v_1 + v_2 + \dots$$

$$v = \frac{1}{2} \sum_{s\sigma} \lambda_s Q_{s\sigma}^2 + \sum_{\substack{s\sigma \\ s'\sigma'}} K_{s\sigma} Q_{s\sigma} Q_{s\sigma'\sigma'} Q_{s'\sigma''} + \dots$$

Table 2.1

.

Parameters of the D-D Hamiltonian

Quantity	Description
μ _{αβ}	the inverse moments of inertia matrix,
	$\mu \equiv \det(\mu_{\alpha\beta})$
α,β	range over (x,y,z) of the rotating coordinate system attached to the molecule in a manner subject to the Eckart conditions (4,5)
s, _o	(s) is an index ranging over all normal modes; (σ) ranges over the components of degenerate normal modes
Q _{so}	displacement of the σ component of the normal mode (s), does not appear explicitly in H
${}^{\mathrm{P}}_{\alpha}$	component of total angular momentum
P _x	component of internal angular momentum; (p) may be expressed as a linear combination of components of internal angular momentum as expressed in normal coordinate space:
	$p_{\alpha} = \sum_{s} \zeta_{s1s2}^{\alpha} \varphi_{sz}$
$P_{s\sigma}^{*}$	momentum conjugate to $Q_{s\sigma}$
	$p_{s\sigma}^* = -i\hbar \frac{\partial}{\partial Q_{s\sigma}}$
$v_{(Q_{s_{\sigma}})}$	potential energy of the molecule

and

$$\mu_{\alpha\beta} = \frac{1}{I_{\alpha}I_{\beta}} \left[\frac{1}{\alpha} \left(\frac{0}{\alpha\beta} + \sum_{s_{\sigma}} \alpha^{(1)\alpha\beta} q_{s_{\sigma}} + \cdots \right) \right]$$

7

where, if x,y,z are principal axes,

$$\hat{\boldsymbol{\alpha}}^{(0)\alpha\hat{\boldsymbol{\beta}}} = \mathbf{I}_{\alpha}\delta_{\alpha\hat{\boldsymbol{\beta}}}$$

With these, one can write for H_0 (1,2)

(2.2)

$$H_{0} = H_{R} + H_{V}$$

$$= \frac{1}{2} \sum_{\alpha} \frac{P^{2}}{I_{\alpha}} + \frac{1}{2} \sum_{s\sigma} [P^{2}_{s\sigma} + \lambda_{s}Q^{2}_{s\sigma}]$$

This Hamiltonian of a rigid rotor (H_R) and a set of uncoupled harmonic oscillators (H_V) is very important in the development which follows. The Schroedinger equation of H_0 (where $I_{xx}^e = I_{yy}^e$) has the well-known eigenfunctions^a

$$\Psi_{\rm T} = \Psi_{\rm R} \Psi_{\rm V}$$

where

$$\Psi_{R} = |J K M >$$

and
$$\Psi_{V} = |v_1\rangle |v_2\rangle \dots |v_s\ell_s\rangle$$

where $v_1, v_2 \dots v_s$ are the vibrational quantum numbers of the uncoupled harmonic oscillators, and J,K,M, and ℓ_s are angular momentum quantum numbers defined by

^a The quantum mechanics problem of the rigid symmetric rotor was first solved by Dennison via matrix mechanics (6). Solutions by both wave mechanics and matrices are given in his paper of 1931 (7).

(2.3)

$$P^{2}\Psi_{R} = J (J+1)\hbar^{2}\Psi_{R}$$

$$P_{Z}\Psi_{R} = K \hbar \Psi_{R}$$

$$P_{Z}\Psi_{R} = M \hbar \Psi_{R}$$

$$\mathcal{P}_{Z}\Psi_{R} = M \hbar \Psi_{R}$$

In the case of a symmetric top in zero order, v_s , J, and |K| are considered primary quantum numbers since they determine distinct eigenvalues; ℓ_s , M, and the sign of K are secondary quantum numbers and in zero order only designate degeneracies.

A method of arriving at energies beyond zero order which has often been used is that of the contact transformation. This is essentially the perturbation approach as presented by Born, Heisenberg, and Jordan in 1926 (8,9), and it was applied by Van Vleck in 1929 to higher order terms of diatomic molecules (10). Shaffer, Nielsen, and Thomas were the first to use the technique in the case of polyatomic molecules (11), and in his paper of 1951 (1) Nielsen summarized first and second-order contributions to the energies of symmetric tops. One applies the transformation to the general D-D Hamiltonian as expanded to at least second-order,

$$\mathscr{U}' = \operatorname{T} \mathscr{U} \operatorname{T}^{-1} = \mathscr{U}_0' + \mathscr{U}_1' + \mathscr{U}_2' + \dots$$

and one attempts to choose T such that

(1)
$$\mathscr{U}_{0} = \mathscr{U}_{0}$$
 and (2) $< n | \mathscr{U}_{1} | n' > = 0$ for $n \neq n'$

In this way the transformation does not invalidate the highly prized eigenfunctions of H_0 , but does remove the off-diagonal elements of H_1' . Detailed application of the T transformation necessitates that the resulting terms be rearranged according to expected orders of magnitude. The rearranged matrix is written as

$$h' = \mathscr{U}_0 + h'_1 + h'_2 + \dots$$

Then, since H_0 has known eigenfunctions $\Psi_n^{(0)}$, we may apply second-order perturbation theory which states that if

$$\mathcal{K}_{0}Y_{n}^{(0)} = E_{n}^{(0)}Y_{n}^{(0)}$$

$$E_{n}^{(0)} = \langle n | \mathcal{K}_{0} | n \rangle$$

$$E_{n}^{(1)} = \langle n | h_{1}' | n \rangle$$

$$E_{n}^{(2)} = \langle n | h_{2}' | n \rangle + \sum_{n}' \frac{|\langle n | h_{1}' | n'' \rangle|^{2}}{E_{n}^{(0)} - E_{n''}^{(0)}}$$

then

but by virtue of the contact transformation,

and therefore

$$E_{n}^{(2)} =$$

Care must be taken in the case of degeneracies in $E_n^{(0)}$. In such a case, one must use perturbation-adapted zero-order wave functions to find $E_n^{(1)}$ before proceeding to $E_n^{(2)}$.

The above method is described in great detail in two papers ^{by} Nielsen, Amat, and Goldsmith (12,13). Amat and Nielsen (14,15,16) then went on to perform an analogous second contact transformation which removes the matrix elements off-diagonal in the principal quantum numbers v_s from h'_2 . This procedure results (after no small amount of labor) in a doubly-transformed Hamiltonian,

$$\mathbf{\hat{x}^{+}} = \Gamma \mathbf{\hat{x}'} \Gamma^{-1} = \mathbf{\hat{x}_{0}^{+}} + \mathbf{\hat{x}_{1}^{+}} + \mathbf{\hat{x}_{2}^{+}} + \mathbf{\hat{x}_{3}^{+}} + \mathbf{\hat{x}_{4}^{+}} + \dots$$
$$= \mathbf{\hat{x}_{0}} + \mathbf{\hat{x}_{1}^{+}} + \mathbf{\hat{x}_{2}^{+}} + \mathbf{\hat{x}_{3}^{+}} + \mathbf{\hat{x}_{4}^{+}}$$

After another regrouping, the new Hamiltonian is written,

$$h^{+} = \mathcal{U}_{0} + h_{1}' + h_{2}^{+} + h_{3}^{+} + h_{4}^{+}$$

with $d_0 + h'_1 + h'_2$ diagonal in the vibrational quantum numbers v_s , again in a representation which has as its zero-order wave functions, the eigenfunctions of H_U . However, for a symmetric top, h_2^+ is not diagonal in the angular momentum numbers ℓ_s and K, and therefore terms off-diagonal in these quantities can contribute to fourthorder energies, or even to lower order in the case of certain resonance perturbations.

Table 2.2 contains the energy expression from double contact transformation theory of an axially symmetric molecule complete through third-order, with partial contributions from fourth-order. The explicit form of the terms of the Hamiltonian may be found in the thesis by W.E. Blass (17). Table 2.3 is a list of all the new quantities which appear in the energy expression with their descriptions.

`

We are usually concerned with the energy absorbed as the molecule is excited from its ground vibrational state (all $v_s = 0$) to an upper state where some $v_s \neq 0$. This puts the range of radiation absorbed in the near-infrared region where our spectrometer operates. The general frequency expression is thus obtained by subtracting the ground-state energy expression from the upperstate energy.

Table 2.2

Axially Symmetric Energy Expression

$$E_{0} = B_{e}J(J+1) + (A_{e}-B_{e})K^{2} + \Sigma_{s}w_{s}(v_{s}+B_{s}/2)$$

$$E_{1} = -2A_{e}\Sigma_{t}\zeta_{t}^{2}\iota_{t}K$$

$$E_{21} = -D_{e}^{J}J^{2}(J+1)^{2} - D_{e}^{J}K_{k}^{2}J(J+1) - D_{e}^{K}K^{4}$$

$$E_{22} = -\Sigma_{s}a^{B}(v_{s}+B_{s}/2)J(J+1) - \Sigma_{s}(a^{A}_{s}-a^{B}_{s})(v_{s}+B_{s}/2)K^{2}$$

$$E_{31} = \Sigma_{s}a^{F}(v_{s}+B_{s}/2)(v_{s}+B_{s}/2) + \Sigma_{t}a^{F}(v_{t}+b^{F})^{F}$$

Table 2.3

Description of Energy Parameters

Quantity	Description
s,n , t	s is an index of a given vibrational mode. n will refer to a specifically non-degenerate mode; t, the degenerate modes.
^B e, A e	$B_e = \frac{\hbar}{4\pi c I_x^e} \qquad A_e = \frac{\hbar}{4\pi c I_z^e}$
	where $I_x^e = I_y^e$ where z is the axis x y of symmetry
^w s, 8 _s	designate a purely harmonic frequency ω of a normal mode s having degeneracy g _s .
ζ ^z t	coriolis coupling constant about the symmetry axis.
$\alpha_{s}^{B}, \alpha_{s}^{A}$	coefficients of vibrational corrections to B _e and A _e
D_e^J, D_e^{JK}, D_e^K	corrections due to centrifugal distortion of equilibrium configuration.
x _{ss} , x _t t _t '	first-anharmonic corrections
y _{ss} , y _{sltlt}	second-anharmonic corrections
$\beta_{s}^{J}, \beta_{s}^{JK}, \beta_{s}^{K}$	third-order changes in centrifugal terms due to vibration.
η_t^J, η_t^K	third-order corrections to ζ_t^z
γ_{ss}^{A} , $\gamma_{\ell_{t}\ell_{t}}^{A}$	fourth-order corrections to A e
$\gamma_{ss'}^{B} \gamma_{\ell_{t}\ell_{t}}^{B}$	fourth-order corrections to B e
$H_{J}^{0}, H_{J}^{0} \mathbf{K}^{\dagger}, H_{KJ}^{0}, H_{K}^{0}$	fourth-order corrections due to centrifugal distortion.
۵wu s	fourth-order correction to ω having the same quantum dependence as ω s
$\Delta B_{e}, \Delta A_{e}$	fourth order corrections to A and B , having same quantum dependence at A and B _e

,

Table 2.4 is a general expression (including partial fourthorder terms) which gives the frequency (in cm⁻¹) of radiation absorbed as the molecule is excited from its ground vibrational state to an upper state where some of the set v_s are not zero. The vibrational terms have been grouped at the beginning of the expression and these will be constant for a given vibrational excitation. In the notation of the frequency expression, changes in the rotational quantum numbers K and J are specified by giving initial values (K,J) and their changes (Δ K and Δ J). Particular transitions will therefore often be specified by the notation

 $\frac{\Delta K}{\Delta J}|K|(J) \text{ where } K \text{ and } J \text{ are initial values}$ where P implies ΔK or $\Delta J = -1$

Q implies ΔK or $\Delta J = 0$

R implies ΔK or $\Delta J = +1$

For example, an $R_{Q_3}(4)$ transition implies $K_{initial} = 3$ $K_{final} = 4$ $J_{initial} = 4$ $J_{final} = 4$ The vibrational transition from (all $v_s = 0$) to (1,0,0,0,2,0) is called the band $v_1 + 2v_5$. This thesis is largely concerned with the analysis of the v_4 and $2v_4$ bands of CD₃X molecules.

Three important substitutions have been made in going from the energy expression to the frequency expression. They consist of applications of the following definitions,

(2.4)
$$A_{v} = A_{e} - \sum_{s} \alpha_{s}^{A} (v_{s} + g_{s}^{/2}) + \sum_{ss'} \gamma_{ss'}^{A} (v_{s} + g_{s}^{/2}) (v_{s'} + g_{s'}^{/2})$$

+ $\sum_{tt'} \gamma_{tt'}^{A} (v_{t}^{+} v_{s'}^{+}) + \Delta A_{e}$
ts'

Generalized Frequency Expression

+

(continued on next page)

Table 2.4 (cont.)

Generalized Frequency Expression

$$\begin{split} & \left[-\Sigma_{s} \alpha_{s}^{B} v_{s} + \Sigma_{s} \Sigma_{s} \cdot \gamma_{ss}^{B} \cdot (v_{s} v_{s} + v_{s} g_{s} \cdot / 2 + v_{s} \cdot g_{s} / 2) \right] \\ & + \Sigma_{t} \Sigma_{t} \cdot \gamma_{\ell} \sum_{t \ell}^{B} \omega_{t} \omega_{\ell} \omega_{t} \cdot \left[(J + \Delta J) (J + 1 + \Delta J) - (K + \Delta K)^{2} \right] + \\ & \Sigma_{t} \prod_{t \leq t}^{J} \omega_{\ell} \left[(K + \Delta K) (J + \Delta J) (J + 1 + \Delta J) \right] + \\ & \Sigma_{t} \prod_{t}^{K} \omega_{t} \left[(K + \Delta K) (J + \Delta J) (J + 1 + \Delta J) \right] + \\ & \Sigma_{s} \beta_{s}^{J} v_{s} \left[(J + \Delta J)^{2} (J + 1 + \Delta J)^{2} \right] + \\ & \Sigma_{s} \beta_{s}^{J} v_{s} \left[(K + \Delta K)^{2} (J + \Delta J) (J + 1 + \Delta J) \right] + \\ & \Sigma_{s} \beta_{s}^{K} v_{s} \left[(K + \Delta K)^{2} (J + \Delta J) (J + 1 + \Delta J) \right] + \\ & \Sigma_{s} \beta_{s}^{K} v_{s} \left[(K + \Delta K)^{4} \right] + \\ & H_{O}^{J} \left[(J + \Delta J)^{3} (J + 1 + \Delta J)^{3} - J^{3} (J + 1)^{3} \right] + \\ & H_{O}^{J} \left[(K + \Delta K)^{2} (J + \Delta J)^{2} (J + 1 + \Delta J)^{2} - K^{2} J^{2} (J + 1)^{2} \right] + \\ & H_{O}^{K} \left[(K + \Delta K)^{4} (J + \Delta J) (J + 1 + \Delta J) - K^{4} J (J + 1) \right] + \\ & H_{O}^{K} \left[(K + \Delta K)^{6} - K^{6} \right] \end{split}$$

(2.6)
$$D_{V}^{m} = D_{e}^{m} - \sum_{s} \beta_{s}^{m} (v_{s} + g_{s}/2)$$
 for $m = J, K, JK$

Substitutions have been made for A_0 , B_0 , and D_0^m since these groundstate effects each have distinct rotational quantum dependencies which are quite independent of the upper-state vibrational level. It will be noticed that the equilibrium constants A_e , B_e , and D_e^m still are not readily available even if their ground-state values are known.

Well-known selection rules (18) specify that for symmetric tops,

 $\Delta K = 0 \quad \text{for } \| \text{ bands}$ $\Delta K = \pm 1 \quad \text{for } \perp \text{ bands}$ and for both types of bands

$$\Delta J = 0, \pm 1$$

except that J = 0 to J = 0 transitions do not occur.

In addition, selection rules on ℓ_t can be inferred from symmetry considerations. In particular, for v_{Δ}

$$\Delta \ell_{L} = \Delta K = \pm 1$$

and for $2v_{1}$

$$\Delta \ell_{\perp} = -2\Delta K = 0, \pm 2$$

Table 2.5 (19) shows the form which the generalized frequency expression takes when it is applied to v_4 or $2v_4$. The effect of the selection rule on (Δt_1) has been put in terms of the parameter

Single Band Frequency Expression for v_4 or $2v_4$ $\Delta K_{\Delta J_{K}}(J) = + \left\{ B_{0} \left[(J + \Delta J) (J + 1 + \Delta J) - J (J + 1) - (K + \Delta K)^{2} + K^{2} \right] \right\}$ $-D_{0}^{J}[(J+\Delta J)^{2}(J+1+\Delta J)^{2}-J^{2}(J+1)^{2}]$ $-D_{0}^{JK}$ (K+ Δ K)² (J+ Δ J) (J+1+ Δ J) -K²J (J+1)] + $\left[\nu_{0}(\nu_{4}) \quad \text{or}\right]$ $v_0(2v_4)$ or $-[k(\Delta K)^2(A_e\zeta_4^z - 1/4\eta_4^K)] +$ v (2v ||) $[A_0 - kA_e \zeta_A^z - 1/2k\eta_A^K][(K+\Delta K)^2 - K^2] +$ $[-D_{0}^{K} - 1/4k\eta_{k}^{K}][(K+\Delta K)^{4}-K^{4}] +$ $\left[-\alpha_{L}^{A}+3/2k\eta_{L}^{K}\right]\left[(\Delta v_{L})(K+\Delta K)^{2}\right]$ + $\left[-\alpha_{A}^{B}\right]\left[(\Delta v_{A})\left\{(J+\Delta J)(J+1+\Delta J)-(K+\Delta K)^{2}\right\}\right] +$ $[\Pi_{A}^{J}][(k\Delta K)(K+\Delta K)(J+\Delta J)(J+1+\Delta J)] +$ $\begin{bmatrix} \beta_{A} \end{bmatrix} \begin{bmatrix} (\Delta v_{A}) (J + \Delta J)^{2} (J + 1 + \Delta J)^{2} \end{bmatrix} +$ $\begin{bmatrix} \beta_{\lambda}^{JK} \end{bmatrix} \begin{bmatrix} \Delta v_{\lambda} \end{pmatrix} (K + \Delta K)^{2} (J + \Delta J) (J + 1 + \Delta J) \end{bmatrix} +$ $\left[\beta_{L}^{K}\right]\left[\left(\Delta v_{L}\right)\left(K+\Delta K\right)^{4}\right] +$ $[H_0^{J}][(J+\Delta J)^3(J+1+\Delta J)^3-J^3(J+1)^3] +$ $\left[H_{0}^{JK}\right]\left[\left(K+\Delta K\right)^{2}\left(J+\Delta J\right)^{2}\left(J+1+\Delta J\right)^{2}-K^{2}J^{2}\left(J+1\right)^{2}\right] +$ $\left[H_{\Omega}^{KJ}\right]\left[(K+\Delta K)^{4}(J+\Delta J)(J+1+\Delta J)-K^{4}J(J+1)\right] +$ $\begin{bmatrix} H_0^{K} \end{bmatrix} \begin{bmatrix} (K+\Delta K)^6 - K^6 \end{bmatrix}$ k = 1 for v_4

k = -2 for $2v_{\mu}$

17

Table 2.5

1917 - 171 - 1919

(k), thus allowing the one expression to apply to both v_4 and $2v_4$ ($_{\perp}$ or \parallel). The expression is written in a form making it convenient for a large-scale computer fit of individual transition frequencies to obtain the unknown constants ($A_0 - kA_e\zeta_4^z$, $-D_0^K$, $-\alpha_4^A$, $-\alpha_4^B$... etc.). Chapter V covers the computerized analysis procedure in detail.

One form of the single-band frequency expression which is often used at lower resolution is that in which $\Delta J = 0$, and third and fourth-order terms are ignored (20,21,22). This expression allows an approximate analysis from the Q branches of perpendicular bands ($\Delta K = \pm 1$) from symmetric top molecules. If, in addition, centrifugal distortion is ignored, the second-order frequency expression for these ${}^{R}Q_{K}$ and ${}^{P}Q_{K}$ lines is

$$v(J,K,\Delta K) = v_0 + (B_v - B_0)J(J+1) + 2[A_v(1 - \zeta_v) - B_v]K\Delta K + [(A_v - A_0) - (B_v - B_0)]K^2$$

where the small second term determines the extent of the spreading of the unresolved lines. The usual approach is to fit the Q branch peak to the formula,

(2.7)
$$\nu(K, \Delta K) = \nu_0 + 2[A_v(1 - \zeta_v) - B_v]K\Delta K + [(A_v - A_0) - (B_v - B_0)]K^2$$

where ν_0 contains all the non-rotational terms.

A careful comparison of this expression for Q branch peaks with the general single-band expression as applied to v_4 or $2v_4$ (Table 2.5) indicates that the two are compatible. Unfortunately, coefficients obtained from fits of the two forms are very difficult to compare. For example, v_0 of (2.7) contains all the terms which have constant quantum coefficients involving $\Delta K = \pm 1$; the generalized v_0 has put some of these $(\Delta K)^2$ terms in the coefficients of α_4^A and α_4^B . Likewise, the coefficient of K ΔK contains effects which become part of the coefficients of $A_0 - A_e \zeta_4^z$, α_4^A , and α_4^B in the generalized equation. The third term of (2.7) is equal to $(\alpha_4^B - \alpha_4^A)$, but does not allow a determination of α_4^A or α_4^B separately. Such mixing of terms requires that great care be taken in comparing results of fits using the two forms.

Two combination relationships from $(K, \Delta K)$ are often used in Q branch analyses. These result directly from the ΔK dependence of the second term. They are

$${}^{R}Q_{K} + {}^{P}Q_{K} = 2[v_{0} + A_{v}(1 - \zeta_{v})^{2} - B_{v}] + 2[(A_{v} - A_{0}) - (B_{v} - B_{0})]K^{2}$$

(2.8)

$${}^{R}_{Q_{K}} - {}^{P}_{Q_{K}} = 4[A_{v}(1 - \zeta_{v}) - B_{v}]K$$

These combination relationships are most commonly found in papers written before the computer era, since they allow a simple graphical determination of approximate molecular constants.

Analysis of the parallel bands ($\Delta K = 0$) of symmetric tops is usually a difficult process due to difficulties in assigning the overlapping lines. The most common approach has been to measure series of ${}^{Q}R_{K}(J)$ and ${}^{Q}P_{K}(J)$ lines without attempting to identify the (hopefully) constant K value of the particular series (21,22). The resultant frequency expressions for ${}^{Q}P_{K}(J)$ and ${}^{Q}R_{K}(J)$ are

$${}^{Q}P_{K}(J) = v_{0} + (A_{v} - A_{0} - B_{v} + B_{0})K^{2}$$

- $(B_{v} + B_{0} - 2K^{2}D_{JK})J + (B_{v} - B_{0})J^{2} + 4D_{JJ}J^{3}$
$${}^{Q}R_{K}(J) = v_{0} + (A_{v} - A_{0} - B_{v} + B_{0})K^{2} + B_{v}$$

+ $(3B_{v} - B_{0})J + (B_{v} - B_{0})J^{2} - 4(J+1)^{3}D_{JJ} - 2K^{2}(J+1)D_{JK}$

If a given K series is followed (K = constant), then the two equations can be put in compact form, viz.,

(Tr

(2.9)
$$v(J) = a_1 + b_1 m + c_1 m^2 + d_1 m^3$$

m = J + 1 for the R branch

where m = -J for the P branch

and

$$a_{1} = v_{0} + (A_{v} - A_{0} - B_{v} + B_{0})K^{2}$$

$$b_{1} = B_{v} + B_{0} - 2K^{2}D_{JK}$$

$$c_{1} = B_{v} - B_{0} = \alpha_{v}^{B} \text{ for fundamentals}$$

$$d_{1} = -4D_{JJ}$$

The ${}^{Q}Q_{K}(J)$ lines ($\Delta J = 0$, $\Delta K = 0$) in the center of a parallel band are seldom completely resolved because of the small magnitude of α_{V}^{B} for the methyl halides; but, because of a much larger α_{V}^{A} , often they can be identified in K. This allows them to be described by the equation,

(2.10)
$$v(K) = a_2 + b_2 K^2$$

where

$$a_{2} = v_{0} + (B_{v} - B_{0})J(J+1)$$

$$b_{2} = (A_{v} - A_{0} - B_{v} + B_{0})$$

Thus from a complete analysis of a parallel band one can determine α_v^A , α_v^B , and $v_0(|)$.

Equations (2.7 - 2.10) have all been used extensively for moderate resolution spectra where it is difficult to resolve the ${}^{R}R_{K}(J)$, ${}^{P}P_{K}(J)$ lines of \perp bands and ${}^{Q}P_{K}(J)$ and ${}^{Q}R_{K}(J)$ lines of \parallel bands. They can also be usefully applied where computer facilities are minimal, or where approximate molecular constants are desired without spending much time and effort assigning individual lines. When it is possible to resolve the individual ${}^{R}R_{K}(J)$, ${}^{P}P_{K}(J)$, ${}^{Q}P_{K}(J)$, ${}^{Q}R_{K}(J)$ lines, it is best to use the appropriate form of the generalized frequency expression. The latter approach has been used exclusively in this work, except where a comparison of accuracies with previous work and differing methods has been made.

The next chapter is concerned with differing methods of finding the ground-state constant A_0 . Two methods are treated in detail: the first uses a generalized frequency expression, the second uses the peak Q branch formula (2.7) and some of its equivalent forms.

∠ ⊥

CHAPTER III

METHODS OF A DETERMINATION

A definition of A_0 in terms of A_e is given in Eq. (2.4), and this definition is then used in a development of a single-band frequency expression as applied to v_4 or $2v_4$ (Table 2.5). The expression shows clearly that A_0 cannot be determined from a single band. Two methods of obtaining A_0 are the main topic of this chapter. The first involves the use of frequencies of a fundamental band and its first overtone (e.g. v_4 and $2v_4$); the second uses information from the three fundamental perpendicular bands of a methyl halide (i.e. v_4 , v_5 , and v_6). In the analysis chapters which follow, a statistical study is included from experimental applications of both methods.

If single-band fits of v_4 and $2v_4$ are made, the particular combination of $A_0 - A_e \zeta_4^z$ and $A_0 + 2A_e \zeta_4^z$ can be obtained. These constants can then be combined to determine a value of A_0 . An alternative approach is to fit the bands simultaneously to a frequency expression generalized to include both bands. This simultaneous equation has been given by T.L. Barnett (19) and is contained in Table 3.1. Barnett and Edwards applied the simultaneous fit approach to find A_0 for CH₃Br and CH₃I (23,24,25). Barnett has also shown that A_0 can be obtained by fitting a combination band of the form $v_t + v_n$ simultaneously with $2v_t$ (19). The simultaneous approach has a number of advantages over the method of combining two single-band fits. These advantages are discussed in

Table 3.1

Frequency Expression for a Simultaneous Fit of v_4 and $2v_4$

$${}^{\Delta K}_{\Delta J}_{K}(J) = \{ B_{0}[(J+\Delta J)(J+1+\Delta J)-J(J+1)-(K+\Delta K)^{2}+K^{2}] \\ - B_{0}^{J}[(J+\Delta J)^{2}(J+1+\Delta J)^{2}-J^{2}(J+1)^{2}] \\ - D_{0}^{J}K[(K+\Delta K)^{2}(J+\Delta J)(J+1+\Delta J)-K^{2}J(J+1)] \} =$$

$$[v_{0}(v_{4}) \quad \text{or}] \\ v_{0}(2v_{4} \parallel) \quad \text{or}] \\ v_{0}(2v_{4} \parallel) \quad \text{or}] \\ v_{0}(2v_{4} \parallel) \quad \text{or}] \\ [A_{0}][(K+\Delta K)^{2}-K^{2}] + \\ [-2A_{e}c_{4}^{2}+\eta_{4}][(\Delta t_{4})(K+\Delta K)] + \\ [-D_{0}^{K}][(K+\Delta K)^{4}-K^{4}] + \\ [-a_{4}^{K}][(\Delta v_{4})(K+\Delta K)^{2}] + \\ [-a_{4}^{K}][(\Delta v_{4})(K+\Delta K)^{3}] + \\ [\eta_{4}d_{4}][(\Delta v_{4}+1)(\Delta t_{4})(K+\Delta K)] + \\ [\eta_{4}d_{4}][(\Delta v_{4}+1)(\Delta t_{4})(K+\Delta K)] + \\ [\eta_{4}d_{4}][(\Delta v_{4}+1)(\Delta t_{4})(K+\Delta K)] + \\ [B_{4}^{J}][(\Delta v_{4})(K+\Delta K)^{2}(J+\Delta J)(J+1+\Delta J)] + \\ [B_{4}^{J}][(\Delta v_{4})(K+\Delta K)^{2}(J+\Delta J)(J+1+\Delta J)] + \\ [B_{4}^{J}][(\Delta v_{4})(K+\Delta K)^{2}(J+\Delta J)(J+1+\Delta J)] + \\ [B_{4}^{J}][(\Delta v_{4})(K+\Delta K)^{4}] + \\ [H_{0}^{J}][(K+\Delta K)^{6}-K^{6}] + \\ [H_{0}^{J}][(K+\Delta K)^{2}(J+\Delta J)^{2}(J+1+\Delta J)^{2}-K^{2}J^{2}(J+1)^{2}] + \\ [H_{0}^{J}][(K+\Delta K)^{4}(J+\Delta J)(J+1+\Delta J)-K^{4}J(J+1)] + \\ [v_{4}^{J}A_{4}][(\Delta v_{4})(\Delta v_{4}+2)(K+\Delta K)^{2}] + \\ [v_{4}^{J}A_{4}][(\Delta v_{4})(\Delta v_{4}+2)(K+\Delta K)^{2}] + \\ [v_{4}^{J}A_{4}][(\Delta v_{4})(\Delta v_{4}+2)((J+\Delta J)(J+1+\Delta J)-(K+\Delta K)^{2}]] + \\ [v_{4}^{J}A_{4}][(\Delta v_{4})(\Delta v_{4}+2)((J+\Delta J)(J+1+\Delta J)-(K+\Delta K)^{2}]] + \\ [v_{4}^{J}A_{4}][(\Delta v_{4})(\Delta v_{4}+2)((J+\Delta J)(J+1+\Delta J)-(K+\Delta K)^{2}]] + \\ [v_{4}^{J}A_{4}][(\Delta v_{4})(\Delta v_{4}+2)((J+\Delta J)(J+1+\Delta J)-(K+\Delta K)^{2}]] + \\ [v_{4}^{J}A_{4}][(\Delta v_{4})^{2}((J+\Delta J)(J+1+\Delta J)-(K+\Delta K)^{2}]] + \\ [v_{4}^{J}A_{4}][(\Delta v_{4})^{2}((J+\Delta J)(J+1+\Delta J)-(K+\Delta K)^{2}]] + \\ [v_{4}^{J}A_{4}][(\Delta v_{4})^{2}((J+\Delta J)(J+1+\Delta J)-(K+\Delta K)^{2}]] + \\ [v_{4}^{J}A_{4}C_{4}][(\Delta v_{4})^{2}((J+\Delta J)(J+1+\Delta J)-(K+\Delta K)$$

the chapters involving the A_0 determination of CD_3I and CD_3Cl .

The method of a simultaneous analysis of individual transitions of a well-resolved v_t and $2v_t(\downarrow)$ is believed to be the most accurate way to determine A_0 for axially symmetric moelcules. However, for purposes of comparing statistical accuracy and methodology, one needs to consider the time-honored procedure of obtaining A_0 from the zeta-sum rule.

Historically, for accidentally symmetric-top molecules, it was possible to predict infrared spectra without consideration of vibration-rotation interaction. The classic paper of D.M. Dennison (7), published in 1931, summarized the theoretical work up to that time which was done without considering Coriolis interactions. In 1934, E. Teller (26) pointed out that many features of the perpendicular bands of true symmetric tops can be explained if one considers the Coriolis interaction between rotation and the vibrational motions of degenerate normal modes. Since the eigenvalues of internal angular momentum are not necessarily integers, Teller introduced the constant ζ as a proportionality factor in the expression for the component of internal angular momentum which results as a consequence of degenerate vibrations,

 $\mathbf{p}_{z}|\boldsymbol{\ell}_{s}\mathbf{v}_{s}\rangle = \boldsymbol{\ell}_{s} \ \ \ \boldsymbol{\tau} \ \ \boldsymbol{\zeta}_{s1s2}^{z} \ \ |\boldsymbol{\ell}_{s}\mathbf{v}_{s}\rangle$

Teller then presented a theorem which states that the sum of the ζ 's for all the degenerate first-excited vibrational states is a function of only the individual masses and their relative distances in the molecule. Most important, Teller succeeded in showing that this sum is not a function of the force field which binds the atoms in the molecule. By using this result, Johnson and Dennison (27)
were able to show that in the harmonic approximation,

$$\Sigma \zeta_t^z = (\# \text{ of atoms on symmetry axis}) - 2 + B_e/2A_e$$

or for methyl halides,

(3.1)
$$\sum_{t} \zeta_{t}^{z} = B_{e}/2A_{e}$$

The theory behind the zeta-sum rule has since been more rigorously developed by Boyd and Longuet-Higgins (28).

Most zeta-sum work with the methyl halides has involved an application of an equation of the form (2.7), utilizing only the Q branches of v_4 , v_5 , and v_6 . Eq. (2.7) can be put in the form,

(3.2)
$$v = C_1(v) + C_2(v)K\Delta K + C_3(v)K^2$$

where $C_1(v) = all$ terms independent of K $C_2(v) = 2[A_v(1 - \zeta_v^2) - B_v]$ $C_3(v) = [(A_v - A_0) - (B_v - B_0)]$

If Q branches of v_4 , v_5 , v_6 , are fit, the constants $C_i(v)$ for v = 4,5,6, can be obtained.

Then,

$$\sum_{\mathbf{v}} C_2(\mathbf{v}) = 2 \sum_{\mathbf{v}} [A_{\mathbf{v}} - A_{\mathbf{v}} \zeta_{\mathbf{v}}^{\mathbf{z}} - B_{\mathbf{v}}]$$

This sum can be approximated as

(3.3a)
$$\sum_{\mathbf{v}} C_2(\mathbf{v}) \stackrel{\sim}{=} 2 \sum_{\mathbf{v}} [A_{\mathbf{v}} - B_0 - A_0 \zeta_{\mathbf{v}}^2]$$

or can be approximated still further as

(3.3b)
$$\sum_{\mathbf{v}} C_2(\mathbf{v}) \stackrel{\sim}{=} 2 \sum_{\mathbf{v}} [A_0 - B_0 - A_0 \zeta_{\mathbf{v}}^{\mathbf{z}}]$$

First consider the form (3.3a) which has been used in recent work on the methyl halides (20,21). It requires further information from $C_3(v)$ in order to arrive at A_0 ,

$$\sum_{v} C_{3}(v) \stackrel{\sim}{=} \sum_{v} A_{v} - 3A_{0} = -\sum_{v} \alpha_{v}^{A};$$

substituting into (3.3a),

 $\sum_{\mathbf{v}} C_2(\mathbf{v}) = 2 [\sum_{\mathbf{v}} C_3(\mathbf{v}) + 3A_0 - 3B_0 - A_0 \sum_{\mathbf{v}} \zeta_{\mathbf{v}}^z].$

but the zeta-sum rule may be approximated as

$$\sum_{\mathbf{v}} \zeta_{\mathbf{v}}^{\mathbf{z}} = \frac{B_{e}}{2A_{e}} = \frac{B_{0}}{2A_{0}}$$

and thus,

(3.4)
$$A_0 = \frac{1}{6} \sum_{v} C_2(v) - 2 \sum_{v} C_3(v) + 7B_0$$

The further approximation (3.3b) was used in earlier work on the methyl halides and is presented in standard reference books on the subject (18,29). The older treatments often obtained the value of C_2 for each band by means of the combination relations (2.8) and graphical techniques. The expression for A_0 which results from (3.3b) is identical to Eq. (3.4) if $\sum_{v} C_3(v) = 0$. This approximation corresponds to a change in A_0 of about 0.005 cm⁻¹. Approximations involved in arriving at Eq. (3.3a) are not as large as that described above. For example, in the case of CD_3X molecules, the error in A_0 which results is approximately 0.0002 cm⁻¹.

There is one other important source of error (apart from the harmonic approximation of the zeta-sum rule itself) and this involves the problem of where to measure Q branch peaks. Y. Morino and J. Nakamara consider this problem in their zeta-sum paper (20). In Appendix I of that paper, an estimate of the change in J_{max} corresponding to a Q branch peak is given as a function of the K. The uncertainty caused by this dependence is further complicated by the slit function of the instrument. They were only able to estimate the maximum effect on $C_2(5)$ to be ± 0.04 cm⁻¹ for $CD_3Cl v_5$ (which was the poorest band they analyzed). Such a change in $C_2(5)$ corresponds to a change in A_0 of $\pm .006$ cm⁻¹. Morino and Nakamura concluded they could ignore any J_{max} dependence on K since in most cases this systematic error would be less than their random experimental error.

In summary, a zeta-sum determination of A_0 under low to moderate resolution depends on the following approximations:

- (1) The zeta-sum rule is derived in the harmonic approximation.
- (2) The approximation,

$$\sum_{\mathbf{v}} \mathbf{A}_{\mathbf{v}} \zeta_{\mathbf{v}}^{\mathbf{z}} = \mathbf{A}_{0} \sum_{\mathbf{v}} \zeta_{\mathbf{v}}^{\mathbf{z}}$$

is made in obtaining Eq. (3.3a).

(3) In all applications to CH_3X or CD_3X , J has been assumed not to be a function of K.

The approximations (2) and (3) above could be removed by a high resolution study of v_4 , v_5 , and v_6 . Such a single-band analysis would yield the constants:

$$A_{0} - A_{e}\zeta_{4}^{z} = C_{4}$$

$$A_{0} - A_{e}\zeta_{5}^{z} = C_{5} \text{ or } 3A_{0} - A_{e}(\zeta_{4}^{z} + \zeta_{5}^{z} + \zeta_{6}^{z}) = C_{4} + C_{5} + C_{6}$$

$$A_{0} - A_{e}\zeta_{6}^{z} = C_{6}$$

Therefore, by summing these terms and by making the very small approximation $B_0 = B_e$, a value of A_0 would be immediately available. However, the harmonic approximation (1) would remain; indeed a high resolution study of v_4 , v_5 , and v_6 could provide a measure of the magnitude of this approximation if the resultant A_0 were compared to that obtained from a simultaneous analysis.

It is apparent that even though the zeta-sum technique could gain accuracy under high resolution, it would still be subject to a source of systematic error which currently cannot be estimated. In comparison, the accuracy of A_0 from simultaneous fits of unperturbed bands is largely determined by the resolving power of the spectrometer which is used.

In much of this chapter the assumption has been made that unperturbed spectra are available. In practice, the chances of finding a pair of v_t and $2v_t$ bands which are completely unperturbed is slight (likewise for v_4 , v_5 , and v_6). Accidental resonances are found to play a critical role not only in determining whether A_0 can be obtained by a given method, but also in determining the accuracy of its value when it can be found. Examples of the effects of perturbations in particular cases are given in Chapters VII and VIII.

CHAPTER IV

EXPERIMENTAL PROCEDURE

High resolution spectra of the v_4 (4.5 μ) and $2v_4$ (2.2 μ) regions of CD₃I, CD₃Cl, and CD₃Br have been recorded on the Michigan State University near infrared spectrometer. Experimental conditions for the individual runs are given in Tables 4.1, 4.2, and 4.3. Two or three spectra were recorded for each of the six bands. The averaging procedures and results of individual calibrations will be discussed for each of the molecules individually in the analysis chapters (VI, VII, and VIII).

The Michigan State University spectrometer has continually been improved during the past 15 years, and consequently it bears the imprints of many contributors. The present state of the instrument has been particularly affected by the work of former graduate students, J.L. Aubel and D.B. Keck. The most current report on the major features of this instrument is given in the thesis of D.B. Keck (30), which includes references to earlier work. In this chapter a summary of recent changes made on the instrument is given, along with a description of some of the problems unique to this work.

Because of the expense of samples of CD₃X gases, great care had to be exercised in handling them. If ordinary freezeout procedures failed, the gases were slowly pumped out of the absorption cell through a liquid nitrogen cold trap. Memories of these freeze-out difficulties are less than fond, since they often

Table 4.1

Experimental Conditions - CD_3I

	v_4 (44° - 38°)	2v ₄ (45° - 39.5°)
Grating	300 grooves/mm 1st Order - S.P. @500/1	300 grooves/mm 2nd Order - S.P. @500/1
Calibration	co (1-0) N ₂ o (1,2,0)	co (2-0) N ₂ 0 (2,0,1)
Paper Speed	4"/min	4"/min
Detector	PbSe - Type El @77 ⁰ K	РЬ S - Туре О @77 [°] К
Date of Runs	Chart #1 - 7/11/68 Chart #2 - 11/23/68	Chart #1 - 6/20/68 Chart #2 - 7/24/68 Chart #3 - 12/11/68
Rod Current	#1 - 360 amps #2 - 375 amps	#1 - 360 amps #2 - 360 amps #3 - 380 amps
Pressures (torr)	#1 - 19 #2 - 19,10,20	#1 - 20 #2 - 19 #3 - 25,19,30
Path lengths	#1 - 3.2 m #2 - 6.4 m	#1 - 9.6 m #2 - 9.6 m #3 - 9.6 m
Slits (approx. w idth)	#1 - 60 microns #2 - 35 microns	#1 - 16 microns #2 - 11 microns #3 - 8 microns
Best Chart Resolution	$#205 \text{ cm}^{-1}$	$#304 \text{ cm}^{-1}$

Table 4.2

Experimental Conditions - CD_3C1

	v ₄ (44° - 38°)	2 ₂₄ (45 [°] - 39.5 [°])
Grating	300 groves/mm lst Order – S.P. @500/1	300 grooves/mm 2nd Order - S.P. @500/1
Calibration	CO (1-0) N ₂ O (1,2,0)	co (2-0) N ₂ o (2,0,1)
Paper Speed	4"/min	4"/min
Detector	PbSe - Type El @ 77 ⁰ K	РbS - Туре О @77°K
Date of Runs	Chart #1 - 7/12/68 Chart #2 - 11/25/68	Chart #1 - 6/19/68 Chart #2 - 7/24/68 Chart #3 - 12/11/68
Rod Current	#1 - 360 amps #2 - 375 amps	#1 - 360 amps #2 - 360 amps #3 - 375 amps
Pressure (torr)	#1 - 8,4,8 #2 - 15,9,15	#1 - 18 #2 - 24,18,24 #3 - 25,19,25
Path Lengths	#1 - 3.2 m #2 - 3.2 m	#1 - 9.6 m #2 - 9.6 m #3 - 9.6 m
Slits (approx. w idth)	#1 - 62 microns #2 - 35 microns	#1 - 16 microns #2 - 11 microns #3 - 8 microns
Best Chart Resolution	$#205 \text{ cm}^{-1}$	$#304 \text{ cm}^{-1}$

STOLE STOLES

Table 4.3

Experimental Conditions - CD₃Br

	v ₄ (44 [°] - 38 [°])	2 ₁₂₄ (45 [°] - 39.5 [°])
Grating	300 grooves/mm lst Order - S.P. @500/1	300 grooves/mm 2nd Order - S.P. @500/1
Calibration	CO (1-0) N ₂ O (1,2,0)	∞ (2-0) N ₂ 0 (2,0,1)
Paper Speed	4"/min	4"/min
Detector	PbSe – Type El @77 [°] K	PbS - Туре 0 @77 ⁰ K
Date of Runs	Chart #1 - 8/19/68 Chart #2 - 11/25/68	Chart #1 - 8/09/68 Chart #2 - 10/30/68
Rod Currents	#1 - 360 amps #2 - 375 amps	#1 - 360 amps #2 - 375 amps
Pressures (torr)	#1 - 21,15,9,15 #2 - 20,15,20	#1 - 25,40 #2 - 20,40
Path Lengths	#1 - 3.2 m #2 - 3.2 m	#1 - 12.8 m #2 - 9.6 m
Slits (approx. w idth)	#1 - 54 microns #2 - 35 microns	<pre>#1 - 13 microns #2 - 9 microns</pre>
Best Chart Resolution	$#205 \text{ cm}^{-1}$	$#205 \text{ cm}^{-1}$

resulted in rather frantic glassware assemblage in the small time available between CD_3X removal and calibration gas insertion.

Initially a study of CD_3F was to be included in this work, but it was found that the only sample of this very expensive gas which remained in the laboratory was very small and impure. Moderate resolution runs were made using that sample, but a new sample arrived too late for any more runs during the winter of 1969. Future plans do include a study of v_4 and $2v_4$ of CD_3F . Samples of CD_3CN have also been obtained and could be studied in the future.

The source of near infrared radiation in both wavelength regions was an ohmic-heated carbon rod. The associated assembly has been described by D.B. Keck. The only changes were in the operation of the source:

- It was found that the use of #17 copper wire for holding the carbon rods provided trouble free starting.
- (2) If the rod being used had been exposed to the atmosphere, it was beneficial to flush the rod housing with argon after the rod has been heated for 10 or 15 minutes. This rids the chamber of the CO and CO₂ which are formed soon after the rod is heated. CO lines, which were used in the calibration of both bands, could be seen to be considerably broadened by CO in the housing. The lines immediately narrowed after flushing with argon.

The White type multiple traverse cell as described by T.H. Edwards (31) was completely disassembled and cleaned. The spherical mirrors were stripped and realuminized by Liberty Mirror (anticorrosive quartz finish No. 749). The foreoptics and cell system

were then carefully realigned and focused on the entrance slit of the monochromator.

All of the spectra eventually used were recorded with the monochromator in a single-pass configuration, using the 300 groves/mm grating between 45° and 38° (first-order for v_4 and second-order for $2v_{4}$). The calibration fringes were an immense problem in this region. An apparent grating anomaly causes a sharp decrease in the intensity of ninth-order fringes between 43.5° and 43° and a similar effect in the case of eighth-order fringes between 42.7° and 42.3°. This effect has been noticed by others and was certainly verified far too many times in the course of this work. Fortunately the bad fringes occurred in a region lying largely between our low-frequency calibration and the CD₃X region. It did however cause some "only fair" fringes on the extreme low-frequency side of a few charts. This fringe problem was much worse in the case of double passing the grating. The already weak fringes became much weaker and could not be used. The infrared double-pass resolution was very good in the $2\nu_{\Delta}$ region and so these spectra were run without fringes as high resolution references - if needed.

The problems associated with the previous detector system were described by Keck. A new detector housing was designed which allows a mounting of three detectors simultaneously in a manner allowing a rapid transition from one to another while maintaining a temperature of 77° K. The three detectors were mounted on a triangular head attached to the bottom of the liquid N₂ dewar. The dewar assembly can be rotated at least 120° left or right of the center position. The dewar is supported by a knurled stainless steel top which keeps the critical top 0-ring seal as isolated as possible from the N₂. The cold O-ring maintains a good seal under rotation from one detector to another, but does stick and cause a difficult transition from one detector to another if it is not lubricated periodically (approximately every 10 cold turns). Whenever possible, the detector should be changed before cooling.

Sketches of the assembly are shown in Figure 4.1 along with the variable bias system (Figure 4.2) which was constructed to allow the choice of a bias resistance to match the impedance of the detector currently in use. Although it is advisable to periodically check and record the cold detector resistances, the correct choice of bias resistance can be simply made by maximizing the recorder signal. Even though the recorder signal seems greatly dependent upon bias choice, it should be realized that the effect on S/N is quite small.

Heat shields have been designed to limit the field of view of each of the mounted detectors. The shields slide into the large circular apertures in front of each detector and provide an adjustable rectangular opening. They have been found to be particularly necessary for the type E detectors; typically raising the cold resistance from around 3 M to 10 M and significantly increasing the detectivity.

The detectors which are currently available are the same types that are described by Keck. A new type E (PbSe) detector has been purchased from Kodak; however, its detectivity does not seem to match that of the previously used E type. The tri-detector system as described should be operated with a set of detectors to cover the entire 1 to 6 micron region. This can be accomplished by means of an N or O type in one position (1 to 2.8μ), a P type in another (2.8 to 4.2μ), and a type E (4 to 6μ) in the third position. Such

Figure 4.1 Detector Assembly

Figure 4.2 Bias Circuit

a system was used during the summer and fall of 68' and allowed runs of emission spectra in the l_{μ} region by L.E. Bullock, separated only by hours from some of these absorption runs around 4.5 μ .

Plans are being made for the purchase of an InSb detector which operates with peak detectivity in the 4 to 6 micron region. The present type E PbSe detector for that region has a significantly lower detectivity than any of our PbS devices or the InSb. The new detector should allow excellent resolution in the 5 micron region in comparison to the present maximum of 0.05 to 0.07 cm⁻¹. Unfortunately, the new detector will necessarily be mounted in an evacuated dewar which will not have immediate compatibility with the present system.

Other plans for the near future include an improvement in the fringe detection system. Professor C.D. Hause's plans include use of a newly introduced phototube, the corresponding power supply, and a more sophisticated preamp. In addition Professor T.H. Edwards is investigating a tunable lock-in amplifier for the IR signal along with a digital voltmeter which will sample at least four channels of information and record them on magnetic tape. The advantages of such a data acquisition system would be numerous. Some of these advantages are discussed briefly in the first part of the next chapter which summarizes our current data analysis system.

CHAPTER V

ANALYSIS OF DATA

After a high resolution spectrum has been obtained from the spectrometer, a large amount of data reduction must be completed before observed frequencies are available from the chart. Part of this process involves an analog to digital conversion of the information on the chart; the rest involves obtaining observed frequencies from this digital data. Thus it is the first step of this process which could be almost eliminated with a digital voltmeter to magnetic tape data acquisition system.

Presently our data is digitized to five-place accuracy by the HYDEL system. A description of this process has been given by T.L. Barnett (19) and briefly by L.E. Bullock (32). The encoders, which are the heart of this digital process, were often unreliable during the past year. They were carefully cleaned a number of times but still cannot be completely trusted. Since the system had already seen considerable use when first acquired by this laboratory in the early 60's, the encoders may in fact simply be worn out. The tight financial situation has made overhauling the system quite infeasible at the present time. The state of the HYDEL system is thus another reason the magnetic tape system currently seems very inviting.

The computer program SHAFT as developed by D.B. Keck (30) and L.E. Bullock (32) has been very helpful in this work. Its major purpose is to help obtain the best possible set of observed frequencies from many records of HYDEL digital data output. SHAFT

takes the recorded line and fringe positions, along with the input calibration frequencies, and from these determines the coefficients (A and B) of the linear equation,

Line Frequency
$$(cm^{-1}) = A$$
 (Fringe #) + B

Observed frequencies are calculated for all measurements of chart lines, and these are then averaged and output in formats useable in our other programs. The other options available in SHAFT are manifold and their usefulness is matched only by the initial complications in using them. However, for anyone who is about to start a project which involves many charts and measurements, learning to use the program is time well spent.

Two HYDEL measurements were made of two individual charts for each of the six bands. Thus, four sets of data were available for each band. Unfortunately, the first charts which were run during June and July 68' were almost invariably significantly poorer in resolution. Only in the case of $2v_4$ of CD₃Br was it possible to average frequencies between charts without reducing frequency accuracy. In each case, however, the two HYDEL measurements were averaged. Because of the unreliable condition of the HYDEL system during the past year, the two HYDEL measurements were very necessary since the occasional HYDEL errors were erratic and usually ranged from 0.04 to 0.07 cm⁻¹.

The observed (averaged) frequencies are then ready to be fit by a frequency expression given in terms of molecular constants, quantum numbers, and changes in these quantum numbers. The frequency expressions which have been used most extensively in this work are the single-band frequency expression (Table 2.5), the

simultaneous v_4 and $2v_4$ expression (Table 3.1), and to a much lesser degree, the Q branch frequency expression (Equation 2.7). Program SYMFIT has been written to conveniently provide for the above fits. The remainder of this chapter is devoted to a description of this program and instructions for its use.

The major goals in the construction of SYMFIT were:

 It must be a general symmetric top fitting program - thus it must fit single bands, subbands, double bands, Q branches, etc.

T

- (2) SYMFIT should operate with formats compatible with the inputs and outputs to program SHAFT.
- (3) It should be able to perform fits in less than 45 seconds (Priority 5 on the CDC 3600 at MSU).
- (4) For the convenience of other researchers, SYMFIT should utilize subroutine STEPFIT in order to lessen confusion when comparisons are made to other fitting programs currently in use in this laboratory.
- (5) SYMFIT should be compatible with the CDC 3600 and 6500.

A simplified block diagram of the final SYMFIT version which accomplishes these goals is shown in Figure 5.1. A listing of SYMFIT along with a typical data set is given in Appendix A.

The set up of a SYMFIT deck is described below. After a Fortran IV or binary copy of SYMFIT (and the associated control cards), the following cards are read:

(1) <u>Option card</u> - reads the variable IBAND in the last 8 columns (73-80)

STEPFIT SUBROUTINE

Block Diagram of SYMFIT Figure 5.1

(a) If IBAND = 8HSINGLEBD^a, the program assumes it is to use the single band frequency expression of Table 2.5. The expression also will allow a fit of subbands when the only variables put into fit are α₄^B and the subband origin.
(b) If IBAND = 8HDOUBLEBD, the simultaneous frequency expression is assumed (Table 3.1).
(c) If IBAND = 8HQ BRANCH, a fit is made to the expression of Eq. 2.7.
(d) If IBAND = 8HCORIOLIS, a residual analysis of the type described by W.E. Blass (33) is performed.
(2) Constant card - if <u>a card reading CONSTANT</u> in the last 8

columns (73-80) is read next, the program assumes initial values of some variables will be read into the fit.

- (3) <u>END HEAD card</u> if a CONSTANT card was provided, the opportunity to insert a heading to describe these constants is provided. The program will print a heading until a card with END HEAD in the last 8 columns (73-80) is found.
- (4) Initial values of constants are then expected to follow the END HEAD card. These are read in the order indicated by their quantum dependencies as shown in their respective Tables or in the Fortran listing. Values are read until an END CONST is found in columns (73-80). Thus if only three values are read in (e.g. microwave values of B_0 , D_0^J , and D_0^{JK}), then the END CONST card should follow the third constant (all other initial values are automatically set = 0.0).
- (5) Next, a NEW DATA card will start the reading of sets of Δv , ΔK , ΔJ , K, J, observed frequency, and line weight for

The Fortran notation, IBAND = 8HSINGLEBD implies the variable IBAND contains the 8 characters SINGLEBD.

each identified transition. The identification format used in SYMFIT is compatible with the identification format of SHAFT. This format is given in statement 185 of the SYMFIT listing.

- (6) An <u>F</u> in <u>column</u> 10 will stop the reading of frequencies and identifications.
- (7) The next card reads in <u>control data for the fitting sub-routine STEPFIT</u>. Variables read in here are: INFO1, INFO2, INFO3, NDELMAX, XDEVMAX, TOL, EFIN, EFOUT, and ILEVEL. The format here is specified in statement 190. Definitions of these terms and their functions have been given in the MSU IR Laboratory writeup of STEPFIT and are given by Keck (30).
- (8) The next card reads in values of the one-dimensional array <u>NK(I)</u>. NK(I) = 0 unless the Ith variable is to be varied in the fit, in which case NK(I) = 1. The associated format is given in statement 195.
- (9) <u>END HEAD</u> Another heading may be read in at this point. Headings are listed until END HEAD is found in columns (73-80).

After reading the END HEAD card, the subroutine STEPFIT is called, and a least squares fit is performed. STEPFIT performs a stepwise least squares regression, in which variables are individually entered or removed from the fit after they are tested for statistical significance. Appendix B briefly describes the method used in this fit and the manner in which the associated statistics are calculated.

- (10) After the fit is performed, STEPFIT will perform a refit after removing the poorest line depending upon its instructions on card (7). After performing the correct number of refits and corresponding line throwouts, control is restored to the driver program. If a LAST FIT card (last 8 columns) is found, the entire program will terminate.
- (11) If a refit using a new set of variables (using the same data) is desired, the LAST FIT card should be replaced by a new card (8) which gives the new NK(I) array. Another END HEAD card (9) will then start the next fitting sequence.
- (12) If an entirely new set of data is to be fit, the LAST FIT should be replaced by a NEW DATA card (5) followed by the sequence of cards: (6), (7), (8), and (9). This is most commonly used in the SINGLEBD option for subband fits in which each set of subband data is separated by cards (5), (6), (7), (8), and (9).

The program is designed to print out the fit results in formats corresponding to the various options. Single-band fits of 200 to 300 lines require 10 to 15 seconds per fit (fitting with 5 or 6 independent variables). Double-band fits of 400 or 500 lines require 30 to 40 seconds each (fitting with 7 or 8 independent variables). The very simple fits of options 3 and 4 require only 3 to 5 seconds each.

The next four chapters include applications of various SYMFIT options to the cases of CD_3I , CD_3Cl , CD_3Br and to studies of the accuracy of molecular constants obtained for each of them.

CHAPTER VI

ANALYSIS OF V4 AND 2V4 OF CD31

Consideration of which molecule to study first is important in light of the experience which is necessarily gained from the first bands analyzed. In this case CD_3I was chosen because it was known to have a relatively unperturbed $2v_4$, and because its v_4 band showed no obvious perturbations. This chapter summarizes previous work on CD_3I , and then presents the results of this work under high resolution. Since many steps of the CD_3I analysis procedure are the same for the other two molecules, many of the details are given in this chapter.

Infrared absorption spectra of CD_3I have been studied by a number of workers at lower resolution. Morino and Nakamura (20) included CD_3I in their comprehensive study of the degenerate fundamentals of CH_3X and CD_3X molecules at a resolution ranging from 0.6 to 0.8 cm⁻¹. In addition, Jones, Popplewell, and Thompson (21) studied many bands of CD_3I between 3 and 20µ at a resolution of approximately 0.2 cm⁻¹. In each of the above studies, a value of A_0 was calculated by a zeta-sum analysis of unresolved Q branches of the three perpendicular type fundamental bands.

 $2v_4$ of CD_3I is the only one of the six bands under investigation which has previously been studied under high resolution. Joffrin, Van Thanh, and Barchewitz (22) studied the unresolved Q branch structure of the perpendicular component along with the parallel

component at a stated resolution limit of 0.07 cm⁻¹. However, it does not appear that their path length was sufficiently long to resolve any non - Q branch lines of the perpendicular component. J. W. Boyd (34) studied $2v_4$ of CD₃I at sufficient resolution ($\sim 0.07 \text{ cm}^{-1}$) and path length (8 m) to resolve many of the $P_K(J)$ and $R_K(J)$ lines of the perpendicular component. Boyd's original charts are present in the laboratory and provided useful checks on $2v_4$ assignments for the lines which he was able to resolve.

Experimental conditions for the recorded spectra of CD_3I are given in Table 4.1. The spectra were calibrated and frequencies were averaged by use of program SHAFT in the manner described in Chapter V. The standard deviations of the calibration fits are 0,002 and 0.003 cm^{-1} for v_4 and $2v_4$ respectively. Survey spectra of the two regions are shown in Figure 6.1. A series of CO_2 lines is in evidence on the high-frequency side of v_4 , but under high resolution these lines are far enough apart to allow identification and use of most of the CD_3I lines in the region. The v_4 and $2v_4$ surveys of CD_3I exhibit low intensity "secondary Q branches" which can be attributed to the hot bands $v_4 + v_6 - v_6$ and

 $2v_4 + v_6 - v_6$.

A number of characteristics of symmetric top spectra aid in the initial assignment of spectral lines. For example, subband identification is greatly aided by the $J \ge K$ requirement which gives rise to a number of "missing lines". In addition, nuclear spin statistics for CD_3X molecules predict that all spectral lines involving transitions from levels having ground state K values which are any integral multiple of 3 will be 11/8 times as strong

as the other lines. Thus every third Q branch is noticeably more intense, even though the change in intensity is considerably less than the 2/1 ratio for CH_3X molecules. An excellent diagram of the expected intensities in a perpendicular band of a symmetric top molecule (disregarding the above mentioned spin statistics) is given by Herzberg (36). It will be noticed that ${}^{R}R_{K}(J)$ and ${}^{P}P_{K}(J)$ lines tend to dominate the fine structure for high K, but for very low K values one can expect to find both R and P branches of a given subband (e.g. ${}^{R}R_{0}(J)$ and ${}^{R}P_{0}(J)$).

With a basic knowledge of the above spectral features it is possible for even the beginner to assign a number of lines of a band such as $2v_4$ of CD₃I. In $2v_4$, 70 to 80 $R_{K}(J)$ lines had obvious assignments, and these lines were immediately put into a single-band fit. Such a fit was used to predict more $R_{r}(J)$ lines (by giving the unidentified transitions zero weights) and then the list of observed frequencies was searched for lines which are predicted by the fit. By such an iterative process most of the $R_{R_{\mu}}(J)$ lines of $2v_{\lambda}$ were assigned. It was expected that with most of these $R_{\mu}(J)$ lines already assigned, one would be able to predict $P_{K}(J)$ lines to a high degree of accuracy. However, this was not the case, because, in order to accurately determine the set of constants $A_0 + 2A_e \zeta_4^z$, α_4^A , and D_0^K (all of which have quantum coefficients which are dependent only on K and AK), it is imperative that some lines with a negative ΔK be included in the fit. By further inspection of the chart, some $P_1(J)$ and $P_{P_2}(J)$ lines were found along with a few $P_{P_q}(J)$ lines on the low-frequency side of the parallel component. Once these were

found, the fit was able to predict more ${}^{P}P_{10}$ and ${}^{P}P_{11}$ lines. It was later discovered that much time and trouble can usually be saved in this assignment process if a few Q branch frequencies are initially included in the fit in order to help determine more accurate values of the terms having coefficients dependent on only K and ΔK . In all the fits which were done after $2\nu_4$ of CD₃I, rough Q branch frequencies were included during the initial assigning process.

Once the perpendicular component of $2\nu_{L}$ was successfully fit, it was found that the resultant constants could be used to predict the frequencies of the parallel component which overlaps the $K\Delta K = -8, -7, -6, -5, -4,$ and -3 subbands of the perpendicular component. Three distinct series of lines can be seen in the parallel component, although many of the lines are too broad to be included in the fit. The broad lines are the result of the overlapping of transitions of differing K values. For example the K = 2, K = 6, and K = 10 subbands all overlap. Over 60 narrow lines from the parallel component were included in the final $2v_A$ fit, and were given weights appropriate to the line shape and expected intensity of the assigned K value. For example, the series of lines formed by overlapping of the K = 3 and K = 5 subbands were assigned as K = 3 lines because this series is approximately twice as strong as that made up of K = 5 lines. A study of the singleband frequency expression shows that parallel component lines of high J are very valuable in determining a precise value of α_{L}^{B} , and in the case of $2v_4$ of CD₃I this effect was very apparent. The final single-band fit of $2v_L$ had a standard deviation of 0.007 cm^{-1} and determined the most precise set of constants of

all the bands analyzed. The results of this fit are given in Table 6.1 along with the results from previous work on CD_3I . The microwave values of B_0 , D_0^J , and D_0^{JK} which have been used in all the CD_3I fits are included in Table 6.2.

Many ${}^{R}_{R_{K}}(J)$ lines of the v_{4} band could be immediately identified. However, the low-frequency side of this band was characterized by an overlapping of lines from different subbands. For example, the ${}^{P}P_{9}(J)$ lines fall on top of ${}^{P}P_{P}(J+10)$ lines. This greatly limited the number of negative ΔK lines which could be included in the fit. In addition, it was found that the ${}^{P}P_{12}$, ${}^{P}P_{10}$, and ${}^{P}P_{9}$ lines which could be identified did not fit well with the rest of the band. These lines were therefore suspected of being perturbed and were given zero weights. The results of the v_{4} fit of unperturbed lines is given in Table 6.1, and the precision of the respective constants as determined by the two singleband fits may be compared. The wide range of K ΔK values available in the $2v_{4}$ perpendicular component together with α_{4}^{A} and α_{4}^{B} information from the parallel component are the major reasons for the greater precision of constants found in the fit of $2v_{4}$.

At this point in the analysis procedure, one must try to decide how to determine the best value of A_0 from the available data. As Chapter III points out, the results of single-band fits of v_4 and $2v_4$ can be combined directly to obtain A_0 . In this case,

> $A_0 - A_e \zeta_4^z = 2.1324$ from v_4 $A_0 + 2A_e \zeta_4^z = 3.4726$ from $2v_4$ $3A_0 = 7.7374$ $A_0 = 2.5791$ cm⁻¹

and thus

Table 6.1

Molecular Constants of CD_3I Obtained from Single Band Fits (in cm⁻¹)

This work:	√4 ^(k=1)	2v ₄ (k=-2)
ν ₀ -k(ΔK) ² A _e ζ ^z ₄	2298.087 <u>+</u> 0.006 ^a	4581.387 <u>+</u> 0.005 (⊥) 4546.115 <u>+</u> 0.006 (∥)
$A_0 - kA_e \zeta_4^z$	2.1324 <u>+</u> 0.0005	3.4726+0.0005
D ₀ ^K	$(23\pm10) \times 10^{-6}$	$(36\pm2) \times 10^{-6}$
$\alpha_4^{\mathbf{A}}$	$(13.5\pm0.4) \times 10^{-3}$	$(12.89\pm.04) \times 10^{-3}$
^B ^a ₄	$(86\pm10) \times 10^{-6}$	(82 <u>+</u> 3) × 10 ⁻⁶
	^a Quoted unc e rtainties Table IV)	are 95% s.c.i. (See

Previous work:

(B) Jones, Popplewell, and Thompson (21) (A) Morino and Nakamura (20) $v_0(v_1) = 2298.53$ $v_0(v_4) = 2298.1$ $\alpha_{L}^{A} = 0.014$ $\alpha_{\perp}^{A} - \alpha_{\perp}^{B} = 0.015 \text{ (from } v_{\perp}\text{)}$ $\alpha_{\perp}^{A} - \alpha_{\perp}^{B} = 0.012 \text{ (from } 2\nu_{\perp})$ $A_0 = 2.586$ $A_0 = 2.586$ $\zeta_{4}^{z} = 0.178$ $\zeta_{l_{1}}^{z} = 0.178$ (D) J. W. Boyd (34) (C) Joffrin, N. Van Thanh, and Barchewitz (22) $v_0(2v_4) = 4581.397$ $v_0(2v_4) \perp = 4580.23$ $v_0(2v_4) = 4546.10$ $v_0(2v_4) = 4546.14$ $\alpha_{L}^{A} = 0.013 \pm 0.003$ $A_0(1+2\zeta_4^z) = 3.472$ $\alpha_4^{\rm A} - \alpha_4^{\rm B} = 0.01268$ $\alpha_{4}^{B} = 0.00017 \pm 0.00001$ $D_0^K = 0.000038$ $\zeta_{A}^{z} = 0.206$ $\alpha_{L}^{B} = 0.000091$

Table 6.2

Molecular Constants Resulting from Simultaneous Fit

of v_4 and $2v_4$ of CD_3I (in cm⁻¹).

Constant	Value	95% s.c.i. ^a
۷ ₀ (۷ ₄)	2298.526 ₅	0.003
v ₀ (2v ₄ 1)	4580.494 ₈	0.005
v ₀ (2v ₄)	4546.1156	0.005
A ₀	2.57882	0.0004
A _e ζ ^z ₄	0.44676	0.0002
D ₀ ^K	0.000035	0.000002
$\alpha_4^{\mathbf{A}}$	0.01290	0.00004
B a ₄	0.000083	0.000002

Standard Deviation of fit = 0.008 cm^{-1}

Input Microwave Values of Ground State Constants (37)

Constant	Value (cm^{-1})
^в о	0.2014822
D ^J O	1.197×10^{-7}
D ^{JK}	1.612×10^{-6}

^aSimultaneous confidence intervals (95%) for the eight constants determined. In this case ~ 4 × standard error of the coefficient. This approach has three obvious difficulties:

- (1) The manner of combining these two constants is uniquely determined by their algebraic forms. Thus, as in the case above, if one constant comes from a rather incompletely assigned band, it is still not possible to give it a lower weight in combining it with the results from the better band.
- (2) A final result of such an analysis is to find two values of each of the constants α_4^A , α_4^B , and D_0^K , even though there is certainly only one true value of each.
- (3) While it is possible to calculate the standard error of the A₀ which results from combining the sets of constants, the calculation of any sort of a meaningful simultaneous confidence interval (s.c.i.) (see Appendix B) would be most difficult.

The first two of these difficulties can be overcome by performing a weighted average of the two sets of constants from v_4 and $2v_4$. Weights should be given which are inversely proportional to the variance of the individual constants. The new averaged constants (usually $D_0^K_{av}$, $\alpha_4^A_{av}$, and $\alpha_4^B_{av}$) must then be held constant in new fits of v_4 and $2v_4$ in order to determine the best values of $A_0 - kA_e \zeta_4^z$ (k = 1 and k = -2).

For example, in the case of α_4^A from ν_4 and $2\nu_4$ of CD_3I ,

$$\left[\frac{1}{(10)^2} + \frac{1}{(1)^2}\right] \alpha_4^{A} = \frac{1}{(10)^2} \alpha_4^{A} (\nu_4) + \frac{1}{(1)^2} \alpha_4^{A} (2\nu_4)$$

Therefore in this case,

$$\alpha_4^{A} = \alpha_4^{A} (2\nu_4)$$

The situation is similar for α_4^B and D_0^K . If the average values α_4^A av, α_4^B av, and D_0^K are held constant in the v_4 fit, the new value of $A_0 - A_e \zeta_4^Z$ is 2.1321. If this is combined with the $A_0 + 2A_e \zeta_4^Z$ from $2v_4$, one obtains

$$A_0 = 2.5789$$

This should be the most precise A₀ value which can be obtained by combining single-band fits. However, the difficulty of obtaining the correct s.c.i. still remains.

A simultaneous fit of v_4 and $2v_4$ with the generalized frequency expression of Table 3.1 provides a more direct way to overcome the above difficulties. The results of such a fit for this case are given in Table 6.2 along with previous values of A_0 obtained by the method of zeta-sums. The standard deviation of this fit of 464 lines (0.008 cm⁻¹) is only slightly larger than that of the single-band fits (0.007 cm⁻¹). The final assignments, observed frequencies, and the line weights are given in Appendix C.

The sixteen apparently perturbed lines of v_4 were given zero weights in the simultaneous fit, and their observed minus calculated frequencies are shown along with the other lines in Appendix C. The simultaneous fit indicated the lines were indeed perturbed since they clearly did not fit well with the other lines in either band. The observed minus calculated (OBS-CALC) values are almost independent of J, but increase rapidly with K. The ability of the simultaneous fit to help find perturbed subbands and the corresponding energy level shifts is more clearly illustrated in the case of the more extensive perturbation in v_4 of CD₃Cl (see Chapter VII).

The A_0 resulting from the zeta-sum analysis of Morino and Nakamura (20), as shown in Table 6.2, was obtained from an analysis using the Q branches of v_4 , v_5 , and v_6 by fitting the frequencies with Eq. (3.3a). By refitting their data, the standard error of the resultant A_0 has been calculated by SYMFIT to be approximately 0.001 cm⁻¹, which is an order of magnitude larger than the standard error resulting from a simultaneous fit of v_4 and $2v_4$. This is the standard error of the constant due to random errors in observed frequencies and is theoretically quite independent of various approximations made in zeta-sum method (see Chapter III). The standard error of the zeta-sum A_0 could be considerably lowered in the case of a fairly complete set of v_4 , v_5 , and v_6 bands. In practice, for CD₃X molecules it is found that the strongly absorbing v_2 parallel band overlaps the low-frequency Q branches of v_5 (20).

In summary, the determination of A_0 for CD_3I by a simultaneous fit has proven to be precise and direct. The advantages of this method over either determination by single-band fits or by the method of zeta-sums have been illustrated.

CHAPTER VII

ANALYSIS OF v_4 AND $2v_4$ OF CD₃C1

Survey spectra of the ν_4 and $2\nu_4$ bands of CD_3Cl are shown in Figure 7.1. Except for the ${}^{R}Q_{14}$ and ${}^{R}Q_{15}$ lines of ν_4 , which seem rather perturbed, the general appearance of both bands is quite normal. The CO_2 lines which appeared strongly in CD_3I are much weaker in this case and do not show on the survey spectra of ν_4 . The calibration fits of the averaged frequencies result in standard deviations of 0.002 cm⁻¹ for ν_4 and 0.003 cm⁻¹ for $2\nu_4$.

The analysis procedure started with the $2v_4$ band and proceeded in a manner similar to that used in the case of CD_3I . The first new problems which arose involved the $2v_4$ parallel component which could not be predicted with the constants obtained by fitting the ${}^{R}R_{K}(J)$ and ${}^{P}P_{K}(J)$ lines of the perpendicular component. The effect of a perturbation in the parallel component is very obvious in the ${}^{Q}Q_{K}$ lines at its center. Identifications for $K \le 6$ are uncertain for both the ${}^{Q}Q_{K}$ lines and for the ${}^{R}Q_{K}$ and ${}^{P}Q_{K}$ lines, even though the ${}^{Q}Q_{K}$ line positions are quite normal for K > 6. It is possible that a further study could result in a better understanding of this perturbation; however, since the perpendicular component did fit well, no more time was spent on the parallel component in this study. The results from the final single-band fit (201 lines) are given in Table 7.1. As in the case of CD_3I , only second-order terms were found to have statistically significant values.

Table 7.1 Second Order Molecular Constants of CD_3C1 from Single Band Fits (in cm⁻¹) $2v_4 (k = -2)$ $v_4 (k = 1)$ Constant $v_0 - k(\Delta K)^2 (A_e \zeta_4^z)$ 2283.001<u>+</u>0.009 4552**.175<u>+</u>0.006** $A_0 - kA_e \zeta_4^z$ 2.138<u>+</u>0.002 3.5001+0.0006 $(from 2v_4)$ $(28+4) \times 10^{-6}$ DOK $(12.1\pm0.2) \times 10^{-3}$ $(12.47\pm0.06) \times 10^{-3}$ $\alpha_4^{\mathbf{A}}$ $(101\pm17) \times 10^{-6}$ $(117\pm4) \times 10^{-6}$ α_4^{B}

> Standard Deviations of Fits: $v_4 \sim 0.010 \text{ cm}^{-1}$ $2v_4 \sim 0.008 \text{ cm}^{-1}$

Average Microwave Values of Ground State Constants (37)

 Constant
 Value (cm⁻¹)

 B₀
 0.360127

 D₀^J
 0.00000359

 D₀^{JK}
 0.00000339

In the v_4 and $2v_4$ bands of CD_3Cl there is little evidence of the two naturally occurring chlorine isotopes (Cl^{35} and Cl^{37}). Because of this, the values of B_0 , D_0^J , and D_0^{JK} which are available for both isotopes from microwave work (37) were averaged with weights given according to the natural abundance of Cl^{35} and Cl^{37} (approximately 3 to 1).

The ${}^{P}P_{K}(J)$ and ${}^{R}R_{K}(J)$ assignments were easily made in the v_{4} band. However, when these 250 lines were put into a singleband fit, the disappointing result was a standard deviation of over 0.02 cm^{-1} , even though no lines seemed to be obviously perturbed. In an effort to determine the cause of the problem, the ${}^{R}R_{K}(J)$ and ${}^{P}P_{K}(J)$ lines were separated. It was found that the two halves of the band fit well separately (to about 0.008 cm^{-1}) in each case. The major difference in the sets of constants determined by the two fits was in α_{4}^{B} , which was much larger in the case of the ${}^{P}P_{K}(J)$ lines. The α_{4}^{B} as determined by the ${}^{R}R_{K}(J)$ lines was approximately equal to that found in the case of $2v_{4}$, whereas that from the ${}^{P}P_{K}(J)$ lines was about twice as large. At this point one might guess that the ${}^{P}P_{K}(J)$ lines of v_{4} are subject to a Jdependent perturbation which shifts the upper states in such a way as to produce a new "effective α_{4}^{B} ".

To further study this effect, the subbands of v_4 and $2v_4$ were analyzed individually. In such fits, the single-band frequency expression (with K and ΔK constant) takes the form,

> $v = v_0$ (subband origin) + (microwave determined terms) $- \alpha_4^B (\Delta v_4) (J + 1 + \Delta J) (J + \Delta J)$

when third and fourth-order terms are ignored. To determine a statistically significant α_4^B from a subband, approximately 10 to 20 lines of differing J values are required. All the subbands of v_4 and $2v_4$ having a sufficient number of lines to individually determine α_4^B were fit with the above expression, and the results of these fits are shown on the graph of Figure 7.2. It will be noticed that α_4^B values determined by the ${}^R_R{}_K(J)$ lines of v_4 and those from $2v_4$ are compatible; however, the effective α_4^B values from the K $\Delta K \leq 0$ subbands of v_4 are clearly quite different. The error bars given on the graph are \pm (standard errors of α_4^B) and are therefore somewhat optimistic.

Another effective and perhaps more direct way to determine exactly which subbands are perturbed is to perform a simultaneous fit of all the identified lines of v_4 and $2v_4$. When the perturbed lines of v_4 are fit with the many unperturbed lines of both bands, they no longer have such a large effect on the constants from the fit. Therefore the perturbed lines no longer fit well, and the OBS-CALC values from the fit clearly indicate which subbands are perturbed. These lines are then given zero weights in the simultaneous fit, and their OBS-CALC values from the fit indicate the magnitude and direction of the shifts in the upper levels.

Figure 7.3 indicates the OBS-CALC values in the case of the four subbands on the far left of Figure 7.2. These deviations are seen to have a consistent J dependence, and also gradually become larger for higher K values. The v_4 section of Appendix D includes the smaller deviations of the other perturbed subbands. In the case of the ${}^{P}P_3$ (J \leq 12) and ${}^{P}P_1$ (J \leq 12) subbands, the

deviations were sufficiently small so that these lines could be given some weight in the fit. This was advantageous since both v_4 and $2v_4$ had very few usable negative ΔK lines, and thus these lines were very valuable in determining better values of α_4^A and D_0^K in the simultaneous fit.

The results of a single-band fit of the 130 largely unperturbed lines of v_4 are given in Table 7.1. A fit of these lines was not able to determine a statistically significant D_0^K (i.e. the 95% s.c.i. was larger than the determined D_0^K), and thus this constant was taken from the fit of the $2v_4$ band and was held constant in the v_4 fit.

The constants resulting from the simultaneous fit of v_4 and $2v_4$ are given in Table 7.2. The resultant A_0 is seen to be less precise than that obtained for CD_3I , but still appears to be an order of magnitude more precise than the A_0 value from zeta-sums. The zeta-sum A_0 of CD_3Cl as determined by Morino and Nakamura is quite uncertain because the v_2 band overlaps v_5 to a larger extent in this case than for the other CD_3X molecules (20). This overlapping affects the A_0 determination in two ways:

- (1) It limits the precision of A_0 by reducing the number of data points in v_5 ; therefore $C_1(5)$, $C_2(5)$ and $C_3(5)$ are the major contributors to the variance of A_0 . By use of SYMFIT, the resultant standard error in A_0 was determined to be 0.002 cm⁻¹.
- (2) The large number of ${}^{R}Q_{K}$ lines compared to the small number of ${}^{P}Q_{K}$ lines lowers the accuracy of A_{0} by increasing the effect of the systematic error resulting

Table 7.2

Molecular Constants Resulting from a Simultaneous

Fit of
$$v_4$$
 and $2v_4$ of CD_3C1 (in cm⁻¹)

ν _α (ν _ε) 2283.455	0.008
0 4 4	
v ₀ (2v ₄) 4551.273	0.006
A ₀ 2.5930	0.0006
A _e ζ ^z ₄ 0.4532	0.0002
D_0^K 23 × 10 ⁻⁶	2×10^{-6}
$\alpha_4^{\rm A}$ 12.53 × 10 ⁻³	0.06×10^{-3}
$\alpha_4^{\rm B}$ 114 × 10 ⁻⁶	5×10^{-6}

Standard Deviation of Fit = 0.009 cm^{-1}

 A_0 from ζ -Sum Approximation = 2.613 (20)

from the assumption that the Q branch peaks all correspond to the same J value.

In summary, a simultaneous analysis of v_4 and $2v_4$ of CD_3Cl has resulted in an accurate value of A_0 which is statistically different from and superior to that obtained by zeta-sum methods. The simultaneous fit was useful in determining the location and magnitude of a systematic perturbation in the low-frequency half of the v_4 band. The perturbation is seen to increase the magnitude of the effective α_4^B in the perturbed region.

CHAPTER VIII

ANALYSIS OF v_4 AND $2v_4$ OF CD_3Br

Survey spectra of these two bands are shown in Figure 8.1. Several irregular features occur in both v_4 and $2v_4$ of CD_3Br , not all of which can be readily seen in the figure. The more obvious abnormalities in the v_4 band are the perturbed Q branch on the low-frequency side $({}^PQ_8)$ and the strong fine structure between RQ_6 and ${}^RQ_{12}$. In $2v_4$, perturbations are obvious in ${}^PQ_{12}$ and RQ_7 . The Q branches to the right of RQ_7 are narrower and closer together (which hints of a shift in the effective values of α_4^B and $A_0 + 2A_e\zeta_4^z$). Another characteristic of $2v_4$ under higher resolution is a splitting of almost all lines, with the splittings differing in magnitude from one subband to another.

High resolution spectra were recorded under the experimental conditions given in Table 4.3. The measured spectra were calibrated and averaged with program SHAFT, with calibrations fitting to 0.002 cm⁻¹ for v_4 and to 0.003 cm⁻¹ for $2v_4$.

Over 240 lines were assigned in v_4 without undue difficulty. The only problem encountered in the ${}^{R}_{R_{K}}$ lines (for 3 < K < 9) was an overlapping of lines which results in the many strong absorptions which may be seen on the rapid survey of Figure 8.1. The previously mentioned perturbation in the K ΔK = -8 subband made it impossible to assign any ${}^{P}P_{8}(J)$ lines. The same perturbation would also seem to be responsible for the smaller shifts (less than 0.05 cm⁻¹) in the line positions of the adjacent

subbands (K Δ K = -9 and -7).

When the P_{p_7} and P_{p_9} lines were given zero weights, the constants resulting from a single-band fit of the 209 unperturbed lines are given in Table 8.1. The OBS-CALC values for the perturbed subbands along with those of other lines are given in Appendix E.

Assuming that the splittings of lines due to the isotopes of bromine (Br⁷⁹ and Br⁸¹) would not be resolved, the microwave values of B_0 , D_0^J , and D_0^{JK} for the two isotopes were averaged according to natural abundance. These average values were used in the v_4 fit described above and are recorded in Table 8.1. We did, however, notice the effects of B_0^{79} and B_0^{81} for high values of J in series of ${}^{P}P_1$, ${}^{P}P_2$ and ${}^{P}P_3$ subbands. For J > 20 the lines are broad and in some cases are split. The calculated line splittings for these cases is approximately 0.04 cm⁻¹, and therefore this effect is barely resolved by the spectrometer. Because of this isotopic broadening, no lines of J > 28 were included in the v_4 fit. The limited number of high J values reduces the precision of the α_4^B value determined by the fit.

Even before attempting to analyze the $2v_4$ band, the following characteristics were noted:

- (1) Most of the lines of the $2v_4$ band are split into two components of nearly equal intensities.
- (2) In the perpendicular component, the Q branch separations on the left side of ${}^{R}_{Q_{7}}$ are different from those on the right.
- (3) Because of the overlap of subbands in the parallel component, our resolution is too low to determine if the

Table 8.1

Molecular Constants from a Single Band

Fit of $v_4 CD_3Br$

Constant	Value	<u>95% s.c.i.</u>
ν ₀ - A _e ζ ^z	2295.986	0.005
$A_0 - A_e \zeta_4^z$	2.1289	0.0005
D ₀ ^K	10×10^{-6}	2×10^{-6}
$\alpha_4^{\mathbf{A}}$	13.19×10^{-3}	0.07×10^{-3}
α_{L}^{B}	129×10^{-6}	16×10^{-6}

Standard Deviation of Fit = 0.009 cm^{-1}

Average Microwave Values of Ground State Constants (37)

 Constant
 Value

 B₀
 0.256775

 D₀^J
 0.000001945

 D₀^{JK}
 0.000002115

Previous Results (cm⁻¹):

(A) Morino and Nakamura (20)

(B) Wiggins, Shull, and Rank (38)
$$v_0(2v_2 ||) = 4541.05$$

$$A_0 = 2.589$$
 $v_0(2v_4 \parallel) = 4541.05$ $v_0(v_4) = 2296.3$ $v_0(2v_4 \perp) = 4579.9$ $\alpha_4^A = 0.013$ $\alpha_4^B - \alpha_4^A = -0.012$

 $Q_{P_{K}}$ and $Q_{R_{K}}$ lines are split; consequently line identifications are uncertain. The Q_{K} lines are distinctly split for K < 6.

The combination of these unusual features has prevented a satisfactory analysis of $2v_4$. A description of the methodology used in trying to analyze the band follows.

The analysis started with an emphasis upon individual subbands of the parallel and perpendicular components. Subband fits were made in the perpendicular component using the lower frequency component of the double lines. α_4^B values resulting from the more completely assigned subbands are shown in Figure 8.2 with the "error bars" indicating standard errors. With the exception of the two subbands close to the $^{R}Q_7$ perturbation ($^{R}Q_5$ and $^{R}Q_6$), the α_4^B values are concentrated in the region between (200 - 300) $\times 10^{-6}$ cm⁻¹. If lines from these supposedly compatible subbands are then put into a single-band fit, the results (in cm⁻¹) are:

$$v_0 + 2A_e \zeta_4^z = 4577.8 \pm .4$$

$$A_0 + 2A_e \zeta_4^z = 3.5 \pm .1$$

$$D_0^K = (201 \pm 120) \times 10^{-6}$$

$$\alpha_4^A = (20 \pm 10) \times 10^{-3}$$

$$\alpha_4^B = (239 \pm 30) \times 10^{-6}$$

The poorly determined constants from this fit are the result of a shift in Q branch separations on different sides of the $^{R}Q_{7}$ perturbation. There appears to be no way to fit these lines (with our molecular model) without identification and inclusion of the effects of the perturbation. In this case the perturbation seems

۰.

**

.

,

•

. •

,

A NO A CONTRACT

to be general enough to make it difficult to treat.

Analysis of the parallel band has depended on the rather uncertain assignments of ${}^Q_{R}_{K}$ lines. Present assignments result in the following α_4^B determinations from the subbands indicated.

		$\frac{\alpha_4^{\rm B} \times 10^6 \text{ cm}^{-1} (95\% \text{ s.c.i.})}{4}$
Q _{R2}	-	203 <u>+</u> 10
Q _{R3}	-	235 <u>+</u> 14
Q _{R6}	-	181 <u>+</u> 20

A REPORT OF A

These α_4^B values are not greatly different than those determined from ${}^R\!R_K$ subbands, but a single-band fit of all the parallelcomponent lines results in a large standard deviation and very poorly determined coefficients of K dependent terms. Similar single-band fits were attempted using various combinations of lines from the parallel and perpendicular components without much success.

The above analyses of the perpendicular and parallel components were repeated with the hypothesis that the lower frequency components of the double lines correspond to Br^{81} (using its associated microwave values). This lowers α_4^B for each subband by approximately 20 × 10⁻⁶ cm⁻¹, but does not help the basic fitting problem with K-dependent terms.

The following conclusions can be drawn from the above attempts to analyze $2v_{L}$:

> (1) α_4^B values determined for major portions of the band vary smoothly in areas away from centers of perturbations

(see Figure 8.2). Except for subbands very close to strong perturbations, α_4^B values obtained from different parts of the band are not greatly different, but are considerably larger than those from the subbands of v_4 of CD₃Br or those of any other CD₃X molecule in this study.

- (2) Much higher resolution is needed to make assignments in the parallel component more certain.
- (3) The perturbation (or perturbations) which affects the band has a strong K dependence which makes a fit of the $2v_4$ frequencies impossible with the usual frequency expression.

As a consequence of the perturbed nature of $2v_4$, an A_0 value cannot be obtained by a simultaneous fit. The results of the zeta-sum work of Morino and Nakamura on CD_3Br (20), as quoted in Table 8.1, include a value of $A_0 = 2.589$ which is currently the only value available in the literature. The value of α_4^A from our analysis of v_4 is believed to be an order of magnitude more accurate than the values previously determined at lower resolution (20, 38). Even though the values of α_4^B and D_0^K from our analysis are somehwat lacking in precision, they do have some significance since to our knowledge they have never been previously obtained.

CHAPTER IX

CONCLUSION

Table 9.1 is a comparative summary of the best available values for the molecular constants which may be determined from v_4 and $2v_4$ for the three molecules investigated. Except for the cases indicated by superscripts, they are the results of single or double-band fits with program SYMFIT (see Chapters VI, VII, and VIII). Uncertainties specified in the table correspond to 95% simultaneous confidence intervals.

For CD_3I , all the constants were well determined from a simultaneous fit of v_4 and $2v_4$. In the case of CD_3CI , the constants are somewhat less precise because of a perturbation affecting the low frequency half of v_4 . A second perturbation in the parallel component of $CD_3CI = 2v_4$ prevents an accurate measurement of $v_0(||)$. The least well determined parameters are those of CD_3Br . The band origins for both the perpendicular and parallel components of $2v_4$ could not be accurately determined because of the large effect of K-dependent perturbations. Because $2v_4$ is highly perturbed, A_0 of CD_3Br is limited in accuracy by the nature of the zeta-sum technique (see Chapter III).

A possible method of confirming the accuracy of the A_0 values would be to perform a simultaneous analysis of other v_t and $2v_t$ bands of a symmetric top. Thus A_0 as obtained from v_4 and $2v_t$ could be confirmed or disproved by a simultaneous analysis

		Table 9.1	
	Summary of Constan	ts for CD ₃ X Molecules (cm	-1)
	ဏ ₃ င1	ထ ₃ Br	အ ₃ 1
۷ ₀ (۷ ₄)	2283.455 <u>+</u> 0.008	2296.45 ^b	2298.526+0.003
(ד ⁴ יז) א ⁰	4551.273±0.006	4576.9 ^d	4580.494+0.005
v ₀ (2v ₄)	4516.4 ⁸	4541.05 ^d	4546.115+0.005
A ₀	2.5930 <u>+</u> 0.0006	2.589 ^c	2.5788+0.0004
A ₆ 64	0.4532<u>+</u>0 .0002	0.46 ^c	0.4467+0.0002
D0 D0	(23 <u>+</u> 2) × 10 ⁻⁶	(10 <u>+</u> 2) × 10 ⁻⁶	(36 <u>+</u> 2) × 10 ⁻⁶
α ⁴ α4	(12.53 <u>+</u> 0.06) × 10 ⁻³	(13.19 <u>+</u> 0.07) × 10 ⁻³	(12.90 <u>+</u> 0.04) × 10
α ^B 4	(114 <u>+</u> 5) × 10 ⁻⁶	(129 <u>+</u> 16) × 10 ⁻⁶	(83 <u>+</u> 2) × 10 ⁻⁶
a Approxímat	ed from our chart (+0.	2 cm ⁻¹ due to perturbation	n in ^Q Q _K lines)
^b From our s	ingle band value of v	0 - Ac ^z 64	
Morino and	Nakamura (20)		
d _{Wiggins} , e	t al (38)		·

ግ

of high resolution spectra of v_6 and $2v_6$. Such an approach has recently become feasible with the advent of Fourier transform spectrometers which can offer excellent resolution over wide spectral ranges (e.g. 2μ to 20μ).

A considerable amount of theoretical work has recently been done (33, 39, 40, 41) which may be applicable to the perturbations observed and recorded in this work. The perturbations found on the lower frequency sides of the v_4 bands of each molecule appear to have very systematic deviations. The question as to whether these effects could be caused by the nearby fundamental v_1 must be thoroughly investigated. Now that shifts in energy levels for all three v_4 bands have been determined, such an investigation would be feasible.

Finally it should be possible to use the results of this work to determine certain of the anharmonic constants, and to improve the values of the structural parameters of these molecules. .

.

REFERENCES

.

.

DES

.

•

LIST OF REFERENCES

- 1. H. H. Nielsen, Revs. Mod. Phys., 23, 90 (1951).
- 2. R. L. Dilling, thesis, Michigan State University, 1966.
- 3. B. T. Darling and D. M. Dennison, Phys. Rev., 57, 128 (1940).
- 4. E. B. Wilson and J. B. Howard, J. Chem. Phys., <u>4</u>, 262 (1936).
- 5. C. Eckart, Phys. Rev., <u>47</u>, 552 (1935).
- 6. D. M. Dennison, Phys. Rev., 28, 318 (1926).
- 7. D. M. Dennison, Revs. Mod. Phys., 3, 280 (1931).
- 8. M. Born, W. Heisenberg, and P. Jordan, Zeit. fur Physik, 35, 587 (1926).
- 9. W. Heisenberg, <u>The Physical Principles of the Quantum Theory</u>, Univ. of Chicago Press, Chicago, Illinois, 1930, p. 138-140.
- 10. J. H. Van Vleck, Phys. Rev., 33, 467 (1929).
- W. H. Shaffer, H. H. Nielsen, and I. H. Thomas, Phys. Rev., 56, 895 (1939).
- 12. M. Goldsmith, G. Amat, and H. H. Nielsen, J. Chem. Phys., 24, 1178 (1956).
- 13. G. Amat, M. Goldsmith, and H. H. Nielsen, J. Chem. Phys., <u>27</u>, 838 (1957).
- 14. G. Amat and H. H. Nielsen, J. Chem. Phys., 27, 845 (1957).
- 15. G. Amat and H. H. Nielsen, J. Chem. Phys., 29, 665 (1958).
- 16. G. Amat and H. H. Nielsen, J. Chem Phys., 36, 1859 (1961).
- 17. W. E. Blass, thesis, Michigan State University, 1963.
- G. Herzberg, <u>Molecular Spectra and Molecular Structure II:</u> <u>Infrared and Raman Spectra of Polyatomic Molecules</u>, Van Nostrand, New York, 1945, p. 414.
- 19. T. L. Barnett, thesis, Michigan State University, 1967.

- 20. Y. Morino and J. Nakamura, Bulletin of Chemical Society of Japan, <u>38</u>, 443 (1964).
- E. W. Jones, R. J. L. Popplewell, and H. W. Thompson, Proc. Roy. Soc., <u>288A</u>, 39 (1965).
- 22. C. Joffrin, N. Van Thanh, and P. Barchewitz, Journal de Physique, <u>27</u>, 15 (1966).
- 23. T. L. Barnett and T. H. Edwards, J. Mol. Spectry., <u>20</u>, 347 (1966).
- 24. T. L. Barnett and T. H. Edwards, J. Mol. Spectry., <u>20</u>, 352 (1966).
- 25. T. L. Barnett and T. H. Edwards, J. Mol. Spectry., <u>23</u>, 302 (1966).
- 26. E. Teller, Handb. Jb. Chem. Phys., 9 II, 43 (1934).
- 27. M. Johnson and D. M. Dennison, Phys. Rev., <u>48</u>, 868 (1935).
- 28. D. R. J. Boyd and H. C. Longuet-Higgins, Proc. Roy. Soc., <u>A213</u>, 55 (1952).
- 29. H. C. Allen, Jr. and P. C. Cross, <u>Molecular Vib-Rotors</u>, John Wiley and Sons, Inc., New York, 1963.
- 30. D. B. Keck, thesis, Michigan State University, 1967.
- 31. T. H. Edwards, J. Opt. Soc. America, <u>51</u>, No. 1, 98 (1961).
- 32. L. E. Bullock, thesis, Michigan State University, 1969.
- 33. W. E. Blass, J. Mol. Spectry., <u>24</u>, 38 (1967).
- 34. J. W. Boyd, thesis, Michigan State University, 1962.
- 35. A. Ralston and H. S. Wilf (eds), <u>Mathematical Methods for</u> <u>Digital Computers</u>, John Wiley, New York, 1960.
- 36. G. Herzberg, see Reference 18, p. 425.
- 37. A. K. Garrison, J. W. Simmons, and C. Alexander, J. of Chem. Phys., <u>45</u>, 412 (1966).
- 38. T. A. Wiggins, E. R. Shull, and D. H. Rank, J. of Chem. Phys., <u>21</u>, 1368 (1951).
- 39. D. di Lauro and I. M. Mills, J. Mol. Spectry., <u>21</u>, 339 (1966).
- 40. R. L. Dilling and P. M. Parker, J. Mol. Spectry., <u>22</u>, 178 (1967).
- 41. R. L. Dilling and P. M. Parker, J. Mol. Spectry., 25, 340 (1968).

٠,

APPENDICES

\$

APPENDIX A

PROGRAM SYMFIT

```
PROGRAM SYMFIT (INPUT, OUTPUT)
      COMMON /12/ INFO1, INFO2, INFC3, NUMCON, JUMP, EFIN, EFOUT, T
     10L, IDENT(2)
С
C
      COMMON /123/ IMPLIES USE IN DRIVER, STEPFIT, AND
С
      PRINTOUT.
С
      COMMON /123/ NK(30), NDELMAX, XDEVMAX, CONST(30), ILEVEL
      CUMMON /A/ NAME(30), INL(30), IBAND
      COMMON /100/ JJ(850), KK(850), JDFL(850), KDEL(850), NUDEL
     1(850)
      DIMENSION CON(18,850), FUBS(850), FCALC(850), WT(850),
     1 NUSE(850)
      DIMENSION IH(10)
C
Ç
      NAME CORRESPONDES TO NAMES OF VARIABLES IN A SINGLE
С
      BAND FIT, INL IS THE SAME FOR A DOUBLEBAND FIT
С
      DATA (NAME=2HB0, JHD0J, 4HD0JK, 5HNUZRO, 8HAZRO-AEZ,
     16H-DZROK,6H-ALFAA,6H-ALFAB,4HETAJ,5HBETAJ,6HBETAJK,
     25HBETAK, 5HHZROJ, 6HHZROJK, 6HHZROKJ, 5HHZROK, 7HNUZROPL)
      DATA (INL=2HB0,3HD0J,4HD0JK,7HNUZONU4,8HNUZO2NU ,
     14HAZRO,7HAEZETA+,
     16H-DZROK,8H-ALPHA4A,8H-ALPHA48;5HETA4K,6HBETA4K,
     25HHZROK, 4HETAJ, 5HBETAJ, 6HBETAJK, 7HNUZROPL)
      NUMCON=17
      NCONP1=NUMCON+1
C
C
      OPTION LABEL IBAND IS LABELED COMMON
С
      READ 180, IBAND
      IF (IBAND.NE.8HQ BRANCH.AND.IBAND.NE.8HCORIOLIS)GO TO 5
      NUMCON=5
      NCONP1=18
      INL(1) = 4HCON1
      NAME(1) = INL(1)
      INL(2) = 4HCON2
      NAME(2) = INL(2)
      INL(3) = 4HCON3
      NAME(3) = INL(3)
```

.

```
INL(4) = 4HCON4
      NAME(4) = INL(4)
      INL(5)=4HCON5
      NAME(5) = INL(5)
C
C
      JUMP = 1 ONLY WHEN NEW CONSTANTS (TRIAL) ARE
C
      BEING READ IN
С
    5 JUMP=0
      READ 200, IH
C
C
      STATEMENTS 10, 15, AND 20 ARE THE MAIN DIVIDING
C
      PTS, FOR THE DRIVER
С
   10 IF (IH(10),EQ.8HLAST FIT) GC TO 175
      GU TO 15
   15 IF (IH(10), EQ, 8HCONSTANT) GO TO 25
      GO TO 20
   20 IF (IH(10).EQ.BHNEW DATA) GC TO 65
      GO TO 175
   25 JUMP=1
   30 READ 200, IH
      PRINT 200, (IH(I), I=1,9)
      IF (IH(10), EQ. SHEND HEAD) GC TO 35
      GO TO 30
   35 PRINT 205
      DO 60 J1=1, NUMCON
      IF (IH(10), EQ.6HENDCONST) GC TO 45
      GO TO 40
   40 READ 215, CONST(J1), IH(10)
      GO TO 50
   45 CUNST(J1)=0.0
   50 IF (IBAND, EQ, 8HSINGLEBD) GO TC 55
Ç
C
      PRINTS READ IN CONSTS AND THEIR LABELS FOR SINGLE
C
      OR DOUBLE BAND FITS. WILL SET ALL CONSTS.
C
      ZERO AFTER AN ENDCONST IS FOUND IN COLS, 73-80
С
      PRINT 220, INL(J1), CONST(J1)
      GO TO 60
   55 PRINT 220, NAME(J1), CONST(J1)
   60 CONTINUE
      READ 200, IH
      GO TO 10
   65 M=1
С
С
      HERE WE READ IN CHANGE IN GUANTUM NUMBERS,
C
      GROUND STATE QUANTUM NUMBERS, DBSERVED
С
      FREQ, AND RELATIVE WEIGHT FOR EACH SPECTRAL LINE.
C
      WILL KEEP READING UNTIL AN F IS FOUND IN COLUMN 10
С
```

80

T

```
70 READ 185, NUDEL(M),KDEL(M),JDEL(M),KK(M),JJ(M),FOBS(M)
   1.WT(M)
    IF (NUDEL(M).EQ.D) NUDEL(M)=1
    IF (KDEL(M), EQ.1KF) GO TO 160
    INDATA=M
    IKDEL=KDEL(M)-1RQ
    IJDEL=JDEL(M)-1RQ
    DELTA1=KK(M)+IKDEL
    DELTA2=KK(M)
    DELTAS=JJ(M)+1+IJDEL
    DELTA4=JJ(M)+IJDEL
    D \in LTA5 = JJ(M) + 1
    DELTA6=JJ(M)
    IF (IBAND.NE.8HQ BRANCH.AND.IBAND.NE.8HCORIOLIS) GOTU100
    IF (IBAND.EQ.8HCURIOLIS) GO TO 75
    THIS SECTION PROVIDES THE OPTION OF FITTING
    Q BRANCHES TO THE THREE VARIABLES CON1, CON2, AND CON3.
    CON(1,M) = 1.0
    CON(2,M)=KK(M)+IKDEL
    CON(3,M) = KK(M) + 2
    GU TO 140
    THIS SECTION PROVIDES A FIT OF THE DEVIATIONS SQUARED
 75 IF (KK(M)-8) 80,85,90
 80 \text{ CON(1,M)=FOBS(M)}
    CON(2,M) = 0.0
    CON(3,M) = 0,0
    GO TO 95
 85 \text{ CON}(2,M) = FOBS(M)
    CON(1,M)=0.0
    CON(3.M) = 0.0
    GO TO 95
 90 CON(3,M) = FOBS(M)
    CON(1,M) = 0,0
    CON(2,M) = 0.0
 95 CON(4,M)=JJ(M)+(JJ(M)+1)+FOBS(M)
    CON(5,M) = JJ(M) + (JJ(M) + 1) + KK(M) + (KK(M) - 1)
    FOBS(M) = FOBS(M) + 2
    GO TO 140
100 IF (NUDEL(M)-1) 105,105,110
105 LDEL=IKDEL
    GO TO 115
110 LDEL=-2+IKDEL
115 CON(1,M)=DELTA4+DELTA3-DELTA6+DELTA5+DELTA1++2+DELTA2+
   1*2
    CON(2,M)=-DELTA4**2*DELTA3**2+DELTA6**2*DELTA5**2
    CON(3,M)=+DELTA1**2*DELTA4*DELTA3+DFLTA2**2*DELTA5*DEL
   1TA6
```

C C

С

С

C C

С

```
21
```

```
IF (IBAND.EQ.8HDOUBLEBD) GO TO 120
      CON(4.M) = 1.0
      CON(5,M)=DELTA1**2-DELTA2**2
      CUN(6,M)=DELTA1**4-DELTA2**4
      CON(7,M)=NUDEL(M)+DELTA1++2
      CON(8,M)=NUDEL(M)*(DELTA4*DELTA3=DELTA1**2)
      CON(9,M)=LDEL*DELTA1*DELTA4*DELTA3
      CON(10,M)=NUDEL(M)+DELTA4++2+DELTA3++2
      CON(11, M)=NUDEL(M) * DELTA1 * * 2 * DELTA4 * DELTA3
      CON(12,M)=NUDEL(M)+DELTA1++4
      CON(13,M)=DFLTA4**3*DELTA3**3-DELTA6**3*DELTA5**3
      CON(14,M)=DELTA1++2+DELTA4++2+DELTA3++2+DELTA2++2+DELT
     1A6+DELTA5
      CON(15,M)=DELTA1**4*DELTA4+DELTA3=DELTA2**4+DELTA6*DEL
     11A5
      CON(16, M)=DELTA1**6-DELTA2**6
      GO TO 135
C
C
      THE SECOND CON MATRIX IS FOR DOUBLE BAND FITS.
C
  120 IF (NUDEL(M), NE, 1) GO TO 125
      CUN(4,M) = 1.0
С
C
      PROVIDES FOR TWO PERPENDICULAR BAND CENTERS
С
      CUN(5,M) = 0.0
      GO TO 130
  125 CON(5,M)=1,0
      CUN(4,M) = 0.0
  130 CON(6,M)=DELTA1++2-DELTA2++2
      CON(7,M)=LDFL+DELTA1+(-2)
      CON(8,M)=DELTA1**4-DELTA2**4
      CON(9,M)=NUDEL(M) * DELTA1 ** 2
      CON(10,M)=NUDEL(M)*(DELTA4*DELTA3*DELTA1**2)
      CON(11, M)=LDEL+DELTA1++3
      CUN(12,M)=NUDEL(M) *DELTA1**4
      CON(13, M) = DELTA1 * * 6 - DELTA2 * * 6
      CON(14,M)=LDEL+DELTA1+DELTA4+DELTA3
      CON(15, M)=NUDEL(M)+DELTA4++2+DELTA3++2
      CON(16, M)=NUDEL(M)+DELTA1++2+CELTA4+DELTA3
C
C
      PROVIDES FOR PARALLEL BAND CENTER IF KDEL = 0
C
      LINES ARE READ IN
С
      CON(17,M) = 1,0
      IF (IKDEL.NE.0) CON(17,M)=0.0
      IF (IKDEL.EQ.0) CUN(5,M)=0.0
      GU TO 140
  135 CON(17,M)=1,0
      IF (IKDEL, EQ, 0) CON(4, M)=0,0
      IF (IKDEL.NE,0) CON(17,M)=0,0
```

```
140 FCALC(M) = 0.0
      IF (JUMP) 145,155,145
С
      HERE WE CALCULATE FREQS, FROM THE TRIAL CONSTS.
С
      WHICH HAVE BEEN READ IN
C
  145 DU 150 N=1, NUMCON
  150 FCALC(M)=FCALC(M)+CONST(N)+CON(N,M)
  155 CONTINUE
      M=M+1
      GO TO 70
С
C
      HERE WE READ IN INSTRUCTIONS FOR THE FORTHCOMING
C
      FIT. INFOI INDICATES DESIRE RAW SUMS AND CROSS PRUDUCTS.
C
      INFO2+CORRELATION COEFFIENTS, INFO3 THE DIAGONAL
      ELEMENTS. SEE STEPFIT WRITEUP FOR REST
C
C
      ILEVEL - 1 IMPLIES UPPER STATE ENERGY LEVELS ARE
С
      DESIRED
  160 READ 190, INFO1, INFO2, INFO3, NCELMAX, XDEVMAX, TOL, EFIN, E
     1FOUT, ILEVEL
C
С
      TELLS WHICH VARIABLES ARE TO BE USED.
                                                USUALLY
С
      5 VARIABLES FOR SINGLE BAND SECOND ORDER FIT.
C
      7 FOR DOUBLE BAND FIT. FIRST THREE ARE
C
      MICROWAVE, THEREFORE ARE NOT VARIED.
С
  165 READ 195, (NK(I), I=1,17), IH(10)
С
C
      WILL TAKE NEW SET OF FREQS IF & (NEW DATA) CARD IS
C
      SEEN, THEREFORE USABLE FOR SLBBAND FITTING
С
      IF (IH(10).NE.8H
                                ) GO TO 10
  170 READ 200, IH
      PRINT 200, (IH(M), M=1,9)
      IF (IH(10), NE, 8HEND HEAD) GO TO 170
      CALL STEPFIT (CON; FOBS; FCALC, NJSE, WT, NCONP1, INDATA)
      GO TO 165
  175 CONTINUE
      PRINT 210
С
  180 FORMAT (72X, A8)
  185 FORMAT (4x, 11, 4x, R1, R1, 12, 1x, 12, 5x, F13, 4, 7x, F4, 2)
  190 FORMAT (415,4F10,10X,13)
  195 FORMAT (1711,55X,A8)
  200 FURMAT (10A8)
  205 FORMAT (///)
  210 FORMAT (
                1H5)
  215 FORMAT (F20,52X,A8)
  220 FORMAT (A20, F30, 10)
      END
```

```
83
```

```
SUBROUTINE STEPFIT (DATA, FOBS, FCALC, NUSE, WT, NCONP1, IND
  1ATA)
   COMMON /12/ INF01, INF02, INF03, NUMCON, JUMP, EFIN, EFOUT, T
  10L. IDENT(2)
   COMMON /23/ NODATA, NOVMI, AVEWHT, STDY, NOSTEP, N, WTN, FREQ
  1PRD, YPRED, DEV, XAZKO, XDZKO
   COMMON /A/ NAME(30), INL(30), IRAND
   COMMON /123/ NK(30),NDELMAX,XDEVMAX,CCNST(30),ILEVEL
   DIMENSION N1(30), VECTOR(31,31), INNEX(30), IDEX(30),
  1SIGMA(30),C
  10EN(30), SIGMCO(30), NOTIN(30); XCONST(30)
   DIMENSION DATA(NCONP1, INDATA), FOBS(INDATA), FCALC(IND
  1ATA), WT(IND
  1ATA), NUSE(INDATA) , SVECTOR(31,31), SSIGMCO(30), SCOEN(3
  20)
   DIMENSION XNEWCON(30)
   TYPE DOUBLE
                    VECTOR, SIGMA, COFN, SIGMCO, SIGY, DEFR, VAR
   1F (IDENT(1)) 5,10,5
 5 IDENT(1)=8HINPUT DA
   IDENT(2)=2HTA
10 CONTINUE
   IF(EFOUT,EQ,0,0)EFOUT=1:0E-8
   IF (EFIN.EQ.0.0) EFIN=EFOUT=1.0E=8
   IF (TOL,EQ.0,0) TOL=0,001
   NOVAR=1
   DO 30 I=1, NUMCON
   REDEFINES NAME AND INI
   IF (NK(I)) 15,30,15
15 N1(NOVAR)=NAME(I)
   IF (IBAND, EQ, 8HDOUBLEBD) N1(NCVAR)=INL(I)
   IF (JUMP) 20,25,20
20 XCONST(NOVAR)=CONST(1)
25 NOVAR=NOVAR+1
30 CONTINUE
   NODATA=0
   DO 45 N=1, INDATA
   1F (WT(N)) 40,35,40
   NUSE (N) IS AN INDEX OF ALL NON-ZERO WT, LINES
   NUDATA = TUTAL NUMBER OF NON+ZERO LINES
35 \text{ NUSE(N)=0}
   GU TO 45
40 NUSE(N)=1
```

C C

С

C C

С С SUBROUTINE STEPFIT

T

.

Υ.

.

. .

```
NODATA=NODATA+1
  45 CONTINUE
     NDEL=0
  50 FLEVEL=0.0
     VAR=FLEVEL
     NOMAX=VAR
     NOMIN=NOMAX
     NOENT=NOMIN
     K=NOENT
     NUIN=K
     LOOP=0
     NUVMI=NOVAR-1
     NOVPL=NOVAR+1
     DO 55 I=1, NOVPL
     DU 55 J=1,NOVPL
  55 VECTOR(I,J)=0.0
     IF (NDEL) 80,60,80
  60 SUMWHT=0.0
     1DEX(NOVAR)=NCONP1
     DU 75 N=1, INDATA
     NUM=0
     DO 70 I=1, NUMCON
     IF (NK(1)) 65,70,65
  65 NUM=NUM+1
     IDEX(NUM)=I
  70 CONTINUE
     DATA (NCONP1,N) = FOBS(N) - FCALC(N)
  75 SUMWHT=SUMWHT+WT(N)
  80 AVEWHT=SUMWHT/NODATA
     DO 95 N=1, INDATA
     IF (NUSE(N)) 85,95,85
  85 WHT=WT(N)/AVEWHT
     DU 90 I=1, NOVAR
     VECTOR(I, NOVPL)=VECTOR(I, NOVPL)+DATA(IDEX(I), N)+WHT
     DO 90 J=I,NOVAR
     AT THIS POINT, VECTOR (1, J) IS
                                      A
     GENERAL VARIABLE ( INDEPENDENT OR DEPENDENT)
  90 VECTOR(I,J)=VECTOR(I,J)+DATA(IDEX(I),N)+DATA(IDEX(J),N
    1) * WHT
     VECTOR(NOVPL,NOVPL)=VECTOR(NOVPL,NOVPL)+WHT
  95 CONTINUE
     IF (INF01) 100,130,100
 100 PRINT 490
     NUMAX=NOVMI
     IF (NOVMI.GT.7) NOMAX=7
     PRINT 500, (I,I=1,NOMAX)
     SVECTOR(NOVAR, NOVPL)=VECTOR(NCVAR, NOVPL)
     DO 104 I=1, NOMAX
104 SVECTOR(I,NOVPL)=VECTOR(I,NCVPL)
```

C C

С

С

PRINT 505, SVECTOR (NOVAR, NOVPL); (SVECTOR (I, NOVPL), I=1, N 10MAX) 105 IF (NOVMI.EQ.NOMAX) GO TO 110 MUMAX=NOMAX+1 NUMAX=MOMAX+7 1F (NOMAX.GT.NOVMI) NOMAX=NCVMI PRINT 510, (1,I=MOMAX,NOMAX) DU 109 I=MOMAX, NOMAX SVECTOR(I, NOVPL)=VECTOR(I, NOVPL) 109 PRINT 505, (SVECTOR(I,NOVPL), IEMOMAX, NOMAX) GO TO 105 110 CONTINUE NOMIN=1 NUMAX=NOVMI NGU=5115 IF (NOVMI.GT.NGO) NOMAX=NGO PRINT 520, (I,I=NOMIN,NOMAX) DO 120 J=NOMIN, NOVMI 111=1 IF (JJJ.GT.NOMAX) JJJ=NDMAX DO 118 I=NOMIN, JJJ 118 SVECTOR(I,J)=VECTOR(I,J) DO 119 I=NOMIN, NOMAX 119 SVECTOR(I, NOVAR) = VECTOR(I, NOVAR) 120 PRINT 525, J, (SVECTOR(I,J), I=NOMIN, JJJ) PRINT 530, (SVECTOR(I,NOVAR), I=NOMIN, NOMAX) IF (NOMAX.EQ.NOVMI) GO TO 125 NOMIN=NOMAX+1 NGO=NGO+5 NOMAX=NOVMI GO TO 115 125 CONTINUE SVECTOR(NOVAR, NOVAR)=VECTOR(NCVAR, NOVAR) PRINT 535, SVECTOR (NOVAR, NOVAR) 130 NOSTEP==1 ASSIGN 310 TO NUMBER DEFR=VECTOR(NOVPL,NOVPL)-1.0 DO 150 I=1, NOVAR IF (VECTOR(I,I)) 135,140,145 135 PRINT 580, I GO TO 485 140 PRINT 585, I SIGMA(I)=1.0GO TO 150 145 SIGMA(I)=DSORT(VECTOR(I,I)) 150 VECTOR(I,I)=1.0 D0 155 I=1,NOVMI 191=1+1 DO 155 J=IP1, NOVAR VECTOR(I,J)=VECTOR(I,J)/(SIGMA(I)+SIGMA(J)) 155 VECTOR(J,I)=VECTOR(I,J)

```
IF (INFO2) 160,175,160
 160 NUMIN=1
     NUMAX=NOVMI
     NG0=15
     NUMINP=2
 165 IF (NOVMI.GT.NGO) NUMAX=NGO
     PRINT 540, (I,I=NOMIN,NOMAX)
     DO 170 I=NOMINP,NOVMI
     III=I=1
     IF (III,GT.NOMAX) III=NOMAX
     DO 168 J=1,III
168
     SVECTOR(I,J)=VECTOR(I,J)
 170 PRINT 545, I, (SVECTOR(I, J), J=1, III)
     DO 169 I=NOMIN, NOMAX
169 SVECTOR(I, NOVAR)=VECTOR(I, NOVAR)
     PRINT 550, (SVECTOR(I,NOVAR), I=NOMIN, NOMAX)
     IF (NUMAX.EQ.NOVMI) GO TO 175
     NUMIN=NOMAX+1
     NUMINP=NOMIN+1
     NG0=NG0+15
     NOMAX=NOVMI
     GU TO 165
 175 NOSTEP=NOSTEP+1
     IF (VECTOR(NOVAR, NOVAR)) 180,180,185
 180 NSTPM1=NOSTEP-1
     PRINT 600, NSTPM1
     GO TO 395
 185 SIGY=SIGMA(NOVAR)+DSQRT(VECTOR(NOVAR,NOVAR)/DEFR)
     DEFREDEFR-1.0
     IF (DEFR) 190,190,195
 190 PRINT 605, NOSTEP
     GU TO 395
 195 NOIN=0
     VMAX=NOIN
     VMIN=VMAX
     DO 245 I=1, NOVMI
     IF (VECTOR(I,I)) 200,245,205
 200 PRINT 610, I,NOSTEP
     GU TO 395
 205 IF (VECTOR(I,I)=TOL) 245,210,210
 210 VAR=VECTOR(I,NOVAR) +VECTOR(NOVAR,I)/VECTOR(I,I)
     IF (VAR) 215,245,235
 215 NOIN=NOIN+1
     INDEX(NOIN)=I
     CDEN(NOIN)=VECTOR(1,NOVAR)+SIGMA(NOVAR)/SIGMA(1)
     SIGMCO(NOIN)=(SIGY/SIGMA(I))+CSORT(VECTOR(I,I))
     IF (VMIN) 230,225,220
 220 PRINT 590
     GO TO 485
 225 VMIN=VAR
     NOMIN=I
```

```
87
```

GO TO 245 230 IF (VAR-VMIN) 245,245,225 235 IF (VAR-VMAX) 245,245,240 240 VMAX=VAR NOMAX=I 245 CONTINUE IF (NOIN) 250,255,260 250 PRINT 595 GO TO 485 255 STDY=SIGY GO TO 320 260 IF (INF03) 265,310,265 265 IF (NOENT) 270,270,275 270 PRINT 570, NOSTEP,K GO TO 280 275 PRINT 575, NOSTEP,K 280 IF (LOOP.NE.0) FLEVEL=FL SSIGY=SIGY PRINT 555, K, FLEVEL, SSIGY DO 285 J=1,NOIN N=INDEX(J) SCOEN(J)=COEN(J) SSIGMCO(J)=SIGMCO(J) 285 PRINT 560, N,N1(N),SCOEN(J),SSIGMCO(J) IF (JUMP) 290,305,290 290 IF (LOOP) 295,305,295 295 PRINT 495 DO 300 J=1, NOIN N=INDEX(J) XNEWCON(N)=COEN(J)+XCONST(N) SSIGMCO(J)=SIGMCO(J) 300 PRINT 560, N,N1(N), XNEWCON(N), SSIGMCO(J) 305 GO TO NUMBER, (310,400) 310 FL=FLEVEL FLEVEL=VMIN+DEFR/VECTOR(NOVAR, NOVAR) IF (EFOUT+FLEVEL) 320,320,315 315 K=NOMIN NUENT=0 GO TO 335 320 FLEVEL=VMAX*DEFR/(VECTOR(NOVAR;NOVAR)=VMAX) IF (EFIN=FLEVEL) 330,325,390 325 IF (EFIN) 390,390,330 330 KENOMAX NOENT=K 335 IF (K) 340,340,345 340 PRINT 615, NOSTEP GO TO 485

345 D0 365 I=1,NOVAR IF (I=K) 350,365,350 350 D0 360 J=1,NOVAR

IF (J=K) 355,360,355

.
355 VECTOR(I,J)=VECTOR(I,J)=VECTOR(I,K)+VECTOR(K,J)/VECTOR 1(K,K)360 CONTINUE 365 CONTINUE DO 375 I=1, NOVAR IF (I+K) 370,375,370 370 VECTOR(I,K)==VECTOR(I,K)/VECTCR(K,K) 375 CONTINUE DO 385 J=1, NOVAR IF (J-K) 380,385,380 380 VECTOR(K,J)=VECTOR(K,J)/VECTOR(K,K) 385 CONTINUE VECTOR(K,K)=1.0/VECTOR(K,K) GO TO 175 390 PRINT 565, IDENT(1), IDENT(2), NODATA, NOVMI, NDELMAX, XDEV 1MAX, AVEWHT, STDY, NOSTEP 395 CONTINUE ASSIGN 400 TO NUMBER LOOP=1GO TO 265 400 CONTINUE DU 401 L=1, NOVMI 401 SVECTOR(L,L)=VECTOR(L,L) IF (INFO3.NE.O) PRINT 620, (L,SVECTOR(L,L),L=1,NOVMI) IF (IBAND.EQ. 8HCURIOLIS) GO TO 410 IF (ILEVEL.NE.D) GO TO 405 CALL PRINT2 GO TO 415 405 CALL PRINT4 (DATA, FOBS, FCALC, WT, NUSE, NCONP1, INDATA) GO TO 415 410 CALL PRINT6 415 XIR=0.0 SWT=XIR DEVMAX=SWT VFIT=DEVMAX NULINE=0 IF (IBAND.EQ.8HDOUBLEBD) GO TO 420 XAZRU=CONST(5) XDZRO=-XNEWCON(3) GO TO 425 420 XAZRO=XNEWCON(3) XDZRO=-XNEWCON(5) 425 DO 470 N=1, INDATA WTN=NUSE(N)+WT(N) WHTEWTN/AVEWHT

DO 430 I=1,NOIN LASSIE=IDEX(INDEX(I)) 430 YPRED=YPRED+COEN(I)+DATA(LASSIE,N) DEV=FOBS(N)+FCALC(N)+YPRED IF (10,+WT(N)) 450,450,435

YPRED=0.0

a

```
435 VFIT=VFIT+WTN+DEV++2
    XIR=XIR+1.0
    SWT=SWT+WT(N)
    NOLINE=NOLINE+1
    IF (NOLINE.LE,50) GO TO 450
    NULINE=0
    IF (IBAND.EQ.BHCURIOLIS) GO TC 445
    IF (ILEVEL.NE.D) GO TO 440
    CALL PRINT2 (DATA, FOBS, FCALC, WT, NUSF, NCONP1, INDATA)
    GO TO 450
440 CALL PRINT4 (DATA, FOBS, FCALC, WT, NUSE, NCONP1, INDATA)
    GO TO 450
445 CALL PRINT6
450 FREQPRD=FCALC(N)+YPRED
    WHT=WHT+AVEWHT
    IF (ILEVEL, NE, D) GO TO 455
    CALL PRINTS (DATA, FOUS, FCALC, WT, NUSE, NCONP1, INDATA)
    GO TO 460
455 CALL PRINT5 (DATA; FOBS; FCALC, WT, NUSE; NCONP1; INDATA)
460 ADEV=ABS(DEV)+SQRT(WHT)+NUSE(N)
    IF (DEVMAX-ADEV) 465,465,470
465 NMAX=N
    DEVMAX=ADEV
470 CONTINUE
    VFIT=VFIT*XIR/((XIR+NQIN)*SWT)
    STDFIT=SQRT(VFIT)
    PRINT 515, VFIT, STDFIT
    1F (NDELMAX-NDEL) 485,485,475
475 IF (DEVMAX-XDEVMAX) 485,485,480
480 NUSE(NMAX)=0
    NDEL=NDEL+1
    NUDATA=NODATA-1
    SUMWHT=SUMWHT-WT(NMAX)
    PRINT 625, NMAX
    GO TO 50
485 RETURN
490 FORMAT ( 11H1SUM OF VAR,/)
495 FORMAT ( +2FINAL CONSTANTS AFTER CORRECTIONS WERE *
   1 * ADDED */)
500 FORMAT ( 9H
                         Y,7117./)
505 FORMAT (X1P7E17,6,E16,6,//)
510 FORMAT (110,6117,/)
515 FORMAT ( 29HOSTAT FROM LINES WHTD LT 10,0,/, +OVAR, =+
                  STD, DEV =+,F7.4/,
   1,F10.6, *
                                        147)
520 FORMAT ( 15HRAW SSCP MATRIX, /5126)
525 FURMAT (X12,1P5E26,10)
530 FORMAT ( 3H Y, 195E26, 10)
535 FORMAT (
             8H Y VS Y,F15,4)
540 FORMAT ( 21H=PARTIAL CORR, COEFF.,//1618)
```

545 FORMAT (13,16F8,4)

550 FORMAT (3H Y, 16F8.4)

- 116

```
555 FORMAT ( 16H - F LEVEL OF X-,11,E10,2,9X, *STD DEV OF*
   1* (0-P)*, F7, 4
                           COEFFICIENT
   1//10X, 41HVARIABLE
                                              STD ERROR,/)
560 FURMAT(111,1X,A8,2F17,12)
565 FORMAT ( 22HILEAST SQUARES FIT OF ,248/, 5H FIT ,14,
   116H DATA POINTS TO , 12,10H VARIABLES, /, * DELETES UP *
   2*TO *,12,23H POINTS IF (0-P) IS GT ,F6,3/, * WHT NURM*
   31X, F6, 2/, 17H STD DEV OF (0-C), F8, 4/, 11H COMPLETED , 12
   4, 6H STEPS)
570 FORMAT ( 8HOSTEP NO, 13/, 15H
                                     VAR, REMOVED, 3)
575 FORMAT ( BHOSTEP NO, 13/, 15H
                                   VAR, ENTERED, 13)
580 FORMAT ( 19H ERROR RESID SQ VAR, 13, 7H IS NEG)
585 FORMAT ( 4HOVAR, 15, 9H IS CONST)
590 FORMAT ( 16HOERROR, VMIN POS)
595 FORMAT ( 15HDERRUR NOIN NEG)
600 FORMAT ( 18H0Y SQUARE NEG STEP; 15)
605 FORMAT ( 22HOZERU DEG FREEDOM STEP, 13)
610 FORMAT ( 9HSQUARE X+, 12, 14H NEGATIVE STEP, 13)
615 FORMAT ( 8HK=0 STEP, 13)
620 FORMAT ( 16H0 DIAG ELEMENTS, /; 16H VAR NO
                                                  VALUE,//
   1(14, E14, 4))
625 FORMAT( 8H1LINE NO, 14, 23H BEING DELETED FROM FIT )
    END
```

Ŧ

SUBROUTINE PRINTUU (DATA, FORS, FOALC.WT, NUSE, NCONP1, IND 1ATA) COMMON /123/ NK(30), NDELMAX, XDEVMAX, CONST(30), ILEVEL COMMON /23/ NODATA, NOVMI, AVEWHT, STDY, NOSTEP, N, WTN, FREQ 1PRD, YPRED, DEV, XAZRO, XDZRO COMMON /100/ JJ(850),KK(850),J0EL(850),KDEL(850),NUDEL 1(850) DIMENSION DATA(NCONP1, INDATA), FOBS(INDATA), FCALC(IND 1ATA), WT(INDATA), NUSE(INDATA) ENTRY PRINT2 PRINT 20 RETURN ENTRY PRINT3 PRINT 25, N,KDEL(N), JDEL(N), KK(N), JJ(N), WTN, FOUS(N), FC 1ALC(N), FREQPRD, DATA(NCONP1, N), YPRED, DEV RETURN ENTRY PRINT4 PRINT 5 RETURN ENTRY PRINTS XGRD=XAZRO+KK(N)++2+CONST(1)+(JJ(N)+(JJ(N)+1)+KK(N)++2 $1) = CONST(2) \neq J$ 2J(N) * * 2 * (JJ(N) + 1) * * 2 - CONST(3) * (K(N) * * 2 * JJ(N) * (JJ(N) + 1)3 = XDZRO + KK(N) + + 4XUPPER=XGRD+FREQPRD PRINT 10, N,KDEL(N),JDEL(N),KK(N),JJ(N),WTN,FOBS(N),FC 1ALC(N), FREQP 1RD, DATA(NCONP1, N), YPRED, DEV, XGRD, XUPPER RETURN ENTRY PRINT6 PRINT 15 RETURN 5 FORMAT (+1 WT OBS FREQ CALC FREQ+ NO. OBS-CALC PRED-CALC CBS-PRED GRD EN+ 1* PRED FREQ 2*ERGY UP ENERGY*) 10 FORMAT (15, X, 2R1, 12, 1H, , 12, 3X, =6, 2, 8F11, 4) 15 FORMAT (33H1 NO. KJUP AT (0-0),5H++2 1 * ZEROS PRE* FIT DEV*) $2 \pm D(D - C) \pm 5H \pm 2$, * IGNORE IGNORE 20 FORMAT (*1 NO. UBS FREQ CALY FREW + WT. OBS-CALC 1*PRED FREQ PRED-CALC CBS=PRFD*) 25 FORMAT (15, X, 2R1, 12, 1H, , 12, 3X, F6, 2, 6F11, 4) END

92

SUBROUTINE PRINTOU

-196

TYPICAL DATA SET SINGLEBD - IN COLUMNS 73-80 CONSTANT - IN COLUMNS 73-80 THIS IS THE INITIAL FIT FOR NANCYS CO3CL 35 TO 37 1 END HEAD - IN COLUMNS 73-80 0.360127 0.00000359 0.000003399 4000.00 2.594 ENDCONST - IN COLUMNS 73-80 NEW DATA -IN CULUMNS 73-80 CD3C2NU4 PQ 8, 8 4503,8080 0.02 CD3C2NU4 PQ 7, 7 4510,4474 0.02 CDJC2NU4 PQ 6, 6 4516,9891 0.02 CDSC2NU4 PU 3, 3 4536,3361 0.02 CD3C2NU4 RR 5,10 4593,6840 0,06 CDJC2NU4 KR 5,11 4594.3735 0.02 4595,1176 CD3C2NU4 RR 5,12 0.02 CD3C2NU4 RR 5,13 4595,8257 0,02 4596,5446 CDJC2NU4 RR 5,14 0.02 CD3C2NU4 RR 5,16 4597,9716 0,02 CD3C2NU4 RR 5,17 4598,6701 0.02 CD3C2NU4 RR 5,18 4599,3722 0,06 CD3C2NU4 RR 5,19 4600,0848 0.02 CD3C2NU4 RR 5,20 4600,7945 0.02 CD3C2NU4 RR 5,21 4601,4998 0.02 CD3C2NU4 RR 5,22 4602,1981 0.02 CD3C2NU4 RR 5,23 4602,9030 0,02 CD3C2NU4 RR 5,24 4603,5916 0.02 4604,2975 CD3C2NU4 RR 5,25 0.02 CD3C2NU4 RR 5,26 4605,0018 0.02 CD3C2NU4 RR 6, 6 4596,7789 0,25 CD3C2NU4 RR 6, 8 4598,2018 0,06 CD3C2NU4 RR 6, 9 4598,9217 0.06 CD3C2NU4 RR 6,10 4599,6380 0.06 CDJC2NU4 RR 6,11 4600,3502 0,06 CD3C2NU4 RR 6,12 4601,0661 0,02 CD3C2NU4 RR 6,13 0,06 4601,7755 CD3C2NU4 RR 6,14 4602,4878 0,06 CDJC2NU4 RR 6,16 4603,8980 0,06 0,06 CD3C2NU4 RR 6,17 4604,6061 CD3C2NU4 RR 6,18 4605,3074 0.06 CD3C2NU4 RR 6,19 4606,0332 0,02 CD3C2NU4 RR 6,20 4606,7386 0,02 CD3C2NU4 KR 6,21 4607.4502 0,06

CD3C2NU4	RR	6.22	4608.1430	0.02
CD3C2NU4	RR	6.24	4609.5419	0,02
CD3C2NU4	20	6.25	4610.2426	0 02
		6 26	4610 0551	
	<u>п</u> п 11 п	6 27		
CD3C2NU4	R R	0,2/		0,02
CD3C2NU4	RR	0,20	4012,3254	0,02
UDJUZNU4	RR	6,29	4013,0409	0.02
CD3C2NU4	RR	6,30	4613,7456	0.02
CD3C2NU4	RR	6,32	4615,1388	0,02
CD3C2NU4	RR	6,33	4615,8386	0,02
CD3C2NU4	RR	6,34	4616,5065	0.02
CD3C2NU4	RR	7, 8	4604,1030	0.06
CD3C2NU4	RR	7, 9	4604,8143	0,06
CD3C2NU4	RR	7,10	4605,5258	0,06
CD3C2NU4	RR	7,11	4606,2395	0.06
CD3C2NU4	RR	7,12	4606.9482	0.02
CD3C2NU4	RR	7,13	4607,6561	0.02
CD3C2NU4	RR	7,14	4608.3772	0.02
CD3C2NU4	RR	7.16	4609.7893	0.02
CD3C2NU4	RR	7.17	4610.4974	0.02
CD3C2NU4	RR	7.18	4611.2196	0.02
CD3C2NU4	RR	7.19	4611.9236	0.02
CD3C2NU4	RR	7.20	4612.6311	0.02
CD3C2NU4	29	7.21	4613,3320	
CD3C2NU4	םם	7 53	4614 0381	0 02
CDKC2NU4	00	7 24	4415 4505	0,02
CDJCZNU4		7 25		0.02
CD3C2NU4		7 26		0,00
	8 8	1120		0,02
		1121		0,02
CD3C2NU4	RR	1,20	4010,2382	0.02
CD3C2NU4	RR	1124	4010,94/1	0.00
CDSC2NU4	RR	1.30	4019,0209	0,02
CD3C2NU4	KK.	1,31	4020,3413	0,02
LDJLZNU4	RR	1.32	4021,0290	0.02
CD3C2NU4	RR	7,33	4621,/314	0,02
CD3C2NU4	RR	7,34	4622,4122	0,02
CD3C2NU4	RR	7,35	4623,1026	0,02
CD3C2NU4	RR	7,36	4623,7890	0,02
CD3C2NU4	RR	7,37	4624,4706	0,02
CD3C2NU4	RR	7,38	4625,1693	0.02
CD3C2NU4	RR	7,39	4625,8468	0,02
CD3C2NU4	RR	8, 8	4609,8933	0.25
CD3C2NU4	RR	8, 9	4610,6864	0,02
CD3C2NU4	RR	8,10	4611,3611	0,06
CD3C2NU4	RR	8,11	4612,0740	0,06
CDJC2NU4	RR	8,12	4612,7757	0,06
CD3C2NU4	RR	8,13	4613,4896	0,06
CD3C2NU4	RR	8,14	4614,1926	0,06
CD3C2NU4	RR	8,16	4615,6419	0,06
CD3C2NU4	RR	8,17	4616,3578	0.02
CD3C2NU4	RR	8,18	4617,0569	0.02
			-	

CD3C2NU4	RR 8,19	4617.7591	0.02
CD3C2NU4	RR 8.20	4618.4612	0.02
CD3C2NU4	RR 8.21	4619.1712	0.02
CD3C2NU4	RR 8.22	4619.8733	0.02
CD3C2NU4	RR 8.24	4621.2750	0.06
CD3C2NU4	RR 8.25	4621.9649	0.02
CD3C2NU4	RR 8.26	4622.6736	0.02
CD3C2NU4	RR 8.27	4623.3726	0.06
CD3C2NU4	RR 8.28	4624.0716	0.06
CD3C2NU4	RR 8,29	4624.7559	0,00
CD3C2NU4	RR 8.30	4625,4673	0 02
CD3C2NU4		4626,8525	
CD (C2NU4		4627 5446	
CD C 2NU4		460H 007A	
CD3C2NU4		702012270	0.02
CDSCZNU4		7020,721/ 4600 6955	0,02
CD (C2NU4			0.02
CD3CZNU4	RR 9, 9	4010,4211	0.00
CD3C2NU4	RR 9,10	4017,1314	0,06
UDJUZNU4	RR 9,11	4617,8425	0.06
CD3C2NU4	RR 9,12	4618,5013	0.06
CD3C2NU4	RR 9,13	4619,2750	0.06
CD3C2NU4	KR 9,14	4619,9827	0.06
CD3C2NU4	RR 9,16	4621,4097	0,06
CD3C2NU4	RR 9,17	4622,1151	0,06
CD3C2NU4	RR 9,21	4624,9363	0,02
CD3C2NU4	RR 9,22	4625,6402	0,02
CD3C2NU4	RR 9,24	4627,0488	0,02
CD3C2NU4	RR 9,25	4627,7620	0.02
CD3C2NU4	RR 9,26	4628,4484	0,02
CD3C2NU4	RR 9,27	4629,1599	0.02
CD3C2NU4	RR 9,28	4629,8485	0.02
CD3C2NU4	RR 9,29	4630.5741	0.02
CD3C2NU4	RR 9,30	4631,2631	0.00
CD3C2NU4	RR 9,31	4631,9642	0.02
CD3C2NU4	RR 9.32	4632.6422	0.02
CDSC2NU4	RR 9.33	4633.3350	0.02
CD3C2NU4	RR10.10	4622.8531	0.02
CD3C2NU4	RR10.11	4623.5619	0.02
Ch3C2NU4	RR10.12	4624.2472	0.02
CD3C2NU4	RR10.13	4625.0039	0.02
CD3C2NU4	RR10.14	4625.7264	0.02
CD3C2NU4	RR10.16	4627.1279	0.02
CD3C2NU4	RR10.17	4627 A3An	0.02
CD3C2NII4	RR10.18	4628-5651	0.02
CDSC2NUA	RR11.14	4699.9479	
CD3C2NU4		4629 4569	0010
CDSC2NIIA	DD11.17	4630 6602	
CD CONUA	NUTT\$TO	4621 2770	0 04
CD CONUA	NRI1114	-USTIS//A 4423 UBV2	
CD3C2NU4		70321U0U3 4433 7800	
CD3C2NU4	KK11,10	4032 1022	U,00
UDJUZNU4	KK11,17	4033,4094	υ,06

CD3C2NU4 RR12,12 4635,5688 0,06 4636,2751 CD3C2NU4 RR12,13 0.06 CD3C2NU4 RR12,15 4637,7007 0,06 CD3C2NU4 RR12,16 4638.4088 0.06 CD3C2NU4 RR12,17 4639.1136 0.06 CD3C2NU4 RR12,18 4639,8145 0.06 CD3C2NU4 RR12,19 4640,5095 0,06 CD3C2NU4 RR12,20 4641,2024 0.06 1 1 0.00000001 1 4 11111 COMPONENT END HEAD - IN COLUMNS 73-80 111111111 THIS IS A CHECK FOR THE SIGNIFICANCE OF MORE VARIABLES IN THE FIT END HEAD - IN CULUMNS 73-80 LAST FIT - IN COLUMNS 73-80

APPENDIX B

LEAST SQUARES FITS

AND ASSOCIATED STATISTICS

The frequency expressions which concern us most (e.g. Table 2.5 or Table 3.1) are of the form,

 $y_i = x_{i1}\beta_1 + x_{i2}\beta_2 + \dots + x_{ip}\beta_p + e_i$

where

- y_i = ith observed frequency
 - i = 1, 2,... n
 - n = number of observations
 - p = number of parameters to be determined

x_{ii} = value of quantum coefficient of molecular parameter

 β_i for the ith observation

 e_i = the random error associated with the ith measurement. The resultant set of equations for the n observations can be

summarized in the vector-matrix form,

which is shorthand notation for

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} \cdots & x_{1p} \\ x_{21} & & & \\ \vdots & & & \\ \vdots & & & \\ x_{11} & x_{12} \cdots & x_{1p} \\ \vdots & & & \\ x_{11} & x_{12} \cdots & x_{1p} \\ x_{n1} & x_{n2} \cdots & x_{np} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_2 \\ \vdots \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix} = \begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_i \\ \vdots \\ e_n \end{bmatrix}$$

In the thesis of J. W. Boyd (34), it is shown that the best estimate of the unknown parameter vector $\underline{\beta}$ is given by the least squares estimate (b)

here
$$\underline{b} = \underline{N}^{-1} \underline{X}^{T} \underline{y}$$

with $\underline{N} = \underline{X}^{T} \underline{X}$
and $\underline{X}^{T} \equiv \underline{X}$ transposed

ω

Thus the job of a least squares fitting program is to find a value of \underline{N}^{-1} . This corresponds to solving the set of normal equations,

$$\underline{\underline{N}} \ \underline{\underline{b}} \ = \ \underline{\underline{x}}^{\mathrm{T}} \underline{\underline{y}}$$

This is exactly what the subroutine STEPFIT does. It first calculates the matrix \underline{N} and proceeds to invert it by the process of Gaussian elimination as described by Orden in Chapter 2 of <u>Mathematical</u> <u>Methods for Digital Computers</u> (35). The actual regression program used in subroutine STEPFIT is that written by M. A. Efroymson and is described briefly in Chapter 15 of the same book. Once the vector of molecular parameters (b) has been determined, it is important to determine the statistical significance of the vector <u>b</u>. The standard error (s_b) of any component b_j of <u>b</u> is given by,

 $s_{b_{j}}^{2} = s^{2} N_{jj}^{-1}$ where $s^{2} = \frac{1}{n-p} \sum_{i} w_{i} (y_{i} - \hat{y}_{i})^{2}$ $n-p \equiv$ degrees of freedom with $\hat{y} = \underline{X} = \underline{b}$ and w_{i} = normalized weight of ith measurement such that $\sum_{i} w_{i} = n$

Boyd showed that a simultaneous confidence interval for all components of <u>b</u> is defined such that the probability is $1 - \alpha$ for

all b_j in {b_j} that,

$$|b_j - \beta_j| \leq S_{\alpha} s_{\beta}$$

where S is a function of the well-known F (p, n-p) distribution

$$S_{\alpha} = \sqrt{pF_{\alpha}(p, n-p)}$$

This simultaneous confidence interval $[+sS_{\alpha}]$ is the meaningful statistic to quote for the results of a least squares fit when variables are statistically dependent. The common test for the statistical dependence of two variables x_{ij} and x_{iq} is the correlation coefficient r_{iq} ,

$$\mathbf{r}_{jq} = \frac{\sum_{i=1}^{\Sigma(\mathbf{x}_{ij} - \bar{\mathbf{x}}_{j})(\mathbf{x}_{iq} - \bar{\mathbf{x}}_{q})}{\sqrt{\sum_{i=1}^{\Sigma(\mathbf{x}_{ij} - \bar{\mathbf{x}}_{j})\sum_{i=1}^{\Sigma(\mathbf{x}_{iq} - \bar{\mathbf{x}}_{q})}}$$

Subroutine STEPFIT prints out r_{jq} for all variables. The coefficients (b) of variables having non-zero r_{jq} are dependent upon one another. For example, A_0 is highly dependent on the value determined for α_4^A and D_0^K . In such a case it is important to know that the probability is $1-\alpha$ that all three parameters are simultaneously within a specified interval of their true values. In our work we have chosen $\alpha = 0.05$.

The manner in which standard errors of independent and dependent variables are calculated in STEPFIT is described on pages 193 and 195 of Efroymson's Chapter 17 (35). At first glance (or even many glances) it appears his definitions differ from those given above. However, when one carries through the normalization factors of the correlation coefficients (r_{ij}) to the very end, agreement is reached.

APPENDIX C

T.

•-

R	E	S	U	L	T	S		0	F		A		S	Ţ	M		J	-	T	A	Ŋ	E	υ	U	S	F	1	T
									F		n	H	ſ		n	7	,											
									•		Ŷ			•	L.	0	1											
			N ().			IDE	EN'	Γ				QE	35	,	FF	RE	3		0 =	S.	- C /		0	1	T		
			1	L	NL	14	PF	212	2,1	. 4			22	24	6,	49	93	7		-	0	20)74	4	0.	00		
			2	2	NU	J 4	PF	212	?,1	. 3			22	24	6,	9()7	4		-	0	19	97:	1	0,	00		
				5	NU	14	PF	212	2,1	Ś			22	24	7,	3(]]	4		-	0	,2(] 4 (4	0,	00		
			4 L	4	NU)4	14	1:		. 3			20	25	1,	0.	54	7		•	0	14	40.	/ ^	0.	00		
			-	2	NI)4 A		1:		ک .			20	(7)) =)	1.	44	12	2		-	0	11	429	9 3	U •	00		
			-	7 7)4) A			1 1	. Y			20	20	, o	10	23	2		"	0	101	70' 	y ว	V •	00		
			s S	4		14 14			7 J J 7 1	.0			20	こつ	'' '	1/		4		-	0	;U ∢ (ידי הר	2 1	0	00		
				ر د	- N. L - N. L	14			. 1	. / . /			22	25	′ '	01) C 7 6	с С			0	110	263	T T	0.	00		
			1 ()	NI	14	ρp	, ,	, , , , , , , , , , , , , , , , , , ,	5			22	25	́я.	38	3 0	۵		_	. 0		260	4	0.	00		
			11	Ĺ	NI	J 4	ρF	s ç	2.1	4			22	25	8.	78	34	7				09	26	1	ů.	00		
			12	2	NL	J4	PF	, c	, 1	. 3			22	25	9	18	36	, 2		-	0	09	8	4	Ο,	00		
			1	5	NL)4	PF	o q	, 1	.2			27	25	9	58	37	2		-	0	1	1	3	0,	00		
			14	4	NU)4	PF	s ç	, 1	. 1			22	25	9,	99	93	4		-	0	09	981	8	0.	00		
			15	2	NU	J 4	PF	s q	, (9			27	26	Ο,	8 (]7	9			0	09	91!	5	٥.	00		
			16	5	NU	14	PF	<u>ہ</u>	3,1	. 6			22	26	2,	02	22	1			0 1	, 07	75	0	Ο,	00		
			17	7	NU	4 ز	PF		5,1	.5			22	27	4.	44	11	1		-	0.	01	15	3	0.	12		
			18	3	NL	14	PF		5,1	. 4			22	27	4,	8	47	1		-	0	, 0 1	13	8	0.	12		
			19	•	NI	J4	PF		, ,	. <u>s</u>			22	27	5,	2:	6	9		ę	0.	, 0 (184	4	0.	12		
			20)	NU	4 ا	PF			. 2			20	2/2	, c	00	1	2		ę	0			7	υ,	03		
			21	L 	NU	4			.	- -			20	270	▫.	Ų C	29	2		-	0)4. 	5 n	0.	42		
			20	۲ ۲	- in c - ău i	14			21	у Н			20	27	, o	21	(U) 2 72	メコ					12	0 4	0,	03		
			2	4	- NI C	14		- 	, ,	7			20	- /) 7'	/, 7	4	70	3 0			. 0		יבי	7 5	U ,	03		
			21	י ר	NI	14	PP		5.	6			22	27	/ • 8.	01	36	U T			. U (161	8	0.	03		
			20	5	NI	14	PF		5.	5			22	27	8.	4	90	2			n.		120	6	0.	03		
			27	7	NU	14	PF	, .		28			22	27	3.	1	31	3			0	0	00	0	Ο.	03		
			28	3	Ni	J 4	PF	, c	4,2	27			22	27	3.	5	12	Ş			ō,	0	5	9	0.	03		
			29	J	NU	4 ر	PF	,	4,2	26			22	27	3.	94	42	4		æ	0	0) O (2	0,	03		
			3()	NU	4 ز	PF	,	4,2	25			27	27	4,	34	43	7		-	0	0) 4 !	5	0,	03		
			51	L	NU	;4	PF	,	4,2	24			22	27	4,	74	48	5 .			0	. 0 () 5 !	5	0.	03		
			32	2	NL	J 4	PF	,	4,2	23			22	27	5,	15	50	7			0	00)8	4	0,	03		
			5	5	Νl	14	PF	•	4,2	22			22	27	5.	50	50	9		¢	0	.00	3	5	Ο.	03		
			34	4	NL	14	PF	,	4,2	21			22	27	5,	95	57	3		•	0	0:	12	3	0,	03		
			35	2	NL	14	PF		1,1	.9			22	27	6,	77	78	Ĵ		•	0	.0(1	4	0,	03		
			36	5	NI	J 4	PF		• • 1	.8			22	27	7,	1	74	9		-	0	0:		D	0.	03		
			5,	/	NL	14	- 99		1,1	. 6			22	27	1.	98	56	7			0,	.0(J7'	7	U .	U.S		

NO.	J	DEN	νT	OUS, FRFD	OBS-CALC	WT
38	NU4	PP	4,15	2278.3889	-0.0105	0.03
39	NU4	PΡ	4,14	2278.7913	-0.0126	0,03
40	NU4	PP	4,13	2279,1925	-0.0159	0.03
41	NU4	PP	4.12	2279.5892	-0.0236	0.03
42	NU4	PP	4.11	2280.0017	-0.0154	0.03
43	NU4	pρ	3.36	2273.8050	0.0047	0.03
44	NII4	PP	3.35	2274,2093	0.0026	0.03
45	NIL4	PP	3.34	2274 6182	0,0052	0.03
46	NU4	pp	3.33	2275.0222	0.0030	0.12
47	NU4	PP	3.32	2275.4196	-0.0058	0.12
48	NU4	PP	3.31	2275.8377	0.0061	0.12
49	NU4	μp	3.29	2276.6493	0.0056	0.03
50	NU4	PP	3.28	2277.0584	0.0088	0.12
51	NU4	PP	3.20	2277.8648	0,0035	0.03
52	NU4	PP	3.25	2278.2714	0.0044	0.03
53	NU4	PP	3.24	2278.6885	0.0158	0.03
54	NU4	PP	3.25	2279.0789	0,0006	0.03
55	NU4	pp	3.22	2279.4877	0.0040	0.03
56	NU4	PP	3.21	2279.8791	-0.0101	0.12
57	NU4	PP	3.19	2280.6929	-0.0068	0.03
58	NU4	PP	3.18	2281.1037	-0.0011	0.03
59	NU4	PP	3.17	2281.5041	-0.0058	0.03
60	NU4	PP	3.16	2281.9118	-0.0030	0.12
61	NU4	PP	3,15	2282.3280	0.0084	0,03
62	NU4	PP	3.14	2282.7357	0.0114	0.03
63	NU4	PP	3.13	2283.1314	0.0012	0.03
64	NU4	PP	3,12	2283.5271	.0.0063	0.03
65	NU4	PP	3.11	2283.9315	.0.0062	0.03
66	NU4	PP	3, 9	2284.7417	-0.0045	0.03
67	NU4	PP	3, 8	2285,1639	0.0136	0.03
68	NU4	PP	2,25	2282,1609	-0,0016	0,12
69	NU4	PP	2,24	2282,5623	-0,0061	0,12
70	NU4	PP	2,25	2282,9702	-0.0039	0.12
71	NU4	PP	2,22	2283,3794	-0.0004	0,12
72	NU4	PP	2,21	2283,7853	-0.0000	0.03
73	NU4	PP	2,19	2284,6019	0,0058	0,03
74	NU4	PP	2,18	2285,0122	0.0108	0.12
75	NU4	PP	2,16	2285,8244	0,0128	0,12
76	NU4	PP	2,15	2286,2272	0.0107	0,03
77	NU4	PP	2,14	2286,6300	0,0086	0,12
78	NU4	PP	2,15	2287,0393	0,0137	0.12
79	NU4	PP	2,12	2287,4457	0,0152	0.12
80	NU4	PP	2,11	2287,8464	0,0113	0,03
81	NU4	PP	1,15	2290,0854	-0,0038	0.03
82	NU4	PP	1,14	2290,4830	-0,0111	0.12
83	NU4	PP	1,13	2290,8815	-0,0171	0,03
84	NU4	PP	1,12	2291,2858	- 0,0178	0.03
85	NU4	ŔR	1, 1	2304,6125	-0,0124	0,03
86	NU4	RR	1, 2	2305.0276	0,0003	0.03
87	NU4	RR	1, 5	2305,4365	0.0070	0,03

-,

ND.		IDEN	ν T	OBS, FRED	ORS-CALC	WT
88	NU4	RR	1, 4	2305.8387	0.0071	0.03
89	NU4	RR	1, 5	2306.2495	0.0101	0,12
90	NU4	RR	1, 6	2306.6543	0.0191	0.12
91	NU4	RR	1.12	2309.0473	0.0067	0.12
92	NU4	RR	1.15	2309.4351	-0.0063	0.03
93	NU4	RR	1.14	2309.8304	-0.0110	0.03
94	NU4	RR	1.15	2310.2351	-0.0062	0.03
95	NII4	RR	1.16	2310.6363	-0.0045	0.03
96	NU4	RR	2.19	2315.6368	0.0048	0.12
97	NII4	HR	2. 2	2308.8106	-0.0120	0.03
98	NU4	RR	2. 3	2309.2150	-0.0098	0.03
99	NII4	88	2.20	2316.0424	0.0116	0.03
100	NII4	88	2,21	2316.4492	0.0204	0.12
101	NII4	R R	2.22	2316 8303	0.0126	0.12
102	NII4	88	2.25	2317 2358		0.00
103	NILLA	DD.	2.24	2317 6306	0.0083	0.02
104		00	2.25			0.12
105	NIIA	20	3. 5	2312 0853		0,12
105	NIIA	DD	3. 4	2313 4004		0.12
107			3.5	2313 8040	0.0101	0.12
108	NILLA	מט	3. 5		0,0101	0.03
1 0 0	NULA	50	z 7		0,0000	0,05
116	NILA	סס	3. 4	2315 4199	0 0179	0.08
111		00	3 10	2315 8035	0 0014	0.12
112		מכ	3 1 2			0 50
4 4 %		50 50	7 14			
110		00		2317 4004		
115	NU 4		3 J 1 4 7 1 6	2317 8004		0 1 2
116	NUT	מנ	3 16			0 12
117	NU4	מט	7 18	2318 084 =		0.12
118	N.114	00	3,10	2310 3844		0.12
110			3,20	2310 8145		0.12
120		00	2 21			0,12
1 24		00	2 22	2320 5047		0 50
122	NU 4	מט	3,23	2320 0074		0,10
122	N.I.I.Z	50	3.24	2321 3864		0.12
120		50	3 25	2321 7844		0.12
125	NILA	00	3 2 2 H	2322 0814		0 03
106	N I I A	00	7 30			
120	NUT	20	7 71	2324 4554		0.03
108		ממ	2 42	2324 5502		0,03
120		מט		2317 4455		
1 2 7		00				0.13
1 < 1	NU 4	חמ	4, J 4, K	201/1700/ 2317 0/6=		0.07
1.42		בח		2318 2147		0,03
136		20	4,10	2310 5700		0,07
1.34	NILA		4,12	2320 2326		0.12
1 4 5	NILA		4.14	2320 7474	- u : u 0 / / n nñ49	0.50
1.36		ממ	4,15	2301 5702		0.07
1.37	NILA		4.16	2321 044=	-0:0011 -0:0011	0.03
- U /	14174	1111	~ , _ U	ビッビデリション		V V V V

ਜ

NO.		IDEN	T		OBS. FRED	URS-CALC	٣T
138	NU4	RR	4,	15	2322.7433	0.0074	0.12
139	NU4	RR	4,	19	2323.1373	0.0024	0.03
140	NU4	RR	4,	21	2323.9415	0.0105	0.12
141	NU4	RR	4,	22	2324.3197	-0.0091	0.12
142	NU4	RR	4,	23	2324.7312	0.0049	0,12
143	NU4	RR	4,	24	2325.1256	0.0021	0,50
144	NU4	RR	4,	25	2325.5308	0.0104	0.03
145	NU4	RR	4,	27	2326.3135	0.0001	0.03
146	NU4	RR	4,	28	2326.7147	0.0051	0,03
147	NU4	RR	4,	29	2327.1142	0.0088	0.03
148	NU4	RR	4.	31	2327.8815	-0.0147	0.12
149	NU4	RR	4.	32	2328.2788	-0.0125	0.12
150	NU4	RR	4	34	2329.0703	-0.0101	0.03
151	NU4	RR	4.	35	2329.4935	0.0191	0.03
152	NU4	RR	5.	10	2323.2443	-0.0041	0.03
153	NU4	RR	5	12	2324.0364	=0.0123	0.12
154	NU4	RR	5	13	2324.4390	-0.0096	0.12
155	NU4	RR	5	14	2324.8421	-0.0060	0.12
156	NU4	RR	5	15	2325.2504	0.0029	0.03
157	NU4	RR	5,	16	2325.6495	0.0030	0.03
158	NU4	RR	5,	18	2326.4388	-0.0052	0,03
159	NU4	RR	6,	6	2325,3227	-0.0008	0.12
160	NU4	RR	6,	1	2325,7293	0.0047	0,12
161	NU4	RR	6,	9	2326,5224	-0,0038	0.12
162	NU4	RR	6,	13	2328.1164	-0.0100	0,12
163	NU4	RR	6,	14	2328,5188	-0.0070	0,50
164	NU4	RR	6,	15	2328,9098	-0,0152	0,12
165	NU4	RR	6,	10	2329,3159	-0.0081	0,00
166	NU4	RR	8,	9	2333,7780	-0.0100	0.12
167	NU4	RR	9,	9	2337.3625	-0.0073	0,12
168	NU4	RR	9,	10	2337.7700	0,0000	0,03
169	NU4	RR	9,	11	2338.1724	0.0026	0.50
170	NU 4	RR	9,	12	2338,5655	-0.0038	0,50
171	NU4	RR	9,	15	2338,9576	-0.0110	0,00
172	NU4	RR1	.0,	14	2342.9304	0,0156	0,06
173	NU4	RR1	.0,	15	2343,3226	0,0092	0,02
174	NU4	RR1	ιΟ,	17	2344,1098	0.0001	0,25
175	NU4	RR1	.0,	18	2344,5032	-0.0043	0,06
176	2NU4	QP	3,	44	4527,8835	0.0009	0,50
177	2NU4	QP	3,	45	4528,2985	0,0015	0.50
178	2NU4	QP	3,	42	4528,7163	0.0051	0.50
179	2NU4	QP	3,	41	4529.1305	0.0053	0,50
180	2NU4	QP	3,	40	4529,5401	0,0010	0,50
181	2NU4	QP	3,	59	4529,9517	-0.0010	0,50
182	2NU4	QP	3,	38	4730,3545	-0,0114	0.50
183	2NU4	QP	5,	3/	4250,7753	-0,0039	V.12
184	ZNU4	uμ	5.	30	4251.1812	-0.0102	0.0.5

NO.	•	IDE	NT	OES, FRED	ORS-CALC	WT
185	2NU4	QP	3,35	4531.5995	-0,0052	0,50
186	2NU4	QР	3,34	4532,0100	-0.0072	0,12
187	2NU4	UΡ	3,35	4532,4274	-0.0021	0,12
188	2NU4	QP	3,32	4532.8407	-0,0008	0,12
189	2NU4	QP	3,31	4533.2594	0.0062	0,12
190	2NU4	QP	3,29	4534,0847	0,0087	0,02
191	2NU4	QP	3,28	4534,4991	0.0121	0,02
192	2NU4	QP	3,21	4534.8964	-0,0014	0.02
193	2NU4	QP	3,26	4535.2997	-0,0086	0,12
194	2NU4	QP	3,25	4535,7183	-0,0003	0,12
195	2NU4	QΡ	3,24	4536,1307	0,0021	0,12
196	2NU4	QP	3,23	4536,5459	0.0076	0.12
197	2NU4	QP	3,22	4536,9543	0,0065	0,12
198	2NU4	QΡ	3,21	4537,3665	0.0096	0,12
199	2NU4	ĢΡ	3,20	4537.7799	0.0139	0.03
200	2NU4	QP	3,19	4538,1800	0,0054	0.12
201	2NU4	QP	3,18	4538,5813	-0.0017	0,03
205	2NU4	QP	3,17	4539.0023	0,0112	0,12
203	2NU4	QP	3,16	4539,4044	0.0054	0.12
204	2NU4	QP	3,15	4539,8105	0.0040	0,12
205	2NU4	QP	3,13	4540,6255	0.0048	0,12
206	2NU4	QP	6,39	4529,2648	0,0010	0.03
207	2NU4	QP	6,38	4529,6798	0.0027	0,03
208	2NU4	QP	6,33	4531,7288	-0.0113	0,12
209	2NU4	QΡ	6,32	4532,1415	+0.0105	0.03
210	2NU4	QP	6,31	4532,5662	0.0025	0,03
211	2NU4	QΡ	6,30	4532.9783	0.0032	0.03
212	2NU4	QP	6,29	4533,3879	0,0016	0.03
213	2NU4	QP	6,28	4533,7953	-0.0020	0,03
214	2NU4	QP	6,27	4534.2093	0,0014	0,03
215	2NU4	ώP	6,26	4534,6115	-0,0069	0.03
216	2NU4	QP	6,25	4535,0265	*0.0020	0.03
217	2NU4	QP	6,24	4535,4338	-0.0047	0.03
218	2NU4	QP	6,25	4535.8576	0,0095	0,03
219	2NU4	QP	6,21	4536,6783	0.0117	0,03
220	2NU4	QP	6,20	4537,0885	0,0131	0.03
221	2NU4	ŴΡ	6,16	4538,7200	0,0119	0.03
222	2NU4	QP	6,15	4539,1227	0.0071	0,03
223	2NU4	QP	6,14	4539,5342	0.0114	0.03
224	2NU4	QP	6,13	4539,9358	0,0062	0,03
225	2NU4	QP	6,10	4541.1618	0,0133	0,12
226	2NU4	QR	3,18	4553,4727	•0.0007	0,12
227	2NU4	QR	3,19	4553,8628	-0,0063	0,12
228	2NU4	QR	3,20	4554,2553	-0,0092	0,12
229	2NU4	QR	3,21	4554,6553	=0.0043	0,12
230	2114	ÛR	3,22	4555,0547	0,0005	0,12
231	2NU4	QR	3,23	4555,4483	-0,0001	0,12
232	2NU4	QR	3,24	4555.8528	0,0106	0,03
233	2NU4	QR	3,25	4556,2330	-0,0026	0.12
234	2NU4	QR	3,20	4556,6273	-0,0013	0.12

-

			-	· ·		
NO.	•	IDEN	ΝT	OBS, FRED	OBS-CALC	WT
235	2NU4	QR	3,27	4557,0090	-0,0123	0,12
236	2NU4	QR	3,28	4557.4056	-0,0078	0,12
237	2NU4	QR	3,29	4557,7949	-0.0103	0.03
238	2N114	PP:	11,15	4504,2280	-0,0103	0.02
239	2NU4	PP:	11,14	4504.6497	0.0054	0.03
240	2NU4	PP:	11,13	4505,0527	0.0027	0.03
241	2NU4	PP:	11,12	4505.4639	0.0084	0.03
242	2NU4	PP:	11,11	4505,8670	0,0062	0,03
243	2NU4	PP:	10,16	4510.7992	-0,0169	0,03
244	2NU4	PP:	10,15	4511,2185	-0.0038	0,03
245	2104	PP:	10,14	4511.6289	0,0003	0,03
246	2NU4	PP:	10,13	4512,0348	0.0004	0.03
247	2NU4	PP	10,12	4512.4367	-0.0034	0.03
248	2NU4	PP	10,11	4512.8363	-0.0092	0.03
249	2NU4	PP	9,13	4518.9842	0.0084	0.02
250	2NU4	PP	9,12	4519.3777	-0.0039	0.03
251	2NU4	PP	9,11	4519.7819	-0.0052	0.03
252	2NU4	PP	9.10	4520.2048	0.0124	0.03
253	2NU4	PP	9.9	4520.6024	0.0049	0.12
254	2NU4	PP	2.10	4567.5155	0.0083	0.03
255	2NU4	pp	2. 9	4567.8967	-0.0163	0.03
256	2NU4	PP	2. 8	4568.3168	-0.0016	0.03
257	2014	PP	2. 7	4568.7171	-0,0064	0.03
258	2NU4	PP	1.19	4570.4055	-0.0031	0.03
259	2NU4	PP	1.15	4572.0233	-0.0171	0.12
260	21114	PP	1.14	4572 4314		0.03
261	2N114	PP	1.1.5	4572,8452		0.03
262	2N114	μp	1,12	4573.2575		0.12
263	2110	PP	1.11	4573 6752	0,0076	0.03
264	21114	pp	4,10	4574 0726		0.03
265	2014	PP	1.9	4574,4974	0.01.39	0,00
266	2N114	PP	1. 8	4574 8845		0.12
267	21104	PP	1. 7	4575,2854		0.12
268	21104	PP	1. 6	4575 6946	-0.0004	0,12
269	21104	20	0.3	4586 2455		0.12
27n	21104		0,0	4586 4594	0,0000	0.03
271	21104	00	0, 6	4587 4400	0 0044	0,03
272	21104	00	0, 0	4587 8575	0 0129	0,03
273	21104		о , и	4588 2457		0,03
274	2 NU 4		0,0	4588 6470		0.03
275	21104		0,10	4580 0397U		0.03
レイン	2004	00	0 11			0 07
210	2114	00		4207 4425		
278	21114			4500 2707		
270	2NIIA		0,16	7-70,237/ 4501 Azer	0 0010	0.12
∈77 28n	21114		0 17	7/71,43UU 4501 978=		0.12
284	21104		0 1 -	4502 0744		0 10
280 280	2NILA	ת ת ם ם	0 10	7776,2001		0.12
2 U Z	21104		0 20	7272,0233		0 07
203	2NU4	KK	0,20	4293,0238	0.0077	
C 0 4	2 IN U 4	RR	UJCL	4293,4125	0.0033	0:03

NO.	. 1	IDEN	i T	OBS, FRED	ORS-CALC	WT
285	2NU4	RR	0,22	4593,8051	0.0013	0,12
286	2NU4	ĸR	0,23	4594.2055	0,0076	0.03
287	2NU4	RR	0,24	4594,5957	0,0039	0.03
288	2NU4	RR	0,25	4594,9858	0.0007	0.03
289	2NU4	RR	0,26	4595,3715	-0.0065	0,03
290	2NU4	RR	0,27	4595.7845	0.0139	0,03
291	2NU4	RR	0,28	4596.1703	0.0075	0,12
292	2NU4	RR	0,29	4596,5679	0,0134	0,12
293	2NU4	RR	0,30	4596,9640	0.0182	0.03
294	2NU4	RR	0,32	4597,7592	0.0321	0,03
295	2 <u>NU4</u>	KR	0,33	4598,1467	0.0296	0,03
296	2NU4	RR	0,34	4598,5240	0,0173	0,03
297	2NU4	RR	0,35	4598,9164	0.0205	0.03
298	2NU4	KR	1, 7	4594,3069	-0.0021	0.03
299	2NU4	RR	1, 8	4594,7037	-0.0051	0.03
300	2NU4	RR	1, 9	4595,0924	-0,0158	0.03
301	2NU4	RR	1,11	4595,8950	+0,0110	0,03
302	2NU4	RR	1,12	4596,3007	-0,0036	0,12
303	2NU4	RR	2, 5	4599,9005	•0.0193	0,03
304	2NU4	RR	2, 0	4600,3110	-0,0093	0,03
305	2NU4	RR	2, 7	4600,7133	+0.0071	0.02
306	2NU4	RR	2, 8	4601,1074	-0,0127	0.03
307	2NU4	RR	2, 9	4601,5189	-0.0006	0,03
308	2NU4	RR	2,10	4601,9072	-0,0113	0,03
309	2NU4	KR	2,11	4602,3162	-0.0009	0,03
310	2NU4	RR	2,12	4602,7092	-0,0061	0,03
311	2NU4	RR	2,13	4603,1030	-0,0101	0,03
312	2NU4	RR	2,16	4604,3197	0.0154	0,03
313	2NU4	RR	2,17	4604,7080	0.0074	0,03
314	2NU4	RR	3, 4	4605,8710	-0.0061	0,12
315	2NU4	RR	3, 5	4606,2740	-0.0039	0,12
316	2NU4	RR	3, 6	4606,6694	+0.0089	0.12
317	2NU4	RR	3, /	4607.0762	-0.0021	0,12
318	2NU4	RR	3, 8	4607,4707	-0,0073	0,12
319	2NU4	RR	3, 9	4607,8658	•0.0114	0,03
320	2NU4	RR	3,10	4608,2676	-0.0085	0,03
321	2NU4	RR	3,11	4608,6694	-0.0052	0,12
322	2NU4	RR	3,12	4609,0705	-0.0023	0,12
323	2NU4	RR	3,13	4609,4711	0,0006	0,12
524	2NU4	RR	3,15	4610,2503	-0,0145	0.03
325	2NU4	RR	3,16	4610,6535	+ 0 , 0077	0,03
326	2NU4	RR	3,1/	4611,0559	-0.0016	0,03
327	2NU4	RR	3,18	4611,4446	-0,0086	0,12
328	2NU4	RR	3,19	4611,8369	-0,0117	0,12
329	2NU4	RR	4, 8	4613,7937	0:0122	0,12
330	2NU4	RR	4, 9	4614,1659	-0.0148	0,03
331	2NU4	RR	4,11	4614.9908	0,0129	0,03
332	2NU4	RR	4,12	4615,3824	0,0065	0,12
555	2NU4	ĸR	4,13	4615,7770	0,0035	0,12
554	2NU4	KR	4,14	4616.1725	0.0018	0,02

نور بر اند بر

NO.	•	IDEN	T	OUS, FRED	URS-CALC	W T
335	2NU4	RR	4,15	4616.5560	-0.0116	0,12
556	2NU4	RR	4,16	4616,9551	-0,0089	0,12
557	2NU4	RR	4,1/	4617.3482	-0,0118	0.12
338	2NU4	RR	4,18	4617,7471	-0,0085	0.12
339	2NU4	RR	4,19	4618,1391	-0.0117	0,03
340	2NU4	RR	4,20	4618,5384	-0.0071	0.03
341	2NU4	RR	5,16	4623,2279	0.0165	0.03
342	2NU4	RR	5,17	4623.6151	0.0079	0,03
343	2NU4	ĸR	5,18	4624.0147	0.0120	0,03
544	2NU4	RR	5,19	4624.4015	0.0039	0,12
545	2NU4	KR	5,20	4624.7930	0.0007	0.03
346	2NU4	ĸR	5,21	4625.1734	-0.0131	0,03
347	2NU4	RR	5,22	4625.5731	-0.0071	0.12
548	2NU4	RR	5,25	4625.9681	-0.0054	0.12
549	2NU4	RR	5,24	4626.3620	-0.0044	0,12
350	2NU4	RR	5,25	4626.7550	-0.0039	0.03
351	2NU4	RR	5,20	4627.1345	-0.0163	0,03
352	2NU4	RR	5,27	4627.5309	-0.0115	0.03
353	2NU4	RR	5,20	4627.9338	0.0003	0.12
354	2NU4	RR	6, 6	4625.4211	-0.0017	0,12
355	2NU4	RR	6, 7	4625.8159	-0.0067	0.12
356	2NU4	RR	6, 8	4626,2275	0.0058	0,12
357	2NU4	RR	6, 9	4626,6252	0.0042	0,12
358	2NU4	RR	6,10	4627,0244	0,0048	0.12
359	2NU4	RR	6,11	4627,4245	0,0067	0,12
360	2NU4	RR	6,12	4627,8172	0,0016	0,12
361	2NU4	RR	6,15	4628,2194	0,0064	0,12
362	2NU4	RR	6,15	4629,0170	0,0105	0,12
363	2NU4	RR	6,16	4629,4075	0,0050	0,12
364	2NU4	RR	6,1/	4629,7969	-0,0014	0.12
365	2NU4	RR	6,18	4630,1991	0,0055	0,12
366	2NU4	RR	6,21	4631,3880	0,0111	0.03
567	2NU4	RR	6,22	4631,7774	0,0069	0.03
368	2NU4	RR	6,25	4632,1738	0.0102	0,12
369	2NU4	RR	6,24	4632,5625	0,0063	0,12
370	2NU4	RR	6,25	4632,9544	0,0059	0.12
371	2NU4	RR	6,26	4633.3431	0,0028	0.12
372	2NU4	RR	6,27	4633,7348	0,0031	0,12
373	2NU4	RR	6,28	4634,1228	0.0002	0,12
374	2NU4	RR	6,29	4634,5152	0,0022	0,03
375	2NU4	RR	6,30	4634,8907	-0,0123	0,03
376	2NU4	RR	6,31	4635,2957	0.0032	0,12
577	2NU4	RR	6,32	4635,6860	0.0044	0,12
578	2NU4	ŔR	6,33	4636,0698	-0,0004	0,03
379	2NU4	RR	6,34	4036,4557	-0,0026	0.03
380	2NU4	RR	6,35	4036,8506	0,0047	0,03
381	2NU4	RR	6,36	4637.2349	0,0018	0,03
382	2NU4	RR	6,37	4637,6121	-0,0077	0.03
383	2NU4	RR	6,38	4637,9931	-0.0129	0.03
384	2004	RR	6,40	4038,7839	0,0069	0,03

NU.	•	IDEN	T	DES. FRED	ORS-CALC	WΤ
385	2NU4	RR	6,41	4639.1702	0.0084	0.03
386	2NU4	RR	6,42	4639.5515	0.0056	0,03
387	2NU4	ŔR	6,45	4639,9241	-0.0057	0,03
388	2NU4	RR	7, 7	4631,9520	-0.0061	0,12
389	2NU4	RR	7, 8	4632.3565	-0.0009	0.12
390	2NU4	RR	7, 9	4632,7599	0,0036	0.12
391	2NU4	RR	7,10	4633.1584	0.0037	0,12
392	2NU4	RR	7,11	4633,5531	0,0003	0,12
395	2NU4	RR	7,12	4633,9482	+0,0023	0,12
594	2NU4	RR	7,13	4634,3466	-0.0011	0.03
395	2NU4	RR	7,15	4635,1312	-0,0097	0.12
396	2NU4	RR	7,16	4635,5426	0,0057	0,12
397	2NU4	RR	7,17	4635,9357	0.0032	0,12
398	2NU4	RR	7,18	4636.3342	0.0066	0.03
599	2NU4	RR	7,19	4636.7214	-0.0009	0,03
400	2NU4	RR	7,20	4637,1257	0,0092	0,03
401	2NU4	RR	7,21	4637.5149	0,0045	0,03
402	2NU4	RR	7,22	4637,9021	-0,0016	0.03
403	2NU4	RR	7,23	4638,2990	0.0023	0,03
404	2NU4	RR	7,24	4638,6854	-0,0038	0.12
405	2NU4	RR	7,25	4639,0750	-0.0062	0,12
406	2NU4	RR	7,26	4639,4689	-0,0039	0,03
407	2NU4	RR	7,27	4639,8573	-0,0066	0,03
408	2NU4	RR	8, 9	4638,8261	÷0,0076	0,12
409	2NU4	RR	8,10	4639,2300	-0.0021	0,12
410	2NU4	RR	8,11	4639,6290	-0,0010	0.12
411	2NU4	KR	8,12	4640,0291	0.0016	0,12
412	2NU4	RR	8,15	4640,4297	0.0051	0,03
413	2NU4	RR	8,15	4641,2185	0,0009	0,12
414	2NU4	RR	8,16	4641,6154	0.0020	0.12
415	2NU4	RR	8,17	4642.0096	0,0008	0,12
416	2NU4	RR	8,18	4642,4109	0.0072	0,12
417	2NU4	ŔŔ	8,19	4642,7871	•0,0112	0,03
418	2NU4	RR	8,20	4643,1923	-0.0000	0,03
419	2NU4	RR	8,21	4643,5807	-0,0053	0,03
420	2NU4	RR	8,22	4643,9714	-0,0077	0,03
421	2NU4	KR	8,23	4644,3732	0,0013	0,03
422	2NU4	RR	8,24	4644,7637	-0,0004	0,03
423	2NU4	RR	8,25	4645.1613	0,0054	0,03
424	2NU4	RR	8,26	4645,5441	-0,0032	0,03
425	2NU4	RR	8,28	4646.3339	0,0053	0,03
426	2NU4	RR	8,30	4647,0914	=0,0167	0.03
427	2NU4	RR	8,31	4647,4839	-0,0132	0,03
428	2NU4	RR	8,32	4047,8700	#0,0156	0,03
429	2NU4	KR of	8,33	4048,2544	+0,0193	0,03
430	2NU4	KR	7 , 7	4044,8629	0,0104	0.12
431	ZNU4	K K	y,1 0	4047.2568	0.0001	0.12
432	2NU4	RR	9,11	4045,6501	0,0015	0.03
435	ZNU4	KR	9,12	4046,0565	0,0106	0+03
434	2NU4	RR	9,15	4046,4455	0,0026	0,03

NO.	•	IDENT	OBS, FRED	OFS-CALC	wΤ
435	2NU4	RR 9,15	4647.2275	-0,0079	0.12
436	2NU4	RR 9,16	4647,6261	-0.0051	0,03
437	2NU4	RR 9,1/	4648.0173	+D,0091	0.03
438	2NU4	RR 9,18	4648,4101	-0.0111	0,12
439	2NU4	RR 9,19	4648.7989	-0,0166	0,12
440	2NU4	RR 9,20	4649,2113	0.0019	0,03
441	2NU4	RR 9,21	4649,6110	0.0082	0.12
442	2NU4	RR 9,22	4650.0045	0,0087	0.12
445	2NU4	RR 9,23	4650.3968	0.0085	0.12
444	2NU4	RR 9,24	4650,7837	0,0033	0.03
445	2NU4	RR 9,21	4651,9631	0.0093	0,03
446	2NU4	RR 9,28	4652,3468	0.0029	0.03
447	2NU4	RR 9,30	4653.1123	-0.0106	0.03
448	2NU4	RR 9,31	4653.5081	-0,0036	0,03
449	2NU4	RR 9,32	4053,8939	-0,0060	0.03
450	2NU4	RR 9,33	4054,2728	-0,0149	0.03
421	2NU4	RR 9,34	4054.6748	=0.0002	0.03
452	2NU4	RR 9,35	4055,0602	-0,0016	0,03
455	2004	RR 9,36	4055,4557	0,0076	0,03
454	2NU4	RR 9,37	4055,8379	0,0039	0.03
400	2004	RR 9,38	4000,2224	0,0031	0.03
420	2104	RR 9,39	4030,0033		0.03
40/	ZNU4	RR10,11	4051,0152	0,0076	0,03
450	21104	DD10 14	4052,0099		0.07
460	2004		4452 4991		0,03
461	2014	RKT0110	4093,1003		0,03
462	2004	PD10 17	4653 0959		
46.5	21104		4654 3788		0.03
464	21114	PP10,19	4654 784B	0,0000	0,03
465	2NU4	RR10.20	4655.1716	0.0047	0.03
466	2N114	RR10.21	4655,5584	-0.0017	0.03
467	2NU4	RR10.22	4655,9492	-0.0037	0.03
468	2NU4	RR10.23	4656.3438	-0.0014	0.03
469	2NU4	RR10.24	4656.7391	0.0021	0.03
470	2NU4	RR10,25	4657,1293	0.0009	0,03
471	2NU4	RR11,12	4657,9075	0.0042	0,03
472	2NU4	RR11,13	4658,3005	0,0005	0,03
473	2NU4	RR11,14	4658,6873	-0.0089	0,12
474	2NU4	RP11,15	4659,0910	+0,0010	0,03
475	2NU4	RR11,16	4659,4878	0,0005	0.12
476	2NU4	RR11,17	4659,8777	-0,0044	0.03
477	2NU4	RR11,18	4660,2765	0.0001	0,03
478	2NU4	RR11,19	4660,6692	-0,0013	0,02
479	2NU4	RR12,12	4663.7373	-0,0033	0.12
480	2NU4	RR12,14	4664,5512	0,0180	0,03
481	2NU4	RR12,15	4664,9395	0.0109	0.03
482	2NU4	RR12,16	4065,3448	0.0209	0.03
483	2NU4	RR12,17	4665,7356	0.0171	0.03
484	2NU4	RR12,18	4666,1172	0,0045	0,03

N0.		IDENT	OPS. FRF9	URS-CALC	₩ T
485	2NU4	RR12,19	4666.5143	0,0078	0,03
486	2NU4	RR12,20	4666,9085	0,0088	0,12
407	2NU4	RR12,21	4667.2821	-0,0105	0.12
488	2NU4	RR12,22	4667,6781	-0,0068	0,03
489	2NU4	RR12,23	4668.0715	-0,0052	0,03

and the second second

APPENDIX D

R	Ł	S	U	L	T	S		0	F		A	S	I	M	1 1	U	-	T	A	N	E	0	U	S	F	7	I	T	
									F	0	R	C	;]	D	3	Ċ	L												
																-		•											
			NI	'n			1 N E	M T	•			٥F			5		2		05	. c.			~	ia:	Ŧ				
				1	NI	14	PP	12	.1	4		22	231		5:	25	اد ۲			. O .	. 1 '	183	2	ο.	0 n				
				2	NI	14	PP	12	.1	3		22	23	1.	2	4 P	0			. 0	. 1	14	9	Ο.	00				
				3	NI	14	PP	12	, 1	2		22	23	1.	9	61	Å.			n.	1	200	5	0.	0 n				
				4	NU	J 4	PP	11	2	3		22	22	7.	8	27	1			0	. 1	22	7	0.	00				
				5	NU	J4	PP	11	2	2		22	22	8.	5	49	8			0	1	19:	1	0.	00				
			(6	NU	J 4	PP	11	,2	1		22	22	۶.	2	72	1			0	1	16	1	Ō,	00				
			-	7	NU	4 ر	PP	11	,2	Q		22	22	9.	9	91	5				1	15	9	0,	00				
			ł	В	NU	4 ز	PP	11	,1	9		22	231	0,	7	1ē	5			0	1	08	3	Ο,	00				
			•	9	NU	J 4	PP	11	,1	8		22	23:	۱,	4	48	5			0	0	979	7	Ο,	00				
			1	0	NU	4 ز	PP	11	,1	7		22	232	2,	1	65	5			0	1	00	4	Ο.	00				
			1:	1	NU	J 4	PP	11	. , 1	5		22	23	3.	6	17	9			0	.0	B 7 (4	0,	00				
			17	2	NL	4 ر	PP	11	,1	4		22	234	4,	3.	43	3			0	0	81	8	Ο,	00				
			1	3	NL	14	PP	11	.,1	3		22	23	5,	0	66	9		9	• 0	0	779	9	Ο,	00				
			1	4	NL	J 4	PP	11	,1	2		22	23	5,	7	90	1			• 0 •	.0	74!	5	0 ș	00				
			1!	5	NL	14	PP	11	.,1	1		22	230	6,	5	02	0			0	.0	824	4	0.	00				
			10	5	NL	J 4	PP	10	,2	8		22	2	7 ,	9	70	5		1	0	,1	42	4	0,	00				
			1	7	NL	14	PP	10	,2	7		22	22	5,	6	99	2		•	0	1	32	8	0,	00				
			1	8	NU	14	PP	10	,2	6		22	2	9,	4	22	5		1	0	1	28	2	0,	00				
			1	y	NU	14	P P	10	,2	2		22	3	Ο,	1	44	4		•	0	1	201		0,	00				
			20	0	NU	14	- 44	10	.2	4		22	3	•	8	86	Ō			0	1	031	5	01	00				
			2:	1	NU	14	PP	10	, 2	3		22	3	1,	5	98	2		1	0	1	104	5	0.	00				
			27	2	NU	14	22	10	, 2	2		22	3	٢,	37	22	5			0	1		5	0.	00				
			2	2	NU	14	22	10	, 2	1		24	: 3.	s,	0	21	1			0	• 0 '	9/1	4	U .	00				
			2	4	NU)4 . A	22	10		0		24	: . .	Σ,	1.	/ >	9			0	.0	729	9 7	υ,	00				
			2:	2	NU]4] A	- P P	10	11	۲		24	2.3	₽, =	2	03	4		٩	0	.04	54). 50)	/ 7	UI	00				
			2	כ ז		14	00	10		0 7		20	: 3):) 7 (, ,	20	21	5			0		701	2	0	00				
			2	/ R		1.4		10	a 4	1 6		22	- J - 2 /	ر د د	у' 4	49	J 7		9			9 7 1 9 4 4	ע כ	0,	00				
			20	່ເ	- N C - Nil	14		10		5		22) Z '	, . ,		03			1	. 0	0	5 6 (2	0.					
			3	n	- NI I	14	00	10	. 1	4		22	. U .) Z !	/ . R	4	26	7			. 0	0	62)	R	0 .	00				
			3	1	- NI L	14		10	. 1	7 3		22	 	а, А	1 (8)	27	۲ 7			0	. 0.	614	4	n.	00				
			32	>		14	PP	10	. 1	2		22) <u>, (</u>		5	70	/ 8		-	. N	. n'	54	4	0.	00				
			3.	5	NI	J 4	PP	10	.1	1		22	241		2	, J 92	n		-	. n .		56	Š	0.	00				
			34	4	NL	14	ρp	10	1	0		22	24	1.	0	13	v 6		_	. O .		54	8	0.	00				
			31	5	NI	14	PP	- q	.3	1		22	22	9.	5	- 0 6 ft	6		_	. n .	1	32	7	٥.	0 n				
			30	5	NL	4	PP	ç	3	Ō		22	23		2	84	4				1	28	0	0.	00				
			3	7	NI	14	PP	Ċ	2	Ū.		22	7	- , 	0	1 7			-	. n		1.30	3	<u>.</u>	0.0				

NO.	J	DEN	T	OBS. FRED	OPS=CALC	₩ T
38	NU4	PP	9,28	2231.7392	•0.1119	0.00
39	NU4	PP	9,27	2232.4485	.0.1220	0.00
40	NU4	PP	9,26	2233.1767	0.1135	0.00
41	NU4	ΡΡ	9,25	2233.9007	.0.1092	0.00
42	NU4	PP	9,24	2234.6251	-0.1047	0.00
43	NU4	PP	9,23	2235.3534	-0.0963	0.00
44	NU4	PP	9.22	2236.0787	.0.0910	0.00
45	NU4	PP	9.20	2237.5255	.0.0844	0.00
46	NU4	PP	9.19	2238.2515	0.0787	0,00
47	NU4	PP	9,18	2238.9772	0.0732	0.00
48	NU4	PP	9.17	2239.7075	-0.0631	0.00
49	NU4	PP	9.16	2240.4442	.0.0469	0.00
50	NU4	PP	9,15	2241.1583	.0.0532	0.00
51	NU4	PP	9,14	2241.8862	0.0456	0.00
52	NU4	PP	9,13	2242.6123	-0.0399	0.00
53	NU4	PP	9.12	2243.3342	-0.0384	0.00
54	NU4	PP	9.11	2244.0610	-0.0320	0.00
55	NU4	PP	9,10	2244.7748	.0.0386	0.00
56	NU4	PP	9, 9	2245.4983	•0.0354	0.00
57	NU4	PP	8.28	2235.528n	-0.0416	0.00
58	NU4	PP	8,27	2236,2055	.0.0841	0.00
59	NU4	PP	8,26	2236.9259	-0.0838	0.00
60	NU4	PP	8,25	2237.6393	.0.0906	0.00
61	NU4	ρρ	8,24	2238.3621	-0.0881	0.00
62	NU4	PP	8,23	2239.0835	0.0870	0.00
63	NU4	PP	8,22	2239.8059	.0.0850	0.00
64	NU4	PP	8,20	2241.2647	-0.0673	0.00
65	NU4	PP	8,19	2241.9965	-0.0560	0.00
66	NU4	PP	8,18	2242,7244	-0,0488	0,00
67	NU4	PP	8,17	2243,4509	=0.0429	0.00
68	NU4	PP	8,15	2244,8895	-0.0456	0,00
69	NU4	PP	8,14	2245,6223	-0,0336	0:00
70	NU4	PP	8,13	2246,3538	•0,0228	0,00
71	NU4	PP	8,12	2247,0695	-0,0276	0,00
72	NU4	PP	8,11	2247,7983	-0,0196	0,00
73	NU4	PP	8,10	2248,5135	-0,0250	0.00
74	NU4	PP	8, 9	2249,2309	. 0.0282	0.00
75	NU4	PP	8, 8	2249,9560	- 0,0236	0,00
76	NU4	PP	7,11	2251,5033	0,0191	0.00
77	NU4	PP	7,10	2252,2431	-0,0002	0,00
78	NU4	PP	7, 9	2252,9578	-0,0062	0,00
79	NU4	PP	7,8	2253,6841	-0,0007	0.00
80	NU4	PP	3,20	2259,5787	• 0 , 0481	0,00
81	NU4	PP	3,19	2260,3033	•0.0456	0,00
82	NU4	PP	3,18	2261,0304	•0.0409	0,00
83	NU4	PP	3,17	2261,7508	-0,0427	0,00
84	NU4	PP	3,16	2262,4763	•0,0388	0,00
85	NU4	PP	3,14	2263,9328	#0,0269	0,00
86	NU4	PP	3,13	2264,6567	•0,0250	0.00
87	NU4	PP	3,12	2265,3797	. 0 . 0238	0.00

TT

. . .

NO.		IDE	NT	OBS. FRFD	OPS-CALC	жT
88	NU4	PP	3,11	2266,1055	-0,0198	0,03
89	NU4	PP	3,10	2266.8419	.0.0050	0.03
90	NU4	PP	3, 9	2267.5602	.0083	0.03
91	NU4	PP	3, 8	2268.2871	-0.0028	0:03
92	NU4	PP	3, 7	2269.0043	-0.0070	0,03
93	NU4	PP	3, 6	2269.7428	0.0104	0.03
94	NU4	PP	3, 4	2271.1857	0.0113	0.03
95	NU4	PP	3. 5	2271.9029	0.0078	0.03
96	NU4	PP	1.12	2272.5482	-0.0192	0.03
97	NU4	PP	1, 6	2276.9011	0.0030	0.03
98	NU4	PP	1.4	2278.3278	-0.0126	0.03
99	NU4	PP	1.3	2279.0523	-0.0089	0.03
100	NU4	RP	0.31	2262.2811	• 0 . 0 9 3 5	0.00
101	NU4	RP	0.29	2263.7356	-0.0856	0.00
102	NU4	RP	0.28	2264,4675	• 0 • 0 7 7 1	0.00
103	NU4	RP	0.27	2265,1934	= 0.0745	0.00
104	NU4	RP	0.26	2265,9132	-0.0781	0.00
105	NU4	RP	0.24	2267.3679	-0.0701	0.00
106	NU4	RP	0.23	2268,0972	-0.0641	0.00
107	NU4	RP	0.22	2268,8178	= 0, 0667	0.00
108	NU4	RP	0.21	2269,5499	-0.0578	0.00
109	NU4	RP	0.19	2271.0067	-0.0473	0.00
110	NU4	RP	0.18	2271.7360	-0.0410	0.00
111	NU4	RP	0.17	2272,4559	-0.0440	0.00
112	NU4	RP	0.16	2273.1833	-0.0395	0.00
113	NU4	RP	0.14	2274.6486	-0.0196	0.00
114	NU4	RP	0.13	2275.3783	-0.0124	0.03
115	NU4	RP	0.12	2276,0970	-0.0161	0.03
116	NU4	RP	0.11	2276.8292	-0.0062	0.03
117	NU4	RP	0.9	2278,2813	0.0018	0.03
118	NU4	RP	0.7	2279,7223	-0.0007	0.03
119	NU4	RP	n. 6	2280,4419	-0.0026	0.03
120	NU4	RP	0.4	2281.8765	-0.0104	0.03
121	NU4	RP	0.2	2283.3277	-0.0008	0.03
122	NU4	RR	2. 2	2293,9625	0.0168	0.03
123	NU4	RR	2.3	2294.6755	0.0106	0.12
124	NU4	RR	2. 4	2295.3784	-0.0053	0.12
125	NU4	RR	2.5	2296.0869	-0.0154	0.03
126	NU4	RR	2. 6	2296.8321	0.0117	0.03
127	NU4	RR	2. 1	2297.5648	0.0265	0.00
128	NU4	RR	2.8	2298,2868	0.0310	0.00
129	NU4	RR	2.9	2299.0001	0.0271	0.00
130	NU4	RR	2.10	2299.7132	0.0233	0.00
131	NU4	RR	2,11	2300.4418	0.0354	0.00
132	NU4	RR	2,12	2301.1468	0.0243	0,00
133	NU4	RR	2,14	2302.5955	0.0418	0,00
134	NU4	RR	2,15	2303.2944	0.0257	0.00
135	NU4	RR	2,16	2304.0138	0.0305	0,00
136	NU4	RR	2.17	2304.7348	0.0374	0.00
137	NU4	RR	2,19	2306.1620	0,0375	0,00
			-			

	NO.	IDEN	ú T	OHS. FRED	OBS-CALC	WΤ
	138		2.20	2306 8748	0.00000000	n
	130		2.21	2307 5908	0.0019	0,00
	140		2 1 2			0 1 2
	140		3, 3			0 1 2
	141	NU4 RR	3, 4	2290,8035	0.0109	UTT5
	142	NU4 RR	5, 5	2299,5843	0,0130	0,12
	143	NU4 RR	3, 6	2300,2992	0,0098	0,12
	144	NU4 RR	3, 7	2301,0099	0.0028	0,12
	145	NU4 RR	3, 9	2302,4393	-0,0023	0,12
	146	NU4 RR	3,10	2303,1541	-0.0041	0,12
	147	NU4 RR	3,11	2303,8818	0,0073	0,12
	148	NU4 RR	3,12	2304.6077	0.0172	0,12
	149	NU4 RR	3,14	2306.0275	0.0065	0.12
	150	NU4 RR	3.15	2306.7300	=0.0059	0.12
	151	NU4 RR	3.16	2307.4343	-0.0159	0.12
	152	NILLA PR	5. 9	2309.3045	0.0044	0.12
	153	NUA PP	5.10		0,0020	0.12
	154		5 11			0 00
	154		511	2313 0003		0 10
	100	NU4 RR	5114	2012,0009	0.0000	0112
	150	NU4 RR	5,17	2313,5913	0,0028	0,12
	15/	NU4 RR	5,10	2314,3023	0,0000	0,12
	158	NU4 RR	5,18	2315,7332	0,0048	0,03
	159	NU4 RR	5,19	2316.4495	0.0088	0,12
	160	NU4 RR	5,21	2317,8863	0,0222	0.03
	161	NU4 RR	5,26	2321,4334	0,0198	0.03
	162	NU4 RR	5,27	2322,1387	0.0168	0,12
	163	NU4 RR	5,28	2322.8415	0.0118	0.03
	164	NU4 RR	5.29	2323.5411	0.0032	0.12
	165	NU4 RR	5.30	2324.2586	0.0150	0.12
	166	NILA RR	5.32	2325,6562	0.0010	0.03
	167	NII4 RR	6. 7	2311,2251	-0.0246	0.03
	168	NIIA PP	6. 9	2312 6814	-0.0015	0.12
	160		6 1 0	2313 4070		0.12
	170		6 1 1			0 12
	174		011			0 10
	1/1	NU4 RR	0,12	2314,8335	0.0030	0,12
	1/2	NU4 RR	0,14	2310,2534	-0.0000	V 1 1 2
	1/3	NU4 RR	6,15	2316,9835	0,010/	0,12
	174	NU4 RR	6,16	2317,6930	0,0067	0,03
	175	NU4 RR	6,19	2319,8257	0.0019	0,50
	176	NU4 RR	6,20	2320,5397	0.0044	0.12
	177	NU4 RR	6,21	2321,2457	÷0,0007	0.12
	178	NU4 RR	7, 9	2316,0348	-0,0053	0,12
	179	NU4 RR	7,10	2316,7495	+0,0063	0,12
	180	NU4 RR	7,11	2317.4589	-0.0124	0,12
	181	NU4 RR	7,12	2318,1785	.0.0077	0.03
14	182	NU4 RR	7,14	2319.6148	0.0000	0.12
	183	NU4 RR	7.15	2320.3188	-0.0096	0.50
	184	NU4 RR	7.16	2321.0344	-0.0101	0.12
	185	NILA DD	7.18	2322 4684	_n_nn%0	0.02
· .	186	NILLA PP	7,10	2323 1905	0.0025	0.03
	197		7 20	2327 4000		0 0 2
	T01		/ , C U	2020,0727	U • U U 3 0	0103

NO.	1	I DEN	NT	OBS. FRED	ORS-CALC	₩ T
188	NU4	RR	7,21	2324.6060	0.0062	0.03
189	NU4	RR	7,22	2325.3123	0.0024	0.12
190	NU4	KR	7.25	2326.0143	-0.0052	0.03
191	NU4	RR	7.24	2326.7239	-0.0047	0.03
192	NU4	RR	7,25	2327.4320	-0.0051	0,03
193	NU4	RR	8,10	2320.0683	•0.0152	0.03
194	NU4	RR	8.11	2320.7808	-0.0178	0.03
195	NU4	RR	8.13	2322.2317	0.0042	0.03
196	NU4	RR	8.14	2322.9488	0.00/5	0.12
197	NU4	RR	8.15	2323.6633	0.0088	0.03
198	NU4	RR	8.10	2324,3679	0.0006	0.12
199	NU4	RR	8.18	2325.7921	0.0007	0.12
200	NU4	RR	8.19	2326.4971	-0.0057	0.12
201	NU4	RR	8.20	2327.2015	-0.0120	0.03
202	NU4	RR	8.21	2327.9211	-0.0026	0.03
203	NU4	RR	9. 9	2322.6566	-0.0094	0.12
204	NU4	RR	9.10	2323.3769	-0.0044	0.50
205	NU4	RR	9.11	2324,0893	•0.0068	0.12
206	NU4	RR	9,12	2324.8019	-0.0086	0.12
207	NU4	RR	9.13	2325.5163	-0.0081	0.50
208	NU4	RR	9,14	2326.2244	-0.0134	0.50
209	NU4	RR	9,15	2326.9312	-0.0196	0.03
210	NU4	RR	9,16	2327,6577	+0,0055	0,03
211	NU4	RR	9,17	2328,3515	-0,0236	0,03
212	NU4	RR	9,18	2329,0830	-0,0036	0,12
213	NU4	RR	9,19	2329,7897	-0,0078	0,03
214	NU4	RR	9,21	2331,2222	0,0045	0.03
215	NU4	RR	9,22	2331,9255	-0,0015	0,03
216	NU4	RR	9,23	2332,6522	0,0165	0.12
217	NU4	RR	9,24	2333,3479	0.0040	0,12
218	NU4	RR	9,26	2334,7535	-0,0050	0.03
219	NU4	RR	9,21	2335,4637	-0.0012	0.03
220	NU4	RR	9,28	2336,1627	-0,0080	0.03
221	NU4	RR	9,29	2336,8595	-0,0163	0,03
222	NU4	RR1	10,11	2327,3515	-0,0117	0,03
223	NU4	RR1	10,12	2328,0773	0.0001	0.03
224	NU4	RR1	10,14	2329,4980	÷0,0059	0.03
225	NU4	RR	10,15	2330,2135	•0.0030	0,03
226	NU4	RR1	10,16	2330,9432	0.0146	0,03
227	NU4	RR1	L0,19	2333,0780	0,0163	0.03
228	NU4	KR1	10,20	2333.7864	0.0147	0.03
229	NU4	RR1	10,17	2331,6488	0.0086	0,03
230	NU4	RR1	1,12	2331,3144	0.0015	0.03
231	NU4	RRI	11,13	2332,0213	-0.0049	0,03
232	NU4	RRI	11,14	2332,7416	0.0027	0.03
233	NU4	RRI	11,15	2333,4550	0,0038	0.12
234	NU4	RRI	11,17	2334,8748	0.0007	0.03
235	NU4	RR	11,18	2335,5884	0,003/	0.03
236	NU4	KH1	11,19	2336,2920	-0.0028	0,03
231	NU4	RR1	11,20	2337,0143	0.0100	0.03

ъ.

NO.	, 1	IDEN	NТ	OBS, FRED	OPS-CALC	WT
238	NU4	RR:	12,15	2336.6614	0.00/2	0.03
239	NU4	RR:	12,10	2337.3899	0.0244	0,03
240	NU4	RR:	12,17	2338.0937	0.0174	0.12
241	NU4	RR	12.18	2338.7999	0.0134	0.12
242	NU4	RR	12.19	2339.4982	0.0020	0.03
243	NU4	RR	12.20	2340.2185	0.0133	0.03
244	NILLA	00	12.21		n n159	0.12
245	NILLA	004	10.20	2341 6410	0.0193	0.12
242	NO 4			504100410		V # ± 2
246	20114	DD	0.17	4484 0800	-0 0248	0.03
240	21114	00	0.16	4485 7044		0,00
247	21104	00	0 15	4496 4579	0 0003	0 1 2
240	2NUT	00			0,0003	
277	2NU4		7117			
250	21404		7110			
291	ZNU4	P P	9,12	4400,0233		0.07
272	ZNU4		A11	4409,324/		0.03
223	ZNU4	PP	9,10	4440,0885	0.0195	0,12
224	ZNU4	RR	0, 9	4702,4/4/	0,0047	0.03
232	ZNU4	KK.	0,10	4203,1895	0.0049	0.03
250	2NU4	RR	0,11	4263,9002	0,0014	0,03
257	2004	RR	0,12	4564,6199	0.00/5	0,03
258	2NU4	RR	0,13	4565,3270	0,0017	0,03
259	2NU4	ĸR	0,14	4566,0513	0,0136	0,12
260	2NU4	RR	0,15	4566,7699	0.0204	0,03
261	2NU4	RR	1, 5	4565.8097	0,0001	0,12
262	2NU4	RR	1, 6	4566,5215	•0,0048	0.12
263	2NU4	RR	1, 8	4567,9420	#0,0161	0,12
264	2NU4	RR	1, 9	4568,6645	•0,0087	0,12
265	2NU4	RR	1,10	4569,3793	-0,0084	0,12
266	2NU4	RR	1,11	4570,1010	-0.0007	0.12
267	2NU4	RR	1,12	4570,8164	0,0014	0,03
268	2NU4	RR	1,13	4571.5252	-0,0026	0,12
269	2NU4	RR	1,14	4572,2372	-0,0028	0,12
270	2NU4	ŔŔ	2, 5	4571,9698	-0,0019	0.03
271	2NU4	RR	2, 6	4572,6896	0,0103	0.03
272	2NU4	RR	2,8	4574,1170	0,0062	0.03
273	2NU4	RR	2, 9	4574,8353	0,0096	0.03
274	2NU4	RR	2,10	4575,5387	-0.0014	0,03
275	2NU4	RR	2,11	4576,2553	0.0015	0,12
276	2NU4	RR	2,12	4576,9579	-0,0091	0.03
277	2NU4	RR	2,13	4577.6685	-0.0110	0.03
278	2NU4	RR	2,14	4578.3829	-0.0086	0.03
279	2NU4	RR	2,15	4579.1013	-0.0015	0,03
280	2NU4	RR	2.17	4580.531 n	0.0074	0.03
281	2NU4	RR	2,18	4581.2310	-0.0020	0,03
282	2NU4	RR	2.19	4581.9358	.0.0059	0.12
283	2NU4	RR	2,20	4582.6495	-0.0002	0,03
284	2NU4	RR	3.3	4576,6255	.0.0045	0.50
			-••			

E.M.

NO.	•	IDEN	νT	OBS, FRED	OBS-CALC	۳T
285	2NU4	RR	3, 4	4577.3433	-0.0042	0,12
286	2NU4	RR	3, 5	4578.0579	-0.0067	0.50
287	2NU4	RR	3, 6	4578.7714	-0.0096	0,12
288	2NU4	RR	3, 8	4580.2016	-0.0107	0,12
289	2NU4	RR	3, 9	4580.9248	-0.0022	0.12
290	2NU4	RR	3,10	4581.6371	-0.0041	0,12
291	2NU4	ŔŔ	3,11	4582.3548	0.0001	0.12
292	2NU4	RR	3,12	4583.0684	0.0007	0.12
293	2NU4	RR	3,13	4583,7833	0.0033	0,12
294	2NU4	RR	3,14	4584,4892	-0.0025	0.12
295	2NU4	RR	3,15	4585,2070	0.0042	0,03
296	2NU4	RR	3,16	4585,9162	0.0030	0.03
297	2NU4	RR	3,17	4586.6264	0.0034	0.03
298	2NU4	RR	3,18	4587,3246	-0.0075	0,03
299	2NU4	RR	3,19	4588.0407	0.0001	0.12
300	2NU4	RR	3,20	4588,7469	-0.0014	0.12
301	2NU4	ŔŔ	3,21	4589,4585	0.0032	0.12
302	2NU4	RR	4, 4	4583.3854	-0.0124	0,03
303	2NU4	RR	4, 5	4584.0991	-0.0156	0.03
304	2NU4	RR	4, 6	4584.8264	-0.0046	0.03
305	2NU4	RR	4, 8	4586.2600	-0.0019	0.12
306	2NU4	RR	4, 9	4586,9730	-0.0035	0,12
307	2NU4	RR	4,10	4587.7021	0.0116	0,12
308	2NU4	RR	4,11	4588,4057	0.0019	0,12
309	2NU4	RR	4,12	4589.1240	0.0075	0.03
310	2NU4	RR	4,13	4589.8452	0.0166	0.12
511	2NU4	RR	4,14	4590,5452	0.0051	0.12
312	2NU4	RR	4,16	4591.9598	-0.0012	0,12
313	2NU4	RR	4,17	4592.6623	-0.0082	0.03
514	2NU4	RR	4,18	4593.3679	-0.0114	0.12
315	2NU4	RR	4,19	4594.0921	0.0046	0,03
316	2NU4	RR	4,20	4594.7833	-0.0116	0.03
517	2NU4	RR	4,21	4595,5045	0.0029	0,03
318	2NU4	RR	4,22	4596,1957	-0.0120	0.03
519	2NU4	RR	4,25	4596,9218	0.0088	0.03
320	2NU4	RR	4,26	4599.0083	-0.0162	0,03
321	2NU4	RR	5, 5	4590,1197	0.0072	0.12
322	2NU4	RR	5,6	4590,8389	0,0102	0.12
323	2NU4	RR	5,8	4592,2640	0.0048	0,12
524	2NU4	RR	5, 9	4592,9683	-0,0053	0,12
325	2NU4	RR	5,10	4593,6840	-0,0034	0.12
526	2NU4	RR	5,12	4595.1175	0.0046	0.03
327	2NU4	RR	5,13	4595,8257	0,0009	0,03
328	2NU4	RR	5,14	4596,5446	0,0086	0,03
329	2NU4	RR	5,16	4597,9715	0,0152	0.03
330	2NU4	RR	5,17	4598,6701	0,0045	0.03
331	2NU4	RR	5,18	4599,3722	-0.0019	0,12
332	2NU4	RR	5,19	4600.0843	0,0029	0.03
333	2NU4	RR	5,20	4600,7945	0,0056	0,03
334	2NU4	RR	5,21	4601,4993	0.0045	0,03

NO.		I DEI	ΝT	UBS. FRED	OBSECALC	w T
3.35	2 NI 14	RR	5.22	4602 1981		0.03
336	21104	RR	5.25	4602.9030	-0.0029	0.03
337	21114	22	5.24	4603 5946	-0,0029	0.03
338	21104	20	5,25	4604 2075		0.03
330	21104	םם	5 26			
337 34 n	2004	ממ	5,20	4596 7785		0,00
444	21104	00	υ, υ			0,00
341	2NU4			4508 0247		0,12
342	21104	00	6 1 0	4500 6700	0,0037	0 1 2
340	21104		6 J I I			0 1 2
544	21104		6 1 2		0 0097	
346	2104	50	6 1 6			
340	21104		6 14	4602 4878		
210	21104	00	6 1 4			0 1 2
340	21104		6 17			0,12
460	21104	00	6 J L/			0 1 2
454	2004		6 J L O	4005.3074		
391 360	21104	- n n 	6 20			0.03
452	21104		6 21			0 10
333	21104		0121			V+12
355	21104		6 24			0.03
354	2004		6 26	4009,5419		
350	2NU4		6 26	4010.2425		0 07
220	21104		6 27		0.0007	0,03
450	21104		6 7 2 9	4011,0039		0,03
140	21104		6 20	4012,3554		0.07
300	2104		6 30	4013,0409	=U,U100	0,03
362	21104		6 30			0 03
442	2004					
364	21104		0,00 7 H		#U+UU75	0.03
346	21107		7 0		0,0000	0 1 2
365	21104		7 10	4004.0143		0 12
367	21104		7 1 1		0 0052	0 12
349	2104	<u>п</u> п 00	7 1 2			0 07
440	2104	<u>п</u> п 00	7 1 4			0 07
370	21104		7 1 4			0 0 7
371	21104		7.16	4609 7803		0.03
372	21104	DD	7.17	4610 4974	0 0015	0.03
373	21104	00	7.18			0,03
374	2N114	RR	7.19	4611 0236	0.0128	0.03
375	21104		7.20	4612 6344	0.0140	0.03
376	21104	RR	7.21	4613 3320	0,0192	0.03
317	21114	88	7.22	4614.0381	0.0105	0.03
378	20114	RR	7.24	4615.4505	0,0154	0.03
379	20114	RR	7.25	4616 1430	0.0054	0.12
380	2NU4	RR	7.26	4616.8358	-0,0036	0.03
381	2014	RR	7.27	4617.5633	0.0229	0.03
382	2NU4	RR	7.28	4618.2382	-0.0024	0.03
383	2NU4	RR	7,29	4618.9471	0.0071	0,12
384	2114	RR	7.30	4619 6262	-0.0116	0.03

NO.	• 1	IDEN	Т	OBS, FRED	OBS-CALC	WΤ
385	2NU4	RR	7,31	4620.3413	0.00>0	0,03
386	2NU4	ĸR	7,32	4621,0295	-0,0036	0103
387	2NU4	RR	7,33	4621.7314	0.0022	0,03
388	2NU4	RR	7,54	4622,4122	-0,0122	0,03
389	2NU4	RR	7,35	4623.1026	-0.0162	0,03
390	2NU4	RR	8,10	4611,3611	0.0031	0.12
391	2NU4	RR	8,11	4612,0740	0.0037	0,12
392	2NU4	RR	8,12	4612,7757	-0,0063	0,12
393	2NU4	RR	8,13	4613,4896	-0.0034	0.12
394	2NU4	RR	8,14	4614,1925	-0,0107	0,12
395	2NU4	RR	8,16	4615,6419	0.0201	0,12
390	2004	RR	8,1/	4010,3578	0.0278	0,03
397	2NU4	RR	8,18	4017,0569	0,0194	0,03
398	2NU4	RR	8,19	4017,7591	0,0149	0,03
399	ZNU4	KK	8,20	4018,4612	0.0110	0.03
400	ZNU4	KK OD	8,21	4019,1712	0.0158	0.03
401	ZNU4	RR DB	0,22	4019,0733	0.0135	0,03
40Z	ZNU4	88	0,24	4021,2/50		0,12
403	ZNU4	- K R - 00	0,22	4021,9049		0.07
405	2114	50 00	0,20	4623 3734		0 12
406	21104	סמ	B.2H	4624 0746		0.12
407	2NU4	00	8.20	4624 7553		0.03
407	21104	88	8.30	4625 4673		0.03
409	2NU4	RR	8.32	4626.8525	-0.0080	0.03
410	2NU4	RR	8.33	4627.5445	-0.0114	0.03
411	2NU4	RR	8.34	4628.2278	-0.0228	0.03
412	2NU4	KR	8,35	4628.9217	.0.0226	0,03
413	2NU4	RR	8,36	4629 6255	-0.0117	0.03
414	2NU4	RR	9, 9	4616.4211	-0.0057	0.12
415	2NU4	RR	9,10	4617,1314	-0.0081	0,12
416	2NU4	RR	9,11	4617,8425	-0.0091	0,12
417	2NU4	RR	9,12	4618,5613	-0,0017	0.12
418	2NU4	RR	9,13	4619,2750	0,0013	0.12
419	2NU4	RR	9,14	4619,9827	-0.0010	0,12
420	2NU4	RR	9,16	4621,4097	0.0081	0,12
421	2NU4	RR	9,17	4622,1151	0.0057	0,12
422	2NU4	RR	9,21	4624,9363	0,0032	0,03
423	2NU4	RR	9,22	4025.6402	0.0030	0,03
424	2NU4	RR	9,24	4627,0485	0.0060	0.03
425	2NU4	RR	9,25	4027,7620	0,01/5	0.03
426	2NU4	RR	9,26	4028,4484	0.0031	0.03
421	ZNU4	KK	Y,2/	4029.1599	0.0140	V•V3
420		KK KK	Y 20	4029,8483 4635 0070	0.0040	
429	2NU4	- KK1		4027,0059		
424	2NU4		0 14	4027 1070	0 0020	
4.42	2 NU4		0,17	4607 BZAN	0 • U U Z U 0 • 0 4 A	0.07
422	2NUT	001	0.18	4628 5454		0.07
434	21114		1.11	4620 2412		0.12
		1 1 1 1 1		· · · · · · · · · · · · · · · · · · ·		* I * C

ND.	•	IDENT	OBS. FREG	OPS-CALC	wТ
435	2NU4	RR11,12	4629,9569	-0.0017	0,12
436	2NU4	RR11,13	4630,6602	-0.0084	0.12
457	2NU4	RR11,14	4631,3779	-0.0001	0,12
438	2NU4	RR11,15	4632,0803	-0,0062	0,12
439	2NU4	RR11,16	4632,7822	-0.0121	0,12
440	2NU4	RR11,17	4633,4894	-0,0120	0,12
441	2NU4	RR12,12	4635,5688	-0,0032	0,12
442	2NU4	RR12,13	4636,2751	-0.0066	0,12
443	2NU4	RR12,15	4637,7007	0.0018	0.12
444	2NU4	RR12,16	4638,4088	0,0025	0,12
445	2NU4	RR12,17	4639,1136	0.0007	0,12
446	2NU4	RR12,18	4639,8145	-0,0043	0.12
447	2NU4	RR12,19	4640,5095	-0.0144	0,12

APPENDIX E

ĸ	E	S	U	L	T	S	5		0	F		1	4	:	S	I	N	G	Ļ	E		8	A		N	D		F		I	Ţ	
								n	F		1	v	U	4		0	F			D	3	R	R									
								Ŭ	•			•	•	·		Ŭ	•		Ŭ		Ŭ	U	• •									
				•			• •	-							~ 0						~		_									
			NU) . 	N		ע ו ס ו		N T 1 3	. 1	8			1	22	151 171	1 2 4	" R E	5 Q.		0	BS n	C -	A	L C n s	; 1	n	W 1	1			
				2	N	U 4		P	13		17				22	238	3.1	552	3 L 7 A			n n	.0	0	20)	0	.0	3			
				3	N	Ū4	P	P	13		4				22	!4().	201	5			Ō	.0	Ō	68	3	Ō	. 0	3			
			4	4	N	U	P	P	13	, 1	3				22	.4(5.	71	18			Ŏ	, 0	0	37	,	Ō	, 0	3			
			5	5	Ν	U 4	P	P	12		27			1	22	237	7	532	29			0	. 0	1	25	5	Q	,0	3			
			(5	Ν	U 4	P	P	12		26				22	138	3.1) 4 !	51			0	, 0	0	93	5	Q	, 0	3			
			7	7	N	Ų4	P	P	12	•	25				22	38	3,!	55	16			0	.0	0	03	5	Q	, 0	3			
			2	5	N	U 4) P D	P: n			2			i	22	:4()			22			0	, 0	0	4 7 = 4		U	10	3			
			11	1	- N - N			5	12	. 1	- 1				2 C 2 2	• • • • • •						U _ 0	, U	n i	21	,	0	14	2			
			11	l	N	U 4	P	P	12		8				22	42		6	11			- v	. 0	0	30)	ŏ	.0	3			
			12	2	N	Ū4	P	P	12		7				22	42	2.0	579				- 0	.0	Ō	21	Ĺ	ō	.0	3			
			13	5	N	U 4	P	P	12	,1	5			i	22	43	5, ;	73:	38			Ō	, 0	3	10)	Ō	. 0	3			
			14	4	Ν	U 4	P	Ρ	12	.,1	4				22	244	١, ١	21	54			- 0	. 0	0	22	2	0	, 0	3			
			1	3	N	U4	P	P	12	,1	.3				22	44	• • •	737	75			Ū	• 0	0	54	•	Q	10	3	• ·		
			10	5	N	U	P	P	12	,	12				22	45	5,3	24	77			0	, 0	0	12	2	0	10	3			
			1/	/ >	N	U 4		P	11		20			1	22	4	2,1	39	71			0	, 0	0) C 4 C)	0	10	3			
			10	2	N	U 9] 4		Р. О	11 44		:7) l				24	5 4 4 1 A 7	2 , 3 7 7	20:				0	, U	1	0 L 8 A) (0	10	3			
			20	1	N			P	14		22				22	· • ·		100	73 34			0	, U		26	, 1	0	. 0	3			
			2	í	N	Ŭ4	P	P	11		21				22	244		510	59		•	ŏ	.0	0	50)	Ō	.0	3			
			27	2	N	U4	P	P	11	, 6	20				27	4	5	11	93			• 0	.0	Ō	80)	Ŏ	.0	3			
			23	5	Ν	U 4	P	P :	11	, 1	8.8			1	22	246	5	15	59			• 0	, 0	0	12	2	0	, 0	3			
			24	4	Ν	U4	P	P	11	, 1	.7				22	24(5,(57	06			• 0	. 0	0	27	,	0	,0	3			
			25	5	N	U 4	P	P	11		.5				22	47	7.	591	88			• 0	, 0	0	46	5	0	10	3			
			20	5	N	U 4	P	P.			14 T				22	:4 :	, e	209	99			• 0	, 0	0	83) • ·	0	11	. Z		,	
			24	2	N N	U 9	קו	P	11		10				6 4 2 2	; 4 () A (3 . .	11	32			• U - 0	• 0	1	7 / À 5	2	U 0	14	2			
			20	2	N	U 4		P	1 9		1			•	22	4		57. 751	1 0				• •	n.	86	5	0	.0	3			
			30	j	N	Ū4	P	P	10		27				22	4	5	51	53			Õ	.0	2	34	1	ō		3			
			31	L	N	Ū	P	P	10	, 6	26			1	22	24(5,	33	79			Ō	.0	2	99	7	Q	.0	3			
			32	?	N	U	P	P	10	, 2	?5				22	240	5,!	54	17			Ō	. 0	1	76	5	Q	, 0	3			
			33	5	N	U4	P	P	10	, 2	24				22	47	7,1	16	11	-		0	, 0	2	00)	Ū	.0	3			
			34		N	U 4	P	P	10	,	23				22	47	7 , !	56(36			0	. 0	1	25)	0	10	3			
			32)	N	∪4 4		P (,	1				22	(4) 4 (5,(502	23			Ū	, 0	1	45)	0	10	3			
			37	, ,	N	U 4 U 4	r I P	P	1 U 1 N	, 1	: U 9				2 2 2 2	: 4 \ 2 4 (L1: 53:	7 Q 1 4			U n	• U	1	19 19	, ,	0	1	3			

			12	2			
NO.	IDENT		085.	FRED	OBS=CALC	WT	
38	NU4 PP10	.18	2250	.1420	0.0073	0.03	
39	NU4 PP10	.17	2250	.6465	=0.0036	0.03	
40	NU4 PP10	,15	2251	.6756	=0.0052	0.03	
41	NU4 PP10	.14	2252	.1893	=0.0066	0.03	
42	NU4 PP10	,13	2252	.6970	=0.0140	0.12	
43	NU4 PP10	,12	2253	2170	=0.0089	0.12	
44	NU4 PP10	.11	2253	.7386	=0.0021	0.12	
45	NU4 PP10	.10	2254	2544	=0.0009	0.12	
46	NU4 PP 9	,35	2245	.3752	0.0659	0.00	
47	NU4 PP 9	, 34	2245	.8885	0.0624	0.00	
48	NU4 PP 9	,33	2246	.4041	0.0612	0.00	
49	NU4 PP 9	,32	2246	9183	0.0587	0.00	
50	NU4 PP 9	.30	2247	.9425	0.0495	0.00	
51	NU4 PP 9	,29	2248	.4630	0.0534	0.00	
 52	NU4 PP 9	,28	2248	.9582	0.0320	0.00	
53	NU4 PP 9	.27	2249	4815	0.0388	0.00	
54	NU4 PP 9	.25	2250	.5143	0.0388	0.00	
55	NU4 PP 9	.26	2250	.0025	0.0434	0.00	
56	NU4 PP 9	.24	2251	.0254	0.0336	0.00	
57	NU4 PP 9	.23	2251	.549n	0.0410	0.00	
 58	NU4 PP 9	,22	2252	.0538	0.0296	0.00	
59	NU4 PP 9	.21	2252	.5654	0.0251	0.00	
60	NU4 PP 9	.20	2253	.0802	0.0240	0.00	
61	NU4 PP 9	.19	2253	.6034	0.0313	0.00	
62	NU4 PP 9	.18	2254	.1055	0.0176	0.00	
63	NU4 PP 9	.17	2254	.6158	0.0122	0.00	
 64	NU4 PP 9	,16	2255	.1324	0.0132	0.00	
65	NU4 PP 9	,14	2256	.1673	0.0173	0.00	
66	NU4 PP 9	,13	2256	.6824	0.0172	0.00	
67	NU4 PP 9	,12	2257	.1961	0.0158	0.00	
68	NU4 PP 9	,11	2257	.7060	0.0108	0.00	
69	NU4 PP 9	.10	2258	.2212	0.0111	0.00	
 70	NU4 PP 9	. 9	2258	.7339	0.0091	0.00	
71	NU4 PP 7	,24	2258	7936	-0.0301	0.00	
72	NU4 PP 7	,22	2259	.8332	=0.0240	0.00	
73	NU4 PP 7	,21	2260	.3463	=0.0274	0.00	
74	NU4 PP 7	,20	2260	.8664	=0.0238	0.00	
75	NU4 PP 7	,19	2261	.3862	=0.0203	0.00	
 76	NU4 PP 7	,18	2261	.9002	=0.0225	0.00	
77	NU4 PP 7	.17	2262	4218	=0.0170	0.00	
78	NU4 PP 7	,16	2262	.9418	-0.0130	0.00	
79	NU4 PP 7	.14	2263	9658	-0.0206	0.00	
 80	NU4 PP 7	.15	2263	.4564	=0.0143	0.00	
81	NU4 PP 7	,13	2264	.4881	=0.0139	0.12	
 82	NU4 PP 7	,12	2265	.0032	=0.0142	0.12	
83	NU4 PP 7	,11	2265	.5199	-0.0128	0.12	
84	NU4 PP 7	.10	2266	.0381	=0.0097	0.12	
85	NU4 PP 7	. 9	2266	.5597	=0.0031	0.12	
 86	NU4 PQ 7	. 7	2271	.1906	0.0067	0.03	
87	NU4 PP 6	,21	2264	2332	=0.0210	0.03	

	NO.		DE	T	OBS.	FRED	ORS	CALC	WT	
	88	NU4	PP	6.20	2264	.7451	-0.	0258	0.03	
	89	NU4	PP	6.19	2265	2741	= 0	0133	0.03	
		NILLA	PP	6.18	2265	7844		0225	0.03	 -
	91	NUA	PP	6.17	2266	3144	-0	0088	0.03	
	92	NILA	PP	6.14	2267	8475		0211	0.03	
	93	NU4	PP	6.13	2268	3744	-0.	0129	0.03	
	94	NILA	PD	6.12	2268			0144	-0.03	
	95	NIIA	00	6.11	2260	4049	-0	0102	0.03	
	- 06	NIL	PP	7.10	2260			0131		
	97	NILA	DD.	4. 9	2270	4395	- 0	0120	0.03	
	98	NII4	60	6. 7	2274	4640	- 0	0109	0.03	
	00	NILA	00	6 6	2274	0745	- 0	0132	0.03	
	100	NILA		5.21	2268		-0	0122	0.03	
	101	NULA	60	5.20	2268	4494	-0	0475	0.03	
	102	NUA	66	5 10	2260	4770	-0	0105	0103	
	103	NULA		5 1 5	2240	454 7	-0.	0100	0100	
	104	NULA		5 17	2974			0000	0112	
	105	NUA	55	5 16	2970	6036	-01	0020	0112	
	104	NULA		5 14	2274	.0730		0000	0142	
	107	NUA		5 1 7	2272	./102	= 0 1	0033	0,12	
	108	NULA	55	5 12	2272	.2302		0033	0112	
	100	NILA	66	5.11	2273	9780		0054	0.12	
	110	NILA	DD	5.10	2273	7070		0088	-0.03	
	111	NILLA	00	5 0	2274	3007		0040	0.12	
	117	NUA	55	21-7	2275	3063		0047	0112	
	113	NUA		5 6	2275	8434		0150	0.12	
	114	NILA	00		2276	1786	0	0161	0.12	
	115	NILA	00	4.20	2272	4541	-0	0022	0.12	
	116	NULA		4.10	2272	0741		0011	0.12	
	117	NILA		4.18	2273	4044	- 0	00019	0.12	
	118	NILA	00	4.17	2274	04.21		0034	- 0.12	
	110	NILA	00	4.16	2274	5394		0071	0.12	
	120	NILLA	00	4.14	2275	5600	0	0110	1.12	
	121	NUA		4.13	2274	0845		0124	0.12	
	122	NILA	66	4.12	2276	6031		0023	- 0.03	
	123	NILA	00	4.11	2277	1044	- 0	0.013	0.12	
	124	NUA	PP	4. 9	2278	1447	-01	0052	0.03	
	125	NII4	PP	4. 7	2279	4680	0	0013	0.12	
	126	NUA	PP	4. 6	2270	6804	01	0080	0.12	
	127	NUA	PP	4. 5	2280	2040	0.	0100	0.03	
	128	NILL4	PP	4. 4	2280	7105	0	0002	0.12	
	129	NUA	PP	3.28	2272	1140	-0.	0088	0.03	
	130	NUA	PP	3.27	2272	6342	-0	0068	0.03	
	131	NU4	PP	3.26	2273	1541	-0.	0047	0.12	
_	132	NUA	PP	3.25	2273	6742	-01	0058	0.03	
	133	NUA	PP	3.24	2274	1804	-0	0054	0.12	
	134	NU4	PP	3.22	2275	2230	=0.	0062	0.12	
	135	NUA	PP	3.21	2275	7370	-0	0096	0.12	
	136	NUA	PP	3.20	2276	2683	-01	0035	0.12	
	137	NUA	PP	3.19	2276	7840	0.	0020	0.03	
		14 4 4	1.10		/0				4190	

•

.

.

· ·

• • • •

• • . \ .

٠ • • • • •

• • • •

				164			
NO			N.T	ORS ERES	0.000-041.0	W.T	
1 7 8	MILA	00	7 18 -	2277 2070	0 0053	0.10	
130	NULA	20	3 17	2277 8140	-0.0010	0,12	
140	NULA	60	3 16 -	2278 7250	-0.0047	0.12	
1 4 4	NULA		3,10	2270 3400		0 12	
142	NUA	55	3.13	2279 8750	0,0020	0,12	
143	NULA	00	3 12	2290 3005	0.0019	0.12	
144	NUL	55	3 11	2280 0130	-0.0004	0.03	
145	NUA	00	3.10	2281 4264	-0.0030	0,12	
146	NUA	PP	3. 9	2281 0301	-0.0054	0.03	
147	NIL4		3. 7	2282 0787	0.0039	0.03	
148	NUA	00	3. 6	2283 4804	-0.0003	0.03	
140	NII4	00	3. 5	2284 0144	0.0073	0.03	
150	NILLA	00	3. 4	2284 5000	-0.0187	0.03	
151	NILA	60	2.26	2276 0500	0.0121	0.03	
 152	NILLA		2.25	2277 4640	0,0141	0.12	
153	NUA	00	2.24	2277 084 2	0.0041	0.03	
154	NILA	60	2.23	2278 5074	0.0141	0.03	
155	NULA	00	2 21	2270 5745	0.0041	0.03	
156	NULA	55	2.20	2280 0405	0.0001	0.03	
157	NUA		2 10	2200 6670	0,0054	0.03	
 158	NULA	55	2 18	2284 0847	-0.0024	0103	
150	NUA		2 17	2284 5040	-0.0004	0.12	
160	NUA	60	2 16	2282 4282	0.0113	0.12	
161	NUA	55	2.14	2283 4584	0.0112	0.03	
162	NULA		2 1 3	2203,1995	0.0001	0.13	
163	NUA	50	2.12	2284 4845	0.0016	0.03	
 164	NILL	PP	2.11	2284 7087	0.0049	0.12	
165	NILA		2.10	2285 2247	0.0131	0.12	
166	NILLA	PP	2. 9	2285 7294	0.0023	0.12	
167	NILA	DD	2. 7	2286 7684	0.0108	0.12	
168	NU4	PP	2. 6	2287,2826	0.0101	0.12	
169	NU4	PP	2. 5	2287.8034	0.0162	0.03	
 170	NUA	PP	1.24	2281.7436	0.0138	0.03	
171	NU4	PP	1.23	2282.2605	0.0126	0.03	
172	NUA	PP	1.21	2283, 2810	-0.0027	0.12	
173	NU4	PP	1.20	2283.8120	0.0106	0.03	
174	NU4	PP	1.19	2284 3277	0.0088	0.03	
175	NU4	PP	1.18	2284 8275	-0.0088	0.12	
 176	NU4	PP	1.17	2285.3656	0.0122	0.03	-
177	NU4	PP	1.16	2285,8789	0.0085	0.12	
178	NU4	PP	1.14	2286.9124	0.0085	0.03	
179	NUA	PP	1.13	2287 4272	0.0069	0.12	
180	NU4	PP	1.12	2287.9284	-0.0079	0.03	
181	NUA	PP	1.10	2288.9847	0.0133	0.03	
182	NUA	PP	1. 9	2289.4844	0.0025	0.03	
183	NUA	PP	1. 7	2290.5250	0.0103	0.03	
184	NU4	PP	1. 6	2291.0302	0.0005	0.03	
185	NU4	PP	1. 5	2291.5511	0.0067	0.03	
186	NU4	RP	1.11	2307.6974	0.0065	0.03	
187	NU4	RR	2. 3	2307.3015	0.0206	0.03	

NO.	1	DEM	NT	OBS. FRED	ORS-CALC	WT
188	NU4	RR	2. 4	2307.7993	0.0063	0.12
189	NU4	RR	2, 5	2308.3107	0.0059	0.03
190	NU4	RR	2. 7	2309.3233	-0.0041	0.12
191	NU4	RR	2, 8	2309.8464	0.0081	0.12
192	NU4	RR	2.9	2310.3478	-0.0010	0.12
193	NU4	RR	2,10	2310.8660	0.0070	0.12
194	NU4	RR	2,11	2311.3728	0.0040	0.00
195	NU4	RR	2,15	2313.4089	0.0041	0.03
196	NU4	RR	2,16	2313.9141	0.0011	0.03
197	NU4	RR	3, 4	2311.4467	0.0021	0.03
198	NU4	RR	3, 5	2311,9493	.0.0070	0.03
199	NU4	RR	3, 7	2312,9699	-0.0089	0.03
200	NU4	RR	3,8	2313,4775	-0.0120	0.03
201	NU4	RR	3, 9	2313.9926	.0.0073	0.03
202	NU4	RR	6,17	2328.8390	0.0175	0.12
203	NU4	RR	6,16	2328.3370	-0.0124	0,12
204	NU4	RR	6,15	2327.8278	.0.0142	0.12
205	NU4	RR	6,14	2327.3165	.0.0177	0.12
206	NU4	RR	6,13	2326.8269	0.0009	0.12
207	NU4	RR	6,12	2326.3069	-0.0106	0,12
208	NU4	RR	6,11	2325.7889	.0196	0.12
209	NU4	RR	6,10	2325,2724	-0.0268	0.03
210	NU4	RR	6, 9	2324.7824	-0.0071	0.12
211	NU4	RR	6,8	2324,2723	-0.0072	0.50
212	NU4	RR	6, 7	2323,7660	.0.0031	0.50
213	NU4	RR	8,8	2331,3546	0.0209	0,12
214	NU4	RR	8, 9	2331.8566	0.0131	0112 ····
215	NU4	RR	8,11	2332.8803	0.0184	0.12
216	NU4	RR	8,13	2333.8937	0.0150	0.12
217	NU4	ŔR	8,14	2334,4027	0,0162	0.03
218	NU4	RR	8,15	2334,9003	0.0064	0.12
221	NU4	RR	9, 9	2335,3456	0,0176	0,00
222	NU4	RR	9,11	2336,3765	0,0309	0100
223	NU4	RR	9,13	2337,3790	0,0166	0,00
224	NU4	RR	9,14 -	2337,8857	0,0156	0,00
225	NU4	RR	9,15	2338,4011	0,0238	0,00
226	NU4	RR	9,16	2338,9160	0,0319	0,00
244	NU4	RR	9,18	2339,9188	0.0224	0,03
227	NU4	RR	9,20	2340,9374	0,0304	0,00
228	NU4	RR	9,21	2341,4396	0,0279	0,00
229	NU4	RR	9,22	2341,9348	0,0189	0,00
230	NU4	RR	9,23	2342,4344	0,0148	0,00
231	NU4	RR	9,24	2342,9363	0,0134	0,00
232	NU4	RR	9,26	2343,9399	0.0117	0,00
233	NU4	RR	9,28	2344,9120	-0,0195	0100
234	NU4	RR	9,29	2345,4149	-0,0176	0,00
235	NU4	RR	9,31	2346,4055	-0,0275	0,00
236	NU4	RR	9,32	2346,9146	=0,0180	0,00
237	NU4	RR	9,33	2347,4038	•0.0278	0100
238	NU4	RR	9,34	2347,9114	=0,0187	0,00

NO,		DENT	OBS, FRED	ORS-CALC	WT
239	NU4	RR 9,35	2348,3876	•0,0406	0.00
219	NU4	RR10,11	2339,8142	0,0128	0,03
220	NU4	RR10,13	2340,8403	0,0228	0,03
240	NU4	RR10,14	2341,3327	0,0078	0,03
241	NU4	RR10,15	2341,8417	0,0098	0103
242	NU4	RR10,16	2342,3458	0.0073	0,03
243	NU4	RR10,17	2342,8533	0,0087	0,03
245	NU4	RR11,11	2343,2354	0,0075	0,03
246	NU4	RR11,13	2344,2572	0,0137	0,03
247	NU4	RR11,14	2344,7590	0,0083	0,03
248	NU4	RR11,15	2345,2595	0,0020	0,03
249	NU4	RR11,16	2345,7679	0.0041	0,03
250	NU4	RR11,19	2347,2805	0,0003	0,03
251	NU4	RR11,21	2348,2927	0,0038	0,03
252	NU4	RR12,12	2347,1066	=0,0264	0103
253	NU4	RR12,14	2348,1422	=0,0051	0,03
254	NU4	RR12,15	2348,6535	=0.0004	0,12
255	NU4	RR12,16	2349,1612	0,0012	0,03
256	NU4	RR12,17	2349,6548	-0.0108	0,12
257	NU4	RR12,18	2350,1752	0.0044	0,03
258	NU4	RR12,19	2350,6686	-0,0070	0,03
259	NU4	RR12,20	2351,1791	=0.0007	0,03
260	NU4	RR12,23	2352,6971	0.0072	0,03
201	NU4	RR12,24	2353,1904	•0,0019	0100
202	NU4	RR13,15	2352,0231	0.0024	0,03
203	NU4	KK13,10	2352,5269	0.0004	0,03
204	NU4	KH13,18	2353,5385	0,0018	0,03
207	NU4	KR13.22	2355,5457	-0.0062	0.03

• • . • . • • . . • . . •

- • .

. ۱.

•

• • • • • • • • • • • х · ·

•

• .

