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ABSTRACT

KERNEL-BASED NONPARAMETRIC TESTING IN HIGH-DIMENSIONAL
DATA WITH APPLICATIONS TO GENE SET ANALYSIS

By

Tao He

The ultimate goal of genome-wide association studies (GWAS) is understanding the un-

derlying relationship between genetic variants and phenotype. While the heretability is

largely missing in univariate analysis of traditional GWAS, it is believed that the joint anal-

ysis of variants, that are interactively functioning in a biological pathway (gene set), is more

beneficial in detecting association signals. With the fast developing pace of sequencing tech-

niques, more detailed human genome variation will be observed and hence the dimension of

variants in the pathway could be extremely high. To model the systematic mechanism and

the potential nonlinear interactions among the variants, in this dissertation we propose to

model the set effect though a flexible non-parametric function under the high-dimensional

setup, which allows the dimension goes to infinity as the size goes to infinity.

Chapter 2 considers testing a nonparametric function of high-dimensional variates in a

reproducing kernel Hilbert space (RKHS), which is a function space generated by a positive

definite or semidefinite kernel function. We propose a test statistic to test the nonparamet-

ric function under the high-dimensional setting. The asymptotic distributions of the test

statistic are derived under the null hypothesis and a series of local alternative hypotheses,

the explicit power formula under which are also provided. We also develop a novel kernel

selection procedure to maximize the power of the proposed test, as well as a kernel regular-

ization procedure to further improve power. Extensive simulation studies and a real data

analysis were conducted to evaluate the performance of the proposed method.



Chapter 3 is theoretical investigation on the statistical optimality of kernel-based test

statistic under the high-dimensional setup, from the minimax point of view. In particularly,

we consider a high-dimensional linear model as the initial study. Unlike the sparsity or in-

dependence assumptions existing in related literature, we discussed the minimax properties

under a structure free setting. We characterize the boundary that separates the testable

region from the non-testable region, and show the rate-optimality of the kernel-based test

statistic, under certain conditions on the covariance matrix and the growing speed of dimen-

sion.

Our work in Chapter 4 fills the blank of kernel-based test using multiple candidate kernels

under the high dimensional setting. Firstly, we extend the test statistic proposed in Chapter

2 to an inclusive form that allows the adjustment of covariants. The asymptotic distribution

of the new test statistic under the null hypothesis is then provided. Two practical and

efficient strategies are developed to incorporate multiple kernel candidates into the testing

procedures. Through comprehensive simulation studies we show that both strategies can

calibrates the type I error rate and improve the power over the the poor choice of kernel

candidate in the set. Particularly, the maximum method, one of the two strategies, is

shown having potential to boost the power close to one using the best candidate kernel. An

application to Thai baby birth weight data further demonstrates the merits of our proposed

methods.
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Chapter 1

Introduction

With the advances in genotyping technologies and the cataloging of millions of single nu-

cleotide polymorphisms (SNPs) in the past decades, genome-wide association studies (GWAS)

become increasingly popular for investigating the relationship between genetic variants and

the phenotypic traits of interest. The reason that SNPs are chosen as the genetic markers is

because they are the most fundamental type of genetic variation and provide comprehensive

coverage of the whole genome variation. In a typical genome-wide association study, hun-

dreds of thousands of SNPs are firstly assayed among hundreds or thousands of individuals,

then the single-SNP analysis, where individual SNPs are tested one at a time, is performed

to seek possible association signals between SNPs and a trait.

In spite of tremendous knowledge gain and excited findings due to GWAS (Hirschhorn

and Daly , 2005; Gardon and Bell, 2001; Edwards et al., 2005; Yasuda et al., 2008), it has

been pointed out that the discovered genetic risk factors can only explain a small fraction

of heritability for many complex traits, either individually or collectively (Manolio et al.,

2009). The mystery of the missing heritability has been hotly discussed in the genetic

research community and several credible opinions and search directions has been proposed

(Eichler et al., 2010). Firstly, genome-wide genotype assays often fail to adequately cover

the copy number variation or the rare variates (Manolio et al., 2009; Mefford and Eichler,

2009), which potentially play important roles in the genetic structure of the traits. Secondly,

a failure of considering epigenetic factors such as imprinting, is a possible source of missing
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heritability (Kong et al., 2009). Another possible explanation is named by the interaction

between genetic variants and environmental factors. From statistical testing perspective,

the correction for multiple testing problems normally leads to a stringent threshold such

that SNPs with small marginal effects are not able to be claimed significant (Gibson, 2010).

Finally, the missing heritability is a consequence of single-variant-based analysis, while the

true architecture of generic effects is potentially a highly complex interacted network of

variants for the manifestation of complex traits (Zuk, et al., 2012). Hence novel statistical

methods with a systems biological perspective are needed to identify more genetic risk factors

and therefore to explain more fraction of heritability. Moreover, testing the effects of multiple

variants jointly immediately reduces the multiple testing burden.

Testing biological meaningful set of variants simultaneously has been proposed as the

new strategy. The introduction of biological structure not only provides a potential boost

of power, but also grants researchers meaningful interpretation and possible utilization in

the future (Wang, et al. 2010). One of the attractive sets is gene, which is well annotated

for human and mutations in which are known to directly impact the functionality of human

organism. Another more frequently used unit is biological pathway, which represents a group

of genes that form a complex network to regulate a particular outcome coordinately. Similar

to genes, pathway information has been provided in a variety of online resources, such as

such as Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa, 2000; Reactome

(Joshi-Tope et al., 2005) and Gene Ontology (Ashburner et al., 2000).

A broad range of methods have been developed for the association analysis of sets of

SNPs or other variants, targeted towards the detection of significant pathways (or gene

sets). One important class of the approaches in pathway association is combined p-value

methods. Namely, the effect of SNPs is individually tested and the signal of a pathway is
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then evaluated by combing p-values corresponding to the marginal tests of all SNPs within

the pathway, in a certain way. For example, in the gene-set enrichment analysis proposed

by Wang, Li and Bucan (2007), the strongest signal (i.e., the smallest p-value) within a gene

is assigned to the gene, then the pathway is accessed by a weighted Kolomogorov-Smirnov-

like running sum statistic, which is used to combine the signals of genes that in a pathway.

Recently Yu et al. (2009) introduced an adaptive rank truncated product statistic which

extends the truncation rank from one (only the smallest p-value is utilized) to an adaptively

selected number. However, the combined p-value method shares the disadvantage with the

traditional single-variant-based GWAS: the effect of SNP is estimated independently of all

others. Moreover, since only the p-values of individual tests enter the higher-level analysis,

researchers are taking the risk of losing important information.

Being independent with the single-variant testing results and capable of simultaneously

considering the multiple variants, kernel methods are introduced to address the pathway-

association issue. The basis of kernel methods is a positive definite or semidefinite kernel

function (Hofmann et al., 2008), which not only can be used to measure the genetic similarity

for all pairs of subjects, but also can flexibly model certain (linear or non-linear) relationship

between the variants and a trait. Kernel machine regression method is one of the well-

known example from the category (Liu et al., 2007; Liu et al., 2008). Note that the kernel

methods can be also generalized to many approaches using notions of pairwise similarity

(Mukhopadhyay et al., 2010; Schaid, 2010; Tzeng et al., 2009; Wessel and Schork, 2006).

Known as a very complex network where enormous genetic factors are involved, path-

way is of great dimension and this dimension might be getting extremely large with the

development of sequencing technology in the coming years. Under such a high-dimensional

setup, all the existing kernel methods do not consider effect of data dimension on the test
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statistic, hence are of lack of unified theoretical investigation under the high-dimensional

setting. In the dissertation, we mainly develop the kernel-based testing procedures and the

corresponding methodologies under the high-dimensional setting, aiming at the detection of

significant pathways (or gene sets) that are associated with a continuous trait of interest.

In Chapter 2, we consider testing a high-dimensional nonparametric function in a repro-

ducing kernel Hilbert space (RKHS), which is generated by a positive definite or semi-definite

kernel function. A test statistic is proposed to test the nonparametric function under the

“large p, small n” setup. The asymptotic distributions of the test statistic are studied under

the null hypothesis and a series of local alternative hypotheses. We also develop a novel kernel

selection procedure to maximize the power of the proposed test via maximizing the signal-

to-noise ratio. Moreover, a test with regularized kernel is constructed to further improve

the power. It is shown that the proposed test could nearly achieve the power of an oracle

test if the regularization parameter is properly chosen. Extensive simulation studies were

conducted to evaluate the finite sample performance of the proposed method. We applied

the proposed method to a Yolkshire gilt data set to identify pathways that are associated

with triiodothyronine level.

In Chapter 3, we attempt to study the statistical optimality of the kernel-based test

statistic in a linear model from the minimax point of view, under the high-dimensional setup.

In particularly, we consider a high-dimensional linear model as the initial investigation. After

introducing the basic notation and definition for minimax testing problem, we establish a

lower bound of the detection boundary that separates the testable region and non-testable

region, followed by the upper bound. We show that the introduced kernel-based test statistic

is rate-optimal, under certain conditions on the covariance matrix of variants and increasing

speed of dimension.
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In Chapter 4, we extend the kernel-based test statistic such that covariants adjustment

is allowed. We provide the asymptotic distribution of the new test statistic under the null

hypothesis. Moreover, we proposed two practical and efficient strategies to utilize multiple

kernel candidates in the test. We demonstrated in simulation studies and real data analysis

that under high-dimensional setting both strategies not only calibrates the type I error but

also leads to the improvement of the power over the poor choice of the kernel candidate

in set. Especially, the maximum method we proposed is observed to enable the power to

be close to the one using optimal kernel function out of the candidates, while the multiple

kernel strategy (Wu et al., 2013) proposed under the kernel machine framework suffers from

power loss under a high-dimensional setting.
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Chapter 2

Testing high-dimensional

nonparametric functions in RKHS

using single kernel

2.1 Introduction

High-dimensional data arise nowadays in a wide range of areas, such as biology, imaging

and climate. In genetic studies, millions of single nucleotide polymorphisms (SNPs) can be

measured simultaneously using the high-throughput technologies. The identification of genes

that are associated with certain traits, such as blood pressure and grain yield, is increasingly

important in health and agriculture sciences. While the traditional methods focus on the

single gene based analysis, the limitation of single gene based method has been realized by

many researchers (Manolio et al., 2009). Gene-set based analysis (Subramanian et al., 2005;

Newton et al., 2007) holds great promising because gene regulation is often very complex

and genes tend to work together in a non-linear way (Liu et al., 2007; Li and Cui, 2012) to

achieve certain biological functions. To model the association between certain trait Y and a

gene set, we consider the following nonparametric regression

Yi = µ+ h(Xi) + εi, i = 1, · · · , n (2.1.1)
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where X1, · · · ,Xn are IID p-dimensional variates generated from a probability measure P

on Rp and εi are IID random errors with zero mean and variance σ2. For model identification

purpose, we assume E{h(Xi)} = 0. Since the number of genes p in a gene-set could range

from a few to a few thousand but the sample size n in a genetic study is often limited, we

consider a “large p, small n” setup to allow p to be much greater than n. Our interest in

this chapter is on testing

H0 : h(·) = 0 vs H1 : h(·) 6= 0 (2.1.2)

under the “large p, small n” setup where p(n)→∞ as n→∞.

The hypothesis testing for a non-parametric function (2.1.2) in a fixed dimensional case (p

fixed) has been well studied in the literature (Härdle and Mammen , 1993; Chen et al., 2003;

Gao and Gijbels, 2008). A vast majority of them applied either a kernel smoothing method

or a local polynomial method to construct test statistics. However, all of these methods suffer

the “curse of dimensionality” (Fan and Gilbels, 1996) and can not be easily generalized to

test functions in a high-dimensional space without a specific structure. Recently, Liu et al.

(2007) proposed a score test for functions in a reproducing kernel Hilbert space by using

the relationship between (2.1.1) and a linear mixed effect model (see also Liu et al., 2008).

These methods can be regarded as a generalization of the score test proposed by Goeman

et al. (2006). See Goeman et al. (2011) for a similar test in a generalized linear model.

Nevertheless, the existing methods do not consider testing functions in the “large p, small

n” setup and the effect of data dimension on the test is largely unknown.

The focus of the current chapter is on testing non-parametric functions in a “large p,

small n” setup. The hypothesis testing for a high-dimensional parameter vector has received

increasing attention recently. Zhong and Chen (2011) and Lan et al. (2014) considered
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testing high-dimensional regression coefficients in a linear regression model which is a special

case of (2.1.1) by setting h(Xi) = XT
i β (Wang and Cui, 2013; Feng et al., 2013). However,

none of the above methods can be applied to test a high-dimensional non-parametric function.

Because of the curse of dimensionality, it is very challenging or even impossible to esti-

mate a high-dimensional non-parametric function without imposing any specific structure.

However, it is interesting to find that hypothesis testing for high-dimensional non-parametric

functions is still feasible without specific structures. Our method can be applied to assess

any nonparametric functions in the RKHS generated by a positive semi-definite kernel. By

introducing the RKHS, we show that the high-dimensional non-parametric function evalu-

ated at data points can be represented as a function in a linear manifold generated by the

kernel. This successfully translates the problem of testing nonparametric functions into a

test for a high-dimensional vector. We then propose a U-statistic based test statistic to test

the high-dimensional vector. The asymptotic distributions of the test statistic are obtained

under the null hypothesis and a series of local alternatives without a specific distribution

assumption.

Kernel selection is an important issue in a kernel machine based testing procedure (Liu

et al., 2007). However, less work is done in this direction. We propose a new procedure for

selecting kernels in the hypothesis testing context. By obtaining an explicit power function

of the proposed test, we choose the kernel that maximizes the power function. Unlike the

BIC criterion proposed in Liu et al. (2007), our procedure is tailored to the hypothesis

testing problem and is particularly designed for improving the power of the proposed test.

Moreover, we are able to construct a regularized kernel to further improve the power of the

test. A novel method for choosing the regularization parameter is introduced. We show that

the proposed test with regularized kernel could achieve the power of an oracle test if the
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regularization parameter is properly chosen.

The rest of the chapter is organized as follows. In Section 2.2, we introduce the expansion

of the nonparametric function in the RKHS at data points and the equivalent hypothesis.

Section 2.3 proposes a new test statistic and establishes the main asymptotic distribution

of the proposed test statistic under the null hypothesis and local alternatives. The kernel

selection and regularization are discussed in Section 2.4. The finite sample performance of

the proposed test statistic is evaluated by extensive simulations in Section 2.5. In Section

2.6, we apply the proposed method to a Yolkshire gilt data set to identify gene sets that

are associated with triiodothyronine level. A brief discussion is given in Section 2.7. All the

technical details are relegated to the final section.

2.2 Functional space and equivalent hypothesis

In this chapter, we consider functions h(·) that belong to a functional space HK generated

by a kernel Kθn(·, ·) where θn are tuning parameters that possibly depend on n. For notation

convenience, we suppress n in θn in the rest of the chapter. The kernel Kθ(x1, x2) : Rp ×

Rp → R is any symmetric and positive semi-definite function defined on Rp ×Rp. A kernel

Kθ(x1, x2) is said to be positive semi-definite if the associated kernel matrix (Kθ(xi, xj))
M
i,j=1

is an M ×M positive semi-definite matrix defined on any M distinct points x1, · · · , xM ∈

Rp. Some commonly used kernel functions include linear kernel Kθ(z1, z2) = zT1 z2/θ and

Gaussian kernel Kθ(z1, z2) = exp(−‖z1 − z2‖2/θ). More examples of kernel functions could

be found in Liu et al. (2007).

The functional space HK is determined by the kernel function Kθ. For the purpose of
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defining the functional space HK , we define the following normalized kernel

Kθ(x1, x2) =
Kθ(x1, x2)√

E{Kθ(X1,X1)}E{Kθ(X2,X2)}

where X1 and X2 are independent copies of X with probability measure P . It is then obvious

to see that E{Kθ(Xi,Xi)} = 1 and Kθ(x1, x2) is still positive semi-definite and symmetric.

The above normalization ensures E{Kθ(X,X)} < ∞ so that the eigen-decomposition of

Kθ can be properly defined according to Lemma 1 in the last section. The normalization

is needed because E{Kθ(X,X)} could diverge in the high-dimensional case. For instance,

if Kθ(X,X) = XTX and Var(X) = Σ, then E{Kθ(X,X)} ≥ tr(Σ) which implies that

E{Kθ(X,X)} is at least at the order of p if all the eigenvalues of Σ are bounded away from

0.

By Lemma 1 in the last section, we can writeKθ(x1, x2) =
∑∞
m=1 λKθ,mψθ,m(x1)ψθ,m(x2)

where {ψθ,m(·)} form a complete orthogonal normal system on L2(P ). Without causing

much confusion, we will use λK,m and ψm(·) to denote λKθ,m and ψθ,m(·), respectively.

Then the space HK is defined to be (Poggio and Shelton, 2002)

HK = {f(x) : f(x) =
∞∑
m=1

αmψm(x) for αm with
∑
m

α2
m/λK,m <∞}.

Letα = (α1, ..., α∞) be the coefficients in the representation of h(·), i.e., h(·) =
∑∞
m=1 αmψm(·).

To distinguish H0 from H1, one need to find a measure to quantify the distance between

h(·) and 0. Here we define a norm ‖ · ‖K below as a measure,

‖h‖2K =
∞∑
m=1

λmα
2
m (2.2.1)
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where λm = E{Kθ(X,X)}λK,m that may be considered as the eigenvalues of the kernel

function Kθ(x, y). Obviously, the null hypothesis in (2.1.2) is true if and only if ‖h‖2K = 0,

and ‖h‖2K >0 under the alternative hypothesis.

For ease of the presentation, in the rest of this chapter, we consider a centralized kernel Kθ

that satisfies µK = E{Kθ(X1,X2)} = 0. The centralized kernel Kθ can be constructed from

any positive definite kernel function K∗θ by setting Kθ(x1,x2) = K∗θ (x1,x2) − K∗1,θ(x1) −

K∗1,θ(x2) + µK∗ where K∗1,θ(x1) = E{K∗θ (x1,X2)} is the first order projection of K∗θ . By

Lemma 1 in the last section, Kθ is still semi-positive definite with only one zero eigenvalue

λm∗ = 0 corresponding to eigenfunction ψm∗(x) = 1, if K∗θ is positive definite. Some benefits

of a centralized kernel are discussed in Lindsay et al. (2008). The practical construction

of a centralized kernel will be discussed in the next section. We will use Kθ and bold

font K to denote, respectively, the kernel function and an n × n kernel matrix defined by

K =
(
Kθ(Xi,Xj)

)n
i,j=1.

2.3 Asymptotic distributions

By the orthonormal expansion of Kθ(x, y) in Section 2.2, we observe that

E{(Yi − µ)(Yj − µ)Kθ(Xi,Xj)} =
∞∑
m=1

λmα
2
m = ‖h‖2K,

for any (i, j) pair such that i 6= j. Motivated by this observation, we consider the following

test statistic

Tn =
1

n(n− 1)

∑
i 6=j

Kθ(Xi,Xj)(Yi − Ȳn)(Yj − Ȳn)/σ̂2 (2.3.1)

11



where Ȳn = n−1∑n
i=1 Yi is the sample mean and σ̂2 = (n − 1)−1∑n

i=1(Yi − Ȳn)2 is the

sample variance estimator of σ2 under the null hypothesis (2.1.2). It then can be checked

that E(Tn) = o(1) under the null hypothesis and E(Tn) =
∑∞
m=1 λmα

2
m/σ

2{1+o(1)} under

the alternative. Therefore, the test statistic Tn is able to distinguish the null and alternative

hypotheses in (2.1.2).

Define τk = E(εk) as the k-th moment of random error ε, Vk =
∑∞
m=1 λ

k
m for integers

k = 1, 2, .... The following theorem summarizes the asymptotic distribution of Tn under H0.

Theorem 1. Under the null hypothesis H0 in (2.1.2) (i) Assume τ4 <∞. Then nTn/V1
d→∑∞

m=1 λK,m(χ2
m − 1) where λK,m are the eigenvalues of Kθ, the normalized kernel of Kθ

and χ2
m are independent chi-square distributions with 1 degree of freedom; (ii) If we further

assume that

V4/V
2
2 → 0 as p(n)→∞, (2.3.2)

then σ−1
Tn
nTn

d→ N(0, 1), where σ2
Tn

= 2V2.

Remark 1 If the centralized kernel Kθ is unknown and is constructed from a kernel function

K∗θ , it will contain unknown quantities µK∗ andK∗1,θ(x1). Thus, Tn is not directly applicable.

In this case, we can replace Kθ(Xi, Xj) by Kn,θ(Xi, Xj), which is the (i, j) element of

Kn = K∗θ − (n− 1)−1J(K∗θ)
0 − (n− 1)−1(K∗θ)

0J + n−1(n− 1)−1J(K∗θ)
0J. Here J is an

n×n matrix with all elements as 1 and A0 = (A0
ij) is a zero-diagonal matrix with A0

ij = Aij

for i 6= j and A0
ii = 0. Let T̂n be the test statistic with corresponding kernel Kn,θ. It can

be shown that (nTn − nT̂n)/
√
V2 = op(1) (see the proof of Remark 1 in the last section).

Therefore, nT̂n/V1 has the same limiting distribution as nTn/V1.

12



If condition (2.3.2) holds, then an α level test rejects the null hypothesis if

σ̂−1
Tn
nTn > z1−α (2.3.3)

where z1−α is the lower 1 − α quantile of the standard normal distribution, σ̂2
Tn

= 2(n −

1)−2tr(HK0
nHK0

n) is a ratio consistent estimator for σ2
Tn

.

The null distribution of Tn in the first part of Theorem 1 is applicable even if (2.3.2)

does not hold. However, since the asymptotic distribution is a weighted sum of chi-square

distributions, obtaining accurate estimators for all the eigenvalues λK,m (m = 1, 2, · · · ,)

simultaneously is difficult. Nevertheless, one can apply a Satterthwaite approximation to

the mixture of chi-squares by a scaled chi-square distribution âχ2
ĝ/V̂1 − 1, where ĝ = V̂1/â,

â = σ̂2
Tn
/(2V̂1) and V̂1 = n−1tr(HKn) is a consistent estimator of V1. Then an asymptotic

α level test rejects the null hypothesis if

(nTn + V̂1)/â > χ2
ĝ,1−α (2.3.4)

where χ2
g,1−α is the 1− α quantile of a chi-square distribution with g degrees of freedom.

To achieve better accuracy in size approximation, we provide an adjustment to the vari-

ance estimator σ̂2
Tn

using the high order moments of ε in (2.1.1). The adjusted variance

estimator σ̂2
Tn,adj

was used to replace the estimator σ̂2
Tn

in the simulation study in Section

2.5 and real data analysis in Section 2.6. Assume the density function of ε is symmetric

around 0. The adjusted variance estimator σ̂2
Tn,adj

is

σ̂2
Tn,adj

=
1

n2

{
(2− 12

n2
+

6∆̂

n
)tr(HK0

nHK0
n)− (

2

n
+

∆̂

n
)tr2(HK0

n) + ∆̂tr(A ◦A)
}
,

13



where ◦ denotes the Hadamard product, A = HK0
nH, and ∆̂ = n−1∑n

i=1[(Yi− Ȳn)/σ̂]4−3.

The derivation of σ2
Tn,adj

is provided in the last section.

The next theorem studies the asymptotic distribution of the test statistic Tn under a

sequence of local alternative hypotheses

H1n : h(x) = dn(x) (2.3.5)

where dn(x) is any unknown function that possibly depends on n. For the purpose of model

identification, we assume E
{
dn(X)

}
= 0. As usual, we consider local alternatives that are

close to the null hypothesis, which is more challenging to be detected than fixed alternatives.

More specifically, assume that dn(·) satisfies the following two conditions

nδK = O(
√
V2) and n2E{d8

n(X)} = o(V 2
2 /V

4
1 ) (2.3.6)

where δK = E {Kθ(X1,X2)dn(X1)dn(X2)}.

Theorem 2. Assume that E{ψ4
m(X)} <∞ for all integers m. Under the local alternative

hypothesis H1n in (2.3.5), we have

V −1
1

(
nTn − σTnΨ(dn)

)
d→
∞∑
m=1

λK,m(χ2
m − 1),

where Ψ(dn) = nδK/(σ
2σTn) is the signal-to-noise ratio (SNR). Moreover, if (2.3.2) holds,

then σ−1
Tn
nTn −Ψ(dn)

d→ N(0, 1).

Applying Theorem 2, the power of an α-level test for the rejection region in (2.3.3) under

the local alternative (2.3.5) is Ω(dn) = 1 − Φ
(
z1−α − Ψ(dn)

)
, where Φ(·) is the CDF for
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standard normal distribution. Therefore, the power of the proposed test is determined by

the SNR Ψ(dn). If the α-level rejection region in (2.3.4) is used, the power of the test is

Ω(dn) = P
(
χ2
g > χ2

g,1−α − σTnΨ(dn)/a
)
.

Let dn(x) = bn∆n(x) such that E {Kθ(X1,X2)∆n(X1)∆n(X2)} is a constant. Then

the proposed test has a non-trivial power if bn = V
1/4
2 /
√
n. If V2 is a constant, then the

proposed test is able to detect alternatives of order 1/
√
n. In the high-dimensional case,

however, if V2 → ∞ at certain rate, the proposed test is only able to detect alternatives

of order V
1/4
2 /
√
n, which is larger than the order 1/

√
n. This reveals an adverse effect of

dimensionality on the test. We can also observe that as long as V2 = o(n2), the proposed test

is consistent so that the power of the test converges to 1. This implicitly imposes condition on

p and n since V2 = E{K2
θ (X1,X2)} depends on p. For example, if Kθ is a linear kernel and

Σ has all the eigenvalues bounded, then V2 ∼ p. In this case, the proposed test is consistent

if p = o(n2) for functions h(x) = dn(x). To further improve the power, we consider the

choice of kernel function and the construction of a regularized kernel in the next section.

2.4 Kernel selection and regularization

2.4.1 Kernel selection

In Sections 2.4.1 and 2.4.2, we assume that the kernel K which generates the functional space

HK is known in reality. However, the functional space HK is typically unknown. Therefore,

an important question in practice is on how to select kernels. Kernel selection problem has

been studied for Fisher discriminant analysis (Kim et al., 2006) and semi-supervise learning

(Dai and Yeung, 2007). However, no kernel selection method is tailored to the hypothesis

testing problem (Liu et al., 2007).
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We propose to select kernels by maximizing the SNR of the proposed test. To emphasize

the role of the kernel Kθ, we write Ψ(dn) as ΨKθ
(dn). Given a family of candidate kernels

FK, the kernel Kθ may be selected by maximizing the SNR as follows

K̂θ = arg max
Kθ∈FK

Ψ̂Kθ(dn) (2.4.1)

where Ψ̂Kθ(dn) is an estimator of ΨKθ(dn) = nδK/(σ
2σTn). For a candidate kernel Kθ ∈

FK, the unknown parameters δK, σTn and σ2 can be substituted using estimators, δ̂K(dn) =

1
n(n−1)

∑
i6=j Kθ(Xi,Xj)(Yi − Ȳn)(Yj − Ȳn), σ̂2 = (n− 1)−1∑n

i=1(Yi − Ȳn)2 and σ̂2
Tn

, re-

spectively. The following Proposition 1 shows that δK and σ2 can be consistently estimated,

hence the SNR can be consistently estimated.

Proposition 1. Under condition (2.3.6), σ̂2 p→ σ2 and σ−1
Tn

(δ̂K − δK)
p→ 0.

The proof of proposition 1 is given in the the last section.

2.4.2 Kernel regularization

In this section, we show that the power of the proposed test could be further improved by

using a regularized kernel. The power function is determined by the SNR Ψ(dn), which can

be written as follows

Ψ(dn) = n

∞∑
m=1

λma
2
m/(σ

2σTn)

where am = E{dn(X)ψm(X)} is the projection of dn(X) onto the m-th eigenfunction ψm(X)

of Kθ. We observe that the numerator of Ψ(dn) (the signal part) is determined by the

magnitude of eigenvalues λm and the projections am. For a given set of eigenfunctions

{ψm(X)}∞m=1 and a function dn(x), the projections am are fixed. To enlarge the numerator
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of Ψ(dn), one could adjust the eigenvalues λm associated with projection am so that larger

non-zero projections receive higher weights than small projections.

To adjust the eigenvalues of the kernel without changing the eigenfunctional space, we

introduce a regularized kernel in the following. For any centralized kernel matrix K, define

the regularized kernel matrix KR,γ as

KR,γ = K−K(nγI + K)−1K, (2.4.2)

whose similar version in a two-sample problem was discussed in Harchaoui et al. (2006).

Let KR,γ be the kernel function corresponding to the kernel matrix KR,γ . It can be proved

(see Lemma 3 in the last section) that the eigenfunctions of kernel function KR,γ are still

{ψm(X)}∞m=1, which are the same as that of Kθ. However, the corresponding eigenvalues of

KR,γ are {γλm/(λm + γ)}∞m=1.

We now show that how a regularized kernel KR,γ could improve the power of the proposed

test. To see the point, we compare the SNRs Ψ(dn) and ΨR(dn, γ) corresponding to the

kernels Kθ and KR,γ respectively. Let Cn = n/(
√

2σ2). Then we have

Ψ(dn) = Cn

∑∞
m=1 λma

2
m√∑∞

m=1 λ
2
m

and ΨR(dn, γ) = Cn

∑∞
m=1 λma

2
m/(λm + γ)√∑∞

m=1 λ
2
m/(λm + γ)2

. (2.4.3)

By comparing the above two expressions, we see that supγ ΨR(dn, γ) ≥ Ψ(dn). Because we

observe that

ΨR(dn, γ) = Cn

∑∞
m=1 λma

2
m/(λm/γ + 1)√∑∞

m=1 λ
2
m/(λm/γ + 1)2

→ Ψ(dn) as γ →∞,
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the regularized kernel KR,γ is the same as the non-regularized kernel K if γ → ∞. Thus,

the introduction of the regularization parameter γ allows us to strike a balance between the

numerator and denominator so that ΨR(dn, γ) is larger than Ψ(dn) for some γ.

To select the best regularization parameter γ, it is natural to consider maximizing the

SNR ΨR(dn, γ). That is γ̂ = arg maxγ∈S Ψ̂R(dn, γ), where S = {s1, ..., sB} is a set of positive

candidate regularization parameters ordered in an increasing order. It may be noted that

the denominator of ΨR(dn, γ) in (2.4.3) goes to infinity and the numerator of SNR in (2.4.3)

increases as γ → 0. A reasonable estimate for the numerator of (2.4.3) should be non-

decreasing as γ → 0. However, the numerator may not be well-estimated if the sample

size is small. We therefore propose a modification to the above approach. Let s∗l ∈ S be

the smallest regularization parameter in S such that δ̂K,γ(dn), the numerator of ΨR(dn, γ),

achieves its maximum value in S. We then put our attention to the tuning parameters

that are larger than s∗l in the set of S. Given the samples, we can find the optimal tuning

parameter by maximizing the following criterion

γ̂ = arg max
γ∈{s∗

l
,...,sB}

Ψ̂R(dn, γ). (2.4.4)

For the stability selection consideration, we propose the following procedure to select the

tuning parameter γ

1. Randomly divide the sample {Yi, Xi}ni=1 into L parts with the same sample size.

2. We drop the lth (l = 1, 2..., L) part of the sample, select the tuning parameter γ̂l using

the remaining L− 1 parts of sample based on the criterion (2.4.4).

3. Repeat step 2 for l = 1, ..., L. The stabilized tuning parameter is defined as γ̃ =
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median{γ̂1, ..., γ̂L}.

Simulation studies in Section 2.5 demonstrate that the above tuning parameter selection

method works well in practice. Based on our experience in simulation, one could choose L

between 4 and 8.

The regularization is most effective in the “sparse” case where the non-zero projections

reside only in the first N coordinates corresponding to the N largest eigenvalues. To appre-

ciate that, we hereafter consider the setting where λm = cmλ1 and {cm}∞m=1 is a decreasing

sequence satisfying c1 = 1. Let {a2
m ∼ Bp,m ∈ S1} be the set of non-zero projections whose

squares are of the same order as Bp and S1 is a subset of {1, · · · , N}. Here a ∼ b means

that a and b are of the same order.

To show the effectiveness of regularization, we compare the SNR ΨR(dn, γ) to an “oracle”

SNR ΨO
R(dn, γ) using regularized kernel. The oracle SNR is an ideal SNR which eliminates

all the coordinates with zero projections. The oracle SNR is used for comparison purpose

but it cannot be realized by any test procedure in practice. The oracle SNR ΨO
R(dn, γ) is

defined as

ΨO
R(dn, γ) = Cn ·

∑
m∈S1

λma
2
m/(λm + γ)√∑

m∈S1
λ2
m/(λm + γ)2

.

The following theorem provides the maximum orders of ΨO
R(dn, γ) and ΨR(dn, γ).

Theorem 3. Let |S1| be the cardinality of signal set S1. Assume that the regularization

parameter γ∗ satisfies γ∗ = o(λN ), γ∗ = O(λN1
), λN2

= o(γ∗), and R2/Nγ
∗2 = o(1) where

N1 = [N log logN ], N2 = [N logN ], and R2 =
∑∞
m=N2

λ2
m. Then (i) maxγ ΨO

R(dn, γ) ∼

ΨO
R(dn, γ

∗) and both at the order
√
|S1|CnBp for large p; (ii) there exist constants J0, J1
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and J2 such that, for large p,

J1|S1|CnBp√
N logN

≤ ΨR(dn, γ
∗) ≤

J2|S1|CnBp√
N{1 + J0 logN(cN2

/cN1
)2}

.

From Theorem 3, if |S1| ∼ N , we have

J1

√
|S1|CnBp√
log |S1|

≤ ΨR(dn, γ
∗) ≤

J2

√
|S1|CnBp√

1 + J0 log |S1|(cN2
/cN1

)2
.

Therefore, the SNR ΨR(dn, γ
∗) of the proposed test with regularized kernel can attain the

SNR ΨO
R(dn, γ

∗) of the oracle test within a factor of a slowly varying function log(N).

The above regularization could enhance the dimensionality that the proposed test could

handle. Recall the local alternatives considered in Theorem 2. Let dn(x) = bR,n(γ∗)∆n(x)

where ∆n(x) is a function such that E {Kθ(X1,X2)∆n(X1)∆n(X2)} is a constant. Using

the regularized kernel with regularization parameter γ∗, the proposed test has a non-trivial

power if bR,n(γ∗) is at the order bR,n(γ∗) =
V

1/4
2√
n
ρ1/4(γ∗) where

ρ(γ∗) =
( ∑∞

m=1 λ
2
m/(λm/γ

∗ + 1)2

{
∑
m∈S1

λma2
m/(λm/γ

∗ + 1)}2
)( V2

{
∑
m∈S1

λma2
m}2

)−1
.

Assume γ∗ satisfies the conditions in Theorem 3. Then we have

ρ(γ∗) ∼ N

|S1|2
· (
∑
m∈S1

cm)2.

If |S1| ∼ N and cm = m−α for α > 1/2, then ρ(γ∗) = O(N−min{2α−1,1}) = o(1). This

means that the smallest detectable order using a regularized kernel is smaller than that of a

unregularized kernel. The improvement is significant when N is large and α > 1. Moreover,
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the test is consistent if V2 = o{n2ρ−1(γ∗)}. Comparing to the unregularized case which

requires V2 = o{n2}, the regularized kernel is powerful for higher dimensional functions

since ρ(γ∗)→ 0.

2.5 Simulation study

The simulation studies were designed to evaluate the finite sample performance of the

proposed test, kernel selection and regularization methods. We simulated IID samples

{Xi, Yi}ni=1 from the following model

Yi = µ+ h(Xi) + εi i = 1, · · · , n (2.5.1)

where the random error εis were chosen to be N(0, 1) or Laplace(0,
√

2/2) distribution. To

generate the covariates X, we first generated a p-dimensional normally distributed random

vector Z with mean 0 and covariance Σ = (0.6|i−j|)pi,j=1. Then we obtained the covariates

X = (X1, · · · , Xp)T by setting the j-th component by Xj = Fnj(Zj) for j = 1, · · · , p.

Here Fnj is the empirical cumulative distribution of j-th component given by Fnj(z) =

n−1∑n
i=1 I(Zij ≤ z). We considered two settings regarding the relationship between n and

p: (i) p < n and (ii) p >> n with n = 40, 60 and 100. Specifically, p = (3, 5, 10) in setting

(i), p = (150, 200, 250) in setting (ii).

We wish to test H0 : h(·) = 0. To assess the empirical size of the proposed test, we chose

h(x) = 0 under H0. To evaluate the empirical power, we chose h(x) = hL(x) − E(hL) in
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setting (i) and h(x) = hH(x)− E(hH) in setting (ii), where

hL(x) = c1(x1 + x2 − x3) + c2{exp(−x2
2)H2(x2) + exp(−x2

3)H5(x3)}+ c3{x1x3 + cos(x2
3)},

hH(x) = c1

100∑
k=1

(−1)kxk + c2

100∑
k=1

{exp(−x2
k/p)H2(xk/p)}+ c3{x1x3 + cos(x2

3)}

where Hk(·) is the kth order Hermite polynomial and c1, c2 and c3 are constants specified

below. For each setting, we designed two scenarios Sk with different values of c1, c2 and c3 for

each setting. Specifically, in setting (i), we used S1 = {c1 = 0.002, c2 = 0.2, c3 = 0.002} and

S2 = {c1 = 1.2, c2 = 0.012, c3 = 0.012} and, in setting (ii), we chose S3 = {c1 = 0.01, c2 =

10, c3 = 0.01} and S4 = {c1 = 100u, c2 = 0.1u, c3 = 0.1u, u = 0.0015}. In scenarios S1 and

S3, c2 are chosen to be much larger than c1 such that the non-linear parts dominate the

functions while in S2 and S4, c1 are much larger than c2 so that the linear parts dominate.

All the results for evaluating empirical power are based on 1000 simulation replicates and

that for empirical size are based on 5000 simulation replicates. Three types of commonly

used kernels were compared in all the simulations: linear kernel KL(x,y) = xTy/θ, Gaussian

kernel KG(x,y) = exp{−‖x−y‖2/θ} and the exponential kernel KE(x,y) = exp{−(‖x‖2 +

3‖x− y‖2 + ‖y‖2)/θ}, where tuning parameter θ was set to be p.

To illustrate the finite sample null distribution, the histograms of the standardized test

statistic under the exponential kernel were plotted in Figures 2.1 and 2.2. The corresponding

asymptotic chi-square approximations are plotted as density curves. It can be seen that the

approximation performs reasonably well for various dimensions. Table 2.1 summarizes the

empirical size of the proposed test with normally and Lapalce distributed errors at the

nominal level 5%. We can see that the empirical size of the proposed test was reasonably

controlled at the nominal level for all three types of kernels and different error distributions.
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Figure 2.1 The null distribution of the standardized test statistic (χ2
ĝ−ĝ)/

√
2ĝ with Gaussian

error εi and independent covariants, using centralized exponential kernel KE , where χ2
ĝ =

(nTn + V̂1)/â. The corresponding asymptotic chi-squared approximation are plotted as
density curves.

Table 2.2 and 2.3, respectively, contain the empirical power of the proposed test for

scenarios S1 and S2 under the setting (i). Several observations are given below. (1) There

is a clear difference in power among the three types of kernels KE , KG and KL, especially

when p and n are relatively small. The power difference was especially striking in Table 2.2

for scenarios S1. The power based on the exponential and Gaussian kernels were both higher

than that using the linear kernel. This is understandable since the non-linear parts dominate

the function hL(x) in scenarios S1 and exponential kernel and Gaussian kernel contain richer

non-linear eigenfunctions than that of the linear kernel, which can capture more information

of non-linear functions; (2) The power increased as the sample size increased in all the cases;

and (3) The proposed test was very robust to the change of error distributions. Similar

patterns can be observed from Table 2.4 and 2.5 under setting (ii).
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Figure 2.2 The null distribution of the standardized test statistic (χ2
ĝ− ĝ)/

√
2ĝ with Laplace

error εi and dependent covariants, using centralized exponential kernel KE , where χ2
ĝ =

(nTn + V̂1)/â. The corresponding asymptotic chi-squared approximation are plotted as
density curves.

2.5.1 Kernel selection

We observed from Table 2.2-2.5 that the empirical power of the test corresponding to different

kernels could be very different. This naturally motivated us to select a kernel to improve the

performance of the test. We applied the kernel selection method proposed in Section 4.1 to

choose the optimal kernel among KE , KG and KL for each simulation replicate.

We reported the percentage of each kernel being selected in 1000 simulation replicates

among three candidate kernels KE , KG and KL. We can see that almost in all cases in

Table 2.2 and 2.4, the kernel selection method could choose the kernel with the highest

power. This shows that the proposed kernel selection method worked very well in selecting
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Table 2.1 Empirical size of the proposed test for Gaussian and Laplace errors with dependent
covariates using different kernels

Gaussian Error Laplace Error

n p KE KL KG KE KL KG
40 3 0.058 0.055 0.056 0.051 0.046 0.047

5 0.060 0.058 0.059 0.049 0.048 0.048
10 0.060 0.062 0.062 0.047 0.044 0.046
150 0.059 0.058 0.059 0.042 0.042 0.040
200 0.064 0.064 0.064 0.047 0.047 0.047
250 0.057 0.055 0.056 0.049 0.047 0.047

60 3 0.055 0.054 0.056 0.046 0.046 0.046
5 0.058 0.055 0.056 0.053 0.054 0.055
10 0.056 0.054 0.056 0.046 0.048 0.048
150 0.054 0.053 0.053 0.049 0.047 0.048
200 0.057 0.059 0.058 0.041 0.040 0.041
250 0.060 0.059 0.059 0.049 0.047 0.048

100 3 0.053 0.054 0.056 0.048 0.046 0.047
5 0.053 0.053 0.053 0.043 0.040 0.041
10 0.055 0.053 0.054 0.049 0.045 0.046
150 0.053 0.054 0.054 0.050 0.050 0.050
200 0.055 0.054 0.054 0.054 0.052 0.053
250 0.054 0.054 0.055 0.049 0.048 0.049

the optimal kernel. When the power among different kernels were similar, the percentages

were evenly distributed among three kernels. To further confirm the validity of the proposed

kernel selection method, for each simulation replicate, we estimated the theoretical power

of the test using (2.4.1) for each kernel KE , KL and KG. In Tables 2.2-2.5, we reported

the mean of the estimated power for three kernels based on 1000 simulation replicates. We

observed that, the estimated power was very close to the empirical power. In summary, the

proposed kernel selection method is reliable for practical use.

2.5.2 Regularization

To show the impact of kernel regularization on power improvement, we generated data

according to model (2.5.1) with random error ε following a Laplace distribution and the

covariates Xi were IID random vectors with independently Uniform (0,1) components. The
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Table 2.2 Empirical power of the proposed test for Gaussian and Laplace errors with de-
pendent covariates using different kernels in the setting of p < n under scenario S1. The
estimated theoretical power is given in the parenthesis, and the percentage of a kernel being
selected among the three candidate kernels using the proposed kernel selection method is
displayed underneath it.

Gaussian Error Laplace Error

n p KE KL KG KE KL KG
40 3 0.726 (0.655) 0.105 (0.173) 0.296 (0.374) 0.760 (0.675) 0.117 (0.190) 0.320 (0.392)

(96.8%) (0.0%) (3.2%) (95.9%) (0.0%) (4.1%)
5 0.270 (0.348) 0.099 (0.167) 0.152(0.241) 0.262 (0.340) 0.108 (0.175) 0.155 (0.241)

(79.5%) (0.0%) (20.5%) (84.2%) (0.2%) (15.6%)
10 0.149 (0.218) 0.096 (0.160) 0.115 (0.186) 0.158 (0.231) 0.104 (0.168) 0.136 (0.200)

(63.1%) (1.7%) (35.2%) (64.1%) (1.9%) (34.0%)
60 3 0.992 (0.934) 0.126 (0.213) 0.704 (0.597) 0.990 (0.929) 0.139 (0.222) 0.708 (0.609)

(99.5%) (0.0%) (0.5%) (98.6%) (0.0%) (1.4%)
5 0.515 (0.514) 0.117 (0.193) 0.241 (0.322) 0.523 (0.524) 0.124 (0.196) 0.249 (0.330)

(90.9%) (0.0%) (9.1%) (93.2%) (0.0%) (6.8%)
10 0.185 (0.264) 0.098 (0.170) 0.124 (0.209) 0.196 (0.270) 0.109 (0.177) 0.142 (0.209)

(72.0%) (0.4%) (27.6%) (70.5%) (0.2%) (29.3%)
100 3 1.000 (1.000) 0.286 (0.359) 1.000 (0.988) 1.000 (1.000) 0.303 (0.367) 1.000 (1.000)

(100.0%) (0.0%) (0.0%) (100.0%) (0.0%) (0.0%)
5 0.982 (0.888) 0.178 (0.266) 0.646 (0.577) 0.958 (0.871) 0.129 (0.272) 0.630 (0.578)

(97.9%) (0.0%) (2.1%) (97.8%) (0.0%) (2.2%)
10 0.365 (0.420) 0.150 (0.218) 0.222 (0.300) 0.347 (0.404) 0.136 (0.207) 0.194 (0.285)

(81.2%) (0.1%) (18.7%) (80.1%) (0.0%) (19.9%)

function h(x) was chosen to be 0 under H0. Under the alternative, we chose h(x) = hH(x)

with constants c1, c2 and c3 being set according to the scenario S3. In this simulation, the

sample size was n = 60 and data dimension was p = 200. All the simulation results reported

in this part are based on 1000 simulation replicates.

For each kernel KE , KL and KG, we constructed the regularized kernels with regular-

ization parameter γ using (2.4.2). We selected a sequence of regularization parameters of

different orders (γ = 10−a/n, a ∈ (−5, 2)) to check their effect on testing power. For each

of the regularization parameter, we constructed the corresponding regularized test statistic

and applied the test, respectively, to data generated under H0 and H1.

Figure 2.3 shows the empirical power and size of the proposed test using regularized kernel
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Table 2.3 Empirical power of the proposed test for Gaussian and Laplace errors with de-
pendent covariates using different kernels in the setting of p < n under scenario S2. The
estimated theoretical power is given in the parenthesis, and the percentage of a kernel being
selected among the three candidate kernels using the proposed kernel selection method is
displayed underneath it.

Gaussian Error Laplace Error

n p KE KL KG KE KL KG
40 3 0.605 (0.605) 0.621 (0.610) 0.634 (0.623) 0.602 (0.610) 0.610 (0.605) 0.621 (0.618)

(37.5%) (32.3%) (30.2%) (37.9%) (35.5%) (26.6%)
5 0.496 (0.495) 0.494 (0.498) 0.507 (0.511) 0.434 (0.462) 0.450 (0.465) 0.463 (0.478)

(38.6%) (30.2%) (31.2%) (37.7%) (29.6%) (32.7%)
10 0.338 (0.375) 0.329 (0.368) 0.346 (0.379) 0.298 (0.353) 0.315 (0.355) 0.329 (0.364)

(39.7%) (33.3%) (27.0%) (36.6%) (32.7%) (30.7%)
60 3 0.793 (0.782) 0.790 (0.776) 0.803 (0.788) 0.786 (0.774) 0.781 (0.771) 0.791 (0.783)

(38.5%) (29.4%) (32.1%) (35.6%) (29.6%) (34.8%)
5 0.668 (0.656) 0.694 (0.663) 0.705 (0.678) 0.698 (0.683) 0.703 (0.685) 0.725 (0.700)

(35.1%) (24.3%) (40.6%) (33.9%) (25.0%) (41.1%)
10 0.492 (0.501) 0.499 (0.507) 0.517 (0.520) 0.498 (0.505) 0.506 (0.506) 0.518 (0.519)

(35.0%) (29.9%) (35.1%) (35.0%) (30.7%) (34.3%)
100 3 0.971 (0.956) 0.969 (0.956) 0.974 (0.961) 0.968 (0.960) 0.965 (0.960) 0.968 (0.964)

(39.4%) (23.2%) (37.4%) (35.0%) (26.2%) (38.8%)
5 0.921 (0.897) 0.928 (0.905) 0.932 (0.912) 0.896 (0.877) 0.897 (0.876) 0.907 (0.886)

(33.2%) (18.2%) (48.6%) (34.4%) (18.2%) (47.4%)
10 0.786 (0.756) 0.800 (0.766) 0.810 (0.777) 0.781 (0.750) 0.780 (0.757) 0.794 (0.769)

(31.4%) (23.3%) (45.3%) (32.7%) (20.1%) (47.2%)

KR,γ . The x-axis represents the − log10(γ) and y-axis is the empirical power or size. The

power with large regularization parameters γ was not displayed in the graph for a better view

for small γ range. When γ is large (− log10(γ) ∈ (−3.222, 1.778), not shown in Figure 2.3),

the power of the test was initially the same as the one using non-regularized kernels (0.769,

0.674, and 0.672 for KE , KG and KL), and then started to grow slowly. As for − log10 γ ∈

(1.778, 3.778), the power peak (0.810, 0.720 and 0.710, for KE , KG and KL respectively) of

the proposed test can be observed for all the three kernels. It can be seen from Figure 2.3

that the empirical size of the regularized test was all reasonably controlled.

To evaluate the method for selecting regularization parameters proposed in Section 4.2,

we also marked the regularization parameter selection results in Figure 2.3. The three

27



Table 2.4 Empirical power of the proposed test for Gaussian and Laplace errors with de-
pendent covariates using different kernels in the setting of p >> n under scenario S3. The
estimated theoretical power is given in the parenthesis, and the percentage of a kernel being
selected among the three candidate kernels using the proposed kernel selection method is
displayed underneath it.

Gaussian Error Laplace Error

n p KE KL KG KE KL KG
40 150 0.706 (0.716) 0.640 (0.648) 0.639 (0.653) 0.710 (0.726) 0.654 (0.726) 0.653 (0.665)

(94.8%) (2.9%) (2.3%) (95.3%) (1.9%) (2.8%)
200 0.427(0.507) 0.396 (0.457) 0.396 (0.463) 0.390 (0.481) 0.344 (0.432) 0.348 (0.437)

(89.4%) (3.4%) (7.2%) (86.6%) (4.8%) (8.6%)
250 0.261 (0.371) 0.238 (0.334) 0.265 (0.340) 0.270 (0.383) 0.246 (0.348) 0.246 (0.353)

(81.8%) (4.4%) (13.8%) (82.9%) (5.0%) (12.1%)
60 150 0.890 (0.869) 0.842 (0.815) 0.841 (0.818) 0.898 (0.876) 0.861 (0.826) 0.864 (0.828)

(96.6%) (2.4%) (1.0%) (96.9%) (2.4%) (0.7%)
200 0.596 (0.615) 0.535 (0.560) 0.531 (0.564) 0.591 (0.613) 0.538 (0.562) 0.534 (0.566)

(89.7%) (6.2%) (4.1%) (89.6%) (5.2%) (5.2%)
250 0.402 (0.457) 0.353 (0.419) 0.354 (0.423) 0.350 (0.430) 0.321(0.395) 0.321 (0.400)

(81.9%) (8.9%) (9.2%) (82.7%) (8.1%) (9.2%)
100 150 0.992 (0.984) 0.985 (0.969) 0.986 (0.970) 0.990 (0.982) 0.984 (0.969) 0.984 (0.969)

(99.2%) (0.8%) (0.0%) (99.1%) (0.8%) (0.1%)
200 0.885 (0.857) 0.842 (0.818) 0.844 (0.820) 0.870 (0.840) 0.828 (0.798) 0.829 (0.799)

(94.1%) (3.9%) (2.0%) (94.9%) (3.6%) (1.5%)
250 0.618 (0.631) 0.584 (0.590) 0.585 (0.593) 0.638 (0.640) 0.600 (0.602) 0.599 (0.604)

(84.3%) (10.7%) (5.0%) (87.4%) (8.1%) (4.5%)
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Table 2.5 Empirical power of the proposed test for Gaussian and Laplace errors with de-
pendent covariates using different kernels in the setting of p >> n under scenario S4. The
estimated theoretical power is given in the parenthesis, and the percentage of a kernel being
selected among the three candidate kernels using the proposed kernel selection method is
displayed underneath it.

Gaussian Error Laplace Error

n p KE KL KG KE KL KG
40 150 0.671 (0.691) 0.673 (0.682) 0.674 (0.687) 0.667 (0.687) 0.675 (0.680) 0.672 (0.684)

(47.8%) (20.8%) (31.4%) (44.8%) (22.1%) (33.1%)
200 0.595 (0.616) 0.605 (0.626) 0.604 (0.631) 0.594 (0.634) 0.600 (0.632) 0.600 (0.637)

(53.9%) (14.2%) (31.9%) (53.8%) (13.6%) (32.6%)
250 0.544 (0.597) 0.541 (0.580) 0.543 (0.587) 0.527 (0.589) 0.534 (0.600) 0.525 (0.584)

(62.4%) (8.8%) (28.8%) (63.1%) (9.6%) (27.3%)
60 150 0.903 (0.871) 0.903 (0.871) 0.904 (0.873) 0.860 (0.841) 0.865 (0.841) 0.866 (0.842)

(36.1%) (34.6%) (29.3%) (36.7%) (33.1%) (30.2%)
200 0.817 (0.810) 0.821 (0.808) 0.823 (0.811) 0.824 (0.809) 0.832 (0.807) 0.833 (0.810)

(46.6%) (27.6%) (27.8%) (44.2%) (26.6%) (31.2%)
250 0.733 (0.761) 0.733 (0.757) 0.744 (0.764) 0.768 (0.762) 0.773 (0.768) 0.772 0.765)

(51.2%) (19.7%) (29.1%) (50.7%) (20.1%) (29.2%)
100 150 0.993 (0.986) 0.991 (0.985) 0.992 (0.986) 0.989 (0.979) 0.990 (0.980) 0.990 (0.980)

(24.9%) (45.8%) (29.3%) (26.2%) (46.4%) (27.4%)
200 0.983 (0.972) 0.986 (0.973) 0.986 (0.973) 0.985 (0.966) 0.985 (0.967) 0.985 (0.967)

(31.6%) (39.1%) (29.3%) (31.1%) (41.9%) (27.0%)
250 0.980 (0.960) 0.981 (0.960) 0.981 (0.960) 0.972 (0.951) 0.972 (0.951) 0.972 (0.951)

(33.3%) (38.3%) (28.4%) (35.2%) (34.8%) (30.0%)
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vertical lines correspond to the first quantile (Q1), median and third quantile (Q3) of the

stabilized γ̃ obtained from the 1000 simulation replicates, where L = 5 were chosen in

stability selection. It can be seen from Figure that the vertical lines were all very close

to the place where the maximum power was achieved. This suggests that the proposed

regularization selection method can locate the optimal regularization parameter to maximize

the power of the proposed test.

2.6 An empirical study

We applied the proposed test to a Yolkshire gilt data set to find gene sets that are associated

with triiodothyronine (T3), which is an important thyroid hormone affecting growth and

metabolism in the body. A total of 24,123 gene expressions were measured using liver tissues

for 24 six-month-old Yolkshire gilts, whose T3 levels in blood were also recorded. All the

genes in the Yolkshire gilt data set were classified into 6176 Gene Ontology (GO) terms (gene

sets), where each gene could be assigned to several GO terms according to its gene attributes

in one of the three domains: cellular component, molecular function, and biological process.

More details about the data set can be found in Lkhagvadori et al. (2009).

Let Yi and X
(k)
i = (X

(k)
i1 ,X

(k)
i2 , · · · ,X(k)

ipk
)T be, respectively, the measure of T3 level for

the i-th gilt and the standardized gene expression vector of the k-th GO term for the i-th

gilt, where pk is the total number of genes in the kth GO term. We consider the following

nonparametric regression model

Yi = µ(k) + h(k)(X
(k)
i ) + ε

(k)
i , i = 1, ..., 24, k = 1, ..., 6176. (2.6.1)
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Figure 2.3 The empirical power (left panel) and size (right panel) for regularized kernels,
where the vertical purple lines in the left panel denote the first, second and third quantile of
the selected regularization parameters among 1000 simulation replicates. For each replicate,
the regularization parameter was selected by the method introduced in Section 4.2.
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For the k-th GO term, we are interested in testing

H0 : h(k)(·) = 0 vs H1 : h(k)(·) 6= 0. (2.6.2)

We conducted the proposed test to 6176 GO terms using four different centralized kernels:

exponential kernel KE , Gaussian kernel KG, linear kernel KL, and polynomial kernel KP ,

where KE , KG and KL were defined in Section 5 and KP (xi,xj) = (xTi xj/θ)
2. In all the

kernels, the tuning parameter θ was set to be pk. For each kernel, we obtained 6176 p-

values and Benjamini-Hochberg procedure was applied for multiple test correction with false

discovery rate controlled at the 1% level.

The proposed test with exponential kernel detected 43 significant GO terms, which con-

tains all the GO terms detected by the other three kernels. Among the 43 significant GO

terms, 28, 6, 6 were detected by Gaussian kernel, linear kernel and polynomial kernel, respec-

tively, with 5 in common. The fact that more GO terms were detected by the exponential

kernel might indicate a strong non-linear relationship between Y and X, i.e., h(X) is a

non-linear function of X.

2.7 Summary and discussions

In this study, we modeled the joint effect of high-dimensional variates in a set through a

nonparametric function in an RKHS. We proposed a nonparmetric test for assessing the sig-

nificance of the nonparametric function. Different from previous investigations, our method

is applicable to the “large p, small n” setting. Our test is powerful in testing a non-parametric

function even when the dimension p is much larger than the sample size n. We derived the
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asymptotic distribution of the test statistic under the null hypothesis and a sequence of local

alternative hypotheses under the “large p, small n” set up. Based on the obtained explicit

power function, we proposed a kernel selection method which was designed to improve the

power of the proposed test. Moreover, we introduced a test with regularized kernel which

can further improve the power and enhance the dimensionality the test could handle. It was

shown that the regularization kernel plays a similar role as a re-weighting method which adds

higher weights to non-zero projections of the nonparametric function to the orthogonal bases

of the RKHS. With a properly chosen regularization parameter, we demonstrate that the

proposed test could achieve almost the same power as the oracle test. A practical method

for selecting regularization parameter was also introduced in the chapter.

2.8 Lemmas and Proofs

Lemma 1. Assume that K is a positive semi-definite and symmetric kernel defined on

X ×X . Let µ be a finite measure on X . If

∫
K(x, x)dµ(x) <∞, (2.8.1)

then K(x, y) =
∑∞
j=1 λjψj(x)ψj(y), {ψj(·)} ⊂ L2(µ) form a complete orthogonal normal

system i.e., E(ψj(X)ψk(X)) = δjk where δjk = 1 if j = k; δjk = 0 if j 6= k, and
∑∞
j=1 λj <

∞.

Proof: Given a positive definite kernel K(x, y), we can construct a reproducing kernel
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Hilbert space (RKHS) HK , and the reproducing property implies that

K(x, y) =< K(x, ·), K(y, ·) >HK
:=< Kx, Ky >HK

.

Since for any Kx ∈HK , ‖Kx‖ =
√
< Kx, Kx >HK

=
√
K(x, x), we have

|K(x, y)| =< Kx, Ky >HK
≤ ‖Kx‖‖Ky‖ =

√
K(x, x)K(y, y),

and

∫
X ×X

K2(x, y)dµ(x)dµ(y) ≤
∫

X
K(x, x)dµ(x) ·

∫
X
K(y, y)dµ(y) <∞. (2.8.2)

Therefore, K(x, y) generates a compact operator on L2(µ) through the integral operation

(Kf)(x) =
∫
X K(x, y)f(y)dµ(y). Let {λj}∞j=1 and {ψj(·)}∞j=1 be the eigenvalues and cor-

responding complete orthogonal normal system of kernel K under measure µ, i.e.,

∫
K(x, y)ψi(y)dµ(y) = λiψi(x), i = 1, 2, · · · ,∞. (2.8.3)

Since K(x, y) ∈ L2(µ
⊗

µ), Kx(·) = K(x, ·) ∈ L2(µ), i.e., there exist {cm(x)}∞m=1 such

that K(x, y) = Kx(y) =
∑
m cm(x)ψm(y), then we have Ky(·) =

∑
m=1 cm(·)ψm(y). Be-

cause Ky(·) ∈ L2(µ) and {ψm(y)}∞m=1 can be considered as constants once y is given,

then cm(·) ∈ L2(µ) and can be expanded using bases {ψm(·)}∞m=1. Therefore, we have

K(x, y) =
∑∞
i,j=1 aijψi(x)ψj(y), where

∑
i,j a

2
ij <∞ is due to (2.8.2).

It will be shown in the following that aij = λiδij , which impliesK(x, y) =
∑∞
j=1 λjψj(x)ψj(y).
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Actually,

∫ ∫
K(x, y)ψi(x)ψj(y)dµ(x)dµ(y) =

∫ ∫ ∑
k,l

aklψk(x)ψl(y)ψi(x)ψj(y)dµ(x)dµ(y)

where left hand side is
∫
λiψi(y)ψj(y)dµ(y) = λiδij by using the eigen-decomposition prop-

erty (2.8.3), and right hand side is
∑
k,l aklδkiδlj = aij . Moreover, we could conclude∑∞

i=1 λi < ∞, since K(x, x) =
∑
i λiψ

2
i (x), and

∑∞
i=1 λi =

∫
K(x, x)dµ(x) < ∞. This

finishes the proof of Lemma 1. �

Proof of Theorem 1: (i) Under the null hypothesis, Yi = µ+ εi. Because the test statistic

Tn is invariant to location shift, without loss of generality, we assume µ = 0 in the following

proof. Then T 0
n := T

H0
n , the reduced version under null hypothesis, can be written as

T 0
n =

1

n(n− 1)σ2

∑
i6=j

K(Xi,Xj)(εi − ε̄)(εj − ε̄)[1 + (
σ2

σ̂2
− 1)] := T 0

n1[1 + (
σ2

σ̂2
− 1)] (2.8.4)

Since σ2/σ̂2 − 1 = op(1), under the null, we have T 0
n = T 0

n1{1 + op(1)}.

We now study the asymptotic distribution of T 0
n1/V1 using the U-statistic theory (Lee ,

1990). By plugging in the full expression of ε̄ = n−1∑n
i=1 εi, the leading order of T 0

n1/V1

can be written as the sum of three U-statistics of different orders

T 0
n1

V1
= U

(2)
n + U

(3)
n + U

(4)
n + ∆0

n, (2.8.5)
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where U
(2)
n = 1

P2
n

∑
i6=j Ψ(2)(Zi,Zj),

U
(3)
n =

1

P 3
n

∑
i6=j 6=k

Ψ(3)(Zi,Zj ,Zk), U
(4)
n =

1

P 4
n

∑
i6=j 6=k 6=l

Ψ(4)(Zi,Zj ,Zk,Zl),

∆0
n = op(U

(2)
n +U

(3)
n +U

(4)
n ), and Z = (X, ε). P kn is the number of k-permutations of n, Ψ(k) is

the kernel function of k-th order U-statistic U
(k)
n for k = 2, 3, 4 and of the following symmetric

form Ψ(2)(Zi,Zj) = K(Xi,Xj)[εiεj − n−1(εi + εj)
2]/σ2, Ψ(3)(Zi,Zj ,Zk) = ϕ(3)(i, j, k) +

ϕ(3)(j, k, i) + ϕ(3)(i, k, j) and

Ψ(4)(Zi,Zj ,Zk,Zl) =ϕ(4)(i, j, k, l) + ϕ(4)(i, k, j, l) + ϕ(4)(i, l, j, k) + ϕ(4)(j, k, i, l)

+ ϕ(4)(j, l, i, k) + ϕ(4)(k, l, i, j).

where ϕ(3)(i, j, k) = −(3σ2)−1K(Xi,Xj)[εiεk+εjεk−ε2k/n], and ϕ(4)(i, j, k, l) = (6σ2)−1K(Xi,Xj)εkεl.

To study the distribution of T 0
n1/V1, we will look at the asymptotic properties of each U-

statistic U
(k)
n respectively. Specifically, we are going to show the following

(a) : nU
(2)
n

d→
∞∑
m=1

λK,m(χ2
m − 1), (2.8.6)

(b) : nU
(3)
n

p→ 0, (2.8.7)

(c) : nU
(4)
n

p→ 0. (2.8.8)

To see (a), we define the first-order and second-order projections of the kernel Ψ(2)(·) as

φ
(2)
1 (zi) = E{Ψ(2)(zi,Zj)} = 0 and φ

(2)
2 (zi, zj) = E{Ψ(2)(zi, zj)} = Ψ

(2)
2 (zi, zj), and their

corresponding variances σ2
2,1 = Var[φ

(2)
1 (Zi)], σ

2
2,2 = Var[φ

(2)
2 (Zi,Zj)]. It is not difficult to

prove that U
(2)
n is first-order degenerated, i.e., σ2

2,1 = 0 and σ2
2,2 = 2VK,2{1 + o(1)} 6= 0.
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By the classical U-statistic theory, nU
(2)
n

d→
∑∞
m=1 λKz,m(χ2

m − 1), where {λKz,m}
∞
m=1 are

the eigenvalues of kernel function Kz(z1, z2) = K(x1, x2)ε1ε2 with respect to the distribution

function Fz, i.e., solution of integral equations

∫
Kz(z1, z2)ψKz,m(z1)dFz(z2) = λKz,mψKz,m(z2),m = 1, ...,∞. (2.8.9)

It remains to prove that λKz,m = λK,m. View kernel Kz(z1, z2) as the product of kernel

K1
z(z1, z2) := K(x1, x2) and kernel K2

z(z1, z2) := ε1ε2, where K2
z has only one non-zero

eigenvalue 1 with eigenfunction g(ε) = ε/σ under the null hypothesis. Through equations

(2.8.9) above, it can be verified that eigenvalues and eigenfunctions of Kz(z1, z2) are {λK,m}

and {ψm(x) · g(ε)}∞m=1 respectively. (b) and (c) can be achieved similarly by proving means

and variances of the first- and second-order projections of U
(3)
n and U

(4)
n are all zero.

(ii) Let Qm = λK,m(χ2
m − 1) for m ∈ N , Sn =

∑n
m=1Qm, α∞ := {Var(S∞)}1/2 =√

2VK,2 and {Qm} is the sum of independent random variables. Moreover, it is not difficult

to see that E|Qm|4 ∝ VK,4. By part (i), nT 0
n/V1 has the same distribution as

∑∞
m=1Qm.

According to Lyapunov’s Theorem, if α−4
∞
∑∞
m=1 E|Qm|4 converges to 0 as p → ∞ (i.e.,

condition (2.3.2)), then we can conclude asymptotic normality for nTn, under the null hy-

pothesis. In summary, σ−1
Tn
nTn weakly convergences to the standard normal distribution

under condition (2.3.2).

Proof of Theorem 2: Under the alternative hypothesis H1n, Yi = µ+ dn(Xi) + εi, where

Edn(Xi) = 0, E(εi) = 0, and Var(εi) = σ2. Without loss of generality, we also assume µ = 0
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in the following proof. Similar to (2.8.4), considering the following expansion

Tn =
1

n(n− 1)σ2

∑
i6=j

K(Xi,Xj)(Yi − Ȳn)(Yj − Ȳn)[1 + (
σ2

σ̂2
− 1)] := Tn1[1 + (

σ2

σ̂2
− 1)].

Under condition (2.3.6), σ̂2 p→ σ2 (Proposition 1 in the last section), hence it is enough to

study the behavior of Tn1. By plugging in expression of Yi and Yj under H1n, Tn1 could be

decomposed into two parts: T 0
n1 and T̃ 0

n1, where asymptotic distribution of T 0
n1 is the null

distribution and has been studied in Theorem 1. The remainder term T̃ 0
n1 can be expressed

as the sum of the following three terms

T̃ 0
n1 = {Θ(2)

n + Θ
(3)
n + Θ

(4)
n }{1 + op(1)}, (2.8.10)

where

Θ
(2)
n =

V1

n2σ2

∑
i 6=j
Kθ(Xi,Xj)

[
UiUj + Uiεj + Ujεi −

1

n
(Ui + Uj)

2 − 2

n
(Ui + Uj)(εi + εj)

]
,

Θ
(3)
n =

V1

n3σ2

∑
i6=j 6=k

Kθ(Xi,Xj)
[
− (Ui + Uj)(Uk + εk)− (εi + εj)Uk +

1

n
(U2
k + 2Ukεk)

]
,

Θ
(4)
n =

V1

n4σ2

∑
i6=j 6=k 6=l

Kθ(Xi,Xj)(UkUl + Ukεl + Ulεk),

and Ui = dn(Xi). Denote the eigenvalues of normalized kernel Kθ(x, y) as {λK,m}∞m=1,

where
∑
m λK,m = 1 and λK,m ≥ 0 for each m. Notice that kernel Kθ and Kθ have the

same eigenfucntions {ψm(X)}∞m=1. Besides, for centralized kernel, µm := E(ψm(X)) = 0

for m ∈ N \ {m∗}, where µm∗ = 1 corresponds to zero eigenvalue (λm∗ = 0) (See Lemma

in the last section). Let G = {m : λm > 0}, then Kθ(x1, x2) =
∑
m∈G λmψm(x1)ψm(x2)
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and µm = 0 for all m ∈ G. Define am := E
(
ψm(X)dn(X)

)
representing the projection of

function dn(X) onto the eigen-function ψm(X).

In the following we will show that (a) E(σ−1
Tn
nT̃ 0

n1)−Ψ(dn) = o(1), and (b) Var{nT̃ 0
n1} =

o(Var{nT 0
n1}). To prove (a) and (b), let us study the asymptotic behavior of each term in

nσ−1
Tn
T̃ 0
n1 = nσ−1

Tn
(Θ

(2)
n + Θ

(3)
n + Θ

(4)
n ). Firstly split

σ−1
Tn
nΘ

(2)
n = n

(
S̃11 + 2S̃12 + 2S̃13 + 2S̃14

)
{1 + op(1)}, (2.8.11)

where

S̃11 :=
V1

n2σ2σTn

∑
i6=j
Kθ(Xi,Xj)UiUj , S̃12 =

V1

n2σ2σTn

∑
i6=j
Kθ(Xi,Xj)Uiεj ,

S̃13 = − V1

n3σ2σTn

∑
i6=j
Kθ(Xi,Xj)U

2
i , S̃14 = − V1

2n3σ2σTn

∑
i 6=j
Kθ(Xi,Xj)Uiεi.

We want to show nS̃11
p→ Ψ(dn) and nS̃1j

p→ 0 for j = 2, 3, 4. Actually, E(nS̃11) =

nσ−1
Tn
V1
∑∞
m=1 a

2
mλK,m = Ψ(dn){1 + o(1)}, and

n2S̃2
11 =

V 2
1

n2σ4σ2
Tn

∑
i6=j,k 6=l
m1,m2∈G

λK,m1
λK,m2

ψm1(Xi)ψm1(Xj)ψm2(Xk)ψm2(Xl)UiUjUkUl.

Define index subsets Ic = {(i, j, k, l)||{i, j}∩{k, l}| = c, i, j, k, l ∈ {1, · · · , n}, i 6= j, k 6= l} for

c = 0, 1, 2, where | · | denotes the set cardinality. For example, I0 represents set {(i, j, k, l) ∈

|i, j, k, l ∈ {1, · · · , n}, i 6= j 6= k 6= l}. Then n2S̃2
11 = J0 + J1 + J2, where

Jc =
V 2

1

n2σ4σ2
Tn

∑
i,j,k,l∈Ic
m1,m2∈G

λK,m1
λK,m2

ψm1(Xi)ψm1(Xj)ψm2(Xk)ψm2(Xl)UiUjUkUl.
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By using the orthogonal and centralized properties of eigen-functions, it can be proved that

E(J0) = E2(nS̃11){1 + o(1)} = Ψ2(dn){1 + o(1)},

E(J1) =
4V 2

1

n2σ4σ2
Tn

∑
i6=j 6=k

m1,m2∈G

λK,m1
λK,m2

E{ψm1(Xi)ψm2(Xi)U
2
i } · E{ψm1(Xj)Uj} · E{ψm2(Xk)Uk}

= 4nV 2
1 σ
−4σ−2

Tn

( ∑
m1,m2∈G

λK,m1
λK,m2

am1am2bm1,m2

)
{1 + o(1)},

E(J2) = 2nV 2
1 σ
−4σ−2

Tn

( ∑
m1,m2∈G

λK,m1
λK,m2

b2m1,m2

)
{1 + o(1)},

where bm1,m2 = E[ψm1(X)ψm2(X)d2
n(X)]. Under condition (2.3.6), we can prove that

|am| ≤ D1
[
Ed8

n(X)
]1/8

, and |bm1,m2 | ≤ D2
[
Ed8

n(X)
]1/4

for some finite constants D1 and

D2, by using Cauchy-Schwartz inequality. Therefore, E(J1) ≤ 4σ−4D2
1D2·n

[
Ed8

n(X)
]1/2

V 2
1 /2V2 =

o(1), E(J2) ≤ 2σ−4D2
2 ·n

[
Ed8

n(X)
]1/2

V 2
1 /2V2 = o(1), and Var(nS̃11) = o(1) under condition

(2.3.6). Hence nS̃11
d→ Ψ(dn) = O(1). It remains to prove nS̃1j

p→ 0 for j = 2, 3, 4 in

(2.8.11).

It is easy to see that E(nS̃12) = E(nS̃13) = E(nS̃14) = 0 by using the centralized kernel

property. Moreover, it can be proved that Var(nS̃12) = Var(nS̃13) = Var(nS̃14) = o(1).

Actually,

Var(nS̃12) =
V 2

1

σ2σ2
Tn

∑
m∈G

λ2
K,mbm,m{1 + o(1)} ≤ (

√
2σ)−2D2[Ed8

n(X)]1/4,

Var(nS̃13) =
V 2

1

n2σ4σ2
Tn

∑
m∈G

λ2
K,mem +

∑
m1,m2

λK,m1
λK,m2

b2m1,m2

 {1 + o(1)}

≤ (
√

2nσ2)−2[Ed8
n(X)]1/2(D3 +D2

2V
2
1 /V2)

Var(nS̃14) =
V 2

1

n2σ2σ2
Tn

∑
m∈G

λ2
K,mbm,m{1 + o(1)} ≤ (

√
2nσ)−2D2[Ed8

n(X)]1/4,
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where em = E[ψ2
m(X)d4

n(X)] ≤ D3[Ed8
n(X)]1/2 for some constant D3 > 0. The variance

above are all of order o(1) under condition (2.3.6). For the triple sum terms Θ
(3)
n in (2.8.10),

S̃21 =
V1

n3σ2σTn

∑
i6=j 6=k

Kθ(Xi,Xj)Uiεk, S̃22 =
V1

n3σ2σTn

∑
i6=j 6=k

Kθ(Xi,Xj)UiUk,

S̃23 =
V1

n3σ2σTn

∑
i6=j 6=k

Kθ(Xi,Xj)Ukεi, S̃24 =
V1

n4σ2σTn

∑
i6=j 6=k

Kθ(Xi,Xj)Ukεk,

S̃25 =
V1

n4σ2σTn

∑
i 6=j 6=k

Kθ(Xi,Xj)U
2
k .

Similarly, it is not difficult to see that E(nS̃2j) = 0 for j = 1, ..., 5. Furthermore, up to a

factor of {1 + o(1)}, we have the following

Var(nS̃21) =
V 2

1

2σ2V2

∑
m∈G

λ2
K,m

(
a2
m + 2n−1bm,m

)
,

Var(nS̃22) =
V 2

1

2σ4V2

∑
m1,m2∈G

λK,m1
λK,m2

(
a2
m1
a2
m2

+ n−1d2
m1,m2

E[d2
n(X)] + 2n−1am1cm2dm1,m2

)
+

V 2
1

2σ4V2

∑
m∈G

λ2
K,m

(
a2
mE[d2

n(X)] + n−1bm,mE[d2
n(X)] + n−1c2m

)
,

Var(nS̃23) =(2nσ4)−1(V −1
2 V 2

1

∑
m∈G

λ2
K,ma

2
m + E[d2

n(X)]
)
,

Var(nS̃24) =(n3σ4)−1E[d2
n(X)],

Var(nS̃25) =(2n2σ4)−1
(

E2[d2
n(X)] + 2n−1E[d4

n(X)]

)
+

2V 2
1

n3σ4V2

∑
m∈G

λ2
K,ma

2
m,

where cm = E[ψm(X)d2
n(X)], and dm1,m2 = E[ψm1(X)ψm2(X)dn(X)]. Under condition

(2.3.6), all the triple sum terms are of small order. Finally consider the following quadruple
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sum terms Θ
(4)
n in (2.8.10),

S̃31 =
V1

n4σ2σTn

∑
i 6=j 6=k 6=l

Kθ(Xi,Xj)UkUl, S̃32 =
V1

n4σ2σTn

∑
i 6=j 6=k 6=l

Kθ(Xi,Xj)Ukεl.

It can be shown that E(nS̃31) = E(nS̃31) = 0, and

Var(nS̃31) =
V 2

1

2n2σ2V2

(
E[d2

n(X)]
∑
m∈G

λ2
K,ma

2
m +

( ∑
m∈G

λK,mam
)2

+ E2[d2
n(X)]VK,2

)
{1 + o(1)},

Var(nS̃32) =
V 2

1

2n2σ2V2

( ∑
m∈G

λ2
K,ma

2
m + E[d2

n(X)]VK,2
)
{1 + o(1)},

are of order o(1) under condition (2.3.6). Therefore, nσ−1
Tn
T̃ 0
n1

d→ Ψ(dn) under the local

hypothesis H1n (2.3.5). This finishes the proof of Theorem 2.

Proof to Theorem 3: First proving part (i). Consider the regularized oracle location shift

ΨO
R(dn, γ), whose order is proportional to

f(γ) :=

∑
m∈S1

gm(γ)√∑
m∈S1

g2
m(γ)

,

where gm(γ) = λm/(λm + γ). It can be shown that function f(γ) is maximized when

gm(γ) is a non-zero constant for m ∈ S1. Denote f1(γ) =
∑
m∈S1

gm(θ), and f2(γ) =√∑
m∈S1

g2
m(γ). Since f ′1 =

∑
g′m(γ) and f ′2 =

∑
gm(γ)g′m(γ)/f2, then f ′(γ) = 0

(i.e., f ′1f2 − f1f
′
2 = 0) is equivalent to

∑
m1 6=m2∈S1

gm1(γ)g′m2
(γ)

(
gm1(γ)− gm2(γ)

)
= 0,

where γ̂ = 0 (i.e., gm(γ̂) = 1) is one of the solutions. Then we can show that sgn(f ′′)|γ=γ̂ =
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sgn(f ′′1 f2 − f1f
′′
2 )γ=γ̂ , where (f ′′1 f2 − f1f

′′
2 )γ=γ̂ = −

∑
m∈S1

λ−2
m |S1|2 + (

∑
m∈S1

λ−1
m )2|S1|

is strictly less than zero when there exists at least one m ∈ S1 such that λm 6= 1, by using

Cauchy-Schwarz inequality. For the case where λm = 1 for all m ∈ S1, f(γ) =
√
|S1|

does not depend on γ̂. On the other hand, using the Cauchy-Schwarz inequality, we have

|f(γ)| ≤
√
|S1|. Therefore, maxγ ΨO

R(dn, γ) ∼ maxγ f(γ)CnBp = f(γ̂)CnBp =
√
|S1|CnBp.

Furthermore, if γ∗ = o(λN ), then gm(γ∗) at the order of 1 for m ≤ N and µOR(dn, γ
∗) ∼√

|S1|CnBp. Hence maxγ ΨO
R(dn, γ) ∼ ΨO

R(dn, γ
∗) ∼

√
|S1|CnBp.

(ii): It is not difficult to see for a regularization parameter γ∗ satisfying conditions in

Theorem 3, gm(γ∗)→ 1 for m = 1, · · · , N , and gm(γ∗)→ 0 for m ≥ N2. Since γ∗ = o(λN ),

there exists ε1 > 0 small enough s.t. γ∗ < ε1λN , hence
|S1|

1 + ε1
≤
∑
m∈S1

λm
λm + γ∗

≤

|S1|. Similarly, there exists ε2 > 0 small enough s.t. λN2
< ε2γ

∗, and
R2

(1 + ε2)2γ∗2
≤

∑∞
m=N2

(
λm

λm + γ∗

)2

≤ R2

γ∗2
. Then, we have

ΨR(dn, γ
∗) ≥

J1|S1|CnBp√
N logN +R2/γ∗2

(2.8.12)

for some positive constant J1. Assuming γ∗ = J0λN1
, then

ΨR(dn, γ
∗) ≤

J2|S1|CnBp√
N(1 + ε2)2/(1 + ε1)2 + (N logN −N)J−2

0 (cN2
/cN1

)2 +R2/γ∗2
. (2.8.13)

Since ε1 and ε2 go to 0, and R2/γ
∗2 = o(N), we obtain the conclusion in part (ii) by

combining (2.8.12) and (2.8.13).

Lemma 2. If kernel K∗θ (x1, x2) is a positive definite kernel, then the centralized kernel

Kθ(x1, x2) is positive semi-definite.

Proof: Assume kernel function K∗θ (x, y) has eigen-deposition {λ∗m, ψ∗m(·)}∞m=1, and cen-
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tralized kernel Kθ(x, y) has eigen-decomposition {λm, ψm(·)}∞m=1. Since the kernel can be

normalized, we assume the sum of eigenvalues are bounded without loss of generality. Recall

the definition of the centralized kernel function

Kθ(x1,x2) = K∗θ (x1,x2)−K∗1,θ(x1)−K∗1,θ(x2) + µK∗ .

Then we have E[Kθ(x1,X2)] = E[K∗θ (x1,X2)]−K∗1,θ(x1) = 0, or equivalently,

∫
1 ·Kθ(x1,x2)dµ(x2) = 0,

which implies that ψm∗(·) = 1 is one of the eigenfunctions corresponding to zero eigen-

value. Due to the orthogonality of the system, E{ψm(X)} = 0 for m 6= m∗. By the

eigen-decomposition equality (2.8.3), we have

λmψm(x1) = E{Kθ(x1,X2)ψm(X2)} = E{K∗θ (x1,X2)ψm(X2)} − E{K∗1,θ(X2)ψm(X2)}

+ {µK∗ −K
∗
1,θ(x1)}E{ψm(X2)} = E{K∗θ (x1,X2)ψm(X2)} − E{K∗1,θ(X2)ψm(X2)},

for any m 6= m∗. By plugging in K∗θ (x1,x2) =
∑∞
m=1 λ

∗
mψ
∗
m(x1)ψ∗m(x2), and multiplying

ψm(x1) to both sides, we have

λmψ
2
m(x1) =

∑
s

λ∗sψ
∗
s(x1)ψm(x1)E{ψ∗s(X2)ψm(X2)} − E{K∗1,θ(X2)ψm(X2)}ψm(x1),

for m 6= m∗. Taking expectation with respect to X1 and using the orthogonal normal

property,

λm =
∞∑
m=1

λ∗mE2[ψ∗m(X)ψm(X)] ≥ 0, m 6= m∗.
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In addition, λm∗ = 0, then the positive semi-definiteness of centralized kernel function can

be achieved. �

Proof of Remark 1: Let Tn = 1
n(n−1)

∑
i 6=j Kθ(Xi,Xj)(Yi − Ȳ )(Yj − Ȳ )/σ̂2, and Tn1 =

1
n(n−1)

∑
i6=j Kθ(Xi,Xj)(Yi−Ȳ )(Yj−Ȳ )/σ2 be the statistics using the true centralized kernel

Kθ, T̂n = 1
n(n−1)

∑
i6=j Kn,θ(Xi,Xj)(Yi−Ȳ )(Yj−Ȳ )/σ̂2 and T̂n1 = 1

n(n−1)

∑
i6=j Kn,θ(Xi,Xj)(Yi−

Ȳ )(Yj − Ȳ )/σ2 be the ones using empirically centralized kernel Kn,θ. Using the similar

arguments in proof of Theorem 2, nTn/
√
V2 = nTn1/

√
V2{1 + op(1)} and nT̂n/

√
V2 =

nT̂n1/
√
V2{1 + op(1)}. To show nTn/

√
V2 = nT̂n/

√
V2{1 + op(1)}, it remains to show

(nTn1 − nT̂n1)/
√
V2 = op(1).

In fact, ∆n,D := V
−1/2
2 (nTn1 − nT̂n1) =

1

n− 1

∑
i6=j Dij(Yi − Ȳ )(Yj − Ȳ )/σ2, where

D = V
−1/2
2 (K − Kn), Dij = V

−1/2
2 {K∗1,θ(Xj) − (n − 1)−1∑

k 6=j K
∗
kj + K∗1,θ(Xi) − (n −

1)−1∑
k 6=iK

∗
ki + n−1(n − 1)−1∑

k 6=lK
∗
kl − µK∗} and K∗ij = K∗(Xi,Xj). Viewing ∆n,D

as a special case that was considered in proof of Theorem 2, it is not difficult to see that

E∆n,D = 0, and the asymptotic variance of ∆n,D is 2E(D2
ij) ≤ CV −1

2 (2σ2
∆,1 + σ2

∆,2) for

some constant C, where σ2
∆,1 = E[K∗1,θ(Xj)− (n− 1)−1∑

k 6=j K
∗
kj ]

2 and σ2
∆,2 = E[n−1(n−

1)−1∑
k 6=lK

∗
kl − µK∗ ]

2. In the following we will show that V −1
2 (2σ2

∆,1 + σ2
∆,2) = o(1).

Let {λ∗m, ψ∗m}∞m=1 be the eigen-decomposition of kernel K∗. Denote V ∗2 =
∑∞
m=1 λ

∗2
m ,

κm = E{ψ∗m(X)}, ν1 =
∑
m=1 λ

∗
mκ

2
m and ν2 =

∑
m=1 λ

∗2
mκ

2
m. Since the ∆D,n is invariant

when the kernel is scaled, we can assume maxm λ∗m = 1 without loss of generality. Then it

can be shown that σ2
∆,1 = n−1(V ∗2 − ν2) and σ2

∆,2 = 4n−1ν2 + n−2V ∗2 . Moreover, it has

been studied in Lindsay et al. (2014) that V2 = V ∗2 − 2ν2 + ν2
1 , where ν2 ≤ ν1 ≤ 1 ≤

√
V ∗2 ,

45



Therefore,

V −1
2 (2σ2

∆,1 + σ2
∆,1) =

2

n

V ∗2 + ν2

V2
{1 + o(1)} ≤ 2

n

V ∗2 +
√
V ∗2

V ∗2 − 2ν2 + ν2
2

,

which is o(1) no matter V ∗2 is infinite or finite. �

Proof of Proposition 1: Under alternative H1n : h(x) = dn(x), we have Yi = µ+dn(Xi)+

εi for i = 1, 2..., n, where E(Yi) = 0 and E(Y2
i ) = σ2 + E{d2

n(Xi)} = σ2{1 + o(1)}, under

condition (3.11). Therefore, by the law of large number

σ̂2 =
1

n

n∑
i=1

(Yi − Ȳ )2 =
1

n

n∑
i=1

Y 2
i − (Ȳ )2 p→ σ2.

Moreover,

δ̂K − δK
σTn

=

(
nTn − nδK/σ̂2

σTn

)
· σ̂

2

n
= Op(1) · σ̂

2

n

p→ 0,

under condition (3.11). �

Derivation of the adjusted variance σ2
Tn,adj

: Consider

n(n− 1)Tn1 =
2

σ2
YTHK0HY − 1

σ4(n− 1)
YTHK0HYYTHY , G1 −G2,
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By using results from Zhong and chen (2011), we have E(G1) = 2tr(HK0),

E(G2) =
1

(n− 1)
[tr(HK0)tr(H) + 2tr(HK0) + ∆tr(HK0H ◦H)],

Var(G1) = 8tr(HK0HK0) + 4∆tr(A ◦A),

Cov(G1, G2) =
1

(n− 1)
[16tr(HK0HK0) + 4tr2(HK0) + 4tr(HK0HK0)tr(H)]

+
2∆

(n− 1)
[tr(HK0)tr(A ◦H) + tr(H)tr(A ◦A) + tr(A2 ◦H) + 2tr(A ◦A)]

+
2(τ6 − 15− 6∆)

(n− 1)
tr(A ◦A ◦H)

where τk = E(
Y − µ
σ

)k for any k ∈ N . Applying the results from (Bao and Ullah, 2010),

E(
1

σ8
YTAYYTAYYTHYYTHY)

= tr2(HK0)tr2(H) + 10tr2(HK0)tr(H) + 2tr2(H)tr(HK0HK0) + 20tr(HK0HK0)tr(H)

+24tr2(HK0) + 48tr(HK0HK0) +Rn

where Rn = γ2fγ2 + γ4fγ4 + γ6fγ6 + γ2
2fγ2

2
, γ2 = τ4 − 3 = ∆, γ4 = τ6 − 15∆ − 15,

γ6 = τ8 − 28γ4 − 35∆2 − 210∆− 105, and

fγ2 = tr2(HK0)
{5(n− 1)2

n
+ 8 + 24

(n− 1)

n

}
+ tr(HK0HK0)

{10(n− 1)2

n
+

64(n− 1)

n

}
+ tr(A ◦A)

{
(n− 1)2 +

2(n− 1)2

n
+ 16(n− 1) + 48 +

16(n− 1)

n

}
,

fγ4 = 2tr2(HK0)(
n− 1

n
)2 + 4tr(HK0HK0)(

n− 1

n
)2 + tr(A ◦A)(

n− 1

n
)(2n+ 18),

fγ6 = tr(A ◦A)(
n− 1

n
)2,

f
γ2
2

= tr2(HK0)
(

2− 2

n
+

4

n2

)
+ tr(A ◦A)

{
8− 16

n
+

(n− 1)2

n

}
+ tr(HK0HK0)

(
24− 32

n
+

12

n2

)
.
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Hence,

Var(G2) =
1

(n− 1)2
E(

1

σ8
YTAYYTAYYTHYYTHY)− 1

(n− 1)2
{E(G2)}2

= tr2(HK0)
{ 6

n− 1
+

20

(n− 1)2

}
+ tr(HK0HK0)

{
2 +

20

n− 1
+

48

(n− 1)2

}
+

Rn
(n− 1)2

− 1

(n− 1)2

{
4∆tr(HK0)tr(A ◦H) + ∆2tr2(A ◦H) + 2∆tr(HK0)tr(H)tr(A ◦H)

}
.

Denote

S1 = tr2(HK0)
(
− 2

n− 1

)
+ tr(HK0HK0)

(
2− 12

n− 1

)
,

and

S2 = tr2(HK0)
(
− ∆

n

)
+ tr(HK0HK0)

(6∆

n
) + ∆tr(A ◦A),

then we have

Var(G1 −G2) = S1 + S2 + o(S1 + S2)

= tr(HK0HK0){2− 12

(n− 1)2
+

6∆

n
}+ tr2(HK0){− 2

n− 1
− ∆

n
}

+ ∆tr(A ◦A) + o(S1 + S2),

where it can be proved tr(A ◦A) =
{2tr(K2)

n
− 1

n
tr2(HK0)− 2

n
tr(HK0HK0)

}
{1 + o(1)}.

Therefore,

Var(nTn1) =
1

(n− 1)2
Var(G1 −G2),

which is an adjustment for the variance of test statistic nTn, since Var(nTn) = Var(nTn1){1+

o(1)}. This finishes the proof. �
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Let TK be the integral operator defined using kernel K, i.e., TKf =
∫
K(x, ·)f(x)dµ(x)

for f ∈ L2(µ). Then the eigenvalues corresponding to kernel function K are actually the

ones correspond to integral operator, and we denote them by λ(TK) in the following.

Lemma 3. For the given regularized kernel KR,γ in the chapter, we have

λm(TKR,γ
) =

γλm(TK)

γ + λm(TK)
.

Proof: Applying the result from Dauxois et al. (1982), we have

n−1λm(K)− λm(TK)
a.s.→ 0, n→∞ (2.8.14)

and

n−1λm(KR,γ)− λm(TKR,γ
)
a.s.→ 0, n→∞ (2.8.15)

for any integer m. Next we will show that λ(KR,γ) = γλ(K)/{λ(K) + γ}. If we assume

kernel matrix K has eigen-decomposition QΛQT , where Λ = diag{Λ1, ...,Λn}, then

KR,γ = QΛQT −QΛQT (nγQQT + QΛQT )−1QΛQT

= Q
{
Λ−Λ(nγI + Λ)−1Λ

}
QT ,

which implies λm(KR,γ) = Λm −
Λ2
m

nγ + Λm
=

γΛm
γ + Λm/n

. Hence we have

n−1λm(KR,γ)− γλm(TK)

γ + λm(TK)
=

γλm(K)/n

γ + λm(K)/n
− γλm(TK)

γ + λm(TK)

a.s.→ 0. (2.8.16)

Combing (2.8.15) and (2.8.16), we can see λm(TKR,γ
) =

γλm(TK)

γ + λm(TK)
. �
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Chapter 3

A rate-optimal test for

high-dimensional linear model

3.1 Introduction

In the previous chapter, we proposed a test statistic to test the nonparametric function of

high-dimensional variates in a RKHS generated by a kernel function K. In particular, the

functions are of form h(x) =
∑S
m=1 αmψm(x), where {ψm(·)}Sm=1 correspond to the eigen-

decomposition of kernel function K and form a complete orthogonal normal system, S is the

total number of positive eigen-values of kernel function K. Testing the nonparametric func-

tions is essentially equivalent to the problem of detecting whether the unknown coefficient

vector α = (α1, ..., αS) is zero (i.e., Yi are independent of covariants Xi) or not. Specifically,

given a predefined norm ‖ · ‖ on RS , let us consider testing the hypothesis

H0 : α = 0 vs H1(ε2
n) : ‖α‖ ≥ εn (3.1.1)

where εn > 0 is the separation radius. As we can observe, the smaller εn is, the more

difficult to distinguish between H0 and H1(ε2
n). An interesting question is: what is the

smallest rate εn such that it is still possible to successfully detect the alternative H1(ε2
n) in

(3.1.1)? Moreover, is the kernel-based test able to achieve the detection boundary?
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As an initial investigation, in this chapter we mainly focus on a high-dimensional linear

regression model as follows:

Yi = µ+

p∑
m=1

βmXim + εi, i = 1, ..., n, (3.1.2)

where βm ∈ R are unknown coefficients, Xi = (Xi1, ..., Xip)
T is a p-dim Gaussian random

variable with mean vector 0p and covariance matrix Σ; the dimension p goes to infinity as

n goes to infinity; εi are IID random Gaussian errors with mean 0 and known variance σ2

(then assuming σ2 = 1 without loss of generality); εi are independent of Xi(1 ≤ i ≤ n).

This optimal testing problem in (3.1.2) is closely related to several existing works on

detection boundary for Gaussian models (Donoho and Jin, 2004; Donoho and Jin, 2008;

Donoho and Jin, 2009; Hall and Jin, 2010; Ingster et al., 2010; Ingster et al., 2009). Specifi-

cally, Donoho and Jin (2004), Hall and Jin (2010) and Ingster et al. (2009) considered the

model with Xij = 1{i=j} and dimension p = n, and Donoho and Jin (2008, 2009) inves-

tigated the model (3.1.2) with Xij = Zi1{i=j} (Zi = ±1 is class label) and p = n under

a classification setting. As an extension to linear regression under high-dimensional setting

p >> n, the detection boundary of model (3.1.2) with the covariance matrix Σ = I was

studied in (Ingster et al., 2010)). However, those works were all developed under sparsity

assumption that the majority of the coefficients are zero (e.g., the proportion of the nonzero

coefficients is p−γ , γ ∈ (0, 1)). The major contribution of the present work lies on the in-

vestigation of detection boundary under a general structure-free (no sparsity assumption)

high-dimensional linear model with correlated variables, which have been more commonly

seen in practice.

The rest of the chapter is organized as follows. After introducing the basic notation
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and definition for minimax testing problem in Section 3.2, we establish a lower bound of

the detection boundary εn in Section 3.3. Section 3.4 introduces the kernel-based test and

provides its asymptotic distributions under the null and a general alternative hypotheses,

which leads to the establishment of its non-trivial power at the detection boundary εn, under

certain conditions. Summary and further discussions are given in Section 3.5.

3.2 Minimax testing problem

Assume the covariance matrix has decomposition Σ = QΛQT , Λ = diag(λ1, ..., λp) is a di-

agonal matrix, and λ1 ≥ λ2 ≥ ... ≥ λp > 0. Noting linear transformations X̃ = Λ−1/2QTX

can generate p-dim Gaussian random variable X̃ with mean 0p and identity covariance ma-

trix, we can see that (X̃1, ..., X̃p) forms orthogonal normal system (i.e., E(X̃iX̃j) = 1{i=j},

i, j = 1, ..., p). Moreover, linear kernel function K(X1,X2) = XT
1 X2 has alternative expan-

sion K(X1,X2) = X̃T
1 ΛX̃2. The above two observations together imply that the function

space generated by the linear kernel includes functions of form

h(Xi) = αT X̃i = αTΛ−1/2QTXi, i = 1, ..., n,

which is equivalent to the model (3.1.2) by letting β = QΛ−1/2α. Therefore, testing the

high dimensional linear function is equivalent to testing the high dimensional coefficient

vector α = 0. In the following, we will formalize this problem from an asymptotic minimax

point of view.

For any coefficient vector α ∈ Rp, we define norm ‖α‖2Λ = αTΛα, and incorporate it
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into the following testing problem

H0 : ‖α‖2Λ = 0 vs H1(ε2
n) : ‖α‖2Λ ≥ ε2

n, (3.2.1)

under the high-dimensional setting where p→∞ as n→∞.

We denote a test based on the n observations as φn ∈ {0, 1}, where φn = 1 represents a

rejection of H0, and φn = 0 indicates a decision of retaining H0. Therefore, the type I error

of the test is

α(φn) = P0(φn = 1),

which is assumed to be asymptotically controlled at level α, i.e., α(φn) ≤ α + o(1) and the

minimax type II error of the test is defined as

π(φn, ε
2
n) = sup

h∈H1(ε2n)

Ph(φn = 0),

where P0 and Ph are the probability measures that correspond to observations under the null

hypothesis α = 0 and the alternative hypothesis h(Xi) = αT X̃i = αTΛ−1/2QTXi. Then

the minimax power, i.e., the worst power against H1(ε2
n) is 1− π(φn, ε

2
n). Following Guerre

and Levergne (2002), we call a test φn has an asymptotically trivial power against H1(ε2
n)

if the minimax power is no larger than the significance level α ∈ (0, 1), i.e., 1− π(φn, ε
2
n) ≤

α + o(1). Accordingly, a test φn has an asymptotically non-trivial power against H1(ε2
n) if

1− π(φn, ε
2
n) > α + o(1).

We want to find a separation rate ε̃n such that for any rate εn that goes to zero faster

than ε̃n (i.e., εn = o(ε̃n) ), any test will have trivial power against H1(ε2
n), while there

existing a test φ∗n that has non-trivial power against H1(ε2
n) if ε2

n = κε̃2
n for some constant
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κ > 0. This special separation rate ε̃n and the test φ∗n are normally called optimal minimax

rate (or detection boundary) and rate optimal test, respectively.

3.3 Lower bound of separation rate

In this section, we establish a lower bound for the optimal minimax rate ε̃n, as stated in the

following theorem.

Theorem 4. Let ε̃2
n = λp/

√
n and assume that log p = O(n1/2). For any test φn with

α(φn) ≤ α + o(1), the minimax type II error π(φn, ε
2
n) ≥ 1− α + o(1) when εn = o(ε̃n).

Proof. Note that it is enough to show π(φn, ε
2
n) + α(φn) ≥ 1 + o(1). Following the lower

bound investigations in Cai and Ma (2013) and Guerre and Levergne (2002), we consider a

least favorable subset of the alternative hypothesis H1(ε2
n) in (3.2.1)

H∗1 (ε2
n) =

{
αT x̃,α ∈ Θ(ε2

n)
}
, (3.3.1)

where

Θ(ε2
n) =

{
αν

∣∣∣αν = εnν, ν ∈ {λ
−1/2
1 e1, λ

−1/2
2 e2, ..., λ

−1/2
p ep}

}
,

where ek is the p-dim vector with kth element being 1 and others being 0. It is not difficult

to verify that for any αν ∈ Θ(ε2
n), αTν Λαν = ε2

n.

Under a Bayesian setting, we introduce a prior probability over alternative H1(ε2
n) as

Π1n(h(x) = αT x̃|α ∈ Θ(ε2
n)) =

1

p
.
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By using the Bayesian prior measures, we can obtain a lower bound of the sum of errors

α(φn) + π(φn, ε
2
n) = P0(φn = 1) + sup

h∈H1(ε2n)

Ph(φn = 0)

≥ P0(φn = 1) +

∫
P
h∈H1(ε2n)

(φn = 0)dΠ1n(h), (3.3.2)

where the lower bound represents the Bayes error of any test φn, which is larger than the

error of the optimal Bayesian likelihood ratio test given below.

Let X = {Xi}ni=1, Y = {Yi}ni=1, and denote ph(X,Y) as the density function of (X,Y),

where the subscript h acknowledges the dependence of X and Y through the regression

function h. Plugging in the prior measures on the function h, we can define the joint

densities p0(X,Y) and p1n(X,Y), associated with H0 and H1(ε2
n) respectively, as

p0(X,Y) = p0(X,Y) and p1n(X,Y) =

∫
ph(X,Y)dΠ1n(h).

The optimal Bayesian likelihood ratio test rejects the null hypothesis if

Ln =
p1n(X,Y)

p0(X,Y)
=

p1n(Y|X)

p0(Y|X)
≥ 1

and the corresponding Bayesian error is

1− 1

2

∫ ∫
|p1n(X,Y)− p0(X,Y)|dXdY

= 1− 1

2

∫ (∫
|Ln − 1| · p0(Y|X)dY

)
p(X)dX

= 1− 1

2
EX

[
E0
{
|Ln − 1|

∣∣X}] (3.3.3)
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where E0 is the conditional expectation with respect to p0(Y|X), and EX is the expectation

with respect to the marginal density of p(X). Then through (3.3.2) and the optimal Bayesian

error (3.3.3) we can get another lower bound

π(φn, ε
2
n) + α(φn) ≥ lim inf

n→∞

{
1− 1

2
EX

[
E0
{
|Ln − 1|

∣∣X}]}+ o(1),

which is based on the likelihood ratio Ln. By Fatou’s lemma, it remains to show E0
{
|Ln −

1|
∣∣X} → 0 in probability, or equivalently, E0

{
(Ln − 1)2

∣∣X} p→ 0, which can be further

reduced to E0
(
L2
n

∣∣X) p→ 1 since E0
(
Ln
∣∣X) = 1. Hence to complete the proof, we need to

verify

E0
(
L2
n

∣∣X) p→ 1. (3.3.4)

In the following we will focus on the likelihood ratio Ln =
p1n(Y|X)

p0(Y|X)
, where the denomi-

nator

p0(Y|X) = (2π)−n/2 exp

{
− 1

2

n∑
i=1

Y 2
i

}
,

and the numerator is

p1n(Y|X) = (2π)−n/2
∫ [

exp

{
− 1

2

n∑
i=1

(Yi − h(Xi))
2
}]

dΠ1n(h)

= (2π)−n/2
∫ [

exp

{
− 1

2

n∑
i=1

Y 2
i −

1

2

n∑
i=1

h2(Xi) +
n∑
i=1

Yih(Xi)

}]
dΠ1n(h)

= p0(Y|X)

∫ [
exp

{
− 1

2

n∑
i=1

h2(Xi) +
n∑
i=1

Yih(Xi)

}]
dΠ1n(h). (3.3.5)
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Specifically,

n∑
i=1

h2(Xi) =
n∑
i=1

(αTν X̃i)
2 =

n∑
i=1

X̃T
i ανα

T
ν X̃i

n∑
i=1

Yih(Xi) =
n∑
i=1

Yiα
T
ν X̃i.

Hence (3.3.5) implies that

Ln =
1

p

∑
ν

exp

(
− 1

2

n∑
i=1

X̃T
i ανα

T
ν X̃i +

n∑
i=1

Yiα
T
ν X̃i

)
(3.3.6)

and

L2
n =

1

p2

∑
ν,ν′

exp

(
− 1

2

n∑
i=1

X̃T
i ανα

T
ν X̃i −

1

2

n∑
i=1

X̃T
i αν′α

T
ν′X̃i +

n∑
i=1

Yi(αν +αν′)
T X̃i

)
(3.3.7)

Under the null hypothesis, Yi = εi follows a standard normal distribution. Then
∑n
i=1 εi(αν+

αν′)
T X̃i is the sum of n independent centered normal random variables with variance∑n

i=1 X̃T
i (αν + αν′)(αν + αν′)

T X̃i, conditioned on X. It is known that for any centered

normal random variable Z0 with variance σ2
0, E{exp(Z0)} = exp(σ2

0/2). Therefore, (3.3.7)

yields

E(L2
n|X) =

1

p2

∑
ν,ν′

exp

(
1

2

n∑
i=1

X̃T
i

{
ανα

T
ν′ +αν′α

T
ν

}
X̃i

)
.

Before proceeding further, let us denote an = nλ−1
p ε2

n and bn = nλ−2
p ε4

n. On one hand,

1

p2

∑
ν 6=ν′

exp

(
1

2

n∑
i=1

X̃T
i

{
ανα

T
ν′ +αν′α

T
ν

}
X̃i

)
=

1

p2

∑
k 6=k′

exp

( n∑
i=1

ε2
n√

λkλk′
X̃ikX̃ik′

)
:= Mn,
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where for any fixed k 6= k′,

E

{
ε2
n√

λkλk′

n∑
i=1

X̃ikX̃ik′

}
= 0, Var

{
ε2
n√

λkλk′

n∑
i=1

X̃ikX̃ik′

}
≤ bn.

Since bn = o(1) if ε2
n = o(ε̃2

n), Mn
p→ 1 + p−1. On the other hand,

1

p2

∑
ν=ν′

exp

(
1

2

n∑
i=1

X̃T
i

{
ανα

T
ν′ +αν′α

T
ν

}
X̃i

)
=

1

p2

p∑
k=1

exp

(
ε2
n

n∑
i=1

X̃2
ik

λk

)
:= Rn.

Actually,

0 ≤ Rn ≤
1

p

p∑
k=1

exp

(
ε2
n

n∑
i=1

X̃2
ik

λp
− log p

)
, (3.3.8)

and

exp

(
ε2
n

n∑
i=1

X̃2
ik

λp
− log p

)
d→ Wk, k = 1, ..., p,

where {Wk}
p
k=1 are independent log-normal random variables with mean

µLN = exp(an +
1

2
bn − log p)

and variance

σ2
LN =

{
exp(bn)− 1

}
µ2
LN ,

where µLN = o(1) and σ2
LN = o(1) when ε2

n = o(ε̃2
n) = o(

λp√
n

). Because the upper bound

in (3.3.8) asymptotically converges to a distribution with mean µLN and variance p−1σ2
LN ,
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we can obtain Rn = op(1) through (3.3.8), and conclude

E(L2
n|X) = Mn +Rn

p→ 1,

under a high-dimensional setup. This finishes the proof.

Remark 3.1 (a). In the context of testing functions of specific forms under a fixed di-

mensional set-up, the minimax rate depends on the smoothness of the function class (Guerre

and Levergne, 2002; Ingster, 1993). According to Guerre and Lavergne (2002), if the smooth

index s ≥ p/4, then ε̃2
n = n−4s/(p+4s), and ε̃2

n = 1/
√
n if s < p/4, when the norm was

defined as ‖h‖2GL = E(h2(X)) = αTα. If assuming all the eigenvalues are bounded in the

sense 0 < m ≤ λp ≤ λ1 ≤ M ≤ ∞, then the norm considered in our setting is of the same

order as ‖h‖2GL. Besides, the class of linear functions essentially has smooth index s = 1 and

gives rate ε̃2
n = 1/

√
n when p > 4. Hence the lower bound in Theorem 4 is well connected

to existing results.

(b). Although Xi is assumed to follow a multivariate normal distribution in our model, the

lower bound result in the above theorem still holds for any distribution with E(X̃4
ik) < ∞,

i = 1, ..., n, k = 1, ..., p.

3.4 Upper bound of separation rate

In this section, we derive the upper bound of the separation rate by showing the existence

of a test whose minimax power is nontrivial against H1(κε̃2
n) for some constant κ > 0. The

lower and upper bounds together characterize the detection boundary, which can be then
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used as a minimax benchmark to evaluate the performance of a test asymptotically.

3.4.1 Test statistic

Given a random sample {X1, Y1}, {X2, Y2}, ..., {Xn, Yn}, we consider a test statistic

Qn =
1

n(n− 1)

∑
i 6=j

XT
i Xj(Yi − Ȳn)(Yj − Ȳn). (3.4.1)

Denote Vk = tr(Σk) for k ∈ Z+. In parallel to the results in Chapter 2, we can similarly

give the asymptotic distribution of Qn under the null hypothesis, which is given in Theorem

5. The asymptotic distribution of Qn under a single alternative hypothesis

H1(α) : Yi = µ+ hα(Xi) + εi (3.4.2)

is discussed in Theorem 6, where hα(Xi) =
∑p
m=1 αmX̃im (1 ≤ i ≤ n). It should be pointed

out that those results are derived based on some mild moment assumptions on X or ε, as

described below.

A1. E(X̃4
ik) <∞, i = 1, ..., n, k = 1, ..., p.

A2. E(ε4i ) <∞, i = 1, ..., n

Theorem 5. Assume V4/V
2
2 → 0 as p(n) → ∞. Then under assumptions A1 and A2, we

have

nQn√
2V2

d→ N(0, 1) (3.4.3)

under the null hypothesis.

Therefore, an α level test rejects the null hypothesis if (2V2)−1/2nQn > z1−α, where z1−α
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is the lower 1−α quantile of the standard normal distribution. Denote ψm(Xi) = X̃im, and

ψi =
(
ψ1(Xi), ψ2(Xi), ..., ψp(Xi)

)
, 1 ≤ m ≤ p, 1 ≤ i ≤ n. Then we can see that ψi enjoys

the nice properties of Eψi = 0 and Cov(ψi) = I.

Theorem 6. Assume V4/V
2
2 → 0 as p(n) → ∞. Then under assumptions A1 and A2, we

have

n1/2(Qn − θα)

σn(α)

d→ N(0, 1), (3.4.4)

under the alternative hypothesis H1(α), where

θα =

p∑
m=1

λmα
2
m,

σ2
n(α) = 4

p∑
m1,m2=1

λm1λm2αm1αm2bm1,m2(α) + 4

p∑
m=1

λ2
mα

2
m − 4θ2

α

+2n−1
{ p∑
m1,m2=1

λm1λm2b
2
m1,m2

(α) + 2

p∑
m=1

λ2
mb

2
m,m(α) + V2 − θ2

α

}
,

and bm1,m2(α) = E{ψm1(X)ψm2(X)h2
α(X)} for m1,m2 = 1, ..., p.

Proof. It is not difficult to see Qn = Q0
n{1 + op(1)}, where the leading order term is

Q0
n =

1

n(n− 1)

∑
i6=j

XT
i Xj(hα(Xi) + εi)(hα(Xj) + εj). (3.4.5)

To use the classical results of U-statistic (Lee, 1990), let us denote Z = (X, ε) and de-

fine the first-order and second-order projections of the symmetric function ϕ(Z1,Z2) =

XT
1 X2(hα(X1) + ε1)(hα(X2) + ε2) as

ϕ(1)(z1) = E{ϕ(z1,Z2)}, ϕ(2)(z1, z2) = ϕ(z1, z2)
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and their variances

σ2
(1) = Var{ϕ(z1,Z2)}, σ2

(2) = Var{ϕ(2)(z1, z2)}.

Plugging the expansions

hα(Xi) =

p∑
m=1

αmψm(Xi)

and

XT
1 X2 =

p∑
m=1

λmψm(X1)ψm(X2)

into the function ϕ(Z1,Z2), we can see that the first-order projection and its variance are

ϕ(1)(z1) =

p∑
m=1

λmαmψm(x1)(h(x1) + ε1),

σ2
(1) =

p∑
m,m′=1

λmλm′αmαm′bm,m′(α)− θ2
α +

p∑
m=1

λ2
mα

2
m.

The variance of second-order projection is

σ2
(2) = E

{ p∑
m,m′=1

λmλm′ψm(X1)ψm(X2)ψm′(X1)ψm′(X2)

(
h2
α(X1)h2

α(X2) + h2
α(X1)ε22 + h2

α(X2)ε21 + ε21ε
2
2

)}
− θ2

α

=

p∑
m,m′=1

λmλm′b
2
m,m′(α) + 2

p∑
m=1

λ2
mbm,m(α) + V2 − θ2

α.

According to the classical results on U-statistic (Lee, 1990), Var(Q0
n) = {4n−1σ2

(1)
+2n−2σ2

(2)
}{1+

o(1)}, and

n1/2(Q0
n − θα)

nVar(Q0
n)

d→ N(0, 1).
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Letting σ2
n(α) = 4σ2

(1)
+ 2n−1σ2

(2)
, we can obtain the claim.

With the normal assumption on Xi and εi in model (3.1.2), assumptions A1 and A2

automatically hold. Moreover, we can obtain a further characterizations for the asymptotic

variance σ2
n(α).

Corollary 1. Assume Xi follows a Gaussian distribution for i = 1, 2, ..., n, then

σ2
n(α) = (4 + 6n−1)(αTΛα)2 + (4 + 8n−1)(αTα+ 1)(αTΛ2α) + 2n−1(αTα+ 1)2V2.

Proof. Based on normality assumption, ψi ∼ N(0, I), i = 1, ..., n. Rewrite 2bm1m2 as a

product of two quadratic forms

2bm1,m2(α) = E[ψT1 (em1eTm2
+ em2eTm1

)ψ1ψ
T
1αα

Tψ1],

where ek represents the p-dim vector with the k-th element 1 and others 0. By using classical

results on expectation of quadratic forms in Kumar (1973), we have

2bm1,m2(α) = (eTm1
em2 + eTm2

em1)αTα+ 2αT (em1eTm2
+ em2eTm1

)α,

which yields bm1m2(α) = 2αm1αm2 for m1 6= m2 and bmm(α) = 2α2
m + αTα. Thus, we
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obtain

σ2
(1) =

p∑
m1,m2=1

λm1λm2αm1αm2bm1,m2(α) +

p∑
m=1

λ2
mα

2
m − θ2

α

= 2
∑

m1 6=m2

λm1λm2α
2
m1
α2
m2

+
∑
m

λ2
mα

2
m(αTα+ 2α2

m + 1)−
(∑
m

λmα
2
m

)2
=

(∑
m

λmα
2
m

)2
+ (αTα+ 1)

∑
m

λ2
mα

2
m

= (αTΛα)2 + (αTα+ 1)(αTΛ2α),

and

σ2
(2) =

p∑
m1,m2=1

λm1λm2b
2
m1,m2

(α) + 2

p∑
m=1

λ2
mbm,m(α) + V2 − θ2

α

= 4
∑

m1 6=m2

λm1λm2α
2
m1
α2
m2

+
∑
m

λ2
m(2α2

m +αTα)2 + 2
∑
m

λ2
m(2α2

m +αTα)

+V2 −
(∑
m

λmα
2
m

)2
= 3

(∑
m

λmα
2
m

)2
+ (αTα+ 1)2V2 + (4αTα+ 4)

∑
m

λ2
mα

2
m

= 3(αTΛα)2 + (αTα+ 1)2V2 + 4(αTα+ 1)(αTΛ2α).

Noting that σ2
n(α) = 4σ2

(1)
+ 2n−1σ2

(2)
, we complete the proof of the claim.

3.4.2 Rate-optimality of the test

Equipped with the asymptotic behaviors stated in Theorems 5 and 6, we now study the mini-

max power of the proposed test (denoted as φ∗n) against the composite alternative hypothesis

H1(ε2
n). In particular, we confirmed the existence of the constant κ > 0 such that the test

has nontrivial power against H1(κε̃2
n), when the decreasing speed of eigenvalues is not too

fast. Specifically, we put the following two assumptions on the decay speed of eigenvalues.
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A3. λ1/λp = o(
√
n).

A4. There exists a constant b∗ > 0 such that (nωp)
−1 ≤ b∗, where ωp = λ2

p/V2.

Theorem 7. Under assumptions A3 and A4, φ∗n is rate-optimal, i.e., for any given signifi-

cance level α ∈ (0, 1), there exists a constant κ > 0 such that

1− π(φ∗n, κε̃
2
n) = 1− sup

h∈H1(κε̃2n)

Ph(φ∗n = 0) > α + o(1).

Proof. According to the definition (3.2.1), for any h ∈ H1(κε̃2
n), there exists τ ≥ κ such that

‖α‖2P = αTΛα = τ ε̃2
n. Suppose κ is large enough such that

(nωp
2

)1/2
τ ≥

(nωp
2

)1/2
κ ≥ 3

2
z1−α. (3.4.6)

Consider the type II error of test φ∗n against single alternative H1(α) where ‖α‖2Λ = τ ε̃2
n

(i.e., αTΛα = τ ε̃2
n)

Ph(φ∗n = 0) = Ph

(
nQn√

2V2
≤ z1−α

)
= Ph

(
n1/2Qn ≤ n−1/2

√
2V2z1−α

)
= Ph

(
n1/2(Qn −αTΛα) ≤ n−1/2

√
2V2z1−α − n1/2αTΛα

)
= Ph

(
|n1/2(Qn −αTΛα)| ≤| n−1/2

√
2V2z1−α − n1/2αTΛα |

)
.
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By using Chebyshev’s inequality,

Ph

(
|n1/2(Qn −αTΛα)| ≤| n−1/2

√
2V2z1−α − n1/2αTΛα |

)
≤ σ2

n(α)[√
(2V2/n)z1−α −

√
nαTΛα

]2{1 + o(1)}

=
nσ2

n(α)/(2V2)[
z1−α − n(2V2)−1/2αTΛα

]2 (1 + o(1)) (3.4.7)

where the numerator

nσ2
n(α)

2V2
=

[
4n(αTΛα)2 + 4n(αTα+ 1)αTΛ2α

2V2
+ (αTα+ 1)2

]
{1 + o(1)}. (3.4.8)

Since αTΛα = τ ε̃2
n =

τλp√
n

, it is not difficult to see

αTα ≤ τ ε̃2
n

λp
=

τ√
n
, αTΛ2α ≤ τλ1ε̃

2
n =

τλ1λp√
n

. (3.4.9)

Plugging (3.4.9) into (3.4.8), we can see

nσ2
n(α)

2V2
≤

[
4τ2λ2

p + 4τλ1λp(τ +
√
n)

2V2
+ (

τ√
n

+ 1)2

]
{1 + o(1)}. (3.4.10)

On the other hand, (3.4.6) implies

z1−α ≤
2

3

nαTΛα√
2V2

,
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hence the denominator

[
nαTΛα√

2V2
− z1−α

]2

≥

[
1

3

nαTΛα√
2V2

]2

=
nτ2λ2

p

18V2
. (3.4.11)

Combine (3.4.8) and (3.4.11), the upper bound in (3.4.7)

nσ2
n(α)/(2V2)[

z1−α − n(2V2)−1/2αTΛα
]2

≤ 9

[
4τ2λ2

p + 4τλ1λp(τ +
√
n)

nτ2λ2
p

+
2V2(τ/

√
n+ 1)2

nτ2λ2
p

]

= 9

[
4

n
+ 4

(
1

n
+

1

τ
√
n

)
λ1

λp
+

(
1√
n

+
1

τ

)2 2

nωp

]

= 9

[
4

n
+ 4

(
1

n
+

1

κ
√
n

)
λ1

λp
+

(
1√
n

+
1

κ

)2

(2b∗)

]

= 9

[
o(1) +

(
1√
n

+
1

κ

)2

(2b∗)

]
(3.4.12)

under assumptions A3 and A4. Noting that there exists a constant κ = κ(α, b∗) > 0 such

that the bound in (3.4.12) is uniformly controlled by 1−α, we can reach the conclusion that

the test φ∗n is rate-optimal in the sense that

1− π(φ∗n, κε̃
2
n) = 1− sup

h∈H1(κε̃2n)

Ph(φ∗n = 0) > α + o(1).

This finishes the proof.

Remark 3 (a). Assumption A4 sometimes implicitly puts restriction on the dimension

order. For example, in the special case where all the eigenvalues are bounded constant, then

Assumptions A4 indicates that at most p/n→ r ∈ (0,∞).

67



(b). Assumptions A3 and A4 might not be necessary for the rate-optimality of test φ∗n.

The upper bounds given in (3.4.9) are probably too loose to get assumptions weaker than

A3 and A4. However, it is not easy to bound the two quantities in (3.4.9) sharply without

specific assumptions on the decay speed of eigen-values.

Recall in (Ingster et al. 2010), the authors consider the high-dimensional sparse linear

model with independent and standardized variables (i.e., X̃i = Xi and λ1 = ... = λp = 1).

They derive the detection boundary ε∗n =
p1/4
√
n

∧ 1

n1/4
in moderately sparse case where the

proportion of non-zero coefficient is p−β (
1

2
< β < 1). Comparing our detection boundary

ε̃n =
1

n1/4
(if λp = 1) to ε∗n, our rate does not contain the minimum with the

p1/4
√
n

term. As is

discussed in Cai and Ma (2013), the optimal test or detection boundary against a structured

alternative is quite difficult from the one without structural assumption. Intuitively, with

more information about the signals, the detection boundary is potentially tighter than the

one against the structure-free alternative, which is also observed here. However, we can see

that the difference disappears as the order of dimension p gets larger. This shows an adverse

effect of dimensionality on the high-dimensional detection boundary.

3.5 Summary and discussion

In this chapter, we consider the detection boundary problem in testing a general linear

model under the high-dimensional setting, where the p-dim variables are correlated and the

dimension p can go to infinity as n goes to infinity. The problem is studied from a minimax

point of view. We firstly establish the boundary that separates the detectable region and

non-detectable region. Then a test is introduced and shown to be rate-optimal under certain

conditions on the eigenvalue decay speed.
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One of the most important directions of the future research is the study of detection

boundary for a general model where h(x) =
∑S
m=1 αmψm(x), {ψm(·)}Sm=1 correspond to

the eigen-decomposition of kernel function K and form a complete orthogonal normal sys-

tem. We want to extend the optimal results under linear model (associated with linear

kernel) to the general case. In addition, since the variance of noise σ2 is normally unknown

in many applications, finding a consistent estimator for σ2 under both the null and alter-

native hypotheses is of great importance. Finally, it is still unclear if assumption A3 and

A4 are violated, whether the current lower bound is still sharp enough and what is the cor-

responding optimal test. Answering these two questions is another interesting project for

future investigation.
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Chapter 4

Testing high-dimensional

nonparametric functions in RKHS

using multiple kernels

4.1 Introduction

Driven by advancements in microarray and next generation sequencing technologies, increas-

ing number of genetic variants including small variations in single nucleotide polymorphisms

(SNPs) and large variations, such as indel and copy number variation, are generated in a

daily basis. The traditional genome-wide association studies (GWAS), aiming at detecting

the SNPs that are associated with complex traits and accessing the effect of each SNP one at

a time, has been proven to be a powerful tool to unveil the genetic architecture of a variety

of complex traits. Although the traditional single-variant-based GWAS have successfully

detected many genetic variants that are associated with the traits of interest, their power is

still limited because of the weakness of individual signals and the lack of consideration of

potential interactions among genetic variants.

The limitation of single variants analysis was overcome by the recent wave of set-based

association studies. Such extension to set-based analysis is a natural choice because genetic

70



variants or genes in a set (i.e., a pathway) tend to work coordinately to fulfill their task. On

one hand, the subtle effects in multiple variants can be combined so that the joint signal of

the set could be potentially boosted. On the other hand, the set-based strategy improves the

power to capture the complicated interactions among variants. There are a variety of public

resources available to create the SNP-set or gene-set, such as the annotated gene models (for

SNP-set), Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa, 2000), Reactome

(Croft et al., 2010) and Gene Ontology (Ashburner et al., 2000).

Kernel-based testing (KBT) framework, which measures the similarity between genetic

variants through a kernel function and comparing it to the phenotype similarity, is one of the

most popular and powerful methods in set-based association studies (Liu et al. 2007; Liu et

al. 2008). Moreover, KBT is a very general framework so that many other similarity based

approaches (e.g., Reiss et al. 2010; Wessel and Schork 2006; Mukhopadhyay et al. 2010;

Tzeng et al. 2009) are closely related to it. In Chapter 2, we have built a KBT framework

with a single kernel function for quantitative traits, under the high dimensional setting where

the total number of variants could be extremely large. As is observed in our simulations in

Chapter 2 and other literature (Wessel and Schork 2006; Wu et al. 2010; Lin et al. 2011),

the power of kernel-based test generally depends on the choice of kernel. Specifically, if

the true function comes from the function space generated by the kernel, then utilizing the

corresponding kernel will achieve high power. However, the underlying genetic architecture

(the true function) is typically unknown. Given a few candidate kernels, one simple way is to

choose the one with the smallest p-value. This, however, will inflate the type I error rate due

to kernel selection. Based on the kernel machine testing proposed by Liu et al. (2007), Wu

et al. (2010) proposed a perturbation method under multiple candidate kernels. However,

this strategy is over-conservative in high-dimensional case and needs computational intensive
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procedures to evaluate statistical significance.

Our interest in this chapter is to find an efficient multiple-kernel testing procedure that

can maintain nominal type I error rate while achieving high power in a high-dimensional

setting (i.e., p > n), under the KBT framework we developed in Chapter 2. Here we mainly

focus on a high-dimensional setting and assume a set of candidate kernels are given. In the

subsequent sections, we firstly extend our model in Chapter 2 by integrating covariates into

the test statistic, and access the asymptotic distribution of the adjusted test statistic. We

then propose two effective and efficient testing procedures when multiple kernel candidates

are available. In the first procedure, we propose a test using the average of the standardized

kernels in the candidate set, which is referred to as the simple average kernel method. In the

second procedure, we introduce a new test statistic taking the maximum of the test statistics

using the standardized kernels across the candidate set. We demonstrate the performance

of the two strategies through a real data application and extensive simulation studies under

both continuous and discrete variable settings. We show that under a high-dimensional

setting, the proposed approaches not only calibrate the nominal type I error rate, but also

enable the power to be close to the one using the best candidate function in the set, while

the perturbation method proposed by Wu et al. (2010) suffers power loss. To make the work

self-contained, some of the notations given in the earlier chapters are defined in this chapter

again.

4.2 Statistical model

We assume that n unrelated subjects from a population were observed in a study design,

where a quantitative (continuous) trait is of interest. For the ith subject, let Yi be the
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quantitative measurement, Wi = (Wi1,Wi2, ...,WiL)T be the L-dim covariates, where L

is finite and i = 1, 2, ..., n. In this chapter, we focus our attention to a p-dim SNP-set or

gene-set, where p is assumed to be large and even allowed to be larger than sample size n.

Let Xi = (Xi1, ..., Xip)
T ∈ X be the vector of measurements of the set for subject i, which

could be the genotype values for the SNPs in the SNP-set, or the gene expression profile for

the genes in the gene-set (or pathway). For genotype values of SNPs, Xij is typically coded

as the number of minor alleles that subject i possesses at the jth specific position, hence a

discrete variables takes three possible values 0, 1, or 2. The gene expression levels of gene-set

are generally continuous measurements. Throughout the chapter, we do not assume specific

assumption on the distribution of Xi.

To model the relationship between the quantitative trait and the SNP-set (or gene-set),

we consider the following semi-parametric regression model,

Yi = µ+αTWi + h(Xi) + εi, i = 1, 2, ..., n, (4.2.1)

where h is an unknown function, εi is a random subject-specific error term following a

certain distribution (not necessarily normally distributed) with E(εi) = 0, Var(εi) = σ2 and

independent of (Xi,Zi). The identifiability of the h function is assured by side condition

E[h(Xi)] = 0. We want to test the existence of association between the SNP-set (or gene-set)

and the continuous trait of our interest, i.e.,

H0 : h(·) = 0 vs H1 : h(·) 6= 0. (4.2.2)
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4.2.1 Kernel function

Before proceeding to the test statistic, we want to introduce kernel function, which is widely

used to measure the similarity between two subjects, as well as the functional space that is

generated by the kernel function. A function K : X ×X → R is called a kernel function if it

is symmetric and positive semi-definite (i.e., K(x1, x2) = K(x2, x1), and the kernel matrix

K defined by Kij = K(xi, xj) is positive semi-definite, for any x1, x2, ..., xn ∈ X ). In our

context, K(Xi,Xj) is a measure of similarity between the ith and the jth subject based

on the genotypes of the SNPs in the SNP-set or the expression levels of the genes in the

gene-set.

For any positive definite kernel K∗ with corresponding matrix K∗, we can defined its

centralized kernel

K(x1, x2) = K∗(x1, x2)−K∗1(x1)−K∗1(x2) + µK∗ (4.2.3)

satisfying E{K(X1, X2)} = 0, where K∗1(x1) = EK∗{(x1, X2)}, and µK∗ = E{K∗(X1, X2)}.

Empirically, centralized kernel matrix Kc can be replaced by its estimator

Kc,n = K∗ − (n− 1)−1[J(K∗)0 + (K∗)0J] + n−1(n− 1)−1J(K∗)0J,

where J is an n × n matrix with all the elements as 1, and D0 = D − diag(D) is a zero-

diagonal matrix sharing all non-diagonal elements with D. For notation simplicity, hereafter

we use K∗, K and Kn to represent the original kernel function, centralized kernel function

and the empirical version of centralized kernel matrix.

Some commonly used kernel functions include linear kernel K∗(x1, x2) = xT1 x2, polyno-
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mial kernel K∗(x1, x2) = (xT1 x2 + c)d, Gaussian kernel K∗(x1, x2) = exp(−‖x1 − x2‖2/ρ),

and IBS kernel (for discrete genotype data only) K∗(x1, x2) = (2p)−1∑n
j=1 IBS(x1j , x2j) =

(2p)−1∑n
j=1(2− |x1j − x2j |), where c, ρ > 0, d ∈ N are tuning parameters. For a review of

genomic similarity and more kernel functions, please refer to Schaid (2010a, 2010b).

In this chapter, we will utilize centralized kernel in the testing, as the asymptotic dis-

tribution shape of the test statistic using non-centralized kernel is fully determined by the

centralized kernel. More benefits of using centralized kernel can be found in Lindsay et al.

(2008, 2014). Furthermore, we can define the standardized kernel

K(x1, x2) = K(x1, x2)/E{K(X,X)}

from which it is easy to verify that E{K(X,X)} = 1. Next let us briefly look at the

eigen-decomposition of kernel function, which is an important way to characterize the kernel

function. Assume K(·, ·) is a kernel function defined on X×X , and µ is a probability measure

on X . Then the spectral decomposition theorems (Lemma 1 of Chapter 2, Steinwart and

Scovel, 2012) implies that the standardized kernel K(·, ·) enjoys the following representation

K(x1, x2) =
S∑

m=1

λK,mψm(x1)ψm(x2), ∀x1, x2 ∈ X ,

where the eigenfunctions {ψm(·)} form a complete orthonormal system (i.e., E{ψ2
m(X)} = 1

for any m, E{ψm(X)ψm′(X)} = 0 for m 6= m′), and λK,1 ≥ λK,2 ≥ ... ≥ λK,S > 0 are the

non-zero eigenvalues satisfying
∑S
m=1 λK,m = 1. The standardization is required because

E{K(X,X)} could diverge in the high-dimensional case, and it ensures E{K(X,X)} <∞ so

that the eigen-decomposition can be properly defined. By denoting λm = E(K(X,X))λK,m,
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we can get the pseudo eigen-decomposition of kernel function K(·, ·)

K(x1, x2) =
S∑

m=1

λmψm(x1)ψm(x2), ∀x1, x2 ∈ X ,

It should be noticed that the eigen-decomposition not only depends on the expression of the

kernel, but also implicitly depends on the space X (e.g.,dimension p).

A functional space HK , named reproducing kernel Hilbert space (RKHS), can be gen-

erated for any kernel function K(·, ·), and the form of the functions that reside in HK is

characterized by the choice of the kernel K. Here we assume that the h function in model

(4.2.1) is a member of the RKHS HK . Therefore, by specifying the kernel function, we

are assuming some relationship between the trait and the SNP-set (or gene-set). For ex-

ample, linear kernel indicates that the overall genetic effect is a linear combination of the

individual effects in the set, i.e., h(Xi) = βTXi; polynomial kernel with (c, d) = (1, 2) im-

plies a quadratic model h(Xi) = βTXi + XT
i ΛXi, where simple product interactions and

quadratic effects are modeled in addition to the linear effects. Now we can see the exciting

and changeling aspect: many choices of kernels empower the model flexibility, while the

truth in nature is largely unknown. It can be expected that the power is limited where a

kernel is incorrectly assumed, i.e., the model is mis-specified. In the following sections we

will start with the hypothesis testing using single kernel function, followed by the one using

multiple kernel functions, through which the power can be greatly boosted over the choices

of kernel functions in the candidate set.
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4.2.2 Hypothesis test based on a single kernel

Consider the following kernel-based U-statistic (KU)

Tn =
1

n(n− 1)

∑
i 6=j

K(Xi,Xj)(Yi − Ŷi)(Yj − Ŷj)/σ̂2, (4.2.4)

where Ŷi and σ̂2 are the sample estimates under the null model Yi = µ + αTWi + εi.

Specifically, let W̃n×(L+1) = [1n,Wn×L], A = W̃(W̃TW̃)−1W̃T , then Ŷ = AY and

σ̂2 = YT (I−A)Y/(n − L − 1). Define Vk =
∑∞
m=1 λ

k
m for any positive integer k. Then

the asymptotic normality of the test statistic Tn under the null hypothesis is stated in the

following theorem.

Theorem 8. Assume the density function of error ε is symmetric around 0 with E(ε4i ) =

τ4 <∞, then under the null hypothesis of no genetic effect,

σ−1
Tn
nTn

d→ N(0, 1), (4.2.5)

if the following condition is satisfied

V4/V
2
2 → 0 as p(n)→∞, (4.2.6)

where σ2
Tn

is the variance of nTn and can be estimated by the following estimator

σ̂2
Tn

=
1

n2

{
(2− 12

n2
+

6∆̂

n
)tr(B2)− (

2

n
+

∆̂

n
)tr2(B) + ∆̂tr(B ◦B)

}
,

where B = HK0
nH, H = I−A, ◦ denotes the Hadamard product (elementwise product) and
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∆̂ = n−1∑n
i=1[(Yi − Ŷi)/σ̂]4 − 3.

Given the asymptotic normality, we can then obtain the p-value for testing H0 : h(.) = 0,

i.e.,

p-value = 1−Ψ(σ−1
Tn
nTn), (4.2.7)

where Ψ(·) is the cumulative density function for a standard normal distribution. As we

can see from the theorem, asymptotic normality relies on the key condition (4.2.6). It was

mentioned earlier that this value depends on the kernel function, the dimension p of the

space where the kernel is defined, and the probability measure µ. To highlight the effect

of dimension, define πp = V4/V
2
2 . In the following, let us take a further discussion on this

condition.

Proposition 2. Consider linear kernel K∗(x1, x2) = xT1 x2, and assume a multivariate

random variable Xi = (Xi1, ..., Xip) follows some distribution with covariance matrix Σ,

i = 1, ..., n. Then πp = tr(Σ4)/tr2(Σ2).

Proposition 3. Consider the quadratic kernel K∗(x1, x2) = (xT1 x2 + 1)2, which is a special

polynomial kernel. Denote X̃i = (X2
i1, ..., X

2
ip,
√

2Xi1Xi2, · · · ,
√

2Xi(p−1)Xip,
√

2Xi1, ...,
√

2Xip)

as a J-dim random vector with covariance matrix Σ, where J = (p2 + 3p)/2. Then πp =

tr(Σ4)/tr2(Σ2).

Proposition 4. Consider the IBS kernel

K∗(x1, x2) = (2p)−1
p∑

m=1

IBS(x1m, x2m) = (2p)−1
∑
m=1

(2− |x1m − x2m|).

Denote X̃i = (Xi1, ..., Xip, 1{Xi1=1}, ..., 1{Xip=1}) as a 2p-dim random vector with covari-

ance matrix Σ. Then πp = tr(Σ4)/tr2(Σ2).
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The proofs to Proposition 2-4 are relegated to the last section. From the above propo-

sitions we can see that under the three widely-used kernels, condition (4.2.6) is equivalent

to a condition on the covariance matrix of a random vector whose length depends on p.

Besides, it is a weak condition that brings little constraint to the growth rate of p relative

to n. Moreover, if the covariance matrix is of constant order elementwisely, then it is not

difficult to see that πp is of orders p−1, p−2 and p−1 for linear kernel, quadratic kernel

and IBS kernel respectively, and πp → 0 as p → 0. For more discussion on the condition

tr(Σ4)/tr2(Σ2)→ 0, please refer to Chen et al. (2010).

Unfortunately, for most of the complex kernel functions, the explicit condition in terms

of a covariance matrix is still unknown or very difficult to derive. However, there do exist

consistent estimators for V2 and V4 that can provide us the empirical version of πp. Specif-

ically, V̂2 = (P 2
n)−1tr{(K0

n)2}, V̂4 = (P 4
n)−1tr{(K0

n)4}, π̂p = V̂4/V̂
2
2 , and P kn is the number

of k-permutations of n.

4.2.3 Hypothesis test under multiple candidate kernels

In the previous section, we proposed a test statistic based on a single kernel candidate, and we

showed its asymptotic normality under a high-dimensional setting. Since the overall optimal

kernel is always unknown, here we consider a set of M (finite) candidate kernel functions

K1(·, ·), K2(·, ·), ..., KM (·, ·) with kernel matrix Kn,1,Kn,2, ...,Kn,M . Two testing methods

are proposed under this setting. In the first one, a new kernel function is generated by taking

the simple average of the normalized kernel candidates and then applied into the single-kernel

testing procedure. The second method uses a maximum test statistic and the well-developed

results on multivariate normal distribution. Both methods are computationally efficient and

easy to implement in practice.
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4.2.3.1 Test based on kernel average

Without any prior knowledge of the nonparametric function h(·) in (4.2.1), taking the simple

average among a set of normalized kernels is a natural choice, where the normalization is

necessary for equal-metric consideration. In particularly, denote the standardized kernels

with their empirical matrix forms as

Km(·, ·) =
Km(·, ·)

E{Km(X,X)}
, Kn,m =

nKn,m

tr(Kn,m)
, m = 1, 2, ...,M

and the simple average kernel with its matrix form as

K̃(·, ·) =
1

M

M∑
m=1

Km(·, ·), K̃n =
1

M

M∑
m=1

Kn,m.

Intuitively, the performance of the test using K̃ is most likely a compromise between the

best and the worst ones. Its power will not be close to the optimal one among a candidate

set, but it is a conservative option to improve the power over the weakest choice in the set.

4.2.3.2 Maximum test among a candidate set

An alternative idea to the average kernel testing is to perform test and obtain the p-value

for individual kernels, then taking the minimum among all the p-values. Such a minimum

p-value strategy has been proposed in literature. However, the minimum p-value method

often requires computationally expensive techniques such as permutation or perturbation to

evaluate the null distribution. Here we propose a maximum statistic among all the candidate

kernels and take advantage of the derived asymptotic normality under the large dimensional

assumption. Let Tn,m and σ2
Tn,m

be the test statistic and the corresponding variance using
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the mth kernel function, and denote Qm = σ−1
Tn,m

nTn,m for m = 1, ...,M . As we can see

from (4.2.7), the p-value is fully determined by Qm, hence minimizing p-values is essentially

equivalent to maximizing Qm. Therefore, we focus on the maximum statistic

Qmax = max
1≤m≤M

Qm.

Let ρkl,n = cov(Qk, Ql) and ρkl,n → ρ0
kl as n → ∞, k, l = 1, ...,M . The following theorem

states the the asymptotic distribution of the maximum statistic Qmax.

Theorem 9. Assume condition (4.2.6) is satisfied for each candidate kernel Km, then

Qmax
d→ max

1≤m≤M
Zm,

where Z = (Z1, Z2, ..., ZM )T follows a multivariate normal distribution with mean 0M and

covariance matrix Ω0 = (ρ0
kl).

Based on Theorem 9, the p-value of maximum test is given by

P(Qmax > qmax) = 1− P(Qmax ≤ qmax) = [1− P (Z ≤ qmax1M )] {1 + o(1)},

where the leading order term can be efficiently and accurately calculated in many popular

platforms (e.g., mvnorm package in R). Although the true covariance matrix Ω0 is unknown,

it can be approximately substituted by its consistent estimator Ω̂n = (ρ̂kl,n), where

ρ̂kl,n =
1

n2

{
(2− 12

n2
+

6∆̂

n
)tr(B̃kB̃l)− (

2

n
+

∆̂

n
)tr(B̃k)tr(B̃l) + ∆̂tr(B̃k ◦ B̃l)

}
,

where B̃m = HK0
n,mH/σ̂Tn,m , i = 1, ...,M . This maximum statistic strategy enjoys several
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merits. Firstly, the nature of maximum strategy tends to detect the most significant signal

among all the kernels in the set. Moreover, the asymptotic normality results obtained under

high-dimensional setting greatly reduce our computational burden, and protects the size

from being inflated or over-conservative. It should be noted that the maximum method is

designed for high-dimensional case only. Under the low-dimensional case, the distribution of

Qmax can be approximately viewed as the maximum among M correlated chi-square random

variables, whose asymptotic behaviors are still unclear to us, and we need to seek for Monte

Carlo techniques like perturbation method to evaluate its significance.

4.3 Applications to real data

In this section, we illustrate our methods via the analysis of a Thai baby birth weight

data to investigate the significant pathways that are associated with the birth weight. As

part of Hyperglycemia and Adverse Pregnacy Outcome (HAPO) study, this data collect

genotype and phenotype information for 1209 Thai infants and their mothers. For more de-

tails about the HAPO study, see http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id=phs000096.v4.p1&phv=163690&phd=2831&pha=&pht=2446&phvf=&phdf=

&phaf=&phtf=&dssp=1&consent=&temp=1. In the data cleaning step, infants with large pro-

portion of missing SNPs (> 10%) were removed, and SNPs with minor allele frequency

(MAF) less than 0.05 or showing deviation from Hardy-Weinberg equilibrium (p-value<

0.001) were also excluded. The final data set contains 970,342 SNPs in 1189 infants (580

males, 509 females). The pathways were defined by Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Kanehisa and Goto, 2000). SNPs that are within 5kb up- and down-

stream of a gene were firstly assigned to the corresponding gene based on Human Genome
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Build v38, and then grouped into 186 SNP-sets using the KEGG pathway information re-

trieved from the Molecular Signature Database (MSigDB) (Subramanian et al., 2005). The

length of the SNP-sets ranges from 167 to 9912, where > 86% of the gene sets are of dimen-

sion higher than 500.

We test each pathway (SNP-set) for the association with birth weight, adapting gender

(1=male, 2=female) and baby’s gestational age at delivery (in weeks) as two covariates.

Since we have little knowledge about the underlying true model, we applied three different

kernels in the test, including IBS kernel, linear kernel and polynomial kernel (c = 1, d = 2).

In addition, we also applied simple average kernel test, perturbation method and maximum

statistic method, with the three kernels as candidates. The false discovery rate was controlled

using q-value (Storey and Tibshirani, 2003) significance levels (0.05, 0.1). Table 4.1 sum-

marizes the significant KEGG pathway indexes using different methods. The corresponding

p-values and information of the significant pathways are reported in Table 4.2.

Table 4.1 shows that the perturbation method (Wu et al. 2010) failed to detect any

signal, which was probably due to the over-conservative behavior under the high-dimensional

setting. Among the seven distinct pathways detected by the three kernels at q-level 0.1, the

maximum test was able to capture five (71.4%) of them, while individual kernel and simple

average kernel identified four (57.1%) and three (42.9%) of them, respectively. At q-level

0.05, the observations were quite similar. Pooling the significant pathways resulted a union

of four, where the maximum test detected three (75%) of them, and the best kernel and

simple average kernel identified three (75%) and one (25%) of them, respectively. From

Table 4.2, we can obtain the impression that the p-value order of maximum test is generally

close to the smallest p-value among the three kernels, which implies that the maximum test

tends to improve the power over the weak choices of kernel.
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Table 4.1 Significant KEGG pathway indexes using different methods.

q-level IBS Linear Poly SimAv Perturb Max

0.10 36,44,101,169 36,80,123,169 36,48,80,169 36,80,169 NA 36,44,80,101,169
0.05 101,169 36,80,169 36,169 169 NA 36,101,169

Table 4.2 List of significant KEGG pathways and the p-values using the corresponding kernel
functions.

idx # of SNPs Name∗ IBS Linear Poly SimAv Max

169 485 KTC 1.93E-05 1.42E-07 1.32E-08 1.95E-07 1.32E-08
101 914 KP 1.71E-04 2.27E-02 2.38E-02 5.50E-03 2.84E-04
36 785 KGBCS 3.13E-03 8.14E-04 5.25E-04 9.76E-04 8.54E-04
80 914 KPSP 1.16E-02 1.06E-03 1.53E-03 2.20E-03 1.77E-03
44 1052 KAAM 1.38E-03 8.06E-02 8.28E-02 2.68E-02 2.32E-03
48 419 KGBLANS 3.55E-02 5.18E-03 3.19E-03 7.56E-03 5.41E-03
123 555 KNLRSP 1.32E-02 3.78E-03 7.43E-03 6.02E-03 5.99E-03

∗KTC: KEGG thyroid cancer; KP: KEGG peroxisome; KGBCS: KEGG glycosaminoglycan biosynthesis
chondroitin sulfate; KPSP: KEGG ppar signaling pathway; KAAM: KEGG arachidonic acid metabolism;
KGBLANS: KEGG glycosphingolipid biosynthesis lacto and neolacto series; KNLRSP: KEGG nod like
receptor signaling pathway.

4.4 Simulation studies

Extensive simulation studies were conducted to evaluate the type I error rate and the empir-

ical power of the proposed methods. The continuous trait are simulated from the following

model

Yi = 0.03Wi1 + 0.5Wi2 + h(Xi) + εi, i = 1, ..., n,

where εi are independent and identically distributed random errors generated from N(0, 1)

distribution, Wi1 ∼ N(2, 1) and Wi2 ∼ Ber(0.6) are independent covariates, and Xi is p-dim

continuous or discrete vectors representing the genotypes of the SNP-set or the expression

profile of the gene-set, i = 1, ..., n. To evaluate the type I error, we generate data sets un-

der the null hypothesis of no genetic association (i.e., h(·) = 0), and record the proportion
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that (incorrectly) reject the null hypothesis. To assess the power, we generate data sets by

specifying the h function, and record the proportion that (correctly) reject the null hypoth-

esis. For both power and type I error evaluations, we generate 1000 data sets, and set the

significance level as 0.05. In the following two sections, we will assess the performance of the

proposed methods under the continuous and discrete variant settings separately.

4.4.1 Continuous variants

Under the continuous variants setting, we simulate Xi = (Xi1, ..., Xip) from a multivariate

normal distribution with mean 0p and covariance matrix Γ = (0.6|j−k|), where p = 100

and i = 1, ..., n. We allow the sample size to vary as n = 500, 1000, 2000. The candidate

set consists of three commonly used kernels, including linear kernel, polynomial kernel (c =

1, d = 2) and Gaussian kernel K∗(x1, x2) = exp(−‖x1 − x2‖2/p). Besides, simple average

kernel method, perturbation method and maximum method were also applied. Table 4.3

reports the type I error rates of tests with varying sample size. We can see that under this

setting type I error was not well-protected using the perturbation method, and others are

reasonably controlled (close to the nominal level 0.05). This finding implies that perturbation

method is over-conservative under the high-dimensional setup, while our methods can control

the size.

Table 4.3 Empirical type I error rates of testing with single kernel or multiple kernels under
continuous variants setting

n Gaussian Linear Poly SimAv Perturb Max

500 0.055 0.051 0.063 0.051 0.012 0.058
1000 0.055 0.055 0.056 0.053 0.015 0.058
2000 0.052 0.051 0.046 0.051 0.021 0.047
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For the power evaluation, we considered four different scenarios and under each scenario

h function was set differently as follows:

A : h(x) = 0.4x1x3,

B : h(x) = 0.1x1 + 0.1x3 + 0.4x1x3

C : h(x) = 0.1(x1 − x3) + 0.8 cos(x3) exp(−x2
3/5),

D : h(x) =
S∑
k=1

{
(−0.01)kxk + 2 exp(−x2

k/100)H2(xk/100)
}

+ 0.01{x1x3 + cosx2
3},

where Hk(·) is the kth order Hermite polynomial and S = 30. For each scenario, 1000

data sets were simulated to estimate the empirical power. Figure 4.1 shows the empirical

power under different scenarios. We can see that different kernels result in different powers,

depending on the underlying trait architecture. Simple average kernel gives intermediate

power among the candidate kernels, and the power of maximum test under each scenario

was generally close to the optimal kernel. For example, under scenario A polynomial kernel

was the best kernel in the sense of having highest power among the three candidate kernels,

and the other two kernels experienced considerable power loss relative to the polynomial

kernel. Particularly, the relative power loss for Gaussian and linear kernels were (67%, 71%),

(80%, 85%), (87%, 93%) at sample size of 500, 1000 and 2000 respectively, while correspond-

ingly the relative power loss for the simple average kernel, maximum test and perturbation

methods were (66%, 24%, 90%), (80%, 25%, 95%), (87%, 11%, 60%). Thus, the maximum

test suffered the least power loss when compared to the one with the highest power (the

polynomial kernel in this case). This trends were quite similar in other scenarios. Therefore,

the maximum test was demonstrated as a good solution in practice to maintain proper power

over the weak choices of kernels, under the high-dimensional setting.
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Figure 4.1 Empirical testing power with single kernel and multiple kernels with continuous
variants.
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4.4.2 Discrete variants

For the discrete variants setting, we generated genotypes based on 378 HAPMAP SNPs

located within the KEGG thyroid cancer pathway, which is detected as a significant pathway

associated with birth weight in our real data analysis part, using the HAPGEN software

(Marchini et al. 2007). Then we simulate the quantitative traits for n = 1000, 2000, under

scenarios E, F, and G. Under scenario E, we let the h(·) function take the form of

h(x) = 0.2(x1 − x4) + cos(x4) exp(−x2
4/5)

where the first and fourth SNPs in the set are causal with a nonlinear interaction effect,

in addition to the main effects of different directions. To mimic the scenarios where large

number of causal SNPs contributes to the trait variation, we consider the following model,

h(x) = aM
∑
k∈SM

βkxk + aI
∑

(k,k′)∈SI

αkk′xkxk′ ,

where SM is a pre-defined set of 30 causal SNPs with main effects, SI consists of 60 SNP-

pairs representing 60 simple interactions. Both {βk, k ∈ SM} and {αkk′ , (k, k
′) ∈ SI} are

independently generated from Uniform(0,0.02), and are fixed once generated for all simula-

tion replicates. We set the coefficients (aM , aI) = (0.01, 1.5) under scenario F, indicating

the combination of (weak) main effects and (relatively strong) interaction effects. We let

(aM , aI) = (3.5, 0) under scenario G, which implies a pure main-effect model.

In addition to linear and polynomial kernels, we add the IBS kernel to the candidate set,

since it is commonly used to measure the SNPs similarity between two subjects. Similar to

the previous section, the simple average method, perturbation method and maximum method
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Table 4.4 Empirical type I error rates of testing with single kernel and multiple kernels under
the discrete variants setting

n IBS Linear Poly SimAv Perturb Max

1000 0.052 0.050 0.047 0.050 0.037 0.054
2000 0.053 0.045 0.046 0.043 0.038 0.050

were all applied. Table 4.4 displays the type I error rates of tests under different sample sizes.

Similar as what we observed under the continuous variants setting, the perturbation method

tends to be conservative under the discrete setting, while the average and the maximum

methods maintain reasonable nominal level (α = 0.05). The power simulation results are

shown in Table 4.5, where the best and second best powers among all the tests are shown

with the underline and bold font, respectively. Again, we observed the power difference of

applying different kernels. Among the different methods, the perturbation method has the

smallest power which might be due to the issue of high-dimensionality. The perturbation

method cannot handle the high-dimensional case well. The maximum test has the second

highest power. All the powers were improved as sample size increases from 1000 to 2000.

Table 4.5 Empirical power of testing with single kernel and multiple kernels under the discrete
variants setting∗

n Scenario IBS Linear Poly SimAv Perturb Max

1000 E 0.526 0.457 0.429 0.480 0.388 0.488
F 0.397 0.412 0.475 0.428 0.383 0.452
G 0.390 0.423 0.444 0.422 0.356 0.431

2000 E 0.967 0.932 0.913 0.954 0.927 0.961
F 0.738 0.753 0.813 0.781 0.745 0.796
G 0.769 0.790 0.808 0.798 0.748 0.799

∗ The best power cross all the tests is underlined, and the second best is shown with bold font.

In summary, the simulation results indicate that it is generally safe to apply the maximum

test strategy given a set of candidate kernels. The maximum test can control the type I
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error well, while it also maintains relatively high power compared to the best one. Without

knowing the underlying truth, one can apply the maximum test in practice.

4.5 Discussions

In this chapter, we developed testing procedures to test relationship between multiple vari-

ants in a gene set and a quantitative trait, while adjusting for other covariates’ effects. We

considered a general setting where the variants work coordinately in a non-linear way, and

the dimension of the variants p is high in the sense that p can go to infinity as sample size

n goes to infinity. We first proposed a test statistic based on a single kernel function, and

derived its asymptotic distribution under the null hypothesis. Based on this, we proposed

two practical and efficient testing strategies to when multiple candidate kernels are avail-

able. We demonstrated, via extensive simulation studies and real data analysis, that under

a high-dimensional setting both the simple average method and the maximum method can

reasonably control the false positive rate while they can also substantially improve the power

over weaker choices of kernels. In particular, the maximum method performs as good as the

optimal one given a set of candidate kernels. Compared to the perturbation method (Wu et

al., 2013) based on the kernel machine framework, the maximum method outperformed it

uniformly in various simulation settings.

Our methods enjoy several advantages as described below. The first advantage lies on

the ability to accommodate high-dimensional variants and to maintain reasonable type I

error rate, even if the utilized kernel functions do not reflect the underlying relationship

between the variants and the trait. Another advantage is the flexibility, which is revealed

in two aspects. On one hand, we consider a general model which can potentially capture

90



any complex interaction mechanism and is different from many models restricted to linear

relation and/or linear interactions. On the other hand, when there are a range of kernels that

can be selected to form the candidate set, the proposed maximum kernel testing strategy is

shown to maintain improved power over the poor choices of kernels in the set, without the

prior knowledge of the genetic system. Thirdly, our method is easy to implement and is free

of computational burden, by applying the asymptotic result of the test statistic. This feature

can greatly facility the applications in pathway (or gene-set) associations studies where the

variants (SNPs or gene expression profiles) are typically in high dimensions. However, it

should be noted that our method relies on the asymptotic results where the dimension of p

is large. In low dimensional cases, the perturbation method by Wu et al. (2010) works well.

In our proposed methods, we only consider continuous responses. Therefore, it is one

of our major interests to study the test procedures under a dichotomous response. Besides,

our current methods were developed without prior knowledge. However, the kernel function

actually allows for the inclusion of known information, such as the minor allele frequencies

or association signals from an independent study. For example, weighted linear, quadratic,

or IBS kernels can be constructed by assigning weights to variables individually. Thus,

extension to weighted kernel is another direction that needs further investigation.

4.6 Proofs

Proof of Proposition 2: By the definition of centralized kernel in (4.2.3), we can obtain the

centralized linear kernel as K(x1, x2) = (x1−µ)T (x2−µ), where µ = (µ1, µ2, ..., µp)
T is the

mean of random vectors Xi, i = 1, ..., n. Assume the covariance matrix has decomposition

Σ = QTΛQ with Λ being the diagonal matrix. Let X̃i = Λ−1/2QT (Xi − µ), where it
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is obvious to see E(X̃i) = 0 and Var(X̃i) = I, for i = 1, ..., n. Noting that the centralized

kernel can be written as

K(x1, x2) = X̃T
1 ΛX̃2 =

p∑
m=1

ΛmmX̃1mX̃2m.

we can obtain our claim by letting λm = Λmm and φm(x1) = X̃1m, m = 1, ..., p.

Proof of Proposition 3: Let us firstly derive the closed form of the centralized kernel

function for the quadratic kernel K∗(x1, x2) = (xT1 x2 + 1)2. Decompose the kernel K∗ into

the sum of three parts

K∗(x1, x2) = (xT1 x2)2 + 2xT1 x2 + 1. (4.6.1)

In the following we will study each part separately, because the centralized function of the

K∗ essentially is the sum of the individual centralized functions. For the constant 1 part, the

corresponding centralized version is 0. Since we have studied the centralized version of inner

product xT1 x2 in Proposition 2, it remains to investigate the first term (xT1 x2)2. Obviously,

we have

E(xT1 X2)2 = xT1 Rx1,

E(XT
1 X2)2 = E{XT

1 RX1} = tr(RΣ0) + µTRµ,

where R = (Rij) = Σ0 +µµT is a constant matrix, and µ, Σ0 are the mean and covariance

92



matrix of Xi respectively, i = 1, ..., n. Thus the centralized version of (xT1 x2)2 is

(xT1 x2)2 − xT1 Rx1 − xT2 Rx2 + tr(RΣ0) + µTRµ

=

p∑
i,j=1

(x1ix1j −Rij)(x2ix2j −Rij)

=

p∑
i=1

(x2
1i −Rii)(x

2
2i −Rii) +

∑
i<j

(
√

2x1ix1j −
√

2Rij)(
√

2x2ix2j −
√

2Rij).

Combing the centralized expansions for the three terms in (4.6.1), we can rewrite

K(x1, x2) =

p∑
i=1

(x2
1i −Rii)(x

2
2i −Rii) +

∑
i<j

(
√

2x1ix1j −
√

2Rij)(
√

2x2ix2j −
√

2Rij)

+

p∑
i=1

(
√

2x1i −
√

2µi)(
√

2x2i −
√

2µi).

Assume S-dim random vectors

X̃i = (X2
i1, ..., X

2
ip,
√

2Xi1Xi2, ...,
√

2Xi(p−1)Xip,
√

2Xi1, ...,
√

2Xip), i = 1, ..., n

follow some distribution with covariance matrix Σ = QTΛQ, then we can achieve our

conclusion, i.e., πp = tr(Σ4)/tr2(Σ2), by performing the similar orthogonal transformations

we proposed in the proof of Proposition 2.

Proof of Proposition 4: IBS kernel, taking the form of

K∗(x1, x2) =
1

2p

∑
m=1

(2− |x1m − x2m|)

is defied based on the total number of alleles shared identical by state (IBS) by two subjects

at the SNPs within a SNP-set. Noticing Xim ∈ {0, 1, 2}(1 ≤ i ≤ n, 1 ≤ m ≤ p), it is not
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difficult to verify that K∗ has an alternative form of

K∗(x1, x2) =
1

2p

p∑
m=1

1

2
(x1m − 2)(x2m − 2) +

1

2
x1mx2m + 1{x1m=1}1{x2m=1},

hence the centralized kernel has the following expansion

K(x1, x2) =
1

2p

p∑
m=1

(x1m − 2qm)(x2m − 2qm) +
[
1{x1m=1} − θm

] [
1{x2m=1} − θm

]
,

where qm is the minor allele frequency of the mth SNP, and θm = P(xim = 1) = 2qm(1−qm).

Using the similar arguments as the proofs of Proposition 2, we can obtain the result.

Proof of Theorem 9: Assume condition (4.2.6) is satisfied for each candidate kernel Km,

then

Qm
d→ Zm, m = 1, ...,M.

By using Cramèr-Wold device, (Q1, ..., QM )T
d→ Z. Then the conclusion can be immediately

obtained through the continuous mapping theorem.
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Chapter 5

Conclusions and future directions

“High-dimension” is one of the new characteristics of high-throughout data. A common

feature of high-dimensional data is that the number of features could be much larger than

the sample size, the so-called “large p, small n” problem. A specific example in genomic

studies is encountered when detecting the significant genes/gene sets that are associated

with certain trait, where the number of genetic variants within a gene or gene set could

range from a few to a few thousand or even larger, but the sample size is often limited.

Such a setup fails most existing methods which are developed for a fixed dimensional case,

or do not consider effect of data dimension on the test statistic. To model the systematic

mechanism and potential complex interaction among the genetic variants, we proposed to

model the gene set effect via a flexible non-parametric regression function under a “large p,

small n” setup.

In Chapter 2, we proposed a nonparametric U-statistic for testing the high-dimensional

non-parametric function in a reproducing kernel Hilbert space generated by a positive definite

or semi-definite kernel. We derived the asymptotic distributions of the test statistic under

the null hypothesis and a sequence of local alternatives under a “large p, small n” setting

without assuming specific error distribution. We derived the explicit power function of

the test based on which we can empirically select optimal kernel function that provides a

solution to a long-standing question in literature about optimal kernel selection. To further

improve the testing power while maintaining appropriate testing size, a kernel regularization
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technique was proposed. Unlike the BIC criterion proposed for kernel selection in kernel

machine testing procedure, our approach is tailored to a hypothesis-testing problem and

particularly designed for improving the power of the proposed test. Both simulation and

real data analysis demonstrate the power of our method. In addition to strong practical

motivation, our method contributes to the theory and methodology of kernel-based testing

of nonparametric functions, especially under the “large p, small n” set up.

Chapter 3 considers the optimality of test procedure we proposed in the previous chapter,

from the minimax point of view. Especially, we discuss the optimal test under the high-

dimensional linear model (corresponds to the linear kernel), where the p-dim variables are

correlated and the dimension p can go to infinity as n goes to infinity. Without the sparsity

assumption that only a small proportion (goes to zero as sample size goes to infinity) of the

variants contribute to the phenotype or the independent variants assumption presented in

existing literature, we consider a structure-free scenario. We firstly establish the boundary

that separates the detectable region and non-detectable region. Then the test statistic using

linear kernel is introduced and shown to be rate-optimal under certain conditions on the

increasing speed of dimensional p and the decay speed of eigenvalues of the covariance matrix.

We start Chapter 4 by upgrading the kernel-based test proposed in Chapter 2 to a general

version that allows the adjustment of covariants, under the high-dimensional setting. Then

we provide the asymptotic distribution of the general test statistic under the null hypothesis.

Motivated by the testing problem using multiple kernel candidates, we develop two practical

and efficient testing procedures: simple average method and maximum method. Unlike

other computational-intensive approaches using Monte Carlo p-value to evaluate significance,

both strategies are purely based on the asymptotic results and easy to implement. In the

application to Thai baby birth weight data, we demonstrated that both strategies lead
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to the detection of more signals than testing using the poor choice of kernel, as well as

more findings than the perturbation method (Wu et al., 2013) that is proposed under the

kernel machine framework. We further confirm the merits of our strategies through the

comprehensive simulation studies under continuous or discrete variants settings, where the

maximum method further displays its competitive performance in the sense that only a small

difference in power versus using the best candidate kernel.

In this dissertation, we focus on continuous traits. However, many traits of interest in

practice are qualitative. For example, the traits in case-control studies might be the disease

status for individuals. Therefore, extension to dichotomous traits is an important direction

of our future research.

As observed empirically in our simulation studies in Chapter 2, the high-dimensional

non-parametric test intuitively suffers from power loss when lots of “noise” variables are

included under a sparse alternative. Therefore, it is natural to consider removing those noise

variables to enhance the power, where the challenge remaining is how to perform the test

and to eliminate the noises at the same time. The exploration of simultaneously testing and

removing the influence of noise variants can be an area of potential future research.

Another direction of my interest is to introduce the kernel-based testing into gene-

environment interaction context. It has been increasingly recognized that many complex

disease are not triggered by genetic factor only, but rather through interaction between ge-

netic and environmental factor. However, most of current methods on gene-environment

interaction are not applicable under high-dimensional setting.
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