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ABSTRACT

THEORY AND APPLICATIONS OF SENSITIVITY ANALYSIS
TO ENZYME KINETICS

By

Thomas Henry Pierce III

The theory of Sensitivity Analysis and its applications
to Enzyme Kinetics are examined. The Walsh Sensitivity
Analysis Procedure, WASP, is developed and shown to be a
powerful probe of the theory of Sensitivity Analysis as well
as the preferred method for discrete models. The Fourier
Analysis Sensitivity Test, FAST, method is reviewed and
shown to be the preferred method of Sensitivity Analysis for
continuous models. The linear Taylor series approach té
Sensitivity Analysis is given as an aid in interpreting

Sensitivity Analysis results.

The theory of Walsh function Sensitivity Analysis is
derived and its advantages are investigated. The Walsh
technique is shown to be an exact technique for discrete
model output functions. For continuous model output
functions the Walsh method yields an averaged finite
difference Taylor series with respect to the parameters.
Walsh Analysis and 2-point discrete Fourier Analysis are

shown to be identical. Since Walsh Analysis is easily



Thomas Henry Pierce III

related to both the Fourier method and to the linear Taylor
series method, it is a valuable tool for further development

of Sensitivity Analysis.

The applications of the mass action laws of chemical
kinetics are used to develop models which are analyzed with
respect to thgir parameters. Enzyme Kinetics models for
hysteresis and allosterism are investigated by the
techniques of Sensitivity Analysis. The mechanism of
hysteresis in the Frieden Model and the Ainslie model is
clearly shown to be an effect of the rates of isomerization
of the inactive enzyme-substrate complex to the active
enzyme-substrate complex. The Ainslie model is dynamically
equivalent to the simpler Frieden model for a large set of
rate constants. The Frieden model also displays apparent
allosterism if the "correct" set of rate constants and
initial condititons are used. Therefore the Frieden model
is the simplest one-site enzyme kinetic model which displays
both burst and lag hysteresis as well as both positive and

negative cooperativity (allosterism).

Fourier Sensitivity Analysis was applied to a pH
Tryptophanase model where the parameters and their
variations were obtained from experimental data. This type
of analysis gave insight to the design of future
experiments. Over the experimehtally accessible range of

pH, the lower pH region is shown to contain the most
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information on the parameters which can be examined in

future experiments.

A computer program is given which is used for routine
application of Sensitivity Analysis, both Fourier and Walsh,
t0 other models. This program has been extensively revised
to clarify its logic and to simplify its use. Any
mathematical model which can be simulated on a computer may

be directly inserted into this program.

Suggestions for future work are discussed. Research in
the connections between Statistics and Sensitivity Analysis
should lead to insight into both areas. The investigation
of "approximate" Walsh Sensitivity Analysis may lead to

faster algorithms for Sensitivity Analysis.
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I. SENSITIVITY ANALYSIS - AN OVERVIEW
INTRODUCTION

Mathematical models have exerted tremendous influ-
ence in scienée. Many people have commented on the "seem-
ingly exact" way that mathematical equations model nature
(Benacerraf, et al. 1964). It is this ability to 'describe'
physical processes that makes mathematics so useful in
sclence.

Mathematical models are composed of four parts; inde-
pendent variables through which the model evolves, dependent
variables which change as a function of the independent
variables, parameters which are constant durlng a simula-
tion but may change from one simulation to another, and
constants which never change, such as the velocity of light
in a vacuum.

Once a mathematical model 1is proposed, if 1t is 'cor-
rect', we can use it to predict the future behavior of a
physical system. It may be used to explain previous be-
havior of the physical system. To do this many models
require the 'adjustment' of parameters. It 1s this ability
of these parameters to describe different physical systems

by changing their values which glves great generality to



mathematical models and causes confusion as to whether
or not the model is 'right'. O0ften two or more models
give the correct results using only different parameters.
Mathematical models .depend on theilr parameters.

Sensitivity analysis describes precisely how the mathe-
.matical model depends on its parameters. An intultive
sensitivity analysis method would be to vary a parameter
over two valués and observe how the model changes. If a
particular value of the model output increases as the
parameter increases, we say that the output 1is positively
affected. This can be generalized by asking for the quanti-
tative sensitivity of a particular output function to a
parameter. The most popular method 1is to take the deriva-
tive of the output function with respect to the parameter

'p', evaluated at a nominal value Dy-

=~ G (1.1)

Many models have more than one parameter. A collection
of the derivatives with respect to the parameters permits
observations to be made about the model. For example, we
can order the parameters according to their significance.
The most significant parameter 1s the one whichhas the
largest effect on the value of the model output function.
This leads to an ordering of the parameters with respect

to thelr effect on the model, from most significant to




least significant.

Often models have parameters with at least one in-

dependent variable. An example 1s the temperature de-

pendence of a rate constant:

~E,/RT
k = Ae (1.2)

Here A and Ea'are parameters, R is a constant, and tempera-

£ ure, T, 1s the independent variable. The model output

f~unction 1s the rate constant k, the dependent variable.
Iy such cases the sensitivity of the output function

depends not only on the parameters but also on the inde-

Pendent varigble. The model output function 1s the rate

c onstant k, the dependent variable. In such cases the

Sensitivity of the output function depends not only on the

Darameters but also on the independent variable. When

measurements are repeated at different values of the in-
dAependent variable, sequences of parameter sensitivity
Values can be collected over a temperature range of Iinterest.

A sequence of parameter sensitivity values may also

&l1lve other useful information. From 1t we may be able to

1dentify regions of sensitivity. Using the previous ex-
ample, there may be temperature ranges where the sensi-

tiwvity ordering of parameters changes. In one region the

Parameter 'A' may be the most important, while in a dif-

ferent region the parameter 'Ea' may be the most important.



Therefore, to measure 'A', we should measure it in the
first region where the model is most sensitive to 'A'.
For a more complex model 1t may happen that in the
reglon of interest the model has no significant sensi-
£ 1vity to one or more of the parameters. In this case
4+ he model may be reduced to a simpler model by formally
£~ dxing the value of insensitive parameter to zero (or
o ne): For exémple, it may be possible to remove the step
c orresponding to the parameter in question from a mechanism.
Application of sensitivity analysils can also help to
v aalidate a model. Knowing the rank-order of the parameters'
s ensitivities and the region of maximum sensitivity permits
T he design of experiments to probe the test model over
t hese regions. A fit of the model to the new data, gives
ffurther evidence that the model is correct.

As described above, sensitivity analysis can lead to
better understanding of the model. Since many models are
Complex an intultive understanding of model behavior may
be difficult to obtain. It is useful to have quantita-
€ 1ve mathematical tocls which help to crack a complex model
Into separate parts, which can then be independently ana-
1y zed and understood.

Classical linear sensitivity analysis is a useful
Fi1rst approach which 1s straightforward. One examines the
Change in the model output function caused by a unit

change in a parameter, g—g (Beck 1977). However, this



method 1s only rigorously correct for linear models; those
models whose output functions are linear in their param-
eters, since the first derivative 1s the only variable
effect attributable to a parameter.
With nonlinear models, higher order effects may be
-1 mportant. The presence of higher order terms can be
~w erified by generalizing classical senéitivity analysis

+ o a Taylor séries with respect to the varameters.

£ (pysPp5-+-Py)

]
]
—~
fo
~—
+
s
~
[+ %4
o]
N~
>
o]
e

+ .. . (1.3)

In linear models higher derivatives, f", f''', etc,
Qre zero so that changes caused by parameters are weighted
Only by f' evaluated at the nominal value, P=p,- For non-
1l inear models, the first derivative approximation is good
1f all higher derivatives are small or if the region of
Variation 1s so small that (Ap)2 0.

Both of these conditions are very restrictive. We



would like to vary a parameter over 1its entire valid range,
which 1s often many orders of magnitude. In some cases
higher derivatives are as large or larger than first deri-
vatives. With these problems in mind the idea of alternate
xrepresentations of the model output function in terms of
the parameters 1s a natural step.
In 1973 Cukler et al. dérived a technique which repre-
s ents the modél function in terms of a Fourier series.
T"hey related the sensitivity of each parameter to a separate
F ourier coefficient. Since any expansion of a well-
b ehaved function is 1dentical to another expansion which
Ihas been rearranged, it can be seen (Appendix 1) that
€ hese Fourler coefficients are functions of all the higher
d erivatives of the model function with respect to the
P arameters. This 1s the ideal relationship required for
nonlinear functions. It allows sensitivity measures where
T he parameters are varied over orders of magnitude with
Nno restrictions on the model output function.
The implementation of the Fourier method on a com-
Puter requires approximations as explained in Chapter
Two. The approximations limit the method through an ac-
Cumulation of approximation error. However the sources
Of the error have been described by Cukier et al. (1975).
These errors are controllable and they can be bounded by
Q& maximum error estimate.

Other expansions are possible and in Chapter Three we



will investigate Walsh series expansions (Walsh 1923,
Fine 1949). It will be shown that for a discrete model
we incur no errors in analyzing the sensitlvity of a
model. However for continuous models it will be shown
that a Walsh sensitivity expansion 1s 1dentical to a
f inlte-difference Taylor series..

In Chapter Four the three approaches are compared,
=2 nd we can seé that they give similar results when the
p arameter varlation approaches zero. In the case of a
g1 obal analysis of a strongly nonlinear model only
t hhe Fouriler method gives the correct results for the
s ensitivities.

In Chapter Five we apply the Fourier technique to
SoOme steady-state enzyme kinetics models. Here we show
That two apparently different models are dynamically id-
entical over a rather extensive range of parameter varia-
€ion. Also the sensitivity analysis of progress curves
S hows that some parameters may 'accumulate' sensitivity
1n time. At short times they are relatively insensitive,
but as the reaction proceeds they become the most important
DParameters in the model.

In Chapter Six we apply the Fouriler technique to a
T"ecently-studied transient-state enzyme model (June et al.
1979, 1980).

The future work and development of sensitivity analysis

techniques is discussed in Chapter Seven. It is suggested



that the study of approximate Walsh‘sensitivity analysis
and the frequency sets used in approximate analysis will
extend both methods. Also the relationship of sensitivity
analysis and statistics 1s discussed. It is our belief
that these questions will direct research into fruitful
areas which willl advance the usefulness of sensitivity
Zanalysis techniques with extremely complex models.
Appendix,é contains the various programs and their
o peration instructions for the application of both Fourler
and Walsh Sensitivity Analysis. The programs are model

1 ndependent so that any type of numerical model may be

used. It is my hope that sufficlent theory and examples

axe given here to encourage others to use these powerful

€ echniques.






IT. FOURIER SENSITIVITY ANALYSIS

In this chapter we will discuss the Fourier method

of sensitivity analysis. OnlyAan overview of the theory

wlll be given as this technique was extensively reviewed
by Cukler gg.él. (1978). Here we will examine the details

o f the implementation and review the approximations and

1 Amitations of this method. The particular model chosen

A nr thils implementation 1s derived from the laws of mass

a ctlon kinetics.
Chemical rate equations as derived from postulated

mechanisms can be described by sets of first order in time,

C oupled ordinary differential equations of the form,

dcC
ti = F,(C,t,k) (2.1)
1 =1,2,3,¢..5m
with prescribed initial conditions,
9 (2.2)

Ci(t=0) = C1

In Equation (2.1) Ci(t) 1s the concentration of the

1th species at time t, C = (C(1),C(2),...,C(m)), is a
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vector of all the species concentrations and k = (k(1),
k(2),...,k(n)) is a vector of all the rate constants
(parameters). The function Fi symbolizes the rate law
for the species 1. We shall assume that these rate equa-
tions can be solved for C(t), given the initial conditions,
the values of the rate constants, and the specific func-
tional form of the rate laws. If thls cannot be done
analytically, it can almost always be done numerically.
We require the sensitivities of the concentration
Ci(t) to uncertainties in the values of kz, the rate co-
efficients. The uncertainties in the rate coefficients
are, in this method, represented statistically. That 1is,
we assign a probability density, Py (kz)dkﬁ as the prob-
abillity that the 2'th rate coefficient lies between kQ
anda kl + dkl' These probability densities reflect our
knowledge of the possible values of the rate coefficients
I1n a given elementary chemical reaction. If one has ac-
CuUuxrate data, then the probability density can be chosen
T o vpe narrow to reflect this information. However, if
da ta are sparse or not reliable, the uncertailnty can be
S hiosen as large as desired.

The joint distribution function may then be written

[}
n=as

P (k) p, (k) (2.3)

1
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as we require the rate constants' probability distributions

to be linearly independent, but not necessarily identically

distributed. Once the joint distribution is known we may
~-construct moments of the multidimensional function by multi-

dimensional integration. The first moment, the average

value, 1s written

<C(k)> = / dk C(k)P(k) (2.4)

where dk = dkldkz...dkn is the multidimensional volume
element 1n the rate coefficient space. In the present
example <C(k)> represents the average concentration of a
1 ven specles as calculated from the rate laws and the
rate constants, where the rate constants are varied over
t heilr entire set of possible values.

Similarly we may construct multidimensional variances

O f the function, by calculating
(0%) = <Cy (k)% = <C,(k)>2 (2.5)

T his would represent the expected spread of concentraticns
O wer values accessible to specles 1 because of uncertainties
I n the rate constants. Similarly partial variances, the

V' ariance along only one parameter dimension, say the first
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parameter can be computed as
2 _ * 2 * 2
(Gl)i = <(Ci(kl)) > - <Ci(kl)> (2-6)

where CI(kl) is the function averaged over k = (k2...kn)

and the integration 1s over kl' This gives the spread

of concentrations caused by uncertainties in kl. This

idea may be eitended to coupled partial variances, variances
over more than one parameter at a time.

These variances would be very informative. We would
be able to characterize the extent that the model de-
pended on the parameters. This also would tell us which
parameters were most important (those whose variances
were largest). If a parameter's variance were small then
the effect of a parameter changing over its entire range
is negligible to the behavior of the model. This means
that the model may be simplified by excluding parameters
whose variances are small.

The coupled partial variances would tell us how the
parameters interact. If these coupled varlances are large
then the model also depends on the relationship of coupled

parameters. The effect of one parameter acts in concert
wlth another parameter. These coupled varlances may be
extended to arbitrary number of parameters coupled together
(but less than n).

The only requirement here is the construction of the
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joint probability distribption and its multidimensional
integration. Presumably this could be done by numerical
quadrature. We would sample each parameter over its
domain, then solve the model for each different combina-
tion of the parameters. The solutions would be numerically
integrated against the joint probabillity distribution to
give the desired moments.

The requifed amount of calculation to accomplish this
is enormous. If we chose 10 different values for each
parameter, and there were only five parameters in the
model, we would have to solve the model 510 times, ap-
proximately 10 million times. Even so, if the ranges of
the parameters were large or the model highly structured,
we would need still more sampled points to accurately carry
out these variance calculations by such a brute force
method. To calculate the varlances in finite time we need
a different approach. We need a way to compute the multi-
dimensional integrals wlthout exhaustive sampling of the
output function.

In 1938 Hermann Weyl (Weyl, 1938) derived an integral
identity which, under certain conditions, reduces a multi-
dimensional integral to a single path integral. To apply
his theorem we must return to our definition of parameters
and transform them into periodic functions.

The rate constants, considered as random variables,

may be related to a generating function,
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kz = 8y (ul) (2.7)

where gz is the generating function and u2 is the inde-

pendent variable. As u, 1s varied from -» to =, k, 1is

L

varied over all 1ts possible values. Consequently, u2

also has a probability distribution. Since the kl's

1 ]
'8 the u,'s are also

independent.- We may then write the total joint probabillity

are independent functlons of the u

density function in u-space as

n
P(u) = T P, (u,) (2.8)

It 1s convenlent to 1let u2 be related to el through
the transformation function
u, = Gl(ez) (2.9)

such that as 62 traverses -« to «, u, also goes from

2
-o £to ©», so no information has been lost. Now we further
write 8, = (wzs) with -= <s<o. The new parameter, w,,

is called the 2'th frequency. This procedure relates
each parameter to a frequency, wys SO that by varying s

over its range all the parameters vary simultaneously,

at different frequencies, over their ranges.
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The probability distributions in u-space are easily
related to a probabillity distribution in 6-space. It 1s
desirable for all unit lengths 1n 6-space to be equi-
probable, i.e., we want to insure that P(uz)duz = P(ei)dez.
Note that we are using the same symbol for the probabili-
ties even though we have transfopmed the independent vari-
able uy to 61. This 1s done to simplify notation.

The chain'rule may be used to derive the equation

relating these two probabilities.

P(8,)d8, = P(u,)du,

du dx . = =
du = Ix d9 de; x = sine, 62 wyS

_ du dx

dx

Jg = coso = (l--x2)l/2

P(8) = for the half interval

2

Writing U, = Gl we obtain
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1 dG,
T = P(Gl)(l - X Tx (2.11)

2)1/2

This 1s a first order differential equation whose solution

is the transformation function G To uniquely solve this

2'.
equation we need an initilal condition.

. _ .0
If we defilne kz = k2

s =0, x = sin(wzs) = 0, we see that u, = G (sin(wys)) = 0

exp(uz), and note that when

which implies that G(0) = 0. This 1s the required initial
condition. This means that Uy is restricted to a poly-
nomial in sin(w,s) with no additive constants. Some pos-
sible transformation functions are given in Appendix 2
along with the distributions that they generate.

Now that the rate constants are related to the search

variable, s, we can apply Weyl's theorem.

m L, F(s)ds (2.12)

_L
(77) JA8F(8) = i, 37

Weyl showed that thils integral identity would be exact
if

[y Mo

8y = wys and @ w, #0 (2.13)



.

o
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for all possible integer values of % In this case the
frequency set, {“2}’ is called incommensurate.

An incommensurate frequency set is easily constructed
if we use irrational numbers for-the frequencies. How-
ever, since we wlll be using a computer for solving the
model, irrational numbers are not feasible. What is done

1s to define an order of accuracy 'M' such that

i a w, # 0 for g layl <M+ 1 (2.14)

or more concretely

L a,w, =0 for min [Z]a,| =M + 2]
g 2 ol

Once we have defined an order of accuracy 1t can be
seen that irrational numbers for the frequency set are no
longer required. Now a frequency set wlll be assoclated
with its value of M. In fact, we may use integer fre-
quencies as it simplifies further calculations.

The finding of arbitrarily accurate frequency sets 1is
apparently quite difficult. For the speclal case of

lth order accurate sets, i.e., M = 4, we may exploit the
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idea of sums and differences of two frequencies to find

the sets. Schallbly et al. have tabulated 4th order ac-
curate frequency sets for parameter sets of up to fifty

parameters. These sets are stored in the program in Ap-
pendix 8.

Since the parameters are proportional to sines, 1t is
prudent to use only odd frequenciles in order to exploit
the periodicify of the sine of an odd frequency (see
Cukier 1978). This helps in the search for frequencies
by eliminating half of the integers.

Given the frequency set, we can approximate the multi-
dimensional 6-space integral in s-space. But the s-space
integral has other valuable properties. We have related
each parameter to a function of a sine of a frequency.
Since sines of different frequencies are part of an ortho-
normal familly, the Fourier series, the effect of each
parameter may be easily projJected out of the s-space
integral.

Expanding the output function in a Fourier series

(Zygmund 1959), given

A
cllrls)) = 2+
]

ne 8

[Ajcos(js) + Bjsin(Js)] (2.15)
1

m

A} = % I Ci(s)cos(js)ds

™

I Ci(s)sin(Js)ds

\
3|

(hg
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or equivalently in exponential format,

E.Ci(g(s)) = T CJ exp(i2mjs)
3=0
where

Cj.= % tL Ci(g(s))exp(iEWJs)ds (2.16)

Note that C'j = ﬁi_;_El separates the output function
into its frequency components. ("i" denotes the ith
concentration). Since the th parameter is associated
with the 2th frequency, the magnitude of the Fourier co-
efficlents of this frequency and its harmonics measure
the sensitivity of the 2th parameter.

We can illustrate this with a simple example. Con-
sider a reaction scheme with three rate coefficients
assoclated with three frequencies, Wi, Wo, and w3. Since
we vary the rate coefficients as sin(wzs) the 1th concen-
tration as a function of s willl consist of sums and products
of these sin(wgs) factors. When strings of these sines
are multiplied together the result is sines and cosines
of sums of the W, S factors. If we assume that the fre-
quencies in the sums of the LPE factors are incommensurate,

no linear combilnation of the frequencies can be formed

which sums to zero. That is, there are always three
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independent components in these sums. If the Fourier
decomposition of C(s) 1s performed the Fourier coefficients
of indices Wi 2W7 s 3w1,... can only be due to the rate
coefflcient k, since only kl varies with wy; and no com-
bination of Wo and w3 can add up to a multiple of wy to
cause an interference. Thus, the Fourier analysls enables
us to 1solate the effect on the ith concentration of un-
certalnty 1n,6he th rate coefficient.

The above definitions.of AJ and BJ are exact only 1if
we are able to analytically integrate the equations.

Since we will numerically integrate the model equations

for Ci(s) only concentration-time points will be available.
We must then use a discrete Fourier transform instead of

a continuous one. The concentration points may be numeri-
cally integrated into discrete Fouriler coefficlents.

There are two kinds of error involved when this ap-
proach is used. We obtaln the largest error by exchang-
ing integers for irrational numbers in Weyl's integral
identity (Cukier 1975). By choosing a value of M and 1its
frequency set we postpone addition errors, the sum of the
harmonics equalling zero, beyond the combination of M
frequencies or harmonics. Since Fourier coefficients
decrease by at least (1/n), error from the combination
of harmonics can be maintalned at a low level.

This form of error also depends on the model. If

there is no combination of M parameters multiplied together
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in the model then the possible error from different fre-
quencies adding to the same frequency, breaking a type

of linear independence, is eliminated. Also if the out-
put function of the model does not have parameters raised
to high powers, such as k5 or klo, then the frequenciles
will not add in the high harmonics to give error. In

any case one may always Iincrease the value of M to de-
crease this type of error, provided the frequency set 1s
known.

The second source of error 1s from the use of a finite
discrete transform instead of an infinite continuous one.
This error comes about by sampling the function at equally
spaced points, Egi. This equal spacing gives an aliasing
error, frequencies which oscillate faster than the sampling

rate fold their effects into lower frequencies (Cukier

1975)

calc _

e L Aonm-k * A2Nm+ic)
p%21¢ = B+ B iz (B + B )
k k 2N-k T 2, ' 2Nm-k 2Nm+k / (2.17)

Aliasing sets a limit on the maximum frequency that

one may compute from a sampled function. This maximum
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frequency 1s determined frpm the Shannon Sampling Theorem
(A. J. Jerri 1977) and 1s called the Nyquilst Frequency.
One can reduce this type of error by sampling more points.
In the literature (Cukier 1975, Jerri 1977) the usual
number of samples taken to insure accuracy is 4w

max?

where L is the largest frequency desired.

ax

2Wpax <N (2.18)

This sampling rate tells us the minimum number of
samples that are required to compute a particular fre-
quency.

Having examined the error terms we find that the
number of points chosen 1is important. However adding a
single point implies that we will do an additional simula-
tion with a new parameter vector. The cost 1n computation
time in each simulation can be high. If the model is com-
posed of ordinary differential equations then the computa-
tion of the required simulations accounts for about 90%
of the total required computation time involved in sensi-
tivity analysis. We would, therefore, like to minimize
the number of simulations necessary to calculate the
Fourier coefficients. If odd frequencies are chosen,
the number of simulations necessary 1s reduced by one-
half. It was shown (Cukier et al. 1978) that the symmetry

relations for sines of odd frequencies
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£(Tr - s) = f(s)

f(s = ) = £(-s)

f(s +3) = f(s - %)

s =1 =f(s -1 (2.19)

allow us to sample the output function in the range
[-w/2, /2] and then reflect these values into [0,2r].
In thils way we get twice as many Fourier coefficients as
sampled points.

Given a finite number of simulations we can construct
a finite Fourier seriles approximation to the function in
s-space. The coefficients in this approximation may be
evaluated in two possible ways. The direct application
of the transformatlion, a brute force approach, would re-

quire N2 multiplications on the computer. This can be
seen by examining the equations for the Fouriler coefficients

given below.

C(sj)exp(iZ'rrjP/N) (2.20)

or
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N
ay = % Jﬁl C(sj)cos(g%%g)

N an odd integer

Alternatively we could use the Fast Fourier Transform
algorithm, FFT, of Cooley and Tukey (Cooley, Tukey 1965).
This method uses approximately Nlog(N) multiplications.

Usually this algorithm is applied when the number of
samples 1s a power of two. In this case the algorithm is
at i1ts most efficient. Since we want to minimize the
number of required samples, sampling the function a power
of two times 1s too strict a requirement. This usual
restriction in the number of samples 1s not a requirement
for use of the algorithm. In fact, as long as the number

of samples taken 1s not a prime number the FFT algorithm

is a much faster and more accurate technique than the
direct method. If the number of samples, N, 1s factored
into its prime factors, n1n2n3...n2 = N, then the number
of operations that this generalized FFT algorithm takes
1s at most (nyN + nyN + ... n,N) (Dahlquist 1974).

By using the FFT method on R points in s-space, we

extract 2R coefficlents. Some of these coefficients are
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ambiguously related to the parameters. This ambiguity
depends on the order of accuracy M. The ambiguity implies
that more than one linear combination of the w-set fre-
quencies adds to the same frequency. We don't, then, know
to which linear combinatlion to assign thls frequency.
Hence 1t 1s considered as an error term and only used

in the calculation of the total variance.

Obviously.for a Mth-accurate frequency set, only those
combinations of w-frequencies whose a-set sum to less than
M%E may be unambiguously defined. That 1s, we know, to
Mth-accuracy, what comblination of parameters add to these
frequencies. These Fourier coefficients may be easily
combined into the desired variances as was earlier pro-
posed.

Parseval's formula for Fourier Series (Zygmund 1959)

gives us the total variance of the model output function

N-1 a_ 2
2 _ 2 2 0
Itotal = I (ag + b3) + ()

(2.21)

where N = 2R, and R 1s the number of simulations.

The contribution of the 2th parameter to this total
variance 1s contained in the coefficients of the 2th
frequency and their harmonics (Cukier et al. 1978)

K 2 2

r a + Db (2.22)
p=l sz pwl

=N

ag
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where K = M/2, for a Mth accurate frequency set.

From this we can construct the reduced partial variances

g
_ 3
total

The contribution of the coupling between parameters
is contained in the coefficients of the combination fre-

quencies, Jw, + pr(Cukier et al 1978).

BZ 82
of = LT aj, i 0o (2.24)
s 1’-81 J=-B2 le W sz 1wy,
1,3 #0

Where max[sl + 85] = (M+1) - M/2, thereby preventing double
counting of frequenciles which may be included in single
partial variances. Thils does allow for the possibility

of some double counting in the coupled partial variances.
However, these high harmonics of the fundamental frequencies
are usually attenuated so the error 1is very slight.

From this we can construct the reduced coupled partilal

variances,
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Sy i = (2.25)

Cukler (1975) has related the B, W, coefficient to the
linear sensitivity coefficient ( ) in the limit of small

Py
parameter variation.

By, - <(3C(u))( 2)> + 0(p2) (2.26)

This equation shows a direct relationship between the
averaged linear sensitivity coefficlient and the Fourier
coefficient, sz, which 1s used to construct the wy
partial variance.

The Fouriler method of sensitivity analysis 1s imple-
mented in a program given in Appendix 8. This program
is not restricted to models involving ordinary differential
equations. Rather any type of mathematical model may be
inserted in the program through use of the subroutine
MODEL. Hence the global parameter sensitivities of any

type of model are easily obtained.



III. HADAMARD-ORDERED WALSH FUNCTIONS

Cukier et al. (1978) proposed that alternate orthogonal
expansions also may be possible, leading to other types
of sensitivity analysis. Thls approach was investigated
and an alternéte expansion was found. It was discovered
that a Walsh function expansion (Walsh 1923) could be used
for sensitivity analysis. If we consider a model whose
parameters take on a finite set of values, then we may
use Walsh Sensitivity Analysis. Here the model output
function has a finite set of discrete responses dependent
on the parameters. For these discrete model functions
the use of Walsh functions eliminates the approximations
inherent in the Fourler method. With continuous model
output functions (those functions whose parameters vary
continuously over a domain) the Walsh method is closely
related to Taylor Series Sensitivity Analysis. In this
chapter we develop the theory of the Walsh method.

A Walsh function (Ahmed and Rao 1975) may be defined
as a function of two arguments, a time variable and a
sequency variable, similar to frequency in Fourier analysis.
Walsh functions form a complete orthonormal set of step
functions. Here the Hadamard definition (Ahmed and Rao

1975) 1s used to represent Walsh functions.

28
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Wity

[y kel

WALH(w,t) = (-1)i 1

(3.1)
Where t=(t1,t2,...,tp) is the binary representation of ¢t

and (wl,w2,...wp) is the binary representation of w.

Walsh functions are defined over the time range
[o,1], i.e., fhe time variable is a real number less than
1. However, the sequency variable is an integer less than
oP.  This means that the binary point for the tlme vari-
able 1s placed to the left of tl and the binary point for
the sequency variable is placed to the right of wp. Note
that the indexing chosen here labels the most significant
digit of the variable first.

With this definition of Walsh functions, the time
varlable 1s defined with respect to the sequency varilable
in order to cancel dimensions. It should be noted that
the time referred to here 1s not "model time". Model time
1s defined as the independent variable 1n a model such as
the model of a chemilcal reaction which evolves in time.

To clarify the evaluation of a Walsh function, let
us conslider the Walsh function, WALH(2, .75). Only two
binary digits are necessary to represent these arguments,
therefore let p=2. Writing out the binary expansions of

the arguments we obtain
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w = 210 = (100)2 (3~2)
£ = .75, = (.11)

Substituting these bilnary representations into the defin-

ing Equation 3.1 we obtain

w,t1+w2t2 1

1.1+40.1_, 141 .

WALH(2, .75)=(=1) =(-1)

(3.3)

Walsh functions are constrained by the number of binary
digits required to represent w and t. For thls reason
we get different groups of functlions for each choice of
p, the number of binary digits used in the representation.
Each group 1s closed with respect to ordinary multiplica-
tion. If we multiply one Walsh function by another Walsh

function from the same group, we obtain a third member

of the group. This means that multiplication of a p-digit
Walsh function with a k-digit Walsh function 1is not de=-
fined.

This group property can be illustrated by examining a
Walsh function multiplication table for p-2. Here we have
a group of Walsh functions with only four members,

WALH(O,t), WALH(1,t), WALH(2,t), and WALH(3,t). By using
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Equation 3.1 we can generate Table 1.

Figure 1 gives the plots of these four Walsh func-
tlons. They are plecewlse continuous functions. These
functions may be integrated but they may not be differen-
tiated without the introduction of distributions which
include delta functions.

Walsh functions have some useful properties. They

are 1nvariant to an exchange of arguments, i.e.,

WALH(w,t) = WALH(t,w) (3.4)
Proof:
iwiti itiwi
WALH(w,t) = (-1) = (-1) = WALH(t,w) (3.5)

As has been claimed, the Walsh functions are orthog-

onal (Walsh, 1923),

1
fy WALH(n,t) WALH(w,t)dt = 2p5n,w (3.6)

Proof:
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Table 3.1. Multiplication Table for the p=2 Group of
Walsh Functions.

* WALH(O,t) WALH(l,t) WALH(2,t) WALH(3,t)
WALH(O,t) WALH(O,t) WALH(1,t) WALH(2,t) WALH(3,t)
WALH(1,t) WALH(1,t) WALH(O,t) WALH(3,t) WALH(2,t)
WALH(2,t) WALH(2,t) WALH(3,t) WALH(0,t) WALH(1,t)
WALH(3,t)  WALH(3,t) WALH(2,t) WALH(1,t) WALH(O0,t)
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{} WALH(m, t )WALH (w, t)dt

D D
11 1 PR AL AL
= Z Z 0 Z ('1) (_1)
‘Ci=0 t2=0 tp=o
D
1 1 (gt )ty
= T . r  (=1)
£1=0 t,=0
D
1 1 nywy (Pt
= I ... I (Q+ (-1 ) (-1)
t =0 t =0
2
D
D = »P
= 2 T & = 2%¢8
1=1. D1-Wy mw

If we divide each Walsh function by two we obtain an
orthonomal set of functions. Completeness of Walsh func-
tions was shown by Walsh (1923).

Utilizing the orthonormality and completeness proper-
tles of Walsh functions we know that any continuous func-
tion, f(t), can be expanded into an infinite Walsh series

with 0 < t < 1. Thils exact Inflnite expanslon of an
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arbitrary function may be approximated by a finite expan-

sion:

£f(t) = & C_WALH(n,t) (3.8)

Here we restrict to to a discrete set of N polnts (ti)

where,

Nt = t4 (3.9)

Note that 0 < ty < N-1 and t; 1s an integer. The error

incurred by this approximation is

error = I CnWALH(n,t) (3.10)
n=N

Since the coefficients of a Walsh expansion decrease
in magnitude by (1/n) as shown by Fine (1955), we can
approximate the major structure of any arbitrary function
by using a finite expansion of Walsh functions.

Walsh coefficlents are a linear transformation of
the functlon sampled at each t;. We can compute the co-

efficients by exploiting the orthogonality of Walsh functions.
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By writing the function in 1ts finite Walsh expansion,
Equation 3.8, then multiplying both sides by WALH(m,t)
and integrating over "t", we will project out the C

coefficient of the Walsh expansion.

f(t)WALH(m,t)dt

= I C L fl WALH(n,t )WALH(m,t )dt
n=0 2P o

= § C_6§ = C (3.11)

This procedure for calculation of the N coefficlents
of the Walsh expansion from the N sampled values of the
function requires N2 multiplications. Using matrix factor-
ization techniques an algorithm may be developed where
this transformation only requires Nlog(N) multiplications.
This is known as the Fash Walsh Transform (Ahmed and Rao
1975, Andrews and Caspari 1970) (See Appendix 3).

To use Walsh functlons 1n sensitivity analysils we
must be able to calculate multidimensional moments, which
are averages of the output functlion over all its param-

eters. To calculate these moments we must express the
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function in terms of its parameters. If we relate each

parameter, Uy, to a generating function in £y
ui = gi(ti) (3.12)

we may expand each parameter dimension 1n a Walsh series.

Thereby we obtain a multi-dimensional Walsh series expansion.
For exampie, let f(ul,uz) be an output function with

two parameters, Uy and u,. If we relate the parameter u,

to a generating function, gl(tl), we may write f(u) as
f(ul,uz) = f(gl(tl),uz) = f(tl’uz) (3.13)

Note again that the same symbol for the function, f, is
retained. This will be done throughout this chapter when
the meaning is obvious.

This funétion may be formally expanded in a Walsh

series in t; with u, treated as a parametric constant.

£t ,up) = § Cy (up)WALH(J, ) (3.14)

Since the coefficlents are now functions of u, we
may relate u, to a generating function in t2 and expand

the coefficilents in a Walsh series in t2.
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£t uy) = £(t,8,(t,)) = § i CyWALH(J £ JWALH (K, )
(3.15)

This ylelds a two-dimensional WAlsh series expansion for
f(uy,uy).

. The key to the utility of Walsh functions in sensi-
tivity analysis 1s the multiplication 1dentify. For an
expansion to be efficient, products of the orthogonal baslis
set must reduce easlily. In the case of Walsh functlons, the
product of two Walsh functions 1n the same group 1s a third

Walsh function, given by

WALH(n,t)WALH(w,t) = WALH(n + w,t) (3.16)

where + 1s binary addition without carry. That 1is,

0O+0=0, 0+1 1,1 +0=1, and 1 +1 = 0.

Proof:
§ nyty § Wity
WALH(n,t)WALH(w,t) = (-1) (-1)
i (ny+wy )ty i (ny + wydty
= (-1) = (-1)

WALH(n + w,t) (3.17)
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We can apply this multiplication oroperty to reduce
the multidimensional integral for the multidimensional
Walsh series coefficients to a one dimensional integral.
This will allow us to connect the multidimensional param-
eter space to a single dimensional line.

In summary, if f(u) 1s a multidimensional function in
u with u = (ul,uz,...up) we may expand the function in a
finite multidimensional Walsh series. Each dimension of
£f(u) will be related to a dimenslon t; which will Be ex-
panded in a single dimensional Walsh series. We may

write a generalization of Equation 3.15 as a Cartesilan

product.
- -1 -
" - my 1 m2 mp 1 .
f(u) = £(t) = z z “ o b il
L3 = _ - ~a C WALH(w,,t,)
wl-O w2—0 wp 0 "W 4.4 i’71
The coefficients may be expanded as finlte sums
L ml-l mo—l - D
c,=20C z . r f(t m  WALH(w,,t,)
v Wlw2. .wp N t1=0 £ =0 1=1 i1
(3.19)
m, +m,=-m
N=21 2P

Let us specialize to the case where each parameter
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has only two distinct values. In thils case each Walsh
sequency expansion of a parameter will consist of only
two sequencies. Since there are only two distinct points
in each parameter dimension only two samples will be taken
from each dimension, 1l.e., my = 2. In this case we will
need only one binary digit to represent a particular
parameter dimension (Kunz 1979).

In the multidimensional parameter space, the function
is then defined only on the binary hypercube. Each sepa-
rate Walsh series requires only a one digit representation.

This one digilt Walsh functlon 1s written

1

) kyty Lokt k.t

= (-1)i=t = (-1) +1

[ ae o]

WALH(k,t) = (-1)i

(3.20)

When the coeffilcient equation 1s rewritten with 1-

digit Walsh functions the result is

1 1 t

1 - P Wity
- 2 tl=0 t2 = tp=0 i=1
(3.21)

By applying lexicographic ordering (Kunz 1979) to

Wy and t4; we may define W and T as
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_ 272 4 4w 2°

oP=2 4 4,20 (3.22)

=]
|

= p-1
t52 to1

Therefore, T and W are p-digittﬁinary numbers which range
from 0 to 2p—1 as ti and Wy take on their allowed values
of 0 and 1.

Upon substitution of W and T the coefficlent equation

becomes

p
N-1 AL
r £(T)(-1) ; N
T=0

1
Cw = § 2P (3.23)

Note that the sum over T encounters all of the two-term
sums 1n Equation 3.21.
We may now assoclate the finite multidimensional ex-

pansion with a finite single dimensional expansion.

N-1
£(T) = £ Cy WALH(W,T) (3.24)
W=0

From Equation 3.24 we may derive the required
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relationship for varying the parameters. Each parameter
1s associated with a separate dimension. Each dimension
may be expanded 1n a Walsh sequency expansion as in Equa-
tion 3.18. Since these sequenciles belong to different
parameter dimensions we have the requirement that the
binary sum of the sequencies be unique for any combina-

tion of sequenciles.

ﬂWALH(wi,t) = WALH(wl+w2+...+w ,t

T b l+t2+t3+...+tp)

WALH(W,T) (3.25)

This means that the binary sum of the w2's must never add
to the same W-value for different wi's. Analogous to the
Fourier method, this restriction 1is called "binary incom-
mensurate". Note that this procedure involves the con-
verslion of p one-digit Walsh functions to one p-digit
Walsh function.

Since, for exact analysis, we must sample from each
dimension so that we never repeat the search curve, we
then must asslign a unique sequency to each parameter where
the sequencles are bilnary incommensurate. The simplest
set of such sequencies is the set of powers of two,

20 21 22 ate, (3.26)
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In thils way, for a model with 'p' parameters, parameter
uq would be associated with the least significant binary
digit in a p-digit number, Us with the next most significant
digit, etec.

Each parameter can take on two values given by the

generating function g, (t4),

0 -
(wi l,

gq(ty) = u; = uy + AWALH ¢, 2171 (3.27)

i

where ug 1s the average value of uy and A determines the
range. With this generating function, when t4 takes on

its values of 0 and 1, uy oscillates between ug + A and

ug - A at the 2171 sequency.

By defining the parameters of a model to be functions
of different sequency Walsh functions, as 1in the Fourier
method, we can expand the model output function in an
infinite Walsh series. By truncating the expansion to a
finite Walsh series we incur no error. This can be 1il-

lustrated by a two dimensional example. If we set up =

WALH(m,t) and u, = WALH(k,t), we may then write

£(ug,uy) = £(WALH(m,t), WALH(k,t)) (3.28)
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By expanding Equation 3.28 in a two dimensional Walsh
serlies, we will obtain a finite set of terms. Using the
multiplication identity we can see that there are only
four possible terms, a O-sequency term, a k-sequency term,
a m-sequency term, and a (k + m)-sequency term. No other
terms are possible regardless of the nature of the function
f.

In the calculation of the Walsh coefficients with the
Fast Walsh Transform, we use 2P equally spaced samples.
This enables us to calculate 2P different sequency. Co-
efficients, CO’Cl""’Cn-l' Therefore, we will have, as
a subset of these coefficients, ali four of the required
sequencies. Of the 2P computed coefficients only these

four will be non-zero. In summary, for any Walsh driven

function, there will be no error incurred 1n approximating
the function by using finite Walsh expansions.

From Equation 3.24 we can derive the total variance
of the model ocutput function (See Appendix 4). The var-

jance 1s

oo = £ C: (3.29)

This 1s the same formula as in the Fourior method. In

an analogous manner, the single parameter variance is
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constructed by calculation of the variance with respect
to only one parameter, say the first, using the model
output function which has been averaged over all the other

parameters (See Appendix 5).

2
1=C (3.30)

Nowever, 1n the Walsh case we get only one term! There
is no infinite series to truncate as there 1s in the Fourler
method. In the Walsh expansion the reduced partial vari-

ance 1s given by

2 Sy
1l 1
Sl = ;—5- = N-1 ) (3-31)
T z Ci
i=1

which 1s exact.

In a similar vein we can construct coupled partial
variances. The coupled partial variances are the Walsh
coefficients whose sequency is that of the desired single

sequencies added together by binary addition without
carry (See Appendix 6). Then we divide by the total

variance to get the reduced coupled partial variances.
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2
Syt
S0 T FT (3.32)
L C
1
1=1

For the partial varilances to be rigorously correct,
i.e., to contain no error terms, we must sample the entire
parameter space. Thls will only be true if we are using
a discrete model whose parameters can only take on two
values.

When Walsh Sensitilvity Analysis is applied to a con-
tinuous model, an approximation is made. This a-proxima-
tion 1s that the influence on the output function of the
range of parameter variation 1in a continuous model may be
approximated by using only two values of a parameter chosen
from a contilnuous range of possible values. A good choice,
when comparing the Walsh method with a continuous method,
would be the extremes of the interval over which the
parameter 1s varied in the continuous analysis.

To 1llustrate this we will examine a one-parameter
model. First we write down the one dimensional Walsh
expansion in terms of the parameter, u,, where u; =

WALH(1,t).
ul -+ ug

£(u c, (-1)VF (3.33)

1) =

[ e I
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From this expansion we can calculate two terms. The
CO term and the Cl term. The CO term is the sum of all

the sampled function values

Cp = 3 (F(uy=1) + f£(ug=-1)) (3.34)

This may be interpreted as the average value of the func-
tion at f(ul=0), where we note that when t=0, f(WALH(1,0))
= f(1) and when t = 1, f(WALH(1,1)) = f(-1).

To calculate C1 we subtract the two function values:

Q
"
njH-

(1) - £(-1)) (3.35)

If we were to do a Walsh sensitivity analysis on a
one parameter model, the minimal sequency with which to

vary that parameter 1s wy = l. So the C, coefficient would

1
be proportional to the "sensitivity" of the model to its
parameter. In linear analysls, 1f we used a central 4if-
ference formula for the first derivative of the function
with respect to a parameter, we would get the same equa-

tion for the sensitivity of the parameter.
With a two dimensional model the possible Walsh
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coefficlents are CO, Cl’ C2, C3. We can write out the

Walsh transform, from Equation 3.23, for the Walsh co-

efficients as

Co \ [l 1 1 1\ fo\
c1 . 1 -1 1 =1 £1
= ;5 (3.36)
c, 1 1 -1 =1 £,
N A

The sampled parameter sets can be plotted in the two-
dimensional parameter space (Figure 2). This identifies

the sampled functlon values in the parameter space.

ul1
e - 0.
f'.2 ‘fo
Uy =+
~o o.
f3 ~

Figure 2. Plot of the sampling points in the multidimen-
sional u-space.



49

The equation for C1 may be rewritten as

_1 - 3

which 1s the average of the two central difference approxi-
mations to the first derivative with respect to the first
parameter (See Figure 2).

Similarly, for 02

1 fo-f2 N £1-13
- 2 )

which is the average of the two central difference approxi-
mations of the first derivative with respect to the second

parameter.

Finally, the C3 coefficient i1s exactly as expected,

a central difference approximation to A2f/AulAu2.
Co = & (£o=fq=Fotfs) - (3.39)
37 F Yoh1mren3 '

If we examine the general expression for the Walsh

coefficient of the kth parameter, wk'l, we note that for
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an P-dimensional system the coefficient is always the
central difference approximation average to the derivative
with respect to the kth dimension (without loss of gen-

erality we may set k = 1).

P
! 1 : 1§lwit1
c = C = =[ & ... I f£(tqt,...t )(=1)"" ]
2k"‘1 Wl...wp 2p tl=0 t =O 1 2 p
p
Clo O - ‘—p__'i Z . . 2 { 2 }
2 t2=0 tp=0
= <AL, (3.40)
Aui
Similarly for all coupled Walsh coefficients (21{_l +

2£—l-sequency) we get the approximation to the average

of the mixed derivative (See Abramowitz and Stegun pp-

884).

c L ; P oo -1y 12
=T = £ ... I f(t,...t (-1
110...0 P t. =0 t =0 1 D
1 P
o1 % % {f(00t3;ftp)-f(01t3..tp)-f(10t3..to)+f(11t3..tp)}
o3 L .- ]
2 t3-0 tp 0 I
= ;‘-2‘{‘_> (3-“1)
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This implies that a Walsh function expansion to a
continuous function is the first 2P terms of a Taylor

series using average derivatives.

f(u) = f£(t)
p t P P 2 t,+t
= <f> + T <3Af1f;>(-l) iy T T <AAAf (-1) 1773
1=1 “Y4 1=1 3 1 844844
p P p 3 t,+t, .+t
AT 175 Tk
+ z pX pX (=1) + ... (3.42)
1<3j<k AuiAuJAuk

with the restriction that each term be at most of degree

one 1n any parameter.



IV. EXAMPLES IN SENSITIVITY ANALYSIS

Thls chapter will consider the application of the dif-
ferent types of sensitivity analysis to some simple models.
To understand these models does not require rigorous
sensitivity aﬁalysis. In fact, many of the results are
intultively obvious. However, the application of the d4if-
ferent sensitivity analysis techniques to these models will
help to distinguish the domains of applicability of these
techniques. The analyses will also assist in the inter-
pretation of the results of sensitivity analyses of more
complex models.

The simplest mathematical basils for sensitivity
analysis (Beck 1977) is a Taylor series of the model
output function in terms of the parameters of the function.
Exapnding the output function around a nominal value, 50,

we can write the Taylor series as

f(K(H-A) = f(EO) + f'(l{_o)A + _2}7 f"(EO)A2 + ...

(4.1)

'Classical' sensitivity analysis is concerned with

the first derivative term in this expansion, usually

52



53

multiplied by a scaling factor to remove the dimension of
the parameter. The sensitivity coefficlent of kl,

Xkl, 1s written,

(af(k))

(4.2)
1 7Ky |kmkc

Xy 0

With such first derivatives, classical sensitivity
analysis attempts to explain the effects on the model
function from changing the parameters' values. In order
for this to work, the higher order terms must be small with
respect to the first derivative term, which can be
guaranteed if (ki - kg) << kg. In this case all higher
order terms are multiplled by a number close to zero.

The requirement that higher order terms be small
restricts the domain of classical sensitivity analysis to
reglons localized around the nominal value, 50. However,
1f the functlon 1s linear in the parameters all higher
derivatives in the expansion are zero. This specilal case
has been developed into a widely-used practical method
(Beck 1972). From this viewpoint of ranges of parameter
varlations, the different sensitivity analysls techniques
may be segregated. This can be seen by examining models
where different ranges of parameter variation are used.

The first model 1is a straight line with two parameters,
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the slope, m, and the intercept, b.

y=mt + b (4.3)

This model has a Taylor series expansion

y = f(m,t,b)

f(mo,t,bo) + t(m-my) + b - b,

=mt + b (4.4)

As expected, the expansion 1s exact for the linear problem.

The scaled sensitivity coefficients are

Xm = tmo; Xb = by (4.5)

A sensitivity coefficient 1s large when a change in
the parameter changes the value of the output function to
a large degree. In this case the value of the output
function depends critically on the value of the parameter.

In the linear model Xm is large when t 1is large. Hence,
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for accurate 'm' estimation, measurements should be taken
at large values of t where the output function 1is most
'sensitive' to the value of 'm'. The b-sensitivity co-
efficient shows that measurements at t = 0 or small t
values, where sensitivity tom is small, will allow an
accurate estimation of b. These coefflcients are plotted
in Figure 4.1. This confirms previous knowledge (Acton
1966).

Applying Walsh sensitivity analysis to the linear
model results in the same sensitivity coefficients as
the Taylor series approach. This will happen since the
average finite-difference expansion calculates exact
derivatives in the linear case (Lanczos 1955).

A Walsh sensitivity analysis of the linear model
requires a set of nominal values, and a range of variation
for the parameters. The nominal values m = 0.0, b = 0.0
along with a range of variation of *10 for each parameter
were chosen. In order to vary two parameters over this
range, four simulations were required (N = 2p = 22).

Figure 4.2 1is a plot of the average value of y, averaged
over the four simulations. Thils plot shows 'typical'
values of the output function over the selected parameter
space. Note that for this simple case the average and
nominal values are the same. Figure 4.3 shows the
standard deviation of the four simulations (square root

of the total variance) from the average value. If the
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standard deviation 1s small then the range of parameter
space examined has little effect on the output function.
Figure 4.4 1is a plot of the Walsh expansion coefficients.
These coefficients are related to the linear sensitivity
coefficlents shown in Figure 4.1. A Walsh expansion co-
efficient may be thought of as an averaged derivgtive of
the model output function as shown 1n Chapter Three. How-
ever, the equation depends on the particular transforma-
tion function used in the analysls. In Chapter Three the
transformation function u, = WALH(2Z-1,T1) was used. 1In
thils case, by using the chaln rule, it can be shown that
du = dt. Similarly, the conversion of u, to tz must be
accounted for when a different transformation function 1s
used.
In the linear model the transformation function used
was the arithematlc transformation function up, = ug +
AWALH(22'l,t2). Applying the chain rule to the equation for

a Walsh expansion coefficient, 3.40, results in

af (u,) ju
L 2
C = < . > (L‘.G)

which 1n the case of the arlithematic Walsh transformation

function ylelds
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3 0 -1
ggz {u2 = u, + AWALH(2 st )}
au
2
= = A (4.7)
Btl
therefore
Bf(uz)
022_1 = A<—5u—2—> (4.8)

From this equation the relationship to the linear sensi-

tivity coefficient 1s easily shown.

o °fuy) ug
Xu£= ug (—jﬁa:—J = (jr) C22_1 (4.9)

Therefore the Walsh expansion coefficients, using an
arithmetic transformation function, are equal to linear
sensltivity coefficients scaled by a scale factor which 1is
the nominal value, ug, divided by the range of parameter
variation, A. In the linear model the scale factors for

the parameters are (mO/Am) and bo/Ab) which are 1 and O,
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respectively.

Alternatively the reduced partial variances may be
plotted, (henceforth the reduced partial variances will
be called partial variances with the assumption that they
are divided by the total variance). These partial variances
are shown in Figure U4.5. Using the notation developed in
Chapter Two, the partial variance of the first parameter,
m, is written Sl. Similarly the partial variance of the
second parameter, b, 1s written S,. The polnt at which
the curves intersect, here at t = *1, depends on the range
of parameter varlation and the nominal values chosen for
the Walsh Sensitivity analyslis. Here both parameters were
varied over [-10.,10.].

In the linear model the interpretation is simple.

To estimate the b-parameter, measurements should be taken
near t = 0 where 82 1s largest, near t = 0. Méasurements
far from t = 0 are highly sensitive to the value of m as
shown by Sl' These measurements taken from this region
would be best for accurate estimation of m.

Treating the linear model with the Fourier method
gives similar results. The nominal values and parameter
varlations were the same as 1n the Walsh analysis. How-
ever, more simulations were required to estimate the Fourler
coefficients. The frequency set used was the 6th-order
accurate set, [3,5], which requires, at a minimum, 11

simulations (21 simulations were used). The expansion
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coefficlents versus t are plotted in Figure 4.6. These
expansion coefficlients are proportional to the first
derivatives in the Taylor series.

The partial variances shown in Figure 4.7 are nearly
identical to those derived from Walsh analysis, Figure
4.5. The minor differences are a result of the approxi-
mate nature of the Fourler method, since a Fouriler expansion
of an angled line requires an infinite number of terms.
However, the partial variances shown capture more than 99%
of the total variance.

The standard deviation curve given in Figure 4.8 also
shows nearly the same range of variation in the output
function as was examined by the Walsh method. However,
the standard deviatlion curve welghts simulations far from
the average simulation more than those close to the average,
causing the Fourier standard deviation curve to be smaller
in magnitude than 1ts Walsh counterpart. This happens
as the parameter vectors are chosen throughout the param-
eter variation interval in the Fourier analysis while the
parameter vectors are chosen at the extremes in the Walsh
method.

Now let us examine a simple nonlinear model. Here
nonllnear means that the Taylor series expansion of the
output function with respect to the parameters 1s composed
of terms contalning second or higher derivatives of the

output function. Perhaps the most commonly used nonlinear
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model in chemistry 1s the single exponential.

£ =kyel (4.10)

This function can be expanded in 1ts Taylor seriles as

0 0
_ 0.0 kit 0 0, k7t 0
£(kqy,k,,t) = f(kl,k2,t) + e (k2-k2) + kote (kl-kl)
k0 ¢ 0 0
1 - -
+ te (k2 kg)(kl ky)
+ kotzek%.t(k -k0)2 + (4.11)
2 l l L] L] L ] L]

Although the expansion continues for an infinite num-
ber of terms, a linear sensitivity analysis would only

examine the filrst derivative terms.

kgeX1®t (4.12)

H O
n o

5 X =k
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These sensitivity coefficients are plotted in Figure
4,9 using k = -0.25 seconds and k = 1000.0 as the nominal
values.

From this sensitivity analysis we can say that the
best measurements for k2 are at small t, and the best
measurements for kl are at t = U4 seconds, the maximum of
the curve. However, if higher order terms are considered
note that they may be large and could affect the value of
the output function.

To use Walsh sensitivity analysis on this model a
range of parameter variation 1s needed. First, let us
examine 'local behavior'; behavior of the model when the
parameters are varied only slightly. In this case, for
small variations 1in the parameters, the Walsh coefficients
should be equivalent to the results of classical sensi-
tivity analysis. But for large variations in the value of
the parameters the Walsh method will give different results
as the higher derivatives become significant.

Again a parameter set must be chosen. Figure 4.10
shoﬁs the plot of the averaged value for the four simula-
tions of the exponential model with k2 = 1000 £ 100 and
k, = -0.25 + 0.025 seconds, 1l.e., 10% variation. Since
there are two parameters 1n this model, the curve in
Figure 4.10 1s the average of four different simulations
where each simulation has a unique combination of parameters.

The expansion coefficients are plotted in Figure 4.11.
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The Cl coeffilcient 1s that Walsh expansion coefficient
which, in the case of a continuous model, is an averaged
finite-difference measure of the first derivative of the
output function with respect to the first parameter, kl.
Similarly, the 02 coeffilcient is a finite-difference ap-
proximation to the first derivative of the output function
with respect to the second parameter, k,, Comparing
Figure 4,11 with Figure 4.9 we see that they are identi-
cal curves to withln a constant scallng factor.

To display the sensitivities of the parameters 1t 1is
more convenient to examine the partial variances shown in
Figure U4.12. As before, these plots also show the most
sensitivity to the second parameter at short times, and
to the first parameter at long times. This figure also
shows that there 1s very little coupling in the sensi-
tivity between the two parameters. This can be observed
by noting that the sum of the two partial variances (S1
+ S;) 1s nearly 1.0. This means that almost all of the
variance in the output function 1s assigned to S1 or S2.

The standard deviation curve for this analysis 1s
given in Figure 4.13. This curve, which looks like an
exponential decay, reflects the decay of the output func-
tion. It is tempting to claim that since the standard
deviation 1s only 5% of its maximum at 20 seconds that
statements about the sensitilvity of parameters at these

long times are meaningless. However, upon examining
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the dimensionless plot in Figure 4.14 we see that the
relative deviation, which 1s the standard deviation
divided by the average value, actually increases in time.
This means that as the magnitude of the output function
decreases the relative variation grows. Therefore, the
senslitivities of the parameters at long times can be
significant 1f the relative deviation, rather than the
absolute deviation, 1s nearly constant.

One advantage that the Walsh method has over linear
analysis 1s that 1t explicitly uses a range of variation
for the parameters. If this range of varilation is increased
(from 10% to 60%) and the mathematical model reanalyzed
it can be seen from Figure 4.15 that slightly different
behavior results. In Figure 4.15 the average value does
not decay away as fast as the earller analysis. Figure
4.16 shows that the coefficient curves have shifted the
maximum sensitivity of the decay constant, kl, to longer
times, 5 seconds, reflecting the effect of the nonlinear
behavior of the model. The sensitivity of the pre-exponen-
tial parameter, k2, also decays away more slowly. The
partial variances in Figure 4,17 also show the effect of
a larger range of varlatlon by shifting the crossover
point from 4 seconds to 6 seconds. Note that the nonlinear
effect of the model i1s to delay the sensitivity to kl
into longer times. However, the standard deviation curve,

Figure 4.18, and the relative deviation curve, Figure 4.19,
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have the same behavior as for the corresponding cases of
a small range of the parameters although the magnitudes
have changed.

Choosing an even larger range of variation for the

parameters of the model (k, = 1000 * 1000, k, = -0.25 ¢

1
0.25 (seconds)fl) results in the curves in Figures 4.20-
4,24, 1In this analysis the average value does not even'
decay away to zero! This is not typical behavior as

shown in the previous two analyses. This behavior 1s
caused by the particular sets of rate constants used in
this analysis. At 2.5 seconds two simulations have reached
theilr final values, and at 12 seconds the other two simu-
lations have reached completion. This is the danger en-
countered when the analysils uses only the extremes of the
parameter variatlion intervals. If the intervals are large
enough the behavior of the model at the extremes of the
parameter intervals may be completely different than its
behavior closer to the nominal value.

With the Walsh method we can examine the onset of
nonlinear behavior by expanding the range of analysis from
the nominal value. This 1s important, especilally for
models which are numerically solved so that the degree
of nonlinearity in the model solution i1s unknown.

When the analysis was repeated using the Fourier
method with the same set of nominal parameters and over
the same small range of variatlion, k = =-0.25 * 0.025

(seconds)'l, k2 = 1000 * 100, the same results as were

D —— -
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obtained for the average value of ths outp
as with linear and Walsh tschnigues {(Figure 4.25) The
expansion coefficients, Figure L4.26, have different ma
nitudes but the behavior is the same. The maximum of
the C coefficient occurs at the same fime point for both
the Walsh and Fourier methods.

The Fourler partial variances, Fizure 4.27, are also
identical to those of the small variation Walsh analysis.
There is one slight difference in the two partial vari-
ances at very early times. This is caused by the slightly
different parameter ranges used. The Fourier method used
a log-uniform transformation function which varied the
parameters over [-0.221, -0.227] and [1095, %05]}. How-

ever, within one second, the Walsh rartial wvariances and

(oY)

o

e

the Fourier partial variances, both normalized elr

vy =

»

respective total variances which are different (compare
Figure 4.13 with Fizure 4.28), reach identical values.

Consequently the Fourier gartial variances have the same

’_l.
[$Y)
(=]

},_l.

interpretation as 4id <he previocus Walsh rart variances.
For comparison purposes, the relative deviation curve
for the small variation Fourier analysis is plotted in
Figure 4.29. Note that it is always smaller than the cor-
responding Walsh curve, Figure U4.14. This reflects beth
the slightly restricted range cf parameter variation and

the increased number of simulations used in the Fourier

method.
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Figures 4.30-4.34 give the results of Fourier analysis
of the exponential model when a large range of variation of
the parameters 1is used, (kl = -0.25 ¢ .25 (seconds)-l,
ky = 1000 + 1000). This analysis reveals the nonlinear
aspects of the model. Figure 4.30 shows a slower averaged
decay of the output function than for the small range case.
The expansion coefficlents for the case of large variations,
Figure 4.31, have nearly the same behavior as those ob-
tained with the small variations (Figure 4.26). However,
the maximum value of C; coefficlent has shifted to longer
times, similar to the behavior of the Walsh C1 coefficient
shown in Figure U4.16, although the shift i1s not as great.
The large variation C, coefficient doesn't decay away as
fast as the small variation C2 coefficient does. Even
more striking are the partial variances plotted in Figure
4,32. The partial variance of kl, Sl’ reaches a maximum
at about 13 seconds and then slowly decays away. The
maximum 1s important since 1t selects a time region which
is optimal for the measurement of that parameter. Also
over this larger range of parameter space there 1s sig-
nificant coupling between the sensitivities of the two
parameters. This 1s shown in Figure 4.32 by the coupled
partial variance 81’2.

Coupled partial variances indicate the degree of linear
dependence between pairs of parameters. When a coupled

partial variance 1s large 1t is difficult to separate the
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effect of one parameter from that of thg other. Note
that because the partial variances and coupled partial
variances are relatlive measures of sensitivity, they must
be used in conjunction with the total variance to provide
an understanding of the sensitivity. In particular,
i1f the total variance 1s very small, there 1s little point
in carefully examining its components since they are Just
a partitioning of this very small total varlance into the
individual contributions.
In examining the exponential model it can be seen
that the Walsh method 1s equilvalent to the linear analysis
for small variatlions in the parameters. Its advantage
over linear analysis 1s that as the range of parameter
variation increases 1t also plcks up the nonlinear effects
in the model. The Fourler method 1s also similar to linear
analysis, in the 1limit of small variations of the param-
eters. However, for large variations 1n the parameters,
since 1t samples the whole of parameter space, it gives
correct results while the Walsh and linear methods fail.
The Fourier method requires more simulations to achieve
its results than does the Walsh method, for models with a
small number of parameters; i.e., fewer than seven. The
number of simulations required in Fouriler analysis is
heavily dependent on the order of accuracy of the fre-
quency set. For a 6th-order accurate set for 10 parameters

the Fourier method requires, at a minimum, 2843 simulations,
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whereas a U4th-order set requires only 411 simulations.
It should be noted that the Walsh method 1is exact for
discrete models and for 10 parameters requires only 1024
simulations.

By applying the Fourier method to the'kinetics of
simple chemical reactions we can further improve our
understanding of the interpretation of partial variances.
One of the simplest reaction schemes 1n chemical kinetics
is the unimolecular first-order decay of speciles A to

specles B.
A * B (4.13)

However, the mathematlical model for this reaction is the
exponential model which we have already examined. A
slightly more complicated model reaction has two coupled

first-order reactions, which may be written

k. k
A+ B #C (4.14)

Choosing k, = 0.1 & 0.01 (seconds)™! and k, = 0.01 #
0.001 (seconds)™! with A = 10000, B = C = 0 we are able
k
2

to simulate a reaction with a 'bottleneck' step, (B =+ C),
since kl >> ko,
Figure 4.35 displays the averaged concentrations for

this reaction. Application of linear sensitivity analysis
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to this model to examine the sensitivities of the B-
concentration would result in sensitivity coefficients
similar to the expansion coefficients shown in Figure U4.36.
Since the curves are not normalized they are difficult to
interpret. One might be tempted to say that since C1

1s at a maximum at 20 seconds measurements in this time
region are optimal for the determination of kl' Similarly
Cy has 1ts mast effect on the concentration of B at 90
seconds. Therefore measurements of B near 90 seconds would
pln down the k, rate constant.

If we examine the partial variances for the B-concentra-
tion we clearly get different results. From Figure 4.37
we see that measurements of the B-concentration before 10
seconds have elapsed and after 45 seconds will give ac-
curate estimates of kl and k2 respectively.

The sensitivity of the C-concentration in linear
analysis gives curves shown in Figure 4.38. Here we see
that, since the k, step is a bottleneck, we will have a
difficult time measuring kl because the effect on C from
k2 i1s so large. Only at short times are the sensitivities
of kl significant.

Figure 4.39 1is even more revealing. This plot of the
partial variances of the C-concentration clearly demon-
strates that k2 is the most important parameter in the
model. It also shows that k; contributes to the C-concen-

tration only at short times. Therefore to estimate kq
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from measurements of C we should take the measurements
at very short times. To estimate k2, measurements after
50 seconds are adequate.

Figure 4.40 and 4.41 show the standard deviation and
relative devliation curves, respectively, of the C-concen-
tration. From the relativg deviation curve we see that we
are varying the C-concentration only slightly. Therefore,
the Fourler expansion coefficlents are equivalent to the
linear sensitivity coefficients.

The basic difference in the ease of interpretation
of the partial variances over the expansion coefficilents
is that the partial varilances explicitly account for the
range of parameter varlation by beilng normalized by the
total varliance. The linear sensitivity coefficlents or
their equivalent, the expansion coefficients, do not ac-
count for the amount of variabillity introduced by varying
the parameters. This 1s a great weakness in linear analysis.

A common feature in chemical kinetics models is the
occurrence of a competing reaction. This 1s a reaction in
which two steps compete for the same reactant. Which
step predominates 1s dependent on the rate constants for
the two steps. A simple scheme for thils problem 1is

written

K
B S D (4.15)
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Here tThe final products are a mixture of C and D. The
ratio of C to D depends on the two rate constants k2

and k3. Since thls 1s a reaction problem often found in
chemical kinetics models a sensitivity analysils on this
scheme was done in order to determine the nature of the
partial variances.

Fourler Sensitivity Analysis was applied to this
scheme with k; = 0.1 2 0.01 seconds, k, = 0.01 + 0.001,
seconds, and k3 = 0.003 £ 0.00003 seconds with a log=-uni-
form transformation function to vary the rate constants
uniformly in log-space. A 6th-order frequency set was
used, [9, 15, 19], with 37 simulations.

The averaged concentrations of the four chemical
specles are shown in Figure 4,42, From this figure it
can be seen that the time range chosen covers virtually
all of the reaction. Since the concentration of species
B both grows and decays it is the most active. 1Inspection
of this model shows that k2 and k3 cannot be separated by
measuring only the concentration of B. 1In fact, only the
sum k, + k3 could be determined. As expected, Figure U4.43
shows that the sensitivity of B to the rate constants is
very similar to that of the coupled first-order model,
Figure U4.37, since B does not "know" which path it will
take and both paths are treated as a single sink. The
only difference between thls model and the coupled reaction

model, with respect to B, i1s that 10% of the sensitivity
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to the 'sink' parameter k, is given to k3. This small
sensitivity to k3 which 1s Just the ratio of the nominal
rate constants means that any measurements of B over the
whole time range even 1n conjunctlon with measurements of
C or D would be of 1little help in estimating k3 since the
sensitivity of B to k, 1s so large.

The partial varlances of the C concentration, Figure
4.44, are as expected for a.competing reaction. Here k2
is the most important rate constant for C. This 1s, of
course, expected as k2 controls the only path for the
production of the C concentration. Note however that k3
'accumulates' sensitivity over the time course of the
reactlon. This 1s interpreted as showing how k3 controls,
to a lesser extent than k2, the amount of C produced by
the end of the reaction. Hence to estimate k3 in this
model measurements of C near the end of the reaction are
required.

The partial variances of the D concentration, Figure
4,45, are subject to similar interpretations. During the
first 50 seconds of the reaction, the formation and initial
decay of the B concentration, the partial variances of D
exhlbit the same structures as those of the coupled scheme.
Here k3 controls the concentration of D, and the sensi-
tivity to kl gquickly decays away as B is created faster
than destroyed. In this case the sensitivity to thé rate

constant from the competing reaction, k,, accumulates
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faster and to a larger degree than k3 did in the partial
variance of C. This 1is because k2 controls a more rapid
step which removes B from the pool available to k3, thus
preventing the conversion of a larger amount of B into D.
It is then the nominal value of kK5, which 1s greater than
the nominal value of k3, which causes the sensi@ivity of k5
to accumulate faster over the same time range. Note that
thls model 1s simple enough to permit conclusions of this
type to be made by inspection. However, the verification
of these conclusions by sensitivity analysis lends confi-
dence to the treatment of more complex models.

In enzyme kilnetics the most commonly used model is

the Michaelis-Menten model. This model may be written

k

kq 3
E+ S<=>xS « E+ P (4.16)
k

2

Often one starts with an excess of Substrate, S, to enzyme,
E, in order to make a steady-state assumption on the con-

centration of ES. Thils results in a simplified rate equa-
tion for the change in substrate in time, often called the

'velocity' of the reaction (Fersht 1977).

'Vhax

Km + S

Q-IQ»
ctln
"

S(t=0) = Sq (4.17)
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Where V. = k3E0 and K = (k2 + k3)/kl. This equation
may be integrated to obtaln progress curves of substrate
versus time. If substrate 1is measured as a function of
time either the integrated equation or the expression for
the veloclty could be used to determine Km and Vhax'

To determine which equation, the integrated form or
the differential form, would be better sulted for esti-

mating Km and Vﬁa a Fourler sensitivity analysis was per-

b
formed. Figure 4.U46 shows the averaged values of substrate
for this analysis with Km = 11000 * 110 and vﬁax =50 ¢+ 5
and SO = 11000 * 110. The relative deviation curve given
in Figure U4.U47 shows that the substrate was only varied
over a small range by using these parameters.

Figure U4.U48 shows the partial variances of the sub-

strate. The first parameter, V

max? is the most important

parameter over this entlre time range with the second
parameter, Km’ being much less Important and the third
parameter, So, even less 1mportant.

For the velocity equation we get different results
as shown in Figure 4.49. Here at long times the Kn
parameter 1s twice as important as 1t was in the inte-
grated equation. Therefore to measure Km we should take
veloclty data at long times and fit to the velocity equa-

tion. If estimation of Vﬁa is our only concern then

X

use of the 1Integrated equation with measurements during

the initial phase of the reaction 1s sufficient. Note
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also that the use of the Michaelis-Menten model to estimate
the 1nitial concentration of substrate, SO’ requlres that

the other two parameters, Km and V. be previously known

max’
since the model is more sensitive to these parameters.
Repeating the analysis over a larger parameter range
(80% of the noﬁinal value) resulted in essentially the
same observaéions, Figures 4.50-4.52, S0 is still the
least sensitivity parameter as shown by the partial vari-
ances of the substrate, Figure 4.51. The velocity equa-
tion appears to be the more sensitive formulation of the
Michaells-Menten model. This 1s dramatically shown by the
partial variances in Figure 4.52. Vnax 1s the most im-
portant parameter in thils section of parameter space.
Even 1ts couplings with Km and Vmax are more Important than

Km or Vﬁax in the reglon where the reactlion has gone to

40% completion.



125

TO9POW US3UBK-STITOBYOTW 9Y3 UT UOTJBIJUSOUOD 93BIYISQNG PoFwvISAYy Gy 9and1yg

00°0

Iy

o%¥'0

09°0

08°0

00°t

00¢

*(uot3BIIBA $08)

(o8s) swiy

0sZ 00¢ oGl ool oS
1 — 1 — 1 b l — 1 — 1

L] — T — S — T — T —\ A
0s? 002 oSl oot 0s

SISAOUY A)ANISUDS J01IN04

(uonbIUDA §°Q) USIUBN—SI[ODYDIN

000

00

av'o0

09°0

080

00°L

(Os Aq papinip) ajoupsqns pabosany



126

*(uorgBIIBA %08)

T9pO| UDIUS-STTOBYOIW @Yl UT 93BI}SQNG JOJ SBOUBTJIBA [BI3JdBJ

Q0

1’0o

FALY

€0

+'0

S0

90

L0

g0

60

o't

00¢ -

(98s) swiy

1 | L ] L | L l 2 | 1 ]

0se 6074 0]+ } ool 0s 0

16y aand 1y

L4 gzé
. %9??:"5‘.?’1%:4.?01?: P

JOSSPsssat .
et ettt sttt sttt —Etststtttetetttessteeeeity A

¢s

P PP dadhdidhenad
Rvsreer Sy S 2 A a4

m o 0.6,’0-0...0.0.0.."‘

) PPPORPS RS 0

poSTo s e i

=

}-

T T T T . T " T . ! . !

0se 00¢ oSt ool 0s 0

SISAjouy A)AnISUSS JoLINOY

(uonplIDA—gQ Q) UBIUBN—SI[EDYDIN

00
1’0
¢0
€0
v¥'0
S0
90
L0
8'0
60

o't

D110

A

0140,

(aiospsqns) aou



127

*(uor3BIIBA

%08) TODPOW US3USK-STITOBYITIW 89U} UT A3TO0T8p JOJ S9OUBTIBA [BIFJIBI 2G'Y 9undig

00

rALY

€0

¥'0

S0

9°0

L0

80

60

(o9s) auwiy

0[0} 0Gse 00¢ 0StL oot 0S 0

L eveebeseeie 1 ) 1
7 hyj
- - S
- - €0 g
- - +'0 S
1 " 2

. w.

-] ({//fo . — G0 3
e —. ‘\‘\Q.Q:.Q\QQ.Q’ o )
B _ "‘M‘Qo.’o‘% - 90 \N
- , - o
: -0 §
] i <
- — 8'0 ~
- - 60

— v d L - L — L] “ T — L] ,- OQP
00¢ 0S¢ 00¢ ostL oot oS 0

SISAIDUY A)AnISUSS Jonoy

(uonblibA—g*0) usUSN—SI[EDYIIN



V. SENSITIVITY ANALYSIS OF SIMPLE
ENZYME KINETICS MODELS

Many enzyme kinetics models are composed of inter-
locked Michaelis-Menten models (Segel 1975).° These models
are proposed to explain kinetic behavior patterns which
the single Michaelis-Menten model alone is unable to do
(Segel 1975). This behavior is even defined as "non-
Michaelis-Menten" (Whitehead 1970). It was our desire to
examine models which presumably exhibited non-Michaelis-
Menten behavior patterns and were composed of linked
Michaelis-Menten models. In thls chapter we 1lnvestigate
four enzyme kinetics models, the irreversible Michaelis-
Menten model, the reversible Michaells-Menten model
(Michaells et al. 1913), the Ho-Frieden model (Ho 1976,
Bates & Frieden 1973), and the Ainslie, Shill, and Neet
model (Ainslie et al 1972). Of course, to fully understand
the linked Michaelis-Menten models we must filrst examine

the Michaelis-Menten model itself.

Michaelis-Menten Model

The simplest model used in enzyme kinetics 1is the ir-

reversible Michaelis-Menten model:

128
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w

E+S &= ES —8 E + P. (5.1)

In order to 1llustrate the utility of the partial variances
to evaluate the sensitlvities of concentrations to the

rate constants, we appllied the Fourier sensitivity analysis
method, FSAM, to thig simple model. Although the range

of rate constants used and the substrate and enzyme concen-
trations selected insure that steady-state conditions are
established very rapidly, the model was solved numeric-
ally without 1ncluding any steady-state or equilibrium
assumptions. Of course, 1in this situation, if one could
observe only the substrate or product concentrations, it
would be possible to determine only k3 and (k2 + k3)/k1
since the steady-state assumption yields [S] and [P]

in terms of these two "constants". We use here the time-
development of (E), (S), (ES), and (P) in terms of kq,

k2, and k3 in order to 1llustrate the method and permit
comparison with more complex models.

Examination of the range of values of k;, k2, and k3
tabulated (Fersht, 1977) for a varlety of enzyme reactions
which follow Michaells-Menten kinetics shows that most
lie within an interval of four orders of magnitude
centered on the nominal values listed in Table 1. Because

FSAM was designed to apply to situations with arbitrarily
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Table 5.1. Parameter Values for the Irreversible
Michaelis-Menten Model.
(o)
k1 Aki
0,,0
ko+k
k; 1.0 (uM sec) t 10%*° nominal K§°)= 2 _3.11000 uM
ko
1
k, lOu sec”? 10%2
ky 107 sec”! 102 1.1 M < K, < 1.1 %103 M
S, = 11,000 uM
(Assay Conditions)
E = 0.05 uM
o)
Table 5.2. Parameter Values for the Reversible Michaelis-

Menten Model.

o)
ky Ak,
k., 1.0 (uM sec)™t 10%2
1 0 10
k 10“ sec™! 10%2 1079 « Q=1 3. 0.1 < 107
2 -7 kO ko —_
kq 103 sec™?t 10%2 2 Ly
k, 1.0 (uM sec)™t 10%2 S, = 11,000 uM
E., = 0.05 uM
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large ranges 1n the rate constants, 1t was possible to
explore the sensltivities of the concentrations to the three
rate constants while each was allowed to vary independently
by up to four orders of magnitude. The rate constant rang
ranges and initial conditions given in Table 1 were used

in these simulations. The 1initial concentra?ions correspond
to "assay conditions" (SO »>Eqj). It is important to note

that the equilibrium constant K, = kl/k2 was not held

1
constant when the rate constants were varied. This per-
mitted exploration of the overall sensitivity of the

model to a range of maximum velocitles which covered four
orders of magnitude and a range of Michaelils constants
whilch spanned eight orders of magnitude. It would also

be possible to test a more restricted model by fixing the
equilibrium constant as 1s done later for more complex
models.

In Filgures 5.la and 5.1b we have plotted the average
concentrations, which are the concentrations summed over
all the different rate constant sets divided by the number
of simulations, and the standard deviations [square root
of the total variance defined in Equation (2.21) for the
irreversible Michaelis-Menten Model]. All these curves
are scaled to the percent of the total enzyme concentra-
tion EO for enzymatic specles and to the percent of the

initilal substrate concentration, SO’ for the product and

substrate. Two concentrations of the four are linearly
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Average concentrations and standard devia-
tions of the concentrations Michaelis-Menten

Models. The symbols represent: ¢, S; 0, P;
A, E; +, ES.

Figure 5.1.
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related by the mass balance equations. Hence only two
standard deviations, those of P and ES, are shown in
Figure 5.1b.

Figure 5.la shows that on the average the concentra-

tion of substrate is decreased by only 57% in 300 seconds.
However, the rapid growth of the ;tandard deviation curve
for substrate, shown in Figure 5.1b, indicates that a large
spread of—calculated concentrations would be rapidly
attalned for this range of rate constants. In fact, the
wilde range of concentrations of substrate becomes so pro-
nounced that a substantial number of simulations go to
completion after 20 seconds and another group after 110
seconds. This returns the enzyme concentration to its
initial value for these slmulations, and results 1n ap-
parent breaks in the curves of the total standard devia-
tion for E and ES. The origin of thls effect will be more
fully discussed in connection with the partial variances.
In Figure 5.2a we have plotted the sensitivity of
the product concentration to the uncertalnties in the
three rate constants as a function of time. The values of
the partial varilances Sl, SZ’ 83 indicate that for this
range of rate constants, the product concentration depends
most strongly on the value of k3, the rate constant for
the formation of product from the ES-complex. Next in
importance 1s the reverse step with rate constant Ko,

Thus the value of k3 1s the most important in determining
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Figure 5.2. Partial variance plots for the Michaelis-
Menten Models. A number represents the
partial variance for that rate constant.
Coupled partial variances are represented

S ; in (b) by

¥, S ; + S 5y X, S 5 ii’?c) by ¥, S ;

1,3° 7 P1,20 %2 02,38 > 01,3}

+, S2’3.

as follows: in (a) by ¥,
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the product concentration. This 1s not surprising since

k3 controls how fast substrate is converted into product,

while the bindlng step ylelds a steady state ES concentra-
tion essentially instantaneously on the time scale of

Figure 5.2a. As time increases, the specific k3 value

chosen has an even greater effect on the accumulated

product concentration so the relative importance of k3
increases with time.

Figure 5.2a also indicates that the product concentra-
tion 1s sensitive to the coupling between k1 and k3,
especlally at early times. This indicates that the ac-
curate determination of k3, for example, from the early
portion of a single progress curve would be hampered by
coupling to kl, resulting in significantly larger mar-
ginal deviations of the rate constant than would be ob-
tained by using the entire progress curve. It must be
emphasized that the entire analysis descrilbed here applies
to full time-course behavior rather than only initial rate
behavior. If one wished to study the sensitivity of
initial rates to substrate concentration for example,

a different procedure would be used.

The analysis shows that if the concentration of ES
were measurable, i1t would be most sensitive to kl at short
times as indicated by Figure 5.2b. This reflects the
fact that the formation of ES i1s the dominant initial

step. However, the sensitivity to k3 grows rapldly as
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substrate is depleted. There 1s also strong coupling
between kl and k3, implying that the errors in determin-
ing these rate constants from the time-dependence of the
concentration of ES would be strongly correlated. As
was found for the product sensitivities, ES 1s not very
sensitive to the value of k2 over the range examined.
Figure 5.2b shows apparent discontinuities in the
sensitivity of the ES concentration to the rate constants.
One might be tempted to attribute this to numerical errors
or instabilitles in the calculation, but this 1s not the
case. When the ranges over which the rate constants can
vary are drastically reduced the discontinuities disappear.
The discontinuous curves (obtained with these time steps)
originate because of the large ranges avallable to the
three rate constants. Within a narrow time span an ap-
preciable number of simulation runs reach completion.
When thils occurs the ES complex dilsappears and the concen-
tration of E bullds up for these simulations. Thls com-
pletely eliminates the sensitlvity of ES to the rate
constants for this subset of simulations. The result
is a serles of apparent breaks in the partial variances.
It 1s possible to eliminate these breaks in either of two
ways. As 1ndicated above, the ranges of the rate con-
stants can be restricted so that the number of simulations
which reach completion is insignificant. Alternatively,

the initial substrate to enzyme ratio can be made so
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large that the simulations do not reach completion even
for the most favorable combination of rate constants.
Nelther of these alternatives 1s entirely satisfactory
since they both impose restrictions on the model.

In order to be certaln that the origin of the great-
est sensitivity of product concentration to k3 and least
sensitivity to k2 is not Jjust the large ranges permitted
for the rate constants, sensitivity analyses were per-
formed over several reduced ranges about the same nominal
values. The general results were the same except that,
as noted above, the apparent breaks in the sensitivity of
ES to the rate constants disappeared.

Under the assay conditions modeled here, the concentra-
tion of the enzyme-substrate complex, ES, assumes a steady-
state value at very short times, as shown in Figure 5.1la.
However, even under steady-state conditions the concentra-
tion of the complex changes with time as substrate is
used up. This 1s reflected in sensitivities which also
change with time. The growlng sensitivity to k3 means
that in a full time-course analysis, this rate constant
would be relatively more accurately determined by following
the progress curve for an extended period of time than
could the other rate constants or combinations of these

rate constants.
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Reversible Michaelis-Menten Model

Only slightly more complex than the irreversible
Michaelis-Menten model 1s the reversible model in which
equilibrium 1s ultimately reached. In testing this model,
the same nominal rate constants and ranges were used as

for the irreversible case but a reverse step was added:

k, ks
E + Se=== ES === E + P . (5.2)
k k)

Table 5.2 gives the nomlinal rate constants, their ranges,
the iniltial conditions, and the frequency set used. Fig-
ures 5.1c and 5.14 show the average concentrations and
standard deviations for the reversible case.

As shown 1in Figure 5.2c, the first 40 seconds gives
approximately the same product sensitivities as the ir-
reversible model. The reverse step k; only begins to
become important at later times as the concentration of
product becomes large enough to bind to the enzyme.

Initially the sum of the product partial varilances
and the higher partial varlance which couples kl and k3
accounts for 93% of the total variance. During approxi-
mately the first 100 seconds, this sum decays to 85%
and remains constant. The other 15% of the sensitivity

is spread over couplings among the parameters but no
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individual coupling 1s large enough to appear on the
graph.

The major difference between the irreversible model
and the reversible model 1s seen 1In the sensitivity of
ES to the rate constants. In the irreversible case the
sensitivity to k3 grows, while in the reversible model
k1 remains most important. Apparently the reverse step
(ky) can serve to stabilize the concentration of ES as
the reaction approaches equilibrium. Since substrate 1is
present 1n excess, the concentration of the complex
continues to be dominated by sensitivity to kl. As with
the 1rreversible case, apparent breaks in the sensitivity
of ES to the rate constants are observed (see Figure 5.24).
These are again caused by a subset of the simulations

which 1n thils case reach their equilibrium values.

Models with Slow Conformational Changes

Except for a (usually undetectable) lag in product
formation caused by storage of substrate as the ES com-
plex, the Michaelis-Menten model 1is not capable of des-
cribing bursts or lags. Nor can it lead to allosteric
behavior since the phenomenon of allosterism as defined
(Segel, 1975; Fersht, 1977) in terms of deviations of
the reaction veloclty from the predictions of the

Michaelis-Menten model. In order to examlne these
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phenomena 1t 1s necessary to devise more complex models.

The most common interpretations (Monod et al., 1965;
Koshland et al., 1966) of allosteric behavior involve multi-
subunit enzymes in which interactions among the subunits
make the addition of another substrate molecule easler or
more difficu1§ than those which were previously bound.
These models are intrinsically thermodynamic in nature
since they refer to interactions which afcht binding
constants. It was suggested some time ago (Whitehead,
1970) that allosterism could arise without subunit inter-
actlons as a natural consequence of kinetic models which
involved slow steps such as conformational changes. Such
models have also been prooosed to describe bursts and lags
in product production.

In thls section we apply sensitivity analysis to a
model first examined by Ainslie, Shill and Neet (1972)
using steady-state methods. Our sensitivity analysis
of the model showed that similar behavior can be obtained
with less complex models. Therefore, these simpler models

are also examined 1n some detail.

Model of Ainslie, Shill and Neet

In 1972, Ainslle et al. proposed an enzyme model

which they studied by using steady-state techniques
coupled to slow conformatlional changes. They showed

that appropriate cholces of the 16 rate constants could
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be made so that the model displayed either bursts or lags
in product production. They also showed that the varia-
tion of the final steady-state velocity with substrate
concentration could be made to exhibit allosterism, leading
to behavior similar to either positive or negative co-
operativity depending upon the cholce of rate constants.
Becéuse of the wide variations 1n behavior exhibited by'
this model, brought about merely by changing the values
of the rate constants, we felt that thls model would pro-
vide an excellent test of the methods of sensitivity
analyslis.

This model, which we refer to as the Ainslie model,

is described by the followlng scheme:

1 16 14
E+ S=—ES=— EP&—=E + P
2 15 13
10+49 3¢+ ¥4
11 5 7
E*+S.——‘E*S£6E*P;-;"E*+P (5.3)
12 8

The numbering sequence for the 16 rate constants is also

given in scheme (14) above. Equilibrium constants,

Ky» K3, Kg... are defined as kl/kz’ k3/ku, kg, kg, etc.
With 1ts 16 rate constants, this model 1s complex



144

enough to defy intultive understanding of its detailed
dynamic behavior. By applying SAM to thils model, with
the nominal rate constants and ranges already tested by
Ainslle, et al., we can determine the important pathways
which lead to bursts and lags. The analysls also showed
that the model need not be this complex to yleld the same
general behavior. .

Ainslie, et al. separated the rate constants into two
sets: those which gave lags in product growth and those
which gave bursts. Each of these sets was also divided
into two groups which showed allosteric behavior similar
to positive cooperatlivity and negative cooperativity,
respectively. Hill plots (H111l, 1925; Segel, 1975;
Fersht, 1977) were used to classify the cooperativity.
Negative cooperatlvity gilves Hill coefficlents less than
one while positive cooperativity leads to Hill coefficilents
greater than one.

In thils sensitivity analysis 1t was only necessary
to use two groups of rate constant ranges corresponding
respectively to bursts and lags 1n order to cover the
entlre range studied by Alnslie, et al. In order to
decrease the complexity of the problem, simplify the
interpretation, and include the thermodynamic constraints
demanded by the presence of mechanistic loops, we maln-
tained all of the equilibrium constants at fixed values

in each of the two sets studied. Thls corresponds
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approximately to the choices made by Ainslie, et al.
who used constant values for most of the equilibrium
constants while varylng the rate constants. This simpli-
fication reduces the number of independent parameters to
elght but does not alter the general behavior of the model.
The eight differential equations which describe the
time-dependence of the concentrations of the elght species
in this scheme can be reduced to six coupled non-linear
differential equations by using the two algebraic equa-
tions of mass balance. The nominal values of the rate
constants, the values of the equilibrium constants used,
and the 1nitial conditions are given for the lag and
burst sets in Table 5.3, while the frequency sets and
computer data are given in Table 5.4. The ranges allowed
for each rate constant were 10*1 times. the nominal value.
In Figure 5.3 the average concentrations and the
standard deviations of the two sensitivity analysis runs
are displayed. In the lag set the product growth 1s
initially slow but it rapidly increases reaching 27% of
its equilibrium value after 120 seconds. In contrast, the
product growth of the burst set starts out fast and then
slows down, reaching only 11% of 1ts equilibrium value
after 120 seconds. This leads to a large range of con-
centrations 1n the lag set, but to a restricted set 1in
the burst case. In both cases the less active free

enzyme, E, 1s a minor svecies.
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Table 5.3. Parameter Values? for the Ainslie Model.

(Lag Set) (Burst Set)
0 1) o (1)
1 ki Keq ki Keq
1 10 uMs)~l  107%(um)-l 10. (uMs)~1  o.1(um)-l
3 1072 s71 3.0 1073 s-1 1072
5 104 g°1 3.0 105 §-1 1.0
7 103 s 30.0 (u)~1 103 §°1 100.0 (yM)~1
9 1071 571 10 1072 a-1 10.0
11 10.0 (uMs)~1 0.3 (u)~? 10 (uMs)~t 1072 (M)~
13 1.0 (uMs)™t 1073 10 (uMs)™t 1073 M
15 10 st 112.7 103 s~1 100
E, = 0.5 umP S, = 4000.0 wM  E_ = 0,05 uM Sy = 4000.0uM
[P] [P]
K, = 27 = 7o Km = 1.0 = e
T [S]eq T ISqu

aThe range of the rate constants was lotl times the nominal
value, ki.

PInitial distribution: 90% E, 10% E*.
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AINSLIE MODEL
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Average concentrations and the standard
deviations of the concentrations for the
Ainslie models. The symbols represent:

0, S;A, E: +, E¥s: @, P; ¥, ES: X, E*P.
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Careful examlnation of the partial variances shown
in Figure 5.4 shows that the lag mechanism operates by
shuttling the ES complex to the E*S complex which then
rapidly forms product. The top (E+S + E+P) cycle has
slow turnover relative to the bottom (E¥ + S » E¥ + P)
cycle and the important bridge between them is the iso-
merization step of the enzyme-substrate complex. The
small amount of E¥* present initilally starts turning over
substrate so that the substrate concentration 1s most
sensitive to k7, the product formation rate constant in
the bottom cycle. As the reaction proceeds the total
concentratlion of enzyme 1n the bottom cycle is 1ncreased
by the conversion of ES to E*¥S; this increases the sensi-
tivity to k3 and to the binding step E¥ + S » E*S (kll).
This shift to the bottom cycle 1s verified by the rapid
decay of substrate sensitlvity to k15‘

The coupled partial variances of Figure 5.4b rein-
force the above concluslons. The rapid decay in time of
the coupled partial varilance 85’7 is conslistent with the
growing importance of the depletion of the substrate
concentration via the bottom cycle. Furthermore, the
isomerization step which increases the total active enzyme
concentration and thus increases the importance of the kll
step results in the rapid growth in time of the coupled
partial variance 87,11.

Turning to the sensitivity of the enzyme concentration,
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r
Partial variance plots for the Ainslie lag

model. A number represents the partial

variance for the rate constant. Other par-
tial variances are represented by: B, Sll’
D, 813; F, 815.
are represented as follows: 1in (b) by +,

Coupled partial variances

S5,75 ¥» 87,113 In (e) by 4, 813455 ¥,
81’15; in (d) by *, 85,7; in (e) by *,

S13,15°
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displayed in Figure 5.4c, we note that there 1s negli-
glble sensitivity to kl, since the binding step reaches
equilibrium so rapidly on the time scale of this display
that variations in kl cannot change the concentration of E.

(Recall that the equilibrium constant K, is fixed.) On

1
the other hand, the relative amounts of enzyme present

as E, ES and EP strongly depend on the walues of the

other rate constants k13 and kl5 in the top cycle at

early times when the product concentration 1s low. The
large initial values of the partial varilances 813 and 815
and the coupled partial variance 813,15 support thls asser-
tion.

The sensitivity to the top cycle rate constants 1s
then lost to k3 as the inactive enzyme isomerizes to
E*S. Since 90% of the enzyme 1is initially in the inactive
form, this transfer to E*S changes the E concentration
significantly. All the other complexes also display this
feature of a rapid rise to a large sensitivity to the
isomerization rate k3.

The sensitivity plots for E¥S and E*P in Figures 5.l4e
and 5.4f respectively, are consistent with the interpre-
tation of the other sensitivity plots. Once again the
sensitivity to the binding step (kll) for the bottom
cycle 1s negligible due to the rapidity of this step.

The steps with rate constants k5 and k7 are important

initially but the k3 i1somerization step grows to major
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importance. The similarity of the E¥S and E¥P sensitivi-
ties suggests that the inclusion of both intermediate com-
plexes may not be necessary in the formulatlion of a
mechanism that leads to lag behavior.

The burst mechanism operates by forming product
initially via the fast bottom cycle. The rate constants
are such that, as time progresses, enzyme 1s shunted from
the lower cycle to the upper cycle primarily through the
enzyme-substrate complex isomerization step. Since the
top cycle 1s relatively slow, the turnover of substrate
slows after the initial period, hence the burst behavior.
The bottom E* cycle remains the major route for substrate
turnover as shown by the large sensitivity to k7 in Figure

5.5a. Though the partial variance S, does drop from 388%

7
to 60% of the total variance at 115 seconds while 815
grows somewhat, 1t 1is k7 that dominates the substrate
sensitivity even more than in the lag case.

In notable contrast to the lag analysis, the enzyme
sensitivity displayed 1n Figure 5.5b does involve kl.
However, examination of the total variance, that 1s the
sum of all the partial and coupled partial variances,
reveals that it 1s very small. Since the partial var-
iances are all defined relative to this total varilance

we obtaln non-negligible values for the partial varilances

even though, as Just noted, the total variance 1is
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negligible, Thus we may conclude that the enzyme concen-
tration in the burst region of parameter space 1s not sig-
nificantly affected by the rate constants. Of course, if
the equilibrium constants were allowed éo vary the results
could be greatly altered.

The sensitivity plots of the intermediates, ES, E¥*S
. and E¥P, shown in Figures 5.5c¢, 5.5d and 5.5e, respec-
tively, are dominated by the sensitivity to the 1someriza-
tion of ES to E¥S. At very short times the top and bottom
cycle rates have some sensitivity, but the total variance
1s very small here.

From the above detailed analysils a simple rationale
of the operation of this model with regard to burst and
lag behavior can be formulated. The 1nitial relative
concentrations of E and E*¥ are determined by K9. It is
the relatively slow transformation of E*S to ES and vice-
versa brought about by substrate binding which gives
rise to the bursts and lags. The formation of E¥S and
ES from E* and E, respectively, is rapld compared with
the rate of interconversion of these forms. Because of
the importance of the step with rate constants k3 and ky
it 1s not surprising that the sensitivity to k3 (fixing k3
also determines ku through the constant value of the
equilibrium constant, K3) provides an important clue to
the behavlior of the model. If we wish to focus on bursts

and lags in product production, then the most informative
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sensitivities will be those which relate product (or sub-
strate) concentration to the rate constants.

With this information we can now formulate a reduced
model whilch exhibits essentially thé same sensitivities

as the complete Ainslie model:

E+SZTESZTEPZTEG+P

I

E¥ + ST E¥S T E* + P

Of course to obtain the proper very long time behavior it
would be necessary to 1lncorporate the E ¥ E*¥ step in the
model to return E* to E. However, the E Z E* step plays
no significant role in the behavior of the model in the
reglon of parameter space and the time range explored
here. As long as the rate constant sets are chosen such
that a pool of enzyme is bound up in the ES intermediate
which 1s then slowly converted to E¥S, the lag behavior
will result. For burst behavior one needs more E¥*
present initially to cycle through the bottom than the
isomerization ES ¥ E*S would yield at equilibrium. Since
the reduced model can exhibit these features, bursts and
lags willl result from thls model.

Furthermore, the mechanistic steps by which EP is
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creatgd and destroyed are of secondary importance over
this reglon of rate constant space. This suggests the

possibility of still further reduction of the mecdel.

Frieden Model

A model proposed by Bates and Frieden (1970) to account
for time-lags 1n enzyme reactlions and also studied by Ho

(1976) may be represented by the scheme:

1 7
E + S ES E+P
2 8
afte
5 9
E* + S E*S E¥ + P. (5.4)
6 10

In order to permit comparison of this model with that
of Ainslie et al. (1972) the same rate constants were used
for equivalent steps. To evaluate k7, Kg, k9, and klO’

a steady-state approximation was applied to A[EP]/dt and
d[E*P]/dt. This related the product release rate and
equilibrium constants of the Frieden model to those of

the Ainslie model by the followlng equations, in which

the primed rate constants refer to the Frieden model,
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k- ¢k k, -k
16714 | 15713
K} = =23 k§ = ph2-td
wr o= ooil A (5.5)

H k —,

These rate constants,'the other nominal rate constants, the
equilibrium constants, and the initial conditions for the
burst and lag runs of the Frieden model are given 1in Table
5.5, while the frequency sets and computer data are given
in Table 5.4. As with the Ainslie model, the equilibrium
constants were fixed and the rate constant ranges were
1o‘+'1 times the nominal values.

Figure 5.6 shows the average concentrations and the
standard deviations of the Frieden model. Both the lag
and burst cases are similar to those of the Ainslie model.
It is interesting to note that there is more "effective"
enzyme in the Frieden model since there are fewer 1nter-
medliate complexes.

The substrate sensitivity shown in Figure 5.7a 1is
largest for k9, the rate constant for release of product
from the active form. Inltially, the corresponding upper
cycle rate constant k7 for the 1lnactive form contributes
about 20% to the rate of product formation but this

decreases to less than 5% as the isomerization step
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Table 5.5. Parameter Values for the Frieden Model.

a
LAG Bursta
o (o)
1 ki keq ki eq
110 M s)™Y 1072 )™t 10.0 (uM )7t 1071 (um)t
3 1072 s71 1.0 3 x 1074 s71 1072
5 10 (uM s)T 1071 M 10 (uM s)™1 1072
7 30 st 3.1 x 103 yM 10 s~! 10.0 uM
-1 2 3 -1
9 750 s 3.1xx 10° yM 9.9 x 103 s 100 yM
11 1072 571 1071 1073 s 10°1
_ b
S, = 4000 uM
(P] [P]
e e
Kn = 31 = E'T'g Ky = 1.0 = ool
T STeq T [5T.,
aThe range of rate constants was lotl times the nominal
value ki'

OInitial distribution: 90% E, 10% E*.
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Figure 5.6. Average concentrations and the standard
deviations of the concentrations of the
Frieden models. The symbols represent:

®, S; &, E; +, E¥3;O, P; X, E¥; A, ES.
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proceeds and the 1somerization rate constant, k3, becomes
more important.

The partial varilances shown in Figure 5.7b are par-
ticularly revealing. The coupling between k3 and k9
grows and decays during the time range of the isomerica-
tion of ES to E*S. As this occurs the rate constant, kg,
for the binding of substrate to active enzyme grows in
importance as does its coupling with k9. By examining
these time-developments, one can gain a rather clear pic-
ture of the lag behavior as product production shifts
from the upper((slow) cycle to the lower (fast) cycle.

These dynamic effects are also mirrored in the sensi-
tivitles to the various enzyme forms. For example, the
enzyme sensitivity shown 1in Figures 5.7c and 5.7d shifts
with time from the E-cycle to the E* cycle. This shift
1s responslble for the lag behavior. Note the rapid
growth and decay of the sensitivity of E to the coupling
between kl and k7, the slightly slower growth and decay
of 1ts sensitivity to k3, and the slower growth in its
sensitivity to k5 and k9 and to the coupling between k5
and kg. These plots show how the dependence of the
concentration of free less active.enzyme on the various,
rate constants changes with time.

The major route for the formation of E*S is the iso-
merization step ES # E¥S. This is shown in Figure 5.7c

by the dominance of the sensitivity of the E*S concentration



Figure 5.7.
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Partial variance plots for the Frieden lag
model. A number represents the partial
variance for that rate constant. Coupled
partial variances are represented as fol-
lows: in (b) by +, Sg,g9; in (c) by +,

85’9; *, 81’7.
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to the 1somerization rate constant k3. The growth in
sensitivity to k3 is accompanled by a rapid decrease in
the sensitivity to k5. At longer times, some sensitivity
to k5 and k9 accumulates.

The burst set of rate constants gives a reversal of
this behavior pattern as shown in Figure 5.8. Again, the’
E* cycle initially controls the rate of product production,
For this range of rate and equilibrium constants, however,
E*S 1s converted ﬁo ES which 1s less active with the result
that the overall rate of product production 1s decreased.

These simulations clearly show that the simpler Frleden
scheme can give both bursts and lags. In fact, the in-
sensitivity to kll and k12 shows that an even simpler
model without the E ¥ E* step would also describe the time-

behavior of these systems, provided one started with an

equilibrium distribution of E and E*. This 1is because in
the models studied here, the direct interconversion of E
and E* is slow enough that it cannot compete with the

ES Zz E*S 1somerizatilon.

Since one of the "bonuses" of the Ainslie model was
1ts abllity to describe allosteric behavior without the
need for cooperative subunits 1t was of interest to see
whether the simpler Frileden model could also glve ap-
parent cooperativity. 1In order to do this, two simula-
tions were performed with the Frieden model which were

designed to yield "initial velocities" at various substrate
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levels under steady-state conditions. In these simula-
tions, the rate constants k8 and klO’ which yileld overall
reversibllity in the Frieden model, were set equal to zero.
After steady-state had been achleved, the reaction veloclty
dP/dt was evaluated as a function of substrate concentra-
tion. This 1s equivalent to the evaluation of 1nitial
steady~-state velocities appfopriate to separate assays.

;t was posslble in this way to find sets of rate
constants and concentrations which gave Hill coefficients
which vary from 0.125 (rate constant set 1 in Table 5.6)
to 2.645 (rate constant set 2). These results mimic the
behavior usually attributed to negative and positive co-
operativity, respectively, and show that even a model as
simple as that of Frleden can be made, with a sultable
cholce of rate constants and initial conditions, to exhibit

allosteric behavior.

Summary

Model reduction is an important goal of sensitivity
analysls. By applying sensitivity analysis to complex
mechanistic schemes, one 1s able to determine which steps
in a reaction are essential to the behavior being examined
and which are not; perhaps permitting a simple model to
be formed as a subset of the more complex scheme.

Another major aim of sensitivity analysis 1s to

determine which rate constants are most likely to be
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Table 5.6. Rate Constants for Allosteric Test.

Set #1 Set #2
ky = 100 (uM s)”? ky = 10 (uM s)~t
k, = 1000 s7% ky = 1.0 577
ky = 1074 §71 ky =3 x 1074 571
ky = 1072 571 ky = 3 x 1072 s7%
kg = 102 s71 ke = 10 57
ke = 104 71 ke = 1071 571
k, = 10 s k, = 10 571
kg = 0 kg = 0
kg = 104 571 kg = 9900 571
kip = 0 kKijg =0
kyp = 1072 (uM s)7t Ky, = 1073 (um s)71
ky, = 107+ 57t ky, = 1072 s71
S, = 15000 uM S = 4000 uM
E_ = 0.05 UM E, = 0.05 uM
time range of test
(1200 sec to 1750 sec) (85 sec to 145 sec)

substrate decay over this time range
(5550 uM to 3150 uM) (2440 to 2160) uM
Hill coefficient=0.125 Hill coefficient=2.645

correlation coefficient correlation coefficient
p = .999 P = 0.997
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measurable and which have so little effect on the concen-
tration-time curves that they cannot be accurately de-
termined. For example, by following the full time course
of product growth for a system which follows the Frileden
mechanism and exhibits a lag one might expect, if the
equilibrium constants are known, to be able to determine
k9, k7; k3 and kS' However, k3 and k9 would be strongly
coupled as would k5 and k9. The rate constant k7 would
be measurable primarily from the behavior at short times
but this time period contains essentially no information
about k3 and k5.

Our primary motilvation for implementing these tech-
niques was to ultimately apply them to the study of
transients in enzyme kinetlcs. Under conditions where
one can follow the production and disappearance of inter-
mediates, i1t should be much easler to distinguish among
various mechanisms. The application of sensitivity analysis
should provide very useful iInformation about the sensitivity
of the varlous concentrations to the rate constants so that
the latter can be arranged 1n order of thelr accessibility

of measurement.



VI. SENSITIVITY ANALYSIS OF A
TRYPTOPHANASE KINETIC MODEL

Recently the mechanism of Tryptophanase catalysis
has been under investigation in our laboratories. Of
particular interest is the variation of the ultra-violet-
visible absorbance spectrum of Tryptophanase with pH.
As the pH 1s changed the enzyme apparently changes 1ts
conformation which results in changes 1in the spectral
shape (June et al. 1979). The model proposed (June et al.
1980) for this is

BY By By’ "By
EYH+ K§H E, + g
kgy 1 Kyg
Es
Scheme 1

170
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which is composed of three interconvertible manifolds
designated B, y, and §. During 1979-1980, two types of
incremental pH change experiments were done to probe the
absorbance changes which accompany a change in pH. Incre-
mental pH jump experiments were done to examine the con-
version of the low pH form of the enzyme to the high pH
form. The reverse reaction was also tested with incre-
mental pH drop experiments. The results of the rapid
changes (t < 10 seconds) were analyzed in terms of a re-
duced model using only the g8 and y manifolds since the
growth or decay of form § 1s slow. Thils simplification,
along with the restriction that the protonation-deprotona-
tion reactlions occur within the mixing time of the stopped-
flow experiment allowed the mechanlism to be reduced to an
apparent first order scheme with the apparent first order

rate constant, k', and a model output function AAob The

s
equations used to fit the data (in a least squares sense)
are given in Table 6.1. The program KINFITY4 (Dye, Nicely,
1971) was used (June, Dye, Suelter 1980) to obtain the
parameters and their standard deviations, shown in Table
6.2. To clarify these results and to propose further
experiments a sensitivity analysis of the model was under-
taken.

The sensitivity analysis of this model can be separated
into two regions, the 1lnvestigation of the general sensi-

tivity of the model with respect to the parameters, and



172

Table 6.1. Parameters for Tryptophanase Model

= 1!
Aobs A, + (8A)exp(-k't)

4
AA, + BA K /(H)

AAobs =

1+ Ka/(H+)

AA_ =
T s El}—{-—-][x + mhH 3
KBHKBY BH °
o +
o +
[1 + Kg J[Kgy + (H) ]
K = Kgyll + Kp.
a 1 + KBHKBY/KYH
H 4t H +
ki _ kg Kg * ng(H ) . kBY + kBYKBH/(H )y
+ +
KgyKgy[1 + (H )/KYH] 1+ Kpu/(H)
. H _
Thermodynamic constraints require that KBY = KBHKBY/KYH
= . H _  H ,¢H
and, of course kYB kBY/KBy’ and kYB kBY/KBY
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Table 6.2. Best-fit Parameters Based Upon Scheme 1 and
Thelr Marginal Standard Deviation Estimates.
Standard Deviation
Parameters # Value Value Percent
o]

(egBe)3ump 0.080 cm™t .001 1.
(e,82) ' 0.01 =1 0008 4

8Pt arop .0175 cm . .
K 2 2.0x10"19 M 4x10710 o9

BH
KBY 3 39 i i 20
KYH 4 1.7x10 M .3x10 18
-1
KBY 5 8.3 sec .6 18
K?Y 6 0.0297 sec™t .0045 15
K, 7.7x107° M .4x1072 5
-1
. .012 6
KYB 0.212 sec
ng 0.045 sec™t .010 20
H -1

kYB 0.66 sec .0l 6
Table 6.3. Legend for Figures 6.5-6.11.
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the investigation of the actual "fitted" parameters along
with thelr estimated standard deviations. This procedure
should permit one to see in which regions the measurements
might provide better estimates of the parameters. The
investigation of the general sensitivity of the model was
done by varylng each parameter over a fixed relative range.
A 10% variation, i.e., within 10% of the nominal values,
was chosen for this technique. Since each parameter is
varied over an equal range the sensitivity of the model to
its parameters enables us to rank order them in terms

of their relative effects on the output function.

A second sensitivity analysis with the parameters
varied only over the estimated standard deviations (as
determined by KINFITY4) was performed. This type of
analysis indicates which regions should be studied in
order to refine the estimates of the parameters,

Sensitivity analysis for each different experiment
was done, one for the pH drop and one for the pH Jjump.
Each sensitivity analysis had two output functions, k'
and AAobs' Six parameters were varied in each analysis
using 99 simulations with a fourth-order accurate Fouriler
frequency set. The value of [H+]o was set equal to the
initial gt concentration used in each experiment. For
the pH drop [H+]o = 10-8'7 M and for the pH jump [H+]O =
10770 m,

Figure 6.1 shows that the average value of AAobs for
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the pH drop analysils grows as the pH decreases from 8,7
to 6.4. Both the 10% parameter variation and the standard

deviation variation give the same averaged nominal value
for AAobs' Similarly, Figure 6.2 shows the average value

of AAob for the pH jump analysis. Since the range of

s
pH covered in the pH jump analysis 1s more symmetric about
the apparent pKa value of 8.1 than 1s the pH drop analysis,
Figure 6.} i1s more like a complete titration curve than

is Figure 6.2.

Figure 6.3 displays the averaged value of k' as a

function of pH. The same averaged values were obtained

for both the pH drop and the pH jump analysis as well as

for both sets of parameter varlations. Thls is, of course,

expected from the functional form of k' which contains
only rate constants, equlilibrium constants and [H+].

The partiai variances of AA for the standard devia-

obs
tion (std. dev.) pH jump sensitivity analysis are shown

in Figure 6.&. This output function 1s only sensitive

to 8682, KBH’ and KB Note that there is no large varia-

Y.
tion of sensitivity in the pH region 7.0-8.5. The sensi-

tivities only differ at the ends of the pH region.

Figure 6.5 gives the partial varilances for AAobs where

the range of variation was 10%. This plot shows that the
most important parameter 1s GBBE. Note that the sensitivity

to € Bg is much lower in Figure 6.%, where the standard

B
deviation variation was used. Since the model 1s so
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sensitive to this parameter June et al. (1980) were able
to fit 1t to less than 5% error. Both Figure 6.% and
Figure 6.5 show that the measurement of 6832 can be more
accurately made at high pH values in pH jump experiments.
The essentially equal sensitivities to KBH and KBY reflect
the fact that the amplitudes are most sensitive to

K, = KBH KBY as indicated by the computed standard devia-
tion of K, in Table 6.2.

Figure 6.6 1s the standard deviation analysis for the

apparent first order rate constant k'. Here at low pH,
KBY 1s the most important parameter. At higher pH, say
9, kBY and KBH are the most important parameters. The

partlal variances for the 10% parameter variation, Figure
6.7, are not much different than those derived from the
fitted standard deviation analysis. The overall shapes
of the sensitivity curves are the same but the magnitude
differ slightly. The maximum sensitivities of the param-
eters are grouped in two regions, KBH and kBY are large
at a pH of 9, while the other parameters reach their peak
in the pH range of 7.0-7.4. The sensitivity to ng in
the pH jump analysis 1is significant only at low pH values
and neither the amplitude nor the rate constants in the
pH jump analysis show appreclable sensitivity to KYH'
Figures 6.3 and 6.3 are the partial variances of the

parameters in the pH drop model. The amplitude param-

eter 8882 is the most sensitive in the 10% deviation
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analysis, but since it was accurately measured, the stan-
dard deviation analysis shows that the equilibrium constant
KBY is the largest. There are only two different regions
of sensitivity in these analysis, a high pH set (KBY

> € Bo > K,y) and a low pH set (K > K >> ¢
t BH By gH

o

Figures 6.10 and 6.11 show the partial variances of
the k' output function in the pH drop analysis. Here,
.for the first time, some sensitivity to KYH appears at low
pH values,

From the partial variance plots for the Tryptophanase
model we see that the parameters can be grouped according
to the pH dependence of thelr effect on the cutput func-
tions. KBH’ KBY’ and eBBz determine the value of AAobs
with reasonably uniform sensitivities at pH values below
9 when the standard deviations are used. Since 6882
is py far ‘the most important parameter, allowing the same
relative deviation for it as for the other parameters
causes 1t to take most of the partial variance, from 40%
at low pH values to over 95% at higher pH values. By
restricting the ranges to the standard deviation values,

KBH and KB become the domlnant parameters except at high

Y
pH values.

Partial variances obtained when k' 1s the output func-

tion show that K dominates at pH wvalues around 7 but

By
becomes third in importance above pH = 8.2. The parameters

kBY and KBH become the most important at high pH values
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and maintain substantial sensitivity down to pH values

of about 7.4. Only at pH values below about 7.6 do the
sensitivities to kgy and KYH begin to become important.
This reflects the fact that these parameters refer to a

low pH pathway for the interconversion of the 8 and y mani-
folds. To determine ng and KYH with greater precision,
the measurements should be extended to lower pH values 1if
possible.

The sensitivities of k' to its parameters does not
change much when the parameters are allowed to vary over
equal relative intervals instead of over the estimated
standard deviations. However, examination of Table 6.2
shows that the relative standard deviations for the most
important parameters are not very different. Therefore,

a change from +10% relative deviation to *g is nearly the
same as a change from *10% on all parameters to *20% on
all parameters so that we would nct exrect much difference.

The sensitivity analysis z2prlied here suggests what
experiments should bte done tc further refine the parameters.
Incremental pH jump experiments tc higher pH values than
the 1limit of 9.3 used to date would probably result in

better estimates of kBY and KBH

while pH drop experiments

to lower final pH values than 2.7 wculd greatly improve

j5¢ .
the determination of ng arnd X :

- YI{'
This application of sensitivity analysis to the

vy

Tryptophanase model was made 27ter the model had been
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developed and the parameters fit to the data. The marginal
standard deviatlion estimates given by KINFIT4 for all of
the parameters gave us an indication of their reliability.
However, sensitivity analysils, not only confirmed these
ideas, but also clearly delineated the regions of pH in
which the absorbance changes and rate constants are most
affected by particular parameters. Thus the major goals

of sensitivity analysis, to rank the parameters in order

of thelr importance to the output functions, and to assist
in the design of future experiments, were both realized

in this example.



VII. FUTURE WORK AND DEVELOPMENT

The previous chapters examined the theory and applica-
tions of Sensitivity Analysis. This chapter reviews those
areas which should be profitable fields of research for
further development of sensitivity analysis.

The most useful theoretical development would be in
the relationship between the Walsh and Fourier methods.
Christenson (1952) has laid the groundwork for this problem.
He noted that Walsh functions may be generalized to sets of
orthogonal functions with more than two values. This is
done by relating the Walsh function to powers of (exp(2iw/N),
where the two-value Walsh functions are obtained by letting
N = 2, thereby giving powers of (-1). The generalized
Walsh function may then take on N different values.

Thilis relatlonship suggests that the N-point discrete
Fourler transform may be totally developed from a dis-
crete algebrailc viewpoint without recourse to the continuous
Fourier transform. If thils were done, a clearer understand-
ing of the errors involved 1n aliasing and choice of fre-
quency sets should result. This would also lead to a more
direct relationship between the linear sensitivity co-
efficients (Taylor serles) and the Fourler expansion co-

efficients.

189
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Choice of the frequency sets for sensitivity analysis
has always been a limitation. In the Fourier method we
may do sensitivity analysis with up to 50 parameters since
theif bth order accurate frequency sets are known. How-
ever 6th order or higher accurate frequency sets are not
known for an arbitrary number of.parameters. It appears
to be a difficult number - theoretic problem to even find
a higher-order accurate set. However, finding higher-
order accurate sets for arbitrary number of parameters
would enable the computation of more accurate Fourier
sensitivity analyses.

In Walsh analysis an arbitrary number of parameters
may be evaluated. All the frequencies required for exact
analysis are known (21). Unfortunately, the largest re-
quired frequency for a p-parameter set is 2p-1. This
requires 2° simulations to compute the oP-1 .oefficient.
For large values of p thilis becomes impractical. Analogous
to the Fourier method we can develop approximate Walsh
frequency sets to a required order of accuracy. Appendix
9 has an approximate Walsh frequency set which is U4th-
order accurate. With this set of frequenciles we can do
approximate Walsh sensitivity analysis with up to 21

12 21

parameters using only 2 simulations instead of 2

which would be required for exact analysis.
This technique will work for any set of approximate

frequencies, and with the apparent relationship of Fourier
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and Walsh expansions we should be able to connect the ap-
proximate frequency sets from the two methods with each
other. Unfortunately, an algorithm for finding approximate
Walsh frequency sets has not been discovered, although

1t 1s easler to invent approximate Walsh sets than it 1is

to invent approximate Fourier sets. The set given in Ap-
pendix 9 was chosen in an intuiltive fashion. Obviously
more work 1s required to develop a systematic method of
finding approximate Walsh frequency sets for any desired
accuracy. This should also clear up the problem of find-
ing approximate Fourler frequency sets of arbitrary accuracy.

Another useful area of research is the connectlon of
statistics and sensitivity analysis. Sensitivity analysis
measures the effect on the output function of variations in
the parameters. Statistics deals with the reverse problem,
the effect on the parameters caused by variations, or er-
rors, 1in the output function. Research in the relation-
ships between sensitivity analysis and statistics would
unite the more theoretical aspects of sensitivity analysis
with the real world measurements used in statistics.

One direct approach is to "feed" the "answers" obtained
from a least squares analysis of data directly into the
sensitivity analysls programs. The least squares program
delivers "best" estimates of the parameters and standard
deviation estimates for each parameter. By using these

values as the nominal parameters along with the standard
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deviaticn as the range of variation a sensitivity analyis
may be done on this model. From the partial variance curves
qbtained in this way one may determine whether the output
function is sensitive to that particular parameter space.
If there are maxima in the partial variance curves then one
should make more measurements in that region to pin down the
"best" value for the parameter in a least squares sense.
Such an épproach should be useful in both model reduction
and experimental design.

The computer programs are well-designed. However,
by examining the timing data printed by the programs it
seems likely that improvement in the matrix transrose
algorithm (SUBROUTINE TRANP) would decrease the amount
of required computer time. Other than this, there are no
new, faster algorithms (that I know of) which should be
substituted for the ones presently used. However the
programs were written to facilitate the replacement of
sub-programs if better ones are develorpred.

One other place that the programs could be modified
is in SUBROUTINE MCDEL. It may cause a significant de-
crease in computer time if models written in terms of
differential equations are recast into an integral equa-
tion form. Integral equations are usually more stable
numerically than differential equations. This type of
change could result in a decrease of crders of magnitude

in the computer time spent computing the required simulations.



193

Applications of both the Fourier and Walsh sensitivity
analysis should be stralghtforward. Interpretation.of
the results will, of course, depend on the problem. It
1s hoped that the applications and interpretations pre-
sented here are sufficiently detalled to enable interested
researchers to perform sensitivity analysis on their own
models. The insight avallable from sensitivity analysis

1s only realized after the model has been analyzed.



APPENDICES



APPENDIX 1

RELATIONSHIP OF FOURIER COEFFICIENTS TO
TAYLOR SERIES COEFFICIENTS

If a function can be exvanded in a Taylor series over
an interval, it may also be expanded in terms of orthogonal
polynomials over an equivalent interval. This may be

written

where Pj(x) is an arbitrary orthogonal volynomial and

(3)
(xq)
evaluated at x = Xq -

f is the jth derivative of f(x) with respect to 'x'
By exploiting the orthogonality of the PJ(x) polynomials
we can relate the aJ expansion coefficients with the Taylor

series coefficients, 1l.e.,

) - f
ay = jgo fw(ix) Pj(x) Pk(x)dx = JEO fN(X)'—%%Ql (x—xO)JPk(x)dx
' (1)
© f(xo)
= Jzo 77 wjk

194
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where

Wiy = Sw(x) (x-xo)JPk(x)dx

From this equation we see that an orthogonal polynomial
coefficient, Qs is a welghted sum of all derivatives of the
function evaluated at ghe nominal value, Xg. This implies
that an orthogonal exvansion coefficient 1s composed of the
'effects' of all the derivatives of the function.

We can specialize thils result to the orthogonal series
of sines and cosines. Expanding f(x) in terms of frequencies

we obtailn

© a
f(x) = I {aj cos(jx) + bj sin(Jx)} + 79
J=1 ;
where
a, = % ffﬁ f(x) cos(kx) dx
= L T
b ==/ _, f(x) sin(kx) dx

Substituting in the Taylor series expansion for f£(x) we

obtain
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a) = % [m. (f(xg) + £'(xy) (x-xg) + ...)cos(kx) dx
by = % L: (£(xqy) + £1(xg) (x=x9) + ...)sin(kx) dx

Let y = X=Xg then

1 T|’+XO 1 P
a, = F J:_"+xo (flxg) + £'(xg)y + 5 £"(xg)y"+...)cos(y+x )dy
. § /o (F(x2) + £' (X )y + %= £"(x)vy2)sin(y+x.)d
K -7 C-mHx 0 0/ T3 0’Y yr&o/4Ay

Using the expansion for sin(a+B8) and cos (a+B8) we obtain

1 o
a, = = f_“+xo[f(xo)cos(y)cos(xo) - f(xo)sin(y)sin(xo)]dx

1 TT+XO : '

* T Lpex, L1 (xg) () (cos(y)eos (xg))-£" gy (sin(y)sin(xg) ) Iax+. ..

1 T+Xx
b, = F'Ln+x0[f(xo)Sin(y)cos(xo) + £(xy)cos(y)sin(x,yldx

1 %o .

+ 2 Lo [E1(xy)y sin(yleos(xp)+f' (x4)y cos(y)sin(xyldx+...

0
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Setting the nominal value, Xy to zero, we may reduce

equations as follows
I R N S DS
a, = jEO gl f(O) y~Y cos(kv)dy
T 2i+1 23+1
+ % Lm fgo% ) y<d sin (ky) dy

<(y2) (283 )y (cos(ky))> + <y2dtLe QI+ Doy n k)
. (0) (0)

|
e 8

Similarly bk may be reduced to

2j+lf(2j+l)

(0) sin(ky)> = <y23f(2j)

by = E <y (0) cos (ky)>

This clearly shows that the Fourier coefficients are com-

posed of all derlvatives of the expansion function.
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APPENDIX 2
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Figure A.l1l. Histogram of Log-uniform Distribution Func-
tion.

This function is given by:

Parameter - nominal *exp(A% sin_l(sin(sq))

where here

)1/2

nominal (PHI/PLO

1/2 Rn(PHIPLO).
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Figure A.2. Histogram of uniform distribution function.
This function is given by:

Parameter = nominal + Asin‘l(sin(sq)).

where here

nominal

1
§(PHI+P )

LO

1
5(Pyr-Pro)



200

8 1 1 1 1
2
>
(&)
=
!
Dol
cow
wl
oz
(TR
[T
N
1.0  -0.5 0.5 1.0

0.0
PARAMETER

Figure A.3. Histogram of Gaussian-type distribution func-
tion.

This function is given by:

1 + sin(sq)

= 2
Parameter = 5 log [l — sin(sq)J
where
_ 100
Pur~PLo

such that 90% of the samples are between PHI and PLO'
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Figure A.4., Histogram plot of sin-transformation function.

This function is given by
Parameter = nominal + Asin(sq)

where here

PHI LO

nominal

P _-
A = _HIT LO
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APPENDIX 3

This procedure follows the original Fast Fourier
Transform, the Cooley-Tukey algorithm. In fact, some Fast
Fourier Transform programs may be converted directly into
Walsh transforms by simply setting all the trignometric
values to *1 and deleting the complex part of the trans-
formation (since the Walsh transform is real).

The factorization of the transform relies on the
lexicographic ordering of the sampled function values.
Writing out the transformiusing binary representation for

the time, t = (t1t2""’tp)’ and for the sequency, m =

(ml,m2,...,mp)
N-1
= 1 f(t )WALH(n,t )
Coy C(mlmg...mp) = X E n n
n=0
p
z tim.
l 1 l i:l 1
= I r . r (et t,...t) (-1) (A-1)
= - - l 2 p
mq 0 m2 0) mp-o

The calculation of the transform is carried out in a
series of stages. There is one stage for each power of
two in the number of points, 2P = N. The rfirst stage 1is

to derive a partial transformation series, X from the

1’
input series, f(t), by expanding the first sum in the equa-

tion (ignoring the scaling factor for now).
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tpmp
(-1) f(tl...tp)

I
™

Xl(t1t2...tp_lmp)

m
D
F(ty.nnty_10) + (1) Prley ...t

p-1

1)

Now we pass through the data, either adding or subtracting

adjacent function values. The second stage is constructed

from the first by expanding the second sum. Then

Xz(tltz...tp_zmp_lmp) z Xl(tl...tp_lmp)

This procedure is continued until all P-stages have
been computed. The values of the last stage are the de-
sired Walsh coefficients.

C = C(mlm2'°'mp) = Xp(mlmZ...m )

m p

This is an extremely fast transform on a computer as only

additions and subtractions are required.
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APPENDIX 4
PARSEVAL'S FORMULA FOR WALSH FUNCTIONS

The total variance of a function may be expressed as
the sum of 1ts squared Walsh expansion coefficients. This

may be easily seen by computing the variance for an arbi-
trary function. The defining equation for variance is

2 = <(f(£))2> - <f(x)>2

9Total

where <f(x)> is defined as the average of the multidimen-
X <(f(x)2>

sional function f(x) with x = (X;,X5,...%y)
is then the average of the sauare of the function f(x).

Expanding f(x) in a finite multidimensional Walsh

series we obtain the following series:

£ (x) 1 1 1 c
X) = z z z )
= = _ ~ K k,y.o.k it
kl-O k2—0 kp-O 172 p 1=1
2]
= I C T WALH (k. ,x,)
X k 1=1 i1
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To compute the average of f(x) we need only compute

the average of the series expansion

C, T WALH (k,,x,) dx

<f(x)>=1[72¢ K
xk K171

This equation must now be integrated over each dimen-
sion, Xy - However, since each dimension has only two
values the multidimensional integral is equivalent to a
multidimensional sum over these two values. This results

in the following equation

1 1 1 1 D
<f(x)> = = I I ... T (£ Cp T WALH(k,x,))
2P x,=0 x,=0 x =0k = 1=l
D
1 1 1 1 o]
==—73C { z £ (M WALH(ky,x,))}

L ..
P K x 20" Tx,70 x;=0 1=l

N

Substituting in the algebraic definition of the one

digit Walsh function results in

. 1 1 2ky%y
<f(x)> = =z Ce { Z ..oz ((-1) }
2% k = xp=0 xl=0
P k.,Xx
=L 5 C, { T (1+ (-1) 1y
2Pk £ i=1
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The term 1n brackets 1s zero if any of the ki's are

nonzero. Hence 1t functions as a Kronecker delta and we

may simplify the eaquation accordingly

This shows that the average of an arbitrary function is

the Co coefficients of 1ts Walsh expansion.

The computation of <(f(£))2> is straightforward. First

expressing the squaré of the function as a Cartesian product.

WALH(k )

B
X
5 3°%;

WALH(k, ,x.)
1 i1>71 j

which upon substitution of the definition of the Walsh

function results in:

(£(x))° =

I o1
I

This equation may be integrated over each dimension, X4
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i(ki+ki)xi
<(£(x)% =szrz C Cp, (-1)
x k k'
IZD(k k!)
+ X
. (k) +J )xy 1= 1 1771
==1I I CCn,{ I ... ¢ [(1+(-1) ) ((-1) }
Pk £ £ x =0 x.=0 .
£ 2 o) 2
D (k,+k!')x
=Lz L CpCpr T (1+(-1) 1 i)}
P kk = = 1=l

The term in brackets acts as a Kronecker delta, requiring

k = k'. Hence the equation 1s now easily reduced
<exN®> =L g C, Cp % 28, L

2Pk k' = £ i=1 1°%4
1 D

=—=—13I £ C_¢C 278
oP k k' k "k I_C_,E'

= 1 (c)?
E -

giving a sum of the saquared coefficients.
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Combining the two results we may directly write the

equation for the varlance solely in terms of the expansion

coefficients:
2 _ 2 _ 2 2 = 2
Opotal = <(F(X))™> - <f(x)> = 12{ Cl‘. - Ch0...0 E'CE

where the I' 1s a summation over all k except the 00...0
K
sequency term.
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APPENDIX 5
THE CALCULATION OF WALSH PARTIAL VARIANCES

A partial variance 1s defined as the variance, or
dispersion, in one dimension of a multidimensional function

0. = <(f*(xl))2> - <f*(xl)>2

2
1
where f*(xl) = <f(x1,x2,x3,...,xn)>, the multidimensional
function averaged over all dimensions except the first.
oi is called the partial variance of variable, or parameter,
xl.

If f(xl,...,xn) is expanded in a multidimensional finite
Walsh series with two points along each axis, then ki

and X4 may be represented in binary by one digit.

1 1 n
f(Xq,X~7...X_) = L r C M WALH(k,,x,)
12X e Xy =0 e =0 ky.ooky g 10%4
n
n
L k.X
1 1 j=1 +1
= I . I C (-1)
k=0 k=0 f1°-Ky
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The average of the function with respect to XoseeeXp

is the sum of all those values divided by the number of

samples
* = <
f (xl) f(xl"'xn)>x2...xn
n
.1 1 1 1 L%
= N1 T ee I [ £ . z Ck Lk (-1) ]
2 x2=0 xn~0 kl-o k_=0 1 n
Switching summations:
n
;1 1 1 1 oK
= =T ) . z [ ¢ z Ck " (=1)"" ]
2 kl=0 kn=0 Xn=0 x2=0 1 n

expanding the term in brackets:
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n
. T k,x
1 k P s £
T (1+(-1) 1)
0 x.=0

1 1 Kj¥; 1 Ky
I E oo (1) VT e b3
k=0 k=0 F1°¥n 1=2

: 1y Tl § o %1
k,00. .0

i

Now calculate the second moment, <f*(xl)2>, using the

function f*(xl) and squaring the summing over Xq.

1 1 k.x 1 k!x
ety =L 1 T e, DY Do, enth
X.=0 k.=0 17 k!=0 1°°
1 1 1
1}
- L. .. L =
ky 0 kl 0 1 1 x,=0
1 1 k. +k!
1 1 71
== I r C C (1 + (-1) )
2 1. =0 k=0 klo 0 "k'0..0
1 1
= ¢c? + C2
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To calculate the second required term, we need <f'*(x1)>X
1

1 1 k.x
<TE(x))>y = % z L Cyxo..00-1) b
1 x.=0 k.=0 X70-:
1 1
1 k
- % I C g o (14 (1) Ly
k=0 $10-
= Co..0

Hence

Subtracting the first moment from the second, we obtain

the deslred partlal variance
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APPENDIX 6

DERIVATION OF WALSH COUPLED PARTIAL

VARIANCE FORMULAS

To measure the effect of coupled parameters, say "&"
coupled together at a time, we calculate a coupled partial

variance.

2 2
= * -
91,2,..,0 = THgyxp)7> = <f(x)>,

where f#*(x,,,..x,) 1s the function f(x) averaged over the

variables Xxg.q,..X,, and <f(§)>i is the average of the multi-

dimensional function over all the variables XqeeXp
Expand f(xl..xn) in an n-dimensional finite Walsh
series with two points along each axis. In this case

X4 and ki may be represented by a one digit binary number.

C

[R=Tle}

f(xl—x WALH (ki.xi)

) z
"k =

The average of f(x) 1s the C, term as previously shown

<f(£)> = CO
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So we need only calculate the term <f*(x1..xl)2>.

First calculating f*(xl..xz)

* =
£ (xl..xz) <f(xl..xn)>

x“_l..xn
1 : : {(r ¢ T wALH(k )}
= X
n-% N e k .- 1°71
2 x2+1'0 x,=0 k i=1
n
1 1 1 151kixi
= I ck -2 T . r (‘l)
k =2 X410 x =0
2
1 n ky 151kixi
=1 C ——[ 1T (1+(-1) 7)1 (-1)
kK <2 i=g+1
%
1§1kixi
=3 C,_ (-1)" 8 8 .
K K Kp4120°Kg 15,0 k_,0
9
( Y= 3 I ( )iElkixi 5 C (-1
£*(x X = . -1 = -

We must now square this function f*(xl...xz) and average

it over xl...xl.

2 2
T k.x T n
£ ( JE*¥(x...%x,) = T £ CLy Coy (-1)F°1 ' i(-1)1=1

1%1






L
s o, 1 1 I ety )Xy
<f*(xl° 'xz > = '—2' Z .. z {Z Z Ck*c *(-1) }
2* x,=0 x,=0 k* n* £ .
1 2 - =
Rearranging the summatilons
2 k,n, -
2 l = i1
<f¥(x,..X,)7> = I C 4 C e {= T (1 + (-1) )}
1772 k* n* LS
2
= I z C * C Il §
k* n* £ 0% 4oy Pyky
1 1
2 2
ke X ky=0  k,=0 ky..k,0..0

Substituting the appropriate expressions for the two

moments we obtain the 2th coupled partial varilance

where £' 1s a summation of all k* vectors except the one
Kk*
equal to 0.
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APPENDIX 7

RELATIONSHIP BETWEEN LINEARLY DEPENDENT EQUATIONS
AND THEIR FOURIER COEFFICIENTS

In chemical kinetics mass balance equations often allow
us to substitute an algebraic equation for a differential
one. These mass balance equations are linear and in enzyme

kinetics they are of the form:

where the Xi are the different types of enzyme-containing
intermediates, and the vy is the number of enzyme molecules
in specie Xi’

Given N-1 "Xi" expansions in fourier series, the fourier
coefficients of the Nth specles may be calculated. Using
these fourier coefficients one can calculate the partial
varlances of the Nth specie.

This can be seen by inserting the N-1 fourler expansions

into the mass balance equation
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-1 NED

EA = 2 J[ z ar cosLX + b(J)sinLX] + viXi

N M
+ pX v, [ Z aéj)cosLX + b(J)sinLX]
g=1+1 9L

Solve f‘orAX1

N-1 M
= - L [Z VK{ z aéK)cosLX + béK)sinLX} - Eo]
Vi K=1 L=0

el
(]

M N-1 —v N=1 =-v

={z (f — aéK))cosLX +(z( K)b(K))sinLX} - E,
L=0 K=1 Vi k=1 Vi

M

= T alcosLX + bl!sinLX

Hence the fourier coefficients of Xi are

N-1 -
ar = 1 —K (K _ g
0~ gaq V1 O 0
a;r = NEI K a(K)

L™ gay v L
bt = p UK LK)

L K=1 \’i L
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APPENDIX 8

SENSITIVITY ANALYSIS PROGRAMS

The use of the Sensitivity Analysis Programs at Michigan
State University 1s a straightforward task. If the mathema-
tical model 1i1s composed of ordinary differential equations
or algebraic equations, no modifications to the programs are
necessary. The equations only have to be coded into FORTRAN
66. After this is done, one has to decide: What kind of an
analysis is desired (Walsh or Fourier), the parameters’
nominal values and range of variation, the transformaticn
function to be used, and the time points of interest. This
data 1s read by the program SENANAL which does the regquired
simulations. A second program, TRANS, reads the output from
SENANAL, TAPE3, and computes the expansion coefficients and
partial varlances, both single and coupled. Since a Sensi-
tivity Aralysis may generate a large amount of data, depending
on the number of output functions, parameters, and time points,
an optional plotting program, PLTSEN, 1is provided. This rro-
gram reads the output from TRANS, TAPE9, and plots four sets
of curves for each output function. PLTSEN plots the average
value of the output function, the single partial variances,

the expansion coefficients, and the relative deviation.
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The followlng cards execute the programs SENANAL, TRANS,
AND PLTSEN.

PNC CARD

JOB CARD

PW CARD
ATTACH,MAIN,SENANALBINARYOPT2.
FTN,I=INPUT,B=SUB.

LOAD,MAIN.

LOAD,SUB.

EXECUTE.

RETURN,LGO.

10. REWIND,TAPE3.

11. ATTACH,TBIN,TRANSFORMBINARYOPT2.
12. LOAD,TBIN.

13. EXECUTE.

14. CATALOG,TAPES,SENSITIVITYANALYSISFILE,RP=30.
15. ATTACH,PLT,PLTSENBINARYOPT2.

16. RETURN,LGO.

17. REWIND,TAPE9.

18. PLT.

20. (789)

O OOVl W
e o o o s e o e o

SUBROUTINE MODEL (TIN, TOUT, YIN, NFUNC, TSTART)
COMMON /PARA/ P(50)

This is a subroutine which on input has TIN as the
inZtial value at which the output functlons have values
(there are NFUNC output functions, YIN(1l) is the first output
function). TSTART is optional and tells MODEL when it is
starting a new parameter vector (IF (TSTART .EQ. TIN) ). The
common block /PARA/ contains the parameters to be varied
in the model.

On output from MODEL, the output functions, sometimes
called object functions, have their values at 'TOUT', the

time on returning from MODEL.
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Mcte that this subrcoutine must change its
FORTRAN code for each different mathematical
model, but not for parameter variations.

(789)

Data cards for program SENANAL- see the comment cards in

SUBROUTINE READIN. |

(789)

Data cards for program PLTSENMN, see the comment cards in the

program PLTSEN

(789)

(6789)

The somewhat difficult part is to force SUBRONUTINE
MODEL to solve for the output functions given a parameter
set, the initial values of the output functions and the time
at which the solution is desired. The application to
algebraic equations is straightforward., However, solving
differential equations is more difficult. The use of the
EPISODE package (Hindemarsh, 1977) for solving ordinary
differential equations is r=scommended and is a part of the
SENANAL package. These subprograms are extensively docu-

mented internally with comment cards.
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Program SENANAL

PROGRAM SENANAL(INPUT=65,0UTPUT=65,TAPE1=INPUT , TAPE2=0UTPUT,
+ TAPE3=513)
C*

c*

c* PROGRAM SENANAL IS THE DRIVER PROGRAM OF A SUITE OF CODES

c* WHICH PREFORMS SENSITIVITY ANALYSIS ON A MODEL. SENANAL

c* READS INPUT AND BASED ON THAT INPUT CHOSES WALSH SENSITIVITY
c* ANALYSIS METHOD OR FOURIER SENSITIVITY ANALYSIS METHOD. IT THEN

c* PROCEDES TO SOLVE THE MODEL EQUATIONS OVER THE DESIRED
c* TIME POINTS WITH THE NECESSARY PAPAMETERS. EACH

c* PARAMETER VECTOR WHICH IS TO BE SOLVED IS CALLED A SIMULATION., *
c* SENANAL SOLVES THE SIMULATIONS BY FIRST CREATING THE PARAMETER *
c* VECTOR AND THEN SOLVING THE MODEL EQUATIONS OVER ALL THE DESIRED*
c* TIME POINTS. THE MODEL SOLUTIONS ( OBJECT FUNCTIONS ) ARE

c* WRITTEN OUT TO TAPE3 AT EACH TIME POINT.

c*

c* AFTER A SIMULATION IS COMPLETED, SENANAL CREATES ANOTHER
c* PARAMETER VECTOR AND SOLVES THE NEXT SIMULATION. THIS IS

c* REPEATED UNTIL ALL THE NECESSARY SIMULATIONS HAVE BEEN SOLVED.
o

C* VARIABLES

2% % x5 %

o

c* BEGIN(NFUNC) = THE INITIAL CONDITIONS, OR EQUIVALENTLY

c* (REAL) THE VALUES OF THE OBJECT FUNCTIONS AT TSTART.
c*

c*

c* IACCUR = ORDER OF ACCURACY OF THE FREQUENCY SET
c* (INTEGER)

C"'

C*

c* IOMEGA = O IF FOURIER 4TH ORDER SET IS TO BE USED

c* (INTEGER) 1 IF SPECIAL FREQUENCY SET IS TO BE USED

c* -1 IF STANDARD WALSH FREQUENCY SET IS TO BE USED
c<l>

C* . IMETH = METHOD FLAG FOR SENSITIVITY ANALYSIS; = 1 FOR FOURIER
c* (INTEGER) ANALYSIS, = 2 FOR WALSH ANALYSIS.

C‘.'

c* ITRANS = FLAG FOR TYPE OF TRANSFORMATION FUNCTION

c* (INTEGER) SEE SUBROUTINE PARAM FOR DETAILS.

cl

c* IW(NPARA) = AN ARRAY CONTAINING THE FREQUENCY SET TO BE USED IN
c* (INTEGER) THE S. A. RUN.

c* IF 'IOMEGA' .EQ. 1, THIS ARRAY MUST BE READ IN FROM
c* CARDS. OTHERWISE THE FREQUENCY SETS ARE CREATED

%k &k k& k¥ ok %k k& & ok %k k ok k k¥ k ok k¥ kk %k k Xk &k k%X &
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Program SENANAL, CONT'D.

c* INTERNALLY. *
C* »
c* NFUNC = NUMBER OF OBJECT FUNCTIONS WHICH WILL BE SAVED *
c* (INTEGER) AT EACH TIME POINT. :
C’
c* NLABEL(NFUNC) = THE NAMES (LABELS) OF THE OBJECT FUNCTIONS hd
c* NLABEL(1) SHOULD BE THE NAME OF THE FIRST *
c* OBJECT FUNCTION, ETC. *
c* *
c* NPARA = NUMBER OF PARAMETERS TO VARY *
c* (INTEGER) *
c* »
c* NSIMUL = NUMBER OF SIMULATIONS »
c* (INTEGER) »
c* »
c* PHI(NPARA) = MAXIMUM VALUES OF THE PARAMETERS( OR ONE SIGMA MAX)*®
c* (REAL) *
c* »
c* PLO(NPARA) = MINIMUM VALUES OF THE PARAMETERS( OR ONE SIGMA MIN)*
c* (REAL) *
c* »
c* TIME(TNPTS) = ARRAY CONTAINS THE TIME POINTS AT WHICH THE *
c* (REAL) OUTPUT FUNCTIONS ARE TO BE SAVED AND THE L
c* SENSITIVITY ANALYZED. *
c* »
c® TSTART = INITIAL TIME POINT, SO THERE ARE NO S. A. VALUES SAVED *
c* (REAL) AT THIS POINT *
(03 »
c* TITLE(8) = A ONE CARD TITLE FOR S. A. RUN *
c* (INTEGER) (WRITTEN IN 8A10 FORMAT ) :
C’
c* TNPTS = NUMBER OF TIME POINTS »
c* (INTEGER) *
c* ) »
c* YIN(NFUNC) = AN ARRAY OF LENGTH NFUNC CONTAINING ON *
c* (REAL) INPUT TO SUBROUTINE MODEL THE VALUES OF *
c* OBJECT FUNCTIONS AT TIN AND UPON OUTPUT FROM MODEL *
c* YIN( ) CONTAINS THE VALUES OF THE OBJECT FUNCTIONS *
Rk AT TOUT. ' *
ce »
cH *
ce »
c* »
C* ERROR CODES *
c* »
c* STOP "R1" OR STOP 1: IF IOMEGA WAS UNACCEPTABLE,EITHER NOT READ *
c* CORRECTLY OR ABS(IOMEGA) .GT. 1 *
c* »
c* STOP "R2" OR STOP 2: IMETH WAS UNACCEPTABLE (.LT.1 .OR. .GT. 2) *
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Program SENANAL, CONT'D.

STOP 3: TNPTS WAS TOO LARGE OR TOO SMALL (0,150)

STOP 4: ITRANS WAS OUTSIDE DEFINED RANGE (1,5)

X k k %

STOP "R4" OR STOP 5: NFUNC HAS A VALUE OUTSIDE THE DEFINED RANGE*

( 1,40) ’

STOP "R5" OR STOP 6: NSIMUL HAS A VALUE OUTSIDE THE DEFINED
RANGE ( .GE. 1)

STOP 7: PHI(J) .LE. PLO(J), THIS COULD CAUSE A DIVIDE
BY ZERO IN SUBROUTINE PARAM.

STOP 10: IW(J) .LE. ZERO, FREQUENCIES MUST BE .GE. 1
STOP "R3": NPARA .LT. {1 NUMBER OF PARAMETERS MUST .GE. 1
STOP "F1": NPARA .GT. 50 , USING FOURIER METHOD, NPARA

STOP "ORDER" MEANS THAT THE ORDER OF ACCURACY VARIABLE
WAS LESS THAN 4.

MUST BE .LE. 50 ALSO

STOP "GETER": ERROR IN A FREE FORMAT READ, EITHER AN EOF
OR AN ILLEGAL CHARACTER.

UPON SUCCESFUL COMPLETION OF SENANAL TAPE3 HAS THE
FOLLOWING FORMAT.

1) TITLE -- ( 8A10 FORMAT)

2) METHOD,NPARA,TNPTS,NSIMUL,NFUNC
( A10, 416 FORMAT; ' METHOD =1OHWALSH , 1OHFOURIER

3) FREQUENCY SET ( 15H FORMAT, A LABEL FOR THE FILE )
AND IACCUR IN I3-FORMAT

4) IW(1),IW(2),...,IW(NPARA) ( 1616 FORMAT )
5) TIME POINTS ( 15H FORMAT, A LABEL FOR THE FILE )
6) TIME(1),TIME(2),...,TIME(TNPTS) ( 7TE12.6 FORMAT )

7) NLABEL(1),...,NLABEL(NFUNC) (8A10 FORMAT )

* %k % %k k k k¥ k¥ k k kk ok k ok k ok k ¥k k k k % K k k ok k ok k k %k ¥ %k % %k ¥k %k X
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Program SENANAL, CONT'D.

8) YIN(1),YIN(2),...,YIN(NFUNC) UNFORMATTED WRITE

THERE ARE TNPTS*NSIMUL RECORDS OF TYPE 8, ONE FOR EACH

TIME POINT IN A SIMULATION MULTIPLIED BY THE NUMBER OF
SIMULATIONS.

THESE SIMULATION VECTORS ARE IN AN UNSUITABLE FORM

FOR SENSITIVITY ANALYSIS SINCE TO DO S. A. WE NEED
ALL THE DIFFERENT SIMULATIONS OBJECT FUNCTIONS' VALUES
AT THE SAME TIME POINT.

THE SUITE OF CODES RUN BY PROGRAM TRANS WILL REFORMAT
TAPE3 AND WILL TRANSFORM THE SIMULATION CURVES INTO
SEQUENCY VECTORS( WALSH OR FOURIER ) FOR WHICH PARTIAL
VARIANCES WILL BE COMPUTED.

% Kk ok ok k kk kK k ok k¥ k Kk Xk

cmmmmmmmmmmm

C‘l

C*

CQ
(08,4
c*

C*

C*

COMMON /PARA/ P(50)

REAL PMAX(50),PMIN(50),PAVE(50)
REAL TIME(150),PHI(50),PLO(50)
REAL YIN(40),BEGIN(40)

INTEGER IOMEGA,IMETH,NFUNC,ITRANS,NPARA,NSIMUL,TNPTS,LABEL(2)
INTEGER TITLE(&),TRANS(S.z),Iw(SOS
INTEGER NLABEL(40)

DATA PAVE/S0%*0./, PMIN/S50%1.0E+99/, PMAX/50%0./

DATA LABEL/ 10H FOURIER ,10H WALSH

DATA TRANS/1OHLOGUNIFORM,10H UNIFORM ,10H SINE TEST,
+10HLOG (P) BELL, 1 OHBELL~SHAPE, 1 OHARITHMETIC, 1 OHMULTPLIER ,
+3%(10H )/

SUBROUTINE TIMES IS A TOTALLY UNNECESSARY BUT SOMEWHAT USEFUL
TIMING ROUTINE

CALL TIMES(1,0)

CALL READIN(IOMEGA,TIME,TSTART,IMETH,NFUNC,ITRANS,PHI,PLO,
+NPARA,NSIMUL, TNPTS, TITLE, BEGIN, IW,NLABEL, IACCUR)

CALL TIMES(1,0)

WRITE OUT INPUT

WRITE(2,5) TITLE
FORMAT(1H1,8A10)
WRITE(2,6)

FORMAT(1H )

WRITE(2,10) LABEL(IMETH)
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Program SENANAL, CONT'D.

10 FORMAT(1H ,* THIS IS A SENANAL RUN USING *,A10,* ANALYSIS¥*)
WRITE(2,11) IACCUR,(IW(J),J=1,NPARA)
11 FORMAT (1H ,* WITH THE*,I3,*TH ORDER FREQUENCY VECTOR=*,13(2X,I5)
+,/,30%,
+14(2X,15))
WRITE(2,12) NSIMUL,TNPTS
12 FORMAT(1H ,* THERE ARE *,I6,* SIMULATIONS IN THIS RUN WITH*,
+,I5,% TIME POINTS*)
WRITE(2,27)
27 FORMAT(/,/,6X,* FUNCTION *,5X,* INITIAL VALUE *,/)
DO 31 J=1,NFUNC
WRITE(2,28) NLABEL(J),BEGIN(J)
28 FORMAT (6X,A10,5X,1PE14.6)
31 CONTINUE
WRITE(2,6)
WRITE(2,15) TRANS(ITRANS,IMETH)
15 FORMAT(1H ,® THE PARAMETERS WERE CALCULATED USING *,A10,
+#* TYPE TRANSFORMATION FUNCTIONS*)
WRITE(2,17)
17 FORMAT(* * / # PARAMETER™®,2X,* PHI(J) *,7X,* PLO(J)*)
DO 19 J=1,NPARA
WRITE(2,18) J,PHI(J),PLO(J)
18 FORMAT(3X,15,2X,2X,1PE13.6,2X,E13.6)
19 CONTINUE
WRITE(2,21)
21 FORMAT(* # / # TIME POINTS *g
WRITE(2,22)(TIME(J),J=1,TNPTS
22 FORMAT(* * 10(1X,E12.6))

C’
c* CHECK FOR ACCEPTABLE INPUT PARAMETERS
%
N
IF(IOMEGA .LT. -1 .OR. IOMEGA .GT. 1 ) STOP 1
IF(IMETH .LT. 1 .OR. IMETH .GT. 2 ) STOP 2
IF( TNPTS .LT. 1 .OR. TNPTS .GT. 150 ) STOP 3
IF(ITRANS .GT. 5 .OR. ITRANS .LT. 1 ) STOP 4
IF(NFUNC .LT. 1 .OR. NFUNC .GT. 40 ) STOP §
IF( NSIMUL .LT. 1) STOP 6
IF( IACCUR .LT. 4 ) STOP "ORDER"
DO 1 J=1,NPARA
IF( PHI(J) .LE. PLO(J) ) STOP 7
IF( IW(J) .LE. O ) STOP 10
1 CONTINUE

J=1
IF( TIME(1) .LE. TSTART ) WRITE(2,2) J,J
IF( TNPTS .EQ. 1) GO TO 4
DO 3 J=2,TNPTS
IF( TIME(J) .LE. TIME(J-1) ) WRITE(2,2) J,J
2 FORMAT(1H ,/,* TIME(*,I4,*) .LE. TIME(*,I4,*- 1)%*)



3
c*

c*
C*

23
20
25
26
30
35
o
c*
c*
o
o
c*

c*
C’
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Program SENANAL, CONT'D.

CONTINUE
CONTINUE

WRITE THE OUTPUT TAPE LABELS

WRITE(3,23) TITLE

FORMAT (8A10)

WRITE(3,20) LABEL(IMETH),NPARA,TNPTS,NSIMUL,NFUNC
FORMAT(A10,416)

WRITE(3,25) IACCUR

FORMAT(* FREQUENCY SET *,I3)
WRITE(3,26)(IW(J),J=1,NPARA)
FORMAT(1616)

WRITE(3,30)

FORMAT(* TIME POINTS %)
WRITE(3,35)(TIME(J),J=1,TNPTS)
FORMAT(7E12.6)
WRITE(3,23)(NLABEL(J),J=1,NFUNC)
CALL TIMES(2,0)

LOOP OVER THE DIFFERENTS SIMULATIONS

DO 1000 ISIMUL=1,NSIMUL

IQ = ISIMUL

CALCULATE THE PARAMETER VECTOR FOR THIS SIMULATION
CALL PARAM(IMETH,IQ,ITRANS,PHI,PLO,NPARA,P,NSIMUL,IW)
CALCULATE THE PARAMETER STATISTICS

DO 100 J=1,NPARA
PMAX(J) = AMAX1(PMAX(J),P(J)%
PMIN(J) = AMIN1(PMIN(J),P(J)
PAVE(J) = (P(J) + FLOAT(ISIMUL - 1)*PAVE(J))/FLOAT(ISIMUL)
CONTINUE
CALL TIMES(3,0)

INITIALIZE THE FUNCTION WITH ITS INITIAL VALUE.
(NECESSARY IF THE FUNCTIONS ARE ODE'S, OTHERWISE ONE CAN SET
BEGIN TO ZERO )

DO 98 J = 1, NFUNC
YIN(J) = BEGIN(J)
CONTINUE
SET INITIAL TIME FOR SIMULATION RUN
TIN = TSTART
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Program SENANAL, CONT'D.

C*
c* CALCULATE THE OUTPUT FUNCTIONS FOR THE "TNPTS" POINTS
C*
DO 200 KOUNT = 1,TNPTS

TOUT = TIME(KOUNT)

CALL MODEL(TIN, TOUT, YIN, NFUNC, TSTART )
C&
c* WRITE OUT THE SOLUTION AT TOUT
C*

WRITE(3,10000) (YIN(J),J=1,NFUNC)
10000 FORMAT(4020)

.C*

C*
CALL TIMES(4,0)
TIN = TOUT

200 CONTINUE

C*

c*

1000 CONTINUE

C‘

C*  SIMULATIONS ARE OVER WITH
C*  WRITE OUT THE PARAMETER STATS
C’
WRITE(2,6)
WRITE(2,1500)
1500 FORMAT(1H ,1X,*  PARAMETER*,3X,* AVERAGE VALUE *,2X,
+* MAXIMUM VALUE *,2X,* MINIMUM VALUE *)
DO 1620 J=1,NPARA
WRITE(2,1610) J,PAVE(J),PMAX(J),PMIN(J)
1610 FORMAT(1H ,5X,I5,5X,2X,3(1PE13.6,4X))
1620 CONTINUE
C*  PRINT TIMING DATA
CALL TIMES(1,1)
END
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Program SENANAL, CONT'D.
SUBROUTINE READIN

SUBROUTINE READIN(IOMEGA,TIME,TSTART,IMETH,NFUNC,ITRANS,PHI,
+PLO,NPARA,NSIMUL, TNPTS, TITLE, BEGIN, IW,NLABEL, IACCUR)

a -
x
»

Cmmmfﬁmmm*w
c* »
c* SUBROUTINE READIN READS THE INPUT FOR THE PROGRAM SENANAL. ALL *
c* VARIABLES ARE DEFINED IN THE SENANAL COMMENT CARDS. *
c-l *
c* THIS IS INSTALLATION DEPENDENT SECTION OF THE METHOD AS IT USES *
c* FREE FORMAT INPUT. (VARIABLES SEPARATED BY A COMMA ) »
Cc* »
c* FORMAT OF INPUT CARDS *
c» »
c* SET 1 = TITLE (ONE CARD ) *
c* »
c* SET 2 = IOMEGA,IMETH,NPARA (INTEGERS) *
c* »
c* SET 3 IFF IOMEGA = 1 *
c: SET 3A = IW(1),IW(2),IW(3),...,IW(NPARA),IACCUR (INTEGERS):
c

c* SET 4 = NSIMUL,TNPTS,ITRANS,NFUNC,TSTART (TSTART IS A REAL,

c* THE OTHERS ARE INTEGERS*
Cc* »
c* SET 5 = TIME(1),TIME(2),...,TIME(TNPTS) ( REALS ) *
ce »
c* SET 6 = PHI(1),PHI(2),...,PHI(NPARA) (REALS) *
c* »
c* SET 7 = PLO(1),PL0(2),...,PLO(NPARA) (REALS) *
CcH »
c* SET 8 = BEGIN(1),BEGIN(2),...,BEGIN(NFUNC) (REALS) »
c* »
c* SET 9 = NLABEL(1),...,NLABEL(NFUNC) *
c: TO BE READ IN ONE (1) VALUE TO A CARD (A10 FORMAT) :
c

(03 »
C* VARIABLES *
c» »
c* BEGIN(NFUNC) = THE INITIAL CONDITIONS, OR EQUIVALENTLY *»
c: (REAL) THE VALUES OF THE OBJECT FUNCTIONS AT TSTART. :
o

c* ]
c* IACCUR = ORDER OF ACCURACY OF THE FREQUENCY SET *
c* (INTEGER) »
C* »
ce »
c* IOMEGA = O IF FOURIER 4TH ORDER SET IS TO BE USED *
c* (INTEGER) 1 IF SPECIAL FREQUENCY SET IS TO BE USED :

c* -1 IF STANDARD WALSH FREQUENCY SET IS TO BE USED
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Program SENANAL, CONT'D.
SUBROUTINE READIN

C’ »*
c* IMETH = METHOD FLAG FOR SENSITIVITY ANALYSIS; = 1 FOR FOURIER *
c* (INTEGER) ANALYSIS, = 2 FOR WALSH ANALYSIS. :
C’

c* ITRANS = FLAG FOR TYPE OF TRANSFORMATION FUNCTION *
c* (INTEGER) SEE SUBROUTINE PARAM FOR DETAILS. *
c-l» *
c* IW(NPARA) = AN ARRAY CONTAINING THE FREQUENCY SET TO BE USED IN *
c* (INTEGER) THE S. A. RUN. »
c* IF 'IOMEGA' .EQ. 1, THIS ARRAY MUST BE READ IN FROM *
c* CARDS. OTHERWISE THE FREQUENCY SETS ARE CREATED *
c* INTERNALLY. *
C* *
c* NFUNC = NUMBER OF OBJECT FUNCTIONS WHICH WILL BE SAVED *
c* (INTEGER) AT EACH TIME POINT. :
C*

c* NLABEL(NFUNC) = THE NAMES (LABELS) OF THE OBJECT FUNCTIONS *
c* NLABEL(1) SHOULD BE THE NAME OF THE FIRST *
c* OBJECT FUNCTION, ETC. *
c* *
c* NPARA = NUMBER OF PARAMETERS TO VARY *
c* (INTEGER) *
C* *
c* NSIMUL = NUMBER OF SIMULATIONS *
(034 (INTEGER) *
c* *

C*  PHI(NPARA) = MAXIMUM VALUES OF THE PARAMETERS( OR ONE SIGMA MAX)*
c* (REAL) *

C* »
C*  PLO(NPARA) = MINIMUM VALUES OF THE PARAMETERS( OR ONE SIGMA MIN)*
c* (REAL) *
c* *
C*  TIME(TNPTS) = ARRAY CONTAINS THE TIME POINTS AT WHICH THE *
c* (REAL) OUTPUT FUNCTIONS ARE TO BE SAVED AND THE »
c* SENSITIVITY ANALYZED. *
c* *
C*  TSTART = INITIAL TIME POINT, SO THERE ARE NO S. A. VALUES SAVED *
c* (REAL) AT THIS POINT *
C'.' »
C*  TITLE(8) = A ONE CARD TITLE FOR S. A. RUN »
c* (INTEGER) (WRITTEN IN 8A10 FORMAT ) *
C*

C*  TNPTS = NUMBER OF TIME POINTS »
c* (INTEGER) *
c* »*

cmmmmmmmmm

REAL TIME(150),BEGIN(40)
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Program SENANAL, CONT'D.
SUBROUTINE READIN

C*
INTEGER TITLE(8),IOMEGA,IMETH, NFUNC ITRANS, TNPTS,NPARA, IW(NPARA)
INTEGER NLABEL(40)

C*

C*
-COMMON /GETERR/ IFLAG,NUMVAR,RABC(40)
EQUIVALENCE (RABC(1),IRABC(1))
INTEGER IRABC(40)

C*

c* I0 IS THE INPUT UNIT ( TAPE1 )
DATA I0/1/

C*

C*

c* READ IN SET 1

C*

READ(I0,10) (TITLE(J),J=1,8)
10 FORMAT (8A10)

o

c* READ IN SET 2
IACCUR = 4
ICARD = 2

CALL GETNUM(IO)
IF( IFLAG .GE. O ) CALL GETERR(IFLAG, ICARD, NUMVAR)
IOMEGA = IRABC(1)
IMETH = IRABC(2)
NPARA = IRABC(3)
IF(IOMEGA .LT. -1 .OR. IOMEGA .GT. ! ) STOP "Rt"
IF(IMETH .LT. 1 .OR. IMETH .GT. 2 ) STOP "R2"
IF( NPARA .LT. 1 ) STOP "R3"
c* OBTAIN FREQUENCY SET
IF(IOMEGA .EQ. O) CALL FOURST(IW,NPARA)
IF(IOMEGA .EQ. -1) CALL WALSET(IW NPARA)
IF(IOMEGA .NE. 1) GO TO 100
c* READ IN SPECIAL FREQUENCY SET (SET 3 )
c* READ IN THE ACCURACY OF THE SET ALSO
NP1 = NPARA + 1
CALL IREAD(IW,NP1,I0, ICARD)
IACCUR = IW(NP1)
100 CONTINUE
c* READ IN SET 4
ICARD = ICARD + 1
CALL GETNUM(IO)
IF( IFLAG .GE. O ) CALL GETERR(IFLAG, ICARD, NUMVAR)
NSIMUL = IRABC(1)
TNPTS = IRABC(2)
ITRANS = IRABC(3)
NFUNC = IRABC(4)
TSTART = RABC(S)
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Program SENANAL, CONT'D.
SUBROUTINE READIN

IF(NFUNC .LT. 1 .OR. NFUNC .GT. 40 ) STOP "R4"
IF( NSIMUL .LT. 1) STOP "R5"

C*

cH READ IN THE TIME POINTS ( SET.5)

C*
CALL RREAD(TIME,TNPTS,IO, ICARD)

*

g: READ IN PHI(J) ( SET 6 )

C* CALL RREAD(PHI,NPARA,IO, ICARD)

g: READ IN PLO(J) ( SET 7 )

C* CALL RREAD(PLO,NPARA,IO, ICARD)

g: READ IN INITIAL VALUES ( SET 8 )
C* CALL RREAD(BEGIN,NFUNC,IO, ICARD)

c

DO 175 J=1,NFUNC
READ(I0,150) NLABEL(J)
ICARD = ICARD + 1
150 FORMAT(A10)
175  CONTINUE
WRITE(2,101) ICARD
101 FORMAT(YH ,/,I6,* DATA CARDS READ IN *)
RETURN
END
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Program SENANAL, CONT'D.
SUBROUTINE FOURST

SUBROUTINE FOURST(IW,NPARA)
c*
C AR

Cc* »
c* SUBROUTINE FOURST CALCULATE THE STANDARD 4TH ORDER CORRECT »
c* FOURIER FREQUENCY SET FOR "NPARA" PARAMETERS. *
Cc* - »
c* REFERENCE: CUKIER,SHAILBY,SHULER. JOURNAL OF CHEMICAL PHYSICS, *
c: VOL 63, NO. 3, (1975) PP 1140-1149. :
c

Cmmmmmm
INTEGER IW(NPARA),IOMEGA(50),IDN(49)

DATA IOMEGA/0,0,1,5,11,1,17,23,19,25,41,31,23,87,67,
+ 73,85,143,149,99 ,119,237,267,283,151,385,
+ 157,215,449,163,337,253,375,441,673,773,875,873,587,849,
+ 623,637,891,943,1171,1225,1335,1725,1663,2019/
DATA IDN/ 4,8,6,10,20,22,32,40,38,26,56,62,46,76,96,
+ 60,86,126,134,112,92,128,154,196,34,416,106,
+ 208,328,198,382,88,348,186,140,170, 284,568,302, 438,
+ 410,248,448,388,596,216,100,488,166/
C*
IF(NPARA .GT. 50 ) STOP "F1"
IW(1) = IOMEGA(NPARA)
DO 100 J=2,NPARA
IW(J) = IW(J-1) + IDN(NPARA + 1 = J)
100 CONTINUE
RETURN
END
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SUBROUTINE WALSET (IW,NPARA)

c* *
C* SUBROUTINE WALSET CALCULATES THE FREQUENCY SET FOR EXACT WALSH *
c* ANALYSIS FOR 'NPARA' PARAMETERS. *
c* »
c* REFERENCE: T.H. PIERCE, PHD THESIS (1980) *
c* »

INTEGER IW(NPARA)

DO 100 J=1,NPARA
IW(J) = 2%%(J-1)
100  CONTINUE
RETURN
END
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SUBROUTINE IREAD(IRRAY,LAST,IO, ICARD)
c*
CAHHHEHHHHEHEHEEHEHHEEEHEHHEHEHEEEEHHEERHHEEEEHHHEHEHHHRHHHHEHHHHEHHEH
c*
c* SUBROUTINE IREAD READS IN A VARIABLE LENGTH (LAST) INTEGER
c* ARRAY USING FREE FORMAT INPUT.
c*
CAHEHEIHEEHE I HHHHHEHHHHHHSHHHHHHEHEHHEHEHHHHEHRHHHHEHHRH

INTEGER IRRAY(LAST)

x ¥ & ¥

C’

C*
COMMON /GETERR/ IFLAG,NUMVAR,RABC(40)
EQUIVALENCE (RABc(1),IRABc(1S)
INTEGER IRABC(40)

C*

KOUNT = 1
10 CONTINUE
ICARD = ICARD + 1
CALL GETNUM(IO)
IF( IFLAG .GE. O ) CALL GETERR(IFLAG, ICARD, NUMVAR)
c* IF THE CARD READ WAS BLANK NUMVAR = O.
IF( NUMVAR .LT. 1 ) GO TO 10
DO 20 J=1,NUMVAR
IRRAY(KOUNT) = IRABC(J)
KOUNT = KOUNT + 1
IF(KOUNT .GT. LAST) GO TO 25
20 CONTINUE
C*
c* RETURN FOR ANOTHER CARD FULL OF VARIABLES
GO TO 10
25 CONTINUE
c* ALL DONE SO STOP
RETURN
END
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SUBROUTINE RREAD(ARRAY,LAST,IO, ICARD)
C’
cmmmmmmmmm
c’
c* SUBROUTINE RREAD READS IN A VARIABLE LENGTH (LAST) REAL
c* ARRAY USING THE FREE FORMAT ROUTINE GETNUM.
C*
Cmmmmmmm

REAL ARRAY(LAST) :

* % ¥

CI»

C*
COMMON /GETERR/ IFLAG,NUMVAR,RABC(40)
EQUIVALENCE (RABC(1),IRABC(1))
INTEGER IRABC(40)

c*

KOUNT = 1

10 CONTINUE

ICARD = ICARD + 1

CALL GETNUM(IO)

IF( IFLAG .GE. O ) CALL GETERR(IFLAG, ICARD, NUMVAR)
c* IF THE CARD READ WAS BLANK NUMVAR = O.

IF( NUMVAR .LT. 1) GO TO 10

DO 20 J=1,NUMVAR

ARRAY(KOUNT) = RABC(J)

KOUNT = KOUNT + 1

IF(KOUNT .GT. LAST) GO TO 25
20 CONTINUE

c* RETURN FOR ANOTHER CARD FULL OF VARIABLES
GO TO 10

25 CONTINUE

c* ALL DONE SO STOP
RETURN
END
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SUBROUTINE PARAM(METH, IQ, TRANS,PHI,PLO,NPARA,P,NSIMUL,IW)

SUBROUTINE PARAM COMPUTES THE IQ"TH PARAMETER

VECTOR.

THIS IS DONE USING A PRESELECTED ( TRANS,METH )

TRANSFORMATION FUNCTION.

METH = { ---- FOURIER METHOD

TRANS

1 => USE FOURIER LOG-UNIFORM TRANSFORMATION

PHI = NOMINAL*EXP(DELTA)

PLO = NOMINAL*EXP( -DELTA )
WITH LN(P) SPREAD UNIFORMLY OVER @LN(PHI) , LN(PLO)@

2 => USE FOURIER UNIFORM TRANSFORMATION

PHI = NOMINAL + DELTA
PLO = NOMINAL - DELTA
P IS UNIFORMLY SPREAD OVER @ PLO , PHI @

3 => USE THE FOURIER TEST FUNCTION

PHI = NOMINAL*( 1 + DELTA )
PLO = NOMINAL*( 1 - DELTA)
P(SQ) = NOMINAL*(1. + DELTA*SIN(W*SQ) )

4 => USE THE FOURIER COSH DISTRIBUTION FUNCTION

IN LOG(P)-SPACE
HERE LN(PHI)-LN(PLO) = 4.0/A
WHERE 82.87 OF THE SAMPLES ARE BETWEEN PHI AND PLO

5 => USE THE FOURIER COSH DISTRIBUTION FUNCTION

IN P-SPACE
HERE (PHI)-(PLO) = 4.0/A
WHERE 82.87 OF THE SAMPLES ARE BETWEEN PHI AND PLO

METH = 2 -~--- WALSH METHOD

TRANS

1 => USE ARITHMETIC WALSH TRANSFORMATION

PHI = NOMINAL + DELTA
PLO = NOMINAL - DELTA
P IS EITHER PHI OR PLO

2 => USE MULTIPLICATIVE WALSH TRANSFORM

PHI = NOMINAL*1O**( DELTA )
PLO = NOMINAL*{QO%®*(-DELTA )

k k k ok Kk kk k& & ok ok kk kk ok k¥ k& kk k¥ kk kk %k k¥ k& kX k¥ kX %
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P IS EITHER PHI OR PLO

REAL NOMINAL,DELTA,PHI(NPARA),PLO(NPARA),P(NPARA)

INTEGER TRANS,IQ,METH,NSIMUL,IW(NPARA)
INTEGER WALH

EXTERNAL WALH

IF ( METH .EQ. 2 ) GO TO 1000

TWODPI = 2.0/ACOS(-1.0)

R = FLOAT(NSIMUL)

SQ = FLOAT(2*IQ -NSIMUL- 1)/(R*TWODPI)

Go T0 (100,200,300,400,500)TRANS

CONTINUE
FOURIER METHOD WITH LOG-UNIFORM TRANSFORMATION FUNCTION

DO 110 J=1,NPARA

DELTA = 0.5*ALOG(PHI(J)/PLO(J))

NOMINAL = SQRT(PHI(J)*PLO(J))

P(J) = NOMINAL*EXP(DELTA*TWODPI*ASIN(SIN(SQ*FLOAT(IW(J)))))
CONTINUE

RETURN

CONTINUE

FOURIER METHOD USING UNIFORM TRANSFORMATION FUNCTION

DO 210 J=1,NPARA

NOMINAL = 0.5%(PHI(J)+PLO(J))

DELTA = ( PHI(J) - PLO(J) )*0.5

P(J) = NOMINAL + DELTA*TWODPI*ASIN(SIN(SQ*FLOAT(IW(J))))
CONTINUE

RETURN

CONTINUE

FOURIER METHOD WITH TEST TRANSFORMATION FUNCTION
DO 310 J=1,NPARA

NOMINAL = 0.5*(PHI(J)+PLO(J))

DELTA = (PHI(J)-PLO(J))/(PHI(J)+PLO(J))

P(J) = NOMINAL*(1.0 + DELTA*SIN(FLOAT(IW(J))*SQ))
CONTINUE

RETURN

CONTINUE
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c* COSH-DISTRIBUTION FUNCTION
C* BELL-SHAPE IN LOG(K)-SPACE
C*
DO 410 J=1,NPARA
AJ = 4.0/(ALOG(PHI(J)) - ALOG(PLO(J)))
THETA = SQ * FLOAT(IW(J))
UJ = (1.0/(2.%AJ))*ALOG((1. + SIN(THETA))/(1. - SIN(THETA)))
NOMINAL = SQRT(PHI(J)/PLO(J))
P(J) = NOMINAL * EXP(UJ)
410 CONTINUE

RETURN
o*
500 CONTINUE
c*
c* COSH-DISTRIBUTION FUNCTION
c* BELL-SHAPED IN K-SPACE
Cc*

DO 510 J=1,NPARA
AJ = 4.0/(PHI(J) - PLO(J))
THETA = SQ*FLOAT(IW(J))
UJ = (1.0/AJ)*ALOG((1. + SIN(THETA))/(1. - SIN(THETA)))
NOMINAL = (PHI(J)+PLO(J))*0.5
P(J) = NOMINAL + UJ
510 CONTINUE
RETURN
C*
C*
1000 CONTINUE
c® ENTRY INTO HERE FOR WALSH ANALYSIS
C-l
ISQ = IQ - 1
Go T0 (1100,1200) TRANS

1100 CONTINUE
o ARITHMETIC WALSH TRANSFORMATION FUNCTION
DO 1110 J=1,NPARA
NOMINAL = 0.5*(PHI(J)+PLO(J))
DELTA = ( PHI(J) - PLO(J) )*0.5
P(J) = NOMINAL + DELTA*FLOAT(WALH(IW(J),ISQ))
1110 CONTINUE
RETURN
C"
1200 CONTINUE
c* MULTIPLICATIVE WALSH TRANSFORMATION FUNCTION
DO 1210 J=1,NPARA
DELTA = O. 5*ALOG10(PHI(J)/PLO(J))
NOMINAL = SQRT(PHI(J)*PLO(J))
P(J) = NOMINAL*10.O0"*(DELTA*FLOAT(WALH(IW(J),ISQ)))
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1210 CONTINUE
RETURN
END
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SUBROUTINE GETNUM(LINPUT)

COMMON /GETERR/ ICRK,JREAD,RABC(40)
DIMENSION IRABC(40)

EQUIVALENCE (RABC(1),IRABC(1))
COMMON /EL/ L(80)

LOGICAL INTR

CIHHHHHHEHEE RPN EEEHEHEEEERHH

CaHR
C
Qi
CiH-
CHe
CHan
cﬂﬂ
C -
Cm&
i
Q-
cml
Cm*
CiHr
C%
CH
CHHH-
o
CiHH
C e
CHre
CHHee
C i
cm
CHre
Q-
CHe
Qe
C-en
C i
(0 hagaa s
G-
CHn
(0 a2
Qe
C i
(05daa g
CHe-
Q-
Qe

##% FREE FORM VARIABLE INPUT ROUTINE. W+

ROUTINE ACCEPTS A,F,E AND I FORMAT INPUT.

ALL BLANKS EXCEPT IN HOLLERITH STRINGS ARE IGNORED.
THE ONLY LEGAL DELIMITER IS COMMA (,), ANY

OTHER RESULTS IN ERROR TERMINATION.

KL IS THE MAXIMUM COLUMN WIDTH COUNTER.

ONLY 80 COLUMNS ARE READ, SO ONLY 40 VARIABLES

CAN BE RETURNED. TO ENLARGE THIS, CHANGE THE DATA
AND COMMON STATEMENTS TO REFLECT THE SIZE YOU WISH.

-== INPUT ---
LINPUT -- THE TAPE UNIT BEING READ FROM

-== OUTPUT ---
JREAD IS THE NUMBER OF VARIABLES RETURNED IN
COMMON /GETERR/
RABC(=IRABC) CONTAINS THE READ VARIABLES.
COMMON /EL/ CONTAINS THE LINE AS READ IN 8OR1
ERROR CODES: (STANDARD IF(UNIT) VALUES)

ICRK=1 ILLEGAL CHARACTER (MSG PRINTED)
VARIABLES TO POINT OF ERROR RETURNED

ICRK=0 EOF ON READ, JREAD=0

ICRK=-1 NORMAL TERMINATION

--- INTERNAL VARIABLES ---

S IS SIGN OF VARIABLE, IFA THE SIGN OF THE EXPONENT
NUM IS THE MANTISSA, IE THE EXPONENT

IP IS THE NUMBER OF DECIMAL PLACES INPUT.

I IS THE CHARACTER COUNTER (1-80)

INTR -- REAL VARIABLE(FALSE)/INTEGER(TRUE) FLAG

HOLLERITH STRINGS OF 10 OR MORE CHARACTERS MAY

BE INPUT WITHOUT COMMAS EVERY 10 CHARACTERS AND WILL
BE INSERTED 10 CHARACTERS PER WORD WITH BLANK FILL
(STANDARD A FORMAT). ANY COMMAS FOUND IN THE HOLLER-
ITH STRING END THE STRING AT THAT POINT. THE FIRST
CHARACTER OF THE STRING MAY NOT BE A COMMAS

PERIOD(.) PLUS(+) OR MINUS(-) OR DIGIT(0-9) OR BLANK.

PILSEEEEEOSSOSE SR SRS EE S SD ORT ORI S EL ORI SL 3L S
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CHne HOLLERITH STRINGS WHICH ARE THE LAST INPUT ON A i
CHHe LINE, BUT NOT ENDING WITH A COMMA, WILL BE ASSUMED -
CiHH TO CONTINUE RIGHT OUT TO COLUMN 80(OR KL) AND BLANK **
CHe FILLED VARIABLES WILL THUS BE RETURNED. -
CHne oy

CAHHMHHHHEEHHEHHHEHHHHHEHEHEHEHHHEHHERERHEHHEHHEHEREEHHEHHHHHHHHHHH
INTEGER PERIOD,COMMA,BLANK,ZERO,PLUS,EE,DD

DATA PERIOD,COMMA,BLANK,ZERO /1R., 1R,, 1R , 1RO/
DATA NINE,PLUS,MINUS,EE,DD /1R9, 1R+, 1R-, 1RE, 1RD/

DATA KL /80/
cm
CHH READ THE INPUT LINE FROM UNIT LINPUT
READ (LINPUT,1000) (L(I),I=1,80)
JREAD=0
IF (EOF(LINPUT) .NE. O.) GO TO 998
ICRK=-1
I=1
O PREPARE FOR A NEW VARIABLE
10 NUM=IE=IFA=IP=0
INTR=.TRUE.
S=1.0
CHHHE DECODE THE FIRST CHARACTER IN THE VARIABLE

IF (I .GT. KL) RETURN
IF (L(I) .LE. NINE .AND. L(I) .GE. ZERO) GO TO 35
IF (L(I) .EQ. PLUS) GO TO 30
IF (L(I) .NE. MINUS) GO TO 25
S--1 .0
GO TO 30
25 IF (L(I) .EQ. PERIOD) GO TO 39
IF (L(I) .EQ. COMMA) GO TO 60
IF (L(I) .EQ. BLANK) GO TO 291
CHene HOLLERITH VARIABLE (A FORMAT)
251 DO 26 LL=1,10
JL=LL
IF (I .GT. KL) GO TO 27
IF (L(I) .EQ. COMMA) GO TO 27

ISH=60-6*LL
IE=SHIFT(L(I),ISH)
NUM=OR (NUM, IE)
I=I+1
26 CONTINUE
Crman FULL WORD(10 CHARS) FILLED IF YOU FALL
Crnun THRU HERE.
Crnae STORE THE HOLLERITH VARIABLE
JREAD=JREAD+1
IRABC ( JREAD)=NUM
Crnen SKIP THE TRAILING COMMA, OTHERWISE ASSUME

CHue THE HOLLERITH STRING CONTINUES
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IF (I .GT. KL) RETURN
IF (L(I) .EQ. COMMA) GO TO 291
NUM=0
GO TO 251
BLANK FILL WORD
DO 29 LL=JL,10
ISH=60-6%*LL
IE=SHIFT (BLANK,ISH)
NUM=OR (NUM, IE)
STORE THE PARTIAL HOLLERITH VARIABLE
JREAD=JREAD+1
IRABC(JREAD) = NUM
I=I+1
GO TO 10
INTEGER PORTION OF VARIABLE
I=I+1
IF (L(I) .EQ. PERIOD) GO TO 39
IF (I .GT. KL) GO TO 60
IF (L(I) .EQ. BLANK) GO TO 30
IF (L(I) .EQ. EE) GO TO 50
IF (L(I) .EQ. COMMA) GO TO 60
IF (L(I) .LT. ZERO .OR. L(I) .GT. NINE) GO TO 999
NUM = NUM*10 + (L(I)-27)
GO TO 30
EVALUATE DECIMAL PORTION
INTR=.FALSE.
I=I+1
IF (I .GT. KL) GO TO 60
IF (L(I) .EQ. BLANK) GO TO 40
IF (L(I) .EQ. EE) GO TO 50
IF (L(I) .EQ. COMMA) GO TO 60
IF (L(I) .LT. ZERO .OR. L(I) .GT. NINE) GO TO 999
INCREMENT THE DECIMAL COUNT
IP=IP+i
NUM = NUM*0 + (L(I)-27)
GO TO 40
EVALUATE EXPONENT
IFA=1
INTR=.FALSE.
I=I+1
IF (L(I) .EQ. PLUS) GO TO 51
IF (L(I) .NE. MINUS) GO TO 52
IFA=-1
I=I+1
IF (I .GT. KL) GO TO 60
IF (L(I) .EQ. COMMA) GO TO 60
IF (L(I) .EQ. BLANK) GO TO 51
IF (L(I) .LT. ZERO .OR. L(I) .GT. NINE) GO TO 999
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IE = IE*0 + (L(I)-27)
GO TO 51
STORE THE FINISHED VARIABLE (EXCEPT HOLLERITH)

CONTINUE
CHECK ILLEGAL EXPONENT RANGE
THE CHECK IS NOT PERFECT: DIGITS BEFORE
THE MANTISSA PERIOD ARE NOT CONSIDERED.

IEX=IE*IFA-IP

IF (IEX .GT. 322) GO TO 995

IF (IEX .LT. -294) GO TO 995

I=I+1

JREAD=JREAD+1

IF (INTR) GO TO 62

RABC(JREAD) = S*(FLOAT(NUM)*10.%#*IEX)

GO TO 64

IRABC(JREAD) = S*NUM

IF (I .GT. KL) RETURN

GO TO 10

ERROR CONDITION CODE

I=I-1

CONTINUE

ICRK=1

JM=I-1

IF (JM .LE. 0) JM={

PRINT 1010, L,(BLANK,LL=1,JM),PLUS

RETURN
EOF ENCOUNTERED, JREAD ALREADY ZEROED, SET
ICRK AND RETURN.

ICRK=0

RETURN

C IR

cm
1000

1010
et

#RFORMATS**
FORMAT (80R1)
FORMAT (*OILLEGAL CHARACTER FOUND AT PLUS(+) */1X,80R1/1X,80R1)

END
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FUNCTION WALH

INTEGER FUNCTION WALH(N,IT)

SUBROUTINE WALH(N,IT) COMPUTES THE HADAMARD-ORDERED
WALSH FUNCTION OF SEQUENCY ' N ' AT TIME POINT ' IT

WHERE N IS OF THE RANGE ( 0,1

,2,3,...(2**(LENGTH+1) - 1)
AND IT IS OF THE RANGE ( 0,1,2,3,4,¢e.,(2"*(LENGTH+1) - 1)

% x k k% ¥

N

C IR

C*

10
(034

27
C"
(044

INTEGER TBIT(60),NBIT(60),M,I
REAL OLDN,FRAC
DATA LENGTH /15/

DECODE N INTO ITS BINARY REPRESENTATICN

OLDN = FLOAT(N)

DO 10 I=1,LENGTH
M=0LDN/2.0

FRAC = OLDN/2.0 - FLOAT(M)
NBIT(I) = FRAC*2.0

OLDN = FLOAT(M)

CONTINUE

DECODE IT INTO ITS BINARY REPRESENTATION

TOLD = IT

DO 27 I=1,LENGTH
M=T0LD/2.0

FRAC = TOLD/2.0 - FLOAT(M)
TBIT(I) = FRAC*2.0

TOLD = FLOAT(M)

CONTINUE

WE NOW KNOW THE BINARY REP FOR T AND N
CALCULATE THE EXPONENT

NSUM = NBIT(1)®*rBIT(1)

DO 30 I=2,LENGTH

NSUM = NSUM + NBIT(I)*TBIT(I)
CONTINUE

WRITE(Z,Z)(((NBIT(L),L=1,LENGTH),(TBIT(K),K=1,LENGTH)%,NSUM)

FORMAT(* # #NBIT=* 15I1,% TBIT=*,15I1,%

WALH = (-1)%*NSUM
RETURN
END

NSUM =*,I4
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SUBROUTINE TIMES(ISUB,ITYPE)

c* *
C*  SUBROUTINE TIMES COMPUTES THE CPU TIME SPENT BETWEEN CALLS. »
C*  THIS IS INSTALLATION DEPENDENT. »
C*  ITS USE IS FOR DOCUMENTATION PURPOSES ONLY *
C-lv

c* ISUB = THE PROCEDURE TO BE TIMED. *
C‘l

c* ITYPE = FLAG: .LT. 1 FOR TIMING *
c* .GE. 1 FOR FINAL PRINT »
Cl »

Cmﬂmmmmmmw
c*
c*

»

REAL TIMS(15),NEW,LAST
INTEGER NAME(15)
C*
DATA TIMS/15%0./
DATA LAST /0./
DATA NAME/10HREAD INPUT,1OHSIMULATION,1OHPARAM CALC,10HMODEL CALC
, 1OHWRITE OUTP/
DATA LENGTH /S5/

+

c* ‘

IF(ITYPE .GE. 1) GO TO 5
NEW = SECOND(CPU)

c* INITIALIZE THE VALUES IN FIRST ENTRY
IF( LAST .EQ. O. ) LAST = NEW
TIMS(ISUB) = TIMS(ISUB) + NEW - LAST
LAST = NEW
RETURN

5 CONTINUE
WRITE(2,100)

100  FORMAT(* *,/,/,/,5X,* SECONDS*,4X,* PROCEDURE *,/)
TSUM = O.

DO 10 J=1,LENGTH
TSUM = TSUM + TIMS(J)
WRITE(2,150) TIMS(J),NAME(J)

150 FORMAT(* *,5X,F7.3,5X,A10)

10 CONTINUE
WRITE(2,160) TSUM

160  FORMAT(* * /,/,5X,F7.3,5X,* TOTAL TIME *)
RETURN
END



246

Program SENANAL, CONT'D.
SUBROUTINE GETERR

SUBROUTINE GETERR(IFLAG,ICARD,NUMVAR)

o

CHHHEHHHHHHHHHHEHHE RO
c* SUBROUTINE GETERR IS AN ERROR MESSAGE SUBROUTINE WHICH *
Cc* TERMINATES SENANAL IF INPUT WAS NOT CORRECTLY *
c* READ IN. »
c* »
c* IFLAG IS THE FLAG FROM SUBROUTINE GETNUM *
c* »
c* ICARD IS THE INPUT CARD NUMBER OF THE ERROR *
c* »
c* NUMVAR IS THE NUMBER OF VARIABLES ON CARD ICARD *

Cmmmmmmm
INTEGER IFLAG,ICARD,NUMVAR
WRITE(2,11) IFLAG,ICARD,NUMVAR

11 FORMAT(1H ,GHW#### # ppROR IN GETNUM *,/,15X,* ICRK =*,I5,
+/,15X,* ICARD =*,I5,/,15X,* NUMVAR =*,I5)
STOP "GETER"
END
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PROGRAM TRANS(OUTPUT=65,TAPE2=OUTPUT,TAPE3=513,TAPE4=513,
+ TAPE5=513,TAPE6=513,TAPET=513,TAPE8=65,TAPE9=65)

c*
C 3 HHHHHEHHHHEHEHHHHHHENHEHHHHHHHEHHEHHHHHHEEHEHHEHHHHHR
c* PROGRAM TRANS IS THE FOLLOW-UP PROGRAM TO PROGRAM 'SENANAL'.

c* IN THIS PROGRAM 'TAPE3', THE OUTPUT FILE FROM 'SENANAL' IS

c* READ IN AND OPERATED ON.

o

c* FIRST THE SIMULATION RUNS ARE TRANSPOSED INTO SENSITIVITY-
c* ANALYSIS POINTS. (INSTEAD OF ALL THE TIME POINTS OF ONE FUNCTION
c* A SIMULATION, WE HAVE ALL THE FUNCTIONS AT ONE TIME POINT,

C* A SENSITIVITY-ANALYSIS POINT ) UPON SUCCESSFUL TRANSPOSITION
C*  WE ITERATE THRU THE TIME POINTS. EACH S.A. POINT IS THEN

C*  TRANSFORMED INTO SEQUENCY SPACE ( FOURIER OR WALSH ).

C*  THIS TRANSFORMATION GIVES US THE EXPANSION COEFFICIENTS

c* FROM WHICH WE COMPUTE THE PARTIAL VARIANCES OF THE OBJECT

c* FUNCTIONS.

o

c* AFTER THE PARTIAL VARIANCES ARE CALCULATED THEY ARE

(O WRITTEN OUT ONTO TAPE9. THE EXPANSION COEFFICIENTS ARE WRITTEN
c* OUT ONTO TAPE8. THE TRANSPOSED MATRIX IS AVAILABLE ON TAPE7,
c* LOGICAL UNIT ‘'WRITEUP'.

k% k¥ Rk %k %k k¥ kk k¥ k¥ k¥ k¥ k¥ k¥ k% kk XXk ¥k X& ¥

C*

C*  VARIABLES

C*

c* F( ) = AN ARRAY WHICH HOLDS ONE OBJECT FUNCTION

c* IE AT LEAST OF LENGTH 'NSIMUL'

C’

C*

c* A( ) = A REAL ARRAY WHICH WILL HOLD THE COSINE

c* COEFFICIENTS IN THE FOURIER METHOD. THEREFORE IT

c* MUST BE OF LENGTH (NSIMUL + 1)

C"

c* B( ) = A REAL ARRAY WHICH WILL HOLD THE SINE COEFFICIENTS

c* IN THE FOURIER METHOD. IT ALSO MUST BE OF LENGTH

c* ( NSIMUL + 1)

C’

c* IWK( ) = THE WORKING STORAGE OF THIS PROGRAM. THIS ARRAY IS
c* USED AS STORAGE FOR DIFFERENT TEMPORARY VARIABLES.

c* d
c* MINIMALLY IT MUST BE DIMENSIONED FOR THE FFT ROUTINES*
c* IF NSIMUL IS THE NUMBER OF SIMULATIONS IN THE FOURIER*
c* METHOD THEN THRU SYMMETRY WE HAVE 2¥NSIMUL POINTS

c* TO FOURIER TRANSFORM. *

c* THE EQUATION FOR IWK DIMENSIONS IS: *
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c* MINIMUM LENGTH = 3*( F + N ) + 26

C*

c* WHERE F IS THE NUMBER OF THE PRIME FACTORS OF NSIMUL
c* EXCLUDING THE TRIVIAL FACTOR 1 .

c N = 2#NSIMUL

C*

(0 IE IF NSIMUL = 21 ( HAS TO BE ODD )

c* THEN 21 = 3%7 => F = 2

c* MINIMUM LENGTH = 3®%( 2 + 42 ) + 26 = 158
C*

Cl

C* ERROR CODES:

c-t

c* STOP "WALPR" , STOPS EXECUTION IF TWO FREQUENCIES ARE EQUAL
c* SEE SUBROUTINE WALPR.

c*

c* STOP "MTH" , THE METHOD READ IN ON TAPE3 WAS SOMETHING OTHER
c* THAN WALSH OR FOURIER. SEE PROGRAM TRANS

c*

c* STOP 3 , ERROR IN MATRIX TRANSPOSITION. SEE SUBROUTINE TRANP.

C-l

C* OUTPUT FORMAT FOR TAPE7 -PARTIAL VARIANCES-

C«D

c* 1) LABEL,TIME,AVE,STDDEV,RELDEV,LENGTH,NPARA

c: ( A8,4(2X,E15.7),2I6 -FORMAT )

c

c: LABEL = NAME OF THE OBJECT FUNCTION

c

cH* TIME = TIME VALUE OF OBJECT FUNCTION

C*

c: AVE = AVERAGE VALUE OF OBJECT FUNCTION AT THIS TIME
c

c* STDDEV = SQUARE ROOT OF TOTAL VARIANCE OF OBJECT FUNCTION
cH AT THIS TIME

C*

ce RELDEV = STDDEV/AVE: STANDARD DEVIATION DIVIDED BY AVERAGE
c* VALUE

Ci

ce LENGTH = NUMBER OF PARTIAL VARIANCES TO WRITE OUT
cH ( NPARA*(NPARA + 1))/2

c*

c* NPARA = NUMBER OF PARAMETERS ANALYZED.

C*

C’

c* 2) ( SWLJ(K),K=1,LENGTH )

cH ( 5(2X,E15.7) -FORMAT )

C-l

c* SWLJ(K) = A SINGLE OR COUPLED PARTIAL VARIANCE, WHERE

kok kok ok ok ok % okk ok k ok k k¥ ok ok kk kk okl akok ok ok Kok okok ok ok k k kok ok ek ¥k ok k¥ %k %k %
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c* CARDS 1 AND 2 ARE REPEATED FOR EACH LABEL-TIME POINT
C*
c WALSH ANALYSIS
C*
CH* 1) LABEL,TIME,NCOEFF ( A8,E15.7,16 -FORMAT )
C*
c* 2) (F(K),K=1,NCOEFF ) ( 4020 -FORMAT )
C-l-
c* CARDS 1 AND 2 ARE REPEATED FOR EACH DIFFERENT LABEL-TIME
c* POINT.
C-}
C*
C*mmmmmm{mmm
REAL TIME(150)
REAL MINSW(10,55),MAXSW(10,55),AVESW(10,55)
REAL A(2048),B(2048)
REAL F(2048)
REAL X(2048)

c* K = NPARA*(L-1) - (L*(L-1))/2 + J *
(004 »
c* »
c*  3) (B(IW(L)+1) L=1,NPARA% *
o ( 5(2X,E15.7) -FORMAT
c* »
c* B(IW(L)+1) = IN FOURIER ANALYSIS, IT IS THE SINE *
c* EXPANSION COEFFICIENT FOR THE IW(L)TH *
c* FREQUENCY. *
c* IN WALSH ANALYSIS, IT IS THE EXPANSION »
c* COEFFICIENT FOR THE IW(L)TH FREQUENCY. *
c* »
c* CARDS 1,2 AND 3 ARE REPEATED FOR EACH LABEL-TIME POINT. *
Cc* »
(054 »
C* OUTPUT FORMAT FOR TAPES8 -EXPANSION COEFFICIENTS- :
c*
c* FOURIER ANALYSIS *
(00 »
c* 1) LABEL,TIME,N2 ( A8,E15.7,I6 -FORMAT) :
c*
CH* 2) ((A(K),B(K)),K=1,82) ( 4020 -FORMAT ) *
C*
*
»
*
*
*
*
*
»
*
»
*
*

C-}
INTEGER TITLE(8),METHOD,NPARA,TNPTS,NSIMUL,IW(50),NFUNC
INTEGER WRITEUP,WRITED,READUP,READOWN
INTEGER IWK(5000)
INTEGER ITYP(2)
INTEGER ILABEL(10)
C*
LOGICAL TEST



C*
C*

C*

c*
C*

c*
o
o
c*
10
11
20

21
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EQUIVALENCE (IWK(1),F(1))
COMMON SWLJ(210)

DATA IUNIT/3/, IHALF/2048/
DATA IFLAG/O/

DATA READUP/4/, READOWN/S/, WRITEUP/6/, WRITED/7/
DATA MAXSW/550%0.0/, MINSW/550%1.0/, AVESW/550%0./
DATA ITYP/10H FOURIER ,10H WALSH /

DATA TEST/ .FALSE. /

INITIALIZE THE TIMING ROUTINE
CALL TIMES(1,0)

READ TAPE3

READ(3,10) (TITLE(J),J=1,8)

FORMAT (8A10)

WRITE( 2,11) (TITLE(J),J=1,8)

FORMAT(1H ,8410) ,

READ(3,20) METHOD,NPARA, TNPTS,NSIMUL,NFUNC
FORMAT(A10,416)

WRITE( 2,21)METHOD, NPARA, NFUNC , NSIMUL,, TNPTS

FORMAT(1H ,/,1H ,A10,* SENSITIVITY ANALYSIS USING :%,/,
+* NUMBER OF PARAMETERS =*,16,/,* NUMBER OF OBJECT FUNCTIONS =*,
+ 16,/,* NUMBER OF SIMULATIONS =*,16,/,* NUMBER OF TIME POINTS

=%

30
40
41

42

50
o#

60

+,16)

READ(3,30) JUNK,IACCUR
FORMAT(A10,5X,I3)
READ(3,40)(IW(J),J=1,NPARA)
FORMAT(16I6)

WRITE( 2,41)

FORMAT(1H ,* FREQUENCY SET * ;
WRITE( 2,42) (IwW(J),J=1,NPARA
PORMAT (15X,1616)

READ(3,30) JUNK

READ(3,50) (TIME(J),J=1,TNPTS)
FORMAT(7E12.6)

READ(3,60) (ILABEL(J), J=1,NFUNC)
FORMAT(8(A8,2X))

DETERMINE THE TYPE OF ANALYSIS

IF( METHOD .EQ. ITYP(1) ) TEST = .TRUE.
IF( METHOD .EQ. ITYP(2) ) TEST = .TRUE.
IF(.NOT. TEST ) STOP "MTH"



c*
C*

C*
C*
c»

C
cw
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TIME THE INPUT
CALL TIMES(1,0)

NOW WE ARE READY TO TRANSPOSE THE MATRIX

CALL TRANP( IUNIT, READUP, READOWN, WRITEUP, WRITED,

+ TNPTS, NFUNC, NSIMUL, IWK(1), IWK(1), IWK(IHALF+1),IHALF,NUMROW)

TIME THE TRANSPOSE OPERATION
CALL TIMES(2,0)

C IR

C‘l
ce
C'l
ce
c*
Ccs
ce
C*

INITIALIZE N2,LENGTH
N2 = LENGTH OF A FOURIER TRANSFORM COEFFICIENT VECTOR

LENGTH = LENGTH OF THE PARTIAL VARIANCE MATRIX WHEN FOLDED
INTO A LINEAR ARRAY

CHHEHHHHHHHHHHEHHEHEHHEREE RS-

C*
(034

(004
ce
c®
c'l'
(00

(034
C*

C'.

c*
c

ci
c*
C

C&
C*

N2 = NSIMUL + 1
LENGTH = ((NPARA*(NPARA+1))/2)

DO 1000 ITIME=1,TNPTS

NOW TRANSFORM EACH OBJECT FUNCTION AT THE TIME POINT
"TIME(ITIME)'

DO 900 NF = 1, NFUNC

READ(WRITEUP) (F(K),K=1,NUMROW)
NOW HAVING SET UP THE ARRAY F TRANSFORM IT

IP(METHOD .EQ. ITYP(2)) CALL WHT( NSIMUL, F, IFLAG,IWK(IHALF+1) )
IF( METHOD.EQ.ITYP(1)) CALL FFAST(F,NSIMUL,X,IWK,A,B)

CALCULATE THE TIME SPENT IN TRANSFORMATION
CALL TIMES(3,0)

NOW CALCULATE THE PARTIAL VARIANCES

IF(METHOD.EQ.ITYP(2))CALL WALPAR(F,NSIMUL,IW,NPARA,SWLJ,TOTVAR)
IF(METHOD.EQ.ITYP(1))CALL FORPAR(A,B,NSIMUL,IW,NPARA,SWLJ,



C*
(05

(054
C*
Cc*
C*

250
300
C
C*
C*

C*

c*

375
c*

400
C*
(004
C’

o
c*
900
c*
1000
c
c*
o
c
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CALC THE TIME SPENT IN PARTIAL VARIANCES CALCULATIONS
CALL TIMES(4,0)

CALC THE PARTIAL VARIANCE STATISTICS

DO 300 L=1,NPARA

DO 250 J=L,NPARA

INDEX = NPARA*(L-1) - (L*(L-1))/2 + J ;
MINSW(NF,INDEX) = AMIN1( MINSW(NF,INDEX), SWLJ(INDEX) )
MAXSW(NF,INDEX) = AMAX1( MAXSW(NF,INDEX), SWLJ(INDEX) )

AVESW(NF, INDEX)=( (ITIME-1.)®*AVESW(NF,INDEX)+SWLJ(INDEX))/FLOAT(ITI
+ME)

CONTINUE

CONTINUE

WRITE OUT THE EXPANSION COEFFICIENTS

IF( METHOD .EQ. ITYP(2) ) GO TO 375

FOURIER METHOD

CALL OUTCF( A, B, N2, TIME(ITIME), ILABEL(NF) )

CALL ouTP( SWLJ, A(1), TOTVAR,TIME(ITIME),LENGTH,ILABEL(NF),B,IW,
+NPARA)

GO TO 400

CONTINUE
WALSH METHOD
CALL OUTCW(P, NSIMUL, TIME(ITIME), ILABEL(NF) )

CALL OUTP( SWLJ, F(1), TOTVAR, TIME(ITIME), LENGTH,ILABEL(NF),F,IW
+,NPARA)
CONTINUE

COMPUTE TIME SPENT IN WRITING OUTPUT
CALL TIMES(5,0)
CONTINUE

CONTINUE

WRITE OUT DIAGNOSTICS

DO 1100 NF=1,NFUNC

SUM = 0.0

WRITE( 2,1400) ILABEL(NF)
DO 1050 L=1,NPARA
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DO 1050 J=L,NPARA
INDEX = NPARA*(L-1) - (L*(L-1))/2 + J
WRITE( 2,1500) L,J,AVESW(NF,INDEX),MINSW(NF,INDEX),MAXSW(NF, INDEX)
SUM = SUM + AVESW(NF,INDEX)
1050 CONTINUE ‘
WRITE( 2,1600) SUM
1100 CONTINUE
1400 FORMAT(1H1,10X,A10,® CONCENTRATION STATISTICS *,/)
1500 FORMAT(1H ,* (*,I2,% % 12, %) # & AVESW =*,1PE14.6,
+3X,* MIN =* E14.6,3X,* MAX = * E14.6)
1600 PORMAT(/,/,/,10X,* SUM OF AVERAGES =%*,G14.6)
CALL TIMES(1,1)
END
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SUBROUTINE OUTP

SUBROUTINE OUTP(SWLJ,AVE,TOTVAR,TIME,LENGTH,LABEL,B, IW,NPARA)

C’
cmmmﬂmmmm
c* SUBROUTINE OUTP WRITES OUT THE PARTIAL VARIANCES ON LOGICAL *
c# UNIT 'IUNIT'. »
Cmmwmmﬂmm
c<l-

REAL SWLJ(LENGTH)

REAL B(1)

INTEGER IW(1)

DATA IUNIT/9/
Cl

STDDEV = SQRT(TOTVAR)
RELDEV = 0.0
IF( AVE .EQ. 0.0 ) GO TO §
RELDEV = STDDEV/AVE
5 CONTINUE
WRITE(IUNIT,10) LABEL,TIME,AVE,STDDEV,RELDEV, LENGTH,NPARA
10 FORMAT(A8,4(2X,E15.7),216)
WRITE(IUNIT,20)(SWLJ(L),L=1,LENGTH)
20 FORMAT(5(2X,E15.7))
WRITE(IUNIT,20)(B(IW(L)+1),L=1,6NPARA)
RETURN
END



255

Program TRANS CONT'D.
SUBROUTINE OUTCW

SUBROUTINE OUTCW(F,NCOEFF,TIME,LABEL)
cmﬂwﬂmmmmmm
c* SUBROUTINE OUTCW WRITES OUT THE WALSH EXPANSION COEFFICIENTS *
c* TO LOGICAL UNIT 'IUNIT' *
cmmm&mmmmm

REAL F(NCOEFF)

DATA IUNIT/8/

WRITE(IUNIT,10) LABEL,TIME,NCOEFF
10 PORMAT(A8,E15.7,16)

WRITE(IUNIT,20)(F(K),K=1,NCOEFF)

20 FORMAT (4020)

RETURN

END
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SUBROUTINE OUTCF

SUBROUTINE OUTCF(A,B,N2,TIME,LABEL)

Cmmm%mmmm
c* ‘ *
c* SUBROUTINE OUTCF WRITES OUT THE FOURIER COEFFICIENTS *
CI»
Cimmmmmmmmm
REAL A(N2),B(N2)
DATA IUNIT/8/
cl

WRITE(IUNIT,10) LABEL,TIME,N2
10 FORMAT(A8,E15.7,16)
 WRITE(IUNIT,20)((A(K),B(K)),K=1,N2)
20 FORMAT (4020)
RETURN
END
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SUBROUTINE WALPAR

SUBROUTINE WALPAR(A,N,IW,NPARA,SWLJ,TOTVAR)
Cmmmwmm

SUBROUTINE WALPAR CALCULATES THE TOTAL VARIANCE AND *
c* PARTIAL VARIANCES GIVEN THE WALSH EXPANSIONS COEFFICIENTS »
c* AND THE FREQUENCY SET. ONLY THE SINGLE PARTIAL VARIANCES AND *
c: COUPLED PARTIAL VARIANCES, S(L,J) ARE COMPUTED. *
C *
c*. ALL PARTIAL VARIANCES ARE STORED IN A LINEAR ARRAY . »
c#* (swLJ( ) ), WHICH IS AN UNFOLDED UPPER TRIANGULAR MATRIX. *
c* THE DIAGONAL ELEMENTS, SWLJ( I,I ), ARE THE I'TH ISINGLE *
cH PARTIAL VARIANCES, AND THE (L,J)'TH ELEMENT IS THE COUPLED *
c PARTIAL VARIANCE OF THE L'TH ND' J'TH PARAMETERS. THIS IS *
c* LINEARLY FOLDED BY *
c* »
c* INDEX = NPARA®(L - 1) - (L¥(L - 1))/2 + J *
(004 *
ce REFERENCE: T.H. PIERCE PHD. THESIS, M.S.U. 1980 »
(054 »
C* INPUT *
C* »
c A = AN ARRAY OF THE WALSH EXPANSION COEFFICIENTS o
(004 »
cH N = THE NUMBER OF EXPANSION COEFFICIENTS IN 'A’ *
ce »
cH IW = AN INTEGER ARRAY OF THE FREQUENCY SET USED. »
Cc* »
c* NPARA = THE NUMBER OF PARAMETERS TO BE ANALYZED *
C* »
C* OUTPUT »
Ccw »
cH SWLJ = AN ARRAY OF THE SINGLE AND COUPLED PARTIAL VARIANCES *
ce »
c TOTVAR = THE TOTAL VARIANCE OF THE EXPANDED FUNCTION *
c* PARSEVAL'S FORMULA - AQ™*2 *
c* »
(034 »
C* RESTRICTIONS »
c* »
c* 1) IW(J) MUST NEVER BE EQUAL TO IW(K) FOR ANY J,K L
ce »
c: 2) SWLJ MUST BE DIMENSIONED AT LEAST (NPARA®(NPARA+1))/2 b
C »
cmﬁm&mmmmmm
CQ

REAL A(N)

REAL SWLJ(1)
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SUBROUTINE WALPAR

INTEGER IW(NPARA)

Cmmmmﬁmm*

(0hd
(044

CALCULATE THE TOTAL VARIANCE

REMEMBER TO ADD ONE(1) TO THE FREQUENCIES TO ACCOUNT FOR
THE FREQUENCY AO STORED AS A(1)

CMWWWWWWW

C.

100
(05
(054
c

200
C"
C*

C"

300
400

TOTVAR = O.

SKIP A(1) AS THIS IS THE AVERAGE VALUE
DO 100 J=2,N .

TOTVAR = TOTVAR + A(J)*A(J)

CONTINUE

CALCULATE THE SINGLE PARTIAL VARIANCES

DO 200 J=1,NPARA

INDEX = NPARA®(J-1) - (J®(J-1))/2 + J
SWLJ(INDEX) = (A(IW(J)+1)*A(IW(J)+1))/TOTVAR
CONTINUE

CALCULATE THE COUPLED PARTIAL VARIANCES

NPARM1 = NPARA - 1

DO 400 L=1, NPARM1

JSTART = L + 1

DO 300 J = JSTART, NPARA

IF THE FREQUERCIES ARE EQUAL; IVAL=0 (MISTAKE)
IF(IW(L) .EQ. IW(J) ) STOP "WALPR"

IVAL = XOR(IW(L),IW(J))

INDEX = NPARA*(L-1) - (L*(L-1))/2 + J
SWLJ(INDEX) = (A(IVAL + 1)®*A(IVAL + 1))/TOTVAR
CONTINUE

CONTINUE

RETURN

END
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SUBROUTINE WHT

SUBROUTINE WHT(NUM,X,II,Y)

t o sz o)

CHe II = O HADAMARD-ORDERED WHT -

CHas II = 1 INVERSE HADAMARD-ORDERED WHT -

CHran IT = 2 WALSH-ORDERED WHT o

Cian II = 3 INVERSE WALSH-ORDERED WHT -

Cm’ PP

CHH THIS ROUTINE CALCULATES THE FAST WALSH-HADAMARD -

CHn TRANSFORMS (WHT) FOR ANY GIVEN NUMBER WHICH -
CH IS A POWER OF TWO. -

Cm-l ey

CHHe NUM = NUMBER OF POINTS ool

CiHHe X(NUM) = ARRAY OF DATA TO BE TRANSFORMED b

CHH ON OUTPUT X(NUM) IS THE TRANSFORMED kel

CoHnne EXPANSION COEFFICIENTS i

(0hd »

C* - REFERENCE: AHMED ARD RAO, "ORTHOGONAL TRANSFORMS FOR *

c* DIGITAL SIGNAL PROCESSING ", SPRINGER- *

c* VERLAG, (1975). *

(004 »

cmmmmmmmum

DIMENSION IPOWER(20),X(NUM),Y(NUM)
IF(II.LE.1) GO TO 14

Crann BIT REVERSE THE INPUT
DO 11 I=1,NUM
IB =1 -1
IL = 1

9 IBD = IB/2

IPOWER(IL) = 1
IF(IB.EQ.(IBD*2)) IPOWER(IL) = 0
IF(IBD.EQ. 0) GO TO 10
IB = IBD
IL = IL + 1
GO TO 9
10 CONTINUE
IP = 1
IFAC = NUM
DO 12 I1 = 1,IL
IFAC = IFAC/2
12 IP = IP + IFAC*IPOWER(I!)
11 Y(IP) = X(I)
DO 13 I = {,NUM
13 X(1) = Y(1)
14 CONTINUE
CHHHR CALCULATE THE NUMBER OF ITERATIONS
65 ITER = O



C i
Cw

CiHHH
CHH
CHH

Qi
(0002 2 J
(it d

48

49
CHH
CHHH

15
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SUBROUTINE WHT

IREM = NUM
IREM = IREM/2
IF(IREM.EQ.O0) GO TO 2
ITER=ITER + 1

GO TO 1

CONTINUE

BEGIN A LOOP FOR (LOG TO BASE TWO OF NUM) ITERATIONS
DO 50 M=1,ITER

CALCULATE THE NUMBER OF PARTIONS
IF(M.EQ.1) NUMP = 1

IF(M.NE.1) NUMP = NUMP*2

MNUM = NUM/NUMP

MNUM2 = MNUM/2

BEGIN A LOOP FOR THE NUMBER OF PARTITIONS.

ALPH = 1.
DO 49 MP = 1,NUMP
IB = (MP-1)*MNUM

BEGIN A LOOP THROUGH THIS PARTITION.

DO 48 MP2 = 1,MNUM2

MNUM21 = MNUM2 + MP2 + IB

IBA = IB +MP2

Y(IBA) = X(IBA) + ALPH*X(MNUM21)
Y(MNUM21) = X(IBA) - ALPH®*X(MNUM21)
CONTINUE

IF(II.GE.2) ALPH = -ALPH

CONTINUE

DO 7 I=1,NUM

X(1) = ¥(1)

CONTINUE :

IF(II.EQ.1 .OR. II.EQ.3) RETURN
R=1./FLOAT (NUM)

DO 15 I=1,RUM

X(I) = X(I)*R

RETURN

END
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TRANP

SUBROUTINE TRANP( IUNIT, READUP, READOWN, WRITEUP, WRITED,
+ TNPTS, NFUNC, NSIMUL, C, UP, DOWN LENGTH NUMROW

C”mm*mﬂmmﬂmﬂmmm

c* SUBROUTINE TRANP TAKES THE MATRIX STORED ON 'IUNIT' AND
C* TRANSPOSES IT. ( A(I,J) => A(J,I) ) RETURNING THE

c* TRANSPOSED MATRIX ON LOGICAL UNIT 'WRITEUP'.

c*

C* NOTES

(0

c* 1) THE ARRAY 'C' MAY BE EQUIVALENCED TO EITHER THE ARRAY
Cc* 'UP' OR THE ARRAY 'DOWN'.

C*

c* 2) LENGTH MUST BE ONE POWER OF TWO GREATER THAN NROW, UNLESS
c* NROW IS A POWER OF TWO.

® &k kk %k ok k k k¥ ¥

cmmmmmmmm

INTEGER READUP,READOWN,WRITEUP,WRITED
INTEGER TNPTS,NSIMUL,NFUNC,IUNIT

CAHHHHFHEEHMEHHEMEHE RPN

c*

C*

o
1

THE VECTOR 'C' SHOULD BE OF DIMENSION ONE POWER OF TWO

GREATER THAN NROW( UNLESS NROW IS A POWER OF TWO )
REAL C(LENGTH)
REAL UP(LENGTH),DOWN(LENGTH)

DATA KOUNT/O/, ZERO/O./, LCOUNT/O/, NUMADD/O/
DATA NUMADD2/0/

NCOL = TNPTS*NFUNC

NROW = NSIMUL

READ IN THE MATRIX

CONTINUE

DO 1000 J=1, TNPTS

ISTR = (J-1)*NFUNC + 1

ISTOP = ISTR + NFUNC - 1
READ(IUNIT,10000)(C(K),K=ISTR,ISTOP)

10000 FORMAT(4020)
1000 CONTINUE

c*
ce
(0d

(054
500
C*

(034
c*

IF KOUNT=0 ,THEN WE NEED TO WRITE THE UP-TAPE(TAPE1 INITIALLY)

IF KOUNT = 1 , THEN WE WRITE THE DOWN-TAPE( TAPE2 INITIALLY

IF(KOUNT .NE. O ) GO TO §
WRITE THE ODD ROWS

DO 500 K=1,NCOL
WRITE(READUP) C(K)

KOURT = 1

LCOUNT COUNTS THE NUMBER OF ROWS WRITTEN, BOTH UP AND DOWN

LCOUNT = LCOUNT + 1
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C* IF DONE, IE LCOUNT = NUMBER OF ROWS, THEN GO TO NEXT TASK
C* IF NOT DONE, THEN CONTINUE READ-WRITE

IF( LCOUNT .EQ. NROW ) GO TO 9
GO TO 1
5 CONTINUE
C* WRITE THE EVEN ROWS
DO 510 K=1,NCOL
510 WRITE(READOWN) C(K)
C* SET KOUNT=0 SO NEXT WRITE IS 'DOWN'
KOUNT = O
LCOUNT = LCOUNT + 1
C* CHECK FOR END OF DATA
IF(LCOUNT .EQ. NROW) GO TO
GO TO
9 CONTINUE
C* TAPE 1,2 ARE WRITTEN WITH THE MATRIX NOW WE NEED TO MAKE SURE
C* THAT THE ROW-DIMENSION IS A POWER OF TWO,AND IF NOT THEN WE
C* MUST ADD SUFFICIENT ZEROS TO MAKE THE ROW-DIMENSION A POWER OF 2

C* CHECK FOR HAVING WRIITEN AN EVEN NUMBER OF ROWS
IF(KOUNT .EQ. O ) GO TO 120

C* ODD NUMBER OF ROWS WERE WRITTEN

C* ADD ONE ROW OF ZEROS
DO 115 K=1,NCOL
WRITE(READOWN ) ZERO

115  CONTINUE
LCOUNT = LCOUNT + 1

C* EVEN NUMBER OF ROWS WRITTEN

120 CONTINUE

C* FIGURE OUT EXPONENT OF NEAREST POWER OF TWO LARGER
DO 116 M=1,50
MDIVID = M ,
RTEST = FLOAT(LCOUNT)/(2.%%*M)
IF ( RTEST .LE. 1 ) GO TO 118

116  CONTINUE
STOP 2

118 CONTINUE

c* CHECK FOR EXACT POWER OF TWO
IF (RTEST .EQ. 1. ) GO TO 200

C* NOW CALCULATE THE NUMBER OF ROWS WE MUST ADD
NUMADD = 2##MDIVID - LCOUNT

C* NUMADD SHOULD ALSO BE DIVISIBLE BY TWO
IF(NUMADD .NE. 2*(NUMADD/2) ) STOP 3

C* WRITE ZEROS INTO DUMMY ROWS
NUMADD2 = NUMADD/2
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DO 130 L=1,NUMADD2

DO 130 K=1,NCOL

WRITE(READUP ) ZERO

WRITE(READOWN ) ZERO
130 CONTINUE
200 CONTINUE
c‘l
C* LET NUMADD BE THE TOTAL NUMBER OF ADDED ROWS
C* REMEMBER WE MAY HAVE ADDED A ROW EARLIER

IF( NROW .NE. LCOUNT )NUMADD = NUMADD + 1
C* THE FINAL CHECK

NUMROW = NUMADD + NROW

IF(NUMROW .NE. (2**MDIVID)) STOP 4
c* EVEN AND ODD TAPE WRITTEN

LOOP = 1

REWIND READUP

REWIND READOWN

REWIND WRITEUP

REWIND WRITED
C*
C$ DIAGNOSTICS

WRITE( 2,101)
101 FORMAT(/,/,/.* SUBROUTINE TRANP STATISTICS *,/)

WRITE( 2,112) NROW,NCOL,NUMADD,NUMADD2
112 FORMAT(* *,* NROW=*,I5,* NCOL=*,I4,* NUMADD=*, I6,

+#*  NUMADD2=*,15)

NINSERT = NCOL

NCHECK = NUMROW/2
10 CONTINUE
c* INITIALIZE FOR THE READ-WRITE

c* KOUNT = NUMBER OF INSERTS DONE
c* LCOUNT = TOTAL NUMBER OF READ-WRITES DONE THIS
c* ITERATION

KOUNT = O

LCOUNT = O

20 CONTINUE
READ(READUP )(UP(L),L=1,LOOP)
READ(READOWN) (DOWN(L),L=1,LOOP)
WRITE(WRITEUP)(UP(L),L=1,LOOP),(DOWN(M),M=1,LOOP)
KOUNT = KOUNT + 1
IF( KOUNT .NE. NINSERT ) GO TO 20
LCOUNT = LCOUNT + 1

c* LCOUNT SHOULD EQUALNCHECK HERE

c* ONLY IF NCHECK = 1 AND IT IS THE LAST MIX
IF( LCOUNT .EQ. NCHECK ) GO TO 65
KOUNT = O

30 CONTINUE
READ(READUP )(UP(L),L=1,L0O0P)
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READ(READOWN ) (DOwN(L),L=1,LOOP)
WRITE(WRITED)(UP(L),L=1,L0OP), (DOWN(M),M=1,L00P)
KOUNT = KOUNT + 1
IF( KOUNT .NE. NINSERT ) GO TO 30
LCOUNT = LCOUNT + 1
IF( LCOUNT .EQ. NCHECK ) GO TO 50
KOUNT = O
GO TO 20
50  CONTINUE
LOOP = LOOP*2
NCHECK = NCHECK/2
C* ERROR CHECKING
IF( NCHECK .LE. O ) STOP 2
ISAVUP = READUP
ISAVD =READOWN
READUP = WRITEUP
READOWN = WRITED
WRITEUP=ISAVUP
WRITED= ISAVD
REWIND READUP
REWIND READOWN
REWIND WRITEUP
REWIND WRITED
GO TO 10
65 CONTINUE
REWIND WRITEUP
RETURN
END
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SUBROUTINE TIMES

SUBROUTINE TIMES(ISUB,ITYPE)
CHHET IR RN

c* *
C* SUBROUTINE TIMES COMPUTES THE CPU TIME SPENT BETWEEN CALLS. *
Cc* THIS IS INSTALLATION DEPENDENT. »
C* ITS USE IS FOR DOCUMENTATION PURPOSES ONLY :
c*

c* ISUB = THE PROCEDURE TO BE TIMED. :
c*

c* ITYPE = FLAG: .LT. 1 FOR TIMING *
c* «GE. 1 FOR FINAL PRINT »
(004 »

cmmmﬂmmmmmm
C-l

REAL TIMS(15),NEW, LAST

INTEGER NAME(15)

C*
DATA TIMS/15%0./
DATA LAST /0./
DATA NAME/10OHREAD INPUT,!OHTRANSPOSE ,1OHTRANSFORM ,10HPARTIALVAR
+,10HWRITE OUTP/
DATA LENGTH /5/
C-l-

IF(ITYPE .GE. 1) GO TO 5
NEW = SECOND(CPU)
c* INITIALIZE THE VALUES IN FIRST ENTRY
IF( LAST .EQ. O. ) LAST = NEW
TIMS(ISUB) = TIMS(ISUB) + NEW - LAST
LAST = NEW
RETURN
5 CONTINUE
WRITE( 2,100)
100  FORMAT(* *,/,/,/,5X,* SECONDS*,4X,* PROCEDURE *,/)
TSUM = O.
DO 10 J=1,LENGTH
TSUM = TSUM + TIMS(J)
WRITE( 2,150) TIMS(J),NAME(J)
150 FORMAT(* * 5X,F7.3,5X,A10)
10 CONTINUE
WRITE( 2,160) TSUM
160  FORMAT(* #* / / 6X,F7.3,4X,* TOTAL TIME *)
RETURN
END
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SUBROUTINE FFAST

SUBROUTINE FFAST(F,NPTS,X,IWK,A,B)
(el

c#* SUBROUTINE FFAST COMPUTES THE FOURIER TRANSFORM OF A VECTOR *
ce IN THIS CASE 'F' IS LENGTHENED FROM ( -PI/2 , PI/2 ) TO *
c# ( 0, 2PI ) AND THEN FOURIER-TRANSFORMED INTO COSINE AND SINE ¥
c: COEFFICIENTS, A AND B RESPECTIVELY. *
C L J
C* NOTE *
c* *
c* 1) SINCE 'F' IS NEVER USED IN FFCSIN IT MAY BE EQUIVALENCED »
c* T0 'IWK'. d
c* *
c* 2) THE ROUTINES ALSO ALLOW THE EQUIVALENCING OF 'A' AND *
c* 'X'. *
c* *
c# 3) AO, THE AVERAGE VALUE, IS STORED AS 'A(1)'. »
c

REAL F(NPTS)

REAL X(1),A(1),B(1)
C*

INTEGER IWK(1)
C* NPTS MUST BE AN ODD INTEGER AND NOTE WE ARE GOING FROM

c* -PI/2 TO PI/2 AND TRANSFORMING TO (0,2%*PI)
CHHHH
o

NPTSP1=NPTS + 1

NPTS2=NPTS*2

N2=NPTS+1

RNPTS2=(1.0/FLOAT(NPTS2))
1Q=(NPTS-1)/2

IQP1=IQ+1
C-l
C
L=0
C
C* TRANSFORM F(-PI/2 , PI/2) TO X(0 , 2*PI)
C

DO 1000 J=IQP1,NPTS
L=L+1

1000 X(L)=F(J)
DO 2000 J=1,IQP1
L=L+1
JJ=NPTSP1-J
X(L)=F(JJ)

2000 CONTINUE
DO 3000 J=1,IQ
L=L+1
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JJ=IQP1-J

X(L)=F(JJ)
3000 CONTINUE

DO 4000 J=1,1IQ

L=L+1
X(L)=F(J)
4000 CONTINUE
C
c

C* CALL IMSL ROUTINES TO CALCULATE FOURIER COEFFICIENTS
c
CALL FFCSIN(X,NPTS2,A,B,IWK)
c* :
c* SCALE THE COEFFICIENTS TO THEIR CORRECT VALUES.
DO 350 J=1,N2
A(J)=RNPTS2*A(J)
B(J)=RNPTS2*B(J)
350 CONTINUE
A(1)=A(1)/2.0
A(N2)=A(N2)/2.0
B(1)=0.0
B(N2)=0.0

RETURN
END
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SUBROUTINE FORPAR(A, B, NPTS, IW, NPARA, SWLJ, TOTVAR,TIACCUR)
cmﬂmmm
C* CALCULATE THE PARTIAL VARIANCES
C*  THIS ROUTINE IS SET UP FOR 4TH ORDER ACCURATE FREQUENCY
C*  SETS
C* FIRST CALCULATE THE VARIANCE ( PARSEVAL"S FORMULA - AQO"%*2
C* THEN CALCULATE THE SUM OF HARMONICS NOTING THAT ALL BUT THE
C* NPARA'TH ARE SUMMED TO THE FIRST HARMONIC AND THE NPARA'TH ONLY T
c* THE FUNDAMENTAL HARMONIC '

® gk k¥

*

. :
c* ALL PARTIAL VARIANCES ARE STORED IN A LINEAR ARRAY »
C* (SWLJ( ) ), WHICH IS AN UNFOLDED UPPER TRIANGULAR MATRIX. »
c* THE DIAGONAL ELEMENTS, SWLJ( I,I ), ARE THE I'TH ISINGLE *
c* PARTIAL VARIANCES, AND THE (L,J)'TH ELEMENT IS THE COUPLED *
c* PARTIAL VARIANCE OF THE L'TH ND J'TH PARAMETERS. THIS IS *
c* LINEARLY FOLDED BY »
CH »
c* INDEX = NPARA®(L - 1) - (L*(L - 1))/2 + J *
c* »
c* REFERENCE: T.H. PIERCE PHD. THESIS, M.S.U. 1980 *
c* »
c* INPUT »
c* »
c* A = AN ARRAY OF THE COSINE EXPANSION COEFFICIENTS *
Cc* »
c* B = AN ARRAY OF THE SINE EXPANSION COEFFICIENTS L
Cc* »
c* NPTS = NUMBER OF SIMULATIONS *
c* »
c* IW = AN INTEGER ARRAY OF THE FREQUENCY SET USED. *
Cc* »
c* NPARA = THE NUMBER OF PARAMETERS TO BE ANALYZED *
c* »
C*  QUTPUT »
c* »
c* SWLJ = AN ARRAY OF THE SINGLE AND COUPLED PARTIAL VARIANCES *
(004 »
c* TOTVAR = THE TOTAL VARIANCE OF THE EXPANDED FUNCTION *
c: PARSEVAL'S FORMULA - AO™*2 *
C *»
c* »
C* RESTRICTIONS *
C* »
c* 1) IW(J) MUST NEVER BE EQUAL TO IW(K) FOR ANY J,K *
ce »
c* 2) SWLJ MUST BE DIMENSIONED AT LEAST (NPARA*(NPARA+1))/2 *

cmmmmﬁmmmm%
REAL A(1),B(1),SWLJ(1)
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C*
INTEGER IW(NPARA)
o* -
IRANGE = IACCUR - 1
IMID = IACCUR/2
N2 = NPTS + 1
NPARM! = NPARA - 1
TOTVAR = 0.0
c* SKIP A(1) AND B(1) AS AO, THE AVERAGE VALUE, IS
C* STORED AS A(1); B(1) = O.
DO 600 JJ=2,N2 .
TOTVAR = A(JJ)*A(JJ) + B(JJ)*B(JJ) +TOTVAR
600 CONTINUE
C* LP IS THE HARMONICS
DO 650 L=1,NPARM1
SUM = 0.0
DO 625 LP = 1,2
LPWP1 =LP*IW(L) + 1
SW=A@WMPMHWH+B@WNVMWWH+SW
625 CONTINUE
INDEX = NPARA*(L-1) - (L*(L-1))/2 + L
SWLJ(INDEX) = SUM/TOTVAR
650  CONTINUE

SUM=0.0
DO 675 L=1,1
LPWP1 = L*IW(NPARA) + 1
SUM = SUM + A(LPWP1)®*A(LPWP1) + B(LPWP1)*B(LPWP!)
" 675 CONTINUE
INDEX = (NPARA*(NPARA+1))/2
SWLJ(INDEX) = SUM/TOTVAR
*
o
DO 900 L=1, NPARMI
JSTART =L + 1
DO 800 J=JSTART, NPARA
SUM = 0.
DO 750 KP=1,IRANGE
IP = IMID - KP
DO 700 IK = 1, IRANGE
K = IMID - IK
IF(IP .EQ. O) GO TO 750
IF( X .EQ. 0) GO TO 700
c* ADD ONE (1) TO THE FREQUENCY COUNT TO ACCOUNT FOR AO BO
e
IFREQ = IP*IW(L) + K*IW(J) + 1
IF(IFREQ .LE. 1 ) GO TO 700
IF(IFREQ .GE. N2) GO TO 700



700
750

900
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SUM = A(IFREQ)*A(IFREQ) + B(IFREQ)*B(IFREQ) + SUM
CONTINUE

CONTINUE

INDEX = NPARA*(L-1) - (L*(L-1))/2 + J

SWLJ(INDEX) = SUM/TOTVAR

CONTINUE

CONTINUE

RETURN

END
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PROGRAM PLTSEN (INPUT,OUTPUT, TAPE1=INPUT,TAPE2=0UTPUT,
+ TAPE9)
CMW*WMWWW

c* THIS PROGRAM PLOTS RESULTS OF TAPEQ SENSITIVITY ANALYSIS FILE. *
C* THE PROGRAM READS CARDS FOR INFORMATION ON WHAT TO PLOT. -
c* IT THEN SEARCHES THE FILE (TAPE9) FOR THE DESIRED VALUES, »
C* AND PLOTS IT ON A LINE PRINTER. *
C* IF MORE THAN ONE PLOT IS DESIRED, IT REWINDS THE FILE »
C*  AND REPEATS. *
c* »
c* INPUT »
c* CARD 1 »
C* »
c* NPLOT, NCONC (2I5 FORMAT) L
c* »
c* NPLOT = THE TOTAL NUMBER OF PLOTS »
c* DESIRED. »
Cc* »
c* NCONC= THE NUMBER OF DIFFERENT OUTPUT »
c* FUNCTIONS IN TAPE9. »
c* »
C* NOTE CARDS 2-6 ARE TO BE REPEATED FOR ALL THE DESIRED OBJECT *
c* FUNCTIONS. *
C* »
c* CARD 2 »
c* ITEST ( A10 FORMAT) »
Cc* »
c* ITEST = THE LABEL OF THE OBJECT (OR »
c* OUTPUT) FUNCTION TO BE PLOTTED i
Cc* »
c* CARD 3 *
c* »
c* NFUNC, NPOINT *
c* : *
c* NFUNC = THE NUMBER OF FUNCTIONS TO PLOT »
c* FOR THE LPT'TH PLOT. »
(034 »
c* NPOINT = THE NUMBER OF POINTS TO BE PLOTTED »
c* IN THE LPT'TH PLOT (X-AXIS) :
C'l»

c* CARD 4 -
c* »
c* ITITLE(8) (8A10 FORMAT ) »
C* »
c* ITITLE = THE PLOT TITLE FOR THE LPT'TH *
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c* PLOT.
c* CARD 5
c* SYM(K) (10A1 FORMAT)

c* , SYM(K) = THE SYMBOLS TO BE USED IN THE PLOT.
c* ( IE THE SYMBOL FOR THE KTH FUNCTION).

* ¥ ok k kR Kk kK

c* CARD 6 - CARD(5+NFUNC)
c* NAME(K) (A10 FORMAT)

c* NAME(K) = THE NAME (LABEL) OF THE KTH FUNCTIO
c* TO BE PLOTTED.

**ﬁ* * %k &k Xk

C IS

REAL TIME(100)
REAL PLT(100,10)
REAL DELX(100)

c*
CHARACTER*10 JNAME(10),NAME(10),ITITLE(8)
CHARACTER*10 ITEST
C*
COMMON /PLTPTS/ SYM(10)
C*
DATA 10/2/, IS/1/, DELX/100%*0./
DATA MAX/100/
C*
C*  READ IN CARD INPUT
c-l»
C*
C* READ IN:
c* NFUNC = NUMBER OF FUNCTION TO PLOT
c* NPOINT = NUMBER OF POINTS PER PLOT
c* NPLOT = NUMBER OF PLOTS
C*

READ(1,20) NPLOT,NCONC
20 FORMAT (315)
WRITE(2,30) NPLOT
30 FORMAT('1"',' THERE ARE ',I5,' PLOTS')
C*
ci
DO 1000 LPT=1,NPLOT

C* READ IN CORRECT OBJECT FUNCTIONS
READ(1,35) ITEST
35 FORMAT (A10)
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C*  READ IN THE NUMBER OF FUNCTIONS TO BE PLOTTED AND
C* THE NUMBER OF POINTS TO PLOT PER FUNCTICN

READ(1,*) NFUNC,NPOINT
45 FORMAT (21I5)
C{
c* READ IN PLOT TITLE

READ(1,10) (ITITLE(K),K=1,8)
10 FORMAT (8A10)
C* READ IN PLOT SYMBOLS

READ(1,55)(SYM(K),K=1,NFUNC)
55 FORMAT (10A1)
C"
C* READ IN THE NAME OF THE PLOTTED FUNCTIONS

DO 80 K=1,NFUNC

READ(1,75) NAME(K)
75 FORMAT (A10)
80 CONTINUE

NKOUNT = NCONC®*NPOINT
C*

LPLOT=LPT

CALL READ9(NKOUNT, NFUNC,TIME,ITEST,NCONC,LPLOT,PLT,ITPTS)

IFLAG = O

IF( ITPTS .NE. NPOINT ) IFLAG = 1

IF ( IFLAG .EQ. 1) WRITE(2,310) NPOINT,ITPTS
310 FORMAT('1',' NUMBER OF POINTS EXPECTED =',I16,/,5X,

+ ' NUMBER OF POINTS READ =',I6)

IF( IFLAG .EQ. 1 ) NPOINT = ITPTS

c*
CALL PLOT(IO,PLT,DELX,IS,ITITLE,NAME,TIME(!),TIME(NPOINT),NPOINT,
+ NFUNC,MAX)

c*

C* WRITE OUT THE PLOTTED POINTS.

c*

WRITE(2,300)(NAME(K),K=1,NFUNC)
300 FORMAT('t1',' POINT',10(1X,A10,1X))

DO 350 K=1,NPOINT

WRITE(2,325)( X, (PLT(XK,L),L=1,NFUNC))
325  FORMAT(' ',I4,1X,10(1X,1PE10.3,1X))
350 CONTINUE

REWIND 9
1000 CONTINUE

END
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SUBROUTINE READ9

SUBROUTINE READY(NKOUNT,NFUNC,TIM,ITEST,NCONC,LPLOT,PLT,ITIME)
CHHHHHEHHHHHEHEHEEEHREHHHHHEHEHHERHHEREHHHHEHHHEEHHHEREHHEHE R

c* »
c* SUBROUTINE READ READS IN THE OUTPUT TAPE7 FROM PROGRAM »
cH* TRANS. THIS IS READ IN SO THAT IT MAY BE PLOTTED. *
c* »
C* INPUT UNIT = 9 »
c* *
C* OUTPUT UNIT = 2 *
c* »
c* »
C*  VARIABLES: *
c* NKOUNT = NUMBER OF TOTAL SENSITIVITY POINTS »
c »
(s NCONC = NUMBER OF CONCENTRATIONS *
c* »
c* TIM(70) = TIME POINT OF S. A. POINT »
c* »

CIHHHHEEHEHERHENER RN
C*

*

CHARACTER™ O LABEL,ITEST

C*
REAL PLT(100,10)
REAL TIM(100),SWLK(50),B(50)
DATA IIN/9/
C-I»
ITIME = O
ISCALE = 1
c
DO 1000 KOUNT = 1,NKOUNT
o

READ(IIN,10) LABEL,TIME,AVE,STDDEV,RELDEV,LENGTH,NPARA
10 FORMAT(A10,4(2X,E15.7),216)

READ(IIN,20)(SWLK(K),K=1,LENGTH)
20 FORMAT(5(2X,E15.7))

READ(IIN,20)(B(L),L=1,NPARA)

C* FINDS CORRECT CONCENTRATION LABEL
DO 200 I=1,NCONC
IVAL=I
IF( LABEL .EQ. ITEST) GO TO 350
200 CONTINUE
GO TO 1000
350 CONTINUE
c NORMILIZE LPLOT TO ( 1,2,3,4)
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C*

IF(LPLOT .LE. 4) GO TO 400

. LPLOT = LPLOT - 4

GO TO 350
400 CONTINUE
C* FOUND THE CORRECT OBJECT FUNCTION
C* SAVE THE DESIRED VALUES.

ITIME = ITIME + 1

TIM(ITIME) = TIME

¢o 70 ( 500, 550, 600, 650 ) LPLOT
500 CONTINUE

o SAVE THE AVERAGE VALUE
o
PLT(ITIME,1) = AVE
GO TO 1000
c
550 CONTINUE
c SAVE THE RELATIVE DEVIATION CURVE
PLT(ITIME,1) = RELDEV
GO TO 1000
c
600 CONTINUE
c SAVE THE SINGLE PARTIAL VARIANCES

DO 610 NP=1,NPARA
INDEX = NPARA*(NP-1) - (NP*(NP-1))/2 + NP
PLT(ITIME,NP) = SWLK(INDEX)
610 CONTINUE

GO TO 1000

C

650 CONTINUE

c

c SAVE THE EXPANSION COEFFICIENTS
DO 660 NP = 1, NPARA

PLT(ITIME,NP) = B(NP)

660 CONTINUE

c

1000 CONTINUE

cQ

RETURN
END
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SUBROUTINE PLOT

SUBROUTINE PLOT(IO,ARAY,XARAY,ISCALE,JNAME,NAME,BLOW,BHI,NPT,NF,
+ MAX)

C R I S0 363000 JE IS0 360699

C'l
C»
C-I'
C

c*
C*
(05
(004
(054
(04,4
c*
(044
(034
C'I
C-l'
C*
(044
(004
C*
C

C-l
C*
(054
(0hd
c*
C*
(03
Cl'
(05,4
O
(054
C’
(00
(054

IO = THE OUTPUT UNIT

ISCALE = TYPE OF PLOT DESIRED, 1= LINEAR SCALE ,2= SEMILOG,

3= LOG-LOG. FOR LOG-LOG READ IN EQUAL INTERVALS ON A LOG
SCALE.

NO MIXING OF 1,2,0R 3 ALLOWED IN THE SAME PLOT.

BLOW= THE LOWER BOUND OF THE PLOT FOR THE X-AXIS
BHI = THE UPPER BOUND OF THE PLOT FOR THE X-AXIS

NPT = THE NUMBER OF POINTS PER FUNCTION TO BE PLOTTED

B ok % k¥ k¥ ¥ ok k Kk ¥

MAX = THE INNER DIMENSION OF THE ARAY DEFINED IN THE MAIN PROGRAM*

NF = THE NUMBER OF FUNCTIONS TO BE PLOTTED

* %k ok ¥

ARAY(MAX,NF) = ARRAY OF POINTS TO BE PLOTTED

*

XARAY(MAX) = THE ERRORS ASSOCIATED WITH THE POINTS FOR THE FIRST *
FUNCTION. ONLY THE FIRST FUNCTION WILL BE PLOTTED WITH ERROR*

BARS *

*

JNAME(8) = THE TITLE OF THE PLOT. THIS WILL BE PRINTED AT THE TOP*
OF THE PLOT (8A10 FORMAT ) :
NAME(10) = THE NAME OF EACH FUNCTION TO BE PLOTTED(USE A10 FORMAT*
OR 10H ) *

*

A LABELED COMMON BLOCK IS ALSO REQUIRED *
THIS BLOCK CONTAINS THE SYMBOLS TO BE USED IN THE *
PLOT FOR EACH FUNCTION *
USE »
COMMON /PLTPTS/ POINT(10) »

WHERE POINT(I) IS THE SYMBOL FOR THE ITH :

FUNCTION TO BE READ IN USING A1 FORMAT OR DEFINED WITH 1H FORMAT

C IR

(04

(034

DIMENSION ARAY(MAX,NF),XARAY(MAX)
REAL - XMAX(10),XMIN(10)
CHARACTER*7 SC(3)

CHARACTER*{ O NAME(10), JNAME(10)

DIMENSION VAL(106)
DIMENSION XDIV(3),XMIN1(11)
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SUBROUTINE PLOT

C*
COMMON /PLTPTS/ POINT(10)
C*
DATA BLANK/1H /,
* DASH/1H-/,STAR/1H*/
DATA XDIV/1.,2.,5./
DATA SC/'LINEAR','LOG','LOG LOG'/
C*
IF( NPT .LE. MAX ) GO TO 5
WRITE(IO,1)(JNAHE(K),K-1,8)
1 FORMAT(' ARRAY SIZE TOO LARGE IN PLOT oF',/,3X,8A10)
RETURN
5 CONTINUE

IF( BLOW .LT. BHI) GO TO 50
WRITE(IO,160) BLOW,BHI

160  FORMAT(' X-AXIS MINIMUM AND MAXIMUM ARE NOT',E15.7,'.GE.',E15.7)

50 CONTINUE

C* TO PAGE OR NOT TO PAGE
IF(NPT.LE.40) GO TO 8
WRITE(IO,6)

FORMAT('1"')
GO TO 9
WRITE(IO,7)
FORMAT(/////)
CONTINUE

* WRITE HEADER FOR PLOTS
WRITE(I0,10)((JNAME(K),K=1,8),SC(ISCALE))

10 FORMAT('  PLOT OF ',8A10,5X,A10,' SCALE',/)
WRITE(IO0,13)
WRITE(IO,12)(POINT(I),NAME(I),I=1,NF)

12 FORMAT(10X,A2,5X,A10)

o

QW 3D

13 FORMAT (30H - - /)
WRITE(IO,13)

c

c FIND MAXIMUM AND MINIMUM

c
M=0

c INITIALIZE XMAX AND XMIN

DO 630 LD=1,NF
XMAX(LD)=ARAY(1,LD)
XMIN(LD)=ARAY(1,LD)
630 CONTINUE
DO 20 LDS=1,NF
DO 20 L=1,NPT
IF(ARAY(L,LDS).GT.XMAX(LDS)) XMAX(LDS)=ARAY(L,LDS)
IF(ARAY(L,LDS).LT. XMIN(LDS)) XMIN(LDS)=ARAY(L,LDS)
20 CONTINUE
c CHECK FOR ZERO ARRAYS
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DO 640 NSF=1,NF
IF(XMAX(NSF) .EQ.O. .AND.XMAX(NSF) .EQ.XMIN(NSF)) WRITE(IO,21)NSF
640 CONTINUE
21 FORMAT(' ALL POINTS IN THE',I3,' GRAPH OF THIS PLOT ARE ZERO')
IF(ISCALE.EQ.3) GO TO 2
156  DIV=(BHI-BLOW)/(NPT-1)
IF(ISCALE.NE.1) GO TO 3
FAC=1
IMIN2=2,%#%40
XMAX1 =-XMIN2
DO 650 JL=1,NF
IF(XMAX(JL).GT.XMAX1)XMAX1=XMAX§JL3
IF(XMIN(JL).LT.XMIN2 ) XMIN2=XMIN(JL
650 CONTINUE
XDIF=XMAX1-XMIN2
25 DO 22 L=1,3
IF((XDIF/XDIV(L)).LE.100.) GO TO 23
22 CONTINUE
FAC=FAC*™10.
XDIF=XDIF/10.
G0 TO 25
23 XSCALE=FAC*XDIV(L)
IF(XSCALE.GT.1.) GO TO 28
IF(XSCALE.EQ.1..AND.XDIF.GT.50.) GO TO 28
DO 29 LL=1,7
DO 26 L=1,3
IF(XDIF*XDIV(L).GT.100.) GO TO 27
26 CONTINUE
FAC=FAC*™10.
29 XDIF=XDIF*10.
27 IF(L.EQ.1) L=4
IF(L.EQ.4.AND.FAC.NE.1.) FAC=FAC/10.
XSCALE=1./(FAC*XDIV(L-1))
28 CONTINUE
XMIN2=XMIN2/XSCALE
XMIN2=INT(XMIN2/10.+(SIGN(1.,XMIN2)-1.)/2.)*10.*XSCALE
DO 30 L=1,11
30 XMIN1(L)=XMIN2+FLOAT (L-1)*10.*XSCALE
WRITE(IO0,31) XMIN1
31 FORMAT(5X,G12.5,2X,9(69.2,1X),G12.5)
WRITE(I0,32)
32 FORMAT(13X,21('I.e..'),'I.I")
XVAL=BLOW-DIV

Jo=1
o*
c* HERE WE LOOP OVER THE POINT PLOTTING ONE LINE AT A TIME
c* TARAY IS THE ARRAY INDEX OF VAL( ) WHERE A SYMBOL SHOULD BE

80 DO 40 L=1,NPT
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SUBROUTINE PLOT

DO 800 LS=1,106

VAL(LS )=BLANK

IF(ISCALE.EQ.3) GO TO 500
XVAL=XVAL+DIV

GO TO 510

VALOG=VALOG+DIV
XVAL=10.%*(VALOG)

CONTINUE

DO 700 JZ=1,NF
IARAY=(ARAY(L,JZ) - XMIN2)/XSCALE + 0.5
IF(IARAY.GT.106) GO TO 700
IF(IARAY.LT.0) IARAY = O
IF(JZ.GT.1)GO TO 730

IERR=ABS (XARAY(L)/XSCALE)+0.5
JERR=106-IERR

KERR=IARAY-1

IF(IARAY.NE.O)GO TO 42
IF(IERR.EQ.0)GO TO 700

GO TO 710

IF(IARAY.EQ.0)GO TO 700
VAL(IARAY)=POINT(JZ)
IF(IERR.EQ.0.0R.JZ.GT.1)GO TO 700
LERR=IARAY-IERR
IF(IERR.GE.IARAY)LERR=1
JOHN=IARAY+IERR
IF(JOHN.GT.106)JOHN=106

KERR1 =IARAY+1

DO 720 JTZ=LERR,KERR
VAL(JTZ)=DASH

CONTINUE

DO 760 JTY=KERR1,JOHN
VAL(JTY)=DASH

CONTINUE

CONTINUE
WRITE(IO,44)XVAL,VAL,ARAY(L,1)
FORMAT (1X,E11.4,1X,"'I',106A1,"'I',1X,E11.4)
CONTINUE

Go To (501,502,503,504,505),J0
WRITE(IO,32)

GO TO 810

WRITE(I0,106)

GO TO 810

WRITE(IO0,109)

GO TO 810

WRITE(I0,113)

GO TO 810

WRITE(IO,116)

CONTINUE
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'SUBROUTINE PLOT

IF( ISCALE .EQ. 1) GO TO 1000
c* RETURN THE VALUES TO NORMAL SPACE
DO 965 K=1,NPT
XARAY(K) = 10.0"*(XARAY(K))
965 CONTINUE
DO 975 L=1,NF
DO 975 K=1,NPT
ARAY(K,L) = 10.0"*(ARAY(X,L))

975 CONTINUE
1000 CONTINUE
RETURN
c
C LOG SCALE
C
3 DO 900 MAA=1,NF

IF(XMIN(MAA).LE.O.) GO TO 110
900 CONTINUE
XVAL=BLOW-DIV
150 CONTINUE
DO 100 L=1,NPT
IF( XARAY(L) .LE. O ) XARAY(L) = 1.0
XARAY(L) = ALOG10(XARAY(L))
DO 100 LL=1,NF
100 ARAY(L,LL)=ALOG10(ARAY(L,LL))
XMIN2=2,%#40
XMAX1=-XMIN2
DO 910 JL=1,NF
IF(XMAX(JL).GT.XMAX! )XMAX1 =XMAX(JL)
IF(XMIN(JL).LT.XMIN2 ) XMIN2=XMIN(JL)
910 CONTINUE
XMAX1=ALOG1O(XMAX1)
XMIN2=ALOG10(XMIN2)
XDIF=XMAX1-XMIN2
IXDIF=INT (XDIF)+1
IXMIN=INT (XMIN2+(SIGN(1.,XMIN2)-1.)/2.)
IF( IXDIF .GT. 5 ) GO TO 10000
¢o 70 (101,102,103,103,104),IXDIF
10000 CONTINUE
IF (IXDIF.LE.10) GO TO 1500
c* TO LARGE A RANGE OF Y VALUES
WRITE(IO,45) IXDIF
45 FORMAT(' TO LARGE A RANGE ON THE Y AXIS, MAGNITUDE=',I3,'.GT.10')
1500 CONTINUE
DO 105 L=1,11
105  XMIN1(L)=10.*#*(IXMIN+L-1)
WRITE(IO,31) XMIN1
WRITE(IO,32)
XSCALE=0.1



101

250

106

102
107

108

109

103
IRR

112

113

104
114

115

116
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Program PLOTSEN CONT'D.
SUBROUTINE PLOT

IXMIN=IXMIN*10

JO=1

GO TO 80

XMIN1(1)=10."*IXMIN
XMIN1(11)=10.#%(IXMIN+1)
WRITE(I0,250) XMIN1(1) XMIN1(11)
FORMAT(9X E8.1, 26x '2',19%,'3',11%,'4',9X,'5',6X,'6",
®*5X,'7',5X, 8',4x '9',2X,E8.1)
WRITE(IO 106)

FORMAT(13X 'I',29('."),'T"’ 19(' ') "It (L), T,

*9('."),'T',6("."),"I '.5(' DL tT,s0),

*'I....I...I ,5("."),'1")

XSCALE=0.01

IXMIN=IXMIN*100

Jo=2

GO TO 80

DO 107 L=1,3

XMIN1(L)=10.%*( IXMIN+L-1)
WRITE(I0,108) (XMIN1(L),L=1,3)

FORMAT (9X,E8.1,30X,E8.1,42X,E8.1)
WRITE(IO0,109)

FORMAT(l}X 2(" I..............I.........I.....I....I

* Il Ie I T "), ' TeeeelI)

XSCALE=1./50.

IXMIN=IXMIN*50

JO=3

GO TO 80

DO 111 L=1,4
XMIN1(L)=10.%*(IXMIN+L-1)
WRITE(IO,112)(XMIN1(L),L=1,4)

FORMAT (9X,E8.1,3(18X,E8.1))

JO=4

WRITE(IO,113)

FORMAT (13X,4('I',24('.")),'I.....I")
XSCALE=1./25.

IXMIN=IXMIN®*25,

GO TO 80

DO 114 L=1,5

XMIN1 (L)=10.%*(IXMIN+L-1)
WRITE(IO0,115)(XMINI(L),L=1,5)

FORMAT (9X,E8.1,4(13X,E8.1))

JO=5

WRITE(IO,116)
FORMAT(13X,5('1',19(".")), 'Iev...I")
XSCALE=1./20.

IXMIN=IXMIN®*20

GO TO 80
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Program PLOTSEN CONT'D.
SUBROUTINE PLOT

LOG-LOG SCALE

N QO

DO 950 ND=1,NF
IVAL = ND
IF(XMIN(ND).LE.O.) GO TO 110
950 CONTINUE
IF(BLOW.LE.O.) GO TO 120
VALOG=ALOG10 2 BLOW)
VBLOG=ALOG10(BHI)
DIV=(VBLOG-VALOG ) /NPT
VALOG=VALOG-DIV
GO TO 150
110  WRITE(IO,155) NAME(IVAL)
155  FORMAT(' PLOT OF ',A10,' CONTAINS NEGATIVE VALUES',/,
*' AND WILL BE DONE WITH A LINEAR SCALE')
ISCALE=1
GO TO 156
120  WRITE(IO,159) BLOW
159  FORMAT(' THE LOWER BOUND =',E15.7,' IS NEGATIVE' )
RETURN
END
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APPENDIY 9

4th Order Accurate WALSH Sequency Set

3INARY EXPANSION

=
e
-

1 1 1

2 10 2

b 100 3

s 1000 b

16 10000 5
31 11111 6
32 100000 7
64 1000000 8
124 1111100 0
128 1000CQ00 10
256 100000000 11
Lgs 111110000 12
512 1000000000 13
1024 100000000090 14
1849 11100111001 15
1984 11110000000 15
2048 100000000000 17
2341 100100100101 13
27320 101010101010 13
3699 111001110011 20

4004 1111101002190 1
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