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ABSTRACT

THEORY AND APPLICATIONS OF SENSITIVITY ANALYSIS

TO ENZYME KINETICS

By

Thomas Henry Pierce III

The theory of Sensitivity Analysis and its applications

to Enzyme Kinetics are examined. The Walsh Sensitivity

Analysis Procedure, WASP, is develOped and shown to be a

powerful probe of the theory of Sensitivity Analysis as well

as the preferred method for discrete models. The Fourier

Analysis Sensitivity Test, FAST, method is reviewed and

shown to be the preferred method of Sensitivity Analysis for

continuous models. The linear Taylor series approach to

Sensitivity Analysis is given as an aid in interpreting

Sensitivity Analysis results.

The theory of Walsh function Sensitivity Analysis is

derived and its advantages are investigated. The Walsh

technique is shown to be an exact technique for discrete

model output functions. For continuous model output

functions the Walsh method yields an averaged finite

difference Taylor series with respect to the parameters.

Walsh Analysis and 2-point discrete Fourier Analysis are

shown to be identical. Since Walsh Analysis is easily
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related to both the Fourier method and to the linear Taylor

series method, it is a valuable tool for further development

of Sensitivity Analysis.

The applications of the mass action laws of chemical

kinetics are used to develop models which are analyzed with

respect to their parameters. Enzyme Kinetics models for

hysteresis and allosterism are investigated by the

techniques of Sensitivity Analysis. The mechanism of

hysteresis in the Frieden Model and the Ainslie model is

clearly shown to be an effect of the rates of isomerization

of the inactive enzyme-substrate complex to the active

enzyme-substrate complex. The Ainslie model is dynamically

equivalent to the simpler Frieden model for a large set of

rate constants. The Frieden model also displays apparent

allosterism if the "correct" set of rate constants and

initial condititons are used. Therefore the Frieden model

is the simplest one-site enzyme kinetic model which displays

both burst and lag hysteresis as well as both positive and

negative cooperativity (allosterism).

Fourier Sensitivity Analysis was applied to a pH

Tryptophanase model where the parameters and their

variations were obtained from experimental data. This type

of analysis gave insight to the design of future

experiments. Over the experimentally accessible range of

pH, the lower pH region is shown to contain the most
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information on the parameters which can be examined in

future experiments.

A computer program is given which is used for routine

application of Sensitivity Analysis, both Fourier and Walsh,

to other models. This program has been extensively revised

to clarify its logic and to simplify its use. Any

mathematical model which can be simulated on a computer may

be directly inserted into this program.

Suggestions for future work are discussed. Research in

the connections between Statistics and Sensitivity Analysis

should lead to insight into both areas. The investigation

of "approximate" Walsh Sensitivity Analysis may lead to

faster algorithms for Sensitivity Analysis.
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I. SENSITIVITY ANALYSIS — AN OVERVIEW

INTRODUCTION

Mathematical models have exerted tremendous influ—

ence in science. Many people have commented on the "seem-

ingly exact" way that mathematical equations model nature

(Benacerraf, gt al. 196“). It is this ability to 'describe'

physical processes that makes mathematics so useful in

science.

Mathematical models are composed of four parts; inde-

pendent variables through which the model evolves, dependent

variables which change as a function of the independent

variables, parameters which are constant during a Simula-

tion but may change from one simulation to another, and

constants which never change, such as the velocity of light

in a vacuum.

Once a mathematical model is proposed, if it is 'cor-

rect', we can use it to predict the future behavior of a

physical system. It may be used to explain previous be-

havior of the physical system. To do this many models

require the 'adjustment' of parameters. It is this ability

of these parameters to describe different physical systems

by changing their values which gives great generality to



mathematical models and causes confusion as to whether

or not the model is 'right'. Often two or more models

give the correct results using only different parameters.

Mathematical models depend on their parameters.

Sensitivity analysis describes precisely how the mathe—

matical model depends on its parameters. An intuitive

sensitivity analysis method would be to vary a parameter

over two values and observe how the model changes. If a

particular value of the model output increases as the

parameter increases, we say that the output is positively

affected. This can be generalized by asking for the quanti-

tative sensitivity of a particular output function to a

parameter. The most popular method is to take the deriva-

tive of the output function with respect to the parameter

'p', evaluated at a nominal value DO-

—"I (-—) (1.1)

Many models have more than one parameter. A collection

of the derivatives with respect to the parameters permits

observations to be made about the model. For example, we

can order the parameters according to their significance.

The most significant parameter is the one which has the

largest effect on the value of the model output function.

This leads to an ordering of the parameters with respect

to their effect on the model, from most significant to

 
 



least significant.

Often models have parameters with at least one in-

dependent variable. An example is the temperature de-

Ipendence of a rate constant:

-Ea/RT

k= Ae (1.2)

Here A and Ea'are parameters, R is a constant, and tempera-

ture, T, is the independent variable. The model output

function is the rate constant k, the dependent variable.

In such cases the sensitivity of the output function

depends not only on the parameters but also on the inde-

pendent variable. The model output function is the rate

constant k, the dependent variable. In such cases the

sensitivity of the output function depends not only on the

parameters but also on the independent variable. When

measurements are repeated at different values of the in—

dependent variable, sequences of parameter sensitivity

Values can be collected over a temperature range of interest

A sequence of parameter sensitivity values may also

give other useful information. From it we may be able to

1dentify regions of sensitivity. Using the previous ex-

aJTlple, there may be temperature ranges where the sensi-

tILVity ordering of parameters changes. In one region the

parameter 'A' may be the most important, while in a dif-

ferent region the parameter 'Ea' may be the most important.



Therefore, to measure 'A', we should measure it in the

first region where the model is most sensitive to 'A'.

For a more complex model it may happen that in the

zregion of interest the model has pg significant sensi—

tsivity to one or more of the parameters. In this case

at;he model may be reduced to a simpler model by formally

1?:ixing the value of insensitive parameter to zero (or

.c)118): For example, it may be possible to remove the step

corresponding to the parameter in question from a mechanism.

Application of sensitivity analysis can also help to

\rzailidate a model. Knowing the rank-order of the parameters'

sseallsitivities and the region of maximum sensitivity permits

title design of experiments to probe the test model over

tzklese regions. A fit of the model to the new data, gives

fPLlrther evidence that the model is correct.

As described above, sensitivity analysis can lead to

IDeetter understanding of the model. Since many models are

<3<Jmp1ex an intuitive understanding of model behavior may

1363 difficult to obtain. It is useful to have quantita-

‘tiive mathematical tools which help to crack a complex model

Zirlto separate parts, which can then be independently ana-

lyzed and understood.

Classical linear sensitivity analysis is a useful

fTLrst approach which is straightforward. One examines the

Ckuange in the model output function caused by a unit

change in a parameter, gg (Beck 1977). However, this



method is only rigorously correct for linear models; those

models whose output functions are linear in their param-

eters, since the first derivative is the only variable

taffect attributable to a parameter.

With nonlinear models, higher order effects may be

important. The presence of higher order terms can be

x/werified by generalizing classical senSitivity analysis

t3<3 a Taylor series with respect to the parameters.

n

— it;
f(p1,p2..-.pn) - f(p_)| = + 121 (3101)] = Api

P. E, p -0

n n 2

+ 1/2 2 5: 13—99-11 An Ap

+ . . . (1.3)

In linear models higher derivatives, f", f"', etc,

Etre zero so that changes caused by parameters are weighted

anly'by f' evaluated at the nominal value, p=po. For non—

lainear models, the first derivative approximation is good

1d? all higher derivatives are small or if the region of

Vtiriation is so small that (Ap)2 3 0.

Both of these conditions are very restrictive. We



would like to vary a parameter over its entire valid range,

which is often many orders of magnitude. In some cases

higher derivatives are as large or larger than first deri-

vatives. With these problems in mind the idea of alternate

:representations of the model output function in terms of

{she parameters is a natural step.

In 1973 Cukier 22 El, derived a technique which repre-

sseents the model function in terms of a Fourier series.

Ublley related the sensitivity of each parameter to a separate

Fourier coefficient. Since any expansion of a well-

t>€ehaved function is identical to another expansion which

r1213 been rearranged, it can be seen (Appendix 1) that

tskdese Fourier coefficients are functions of all the higher

Clearivatives of the model function with respect to the

IDEIrameters. This is the ideal relationship required for

rnanlinear functions. It allows sensitivity measures where

‘Clae parameters are varied over orders of magnitude with

,Eyg restrictions on the model output function.

The implementation of the Fourier method on a com-

Fnlter requires approximations as explained in Chapter

UTwo. The approximations limit the method through an ac-

clmmulation.of approximation error. However the sources

<>f"the error have been described by Cukier §t_§l, (1975).

‘TIlese errors are controllable and they can be bounded by

a. maximum.error estimate.

Other expansions are possible and in Chapter Three we



will investigate Walsh series expansions (Walsh 1923,

Fine 19U9). It will be shown that for a discrete model

we incur pg errors in analyzing the sensitivity of a

Inodel. However for continuous models it will be shown

tshat a Walsh sensitivity expansion is identical to a

1Finite-difference Taylor series..

In Chapter Four the three approaches are compared,

Eilfld we can see that they give similar results when the

gpazrameter variation approaches zero. In the case of a

global analysis of a strongly nonlinear model only

tzrie Fourier method gives the correct results for the

sensitivities.

In Chapter Five we apply the Fourier technique to

Esc>me steady-state enzyme kinetics models. Here we Show

Tillat two apparently different models are dynamically id-

GBIltical over a rather extensive range of parameter varia-

‘tzion. Also the sensitivity analysis of progress curves

Sdaows that some parameters may 'accumulate' sensitivity

2111 time. At short times they are relatively insensitive,

bnat as the reaction proceeds they become the most important

parameters in the model.

In Chapter Six we apply the Fourier technique to a

rwecently-studied transient-state enzyme model (June 33 El;

1979, 1980).

The future work and development of sensitivity analysis

texzhniques is discussed in Chapter Seven. It is suggested



that the study of approximate Walsh sensitivity analysis

and the frequency sets used in approximate analysis will

extend both methods. Also the relationship of sensitivity

analysis and statistics is discussed. It is our belief

that these questions will direct research into fruitful

gareas which will advance the usefulness of sensitivity

lgznalysis techniques with extremely complex models.

Appendix 8 contains the various programs and their

c>1>eration instructions for the application of both Fourier

ELITd welsh Sensitivity Analysis. The programs are model

j.r1dependent so that any type of numerical model may be

‘ulssed. It is my hope that sufficient theory and examples

axlre given here to encourage others to use these powerful

t:eechniques.





II. FOURIER SENSITIVITY ANALYSIS

In this chapter we will discuss the Fourier method

caf sensitivity analysis. Only an overview of the theory

veill be given as this technique was extensively reviewed

E337 Cukier et a1. (1978). Here we will examine the details

<31? the implementation and review the approximations and

21.jJnitationS of this method. The particular model chosen

era this implementation is derived from the laws of mass

EL<2tion kinetics.

Chemical rate equations as derived from postulated

‘nleechanisms can be described by sets of first order in time,

C:c>up1ed ordinary differential equations of the form,

iii. = Fitgucg) (2.1)
dt

1 = l,2,3,...,m

“nith prescribed initial conditions,

0 (2.2)Ci(t=0) = C1

In Equation (2.1) Ci(t) is the concentration of the

ifiih species at time t, g = (C(1),C(2),...,C(m)), is a
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vector of all the species concentrations and k = (k(1),

k(2),...,k(n)) is a vector of all the rate constants

(parameters). The function Fi symbolizes the rate law

for the species 1. We shall assume that these rate equa-

tions can be solved for C(t), given the initial conditions,

the values of the rate constants, and the Specific func-

tional form of the rate laws. If this cannot be done

analytically, it can almost always be done numerically.

We require the sensitivities of the concentration

(31(t) to uncertainties in the values of kg, the rate co-

eefTflcients. The uncertainties in the rate coefficients

aaxre, in this method, represented statistically. That is,

vve: assign a probability density, pZ (k£)dk£ as the prob-

ability that the z'th rate coefficient lies between kg

and kl + dkz. These probability densities reflect our

lcrlc1wledge of the possible values of the rate coefficients

i.r1 a given elementary chemical reaction. If one has ac-

<3111rate data, then the probability density can be chosen

t3<> be narrow to reflect this information. However, if

CiEifbaare sparse or not reliable, the uncertainty can be

C3I1<33en as large as desired.

The joint distribution function may then be written

1‘).

P(_Ig) = I} p5, (kg) (2.3)
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as we require the rate constants' probability distributions

to be linearly independent, but not necessarily identically

distributed. Once the joint distribution is known we may

"'construct moments of the multidimensional function by multi—

dimensional integration. The first moment, the average

value, is written

<C(_k_)> = f dk C(k)P(k) (2A)

tvhere dk = dkldkz...dkn is the multidimensional volume

eelement in the rate coefficient Space. In the present

eeJcample <C(k)> represents the average concentration of a

g;1;ven species as calculated from the rate laws and the

IPEite constants, where the rate constants are varied over

1:11eir entire set of possible values.

Similarly we may construct multidimensional variances

C>f the function, by calculating

(o2)i = <ci(k)2> - <Ci(k)>2 (2.5)

UDInis would represent the expected spread of concentrations

C>‘ver values accessible to species 1 because of uncertainties

len the rate constants. Similarly partial variances, the

‘réariance along only one parameter dimension, say the first



 

l2

parameter can be computed as

2 - * 2 9(- 2

(Ol)i ‘ ((Ci(kl)) > ‘ (Ci(kl)> (2.6)

where G:(kl) is the function averaged over 5 = (k2...kn)

and the integration is over kl. This gives the spread

of concentrations caused by uncertainties in kl. This

idea may be extended to coupled partial variances, variances

over more than one parameter at a time.

These variances would be very informative. We would

be able to characterize the extent that the model de-

pended on the parameters. This also would tell us which

parameters were most important (those whose variances

were largest). If a parameter's variance were small then

the effect of a parameter changing over its entire range

is negligible to the behavior of the model. This means

that the model may be simplified by excluding parameters

'whose variances are small.

The coupled partial variances would tell us how the

Ibarameters interact. If these coupled variances are large

11hen the model also depends on the relationship of coupled

parameters. The effect of one parameter acts in concert

unith.another parameter. These coupled variances may be

eoctended to arbitrary number of parameters coupled together

(but less than n).

The only requirement here is the construction of the
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joint probability distribution and its multidimensional

integration. Presumably this could be done by numerical

quadrature. We would sample each parameter over its

domain, then solve the model for each different combina-

tion of the parameters. The solutions would be numerically

integrated against the joint probability distribution to

give the desired moments.

The required amount of calculation to accomplish this

 

is enormous. If we chose 10 different values for each

parameter, and there were only five parameters in the

model, we would have to solve the model 510 times, ap-

proximately 10 million times. Even so, if the ranges of

the parameters were large or the model highly structured,

we would need still more sampled points to accurately carry

out these variance calculations by such a brute force

method. To calculate the variances in finite time we need

a different approach. We need a way to compute the multi-

dimensional integrals without exhaustive sampling of the

output function.

In 1938 Hermann Weyl (Weyl, 1938) derived an integral

identity which, under certain conditions, reduces a multi-

dimensional integral to a single path integral. To apply

his theorem we must return to our definition of parameters

and transform them into periodic functions.

The rate constants, considered as random variables,

may be related to a generating function,

 



 

1A

k2 = 82, (119.) (2.7)

where g2 is the generating function and u2 is the inde—

pendent variable. As ul is varied from -w to m, k, is

varied over all its possible values. Consequently, uz

also has a probability distribution. Since the kz's

I l
A s, the u, s are also

independent.o We may then write the total joint probability

are independent functions of the u

density function in u-Space as

) (2.8)

It is convenient to let u2 be related to 91 through

the transformation function

such that as e, traverses -m to m, u, also goes from

-w to w, so no information has been lost. Now we further

write 9, = (wls) with -m <s<m. The new parameter, m2,

is called the A'th frequency. This procedure relates

each parameter to a frequency, ”2’ so that by varying S

over its range all the parameters vary simultaneously,
 

at different frequencies, over their ranges.
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_The probability distributions in u-space are easily

related to a probability distribution in e-space. It is

desirable for all unit lengths in 9-space to be equi-

probable, 14g;, we want to insure that P(u£)du2 = P(e£)dez.

Note that we are using the same symbol for the probabili-

ties even though we have transformed the independent vari-

able uz to 6,. This is done to simplify notation.

The chain rule may be used to derive the equation

relating these two probabilities.

P(8£)d8£ = P(u2)du£

13(6),) = 1901,) fig;- (2.10)

dx _ _ 2 1/2
35 - cose - (l-x )

P(6) = for the half interval

a
h
a

Writing ”A = 02 we obtain



 

 

 

l6

dGz
2)l/2.___

dx

% = p(G2)(1 - x (2.11)

This is a first order differential equation whose solution

is the transformation function G To uniquely solve this2.

equation we need an initial condition.

k0 exp(u£), and note that when
A A

s = 0, x = sin(wls) = O, we see that ul = G (sin(w£s)) = 0

If we define k

which implies that 0(0) = O. This is the required initial

condition. This means that u, is restricted to a poly-

nomial in Sin(w£s) with no additive constants. Some pos-

sible transformation functions are given in Appendix 2

along with the distributions that they generate.

Now that the rate constants are related to the search

variable, 5, we can apply Weyl's theorem.

1m 11.;IT F(s)ds (2.12)
_ L

(5;) fdgr(g) - T,” 2T

Weyl showed that this integral identity would be exact

if

“
s
z

6, = wzs and calm2 # O (2.13)

1



(
:
1

1
n
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for all possible integer values of cg. In this case the

frequency set, {“2}, is called incommensurate.

An incommensurate frequency set is easily constructed

if we use irrational numbers for the frequencies. How-

ever, since we will be using a computer for solving the

model, irrational numbers are not feasible. What is done

is to define an order of accuracy 'M' such that

E elm, # O for i Iail i M + 1 (2.1M)

or more concretely

Z a w = 0 for min [Ila l = M + 2]
2 E Z a Z 2

Once we have defined an order of accuracy it can be

seen that irrational numbers for the frequency set are no

longer required. Now a frequency set will be associated

with its value of M. In fact, we may use integer fre-

quencies as it simplifies further calculations.

The finding of arbitrarily accurate frequency sets is

apparently quite difficult. For the special case of

Ath order accurate sets, i.e., M = A, we may exploit the
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idea of sums and differences of two frequencies to find

the sets. Schailbly 23 al. have tabulated Ath order ac-

curate frequency sets for parameter sets of up to fifty

parameters. These sets are stored in the program in Ap-

pendix 8.

Since the parameters are proportional to Sines, it is

prudent to use only odd frequencies in order to exploit

the periodicity of the sine of an odd frequency (see

Cukier 1978). This helps in the search for frequencies

by eliminating half of the integers.

Given the frequency set, we can approximate the multi-

dimensional e-Space integral in s-space. But the s-space

integral has other valuable properties. We have related

each parameter to a function of a sins of a frequency.

Since Sines of different frequencies are part of an ortho-

normal family, the Fourier series, the effect of each

parameter may be easily projected out of the s-Space

integral.

Expanding the output function in a Fourier series

(Zygmund 1959), given

A on

01(g(s)) = 39 + E. [Ajcosfljs) + Bjsin(js)] (2.15)
j 1

A} = % £2, Ci(s)cos(js)ds

1 1 n i .
Bj = F Lm' C (S)sin(js)ds
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or equivalently in exponential format,

“'Ci(k(s)) = E0 cJ exp(i2sz)

where

03-: % t2. 01(k(s))exp(12njs)ds (2.16)

A + B

Note that CJ = 41.5.41 separates the output function

into its frequency components. ("1" denotes the ith

concentration). Since the th parameter is associated

with the 2th frequency, the magnitude of the Fourier co-

efficients of this frequency and its harmonics measure

the sensitivity of the 2th parameter.

We can illustrate this with a simple example. Con-

sider a reaction scheme with three rate coefficients

associated with three frequencies, Wl’ WB, and W3. Since

we vary the rate coefficients as Sin(w£s) the ith concen—

tration as a function of s will consist of sums and products

of these sin(w£s) factors. When strings of these Sines

are multiplied together the result is Sines and cosines

of sums of the w 3 factors. If we assume that the fre-
A

quencies in the sums of the w 5 factors are incommensurate,
A

no linear combination of the frequencies can be formed

which sums to zero. That is, there are always three
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independent components in these sums. If the Fourier

decomposition of C(s) is performed the Fourier coefficients

of indices wl, 2wl, 3wl,... can only be due to the rate

coefficient kl since only kl varies with W1 and no com-

bination of w2 and W3 can add up to a multiple of W1 to

cause an interference. Thus, the Fourier analysis enables

us to isolate the effect on the ith concentration of un-

certainty 1n_the th rate coefficient.

The above definitions of A3 and B3 are exact only if

we are able to analytically integrate the equations.

Since we will numerically integrate the model equations

for 01(3) only concentration-time points will be available.

We must then use a discrete Fourier transform instead of

a continuous one. The concentration points may be numeri-

cally integrated into discrete Fourier coefficients.

There are two kinds of error involved when this ap-

proach is used. We obtain the largest error by exchang-

ing integers for irrational numbers in Weyl's integral

identity (Cukier 1975). By choosing a value of M and its

frequency set we postpone addition errors, the sum of the

harmonics equalling zero, beyond the combination of M

frequencies or harmonics. Since Fourier coefficients

decrease by at least (l/n), error from the combination

of harmonics can be maintained at a low level.

This form of error also depends on the model. If

there is no combination of M parameters multiplied together
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in the model then the possible error from different fre-

quencies adding to the same frequency, breaking a type

of linear independence, is eliminated. Also if the out-

put function of the model does not have parameters raised

klO, then the frequenciesto high powers, such as k5 or

will not add in the high harmonics to give error. In

any case one may always increase the value of M to de-

crease this type of error, provided the frequency set is

known.

The second source of error is from the use of a finite

discrete transform instead of an infinite continuous one.

This error comes about by sampling the function at equally

spaced points, Egl. This equal spacing gives an aliasing

error, frequencies which oscillate faster than the sampling

rate fold their effects into lower frequencies (Cukier

1975)

acalc = A + A + I (A + A )
k k 2N—k m=0 2Nm-k 2Nm+k

bcalC = B + B + I (B + B 1
k k 2N—k m=0 2Nm-k 2Nm+k’ (2.17)

Aliasing sets a limit on the maximum frequency that

one may compute from a sampled function. This maximum



22

frequency is determined from the Shannon Sampling Theorem

(A. J. Jerri 1977) and is called the Nyquist Frequency.

One can reduce this type of error by sampling more points.

In the literature (Cukier 1975, Jerri 1977) the usual

number of samples taken to insure accuracy is uwmax’

where wmax is the largest frequency desired.

2wmax < N (2.18)

This sampling rate tells us the minimum number of

samples that are required to compute a particular fre-

quency.

Having examined the error terms we find that the

number of points chosen is important. However adding a

Single point implies that we will do an additional Simula-

tion with a new parameter vector. The cost in computation

time in each simulation can be high. If the model is com-

posed of ordinary differential equations then the computa-

tion of the required simulations accounts for about 90%

of the total required computation time involved in sensi-

tivity analysis. We would, therefore, like to minimize

the number of simulations necessary to calculate the

Fourier coefficients. If odd frequencies are chosen,

the number of simulations necessary is reduced by one-

half. It was shown (Cukier et a1. 1978) that the symmetry

relations for Sines of odd frequencies
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MW - s) = f(S)

f(s - n) = f(-s)

1‘(s + 121) = f(s - 35-)

'f(s - 121) = f(-s - 321) (2.19)

allow us to sample the output function in the range

[-w/2, w/2] and then reflect these values into [0,2w].

In this way we get twice as many Fourier coefficients as

sampled points.

Given a finite number of simulations we can construct

a finite Fourier series approximation to the function in

s-space. The coefficients in this approximation may be

evaluated in two possible ways. The direct application

of the transformation, a brute force approach, would re-

quire N2 multiplications on the computer. This can be

seen by examining the equations for the Fourier coefficients

given below.

C(sj)exp(i2NjP/N) (2.20)O

'
0

II

II
M
Z

1

OI‘



2“

N

a3 = % 3:1 C(sj)cos(g%%£)

2 N 21.11:
bJ = N E C(sj)sin( N’ )

N an odd integer

Alternatively we could use the Fast Fourier Transform

algorithm, FFT, of Cooley and Tukey (Cooley, Tukey 1965).

This method uses approximately Nlog(N) multiplications.

Usually this algorithm is applied when the number of

samples is a power of two. In this case the algorithm is

at its most efficient. Since we want to minimize the

number of required samples, sampling the function a power

of two times is too strict a requirement. This usual

restriction in the number of samples is pg; a requirement

for use of the algorithm. In fact, as long as the number

of samples taken lg not a prime number the FFT algorithm
 

is a much faster and more accurate technique than the

direct method. If the number of samples, N, is factored

into its prime factors, n1n2n3...n2 = N, then the number

of operations that this generalized FFT algorithm takes

is a§,mg§§ (nlN + n2N + ... nzN) (Dahlquist 197A).

By using the FFT method on R points in s-space, we

extract 2R coefficients. Some of these coefficients are
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ambiguously related to the parameters. This ambiguity

depends on the order of accuracy M. The ambiguity implies

that more than one linear combination of the wfset fre-

quencies adds to the same frequency. We donlt, then, know

to which linear combination to assign this frequency.

Hence it is considered as an error term and only used

in the calculation of the total variance.

Obviously for a Mth-accurate frequency set, only those

combinations of w-frequencies whose a-set sum to less than

flEg’may be unambiguously defined. That is, we know, to

Mth-accuracy, what combination of parameters add to these

frequencies. These Fourier coefficients may be easily

combined into the desired variances as was earlier pro-

posed.

Parseval's formula for Fourier Series (Zygmund 1959)

gives us the total variance of the model output function

N-l a 2
2 _ 2 2 0

0total ' 121 (31 + bi) + (7?)

(2.21)

where N = 2R, and R is the number of simulations.

The contribution of the ith parameter to this total

variance is contained in the coefficients of the ith

frequency and their harmonics (Cukier gt_§1, 1978)

K 2 22

o = Z a + b (2.22)

2’ p=l pwg, prL
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where K = M/2, for a Mth accurate frequency set.

From this we can construct the reduced partial variances

S, =-—§———- (2.23)

The contribution of the coupling between parameters

is contained in the coefficients of the combination fre-

quencies, jwk + pw2(Cukier gt a; 1978).

a, 82

a: k = 2 z a2 +. + b2 +. (2.2m)
: 1=_Bl J=‘B2 JWQ’ 1Wk JWQ, ka

113 H 0

Where maxEBl + 82] = (M+1) - M/2, thereby preventing double

counting of frequencies which may be included in single

partial variances. This does allow for the possibility

of some double counting in the coupled partial variances.

However, these high harmonics of the fundamental frequencies

are usually attenuated so the error is very slight.

From this we can construct the reduced coupled partial

variances,
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82.,k = T— (2.25)

Cukier (1975) has related the EWWA coefficient to the

linear sensitivity coefficient (—c) in the limit of small

pt

parameter variation.

Bw£= <(ac,(U))(%p)> + 0(p2 ) (2.26)

This equation shows a direct relationship between the

averaged linear sensitivity coefficient and the Fourier

coefficient, Bwl’ which is used to construct the w,

partial variance.

The Fourier method of sensitivity analysis is imple-

mented in a program given in Appendix 8. This program

is not restricted to models involving ordinary differential

equations. Rather any type of mathematical model may be

inserted in the program through use of the subroutine

MODEL. Hence the global parameter sensitivities of any

type of model are easily obtained.



III. HADAMARD-ORDERED WALSH FUNCTIONS

Cukier gt a1, (1978) proposed that alternate orthogonal

expansions also may be possible, leading to other types

of sensitivity analysis. This approach was investigated

and an alternate expansion was found. It was discovered

that a Walsh function expansion (walsh 1923) could be used

for sensitivity analysis. If we consider a model whose

parameters take on a finite set of values, then we may

use welsh Sensitivity Analysis. Here the model output

function has a finite set of discrete responses dependent

on the parameters. For these discrete model functions

the use of walsh functions eliminates the approximations

inherent in the Fourier method. With continuous model

output functions (those functions whose parameters vary

continuously over a domain) the Walsh method is closely

related to Taylor Series Sensitivity Analysis. In this

chapter we develop the theory of the Walsh method.

A welsh function (Ahmed and Rao 1975) may be defined

as a function of two arguments, a time variable and a

sequency variable, Similar to frequency in Fourier analysis.

Walsh functions form a complete orthonormal set of step

functions. Here the Hadamard definition (Ahmed and Rao

1975) is used to represent Walsh functions.

28
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WALH(w,t) = (-1)l'l (3.1)

Where t=(tl,t2,...,tp) is the binary representation of t

and (wl,w2,...wp) is the binary representation of w.

walsh functions are defined over the time range

[0,1], 14g;,the time variable is a real number less than

1. However, the sequency variable is an integer less than

2p. This means that the binary point for the time vari-

able is placed to the left of t1 and the binary point for

the sequency variable is placed to the right of wp. Note

that the indexing chosen here labels the most significant

digit of the variable first.

With this definition of walsh functions, the time

variable is defined with respect to the sequency variable

in order to cancel dimensions. It should be noted that

the time referred to here i§_ngt_"model time". Model time

is defined as the independent variable in a model such as

the model of a chemical reaction which evolves in time.

To clarify the evaluation of a walsh function, let

us consider the walsh function, WALH(2, .75). Only two

binary digits are necessary to represent these arguments,

therefore let p=2. writing out the binary expansions of

the arguments we obtain
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W = 210 = (100)2 (302)

t = 07510 = (oll)2

Substituting these binary representations into the defin-

ing Equation 3.1 we obtain

w,tl+w2t2 1
l.l+O.l=(_l) = -1

WALH(2, .75)=(-1) =(-1)

(3.3)

walsh functions are constrained by the number of binary

digits required to represent w and t. For this reason

we get different groups of functions for each choice of

p, the number of binary digits used in the representation.

Each group is closed with respect to ordinary multiplica-

tion. If we multiply one Walsh function by another walsh

function from the same group, we obtain a third member
 

of the group. This means that multiplication of a p—digit

walsh function with a k—digit walsh function is not de-

fined.

This group property can be illustrated by examining a

walsh function multiplication table for p-2. Here we have

a group of Walsh functions with only four members,

WALH(O,t), WALH(l,t), WALH(2,t), and WALH(3,t). By using



31

Equation 3.1 we can generate Table 1.

Figure 1 gives the plots of these four Walsh func-

tions. They are piecewise continuous functions. These

functions may be integrated but they may not be differen-

tiated without the introduction of distributions which

include delta functions.

walsh functions have some useful properties. They

are invariant to an exchange of arguments, i.e.,

WALH(w,t) = WALH(t,w) (3.1))

Proof:

Ewiti itiwi

WALH(w,t) = (-1) = (-l) = WALH(t,w) (3.5)

As has been claimed, the Walsh functions are orthog-

onal (Walsh, 1923),

A} WALH(n,t) WALH(w,t)dt = 2pan (3.6)
W

Proof:



32

 

 

 

Table 3.1. Multiplication Table for the p=2 Group of

walsh Functions.

* WALH(O,t) WALH(l,t) WALH(2,t) WALH(3,t)

WALH(O,t) WALH(O,t) WALH(l,t) WALH(2,t) WALH(3,t)

WALH(l,t) WALH(l,t) WALH(O,t) WALH(3,t) WALH(2,t)

WALH(2,t) WALH(2,t) WALH(3,t) WALH(O,t) WALH(l,t)

WALH(3,t) WALH(3,t) WALH(2,t) WALH(l,t) WALH(0,t)
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3M

{3 WALH(m,t)WALH(w,t)dt

p D

l l l iilniti iggiti

= 2 z z {-1) {-1)

ti=0 t2=0 t =0

p

l l 1E£ni+w1)ti

= z 2 {-1)

tl=0 tp=0

p
+

1 1 nlwl 1:2(n1 wi)ti

= z ... Z (1 4- (-l) ) {-1)

t=0 t=0

2

p
p - p

:2 H6 -2(S

i=l- ni’wi n1w

If we divide each Walsh function by two we obtain an

orthonomal set of functions. Completeness of Walsh func-

tions was shown by Walsh (1923).

Utilizing the orthonormality and completeness proper-

ties of Walsh functions we know that any continuous func-

tion, f(t), can be expanded into an infinite Walsh series

with O i t < 1. This exact infinite expansion of an
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arbitrary function may be approximated by a finite expan-

sion:

N—l

f(t) = z CnWALH(n,t) (3.8)

n=O

Here we restrict to to a discrete set of N points (ti)

where,

Nt = 121 (3.9)

Note that O 1 ti < N-l and ti is an integer. The error

incurred by this approximation is

error = 2 CnWALH(n,t) (3.10)

Since the coefficients of a Walsh expansion decrease

in magnitude by (l/n) as shown by Fine (1955), we can

approximate the major structure of any arbitrary function

by using a finite expansion of Walsh functions.

Walsh coefficients are a linear transformation of

the function sampled at each ti. We can compute the co-

efficients by exploiting the orthogonality of Walsh functions.
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By writing the function in its finite Walsh expansion,

Equation 3.8, then multiplying both sides by WALH(m,t)

and integrating over "t", we will project out the Cm

coefficient of the Walsh expansion.

_1_ fl f(t)WALH(m,t)dt

O

= 2 Cm 3; fl WALH(n,t)WALH(m,t)dt

n=O 2p 0

5 = C (3.11)II

M O

This procedure for calculation of the N coefficients

of the Walsh expansion from the N sampled values of the

function requires N2 multiplications. Using matrix factor-

ization techniques an algorithm may be developed where

this transformation only requires Nlog(N) multiplications.

This is known as the Fash Walsh Transform (Ahmed and Rao

1975, Andrews and Caspari 1970) (See Appendix 3).

To use Walsh functions in sensitivity analysis we

must be able to calculate multidimensional moments, which

are averages of the output function over all its param-

eters. To calculate these moments we must express the
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function in terms of its parameters. If we relate each

parameter, ui, to a generating function in ti’

1.11 = 0'o(ti) (3.12)

we may expand each parameter dimension in a Walsh series.

Thereby we obtain a multi-dimensional Walsh series expansion.

For example, let f(ul,u2) be an output function with

two parameters, ul and u2. If we relate the parameter ul

to a generating function, gl(tl), we may write f(u) as

f(ul,u2) = f(gl(tl),u2) = f(tl,u2) (3-13)

Note again that the same symbol for the function, f, is

retained. This will be done throughout this chapter when

the meaning is obvious.

This function may be formally expanded in a Walsh

series in t1 with u2 treated as a parametric constant.

f(tl,u2) = g CJCu2)WALH(J,tl) (3.1M)

Since the coefficients are now functions of u2 we

may relate u2 to a generating function in t2 and expand

the coefficients in a Walsh series in t2.
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f(tl,u2) = f(tl,g2(t2)) = g CJkWALH(J,tl)WALH(k,t2)z

k

(3.15)

This yields a two-dimensional WAlsh series expansion for

f(ul,u2).

. The key to the utility of Walsh functions in sensi-

tivity analysis is the multiplication identify. For an

expansion to be efficient, products of the orthogonal basis

set must reduce easily. In the case of Walsh functions, the

product of two Walsh functions in the same group is a third

Walsh function, given by

WALH(n,t)WALH(w,t) = WALH(n + w,t) (3.16)

where + is binary addition without carry. That is,

O + O = O, 0 + l = l, l + O = l, and l + l = 0.

Proof:

2 W tZ n.t i i i

{-1)

i 1 i

WALH(n,t)WALH(w,t) = {-1)

Z
(n +w )t. Z (“1 + W1)t1

(-l)1 i i 1

= {-1)1

WALH(n + w,t) (3.17)
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We can apply this multiplication property to reduce

the multidimensional integral for the multidimensional

Walsh series coefficients to a one dimensional integral.

This will allow us to connect the multidimensional param-

eter space to a single dimensional line.

In summary, if f(u) is a multidimensional function in

u_with g = (u1,u2,...up) we may expand the function in a

finite multidimensional Walsh series. Each dimension of

f(g) will be related to a dimension ti which will be ex-

panded in a single dimensional Walsh series. We may

write a generalization of Equation 3.15 as a Cartesian

product.

m -l m -l m -l

l p

f(u) = fCt) = z z z n
_ _ . _ C WALH(w t )

wl-O w2-O wp-O _ i=l ’ i

(3.18)

The coefficients may be expanded as finite sums

1 ml-l mp-l ( ) p

C = C 2 . 2 f t, n WALH(w t )
w wlw2 .wp N tl=0 tp=O i=1 i’ i

(3.19)

m +m -m
N _ 2 l 2 p

Let us specialize to the case where each parameter
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has only two distinct values. In this case each Walsh

sequency expansion of a parameter will consist of only

two sequencies. Since there are only two distinct points

in each parameter dimension only two samples will be taken

from each dimension, i;g;, m1 = 2. In this case we will

need only one binary digit to represent a particular

parameter dimension (Kunz 1979).

In the multidimensional parameter space, the function

is then defined only on the binary hypercube. Each sepa-

rate Walsh series requires only a one digit representation.

This one digit Walsh function is written

1

kiti Z kiti k t

= {-1)i=1 = (-1) l 1

M
T
)

WALH(k,t) = (4)1:l

(3.20)

When the coefficient equation is rewritten with 1-

digit Walsh functions the result is

p w t

n {-1) i

=1

l l l

2 2 000 X i

p:

l

w

C =—

— 2p t l=0 t2 = 0 t 0 i

(3.21)

By applying lexicographic ordering (Kunz 1979) to

W1 and ti we may define W and T as
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20 (3.22)

Therefore, T and W are p-digit binary numbers which range

from O to 2p—l as ti and W1 take on their allowed values

of O and 1.

Upon substitution of W and T the coefficient equation

becomes

p

Z w t

i i

r(T)<-1)1=1
3

2p (3.23)

2
0
4

z u
N-l

C =

W T O

Z

Note that the sum over T encounters all of the two-term

sums in Equation 3.21.

We may now associate the finite multidimensional ex-

pansion with a finite single dimensional expansion.

N-l

f(T) = 2 C WALH(W,T) (3.2M)

w=o w

From Equation 3.2M we may derive the required
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relationship for varying the parameters. Each parameter

is associated with a separate dimension. Each dimension

may be expanded in a Walsh sequency expansion as in Equa-

tion 3.18. Since these sequencies belong to different

parameter dimensions we have the requirement that the

binary sum of the sequencies be unique for any combina-

tion of sequencies.

1WALHCw1,t) WALd(wl+w +...+wp,t +t2+t3+...+tp)
2 l

WALH(W,T) (3.25)

This means that the binary sum of the w2's must never add

to the same W-value for different wi's. Analogous to the

Fourier method, this restriction is called "binary incom-

mensurate". Note that this procedure involves the con-

version of p one-digit Walsh functions to one p-digit

Walsh function.

Since, for exact analysis, we must sample from each

dimension so that we never repeat the search curve, we

then must assign a unique sequency to each parameter where

the sequencies are binary incommensurate. The simplest

set of such sequencies is the set of powers of two,

0,21,22,
2 etc. (3.26)
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In this way, for a model with 'p' parameters, parameter

ul would be associated with the least significant binary

digit in a p-digit number, u2 with the next most significant

digit, etc.

Each parameter can take on two values given by the

generating function gi(ti),

/

0 1-1

3
gi(ti) = ui = ui + AWALH(w t 21-1) (3.27)

i

where u? is the average value of ui and A determines the

range. With this generating function, when ti takes on

its values of O and l, ui oscillates between u? + A and

u: - A at the 21.1 sequency.

By defining the parameters of a model to be functions

of different sequency Walsh functions, as in the Fourier

method, we can expand the model output function in an

infinite walsh series. By truncating the expansion to a

finite Walsh series we incur no error. This can be 11-

lustrated by a two dimensional example. If we set u1 =

WALHQm,t) and u2 = WALH(k,t), we may then write

f(ul,u2) = f(WALH(m,t), WALH(k,t)) (3.28)
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By expanding Equation 3.28 in a two dimensional walsh

series, we will obtain a finite set of terms. Using the

multiplication identity we can see that there are only

four possible terms, a O-sequency term, a k-sequency term,

a m-sequency term, and a (k + m)-sequency term. No other

terms are possible regardless of the nature of the function

f.

In the calculation of the Walsh coefficients with the

Fast Walsh Transform, we use 2p equally spaced samples.

This enables us to calculate 2p different sequency. Co-

efficients, CO’Cl""’Cn-l' Therefore, we will have, as

a subset of these coefficients, all four of the required

sequencies. Of the 2p computed coefficients only these

four will be non-zero. In summary, for any Walsh driven

function, there will be no error incurred in approximating

the function by using finite Walsh expansions.

From Equation 3.2“ we can derive the total variance

of the model output function (See Appendix H). The var-

iance is

c = E C2 (3 29)
T = 1 °

This is the same formula as in the Fourior method. In

an analogous manner, the single parameter variance is
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constructed by calculation of the variance with respect

to only one parameter, say the first, using the model

output function which has been averaged over all the other

parameters (See Appendix 5).

2

01 = Cw (3.30)

Nowever, in the Walsh case we get only one term! There

is no infinite series to truncate as there is in the Fourier

method. In the walsh expansion the reduced partial vari-

ance is given by

y 02 c:

l _ l

T 2 Ci

i=1

which is exact.

In a similar vein we can construct coupled partial

variances. The coupled partial variances are the Walsh

coefficients whose sequency is that of the desired single

sequencies added together by binary addition without

carry (See Appendix 6). Then we divide by the total

variance to get the reduced coupled partial variances.
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(3.32)

For the partial variances to be rigorously correct,

$42,, to contain no error terms, we must sample the entire

parameter space. This will only be true if we are using

a discrete model whose parameters can only take on two

values.

When Walsh Sensitivity Analysis is applied to a con-

tinuous model, an approximation is made. This a-proxima-

tion is that the influence on the output function of the

range of parameter variation in a continuous model may be

approximated by using only two values of a parameter chosen

from a continuous range of possible values. A good choice,

when comparing the Walsh method with a continuous method,

would be the extremes of the interval over which the

parameter is varied in the continuous analysis.

To illustrate this we will examine a one-parameter

model. First we write down the one dimensional Walsh

expansion in terms of the parameter, ul, where u1 =

WALH(l,t).

l t

roll) = 2 CW (-1)w (3.33)
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From this expansion we can calculate two terms. The

CO term and the C1 term. The CO term is the sum of all

the sampled function values

c0 = § (f(ul=l) + f(u1='l>) (3.3u)

This may be interpreted as the average value of the func-

tion at f(ul=0), where we note that when t=O, f(WALH(l,O))

= f(l) and when t = l, f(WALH(l,l)) = f(-l).

To calculate Cl we subtract the two function values:

1
cl = 5 (r(1) - r(-1)) (3.35)

If we were to do a Walsh sensitivity analysis on a

one parameter model, the minimal sequency with which to

vary that parameter is wl = 1. So the C coefficient would

1

be proportional to the "sensitivity" of the model to its

parameter. In linear analysis, if we used a central dif-

ference formula for the first derivative of the function

with respect to a parameter, we would get the same equa-

tion for the sensitivity of the parameter.

With a two dimensional model the possible Walsh
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coefficients are 00’ C1, C2, C3. We can write out the

walsh transform, from Equation 3.23, for the Walsh co-

efficients as

= —2' (3.36)

    
  

The sampled parameter sets can be plotted in the two-

dimensional parameter space (Figure 2). This identifies

the sampled function values in the parameter space.

 

ulf

p/‘o ° 0

1 2 xfo

u2->

“6 0

f3 ‘f1 

Figure 2. Plot of the sampling poindsin the multidimen-

sional u—space.
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The equation for C may be rewritten as
l

f —f f -f

- 1 l 3
  

which is the average of the two central difference approxi-

mations to the first derivative with respect to the first

parameter (See Figure 2).

Similarly, for C2

 

 + 2 ) (3.38)

which is the average of the two central difference approxi-

mations of the first derivative with respect to the second

parameter.

Finally, the C3 coefficient is exactly as expected,

a central difference approximation to A2f/AulAu2.

c3 = % (rO-rl—r2+r3) . (3.39)

If we examine the general expression for the Walsh

coefficient of the kth parameter, wk-l, we note that for
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an P-dimensional system the coefficient is always the

central difference approximation average to the derivative

with respect to the kth dimension (without loss of gen-

erality we may set R = l).

 

p

1_[ 1 1 - iElwiti
c = c = ... z ... z f(t t ...t )(-1) ’ J

p

1 1 1 f(0t2...tp)-f(lt2...tp)

Clo .0 = ‘531 z . z { 2 }

2 t2=0 tp=o

... <é£> (3.110)
Aui

Similarly for all coupled Walsh coefficients (21"1 +

Zz-l-sequency) we get the approximation to the average

of the mixed derivative (See Abramowitz and Stegun pp—

88“).

 

C 1 l l ( ){ )t1+t2}=‘—— z ... 2 .f t ...t (-1
110...0 2p t =0 t =0 1 p

l p

= 31 g 1 {f(00t3..tD)-f(Olt3..tp)-f(10t3..tp)+f(llt3..tp)}

-7;:§ _ .. =

2 t3—O tp o u

= _—.é2_f_> (3.}41)
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This implies that a walsh function expansion to a

continuous function is the first 2p terms of a Taylor

series using average derivatives.

 

Hg) = f(’_c_)

p t p p 2 t +t

= <f> + Z <fi£>(-1) i + Z z <AuA Af (-1) i

1=1 1 1=1 J 1 1 u°

p p p 3 t +t.+t

+ z z 2 Au fiquu (-1) i J k + ... <3.u2)

1 < j < k 1 J k

with the restriction that each term be at most of degree

one in any parameter.



IV. EXAMPLES IN SENSITIVITY ANALYSIS

This chapter will consider the application of the dif-

ferent types of sensitivity analysis to some simple models.

To understand these models does not require rigorous

sensitivity analysis. In fact, many of the results are

intuitively obvious. However, the application of the dif-

ferent sensitivity analysis techniques to these models will

help to distinguish the domains of applicability of these

techniques. The analyses will also assist in the inter-

pretation of the results of sensitivity analyses of more

complex models.

The simplest mathematical basis for sensitivity

analysis (Beck 1977) is a Taylor series of the model

output function in terms of the parameters of the function.

0
Exapnding the output function around a nominal value, k ,

we can write the Taylor series as

MED”) = NED) + f'(k_O)A + 31,— f"(k0)A2 +

(3.1)

'Classical' sensitivity analysis is concerned with

the first derivative term in this expansion, usually

52



53

multiplied by a scaling factor to remove the dimension of

the parameter. The sensitivity coefficient of k
l,

Xk , is written,

1

Xk = k? (...—3;?) o (14.2)

1 1 i=1.

With such first derivatives, classical sensitivity

analysis attempts to explain the effects on the model

function from changing the parameters' values. In order

for this to work, the higher order terms must be small with

respect to the first derivative term, which can be

0
i' In this case all higherguaranteed if (ki - kg) << k

order terms are multiplied by a number close to zero.

The requirement that higher order terms be small

restricts the domain of classical sensitivity analysis to

regions localized around the nominal value, k0. However,

if the function is linear in the parameters all higher

derivatives in the expansion are zero. This special case

has been developed into a widely-used practical method

(Beck 1972). From this viewpoint of ranges of parameter

variations, the different sensitivity analysis techniques

may be segregated. This can be seen by examining models

where different ranges of parameter variation are used.

The first model is a straight line with two parameters,
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the slope, m, and the intercept, b.

y mt + b (11.3)

This model has a Taylor series expansion

y = f(m,t,b) f(mO,t,bO) + t(m-m0) + b - bO

mt + b (u.u)

As expected, the expansion is exact for the linear problem.

The scaled sensitivity coefficients are

Xm = tmO; Xb = b0 (u.5)

A sensitivity coefficient is large when a change in

the parameter changes the value of the output function to

a large degree. In this case the value of the output

function depends critically on the value of the parameter.

In the linear model Xm is large when t is large. Hence,
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for accurate 'm' estimation, measurements should be taken

at large values of t where the output function is most

'sensitive' to the value of ’m'. The b-sensitivity co-

efficient shows that measurements at t = 0 or small t

values, where sensitivity to m is small, will allow an

accurate estimation of b. These coefficients are plotted

in Figure A.1. This confirms previous knowledge (Acton .

1966).

Applying walsh sensitivity analysis to the linear

model results in the same sensitivity coefficients as

the Taylor series approach. This will happen since the

average finite-difference expansion calculates exact

derivatives in the linear case (Lanczos 1955).

A Walsh sensitivity analysis of the linear model

requires a set of nominal values, and a range of variation

for the parameters. The nominal values m = 0.0, b = 0.0

along with a range of variation of 110 for each parameter

were chosen. In order to vary two parameters over this

range, four simulations were required (N = 2p = 22).

Figure 4.2 is a plot of the average value of y, averaged

over the four simulations. This plot shows 'typical'

values of the output function over the selected parameter

space. Note that for this simple case the average and

nominal values are the same. Figure u.3 shows the

'standard deviation of the four simulations (square root

of the total variance) from the average value. If the
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standard deviation is small then the range of parameter

space examined has little effect on the output function.

Figure u.u is a plot of the Walsh expansion coefficients.

These coefficients are related to the linear sensitivity

coefficients shown in Figure “.1. A Walsh expansion co-

efficient.may be thought of as an averaged derivative of

the model output function as shown in Chapter Three. How-

ever, the equation depends on the particular transforma-

tion function used in the analysis. In Chapter Three the

2-1
transformation function u2 = WALH(2 ,Tg) was used. In

this case, by using the chain rule, it can be shown that

du = dt. Similarly, the conversion of “2 to t2 must be

accounted for when a different transformation function is

used.

In the linear model the transformation function used

0
was the arithematic transformation function uz = uz +

AWALH(22‘l,t£). Applying the chain rule to the equation for

a Walsh expansion coefficient, 3.00, results in

BfCuz) 31.1

C = <-—————-. t
2

_ > (4.6)
2% l auz 3 2

 

which in the case of the arithematic Walsh transformation

function yields
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8 0 2—1
5?; {u£ = u2 + AWALH(2 ,t£)}

Bug _

gt- - A (4.7)

2

therefore

3f(u£)

(322-1 " A<-—3-E;—> (”.8)

From this equation the relationship to the linear sensi-

tivity coefficient is easily shown.

0 ”(‘12) “g
x111: u, (151—) = (T) 021-1 (11.9)

Therefore the Walsh expansion coefficients, using an

arithmetic transformation function, are equal to linear

sensitivity coefficients scaled by a scale factor which is

the nominal value, ug, divided by the range of parameter

variation, A. In the linear model the scale factors for

the parameters are (mo/Am) and bO/Ab) which are l and O,
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respectively.

Alternatively the reduced partial variances may be

plotted, (henceforth the reduced partial variances will

be called partial variances with the assumption that they

are divided by the total variance). These partial variances

are shown in Figure “.5. Using the notation developed in

Chapter Two, the partial variance of the first parameter,

m, is written 81' Similarly the partial variance of the

second parameter, b, is written 82. The point at which

the curves intersect, here at t = i1, depends on the range

of parameter variation and the nominal values chosen for

the Walsh Sensitivity analysis. Here both parameters were

varied over [-10.,10.].

In the linear model the interpretation is simple.

To estimate the b-parameter, measurements should be taken

near t = 0 where 82 is largest, near t = 0. Measurements

far from t = 0 are highly sensitive to the value of m as

shown by 81' These measurements taken from this region

would be best for accurate estimation of m.

Treating the linear model with the Fourier method

gives similar results. The nominal values and parameter

variations were the same as in the walsh analysis. How-

ever, more simulations were required to estimate the Fourier

coefficients. The frequency set used was the 6th-order

accurate set, [3,5], which requires, at a minimum, 11

simulations (21 simulations were used). The expansion
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coefficients versus t are plotted in Figure 0.6. These

expansion coefficients are proportional to the first

derivatives in the Taylor series.

The partial variances shown in Figure “.7 are nearly

identical to those derived from walsh analysis, Figure

“.5. The minor differences are a result of the approxi-

mate nature of the Fourier method, since a Fourier expansion

of an angled line requires an infinite number of terms.

However, the partial variances shown capture more than 99%

of the total variance.

The standard deviation curve given in Figure 4.8 also

shows nearly the same range of variation in the output

function as was examined by the Walsh method. However,

the standard deviation curve weights simulations far from

the average simulation more than those close to the average,

causing the Fourier standard deviation curve to be smaller

in magnitude than its Walsh counterpart. This happens

as the parameter vectors are chosen throughout the param-

eter variation interval in the Fourier analysis while the

parameter vectors are chosen at the extremes in the Walsh

method.

Now let us examine a simple nonlinear model. Here

nonlinear means that the Taylor series expansion of the

output function with respect to the parameters is composed

of terms containing second or higher derivatives of the

output function. Perhaps the most commonly used nonlinear
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model in chemistry is the single exponential.

f = k2e 1 (A.10)

This function can be expanded in its Taylor series as

o o
_ 0 0 kit 0 0 klt 0

f(kl,k2,t) - f(kl,k2,t) + e (k2-k2) + k2te (kl-kl)

k0 t o o
1 _ -

+ k0t2ek%.t(k -k0)2 + (A ll)2 l l 0 O O 0

Although the expansion continues for an infinite num-

ber of terms, a linear sensitivity analysis would only

examine the first derivative terms.

gteklt (14.12)
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These sensitivity coefficients are plotted in Figure

u.9 using k = —O.25 seconds and k = 1000.0 as the nominal

values.

From this sensitivity analysis we can say that the

best measurements for k2 are at small t, and the best

measurements for kl are at t A seconds, the maximum of

the curve. However, if higher order terms are considered

note that they may be large and could affect the value of

the output function.

To use Walsh sensitivity analysis on this model a

range of parameter variation is needed. First, let us

examine 'local behavior'; behavior of the model when the

parameters are varied only slightly. In this case, for

small variations in the parameters, the walsh coefficients

should be equivalent to the results of classical sensi-

tivity analysis. But for large variations in the value of

the parameters the Walsh method will give different results

as the higher derivatives become significant.

Again a parameter set must be chosen. Figure 4.10

shows the plot of the averaged value for the four simula-

tions of the exponential model with k2 = 1000 1 100 and

k1 = -0.25 1 0.025 seconds, 1:34, 10% variation. Since

there are two parameters in this model, the curve in

Figure “.10 is the average of four different simulations

where each simulation has a unique combination of parameters.

The expansion coefficients are plotted in Figure A.1l.
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The C1 coefficient is that Walsh expansion coefficient

which, in the case of a continuous model, is an averaged
 

finite-difference measure of the first derivative of the

output function with respect to the first parameter, kl.

Similarly, the C2 coefficient is a finite-difference ap-

proximation to the first derivative of the output function

with respect to the second parameter, k2. Comparing

Figure “.11 with Figure “.9 we see that they are identi-

cal curves to within a constant scaling factor.

To display the sensitivities of the parameters it is

mare convenient to examine the partial variances shown in

Figure “.12. As before, these plots also show the most

sensitivity to the second parameter at short times, and

to the first parameter at long times. This figure also

shows that there is very little coupling in the sensi-

tivity between the two parameters. This can be observed

by noting that the sum of the two partial variances (81

+ S2) is nearly 1.0. This means that almost all of the

variance in the output function is assigned to S1 or 82.

The standard deviation curve for this analysis is

given in Figure “.13. This curve, which looks like an

exponential decay, reflects the decay of the output func-

tion. It is tempting to claim that since the standard

deviation is only 5% of its maximum at 20 seconds that

statements about the sensitivity of parameters at these

long times are meaningless. However, upon examining
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the dimensionless plot in Figure “.l“ we see that the

relative deviation, which is the standard deviation
 

divided by the average value, actually increases in time.

This means that as the magnitude of the output function

decreases the relative variation grows. Therefore, the

sensitivities of the parameters at long times can be

significant if the relative deviation, rather than the

absolute deviation, is nearly constant.

One advantage that the Walsh method has over linear

analysis is that it explicitly uses a range of variation

for the parameters. If this range of variation is increased

(from 10% to 60%) and the mathematical model reanalyzed

it can be seen from Figure “.15 that slightly different

behavior results. In Figure “.15 the average value does

not decay away as fast as the earlier analysis. Figure

“.16 shows that the coefficient curves have shifted the

maximum sensitivity of the decay constant, kl’ to longer

times, 5 seconds, reflecting the effect of the nonlinear

behavior of the model. The sensitivity of the pre-exponen—

tial parameter, k2, also decays away more slowly. The

partial variances in Figure “.17 also show the effect of

a larger range of variation by shifting the crossover

point from “ seconds to 6 seconds. Note that the nonlinear

effect of the model is to delay the sensitivity to kl

into longer times. However, the standard deviation curve,

Figure “.18, and the relative deviation curve, Figure “.19,
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83

have the same behavior as for the corresponding cases of

a small range of the parameters although the magnitudes

have changed.

Choosing an even larger range of variation for the

parameters of the model (k2 = 1000 i 1000, k = -o,25 i
l

0.25 (seconds)5t) results in the curves in Figures n.20-

4.24. In this analysis the average value does not even‘

decay away to zero! This is not typical behavior as

shown in the previous two analyses. This behavior is

caused by the particular sets of rate constants used in

this analysis. At 2.5 seconds two simulations have reached

their final values, and at 12 seconds the other two simu-

lations have reached completion. This is the danger en-

countered when the analysis uses only the extremes of the

parameter variation intervals. If the intervals are large

enough the behavior of the model at the extremes of the

parameter intervals may be completely different than its

behavior closer to the nominal value.

With the Walsh method we can examine the onset of

nonlinear behavior by expanding the range of analysis from

the nominal value. This is important, especially for

models which are numerically solved so that the degree

of nonlinearity in the model solution is unknown.

When the analysis was repeated using the Fourier

method with the same set of nominal parameters and over

the same small range of variation, k = -0.25 t 0.025

(seconds)-l, k2 = 1000 t 100, the same results as were

— __ __
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0

obtained for the average value of the output function

as with linear and Walsh techniques (Figure H.25L The

expansion coefficients, Figure 4.26, have different mag-

nitudes but the behavior is the same. The maximum of

the C coefficient occurs at the same time point for both

the Walsh and Fourier methods.

The Fourier partial variances, Figure “.27, are also

identical to those of the small variation Walsh analysis.

There is one slight difference in the two partial vari-

ances at very early times. This is caused by the slightly

different parameter ranges used. The Fourier method used

a log-uniform transformation function which varied the

parameters over [-0.221, -O.227] and [1395, 905]. How-

ever, within one second, the Walsh partial variances and

the Fourier partial variances, both normalized by their

respective total variances which are different (compare

Figure 4.13 with Figure H.28), reach identical values.

Consequently the Fourier partial variances have the same

interpretation as did the previous Walsh partial variances.

For comparison purposes, the relative deviation curve

for the small variation Fourier analysis is plotted in

Figure 4.29. Note that it is always smaller than the cor-

responding Walsh curve, Figure 3.1“. This reflects both

the slightly restricted range of parameter variation and

the increased number of simulations used in the Fourier

method.
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95

Figures 4.30-4.34 give the results of Fourier analysis

of the exponential model when a large range of variation of

the parameters is used, (k1 = -0.25 i .25 (seconds)-l,

k2 = 1000 t 1000). This analysis reveals the nonlinear

aspects of the model. Figure 4.30 shows a slower averaged

decay of the output function than for the small range case.

The expansion coefficients for the case of large variations,

Figure 4.31, have nearly the same behavior as those ob-

tained with the small variations (Figure 4.26). However,

the maximum value of Cl coefficient has shifted to longer

times, similar to the behavior of the Walsh Cl coefficient

shown in Figure 4.16, although the shift is not as great.

The large variation C2 coefficient doesn't decay away as

fast as the small variation C2 coefficient does. Even

more striking are the partial variances plotted in Figure

4.32. The partial variance of kl, 81’ reaches a maximum

at about 13 seconds and then slowly decays away. The

maximum is important since it selects a time region which

is optimal for the measurement of that parameter. Also

over this larger range of parameter space there is sig-

nificant coupling between the sensitivities of the two

parameters. This is shown in Figure 4.32 by the coupled

partial variance 81,2.

Coupled partial variances indicate the degree of linear

dependence between pairs of parameters. When a coupled

partial variance is large it is difficult to separate the
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effect of one parameter from that of the other. Note

that because the partial variances and coupled partial

variances are relative measures of sensitivity, they must

be used in conjunction with the total variance to provide

an understanding of the sensitivity. In particular,

if the total variance is very small, there is little point

in carefully examining its components since they are Just

a partitioning of this very small total variance into the

individual contributions.

In examining the exponential model it can be seen

that the walsh method is equivalent to the linear analysis

for small variations in the parameters. Its advantage

over linear analysis is that as the range of parameter

variation increases it also picks up the nonlinear effects

in the model. The Fourier method is also similar to linear

analysis, in the limit of small variations of the param-

eters. However, for large variations in the parameters,

since it samples the whole of parameter space, it gives

correct results while the walsh and linear methods fail.

The Fourier method requires more simulations to achieve

its results than does the walsh method, for models with a

small number of parameters; i;g;, fewer than seven. The

number of simulations required in Fourier analysis is

heavily dependent on the order of accuracy of the fre-

quency set. For a 6th—order accurate set for 10 parameters

the Fourier method requires, at a minimum, 2843 simulations,
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whereas a 4th-order set requires only 411 simulations.

It should be noted that the walsh method is exact for

discrete models and for 10 parameters requires only 1024

simulations.

By applying the Fourier method to the kinetics of

simple chemical reactions we can further improve our

understanding of the interpretation of partial variances.

One of the simplest reaction schemes in chemical kinetics

is the unimolecular first-order decay of species A to

species B.

A + B (4.13)

However, the mathematical model for this reaction is the

exponential model which we have already examined. A

slightly more complicated model reaction has two coupled

first-order reactions, which may be written

k k

A -} B -3 c (4.14)

Choosing k = 0.1 i 0.01 (seconds).1 and k = 0.01 i
1 2

0.001 (seconds)-1 with A = 10000, B = 0 = 0 we are able

k

to simulate a reaction with a ’bottleneck' step, (B a? C),

since kl >> k2.

Figure 4.35 displays the averaged concentrations for

this reaction. Application of linear sensitivity analysis
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to this model to examine the sensitivities of the B-

concentration would result in sensitivity coefficients

similar to the expansion coefficients shown in Figure 4.36.

Since the curves are not normalized they are difficult to

interpret. One might be tempted to say that since Cl

is at a maximum at 20 seconds measurements in this time

region are Optimal for the determination of kl. Similarly

C2 has its most effect on the concentration of B at 90

seconds. Therefore measurements of B near 90 seconds would

pin down the k2 rate constant.

If we examine the partial variances for the B-concentra-

tion we clearly get different results. From Figure 4.37

we see that measurements of the B—concentration before 10

seconds have elapsed and after 45 seconds will give ac-

curate estimates of k1 and k2 respectively.

The sensitivity of the C-concentration in linear

analysis gives curves shown in Figure 4.38. Here we see

that, since the k2 step is a bottleneck, we will have a

difficult time measuring kl because the effect on C from

k2 is so large. Only at short times are the sensitivities

of k1 significant.

Figure 4.39 is even more revealing. This plot of the

partial variances of the C-concentration clearly demon-

strates that k2 is the most important parameter in the

model. It also shows that kl contributes to the C-concen—

tration only at short times. Therefore to estimate kl
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from measurements of C we should take the measurements

at very short times. To estimate k2, measurements after

50 seconds are adequate.

Figure 4.40 and 4.41 show the standard deviation and

relative deviation curves, respectively, of the C-concen—

tration. From the relative deviation curve we see that we

are varying the C-concentration only slightly. Therefore,

the Fourier expansion coefficients are equivalent to the

linear sensitivity coefficients.

The basic difference in the ease of interpretation

of the partial variances over the expansion coefficients

is that the partial variances explicitly account for the

range of parameter variation by being normalized by the

total variance. The linear sensitivity coefficients or

their equivalent, the expansion coefficients, do not ac-

count for the amount of variability introduced by varying

the parameters. This is a great weakness in linear analysis.

A common feature in chemical kinetics models is the

occurrence of a competing reaction. This is a reaction in

which two steps compete for the same reactant. Which

step predominates is dependent on the rate constants for

the two steps. A simple scheme for this problem is

written

k

B +3 D (4.15)
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Here the final products are a mixture of C and D. The

ratio of C to D depends on the two rate constants k2

and k3. Since this is a reaction problem often found in

chemical kinetics models a sensitivity analysis on this

scheme was done in order to determine the nature of the

partial variances.

Fourier Sensitivity Analysis was applied to this

scheme with k1 = 0.1 i 0.01 seconds, k2 = 0.01 t 0.001,

seconds, and k3 = 0.003 t 0.00003 seconds with a log-uni-

form transformation function to vary the rate constants

uniformly in log-space. A 6th-order frequency set was

used, [9, 15, 19], with 37 simulations.

The averaged concentrations of the four chemical

species are shown in Figure 4.42. From this figure it

can be seen that the time range chosen covers virtually

all of the reaction. Since the concentration of species

B both grows and decays it is the most active. Inspection

of this model shows that k2 and k3 cannot be separated by

measuring only the concentration of B. In fact, only the

sum k2 + k3 could be determined. As expected, Figure 4.43

shows that the sensitivity of B to the rate constants is

very similar to that of the coupled first-order model,

Figure 4.37, since B does not "know" which path it will

take and both paths are treated as a single sink. The

only difference between this model and the coupled reaction

model, with respect to B, is that 10% of the sensitivity
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to the 'sink' parameter k2 is given to k3. This small

sensitivity to k which is Just the ratio of the nominal

3

rate constants means that any measurements of B over the

whole time range even in conjunction with measurements of

C or D would be of little help in estimating k3 Since the

sensitivity of B to k2 is so large.

The partial variances of the C concentration, Figure

4.44, are as expected for a competing reaction. Here k2

is the most important rate constant for C. This is, of

course, expected as k2 controls the only path for the

production of the C concentration. Note however that k3

'accumulates' sensitivity over the time course of the

reaction. This is interpreted as showing how k3 controls,

to a lesser extent than k2, the amount of C produced by

the end of the reaction. Hence to estimate k3 in this

model measurements of C near the end of the reaction are

required.

The partial variances of the D concentration, Figure

4.45, are subject to similar interpretations. During the

first 50 seconds of the reaction, the formation and initial

decay of the B concentration, the partial variances of D

exhibit the same structures as those of the coupled scheme.

Here k3 controls the concentration of D, and the sensi-

tivity to kl quickly decays away as B is created faster

than destroyed. In this case the sensitivity to the rate

constant from the competing reaction, k2, accumulates
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faster and to a larger degree than k3 did in the partial

variance of C. This is because k2 controls a more rapid

step which removes B from the pool available to k3, thus

preventing the conversion of a larger amount of B into D.

It is then the nominal value of k2, which is greater than

the nominal value of k3, which causes the sensitivity of k2

to accumulate faster over the same time range. Note that

this model is simple enough to permit conclusions of this

type to be made by inspection. However, the verification

of these conclusions by sensitivity analysis lends confi-

dence to the treatment of more complex models.

In enzyme kinetics the most commonly used model is

the Michaelis-Menten model. This model may be written

5} k3

E + S < >ES -* E + P (4.16)

k2

Often one starts with an excess of Substrate, S, to enzyme,

E, in order to make a steady-state assumption on the con-

centration of E8. This results in a simplified rate equa-

tion for the change in substrate in time, often called the

'velocity' of the reaction (Fersht 1977).

 

S(t=0) = sO (4.17)
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Where Vmax = k3EO and Km = (k2 + k3)/kl. This equation

may be integrated to obtain progress curves of substrate

versus time. If substrate is measured as a function of

time either the integrated equation or the expression for

the velocity could be used to determine Km and Vmax'

To determine which equation, the integrated form or

the differential form, would be better suited for esti-

mating Km and Vfia a Fourier sensitivity analysis was per-
x

formed. Figure 4.46 shows the averaged values of substrate

for this analysis with Km = 11000 t 110 and Vmax = 50 t 5

and SO = 11000 i 110. The relative deviation curve given

in Figure 4.47 shows that the substrate was only varied

over a small range by using these parameters.

Figure 4.48 shows the partial variances of the sub-

strate. The first parameter, V is the most important
max’

parameter over this entire time range with the second

parameter, Km, being much less important and the third

parameter, SO, even less important.

For the velocity equation we get different results

as shown in Figure 4.49. Here at long times the Km

parameter is twice as important as it was in the inte-

grated equation. Therefore to measure Km we should take

velocity data at long times and fit to the velocity equa-

tion. If estimation of Vha is our only concern then
X

use of the integrated equation with measurements during

the initial phase of the reaction is sufficient. Note



M
i
c
h
o
e
/
i
s
—
M
e
n
t
e
n

M
o
d
e
l

(
S
t
e
a
d
y
—
S
t
a
t
e
)

F
o
u
r
i
o
r

S
e
n
s
i
t
i
v
i
t
y

A
n
a
l
y
s
i
s

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

1
.
0
0

1
l

1
I

1
l

1
l

1
l

1
J

1
.
0
0

 

0
8
0

0
8
0

0
6
0

~
0
6
0

 
O
A
O
'
H

~
0
A
0

0
2
0
'
~

~
0
2
0

(03 Kg papgAgp) @0115an p95OJaAV

 
 
 

0
.
0
0

l
f

I
i

I
1

I
l

I
r

I
I

I
0
.
0
0

O
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

T
i
m
e

(
s
e
c
)

F
i
g
u
r
e

4
.
4
6

T
h
e

a
v
e
r
a
g
e
d

S
u
b
s
t
r
a
t
e

c
o
n
c
e
n
t
r
a
t
i
o
n

i
n

t
h
e

M
i
c
h
a
e
l
i
s
—
M
e
n
t
e
n

M
o
d
e
l

(
1
%

v
a
r
i
a
t
i
o
n
)
.

120



L
0
0

0
.
9
0

0
8
0

0
7
0

0
6
0

0
5
0

0
4
0

0
3
0

(waxed) uonojreg 311110133

0
2
0

0
4
0

0
0
0

F
i
g
u
r
e

4
.
4
7

T
h
e

r
e
l
a
t
i
v
e

d
e
v
i
a
t
i
o
n

o
f

S
u
b
s
t
r
a
t
e

i
n

t
h
e

M
i
c
h
a
e
l
i
s
—
M
e
n
t
e
n

M
o
d
e
l

M
i
c
h
a
e
l
i
s
—
M
e
n
t
e
n

M
o
d
e
l

(
S
t
e
a
d
y
—
S
t
a
t
e
)

F
o
u
r
i
o
r

S
e
n
s
i
l
i
v
i
t
y

A
n
a
l
y
s
i
s

0
5
0

1
0
0

1
5
0

2
0
0

l
J

l
1

J
1

l
l

l

2
5
0

3
0
0

 

 

L LgL LL 1 L.  
 

T
l

l
r

1
I

l
I

0
5
0

1
0
0

1
5
0

2
0
0

T
k
n
e

(
s
e
c
)

(
1
%

v
a
r
i
a
t
i
o
n
)
.

2
5
0

3
0
0

L
O
O

0
9
0

0
8
0

0
7
0

0
6
0

0
5
0

121



L
0

(
1
9

0
8

O
J

O
fi

0
5

0
.
4

aouopoA piped

0
3

0
2

O
J

0
0

F
i
g
u
r
e

4
.
4
8

M
i
c
h
a
e
l
i
s
—
M
e
n
t
e
n

(
0
.
0
1
—
v
a
r
i
a
t
i
o
n
)

F
a
u
r
i
o
r

S
e
n
s
i
t
i
v
i
t
y

A
n
a
l
y
s
i
s

5
0

1
0
0

1
5
0

2
0
0

2
5
0

1
1

1
l

1
J

1
l

1
l

1

0—4

3
0
0

 

-
m
o
-
t
m
a
a
-
o
-
r
o
0
O
+
m
+
O
-
M
W
t
-
H
H
H
H
W
H
O
“
W
¢

o

_
S
1

 
 
 

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

T
i
m
e

(
s
e
c
)

M
i
c
h
a
e
l
i
s
-
M
e
n
t
e
n

M
o
d
e
l

(
1
%

v
a
r
i
a
t
i
o
n
)
.

L
0

0
3

0
8

Q
7

0
6

0
5

0
4

0
3

0
2

G
A

0
0

P
a
r
t
i
a
l

v
a
r
i
a
n
c
e
s

o
f

t
h
e

r
a
t
e

c
o
n
s
t
a
n
t
s

f
o
r

S
u
b
s
t
r
a
t
e

i
n

t
h
e

122



L
0

(
1
9

0
0

0
7

0
6

0
5

0
.
4

0
3

(KyaolaA) aauogJoA {olpod

0
2

O
J

0
0

F
i
g
u
r
e

4
.
4
9

M
i
c
h
a
e
l
i
s
~
M
e
n
t
e
n

(
0
.
0
7
—
-
v
a
r
i
o
t
i
o
n
)

F
a
u
r
i
o
r

S
e
n
s
i
t
i
v
i
t
y

A
n
a
l
y
s
i
s

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

1
1

1
1

1
1

1
1

1
1

l
 

"
m
o
—
0
4
,

.
.
.
-
4
t
h
o
-
0
+
»
+
¢
—
O
-
H
+
-
¢
+
¢
H
a
+
~
o
+
+
W

 

l 11L11 L 1111 I1  
 

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

T
h
n
e

(
s
e
c
)

L
0

0
9

(
1
8

0
7

0
0

0
5

0
.
4

0
3

O
2

O
J

0
0

P
a
r
t
i
a
l

v
a
r
i
a
n
c
e
s

o
f

t
h
e

r
a
t
e

c
o
n
s
t
a
n
t
s

f
o
r

V
e
l
o
c
i
t
y

i
n

t
h
e

M
i
c
h
a
e
l
i
s
-
M
e
n
t
e
n

M
o
d
e
l

(
1
%

v
a
r
i
a
t
i
o
n
)
:

123



124

also that the use of the Michaelis-Menten model to estimate

the initial concentration of substrate, SO, requires that

the other two parameters, Km and Vm be previously known
ax’

since the model is more sensitive to these parameters.

Repeating the analysis over a larger parameter range

(80% of the nominal value) resulted in essentially the

same observations, Figures 4.50-4.52. S0 is still the

least sensitivity parameter as shown by the partial vari-

ances of the substrate, Figure 4.51. The velocity equa-

tion appears to be the more sensitive formulation of the

Michaelis-Menten model. This is dramatically shown by the

partial variances in Figure 4.52. Vmax is the most im-

portant parameter in this section of parameter space.

Even its couplings with Km and Vmax are more important than

Km or Vmax in the region where the reaction has gone to

40% completion.
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V. SENSITIVITY ANALYSIS OF SIMPLE

ENZYME KINETICS MODELS

Many enzyme kinetics models are composed of inter-

locked Michaelis-Menten models (Segel 1975).' These models

are proposed to explain kinetic behavior patterns which

the single Michaelis-Menten model alone is unable to do

(Segel 1975). This behavior is even defined as "non-

Michaelis-Menten" (Whitehead 1970). It was our desire to

examine models which presumably exhibited non-Michaelis-

Menten behavior patterns and were composed of linked

Michaelis-Menten models. In this chapter we investigate

four enzyme kinetics models, the irreversible Michaelis-

Menten model, the reversible Michaelis-Menten model

(Michaelis gt_al.l9l3), the Ho-Frieden model (Ho 1976,

Bates & Frieden 1973), and the Ainslie, Shill, and Neet

model (Ainslie gt a1 1972). Of course, to fully understand

the linked Michaelis-Menten models we must first examine

the Michaelis-Menten model itself.

Michaelis—Menten Model

The simplest model used in enzyme kinetics is the ir-

reversible Michaelis-Menten model:
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kl k

3
E+S=‘-‘-‘-‘ES—-—)E+P. (5.1)

k
2

In order to illustrate the utility of the partial variances

to evaluate the sensitivities of concentrations to the

rate constants, we applied the Fourier sensitivity analysis

method, FSAM, to this simple model. Although the range

of rate constants used and the substrate and enzyme concen-

trations selected insure that steady-state conditions are

established very rapidly, the model was solved numeric-

ally without including any steady-state or equilibrium

assumptions. Of course, in this situation, if one could

observe only the substrate or product concentrations, it

would be possible to determine only k3 and (k2 + k3)/kl

since the steady-state assumption yields [S] and [P]

in terms of these two "constants". We use here the time-

development of (E), (8), (ES), and (P) in terms of k1,

k2, and k3 in order to illustrate the method and permit

comparison with more complex models.

Examination of the range of values of kl, k2, and k3

tabulated (Fersht, 1977) for a variety of enzyme reactions

which follow Michaelis-Menten kinetics shows that most

lie within an interval of four orders of magnitude

centered on the nominal values listed in Table 1. Because

FSAM was designed to apply to situations with arbitrarily
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Table 5.1. Parameter Values for the Irreversible

Michaelis-Menten Model.
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large ranges in the rate constants, it was possible to

explore the sensitivities of the concentrations to the three

rate constants while each was allowed to vary independently

by up to four orders of magnitude. The rate constant rang

ranges and initial conditions given in Table l were used

in these simulations. The initial concentrations correspond

to "assay conditions" (SO >>130). It is important to note

that the equilibrium constant K = kl/k2 was not held

1

constant when the rate constants were varied. This per-

mitted exploration of the overall sensitivity of the

model to a range of maximum velocities which covered four

orders of magnitude and a range of Michaelis constants

which spanned eight orders of magnitude. It would also

be possible to test a more restricted model by fixing the

equilibrium constant as is done later for more complex

models.

In Figures 5.1a and 5.1b we have plotted the average

concentrations, which are the concentrations summed over

all the different rate constant sets divided by the number

of simulations, and the standard deviations [square root

of the total variance defined in Equation (2.21) for the

irreversible Michaelis-Menten Modell All these curves

are scaled to the percent of the total enzyme concentra-

tion E0 for enzymatic species and to the percent of the

initial substrate concentration, 8 for the product andO,

substrate. Two concentrations of the four are linearly
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Figure 5.1. Average concentrations and standard devia-

tions of the concentrations Michaelis—Menten

Models. The symbols represent: 0, S; 0, P;

A, E; +, ES.
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related by the mass balance equations. Hence only two

standard deviations, those of P and ES, are shown in

Figure 5.1b.

Figure 5.1a shows that on the average the concentra-
 

tion of substrate is decreased by only 57% in 300 seconds.

However, the rapid growth of the standard deviation curve

for substrate, shown in Figure 5.1b, indicates that a large

spread of calculated concentrations would be rapidly

attained for this range of rate constants. In fact, the

wide range of concentrations of substrate becomes so pro—

nounced that a substantial number of simulations go to

completion after 20 seconds and another group after 110

seconds. This returns the enzyme concentration to its

initial value for these simulations, and results in ER?

parent breaks in the curves of the total standard devia-

tion for E and ES. The origin of this effect will be more

fully discussed in connection with the partial variances.

In Figure 5.2a we have plotted the sensitivity of

the product concentration to the uncertainties in the

three rate constants as a function of time. The values of

the partial variances 81’ 82, S3 indicate that for this

range of rate constants, the product concentration depends

most strongly on the value of k3, the rate constant for

the formation of product from the ES-complex. Next in

importance is the reverse step with rate constant k2.

Thus the value of k3 is the most important in determining
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Figure 5.2. Partial variance plots for the Michaelis—

Menten Models. A number represents the

partial variance for that rate constant.

Coupled partial variances are represented

1,3; in (b) by

1,2; X, 82,3; in (c) by *, 81,3;

as follows: in (a) by *, S

*’Sl ;+S

3

+, 82,3.
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the product concentration. This is not surprising since

k3 controls how fast substrate is converted into product,

while the binding step yields a steady state ES concentra-

tion essentially instantaneously on the time scale of

Figure 5.2a. As time increases, the specific k3 value

chosen has an even greater effect on the accumulated
 

product concentration so the relative importance of k3

increases with time.

Figure 5.2a also indicates that the product concentra-

tion is sensitive to the coupling between kl and k3,

especially at early times. This indicates that the ac-

curate determination of k3, for example, from the early

portion of a single progress curve would be hampered by

coupling to kl’ resulting in significantly larger mar-

ginal deviations of the rate constant than would be ob-

tained by using the entire progress curve. It must be

emphasized that the entire analysis described here applies

to full time-course behavior rather than only initial rate

behavior. If one wished to study the sensitivity of

initial rates to substrate concentration for example,

a different procedure would be used.

The analysis shows that if the concentration of ES

were measurable, it would be most sensitive to RI at short

times as indicated by Figure 5.2b. This reflects the

fact that the formation of ES is the dominant initial

step. However, the sensitivity to k3 grows rapidly as
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substrate is depleted. There is also strong coupling

between kl and k3, implying that the errors in determin-

ing these rate constants from the time-dependence of the

concentration of ES would be strongly correlated. As

was found for the product sensitivities, ES is not very

sensitive to the value of k2 over the range examined.

Figure 5.2b shows apparent discontinuities in the

sensitivity of the ES concentration to the rate constants.

One might be tempted to attribute this to numerical errors

or instabilities in the calculation, but this is not the

case. When the ranges over which the rate constants can

vary are drastically reduced the discontinuities disappear.

The discontinuous curves (obtained with these time steps)

originate because of the large ranges available to the

three rate constants. Within a narrow time span an ap-

preciable number of simulation runs reach completion.

When this occurs the ES complex disappears and the concen-

tration of E builds up for these simulations. This com-

pletely eliminates the sensitivity of ES to the rate

constants for this subset of simulations. The result

is a series of apparent breaks in the partial variances.

It is possible to eliminate these breaks in either of two

ways. As indicated above, the ranges of the rate con-

stants can be restricted so that the number of simulations

which reach completion is insignificant. Alternatively,

the initial substrate to enzyme ratio can be made so
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large that the simulations do not reach completion even

for the most favorable combination of rate constants.

Neither of these alternatives is entirely satisfactory

since they both impose restrictions on the model.

In order to be certain that the origin of the great-

est sensitivity of product concentration to k3 and least

sensitivity to k2 is not Just the large ranges permitted

for the rate constants, sensitivity analyses were per-

formed over several reduced ranges about the same nominal

values. The general results were the same except that,

as noted above, the apparent breaks in the sensitivity of

E8 to the rate constants disappeared.

Under the assay conditions modeled here, the concentra-

tion of the enzyme-substrate complex, ES, assumes a steady-

state value at very short times, as shown in Figure 5.1a.

However, even under steady-state conditions the concentra-

tion of the complex changes with time as substrate is

used up. This is reflected in sensitivities which also

change with time. The growing sensitivity to k3 means

that in a full time-course analysis, this rate constant

would be relatively more accurately determined by following

the progress curve for an extended period of time than

could the other rate constants or combinations of these

rate constants.
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Reversible Michaelis-Menten Model

Only slightly more complex than the irreversible

Michaelis—Menten model is the reversible model in which

equilibrium is ultimately reached. In testing this model,

the same nominal rate constants and ranges were used as

for the irreversible case but a reverse step was added:

E+S==—=’ES===-E+P. (5.2)

k
u

Table 5.2 gives the nominal rate constants, their ranges,

the initial conditions, and the frequency set used. Fig-

ures 5.lc and 5.1d show the average concentrations and

standard deviations for the reversible case.

As shown in Figure 5.20, the first MO seconds gives

approximately the same product sensitivities as the ir-

reversible model. The reverse step ku only begins to

become important at later times as the concentration of

product becomes large enough to bind to the enzyme.

Initially the sum of the product partial variances

and the higher partial variance which couples kl and k3

accounts for 93% of the total variance. During approxi-

mately the first 100 seconds, this sum decays to 85%

and remains constant. The other 15% of the sensitivity

is spread over couplings among the parameters but no
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individual coupling is large enough to appear on the

graph.

The major difference between the irreversible model

and the reversible model is seen in the sensitivity of

ES to the rate constants. In the irreversible case the

sensitivity to k3 grows, while in the reversible model

k1 remains most important. Apparently the reverse step

(kn) can serve to stabilize the concentration of BS as

the reaction approaches equilibrium. Since substrate is

present in excess, the concentration of the complex

continues to be dominated by sensitivity to kl. As with

the irreversible case, apparent breaks in the sensitivity

of ES to the rate constants are observed (see Figure 5.2d).

These are again caused by a subset of the simulations

which in this case reach their equilibrium values.

Models with Slow Conformational Changes

Except for a (usually undetectable) lag in product

formation caused by storage of substrate as the ES com-

plex, the Michaelis-Menten model is not capable of des-

cribing bursts or lags. Nor can it lead to allosteric

behavior since the phenomenon of allosterism as defined

(Segel, 1975; Fersht, 1977) in terms of deviations of

the reaction velocity from the predictions of the

Michaelis—Menten model. In order to examine these
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phenomena it is necessary to devise more complex models.

The most common interpretations (Monod 33 al., 1965;

Koshland gt al., 1966) of allosteric behavior involve multi-

subunit enzymes in which interactions among the subunits

make the addition of another substrate molecule easier or

more difficult than those which were previously bound.

These models are intrinsically thermodynamic in nature

since they refer to interactions which affect binding

constants. It was suggested some time ago (Whitehead,

1970) that allosterism could arise without subunit inter-

actions as a natural consequence of kinetic models which

involved slow steps such as conformational changes. Such

models have also been proposed to describe bursts and lags

in product production.

In this section we apply sensitivity analysis to a

model first examined by Ainslie, Shill and Neet (1972)

using steady-state methods. Our sensitivity analysis

of the model showed that similar behavior can be obtained

with less complex models. Therefore, these simpler models

are also examined in some detail.

Model of Ainslie, Shill and Neet

In 1972, Ainslie gt 1. proposed an enzyme model

which they studied by using steady-state techniques

coupled to slow conformational changes. They showed

that appropriate choices of the 16 rate constants could
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be made so that the model displayed either bursts or lags

in product production. They also showed that the varia-

tion of the final steady-state velocity with substrate

concentration could be made to exhibit allosterism, leading

to behavior similar to either positive or negative co-

operativity depending upon the choice of rate constants.

Because of the wide variations in behavior exhibited by.

this model, brought about merely by changing the values

of the rate constants, we felt that this model would pro-

vide an excellent test of the methods of sensitivity

analysis.

This model, which we refer to as the Ainslie model,

is described by the following scheme:

1 16 in

E + S:;=3 ES ;==3 EP;;=£E E + P

2 15 13

10++9 3++u ++

11 5 7

3* + 3 ==:: E*S :Efi E*P ==e E* + P (5.3)

12 8

The numbering sequence for the 16 rate constants is also

given in scheme (1A) above. Equilibrium constants,

K1, K3, K5... are defined as kl/kZ’ k3/ku, k5,k6, etc.

With its 16 rate constants, this model is complex
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enough to defy intuitive understanding of its detailed

dynamic behavior. By applying SAM to this model, with

the nominal rate constants and ranges already tested by

Ainslie, et al., we can determine the important pathways

which lead to bursts and lags. The analysis also showed

that the model need not be this complex to yield the same

general behavior. .

Ainslie, 33 al. separated the rate constants into two

sets: those which gave lags in product growth and those

which gave bursts. Each of these sets was also divided

into two groups which showed allosteric behavior similar

to positive cooperativity and negative cooperativity,

respectively. Hill plots (Hill, 1925; Segel, 1975;

Fersht, 1977) were used to classify the cooperativity.

Negative cooperativity gives Hill coefficients less than

one while positive cooperativity leads to Hill coefficients

greater than one.

In this sensitivity analysis it was only necessary

to use two groups of rate constant ranges corresponding

respectively to bursts and lags in order to cover the

entire range studied by Ainslie, gt al. In order to

decrease the complexity of the problem, simplify the

interpretation, and include the thermodynamic constraints

demanded by the presence of mechanistic loops, we main-

tained all of the equilibrium constants at fixed values

in each of the two sets studied. This corresponds
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approximately to the choices made by Ainslie, e2 _1.

who used constant values for most of the equilibrium

constants_while varying the rate constants. This simpli-

fication reduces the number of independent parameters to

eight but does not alter the general behavior of the model.

The eight differential equations which describe the

time-dependence of the concentrations of the eight species

in this scheme can be reduced to six coupled non-linear

differential equations by using the two algebraic equa-

tions of mass balance. The nominal values of the rate

constants, the values of the equilibrium constants used,

and the initial conditions are given for the lag and

burst sets in Table 5.3, while the frequency sets and

computer data are given in Table 5.“. The ranges allowed

for each rate constant were 10:1 times.the nominal value.

In Figure 5.3 the average concentrations and the

standard deviations of the two sensitivity analysis runs

are displayed. In the lag set the product growth is

initially slow but it rapidly increases reaching 27% of

its equilibrium value after 120 seconds. In contrast, the

product growth of the burst set starts out fast and then

slows down, reaching only 11% of its equilibrium value

after 120 seconds. This leads to a large range of con-

centrations in the lag set, but to a restricted set in

the burst case. In both cases the less active free

enzyme, E, is a minor species.
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Table 5.3. Parameter Valuesa for the Ainslie Model.

 

 

 

 

 

(Lag Set) (Burst Set)

0 (i) O (i)
1 k1 Keq ki Keq

1 10 (0143)”1 10‘2(uM)‘l 10. (uMs)‘l 0.1(uM)'1

3 10'2 s"1 3.0 10‘3 s‘1 10‘2

5 10” s‘1 3.0 105 5‘1 1.0

7 103 5'1 30.0 (UM)_1 103 3'1 100.0 (11M)-1

9 10"1 3‘1 10 10‘2 a-1 10.0

11 10.0 (uMs)‘l 0.3 (uM)‘1 10 (uMsYl 10"2 mm)“1

13 1.0 (ms?1 10‘3 uM 10 (uMs)_1 10"3 pM

15 10 s‘1 112.7 103 s"1 100

_ b _ _ _
EO - 0.5 uM sO — u000.0 0M E0 - 0.05 uM sO - u000.0uM

[P] [P]

K = 27 =-——431 K = 1.0 = eq
T [Sjeq T [Sleq

aThe range of the rate constants was 10:1 times the nominal

value, k3.

bInitial distribution: 90% E, 10% 3*.
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Figure 5.3. Average concentrations and the standard

deviations of the concentrations for the

Ainslie models. The symbols represent:

0, S;A, E: +, 39631-0, sz, ES: 11’: E*P.
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Careful examination of the partial variances shown

in Figure 5.” shows that the lag mechanism operates by

shuttling the ES complex to the E*S complex which then

rapidly forms product. The top (E+S + E+P) cycle has

slow turnover relative to the bottom (E* + S + E* + P)

cycle and the important bridge between them is the iso-

merization step of the enzyme-substrate complex. The

small amount of E* present initially starts turning over

substrate so that the substrate concentration is most

sensitive to k7, the product formation rate constant in

the bottom cycle. As the reaction proceeds the total

concentration of enzyme in the bottom cycle is increased

by the conversion of ES to E*S; this increases the sensi-

tivity to k3 and to the binding step E* + S + E*S (kll).

This shift to the bottom cycle is verified by the rapid

decay of substrate sensitivity to le.

The coupled partial variances of Figure 5.Ab rein-

force the above conclusions. The rapid decay in time of

the coupled partial variance 85,7 is consistent with the

growing importance of the depletion of the substrate

concentration via the bottom cycle. Furthermore, the

isomerization step which increases the total active enzyme

concentration and thus increases the importance of the kll

step results in the rapid growth in time of the coupled

partial variance 87,11.

Turning to the sensitivity of the enzyme concentration,
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I

Partial variance plots for the Ainslie lag

model. A number represents the partial

variance for the rate constant. Other par-

tial variances are represented by: B, S

11’

D, 813; F, 815. Coupled partial variances

are represented as follows: in (b) by +,

. «)6 . ' o

85.7: ’ 37,11, 1“ (C) by +’ 313.15: *’
81,15; in (d) by *, 85,7; in (e) by *,

S13.15'
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displayed in Figure 5.Uc, we note that there is negli-

gible sensitivity to kl, since the binding step reaches

equilibrium so rapidly on the time scale of this display

that variations in kl cannot change the concentration of E.

(Recall that the equilibrium constant K is fixed.) On
1

the other hand, the relative amounts of enzyme present

as E, ES and EP strongly depend on the values of the

other rate constants k13 and le in the top cycle at

early times when the product concentration is low. The

large initial values of the partial variances 813 and 815

and the coupled partial variance 813,15 support this asser-

tion.

The sensitivity to the top cycle rate constants is

then lost to k3 as the inactive enzyme isomerizes to

E*S. Since 90% of the enzyme is initially in the inactive

form, this transfer to E*S changes the E concentration

significantly. All the other complexes also display this

feature of a rapid rise to a large sensitivity to the

isomerization rate k3.

The sensitivity plots for E*S and E*P in Figures 5.He

and 5.ur respectively, are consistent with the interpre-

tation of the other sensitivity plots. Once again the

sensitivity to the binding step (kll) for the bottom

cycle is negligible due to the rapidity of this step.

The steps with rate constants k5 and k7 are important

initially but the k3 isomerization step grows to major



153

importance. The similarity of the E*S and E*P sensitivi-

ties suggests that the inclusion of both intermediate com—

plexes may not be necessary in the formulation of a

mechanism that leads to lag behavior.

The burst mechanism operates by forming product

initially via the fast bottom cycle. The rate constants

are such that, as time progresses, enzyme is shunted from

the lower cycle to the upper cycle primarily through the

enzyme-substrate complex isomerization step. Since the

top cycle is relatively slow, the turnover of substrate

slows after the initial period, hence the burst behavior.

The bottom E* cycle remains the major route for substrate

turnover as shown by the large sensitivity to k7 in Figure

5.5a. Though the partial variance S does drop from 88%

7

to 60% of the total variance at 115 seconds while 815

grows somewhat, it is k7 that dominates the substrate

sensitivity even more than in the lag case.

In notable contrast to the lag analysis, the enzyme

sensitivity displayed in Figure 5.5b does involve kl.

However, examination of the total variance, that is the

sum of all the partial and coupled partial variances,

reveals that it is very small. Since the partial var-

iances are all defined relative to this total variance

we obtain non-negligible values for the partial variances

even though, as just noted, the total variance is
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Partial variance plots for the Ainslie burst

model. A number represents the partial vari-
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negligible. Thus we may conclude that the enzyme concen-

tration in the burst region of parameter space is not sig-

nificantly affected by the rate constants. Of course, if

the equilibrium constants were allowed to vary the results

could be greatly altered.

The sensitivity plots of the intermediates, ES, E*S,

- and E*P, shown in Figures 5.5c, 5.5d and 5.5e, respec-

tively, are dominated by the sensitivity to the isomeriza-

tion of E8 to E*S. At very short times the top and bottom

cycle rates have some sensitivity, but the total variance

is very small here.

From the above detailed analysis a simple rationale

of the operation of this model with regard to burst and

lag behavior can be formulated. The initial relative

concentrations of E and E* are determined by K9. It is

the relatively slow transformation of E*S to ES and 1132:

ngga brought about by substrate binding which gives

rise to the bursts and lags. The formation of E*S and

ES from E* and E, respectively, is rapid compared with

the rate of interconversion of these forms. Because of

the importance of the step with rate constants k3 and ku

it is not surprising that the sensitivity to k3 (fixing k3

also determines ku through the constant value of the

equilibrium constant, K3) provides an important clue to

the behavior of the model. If we wish to focus on bursts

and lags in product production, then the most informative
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sensitivities will be those which relate product (or sub-

strate) concentration to the rate constants.

With this information we can now formulate a reduced

model which exhibits essentially the same sensitivities

as the complete Ainslie model:

E+SZESZEPIE+P

I (5.3)

E* + S 1 E*S I E* + P

 

Of course to obtain the proper very long time behavior it

would be necessary to incorporate the E 2 E* step in the

model to return E* to E. However, the E z E* step plays

no significant role in the behavior of the model in the

region of parameter space and the time range explored

here. As long as the rate constant sets are chosen such

that a pool of enzyme is bound up in the ES intermediate

which is then slowly converted to E*S, the lag behavior

will result. For burst behavior one needs more E*

present initially to cycle through the bottom than the

isomerization ES 1 E*S would yield at equilibrium. Since

the reduced model can exhibit these features, bursts and

lags will result from this model.

Furthermore, the mechanistic steps by which EP is
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created and destroyed are of secondary importance over

this region of rate constant space. This suggests the

possibility of still further reduction of the model.

Frieden Model

A model proposed by Bates and Frieden (1970) to account

for time-lags in enzyme reactions and also studied by Ho

(1976) may be represented by the scheme:

1 7

E + S ES E + P

2 8

1111.2 311. 11

5 9

E* + S E*S E* + P. (5.A)

6 10

In order to permit comparison of this model with that

of Ainslie gt_al. (1972) the same rate constants were used

for equivalent steps. To evaluate k7, k8, kg, and klo,

a steady-state approximation was applied to dEEPJ/dt and

d[E*P]/dt. This related the product release rate and

equilibrium constants of the Frieden model to those of

the Ainslie model by the following equations, in which

the primed rate constants refer to the Frieden model,
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kk kk
16 1H, 1 13

k'=—-—-—, k'=r—L—
7 k1u+k15 8 1u+k15

kk kk
k.__._§_Y_ k' 2.2.2., (5.5)

K
O

These rate constants, the other nominal rate constants, the

equilibrium constants, and the initial conditions for the

burst and lag runs of the Frieden model are given in Table

5.5, while the frequency sets and computer data are given

in Table 5.4. As with the Ainslie model, the equilibrium

constants were fixed and the rate constant ranges were

10:1 times the nominal values.

Figure 5.6 shows the average concentrations and the

standard deviations of the Frieden model. Both the lag

and burst cases are similar to those of the Ainslie model.

It is interesting to note that there is more "effective"

enzyme in the Frieden model since there are fewer inter-

mediate complexes.

The substrate sensitivity shown in Figure 5.7a is

largest for k9, the rate constant for release of product

from the active form. Initially, the corresponding upper

cycle rate constant k7 for the inactive form contributes

about 20% to the rate of product formation but this

decreases to less than 5% as the isomerization step
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Table 5.5. Parameter Values for the Frieden Model.

 

 

a

LAG Burst

i k0 k kiO)
1 eq eq

 

1 10 (0M s)“1 10"2 (0M)-l 10.0 (uM s)“1 10‘1 (01"1)‘l

 

 

3 10"2 s‘1 1.0 3 x 10'“ s"1 10‘2

5 10 (0M s)“1 10‘1 uM 10 (0M s)‘1 10"2

7 30 s.1 3.1 x 103 pM 10 3'1 10.0 0M

9 750 s‘1 3.1xx 102 um 9.9 x 103 3‘1 100 um

11 10'2 s‘1 10‘1 10‘3 s‘1 10"1

_ b
ET - 0.05 uM

S0 = AOOO uM

[P] [P]
_ _ e __ _ eg

KT - 31 - mg: KT — 1.0 - [5180

+

aThe range of rate constants was 10"1 times the nominal

value k1.

bInitial distribution: 90% E, 10% E*.
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Figure 5.6. Average concentrations and the standard

deviations of the concentrations of the

Frieden models. The symbols represent:

0. S; A, 1513+, E*S;®. PsX. E*;)1. ES-
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proceeds and the isomerization rate constant, k3, becomes

more important.

The partial variances shown in Figure 5.7b are par-

ticularly revealing. The coupling between k3 and k9

grows and decays during the time range of the isomerica-

tion of ES to E*S. As this occurs the rate constant, k5,

for the binding of substrate to active enzyme grows in

importance as does its coupling with k9. By examining

these time-developments, one can gain a rather clear pic-

ture of the lag behavior as product production shifts

from the upper((slow) cycle to the lower (fast) cycle.

These dynamic effects are also mirrored in the sensi-

tivities to the various enzyme forms. For example, the

enzyme sensitivity shown in Figures 5.7c and 5.7d shifts

with time from the E-cycle to the E* cycle. This shift

is responsible for the lag behavior. Note the rapid

growth and decay of the sensitivity of E to the coupling

between kl and k7, the slightly slower growth and decay

of its sensitivity to k3, and the slower growth in its

sensitivity to k5 and kg and to the coupling between k5

and k9. These plots show how the dependence of the

concentration of free less active enzyme on the various.

rate constants changes with time.

The major route for the formation of E*S is the iso-

merization step ES 2 E*S. This is shown in Figure 5.7c

by the dominance of the sensitivity of the E*S concentration



Figure 5.7.
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Partial variance plots for the Frieden lag

model. A number represents the partial

variance for that rate constant. Coupled

partial variances are represented as fol-

lows: in (b) by +, 85,9; in (c) by +,

85,9; *, 81,7.
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to the isomerization rate constant k3. The growth in

sensitivity to k3 is accompanied by a rapid decrease in

the sensitivity to k5. At longer times, some sensitivity

to k5 and k9 accumulates.

The burst set of rate constants gives a reversal of

this behavior pattern as shown in Figure 5.8. Again, the'

E* cycle initially controls the rate of product production.

For this range of rate and equilibrium constants, however,

E*S is converted to ES which is less active with the result

that the overall rate of product production is decreased.

These simulations clearly show that the simpler Frieden

scheme can give both bursts and lags. In fact, the in-

sensitivity to kll and kl2 shows that an even simpler

model without the E 2 E* step would also describe the time-

behavior of these systems, provided one started with an

equilibrium digtribution ofELandggfi. This is because in

the models studied here, the direct interconversion of E

and E* is slow enough that it cannot compete with the

ES 2 E*S isomerization.

Since one of the "bonuses" of the Ainslie model was

its ability to describe allosteric behavior without the

need for cooperative subunits it was of interest to see

whether the simpler Frieden model could also give ap-

parent cooperativity. In order to do this, two simula-

tions were performed with the Frieden model which were

designed to yield "initial velocities" at various substrate
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levels under steady-state conditions. In these simula-

tions, the rate constants k8 and k10’ which yield overall

reversibility in the Frieden model, were set equal to zero.

After steady-state had been achieved, the reaction velocity

dP/dt was evaluated as a function of substrate concentra—

tion. This is equivalent to the evaluation of initial

steady-state velocities appropriate to separate assays.

It was possible in this way to find sets of rate

constants and concentrations which gave Hill coefficients

which vary from 0.125 (rate constant set 1 in Table 5.6)

to 2.645 (rate constant set 2). These results mimic the

behavior usually attributed to negative and positive co-

operativity, respectively, and show that even a model as

simple as that of Frieden can be made, with a suitable

choice of rate constants and initial conditions, to exhibit

allosteric behavior.

Summary

Model reduction is an important goal of sensitivity

analysis. By applying sensitivity analysis to complex

mechanistic schemes, one is able to determine which steps

in a reaction are essential to the behavior being examined

and which are not; perhaps permitting a simple model to

be formed as a subset of the more complex scheme.

Another major aim of sensitivity analysis is to

determine which rate constants are most likely to be
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Table 5.6. Rate Constants for Allosteric Test.

 

 

 

Set #1 Set #2

..l '1

k1 = 100 (0M 5) k1 = 10 (uM s)

_ -1 _ -1

k2 - 1000 3 k2 - 1.0 3

k3 = 10‘"I s‘l k3 = 3 x 10'” s"1

2 -1 -l
k = =
5 10 3 k5 10 5

k6 = 10” s‘1 k6 = 10‘1 s'1

-1 -l
= k =k7 10 s 7 10 5

k8 = 0 k8 = 0

k9 = 10“ s‘1 k9 = 9900 s"1

k10 = 0 k10 = 0

_ -2 ' -l _ -3 -1
kll — 10 (0M 3) kll _ 10 (0M s)

_ -l -l _ -2 -1

S0 = 15000 UM S0 = 4000 UM

E0 = 0.05 UM E0 = 0.05 0M

time range of test

(1200 sec to 1750 sec) (85 sec to 145 sec)

substrate decay over this time range

(5550 uM to 3150 uM) (2440 to 2160) ”M

Hill coefficient=0.125 Hill coefficient=2.645

correlation coefficient correlation coefficient

0 = .999 o = 0.997
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measurable and which have so little effect on the concen-

tration-time curves that they cannot be accurately de-

termined. For example, by following the full time course

of product growth for a system which follows the Frieden

mechanism and exhibits a lag one might expect, if the

equilibrium constants are known, to be able to determine

k9, k7; k3 and k5. However, k3 and k9 would be strongly

coupled as would k5 and kg. The rate constant k7 would

be measurable primarily from the behavior at short times

but this time period contains essentially no information

about k3 and k5.

Our primary motivation for implementing these tech-

niques was to ultimately apply them to the study of

transients in enzyme kinetics. Under conditions where

one can follow the production and disappearance of inter-

mediates, it should be much easier to distinguish among

various mechanisms. The application of sensitivity analysis

should provide very useful information about the sensitivity

of the various concentrations to the rate constants so that

the latter can be arranged in order of their accessibility

of measurement.



VI. SENSITIVITY ANALYSIS OF A

TRYPTOPHANASE KINETIC MODEL

Recently the mechanism of TryptOphanase catalysis

has been under investigation in our laboratories. Of

particular interest is the variation of the ultra-violet-

visible absorbance spectrum of Tryptophanase with pH.

As the pH is changed the enzyme apparently changes its

conformation which results in changes in the spectral

shape (June gt gt. 1979). The model proposed (June gt gt.

1980) for this is

BY BY BY’ BY

EYH+ KEH EY + H+

de ++ kY6

E5

Scheme 1

170
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which is composed of three interconvertible manifolds

designated 8, y, and 5. During 1979-1980, two types of

incremental pH change experiments were done to probe the

absorbance changes which accompany a change in pH. Incre-

mental pH jump experiments were done to examine the con-

version of the low pH form of the enzyme to the high pH

form. The reverse reaction was also tested with incre-

mental pH drop experiments. The results of the rapid

changes (t < 10 seconds) were analyzed in terms of a re-

duced model using only the 3 and y manifolds since the

growth or decay of form 6 is slow. This simplification,

along with the restriction that the protonation-deprotona-

tion reactions occur within the mixing time of the stepped-

flow experiment allowed the mechanism to be reduced to an

apparent first order scheme with the apparent first order

rate constant, k', and a model output function AAO The
bs'

equations used to fit the data (in a least squares sense)

are given in TableéSLL The program KINFIT4 (Dye, Nicely,

1971) was used (June, Dye, Suelter 1980) to obtain the

parameters and their standard deviations, shown in Table

6.2. To clarify these results and to propose further

experiments a sensitivity analysis of the model was under-

taken.

The sensitivity analysis of this model can be separated

into two regions, the investigation of the general sensi-

tivity of the model with respect to the parameters, and
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Table 5-1- Parameters for Tryptophanase Model

 

 

= __ vAobs Aco + (AA)exp( k t)

+

AA” + AAO-Ka/(H )
 

 

 

 

  

AA =
obs l + Ka/(H+)

(8 8tW)[K = K 1
AA” = K8 8H

[1 + —Y———][: + (11*) 1

KBHKBY 8H 0

AA = (eBBt)(H+ )OEKBH/KYH — 11KBY

o +

[1 + KBYJEKBH + CH )0]

K = KBHEl + KBY]

a 1 + KBHKBY/KYH

H + H
k; = kBYKBH + k BY(H ) + kBY + kBYKgH/(H+ )

KBHKBYEl + (H )/KYH] 1 + KBH/(H )

. H _
Thermodynamic constraints require that KBY - KBHKBY/KYH

= . H a H H
and, of course kYB kBY/KBY’ and kYB k8YB/KBY
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Table 6.2. Best-fit Parameters Based Upon Scheme 1 and

Their Marginal Standard Deviation Estimates.

 

 

Standard Deviation

 

 

 

Parameters i Value Value Percent

O

(Seat)Jump 0.080 cm“1 0.001 1.4

1
o -l

(asst)drop 0.0175 cm 0.0008 4.6

KBH 2 2.0x10"lo M 0.le10‘10 20

KBY 3 39 8 20

KYH u 1.7::10"7 M 0.33:10'7 18

-1
KBY 5 8.3 sec 1.6 18

KEY 6 0.0297 sec-1 0.0045 15

Ka 7.7x10'9 M 0.43:10‘9 5

-1
. 6KYB 0.212 sec 0 012

REY 0.045 sec‘1 0.010 20

H -1
kYB 0.66 sec 0.04 6

 

 

Table 6.3. Legend for Figures 6.5-6.11.

 

 

KYH =0 kBY =
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the investigation of the actual "fitted" parameters along

with their estimated standard deviations. This procedure

should permit one to see in which regions the measurements

might provide better estimates of the parameters. The

investigation of the general sensitivity of the model was

done by varying each parameter over a fixed relative range.

A 10% variation, ttgt,-within 10% of the nominal values,

was chosen for this technique. Since each parameter is

varied over an equal range the sensitivity of the model to

its parameters enables us to rank order them in terms

of their relative effects on the output function.

A second sensitivity analysis with the parameters

varied only over the estimated standard deviations (as

determined by KINFIT4) was performed. This type of

analysis indicates which regions should be studied in

order to refine the estimates of the parameters.

Sensitivity analysis for each different experiment

was done, one for the pH drop and one for the pH jump.

Each sensitivity analysis had two output functions, k'

and AAobs' Six parameters were varied in each analysis

using 99 simulations with a fourth-order accurate Fourier

frequency set. The value of [H+]O was set equal to the

initial H+ concentration used in each experiment. For

the pH drop [H+10 = 10-8'7 M and for the pH jump [H+]O =

10‘7'0 M.

Figure 6.1 shows that the average value of AAobs for
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the pH drop analysis grows as the pH decreases from 8.7

to 6.4. Both the 10% parameter variation and the standard

deviation variation give the same averaged nominal value

for AAobs' Similarly, Figure 6.2 shows the average value

of AAOb for the pH jump analysis. Since the range of
3

pH covered in the pH jump analysis is more symmetric about

the apparent pKa value of 8.1 than is the pH drop analysis,

Figure 6.}.is more like a complete titration curve than

is Figure 6.2.

Figure 6.3 displays the averaged value of k' as a

function of pH. The same averaged values were obtained

for both the pH drOp and the pH jump analysis as well as

for both sets of parameter variations. This is, of course,

expected from the functional form of k' which contains

only rate constants, equilibrium constants and [H+]o

The partial variances of AAobs for the standard devia-

tion (std. dev.) pH jump sensitivity analysis are shown

in Figure 6.4. This output function is only sensitive

to 288:, KBH’ and KB Note that there is no large varia-Y.

tion of sensitivity in the pH region 7.0-8.5. The sensi-

tivities only differ at the ends of the pH region.

Figure 6.5 gives the partial variances for AAobs where

the range of variation was 10%. This plot shows that the

most important parameter is 683:. Note that the sensitivity

to e 8: is much lower in Figure 6.9, where the standard

8

deviation variation was used. Since the model is so
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sensitive to this parameter June gt gt. (1980) were able

to fit it to less than 5% error. Both Figure 6.5 and

Figure 6.5 show that the measurement of 888: can be more

accurately made at high pH values in pH jump experiments.

The essentially equal sensitivities to KBH and KBY reflect

the fact that the amplitudes are most sensitive to

Ka a K8H KBY as indicated by the computed standard devia-

tion of Ka in Table 6.2.

Figure 6.6 is the standard deviation analysis for the

apparent first order rate constant k'. Here at low pH,

KBY is the most important parameter. At higher pH, say

9, kBY and K8H are the most important parameters. The

partial variances for the 10% parameter variation, Figure

6.3, are not much different than those derived from the

fitted standard deviation analysis. The overall shapes

of the sensitivity curves are the same but the magnitude

differ slightly. The maximum sensitivities of the param-

eters are grouped in two regions, KBH and kBY are large

at a pH of 9, while the other parameters reach their peak

in the pH range of 7.0-7.4. The sensitivity to ng in

the pH jump analysis is significant only at low pH values

and neither the amplitude nor the rate constants in the

ij jump analysis show appreciable sensitivity to KYH'

Figures 6.8 and 6.9. are the partial variances of the

‘parameters in the pH drop model. The amplitude param-

eter 888: is the most sensitive in the 10% deviation
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analysis, but since it was accurately measured, the stan-

dard deviation analysis shows that the equilibrium constant

KBY is the largest. There are only two different regions

of sensitivity in these analysis, a high pH set (KBY

> 888: > KBH) and a low pH set (KBY > K8H >> 888:).

Figures 6.10 and 6.11 show the partial variances of

the k' output function in the pH drop analysis. Here,

.for the first time, some sensitivity to KYH appears at low

pH values.

From the partial variance plots for the Tryptophanase

model we see that the parameters can be grouped according

to the pH dependence of their effect on the output func-

tions. KBH’ KBY’ and e 8: determine the value of AA
8 obs

with reasonably uniform sensitivities at pH values below

9 when the standard deviations are used. Since 588%

is by far the most important parameter, allowing the same

relative deviation for it as for the other parameters

causes it to take most of the partial variance, from 40%

at low pH values to over 95% at higher pH values. By

restricting the ranges to the standard deviation values,

KBH and KB become the dominant parameters except at highY

pH values.

Partial variances obtained when k' is the output func-

tion show that K dominates at pH values around 7 but

BY

becomes third in importance above pH = 8.2. The parameters

k and K
BY 8H become the most important at high pH values
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and maintain substantial sensitivity down to pH values

of about 7.4. Only at pH values below about 7.6 do the

sensitivities to kgy and KyH begin to become important.

This reflects the fact that these parameters refer to a

low pH pathway for the interconversion of the 8 and y mani-

folds. To determine kgy and KYH with greater precision,

the measurements should be extended to lower pH values if

possible.

The sensitivities of k' to its parameters does not

change much when the parameters are allowed to vary over

equal relative intervals instead of over the estimated

standard deviations. However, examination of Table 6.2

shows that the relative standard deviations for the most

important parameters are not very different. Therefore,

a change from 110% relative deviation to to is nearly the

same as a change from :10% on all parameters to :20% on

all parameters so that we would not expect much difference.

L
)
:

The sensitivity analysis applie here suggests what

experiments should be done to further refine the parameters.

Incremental pH jump experiments to higher pH values than

the limit of 9.3 used to date would probably result in

better estimates Of kBY and KB? while pH drop experiments

5

I

Vto lower final pH values than “.7 would greatly improve

A

U .

the determination of ng and .YH,

This application of sensitivity analysis to the

Tryptophanase model was made a ter the model had been
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developed and the parameters fit to the data. The marginal

standard deviation estimates given by KINFIT4 for all of

the parameters gave us an indication of their reliability.

However, sensitivity analysis, not only confirmed these

ideas, but also clearly delineated the regions of pH in

which the absorbance changes and rate constants are most

affected by particular parameters. Thus the major goals

of sensitivity analysis, to rank the parameters in order

of their importance to the output functions, and to assist

in the design of future experiments, were both realized

in this example.



VII. FUTURE WORK AND DEVELOPMENT

The previous chapters examined the theory and applica-

tions of Sensitivity Analysis. This chapter reviews those

areas which should be profitable fields of research for

further development of sensitivity analysis.

The most useful theoretical development would be in

the relationship between the Walsh and Fourier methods.

Christenson (1952) has laid the groundwork for this problem.

He noted that Walsh functions may be generalized to sets of

orthogonal functions with more than two values. This is

done by relating the Walsh function to powers of (exp(2iH/N),

where the two-value Walsh functions are obtained by letting

N = 2, thereby giving powers of (-l). The generalized

Walsh function may then take on N different values.

This relationship suggests that the N-point discrete

Fourier transform may be totally developed from a dis-

crete algebraic viewpoint without recourse to the continuous

Fourier transform. If this were done, a clearer understand-

ing of the errors involved in aliasing and choice of fre-

quency sets should result. This would also lead to a more

direct relationship between the linear sensitivity co-

efficients (Taylor series) and the Fourier expansion co-

efficients.

189
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.Choice of the frequency sets for sensitivity analysis

has always been a limitation. In the Fourier method we

may do sensitivity analysis with up to 50 parameters since

their 4th order accurate frequency sets are known. How-

ever 6th order or higher accurate frequency sets are not

known for an arbitrary number of parameters. It appears

to be a difficult number - theoretic problem to even find

a higher-order accurate set. However, finding higher-

order accurate sets for arbitrary number of parameters

would enable the computation of more accurate Fourier

sensitivity analyses.

In Walsh analysis an arbitrary number of parameters

may be evaluated. All the frequencies required for exact

analysis are known (21). Unfortunately, the largest re-

quired frequency for a p-parameter set is 2p-l. This

requires 2p simulations to compute the 2p-1 coefficient.

For large values of p this becomes impractical. Analogous

to the Fourier method we can develop approximate Walsh

frequency sets to a required order of accuracy. Appendix

9 has an approximate Walsh frequency set which is 4th-

order accurate. With this set of frequencies we can do

approximate walsh sensitivity analysis with up to 21

12 21
parameters using only 2 simulations instead of 2

which would be required for exact analysis.

This technique will work for any set of approximate

frequencies, and with the apparent relationship of Fourier
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and Walsh expansions we should be able to connect the ap-

proximate frequency sets from the two methods with each

other. Unfortunately, an algorithm for finding approximate

Walsh frequency sets has not been discovered, although

it is easier to invent approximate Walsh sets than it is

to invent approximate Fourier sets. The set given in Ap-

pendix 9 was chosen in an intuitive fashion. Obviously

more work is required to develOp a systematic method of

finding approximate Walsh frequency sets for any desired

accuracy. This should also clear up the problem of find-

ing approximate Fourier frequency sets of arbitrary accuracy.

Another useful area of research is the connection of

statistics and sensitivity analysis. Sensitivity analysis

measures the effect on the output function of variations in

the parameters. Statistics deals with the reverse problem,

the effect on the parameters caused by variations, or er-

rors, in the output function. Research in the relation-

ships between sensitivity analysis and statistics would

unite the more theoretical aspects of sensitivity analysis

with the real world measurements used in statistics.

One direct approach is to "feed" the "answers" obtained

from a least squares analysis of data directly into the

sensitivity analysis programs. The least squares program

delivers "best" estimates of the parameters and standard

deviation estimates for each parameter. By using these

values as the nominal parameters along with the standard
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deviation as the range of variation a sensitivity analyis

may be done on this model. From the partial variance curves

obtained in this way one may determine whether the output

function is sensitive to that particular parameter space.

If there are maxima in the partial variance curves then one

should make more measurements in that region to pin down the

"best" value for the parameter in a least squares sense.

Such an approach should be useful in both model reduction

and experimental design.

The computer programs are well-designed. However,

by examining the timing data printed by the programs it

seems likely that improvement in the matrix transpose

algorithm (SUBROUTINE TRANP) would decrease the amount

of required computer time. Other than this, there are no

new, faster algorithms (that I know of) which should be

substituted for the ones presently used. However the

programs were written to facilitate the replacement of

sub—programs if better ones are developed.

OnecWher place that the programs could be modified

is in SUBROUTINE MODEL. It may cause a significant de-

crease in computer time if models written in terms of

differential equations are recast into an integral equa-

tion form. Integral equations are usually more stable

numerically than differential equations. This type of

change could result in a decrease of orders of magnitude

in the computer time spent computing the required simulations.



193

Applications of both the Fourier and Walsh sensitivity

analysis should be straightforward. Interpretation of

the results will, of course, depend on the problem. It

is hoped that the applications and interpretations pre-

sented here are sufficiently detailed to enable interested

researchers to perform sensitivity analysis on their own

models. The insight available from sensitivity analysis

is only realized after the model has been analyzed.
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APPENDIX 1

RELATIONSHIP OF FOURIER COEFFICIENTS TO

TAYLOR SERIES COEFFICIENTS

If a function can be expanded in a Taylor series over

an interval, it may also be expanded in terms of orthogonal

polynomials over an equivalent interval. This may be

written

 

where PJ(x) is an arbitrary orthogonal polynomial and

(J)

(x0)

evaluated at x = x0.

f is the jth derivative of f(x) with respect to 'x'

By exploiting the orthogonality of the PJ(x) polynomials

we can relate the aJ expansion coefficients with the Taylor

series coefficients, i.e.,

 

oo 00 f

ak = jgo fw(x) pjm Pk(x)dx = 3E0 fw(x) ——%0—)— (x-xO)JPk(x)dx

' (J)
°° f(xo)

_ 320 j' ka
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where

wjk = fw(x) (x-xO)JPk(x)dx

From this equation we see that an orthogonal polynomial

coefficient, ak, is a weighted sum of all derivatives of the

function evaluated at the nominal value, x0. This implies

that an orthogonal expansion coefficient is composed of the

'effects' of all the derivatives of the function.

We can specialize this result to the orthogonal series

of sines and cosines. Expanding f(x) in terms of frequencies

we obtain

a

f(X) = Z (a. cos(jx) + b sin(jx)} + -g

3:1 J .1 2

where

1 H

ak = F f_1T f(x) cos(kx) dx

_ 1 7r
bk - n f_1T f(x) sin(kx) dx

Substituting in the Taylor series eXpansion for f(x) we

obtain
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= % £3, (f(xo) + f'(xO)(x-x0) + ...)cos(kx) dx

= %.{:T (f(xo) + f'(xO)(x-x0) + ...)sin(kx) dx

Let y = x-xO, then

Using

=
I
I
I
-
J

H+XO

54/
l 2

1r -n+x (f(xo) + f'(xo)y + 2 f"(x0)y +...)cos(y+xo)dy

O

(f(xo) + f'(xo)y+-% f"(xo)y2)sin(y+x0)dy

the expansion for sin(a+8) and cos (0+8) we obtain

1 Tr+x0 .
F f_fi+x0[f(xo)cos(y)cos(x0) - f(xo)sin(y)51n(xo)]dx

7r+xO
.

.LW+XOIf”(Xo)(y)(cos(y)COS(XO))-f'
6%9y(sin(y)s1n(xo))]dx+...

l n+x

2;.Lfl1xo[fixo)sin(y)COS(XO) + f(xO)cos(y)sin(x0]dx

H+X

.LW+X [f”(xo)y sin<ylcos(xo)+f'(xo)y cos(y)sin(xO]dx+...
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Setting the nominal value, x to zero, we may reduce
0,

equations as follows

- °° 1 W <23) 2.1
ak - jEO H [at f(O) y cos(ky)dv

.+ .
% f” f(2,] 1) y2j+1

-w (0) sin (ky) dy

<<y23><figi)><cos<ky>>> + <y23+lfi81+l)51“(ky)>

I
I
M

8

0

Similarly bk may be reduced to

2j+1f(2j+1)
(0) sin(ky)> - <y23f(23)bk = E <y (0) cos(ky)>

This clearly shows that the Fourier coefficients are com-

posed of all derivatives of the expansion function.
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Figure A.1. Histogram of Log—uniform Distribution Func-

tion.

This function is given by:

Parameter - nominal *exp(A% sin-1(sin(sq))

where here

1/2

nominal (PHI/PLO)

1/2 £n(PHIPLO).
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This function is given by:

Parameter = nominal + Asin_l(sin(sq)).

where here

)nominal %(P

HI+PLO

1

5(PHI‘PLO)
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Figure A.3. Histogram of Gaussian-type distribution func-

tion.

This function is given by:

 

l + sin(sq)J2

Parameter — a log [1 _ sin(sq)

where

_ Jbo

PHI'PLO

such that 90% of the samples are between PHI and PLO'
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This function is given by

Parameter = nominal + Asin(sq)

where here
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nominal

p _

A: HI LO



202

APPENDIX 3

This procedure follows the original Fast Fourier

Transform, the Cooley-Tukey algorithm. In fact, some Fast

Fourier Transform programs may be converted directly into

Walsh transforms by simply setting all the trignometric

values to il and deleting the complex part of the trans—

formation (since the Walsh transform is real).

The factorization of the transform relies on the

lexicographic ordering of the sampled function values.

Writing out the transform using binary representation for

the time, t = (tlt2,...,tp), and for the sequency, m =

(ml,m2,...,mp)

N—l

C = C(m m ...m ) = l 2 f(tn)WALH(n3tn)

m l 2 p N _

n-O

p

Z t.m

= )3 X Z f(t t ..t ) (—1) (A-1)

ml 0 m2 0 mp_0

The calculation of the transform is carried out in a

series of stages. There is one stage for each power of

two in the number of points, 2p = N. The first stage is

to derive a partial transformation series, X1, from the

input series, f(t), by expanding the first sum in the equa-

tion (ignoring the scaling factor for now).



Xl(tlt2... p_l p t -o

. m

0) + (-1) pf(tl...t 1)l...tp_l p_l

Now we pass through the data, either adding or subtracting

adjacent function values. The second stage is constructed

from the first by expanding the second sum. Then

1

X t m2( lt2 tp_2mp_l p) t 23:0 xl(tl tp_lmp)

p—l

This procedure is continued until all P-stages have

been computed. The values of the last stage are the de-

sired Walsh coefficients.

C = C(mlm2...mp) = Xp(mlm2...mp)

This is an extremely fast transform on a computer as only

additions and subtractions are required.
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APPENDIX U

PARSEVAL'S FORMULA FOR WALSH FUNCTIONS

The total variance of a function may be expressed as

the sum of its squared Walsh expansion coefficients. This

may be easily seen by computing the variance for an arbi-

trary function. The defining equation for variance is

2
OTotal = <(f(x))2> - <f(x)>2

where <f(x)> is defined as the average of the multidimen-

sional function f(x) with x = (xl,x2,...x <(f(x)2>
D).-

is then the average of the square of the function f(x).

Expanding f(x) in a finite multidimensional Walsh

series we obtain the following series:

< > 1 l l p <f 5 = z z z c, —. WALH k x )

k =0 k =0 k =0 ‘1k2°'°kp E 1’ i
1 2 p 1-1

p

= z c n WALH (k.,x )
E K i=1 1 i
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To compute the average of f(x) we need only compute

the average of the series expansion

CX WALH (k X ) dX

u
u
q
o

<f(x)> = f

1_<_ 1

This equation must now be integrated over each dimen-

sion, xi. However, since each dimension has only two

values the multidimensional integral is equivalent to a

multidimensional sum over these two values. This results

in the following equation

1 l l l E

<r(£)> =«—— z z (2 Ok H WALH(ki,Xi))

2p xl-o x2= x =0 5 — i=1
p

1 1 1 p

= __ 2 ok { 2 . z z ( n WALH(ki,Xi))}

2p g — XD=O x2=0 xl=0 i=1

Substituting in the algebraic definition of the one

digit Walsh function results in

1 1 1 ikixi

«(gm—5:0“ z . z <<-1) }
2 5 — xp=0 xl=0

p k x

=chk{n<1+<-1)ii>}
2p 5 — i=1
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The term in brackets is zero if any; of the ki's are

nonzero. Hence it functions as a Kronecker delta and we

may simplify the equation accordingly

.1. 2 }=c=c

2‘35

9

<f(£)> - Ck{2 55,9 g oo...o

This shows that the average of an arbitrary function is

the CO coefficients of its Walsh expansion.

The computation of <(f(x))2> is straightforward. First

expressing the square of the function as a Cartesian product.

WALH(k

1 J’XJ')‘
M O
W

O

E

H

s
t
u
n
)

WALH(ki,xi)1
k l J

—-1

which upon substitution of the definition of the Walsh

function results in:

(roof =

W
V
M

This equation may be integrated over each dimension, xi
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1

2(ki+ki)xi

' i

<<f<gg>>2> -- r z 2: 0k ck. <-1>

ifi'é.’

Eu. ')+k x

l (kl+kl)xi i=2 1 l i

=—-z 2: CR Ck'{ Z 2‘. [(l+(-1) )((-l) }
2p k k! _ _ X =0 X =0 .

_ _ p 2

p (k +k')x

...}.z z ck ck, { n (1+(-1) 1 1 1)}
2p Ek? _. ... 1:1

The term in brackets acts as a Kronecker delta, requiring

k = 5'. Hence the equation is now easily reduced

0

<(f(§))2> -3; Z 2: C C H 25

29513' 1‘- 1‘3'1 1 ki’ki

l o
= —— C ‘

2p i f. 5. 011' 2 519$

= z (Ck)2
E ...

giving a sum of the squared coefficients.
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Combining the two results we may directly write the

equation for the variance solely in terms of the expansion

coefficients:

2 = 2 _ = 2 _ 2 = , 2
OTotal <(f(§)) > <f(§)> ECE COD .0 £05

OO...Owhere the 2' is a summation over all k except the

k

sequency term.
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APPENDIX 5

THE CALCULATION OF WALSH PARTIAL VARIANCES

A partial variance is defined-as the variance, or

dispersion, in one dimension of a multidimensional function

a = <<r*<xl>>2> - <f*(X1>>2
2

l

where f*(xl) = <f(xl,x2,x3,...,xn)>, the multidimensional

function averaged over all dimensions except the first.

0% is called the partial variance of variable, or parameter,

x1.

If f(xl,...,xn) is expanded in a multidimensional finite

Walsh series with two points along each axis, then ki

and x1 may be represented in binary by one digit.

1 1 Q (

f(x x ...x ) = Z ... Z (3 H WALH k x )

1’ 2 n k1=0 k =0 k1° kn i=1 1’ i
n

n

2 k.x

1 1 i=1 1 i

= Z X C (=1)

k =0 k =0 k1 °'kn
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The average of the function with respect to x2,...xn

is the sum of all those values divided by the number of

samples

‘K' = < >

f (X1) f(xl°"xn) x2...xn

n

1 1 1 1 1 iilkixi
= “fi3I z . 2 .[ z 2 Ck . k (-l) l

2 x2=0 xn-O kl-O kn=O l n

Switching summations:

n

1 1 1 1 2 kixi
_ l 1:.1

"*N-l z z: [ z X Ck k (-l) J

2 kl=0 kn=O Xn=0 x2=0 l n

eXpanding the term in brackets:
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f*(xl) =

n

. Z k x
1 1 k _ 1 4

z z 0(1+(-1> 2><-1)1'3

.
-l l k

0 0 =0 x =

l n n Xn 3

x
l l[

:
3

1 1 k1x1 — k1
Z ... 2 0k k (-l) E H (1+(-l) )1

=0 k =0 1" n i=2

 

1 k X l k x
Z {-1) l l 2n-l = Z (3 l lJ

Now calculate the second moment, <f*(xl)2>, using the

function f*(xl) and squaring the summing over x1.

1 l k X l k'X

<(f*(xl))2> =% 2 { 2 0k 0 O(-l) l 1 z ck,O O(-1)1 1}
= = . '=

X1 0 kl O l kl O l

'

= % % % Ck 0 O Ck'OO 0 % (_l)(kl+kl)xl

= '= on o. =

kl 0 kl O l 1 X1 0

l l k +k'
l l l

= " X X C C (l + (-l) )
2 kl=o k': klo O kiO..O

= C2 + C2
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To calculate the second required term, we need <f*(xl)>X

l

l l k x

(“0‘1”): ‘2 Z Z Ck 0 0(‘l) l 1
1 x =0 k =0 1 °

1 1

-1 k

=55: ck00(1+(-1)1)
k =0 l o.

1

= C0. 0

Hence

2 2
* _

(f (Xl)>xl C0. 0

Subtracting the first moment from the second, we obtain

the desired partial variance
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APPENDIX 6

DERIVATION OF WALSH COUPLED PARTIAL

VARIANCE FORMULAS

To measure the effect of coupled parameters, say "i"

coupled together at a time, we calculate a coupled partial

variance.

2 2
= * _

01,2,0022 (f (x£+l..x2«) > <f(‘x")>£

where f*(x£+l..x£) is the function f(x) averaged over the

variables x£+l..xn, and <f(x)>: is the average of the multi-

dimensional function over all the variables x1..xn.

Expand f(xl..xn) in an n—dimensional finite Walsh

series with two points along each axis. In this case

Xi and k1 may be represented by a one digit binary number.

)=c

ll
Z
J
I
D

f(Xl-X WALH (ki.xi)Z
n E E J l

The average of f(x) is the CO term as previously shown

<f(x)> = C0
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)2>.So we need only calculate the term <f*(xl..x£

First calculating f*(xl..x2)

* =f (x1..x£) <f(xl..xn)>x

£+l" n

 

 

”
F
M

I
'
P
i
‘

{
\
J :
3 I

t
o

k X kn

C 1' E (1+(-1) 1)] (-1)i=1
5 2n‘£[i=2+l

1x1

 

W
M

2

iglkixi
c —1 ' 0K ( > k2+1,05

W
M

f*(x

We must now square this function f*(x1...x£) and average

it over x1...x£.

l
* 'X' = -

f (x1..X£)f (X1...XQ,) Z 2* Ck* Cm“. ( l)





2

‘ 2 1 l 1 film-(mi)Xi
<f*(xl..x£ > = _T Z .. Z {Z Z Ck*C *(-l) }

2 x =0 x =0 k* n* - a

l l --

Rearranging the summations

2 k n '

2 l - ii

<f*(x ..x ) > = 2 C *0 *{-——- TI (1+ (-l) )}

1 Q 5* 2* K .2 21 i=l

&

=2 ZC*C H O

5* 3* 5 - i=1 ni’ki

1 l
2 2

=ZC*= Z X C

E* 5 kl=0 k2=0 k1'°k10 0

Substituting the appropriate expressions for the two

moments we obtain the 1th coupled partial variance

where {H is a summation of all k* vectors except the one

kx

equal to g.
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APPENDIX 7

RELATIONSHIP BETWEEN LINEARLY DEPENDENT EQUATIONS

AND THEIR FOURIER COEFFICIENTS

In chemical kinetics mass balance equations often allow

us to substitute an algebraic equation for a differential

one. These mass balance equations are linear and in enzyme

kinetics they are of the form:

where the X1 are the different types of enzyme—containing

intermediates, and the Vi is the number of enzyme molecules

in specie Xi'

Given N-l "Xi" expansions in fourier series, the fourier

coefficients of the Nth species may be calculated. Using

these fourier coefficients one can calculate the partial

variances of the Nth specie.

This can be seen by inserting the N-l fourier expansions

into the mass balance equation
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i-l M

a (J)
E 21 VJEMZ aL X

0 J=

cosLX + b(J)sinLX] + v
i i

N M

+ 2 vELz 0a£3)cosLX + b(3)s1an]

J= 1+1 3

Solve for'X1

N—l M

X -VJL [ 2 v K{ 2 afiK)cosLX + bé

vi K=1KL=O

K)
sinLX} - E0]

M N-l -v N-l -vK

{ z ( z ——5 aéx))cosLx + ( z (—K)b£K))sinLX} - E

L=0 K=l ”1 K=1Vi
O

t 1

aLcosLX + bLsinLX

I

“
(
‘
1
3

0

Hence the fourier coefficients of X1 are

N-l -v

a' = X J 8.6K) - E

0 Kgl vi 0 0

a' = N21 :35 a(K)
L =1 ‘3. L

. ”‘1 ELK. (K)
bL = 2 b

K=l " L
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APPENDIX 8

SENSITIVITY ANALYSIS PROGRAMS

The use of the Sensitivity Analysis Programs at Michigan

State University is a straightforward task. If the mathema-

tical model is composed of ordinary differential equations

or algebraic equations, no modifications to the programs are

necessary. The equations only have to be coded into FORTRAN

66. After this is done, one has to decide: What kind of an

analysis is desired (Walsh or Fourier), the parameters’

nominal values and range of variation, the transformation

function to be used, and the time points of interest. This

data is read by the program SENANAL which does the required

simulations. A second program, TRANS, reads the output from

SENANAL, TAPE3, and computes the expansion coefficients and

partial variances, both single and coupled. Since a Sensi—

tivity Analysis may generate a large amount of data, depending

on the number of output functions, parameters, and time points,

an Optional plotting program, PLTSEN, is provided. This pro-

gram reads the output from TRANS, TAPE9, and plots four sets

of curves for each output function. PLTSEN plots the average

value of the output function, the single partial variances,

the expansion coefficients, and the relative deviation.
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The following cards execute the programs SENANAL

AND PLTSEN.

PNC CARD

JOB CARD

Pw CARD

ATTACH,MAIN,SENAN LBINARYOPT2.

FTN,I=INPUT,B=SUB.

LOAD,MAIN.

LOAD,SUB.

EXECUTE.

EETUEN,LGO.

10. REWIND,TAPE3.

11. ATTACH,TBIN,TRANSFORMBINARYOPT2.

12. LOAD,TBIN.

13. EXECUTE.

1n. CATALOG,TAPE9,SENSITIVITYANALYSISFILE,RP=30.

15. ATTACH,PLT,PLTSENBINARYOPT2.

16. RETURN,LGO.

17. REWIND,TAPE9.

13. PLT.

20. (789)

\
O
C
D
N
C
h
U
l
-
L
I
‘
U
O
N
H

SUBROUTINE MODEL (TIN, TOUT, YIN, NFUNC, TSTART)

COMMON /PARA/ P(50)

This is a subroutine which on input has TIN as the

initial value at which the output functions have values

(there are NFUNC output functions, YIN(l) is the first output

function). TSTART is Optional and tells MODEL when it is

starting a new parameter vector (IF (TSTART .EQ. TIN) ). The

common block /PARA/ contains the parameters to be varied

in the model.

On output from MODEL, the output functions, sometimes

called object functions, have their values at 'TOUT', the

time on returning from MODEL.
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Note that this subroutine must change its

FORTRAN code for each different mathematical

model, but not for parameter variations.

(7891

Data cards for program SENANAL- see the comment cards in

SUBROUTINE READIN. I

(789)

Data cards for program PLTSEN, see the comment cards in the

program PLTSEN

(789)

(6789)

The somewhat difficult part is to force SUBROUTINE

MODEL to solve for the output functions given a parameter

set, the initial values of the output functions and the time

at which the solution is desired. The application to

algebraic equations is straightforward. However, solving

differential equations is more difficult. The use of the

EPISODE package (Hindemarsh, 1977) for solving ordinary

differential equations is recommendedzmniis a part of the

SENANAL package. These subprograms are extensively docu-

mented internally with comment cards.
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Program SENANAL

PROGRAM SENANAL(INPUT=65,0UTPUT=65,TAPE1=INPUT,TAPE2=OUTPUT,

. TAPE3=513)

0*

CG

0* PROGRAM SENANAL IS THE DRIVER PROGRAM OF A SUITE OF CODES

C* WHICH PREFORMS SENSITIVITY ANALYSIS ON A MODEL. SENANAL

C* READS INPUT AND BASED ON THAT INPUT CHOSES WALSH SENSITIVITY

C* ANALYSIS METHOD OR FOURIER SENSITIVITY ANALYSIS METHOD. IT THEN

C* PROCEDES TO SOLVE THE MODEL EQUATIONS OVER THE DESIRED

C* TIME POINTS WITH THE NECESSARY PAPAMETERS. EACH

0* PARAMETER VECTOR WHICH IS TO BE SOLVED IS CALLED A SIMULATION. *

C’ SENANAL SOLVES THE SIMULATIONS BY FIRST CREATING THE PARAMETER *

C’ VECTOR AND THEN SOLVING THE MODEL EQUATIONS OVER ALL THE DESIRED’

C* TIME POINTS. THE MODEL SOLUTIONS ( OBJECT FUNCTIONS ) ARE

0* WRITTEN OUT TO TAPE} AT EACH TIME POINT.

0*

0* AFTER A SIMULATION IS COMPLETED, SENANAL CREATES ANOTHER

C* PARAMETER VECTOR AND SOLVES THE NEXT SIMULATION. THIS IS

C’ REPEATED UNTIL ALL THE NECESSARY SIMULATIONS HAVE BEEN SOLVED.

0*

C* VARIABLES

*
t
i
t

l
*
*

c-l»

0* BEGIN(NFUN0) - THE INITIAL CONDITIONS, OR EQUIVALENTLY

0* (REAL) THE VALUES OF THE OBJECT FUNCTIONS AT TSTART.

0*

cl,

0* IACCUR - ORDER OF ACCURACY OF THE FREQUENCY SET

0* (INTEGER)

c-I»

(3*

0* IOMEGA = O IF FOURIER 4TH ORDER SET IS TO BE USED

0* (INTEGER) 1 IF SPECIAL FREQUENCY SET IS TO BE USED

0* -1 IF STANDARD WALSH FREQUENCY SET IS TO BE USED

CAI»

0* . IMETH - METHOD FLAG FOR SENSITIVITY ANALYSIS; - 1 FOR FOURIER

0* (INTEGER) ANALYSIS, = 2 FOR WALSH ANALYSIS.

c-l

0* ITRANS - FLAG FOR TYPE OF TRANSFORMATION FUNCTION

0* (INTEGER) SEE SUBROUTINE PARAM FOR DETAILS.

c!

C’ IW(NPARA) 3 AN ARRAY CONTAINING THE FREQUENCY SET TO BE USED IN

C’ (INTEGER) THE S. A. RUN.

0* IF 'IOMEGA' .EQ. 1, THIS ARRAY MUST BE READ IN FROM

C* CARDS. OTHERWISE THE FREQUENCY SETS ARE CREATED

*
*
*
*
*
*
*
*
#
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
‘
¥
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Program SENANAL, CONT'D.

0* INTERNALLY. *

cl» *

0* NFUNC - NUMBER OF OBJECT FUNCTIONS WHICH WILL BE SAVED *

0* (INTEGER) AT EACH TIME POINT. :

C}

0* NLABEL(NFUNC) - THE NAMES (LABELS) OF THE OBJECT FUNCTIONS *

0* NLABEL(1) SHOULD BE THE NAME OF THE FIRST *

0* OBJECT FUNCTION, ETC. *

0* *

0* NPARA - NUMBER OF PARAMETERS TO VARY *

0* (INTEGER) *

0* i

0* NSIMUL - NUMBER OF SIMULATIONS *

0* (INTEGER) *

0* *

0* PHI(NPARA) = MAXIMUM VALUES OF THE PARAMETERs( OR ONE SIGMA MAx)*

0* (REAL) *

cl)

0* PLO(NPARA) . MINIMUM VALUES OF THE PARAMETERs( OR ONE SIGMA MIN)

0* (REAL)

C*

0* TIME(TNPTS) - ARRAY CONTAINS THE TIME POINTS AT WHICH THE

0* (REAL) OUTPUT FUNCTIONS ARE TO BE SAVED AND THE

0* SENSITIVITY ANALYZED.

CAI

0* TSTART - INITIAL TIME POINT, SO THERE ARE NO S. A. VALUES SAVED

0* (REAL) AT THIS POINT

0* TITLE(8) - A ONE CARD TITLE FOR S. A. RUN

0* (INTEGER) (WRITTEN IN 8A1O FORMAT )

0* TNPTs . NUMBER OF TIME POINTS

0* (INTEGER)

0* YIN(NFUNC) . AN ARRAY OF LENGTH NFUNC CONTAINING ON

0* (REAL) INPUT TO SUBROUTINE MODEL THE VALUES OF

0* OBJECT FUNCTIONS AT TIN AND UPON OUTPUT FROM MODEL

0* YIN( ) CONTAINS THE VALUES OF THE OBJECT FUNCTIONS

.0* AT TOUT. '

C’ ERROR CODES

C* STOP "R1" OR STOP 1: IF IOMEGA WAS UNACCEPTABLE,EITHER NOT READ

0* CORRECTLY OR ABS(IOMEGA) .GT. 1

*
*
*
*
*
*
t
*
*
$
t
*
#
*

*
*
*
*

*
*
*
*
*
*

*
I
i
t
l
l

3
3
*

1
3
*

0* STOP "R2" OR STOP 2: IMETH WAS UNACCEPTABLE (.LT.1 .OR. .GT. 2)
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Program SENANAL, CONT'D.

STOP 3: TNPTS WAS TOO LARGE OR TOO SMALL (0,150)

STOP 4: ITRANS WAS OUTSIDE DEFINED RANGE (1,5)

STOP "R4" OR STOP 5: NFUNC HAS A VALUE OUTSIDE THE DEFINED RANGE

( 1.40) ~

STOP "R5" OR STOP 6: NSIMUL HAS A VALUE OUTSIDE THE DEFINED

RANGE ( .GE. 1)

STOP 7: PHI(J) .LE. PLo(J), THIS COULD CAUSE A DIVIDE

BY ZERO IN SUBROUTINE PARAM.

STOP 10: IW(J) .LE. ZERO, FREQUENCIES MUST BE .GE. 1

STOP "R3": NPARA .LT. 1 NUMBER OF PARAMETERS MUST .GE. 1

STOP "F1": NPARA .GT. 50 , USING FOURIER METHOD, NPARA

STOP "ORDER" MEANS THAT THE ORDER OF ACCURACY VARIABLE

WAS LESS THAN 4.

MUST BE .LE. 50 ALSO

STOP "GETER": ERROR IN A FREE FORMAT READ, EITHER AN EOF

OR AN ILLEGAL CHARACTER.

UPON SUCCESFUL COMPLETION OF SENANAL TAPE3 HAS THE

FOLLOWING FORMAT.

1) TITLE -- ( 8A1O FORMAT)

2) METHOD,NPARA,TNPTS,NSIMUL,NFUNC

( A10, 416 FORMAT; ' METHOD =1OHWALSH , 1OHFOURIER

3) FREQUENCY SET ( 15H FORMAT, A LABEL FOR THE FILE )

AND IACCUR IN I3-FORMAT

4) Iw(1),Iw(2),...,IW(NPARA) ( 1616 FORMAT )

5) TIME POINTS ( 15H FORMAT, A LABEL FOR THE FILE )

6) TIME(1),TIME(2),...,TIMB(TNPTS) ( 7E12.6 FORMAT )

7) NLABEL(1),...,NLABEL(NFUN0) (8A1O FORMAT )

*
*
*
*
*
*

*
*
*
*

C
a
l
c
u
t
t
a
:
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
#
#
8
#
#
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Program SENANAL, CONT'D.

8) YIN(1),YIN(2),...,YIN(NFUNC) UNFORMATTED WRITE

THERE ARE TNPTS*NSIMUL RECORDS OF TYPE 8, ONE FOR EACH

TIME POINT IN A SIMULATION MULTIPLIED BY THE NUMBER OF

SIMULATIONS.

THESE SIMULATION VECTORS ARE IN AN UNSUITABLE FORM

FOR SENSITIVITY ANALYSIS SINCE TO DO S. A. WE NEED

ALL THE DIFFERENT SIMULATIONS OBJECT FUNCTIONS' VALUES

AT THE SAME TIME POINT.

THE SUITE OF CODES RUN BY PROGRAM TRANS WILL REFORMAT

TAPE3 AND WILL TRANSFORM THE SIMULATION CURVES INTO

SEQUENCY VECTORS( WALSH OR FOURIER ) FOR WHICH PARTIAL

VARIANCES WILL BE COMPUTED.

*
O
a
t

#
I
I
I
I
*

i
t
*

0
:
:

#
1
3

t
t

*

CWW

C‘I'

0*

C}

0*

(3*

COMMON /PARA/ P(SO)

REAL PMAx(50),PMIN(5o),PAVE(5O)

REAL TIME(150),PHI(50),PLO(SO)

REAL YIN(40),BEGIN(4O)

INTEGER IOMEGA,IMETH,NFUN0,ITRANS

INTEGER TITLE(8),TRANS(5.2),IW(50)

INTEGER NLABEL(40)

NPARA,NSIMUL,TNPTS,LABEL(2)

DATA PAVE/50*O./, PMIN/50*1.OE+99/, PMAX/50*O./

DATA LABEL/ 10H FOURIER ,1OH WALSH /

DATA TRANs/1OHLOGUNIFORM,1OH UNIFORM ,1OH SINE TEST,

+1OHLOG(P)BELL,1OHBELL-SHAPE,1OHARITHMETIC,1OHMULTPLIER ,

+3*(1OH /

SUBROUTINE TIMES IS A TOTALLY UNNECESSARY BUT SOMEWHAT USEFUL

TIMING ROUTINE

CALL TIMEs(1,O)

CALL READIN(IOMEGA,TIME,TSTART,IMETH,NFUN0,ITRANS,PHI,PLO,

+NPARA,NSIMUL,TNPTS,TITLE,BEGIN,IW,NLABEL,IACCUR)

CALL TIMEs(1,O)

WRITE OUT INPUT

WRITE(2,5) TITLE

FORMAT(1H1,8A10)

WRITE(2,6)

FORMAT<1H )

WRITE(2,10) LABEL(IMETH)
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11

12

27

28

31

15

17

18

19

21

22

0*

0*

0*

0*

225

Program SENANAL, CONT'D.

FORMAT(1H ,* THIS IS A SENANAL RUN USING *,A1O,* ANALYSIS*)

WRITE(2,11) IACCUR,(IW(J),J=1,NPARA)

FORMAT(1H ,* WITH THE*,13,*TH ORDER FREQUENCY VECTOR=*,13(2X,15)

+./.30X.

+14(ZX.15))

WRITE(2,12) NSIMUL,TNPTS

FORMAT(1H ,* THERE ARE *,16,* SIMULATIONS IN THIS RUN WITH*,

+,I5,* TIME POINTS*)

WRITE(2,27)

FORMAT(/,/,6x,* FUNCTION *,5x,* INITIAL VALUE *,/)

DO 31 J-1,NFUNC

WRITE(2,2S) NLABEL(J),BEGIN(J)

FORMAT(6X,A10,5X,1PE14.6)

CONTINUE

WRITE(2,6)

WRITE(2,15) TRANS(ITRANS,IMETH)

FORMAT(1H ,* THE PARAMETERS WERE CALCULATED USING *,A1O,

+* TYPE TRANSFORMATION FUNCTIONS*)

WRITE(2,17)

FORMAT(* *,/,* PARAMETER*,2X,* PHI(J) *,7X,* PLO(J)*)

DO 19 J=1,NPARA

WRITE(2,18) J,PHI(J),PL0(J)

FORMAT(3x,Is,2x,2x,1PE13.6,2X,E13.6)

CONTINUE

WRITE(2,21)

FORMAT(* *,/,* TIME POINTS *)

WRITE(2,22)(TIME(J),J=1,TNPTS

FORMAT(* *,1o(1x,E12.6))

CHECK FOR ACCEPTABLE INPUT PARAMETERS

IF(IOMEGA .LT. -1 .OR. IOMEGA .GT. 1 ) STOP 1

IF(IMETH .LT. 1 .OR. IMETH .GT. 2 ) STOP 2

IF( TNPTS .LT. 1 .OR. TNPTS .GT. 150 ) STOP 3

IF(ITRANS .GT. 5 .OR. ITRANS .LT. 1 ) STOP 4

IF(NFUNC .LT. 1 .OR. NFUNC .GT. 40 ) STOP 5

IF( NSIMUL .LT. 1) STOP 6

IF( IACCUR .LT. 4 ) STOP "ORDER"

Do 1 J-1,NPARA

IF( PHI(J) .LE. PLo(J) ) STOP 7

IF( Iw(J) .LE. O ) STOP 1O

CONTINUE

J-1

IF( TIME(1) .LE. TSTART ) WRITE(2,2) J,J

IF( TNPTS .EQ. 1) GO TO 4

DO 3 J=2,TNPTS

IF( TIME(J) .LE. TIME(J-1) ) WRITE(2,2) J,J

FORMAT(1H ,/,* TIME(*,I4,*) .LE. TIME(*,I4,*- 1)*)
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26

30

35
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Program SENANAL, CONT'D.

CONTINUE

CONTINUE

WRITE THE OUTPUT TAPE LABELS

WRITE(3.23) TITLE

FORMAT(8A1O)

WRITE(3,20) LABEL(IMETH),NPARA,TNPTS,NSIMUL,NFUNC

FORMAT(A1O,416)

WRITE(3,25) IACCUR

FORMAT(* FREQUENCY SET *,13)

WRITE(3.26)(Iw(J),J=1,NPARA)

FORMAT(16I6)

WRITE(3.30)

FORMAT(* TIME POINTS *)

WRITE(3,35)(TIME(J),J=1,TNPTs)

FORMAT(7E12.6)

WRITE(3,23)(NLABEL(J),J=1,NFUNc)

CALL TIMEs(2,O)

LOOP OVER THE DIFFERENTS SIMULATIONS

DO 1000 ISIMUL=1,NSIMUL

IQ ' ISIMUL

CALCULATE THE PARAMETER VECTOR FOR THIS SIMULATION

CALL PARAM(IMETH,IQ,ITRANS,PHI,PLO,NPARA,P,NSIMUL,IW)

CALCULATE THE PARAMETER STATISTICS

DO 100 J=1,NPARA

PMAx(J) - AMAX1(PMAx(J),P(J)g

PMIN(J) - AMIN1(PMIN(J),P(J)

PAVE(J) . (P(J) + FLOAT(ISIMUL - 1)*PAVE(J))/FLOAT(ISIMUL)

CONTINUE

CALL TIMES(3.O)

INITIALIZE THE FUNCTION WITH ITS INITIAL VALUE.

(NECESSARY IF THE FUNCTIONS ARE ODE'S, OTHERWISE ONE CAN SET

BEGIN TO ZERO )

DO98J=1,NFUNC

YIN(J) . BEGIN(J)

CONTINUE

SET INITIAL TIME FOR SIMULATION RUN

TIN - TSTART
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Program SENANAL, CONT'D.

0* CALCULATE THE OUTPUT FUNCTIONS FOR THE "TNPTS" POINTS

0*

DO 200 KOUNT . 1,TNPTS

TOUT - TIME(KOUNT)

CALL MODEL(TIN, TOUT, YIN, NFUNC, TSTART )

cl.

0* WRITE OUT THE SOLUTION AT TOUT

C".

WRITE(3.10000) (YIN(J),J=1,NFUN0)

1OOOO FORMAT(4020)

.C*

0*

CALL TIMES(4,O)

TIN = TOUT

200 CONTINUE

C1!

0*

1000 CONTINUE

C.

0* SIMULATIONS ARE OVER WITH

0* WRITE OUT THE PARAMETER STATS

C‘.’

WRITE(2,6)

WRITE(2,1500)

1500 FORMAT(1H ,1x,* PARAMETER*,3X,* AVERAGE VALUE *,2x,

+* MAXIMUM VALUE *,2x,* MINIMUM VALUE *)

DO 1620 J=1,NPARA

WRITE(2,1610) J,PAVE(J),PMAx(J),PMIN(J)

1610 FORMAT(1H ,5x,15,5x,2x,3(1PE13.6,4x))

1620 CONTINUE

0* PRINT TIMING DATA

CALL TIMEs(1,1)

END
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Program SENANAL; CONT'D.

SUBROUTINE READIN

SUBROUTINE READIN(IOMEGA,TIME,TSTART,IMETH,NFUNC,ITRANS,PHI,

+PLO,NPARA,NSIMUL,TNPTS,TITLE,BEGIN,IW,NLABEL,IACCUR)

C
) t y

C* *

0* SUBROUTINE READIN READS THE INPUT FOR THE PROGRAM SENANAL. ALL *

0* VARIABLES ARE DEFINED IN THE SENANAL COMMENT CARDS. *

C’
*

0* THIS IS INSTALLATION DEPENDENT SECTION OF THE METHOD AS IT USES *

0* FREE FORMAT INPUT. (VARIABLES SEPARATED BY A COMMA ) *

0* *

0* FORMAT OF INPUT CARDS *

C* *

0* SET 1 - TITLE (ONE CARD ) *

0* *

0* SET 2 = IOMEGA,IMETH,NPARA (INTEGERS) *

0* *

0* SET 3 IFF IOMEGA - 1 *

0: SET 3A . IW(1),IW(2),IW(3)....,IW(NPARA),IACCUR (INTEGERS):

0

0* SET 4 . NSIMUL,TNPTS,ITRANS,NFUNC,TSTART (TSTART IS A REAL,

0* THE OTHERS ARE INTEGERS*

C* *

0* SET 5 = TIME(1),TIME(2),...,TIME(TNPTs) ( REALS ) *

0* *

0* SET 6 . PHI(1),PHI(2),...,PHI(NPARA) (REALS) *

C* *

0* SET 7 - PLo(1),PL0(2),...,PL0(NPARA) (REALS) *

0* §

0* SET 8 - BEGIN(1),BEGIN(2),...,BEGIN(NFUN0) (REALS) *

C* *

0* SET 9 . NLABEL(1),...,NLABEL(NFUNC) *

0* TO BE READ IN ONE (1) VALUE TO A CARD (A10 FORMAT) :
0*

C* *

0* VARIABLES *

C* *

0* BEGIN(NFUNC) - THE INITIAL CONDITIONS, 0R EQUIVALENTLY‘ *

0* (REAL) THE VALUES OF THE OBJECT FUNCTIONS AT TSTART. :

ci-

C* *

0* IACCUR . ORDER OF ACCURACY OF THE FREQUENCY SET *

0* (INTEGER) .

C*
*

C‘ *

0* IOMEGA . 0 IF FOURIER 4TH ORDER SET IS TO BE USED *

0* (INTEGER) 1 IF SPECIAL FREQUENCY SET IS To BE USED :

C‘ -1 IF STANDARD WALSH FREQUENCY SET IS TO BE USED
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C’
*

0* IMETH - METHOD FLAG FOR SENSITIVITY ANALYSIS; . 1 FOR FOURIER *

0* (INTEGER) ANALYSIS, . 2 FOR WALSH ANALYSIS. *

C1!

0* ITRANS = FLAG FOR TYPE OF TRANSFORMATION FUNCTION

0* (INTEGER) SEE SUBROUTINE PARAM FOR DETAILS.

C1!»

0* Iw(NPARA) . AN ARRAY CONTAINING THE FREQUENCY SET TO BE USED IN

0* (INTEGER) THE S. A. RUN.

0* IF 'IOMECA' .EQ. 1, THIS ARRAY MUST BE READ IN FROM

0* CARDS. OTHERWISE THE FREQUENCY SETS ARE CREATED

0* INTERNALLY.

Ci

C* NFUNC 8 NUMBER OF OBJECT FUNCTIONS WHICH WILL BE SAVED

0* (INTEGER) AT EACH TIME POINT.

C1!

0* NLABEL(NFUNC) = THE NAMES (LABELs) OF THE OBJECT FUNCTIONS

0* NLABEL(1) SHOULD BE THE NAME OF THE FIRST

0* OBJECT FUNCTION, ETC.

cl-

0* NPARA - NUMBER OF PARAMETERS TO VARY

0* (INTEGER)

0* NSIMUL - NUMBER OF SIMULATIONS

0* (INTEGER)

0* PHI(NPARA) = MAXIMUM VALUES OF THE PARAMETERs( OR ONE SIGMA MAX)

0* REAL

0*

0* PLO(NPARA) = MINIMUM VALUES OF THE PARAMETERs( OR ONE SIGMA MIN)

0* (REAL)

C}

0* TIME(TNPTS) . ARRAY CONTAINS THE TIME POINTS AT WHICH THE

0* (REAL) OUTPUT FUNCTIONS ARE TO BE SAVED AND THE

0* SENSITIVITY ANALYZED.

C1}

0* TSTART - INITIAL TIME POINT, SO THERE ARE NO 3. A. VALUES SAVED

0* (REAL) AT THIS POINT

0* TITLE(B) - A ONE CARD TITLE FOR S. A. RUN

0* (INTEGER) (WRITTEN IN 8A1O FORMAT )

0* TNPTS - NUMBER OF TIME POINTS

0* (INTEGER)

0* '

CW

*
t
t
t
t
t
t
a
k
a
t
t
t
a
t
l
k
t
l
k
*
*
*
*
*
*
*
*
*
*
#
#
*
*
*
*
*
*
*
*
t
i
t
t
t
t
t

REAL TIME(150),BEGIN(40)
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INTEGER TITLE(8),IOMEGA,IMETH,NFUN0,ITRANS,TNPTS,NPARA,Iw(NPARA)

INTEGER NLABEL(40) «

JCOMMON /GETERR/ IFLAG,NUMVAR,RAB0(40)

EQUIVALENCE (RAB0(1),IRAB0(1))

INTEGER IRAB0(40)

IO IS THE INPUT UNIT ( TAPE1 )

DATA IO/1/

READ IN SET 1

READ(IO,10) (TITLE(J),J=1,8)

FORMAT(8A10)

READ IN SET 2

IACCUR - 4

ICARD = 2

CALL GETNUM(Io)

IF( IFLAG .GE. 0 ) CALL 0ETERR(IFLAG, ICARD, NUMVAR)

IOMEGA = IRAB0(1)

IMETH . IRAB0(2)

NPARA -- IRAB0(3 )

IF(IOMEGA .LT. -1 .OR. IOMEGA .GT. 1 ) STOP "R1"

IF(IMETH .LT. 1 .OR. IMETH .GT. 2 ) STOP "R2"

IF( NPARA .LT. 1 ) STOP "R3"

OBTAIN FREQUENCY SET

IF(IOMECA .EQ. 0) CALL FOURST(IW,NPARA)

IF(IOMEGA .EQ. -1) CALL WALSET(IW,NPARA)

IF(IOMECA .NE. 1) GO TO 100

READ IN SPECIAL FREQUENCY SET (SET 3 )

READ IN THE ACCURACY OF THE SET ALSO

NP1 . NPARA + 1

CALL IREAD(IW,NP1,IO, ICARD)

IACCUR - IW(NP1)

CONTINUE

READ IN SET 4

ICARD . ICARD + 1

CALL GETNUM(Io)

IF( IFLAG .GE. 0 ) CALL GETERR(IFLAO, ICARD, NUMVAR)

NSIMUL . IRAB0(1) '

TNPTS = IRAB0(2)

ITRANS - IRAB0(3)

NFUNC = IRAB0(4)

TSTART . RAB0(5)
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IF(NFUNC .LT. 1 .OR. NFUNC .GT. 40 ) STOP "R4"

IF( NSIMUL .LT. 1) STOP "R5"

READ IN THE TIME POINTS ( SET 5)

CALL RREAD(TIME,TNPTS,IO, ICARD)

READ IN PHI(J) ( SET 6 )

CALL RREAD(PHI,NPARA,IO, ICARD)

READ IN PLO(J) ( SET 7 )

CALL RREAD(PLO,NPARA,IO, ICARD)

READ IN INITIAL VALUES ( SET 8 )

CALL RREAD(BEGIN,NFUN0,IO, ICARD)

DO 175 J=1,NFUN0

READ(IO,1SO) NLABEL(J)

ICARD . ICARD + 1

FORMAT(A1O)

CONTINUE

WRITE(2,1O1) ICARD

FORMAT(1H ,/,I6,* DATA CARDS READ IN *)

RETURN

END
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SUBROUTINE FOURST(IW,NPARA)

0*

GWWWWWWMWW

C*
*

0* SUBROUTINE FOURST CALCULATE THE STANDARD 4TH ORDER CORRECT *

0* FOURIER FREQUENCY SET FOR "NPARA" PARAMETERS. *

0* ._ *

0* REFERENCE; CUKIER,SHAILBY,SHULER. JOURNAL OF CHEMICAL PHYSICS, *

0: VOL 63, NO. 3, (1975) PP 1140-1149. :

C

CWMWWWWWW

INTEGER Iw(NPARA),IOMEGA(50),IDN(49)

DATA IOMEGA/O,O,1,5,11,1,17,23,19,25,41,31,23,87,67,

+ 73.85.143.149,99 .119,237,267,283,151.385.

+ 157,215,449,163.337.253.375.441.673,773,875,873,587,849,

+ 623,637,891.943,1171.1225,1335.1725,1663,2019/

DATA IDN/ 4,8,6,1O,2O,22,32,4O,38,26,56,62,46,76,96,

+ 6O,86,126,134,112,92,128,154,196,34,416,106,

+ 208,328,198,382,88,348,186,140,170,284,568,302,438,

+ 41O,248,448,388,596,216,100,488,166/
0*

IF(NPARA .GT. 50 ) STOP "F1"

IW(1) - IOMEGA(NPARA)

DO 100 J=2,NPARA

Iw(J) a IW(J-1) + IDN(NPARA + 1 - J)

100 CONTINUE

RETURN

END
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SUBROUTINE WALSET(IW,NPARA)

C*
*

C* SUBROUTINE WALSET CALCULATES THE FREQUENCY SET FOR EXACT WALSH *

C* ANALYSIS FOR 'NPARA' PARAMETERS. *

C* *

C* REFERENCE: T.H. PIERCE, PHD THESIS (1980) *

C*
*

INTEGER IW(NPARA)

DO 100 J=1,NPARA

Iw(J) . 2**(J-1)

1OO CONTINUE

RETURN

END
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SUBROUTINE IREAD

SUBROUTINE IREAD(IRRAY,LAST,IO, ICARD)

0*

memm

0*

0* SUBROUTINE IREAD READS IN A VARIABLE LENGTH (LAST) INTEGER

0* ARRAY USING FREE FORMAT INPUT.

0*

WWW
C

INTEGER IRRAY(LAST)

*
*
*
*

0*

0*

COMMON /GETERR/ IFLAG,NUMVAR RABc(40)

EQUIVALENCE (RABC(1),IRABC(1))

INTEGER IRABc(40)

0*

KOUNT a 1

1O CONTINUE

ICARD =- ICARD + 1

CALL GETNUM(Io)

IF( IFLAG .GE. 0 ) CALL GETERR(IFLAG, ICARD, NUMVAR)

0* IF THE CARD READ WAS BLANK NUMVAR . 0.

IF( NUMVAR .LT. 1 ) GO TO 10

, DO 20 J=1,NUMVAR

IRRAY(KOUNT) . IRAB0(J)

KOUNT - KOUNT + 1

IF(KOUNT .CT. LAST) 00 TO 25

20 CONTINUE

0*

0* RETURN FOR ANOTHER CARD FULL OF VARIABLES

GO TO 10

25 CONTINUE

0* ALL DONE SO STOP

RETURN

END
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SUBROUTINE RREAD

SUBROUTINE RREAD(ARRAY,LAST,IO, ICARD)

0* f

CHMWWWWWW

0*

0* SUBROUTINE RREAD READS IN A VARIABLE LENGTH (LAST) REAL

0* ARRAY USING THE FREE FORMAT ROUTINE GETNUM.

0*

0W

REAL ARRAY(LAST) '

*
*
*
*

0*

0*

COMMON /GETERR/ IFLA0,NUMVAR,RAB0(40)

EQUIVALENCE (RAB0(1),IRAB0(1))

INTEGER IRAB0(40)

0*

KOUNT = 1

1O CONTINUE

ICARD - ICARD + 1

CALL GETNUM(Io)

IF( IFLAG .GE. 0 ) CALL GETERR(IFLAG, ICARD, NUMVAR)

0* IF THE CARD READ WAS BLANK NUMVAR - 0.

IF( NUMVAR .LT. 1) GO TO 10

DO 20 J=1,NUMVAR

ARRAY(KOUNT) - RABO(J)

KOUNT = KOUNT + 1

IF(KOUNT .GT. LAST) GO TO 25

2O CONTINUE

C* RETURN FOR ANOTHER CARD FULL OF VARIABLES

GO TO 10

25 CONTINUE

0* ALL DONE SO STOP

RETURN

END
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SUBROUTINE PARAM

SUBROUTINE PARAM(METH,IQ,TRANS,PHI,PLO,NPARA,P,NSIMUL,IW)

CWW

0*
u

C* SUBROUTINE PARAM COMPUTES THE IQ"TH PARAMETER *

c* VECTOR. THIS Is DONE USING A PRESELECTED ( TRANS,METH ) *

C* TRANSFORMATION FUNCTION. *

0*
*

C* METH . 1 ---- FOURIER METHOD *

0*
i

0* TRANS
*

C* 1 -> USE FOURIER LOG-UNIFORM TRANSFORMATION *

C* PHI . NOMINAL*EXP(DELTA) *

C* PLO . NOMINAL*EXP( -DELTA ) *

C* WITH LN(P) SPREAD UNIFORMLY OVER @LN(PHI) , LN(PLO)@ *

0*
M

C* 2 => USE FOURIER UNIFORM TRANSFORMATION *

C* PHI - NOMINAL + DELTA *

C* PLO - NOMINAL - DELTA *

C* P IS UNIFORMLY SPREAD OVER @ PLO , PHI @ :

ci-

C* 3 => USE THE FOURIER TEST FUNCTION *

C* PHI - NOMINAL*( 1 + DELTA ) *

C* PLO = NOMINAL*( 1 - DELTA) *

C* P(SQ) . NOMINAL*(1. + DELTA*SIN(W*SQ) ) *

0*
*

C* 4 => USE THE FOURIER COSH DISTRIBUTION FUNCTION *

C* IN LOG(P)-SPACE *

C* HERE LN(PHI)-LN(PLO) - 4.0/A *

0* WHERE 82.87 OF THE SAMPLES ARE BETWEEN PHI AND PLO :

cl-

C* 5 => USE THE FOURIER COSH DISTRIBUTION FUNCTION *

C* IN P-SPACE *

C* HERE (PHI)-(PLO) = 4.0/A *

C* WHERE 82.87 OF THE SAMPLES ARE BETWEEN PHI AND PLO *

0*
i

0*
*

C* METH - 2 ---- WALSH METHOD *

0*
i

C* TRANS *

0*
i

c* 1 => USE ARITHMETIC WALSH TRANSFORMATION *

C* PHI - NOMINAL + DELTA *

C* PLO - NOMINAL - DELTA *

C* P IS EITHER PHI OR PLO *

C* i

C* 2 => USE MULTIPLICATIVE WALSH TRANSFORM *

C* PHI . NOMINAL*1O**( DELTA ) 1

C* PLO a NOMINAL*1O**(-DELTA )
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P IS EITHER PHI OR PLO

REAL NOMINAL,DELTA,PHI(NPARA),PLo(NPARA),P(NPARA)

INTEGER TRANS,IQ,METH,NSIMUL,IW(NPARA)

INTEGER WALH '

EXTERNAL WALH

IF ( METH .EQ. 2 ) GO TO 1000

TWODPI = 2.0/ACOS(-1.0)

R . FLOAT(NSIMUL)

SQ . FLOAT(2*IQ -NSIMUL- 1)/(R*TWODPI)

GO TO (100,200,300,400,SOO)TRANS

CONTINUE

FOURIER METHOD WITH LOG-UNIFORM TRANSFORMATION FUNCTION

DO 110 J=1,NPARA

DELTA - O.5*ALOG(PHI(J)/PL0(J))

NOMINAL . SQRT(PHI(J)*PLO(J))

P(J) = NOMINAL*EXP(DELTA*TWODPI*ASIN(SIN(SQ*FLOAT(IW(J)))))

CONTINUE

RETURN

CONTINUE

FOURIER METHOD USING UNIFORM TRANSFORMATION FUNCTION

DO 210 J=1,NPARA

NOMINAL = O.5*(PHI(J)+PLO(J))

DELTA - ( PHI(J) - PLo(J) )*O.5

P(J) - NOMINAL + DELTA*TWODPI*ASIN(SIN(SQ*FLOAT(IW(J))))

CONTINUE

RETURN

CONTINUE

FOURIER METHOD WITH TEST TRANSFORMATION FUNCTION

DO 310 J=1,NPARA

NOMINAL - O.S*(PHI(J)+PLO(J))

DELTA . (PHI(J)-PLo(J))/(PHI(J)+PL0(J))

P(J) . NOMINAL*(1.O + DELTA*SIN(FLOAT(IW(J))*SQ))

CONTINUE

RETURN

CONTINUE
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COSH-DISTRIBUTION FUNCTION

BELL-SHAPE IN LOG(K)-SPACE

DO 410 J=1,NPARA

AJ = 4.0/(ALOG(PHI(J)) - ALOG(PLO(J)))

THETA = SQ * FLOAT(IW(J))

UJ . (1. O/(2.*AJ))*ALOG((1. + SIN(THETA))/(1. - SIN(THETA)))

NOMINAL = SQRT(PHI(J)/PL0(J))

P(J) - NOMINAL * EXP(UJ)

CONTINUE

RETURN

CONTINUE

COSH-DISTRIBUTION FUNCTION

BELL-SHAPED IN K-SPACE

DO 510 J=1,NPARA

AJ = 4.0/(PHI(J) - PLo(J))

THETA a SQ*FLOAT(Iw(J))

UJ = (1. o/AJ)*ALOG((1. + SIN(THETA))/(1. - SIN(THETA)))

NOMINAL = (PHI(J)+PLO(J))*O. 5

P(J) = NOMINAL + UJ

CONTINUE

RETURN

CONTINUE

ENTRY INTO HERE FOR WALSH ANALYSIS

ISO 8 IQ - 1

GO TO (1100,1200) TRANS

CONTINUE

ARITHMETIC WALSH TRANSFORMATION FUNCTION

Do 1110 J=1,NPARA

NOMINAL - O.5*(PHI(J)+PL0(J))

DELTA - ( PHI(J) - PLo(J) )*O.5

P(J) =.NOMINAL + DELTA*FLOAT(WALH(IW(J),ISQ))

CONTINUE

RETURN

CONTINUE

MULTIPLICATIVE WALSH TRANSFORMATION FUNCTION

Do 1210 J=1,NPARA

DELTA = O.5*ALOG10(PHI(J)/PL0(J))

NOMINAL = SORT(PHI(J)*PL0(J))

P(J) . NOMINAL*10.0**(DELTA*FLOAT(WALH(IW(J),ISQ)))
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1210 CONTINUE

RETURN

END
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SUBROUTINE GETNUM

SUBROUTINE GETNUM(LINPUT)

COMMON /GETERR/ ICRK,JREAD,RABC(40)

DIMENSION IRABc(4o)

EQUIVALENCE (RABC(1),IRABC(1))

COMMON /EL/ L(80)

LOGICAL INTR

CWWWWWW

Cw

C‘I-Inl-l»

Cm

Cw

Cm!

c-l-‘I-I-Iv

can

Cm

Cal-Iv

cm

Gift}

CM

0%

c-I-lt-l-l

Cw

Cw

Cm!

can

Cw

Cm

Cm

Cw

GM

Cm.»

Oman»

0%

Cw

can

Cm

cw

can

cfi-I-I-I»

can

CHI-***

cit-l“

Ca“

Cw

can»

cit-l1”

can

*** FREE FORM VARIABLE INPUT ROUTINE. ***

ROUTINE ACCEPTS A,F,E AND I FORMAT INPUT.

ALL BLANKS EXCEPT IN HOLLERITH STRINGS ARE IGNORED.

THE ONLY LEGAL DELIMITER IS COMMA (,), ANY

OTHER RESULTS IN ERROR TERMINATION.

KL IS THE MAXIMUM COLUMN WIDTH COUNTER.

ONLY 80 COLUMNS ARE READ, SO ONLY 40 VARIABLES

CAN BE RETURNED. TO ENLARGE THIS, CHANGE THE DATA

AND COMMON STATEMENTS TO REFLECT THE SIZE YOU WISH.

--- INPUT ---

LINPUT -- THE TAPE UNIT BEING READ FROM

--- OUTPUT ---

JREAD IS THE NUMBER OF VARIABLES RETURNED IN

COMMON /GETERR/

RABc(=IRABc) CONTAINS THE READ VARIABLES.

COMMON /EL/ CONTAINS THE LINE AS READ IN 80R1

ERROR CODES: (STANDARD IF(UNIT) VALUEs)

IORK=1 ILLEGAL CHARACTER (MSG PRINTED)

VARIABLES TO POINT OF ERROR RETURNED

ICRK=O EOF ON READ, JREAD=O

ICRK3-1 NORMAL TERMINATION

--- INTERNAL VARIABLES ---

S IS SIGN OF VARIABLE, IFA THE SIGN OF THE EXPONENT

NUM IS THE MANTISSA, IE THE EXPONENT

IP IS THE NUMBER OF DECIMAL PLACES INPUT.

I IS THE CHARACTER COUNTER (1-80)

INTR -- REAL VARIABLE(FALSE)/INTEGER(TRUE) FLAG

HOLLERITH STRINGS OF 10 OR MORE CHARACTERS MAY

BE INPUT WITHOUT COMMAS EVERY 1O CHARACTERS AND WILL

BE INSERTED 1O CHARACTERS PER WORD WITH BLANK FILL

(STANDARD A FORMAT). ANY COMMAS FOUND IN THE HOLLER-

ITH STRING END THE STRING AT THAT POINT. THE FIRST

CHARACTER OF THE STRING MAY NOT BE A COMMAS,,)

PERIOD(. ) PLUs(+ ) OR MINUS(- ) OR DIGIT(O 9 OR BLANK.

2
2
:
2
1
:
3
1
3
2
3
1
3
1
2
“
1
1
1
1
2
1
1
1
“
“
1
1
1
1
1
1
1
1
“
:
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HOLLERITH STRINGS WHICH ARE THE LAST INPUT ON A

LINE, BUT NOT ENDING WITH A COMMA, WILL BE ASSUMED

TO CONTINUE RIGHT OUT TO COLUMN 80(OR KL) AND BLANK

FILLED VARIABLES WILL THUS BE RETURNED.

”
i
t
:

CWW

INTEGER PERIOD,COMMA,BLANK,ZERO,PLUS,EE,DD

DATA PERIOD,COMMA,BLANK,ZERO /1R., 1R,, 1R , 1RO/

DATA NINE,PLUS,MINUS,EE,DD /1R9, 1R+, 1R-, 1RE, 1RD/

DATA KL /80/

Cm

0.4%;

10

CW

25

C****

251

26

cifififi

0****

Cm

Cm

READ THE INPUT LINE FROM UNIT LINPUT

READ (LINPUT,1ooo) (L(I),I=1,80)

JREAD=O

IF (EOF(LINPUT) .NE. 0.) GO TO 998

ICRK=-1

I'1

PREPARE FOR A NEW VARIABLE

NUM*IE=IFA=IP=O

INTR=.TRUE.

S=1.0

DECODE THE FIRST CHARACTER IN THE VARIABLE

IF (I .GT. KL) RETURN

IF (L(I) .LE. NINE .AND. L(I) .GE. ZERO) Go TO 35

IF

IF

(L(I)

(L(I)

S'-1.0

GO

IF

IF

IF

DO

TO 30

(L(I)

(L(I)

(L(I)

.EQ. PLUS) GO TO 3O

.NE. MINUS) GO TO 25

.EQ. PERIOD) GO TO 39

.EQ. COMMA) GO TO 60

.EQ. BLANK) GO TO 291

HOLLERITH VARIABLE (A FORMAT)

26 LL=1,1O

JL=LL

IF (I .GT. KL) GO TO 27

IF (L(I) .EQ. COMMA) GO TO 27

ISH=6O-6*LL

IE-SHIFT(L(I) ,ISH)

NUM'O

I=I+1

CONTI

R(NUM,IE)

NUE

FULL WORD(1O CHARS) FILLED IF YOU FALL

THRU HERE.

STORE THE HOLLERITH VARIABLE

JREAD=JREAD+1

IRABO(JREAD)=NUM

SKIP THE TRAILING COMMA, OTHERWISE ASSUME

THE HOLLERITH STRING CONTINUES
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29
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cm

30

35

C****

39

40

CM

cm

50

51
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IF (I .GT. KL) RETURN

IF (L(I) .EQ. COMMA) GO To 291

NUM=O

GO TO 251

BLANK FILL WORD

DO 29 LL=JL,1O

ISH=6O-6*LL

IE-SHIFT(BLANK,ISH)

NUM-OR(NUM,IE)

STORE THE PARTIAL HOLLERITH VARIABLE

JREAD-JREAD+1

IRABc(JREAD) - NUM

I-I+1

GO TO 10

INTEGER PORTION OF VARIABLE

I=I+1

IF (L(I) .EQ. PERIOD) GO TO 39

IF (I .GT. KL) GO To 60

IF (L(I) .EQ. BLANK) GO TO 30

IF (L(I) .EQ. EE) GO TO 50

IF (L(I) .EQ. COMMA) Go TO 60

IF (L(I) .LT. ZERO .OR. L(I) .GT. NINE) GO TO 999'

NUM - NUM*1O + (L(I)-27)

GO To 30

EVALUATE DECIMAL PORTION

INTR-.FALSE.

I=I+1

IF (I .GT. KL) Go TO 60

IF (L(I) .EQ. BLANK) GO TO 40

IF (L(I) .EQ. EE) GO To 50

IF (L(I) .EQ. COMMA) GO TO 60

IF (L(I) .LT. ZERO .OR. L(I) .GT. NINE) GO TO 999

INCREMENT THE DECIMAL COUNT

IP=IP+1

NUM - NUM*1O + (L(I)-27)

GO TO 40

EVALUATE EXPONENT

IFA-1

INTR-.FALSE.

I-I+1

IF (L(I) .EQ. PLUS) GO TO 51

IF (L(I) .NE. MINUS) GO TO 52

IFA--1

I=I+1

IF (I .GT. KL) GO TO 60

IF (L(I) .EQ. COMMA) GO TO 60

IF (L(I) .EQ. BLANK) GO TO 51

IF (L(I) .LT. ZERO .OR. L(I) .GT. NINE) GO TO 999
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IE - IE*1O + (L(I)-27)

GO TO 51

STORE THE FINISHED VARIABLE (EXCEPT HOLLERITH)

CONTINUE

CHECK ILLEGAL EXPONENT RANGE

THE CHECK IS NOT PERFECT: DIGITS BEFORE

THE MANTISSA PERIOD ARE NOT CONSIDERED.

IEX=IE*IFA-IP

IF (IEX .GT. 522) GO TO 995

IF (IEX .LT. -294) GO TO 995

I=I+1

JREADsJREAD+1

IF (INTR) GO To 62

RABC(JREAD) . S*(FLOAT(NUM)*1O.**IEX)

GO TO 64

IRABc(JREAD) = S*NUM

IF (I .GT. KL) RETURN

GO TO 10

ERROR CONDITION CODE

I=I-1

CONTINUE

ICRK=1

JM=I-1

IF (JM .LE. 0) JM=1

PRINT 1010, L,(BLANK,LL=1,JM),PLUS

RETURN

EOF ENCOUNTERED, JREAD ALREADY ZEROED, SET

ICRK AND RETURN.

ICRK=O

RETURN

CWWWWW

C****

1000

1010

Can!”

**FORMATS**

FORMAT (80R1)

FORMAT (*OILLEGAL CHARACTER FOUND AT PLUS(+) */1X,80R1/1X,80R1)

END
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Program SENANAL, CONT'D.

FUNCTION WALH

INTEGER FUNCTION WALH(N,IT)

SUBROUTINE WALH(N,IT) COMPUTES THE HADAMARD-ORDERED '

WALSH FUNCTION OF SEQUENCY ' N ' AT TIME POINT ' IT .

WHERE N 18 OF THE RANGE ( 0,1,2,5,...(2**(LENGTH+1) - 1)

AND IT IS OF THE RANGE ( O,1,2.3.4,...,(2**(LENGTH+1) - 1)

V
V

#
*
*
*
*
*
*

CWWWWWWW

1O

C‘I’

27

C‘I’

C‘I’

INTEGER TBIT(6O),NBIT(60),M,I

REAL OLDN,FRAC

DATA LENGTH /15/

DECODE N INTO ITS BINARY REPRESENTATION

OLDN - FLOAT(N)

D0 10 I-1,LENGTH

MsOLDN/2.O

FRAC - OLDN/2.0 - FLOAT(M)

NBIT(I) - FRAC*2.0

OLDN = FLOAT(M)

CONTINUE

DECODE IT INTO ITS BINARY REPRESENTATION

TOLD - IT

DO 27 I=1,LENGTH

M-TOLD/2.0

FRAC a TOLD/2.0 - FLOAT(M)

TBIT(I) . FRAC*2.O

TOLD . FLOAT(M)

CONTINUE

WE NOW KNOW THE BINARY REP FOR T AND N

CALCULATE THE EXPONENT

NSUM . NBIT(1)*TBIT(1)

DO 50 I=2,LENGTH

NSUM . NSUM + NBIT(1)*TBIT(1)

CONTINUE

WRITE(2,2)(((NBIT(L),L=1,LENGTH),(TBIT(K),K=1,LENGTH)).NSUM)

FORMAT(* *,*NBIT=*,1SI1,* TBIT=*,1511,* NSUM -*,I4)

WALH - (-1)**NSUM

RETURN

END
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SUBROUTINE TIMES

SUBROUTINE TIMEs(ISUB,ITYPE)

Cmmmmmi

C* *

C* SUBROUTINE TIMES COMPUTES THE CPU TIME SPENT BETWEEN CALLS. *

C* THIS IS INSTALLATION DEPENDENT. *

C* ITS USE Is FOR DOCUMENTATION PURPOSES ONLY 1

C"

C* ISUB - THE PROCEDURE TO BE TIMED. :

0*

c* ITYPE - FLAG: .LT. 1 FOR TIMING *

C* .GE. 1 FOR FINAL PRINT *

CAI Ir

GWW

C* *

0*

REAL TIMS(15),NEW,LAST

INTEGER NAME(15)

C}

DATA TIMs/15*O./

DATA LAST /O./

DATA NAME/1OHREAD INPUT,1OHSIMULATION,1OHPARAM CALC,1OHMODEL CALC

+,1OHWRITE OUTP/

DATA LENGTH /5/

c!»

IF(ITYPE .GE. 1) GO TO 5

NEW = SECOND(CPU)

C* INITIALIZE THE VALUES IN FIRST ENTRY

IF( LAST .EQ. O. ) LAST . NEW

TIMS(ISUB) = TIMs(ISUB) + NEW - LAST

LAST . NEW

RETURN

5 CONTINUE

WRITE(2,1oo)

1OO FORMAT(* *,/,/,/,5X,* SECONDS*,4X,* PROCEDURE *,/)

TSUM . 0.

DO 10 J=1,LENGTH

TSUM = TSUM + TIMS(J)

WRITE(2,150) TIMs(J),NAME(J)

150 FORMAT(* *,5X,F7.3.5X,A10)

1O CONTINUE

WRITE(2,160) TSUM

160 FORMAT(* *,/,/,5X,F7.5,5X,* TOTAL TIME *)

RETURN

END
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SUBROUTINE GETERR

SUBROUTINE GETERR(IFLAG,ICARD,NUMVAR)

CAI 1

0* SUBROUTINE GETERR IS AN ERROR MESSAGE SUBROUTINE WHICH *

0* TERMINATES SENANAL IF INPUT WAS NOT CORRECTLY *

C’ READ IN.
*

0* *

C* IFLAG IS THE FLAG FROM SUBROUTINE GETNUM *

0* 11-

0* ICARD IS THE INPUT CARD NUMBER OF THE ERROR *

0* *

0* NUMVAR IS THE NUMBER OF VARIABLES ON CARD ICARD *

Cflmmmmimmmm

INTEGER IFLAG,ICARD,NUMVAR

WRITE(2,11) IFLAG,ICARD,NUMVAR

11 FORMAT(1H ,5H*****,* ERROR IN GETNUM *,/,15X,* ICRK =*,15,

+/.15X,* ICARD -*,I5,/,15X,* NUMVAR -*,15)

STOP "GETER"

END
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Program TRANS

PROGRAM TRANS(OUTPUT365,TAPE2=OUTPUT,TAPE3=513,TAPE4=513,

+ TAPE53513,TAPE6=513,TAPE7'513,TAPE8=65,TAPE9=6S)

Ct}

CWWWWWWWW

0* PROGRAM TRANS IS THE FOLLOW-UP PROGRAM TO PROGRAM 'SENANAL'.

0* IN THIS PROGRAM 'TAPEB', THE OUTPUT FILE FROM 'SENANAL' IS

0* READ IN AND OPERATED ON.

C*

0* FIRST THE SIMULATION RUNS ARE TRANSPOSED INTO SENSITIVITY-

0* ANALYSIS POINTS. (INSTEAD OF ALL THE TIME POINTS OF ONE FUNCTION

0* A SIMULATION, WE HAVE ALL THE FUNCTIONS AT ONE TIME POINT,

0* A SENSITIVITY-ANALYSIS POINT ) UPON SUCCESSFUL TRANSPOSITION

0* WE ITERATE THRU THE TIME POINTS. EACH S.A. POINT IS THEN

0* TRANSFORMED INTO SEQUENCY SPACE ( FOURIER OR WALSH ).

0* THIS TRANSFORMATION GIVES US THE EXPANSION COEFFICIENTS

0* FROM WHICH WE COMPUTE THE PARTIAL VARIANCES OF THE OBJECT

0* FUNCTIONS.

Ci

0* AFTER THE PARTIAL VARIANCES ARE CALCULATED THEY ARE

0* WRITTEN OUT ONTO TAPE9. THE EXPANSION COEFFICIENTS ARE WRITTEN

0* OUT ONTO TAPE8. THE TRANSPOSED MATRIX IS AVAILABLE ON TAPE7,

0* LOGICAL UNIT 'WRITEUP'.

l
i
t
3
*

*
*

t
i

1
3
*
*
*
*
*
*
*

#
*

*
¥

*
*
*
1
‘
*
*
*
*

*
*
*
*
*
.
*

C-I

C* VARIABLES

C"

C* F( ) - AN ARRAY WHICH HOLDS ONE OBJECT FUNCTION

C* IE AT LEAST OF LENGTH 'NSIMUL'

C*

C*

C* A( ) = A REAL ARRAY WHICH WILL HOLD THE COSINE

C* COEFFICIENTS IN THE FOURIER METHOD. THEREFORE IT

C* MUST BE OF LENGTH (NSIMUL + 1)

c-I

C* B( ) . A REAL ARRAY WHICH WILL HOLD THE SINE COEFFICIENTS

C* IN THE FOURIER METHOD. IT ALSO MUST BE OF LENGTH

c* ( NSIMUL + 1)

0*

C* IWK( ) . THE WORKING STORAGE OF THIS PROGRAM. THIS ARRAY Is

C* USED AS STORAGE FOR DIFFERENT TEMPORARY VARIABLES.

C* *

C* ' MINIMALLY IT MUST BE DIMENSIONED FOR THE FFT ROUTINES*

C* IF NSIMUL IS THE NUMBER OF SIMULATIONS IN THE FOURIER*

C* METHOD THEN THRU SYMMETRY WE HAVE 2*NSIMUL POINTS

C* TO FOURIER TRANSFORM. *

0* THE EQUATION FOR IWK DIMENSIONS IS: *
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C* MINIMUM LENGTH = 5*( F + N ) + 26

(3*

C* WHERE F IS THE NUMBER OF THE PRIME FACTORS OF NSIMUL

C* EXCLUDING THE TRIVIAL FACTOR 1 .

C* N . 2*NSIMUL

0*

C* IE IF NSIMUL . 21 ( HAS To BE ODD )

0* THEN 21 a 3'7 -> F = 2

0* MINIMUM LENGTH - 5*( 2 + 42 ) + 26 = 158

0*

(3*

C* ERROR CODES:

0*

C* STOP "WALPR" , STOPS EXECUTION IF TWO FREQUENCIES ARE EQUAL

C* SEE SUBROUTINE WALPR.

(3*

c* STOP "MTH" , THE METHOD READ IN ON TAPE3 WAS SOMETHING OTHER

0* THAN WALSH OR FOURIER. SEE PROGRAM TRANS

0*

0* STOP 3 , ERROR IN MATRIX TRANSPOSITION. SEE SUBROUTINE TRANP.

0*

0*

C* OUTPUT FORMAT FOR TAPE? -PARTIAL VARIANCES-

0*

C* 1) LABEL,TIME,AVE,STDDEV,RELDEV,LENGTH,NPARA

C* ( A8,4(2X,E15.7),2I6 -FORMAT )

0*

G: LABEL . NAME OF THE OBJECT FUNCTION

C

C* TIME . TIME VALUE OF OBJECT FUNCTION

0*

C* AVE - AVERAGE VALUE OF OBJECT FUNCTION AT THIS TIME
0*

C* STDDEV - SQUARE ROOT OF TOTAL VARIANCE OF OBJECT FUNCTION

0* AT THIS TIME

(3*

C* RELDEV a STDDEV/AVE: STANDARD DEVIATION DIVIDED BY AVERAGE

C* VALUE

c*

C* LENGTH - NUMBER OF PARTIAL VARIANCES TO WRITE OUT

C* ( NPARA*(NPARA + 1))/2

0*

C* NPARA - NUMBER OF PARAMETERS ANALYZED.

0*

C.

C* 2) ( SWLJ(K),K-1,LENGTH )

C* ( 5(2X,E15.7) -FORMAT )

0*

0* SWLJ(K) = A SINGLE OR COUPLED PARTIAL VARIANCE, WHERE

*
*
*
.
.
.
*
*
*
t
t
t
*
*
*
*
*
*

*
1
:

s
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:

1
1
*
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k
a
:

*
*
*
!
!
!
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1
1

#
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1
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1
1
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*

#
#
1
#
#

*
*
*
.
.
.
*
*
*
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0* CARDS 1 AND 2 ARE REPEATED FOR EACH LABEL-TIME POINT

0* WALSH ANALYSIS

0*

C* 1) LABEL,TIME,NCOEFF ( A8,E15.7,I6 -FORMAT )
0*

C* 2) (F(K),K-1,NCOEFF ) ( 4020 -FORMAT )
0*

0* CARDS 1 AND 2 ARE REPEATED FOR EACH DIFFERENT LABEL-TIME

0* POINT.

C* K = NPARA*(L-1) - (L*(L-1))/2 + J *

C*
*

C*
*

C* 5) (B(IW(L)+1) L=1,NPARA)
*

C* ( 5(2X,E15.7) -FORMAT *

C*
*

C* B(Iw(L)+1) . IN FOURIER ANALYSIS, IT IS THE SINE *

C* EXPANSION COEFFICIENT FOR THE Iw(L)TH *

C* FREQUENCY. :1

C* IN WALSH ANALYSIS, IT IS THE EXPANSION *

C* COEFFICIENT FOR THE IW(L)TH FREQUENCY. *

C*
*

C* CARDS 1,2 AND 3 ARE REPEATED FOR EACH LABEL-TIME POINT. *

C*
*

C*
*

C* OUTPUT FORMAT FOR TAPE8 -EXPANSION COEFFICIENTS- :
0*

0* FOURIER ANALYSIS
*

0*
*

C* 1) LABEL,TIME,NZ ( A8,E15.7,I6 -FORMAT)
I

0*

0* 2) ((A(K),B(K)),K=1,N2) ( 4020 -FORMAT ) g
0*

*

*

*

*

*

*

*

*

*

*

*

*

0*WWWWWWWW

REAL TIME(150)

REAL MINSW(10,55),MAXSW(10,55),AVESW(10,55)

REAL A(2O48),B(2O48)

REAL F(2048)

REAL x(2048)
0*

INTEGER TITLE(8),METHOD,NPARA,TNPTS,NSIMUL,IW(50).NFUNC

INTEGER WRITEUP,WRITED,READUP,READOWN

INTEGER IWK(sooo)

INTEGER ITYP(2)

INTEGER ILABEL(1o)

0*

LOGICAL TEST



0*

0*

0*

0*

C'I'

0*

0*

0*

0*

1O

11

20

21

250

Program TRANS CONT'D.

EQUIVALENCE (IWK(1),F(1))

COMMON SWLJ(21O)

DATA IUNIT/3/. IHALF/2048/

DATA IFLAG/O/

DATA READUP/4/, READOWN/S/, WRITEUP/6/, WRITED/7/
DATA MAXSW/550*0.0/, MINSW/SSO*1.O/, AVESW/550*O./
DATA ITYP/1OH FOURIER ,1OH WALSH /
DATA TEST/ .FALSE. / ‘

INITIALIZE THE TIMING ROUTINE

CALL TIMES(1,O)

READ TAPE3

READ(3.1O) (TITLE(J),J=1,8)

FORMAT(8A1O)

WRITE( 2,11) (TITLE(J),J=1,8)

FORMAT(1H ,8A1o) ,

READ(5,20) METHOD,NPARA,TNPTS,NSIMUL,NFUNC

FORMAT(A1O,4I6)

WRITE( 2,21)METHOD,NPARA,NFUNC,NSIMUL,TNPTS

FORMAT(1H ,/,1H ,A1O,* SENSITIVITY ANALYSIS USING :*,/,
+* NUMBER OF PARAMETERS =*,I6,/,* NUMBER OF OBJECT FUNCTIONS =*,
+ I6,/,* NUMBER OF SIMULATIONS =*,I6,/,* NUMBER OF TIME POINTS

+.I6)

3O

4O

41

42

5O

60

0*

READ(3.30) JUNK,IACCUR

FORMAT(A1O,5X,I3)

READ(3.40)(IW(J),J=1,NPARA)

FORMAT(16I6)

WRITE( 2,41)

FORMAT(1H ,* FREQUENCY SET * 1

WRITE( 2,42) (IW(J).J=1.NPARA

FORMAT(15X,16I6)

READ(3.30) JUNK

READ(3.SO) (TIME(J),J=1,TNPTs)

FORMAT(7E12.6)

READ(3.60)(ILABEL(J),J=1,NFUNc)

FORMAT(8(A8,2x))

DETERMINE THE TYPE OF ANALYSIS

IF( METHOD .EQ. ITYP(1) ) TEST a .TRUE.

IF( METHOD .EQ. ITYP(2) ) TEST = .TRUE.

IF(.NOT. TEST ) STOP "MTH"



251

Program TRANS CONT'D.

0*

0* TIME THE INPUT

CALL TIMES(1,0)

0*

0*

0* NOW WE ARE READY TO TRANSPOSE THE MATRIX

0

CALL TRANP( IUNIT, READUP, READOWN, WRITEUP, WRITED,

+ TNPTS, NFUNC, NSIMUL, IWK(1), IWK(1). IWK(IHALFHLIHALFJUI‘BOW)

C

0* TIME THE TRANSPOSE OPERATION

CALL TIMEs(2,O)

0W

0*

C* INITIALIZE N2,LENGTH

0*

C* N2 . LENGTH OF A FOURIER TRANSFORM COEFFICIENT VECTOR

0*

C* LENGTH - LENGTH OF THE PARTIAL VARIANCE MATRIX WHEN FOLDED

C* INTO A LINEAR ARRAY

0*

0mm

N2 = NSIMUL + 1

LENGTH - ((NPARA*(NPARA+1))/2)

0*

0*

DO 1000 ITIME=1,TNPTS

0*

0*

C* NOW TRANSFORM EACH OBJECT FUNCTION AT THE TIME POINT

0* 'TIME(ITIME)'

0*

DO 900 NF = 1, NFUNC

0*

0*

READ(WRITEUP)(F(K),K=1,NUMRow)

0*

0* NOW HAVING SET UP THE ARRAY F TRANSFORM IT

0

IF(METHOD .EQ. ITYP(2)) CALL WHT( NSIMUL, F, IFLAG,IWK(IHALF+1) )

IF( METHOD.EQ.ITYP(1)) CALL FFAST(F,NSIMUL,X,IWK,A,B)

0*

C* CALCULATE THE TIME SPENT IN TRANSFORMATION

CALL TIMES(3.O)

C

0* NOW CALCULATE THE PARTIAL VARIANCES

0*

IF(METHOD.EQ.ITYP(2))CALL WALPAR(F,NSIMUL,IW,NPARA,SWLJ,TOTVAR)

' IF(METHOD.EQ.ITYP(1))CALL FORPAR(A,B,NSIMUL,IW,NPARA,SWLJ,
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0*

C* CALC THE TIME SPENT IN PARTIAL VARIANCES CALCULATIONS

CALL TIMEs(4,o)

0*

0*

C* CALC THE PARTIAL VARIANCE STATISTICS

0*

DO 300 L=1,NPARA

D0 250 J=L,NPARA

INDEX - NPARA*(L-1) - (L*(L-1))/2 + J ,

MINSW(NF,INDEX) - AMIN1( MINSW(NF,INDEx), SWLJ(INDEx) )

MAXSW(NF,INDEX) - AMAX1( MAXSW(NF,INDEX), SWLJ(INDEx) )

AVESW(NF,INDEX)=((ITIME-1.)*AVEsw(NF,INDEx)+SWLJ(INDEx))/FLOAT(ITI

+ME)

250 CONTINUE

3OO CONTINUE

C* WRITE OUT THE EXPANSION COEFFICIENTS

0*

IF( METHOD .EQ. ITYP(2) ) GO TO 375

C* FOURIER METHOD

CALL OUTCF( A, B, N2, TIME(ITIME), ILABEL(NF) )

CALL OUTP( SWLJ, A(1), TOTVAR,TIME(ITIME),LENGTH,ILABEL(NF),B,IW,

+NPARA)

GO TO 400

375 CONTINUE

C* WALSH METHOD

CALL OUTCW(F, NSIMUL, TIME(ITIME), ILABEL(NF) )

CALL OUTP( SWLJ, F(1), TOTVAR, TIME(ITIME), LENGTH,ILABEL(NF),F,IW

+,NPARA)

4OO CONTINUE

0*

0*

0* COMPUTE TIME SPENT IN WRITING OUTPUT

CALL TIMES(5,0)

0*

0*

900 CONTINUE

1000 CONTINUE

0*

C* WRITE OUT DIAGNOSTICS
0*

DO 1100 NF=1,NFUNC

SUM - 0.0

WRITE( 2,1400) ILABEL(NF)

DO 1050 L=1,NPARA
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DO 1050 J=L,NPARA

INDEX = NPARA*(L-1) - (L*(L-1))/2 + J

WRITE( 2,1500) L,J,AVEsw(NE,INDEx),MINsw(NE,INDEX),MAXSW(NP,INDEx)

SUM . SUM + AVESW(NP,INDEx)

1050 CONTINUE .

WRITE( 2,1600) SUM

1100 CONTINUE

1400 E0RMAT(1H1,1OX,A1O,* CONCENTRATION STATISTICS *,/)

1500 FORMAT(1H ,* (*,Iz,*,*,I2,*) *,* AWESW =*,1PE14.6,

+3X,* MIN -*,E14.6,3X,* MAX . *,E14.6)

1600 FORMAT(/,/,/,1OX,* SUM OE AVERAGES -*,G14.6)

CALL TIMEs(1,1)

END
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SUBROUTINE OUTP

SUBROUTINE OUTP(SWLJ,AVE,TOTVAR,TIME,LENGTH,LABEL,B,IW,NPARA)

(3*

QWWWWWWWW

C* SUBROUTINE OUTP WRITES OUT THE PARTIAL VARIANCES ON LOGICAL *

0* UNIT 'IUNIT’.
*

CWWWWW

0*

REAL SWLJ(LENGTH)

REAL 3(1)

INTEGER Iw(1)

DATA IUNIT/9/

0*

STDDEV . SORT(TOTVAR)

RELDEv - 0.0

IF( AVE .EQ. 0.0 ) GO To 5

RELDEv . STDDEV/AVE

5 CONTINUE

WRITE(IUNIT , 10) LABEL , TIME, AVE , STDDEV, RELDEV, LENGTH , NPARA

1O PORMAT(A8,4(2X,E15.7).216)

WRITE(IUNIT,20)(SWLJ(L),L=1,LENGTH)

20 FORMAT(5(2X,E15.7))

WRITE(IUNIT,20)(R(Iw(L)+1),L=1,NPARA)

RETURN

END
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SUBROUTINE OUTCW

SUBROUTINE OUTcw(F,NCOEFF,TIME,LABEL)

CWWWWWWWMW*

0* SUBROUTINE OUTCW WRITES OUT THE WALSH EXPANSION COEFFICIENTS *

0* TO LOGICAL UNIT 'IUNIT' *

0W

REAL F(NCOEFF)

DATA IUNIT/B/

WRITE(IUNIT,10) LABEL,TIME,NCOEFF

1O FORMAT(A8,E15.7,16)

WRITE(IUNIT,20)(F(K),K=1,NCOEFF)

20 FORMAT(4020)

RETURN

END
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SUBROUTINE OUTCF

SUBROUTINE OUTCF(A,B,N2,TIME,LABEL)

GWWMWWWWW

C* ‘ *

c: SUBROUTINE OUTCF WRITES OUT THE FOURIER COEFFICIENTS *
C *

CMWWWMWW

REAL A(N2),B(N2)

DATA IUNIT/B/

c*

WRITE(IUNIT,10) LABEL,TIME,Nz

1O FORMAT(A8,E15.7,I6)

,WRITE(IUNIT,20)((A(X),B(K)),X=1,N2)

20 FORMAT(4020)

RETURN

END
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SUBROUTINE WALPAR

SUBROUTINE WALPAR(A, N, IW, NPARA, SWLJ ,TOTVAR) I

SUBROUTINE WALPAR CALCULATES THE TOTAL VARIANCE AND *

0* PARTIAL VARIANCES GIVEN THE WALSH EXPANSIONS COEFFICIENTS *

0* AND THE FREQUENCY SET. ONLY THE SINGLE PARTIAL VARIANCES AND *

0: COUPLED PARTIAL VARIANCES, S(L,J) ARE COMPUTED. *
C *

0*. ALL PARTIAL VARIANCES ARE STORED IN A LINEAR ARRAY - *

0* (SWLJ( ) ), WHICH IS AN UNFOLDED UPPER TRIANGULAR MATRIX. *

0* THE DIAGONAL ELEMENTS, SWLJ( I,I ), ARE THE I'TH ISINGLE *

0* PARTIAL VARIANCES, AND THE (L,J)'TH ELEMENT IS THE COUPLED *

0* PARTIAL VARIANCE OF THE L'TH ND J'TH PARAMETERS. THIS IS *

0* LINEARLY FOLDED BY *

0* *

0* INDEX - NPARA*(L - 1) - (L*(L - 1))/2 + J *

0* *

0* REFERENCE: T.H. PIERCE PHD. THESIS, M.S.U. 1980 *

0* *

0* INPUT
*

0* *

0* A - AN ARRAY OF THE WALSH EXPANSION COEFFICIENTS *

0* *

0* N - THE NUMBER OF EXPANSION COEFFICIENTS IN 'A' *

0* *

0* IV - AN INTEGER ARRAY OF THE FREQUENCY SET USED. *

0* *

0* NPARA . THE NUMBER OF PARAMETERS TO BE ANALYZED *

0* *

0* OUTPUT *

0* *

0* SWLJ . AN ARRAY OF THE SINGLE AND COUPLED PARTIAL VARIANCES *

0* *

0* TOTVAR - THE TOTAL VARIANCE OF THE EXPANDED FUNCTION *

0* PARSEVAL'S FORMULA - AO**2 *

0*
*

0* *

0* RESTRICTIONS *

0* *

0* 1) Iw(J) MUST NEVER BE EQUAL TO Iw(X) FOR ANY J,K *

0* *

0: 2) SWLJ MUST BE DIMENSIONED AT LEAST (NPARA*(NPARA+1))/2 *

C *

REAL A(N)

REAL SWLJ(1)
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SUBROUTINE WALPAR

INTEGER IW(NPARA)

CWWWWWWW*

(3*

C‘.

CALCULATE THE TOTAL VARIANCE

REMEMBER TO ADD ONE(1) TO THE FREQUENCIES TO ACCOUNT FOR

THE FREQUENCY AO STORED AS A(1)

CWWWWWWW*

0*

100

C‘I'

0*

200

0*

C‘.

300

400

TOTVAR - 0.

SKIP A(1) AS THIS IS THE AVERAGE VALUE

D0 100 J=2,N .

TOTVAR - TOTVAR + A(J)*A(J)

CONTINUE

CALCULATE THE SINGLE PARTIAL VARIANCES

DO 200 Ja1,NPARA

INDEX - NPARA*(J-1) - (J*(J-1))/2 + J

SWLJ(INDEx) - (A(Iw(J)+1)*A(Iw(J)+1))/TOTVAR

CONTINUE

CALCULATE THE COUPLED PARTIAL VARIANCES

NPARM1 . NPARA - 1

DO 400 L=1, NPARM1

JSTART . L + 1

D0 500 J = JSTART, NPARA

IF THE FREQUENCIES ARE EQUAL; IVAL=O (MISTAKE)

IF(Iw(L) .EQ. Iw(J) ) STOP "WALPR"

IVAL a XOR(IW(L),Iw(J))

INDEX . NPARA*(L-1) - (L*(L-1))/2 + J

SWLJ(INDEx) . (A(IVAL + 1)*A(IVAL + 1))/TOTVAR

CONTINUE

CONTINUE

RETURN

END
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SUBROUTINE WHT(NUM,X,II,Y)

CWMWWWWW

*****

C**** II . 0 HADAMARD-ORDERED WHT **

0**** II - 1 INVERSE HADAMARD-ORDERED WHT **

0**** II - 2 WALSH-ORDERED WHT **

0**** II - 3 INVERSE WALSH-ORDERED WHT **

0****
**

0**** THIS ROUTINE CALCULATES THE PAST WALSH-HADAMARD **

.0**** TRANSFORMS (WHT) FOR ANY GIVEN NUMBER WHICH **

C**** IS A POWER OF TWO.
**

0**** **

C**** NUM . NUMBER OF POINTS
**

0**** X(NUM) - ARRAY OF DATA TO BE TRANSFORMED **

C**** ON OUTPUT X(NUM) IS THE TRANSFORMED **

C**** EXPANSION COEFFICIENTS **

0* *

0* - REFERENCE: AHMED AND RAO, "ORTHOGONAL TRANSFORMS FOR *

0* DIGITAL SIGNAL PROCESSING ", SPRINGER- *

0* VERLAG, (1975). *

0* i

0

DIMENSION IPOWER(20),X(NUM),Y(NUM)

IF(II.LE.1) GO TO 14

0**** BIT REVERSE THE INPUT

DO 11 I=1,NUM

IB a I - 1

VIL = 1

9 IBD = IB/2

IPOWER(IL) = 1

IF(IB.EQ.(IBD*2)) IPOWER(IL) = O

IF(IBD.EQ. 0) GO TO 10

IB = IBD

IL = IL + 1

GO TO 9

1o CONTINUE

IP . 1

IFAC . NUM

DO 12 I1 - 1,IL

IFAC . IFA0/2

12 IP . IP + IFAO*IPOWER(I1)

11 Y(IP) - x(I)

D0 13 I - 1,NUM

13 X(I) = Y(I)

14 CONTINUE

0**** CALCULATE THE NUMBER OF ITERATIONS

55 ITER . 0



c****

c****

c****

c****

c****

c****

c****

c****

48

49

C****

0****

15
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SUBROUTINE WHT

IREM = NUM

IREM = IREM/2

IF(IREM.EQ.O) GO TO 2

ITER=ITER + 1

GO TO 1

CONTINUE

BEGIN A LOOP FOR (LOG TO BASE TWO OF NUM) ITERATIONS

D0 50 M81,ITER

CALCULATE THE NUMBER OF PARTIONS

IF(M.EQ.1) NUMP . 1

IF(M.NE.1) NUMP = NUMP*2

MNUM . NUM/NUMP

MNUM2 = MNUM/2

BEGIN A LOOP FOR THE NUMBER OF PARTITIONS.

ALPH . 1.

D0 49 MP . 1,NUMP

IB . (MP-1)*MNUM

BEGIN A LOOP THROUGH THIS PARTITION.

DO 48 MP2 . 1,MNUM2

MNUM21= MNUM2 + MP2 + IB

IBA = IB +MP2

Y(IBA) - x(IBA) + ALPH*X(MNUM21)

Y(MNUM21) = x(IBA) - ALPH*X(MNUM21)

CONTINUE

IF(II.GE.2) ALPH = -ALPH

CONTINUE

Do 7 I=1,NUM

x(1) = Y(I)

CONTINUE -

IF(II.EQ.1 .OR. II.EQ.3) RETURN

R-1./FLOAT(NUM)

D0 15 I-1,NUM

X(I) . x(I)*R

RETURN

END
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TRANP

SUBROUTINE TRANP( IUNIT, READUP, READOWN, WRITEUP WRITED,

+ TNPTS, NFUNC, NSIMUL, 0, UP, DOWN, LENGTH,NUMROW3

0*

C**********************************************************************

0* SUBROUTINE TRANP TAKES THE MATRIX STORED ON 'IUNIT' AND *

0* TRANSPOSES IT. ( A(I,J) => A(J,I) ) RETURNING THE *

0* TRANSPOSED MATRIX ON LOGICAL UNIT 'WRITEUP'. *

0* , *

0* NOTES *

0* *

0* 1) THE ARRAY '0' MAY BE EQUIVALENCED TO EITHER THE ARRAY *

0* 'UP' OR THE ARRAY 'DOWN'.
*

0* *

*

*

0* 2) LENGTH MUST BE ONE POWER OF TWO GREATER THAN NROW, UNLESS

0* NROW IS A POWER OF TWO.

CWWWWWWW

INTEGER READUP,READOWN,WRITEUP,WRITED

INTEGER TNPTS,NSIMUL,NFUNC,IUNIT

Cmmmmmmm

0* THE VECTOR 'C' SHOULD BE OF DIMENSION ONE POWER OF TWO

0* GREATER THAN NROW( UNLESS NROW IS A POWER OF TWO )

REAL 0(LENGTH)

* REAL UP(LENGTH),DOWN(LENGTH)

0

DATA KOUNT/O/, ZERO/O./, LCOUNT/O/, NUMADD/O/

DATA NUMADD2/O/

NCOL . TNPTS*NFUNC

NROW , NSIMUL

0* READ IN THE MATRIX

1 CONTINUE

D0 1000 J=1, TNPTS

ISTR a (J-1)*NFUNC + 1

ISTOP = ISTR + NFUNC - 1

READ(IUNIT,10000)(C(K),X=ISTR,ISTOP)

10000 FORMAT(4020)

1000 CONTINUE

0* IF KOUNT=0 ,THEN WE NEED TO WRITE THE UP-TAPE(TAPE1 INITIAL Y)

0* IF KOUNT . 1 , THEN WE WRITE THE DOWN-TAPE( TAPE2 INITIALLY

0*

IF(XOUNT .NE. 0 ) GO TO 5

0* WRITE THE ODD ROWS

DO 500 K=1,NCOL

500 WRITE(READUP) C(K)

KOUNT - 1

c*

0: LCOUNT COUNTS THE NUMBER OF ROWS WRITTEN, BOTH UP AND DOWN

C

LCOUNT = LCOUNT + 1



262

Program TRANS CONT'D.

TRANP

0* IF DONE, IE LCOUNT = NUMBER OF ROWS, THEN GO TO NEXT TASK

0* IF NOT DONE, THEN CONTINUE READ-WRITE

(3*

IF( LCOUNT .EQ. NROW ) GO TO 9

Go TO 1

5 CONTINUE

0* WRITE THE EVEN ROWS

D0 510 K=1,NCOL

510 WRITE(READOWN) 0(K)

0* SET KOUNT=O so NEXT WRITE IS 'DOWN'

KOUNT - O

LCOUNT . LCOUNT + 1

0* CHECK FOR END OF DATA

IF(LCOUNT .EQ. NRow) GO TO

GO TO

9 CONTINUE

0* TAPE 1,2 ARE WRITTEN WITH THE MATRIX NOW WE NEED TO MAKE SURE

0* THAT THE ROW-DIMENSION IS A POWER OF TWO,AND IF NOT THEN WE

0* MUST ADD SUFFICIENT ZEROS TO MAKE THE ROW-DIMENSION A POWER OF 2

0* CHECK FOR HAVING WRIITEN AN EVEN NUMBER OF ROWS

IF(KOUNT .EQ. o ) GO TO 120

0* ODD NUMBER OF ROWS WERE WRITTEN

0* ADD ONE ROW 0F ZEROS

D0 115 K-1,NCOL

WRITE(READOWN ) ZERO

115 CONTINUE

LCOUNT - LCOUNT + 1

0* EVEN NUMBER OF ROWS WRITTEN

120 CONTINUE

0* FIGURE OUT EXPONENT OF NEAREST POWER OF TWO LARGER

D0 116 M=1,50

MDIVID = M ,

RTEST - FLOAT(LCOUNT)/(2.**M)

IF ( RTEST .LE. 1 ) GO TO 118

116 CONTINUE

STOP 2

118 CONTINUE

0* CHECK FOR EXACT POWER OF TWO

IF (RTEST .EQ. 1. ) GO TO 200

0* NOW CALCULATE THE NUMBER OF ROWS WE MUST ADD

NUMADD - 2**MDIVID - LCOUNT

0* NUMADD SHOULD ALSO BE DIVISIBLE BY TWO

IF(NUMADD .NE. 2*(NUMADD/2) ) STOP 3

0* WRITE ZEROS INTO DUMMY ROWS

NUMADD2 . NUMADD/z



130

200

0*

0*

0*
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D0 130 L=1,NUMADD2

DO 130 K=1,NCOL

WRITE(READUP ) ZERO

WRITE(READOWN ) ZERO

CONTINUE

CONTINUE

LET NUMADD BE THE TOTAL NUMBER OF ADDED ROWS

REMEMBER WE MAY HAVE ADDED A ROW EARLIER

IF( NROW .NE. LCOUNT )NUMADD - NUMADD + 1

0* THE FINAL CHECK

0*

0*

C$

101

112

1O

0'.

C‘.’

C"

0*

20

(3*

0*

3O

NUMROW . NUMADD + NROW

IF(NUMROW .NE. (2**MDIVID)) STOP 4

EVEN AND ODD TAPE WRITTEN

LOOP = 1

REWIND READUP

REWIND READOWN

REWIND WRITEUP

REWIND WRITED

DIAGNOSTICS

WRITE( 2,101)

F0RMAT(/,/,/ * SUBROUTINE TRANP STATISTICS *,/)

WRITE( 2,112 NROW,NCOL,NUMADD,NUMADD2

FORMAT(* *,* NR0W=*,I5,* NCOL=*,I4,* NUMADD-*,I6,

+* NUMADD2-*,I5)

NINSERT - NCOL

NCHECK = NUMROW/2

CONTINUE

INITIALIZE FOR THE READ-WRITE

KOUNT - NUMBER OF INSERTS DONE

LCOUNT = TOTAL NUMBER OF READ-WRITES DONE THIS

ITERATION

KOUNT - O

LCOUNT = O

CONTINUE

READ(READUP )(UP(L),L=1,LOOP)

READ(READOWN)(DOWN(L),L=1,LOOP)

WRITE(WRITEUP)(UP(L),L-1,IOOP),(DOWN(M),M=1,LOOP)

KOUNT . KOUNT + 1

IF( KOUNT .NE. NINSERT ) GO TO 20

LCOUNT - LCOUNT + 1

LCOUNT SHOULD EQUALNCHECK HERE

ONLY IF NCHECK - 1 AND IT IS THE LAST MIX

IF( LCOUNT .EQ. NCHECK ) GO TO 65

KOUNT . 0

CONTINUE

READ(READUP )(UP(L),L=1,LOOP)
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65
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READ(READOWN )(DOWN(L),L=1,LOOP)

WRITE(WRITED)(UP(L),L=1,LOOP),(DOWN(M),M=1,LOOP)

KOUNT . KOUNT + 1

_IF( KOUNT .NE. NINSERT ) GO TO 30

LCOUNT = LCOUNT + 1

IF( LCOUNT .EQ. NCHECK ) GO TO 50

KOUNT 8 0

GO TO 20

CONTINUE

LOOP 8 LOOP*2

NCHECK a NCHECK/2

ERROR CHECKING -

IF( NCHECK .LE. 0 ) STOP 2

ISAVUP = READUP

ISAVD =READOWN

READUP . WRITEUP

READOWN . WRITED

WRITEUPuISAVUP

WRITED= ISAVD

REWIND READUP

REWIND READOWN

REWIND WRITEUP

REWIND WRITED

GO TO 10

CONTINUE

REWIND WRITEUP

RETURN

END
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SUBROUTINE TIMES

SUBROUTINE TIMES(ISUB,ITYPE)

CWWWWWWWW

0*

0*

0*

0*

0*

0*

0*

0*

0*

0*

SUBROUTINE TIMES COMPUTES THE CPU TIME SPENT BETWEEN CALLS.

THIS IS INSTALLATION DEPENDENT.

ITS USE IS FOR DOCUMENTATION PURPOSES ONLY

ISUB . THE PROCEDURE TO BE TIMED.

ITYPE 8 FLAG: .LT. 1 FOR TIMING

.GE. 1 FOR FINAL PRINT

*
#
*
*
*
*
*

*
*
*

CWWWWWWW

C.

0*

0*

0*

5

100

150

10

160

REAL TIMS(15).NEW,LAST

INTEGER NAME(15)

DATA TIM3/15*O./

DATA LAST /O./

DATA NAME/1OHREAD INPUT,1OHTRANSPOSE ,1OHTRANSFORM ,1OHPARTIALVAR

+,1OHWRITE OUTP/

DATA LENGTH /5/

IF(ITYPE .GE. 1) GO TO 5

NEW a SECOND(CPU)

INITIALIZE THE VALUES IN FIRST ENTRY

IF( LAST .EQ. o. ) LAST . NEW

TIMS(ISUB) - TIMs(ISUB) + NEW - LAST

LAST . NEW

RETURN

CONTINUE

WRITE( 2,100)

FORMAT(* *,/,/,/,5X,* SECONDS*,4X,* PROCEDURE *,/)

TSUM = 0.

DO 10 J=1,LENGTH

TSUM - TSUM + TIMs(J)

WRITE( 2,150) TIMs(J),NAME(J)

FORMAT(* *,5X,F7.3,5X,A10)

CONTINUE

WRITE( 2,160) TSUM

FORMAT(* *,/,/,6X,F7.3.4x,* TOTAL TIME *)

RETURN

END
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SUBROUTINE FFAST

SUBROUTINE FFAST(F,NPTS,X,IWK,A,B)

i i

0* SUBROUTINE FFAST COMPUTES THE FOURIER TRANSFORM OF A VECTOR *

0* IN THIS CASE 'F' IS LENGTHENED FROM ( -PI/2 , PI/2 ) TO *

0* ( O , 2PI ) AND THEN FOURIER-TRANSFORMED INTO COSINE AND SINE *

0* COEFFICIENTS, A AND B RESPECTIVELY. *

0* *

0* NOTE *

0* *

0* 1) SINCE 'F' Is NEVER USED IN FFCSIN IT MAY BE EQUIVALENCED *

0* To 'IWK'. *

0* *

0* 2) THE ROUTINES ALSO ALLOW THE EQUIVALENCING OF 'A' AND *

0* 'X'. *

0* *

0* 3) A0, THE AVERAGE VALUE, IS STORED AS 'A(1)'. *

0

REAL F(NPTs)

REAL x(1),A(1),B(1)

0*

INTEGER IWK(1)

0* NPTS MUST BE AN ODD INTEGER AND NOTE WE ARE GOING FROM

0* -PI/2 TO PI/2 AND TRANSFORMING TO (O,2*PI)

c******

0*

NPTSP1=NPTS + 1

NPTSZ=NPTS*2

N2=NPTS+1

RNPTS2=(1.O/FLOAT(NPT52))

IQ=(NPTS-1)/2

IQP1=IQ+1

0*

C

L=0

C

0* TRANSFORM F(-PI/2 , PI/2) TO X(O , 2*PI)

0

DO 1000 J=IQP1,NPTS

L=L+1

1000 x(L)-F(J)

DO 2000 J=1,IQP1

L=L+1

JJ=NPTSP1-J

x(L)=F(JJ)

2000 CONTINUE

DO 3000 J=1,IQ

L=L+1
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JJ=IQP1-J

x(L)=F(JJ)

3000 CONTINUE

DO 4000 J=1,IQ

L=L+1

x(L)=F(J)

4000 CONTINUE

C

C

0* CALL IMSL ROUTINES TO CALCULATE FOURIER COEFFICIENTS

0

CALL FFCSIN(X,NFT52,A,E,IVH)
0* . ,

0* SCALE THE COEFFICIENTS TO THEIR CORRECT VALUES.

DO 350 J=1,N2

A(J)=RNFT52*A(J)

B(J)=RNFT52*B(J)

350 CONTINUE

A(1)-A(1)/2.O

A(N2)=A(N2)/2.0

B(1)=O.O

B(N2)=0.0

C

c!-

RETURN

END
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SUBROUTINE FORPAR

SUBROUTINE FORPAR(A, B, NPTS, IW, NPARA, SWLJ, TOTVAR,IACCUR)
CWWW

0* CALCULATE THE PARTIAL VARIANCES

0* THIS ROUTINE IS SET UP FOR 4TH ORDER ACCURATE FREQUENCY

0* SETS

0* FIRST CALCULATE THE VARIANCE ( PARSEVAL"S FORMULA - AO**2

C* THEN CALCULATE THE SUM OF HARMONICS NOTING THAT ALL BUT THE

C’ NPARA'TH ARE SUMMED TO THE FIRST HARMONIC AND THE NPARA'TH ONLY T

t
I
t
!
‘

8
*

t

0: THE FUNDAMENTAL HARMONIC ' z
0 .

0* ALL PARTIAL VARIANCES ARE STORED IN A LINEAR ARRAY *

0* (SWLJ( ) ), WHICH IS AN UNFOLDED UPPER TRIANGULAR MATRIX. *

0* THE DIAGONAL ELEMENTS, SWLJ( I,I ), ARE THE I'TH ISINGLE *

0* PARTIAL VARIANCES, AND THE (L,J)'TH ELEMENT IS THE COUPLED *

0* PARTIAL VARIANCE OF THE L'TH ND J'TH PARAMETERS. THIS IS *

0* LINEARLY FOLDED BY *

C* *

0* INDEX - NPARA*(L - 1) - (L*(L - 1))/2 + J *

C* i

0* REFERENCE: T.H. PIERCE PHD. THESIS, M.S.U. 1980 *

0* n

C’ INPUT
a

C* a

0* A - AN ARRAY OF THE COSINE EXPANSION COEFFICIENTS *

C’ *

0* B . AN ARRAY OF THE SINE EXPANSION COEFFICIENTS *

C* *

0* NPTS - NUMBER OF SIMULATIONS *

C* i

0* IW . AN INTEGER ARRAY OF THE FREQUENCY SET USED. *

C* *

0* NPARA . THE NUMBER OF PARAMETERS TO BE ANALYzED *

C* i

0* OUTPUT
*

C* *

0* SWLJ = AN ARRAY OF THE SINGLE AND COUPLED PARTIAL VARIANCES *

0* a

0* TOTVAR - THE TOTAL VARIANCE OF THE EXPANDED FUNCTION *

0: PARSEVAL'S FORMULA - AO**2 *
C it

0* *

0* RESTRICTIONS *

C’ *

0* 1) Iw(J) MUST NEVER BE EQUAL TO Iw(K) FOR ANY J,X *

C‘ *

0* 2) SWLJ MUST BE DIMENSIONED AT LEAST (NPARA*(NPARA+1))/2 *

CWWWWWWWW

REAL A(1),B(1),SWLJ(1)



0*

ci-

0*
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INTEGER Iw(NPARA)

IRANGE = IACCUR - 1

IMID = IACCUR/2

N2-NPTS+1

NPARM1 = NPARA - 1

TOTVAR = 0.0

SKIP A(1) AND B(1) AS AO, THE AVERAGE VALUE, IS

STORED AS A(1); B(1) - 0.

DO 600 JJ=2,N2 -

TOTVAR = A(JJ)*A(JJ) + B(JJ)*B(JJ) +TOTVAR

CONTINUE

C* LP IS THE HARMONICS

625

650

' 675

C*

C*

Ci’

DO 650 L=1,NPARM1

SUM a 0.0

DC 625 LP . 1,2

LPWP1=LP*Iw(L) + 1

SUM . A(LPWP1)*A(LPWP1) + B(LPHP1)*B(LPWP1) + SUM

CONTINUE

INDEX = NPARA*(L-1) - (L*(L-1))/2 + L

SWLJ(INDEX) = SUM/TOTVAR

CONTINUE

SUM=O. 0

DO 675 L=1,1

LPWP1 = L*Iw(NPARA) + 1

SUM = SUM + A(LPWP1)*A(LPWP1) + B(LPWP1)*B(LPWP1)

CONTINUE

INDEX = (NPARA*(NPARA+1))/2

SWLJ(INDEX) = SUM/TOTVAR

DO 900 L21, NPARM1

JSTART = L + 1

DO 800 J=JSTART, NPARA

SUM . 0.

DO 750 HP=1,IRANGE

IP - IMID - KP

DO 700 IK - 1, IRANGE

K = IMID - IK

IF(IP .EQ. 0) GO TO 750

IF( K .EQ. 0) GO TO 700

ADD ONE (1) TO THE FREQUENCY COUNT TO ACCOUNT FOR A0 BO

9

IFREQ a IP*Iw(L) + K*IW(J) + 1

IF(IFREQ .LE. 1 ) GO TO 700

IF(IFREQ .GE. N2) 00 TO 700
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SUM = A(IFREQ)*A(IFREQ) + B(IFREQ)*B(IFREQ) + SUM

CONTINUE

CONTINUE

INDEX = NPARA*(L-1) - (L*(L-1))/2 + J

SWLJ(INDEX) = SUM/TOTVAR

CONTINUE

CONTINUE

RETURN

END
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PROGRAM PLTSEN(INPUT,OUTPUT,TAPE1=INPUT,TAPE2=OUTPUT,

+ TAPE9)

CW*W*WWWWW

0* THIS PROGRAM PLOTS RESULTS OF TAPE9 SENSITIVITY ANALYSIS FILE. *

0* THE PROGRAM READS CARDS FOR INFORMATION ON WHAT TO PLOT. *

0* IT THEN SEARCHES THE FILE (TAPE9) FOR THE DESIRED VALUES, *

0* AND PLOTS IT ON A LINE PRINTER.
*

0* IF MORE THAN ONE PLOT IS DESIRED, IT REWINDS THE FILE *

0* AND REPEATS.
*

0*
a

0* INPUT *

0* 0mm1 *

0* *

0* NPLOT, NCONC (2I5 FORMAT) *

0* i

0* NPLOT a THE TOTAL NUMBER OF PLOTS *

0* DESIRED. *

0* *

0* NCON0= THE NUMBER OF DIFFERENT OUTPUT *

0* FUNCTIONS IN TAPE9. *

0* *

0* NOTE CARDS 2-6 ARE TO BE REPEATED FOR ALL THE DESIRED OBJECT *

0* FUNCTIONS.
*

0*
*

0* CARD 2 *

0* ITEST ( A10 FORMAT) *

0* i

0* ITEST . THE LABEL OF THE OBJECT (OR *

0* OUTPUT) FUNCTION TO BE PLOTTED :
0*

0* CARD 3 *

0*
*

0* NFUN0,NPOINT *
cl» - I»

0* NFUNC - THE NUMBER OF FUNCTIONS TO PLOT *

0* FOR THE LPT'TH PLOT. *

0* *

0* NPOINT - THE NUMBER OF POINTS TO BE PLOTTED *

0* IN THE LPT'TH PLOT (X-AXIS) :
C"

0* CARD 4 *

0*
*

0* ITITLE(8) (8A1O FORMAT ) *

0*
i

0* ITITLE = THE PLOT TITLE FOR THE LPT'TH *
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0* CARD 5

0* SYM(K) (1OA1 FORMAT)

0* , SYM(K) . THE SYMBOLS TO BE USED IN THE PLOT.

0* ( IE THE SYMBOL FOR THE KTH FUNCTION).

0* CARD 6 - 0ARD(5+NFUNC)

0* NAME(K) (A10 FORMAT)

*
t

*
t

t
*
1
!

C
a
t

*
1
!

0
t

0* NAME<K> ' THE NAME (LABEL) OF THE KTH FUNCTION*

0* TO BE PLOTTED. *

0*
*

Ciiiii§fiiOfiflflflflQ§ii§i*fifi§§i*4§§GiG§Q§i*§ii§§fiG40iififlfii§§§§i§§§§§§§§§§§i§

REAL TIME(1OO)

REAL PLT(1OO,1O)

REAL DELx(1oo)

cl»

0HARAOTER*1O JNAME(10),NAME(10),ITITLE(B)

0HARA0TER*1O ITEST

CHI,

COMMON /PLTPTs/ sm(1o)

0*

DATA IO/2/, IS/1/, DELX/1OO*O./

DATA MAX/1oo/

Ca»

0* READ IN CARD INPUT

c-I-

cl»

0* READ IN:

0* NFUNC = NUMBER OF FUNCTION TO PLOT

0* NPOINT a NUMBER OF POINTS PER PLOT

0* NPLOT . NUMBER OF PLOTS

C1}

READ(1,2O) NPLOT,NCONC

20 FORMAT(3IS)

WRITE(2,30) NPLOT

3O FORMAT(‘1',’ THERE ARE ‘,I5,' PLOTS')

DO 1000 LPT=1,NPLOT

0* READ IN CORRECT OBJECT FUNCTIONS

READ(1,35) ITEST

3S FORMAT(A10)
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0* READ IN THE NUMBER OF FUNCTIONS TO BE PLOTTED ANDA‘A—J

0* THE NUMBER OF POINTS TO PLOT PER FUNCTION

READ(1,*) NFUN0,NPOINT

45 FORMAT(2I5)

0*

0* READ IN PLOT TITLE

READ(1,10)(ITITLE(K),K=1,8)

1O FORMAT(BA10)

0* READ IN PLOT SYMBOLS

READ(1,55)(SYM(K),K=1,NFUN0)

55 FORMAT(1OA1)

(3*

0* READ IN THE NAME OF THE PLOTTED FUNCTIONS

DO 80 K=1,NFUNC

READ(1.75) NAME(K)

75 FORMAT(A10)

80 CONTINUE

NKOUNT - NCON0*NPOINT

0*

LPLOTsLPT

CALL READ9(NKOUNT, NFUN0,TIME,ITEST,NCONC,LPLOT,PLT,ITPTs)

IFLAG . 0

IF( ITPTS .NE. NPOINT ) IFLAG - 1

IF ( IFLAG .EQ. 1) WRITE(2,510) NPOINT,ITPTS

51o FORMAT(‘1',’ NUMBER OF POINTS EXPECTED =',I6./.SX,

+ ' NUMBER OF POINTS READ =',I6)

IF( IFLAG .EQ. 1 ) NPOINT - ITPTS

0*

CALL PLOT(IO,PLT,DELX,IS,ITITLE,NAME,TIME(1),TIME(NPOINT),NPOIII,

+ NFUNO,MAX)

c*

0* WRITE OUT THE PLOTTED POINTS.

c*

WRITE(2,300)(NAME(K),K=1,NFUNc)

500 FORMAT(‘1',’ POINT',10(1X,A1O,1x))

Do 350 Ka1,NPOINT

WRITE(2,325)( K,(PLT(K,L),L=1,NFUN0))

325 FORMAT(' ',I4,1X,1O(1X,1PE1O.3,1x))

350 CONTINUE

REWIND 9

1000 CONTINUE

END
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SUBROUTINE READ9 (NKOUNT , NFUNC , TIM, ITEST , NCONC , LPLOT , PLT , ITIME)

CWWWWWWMW

0*

(3*

cl-

0*

0*

0*

0*

(3*

0*

0*

0*

c*

0*

C*

c*

c*

SUBROUTINE READ READS IN THE OUTPUT TAPE7 FROM PROGRAM

TRANS. THIS IS READ IN SO THAT IT MAY BE PLOTTED.

INPUT UNIT ' 9

OUTPUT UNIT 3 2

VARIABLES :

NKOUNT = NUMBER OF TOTAL SENSITIVITY POINTS

NCONC = NUMBER OF CONCENTRATIONS

TIM(70) = TIME POINT OF S. A. POINT

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

CW

C"

0*

C"

200

350

C

0HARACTER*1O LABEL,ITEST

REAL PLT(1OO,10)

REAL TIM(100),SWLK(50),B(50)

DATA IIN/9/

ITIME 8 O

ISCALE = 1

DO 1000 KOUNT = 1,NKOUNT

READ(IIN,10) LABEL,TIME,AVE,STDDEV,RELDEV,LENGTH,NPARA

FORMAT(A1O,4(2X,E15.7).2I6)

READ(IIN,2O)(SWLK(K),K=1,LENGTH)

FORMAT(5(2X,E15.7))

READ(IIN,20)(B(L),L=1,NPARA)

FINDS CORRECT CONCENTRATION LABEL

DO 200 I=1,NCONC

IVAL=I

IF( LABEL .EQ. ITEST) GO TO 350

CONTINUE

GO TO 1000

CONTINUE

NORMILIZE LPLOT TO ( 1,2,3,4)

*
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SUBROUTINE READ9

c*

IF(LPLOT .LE. 4) GO TO 400

. LPLOT =- LPLOT - 4

GO TO 350

400 CONTINUE

0* FOUND THE CORRECT OBJECT FUNCTION

0* SAVE THE DESIRED VALUES.

ITIME . ITIME + 1

TIM(ITIME) - TIME

GO TO ( 500. 550, 600, 650 ) LPLOT

500 CONTINUE

0 SAVE THE AVERAGE VALUE

0

PLT(ITIME,1) . AVE

00 TO 1000

0

550 CONTINUE

0 SAVE THE RELATIVE DEVIATION CURVE

PLT(ITIME,1) = RELDEV

GO TO 1000

0

600 CONTINUE

C SAVE THE SINGLE PARTIAL VARIANCES

DO 610 NP=1,NPARA

INDEX = NPARA*(NP-1) - (NP*(NP-1))/2 + NP

PLT(ITIME,NP) s SWLK(INDEX)

610 CONTINUE

GO TO 1000

C

650 CONTINUE

0

0 SAVE THE EXPANSION COEFFICIENTS

DO 660 NP - 1, NPARA

PLT(ITIME,NP) = B(NP)

660 CONTINUE

0

1000 CONTINUE

0*

RETURN

END
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SUBROUTINE PLOT

SUBROUTINE PLOT(IO,ARAY,XARAY,ISCALE,JNAME,NAME,BLOW,BHI,NPT,NF,

+ MAX) i

0*

(2*

0*

c*

C

0*

0*

C*

0*

(3*

(1*

C*

(3*

0*

0*

0*

0*

0*

C*

0*

C

0*

0*

C*

0*

C*

c*

0*

0*

C*

0*

0*

C*

0*

0*
FUNCTION TO BE READ IN USING A1 FORMAT OR DEFINED WITH 1H FORMAT

IO 8 THE OUTPUT UNIT

ISCALE 8 TYPE OF PLOT DESIRED, 1=II LINEAR SCALE ,2= SEMILOG,

3' LOG-LOG. FOR LOG-LOG READ IN EQUAL INTERVALS ON A LOG

SCALE.

NO MIXING OF 1,2,0R 3 ALLOWED IN THE SAME PLOT.

BLOW= THE LOWER BOUND OF THE PLOT FOR THE X-AXIS

BHI ' THE UPPER BOUND OF THE PLOT FOR THE X-AXIS

NPT = THE NUMBER OF POINTS PER FUNCTION TO BE PLOTTED

*
*
*
*
*
*
*
*
*
*
*
*

MAX 3 THE INNER DIMENSION OF THE ARAY DEFINED IN THE MAIN PROGRAM*

NF - THE NUMBER OF FUNCTIONS TO BE PLOTTED

3
3
*

l
i
t

ARAY(MAX,NF) - ARRAY OF POINTS TO BE PLOTTED

*

XARAY(MAX) ' THE ERRORS ASSOCIATED WITH THE POINTS FOR THE FIRST *

FUNCTION. ONLY THE FIRST FUNCTION WILL BE PLOTTED WITH ERROR*

BARS
*

*

JNAME(8) ' THE TITLE OF THE PLOT. THIS WILL BE PRINTED AT THE TOP*

OF THE PLOT (8A1O FORMAT ) :

NAME(10) = THE NAME OF EACH FUNCTION TO BE PLOTTED(USE A10 FORMAT*

OR 10H )
H

H

A LABELED COMMON BLOCK IS ALSO REQUIRED *

THIS BLOCK CONTAINS THE SYMBOLS TO BE USED IN THE *

PLOT FOR EACH FUNCTION *

USE *

COMMON /PLTPTS/ POINT(10) *

WHERE POINT(I) IS THE SYMBOL FOR THE ITH :

CWflmWWWWWW

Ci

C‘I’

DIMENSION ARAY(MAX,NF)

REAL' XMAx(1o),XMIN(1o)

0HARACTER*7 30(5)

CHARACTER*1O NAME(10),JNAME(10)

XARAY(MAX)

DIMENSION VAL(106)

DIMENSION XDIv(5),XMIN1(11)
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160

50
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SUBROUTINE PLOT

COMMON /PLTPTs/ POINT(10)

DATA BLANK/1H /,

* DASH/1H-/,STAR/1H*/

DATA XDIV/1.,2.,5./

DATA SC/‘LINEAR','LOC','LOC LOG'/

IF( NPT .LE. MAX ) GO To 5

WRITE(IO,1)(JNAME(K),K=1,8)

FORMAT(' ARRAY SIZE TOO LARGE IN PLOT OF',/,3x,8A1O)

RETURN

CONTINUE

IF( BLOW .LT. BHI) GO TO so

WRITE(IO,160) BLow,BRI

FORMAT(' X-AXIS MINIMUM AND MAXIMUM ARE NOT',E1S.7,'.GE.',E15.7)

CONTINUE

C’ TO PAGE OR NOT TO PAGE

0
\

O
K
O
N
C
D

12

13

O
C
O

630

IF(NPT.LE.40) GO TO 8

WRITE(IO,6)

PORMAT('1')

GO TO 9

WRITE(IO.7)

FORMAT(/////)

CONTINUE

WRITE HEADER FOR PLOTS

WRITE(IO,10)((JNAME(K),K=1,8),SC(ISCALE))

FORMAT(' PLOT OF ',8A10,5X,A10,' SCALE',/)

wRITE(IO,13)

WRITE(IO,12)(POINT(I),NAME(I),I=1,NF)

FORMAT(1OX,A2,5X,A10)

FORMAT(SOH ----------------------------- ,/)

WRITE(IO,13)

FIND MAXIMUM AND MINIMUM

M-o

INITIALIZE XMAX AND XMIN

DO 630 LD-1,NF

XMAx(LD)-ARAY(1,LD)

XMIN(LD)=ARAY(1,LD)

CONTINUE

DO 20 LDS=1,NP

DO 20 L-1,NPT

IF(ARAY(L,LDS).GT.XMAX(LDS)) XMAx(LDS)=ARAY(L,LDs)

IF(ARAY(L,LDS).LT.XMIN(LDS)) XMIN(LDs)=ARAY(L,LDs)

CONTINUE

CHECK FOR ZERO ARRAYS



640

21

156

650

25

22

23

26

29

27

28

3O

31

32

C‘.

0*

C‘.’

80
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SUBROUTINE PLOT

DO 640 NSE=1,NE

IF(XMAX(NSF).EQ.O..AND.XMAX(NSF).EQ.XMIN(NSF)) WRITE(IO,21)NSF

CONTINUE

FORMAT(' ALL POINTS IN THE',I3,' GRAPH OF THIS PLOT ARE ZERO')

IP(ISCALE.EQ.3) GO To 2

DIv=(BHI-BLow)/(NPT—1)

IF(ISCALE.NE.1) GO TO 3

FAC=1

XMIN2=2.**4O

XMAX1--XMIN2

Do 650 JL-1,NE

IF(XMAX(JL).GT.XMAX1)XMAX18XMAXEJLg

IF(XMIN(JL).LT.XMIN2)XMIN2-XMIN JL

CONTINUE

XDIE=XMAx1-XMIN2

DO 22 L-1,3

IF((XDIF/XDIV(L)).LE.100.) GO To 23

CONTINUE

FAC=FAC*10.

XDIF=XDIF/10.

GO To 25

XSCALE=FAC*XDIV(L)

IF(XSCALE.GT.1.) GO TO 28

IF(XSCALE.EQ.1..AND.XDIF.GT.SO.) CO To 28

DO 29 LL=1,7

DO 26 L=1,3

IF(XDIF*XDIV(L).GT.100.) GO TO 27

CONTINUE

PACsPAC*1O.

XDIE=XDIE*1O.

IF(L.EQ.1) L=4

IF(L.EQ.4.AND.FAC.NE.1.) FAC=FAC/10.

XSCALE=1./(EAC*XDIv(L-1))

CONTINUE

XMIN2=XMIN2/XSCALE

XMIN2=INT(XMIN2/10.+(SIGN(1.,XMIN2)-1.)/2.)*10.*XSCALE

DO 30 L=1,11

XMIN1(L)=XMIN2+RLOAT(L-1)*1O.*XSCALE

WRITE(IO,31) XMIN1

FORMAT(SX,G12.5,2X.9(G9.2,1X),G12.5)

WRITE(IO,32)

FORMAT(13X,21('I....'),'I.I')

XVAL=BLOW-DIV

JO=1

HERE WE LOOP OVER THE POINT PLOTTINC ONE LINE AT A TIME

IARAY IS THE ARRAY INDEX OF VAL( ) WHERE A SYMBOL SHOULD BE

DO 40 L=1,NPT



800

500

510

730

42

710

720

760

700

44

40

501

502

503

504

505

810
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SUBROUTINE PLOT

DO 800 LS=1,106

VAL(Ls)=BLANK

IE(ISCALE.EQ.3) GO TO 500

XVAL=XVAL+DIV

GO TO 510

VALOC=VALOC+DIV

XVAL=10.**(VALOG)

CONTINUE

DO 700 Jz=1,NP

IARAY-(ARAY(L,Jz) - XMIN2)/XSCALE + 0.5

IE(IARAY.CT.106) GO TO 700

IF(IARAY.LT.O) IARAY . o

IF(JZ.GT.1)GO TO 730

IERR=ABS(XARAY(L)/XSCALE)+O.5

JERR-106-IERR

KERR-IARAY-1

IE(IARAY.NE.o)CO To 42

IF(IERR.EQ.O)GO TO 700

CO To 710

IE(IARAY.Eo.O)CO TO 700

WAL(IARAY)=POINT(Jz)

IF(IERR.EQ.0.0R.JZ.GT.1)GO TO 700

LERR-IARAY-IERR

IE(IERR.CE.IARAY)LERR=1

JOHN=IARAY+IERR

IF(JOHN.GT.106)JOHN=106

KERR1=IARAY+1

Do 720 JTZ=LERR,KERR

VAL(JTz)-DASH

CONTINUE

DO 760 JTY=KERR1,JOHN

VAL(JTY)=DASH

CONTINUE

CONTINUE

WRITE(IO,44)XVAL,VAL,ARAY(L,1)

FORMAT(1X,E11.4,1X,'I',106A1,‘I',1X,E11.4)

CONTINUE

Go To (501.502.503.504,505).J0

WRITE(IO,32)

GO TO 810

WRITE(IO,106)

GO To 810

WRITE(IO,1O9)

CO To 810

WRITE(IO,113)

GO TO 810

WRITE(IO,116)

CONTINUE
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'SUBROUTINE PLOT

IF( ISCALE .EQ. 1) GO TO 1000

C* RETURN THE VALUES TO NORMAL SPACE

DO 965 K=1,NPT

XARAY(K) - 10.0**(XARAY(K))

965 CONTINUE

DO 975 L-1,NF

DO 975 K=1,NPT

ARAY(K,L) . 1O.O**(ARAY(K,L))

975 CONTINUE

1000 CONTINUE

RETURN

C

C LOG SCALE

C

3 DO 900 MAA'1,NF

IF(XMIN(MAA).LE.O.) GO To 110

900 CONTINUE

XVAL-BLOW-DIV

150 CONTINUE

Do 100 L=1,NPT

IF( XARAY(L) .LE. 0 ) XARAY(L) - 1.0

XARAY(L) - ALOG1o(XARAY(L))

DO 100 LL-1,NF

1OO ARAY(L,LL)=ALOG10(ARAY(L,LL))

XMIN2=2.**4O

XMAX1--XMIN2

DO 910 JL-1,NF

IF(XMAX(JL).GT.XMAX1)XMAX1=XMAX(JL)

IE(XMIN(JL).LT.XMIN2)XMIN2=XMIN(JL)

91 O CONTINUE

XMAx1=ALOG1O(XMAx1)

XMIN2=ALOG10(XMIN2)

XDIF=XMAX1-XMIN2

IXDIE=INT<XDIP)+1

IXMIN=INT(XMIN2+(SIGN(1.,XMIN2)-1.)/2.)

IF( IXDIF .GT. 5 ) Go TO 10000

GO To (1o1,102,1O3,1O3,1O4),IXDIP

1OOOO CONTINUE

IF (IXDIF.LE.10) GO To 1500

0* TO LARGE A RANGE OF Y VALUES

WRITE(IO,45) IXDIF

45 FORMAT(' TO LARGE A RANGE ON THE Y AXIS, MAGNITUDE=',IB,'.GT.10')

1500 CONTINUE

DO 105 L=1,11

105 XMIN1(L)-10.**(IXMIN+L-1)

WRITE(IO,31) XMIN1

WRITE(IO,32)

XSCALE=O.1
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SUBROUTINE PLOT

IXMIN-IXMIN*1O

J0=1

GO TO 80

101 XMIN1(1)=10.**IXMIN

XMIN1(11)=10.**(IXMIN+1)

WRITE(IO,250) XMIN1(1),XMIN1(11)

250 PORMAT(9X,E8.1,25x,'2',19x,'3',11x,'4',9x,'5',6x,'6',

*sx,'7',5x.'8'.4x.'9';ZX.E8-1)

WRITE(IO,106)

106 FORMAT(13X,'I',29('.'),'I',19('.'),'I' 11('.'),'I',
*9('o'),.I.,6('o'),.I',5(.o'),'I.,5('o.3,

*‘I....I...I',5('.'),'I')

XSCALE-0.01

IXMIN-IXMIN*1OO

Jo=2

GO TO 80

102 Do 107 L=1,3

107 XMIN1(L)=10.**(IXMIN+L-1)

WRITE(IO,108)(XMIN1(L),L-1,3)

108 P0RMAT(9X,E8.1,30x,E8.1,42x,E8.1)

WRITE(IO,109)

109 F0RMAT(13X,2('I..............I.........I.....I....I',

*'...I..I..I.I.'),'I.....I')

XSCALE-1./50.

IXMIN-IXMIN*SO

J0-3

GO T0 80

103 D0 111 L=1,4

111 XMIN1(L)-10.**(IXMIN+L-1)

WRITE(IO,112)(XMIN1(L),L-1

112 FORMAT(9x,E8.1,3(18x,E8.1)$

J0=4

WRITE(IO,113)

113 P0RMAT(13X,4('I',24('.')),'I.....I')

XSCALE-1./25.

IXMIN=IXMIN*25.

GO TO 80

104 Do 114 L-1.5

114 IMIN1(L)-1O.**(IXMIN+L-1)

WRITE(IO,115)(XMIN1(L),L=1 5)

115 PORMAT(9X,E8.1,4(13x,E8.1)$

J0=5

WRITE(IO,116)

116 P0RMAT(13X,5('I',19('.')),'I.....I')

XSCALE=1./20.

IXMIN=IXMIN*20

GO TO 80

4)



O
0

950

110

155

120

159
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SUBROUTINE PLOT

LOG-LOG SCALE

DO 950 ND=1,NP

IVAL = ND

IF(XMIN(ND).LE.O.) GO TO 110

CONTINUE

IP(BL0W.LE.0.) GO To 120

VALOG=ALOG10$BLOW)

VBLOCsALOG1O BHI)

DIV-(VBLOG-VALOG)/NPT

VALOG=VALOG-DIV

GO TO 150

WRITE(IO,155) NAME(IVAL)

FORMAT(' PLOT OF ',A10,' CONTAINS NEGATIVE VALUEs',/,

*' AND WILL BE DONE WITH A LINEAR SCALE')

ISCALE=1

GO TO 156

WRITE(IO,159) BLOW

FORMAT(' THE LOWER BOUND =‘,E15.7,' Is NEGATIVE' )

RETURN

END
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APPENDIX 9

Uth Order Accurate WALSH Sequenoy Set

l
2
:

BINARY EXPANSION D
7

‘
0
‘

l l 1

2 10 2

u 100 3

8 1000 U

16 10000 5

31 11111 6

32 100000 7

6M 1000000 8

124 1111100 0

128 10000000 IO

256 100000000 ll

“96 111110000 12

512 1000000000 13

102“ lOOOOOOOOOO In

1849 11100111001 15

198“ 11110000000 15

2OU8 100000000000 7

23Ul 100100100101 13

2730 101010101010 19

3699 111001110011 20

MOON 111110100100 1
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