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ABSTRACT

APPLICATION OF OPTIMIZATION 'IHEDRY IN BIOVIEEHANICS

By

Diane Marie Pietryga

The purpose of this research was to investigate optimization

criteria for the redundant bicmechanical problem, in which the muscle

forces act as the unknowns . Three optimization problens of the lumbar

spine were formulated: the linear problens of minimizing the upper

bound of muscle stress and of minimizing the spinal canpression and the

nonlinear problem of minimizing the summation of muscle stress to the

nith power. The nonlinear problen is based on naximum endurance of

musculoskeletal function, where the parameter ni is based on the

percentage of slow twitch fibers .

The linear criterion of minimizing the upper bound of nuscle

stress predicted a more even distribution of nuscle stress among the

synergistic nuscles and a greater distribution of nuscle activity

canpared to the other two objective functions. 'Ihe criterion of

minimizing the spinal caupression was examined, and it was noted that

the upper bounds of muscle stress seened to limit the solution more than

spinal canpression .
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IN'IWDIIZ‘I'ION

The methods of optimization theory are now being applied to the

analysis of the redundant muscular system, in which the muscles are

active elements . The skeletal system, connected through ligaments and

muscles , provides vital structural support for the human body. load-

sharing among the structures of the musculoskeletal systen has not been

subjected to extensive study. The lumbar spine, due to the widespread

problem of low-back pain, is one structure requiring investigation of

the muscle interactions .

Most adults will suffer from sane form of low—back pain during the

course of their lives. According to sane estimates, as much as one

quarter of the population will lose time from the job or will have to

curtail recreational activities . Many people will become permanently

disabled by low-back problems . Since low-back conditions are a leading

cause of compensation costs to industry, it becomes not only a serious

physical problem to the individual sufferer, but a major socioeconcmic

disability as well .

Far too little is known about what causes low-back pain and how it

can be prevented or effectively treated. Although muscle may not be the

primary participant in the cannon low—back pain syndrcme , it may have

significant influence on its onset and outcome. For this reason,

engineers and physicians are collaborating in the effort to understand

the mechanical basis of musculature in low-back pain and to design

programs for its prevention and treatment.
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As stated earlier, optimization methods are now being used to

determine muscular activity . The study of a practical optimization

problem requires a realistic representation of the physical system by

means of a suitable mathematical model and the formulation of an

appropriate performance criterion . The mathematical model must describe

correctly, at least , the qualitative features of the practical system in

the range of operating conditions, and the performance criterion must

represent an optimal characteristic of the system. The concept of

optimization is well rooted as a principle underlying the analysis of

many complex decision problems. It offers a certain degree of

philosophical elegance that is hard to dispute, and it now offers an

indispensible degree of operational simplicity.

Over the last few decades there has been a steady shift in applied

optimization from the status of an art to that of a scientific

discipline. In the past, most of the theory of optimization

concentrated on the subject of optimality conditions , and practical

methods of computation were rarely investigated. Today, due to the

interaction between mathematicians and engineers , theory and practice

are better integrated. To a large degree, this trend has been fostered

by the development of high—speed computers with which large-scale

problem can be solved with an exactness that previously was

unapproachable . Computer availability has given rise to new

optimization techniques and has enhanced previously developed ones .

Consequently, practitioners of many disciplines are building large scale

optimization models and solving them routinely with linear and nonlinear

programming .



Linear programming is a mechanism for formulating a vast array of

problem with modest effort. A linear programming problem is

characterized, as the name implies, by linear functions of the urflmcvms;

the objective function is linear in the unknowns and the constraints are

linear equalities or linear inequalities in the unknowns. The linear

structure insures that the extremmm will lie at the intersection of two

or more constraints . This greatly reduces the number of possible

locations for the extremum. Efficient algorithim that inspect this

limited region of solution space have been developed with the most

significant of these being the simplex method. This method can be

referenced in Appendix A.

Alternatively, nonlinear programming pertains to optimization

problem in which the objective function and/or the constraints have

nonlinear mathematical forms . The constraints , which are classified

either as equalities or inequalities, define the solution space from

which an optimal solution is to be obtained. Characteristic of

nonlinear problem , there are no general techniques for solving a

problem, but only special ones , each covering a particular class of

practical problem . The geieralized reduced gradient method, which can

be referenced in Appendix B, was used for solving the nonlinear

optimization problem presented in this literature.



SURVEYOFIJ'JERATURE

‘Ihe hurman musculoskeletal system can be considered as a system of

rigid articulating segments on which known external forces (weight,

ground reaction, external load) and unknown muscle, ligament and joint

forces are acting. Relationships between known external forces and the

unknown musculoskeletal or internal forces can be obtained from force

and marent equilibrium equations . Since more muscles than are

mechanically necessary normally cross a joint, the number of unknown

forces will in general exceed the number of equilibrium equations . This

mechanical redundancy yields the problem statically indeterminate .

In statically determinate problem , internal and external forces

can be determined by the use of free body diagrams and equilibrium

equations . Hmever , in statically indeterminate problem the

equilibrium equations must be caiplemented by relations involving

deformations . These deformations are obtained by considering the

gearetry of the problem and they must be carpatible with the external

supports . By considering engineering structures as deformable and

analyzing the deformations in their various members , it is possible to

carpute forces which are statically indeterminate .

Unfortunately, the aforementioned method cannot be applied to the

indeterminate musculoskeletal problem. Since muscular load and

deformation depend on the amount of muscle contraction the exact

muscular load cannot readily be determined from load-deformation



diagrams . For example , in isaretic contraction, no overall length

change exists between muscle origin and insertim.

A method for solving the problem of indeterminancy is reduction of

the excess number of unknown variables. This is acccnplished by either

grouping functionally similar muscles together, or by eliminating

individual muscles based on electramyographic observation. However ,

these anatomical simplifications may induce considerable error and the

mechanical action of individual muscles is obscured.

Alternatively, optimization methods have also been used to obtain

a unique solution. By using an optimization method, not only can a

solution be obtained , but possible physiologically based rationales for

the solution can be associated. This approach erploys a model of the

inherent muscle selection process. The model is based upon the

assumption that the selection process represents an optimal behavior of

the bicmechanical system. The optimal response approach provides a

consistent basis for a tractable mathetatical formulation of the problem

and suggests an interesting qualitative picture of muscle response .

Various optimization criteria rave been developed over the last

twenty years . These criteria include minimization of :

l. Summation of muscle force,

2 Fi

2 . Summation of ratios ,

2 (Pi/Fimax)’ 2(Fi/Ai)

3 . Weighted summation of muscle force , ligament mments and

joint reactions,

* *
Z Fi + C1 (ij + ij + sz) + C2 Rjoint

4. Spinal campression,

C



S. Squares of muscular forces, ratios and vertebral stresses,

£(Fi)2, 2(Fi/Ai)2, 2(Fi/Fimx)2, 2(ri)2

6. Muscular fatigue (maximize activity eidurance),

( 2(Si)n)1/n, and maximize the minirmmm of Tiend

where Tieid = ai*((Fi/Fimax)*loo)ni

7. The upper bound of muscle stress,

Si

8. The free energy input to the muscles,

E

Each of these criteria will now be discussed in detail.

In 1967, McConaill defined the "Principle of Minimal Total

Mascular Force" , which postulates that no more total muscular force than

is both necessary and sufficient to maintain a posture or perform a

motion would be used. Accordingly, this would minimize the sum of the

muscle forces, namely ZFi (15).

This criterion was used by several investigators to analyze muscle

force in static situations . In 1972, Barbenel calculated the muscular

forces at the terporamandibular joint (2) . He concluded that the

suggested minimum muscle force principle did not apply. In 1973, Seireg

and Arvikar analyzed the forces in the lower extremities in standing,

leaning and stooping postures (22) . Other investigators have studied

muscles of the upper limbs. Penrod presented, in 1974, a biarechanical

analysis of a simplified biaxial model of the wrist (18). In 1976, Yeo

used a study of elbow flexion to examine the validity of the minimum

force criterion. His theoretical results contradicted the experimental

results; therefore, it was concluded that MacOonaill ' s hypothesis of

minimal total muscular force was invalid (28). The minimum force



criterion was also used for the analysis of forces in the leg during

level walking by Hardt and Pedotti et al. in 1978, and Patriarco et al.

in 1981 (12, 16, 17). Pedotti et a1. and Patriarco et a1. eiployed

additional , physiologically based constraints to improve the muscle

force predictions .

Pedotti et al. also used a criterion consisting of the sum of

ratios of muscular force to maximum possible muscle force, 2(Fi/me),

and applied this to the analysis of forces in the leg during level

walking (17) . This criterion was eiployed because it enhances the total

muscular force criterion by utilizing the muscles more efficiently by

deranding larger force production from the larger muscles; moreover , it

takes into account the instantaneous state of each muscle , since Fimax

depends upon the instantaneous length of muscle as well as its velocity.

Crowninshield and fellow investigators employed a total muscle tensile

stress criterion, 2(Fi/Ai) (6) . The physiological cross-sectional

area, Ai, was determined by muscle volume divided by its length. They

studied forces in the arm muscles during isometric and isokinetic elbow

flexion and forces at the hip duing level walking, climbing, domcending

stairs and rising from a sitting position.

Another type of linear objective function was exployed by Seireg

and Arvikar in 1973 and 1975 (22, 23). They used a weighted sum of

muscle forces and ligament moments for analysis of forces in the legs in

standing, leaning and stooping postures and quasi-static walking. The

weighting factors can be different for each problem and were chosen in

order to get reasonable results . A weighting factor between four and

infinity was found to be applicable to all the investigated postures.

It is difficult to make a physiological interpretation of this kind of



empirically adjustable objective function. However, William and Seireg

also used this type of criterion in 1977 and 1979 for the prediction of

muscle forces in the jaw and in the leg during bicycling and by Yettram

and Jackman in 1980 for the analysis of forces in the vertebral column

(26 , 27 , 29) .

In 1978 , Hardt concluded that the minimum force criterion yielded

a purely geometric optimization, whereby the set of muscle mment arm

vectors which produce the lowest muscle forces will be choosen over all

other possibilities . Consequently, the only representation of the

muscles in the mathetatics is in the form of their moment arms, ignoring

the physiology of the system. To incorporate sate physiological

properties into the problem, Hardt proposed to define a cost function

that would minimize the instantaneous energy requiremnts of the

muscles. This formulation was used for the prediction of muscle forces

during walking and it revealed an increased number of muscles

participating in the moverent (12) . Patriarco et al . supported this

formulation in 1981 (16).

In 1981, Schultz and Andersson presented a model for internal

force estimation of the lumbar trunk. They chose to minimize the

compression on the lumbar vertebra (20). This criterion was applied to

several physical activities including nonsymetric weight-holding,

resisting a push to the left and resisting a lmgitudinal twist mment.

Schultz, et al., in 1982, used linear programming to investigate the

load on lumbar trunk structures during various mysical tasks including

flexion-extension, lateral heading, and torsion (21). The different

objective functions were applied, the first minimized the expressive

load on the lumbar vertebra and the second minimized the largest muscle



force crossing the lumbar vertebra . Myoelectric measureients did not

reveal much difference between the cost functions.

Unfortunately , the results of a linear criterion are not always

physiologically consistent, and this has bee) noted by most

investigators . When muscle force is the variable used to formulate the

load sharing criterion, there is a preference for muscles with large

matent arms. When muscle stresses, or ratios of muscle force to maximum

muscle force are used as the variable in the criterion, there is

preference for muscles with the largest product of matent arm and cross-

sectional area . Investigators improved the predictions of muscle forces

with linear criteria by formulating additional physiologically based

constraints. This enforced synergism between the muscles.

Nonlinear objective functions can predict synergism, even without

the formulation of additional constraints. It is thought that linear

optimization was used more for reasons of matheratical convenience than

for reasons of physiological requirerent . Investigators are now

erphasizing the importance of selecting muscle prediction criteria based

on sound physiological bases rather than m an arbitrary or

mathematically convenient basis . Unfortunately, nonlinear optimization

convergence on a global minimum is not assured.

In 1977, Gracovetsky et a1. defined an objective function of the

sum of squared shear stresses in the vertebral column and predicted

forces during weight lifting (ll) . This criterion was developed based

on a study finding compression to have relatively minor effects on the

spine compared to shear effects. This result can be explained by

considering that the spine is built to take a corptression load but that

any shear effect cannot readily be compensated. This criterion was
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modified to a quadratic objective function, that minimized shear and

penalized excessive muscle power, in 1981 by Gracovetsky et a1. (10).

For the analysis of walking, Pedotti et al., in 1978, used the sum of

squared muscle forces, which is a sort of power criterion. This

criterion not only minimizes total muscular force, it also penalizes

large individual muscle forces. They also used the sum of squared

ratios of muscle force to maximum muscle force, namely 2 (Fi/me)z.

This criterion was selected as the most feasible since it used the

muscles most efficiently while keeping their level of activation as low

as possible (17) .

In 1981, Crowninshield and Brand presented an optimization method

which uses a criterion of maximum endurance of musculoskeletal function

(4). The method is based on the inversely nonlinear relationship of

muscular force and contraction endurance . This relationship was

proposed to be of the form:

1nT=-n*(ln f) +c

where T is the maxinmmm time of contraction, f is the contractile force ,

arnd n and c are experimentally obtainable constants . They suggested

that the muscle selection to maximize activity endurance is

physiologically reasonable during many normal activities , particularly

prolonged and repetitive activities , such as normal gait. This

criterion is not applicable to all fonm of locamtion such as activities

occurring to maximize speed or to minimize pain.

Based on several reports, Crowninshield and Brand assumd that, in

an approximate manner , the muscle force-endurance relationship is a

basic property of muscle tissue (4). They suggested that the maximum

endurance of a muscle contraction is thus related to the magnitude of
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the average stress within the muscle tissue. The determination of

muscle force during body function may then be formulated as a nonlinear

optimization problem with an objective to minimize the summation of

muscle stress to the nth power. The parameter, n, is dependent on the

percentage of slow twitch fibers. Muscle forces predicted in this

manner will tend to keep individual muscle stresses low. low individual

muscle stresses are achieved by predicting force activity in numerous

muscles and preferentially predicting force in muscles with large cross-

sectional areas and long mment arms . Since individual muscle stresses

are low their potential for prolonged contraction will be high.

The actual value of n may vary between individual subjects and

individual muscle due to fiber type and fiber orientation. Since

accurate and detailed experimental data were not available n = 3 was

selected as a reasonable value, as it is the average value reported in

literature. To reduce the magnitude of the objective function, thereby

avoiding numerical problem in large scale optimization, the function is

rnormalized. The criterion has the form [£(Fi/Ai)3]1/3, where m is the

number of muscles . This method was deionstrated at the elbow during

iscmetric contraction and in the lower extremity during locorotion.

During gait , the observed muscle activity pattern in the lower

extremities , as detenmirned by HG, shows substantial agreemnt with that

activity pattern predicted when endurance is used as the optimization

criterion. In addition, since this problem has a continuous convex

character of the objective function and the linear constraints it falls

into the category of convex programming. This convexity assures that

the only minimum is a global or absolute miniImmm.
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Dul et al., in 1984, presented a similar criterion which is based

on the hypothesis that muscular fatigue is minimized during learned

endurance activities (7) . An endurance type of activity such as

constrained sitting posture or walking, involves sustained or repetitive

muscular contractions . These contractions are fatiguing, and after a

specific period of time , the endurance time, the required mechanical

output cannot be maintained anymore . It is assumed that the

neuranuscular system anticipates this by selecting a load sharing

between the muscles such that endurance time of the activity is

maximized, hence muscular fatigue minimized. Again, this concept may be

less useful for other types of activity where quick contractions are

involved.

Dul's criterion is to maximize the minimum of Ti where

Ti=ai(Fi*lOO/Fimx)ni. Ti is the endurance time and F1 is the force for

the ith muscle. The constants ai and ni are muscle parameters depending

on the percentage of slow twitch fibers for the respective muscle. The

criterion was used to determine forces in the lower extremities during

static-isotetric knee flexicn. The predicted muscular load sharing was

in good agreement with direct force measuremnt data. In comparison

with Crowninshield and Brand, the general pattern of load sharing is

similar, yet the predicted magnitude of the muscle force is not the

same. The cubic criterion predicted linear synergism, whereas the

minimum-fatigue criterion predicts non-linear synergism. Both criteria

predict that there is relatively more force in muscles with large cross-

sectional areas . For the cubic criterion more force is also allocated

to muscles that have large moment arms . The load sharing predicted with

the minimum fatigue criterion does not depend on marent arm, although
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the absolute force levels do depend on this variable . Instead,

relatively more force is allocated to muscles with a high percentage of

slow-twitch fibers . This reveals the pertinence of incorporating muscle

fiber types into the problem.

A new optimization approach, based on minimizing the upper bound

of muscle stress, was introduced in 1984 by An et a1. (1). The concept

of this new optimization approach is quite different from those

previously used in sumations of muscle force or stress, or their

nonlinear combinations . Optimization procedures used to minimize the

sum of unknown force variables have been more or less based on

consideration of overall efforts of the system. However, from an energy

storage and transport viewpoint, each muscle bundle has its own storage

and blood supply . Therefore, in constructing the optimization criteria

for this new technique, individual muscle effort was considered. Since

this technique allows a solution which considers more even distribution

of muscle stress among all synergistic muscles, it will favor the

muscular response with the largest endurance for the task.

The criterion of minimizing the upper bound of muscle stress was

applied to a simplified model of the elbow joint. For conparison

purposes , this problem was also solved using other previously mentioned

objective criteria. These included minimizing the sumation of muscle

forces and summation of muscle stress using the linear optimiztion

method, as well as minimizing the summation of the square of muscle

force and summation of the square of muscle stress using rnonlinear

optimization. The solution of muscle force distribution based on the

proposed approach predicted the same number of active muscles for the

same given loading condition as that using either of the nonlinear



14

criterion. The accuracy of the results obtained by this new technique

was further verified by its canpatibility with physiological

considerations .

From the mathetatical point of view, the formulation of this

criterion has a major advantage as well. Since the entire system of

constraints and objective functions consists of linear terms of unknown

variables , the well-established linear programming algorithm, the

simplex method, can be used to obtain the solution efficiently. In

contrast, the algorithm obtained by rnonlinear optimization is usually

more involved and less efficient than linear programming. In addition,

convergence of the solution to a global minimum is not always

guaranteed.

The criteria of minimizing the upper bound of muscle stress and of

maximizing the activity endurance time are the least disputed criteria

in the bionechanical problem. In other words , these two criteria seem

to represent an optimal characteristic of various activities performed

by the human musculoskeletal system. For this reason, both of these

criteria will be developed for a nonsymmetric weight holding task.



ANALYTICAL METHODS AND RESULTS

Qatimization can be used to determine the muscle and joint loads

on any part of the body, but it will be applied here to determine the

loads on the lumbar spine . loads on the lumbar spine should be kept as

light as possible since it is suspected that heavy loads rave a role in

both causing back pain and aggravating pre-existing lumbar spine

conditions . Since heavy spinal loads are to be avoided, it is necessary

to know under what circumtances they arise. By determining the muscle

and joint forces that occur during various physical activities , these

circumtances can be defined.

Tb conpute the loads on the lumbar spine created by a quasi—static

physical activity, the body is first divided into upper and lower parts

by an imaginary transverse cutting plane . This cutting plane is passed

through the level of the lumbar spine at which the loads are to be

determined. In this case, it is at the L3 vertebra. The upper part is

considered as a free body subject to the laws of Newtonian mechanics,

and a two—stage calculation procedure is carried out (Figures 1 and 2).

In the first stage, the external force is considered as an equivalent

force and mment acting at the origin; in the second, the internal

forces are estimated to place the system in equilibrium. The equivalent

external system consists of six conponents: three force corponents and

three monent corponents .

To calculate the external equivalent system, a coordinate system

must be established. The origin is placed at the center of the L3

15
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vertebral body and it is assumed that the equivalent system acts at that

point. Coordinate directions are selected as follows: the x axis is

positive to the right, the y axis is positive anteriorly, and the z axis

is positive superiorly. The x arnd y axes lie in the transverse cutting

planeandthezaxisisperpendiculartothecuttingplane,as

illustrated in Figures 1 and 2.

The body segment weights and the mass-center locations were

obtained from Clauser et a1. and Eycleshymer and Schoemaker

respectively, as referenced by Schultz and Andersson (3,8,20). The

coordinates of the mass center locations are specified as (xi, yi, 2i) ,

where i represents the specific body part.

The action of a force on a body can be separated into two effects,

exterrnal and internal. The weight of a body, an external effect, is the

gravitational force distributed over its voluie which may be taken as a

concentrated force acting through the mass center location.

Referring to Figure 1, the following equations were written for

the external force and monent corponents of the upper body segment:

(1) Fx = 0

(2) Fy = O

(3) Fz=-(Q+wh+wl+wr+wt)

(4) Mx = -(qu + tht + yrwr + 371Wl + thh)

(5) My = -(lel - err)

(6) M2 = 0

where: Q = weight of object held in right hand

weight of the head and upper neck

3
3

=
3 II

= weight of the left upper limb



Figure 1. External System
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W = weight of the right upper limb

W = weight of the trunk above the cutting plane

F = equivalent external force carponent in the x direction

at the origin

F = equivalent external force component in the y direction

y at the origin

F = equivalent external force canponent in the z direction

at the origin

M = equivalent external marent component in the x direction

at the origin

M = equivalent external motent carpooent in the y direction

y at the origin

M = equivalent external moment component in the z direction

at the origin

If the nurerical values of Table 1 are assured, then the three nonzero

corponents of the net reaction are :

Fz = -391 N

(7) Mx = —3130 Non

M = -l60 Ncm

Y

The external system must be balanced by the internal force between

thelowerbodysegment andtheupperbodysegment, inordertokeepthe

upper body in equilibrium. However, the external force system is not

affected by the material properties of the body tissues . Anatomical

variables affect the external gravitational forces only in so far as

they influence mass distributions and mutant arms.

ThetrunkmodelinFigureannbeusedtoidentifythe internal

forces . Since this model incorporaes ten muscle equivalents , which

represent most of the major muscle groups spanning the lumbar region , it

can be used in a variety of physical activities.
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Figure 2. Equivalent Internal System
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The three spiral segment loads, C, Sa and Sr are assured to act

atthe coordinate system origin. The muscle orientation angles are

defined as: B , the angle between the internal obliques and the z axis;

6, theanglebetweentheexternalobliquesandthezaxis;and¥, the

angle between the latissimus dorsi and the z axis.

TABLE 1. Body Segment Weights and Mass-Center locations

 

Weight (N) Coordinate locations (cm)

Q = 40 xq = 0 yq = 45

Wh = 35 xh = O yh = 8

W1 = 32 x1 = 20 y1 = 1

Wr = 32 XI. = 15 yr = 24

wt=252 xt=0 yt=1

Solving the equilibrium equations written from Figure 2 for the

equivalent external forces and monents generates the following

equations:

(8) -Fx = -Sr 4» sin Y * (Ll-LI.)

(9) -Fy=-Sa-sin8*(Il+Ir)+sin5*(Xl+Xr)

(10) —Fz=P+C-El-Er-cos 8*(Il+lr)-cosY*(I-1+Lr)

-Rl-Rr-cos<5*(Xl+)%)

(ll) -Mx=ye*(E1+Er)-cos B*yo*(Il+Ir)+cosY *yl*

(Lima-yrwawn-oosé *y.*<x1+>s>+ypp

(12) -M =-x “(E1 -Er)-cosi3 *xo*(Il -Ir)-cosY 1"xl
y e

*(Ll-Lr)-xr*(R1Ms)-wsfl_5*x*(X-lgc)

(l3) -Mz=-sin8 *xo* (Ir -Il)—sinY *y1*(Lr-Ll)-

sind *xo *(Xl Xr-)
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left erectcr equivalent force

= right erectcr equivalent force
a .‘i

a
m

a
t II

I = left internal oblique force

H

Ir = right internal oblique force

L1 = left latissimus dorsi equivalent force

Lr = right latissimus dorsi equivalent force

R1 = left rectus abdominis force

Pr = right rectus abdominis force

X1 = left external oblique force

Xr = right external oblique force

P = intra—abdominal pressure force

C = corpressive spinal force

Sr = right-lateral spinal shear

Sa = anterior spinal shear

The intra-abdominal pressure resultant can be determined from

experimental measuremnts . The maximum calculated intra-abdcminal

pressure in stance is 25 mmHg as referenced from Gracovetsky, et a1.

(10). With the abdominal cavity area, 273.4 cmz, this resultant force

from intra—abdoninal pressure can be calculated to be 92.8 N (9).

The trunk cross-sectional geometrical data given in Table 2 , are

representative of a person who has a trunk width of 30 cm and a trunk

depth of 20 cm at the L3 vertebral level (20). Substituting the values

in Table 2 and the values for the intra-abdominal pressure and the

equivalent external system into equations (8) through (13) yields the

following simplifications:

(l4) 0 = —Sr + 0.707 * (Ll - Lr)



(15)

(16)

(17)

(18)

(19)

The
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0 = —8a - 0.707 * (I1 + Ir) + 0.707 * (X1 + Xr)

298.2 = C - E1 - Er - 0.707 * (Il + Ir) - 0.707 * (Ll + Lr)

— R1 - Rr — 0.707 * (x1 + xr)

2684.57 = 4.4 * (ii:1 + Er) — 2.69 * (11 + Ir) + 3.96 *

(Ll + Lr) - 10.8 * (R1 + Rr) - 2.69 * (X1 + X1.)

160 = — 5.4 * (El - Er) - 9.54 * (I1 - Ir) - 4.45 *

(L1 - Lr) - 3.6 * (Rl - Rr) - 9.54 * (Xl - XI.)

0 = 9.54 * (I1 - Ir) + 3.96 * (L1 - Lr) - 9.54 * (X1 - Xr).

thirteen internal forces are unknown. Since only six

equations are available to find them, it is obvious that the use of this

model leads to a statically indeterminate problem. The examples

following will illustrate two different optimization methods for solving

 

this problem.

TABLE 2 . Cross-Sectional Gearetric Data

Coordinate locations (cm) Angles (degrees)

xr = 3.6 yr = 10.8 B = 45

x = 0.0 = 4.8 <5 =45

p yp

x0 = 13.5 yo = 3.8 y = 45

Xe = 5.4 ye - 4.4

x:L = 6.3 Yl = 5.6

The major question that arises when optimization is used for

solution,

diversity

different

is the choice of the objective function. Considering the

of musculoskeletal function, it is likely that distinctly

criteria for muscle selection may be utilized for different

activities . For the physical activity previously discussed, the

following optimization problem will be developed: first , minimization
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of the upper bound of muscle stress and second, minimization of the

summation of muscle stress to the nith power, which is based on maximum

endurance of musculoskeletal function.

Previously, most optimization procedures have been more or less

based on consideration of overall efforts of the systenn. The criterion

of minimizing the upper bounnd of muscle stress was developed to take

individual muscle effort into consideration. This idea stem from the

energy storage and transport viewpoint that each muscle bundle has its

own storage and blood supply. This technique predicts a solution with a

more even distribution of muscle stress among all synergistic muscles ,

thereby favoring the largest endurance for the task (1) .

With this particular criterion, the core of the problem

formulation lies within defining the constraints, as opposed to

explicitly defining the objective function. The most important of these

constraints being those that define the donain where muscle stress Si is

greater than or equal to any other muscle stress Sj‘ Ornce this domain

is defined, the upper bound of muscle stress Si is minimized. In order

to define this space, nine inequality constraints were developed for

each individual muscle , Mi . Mathematically these constraints are

represented by:

(20) Si 3 Sj

The muscle cross-sectional areas, given in Table 3, were used to

calculate the respective muscle stresses (9) .

Additional constraints incorporated into this problem here the

equilibrium equations (16) through (19). These equations were obviously

formulated as the four equality constraints. Equations (14) and (15)
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TABLE 3 . Transverse Section Through the Abdonen at L3

 

Area (omz)

Muscle . Right Left

Erector Equivalent 20.202 20.121

latissimus Dorsi 2.129 2.258

External Oblique 7.032 7.610

Internal Oblique 9.615 10.582

Rectus Abdominis 3.549 4.323

were used to find Sa and Sr after the optimization solution was

obtained. This changes the optimization problem to one of eleven

unknowns .

Also included in this problem were the ten inequality constraints

that the muscle forces must be greater than or equal to zero. This

arises from the fact that muscle contractions always produce tensile

forces . In the simplex method, these constraints are automatically

assured.

Finally , the problem statemnt for minimizing the upper bound of

muscles stress is:

(21) minimize

0
‘
)

(
D

P
-

M
:

,.
..

I
V

subject to

|
V S.

3

0

equations (16) through (19)

Since n-dimensional space is impossible to envision, the solution

space for this type of problem will be illustrated in three-dimensional

muscle space . Each axis represents the force in one of the three
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muscles, Mi where i = l, 2, 3. For simplicity, the respective areas,

Ai' will all be unity.

The donain formed by the inequalities:

(22) S S
>

3‘1

(23) S S
>

3‘2

represents the area where 83 is greater than or equal to S1 annd 52.

Both inequalities, (22) and (23), form a 45 degree plane between the

respective variables , Mi . The problem is limited to the positive

quadrant due to the constraints that the variables must be greater than

or equal to zero. These constraints are represented by the expression:

(24) M110, i=1, 2,3

The area above the 45 degree planes and bounded by the perpendicular

planes is the donain where 83 is the greatest. This domain is

illustrated in Figure 3. It is important to note that if the areas were

notunityandequal, (A1=A2=A3=1), theplaneswouldnotbeat45

degree angles.

In addition, two equality constraints , Figure 4 , were incorporated

into this problem. These constraints are represented by the equations :

(25)3.0*M1+M2+1.5*M3=9

(26) M1+0.8*M2+2.0*M3=8

The line of intersection formed by these two planes defines the

coordinate values that satisfy both constraints . This limits the

optimization solution to the values on this line.
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Containing all of the constraints together defines the conplete

solution space. The only possible solution space lies along the line of

intersection formed by the equality constraints that is contained in the

detain where $3 is the greatest. This space is illustrated in Figure 5.

Note that the line of intersection formed by the equality constraints

intersects the 45 degree plane between M2 and M3 . This point of

intersection is the solution to minimizing the upper bound of M3 muscle

stress .

Furthermore , imagine the domains defining S1 and S2 as the

greatest superimposed on Figure 5 . This involves a 45 degree planne

between the M1 and M2 axes, parallel to the M3 axis. It is easy to

visualize that minimizing the upper bound of M2 muscle stress yields the

same optimum solution as that of M3. However, since the line of

intersection formed by the equality constraints does not intersect the

detain where S1 is the greatest, no solution exists when minimizing the

upper bound of M1 muscle stress. Table 4 lists the nunerical results

obtained when searching each domain.

Table 4 . Three-Dimensional Optinmmm Solutions

 

Donain Optimum Solution

M1 ._ ..... .—

M2 0.881 2. 542 2.542

M3 0.881 2.542 2.542

Referring back to the weight lifting task, all ten muscular

donains were searched using the simplex method. Seven of the ten

detains searched yielded a nuterical solution . However , the optimum
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solution was found in only two of these seven detains, the right

equivalent erectcr and the right latissimus dorsi . Note that these two

domains generated the identical solution. Table 5 lists the load and

stress values that the muscles were predicted to carry in the optimal

solution. The stress values of the remaining five domains are listed in

Table 6. The three domains that did not have a numerical solution were

El, Il annd L1' in which the solution did not satisfy the constraints.

In corparison, Schultz and Anndersson also solved this nonsymetric

weight holding problem of ten muscular unknowns using linear programming

(20). They selected the cost function to minimize the conpression on

the L3 lumbar vertebra. The constraints consisted of the equilibrium

equations (16) through (19) , the ten requiremnts that the muscle

tensions cannot be negative and the ten requiremnts that the muscle

contraction intensities cannot exceed the reasonable level of 100 Iii/om2 .

The equations for x and y force equilibrium, (14) and (15), were used to

calculate Sa and Sr after the solution was obtained. This problem is

formulated as:

(27) minimize C

subject to 0 .5. Mi 5. 100 N/cmm2

equations (16) through (19)

The solution to this optimization problem is listed in Table 7.

In constructing the optimization criterion for minimizing the

summation of muscle stress to the nith power, the importance of

selecting a criterion based on sound physiological bases was emphasized.

It is assured, that in an approximate manner the muscle force-endurance

relationship is a basic property of muscle tissue (4) . The maximum
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TABLE 5. Optimum load and Stress Data from the Criterion of

Minimizing the Upper Bounnd of Muscle Stress

 

Elerent load (N) Stress (N/cmz)

E1 282.013 14.016

Er 283.153 14.016

Il 0.000 0.000

Ir 8.859 0.921

L1 31.646 14.016

Li 29.840 14.016

R1 0.000 0.000

R.r 0.000 0.000

X.l 0.000 0.000

Xi 8.110 1.153

C 918.835 --

Sa 0.530 —--

S 1.277 --
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Table 6 . Stress Data from the Criterion of Minnimizing

the Upper Bound of Muscle Stress

Space Searched / Stress (N/cmz)

Elenent Ir Rl RY X1 Xr

El 18 . 746 18 . 999 17 . 262 16 . 000 17 . 119

Er 18 . 746 18 . 999 17 . 262 19 . 372 17 . 119

I1 16.182 0.000 0.245 0.960 0.000

Ir 18.746 2.551 0.000 0.000 0.929

L1 18 . 745 18 . 999 17. 262 19. 372 17. 119

Lr l8 . 746 18 . 999 17 . 262 19 . 371 17 . 119

R1 0.000 18.999 0.000 0.000 0.000

Rr 0.000 0.000 17.262 0.000 0.000

X1 0 . 000 0 . 000 0 . 461 19 . 372 14 . 762

XI. 1. 140 3 . 343 0. 000 19 . 372 17. 119
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Table 7. Optinmmm load and Stress Data from the Criterion of Minimizing

the Oonpression on the L3 Lumbar Vertebra

 

Elenent load (N) Stress (Womz)

E1 98.640 4.902

Er 128.270 6.349

Il 0.000 0.000

Ir 0.000 0.000

L1 212.900 94.293

Li 212.900 99.999

R1 0.000 0.000

R.r 0.000 0.000

X1 0.000 0.000

Xi 0.000 0.000

C 826.150 —-

Sa 0.000 --

Sr 0.000 --
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endurance of a muscle contraction is thus inversely related to the

magnitude of the average stress within the muscle tissue. The

determination of muscle force during body function may then be

formulated as a nonlinear optimization problem with an objective to

minimize the sumation of muscle stress to the nith power. The constant

ni is related to fiber type and fiber orientation or more specifically

to the percentage of slow twitch fibers for the respective muscle, Mi.

This criterion is valid only when applied to an endurance activity. An

endurance type of activity involves sustained or repetitive muscular

contractions . The activity of holding a relatively stall weight in

front of the body can be considered an endurance activity since it

involves sustained muscular contractions.

The muscle force-endurance relationship was proposed to be of the

form:

(28) lnT. =-n. *1nM. +c.

1 1 1 1

where: Ti = maximum time of contraction for the ith muscle

Mi = muscular contractile force for the ith muscle

n. = constant relating endurance time with muscle force for

1 the ith muscle

ci = endurance time for a muscle force level of 1% maximum

muscle force for the ith muscle

The parameters ni and ci are dependent on the percentage of slow-

twitch fibers, 21' These parameters can be represented by the following

equations:

(29) nn‘,L = 0.25 + 0.036 * Zi

(30) c. = 3.48 + 0.169 * z.
1 1
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The percentage of slow twitch fibers for the relative muscles ,

referenced from Johnson et al., are listed in Table 8 (13).

'DlBLE 8 . Slow Twitch Fiber Parameters

 

Muscle Zi ni Ci

Erector Equivalent 58.4 2.4 13.3

latissimus Dorsi 50.5 2.1 12.0

Internal Obliques 76.4 3.0 16.4'

External Obliques 76.4 3.0 16.4

Rectus Abdominis 46.1 1.9 11.3

The values for both the internal and external obliques are the average

values estimated from experimental studies since a more accurate value

was not obtainable (4) .

The constraints involved in this problem consist of four equality

constraints and eleven inequality constraints . The equality constraints

were the equilibrium equations (16) through (19). As before, the

equations (14) and (15) were used to back solve for Sa and Sr after the

optimization solution was obtained . The inequality constraints

designate the reasonable range each muscle force can be found in. In

other words, these constraints fornm both an upper and lower bound for

muscle force. The timer bound is determined by assuming that the muscle

contraction intensities do no exceed the reasonable level of 100 N/cnm2 .

Hence, the determination of muscle force during body function is

formulated as a nonlinear optimization problem with an objective to

minimize the summation of muscle stress to the ni power. The problem

statetent is sumarized as:
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m

(31) minimize Z (5.) 1'1i
. l

1=l

subject to o 5 si 3 100 N/cm2

equations (16) through (19)

Predicting muscle forces to minimize this objective function

coincides with maximizing endurance for the defined activity. The load

and endurance data obtained from this optimization problem are listed in

Table 9 .

Figures (6) and (7) are referred to as two variable design spaces,

where the design variables correspond to the coordinate axes . In

general, a design space will be 11 - dimensional, where n is the number

of design variables . The two variable design space is used to help

visualize the concepts of optimization techniques . Figures 6 and 7

illustrate the objective function contours (dashed lines) as a function

of the erectcr equivalents, El and Er’ and the latissimus dorsi, L1 and

Lr , respectively. The solid lines on these figures represent the

corresponding numbered constraints .

In general , nonlinear optimization convergence on a global minimmm

is not assured. However , the present problem due to the continuous

convex character of the objective function and the linear constraints ,

falls into the category of convex programming. This convexity assures

that the only minimum is a global minimum (25).

In conparison, Crowinshield and Brand used a similar optimization

criterion:

3 1/3111

(32) 2 [(51) ]

i=1
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TABLE 9. Optimum.Load and Stress Data from.the Endurance Criterion

 

Elemnt load (N) Stress (N/cmz)

E1 282.700 14.050

Er 312.300 15.459

I1 0.000 0.000

Ir 0.000 0.000

L1 8.377 3.709

Li 8.377 3.934

R.l 0.000 0.000

R.r 0.000 0.000

X1 0.000 0.000

Xi 0.000 0.000

C 905.100 --

Sa 0.000 -—-

Sr 0.000 --
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The cube root of the objective function was taken for two practical

reasons: first, so the objective function will have muscle stress units

and second, to reduce the magnitude of the objective function thereby

avoiding nurerical problem . The average experimental value of F3 is

chosen for n. This method was denonstrated at the elbow during

isoretric contraction and in the lower extremity during loconotion (4) .

When this method was applied to the weight lifting task, only a

nominal change in the solution occurred. Table 10 lists the load values

withn=3, withandwithoutthe takingcubedrootandtakingthecubed

root with n varied according to the percentage of slow twitch fibers .
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Table 10. Load Values of Nonlinear Criteria

 

Load (N)

Normalized Not Normalized Normalized

Element n=3 n=3 n=variab1e

E1 281.200 281.200 282.700

Er 310.800 310.800 312.300

I1 0.000 0.000 0.000

Ir 0.000 0.000 0.000

L1 10.060 10.090 8.375

Lt 10.060 10.110 8.375

R.l 0.000 0.000 0.000

Rr 0.000 0.000 0.000

X1 0.000 0.000 0.000

xr 0.000 0.000 0.000

C 904.400 904.400 905.100

Sa 0.000 0.000 0.000

Sr 0.000 0.014 0.000



CONCLUSION

The method of optimization is applied to complex decision or

redundant problems , in which a unique solution cannot readily be

determined. When formulating an optimization problem, the performance

criterion must represent an optimal characteristic of the system.

Although electramyographic results were not available to confirm the

validity of the criteria presented in this research, the optimization

solutions are discussed mathematically.

The linear optimization problem of minimizing the upper bound of

muscle stress yielded seven nmerical solutions . 'IWo of these seven

muscular detains shared the same solution, which was also the optimal

solution. The solution did not satisfy the constraints in the remaining

three dcmains . The constraint violations occurred when searching the

left internal oblique , the left erectcr equivalent and the left

latissitmis dorsi detains. The conflict that developed is that the

equality constraints defined a solution space that was not cannon to the

solution space or detain formed by the inequality constraints . This

noncamnonality did not allow the solution to satisfy the constraints .

The five muscle dcmains that yielded a numerical solution, but not

the optimal solution, selected both different muscle force magnitudes

and different active muscles. However, in each of the seven domains,

all but two of the calculated stress values have the same stress as that

of the muscular domain searched. The optimal solution, muscle spaces Er

42
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and LI, has a maximum stress of 14.016 N/om2 compared to the largest

stress generated of 19.372 N/om2 in muscle space X1.

For the nonlinear problem, only four active muscles were selected.

Nailinear cost functions are assumed to select more synergistic muscles .

Here, the linear method of minimizing the upper bound of muscle stress

predicted ‘ a more even distribution of muscle stress among the

synergistic muscles and a greater distribution of muscle activity.

However, it is interesting to note that the stress values for both the

miniJmmm fatigue and minimum upper bound of muscle stress criteria were

in the same range.

The active muscles selected for the minimum fatigue criterion were

the same active muscles selected by the linear criterion of minimizing

the compression on the L3 vertebra . In comparing the dominant muscles ,

the erectcr equivalents were selected by the minimum fatigue criterion,

while the latissimus dorsi were chosen by the criterion of minimizing

the spinal compression. The method of minimizing the spinal compression

drove the latissimus dorsi to its upper bound. When the upper bound was

removed, the latissimus dorsi carried 96% of the muscular load with only

a 128 N load decrease carried by the spine compared to the other two

cost functions . This response reveals that the solution had a greater

dependency on the upper bound than on the cost function itself. Neither

the criterion of minimizing the upper bound of muscle stress nor the

eidurance criterion yielded muscle stresses near the upper bound.

The minimum fatigue criterion was modified four times. Only a

negligible difference in force magnitude was noticed when the cubed root

ofthecostfmctionswastakenforbothcasesofn=3andnivalues.

Therefore, taking the cubed root was unnecessary in this problem. Only
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a minor difference in force magnitude existed when the values of ni

according to the percentage of slow twitch fibers were used compared to

the experimental average value of n=3 . For the activity of holding a 40

Nweight, this responsecanbeexpectedsince there isnotalarge

difference between the ni parameters of the erectcr equivalents and the

latissimus dorsi . The endurance criterion should be investigated

further by increasing the load held in the right hand. Increasing the

load would involve more muscles , including the antagonistic rectus

abdominis muscles , thereby involving a full range of ni parameters .

Figure 6 illustrates that constraints 2 and 3, equations (16) and

(17) respectively , are redundant in the vacinity of the erectcr space

solution. Also, constraint 5, equation (19), does not even exist in the

limited erectcr space shown. All four equality constraints are present

in the latissimus dorsi solution space illustrated by Figure 7 .

Constraints 2 and 3 are again found redundant in this space. In

addition, constraints 4 and 5, equations (18) and (19) respectively, are

also found redundant in the latissimus dorsi space shown. In both of

the muscle spaces illustrated, the optimal solution is found at the

intersection of the constraints .

Knowledge of the magnitudes and directions of muscle forces is

necessary in the design of preventative and rehabilitative programs . In

such applications , the solution to the indeterminate biomechanical

problem can be obtained by formulating an objective function and

utilizing an optimization technique. The criterion chosen to formulate

an optimization problem must represent an optimal characteristic if the

problem is to yield an accurate solution. There is a great need to
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experimentally validate the predictions presented and to continue

formulating optimization problems based on physiological reasons .
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APPENDIX A

SIMPLEXm

The original form of the simplex algorithm was developed by George

B. Dantzig in 1947 and was formally published in 1951. Many variations

of the original technique have been developed since, but the original

simplex algorithm is still the best procedure for the solution of the

general linear programming problem when manual corputations are used.

Certain other revised simplex algorithms are computationally

advantageous when the solution is calculated with a digital corputer .

The following derivation of the simplex method is referenced from David

G. Luenberger .

As previously stated, a linear programming problem is a

matheratical program in which the objective function is linear in the

unknowns and the constraints consist of linear inequalities and/or

linear equalities. The exact form of these constraints may vary from

one problem to another but any linear program can be transformed into

the following standard form:

. . . ++

munimuze CX

(A1) subjectto KI=S

£30

mxnmatrixwhere :

n — dimensional column vector

U
‘
i

>
<
+

3
’
:

ll

m - dimensional column vector

46
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E=n—dimensiona1rowvector

Various other forms of linear programs can be converted to the

standard form by one or more of the following techniques: slack

variables , surplus variables , free variables and by eliminating a

variable unconstrained in sign.

It is also important to note that all inequality constraints must

be in the form of less than inequality constraints. The purpose of this

is for the geoletric advantage of having the gradients of the cost

function and the constraints point away from the optimal solution.

A basic solution is obtained by setting all the independent

variables equal to zero and solving for the dependent variables . This

matrix is said to be in canonical form. Since optimal solutions are

always basic solutions , it is important to understand the concept of

basic solutions and the fundamental theorem of linear programming.

Consider the system of equalities ,

(A2) fif=f§

where: ii=mxnmatrix

§=n-dimensicnalvector

b=m—dimensionalvector

From the n columns of 1:, select a set of m linearly independent

colurms. Such a set exists if the rank of 11 is m. For notational

simplicity, assume that the first m columns of it were selected and

denote the m x m matrix determined by these columns by E. This matrix

is illustrated in equations (A3).
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al,m+1 a1,m+2 ° ' ' al,n

a2,m+l a2,m+2 ° ° ° 32,11 b20

0 0 . . . 0 . . . . . . .

(A3) . . . . . . . . . .

0 0 l b
ammwl am,mH-2 ’ ' ‘ gum me

The matrix 8 is referred to as a basis since it consists of m

linearly independent columns that can be regarded as a basis for the

space E“. The matrix 8 is then nonsingular and a unique solution may be

obtained from the equation:

~4-

(A4) BxB =

where : mxmmatrix

m - dimensional vector

(
7
1
‘
J
‘
f

(
H
?

(
T
i

II

In - dimensional vector

The vector {B is cotposed of the first In co'tpcnents of 3}, the basic

variables, and the remaining corponents of f are equal to zero. That

is, 32 = (2:3, 6) .

In general, equations (A2) may not have any basic solutions. By

making certain elerentary assumptions regarding the structure of the

matrix 1:, this trivial problem may be avoided. First, assure that

n > m, that is, the number of variables xj exceeds the number of

equality constraints. Second, assume that the rows of a are linearly

independent , corresponding to linear independence of the m equations . 75.

linear dependency among the rows of I: would lead either to contradictory

constraints and hence no solutions to (A2), or to a redimdancy that



49

could be eliminated. Now, with the assumption that 31. has rank m, there

exists at least one basic solution to (A2).

Another point worth comenting on is that of a degenerate

solution. If one or more of the basic variables in a basic solution

has value zero, that solution is said to be a degenerate basic solution.

Note that in a nondegenerate basic solution , the basic variables , and

hence the basis 13, can be immediately identified from the positive

components of the solution. Since the zero—valued basic and nonbasic

variables can be interchanged, ambiguity is associated with a degenerate

basic solution .

So far in the discussion of basic solutions, no reference has been

made to the positivity constraints on the variables . Similar

definitions apply when these constraints are also considered . Thus ,

consider the system of contraints:

=3,9:
:

(A5)

0>
4
1
:

which represents the constraints of a linear program in standard form.

If a vector 32 satisfies equations (A5) it is said to be feasible for

these constraints . A feasible solution to the constraints (A5) that is

also basic is said to be a basic feasible solution; if this solution is

also a degenerate basic solution , it is called a degenerate basic

feasible solution.

The primary importance of basic feasible solutions in solving

linear programming problems is represented through the fundamental

theorem of linear programming. The theorem itself shows that it is

necessary only to consider basic feasible solutions when seeking an
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optimal solution to a linear program because the optimal value is always

achieved at such a solution.

The geotetric interpretation of the simplex method is straight

forward. The constraints form a polyhedron (multidimensional case)

which is either convex from or to the origin, according to whether the

"greater than" or the "less than" inequality condition is imposed. The

polyhedron defines the feasible solution space . There is a special

category of the infinite feasible solutions that is of a finite number.

These solutions , called basic feasible solutions , are situated

geometrically at the vertices of the polyhedron. The number of basic

solutions is determined by the number of variables , n, and the number of

constraints , m, according to the combinatorial formulas:

(A6) CT‘ = n1/m£(n - m)!

The z—constant equations (evaluated cost fmctions for each basic

solution) form a family of straight lines or hyperplanes . The extremum

solution is given by the remotest or the nearest intersecting points

between the z—hyperplane and the polyhedron (24) .

The first step of the simplex method, referred to as phase I,

simply locates a vertex of the feasible set, or establishes that the set

is erpty. Assuming that a vertex, or basic solution, has been found the

procedure continues with phase II. This phase is the heart of the

method, which searches from vertex to vertex along the edges

(intersections of the planes) of the feasible set . At a typical vertex

there are n edges to choose from, sote leading away from the optimal

solution and others leading gradually toward it. Since linear

programming forces the solution to stay in the feasible set , an edge
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that is guaranteed to decrease (increase) the cost is chosen.

Eventually the optimal solution is reached.

Another important point is the convexity of the canonical system

forms. During the various linear transformations occurring in linear

programming, the convexity of the polyhedron does not change . The

properties concerning the vertices therefore retain the same; they

guarantee the necessity and sufficiency of the final extremal solution ,

if it exists .

The simplex method proceeds from one basic feasible solution, that

is one extreme point, of the constraint set of a problem in standard

form to another, in such a way as to continually decrease the value of

the objective function until a minimum is reached. This is accorplished

by simple multiplications and additions referred to as pivoting. A

pivot operation consists of m elerentary operations which replace a

standard system by an equivalent canonical system.

To initiate the use of the simplex method, the problem of finding

an initial basic feasible solution arises . Except for the cases where

the linear constraints are inequalities in which slack and/or surplus

variables are used to transform the problem into one of standard form,

it is not always possible to easily find an initial basic feasible

solution. Therefore, it is necessary to develop a means for determining

one so that the simplex method can be initiated. Interestingly, an

auxiliary linear program and corresponding amlication of the simplex

method can be used to determine the required initial solutim .

Another important point is that many linear programs arising from

practical situations involve variables that are subject to both lower
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and timer bounds. The simplex method is easily modified to accommdate

the upper bound.

One final crmment pertains to the revised simplex. method.

Extensive field experience has indicated that the simplex :method

converges to an optimum.solution in about m or 1.5nm pivot operations.

Ifmismuch smallerthann, that is, ifthematrixAhasfar fewerrows

than columns, pivots will occur in only a small fraction of the columns

during the course of optimization . Since the other columns are not

explicitly used, the work expended in calculating the elements in these

columns after each pivot is wasted effort. The revised simplex method

is a scheme for ordering the computations required of the simplex method

so that unnecessary calculations are avoided.
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GENERALIZED REDUCED GRADIENT METHOD

From a corputational viewpoint, the simplex method is related to

the generalized reduced gradient method of nonlinear programming in that

the problem variables are partitioned into basic and nonbasic groups .

The following description of the generalized reduced gradient method was

referenced from Garret N. Vanderplaats (25). However, before beginning

this derivation, it is important to mention sore basic properties.

Recalling from basic calculus that in order for a function of one

variable to have a minimum, its second derivative must be positive. In

the general n—dimensional case , this translates into the requiretent

that the matrix of second partial derivatives of the objective with

respect to the design variables must be positive definite. This matrix

is called the Hessian matrix. Positive definiteness means that this

matrix has all positive eigenvalues .

If the Hessian matrix is positive definite at a given x, this

insures that an extreIum of the design is at least a relative minimum.

This vector, 32, is special in the sense that it satisfies the first

order conditions. If the Hessian matrix is positive definite for all

possible values of the design variables, 21', then a relative minimum of

thedesignisguaranteedtobeaglobalminimmm. Inthis case, the

objective function is said to be convex. When the objective function is

convex and the constraints form a convex solution space the necessary

53
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Kuhn-Tucker conditions are also sufficient to guarantee that if an

optimal solution is obtained, it is the global optimum.

The general nonlinear constrained optimization problem staterent

can be written mathematically as :

minimize FGE)

(Bl) subject to gj(§) : 0 j = 1,m

hkfi) = 0, k = l, L

where: FD?) objective function

W
?

ll vector of design variables

g.(x) = inequality constraints

equality constraints

7‘
:

35
. u

lower bound on xi

h
a
s

p
u
t
.

= upper bound on xi

Notice that the bounds on the variables are considered as side

constraints . These side constraints could be included in the inequality

constraint set , but are usually treated separately since they define the

search region. Since the generalized reduced gradient method only

solves equality-constrained problers , the problem statetent (Bl) must be

modified by adding slack variables , x. , to the inequality constraints
3m

to yield the general form:

minimize FGE)

(32) subject to ngE) + x3.m = 0, j = l,m

hkb?) = 0 k = l,L

L u
xi<xiixi l-l,n

xj+n _ 0 j = I'm
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A total of m slack variables are added, therefore the problem now

consists of mm variables.

The concept of this method is that one dependent design variable

can be written for each equality constraint, thereby reducing the number

of independent design variables . This creates an unconstrained

minimization problem subject only to side constraints on the variables .

The independent variables are referred to as the decision variables and

the dependent variables are referred to as state variables .

Now, since I contains both the original 11 variables and the m

slack variables, )? can be partitioned as:

(133) 3': = (ES'F

where: E = n—L independent variables

3} = m+L dependent variables

Notice that no restrictions as to which variables are contained in *2 and

; are made. Also, since the problem consists only of equality

constraints, the problem statement can be simplified to:

. . . + +- (-

mlnlmlze F(x) = F(z,y)

(B4) subject to thE) = 0 j = 1am.

u ' _

The side constraints for the original variables and the slack variables

were combined with the understanding that the upper bounds associated

with slack variables are set very large (infinite) and that the lower

bound associated with each variable is zero.

Equations (B4) are used to formulate the generalized reduced

gradient, 5R.
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The reduced gradient is used to determine a search direction, S,

for use in the iterative equation

(B5) x? = xii-1 + OLi‘Sq

where: q = iteration number

S = vector search direction

a*= scalar quantity that defines the distance of travel

In order to improve a design, it is necessary to determine a

direction vector which will reduce the objective function without

violating any active constraints . Any direction which reduces the

objective function is defined as a usable direction. The portion of the

design space that is referred to as the usable sector is defined by the

hyperplane that is tangent to the objective function. The area in the

usable sector that does not violate the active constraints is referred

to as the usable feasible sector. Any direction vector S, in the usable

feasible sector of the design space satisfies the criterion.

During various iterations the dependent variables , i, are updated .

However , since this equation is a linear approximation to the original

nonlinear problem, the constraints may not be zero for a proposed <1 .

Therefore, a new expression for d; must be developed to drive hat) = 0.

Onefinalcotmentpertainstotheprocessofselectingthe

dependent variables such that the fi matrix is nonsingular and so that a

small change in the variables will not violate the side constraints on

these variables . The second requirement is easily met by picking

dependent variables which are not too close to their side constraints.

The first requiretent, a nonsingular matrix, is accomplished by
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performing Gaussian elimination operations on a matrix 6, using the

pivot search. The matrix 5, is an (th)*(n+m) matrix with elerents

VThj (x) . Notice that the indepe'ident and dependelt variables are not

already partitioned in 5. By invoking the nondegeleracy assumptions

that every collection of m columns from 6 is linearly independent and

that every basic solution to the constraints has m strictly positive

variables any feasible solution will have at most n-m variables taking

the value zero.

Recalling that after the dependent variables were chosen and the

reduced gradient was developed, a search direction, S, must be

determined. In its simplest form, the search direction S is the

negative of the generalized reduced gradient . This is represented by

the expression :

(136) §= éR

In subsequent iterations a different method may be erployed as long as

the set of independent variables is not altered.

A first estimate for the step size, 0‘ ,can be found by using the

distance to the nearest side constraint. Note that by searching in a

specified direction, §, the problem of mm variables in f? is converted

to one variable, 0:. Hence, this method is referred to as the one-

dimensional search.
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