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ABSTRACT
APPLICATION OF OPTIMIZATION THEORY IN BICMECHANICS

By
Diane Marie Pietryga

The purpose of this research was to investigate optimization
criteria for the redundant biamechanical problem, in which the muscle
forces act as the unknowns. Three optimization problems of the lumbar
spine were formulated: the linear problems of minimizing the upper
bound of muscle stress and of minimizing the spinal compression and the
nonlinear problem of minimizing the summation of muscle stress to the
n;th power. The nonlinear problem is based on maximum endurance of
musculoskeletal function, where the parameter n 5 is based on the
percentage of slow twitch fibers.

The linear criterion of minimizing the upper bound of muscle
stress predicted a more even distribution of muscle stress among the
synergistic muscles and a greater distribution of muscle activity
campared to the other two abjective functions. The criterion of
minimizing the spinal compression was examined, and it was noted that
the upper bounds of muscle stress seemed to limit the solution more than

spinal compression.



The author wishes to express her appreciation to the following
people for making the campletion of her Master of Science degree
possible:

To Dr. Robert Wm. Soutas-Little, her major professor, for his
friendship, encouragement and invaluable guidance in this project.

To Dr. Alejandro Diaz, for his assistance in this project and for
serving on her committee.

To Dr. George E. Mase, for serving on her committee and for his
warm friendship.

To Dr. James J. Rechtien, for serving on her committee.

To Brooks Shoe, Incorporated, for their generous funding of this
project.

To Brenda K. Miller, for her warm friendship and patience in the
seemingly endless chore of typing this manuscript.

To Andrew Hull, for his assistance in camputer program
development.

To Daniel D. Lauderback, her best friend, for his endless support
and encouragement and, most of all, for his priceless friendship.

To her family, especially her parents, for their understanding,

encouragement and support in her academic pursuits.

ii



TABLE OF CONTENTS

Page
Section
III. ANALYTICAL METHODS AND RESULTS...cccccceeeccccccccccsscsces 15
APPENDIX B — GENERALIZED REDUCED GRADIENT METHOD....c.ceceeeeee o 53

BIBLI(ERAPHY-..-..-.-..-.......-................................. 58

iii



LIST OF TABLES

Body Segment Weights and Mass-Center LocationS...c.cce..
Cross-Sectional Geametric Data..cecececececccccccceccnns
Transverse Section Through the Abdamen at L3...ccccecesss
Three-Dimensional Optimal SOlUtiONS.ecececsececccccesocsees

Optimum Load and Stress Data fram the Criterion of
Minimizing the Upper Bound of Muscle StresS....cceseececese

Stress Data fram the Criterion of Minimizing the
(mr&)lmd Of mscle Stre:?s'ocooooo-oo-ooooo-oooo ........

Optimum Load and Stress Data fram the Criterion of
Minimizing the Coampression on the L3 Lumbar Vertebra......

Slow Twitch Fiber Parameters...... ccsecsevsensoscccase coees
Optimum Load and Stress Data fram the Endurance Criterion.

ILoad Values of Nonlinear Criteria..cccceecececececcceccccens

iv

Page
20
22
24
28

31

32

33
35
37



LIST OF FIGURES

Figure Page
1. External SysteM..ccccececcececcccecccscsccscscscsscsccnnse 17
2. Equivalent Internal SySteM...cceccecccescscssccccscscsscscss 19
3. Damain Formed by the Inequality ConstraintS....c.cececeeee 26
4. Equality Constraint PlaneS......cccececececcccccccccacccss 27
5. Solution Space Defined by the Constraints....... cesseesces 29
6. Erector Equivalent SpaCe....cccceeesesscccscssccsccssccsses 38
7. Latissimus DOrsi Space...c.ccececececccscsccccscsccsesscsese 39



INTRODUCTION

The methods of optimization theory are now being applied to the
analysis of the redundant muscular system, in which the muscles are
active elements. The skeletal system, connected through ligaments and
muscles, provides vital structural support for the human body. Load-
sharing among the structures of the musculoskeletal system has not been
subjected to extensive study. The lumbar spine, due to the widespread
problem of low-back pain, is one structure requiring investigation of
the muscle interactions.

Most adults will suffer from same form of low-back pain during the
course of their lives. According to same estimates, as much as one
quarter of the population will lose time fram the job or will have to
curtail recreational activities. Many people will become permanently
disabled by low-back problems. Since low-back conditions are a leading
cause of compensation costs to industry, it becames not only a serious
physical problem to the individual sufferer, but a major socioeconomic
disability as well.

Far too little is known about what causes low-back pain and how it
can be prevented or effectively treated. Although muscle may not be the
primary participant in the cammon low-back pain syndrome, it may have
significant influence on its onset and outcome. For this reason,
engineers and physicians are collaborating in the effort to understand
the mechanical basis of musculature in low-back pain and to design

programs for its prevention and treatment.
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As stated earlier, optimization methods are now being used to
determine muscular activity. The study of a practical optimization
problem requires a realistic representation of the physical system by
means of a suitable mathematical model and the formulation of an
appropriate performance criterion. The mathematical model must describe
correctly, at least, the qualitative features of the practical system in
the range of operating conditions, and the performance criterion must
represent an optimal characteristic of the system. The concept of
optimization is well rooted as a principle underlying the analysis of
many camplex decision problems. It offers a certain degree of
philosophical elegance that is hard to dispute, and it now offers an
indispensible degree of operational simplicity.

Over the last few decades there has been a steady shift in applied
optimization from the status of an art to that of a scientific
discipline. In the past, most of the theory of optimization
concentrated on the subject of optimality conditions, and practical
methods of camputation were rarely investigated. Today, due to the
interaction between mathematicians and engineers, theory and practice
are better integrated. To a large degree, this trend has been fostered
by the development of high-speed camputers with which large-scale
problems can be solved with an exactness that previously was
unapproachable. Camputer availability has given rise to new
optimization techniques and has enhanced previously developed anes.
Consequently, practitioners of many disciplines are building large scale
optimization models and solving them routinely with linear and nonlinear

programming.



Linear programming is a mechanism for farmulating a vast array of
problems with modest effort. A linear programming problem is
characterized, as the name implies, by linear functions of the unknowns;
the objective function is linear in the unknowns and the constraints are
linear equalities or linear inequalities in the unknowns. The linear
structure insures that the extremm will lie at the intersection of two
or more constraints. This greatly reduces the number of possible
locations for the extremum. Efficient algorithms that inspect this
limited region of solution space have been developed with the most
significant of these being the simplex method. This method can be
referenced in Appendix A.

Alternatively, nonlinear programming pertains to optimization
problems in which the abjective function and/or the constraints have
nonlinear mathematical forms. The constraints, which are classified
either as equalities or inequalities, define the solution space from
which an optimal solution is to be obtained. Characteristic of
nonlinear problems, there are no general techniques for solving a
problem, but only special ones, each covering a particular class of
practical problems. The generalized reduced gradient method, which can
be referenced in Appendix B, was used far solving the nonlinear
optimization problem presented in this literature.



SURVEY OF LITERATURE

The human musculoskeletal system can be considered as a system of
rigid articulating segments on which known external forces (weight,
ground reaction, external load) and unknown muscle, ligament and joint
forces are acting. Relationships between known external forces and the
unknown musculoskeletal or internal forces can be obtained fram force
and maoment equilibrium equations. Since more muscles than are
mechanically necessary normally cross a joint, the number of unknown
forces will in general exceed the number of equilibrium equations. This
mechanical redundancy yields the problem statically indeterminate.

In statically determinate problems, internal and external forces
can be determined by the use of free body diagrams and equilibrium
equations. However, in statically indeterminate problems the
equilibrium equations must be camplemented by relations involving
deformations. These deformations are obtained by considering the
geametry of the problem and they must be compatible with the extermal
supports. By considering engineering structures as deformable and
analyzing the deformations in their various members, it is possible to
campute forces which are statically indeterminate.

Unfortunately, the aforementioned method cannot be applied to the
indeterminate musculoskeletal problem. Since muscular load and
deformation depend on the amount of muscle contraction the exact

muscular load cannot readily be determined fram load-deformation



diagrams. For example, in isametic contraction, no overall length
change exists between muscle origin and insertion.

A method for solving the problem of indeterminancy is reduction of
the excess number of unknown variables. This is accomplished by either
grouping functionally similar muscles together, or by eliminating
individual muscles based on electramyographic observation. However,
these anatamical simplifications may induce considerable error and the
mechanical action of individual muscles is obscured.

Alternatively, optimization methods have also been used to obtain
a unique solution. By using an optimization method, not only can a
solution be obtained, but possible physiologically based rationales for
the solution can be associated. This approach employs a model of the
inherent muscle selection process. The model is based upon the
assumption that the selection process represents an optimal behavior of
the biamechanical system. The optimal response approach provides a
consistent basis for a tractable: mathematical formulation of the problem
and suggests an interesting qualitative picture of muscle response.

Various optimization criteria have been developed over the last
twenty years. These criteria include minimization of:

1. Summation of muscle force,

L Fi

2. Summation of ratios,

z (Fi/Fimax)' L’(Fi/Ai)

3. Weighted summation of muscle force, ligament maments and
joint reactions,
z Fi + Cl* (ij + ij + sz) + CZ*Rjoint
4. Spinal compression,
C



5. Squares of muscular forces, ratios and vertebral stresses,
2 2 2 2
6. Muscular fatigue (maximize activity endurance),
n,l1/n - . .
( z(Si) ), and maximize the minimm of T; 4

_ n.
where T = ai*((Fi/Finax)*IOO) i

iend
7. The upper bound of muscle stress,
53
8. The free energy input to the muscles,
E
Each of these criteria will now be discussed in detail.

In 1967, MacConaill defined the "Principle of Minimal Total
Muscular Force", which postulates that no more total muscular force than
is both necessary and sufficient to maintain a posture or perform a
motion would be used. Accordingly, this would minimize the sum of the
muscle forces, namely IF, (15).

This criterion was used by several investigators to analyze muscle
force in static situations. In 1972, Barbenel calculated the muscular
forces at the temporamandibular joint (2). He concluded that the
suggested minimum muscle force principle did not apply. In 1973, Seireg
and Arvikar analyzed the forces in the lower extremities in standing,
leaning and stooping postures (22). Other investigators have studied
muscles of the upper limbs. Penrod presented, in 1974, a biamechanical
analysis of a simplified biaxial model of the wrist (18). In 1976, Yeo
used a study of elbow flexion to examine the validity of the minimum
force criterion. His theoretical results contradicted the experimental
results; therefore, it was concluded that MacConaill's hypothesis of

minimal total muscular force was invalid (28). The minimum force



criterion was also used for the analysis of forces in the leg during
level walking by Hardt and Pedotti et al. in 1978, and Patriarco et al.
in 1981 (12, 16, 17). Pedotti et al. and Patriarco et al. employed
additional, physiologically based constraints to improve the muscle
force predictions.

Pedqtti et al. also used a criterion consisting of the sum of
ratios of muscular force to maximum possible muscle force, Z(Fi/ijax),
and applied this to the analysis of forces in the leg during level
walking (17). This criterion was employed because it enhances the total
muscular force criterion by utilizing the muscles more efficiently by
demanding larger force production fram the larger muscles; moreover, it
takes into account the instantaneous state of each muscle, since F; max
depends upon the instantaneous length of muscle as well as its velocity.
Crowninshield and fellow investigators employed a total muscle tensile
stress criterion, Z(Fi/Ai) (6). The physiological cross-sectional
area, Ai' was determined by muscle volume divided by its length. They
studied forces in the arm muscles during isametric and isokinetic elbow
flexion and forces at the hip duing level walking, climbing, descending
stairs and rising from a sitting position.

Another type of linear aobjective function was employed by Seireg
and Arvikar in 1973 and 1975 (22, 23). They used a weighted sum of
muscle forces and ligament moments for analysis of forces in the legs in
standing, leaning and stooping postures and quasi-static walking. The
weighting factors can be different for each problem and were chosen in
order to get reasonable results. A weighting factor between four and
infinity was found to be applicable to all the investigated postures.
It is difficult to make a physiological interpretation of this kind of



empirically adjustable objective function. However, Williams and Seireg
also used this type of criterion in 1977 and 1979 for the prediction of
muscle forces in the jaw and in the leg during bicycling and by Yettram
and Jackman in 1980 for the analysis of forces in the vertebral column
(26, 27, 29).

In 1978, Hardt concluded that the minimum force criterion yielded
a purely geametric optimization, whereby the set of muscle moment arm
vectors which produce the lowest muscle forces will be choosen over all
other possibilities. Consequently, the only representation of the
muscles in the mathematics is in the form of their moment arms, ignoring
the physiology of the system. To incorporate some physiological
properties into the problem, Hardt proposed to define a cost function
that would minimize the instantaneous energy requirements of the
muscles. This formulation was used for the prediction of muscle forces
during walking and it revealed an increased number of muscles
participating in the movement (12). Patriarco et al. supported this
formulation in 1981 (16).

In 1981, Schultz and Andersson presented a model for internal
force estimation of the lumbar trunk. They chose to minimize the
campression on the lumbar vertebra (20). This criterion was applied to
several physical activities including nonsymetric weight-holding,
resisting a push to the left and resisting a longitudinal twist moment.
Schultz, et al., in 1982, used linear programming to investigate the
load on lumbar trunk structures during various physical tasks including
flexion-extension, lateral bending, and torsion (21). Two different
objective functions were applied, the first minimized the compressive
load on the lumbar vertebra and the second minimized the largest muscle



force crossing the lumbar vertebra. Myoelectric measurements did not
reveal much difference between the cost functions.

Unfortunately, the results of a linear criterion are not always
physiologically consistent, and this has been noted by most
investigators. When muscle force is the variable used to formnulate the
load sharing criterion, there is a preference far muscles with large
mament arns When muscle stresses, or ratios of muscle force to maximm
muscle force are used as the variable in the criterion, there is
preference for muscles with the largest product of mament arm and cross-—
sectional area. Investigators improved the predictions of muscle forces
with linear criteria by formulating additional physiologically based
constraints. This enforced synergism between the muscles.

Nonlinear objective functions can predict synergism, even without
the formulation of additional constraints. It is thought that linear
optimization was used more for reasons of mathematical convenience than
for reasons of physiological requirement. Investigators are now
emphasizing the importance of selecting muscle prediction criteria based
on sound physiological bases rather than on an arbitrary or
mathematically convenient basis. Unfortunately, nomlinear optimization
convergence on a global minimum is not assured.

In 1977, Gracovetsky et al. defined an objective function of the
sum of squared shear stresses in the wvertebral column and predicted
forces during weight lifting (11). This criterion was developed based
on a study finding campression to have relatively minor effects on the
spine compared to shear effects. This result can be explained by
considering that the spine is built to take a campression load but that

any shear effect cannot readily be compensated. This criterion was
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modified to a quadratic objective function, that minimized shear and
penalized excessive muscle power, in 1981 by Gracovetsky et al. (10).
For the analysis of walking, Pedotti et al., in 1978, used the sum of
squared muscle forces, which is a sort of power criterion. This
criterion not only minimizes total muscular force, it also penalizes
large individual muscle forces. They also used the sum of squared
ratios of muscle force to maximum muscle force, namely I (Fi/Fimax)z'
This criterion was selected as the most feasible since it used the
muscles most efficiently while keeping their level of activation as low
as possible (17).

In 1981, Crowninshield and Brand presented an optimization method
which uses a criterion of maximm endurance of musculoskeletal function
(4). The method is based on the inversely nonlinear relationship of
muscular force and contraction endurance. This relationship was
proposed to be of the form:

InT=-n*(ln f) + ¢

where T is the maximum time of contraction, f is the contractile force,
and n and c are experimentally obtainable constants. They suggested
that the muscle selection to maximize activity endurance is
physiologically reasonable during many normal activities, particularly
prolonged and repetitive activities, such as normal gait. This
criterion is not applicable to all forms of locamtion such as activities
occurring to maximize speed or to minimize pain.

Based on several reports, Crowninshield and Brand assumed that, in
an approximate manner, the muscle force-endurance relationship is a

basic property of muscle tissue (4). They suggested that the maximum

endurance of a muscle contraction is thus related to the magnitude of
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the average stress within the muscle tissue. The determination of
muscle force during body function may then be farmulated as a nonlinear
optimization problem with an objective to minimize the summation of
muscle stress to the nth power. The parameter, n, is dependent on the
percentage of slow twitch fibers. Muscle forces predicted in this
manner will tend to keep individual muscle stresses low. Low individual
muscle stresses are achieved by predicting force activity in numerous
muscles and preferentially predicting force in muscles with large cross-
sectional areas and long moment arms. Since individual muscle stresses
are low their potential for prolonged contraction will be high.

The actual value of n may vary between individual subjects and
individual muscle due to fiber type and fiber orientation. Since
accurate and detailed experimental data were not available n = 3 was
selected as a reasonable value, as it is the average value reported in
literature. To reduce the magnitude of the objective function, thereby
avoiding numerical problems in large scale optimization, the function is

3]]'/3, where m is the

normalized. The criterion has the form IE(Fi/Ai)
number of muscles. This method was demonstrated at the elbow during
isametric contraction and in the lower extremity during locamotion.
During gait, the observed muscle activity pattern in the Ilower
extremities, as determined by EMG, shows substantial agreement with that
activity pattern predicted when endurance is used as the optimization
criterion. In addition, since this problem has a continuous convex
character of the objective function and the linear constraints it falls
into the category of convex programming. This convexity assures that

the only minimum is a global or absolute minimum.
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Dul et al., in 1984, presented a similar criterion which is based
on the hypothesis that muscular fatigue is minimized during learned
endurance activities (7). An endurance type of activity such as
constrained sitting posture or walking, involves sustained or repetitive
muscular contractions. These contractions are fatiguing, and after a
specific period of time, the endurance time, the required mechanical
output cannot be maintained anymore. It is assumed that the
neuromuscular system anticipates this by selecting a load sharing
between the muscles such that endurance time of the activity is
maximized, hence muscular fatigue minimized. Again, this concept may be
less useful for other types of activity where quick contractions are
involved.

Dul's criterion is to maximize the minimm of Ti where

n

T.=a. (F.*100/F. )i, Ti is the endurance time and Fi is the farce for

i7ivi
the ith muscle. The constants a; and n, are muscle parameters depending
on the percentage of slow twitch fibers for the respective muscle. The
criterion was used to determine forces in the lower extremities during
static-isametric knee flexion. The predicted muscular load sharing was
in good agreement with direct force measurement data. In camparison
with Crowninshield and Brand, the general pattern of load sharing is
similar, yet the predicted magnitude of the muscle force is not the
same. The cubic criterion predicted linear synergism, whereas the
minimum-fatigue criterion predicts non-linear synergism. Both criteria
predict that there is relatively more force in muscles with large cross-
sectional areas. For the cubic criterion more force is also allocated
to muscles that have large moment arms. The load sharing predicted with

the minimum fatigue criterion does not depend on moment arm, although
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the absolute force levels do depend on this variable. Instead,
relatively more force is allocated to muscles with a high percentage of
slow-twitch fibers. This reveals the pertinence of incorporating muscle
fiber types into the problem.

A new optimization approach, based on minimizing the upper bound
of muscle stress, was introduced in 1984 by An et al. (1). The concept
of this new optimization approach is quite different from those
previously used in summations of muscle force or stress, or their
nonlinear cambinations. Optimization procedures used to minimize the
sum of unknown force variables have been more or less based on
consideration of overall efforts of the system. However, from an energy
storage and transport viewpoint, each muscle bundle has its own storage
and blood supply. Therefore, in constructing the optimization criteria
for this new technique, individual muscle effort was considered. Since
this technique allows a solution which considers more even distribution
of muscle stress among all synergistic muscles, it will favor the
muscular response with the largest endurance for the task.

The criterion of minimizing the upper bound of muscle stress was
applied to a simplified model of the elbow joint. For camparison
purposes, this problem was also solved using other previously mentioned
objective criteria. These included minimizing the summation of muscle
forces and summation of muscle stress using the linear optimiztion
method, as well as minimizing the summation of the square of muscle
farce and summation of the square of muscle stress using nonlinear
optimization. The solution of muscle farce distribution based on the
proposed approach predicted the same number of active muscles for the

same given loading condition as that using either of the nonlinear
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criterion. The accuracy of the results obtained by this new technique
was further verified by its campatibility with physiological
considerations.

From the mathematical point of view, the formulation of this
criterion has a major advantage as well. Since the entire system of
cmstramts and abjective functions consists of linear terms of unknown
variables, the well-established linear programming algorithm, the
simplex method, can be used to obtain the solution efficiently. 1In
contrast, the algorithm obtained by nonlinear optimization is usually
more involved and less efficient than linear programming. In addition,
convergence of the solution to a global minimum is not always
guaranteed.

The criteria of minimizing the upper bound of muscle stress and of
maximizing the activity endurance time are the least disputed criteria
in the biamechanical problem. In other words, these two criteria seem
to represent an optimal characteristic of various activities performed
by the human musculoskeletal system. For this reason, both of these

criteria will be developed for a nonsymmetric weight holding task.



ANALYTICAL METHODS AND RESULTS

Optimization can be used to determine the muscle and joint loads
on any part of the body, but it will be applied here to determine the
loads on the lumbar spine. Loads on the lumbar spine should be kept as
light as possible since it is suspected that heavy loads have a role in
both causing back pain and aggravating pre-existing lumbar spine
conditions. Since heavy spinal loads are to be avoided, it is necessary
to know under what circumstances they arise. By determining the muscle
and joint forces that occur during various physical activities, these
circumstances can be defined.

To campute the loads on the lumbar spine created by a quasi-static
physical activity, the body is first divided into upper and lower parts
by an imaginary transverse cutting plane. This cutting plane is passed
through the level of the lumbar spine at which the loads are to be
determined. In this case, it is at the L3 vertebra. The upper part is
considered as a free body subject to the laws of Newtonian mechanics,
and a two-stage calculation procedure is carried out (Figures 1 and 2).
In the first stage, the external force is considered as an egquivalent
force and mament acting at the origin; in the second, the internal
forces are estimated to place the system in equilibrium. The equivalent
external system consists of six components: three force camponents and
three moment camponents.

To calculate the external equivalent system, a coordinate system

must be established. The origin is placed at the center of the L3

15
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vertebral body and it is assumed that the equivalenr system acts at that
point. Coordinate directions are selected as follows: the x axis is
positive to the right, the y axis is positive anteriorly, and the z axis
is positive superiorly. The x and y axes lie in the transverse cutting
plane and the 2z axis is perpendicular to the cutting plane, as
illustrated in Figures 1 and 2.

The body segment weights and the mass-center locations were
obtained fram Clauser et al. and Eycleshymer and Schoemaker
respectively, as referenced by Schultz and Andersson (3,8,20). The
coordinates of the mass center locations are specified as (xi, Y zi) ’
where i represents the specific body part.

The action of a force on a body can be separated into two effects,
external and internal. The weight of a body, an external effect, is the
gravitational force distributed over its volume which may be taken as a
concentrated force acting through the mass center location.

Referring to Figure 1, the following equations were written for
the external force and mament camponents of the upper body segment:

(1) =0
(2) =0
(3) =-(Q+wh+wl+wr+wt)

(4)
(5)
(6)

-(qu + ytwt + yrwr + ylWl + thh)

-(lel - err)
0

NK "<g xz Nu" "<"j x”’
1

weight of object held in right hand

where:

weight of the head and upper neck

‘_.iiaﬂ O
"

= weight of the left upper limb
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External System

Figure 1.
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= weight of the right upper limb

= equivalent external force camponent in the x direction

W
r
Wt = weight of the trunk above the cutting plane
Fx
at the origin

F._ = equivalent external force camponent in the y direction
Y at the origin

F_ = equivalent external force camponent in the z direction
at the origin

M = equlvalent external moment component in the x direction
at the origin

M = equivalent external mament camponent in the y direction
¥ at the origin

M_ = equivalent external mament component in the z direction
at the origin

If the numerical values of Table 1 are assumed, then the three nonzero

canmponents of the net reaction are:

Fz =-391 N
(7) Mx = -3130 Nam
M = -160 Ncm
y

The external system must be balanced by the internal force between
the lower body segment and the upper body segment, in order to keep the
upper body in equilibrium. However, the external force system is not
affected by the material properties of the body tissues. Anatamical
variables affect the external gravitational forces only in so far as
they influence mass distributions and mament arms.

The trunk model in Figure 2 can be used to identify the internal
forces. Since this model incorporates ten muscle equivalents, which
represent most of the major muscle groups spanning the lumbar region, it
can be used in a variety of physical activities.
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Figure 2. Equivalent Internal System
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The three spinal segment loads, C, Sa and Sr are assumed to act

atthe ocoordinate system arigin. The muscle orientation angles are

defined as: B , the angle between the internal obliques and the z axis;

§ , the angle between the external obliques and the z axis; and Y , the

angle between the latissimus dorsi and the z axis.

TABLE 1. Body Segment Weights and Mass-Center Locations
Weight (N) Coordinate Locations (cm)

Q = 40 Xq = 0 Yq = 45
W= 35 X, = 0 Y, = 8
W, = 32 X; = 20 yp=1
W= 32 x. =15 y, = 24

W_ = 252 X, = 0 Ye = 1

Solving the equilibrium equations written fram Figure 2 for the

equivalent

equations:

(8)

(9)

(10)

(11)

(12)

(13)

external forces and moments generates the following

-F =

-F =
Y

_Fz =

!

M =
X

(L1+

-M =
y

* (Ll
-M =
4

sin§

-S, - sin B*(Il+Ir)+sin 5*(Xl+)&.)
P+C-E1-Er-cos B*(Il+Ir)-cos Y*(L1+Lr)

- R. - cos 6*(X1+)&.)

ye*(El+Er)—cos B*yo*(Il+Ir)+cosY *y, *
Lr)'yr*(P&:+Rl)-°°ss *yo*(X1+xr)+pr
—xe*(El-Er)-cosB *x,* (I, - I) -ocosY *x
-Lr)- *(R Rr)-cos5*xo*(xl )&)

- sinB *x, * (I, -1)) -siny *y; * (L. -L;) -

*x *(X1 >g_,)
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where: F‘l = left erector equivalent force
E = right erector equivalent force
Il = left internal oblique force
I = right internal oblique farce
Ll = left latissimus dorsi equivalent force
Lr = right latissimus dorsi equivalent force
R, = left rectus abdaminis farce
Rr = right rectus abdaminis force
Xl = left external oblique force
xr = right external oblique force
P = intra-abdaminal pressure force
C = campressive spinal force
Sr = right-lateral spinal shear
S_ = anterior spinal shear

o}

The intra-abdaminal pressure resultant can be determined fram
experimental measurements. The maximum calculated intra-abdaminal
pressure in stance is 25 mmHg as referenced from Gracovetsky, et al.
(10). With the abdominal cavity area, 278.4 cm?, this resultant force
fram intra-abdaminal pressure can be calculated to be 92.8 N (9).

The trunk cross-sectional geametrical data given in Table 2, are
representative of a person who has a trunk width of 30 an and a trunk
depth of 20 cm at the L3 vertebral level (20). Substituting the values
in Table 2 and the values for the intra-abdaminal pressure and the
equivalent external system into equations (8) through (13) yields the

following simplifications:

(14) 0=-S_+0.707 * (L - L)
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(1) 0= —Sa - 0.707 * (Il + Ir) + 0.707 * (Xl + Xr)

(16) 298.2 =C - El -E - 0.707 * (Il + Ir) - 0.707 * (Ll + Lr)

-Rl-Rr-O.?O?* (X1+Xr)
(17) 2684.57 = 4.4 * (El + Er) - 2.69 * (Il + Ir) + 3.96 *

(Ll + Lr) - 10.8 * (Rl + Rr) - 2.69 * (Xl + Xr)

(18) 160 = - 5.4 * (El - Er) - 9.54 * (Il - Ir) - 4.45 *

(Ll - Lr) - 3.6 * (Rl - Rr) - 9.54 * (Xl - Xr)

(19) 0 =9.54 * (Il - Ir) + 3.96 * (Ll - Lr) - 9.54 * (Xl -

The thirteen internal forces are unknown.

Xr)

Since only six

equations are available to find them, it is obvious that the use of this

model leads to a statically indeterminate problem.

The examples

following will illustrate two different optimization methods for solving

this problem.

TABLE 2.

Coordinate Locations (cm)

Cross-Sectional Geametric Data

Angles (degrees)

X =

X =

b
I

b
i

3.6
0.0
13.5
5.4
6.3

10.8 B
4.8 S
3.8 Y
4.4
5.6

45
45
45

The major question that arises when optimization is used far

solution, is the choice of the adbjective function.

diversity of musculoskeletal function,

Considering the

it is 1likely that distinctly

different criteria for muscle selection may be utilized for different

activities.

following optimization problems will be developed:

For the physical activity previously discussed,

the

first, minimization
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of the upper bound of muscle stress and second, minimization of the
summation of muscle stress to the n i1:h power, which is based on maximum
endurance of musculoskeletal function.

Previously, most optimization procedures have been more or less
based on consideration of overall efforts of the system. The criterion
of minimizing the upper bound of muscle stress was developed to take
individual muscle effort into consideration. This idea stems from the
energy storage and transport viewpoint that each muscle bundle has its
own storage and blood supply. This technique predicts a solution with a
more even distribution of muscle stress among all synergistic muscles,
thereby favoring the largest endurance for the task (1).

With this particular criterion, the core of the problem
formulation lies within defining the constraints, as opposed to
explicitly defining the adbjective function. The most important of these
constraints being those that define the damain where muscle stress Si is
greater than or equal to any other muscle stress Sj' Once this damain
is defined, the upper bound of muscle stress Si is minimized. In order
to define this space, nine inequality constraints were developed for
each individual muscle, Mi' Mathematically these constraints are

represented by:

(20) S; 2 Sfl

The muscle cross-sectional areas, given in Table 3, were used to
calculate the respective muscle stresses (9).

Additional constraints incorporated into this problem were the
equilibrium equations (16) through (19). These equations were cbviously
formulated as the four equality constraints. Equations (14) and (15)
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TABLE 3. Transverse Section Through the Abdamen at L3

Area (cm?)
Muscle Right Left
Erector Equivalent 20.202 20.121
Latissimus Dorsi 2.129 2.258
External Oblique 7.032 7.610
Internal Oblique 9.615 10.582
Rectus Abdominis 3.549 4.323

were used to find Sa and Sr after the optimization solution was
obtained. This changes the optimization problem to one of eleven
unknowns .

Also included in this problem were the ten inequality constraints
that the muscle forces must be greater than or equal to zero. This
arises fram the fact that muscle contractions always produce tensile
forces. In the simplex method, these constraints are autamatically
assumed.

Finally, the problem statement for minimizing the upper bound of

muscles stress is:

(2]
[y

(21) minimize

subject to

(4]
|V

'.a.z [
| v

S.
J
0

equations (16) through (19)

Since n-dimensional space is impossible to envision, the solution
space for this type of problem will be illustrated in three-dimensional

muscle space. [Each axis represents the force in one of the three
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muscles, Mi where i = 1, 2, 3. For simplicity, the respective areas,
A, will all be unity.
The damain formed by the inequalities:

(22) s

>
3_S

1

(23) s S

>
3 —"2

represents the area where 83 is greater than aor equal to 8, and S,.
Both inequalities, (22) and (23), form a 45 degree plane between the
respective variables, Mi. The problem is limited to the positive
quadrant due to the constraints that the variables must be greater than

or equal to zero. These constraints are represented by the expression:
(24) Mi?_o, i=1,2,3

The area above the 45 degree planes and bounded by the perpendicular
planes is the damain where S, is the greatest. This damain is
illustrated in Figure 3. It is important to note that if the areas were
not unity and equal, (A1=A2=A3=l), the planes would not be at 45
degree angles.

In addition, two equality constraints, Figure 4, were incorporated

into this problem. These constraints are represented by the equations:

(25) 3.0*M1+M2+1.5*M3=9
(26) M1+0.8*M2+2.0*M3=8

The line of intersection formed by these two planes defines the
coordinate values that satisfy both constraints. This limits the

optimization solution to the values on this line.



26

sjufesnisuo) Ayenbeul eyy Aq pswiog ujewoq ‘g eunbiy

A

L o

L o
ES




27

seue|d julesisuod Ajenb3g °y einbiq

—

eny



28

Cambining all of the constraints together defines the camplete
solution space. The only possible solution space lies along the line of
intersection formed by the equality constraints that is contained in the
damain where S3 is the greatest. This space is illustrated in Figure 5.
Note that the line of intersection formed by the egquality constraints
intersects the 45 degree plane between M2 and M3 This point of
intersection is the solution to minimizing the upper bound of M3 muscle
stress.

Furthermore, imagine the damains defining Sl and 52 as the
greatest superimposed on Figure 5. This involves a 45 degree plane
between the M1 and M, axes, parallel to the My axis. It is easy to
visualize that minimizing the upper bound of M, muscle stress yields the
same optimum solution as that of M3 However, since the line of
intersection formed by the equality constraints does not intersect the
domain where Sl is the greatest, no solution exists when minimizing the
upper bound of Ml muscle stress. Table 4 lists the numerical results

obtained when searching each damain.

Table 4. Three-Dimensional Optimum Solutions

Damain Optimum Solution
Ml _— — _—
M, 0.881 2,542 2.542
1‘«13 0.881 2,542 2.542

Referring back to the weight 1lifting task, all ten muscular
domains were searched using the simplex method. Seven of the ten

damains searched yielded a numerical solution. However, the optimm
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solution was found in only two of these seven damains, the right
equivalent erector and the right latissimus dorsi. Note that these two
damains generated the identical solution. Table 5 lists the load and
stress values that the muscles were predicted to carry in the optimal
solution. The stress values of the remaining five damains are listed in
Table 6. The three damains that did not have a numerical solution were
El, I, and Ly, in which the solution did not satisfy the constraints.

In camparison, Schultz and Andersson also solved this nonsymmetric
weight holding problem of ten muscular unknowns using linear programming
(20). They selected the cost function to minimize the campression on
the L3 lumbar vertebra. The constraints consisted of the equilibrium
equations (16) through (19), the ten requirements that the muscle
tensions cannot be negative and the ten requirements that the muscle
contraction intensities cannot exceed the reasonable level of 100 N/anz.
The equations for x and y force equilibrium, (14) and (15), were used to

calculate Sa and S after the solution was obtained. This problem is

formulated as:
(27) minimize C
subject to 0= M, < 100 N/c:m2

equations (16) through (19)

The solution to this optimization problem is listed in Table 7.

In constructing the optimization criterion for minimizing the
summation of muscle stress to the n,th power, the importance of
selecting a criterion based on sound physiological bases was emphasized.
It is assumed, that in an approximate manner the muscle force-endurance

relationship is a basic property of muscle tissue (4). The maximm
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TABLE 5. Optimum Load and Stress Data from the Criterion of
Minimizing the Upper Bound of Muscle Stress

Element Load (N) Stress (N/am?)
E, 282.013 14.016
E, 2683.153 14.016
1, 0.000 0.000

8.859 0.921
31.646 14.016
29.840 14.016

I

r
L

r
Ry 0.000 0.000
R 0.000 0.000
X 0.000 0.000
Xr 8.110 1.153
C 918.835 _—
Sa 0.530 —_—
S
r

1.277 —_
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Table 6. Stress Data fram the Criterion of Minimizing
the Upper Bound of Muscle Stress
Space Searched / Stress (N/cm?)
Element Ir Rl Rr Xl )&
E 18.746 18.999 17.262 16.000 17.119
E 18.746 18.999 17.262 19.372 17.119
I, 16.182 0.000 0.245 0.960 0.000
I 18.746 2,551 0.000 0.000 0.929
L 18.745 18.999 17.262 19.372 17.119
L. 18.746 18.999 17.262 19.371 17.119
Ry 0.000 18.999 0.000 0.000 0.000
R 0.000 0.000 17.262 0.000 0.000
X, 0.000 0.000 0.461 19.372 14.762
X 1.140 3.343 0.000 19.372 17.119
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Table 7. Optimum Load and Stress Data fram the Criterion of Minimizing
the Campression on the L3 Lumbar Vertebra

Element Load (N) Stress (li/cmz)
El 98.640 4,902
Er 128.270 6.349
Il 0.000 0.000
Ir 0.000 0.000
Ll 212.900 94.293
Lr 212.900 99.999
R1 0.000 0.000
Rr 0.000 0.000
Xl 0.000 0.000
Xr 0.000 0.000
C 826.150 ——
S 0.000 _—

a
S 0.000 —
r
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endurance of a muscle contraction is thus inversely related to the
magnitude of the average stress within the muscle tissue. The
determination of muscle force during body function may then be
formulated as a nonlinear optimization problem with an objective to
minimize the summation of muscle stress to the nith power. The constant
n, is related to fiber type and fiber orientation or more specifically
to the percentage of slow twitch fibers for the respective muscle, Mi'
This criterion is valid only when applied to an endurance activity. An
endurance type of activity involves sustained or repetitive muscular
contractions. The activity of holding a relatively small weight in
front of the body can be considered an endurance activity since it

involves sustained muscular contractions.

The muscle force-endurance relationship was proposed to be of the

form:
= *
(28) 1n Ti n, 1n Mi +c;
where: Ti = maximum time of contraction for the ith muscle
Mi = muscular contractile force for the ith muscle
n, = constant relating endurance time with muscle force for

1 the ith muscle

c; = endurance time for a muscle force level of 1% maximum
mascle force for the ith muscle

The parameters n, and c; are dependent on the percentage of slow-
twitch fibers, Zi' These parameters can be represented by the following

equations:
(29) n, = 0.25 + 0.036 * Zi
(30) c; = 3.48 + 0.169 * Z:.L
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The percentage of slow twitch fibers for the relative muscles,

referenced fram Johnson et al., are listed in Table 8 (13).

TABLE 8. Slow Twitch Fiber Parameters

Muscle Zi n; c;

Erector Bquivalent 58.4 2.4 13.3
Latissimus Dorsi 50.5 2.1 12.0
Internal Obliques 76.4 3.0 16.4
External Obliques 76.4 3.0 16.4
Rectus Abdaminis 46.1 1.9 11.3

The values for both the internal and external obliques are the average
values estimated from experimental studies since a more accurate value
was not obtainable (4).

The constraints involved in this problem consist of four equality
constraints and eleven inequality constraints. The equality constraints
were the equilibrium equations (16) through (19). As before, the
equations (14) and (15) were used to back solve for S, and S, after the
optimization solution was obtained. The inequality constraints
designate the reasonable range each muscle force can be found in. In
other words, these constraints form both an upper and lower bound for
muscle farce. The upper bound is determined by assuming that the muscle
contraction intensities do no exceed the reasonable level of 100 N/am®.

Hence, the determination of muscle force during body function is
formulated as a nonlinear optimization problem with an objective to
minimize the summation of muscle stress to the n, power. The problem

statement is summarized as:
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m
(31) minimize  (s;) n;
i=1
subject to 0 <8, <100 N/am?

equations (16) through (19)

Predicting muscle forces to minimize this objective function
coincides with maximizing endurance for the defined activity. The load
and endurance data obtained fram this optimization problem are listed in
Table 9.

Figures (6) and (7) are referred to as two variable design spaces,
where the design variables correspond to the coordinate axes. In
general, a design space will be n - dimensional, where n is the number
of design variables. The two variable design space is used to help
visualize the concepts of optimization techniques. Figures 6 and 7
illustrate the objective function contours (dashed lines) as a function
of the erector equivalents, El and Er' and the latissimus dorsi, Ll and
Lr' respectively. The solid lines on these figures represent the
corresponding numbered constraints.

In general, nonlinear optimization convergence on a global minimum
is not assured. However, the present problem due to the continuous
convex character of the dbjective function and the linear constraints,
falls into the category of convex programming. This convexity assures
that the only minimm is a global minimm (25).

In comparison, Crowinshield and Brand used a similar optimization
criterion:

m 3 1/3

(32) pX [(si) ]
i=1
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TABLE 9. Optimum Load and Stress Data from the Endurance Criterion

Element Load (N) Stress ( N/c:u2 )
E1 282.700 14.050
Er 312.300 15.459
Il 0.000 0.000
Ir 0.000 0.000
L1 8.377 3.709
Lr 8.377 3.934
Rl 0.000 0.000
Rr 0.000 0.000
Xl 0.000 0.000
Xr 0.000 0.000
C 905.100 —
S, 0.000 —
S 0.000 —

r
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The cube root of the objective function was taken for two practical
reasons: first, so the abjective function will have muscle stress units
and second, to reduce the magnitude of the objective function thereby
avoiding numerical problems. The average experimental value of n=3 is
chosen for n. This method was demonstrated at the elbow during
isametric contraction and in the lower extremity during locamotion (4).
When this method was applied to the weight lifting task, only a
naminal change in the solution occurred. Table 10 lists the load values
with n=3, with and without the taking cubed root and taking the cubed

root with n varied according to the percentage of slow twitch fibers.
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Table 10. Load Values of Nonlinear Criteria
Load (N)

Normalized Not Normalized Normalized

Element n=3 n=3 n=variable
E 281.200 281.200 282.700
E 310.800 310.800 312.300
I, 0.000 0.000 0.000
I 0.000 0.000 0.000
L 10.060 10.090 8.375
L 10.060 10.110 8.375
Ry 0.000 0.000 0.000
R 0.000 0.000 0.000
X 0.000 0.000 0.000
X 0.000 0.000 0.000
C 904.400 904.400 905.100
Sa 0.000 0.000 0.000
S, 0.000 0.014 0.000



OONCLUSION

The method of optimization is applied to complex decision or
redundant problems, in which a unique solution cannot readily be
determined. When formulating an optimization problem, the performance
criterion must represent an optimal characteristic of the system.
Although electramyographic results were not available to confirm the
validity of the criteria presented in this research, the optimization
solutions are discussed mathematically.

The linear optimization problem of minimizing the upper bound of
muscle stress yielded seven numerical solutions. Two of these seven
muscular damains shared the same solution, which was also the optimal
solution. The solution did not satisfy the constraints in the remaining
three damains. The constraint violations occurred when searching the
left internal oblique, the left erector equivalent and the left
latissimus dorsi damains. The conflict that developed is that the
equality constraints defined a solution space that was not common to the
solution space or damain formed by the inequality constraints. This
noncamonality did not allow the solution to satisfy the constraints.

The five muscle damains that yielded a numerical solution, but not
the optimal solution, selected both different muscle force magnitudes
and different active muscles. However, in each of the seven damains,
all but two of the calculated stress values have the same stress as that

of the muscular damain searched. The optimal solution, muscle spaces Er

42
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and L, has a maximm stress of 14.016 N/on’ campared to the largest
stress generated of 19.372 N/cm2 in muscle space xl

For the nonlinear problem, only four active muscles were selected.
Nonlinear cost functions are assumed to select more synergistic muscles.
Here, the linear method of minimizing the upper bound of muscle stress
predicted a more even distribution of muscle stress among the
synergistic muscles and a greater distribution of muscle activity.
However, it is interesting to note that the stress values for both the
minimm fatigue and minimum upper bound of muscle stress criteria were
in the same range.

The active muscles selected for the minimum fatigue criterion were
the same active muscles selected by the linear criterion of minimizing
the campression on the L3 vertebra. In comparing the daminant muscles,
the erector equivalents were selected by the minimum fatigue criterion,
while the latissimus dorsi were chosen by the criterion of minimizing
the spinal campression. The method of minimizing the spinal compression
drove the latissimus dorsi to its upper bound. When the upper bound was
removed, the latissimus dorsi. carried 96% of the muscular load with only
a 128 N load decrease carried by the spine compared to the other two
cost functions. This response reveals that the solution had a greater
dependency on the upper bound than on the cost function itself. Neither
the criterion of minimizing the upper bound of muscle stress nor the
endurance criterion yielded muscle stresses near the upper bound.

The minimum fatigue criterion was modified four times. Only a
negligible difference in force magnitude was noticed when the cubed root
ofthecostf\mctionswastakenforbothcasesofrx=3andnivalues.

Therefore, taking the cubed root was unnecessary in this problem. Only
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a minor difference in force magnitude existed when the values of n;
according to the percentage of slow twitch fibers were used compared to
the experimental average value of n=3. For the activity of holding a 40
N weight, this response can be expected since there is not a large
difference between the n, parameters of the erector equivalents and the
latissimus dorsi. The endurance criterion should be investigated
further by increasing the load held in the right hand. Increasing the
load would involve more muscles, including the antagonistic rectus
abdaminis muscles, thereby involving a full range of n, parameters.

Figure 6 illustrates that constraints 2 and 3, equations (16) and
(17) respectively, are redundant in the vacinity of the erector space
solution. Also, constraint 5, equation (19), does not even exist in the
limited erector space shown. All four equality constraints are present
in the latissimus dorsi solution space illustrated by Figure 7.
Constraints 2 and 3 are again found redundant in this space. In
addition, constraints 4 and 5, equations (18) and (19) respectively, are
also found redundant in the latissimus dorsi space shown. In both of
the muscle spaces illustrated, the optimal solution is found at the
intersection of the constraints.

Knowledge of the magnitudes and directions of muscle forces is
necessary in the design of preventative and rehabilitative programs. In
such applications, the solution to the indeterminate biomechanical
problem can be obtained by farmulating an objective function and
utilizing an optimization technique. The criterion chosen to farmulate
an optimization problem must represent an optimal characteristic if the

problem is to yield an accurate solution. There is a great need to
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experimentally validate the predictions presented and to continue
formulating optimization problems based on physiological reasons.
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SIMPLEX METHOD

The original form of the simplex algorithm was developed by George
B. Dantzig in 1947 and was formally published in 1951. Many variations
of the original technique have been developed since, but the original
simplex algorithm is still the best procedure for the solution of the
general linear programming problem when manual camputations are used.
Certain other revised simplex algorithms are camputationally
advantageous when the solution is calculated with a digital camputer.
The following derivation of the simplex method is referenced fram David
G. Luenberger.

As previously stated, a linear programming problem is a
mathematical program in which the aobjective function is linear in the
unknowns and the constraints consist of linear inequalities and/or
linear equalities. The exact form of these constraints may vary fram
one problem to another but any linear program can be transformed into
the following standard form:

minimize

(A1) subject to =5

& o

0

where: =m X n matrix

n - dimensional colum vector

o+ Xy D
"

m - dimensional column vector

46
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¢ = n - dimensional row vector

Various other forms of linear programs can be converted to the
standard form by one or more of the following techniques: slack
variables, surplus variables, free variables and by eliminating a
variable unconstrained in sign.

It is also important to note that all inequality constraints must
be in the form of less than inequality constraints. The purpose of this
is for the geametric advantage of having the gradients of the cost
function and the constraints point away from the optimal solution.

A basic solution is obtained by setting all the independent
variables equal to zero and solving for the dependent variables. This
matrix is said to be in canonical form. Since optimal solutions are
always basic solutions, it is important to understand the concept of
basic solutions and the fundamental theorem of linear programming.

Consider the system of equalities,

~ <

(A2) Ax =D

where:

Fram the n colums of 13:, select a set of m linearly independent
colums. Such a set exists if the rank of A is m. For notational
simplicity, assume that the first m colums of A were selected and
denote the m x m matrix determined by these columns by B. This matrix

is illustrated in equations (A3).
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—
o
L]
L]
L]
o

B ml A,m2 ° ° - 2,n Pio

B ml q2,m2 ° - - . by

(a3) . . .« .

am,rml am,mz e am,n brn::'

The matrix B is referred to as a basis since it consists of m
linearly independent columns that can be regarded as a basis for the
spaceEm. Themtrixﬁisthennonsingula.randaunique solution may be

obtained fram the equation:

~<

(Ad) BxB =

where:

m X m matrix

m - dimensional vector

ot u?(‘l‘ we ot
I

m - dimensional vector

The vector ;EB is camposed of the first m camponents of %, the basic
variables, and the remaining camponents of X are equal to zero. That
is, x = (x, 0).

In general, equations (A2) may not have any basic solutions. By
making certain elementary assumptions regarding the structure of the
matrix A, this trivial problem may be avoided. First, assume that
n > m, that is, the number of variables xj exceeds the number of
equality constraints. Second, assume that the rows of A are linearly
independent, corresponding to linear independence of the m equations. A
linear dependency among the rows of A would lead either to contradictory

constraints and hence no solutions to (A2), or to a redundancy that
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could be eliminated. Now, with the assumption that A has rank m, there
exists at least one basic solution to (A2).

Another point worth cammenting on is that of a degenerate
solution. If one or more of the basic variables in a basic solution
has value zero, that solution is said to be a degenerate basic solution.
Note that in a nondegenerate basic solution, the basic variables, and
hence the basis l;, can be immediately identified from the positive
canponents of the solution. Since the zero-valued basic and nonbasic
variables can be interchanged, ambiguity is associated with a degenerate
basic solution.

So far in the discussion of basic solutions, no reference has been
made to the positivity constraints on the variables. Similar
definitions apply when these constraints are also considered. Thus,

consider the system of contraints:

(A5) Ax = b,
x>0

which represents the constraints of a linear program in standard form.
If a vector x satisfies equations (A5) it is said to be feasible for
these constraints. A feasible solution to the constraints (AS) that is
also basic is said to be a basic feasible solution; if this solution is
also a degenerate basic solution, it is called a degenerate basic
feasible solution.

The primary importance of basic feasible solutions in solving
linear programming problems is represented through the fundamental
theorem of linear programming. The theorem itself shows that it is

necessary only to consider basic feasible solutions when seeking an
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optimal solution to a linear program because the optimal value is always
achieved at such a solution.

The geametric interpretation of the simplex method is straight
forward. The constraints form a polyhedron (multidimensional case)
which is either convex fram or to the origin, according to whether the
"greater than" or the "less than" inequality condition is imposed. The
polyhedron defines the feasible solution space. There is a special
category of the infinite feasible solutions that is of a finite number.
These solutions, called basic feasible solutions, are situated
geametrically at the vertices of the polyhedron. The number of basic
solutions is determined by the number of variables, n, and the number of

constraints, m, according to the combinatorial formulas:
(a6) CR =n!/m!(n - m)!

The z-constant equations (evaluated cost functions for each basic
solution) form a family of straight lines or hyperplanes. The extremum
solution is given by the remotest or the nearest intersecting points
between the z-hyperplane and the polyhedron (24).

The first step of the simplex method, referred to as phase I,
simply locates a vertex of the feasible set, or establishes that the set
is empty. Assuming that a vertex, or basic solution, has been found the
procedure continues with phase II. This phase is the heart of the
method, which searches from vertex to vertex along the edges
(intersections of the planes) of the feasible set. At a typical vertex
there are n edges to choose from, same leading away from the optimal
solution and others 1leading gradually toward it. Since linear

programming forces the solution to stay in the feasible set, an edge
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that is guaranteed to decrease (increase) the cost is chosen.
Eventually the optimal solution is reached.

Another important point is the convexity of the canonical system
forms. During the various linear transformations occurring in linear
programming, the oconvexity of the polyhedron does not change. The
properties concerning the vertices therefore remain the same; they
guarantee the necessity and sufficiency of the final extremal solution,
if it exists.

The simplex method proceeds from one basic feasible solution, that
is one extreme point, of the constraint set of a problem in standard
form to another, in such a way as to continually decrease the value of
the objective function until a minimm is reached. This is accamplished
by simple multiplications and additions referred to as pivoting. A
pivot operation consists of m elementary operations which replace a
standard system by an equivalent canonical system.

To initiate the use of the simplex method, the problem of finding
an initial basic feasible solution arises. Except for the cases where
the linear constraints are inequalities in which slack and/or surplus
variables are used to transform the problem into one of standard form,
it is not always possible to easily find an initial basic feasible
solution. Therefore, it is necessary to develop a means for determining
one so that the simplex method can be initiated. Interestingly, an
auxiliary linear program and corresponding application of the simplex
method can be used to determine the required initial solution.

Another important point is that many linear programs arising from

practical situations involve variables that are subject to both lower
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and upper bounds. The simplex method is easily modified to accammodate
the upper bound.

One final cament pertains to the revised simplex method.
Extensive field experience has indicated that the simplex method
converges to an optimum solution in about m or 1.5*m pivot operations.
If m is mch smaller than n, that is, if the matrix A has far fewer rows
than columns, pivots will occur in only a small fraction of the columns
during the course of optimization. Since the other columns are not
explicitly used, the work expended in calculating the elements in these
colums after each pivot is wasted effort. The revised simplex method
is a scheme for ordering the camputations required of the simplex method

so that unnecessary calculations are avoided.
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GENERALIZED REDUCED GRADIENT METHOD

Fram a camputational viewpoint, the simplex method is related to
the generalized reduced gradient method of nonlinear programming m that
the problem variables are partitioned into basic and nonbasic groups.
The following description of the generalized reduced gradient method was
referenced from Garret N. Vanderplaats (25). However, befare beginning
this derivation, it is important to mention same basic properties.

Recalling fram basic calculus that in order for a function of one
variable to have a minimum, its second derivative must be positive. In
the general n-dimensional case, this translates into the requirement
that the matrix of second partial derivatives of the abjective with
respect to the design variables must be positive definite. This matrix
is called the Hessian matrix. Positive definiteness means that this
matrix has all positive eigenvalues.

If the Hessian matrix is positive definite at a given x, this
insures that an extremum of the design is at least a relative minimum.
This wvector, X, is special in the sense that it satisfies the first
order conditions. If the Hessian matrix is positive definite for all
possible values of the design variables, X, then a relative minimm of
the design is guaranteed to be a global minimumm. In this case, the
cbjective function is said to be convex. When the objective function is

convex and the constraints form a convex solution space the necessary
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Kuhn-Tucker conditions are also sufficient to guarantee that if an
optimal solution is obtained, it is the global optimum.

The general nonlinear constrained optimization problem statement
can be written mathematically as:

minimize F(X)
(Bl) subject to ngE) <0 j=1,m
h (%) = 0, k=1, L
X Sx; Sxf
where: F(X) = objective function
X = vectaor of design variables

gj () = inequality constraints

hk(*fc) = equality constraints
L _

x; = lower bound on X5

x]}:‘ = upper bound on x;

Notice that the bounds on the variables are considered as side
constraints. These side constraints could be included in the inequality
constraint set, but are usually treated separately since they define the
search region. Since the generalized reduced gradient method only
solves equality-constrained problems, the problem statement (Bl) must be
modified by adding slack variables, x. . , to the inequality constraints

j+n
to yield the general form:
minimize F(X)
(B2) subject to gj(§) + X5 = 0 j=1,m
h (k) =0 k =1,L
L u
X 0 j=1,m
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A total of m slack variables are added, therefore the problem now
consists of n+m variables.

The concept of this method is that one dependent design variable
can be written for each equality constraint, thereby reducing the number
of independent design variables. This creates an unconstrained
minimization problem subject only to side constraints on the variables.
The independent variables are referred to as the decision variables and
the dependent variables are referred to as state variables.

Now, since X contains both the original n variables and the m

slack variables, X can be partitioned as:

(83) x = (zy7T
where: Z=n-L independent variables

; = m+L dependent variables

Notice that no restrictions as to which variables are contained in Z and
; are made. Also, since the problem consists only of equality

constraints, the problem statement can be simplified to:

minimize F(x) = F(z,y)
(B4) subject to hj(§) =0 j = 1,mL
x¢ < x; < x i =1,n+m

The side constraints for the original variables and the slack variables
were cambined with the understanding that the upper bounds associated
with slack variables are set very large (infinite) and that the lower
bound associated with each variable is zero.

BEquations (B4) are used to formulate the generalized reduced

<

gradient, Ggp.
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The reduced gradient is used to determine a search direction, g,

for use in the iterative equation:
(BS) x? = x?'l + o'gd

where: g = iteration number
§ = vector search direction
a*= scalar quantity that defines the distance of travel

In order to improve a design, it is necessary to determine a
direction vector which will reduce the abjective function without
violating any active constraints. Any direction which reduces the
aobjective function is defined as a usable direction. The portion of the
design space that is referred to as the usable sector is defined by the
hyperplane that is tangent to the objective function. The area in the
usable sector that does not violate the active constraints is referred
to as the usable feasible sectar. Any direction vector §, in the usable
feasible sector of the design space satisfies the criterion.

During various iterations the dependent variables, ¥, are updated.
However, since this equation is a linear approximation to the original
nonlinear problem, the constraints may not be zero for a proposed @ .
Therefore, a new expression for d; must be developed to drive h(§) = 0.

One final camment pertains to the process of selecting the
dependent variables such that the B matrix is nonsingular and so that a
small change in the variables will not violate the side constraints on
these variables. The second requirement is easily met by picking
dependent variables which are not too close to their side constraints.

The first requirement, a nonsingular matrix, is accomplished by
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performing Gaussian elimination operations on a matrix 0, using the
pivot search. The matrix @, is an (m+L)*(n+#m) matrix with elements
VThj(x). Notice that the independent and dependent variables are not
already partitioned in 6 By invoking the nondegeneracy assumptions
that every collection of m columns from 6 is linearly independent and
that every basic solution to the constraints has m strictly positive
variables any feasible solution will have at most n-m variables taking
the value zero.

Recalling that after the dependent variables were chosen and the
reduced gradient was developed, a search direction, §, must be
determined. In its simplest form, the search direction § is the
negative of the generalized reduced gradient. This is represented by

the expression:

In subsequent iterations a different method may be employed as long as
the set of independent variables is not altered.

A first estimate for the step size, ¢ ,can be found by using the
distance to the nearest side constraint. Note that by searching in a
specified direction, §, the problem of n+m variables in % is converted
to one variable, a. Hence, this method is referred to as the one-
dimensional search.
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