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ABSTRACT
PLUGS IN SIMPLY-CONNECTED 4 MANIFOLDS WITH BOUNDARIES
By
Wei Fan
In 1986, S. Boyer generalized Freedman’s result to simply-connected topological 4 man-
ifolds with boundaries. He proved in many cases, the intersection form and the boundary
determine the homeomorphism types of the 4 manifolds. In this thesis, we will study simply-
connected smooth 4 manifolds with boundaries by using handlebody techniques. We will
show that: there do exist simply-connected smooth 4 manifolds with the same intersection
form and the same boundary but not homeomorphic to each other, and the cause of this

phenomenon is “Plug”.
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Chapter 1

Introduction

This thesis will focus on the study of homeomorphism type of simply-connected smooth 4-
manifolds with boundaries. One of the main difficulty in studying 4-manifold theory arises
from the failure of h-cobordism theorem. In 1960, S. Smale [41] proved for dimension higher
than 4, if two simply-connected smooth manifolds are h-cobordant, then they are diffeomor-
phic to each other.

Unfortunately, in dimension 4, one of the key ingredient of Smale’s proof: the Whit-
ney’s trick does not work. In 1973, A. Casson looked into the 4-dimensional h-cobordism
model, and introduced a new idea “self-pluming handle” which is called “Casson Handle”
nowadays (Casson himself called it “flexible handle”). In 1982, M. Freedman [24] proved
that the Casson handles are topologically standard handles, and hence the h-cobordism be-
tween two simply-connected smooth 4-manifolds actually induces a homeomorphism. By
combining with Wall’s theorem [44], [45] which claims that any two closed simply-connected
4-manifolds with isomorphic intersection forms are h-cobordant, he derived the following

celebrated theorem:

Theorem 1.1. (Freedman, [24]) For every unimodular symmetric bilinear form @ there
exists a simply-connected, closed, topological 4-manifold X such that Qx = Q. If Q is even,
this manifold is unique (up to homeomorphism). If Q) is odd, there are exactly two different

homeomorphism types of manifolds with the given intersection form. At most one of these



homeomorphism types carries a smooth structure.

As a consequence, the famous Poincaré Conjecture was proved (the 4-dimensional topo-

logical case)

Corollary 1.1. (Freedman, [24]) If a topological 4-manifold X is homotopy equivalent to

S4 then X is homeomorphic to S*.

Freedman’s Theorem says the homeomorphism type of closed, simply-connected, smooth
4-manifolds are completely classified by their intersection forms. However, the classification
of the diffeomorphism type of simply-connected, smooth 4-manifolds is still a mystery and
far from achieving.

In dimension 4, homeomorphism type is different from diffeomorphism type; actually,
dimension 4 is the lowest dimension that such phenomena happens. Manifolds which are
homeomorphic to each other but not diffeomorphic to each other are usually called “exotic
manifolds”. In the following decades, people invented many different methods to produce
exotic 4 manifolds: Logrithmic Transformation, Rational Blow-down [21], Fintushel-Stern
Knot Surgery [22], etc. “Cork Twist” [9] is one of the methods that attracts people’s attention
in recent years. Corks are contractible submanifolds; cork twist means there is an involution
map on the boundary of the cork; we cut off the cork and glue it back by the involution
map. Many Corks are fairly simple 4-manifolds, while by operating twists on them, abundant
illuminating and interesting exotic 4-manifolds were constructed [10], [11], [12], [13].

In 1996 [32], [18], it was proved that any two simply-connected smooth 4-manifolds which
are homeomorphic differ by some cork twists. Indeed, the failure of smooth h-cobordism
theorem in dimension 4 is due to the cork twists. So, cork twist plays a fundamental and

important role in changing the diffeomorphism type (smooth structure) of the 4-manifolds.



Freedman’s theorem is also true for simply-connected 4-manifolds whose boundaries are
homology 3 spheres, since in this case, @) x is still ular and hence Wall’s theorem still holds.
In 1986, S. Boyer [15] studied the homeomorphism type of simply-connected, topological
4-manifolds whose boundaries are arbitrary closed, oriented, connected 3-manifolds. He
gave a necessary and sufficient condition under which a given homeomorphism between the
boundaries of the two 4-manifolds can be extended into the interior. His result can be

considered as a generalization of Freedman’s Theorem in the following way:

Theorem 1.2. (Boyer, [15]) Let M denote a closed, oriented, connected 3-manifold; (Z", Q)
denote a bilinear form space. If Q presents' Hy(M), we will denote them by a pair (Q, M).
Then:

(i) if H(M,Q) =0, there are at most 2 homeomorphism types of simply-connected topolog-
ical 4-manifolds (X, M) whose intersection form is Qx such that (Qx, M) is isomorphic?
to (Q, M). At most one of these homeomorphism types carries a smooth structure.

(i) if Q is odd, there are at most 2 homeomorphism types of simply-connected topologi-
cal 4-manifolds (X, M) whose intersection form is Qx such that (Qx, M) is isomorphic to
(Q,M). At most one of these homeomorphism types carries a smooth structure.

(111) if Q is even, there are at most Spin(M)/H (M) many different homeomorphism types
of simply-connected topological 4-manifolds (X, M) whose intersection form is QQ x such that
(Qx, M) is isomorphic to (Q, M).

Moreover, If H1(M) is free, then:

(i) if Q is odd, there are exactly 2 homeomorphism types of simply-connected topological
4-manifolds which are isomorphic to (Q, M) and they differ by their Kirby-Siebenmann in-
variant.

(ii) if Q is even, there are exactly Spin(M)/H4 (M) many homeomorphism types of simply-
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connected topological 4-manifolds which are isomorphic to (Q, M).

Although Boyer works within the topological category, his theorem has a very nice im-

plication in the smooth case:

Corollary 1.2. two simply-connected odd smooth 4-manifolds which have isomorphic (Q, M)

are homeomorphic.

Now one may wonder what happens to the even smooth 4 manifolds. Boyer gave a gen-
eral algorithm on constructing Spin(M)/H+ (M) many non-homeomorphic simply-connected
even topological 4-manifolds which have isomorphic (Q, M), when Hy(M) is free. However,
his construction does not work in the smooth case, since his proof uses Freedman’s result
[24]: Every homology 3-sphere bounds a contractible topological 4-manifold which fails in the
smooth case.

Whether there exist non-homeomorphic simply-connected even smooth 4-manifolds which
have isomorphic (@, M)? In the last chapter, we will give a positive answer to this question
by presenting a concrete example. We will hunt through all possible orientation preserving
self-homeomorphisms of a haken manifold M. M bounds two simply-connected smooth 4-
manifolds X and X9, which induce spin structures s; and s9 respectively on M. Then we
will easily see that none of these self-homeomorphisms interchange the two spin structures.
So X7 and X9 must be non-homeomorphic to each other.

In chapter 3, we will prove that if (X1, M7) and (Xa, M») are two simply-connected even
smooth 4-manifolds such that (Q X1 M) is isomorphic to (Q Xo» Ms>), then the homeomor-
phism types of (X7, M7) and (X7, Ms) differ by a single “Plug Twist”. “Plug Twist” is a
similar operation as Cork Twist. It was defined and studied in [9]. It comes naturally from

many examples. For instance, Gluck Twist [25] can be considered as a simplest Plug Twist.
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The key difference between a Cork and a Plug is that a Plug contains a framing 1 (or -1) 2-
handle: twisting around this 2-handle may change the homeomorphism type; while since the
boundary of a cork is a homology 3-sphere, cork twisting never changes the homeomorphism
type.
By combining with the theorem of Cork, we would draw the following conclusion:

If two simply-connected smooth 4-manifolds have isomorphic (@, M), then the plug twist is
responsible for the difference of their homeomorphism types; cork twists is responsible for
the difference of their diffeomorphism types (smooth structures).

In chapter 2, we will introduce the necessary terminologies and background.



Chapter 2

Background and Known Results

2.1 Whitney’s Trick and Finger Move

2.1.1 Whitney’s trick

Whitney’s trick is a method for removing a pair of double points of opposite sign (each
intersection point has a sign from comparing orientations); it works perfectly in dimension
> 5. Since it this thesis, we will only concentrate on 4-dimensional case, let us consider the

following Whitney’s trick model in dimension 4.

Whitney’s Disk

Figure 2.1: Whitney’s disk

Suppose A and B are two embedded surfaces in X 4 which intersect in two points with op-
posite sign (by dimension counting, we may assume all intersections are transverse). Choose

a path that links the two intersection points inside A and choose another path linking the two



intersection points in B. The union of the two paths form a circle, which is called Whitney’s
circle; we also assume that this circle bounds an embedded 2-disk in the complement of A
and B, as shown in the following picture. The interior of this disk is called Whitney’s disk.

The Whitney’s circle consists of two parts: 7 lies on A; lg lies on B. There is a 1-vector
bundle A\; over /1 which is tangent to A and normal to W; there is also a 1-vector bundle A9
over l9 which is normal to both W and B. A\; and A9 agree at their common points. Denote
A the union of A\ and A9 as a 1-vector bundle over the Whitney’s circle. The obstruction
of extending A over W is m1SO(2). It is called the framing obstruction. For this moment,
let us assume the framing obstruction is trivial (intuitively, this mean when we push off
the Whitney’s disk parallelly, the Whitney’s circles are not linked on the boundary of the
complement). Now, under all these assumptions, we see that there is an ambient isotopy,
called Whitney’s move, supported in a neighbourhood of W which moves A to a surface A’
disjoint from B. A’ can be described as constructed from A by cutting out a neighbourhood
of the arc on A, glueing in two parallel copies of the Whitney’s disk, and a parallel of a

neighbourhood of the arc on B.

Figure 2.2: Whitney’s move

To make the Whitney’s trick work in dimension 4, we made 3 assumptions:



1. the Whitney’s circle bounds a disk in the complement of A and B.
2. the Whitney’s disk is embedded.
3. the framing obstruction is trivial.

In general situations, none of these assumptions can be guaranteed. It seems there are
too many issues. However, we may reduce the number of difficulties by using the following
tricks [38], [27]:

(i) Interior twisting:

This operation creates a self-intersection of W, while changes the framing obstruction by

+2.

O
Q.
Q.

Figure 2.3: Interior twisting

(ii) Boundary twisting:
This operation creates a new intersection point between W and A, while changes the framing

obstruction by =+1.



W
T iat)

Figure 2.4: Boundary twisting

(iii) Push off interior self-intersections:
This operation eliminates one self-intersection of W creates two new intersection points

between W and A. It does not change the framing obstruction.

Figure 2.5: Push off interior self-intersections



So, if we can find a Whitney’s disk W which is disjoint form B, even if it is immersed,
the framing is wrong, we can modify it by (ii) and (iii) such that the new Whitney’s disk is
embedded, and the framing obstruction becomes trivial. The price to pay is we obtain more
intersection points between W and A. Now we can still do the Whitney’s trick by dragging
A along the new Whitney’s disk. The effect is that we get a surface A’ which is disjoint from

B, but A’ is immersed.

2.1.2 Finger move

To use Whitney’s trick in dimension 4 (to eliminate intersection points between A and B
without getting self-intersections), we need to find a Whitney’s disk in the complement of
A and B first. This suggests us the complement of A and B better be simply-connected.
A brilliant idea of reducing the fundamental group of the complement of A and B is due
to Casson: Imagine we push our finger through A following a loop « in the complement, as

shown in the following figure.

Figure 2.6: Finger move changes the fundmental group of the complement

This method is called Finger move. By doing the finger move, we create two new inter-
section points between A and B, so it can be regarded as “inverse Whitney’s trick”, and we

will denote this Whitney’s disk by W. Now let us consider how does this process affect the
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fundamental group of the complement:

A neighbourhood of p is locally diffeomorphic to (R4 = R%y x R2

2t

R%y UR2,). There is
a torus T2 = S x S! on the boundary of the complement of R%y U ]th in R* which links
R%y URZ,. (T? = {(v,y,2,t) € R! | 22 + 4% = 1 = 22 +1?}). This torus is called the
linking torus. Its fundamental group is generated exactly by a and . So by introducing
new intersection points, we add a relation induced by the linking torus to the fundamental
group of the complement. Thus finger move kills the commutator [, «].

Pushing off the interior self-intersections can be also viewed as an application of finger
move. In general, suppose A, B, C' are surfaces in X 4 part of the boundary of C' lies on B,
and there is an embedded arc from an intersection point A N C' to this boundary, as shown.
Then we can push A off C' through B (along the arc). This gives a surface A’ with one fewer

intersection with C', but two new intersections with B.

Figure 2.7: Finger move

If B is a sphere whose framing is 0 (means a parallel push off of B in X does not intersect
B) and intersect C' in exactly one point. Then all the intersections between A and C' can
be removed, by pushing A along the arc in C' and adding parallel copy of B to A. In this

situation, B is called a transverse sphere of C.
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Figure 2.8: Eliminating the intersection point by a transverse sphere

2.1.3 Casson handles

Now let us assume that A, B are embedded surfaces in X, such that AN B = {p, ¢} with
opposite sign and the X \ AU B is simply-connected, then we are able to find a Whitney’s
disk W disjoint from A and B. If W is embedded such that the framing obstruction is trivial
(we may think of it as the core of a 0 framing 2-handle as in the following picture), then by
Whitney’s trick (we may think of it as handle slides over this O-framing 2-handle), we can

remove the two intersection points with opposite sign.

B A B

=

I/Vhitney’s Disk W hitney's Circle \—j -~/ -~/

Figure 2.9: Handlebody picture of Whitmey’s move

However, if the W is just an immersed disk, it would define a kinky handle, i.e., the

core of this 2-handle has self-intersections. In this case, we can always adjust its framing

12



by interior twisting such that after introducing more self-intersection points, the framing
obstruction is trivial (since for a pair of intersection points of opposite sign, the framing
obstruction is = Omod(2)). For each self-intersection point of W, choose a loop in W, based
at the self-intersection, leaving along one branch and returning along the other. We want
to choose these loops pairwise disjoint. There is no framing issue for these loops, since they
are entirely contained in . The linking torus Tg at p intersects W at a single point, so by
M-V sequence, we can easily check that H{ (X \ AUBUW) = 0. Thus 7 (X \AUBUW) is
a perfect group and generated by the conjugates of the meridian circle of W. Now, by using
finger moves on W (we push W through itself), we can kill 71 (X \ AU B UW). Therefore,
every loop bounds a disk in X \ AU B U W. If one of these loops actually bounds an
embedded disk, then the corresponding self-intersection of W can be eliminated, by handle
slide or Whitney’s trick (we can create a new self-intersection with opposite sign near the
boundary of this embedded disk ([40], 2.1)). In general, we can merely find an immersed
disk, with its own self-intersections, which can be viewed as a kinky handle attached to a
kinky handle. We iterate the process; add third stage kinky handles and then fourth stage
kinky handles, and so on. We carry out the process for infinitely many steps, then take the
union of all these kinky handles. The result is called Casson handle.
0 0 0

NN

Figure 2.10: Casson handle

From the construction, we see that the Casson handles are very complicated subjects,

13



but the miracle is they are actually topologically the same as standard handles.

Theorem 2.1. (Casson) Let X% pe simply-connected and let W1, ..., Wy, be smoothly im-
mersed transverse 2-disks in X* with boundaries, W7, ..., 0Wy, embedded disjointly in 0X 4
and W;-W; = 0 fori # j. Assume that there exist 31, ..., Bn € Ha(X) such that 3;-3; is even
and Wi - B; = ;5. Then the W;’s can be regularly homotoped (rel 9) to be disjoint, and then
kinky handles may be added disjointly so as to build n disjoint, smoothly embedded Casson
handles with W1, ..., Wy, as their first stages. Furthermore, these Casson handles satisfy:
Property 1: Fach Casson handle is proper homotopy equivalent, rel 0 = Slx intB2, to B2x
int B2.
Property 2: Each Casson handle is a smooth submanifold of B% x B2 with S1x intB? =
OB%x int B2.

The existence of §;,7 = 1,..,n in the above theorem is to guarantee the complement of

W;,i=1,..,nin X% is simply-connected after necessary finger moves.

Theorem 2.2. (Freedman, [24]) Each Casson handle is homeomorphic to B®>x intB?, rel 0.

2.2 Useful Results in Handlebody Theory

2.2.1 Pluming 2-handles

The main objective of this section is to find the handlebody picture of the neighbourhood
of two immersed spheres A, B in X* with intersection points. A detailed description can be
found in [26].

At the neighbourhood of each intersection point, the neighbourhood of A is diffeomorphic

to D% x D2, call it A’; the neighbourhood of B is diffeomorphic to D? x D2, call it B'. The

14



neighbourhood of A U B can be thought as plumbing two normal bundles D? x D? and
D? x D2. We can plumb them as follows: Staring with the relative handle decomposition of

the core (D,0D) of A’ with a single handle, introduce a cancelling 0- and 1-handle.

Figure 2.11: Handle decomposition of (D,9D)

We identify the 0-handle with a cocore of B’ (realized as a disk in X bounded by a
meridian of the attaching circle of B’). Then we attach A’ by attaching the 1-handle and

2-handle.

Figure 2.12: Pluming 2-handles

If we switch to “dot” notation, it is shown as in the following figure.

15



Figure 2.13: Pluming 2-handles in “dot” notation

Example 1: A framing 2 sphere intersects with a framing 3 sphere geometrically 3 times,

algebraically once.

Figure 2.14: Two spheres intersecting geometrically 3 times, algebraically once

Note that at the first clasp, the 1-handle links the two 0-handles coming from each handle-
body picture of A and B, so it is cancelled. After the first clasp, we will associate a 1-handle
to each clasp.

Example 2: A framing 0 sphere with a self-intersection. (called a fishtail)

16
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Figure 2.15: A finshtail

2.2.2 Doing Surgery

Definition 1. Let ¢ : S¥ — M"(—1 < k < n) be an embedding of a k-sphere in an n-
manifold, with a normal framing f on ¢(S k ) (which we assume lies in int M). Then the pair
(¢, f) determines an embedding ¢ : S* x D"k — M (unique up to isotopy), and surgery
on (y, f) is the procedure of removing gb(Sl€ X intD”*k) and replacing it by DFt1 x gn—Fk—1

with gluing map ¢ | S¥ x §7—F—1,

Attaching a handle to (X, 0—X) has the effect of surgery on 04X, and conversely any
surgery on a closed manifold M is realized as 04 (I x M U h) where h is attached by (¢, f).
Surgery on M produces a manifold with a canonical embedding of DF+L 5 gn—k=1 T we
surger on this framed S”_k_l, we recover M. This corresponds to turning the relative
handlebody I x M U h upside down. We call this procedure reverse the surgery.

Now, let us consider the particular case when n = 4. If k£ = 1, we cut off a framed
embedding S x D3 from M, and glue in S? x D?. As explained above, this is the same
as attaching a 5-dimensional 2-handle to I x M. If we start building the handlebody of M
from S1 x D3, it can be viewed as a 4-dimensional 1-handle; Replacing it by S% x D? by
using the canonical framing is equivalent to switching the 1-handle to a 0 framing 2-handle.

Clearly, switching the 0 framing 2-handle to a 1-handle (a circle with a dot) is the reverse

17



surgery.

Proposition 2.1. Suppose X is a simply-connected 4-manifold, then any 1-surgery (k=1)

on X vyields either X152 x S2 or X$52%52.

Proof. Suppose we do 1-surgery on a circle C' C X. Write X = X154, and let Cy ¢ X#54
be the circle D% x 0 € d(D? x D3) = S*. 71(X) = 1, so C must be homotpic to Cy and
hence isotopic to Cp in X, as dim X = 4. Therefore, doing 1-surgery on Cy would give us the
same result. Since m(SO(2)) & Zo, we can view S? as a 1-handle linking with a 0 framing

2-handle once or a 1-handle linking with a 1 framing 2-handle once. 1-surgery switches the

1-handle to a 0 framing 2-handle, which yields X#52 x S2 or X#52%52 respectively. m

2.2.3 Eliminating 1-handles

Let W be an oriented compact 5-manifold with boundary 0W decomposed as a disjoint
union Oy W [[O—W of two compact submanifolds (either of which may be empty). Let
O_W = X_, 0_W = X4, we say (W, X_) is a relative handlebody if W is obtained from
I x X_ by attaching 1,2,3,4-handles (if X_ is empty, we start from a O-handle; if Xy is

empty, we end up with a 5-handle).

Theorem 2.3. If W is simply-connected and X_, X4 are connected, then we can modify

the handle decomposition of W' such that it contains no 1-handles and 4-handles.

Proof. For each 1-handle, we can introduce a cancelling pair of 2 and 3-handles. We hope
each new introduced 2-handle would cancel with a 1-handle. This is true if the attaching
circle K of the 2-handle is isotopic to the core K of the 1-handle in 04+ W5, where Wy is
the 2 skeleton of W, i.e., it is the union of I x X_ and all the 1-handles and 2-handles.
Since dim 04 Ws=4, it is enough to show they are homotopic in 01 Ws. 71 (W) = 1 implies

18



that Wy is also simply-connected. Therefore, there is a homotopy between K and K in
Ws. As dim Wy = 5, dimension of this homotopy is 2, and dimensions of the cores of the
1- and 2-handles are 1 and 2 respectively, we can make the homotopy to be disjoint from
1- and 2-handles by small perturbation in W5. Therefore, this homotopy can be pushed
into 04 Wy. Thus, all the 1-handles are cancelled with the new introduced 2-handles. The
new introduced 3-handles are left, so we can think this process as “trading” 1-handles for
3-handles. By turning W upside-down, we can trade each 4-handle for a 2-handle. In the

end, we get a handle decomposition of W involving no 1-handles and 4-handles. O

From the proof, we can easily see that the same result is true for dimension > 5.

The proof clearly fails in dimension 4. Indeed, whether a simply-connected closed 4-
manifold always admits a handle decomposition involving no 1-handle is an open question.
However, we can use the same idea as in the proof of last theorem to get a weaker result in

dimension 4.

Theorem 2.4. Suppose that (X,0-X) is a 4-dimensional relative handlebody with 0— X
connected and w1 (X) = 1. For every 1-handle h of this decomposition, one can introduce a
cancelling 2-3 handle pair such that the 2-handle cancels h algebraically (but not necessarily
geometrically). In fact, one can arrange the attaching circles of the new 2-handles to repre-
sent the canonical basis for the free factor of m(X1) determined by the 1-handles (suitably

attached to the base point).

Proof. 1f we go through the proof of last theorem for dimension 4, we will realize the same
technique fails in two places: 1. In dimension 4, homotopy does not imply isotopy; 2. We
can not assume the homotopy misses the cores of the 2-handles.

We deal with the second problem first. Use the same notation as in the proof of last
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theorem: K denote the core of a 1-handle h; K denote the attaching circle of the cancelling
2-handle; H denote the homotopy between K and K. Suppose H intersects the core of a
2-handle at a point P, then we can form the band-sum of the boundary circle of a small
disk around P in H with the circle K using a band contained in H; the resulting circle will
be denoted by Ki. Now, K7 is homotopic to Ky and this homotopy can be assumed to be
disjoint form the 2-handles and hence can be pushed into 91 Ws. Denote the image of K1
on 04+ Wy by Ks. Note that the band might run over 1-handles and 2-handles, so, K9 might
run over 1-handles and 2-handles as well, but it will run over h algebraically once, other
1-handles algebraically 0 times.

Now we deal with the first problem. Dim 04Wsy = 3, the homotopy in 04+ W5 fails to
be an isotopy at finitely many times when the knot crosses through itself. Each crossing
change can be realized by band-summing K9 with a meridian K9 along a suitable band
in 04+ Wy. Note again, this band might run over 1-handles and 2-handles, but it does not
change the algebraic linking number between K9 and the core of each 1-handle. Let K3
be the knot obtained from K9 by such crossing changes. K3 run over h algebraically once,
other 1-handles algebraically 0 times and it is isotopic to K in 0+ Ws. So, the 2-handle K

algebraically cancels h. O]

2.3 Spin Structures

Let X denote a n-manifold n > 3, Tx denote its tangent bundle. The second Stiefel-Whitney
class wo(Tx ) measures the obstruction to trivializing T'x over the 2-skeleton of X.

When n = 4, Wu's formula says: For all oriented surfaces S embedded in X, wo(Tx)-S =

S-S (mod 2).
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A nice consequence of Wu'’s formula is: If wo(Tx ) = 0, then the intersection form of X
18 even.

By universal coefficient theorem, the converse is true whenever H1(X; Z) has no 2-torsion.

A spin structure on X is a choice of trivialization of T'x over 1-skeleton that can be
extended over the 2-skeleton, considered up to homotopies. A manifold endowed with a spin
structure is called a spin manifold.

Note: When n < 2, we define a spin structure on X as a trivialization of T'x over the
1-skeleton such that T’y & €37 can be extended over 2-skeleton, where €377 is a trivialized
bundle.

By Wu'’s formula, Any 4-manifold without 2-torsion, for example simply-connected, ad-
mits spin structures if and only if its intersection form is even.

Let s be a spin structure on X", given by a trivialization of T'x over the 1-skeleton of
X (for some fixed triangulation of X). For any @ € H 1(X ;Z3), « is isomorphic to a map
f: X — RP*®. We homotope f into a finite skeleton, say RPYV, then the preimage of RPNV 1
is a n — 1 submanifold Y of X, representing a. Now we change the trivialization of s over
every 1-cell by a 27 twist each time the 1-cell intersects Y. If a 1-cell bounds a 2-cell, then
this 1-cell must intersect Y even number of times, and thus we change the trivialization over
this 1-cell by even number of 27 twists. Since 71(S0(4)) = Zsg, the new trivialization can
also be extended over the 2-skeleton. Therefore, we get a new spin structure on X; denote it
by a - s. Since s and « are arbitrarily chosen, this can be viewed as an action of H(X;Zg)
on the set of all pin structures of X. This action is free and transitive. Therefore, after
fixing a spin structure on X, the action establishes a bijective correspondence between the
elements of H 1(X ; Z9) and the set of all spin structures on X.

For example, H 1(51;22) — Zs, so there are two spin structures on S*. One can be
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extended into the interior; one can not. The latter one is also called the Lie group spin
structure on S1.

The 3-torus 73 = S! x S x S! has 8 different spin structures since H!(T3;Zs) = 73,
which can be also viewed as the products of spin structures on S1.

For a closed, spin 3-manifold (M, s), the Rohlin invariant u(M, s) € Zig is the signature
o(X) reduced modulo 16, where X is any smooth, compact, spin 4-manifold with spin
boundary (M, s)

This is a well-defined invariant because if X and Y are two smooth compact spin 4-
manifolds which induce the same spin boundary (M, s), then X U,; Y is a smooth closed

spin 4-manifold. The rest of the argument is due to Rohlin’s Theorem:

Theorem 2.5. (Rohlin, [37]) If X is a smooth, closed, spin 4-manifold, then o(X) = 0

(mod 16).
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Chapter 3

Corks and Plugs

3.1 Corks

In this chapter and the next chapter, when we talk about a manifold, we always assume it is
compact and oriented. “~” stands for diffeomorphic; “~" stands for homotopic equivalent.

The h-Cobordism Theorem is one of the most important theorem in modern topology.

Theorem 3.1. (Smale, [41]) If W is an h-cobordism between the simply-connected n-dimen-
sional smooth manifolds X1 and X9, and n > 5, then W is diffeomorphic to the product

I x Xq. In particular, X1 is diffeomorphic to Xs.

However, this theorem fails in dimension 4, the first counterexample was brought to light
by S.K. Donaldson [19], and many others followed. The following theorem which was proved
independently by Matveyev [32] and Curtis-Freedman-Hsiang-Stong [18] tells us that the

failure of h-cobordism theorem can be localized on a contractible piece.

Theorem 3.2. ([32], [18]) X1 and X9 are simply-connected smooth 4-manifolds (not neces-
sarily closed). If W is an (relative) h-cobodism between X1 and Xo, then there is a subcobor-
dism V. C W between submanifolds C; C X; (i = 1,2), such that W — intV is the product

cobordism, and V', C; are contractible.

This theorem says if X7 is h-cobordant to X9, then Xi, X9 can be decomposed as

X1 = Xg Uy C1, Xo9 = Xg Uy Ca, where C7, Cy are contractible manifolds. In many cases,
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Cy ~ Cy. Actually, in [32], Matveyev proved that Cj Uy C ~ S*: €1 Uy Cy ~ S* and
so that X1 ~ (XoiC1) Uy (C18C5) and X9 =~ (XiC7) Ug (C28C1). Thus if let C15Co and
Co1Cq play the role of C] and C9, one can always assume that C| ~ Cy. By Freedman
and Quinn’s theorem [24], [36], X1 and X9 are h-cobordant implies they are homeomorphic.
Therefore, we can conclude any exotic smooth structure of a simply-connected 4-manifold
arises from cutting off a contractible submanifold and gluing it back by a non-trivial map 7.
From Matveyev’s proof, we can easily see that this non-trivial map 7 is an involution, i.e.,
7 o7 = id. Furthermore, in [1], Akbulut and Matveyev proved that one can always make C;
stein.

Let C be a contractible stein 4-manifold with boundary and 7 : C' — C' an involution on
the boundary. We call (C, 1) a Cork if T extends to a self-homeomorphism of C', but can not
extend to any self-diffeomorphism of C'. The procedure of cutting off C' and gluing it back
by 7 is called Cork Twist.

The first example of cork twist changing the smooth structure is due to S. Akbulut [3]:
C 0 A

A oAy

Figure 3.1: An example of being homeomorphic but not diffeomorphic obtained by doing
cork twist

Many other interesting exotic manifolds were then constructed using cork twists by Ak-
bulut and Yasui [9], [10], [11], [12], [13].

Note that most of these examples were constructed by a “simple” cork twist, which means
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we only exchange “dot” and “0” once. Therefore, connecting sum with S2 x S2 stabilizes
these manifolds, i.e., lejSQ x 92 ~ XgﬂSz x S2. Easy to see that if X and Xy differ by n
disjoint simple cork twist, it is still true that X152 x S2 ~ X5452 x S2. So to construct
exotic manifolds which can not be stabilized by a single S2 x S2, one has to use “linked

corks”. The following is a potential example:

Figure 3.2: A potential example of being homeomorphic but can not be stablized by con-
necting sum with S2 x S2 by doing cork twist

3.2 Boyer’s theorem

In this section, we will interpret Boyer’s work, which will be needed in the next section.
Let M denote a closed, oriented, connected 3-manifold. A bilinear form space (Z", Q) is said

to present Hy (M) if there is an exact sequence

by ad(Q)

0= Hy(M) s 7 iz 2 Hy (M) = 0

such that

(i) if ad(Q)(&;)=m;n; (i = 1,2) where mymsg # 0, then
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1
Ipr(Ony,0m2) = —WQ(&,&);

(i) if 8 € Hy(M) and 5 € [Z7]F, then a(n) - § = n(h(3)).

It is well known that, if M bounds a topological 4-manifold X, (Ho(X),Qx) presents
Hy«(M), where Qx is the intersection form of X. If @) presents M, we denote them by
(@, M).

Given two simply-connected 4-manifolds (X7, M7) and (X2, M), we say (Q Xl,Ml) is
isomorphic (through (A, f)) to (QXQ, M) if there is a homeomorphism f : M; — My and an
isomorphism A : Ho(X1) — Ho(X9) preserving the intersection form such that the following

diagram commutes:

0 —— Ho(My) —— Ho(Xq1) —— Ho(Xy, M) —— H1(Myj) —— 0

e A| x| a (*)

0 —— Ho(My) —— Hy(X9) —— Hy(X9,My) —— Hy(My) —— 0

Note: A* is the adjoint of A with respect to the identification of Ho(Xj;, M;) with
Hom(Hs(X;);Z2); If F: X1 — X9 is a homeomorphism which induces f on the bound-
ary, Fyx : Ho(X1,M1) — Ha(Xo,Ms) is not the same as the inverse of adjoint of F :
Hy(X1) — Ho(X2) in general, but (*) is commutative due to Lefschetz duality. Therefore,
(*) is a necessary condition for X7, X9 to be homeomorphic.

The following theorem is due to Boyer:

Theorem 3.3. (Boyer, [15])(X1, M7), (Xa, M3) are simply-connected topological 4-manifolds
with boundaries. If f : My — My is an orientation preserving homeomorphism and A :
Hy(X1) — Ho(X9) is an isomorphism which preserves the intersection form, such that
(QXl,Ml) is isomorphic to (QXQ, Ms) through (A, f), then f can be extended to a homeo-
morphism F : X1 — Xo if:

(i) when Hi(M;,Q) =0 (i =1,2) and A(X1) = A(X9)(mod 2).
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(ii) when X; (i =1,2) are even manifolds, and X = X1 Uy Xy is also an even manifold.
(7ii) when X; (i = 1,2) are odd manifolds and A(X1) = A(X2)(mod 2).
In case (i) and (i), Fy, the isomorphism on Ho(X7) induced by F agrees with A; in case

(iii) Fyx may not agree with A.

From this theorem, one can easily derive the classification theorem we stated in chapter

In this thesis, we are only interested in smooth 4-manifolds, so let us assume X7 and X»
are smooth and drop the assumption A(X7) = A(X»)(mod 2).

To make his theorem more transparent, let us introduce some notations: As stated in
the theorem, (X1, M7), (X9, Ms) are simply-connected smooth 4-manifolds with the closed
connected boundaries. f : My — My is an orientation preserving homeomorphism. A :
Hy(X1) — Ha(X29) is an isomorphism which preserves the intersection form, such that
(QXl,Ml) is isomorphic to (QXQ, M>) through (A, f). Denote X ufYQ by X. IfV:A— B
is a homomorphism of abelian groups. Let G(¥) denote the subgroup of A® B corresponding
to the graph of U : G(¥) = {(a,V(a))|a € A}. ki, hy and O; are defined by the following

diagram:
Ha (M) Ha (M, My) =0

l l

h1x@hoy 1% D2«
Ha(My) @ Ha(Ma) 222025 [y (X))@ Ho(Xa) 229825 [y (X0, My) @ Ha(Xa, My)

J1+f;1 li*:il*-‘_iz* H
Ha(My) LN Ha(X) L N Ha(X, My) Outfilo0s, Hy (M)
o |
Hi(My) Hy(My, M) =0

!

0
Boyer’s theorem is essentially a consequence of the following theorem:

Theorem 3.4. (Boyer, [15]) Assume rank of Ho(My) = k. There exists {u;} € Ha(X)
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(i =1,2,...k), such that d(u;) = v;, where {v;} is a basis of the free part of Hi(My), and
k*(u;) € G(—A*). f extends to a homeomorphism F : X1 — Xy if M; . M; is even for all

i=1,2, ..k

Because if Hy(M;,Q) =0 (i = 1,2), the free part of Hy (M) is trivial, k = 0, so p}- it =0
mod(2) is automatically true; if X is even, ,u; . u;- must be even for any ; if X is odd, ué . ,u;
might be odd for some i. In this case, Boyer showed that one can always find another A’
and {\}} € Ho(X) such that O(\,) = v, k«(X;) € G(—A"*) and A} - A} is even for every i.
We will investigate this case carefully and figure out how to construct A’ from A in the next
section. Actually, finding an appropriate A’ is the key to prove the existence of the plug.

For completeness, we outline Boyer’s proof of the above theorem.

Proof. The proof consists of two steps.

1. We construct a maximal isotropic subgroup J C Ho(X) (“isotropic” means for Vz,y € J,
z -y =0) such that (i) i+(G(—A)) C J; (ii) 9(J) = Hy(My).

2. We apply Wall’s method [45]: replacing W by another 5-manifold W7 with W = X,
Wy = VI, S? and J = ker(Ho(X) — Ho(W1)). Then by diagram chasing, we will show
that v; : Ho(X;) — Ho(W7) (i = 1,2) are isomorphisms.

Step 1: J will be built as the sum of two isotropic subgroups J; and Jo of Ho(X)
which satisfy (i) i«(G(—A)) C Jy, 0(J1) = T1(My) (torsion of H1(M7)) and rank(Jy) =
rank(Ho(X1)) — rank(H1(My)); (ii) the composition Jo % H{(My) — H{(My)/T(My)
is an isomorphism; (iii) J1 N Jo = {0} and J; - Jo = {0}.

Assuming we have found such subgroups, we let J be the smallest direct summand of
Hy(X) containing Ji + Jo. As rank(Hs(X))=2rank(Ho(X1)), J is evidently the desired

subgroup of Ha(X).
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Construction of Jy:

Let J be the smallest direct summand of Hy(X') containing i+(G(—A)) which is isotropic
in Ha(X) as A is an isometry. Thus J; is also.

Next we prove 0(J1) = T1(My). If u € Jy, there is an integer m > 0 such that mu €
ix(G(—A)). But then mo(u) = 0, as 0 oix = 0. Hence d(u) € T1(M7p) which shows

d(J1) C T1(Mjy).To derive the opposite inclusion, let v € Ty (My).

Claim 3.1. We can find a class p € Ho(X) with O(u) = v and k«(pn) € G(—A*).

Proof. Fix any n € Ho(X2, My) such that 8y(n) = fx(v). Now as (81 + f5 1 0d9)(G(—A*)) =
0, G(—A*) C image(ks«), so we may choose a u € Ho(X) for which ky«(p) = (—A*(n),n).

Further, () = fi ! 080 pro o ky(p) = fi ' 0 da(n) = v by the choice of v. O

Let kx(p) = (—A*(n),n). Since v € T (M), we may find an m > 0 and £ € Ho(X7) such
that ji.(§) = —mA*(n). Then kx 0 ix(§, —A()) = m(—=A*(n),n) and thus ix(§, —A*(S)) =

mp + hy(B) for some B € Ho(My).

Claim 3.2. The class 8 is divisible by m in Ho(My)

Proof. 1t suffices to show that § - v = 0(modm) for each v € H{(Mp). But from the

properties of Jo, for any such v there is some y' € Jo with (/) — v € Ty(My). Then

Bv="h(B) p =ix(§,=AE) - pf —mp -y = —mp -y O

Now since p + h«(8/m) € J1, v = 9(u) = O(u + h«(B/m)) € 9(J1) and as v was chosen
arbitrarily, we conclude 0(Jy) = T1(My).

Finally, to calculate rank(.Jy), note ker(ix) = {(h1x(8), —hoxfsx(B)|5 € Ha(My))} C
G(—A). Thus,

rank(Jy) =rank(ix(G(—A))) =rank(G(—A))—rank(ker(ix)) =rankHo(X1)—rank(Hq(My)).

29



Construction of Jo:

Set F1(My) = Hy(My)/T1(My) and choose vy, v, ...,v;, € Hi(My) which projects to
a basis of this group. By Claim 1, there are classes 1}, ib, ""“/k: € Hy(X) such that (i)
o) = v, 1 <i <k, (i) ka(ptf) € G(=A*),1 < i < k.

Let $1,82,...,8; € Ha(My) be the basis dual to vy,...,v. That is f; - v; = ;5. Set
Bi = h«(B;)(1 < i < k) and note that (i) 5;-8; = 0,1 < i,j < k; (ii) Bi-u} =6ij,1<i,j <k
Define 4 = i —Z;?:Hl(pé- -u;-),@j, 1 <i <k, and observe that ki« (u) = k«(p1}) € G(—A¥).
Thus for each 4, ] - p! = p! - pf = 0(mod2) as y - p), is even. Thus we may form p; =
wi = 5w - 1)Bi € Ha(X),1 < i < k.

Now it can be checked that p; - p; = 0(1 < 4,5 < m), ;) = (1 < i < k), and
ki«(p;) € G(—=A*). Thus if we set Jo = Span(ui, uo, ..., 1) € Ho(X), (i) Jo is isotropic;
(ii) the composition Jo % Hy(My) — Fi(My) is an isomorphism; (iii) k«(J2) C G(—A¥).
Thus .Jo satisfies the desired properties.

Observe that under the composition Ha(X) 9, H{(My) — Fy(My), J; maps to zero while
Jo maps monomorphically. Thus, JiNJo = 0. To see that Jy-Jo = 0, choose p; € J;(i = 1,2).
Now by the construction of J; and Js, we may choose an integer m > 0, and elements
{ € Hy(X1) and n € Hy(Xo, M) such that mpuy = ix(§, —A(€)), ke(p2) = (=A*(n),n).
Then 111 - g = 75ix(&, —A(€)) - p2 = = [€ - (—A* (1)), A(€) - 1] = 0. As i1, jip were arbitrary,
J1-Jo =0.

Step 2: We replace W by another 5-manifold Wy with OW; = X, Wp = \/i' 52 and

J = ker(Ho(X) — H2(W71)). Now consider the commutative diagram:
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By assumption, d|.J is surjective and quick diagram chase shows that 1) = j o iy is also.
Thus if £ € Ho(W7), there are elements & € Ho(X;) (i = 1,2) such that £ = ¢(&1,&2). But

as ix(G(—A)) C J = Ker(js), ¥(—€1,A(&1)) = Y(A1(&2), —&) = 0. Thus,

(€1, 82) + (=&, A (&) ¥(0,& + A(61))
§=9(&1,8) = =

(&, &) + v (AT (&), —&) ¥(& +AH€),0)

Clearly this implies that ¢ € image(Ha(X;) — Ha(W7)) (i = 1,2), and so both ho-
momorphism Hy(X;) — Ho(W7) are surjective. Since rank of Ha(X;) = rank of Ho(W7),
v; = Y|Ho(X;) (1 = 1,2) are isomorphisms. Therefore, W7 is a relative h-cobordism. As
G(—A) C ker(vy), go*]H2(X1) = w;l o1 is precisely A. By Quinn’s relative h-cobordism the-

orem [36], there exists a homeomorphism F' : X1 — Xg such that F| My = fand Fry =A. O

3.3 Plugs

If X1 and X9 are closed simply-connected smooth 4-manifolds, and () X = Q Xy then Wall’s
theorem implies X and X9 are h-cobordant, so the cork theorem applies. Now let us consider
simply-connected smooth 4 manifolds with boundaries. From Boyer’s proof, we know that if
X; are odd and (QXI, M) is isomorphic to (QXQ, Ms), then X7 is relative h-cobordant to

X9, so they differ by cork twists. What happens when X; are even? The example in the last
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chapter will show that X; may not be relative h-cobordant to X9. In this section, we will
prove the failure of X7 being relative h-cobordant to X9 can be localized on a submanifid
Y] of X7 which is homotopic equivalent to S2. Such a submanifold is called a Plug. Plugs
naturally appear in many exotic manifolds [9], [7], [42]; it was first introduced and studied
in [9] by Akbulut and Yasui.

Plug was originally defined in [9] as a Stein 4-manifold Y with boundary, homotopic
equivalent to S2 and 7 : Y — Y an involution on the boundary such that 7 can not
extend to any self-homeomorphism of Y. The procedure of cutting off Y and gluing it back
by 7 is called Plug Twist. Plug is a similar object as cork. The main difference between
them is plug twist may change the homeomorphism type, while cork twist never changes
the homeomorphism type. We want to prove a theorem for plugs analogous to the cork
theorem. To make our theorem work, we need to work with a weaker version of plug. See

the paragraph below the statement of the theorem.

Theorem 3.5. (X1, M), (Xa, M) are simply-connected smooth 4-manifolds with diffeo-
morphic boundaries such that (QXl,Ml) is isomorphic to (QXQ,MQ). Then, there exists
submanifolds Y; C X;, (i =1,2) such that:

(1) Y; are homotopic equivalent to 52 9Y] &~ Yy ~ a homology S* x S2.

(2) X1\ Y1 is homoemorphic to X9\ Yo and ixHo(Y;) C ig Ha(M;), (i =1,2), where isx and
195 are the homomorphisms induced by the inclusion map 1 :Y; — X; and iy : M; — Xj.
(3) YilU;gYi = S% x S2, (i = 1,2); Y1, Yo = S?%S?, where T is an obvious diffeomor-
phism as we shall see in the proof.

(4)Y; can be made Stein.

In our theorem, we allow Y] and Y5 being different manifolds, because as we have seen in
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the cork theorem, C'1 is not necessarily diffeomorphic to C'y. We can make them diffeomorphic
by using C U;q C1 = St ¢y Uy Cy &~ S However, this trick does not work for plugs, since

plugs are not contractible.

Proof. Glue X1, X9 along their boundaries by f. X{|JXs = X. By Novikov Additivity,
o(X) = 0; therefore, X bounds a 5 dimensional maflifold W. Do l-surgery to kill all
nontrivial elements of 71 (W). Thus, we may assume W is simply connected.

Then, we can use the “handle trading” trick to cancel 1-handles and 4-handles. In the
end, we get a cobordism between X and X9, which has only 2- and 3-handles and induces
the trivial cobordism between M7 and My (It can be considered as the collar of My in X5).
We still call this cobordism W. Consider the middle level which is between the 2-handles
and the 3-handles, call it X, X e X1#nS2 x S24mS2% 52 2 XotnS? x §24mS2% 52, We
cannot proceed the proof like Cork Theorem, because we cannot eliminate the existence of
52% 82, However, we can assume m = 1, since 52 x $24252% 52 ~ 252 x $2452%52.

3-handles @

SVAVRY

Xo

AAA

2-handles v

Figure 3.3: Handle decomposition of the cobordism

In X tnS% x S2852%52, we let o (1 =1,...,n) denote the belt spheres of 0 framed 5-
dimensional 2-handles; 3; denote the geometric dual spheres of ay, i.e., the attaching spheres

generated by the cores of the 0 framed 2-handles and the disks bounded by their attaching
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circles. [o4] - [e;] = 0, [Bi] - [8;] = 0 in Ha(X14nS? x S2452%S?); a;, B; are disjoint when
i # j; «a; intersects with (; geometrically once (i = 1,2,...n). We let ag denote the belt
sphere of the 1 framed 5-dimensional 2-handle; 5y denote the geometric dual sphere of «,
i.e., the sphere generated by the core of the 1 framing 2-handle and the disk bounded by its
attaching circle. [ag] - [ag] = 0, [Bo] - [Bo] = 1 in Ho(X18nS? x S?#52%S?); ag intersects

/ /
i Q0

with [y geometrically once. By turning the handlebody upside down, we denote ozé,
56 in a similar manner. Denote by ¢ : X14n5? x $2852% 52 — X5#nS2 x S2452% 52 the
composition of p10¢, 1, SO go_l((x;) are the attaching spheres of the 5-dimensional 3-handles
i=0,1,...,n. We wish to prove @« ([ap]) - [of] = 0; px([ao]) - [B)) = 1 and e ([oy]) - [of] =1
for ¢+ = 1,...,n. Without ambiguity, let us not distinguish between «;, 5; and the homology
classes [o;] ,[5;] in the following context.

When X, are closed manifolds, by Wall’s Theorem, we can find a self-diffeomorphism
¢ X18n5% x 52852552 — X1tnS? x S2452% 52 such that ¢x 0 ¢y = A & Q, where A & Q
agrees with A on Ho(X1); A® Q(ay) = ﬁg fori=1,....,nand AdQ(ag) = oz6. Therefore, we
can assume that p«(o;) = B, @«(y) - af = 1, px(ag) - afy = 0. When X; have boundaries,
Q X, are not unimodular, so we can not apply Wall’s Theorem directly. We shall prove:
o« (o) = afy + 6 for some 6 € Ho(Mz) and px(a;) = B, i =1,..n.

If Hi(My) is free, consider the long exact sequence:
0 — Ho(My) 5 Ho(X1#nS2x 52652%52) 25 Hy(X18nS2x S2452% 52, My) — Hy(My) — 0.
Assume the rank of Ho(X1#nS? x S?85%2%S?)=m, the rank of Hj(M;)=k. Let (Z™,Q)
represent Ho(X14nS2 x S2452%52), then (Z™,Q) splits as (Z™ % Q)P (ZF,0), where
(Z*,0) represents i, Ho(M;); (Z™ % Q1) represents coker(ji). Basy to check ix(a)-b =0

for any a € Ho(Mp) and b € HQ(XlﬁnSQ X 5'21:132;52), so the split is orthogonal, i.e.,
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Q1

0 ~
Q= , and Q1 is unimodular. The same is true for HQ(XQJjnS2 X SQﬁSQXSQ).
0 0

¢ induces an isometry (an isomorphism which preserves the intersection form) o, :
Ha(X14nS? x $%45%x5%) — Ha(XainS? x $%45?x5?). Note that @« |;, py(ary) i an
isometry on (ZF, 0). Now we want to define an isometry @x : (Z™ % Q1) — (Z™ % Q).
Suppose @« (7y;) = E;-n:_lkpj vyt Z?:l qjn;, where {y;,4 = 1,...,m — k} is a basis of
(Z™% Q1); {n;,i = 1,....,k} is a basis of (Z¥,0). Let @u(v;) = Z;n:_lkpj -7y;. Clearly,
G H(7i) = i, S0 @y is surjective, and therefore it is an isomorphism on coker(jx). More-
over, Gu() - Be(7) = u(3) - @a(r7) = % - 7. Thus, G is an isometry on (Z™, Qy).
Let A ® €2 denote the isometry on HQ(XltinS2 X 821:152252) which agree with A on Ho(X7),
and (A @ Q)(ag) = B, (A®Q)(B;) = af, i =1,2,..m; (A& Q)(ap) = afy, (A®Q)(Bo) = 5
Since ()7 is unimodular, by Wall’s Theorem, we are able to find a self-diffeomorphism
¢ X18nS% x 528525 S? — X1#nS? x 52452% S? such that ¢y (x) = z for any = € i Ho( M)
and ¢y = @5 Lo (A®Q) on coker(jx) (¢ is defined in a similar way as @y). This can be proved
by working on the relative handlebody pictures, similar to the proof in [30] (Chparter X),
which deals with handlebody pictures of closed manifolds. Therefore, (o« 0 ¢x)(ag) = o+
for some 0 € ixHa(Mp). Thus, (¢s o ¢x)(ap) - oy = 0; (px 0 dx)() - By = 1; and
(g 0 dx)(y) - af =1,i=1,...,m, we get what we need.

If Hi(My) is not free, we apply Boyer’s result.

Let us denote X;#S2%xS2 by )?Z (1 = 1,2), X3 Us Xxg by X; let A @ id denote the
isomorphism from Ha(X1) to Ho(Xs) that agrees with A on Ho(X1) and A @ id(ag) = o),

A®id(By) = 66. We now consider the cobordism W between )A(Jl and )/{2
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1 framed 3-handle
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0 framed 3 handles

0 framed 2-handles v

1 framed 2-handle

Figure 3.4: Finer handle decomposition of the cobordism

By Boyer’s theorem, we can find y € Hy(X) such that du) = v;, where v; is a basis of
the free part of Hy(My) (i =1,2,....k) and k«(p}) € G(—(A @ id)*). If pf - il is even for all
i, we get @y (ap) = (A ®id)(ap) = o). We are done in this case.

If ,u;) : u;) is odd for some p, assume k:*(,u;,) = (a,b), where b € HQ(E, Ms), a=(—(Aa®

id)*)(b) € Hy(X71, My). Both Ho(X1, My) and Ha(X1) are free.

=~ HOM =~ PD ~
Hy(X1, My) === H*(X1, My) — Ho(X1).
a ~ a* ¥ PD(a¥)

Oy, = vp = O1a = vp, s0 a* € 61(H(M7)) where 6 is the coboundary map, PD(a*) €
ix(Ho(M7)) and it is a primitive element by Lefschetz duality.

Let {z1 = ag,x2 = By, x3 = PD(a"),x4,...,x;m—n} be a basis of HQ(E). Note that
PD(a*) # ag or fjy, because we assumed ,u;, : u;) is odd. We consider an automorphism
Ox HQ(X_]/_) — Hg()A(Jl) which is defined by: ¢«(ag) = ag + PD(a™); ¢«(x;) = x; for i # 1.
Easy to check that ¢, preserves the intersection form.

Let {Z1,T9,T3 = a,T4,...,Tm—n} be the dual basis for Hg()ffvl,Ml), ie., T; - x; = 0j.
Then By = jix(ao); @ = j1«(Bo) — j1«(a0), because ji(ag) - ag = 0,j1(0) - fo =

L, (j1x(Bo) — J1x(0)) - ap = 1, (j1+(Bo) — J1«(a0)) - Bo = 0.
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Claim 3.3. (¢*)71(#;) = &; for i # 3; (¢*) " (a) = a — ag = a — j1(S) + j1(a), where

(¢*)_1 is defined in the following commutative diagram:

~. PD ~ HOM
Hy(X1) —= H%(X|, My) == Hy(X1, M)

|6 | [t

~. PD ~ HOM
Hy(X)) —— H2(X1, My) === Ho(X1, M)

Proof. (¢*)71(&;) - ¢(xj) = 835, for i # 1,2,3, ds () = z; = (¢*) 71 (7;) = Z4;

when i =1, ag-¢«(ag) = ag-(ap+PD(a")) = 1, ag-¢«(Bo) = aop-fo = 0, ag-¢«(PD(a”)) =
ap - PD(a*) = 0= (¢*)~!(do) = ao;

when i =2, By~ ¢«(ag) = By~ (ao+PD(a*)) = 0, By~ ¢«(Bo) = ao-Bo = 1, Bo- ¢«(PD(a*)) =
Bo-