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ABSTRACT

PLUGS IN SIMPLY-CONNECTED 4 MANIFOLDS WITH BOUNDARIES

By

Wei Fan

In 1986, S. Boyer generalized Freedman’s result to simply-connected topological 4 man-

ifolds with boundaries. He proved in many cases, the intersection form and the boundary

determine the homeomorphism types of the 4 manifolds. In this thesis, we will study simply-

connected smooth 4 manifolds with boundaries by using handlebody techniques. We will

show that: there do exist simply-connected smooth 4 manifolds with the same intersection

form and the same boundary but not homeomorphic to each other, and the cause of this

phenomenon is “Plug”.
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Chapter 1

Introduction

This thesis will focus on the study of homeomorphism type of simply-connected smooth 4-

manifolds with boundaries. One of the main difficulty in studying 4-manifold theory arises

from the failure of h-cobordism theorem. In 1960, S. Smale [41] proved for dimension higher

than 4, if two simply-connected smooth manifolds are h-cobordant, then they are diffeomor-

phic to each other.

Unfortunately, in dimension 4, one of the key ingredient of Smale’s proof: the Whit-

ney’s trick does not work. In 1973, A. Casson looked into the 4-dimensional h-cobordism

model, and introduced a new idea “self-pluming handle” which is called “Casson Handle”

nowadays (Casson himself called it “flexible handle”). In 1982, M. Freedman [24] proved

that the Casson handles are topologically standard handles, and hence the h-cobordism be-

tween two simply-connected smooth 4-manifolds actually induces a homeomorphism. By

combining with Wall’s theorem [44], [45] which claims that any two closed simply-connected

4-manifolds with isomorphic intersection forms are h-cobordant, he derived the following

celebrated theorem:

Theorem 1.1. (Freedman, [24]) For every unimodular symmetric bilinear form Q there

exists a simply-connected, closed, topological 4-manifold X such that QX
∼= Q. If Q is even,

this manifold is unique (up to homeomorphism). If Q is odd, there are exactly two different

homeomorphism types of manifolds with the given intersection form. At most one of these
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homeomorphism types carries a smooth structure.

As a consequence, the famous Poincaré Conjecture was proved (the 4-dimensional topo-

logical case)

Corollary 1.1. (Freedman, [24]) If a topological 4-manifold X is homotopy equivalent to

S4, then X is homeomorphic to S4.

Freedman’s Theorem says the homeomorphism type of closed, simply-connected, smooth

4-manifolds are completely classified by their intersection forms. However, the classification

of the diffeomorphism type of simply-connected, smooth 4-manifolds is still a mystery and

far from achieving.

In dimension 4, homeomorphism type is different from diffeomorphism type; actually,

dimension 4 is the lowest dimension that such phenomena happens. Manifolds which are

homeomorphic to each other but not diffeomorphic to each other are usually called “exotic

manifolds”. In the following decades, people invented many different methods to produce

exotic 4 manifolds: Logrithmic Transformation, Rational Blow-down [21], Fintushel-Stern

Knot Surgery [22], etc. “Cork Twist” [9] is one of the methods that attracts people’s attention

in recent years. Corks are contractible submanifolds; cork twist means there is an involution

map on the boundary of the cork; we cut off the cork and glue it back by the involution

map. Many Corks are fairly simple 4-manifolds, while by operating twists on them, abundant

illuminating and interesting exotic 4-manifolds were constructed [10], [11], [12], [13].

In 1996 [32], [18], it was proved that any two simply-connected smooth 4-manifolds which

are homeomorphic differ by some cork twists. Indeed, the failure of smooth h-cobordism

theorem in dimension 4 is due to the cork twists. So, cork twist plays a fundamental and

important role in changing the diffeomorphism type (smooth structure) of the 4-manifolds.
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Freedman’s theorem is also true for simply-connected 4-manifolds whose boundaries are

homology 3 spheres, since in this case, QX is still ular and hence Wall’s theorem still holds.

In 1986, S. Boyer [15] studied the homeomorphism type of simply-connected, topological

4-manifolds whose boundaries are arbitrary closed, oriented, connected 3-manifolds. He

gave a necessary and sufficient condition under which a given homeomorphism between the

boundaries of the two 4-manifolds can be extended into the interior. His result can be

considered as a generalization of Freedman’s Theorem in the following way:

Theorem 1.2. (Boyer, [15]) Let M denote a closed, oriented, connected 3-manifold; (Zn, Q)

denote a bilinear form space. If Q presents1 H∗(M), we will denote them by a pair (Q,M).

Then:

(i) if H1(M,Q) ∼= 0, there are at most 2 homeomorphism types of simply-connected topolog-

ical 4-manifolds (X,M) whose intersection form is QX such that (QX ,M) is isomorphic2

to (Q,M). At most one of these homeomorphism types carries a smooth structure.

(ii) if Q is odd, there are at most 2 homeomorphism types of simply-connected topologi-

cal 4-manifolds (X,M) whose intersection form is QX such that (QX ,M) is isomorphic to

(Q,M). At most one of these homeomorphism types carries a smooth structure.

(iii) if Q is even, there are at most Spin(M)/H+(M) many different homeomorphism types

of simply-connected topological 4-manifolds (X,M) whose intersection form is QX such that

(QX ,M) is isomorphic to (Q,M).

Moreover, If H1(M) is free, then:

(i) if Q is odd, there are exactly 2 homeomorphism types of simply-connected topological

4-manifolds which are isomorphic to (Q,M) and they differ by their Kirby-Siebenmann in-

variant.

(ii) if Q is even, there are exactly Spin(M)/H+(M) many homeomorphism types of simply-
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connected topological 4-manifolds which are isomorphic to (Q,M).

Although Boyer works within the topological category, his theorem has a very nice im-

plication in the smooth case:

Corollary 1.2. two simply-connected odd smooth 4-manifolds which have isomorphic (Q,M)

are homeomorphic.

Now one may wonder what happens to the even smooth 4 manifolds. Boyer gave a gen-

eral algorithm on constructing Spin(M)/H+(M) many non-homeomorphic simply-connected

even topological 4-manifolds which have isomorphic (Q,M), when H1(M) is free. However,

his construction does not work in the smooth case, since his proof uses Freedman’s result

[24]: Every homology 3-sphere bounds a contractible topological 4-manifold which fails in the

smooth case.

Whether there exist non-homeomorphic simply-connected even smooth 4-manifolds which

have isomorphic (Q,M)? In the last chapter, we will give a positive answer to this question

by presenting a concrete example. We will hunt through all possible orientation preserving

self-homeomorphisms of a haken manifold M . M bounds two simply-connected smooth 4-

manifolds X1 and X2, which induce spin structures s1 and s2 respectively on M . Then we

will easily see that none of these self-homeomorphisms interchange the two spin structures.

So X1 and X2 must be non-homeomorphic to each other.

In chapter 3, we will prove that if (X1,M1) and (X2,M2) are two simply-connected even

smooth 4-manifolds such that (QX1
,M1) is isomorphic to (QX2

,M2), then the homeomor-

phism types of (X1,M1) and (X1,M2) differ by a single “Plug Twist”. “Plug Twist” is a

similar operation as Cork Twist. It was defined and studied in [9]. It comes naturally from

many examples. For instance, Gluck Twist [25] can be considered as a simplest Plug Twist.
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The key difference between a Cork and a Plug is that a Plug contains a framing 1 (or -1) 2-

handle: twisting around this 2-handle may change the homeomorphism type; while since the

boundary of a cork is a homology 3-sphere, cork twisting never changes the homeomorphism

type.

By combining with the theorem of Cork, we would draw the following conclusion:

If two simply-connected smooth 4-manifolds have isomorphic (Q,M), then the plug twist is

responsible for the difference of their homeomorphism types; cork twists is responsible for

the difference of their diffeomorphism types (smooth structures).

In chapter 2, we will introduce the necessary terminologies and background.

5



Chapter 2

Background and Known Results

2.1 Whitney’s Trick and Finger Move

2.1.1 Whitney’s trick

Whitney’s trick is a method for removing a pair of double points of opposite sign (each

intersection point has a sign from comparing orientations); it works perfectly in dimension

> 5. Since it this thesis, we will only concentrate on 4-dimensional case, let us consider the

following Whitney’s trick model in dimension 4.

Figure 2.1: Whitney’s disk

Suppose A and B are two embedded surfaces in X4 which intersect in two points with op-

posite sign (by dimension counting, we may assume all intersections are transverse). Choose

a path that links the two intersection points inside A and choose another path linking the two
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intersection points in B. The union of the two paths form a circle, which is called Whitney’s

circle; we also assume that this circle bounds an embedded 2-disk in the complement of A

and B, as shown in the following picture. The interior of this disk is called Whitney’s disk.

The Whitney’s circle consists of two parts: l1 lies on A; l2 lies on B. There is a 1-vector

bundle λ1 over l1 which is tangent to A and normal to W ; there is also a 1-vector bundle λ2

over l2 which is normal to both W and B. λ1 and λ2 agree at their common points. Denote

λ the union of λ1 and λ2 as a 1-vector bundle over the Whitney’s circle. The obstruction

of extending λ over W is π1SO(2). It is called the framing obstruction. For this moment,

let us assume the framing obstruction is trivial (intuitively, this mean when we push off

the Whitney’s disk parallelly, the Whitney’s circles are not linked on the boundary of the

complement). Now, under all these assumptions, we see that there is an ambient isotopy,

called Whitney’s move, supported in a neighbourhood of W which moves A to a surface A′

disjoint from B. A′ can be described as constructed from A by cutting out a neighbourhood

of the arc on A, glueing in two parallel copies of the Whitney’s disk, and a parallel of a

neighbourhood of the arc on B.

Figure 2.2: Whitney’s move

To make the Whitney’s trick work in dimension 4, we made 3 assumptions:
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1. the Whitney’s circle bounds a disk in the complement of A and B.

2. the Whitney’s disk is embedded.

3. the framing obstruction is trivial.

In general situations, none of these assumptions can be guaranteed. It seems there are

too many issues. However, we may reduce the number of difficulties by using the following

tricks [38], [27]:

(i) Interior twisting:

This operation creates a self-intersection of W , while changes the framing obstruction by

±2.

Figure 2.3: Interior twisting

(ii) Boundary twisting:

This operation creates a new intersection point between W and A, while changes the framing

obstruction by ±1.
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Figure 2.4: Boundary twisting

(iii) Push off interior self-intersections:

This operation eliminates one self-intersection of W ; creates two new intersection points

between W and A. It does not change the framing obstruction.

Figure 2.5: Push off interior self-intersections
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So, if we can find a Whitney’s disk W which is disjoint form B, even if it is immersed,

the framing is wrong, we can modify it by (ii) and (iii) such that the new Whitney’s disk is

embedded, and the framing obstruction becomes trivial. The price to pay is we obtain more

intersection points between W and A. Now we can still do the Whitney’s trick by dragging

A along the new Whitney’s disk. The effect is that we get a surface A′ which is disjoint from

B, but A′ is immersed.

2.1.2 Finger move

To use Whitney’s trick in dimension 4 (to eliminate intersection points between A and B

without getting self-intersections), we need to find a Whitney’s disk in the complement of

A and B first. This suggests us the complement of A and B better be simply-connected.

A brilliant idea of reducing the fundamental group of the complement of A and B is due

to Casson: Imagine we push our finger through A following a loop γ in the complement, as

shown in the following figure.

Figure 2.6: Finger move changes the fundmental group of the complement

This method is called Finger move. By doing the finger move, we create two new inter-

section points between A and B, so it can be regarded as “inverse Whitney’s trick”, and we

will denote this Whitney’s disk by W . Now let us consider how does this process affect the

10



fundamental group of the complement:

A neighbourhood of p is locally diffeomorphic to (R4 ∼= R2
xy × R2

zt,R
2
xy ∪ R2

zt). There is

a torus T 2 = S1 × S1 on the boundary of the complement of R2
xy ∪ R2

zt in R4 which links

R2
xy ∪ R2

zt. (T 2 = {(x, y, z, t) ∈ R1 | x2 + y2 = 1 = z2 + t2}). This torus is called the

linking torus. Its fundamental group is generated exactly by α and β. So by introducing

new intersection points, we add a relation induced by the linking torus to the fundamental

group of the complement. Thus finger move kills the commutator [β, α].

Pushing off the interior self-intersections can be also viewed as an application of finger

move. In general, suppose A, B, C are surfaces in X4, part of the boundary of C lies on B,

and there is an embedded arc from an intersection point A ∩ C to this boundary, as shown.

Then we can push A off C through B (along the arc). This gives a surface A′ with one fewer

intersection with C, but two new intersections with B.

Figure 2.7: Finger move

If B is a sphere whose framing is 0 (means a parallel push off of B in X does not intersect

B) and intersect C in exactly one point. Then all the intersections between A and C can

be removed, by pushing A along the arc in C and adding parallel copy of B to A. In this

situation, B is called a transverse sphere of C.
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Figure 2.8: Eliminating the intersection point by a transverse sphere

2.1.3 Casson handles

Now let us assume that A,B are embedded surfaces in X, such that A ∩ B = {p, q} with

opposite sign and the X \ A ∪ B is simply-connected, then we are able to find a Whitney’s

disk W disjoint from A and B. If W is embedded such that the framing obstruction is trivial

(we may think of it as the core of a 0 framing 2-handle as in the following picture), then by

Whitney’s trick (we may think of it as handle slides over this 0-framing 2-handle), we can

remove the two intersection points with opposite sign.

Figure 2.9: Handlebody picture of Whitmey’s move

However, if the W is just an immersed disk, it would define a kinky handle, i.e., the

core of this 2-handle has self-intersections. In this case, we can always adjust its framing
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by interior twisting such that after introducing more self-intersection points, the framing

obstruction is trivial (since for a pair of intersection points of opposite sign, the framing

obstruction is ≡ 0mod(2)). For each self-intersection point of W , choose a loop in W , based

at the self-intersection, leaving along one branch and returning along the other. We want

to choose these loops pairwise disjoint. There is no framing issue for these loops, since they

are entirely contained in W . The linking torus T 2
p at p intersects W at a single point, so by

M-V sequence, we can easily check that H1(X \A∪B∪W ) = 0. Thus π1(X \A∪B∪W ) is

a perfect group and generated by the conjugates of the meridian circle of W . Now, by using

finger moves on W (we push W through itself), we can kill π1(X \ A ∪B ∪W ). Therefore,

every loop bounds a disk in X \ A ∪ B ∪ W . If one of these loops actually bounds an

embedded disk, then the corresponding self-intersection of W can be eliminated, by handle

slide or Whitney’s trick (we can create a new self-intersection with opposite sign near the

boundary of this embedded disk ([40], 2.1)). In general, we can merely find an immersed

disk, with its own self-intersections, which can be viewed as a kinky handle attached to a

kinky handle. We iterate the process; add third stage kinky handles and then fourth stage

kinky handles, and so on. We carry out the process for infinitely many steps, then take the

union of all these kinky handles. The result is called Casson handle.

Figure 2.10: Casson handle

From the construction, we see that the Casson handles are very complicated subjects,

13



but the miracle is they are actually topologically the same as standard handles.

Theorem 2.1. (Casson) Let X4 be simply-connected and let W1, ...,Wn be smoothly im-

mersed transverse 2-disks in X4 with boundaries, ∂W1, ..., ∂Wn, embedded disjointly in ∂X4,

and Wi ·Wj = 0 for i 6= j. Assume that there exist β1, ..., βn ∈ H2(X) such that βi ·βi is even

and Wi · βj = δij. Then the Wi’s can be regularly homotoped (rel ∂) to be disjoint, and then

kinky handles may be added disjointly so as to build n disjoint, smoothly embedded Casson

handles with W1, ...,Wn as their first stages. Furthermore, these Casson handles satisfy:

Property 1: Each Casson handle is proper homotopy equivalent, rel ∂ = S1× intB2, to B2×

int B2.

Property 2: Each Casson handle is a smooth submanifold of B2 × B2 with S1× intB2 =

∂B2× int B2.

The existence of βi, i = 1, .., n in the above theorem is to guarantee the complement of

Wi, i = 1, ..., n in X4 is simply-connected after necessary finger moves.

Theorem 2.2. (Freedman, [24])Each Casson handle is homeomorphic to B2× intB2, rel ∂.

2.2 Useful Results in Handlebody Theory

2.2.1 Pluming 2-handles

The main objective of this section is to find the handlebody picture of the neighbourhood

of two immersed spheres A, B in X4 with intersection points. A detailed description can be

found in [26].

At the neighbourhood of each intersection point, the neighbourhood of A is diffeomorphic

to D2×D2, call it A′; the neighbourhood of B is diffeomorphic to D2×D2, call it B′. The
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neighbourhood of A ∪ B can be thought as plumbing two normal bundles D2 × D2 and

D2×D2. We can plumb them as follows: Staring with the relative handle decomposition of

the core (D, ∂D) of A′ with a single handle, introduce a cancelling 0- and 1-handle.

Figure 2.11: Handle decomposition of (D, ∂D)

We identify the 0-handle with a cocore of B′ (realized as a disk in X bounded by a

meridian of the attaching circle of B′). Then we attach A′ by attaching the 1-handle and

2-handle.

Figure 2.12: Pluming 2-handles

If we switch to “dot” notation, it is shown as in the following figure.
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Figure 2.13: Pluming 2-handles in “dot” notation

Example 1: A framing 2 sphere intersects with a framing 3 sphere geometrically 3 times,

algebraically once.

Figure 2.14: Two spheres intersecting geometrically 3 times, algebraically once

Note that at the first clasp, the 1-handle links the two 0-handles coming from each handle-

body picture of A and B, so it is cancelled. After the first clasp, we will associate a 1-handle

to each clasp.

Example 2: A framing 0 sphere with a self-intersection. (called a fishtail)

16



Figure 2.15: A finshtail

2.2.2 Doing Surgery

Definition 1. Let ϕ : Sk → Mn(−1 ≤ k ≤ n) be an embedding of a k-sphere in an n-

manifold, with a normal framing f on ϕ(Sk) (which we assume lies in int M). Then the pair

(ϕ, f) determines an embedding ϕ̂ : Sk × Dn−k → M (unique up to isotopy), and surgery

on (ϕ, f) is the procedure of removing ϕ̂(Sk× intDn−k) and replacing it by Dk+1×Sn−k−1,

with gluing map ϕ̂ | Sk × Sn−k−1.

Attaching a handle to (X, ∂−X) has the effect of surgery on ∂+X, and conversely any

surgery on a closed manifold M is realized as ∂+(I ×M ∪ h) where h is attached by (ϕ, f).

Surgery on M produces a manifold with a canonical embedding of Dk+1 × Sn−k−1. If we

surger on this framed Sn−k−1, we recover M . This corresponds to turning the relative

handlebody I ×M ∪ h upside down. We call this procedure reverse the surgery.

Now, let us consider the particular case when n = 4. If k = 1, we cut off a framed

embedding S1 × D3 from M , and glue in S2 × D2. As explained above, this is the same

as attaching a 5-dimensional 2-handle to I ×M . If we start building the handlebody of M

from S1 × D3, it can be viewed as a 4-dimensional 1-handle; Replacing it by S2 × D2 by

using the canonical framing is equivalent to switching the 1-handle to a 0 framing 2-handle.

Clearly, switching the 0 framing 2-handle to a 1-handle (a circle with a dot) is the reverse
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surgery.

Proposition 2.1. Suppose X is a simply-connected 4-manifold, then any 1-surgery (k = 1)

on X yields either X]S2 × S2 or X]S2×̃S2.

Proof. Suppose we do 1-surgery on a circle C ⊂ X. Write X = X]S4, and let C0 ⊂ X]S4

be the circle ∂D2 × 0 ⊂ ∂(D2 ×D3) = S4. π1(X) = 1, so C must be homotpic to C0 and

hence isotopic to C0 in X, as dim X = 4. Therefore, doing 1-surgery on C0 would give us the

same result. Since π1(SO(2)) ∼= Z2, we can view S4 as a 1-handle linking with a 0 framing

2-handle once or a 1-handle linking with a 1 framing 2-handle once. 1-surgery switches the

1-handle to a 0 framing 2-handle, which yields X]S2 × S2 or X]S2×̃S2 respectively.

2.2.3 Eliminating 1-handles

Let W be an oriented compact 5-manifold with boundary ∂W decomposed as a disjoint

union ∂+W
∐
∂−W of two compact submanifolds (either of which may be empty). Let

∂−W = X−, ∂−W = X+, we say (W,X−) is a relative handlebody if W is obtained from

I × X− by attaching 1,2,3,4-handles (if X− is empty, we start from a 0-handle; if X+ is

empty, we end up with a 5-handle).

Theorem 2.3. If W is simply-connected and X−, X+ are connected, then we can modify

the handle decomposition of W such that it contains no 1-handles and 4-handles.

Proof. For each 1-handle, we can introduce a cancelling pair of 2 and 3-handles. We hope

each new introduced 2-handle would cancel with a 1-handle. This is true if the attaching

circle K of the 2-handle is isotopic to the core K0 of the 1-handle in ∂+W2, where W2 is

the 2 skeleton of W , i.e., it is the union of I × X− and all the 1-handles and 2-handles.

Since dim ∂+W2=4, it is enough to show they are homotopic in ∂+W2. π1(W ) = 1 implies
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that W2 is also simply-connected. Therefore, there is a homotopy between K and K0 in

W2. As dim W2 = 5, dimension of this homotopy is 2, and dimensions of the cores of the

1- and 2-handles are 1 and 2 respectively, we can make the homotopy to be disjoint from

1- and 2-handles by small perturbation in W2. Therefore, this homotopy can be pushed

into ∂+W2. Thus, all the 1-handles are cancelled with the new introduced 2-handles. The

new introduced 3-handles are left, so we can think this process as “trading” 1-handles for

3-handles. By turning W upside-down, we can trade each 4-handle for a 2-handle. In the

end, we get a handle decomposition of W involving no 1-handles and 4-handles.

From the proof, we can easily see that the same result is true for dimension > 5.

The proof clearly fails in dimension 4. Indeed, whether a simply-connected closed 4-

manifold always admits a handle decomposition involving no 1-handle is an open question.

However, we can use the same idea as in the proof of last theorem to get a weaker result in

dimension 4.

Theorem 2.4. Suppose that (X, ∂−X) is a 4-dimensional relative handlebody with ∂−X

connected and π1(X) = 1. For every 1-handle h of this decomposition, one can introduce a

cancelling 2-3 handle pair such that the 2-handle cancels h algebraically (but not necessarily

geometrically). In fact, one can arrange the attaching circles of the new 2-handles to repre-

sent the canonical basis for the free factor of π1(X1) determined by the 1-handles (suitably

attached to the base point).

Proof. If we go through the proof of last theorem for dimension 4, we will realize the same

technique fails in two places: 1. In dimension 4, homotopy does not imply isotopy; 2. We

can not assume the homotopy misses the cores of the 2-handles.

We deal with the second problem first. Use the same notation as in the proof of last
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theorem: K0 denote the core of a 1-handle h; K denote the attaching circle of the cancelling

2-handle; H denote the homotopy between K and K0. Suppose H intersects the core of a

2-handle at a point P , then we can form the band-sum of the boundary circle of a small

disk around P in H with the circle K0 using a band contained in H; the resulting circle will

be denoted by K1. Now, K1 is homotopic to K0 and this homotopy can be assumed to be

disjoint form the 2-handles and hence can be pushed into ∂+W2. Denote the image of K1

on ∂+W2 by K2. Note that the band might run over 1-handles and 2-handles, so, K2 might

run over 1-handles and 2-handles as well, but it will run over h algebraically once, other

1-handles algebraically 0 times.

Now we deal with the first problem. Dim ∂+W2 = 3, the homotopy in ∂+W2 fails to

be an isotopy at finitely many times when the knot crosses through itself. Each crossing

change can be realized by band-summing K2 with a meridian K2 along a suitable band

in ∂+W2. Note again, this band might run over 1-handles and 2-handles, but it does not

change the algebraic linking number between K2 and the core of each 1-handle. Let K3

be the knot obtained from K2 by such crossing changes. K3 run over h algebraically once,

other 1-handles algebraically 0 times and it is isotopic to K in ∂+W2. So, the 2-handle K

algebraically cancels h.

2.3 Spin Structures

Let X denote a n-manifold n ≥ 3, TX denote its tangent bundle. The second Stiefel-Whitney

class ω2(TX) measures the obstruction to trivializing TX over the 2-skeleton of X.

When n = 4, Wu’s formula says: For all oriented surfaces S embedded in X, ω2(TX)·S =

S · S (mod 2).
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A nice consequence of Wu’s formula is: If ω2(TX) = 0, then the intersection form of X

is even.

By universal coefficient theorem, the converse is true whenever H1(X;Z) has no 2-torsion.

A spin structure on X is a choice of trivialization of TX over 1-skeleton that can be

extended over the 2-skeleton, considered up to homotopies. A manifold endowed with a spin

structure is called a spin manifold.

Note: When n ≤ 2, we define a spin structure on X as a trivialization of TX over the

1-skeleton such that TX ⊕ ξ3−n can be extended over 2-skeleton, where ξ3−n is a trivialized

bundle.

By Wu’s formula, Any 4-manifold without 2-torsion, for example simply-connected, ad-

mits spin structures if and only if its intersection form is even.

Let s be a spin structure on Xn, given by a trivialization of TX over the 1-skeleton of

X (for some fixed triangulation of X). For any α ∈ H1(X;Z2), α is isomorphic to a map

f : X → RP∞. We homotope f into a finite skeleton, say RPN , then the preimage of RPN−1

is a n − 1 submanifold Y of X, representing α. Now we change the trivialization of s over

every 1-cell by a 2π twist each time the 1-cell intersects Y . If a 1-cell bounds a 2-cell, then

this 1-cell must intersect Y even number of times, and thus we change the trivialization over

this 1-cell by even number of 2π twists. Since π1(SO(4)) ∼= Z2, the new trivialization can

also be extended over the 2-skeleton. Therefore, we get a new spin structure on X; denote it

by α · s. Since s and α are arbitrarily chosen, this can be viewed as an action of H1(X;Z2)

on the set of all pin structures of X. This action is free and transitive. Therefore, after

fixing a spin structure on X, the action establishes a bijective correspondence between the

elements of H1(X;Z2) and the set of all spin structures on X.

For example, H1(S1;Z2) = Z2, so there are two spin structures on S1. One can be
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extended into the interior; one can not. The latter one is also called the Lie group spin

structure on S1.

The 3-torus T 3 = S1 × S1 × S1 has 8 different spin structures since H1(T 3;Z2) = Z3
2,

which can be also viewed as the products of spin structures on S1.

For a closed, spin 3-manifold (M, s), the Rohlin invariant µ(M, s) ∈ Z16 is the signature

σ(X) reduced modulo 16, where X is any smooth, compact, spin 4-manifold with spin

boundary (M, s)

This is a well-defined invariant because if X and Y are two smooth compact spin 4-

manifolds which induce the same spin boundary (M, s), then X ∪M Y is a smooth closed

spin 4-manifold. The rest of the argument is due to Rohlin’s Theorem:

Theorem 2.5. (Rohlin, [37]) If X is a smooth, closed, spin 4-manifold, then σ(X) ≡ 0

(mod 16).
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Chapter 3

Corks and Plugs

3.1 Corks

In this chapter and the next chapter, when we talk about a manifold, we always assume it is

compact and oriented. “≈” stands for diffeomorphic; “'” stands for homotopic equivalent.

The h-Cobordism Theorem is one of the most important theorem in modern topology.

Theorem 3.1. (Smale, [41]) If W is an h-cobordism between the simply-connected n-dimen-

sional smooth manifolds X1 and X2, and n > 5, then W is diffeomorphic to the product

I ×X1. In particular, X1 is diffeomorphic to X2.

However, this theorem fails in dimension 4, the first counterexample was brought to light

by S.K. Donaldson [19], and many others followed. The following theorem which was proved

independently by Matveyev [32] and Curtis-Freedman-Hsiang-Stong [18] tells us that the

failure of h-cobordism theorem can be localized on a contractible piece.

Theorem 3.2. ([32], [18]) X1 and X2 are simply-connected smooth 4-manifolds (not neces-

sarily closed). If W is an (relative) h-cobodism between X1 and X2, then there is a subcobor-

dism V ⊂ W between submanifolds Ci ⊂ Xi (i = 1, 2), such that W − intV is the product

cobordism, and V , Ci are contractible.

This theorem says if X1 is h-cobordant to X2, then X1, X2 can be decomposed as

X1 = X0 ∪∂ C1, X2 = X0 ∪∂ C2, where C1, C2 are contractible manifolds. In many cases,

23



C1 ≈ C2. Actually, in [32], Matveyev proved that C1 ∪∂ C1 ≈ S4; C1 ∪∂ C2 ≈ S4 and

so that X1 ≈ (X0\C1) ∪∂ (C1\C2) and X2 ≈ (X0\C1) ∪∂ (C2\C1). Thus if let C1\C2 and

C2\C1 play the role of C1 and C2, one can always assume that C1 ≈ C2. By Freedman

and Quinn’s theorem [24], [36], X1 and X2 are h-cobordant implies they are homeomorphic.

Therefore, we can conclude any exotic smooth structure of a simply-connected 4-manifold

arises from cutting off a contractible submanifold and gluing it back by a non-trivial map τ .

From Matveyev’s proof, we can easily see that this non-trivial map τ is an involution, i.e.,

τ ◦ τ = id. Furthermore, in [1], Akbulut and Matveyev proved that one can always make Ci

stein.

Let C be a contractible stein 4-manifold with boundary and τ : C → C an involution on

the boundary. We call (C, τ) a Cork if τ extends to a self-homeomorphism of C, but can not

extend to any self-diffeomorphism of C. The procedure of cutting off C and gluing it back

by τ is called Cork Twist.

The first example of cork twist changing the smooth structure is due to S. Akbulut [3]:

6≈

Figure 3.1: An example of being homeomorphic but not diffeomorphic obtained by doing
cork twist

Many other interesting exotic manifolds were then constructed using cork twists by Ak-

bulut and Yasui [9], [10], [11], [12], [13].

Note that most of these examples were constructed by a “simple” cork twist, which means

24



we only exchange “dot” and “0” once. Therefore, connecting sum with S2 × S2 stabilizes

these manifolds, i.e., X1]S
2 × S2 ≈ X2]S

2 × S2. Easy to see that if X1 and X2 differ by n

disjoint simple cork twist, it is still true that X1]S
2 × S2 ≈ X2]S

2 × S2. So to construct

exotic manifolds which can not be stabilized by a single S2 × S2, one has to use “linked

corks”. The following is a potential example:

Figure 3.2: A potential example of being homeomorphic but can not be stablized by con-
necting sum with S2 × S2 by doing cork twist

3.2 Boyer’s theorem

In this section, we will interpret Boyer’s work, which will be needed in the next section.

Let M denote a closed, oriented, connected 3-manifold. A bilinear form space (Zn, Q) is said

to present H∗(M) if there is an exact sequence

0 −→ H2(M)
h−→ Zn

ad(Q)
−−−−→ [Zn]∗ ∂−→ H1(M) −→ 0

such that

(i) if ad(Q)(ξi)=miηi (i = 1, 2) where m1m2 6= 0, then
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lM (∂η1, ∂η2) ≡ − 1

m1m2
Q(ξ1, ξ2);

(ii) if β ∈ H2(M) and η ∈ [Zn]∗, then ∂(η) · β = η(h(β)).

It is well known that, if M bounds a topological 4-manifold X, (H2(X), QX) presents

H∗(M), where QX is the intersection form of X. If Q presents M , we denote them by

(Q,M).

Given two simply-connected 4-manifolds (X1,M1) and (X2,M2), we say (QX1
,M1) is

isomorphic (through (Λ, f)) to (QX2
,M2) if there is a homeomorphism f : M1 →M2 and an

isomorphism Λ : H2(X1)→ H2(X2) preserving the intersection form such that the following

diagram commutes:

0 −−−→ H2(M1) −−−→ H2(X1) −−−→ H2(X1,M1) −−−→ H1(M1) −−−→ 0

f∗
y Λ

y Λ∗
x f∗

y (∗)

0 −−−→ H2(M2) −−−→ H2(X2) −−−→ H2(X2,M2) −−−→ H1(M2) −−−→ 0

Note: Λ∗ is the adjoint of Λ with respect to the identification of H2(Xi,Mi) with

Hom(H2(Xi);Z); If F : X1 → X2 is a homeomorphism which induces f on the bound-

ary, F∗ : H2(X1,M1) → H2(X2,M2) is not the same as the inverse of adjoint of F∗ :

H2(X1) → H2(X2) in general, but (*) is commutative due to Lefschetz duality. Therefore,

(*) is a necessary condition for X1, X2 to be homeomorphic.

The following theorem is due to Boyer:

Theorem 3.3. (Boyer, [15])(X1,M1), (X2,M2) are simply-connected topological 4-manifolds

with boundaries. If f : M1 → M2 is an orientation preserving homeomorphism and Λ :

H2(X1) → H2(X2) is an isomorphism which preserves the intersection form, such that

(QX1
,M1) is isomorphic to (QX2

,M2) through (Λ, f), then f can be extended to a homeo-

morphism F : X1 → X2 if:

(i) when H1(Mi,Q) ∼= 0 (i = 1, 2) and ∆(X1) ≡ ∆(X2)(mod 2).
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(ii) when Xi (i = 1, 2) are even manifolds, and X = X1 ∪f X2 is also an even manifold.

(iii) when Xi (i = 1, 2) are odd manifolds and ∆(X1) ≡ ∆(X2)(mod 2).

In case (i) and (ii), F∗, the isomorphism on H2(X1) induced by F agrees with Λ; in case

(iii) F∗ may not agree with Λ.

From this theorem, one can easily derive the classification theorem we stated in chapter

1.

In this thesis, we are only interested in smooth 4-manifolds, so let us assume X1 and X2

are smooth and drop the assumption ∆(X1) ≡ ∆(X2)(mod 2).

To make his theorem more transparent, let us introduce some notations: As stated in

the theorem, (X1,M1), (X2,M2) are simply-connected smooth 4-manifolds with the closed

connected boundaries. f : M1 → M2 is an orientation preserving homeomorphism. Λ :

H2(X1) → H2(X2) is an isomorphism which preserves the intersection form, such that

(QX1
,M1) is isomorphic to (QX2

,M2) through (Λ, f). Denote X1∪fX2 by X. If Ψ : A→ B

is a homomorphism of abelian groups. Let G(Ψ) denote the subgroup of A⊕B corresponding

to the graph of Ψ : G(Ψ) = {(a,Ψ(a))|a ∈ A}. k∗, h∗ and ∂1 are defined by the following

diagram:
H2(M1) H2(M1,M1) = 0y y

H2(M1)
⊕

H2(M2)
h1∗⊕h2∗−−−−−−→ H2(X1)

⊕
H2(X2)

j1∗⊕j2∗−−−−−−→ H2(X1,M1)
⊕

H2(X2,M2)y1+f−1
∗

yi∗=i1∗+i2∗

∥∥∥
H2(M1)

h∗−−−−−→ H2(X)
k∗−−−−−−−−−−→ H2(X,M1)

∂1+f−1
∗ ◦∂2−−−−−−−−→ H1(M1)y∂

y
H1(M1) H1(M1,M1) = 0y

0
Boyer’s theorem is essentially a consequence of the following theorem:

Theorem 3.4. (Boyer, [15]) Assume rank of H2(M1) = k. There exists {µ′i} ∈ H2(X)
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(i = 1, 2, ..., k), such that ∂(µ′i) = νi, where {νi} is a basis of the free part of H1(M1), and

k∗(µ′i) ∈ G(−Λ∗). f extends to a homeomorphism F : X1 → X2 if µ′i · µ
′
i is even for all

i = 1, 2, ..., k.

Because if H1(Mi,Q) ∼= 0 (i = 1, 2), the free part of H1(M1) is trivial, k = 0, so µ′i ·µ
′
i = 0

mod(2) is automatically true; if X is even, µ′i · µ
′
i must be even for any i; if X is odd, µ′i · µ

′
i

might be odd for some i. In this case, Boyer showed that one can always find another Λ′

and {λ′i} ∈ H2(X) such that ∂(λ′i) = νi, k∗(λ′i) ∈ G(−Λ′∗) and λ′i · λ
′
i is even for every i.

We will investigate this case carefully and figure out how to construct Λ′ from Λ in the next

section. Actually, finding an appropriate Λ′ is the key to prove the existence of the plug.

For completeness, we outline Boyer’s proof of the above theorem.

Proof. The proof consists of two steps.

1. We construct a maximal isotropic subgroup J ⊆ H2(X) (“isotropic” means for ∀x, y ∈ J ,

x · y = 0) such that (i) i∗
(
G(−Λ)

)
⊆ J ; (ii) ∂(J) = H1(M1).

2. We apply Wall’s method [45]: replacing W by another 5-manifold W1 with ∂W1 = X,

W1 w
∨n
i=1 S

2 and J = ker(H2(X) → H2(W1)). Then by diagram chasing, we will show

that ψi : H2(Xi)→ H2(W1) (i = 1, 2) are isomorphisms.

Step 1: J will be built as the sum of two isotropic subgroups J1 and J2 of H2(X)

which satisfy (i) i∗(G(−Λ)) ⊂ J1, ∂(J1) = T1(M1) (torsion of H1(M1)) and rank(J1) =

rank(H2(X1)) − rank(H1(M1)); (ii) the composition J2
∂|J2−−−→ H1(M1) −→ H1(M1)/T1(M1)

is an isomorphism; (iii) J1 ∩ J2 = {0} and J1 · J2 = {0}.

Assuming we have found such subgroups, we let J be the smallest direct summand of

H2(X) containing J1 + J2. As rank(H2(X))=2rank(H2(X1)), J is evidently the desired

subgroup of H2(X).
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Construction of J1:

Let J1 be the smallest direct summand of H2(X) containing i∗(G(−Λ)) which is isotropic

in H2(X) as Λ is an isometry. Thus J1 is also.

Next we prove ∂(J1) = T1(M1). If µ ∈ J1, there is an integer m > 0 such that mµ ∈

i∗(G(−Λ)). But then m∂(µ) = 0, as ∂ ◦ i∗ = 0. Hence ∂(µ) ∈ T1(M1) which shows

∂(J1) ⊆ T1(M1).To derive the opposite inclusion, let ν ∈ T1(M1).

Claim 3.1. We can find a class µ ∈ H2(X) with ∂(µ) = ν and k∗(µ) ∈ G(−Λ∗).

Proof. Fix any η ∈ H2(X2,M2) such that ∂2(η) = f∗(ν). Now as (∂1 +f−1
∗ ◦∂2)(G(−Λ∗)) =

0, G(−Λ∗) ⊂ image(k∗), so we may choose a µ ∈ H2(X) for which k∗(µ) = (−Λ∗(η), η).

Further, ∂(µ) = f−1
∗ ◦ ∂2 ◦ pr2 ◦ k∗(µ) = f−1

∗ ◦ ∂2(η) = ν by the choice of ν.

Let k∗(µ) = (−Λ∗(η), η). Since ν ∈ T1(M1), we may find an m > 0 and ξ ∈ H2(X1) such

that j1∗(ξ) = −mΛ∗(η). Then k∗ ◦ i∗(ξ,−Λ(ξ)) = m(−Λ∗(η), η) and thus i∗(ξ,−Λ∗(ξ)) =

mµ+ h∗(β) for some β ∈ H2(M1).

Claim 3.2. The class β is divisible by m in H2(M1)

Proof. It suffices to show that β · ν ≡ 0(modm) for each ν ∈ H1(M1). But from the

properties of J2, for any such ν there is some µ′ ∈ J2 with ∂(µ′) − ν ∈ T1(M1). Then

β · ν = h∗(β) · µ′ = i∗(ξ,−Λ∗(ξ)) · µ′ −mµ · µ′ = −mµ · µ′.

Now since µ + h∗(β/m) ∈ J1, ν = ∂(µ) = ∂(µ + h∗(β/m)) ∈ ∂(J1) and as ν was chosen

arbitrarily, we conclude ∂(J1) = T1(M1).

Finally, to calculate rank(J1), note ker(i∗) = {(h1∗(β),−h2∗f∗(β)|β ∈ H2(M1))} ⊆

G(−Λ). Thus,

rank(J1) =rank(i∗(G(−Λ))) =rank(G(−Λ))−rank(ker(i∗)) =rankH2(X1)−rank(H1(M1)).
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Construction of J2:

Set F1(M1) = H1(M1)/T1(M1) and choose ν1, ν2, ..., νk ∈ H1(M1) which projects to

a basis of this group. By Claim 1, there are classes µ′1, µ
′
2, ..., µ

′
k ∈ H2(X) such that (i)

∂(µ′i) = νi, 1 ≤ i ≤ k, (ii) k∗(µ′i) ∈ G(−Λ∗), 1 ≤ i ≤ k.

Let β1, β2, ..., βk ∈ H2(M1) be the basis dual to ν1, ..., νk. That is βi · νj = δij . Set

β̄i = h∗(βi)(1 ≤ i ≤ k) and note that (i) β̄i ·β̄j = 0, 1 ≤ i, j ≤ k; (ii) β̄i ·µ′j = δij , 1 ≤ i, j ≤ k.

Define µ′′i = µ′i−
∑k
j=i+1(µ′i ·µ

′
j)β̄j , 1 ≤ i ≤ k, and observe that k∗(µ′′i ) = k∗(µ′i) ∈ G(−Λ∗).

Thus for each i, µ′′i · µ
′′
i = µ′i · µ

′
i ≡ 0(mod2) as µ′i · µ

′
i is even. Thus we may form µi =

µ′′i −
1
2(µ′′i · µ

′′
i )β̄i ∈ H2(X), 1 ≤ i ≤ k.

Now it can be checked that µi · µj = 0(1 ≤ i, j ≤ m), ∂(µi) = νi(1 ≤ i ≤ k), and

k∗(µi) ∈ G(−Λ∗). Thus if we set J2 = Span(µ1, µ2, ..., µk) ⊆ H2(X), (i) J2 is isotropic;

(ii) the composition J2
∂|J2−−−→ H1(M1) −→ F1(M1) is an isomorphism; (iii) k∗(J2) ⊆ G(−Λ∗).

Thus J2 satisfies the desired properties.

Observe that under the compositionH2(X)
∂−→ H1(M1) −→ F1(M1), J1 maps to zero while

J2 maps monomorphically. Thus, J1∩J2 = 0. To see that J1·J2 = 0, choose µi ∈ Ji(i = 1, 2).

Now by the construction of J1 and J2, we may choose an integer m > 0, and elements

ξ ∈ H2(X1) and η ∈ H2(X2,M2) such that mµ1 = i∗(ξ,−Λ(ξ)), k∗(µ2) = (−Λ∗(η), η).

Then µ1 · µ2 = 1
mi∗(ξ,−Λ(ξ)) · µ2 = 1

m [ξ · (−Λ∗(η)),Λ(ξ) · η] = 0. As µ1, µ2 were arbitrary,

J1 · J2 = 0.

Step 2: We replace W by another 5-manifold W1 with ∂W1 = X, W1 w
∨n
i=1 S

2 and

J = ker(H2(X)→ H2(W1)). Now consider the commutative diagram:
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Jy
H2(X1)

⊕
H2(X2)

i∗−−−−→ H2(X)
∂−−−−→ H1(M1) −−−−→ 0

j∗
y

H2(W1)y
0

By assumption, ∂|J is surjective and quick diagram chase shows that ψ = j∗ ◦ i∗ is also.

Thus if ξ ∈ H2(W1), there are elements ξi ∈ H2(Xi) (i = 1, 2) such that ξ = ψ(ξ1, ξ2). But

as i∗(G(−Λ)) ⊆ J = Ker(j∗), ψ(−ξ1,Λ(ξ1)) = ψ(Λ−1(ξ2),−ξ2) = 0. Thus,

ξ = ψ(ξ1, ξ2) =


ψ(ξ1, ξ2) + ψ(−ξ1,Λ(ξ1))

ψ(ξ1, ξ2) + ψ(Λ−1(ξ2),−ξ2)

=


ψ(0, ξ2 + Λ(ξ1))

ψ(ξ1 + Λ−1(ξ2), 0)

.

Clearly this implies that ξ ∈ image(H2(Xi) → H2(W1)) (i = 1, 2), and so both ho-

momorphism H2(Xi) → H2(W1) are surjective. Since rank of H2(Xi) = rank of H2(W1),

ψi = ψ|H2(Xi) (i = 1, 2) are isomorphisms. Therefore, W1 is a relative h-cobordism. As

G(−Λ) ⊆ ker(ψ), ϕ∗|H2(X1) = ψ−1
2 ◦ψ1 is precisely Λ. By Quinn’s relative h-cobordism the-

orem [36], there exists a homeomorphism F : X1 → X2 such that F |M1
= f and F∗ = Λ.

3.3 Plugs

If X1 and X2 are closed simply-connected smooth 4-manifolds, and QX1
∼= QX2

, then Wall’s

theorem implies X1 and X2 are h-cobordant, so the cork theorem applies. Now let us consider

simply-connected smooth 4 manifolds with boundaries. From Boyer’s proof, we know that if

Xi are odd and (QX1
,M1) is isomorphic to (QX2

,M2), then X1 is relative h-cobordant to

X2, so they differ by cork twists. What happens when Xi are even? The example in the last
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chapter will show that X1 may not be relative h-cobordant to X2. In this section, we will

prove the failure of X1 being relative h-cobordant to X2 can be localized on a submanifld

Y1 of X1 which is homotopic equivalent to S2. Such a submanifold is called a Plug. Plugs

naturally appear in many exotic manifolds [9], [7], [42]; it was first introduced and studied

in [9] by Akbulut and Yasui.

Plug was originally defined in [9] as a Stein 4-manifold Y with boundary, homotopic

equivalent to S2 and τ : ∂Y → ∂Y an involution on the boundary such that τ can not

extend to any self-homeomorphism of Y . The procedure of cutting off Y and gluing it back

by τ is called Plug Twist. Plug is a similar object as cork. The main difference between

them is plug twist may change the homeomorphism type, while cork twist never changes

the homeomorphism type. We want to prove a theorem for plugs analogous to the cork

theorem. To make our theorem work, we need to work with a weaker version of plug. See

the paragraph below the statement of the theorem.

Theorem 3.5. (X1,M1), (X2,M2) are simply-connected smooth 4-manifolds with diffeo-

morphic boundaries such that (QX1
,M1) is isomorphic to (QX2

,M2). Then, there exists

submanifolds Yi ⊂ Xi, (i = 1, 2) such that:

(1) Yi are homotopic equivalent to S2, ∂Y1 ≈ ∂Y2 ≈ a homology S1 × S2.

(2) X1 \Y1 is homoemorphic to X2 \Y2 and i∗H2(Yi) ⊂ i∂∗H2(Mi), (i = 1, 2), where i∗ and

i∂∗ are the homomorphisms induced by the inclusion map i : Yi → Xi and i∂ : Mi → Xi.

(3) Yi
⋃
id Yi = S2 × S2, (i = 1, 2); Y1

⋃
τ Y2 = S2×̃S2, where τ is an obvious diffeomor-

phism as we shall see in the proof.

(4) Yi can be made Stein.

In our theorem, we allow Y1 and Y2 being different manifolds, because as we have seen in
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the cork theorem, C1 is not necessarily diffeomorphic to C2. We can make them diffeomorphic

by using C1 ∪id C1 ≈ S4; C1 ∪τ C2 ≈ S4. However, this trick does not work for plugs, since

plugs are not contractible.

Proof. Glue X1, X2 along their boundaries by f . X1
⋃
f
X2 = X. By Novikov Additivity,

σ(X) = 0; therefore, X bounds a 5 dimensional manifold W . Do 1-surgery to kill all

nontrivial elements of π1(W ). Thus, we may assume W is simply connected.

Then, we can use the “handle trading” trick to cancel 1-handles and 4-handles. In the

end, we get a cobordism between X1 and X2, which has only 2- and 3-handles and induces

the trivial cobordism between M1 and M2 (It can be considered as the collar of M2 in X2).

We still call this cobordism W . Consider the middle level which is between the 2-handles

and the 3-handles, call it X0, X0
ϕ1≈ X1]nS

2 × S2]mS2×̃S2
ϕ2≈ X2]nS

2 × S2]mS2×̃S2. We

cannot proceed the proof like Cork Theorem, because we cannot eliminate the existence of

S2×̃S2. However, we can assume m = 1, since S2 × S2]2S2×̃S2 ≈ 2S2 × S2]S2×̃S2.

Figure 3.3: Handle decomposition of the cobordism

In X1]nS
2 × S2]S2×̃S2, we let αi (i = 1, ..., n) denote the belt spheres of 0 framed 5-

dimensional 2-handles; βi denote the geometric dual spheres of αi, i.e., the attaching spheres

generated by the cores of the 0 framed 2-handles and the disks bounded by their attaching
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circles. [αi] · [αi] = 0, [βi] · [βi] = 0 in H2(X1]nS
2 × S2]S2×̃S2); αi, βj are disjoint when

i 6= j; αi intersects with βi geometrically once (i = 1, 2, ...n). We let α0 denote the belt

sphere of the 1 framed 5-dimensional 2-handle; β0 denote the geometric dual sphere of α0,

i.e., the sphere generated by the core of the 1 framing 2-handle and the disk bounded by its

attaching circle. [α0] · [α0] = 0, [β0] · [β0] = 1 in H2(X1]nS
2 × S2]S2×̃S2); α0 intersects

with β0 geometrically once. By turning the handlebody upside down, we denote α′i, β
′
i, α
′
0,

β′0 in a similar manner. Denote by ϕ : X1]nS
2 × S2]S2×̃S2 → X2]nS

2 × S2]S2×̃S2 the

composition of ϕ1◦ϕ−1
2 , so ϕ−1(α′i) are the attaching spheres of the 5-dimensional 3-handles

i = 0, 1, ..., n. We wish to prove ϕ∗([α0]) · [α′0] = 0; ϕ∗([α0]) · [β′0] = 1 and ϕ∗([αi]) · [α′i] = 1

for i = 1, ..., n. Without ambiguity, let us not distinguish between αi, βi and the homology

classes [αi] ,[βi] in the following context.

When Xi are closed manifolds, by Wall’s Theorem, we can find a self-diffeomorphism

φ : X1]nS
2 × S2]S2×̃S2 → X1]nS

2 × S2]S2×̃S2 such that ϕ∗ ◦ φ∗ = Λ⊕ Ω, where Λ⊕ Ω

agrees with Λ on H2(X1); Λ⊕Ω(αi) = β′i for i = 1, ..., n and Λ⊕Ω(α0) = α′0. Therefore, we

can assume that ϕ∗(αi) = β′i, ϕ∗(αi) · α
′
i = 1, ϕ∗(α0) · α′0 = 0. When Xi have boundaries,

QXi are not unimodular, so we can not apply Wall’s Theorem directly. We shall prove:

ϕ∗(α0) = α′0 + δ for some δ ∈ H2(M2) and ϕ∗(αi) = βi, i = 1, ...n.

If H1(M1) is free, consider the long exact sequence:

0→ H2(M1)
i∗→ H2(X1]nS

2×S2]S2×̃S2)
j∗→ H2(X1]nS

2×S2]S2×̃S2,M1)→ H1(M1)→ 0.

Assume the rank of H2(X1]nS
2 × S2]S2×̃S2)=m, the rank of H1(M1)=k. Let (Zm, Q)

represent H2(X1]nS
2 × S2]S2×̃S2), then (Zm, Q) splits as (Zm−k, Q1)

⊕
(Zk, 0), where

(Zk, 0) represents i∗H2(M1); (Zm−k, Q1) represents coker(j∗). Easy to check i∗(a) · b = 0

for any a ∈ H2(M1) and b ∈ H2(X1]nS
2 × S2]S2×̃S2), so the split is orthogonal, i.e.,

34



Q =

Q1 0

0 0

, and Q1 is unimodular. The same is true for H2(X2]nS
2 × S2]S2×̃S2).

ϕ induces an isometry (an isomorphism which preserves the intersection form) ϕ∗ :

H2(X1]nS
2 × S2]S2×̃S2) → H2(X2]nS

2 × S2]S2×̃S2). Note that ϕ∗ |i∗H2(M1) is an

isometry on (Zk, 0). Now we want to define an isometry ϕ̃∗ : (Zm−k, Q1) → (Zm−k, Q1).

Suppose ϕ∗(γi) =
∑m−k
j=1 pj · γj +

∑k
j=1 qjηj , where {γi, i = 1, ...,m − k} is a basis of

(Zm−k, Q1); {ηi, i = 1, ..., k} is a basis of (Zk, 0). Let ϕ̃∗(γi) =
∑m−k
j=1 pj · γj . Clearly,

ϕ̃∗ϕ−1
∗ (γi) = γi, so ϕ̃∗ is surjective, and therefore it is an isomorphism on coker(j∗). More-

over, ϕ̃∗(γi) · ϕ̃∗(γj) = ϕ∗(γi) · ϕ∗(γj) = γi · γj . Thus, ϕ̃∗ is an isometry on (Zm−k, Q1).

Let Λ⊕Ω denote the isometry on H2(X1]nS
2×S2]S2×̃S2) which agree with Λ on H2(X1),

and (Λ⊕Ω)(αi) = β′i, (Λ⊕Ω)(βi) = α′i, i = 1, 2, ...m; (Λ⊕Ω)(α0) = α′0, (Λ⊕Ω)(β0) = β′0.

Since Q1 is unimodular, by Wall’s Theorem, we are able to find a self-diffeomorphism

φ : X1]nS
2×S2]S2×̃S2 → X1]nS

2×S2]S2×̃S2 such that φ∗(x) = x for any x ∈ i∗H2(M1)

and φ̃∗ = ϕ̃−1
∗ ◦(Λ⊕Ω) on coker(j∗) (φ̃∗ is defined in a similar way as ϕ̃∗). This can be proved

by working on the relative handlebody pictures, similar to the proof in [30] (Chparter X),

which deals with handlebody pictures of closed manifolds. Therefore, (ϕ∗ ◦φ∗)(α0) = α′0 + δ

for some δ ∈ i∗H2(M1). Thus, (ϕ∗ ◦ φ∗)(α0) · α′0 = 0; (ϕ∗ ◦ φ∗)(α0) · β′0 = 1; and

(ϕ∗ ◦ φ∗)(αi) · α′i = 1, i = 1, ...,m, we get what we need.

If H1(M1) is not free, we apply Boyer’s result.

Let us denote Xi]S
2×̃S2 by X̃i (i = 1, 2), X̃1 ∪f X̃2 by X̃; let Λ ⊕ id denote the

isomorphism from H2(X̃1) to H2(X̃2) that agrees with Λ on H2(X1) and Λ⊕ id(α0) = α′0,

Λ⊕ id(β0) = β′0. We now consider the cobordism W̃ between X̃1 and X̃2.
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Figure 3.4: Finer handle decomposition of the cobordism

By Boyer’s theorem, we can find µ′i ∈ H2(X̃) such that ∂µ′i = νi, where νi is a basis of

the free part of H1(M1) (i = 1, 2, ..., k) and k∗(µ′i) ∈ G(−(Λ⊕ id)∗). If µ′i · µ
′
i is even for all

i, we get ϕ∗(α0) = (Λ⊕ id)(α0) = α′0. We are done in this case.

If µ′p · µ′p is odd for some p, assume k∗(µ′p) = (a, b), where b ∈ H2(X̃2,M2), a = (−(Λ⊕

id)∗)(b) ∈ H2(X̃1,M1). Both H2(X̃1,M1) and H2(X̃1) are free.

H2(X̃1,M1)
a

HOM−−−−→
≈

H2(X̃1,M1)
a∗

PD−−→
≈

H2(X̃1)
PD(a∗)

.

∂µ′p = νp ⇒ ∂1a = νp, so a∗ ∈ δ1(H1(M1)) where δ is the coboundary map, PD(a∗) ∈

i∗(H2(M1)) and it is a primitive element by Lefschetz duality.

Let {x1 = α0, x2 = β0, x3 = PD(a∗), x4, ..., xm−n} be a basis of H2(X̃1). Note that

PD(a∗) 6= α0 or β0, because we assumed µ′p · µ′p is odd. We consider an automorphism

φ∗ : H2(X̃1)→ H2(X̃1) which is defined by: φ∗(α0) = α0 + PD(a∗); φ∗(xi) = xi for i 6= 1.

Easy to check that φ∗ preserves the intersection form.

Let {x̄1, x̄2, x̄3 = a, x̄4, ..., x̄m−n} be the dual basis for H2(X̃1,M1), i.e., x̄i · xj = δij .

Then β̄0 = j1∗(α0); ᾱ0 = j1∗(β0) − j1∗(α0), because j1∗(α0) · α0 = 0, j1∗(α0) · β0 =

1, (j1∗(β0)− j1∗(α0)) · α0 = 1, (j1∗(β0)− j1∗(α0)) · β0 = 0.
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Claim 3.3. (φ∗)−1(x̄i) = x̄i for i 6= 3; (φ∗)−1(a) = a − ᾱ0 = a − j1∗(β0) + j1∗(α0), where

(φ∗)−1 is defined in the following commutative diagram:

H2(X̃1)
PD−−−→ H2(X̃1,M1)

HOM−−−−→ H2(X̃1,M1)yφ∗ y y(φ∗)−1

H2(X̃1)
PD−−−→ H2(X̃1,M1)

HOM−−−−→ H2(X̃1,M1)

Proof. (φ∗)−1(x̄i) · φ(xj) = δij , for i 6= 1, 2, 3, φ∗(xi) = xi =⇒ (φ∗)−1(x̄i) = x̄i;

when i = 1, ᾱ0 ·φ∗(α0) = ᾱ0 ·(α0 +PD(a∗)) = 1, ᾱ0 ·φ∗(β0) = ᾱ0 ·β0 = 0, ᾱ0 ·φ∗(PD(a∗)) =

ᾱ0 · PD(a∗) = 0 =⇒ (φ∗)−1(ᾱ0) = ᾱ0;

when i = 2, β̄0 ·φ∗(α0) = β̄0 ·(α0 +PD(a∗)) = 0, β̄0 ·φ∗(β0) = ᾱ0 ·β0 = 1, β̄0 ·φ∗(PD(a∗)) =

β̄0 · PD(a∗) = 0 =⇒ (φ∗)−1(β̄0) = β̄0;

when i = 3, (a−ᾱ0)·φ∗(α0) = (a−ᾱ0)·(α0+PD(a∗)) = 0, (a−ᾱ0)·φ∗(β0) = (a−ᾱ0)·β0 = 0,

(a− ᾱ0) · φ∗(PD(a∗)) = (a− ᾱ0) · PD(a∗) = 1 =⇒ (φ∗)−1(a) = a− ᾱ0.

φ∗ satisfies (*), since j1∗(PD(a∗)) = 0:

PD(a∗)
j1∗−−−→ 0 α0

j1∗−−−→ j1∗(α0) = β̄0yφ∗ y(φ∗)−1
yφ∗ y(φ∗)−1

PD(a∗)
j1∗−−−→ 0 α0 + PD(a∗)

j1∗−−−→ j1∗(α0) = β̄0

Therefore, Λ ◦ φ∗ satisfies (*).

Now we consider ũp
′ = u′p − i1∗(β0) + i1∗(α0), ũi

′ = u′i for i 6= p, then ∂ũi
′ = ∂u′i =

vi; k∗(ũi
′) = k∗(u′i) − k∗(i1∗(β0)) + k∗(i1∗(α0)) =

(
a, b) −

(
j1∗(β0), 0

)
+
(
j1∗(α0), 0

)
=(

(φ∗)−1(a), b). So, k∗(ũi
′) ∈ G

(
− (φ∗)−1 ◦ (Λ ⊕ id)∗

)
and ũp

′ · ũp′ = u′p · u′p − 1 which is

even. Thus, (Λ⊕ id) ◦ φ−1
∗ can be realized geometrically, i.e., ϕ∗ agrees with (Λ⊕ id) ◦ φ−1

∗

on H2(X̃1). ϕ∗(α0) = (Λ⊕ id) ◦ φ−1
∗ (α0) = α′0 + δ for some δ ∈ H2(M2), so ϕ∗(α0) · α′0 = 0

and ϕ∗(α0) · β′0 = 1. Since W̃ is a relative h-cobordism, ϕ∗(αi) = β′i for i = 1, ..., n. This

can be achieved by introducing cancelling pairs of 5 dimensional 2-handles and 3-handles,

and sliding handles (see [40] 1.7). Therefore, ϕ∗(αi) · α′i = 1.
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Now we can put our hands on constructing the plug.

Let us first assume n = 0, X̃2 is diffeomorphic to X̃1. Doing 2-surgery on X̃2 along α′0

(change “0” on α′0 to “•”) gives us X2; 2-surgery along ϕ(α0) on the same manifold yields

X1.

We consider the neighborhood of ϕ(α0), α′0, β′0 in X̃2 = X2]S
2×̃S2.

Figure 3.5: The neighborhood of ϕ(α0), α′0, β′0 in X2]S
2×̃S2

X̃2 \ nb(ϕ(α0)) is simply-connected, because ϕ(β0) is a transverse sphere of ϕ(α0); X̃2 \

nb(α′0) ∪ nb(β′0) is also simply-connected. By M-V sequence, the first homology of X̃2 \

(nb(ϕ(α0)) ∪ nb(β′0) ∪ nb(α′0)) is isomorphic to Z and generated by a. By Van kampen

Theorem, the fundamental group of X̃2 \ (nb(ϕ(α0)) ∪ nb(β′0) ∪ nb(α′0)) is generated by the

conjugates of a. Any γ ∈ the fundamental group of X̃2 \ (nb(ϕ(α0)) ∪ nb(β′0) ∪ nb(α′0))

can be represented by an embedded loop, denote it by Γ. We choose a point ∈ ϕ(α0)

near any intersection point between ϕ(α0) and α′0 or β′0, and then we choose an arc τ

connecting this point with any point on Γ. Now we do the finger move following τ , and

Γ and then coming back by an arc which is parallel and close enough to τ . The effect

38



of this finger move on the fundamental group is killing [γaγ−1, b′]. Assume b′ = r−1ar,

then [a, (rγ)−1arγ] = 1. Since γ is arbitrary, [s−1as, t−1at] = [a, (ts−1)−1ats−1] = 1 for

any s, t ∈ π1(X̃2 \ (nb(ϕ(α0)) ∪ nb(β′0) ∪ nb(α′0))). Hence, after finger moves (creating more

intersections between ϕ(α0) and α′0 or β′0), we can kill all the commutators. The fundamental

group now becomes abelian, therefore, it is cyclic and generated by a.

For each pair of intersection points between ϕ(α0) and β′0 with opposite sign, there exists

a Whitney’s circle l. Since the fundamental group of X̃2 \ (nb(ϕ(α0)) ∪ nb(β′0) ∪ nb(α′0)) is

generated by a, we can always change l by adding 2π twists around the meridian of ϕ(α0)

so that l represents a trivial element in this fundamental group.

Figure 3.6: Finding a Whitney’s disk

Therefore l bounds a Whitney’s disk W disjoint from ϕ(α0), β′0 and α′0. This Whitney’s

disk might be immersed, then we can push the interior intersection points of W off at β′0. If

the framing of W is wrong, we can do boundary twists to fix the framing problem by creating

more intersections between W and β′0. Doing Whitney’s trick along all these Whitney’s disks,

we can cancel the intersection points of opposite signs between ϕ(α0) and β′0, but β′0 becomes

an immersed sphere.
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Figure 3.7: The neighborhood of ϕ(α0), α′0, β′0 in X2]S
2×̃S2 after Whitney’s move

We add all 1-handles of X̃2 into this picture and introduce 2- and 3-handle cancelling

pairs such that each 2-handle cancels a 1-handle algebraically. We drop all the 3-handles and

call the resulting manifold Y0. Y0 is simply-connected. Doing 2-surgery on ϕ(α0) to Y0 gives

us a submanifold of X1, call it Y1; Doing 2-surgery on α′0 to Y0 gives us a submanifold of X2,

call it Y2. The handle decomposition of Y1 and Y2 differ by exchanging “dot” and “0”. That

does not change the boundary 3-manifold. So, ∂Y1
τ−→ ∂Y2 is an obvious homeomorphism.

As β′0 is an immersed transverse sphere for α′0
(
ϕ(α0)

)
, after doing 2-surgery on α′0

(
ϕ(α0)

)
,

Y2 (Y1) is still simply-connected. Since X1\Y1 has identical handle decomposition as X2\Y2,

X1 \ Y1 is diffeomorphic to X2 \ Y2.

We want to show Yi (i = 1, 2) are homotopic equivalent to S2. All of the 1-handles and

2-handles of Y1 (Y2) are algebraically cancelled except for α′0 (ϕ(α0)), so Y1 (Y2) has the
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same homology group as S2. By using the long exact sequence, we can easily check that ∂Y1

(∂Y2) is a homology S1 × S2. If we erase 0 framed 2-handle α′0 (ϕ(α0)) from the picture,

we get a cork which is contractible. Now consider the map g1 : Y1 → S2 (g2 : Y2 → S2)

such that g1 (g2) maps the complement of α′0 (ϕ(α0)) in Y1 (Y2) to a base point of S2

and squeezes α′0 (ϕ(α0)) onto its core. This map induces an isomorphism on the homology

groups, therefore, by Whitehead’s Theorem, Y1 (Y2) is homotopic equivalent to S2.

Since H2(Y2) is generated by ϕ(α0) and ϕ∗(α0) = α′0 + δ for some δ ∈ H2(M2),

i∗H2(Y2) ⊂ i∂∗H2(M2). Similarly, i∗H2(Y1) ⊂ i∂∗H2(M1).

Since Y1 (Y2) does not contain any 3-handles, the handle decomposition of Y1 ∪id Y1 can

be constructed from the handle decomposition of Y1 by attaching each 2-handle a 0 framed

2-handle along its meridian and 3-handles. The number of 3-handles attached is the same

as the number of 1-handles of Y1. Then by handle slides, everything is cancelled except for

a Hopf link (α′0 and its meridian), framing 0 on each component. Clearly, this is S2 × S2.

Similarly, Y2 ∪id Y2 is S2 × S2. The handle decomposition of Y1 ∪τ Y2 is almost the same

as Y1 ∪id Y1, except that the 2-handle which is attached along the meridian of α′0 now is

attached along the meridian of ϕ(α0). By handle slides, everything is cancelled except for

β′0 and its meridian, which is clearly a S2×̃S2.

By doing the “cut and paste” procedures as in [1], we can make Yi Stein.

If n > 0, after doing 2-surgery on X2]nS
2×S2]S2×̃S2 along α′0, we will get X2]nS

2×S2;

doing surgery on the same manifold along ϕ(α0) will give us X1]nS
2×S2. If we keep doing

surgery along α′i (ϕ(αi)), (i = 1, ..., n), we will obtain X2 (X1). So, X2 and X1 differ by

n + 1 “dot” and “0” exchanges. If ϕ(α0) and α′i (i = 1, ..., n) are unlinked; α′0 and ϕ(αi)

(i = 1, ..., n) are unlinked , then exchanging “dot” and “0” between ϕ(α0) and α′0 is a

plug twist; exchanging “dot” and “0” between αi and α′i (i = 1, ..., n) are n cork twists.
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Otherwise, WLOG, we may assume ϕ(α0) and α′j (j = 1, ..., l) are linked, then we will

consider the neighbourhood of ϕ(α0)
⋃
∪lj=1ϕ(αj)

⋃
α′0
⋃
∪lj=1α

′
j in X2]nS

2 × S2]S2×̃S2.

We include all the 1-handles and add algebraic cancelling 2-handles. We call the resulting

manifold Y0. Doing surgery on Y0 along ϕ(α0) and ϕ(αj) (j = 1, ..., l) will give us Y1; doing

surgery on Y0 along α′0 and α′j (j = 1, ..., l) will give us Y2. (X1 \ Y1)](n − l)S2 × S2 is

diffeomorphic to (X2 \ Y2)](n − l)S2 × S2 since their handle decomposition are identical.

Therefore, (X1 \ Y1) and (X2 \ Y2) differ by cork twists and hence they are homeomorphic.

It is also easy to check that Y1 and Y2 satisfy other desired properties.

Note that i∗(H2(Yi)) ⊂ H2(Mi) (i = 1, 2) guarantees that the plug twist does not change

the intersection form of Xi, and keep hold of (*). While if i∗(H2(Y2)) = 0 in H2(X2),

then ϕ∗(α0) = 0 in H2(X2). On the other hand, by using Boyer’s theorem, we can find

λ′i ∈ H2(X) (X = X1 ∪f X2) such that ∂λ′i = νi and k∗(λ′i) ∈ G(−Λ∗), where νi is a basis

of the free part of H1(M1), i = 1, ...,m − n − 1. If λ′i · λ
′
i is even for ∀i = 1, ...,m − n − 1,

then X1 is homeomorphic to X2. Otherwise, λ′p · λ′p is odd for some p, then i∗(λ′p) · i∗(λ′p)

is also odd, where i∗ is the homomorphism induced by the inclusion map i : X → X̃ =

X]S2×̃S2]S2×̃S2. Obviously, ∂(i∗(λ′i)) = νi and k∗(i∗(λ′i)) ∈ G(−(Λ ⊕ id)∗). So by the

construction in the proof, ϕ∗(α0) = α′0 + δ for some non-trivial element δ ∈ H2(M2) ⊂

H2(X2). A contradiction. Hence:

Corollary 3.1. Under the assumption of last theorem, X1 is homeomorphic to X2 if Y2 is

null-homologous in X2, or Y1 is null-homologous in X1,.

By property (3) of the theorem, we could think the plug twist X1 → X2 as cut-

ting off a submanifold Y1 which is a homotopic S2 × D2 from X1 and gluing back the

complement of Y1 in S2×̃S2 by the naturally induced boundary homeomorphism ∂Y1 →
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∂(complement of Y1) in S2×̃S2. This can be considered as a generalization of “Gluck Twist”

which is an operation that cut off S2×D2 from X1 and glue back the complement of S2×D2

in S2×̃S2 (which is still a S2 × D2) by the naturally induced boundary homeomorphism

S2 × S1 → S2 × S1.

[9], [14] give a very easy description of the handle-body picture of Gluck twist. Exchanging

“dot” and “0” in the following picture is a Gluck twist.

Figure 3.8: Glug twist

Plug twist can be viewed as a generalization of the Gluck twist also from its handle-body

picture. Recall that in the proof, assuming n = 0, before we do surgery along ϕ(α0) and α′0

we have the following submanifold of X̃2
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Figure 3.9: The neighborhood of ϕ(α0), α′0, β′0 in X2]S
2×̃S2

After the finger moves, the fundamental group of X̃2 \ (nb(ϕ(α0)) ∪ nb(β′0)) becomes

trivial. So each Whitney’s circle connecting a pair of intersection points between ϕ(α0)

and β′0 with opposite sign bounds an immersed Whitney’s disk disjoint from ϕ(α0) and

β′0 (it might intersect with α′0). The linking torus T 2 intersects with this Whitney’s disk

algebraically once, and [T 2] · [T 2] = 0, so by Casson’s theorem, there is a Casson handle

attached along this Whitney’s circle. Then by Freedman’s theorem, all these Casson handles

are homeomorphic to standard 2-handles relative the boundary. Therefore, there exists a

manifold Z homeomorphic to X̃2 such that in Z, these Casson handles become standard

2-handles. Since this homeomorphism only change the interior of the Casson handle, ϕ(α0)

and β′0 are preserved by this homeomorphism. α′0 is also preserved because it intersects with

the Casson handles only at points. So, in Z, the intersection points between ϕ(α0) and β′0

with opposite signs can be cancelled, while ϕ(α0) may have more intersection points with

α′0 than in X̃2. Doing surgery along ϕ(α0) on Z gives a manifold X ′1 homeomorphic to X1.

Similarly, doing surgery along α′0 on Z gives a manifold X ′2 homeomorphic to X2.
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Corollary 3.2. Under the assumption of the last theorem, there exists X ′i such that X ′i is

homeomorphic to Xi (i = 1, 2) and X ′1, X
′
2 are related by doing the following “dot” and “0”

exchange.

Figure 3.10: Plug twist

The diffeomorphism type change from Xi to X ′i is due to cork twists; the “dot” and “0”

exchange in the above picture is the prime cause of changing the homeomorphism type. It

is easy to observe that: if ϕ(α) is unlinked with α′0, it is a Gluck twist; if there is one clasp

between ϕ(α) and α′0 (as in the above picture), it is a 0 logarithmic transformation. Since

we allow any number of clasps between ϕ(α) and α′0. This operation can be thought of a

generalization of Gluck twist and 0 logarithmic transformation.
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Figure 3.11: A general plug twist

Combine the cork theorem stated in the first section of this chapter, we can summarize

the features of cork and plug by the following pictures:

If X1 and X2 are simply-connected smooth 4 manifolds such that (QX1
, ∂X1) is isomor-

phic to (QX2
, ∂X2), then X1 and X2 are related by:

One plug twist−−−−−−−−−−−−−−−−−−−−→
changes homeomorphism type

Cork twists−−−−−−−−−−−−−−−−−−→
change diffeomorphism type

Figure 3.12: Cork twists together with a plug twist
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Chapter 4

An Example

4.1 An irreducible 3 manifold

For a closed, connected, orientable 3 manifold M , denote H(M) the group of isotopy classes

of homeomorphisms of M ; H+(M) the the group of isotopy classes of orientation preserving

homeomorphisms of M .

Recall Boyer’s result: (X1, ∂X1) and (X2, ∂X2) (∂X1 ≈ ∂X2 ≈M) are simply-connected

topological 4-manifolds, if (QX1
, ∂X1) is isomorphic to (QX2

, ∂X1) through (Λ, f), then they

are homeomorphic if one of the following conditions holds:

(i) H1(M,Q) = 0 and ∆(X1) ≡ ∆(X2);

(ii) Xi are odd manifolds and ∆(X1) ≡ ∆(X2);

(iii) Xi are even manifolds and X1 ∪g X2 is also even for some homeomorphism g : ∂X1 →

∂X2.

Note that in the last case, X1 ∪f X2 might be odd, but if we could find a self-homeo-

morphism h : ∂X2 → ∂X2 such that h interchanges the two spin structures on ∂X2 induced

from f(∂X1) and X2 respectively, then X1 ∪h◦f X2 is even, and thus X1 is homeomorphic

to X2. Conversely, if there exists a homeomorphism F : X1 → X2, then F |∂X1
◦ f−1 must

interchanges the two spin structures on ∂X1. So this suggests us, for a fixed boundary

M and a intersection form Q presenting M , there are at most Spin(M)/H+(M) different

homoemorphism types of simply-connected topological 4-manifolds with boundary M and
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intersection form Q. We denote the set of these manifolds by VQ(M).

Theorem 4.1. (Boyer, [15]) When H1(M) is free, VQ(M) is one-to-one correspondent to:

(i) Spin(M)/H+(M) if Q is even;

(ii) Z/2 if Q is odd.

For instance, when M = S1 × S2, for a fixed Q presenting S1 × S2,

| VQ(S1 × S2) |=


1, if Q is even

2, if Q is odd (the two homeomorphism types differ by ∆).

, since H+(S1 × S2) acts transitively on Spin(S1 × S2). ([25])

When M = T 3, we know that T 3 has 8 different spin structures; H+(T 3) is isomorphic

to SL(3;Z) which is generated by 6 elements. H+(T 3) acts transitively on 7 spin structures,

however there exists an exceptional spin structure which is on a different orbit by itself,

denoted by sLie ([30], Chapter IV). This spin structure spin-bounds the complement of a

generic fiber in the rational elliptic fibration E(1) = CP 2]9CP 2. ([30], Chapter V)

Therefore, | VQ(T 3) |=


2, if Q is even

2, if Q is odd (the two homeomorphism types differ by ∆).

So, there exist 2 simply-connected even topological 4-manifolds X1, X2 such that ∂X1 =

∂X2 = T 3, (QX1
, T 3) is isomorphic to (QX2

, T 3) and X1 is not homeomorphic to X2.

WLOG, we assume the induced spin structure on ∂X1 is sLie, while the induced spin struc-

ture on ∂X2 is one of the other 7 spin structures.

Since Boyer’s construction involves Freedman’s theorem:

Every homology 3-sphere bounds a contractible topological 4-manifolds.

We know that Freedman’s theorem fails for smooth 4-manifolds, so the second part of Boyer’s

result may not be true in the smooth situation.
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Indeed, the Rohlin invariant of (T 3, sLie) is 8, since σ(CP 2]9CP 2) = −8, σ(T 2×D2) = 0,

σ(the complement of T 2 × D2) = −8 by Novikov additivity; the Rohlin invariant of the

other 7 spin structures on T 3 is 0, since they all bound T 2 × D2. So there do not exist

smooth 4-manifolds X1, X2 such that X1 induces sLie on ∂X1 ≈ T 3, X2 induces one of the

other 7 spin structures on ∂X2 and QX1
∼= QX2

≈ T 3. Thus, if X1 and X2 are smooth

simply-connected 4-manifolds such that (QX1
, T 3) is isomorphic to (QX2

, T 3), then X1 is

homeomorphic to X2.

It is natural to ask the question: Is it always true that for two simply-connected smooth

4-manifolds X1 and X2, (QX1
,M) isomorphic to (QX2

,M) implies they are homeomorphic?

We will show that the following example gives a negative answer:

≈

Figure 4.1: A simply-connected 4-manifold
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≈

Figure 4.2: Doing Gluck twist gives a non-homeomorphic simply-connected 4-manifold

Clearly, QX1
∼= QX2

, ∂X1 ≈ ∂X2; denote the boundary by M . We can easily find the

plug twist; it is indeed a Gluck twist. H2(Yi) ⊂ H2(∂Xi) (i = 1, 2), so easy to check that

(*) is commutative, i.e., we have (QX1
,M) isomorphic to (QX2

,M). To prove X1 is not

isomorphic to X2, we only need to prove there does not exist a homeomorphism M → M

interchanging the two spin structures induced from X1 and X2 respectively.
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Figure 4.3: Finding the fundmental group of the boundary

We can easily write the Wirtinger presentation of the fundamental group of M . It has

20 generators: {x1, ..., x4, y1, ..., y10, a1, b1, a2, b2, a3, b3} and 25 relations:

y8 = a3y8b
−1
3 ; y9 = a3y9b

−1
3 ; y7 = a3y8a

−1
3 ; y10 = a3y9a

−1
3 ;

y6 = a2y6b
−1
2 ; y10 = a2y10b

−1
2 ; y5 = a2y6a

−1
2 ; y4 = a2y10a

−1
2 ;

y2 = a1y2b
−1
1 ; y4 = a1y4b

−1
1 ; y1 = a1y2a

−1
1 ; y3 = a1y4a

−1
1 ;

x1 = y1x1y
−1
3 ; x4 = y1x1y

−1
1 ; x4 = y2x3y

−1
2 ; x3 = y2x3y

−1
5 ;

x3 = y7x3y
−1
6 ; x2 = y7x3y

−1
7 ; x2 = y8x1y

−1
8 ; x1 = y8x1y

−1
9 ;

y9y
−1
8 = 1; y10y

−1
6 = 1; y4y

−1
2 = 1; y−1

8 y7y
−1
2 y1 = 1; x−1

1 a−1
3 x1a

−1
2 x−1

1 a−1
1 x1a1a2a3 = 1.

The first 3 equations of the last line implies y8 = y9, y2 = y4, y6 = y10, substituting into

the last equations of the first 3 rows, we gety6 = a3y8a
−1
3 , y2 = a2y6a

−1
2 , y3 = a1y2a

−1
1 . By

comparing the second last equations of the first 3 rows, we have y7 = y6, y2 = y5, y1 = y3.
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So, y1 = y3, y2 = y4 = y5, y6 = y7 = y10, y8 = y9;x1 = x2 = x3 = x4. Hence, after

simplification, we get:

π1(M) = 〈x1, y1, a1, a2, a3 | [x1, y1] = 1, [x1, y2] = 1, [x1, y6] = 1, [x1, y8] = 1,

y−1
8 y6y

−1
2 y1 = 1 (†) , x−1

7 x6x
−1
5 x1 = 1 (‡) 〉,

where y2 = a−1
1 y1a1; y6 = a−1

2 a−1
1 y1a1a2; y8 = a−1

3 a−1
2 a−1

1 y1a1a2a3; x5 = a1x1a
−1
1 ;

x6 = a1a2x1a
−1
2 a−1

1 ; x7 = a1a2a3x1a
−1
3 a−1

2 a−1
1 .

Now we denote π1(M) by G, Let

G1 = 〈x, a, b, c | cx−1c−1bxb−1ax−1a−1x = 1〉;

G2 = 〈y, a, b, c | c−1y−1cb−1yba−1y−1ay = 1〉,

where x = x1, y = y1, a = a1, b = a1a2, c = a1a2a3. Easy to see that G = 〈G1, G2〉, the

group generated by G1 and G2, and G1 ∩G2 6= {1}.

We can check that the relator of G1, r1 = cx−1c−1bxb−1ax−1a−1x is of minimal length

under Aut(〈a, b, c, x〉) by Whitehead’s Theorem; similarly, the relator of G2, r2 = c−1y−1c

b−1yba−1y−1ay is of minimal length under Aut(〈a, b, c, y〉).

Theorem 4.2. (Whitehead, [46]) If w, v ∈ Fn such that w can be transformed to v by

automorphisms of Fn, and v is of minimal length, then there exists a sequence S1, S2, ..., Sm

of Type I and Type II automorphisms such that Sm...S2S1(w) = v, and for k ≤ m, |

Sk...S2S1(w) |≤ | Sk−1...S2S1(w) |, with strictly inequality unless Sk−1...S2S1(w) is min-

imal.

If we denote the set of generators and their reverses {x1, x2, ...xn, x
−1
1 , ..., x−1

n } of Fn by

Ln, then Whitehead Type I automorphism is a permutation S ∈ Aut Fn acting on Ln such

that S(x−1) = (S(x))−1 for ∀x ∈ Ln;
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For x ∈ Ln and A ∈ Ln, Whitehead Type II automorphism S(A, x) is defined as follows:

S(y) =



yx, if y ∈ A, y−1 6∈ A, y 6∈ {x, x−1},

x−1y, if y 6∈ A, y−1 ∈ A, y 6∈ {x, x−1},

x−1yx, if y, y−1 ∈ A,

y, otherwise.

for any y ∈ Ln.

Now, by using the following theorem,

Theorem 4.3. ([31], Proposition 5.13) Let H = 〈x1, x2, ..., xn | r〉 where r is of minimal

length under Aut(〈x1, x2, ..., xn〉) and contains exactly the generators x1, x2, ..., xk for some

0 ≤ k ≤ n. Then H = H1 ∗H2 where H1 = 〈x1, x2, ..., xk | r〉 is freely indecomposable and

H2 is free with basis xk+1, ..., xn.

A group G is called freely indecomposable if G can not be written as G = A ∗ B for

nontrivial subgroups A ≤ G,B ≤ G.

we can easily see that:

Lemma 4.1. G1 and G2 are freely indecomposable.

Proof. By this theorem, G1 can splits as G1 = A1 ∗ B1 where A1 is freely indecomposable

and B1 is free. Since r1 = cx−1c−1bxb−1ax−1a−1x, k = n = 4. Therefore, B1 is trivial,

and G1 = A1 which is freely indecomposable. Similarly, one can prove that G2 is also freely

indecomposable.

Next we will show that G is also freely indecomposable by applying Kurosh subgroup

theorem.

Theorem 4.4. (Kurosh Subgroup Theorem): If G is freely decomposable, i.e., G = A ∗ B

where A,B are both nontrivial subgroups, and H ≤ G is a subgroup of G, then there exist a
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family (Ai)i∈I of subgroups Ai ≤ A, a family (Bj)j∈J of subgroups Bj ≤ B, families gi, i ∈ I

and fj , j ∈ J of elements of G, and a subset X ⊆ G such that H = F (X)∗ (∗(i∈I)giAig
−1
i )∗

(∗(j∈J)fjBjf
−1
j ), where F (X) is the free group generated by X.

Proposition 4.1. G is freely indecomposable.

Proof. Since G1 is not free and is freely indecomposable, by Kurosh subgroup theorem, G1 =

gA1g
−1 or G1 = gB1g

−1 for some g ∈ G and A1 ≤ A, B1 ≤ B; similarly, G2 = fA2f
−1 or

G2 = fB2f
−1 for some f ∈ G and A2 ≤ A, B2 ≤ B. If G1 = gA1g

−1 and G2 = fB2f
−1,

then a = gsg−1 = frf−1 for some s ∈ A1 ≤ A and r ∈ B2 ≤ B, as a ∈ G1 ∩ G2. This

contradicts to G = A ∗B. Similarly, G1 = gB1g
−1, G2 = fA2f

−1 is not possible.

Now suppose G1 = gA1g
−1 and G2 = fA2f

−1. If both f and g ∈ A, then G1 ≤ A;

G2 ≤ A , so G ≤ A, B is trivial. If one of f and g is not contained in A, say f involves

non-trivial elements of B, but g does not, then a ∈ G1 ≤ A and a ∈ G2 so that a = frf−1,

contradicting with G = A ∗ B. Now if neither f nor g is contained in A, we take any non-

trivial element s ∈ A, s ∈ G = 〈G1, G2〉, so s is equal to a product of ftif
−1 and gtjg

−1

for some ti, tj ∈ A. As f and g involve non-trivial elements of B, this contradicts with

G = A ∗ B. The case where G1 = gB1g
−1 and G2 = fB2f

−1 can be proved in a similar

manner.

This proposition implies that M is a prime manifold, because if M = M1]M2, then

π1(M) = π1(M1) ∗ π1(M2) by Van kampen Theorem. Clearly, M is not a 2-sphere bundle

over S1, so it is an irreducible 3-manifold. As the rank of H1(M) is 5, M is sufficiently

large.
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4.2 Finding H+(M) by Out(π1(M))

Denote Out(π1(M)) the outer automorphism group of the fundamental group of M . Wald-

hausen [43] proved that:

When M is closed orientable irreducible 3-manifold which is sufficiently large, the naturally

induced homomorphism Φ : H(M)→ Out(π1(M)) is an isomorphism.

We will analyse Out(π1(M)) and find the corresponding orientation-preserving homeomor-

phisms. We will easily see that none of these homeomorphisms can interchange the two spin

structures. Therefore X1 is not homeomorphic to X2.

Lemma 4.2. If Φ is an automorphism of G, then at least one of Φ(x1) and Φ(y1) is contained

in 〈Cl(x1), Cl(y1)〉, where Cl(x1) = {g−1x1g : g ∈ G}; Cl(y1) = {g−1y1g : g ∈ G} are the

conjugate classes of x1 and y1.

Proof. Denote H the normal subgroup generated by g−1x−1
1 gx1 and g−1y−1

1 gy1 for ∀g ∈ G,

then G/H = 〈x1〉⊕ 〈y1〉⊕ 〈a1, a2, a3〉. Let x̄ denote the image of x in the quotient G/H. In

G/H, x̄1, ȳ1 commute with all elements, so Φ(x1) = x̄
m1
1 ȳ

n1
1 f1; Φ(y1) = x̄

m2
1 ȳ

n2
1 f2 for some

f1, f2 ∈ 〈a1, a2, a3〉. Assume that Φ(x1) /∈ 〈Cl(x1), Cl(y1)〉; Φ(y1) /∈ 〈Cl(x1), Cl(y1)〉, then

f1 and f2 are not trivial elements.

Now, Φ(x1)Φ(y1) = x̄
m1+m2
1 ȳ

n1+n2
1 f1f2; Φ(x1)Φ(y1) = x̄

m1+m2
1 ȳ

n1+n2
1 f2f1. In G,

x1y1 = y1x1, so Φ(x1)Φ(y1) = Φ(y1)Φ(x1). Hence f1f2 = f2f1. Consider the subgroup K

of 〈a1, a2, a3〉 generated by f1, f2. Any subgroup of a free group is free, so K is a free group.

By considering the abelinization of K, it is easy to see that the rank of K 6 2, since K

is generated by 2 elements. If the rank of K is 2, as a consequence of Grushko’s Theorem,

f1, f2 generate K freely, which contradicts to the fact f1f2 = f2f1. Thus, the rank of K = 1,

which implies f1 = tk1 , f2 = tk2 for some t ∈ 〈a1, a2, a3〉 and k1, k2 ∈ Z.
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Assume Φ(a1) = x̄
m3
1 ȳ

n3
1 f3 for some f3 ∈ 〈a1, a2, a3〉, then

Φ(x1)Φ(a1)−1Φ(y1)Φ(a1) = x̄
m1+m2+m3
1 ȳ

n1+n2+n3
1 f1f

−1
3 f2f3;

while Φ(a1)−1Φ(y1)Φ(a1)Φ(x1) = x̄
m1+m2+m3
1 ȳ

n1+n2+n3
1 f−1

3 f2f3f1.

x1a
−1
1 y1a1 = a−1

1 y1a1x1 in G, so Φ(x1)Φ(a1)−1Φ(y1)Φ(a1) = Φ(a1)−1Φ(y1)Φ(a1)Φ(x1),

f1f
−1
3 f2f3 = f−1

3 f2f3f1. Therefore the rank of 〈f1, f
−1
3 f2f3〉 = 1 =⇒ rank of 〈f1, f2, f3〉 =

1. Thus, we can conclude f1 = tk1 , f2 = tk2 , f3 = tk3 for some t ∈ 〈a1, a2, a3〉 and integers

k1, k2, k3.

x1a
−1
2 a−1

1 y1a1a2 = a−1
2 a−1

1 y1a1a2x1; x1a
−1
3 a−1

2 a−1
1 y1a1a2a3 = a−1

3 a−1
2 a−1

1 y1a1a2a3x1

in G, so we can similarly prove that

Φ(a2) = x̄
m4
1 ȳ

n4
1 tk4 ; Φ(a3) = x̄

m5
1 ȳ

n5
1 tk5 .

Now we consider G/[G,G] = 〈x1〉⊕〈y1〉⊕〈a1〉⊕〈a2〉⊕〈a3〉, which is a free abelian group

of rank 5. The abelinization of G is the same as the abelinization of G/H. G is generated

by {Φ(x1),Φ(y1),Φ(a1),Φ(a2),Φ(a3)}, but rank of
〈Φ(x1),Φ(y1),Φ(a1),Φ(a2),Φ(a3)〉

[G,G]
6 3.

A contradiction. Therefore, at least one of Φ(x1) and Φ(y1) ∈ 〈Cl(x1), Cl(y1)〉.

Lemma 4.3. If I := {sxs−1, s ∈ 〈a1, ..., an〉} is a free group, u, v ∈ I, v is nontrivial, and

satisfies: uvk = dvld−1u for some d ∈ 〈a1, ..., an〉 and integers k and l, then d = 1 and

uv = vu.

Proof. If u is trivial, It is obvious. Let us assume u is not trivial.

If v is not cyclically reduced, v = sv0s
−1 for some nontrivial element s ∈ I, where

v0 is cyclically reduced, i.e., the first letter of v0 is not the inverse of the last letter of

v0. Then usvk0s
−1u−1 = dsd−1dvl0d

−1ds−1d−1. Thus, ds−1d−1usvk0s
−1u−1d−1dsd−1 =

dvl0d
−1. Denote ds−1d−1us by u0, we have u0v

k
0u
−1
0 = dvl0d

−1. Therefore, WLOG, we can

assume that v is cyclically reduced.
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Since uvku−1 = dvld−1, u or u−1 must be completely cancelled out to make dvld−1

cyclically reduced (d ∈ I). If the last letter of u cancels the first letter of v, then the

first letter of u−1 can not be cancelled with the last letter of v and vice verse, since v

is cyclically reduced. Therefore, k = l. Assume vk = e1xe
−1
1 e2xe

−1
2 ...emxe

−1
m , where

ei ∈ 〈a1, ..., an〉, then u = epx
−1e−1

p ep−1x
−1e−1

p−1...e1x
−1e−1

1 for some p < m; uvku−1 =

ep+1xe
−1
p+1ep+2xe

−1
p+2...emxe

−1
m e1xe

−1
1 ...epxe

−1
p . Thus, dei = eσ(i), where σ is the permuta-

tion on {1, 2, ...,m}. Now it is easy to check that d must be identity. Thus, uvk = vku. The

subgroup generated by u and v is a free group and the rank of this group is 1. So, u = tk1 ,

and v = tk2 for some t ∈ I and some integers k1 and k2. Therefore, uv = vu.

Proposition 4.2. If Φ is an automorphism of G, then Φ(x1) = f−1xε1f ; Φ(y1) = g−1yε1g

or Φ(x1) = f−1yε1f ; Φ(y1) = g−1xε1g for ε = ±1 and f, g ∈ G.

Proof. By the first lemma, WLOG, we can assume Φ(y1) ∈ 〈Cl(x1), Cl(y1)〉. Denote J the

normal subgroup generated by [x1, t
−1y1t] for ∀t ∈ 〈a1, a2, a3〉, note that J also contains

[s−1x1s, t
−1y1t] for ∀s, t ∈ 〈a1, a2, a3〉. In G/J , the the conjugates of x1 commute with

the conjugates of y1, however, s−1
1 x1s1 does not commute with s−1

2 x1s2 unless s1 = s2.

Consider the subgroup I1 of G, I1 := {s−1x1s, s ∈ 〈a1, a2, a3〉}. It is a free group gener-

ated by {s−1x1s}, where s ∈ 〈a1, a2, a3〉 and the last letter of s is neither a3 nora−1
3 , since

a3x1a
−1
3 = x1a

−1
2 a−1

1 (a1x1a
−1
1 )−1x1a1a2 = x1(a−1

2 x1a2)−1a−1
2 a−1

1 x1a1a2 and a−1
3 x1a3 =

x1a
−1
3 a−2x1a2a3(a−1

3 a−1
2 a−1

1 x1a1a2a3)−1 by (‡). Similarly, The subgroup I2 := {t−1y1t, t ∈

〈a1, a2, a3〉} of G is also a free group.

Assume in G/J , Φ(y1) = uv where u ∈ Ī1, v ∈ Ī2; Φ(x1) = wzd where w ∈ Ī1, z ∈

Ī2, d ∈ 〈a1, a2, a3〉. Φ(x1)Φ(y1) = Φ(y1)Φ(x1) ⇒ wzduv = uvwzd. Since Ī1 ∪ Ī2 is normal

in G/J , we are able to move the elements in 〈a1, a2, a3〉 after the elements in Ī1 and Ī2.
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wzduv = wzu′v′d = wu′zv′d, where u′ = dud−1, v′ = dvd−1 and uvwzd = uwvzd in G/J .

Since Ī1 ∩ Ī2 = {1}, wu′ = uw, zv′ = vz. By last lemma and the freeness of Ī1 and Ī2, d

must be trivial and uw = wu; vz = zv. Thus, Φ(x1) ∈ 〈Cl(x1), Cl(y1)〉.

Φ(a1) /∈ 〈Cl(x1), Cl(y1)〉, otherwise, we would reach a contradiction by counting the

rank of the abelinization of G. So we may assume that in G/J , Φ(a1) = pqr where

p ∈ Ī1, q ∈ Ī2, r ∈ 〈a1, a2, a3〉 and r is nontrivial. Φ(a−1
1 )Φ(y1)Φ(a1) = r−1p−1upq−1vqr

and Φ(x1)Φ(a−1
1 )Φ(y1)Φ(a1) = Φ(a−1

1 )Φ(y1)Φ(a1)Φ(x1), so, r−1p−1uprw = wr−1p−1upr;

r−1q−1vqrz = zr−1q−1vqr. The rank of 〈u,w〉 = 1, so (r−1p−1r)(r−1tkr)(r−1pr) = tl for

some t ∈ Ī1 and integers k and l. By last lemma, if r is nontrivial, one of u and w must

be trivial; similarly, one of v and z must be trivial. u = 1, v = 1 or w = 1, z = 1 is not

possible since if Φ(y1) = 1 or Φ(x1) = 1, then the image of Φ(y1) or Φ(x1) would be trivial

in the abelinization of G. A contradiction. Thus, u = 1, z = 1 or w = 1, v = 1, which means

Φ(x1) ∈ Ī1 or Ī2; if Φ(x1) ∈ Ī1, then Φ(y1) ∈ Ī2 and vice verse.

Consider I = 〈I1, I2〉, the subgroup of G generated by I1 and I2. Φ induces an auto-

morphism on I. Φ(x1) ∈ Ī1 or Ī2, so Φ(x1) ∈ I as a product of elements in I1 and I2. We

can further assume Φ(x1) is cyclically reduced by composing Φ with an appropriate inner

automorphism. The rank of the ablelianization of the centralizer of x1 in I is 4 (generated

by {x1, y1, y2, y6}); the only cyclically reduced elements in I with this property are x1, y1,

x−1
1 and y−1

1 . Therefore, Φ(x1) = f−1xε1f ; or Φ(x1) = f−1yε1f for some f ∈ G; similarly,

Φ(y1) = g−1yε1g or Φ(y1) = g−1xε1g for some g ∈ G.

Since we are only interested in the outer automorphism of G, by composing with appro-

priate innner automorphisms, we can assume that Φ(x1) = x1 or Φ(x1) = x−1
1 or Φ(x1) = y1

or Φ(x1) = y−1
1 .

58



Case I. Φ(x1) = x1.

In this case, Φ(y1) is contained in the centralizer of x1, denoted by CG(x1), which is

generated by {x1, y1, y2, y6, y8}. By last proposition, we know Φ(y1) = g−1yεi g, where

ε = ±1, g ∈ CG(X1)

〈x1〉
= 〈y1, y2, y6, y8〉 and i =1 or 2 or 6 or 8.

First, let us assume Φ induces a permutation on {y1, y2, y6, y8, y
−1
1 , y−1

2 , y−1
6 , y−1

8 }. Un-

der this assumption, we consider the possible images of y1 under Φ. If Φ carries y1 to y8,

then Φ(y2) = y6, Φ(y6) = y2, Φ(y8) = y1 by (†), thereby Φ(y−1
8 y6y

−1
2 y1) = y−1

1 y2y
−1
6 y8 =

(y−1
8 y6y

−1
2 y1)−1. However, Φ(x1) = x1. So Φ is induced by an orientation-reversing homeo-

morphism. For the same reason, we can exclude the other 3 cases: Φ(y1) = y2; Φ(y1) = y−1
1 ;

Φ(y1) = y−1
6 . Now, we have 4 possibilities left: Φ(y1) = y1; Φ(y1) = y6; Φ(y1) = y−1

2 ;

Φ(y1) = y−1
8 . Next we consider 4 particular automorphisms corresponding to each possibil-

ity.

(S1). Assume that Φ(xi) = xi for i = 1, 5, 6, 7 and Φ(yi) = yi for i = 1, 2, 6, 8. Now We

want to find Φ(a1). Since Φ(y2) = y2. Φ(y2) = Φ(a−1
1 )Φ(y1)Φ(a1) = Φ(a1)−1y1Φ(a1) =

y2 = a−1
1 y1a1. So, Φ(a1)−1a1a

−1
1 Φ(y1)a1a

−1
1 Φ(a1) = a−1

1 y1a1, [a−1
1 Φ(a1), y2] = 1.

Similarly, Φ(x5) = Φ(a1)Φ(x1)Φ(a1)−1 = Φ(a1)x1Φ(a1)−1 = x5 = a1x1a
−1
1

So, a−1
1 Φ(a1)Φ(x1)Φ(a1)−1a1 = x1, [a−1

1 Φ(a1), x1] = 1.

The centralizer of x1 is generated by

{x1, y1, y2, y6, y8}; (y8 is not necessary since y8 = y6y
−1
2 y1)

the centralizer of y2 is generated by

{y2, a
−1
1 x1a1, a

−1
1 x5a1 = x1, a

−1
1 x6a1, a

−1
1 x7a1}. (a−1

1 x7a1 = a−1
1 x6a1x

−1
1 a−1

1 x1a1)

Since a−1
1 Φ(a1) commutes with both x1 and y2,
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a−1
1 Φ(a1) = xm1y

n1
2 = xm1a−1

1 y
n1
1 a1 = a−1

1 y
n1
1 a1x

m1 , for m1, n1 ∈ Z.

Thus, Φ(a1) = y
n1
1 a1x

m1
1 .

Similarly, we can derive [a−1
2 a−1

1 Φ(a1)Φ(a2), y6] = 1, [a−1
2 a−1

1 Φ(a1)Φ(a2), x1] = 1, so

a−1
2 a−1

1 Φ(a1)Φ(a2) = a−1
2 a−1

1 y
n2
1 a1a2x

m2
1 , for m2, n2 ∈ Z

Therefore, Φ(a2) = x
−m1
1 a−1

1 y
n2−n1
1 a1a2x

m2
1 = y

n2−n1
2 x

−m1
1 a2x

m1
1 x

m2−m1
1 .

Also [a−1
3 a−1

2 a−1
1 Φ(a1)Φ(a2)Φ(a3), y8] = 1, [a−1

3 a−1
2 a−1

1 Φ(a1)Φ(a2)Φ(a3), x1] = 1,

a−1
3 a−1

2 a−1
1 Φ(a1)Φ(a2)Φ(a3) = a−1

3 a−1
2 a−1

1 y
n3
1 a1a2a3x

m3
1 , for m3, n3 ∈ Z. So,

Φ(a3) = x
−m2
1 a−1

2 a−1
1 y

n1−n2
1 a1x

m1
1 x

−m1
1 a−1

1 y
−n1
1 y

n3
1 a1a2a3x

m3
1 =

y
n3−n2
6 x

−m2
1 a3x

m2
1 x

m3−m2
1 .

This kind of automorphisms are induced by the diffeomorphisms of doing the following moves

(move 1.1 and 1.2).
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→ →

→

Figure 4.4: Move 1.1
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→ →

→ →

→

Figure 4.5: Move 1.2
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(S2). Assume that Φ(y1) = y6, Φ(y2) = y8,Φ(y6) = y1,Φ(y8) = y2 and Φ(x1) = x1,

Φ(x5) = a3x1a
−1
3 ,Φ(x6) = a−1

2 a−1
1 x1a1a2,Φ(x7) = a−1

2 x1a2.

Now, Φ(y2) = Φ(a−1
1 )Φ(y1)Φ(a1) = Φ(a1)−1y6Φ(a1) = Φ(a1)−1a3y8a

−1
3 Φ(a1) = y8, so

[a−1
3 Φ(a1), y8] = 1; Φ(x5) = Φ(a1)x1Φ(a1)−1 = a3x1a

−1
3 , so [a−1

3 Φ(a1), x1] = 1. Thus,

a−1
3 Φ(a1) = y

n4
8 x

m4
1 for m4, n4 ∈ Z; Φ(a1) = y

n4
6 a3x

m4
1 .

Similarly, we can derive [a1a2Φ(a1)Φ(a2), y1] = 1 and [a1a2Φ(a1)Φ(a2), x1] = 1,

So a1a2Φ(a1)Φ(a2) = y
n5
1 x

m5
1 for m5, n5 ∈ Z;

Φ(a2) = x
−m4
1 a−1

3 y
−n4
6 a−1

2 a−1
1 y

n5
1 x

m5
1 = y

n5−n4
8 x

−m4
1 a−1

3 a−1
2 a−1

1 x
m5
1 .

Also, [a2Φ(a1)Φ(a2)Φ(a3), y2] = 1 and [a2Φ(a1)Φ(a2)Φ(a3), x1] = 1,

So a2Φ(a1)Φ(a2)Φ(a3) = y
n6
2 x

m6
1 for m6, n6 ∈ Z;

Φ(a3) = y
n6−n5
1 x

−m5
1 a1x

m6
1 .

Note that, Φ(a1) = a3,Φ(a2) = a−1
3 a−1

2 a−1
1 ,Φ(a3) = a1 is a special solution which is

exactly induce by the diffeomorphism of doing the following move (move 2: wind y8 around

x1 counter-clockwisely) twice. The general solutions are just induced by the composition of

this diffeomorphism and the diffeomorphisms of doing move 1.1 and 1.2.
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→ →

→

Figure 4.6: Move 2

For simplicity, from now on, we will modular diffeomorphisms induced by move 1.1 and

1.2, i.e., the automorphism Φ is uniquely determined by the image of Φ(xi) and Φ(yj) for

i = 1, 5, 6, 7 and j = 1, 2, 6, 8 up to composition with Φ1, the automorphism induced by

move 1.1 and 1.2.
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(S3). Assume that Φ(y1) = y−1
2 , Φ(y2) = y−1

6 ,Φ(y6) = y−1
8 ,Φ(y8) = y−1

1 and Φ(x1) =

x1, Φ(x5) = x1a2x1a
−1
2 x−1

1 ,Φ(x6) = x1a2x
−1
1 a3x1a

−1
3 x1a

−1
2 x−1

1 ,Φ(x7) = a−1
1 x1a1. By

similar calculations, we can check that Φ(a1) = x1a2x
−1
1 , Φ(a2) = a3, Φ(a3) = a−1

3 x1a
−1
2 x−1

1

a−1
1 . This is induced by the diffeomorphism of doing move 2 then followed by the following

move (move 3).

Note that the actual diffeomorphism induced is the inverse of what it is look like from

the picture.

→ →

→

Figure 4.7: Move 3
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(S4). Assume that Φ(y1) = y−1
8 , Φ(y2) = y−1

1 ,Φ(y6) = y−1
2 ,Φ(y8) = y−1

6 and Φ(x1) =

x1, Φ(x5) = a−1
3 x1a

−1
2 x−1

1 a−1
1 x1a1x1a2x

−1
1 a3, Φ(x6) = a−1

3 x1a
−1
2 x1a2x

−1
1 a3, Φ(x7) =

a−1
3 x1a3. By similar calculations, we can check that Φ(a1) = a−1

3 x1a
−1
2 x−1

1 a−1
1 , Φ(a2) = a1,

Φ(a3) = x1a2x
−1
1 . This is induced by the diffeomorphism of doing the inverse move 2 (i.e.,

wind y1 around x1 clockwisely), then followed by move 3.

Now, let us analyse the general case, i.e., Φ(y1) = g−1yεi g, for some g ∈ CG(X1)

〈x1〉
=

〈y1, y2, y6, y8〉 and ε = ±1, i =1 or 2 or 6 or 8. By applying the 4 types of diffeomorphisms

described above, we can therefore assume that Φ(y1) = g−1y1g, g ∈ 〈y1, y2, y6, y8〉.

In the following diffeomorphism (move 4, which we denote by Φ4), the “arm” y1 winds

around x1 counter-clockwisely and go over all the other “arms”: y2, y6, y8. The effect of

this diffeomorphism on G is sending every element α of G to y−1
1 αy1 (if y1 winds around x1

clockwisely, α would be sent to y1αy
−1
1 ). Similarly, there exists diffeomorphisms that send

α to y−1
i αyi and yiαy

−1
i , for each i = 2, 6, 8. Thus, we can just assume Φ(y1) = y1. Then

in 〈y1, y2, y6, y8〉ab, Φ induces a permutation on {ȳ2, ȳ6, ȳ8}.
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→ →

→ →

Figure 4.8: Move 4
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For simplicity, we denote y1, y−1
2 , y6 and y8 by a, b, c and cba respectively. We know

that Φ(a) = a and Φ(cba) = Φ(c)Φ(b)a.

(i) If Φ(b) = t−1
1 bt1, Φ(c) = t−1

2 ct2, Φ(cba) = t−1
3 cbat3 for some t1, t2, t3 ∈ 〈a, b, c〉, we get

t−1
3 cbat3 = t−1

2 ct2t
−1
1 bt1a (?). WOLG, we may assume that t−1

1 bt1, t−1
2 ct2, t3 are reduced.

(ii) If Φ(b) = t−1
3 a−1b−1c−1t3, Φ(c) = t−1

2 ct2, Φ(cba) = t−1
1 b−1t1 for some t1, t2, t3 ∈

〈a, b, c〉 (i.e., Φ(ȳ2) = ȳ8, Φ(ȳ6) = ȳ6, Φ(ȳ8) = ȳ2), then by compositing the following diffeo-

morphism, this is equivalent to the previous case. Note that Φ(y1) = y1, so by considering

the homology, Φ(ȳi) can not =ȳj
−1.
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Move 2−→ →

→ →

→

Move 3−→

Figure 4.9: Move 5
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(iii) If Φ(b) = t−1
1 bt1, Φ(c) = t−1

3 cbat3; Φ(cba) = t−1
2 ct2 (i.e., Φ(ȳ2) = ȳ2, Φ(ȳ6) = ȳ8,

Φ(ȳ8) = ȳ6), then we have t−1
2 ct2 = t−1

3 cbat3t
−1
1 bt1a. Clearly, this is not possible. Similarly,

we can check the other 3 permutations are not possible.

Now, our goal is to show that every possible solution of equation (?) can be obtained

by diffeomorphisms. Note that by applying Φ4, we can assume that the last letter of t1 is

neither a or a−1 so that there is no cancellation between t1 and a. Either t−1
2 ct2 is cancelled

out by t−1
1 bt1a or vice verse or there is no cancellation between t−1

2 and t1, since if neither

t−1
2 ct2 or t−1

1 bt1a is cancelled out, the last letter of t3 must be a, so that the last letter of t2

is also a. Denote the length of ti by l(ti), i = 1, 2, 3.

(1) If there is no cancellation between t2 and t−1
1 , then l(t2) 6= l(t1). Since if l(t2) = l(t1),

by comparing both sides of the equation, we know that the last letter of t3 is a, however,

the last letter of t2 is c and so is t3. A contradiction. So, in this case, l(t3) ≥ l(t2) + l(t1).

(1a) If l(t3) ≥ l(t1) > l(t2), then t−1
3 = t−1

2 ct2t
−1
4 for some t4 ∈ 〈a, b, c〉, so t−1

4 cbat4t
−1
2

c−1t2a
−1 = t−1

1 bt1. Note that the last letter of t2 is a, we denote t2a
−1 by t5. Then we have

t−1
4 cbat4a

−1t−1
5 c−1t5 = t−1

1 bt1, and there is no cancellation between t−1
4 and a−1. Clearly,

l(t4) + 1 6= l(t5), since otherwise the middle letter on the left hand side is a−1, while the

middle letter on the right hand side is b.

(1aa) Now, if l(t4) + 1 > l(t5), t1 = t6t
−1
5 c−1t5 for some t6 ∈ 〈a, b, c〉, then we have

t−1
4 cbat4 = t−1

5 ct5t
−1
6 bt6a. So we are back to the original from: t4 = t3t

−1
2 ct2 plays the role

of t3; t5 = t2a
−1 plays the role of t2; t6 = t1at

−1
2 ct2a

−1 plays the role of t1 and we know

that l(t4) < l(t3); l(t5) < l(t2); l(t6) < l(t1). This transformation is induced by the the

diffeomorphism dragging y6 around x1 counter-clockwisely and go over y8, underneath y1,

and over y2 as described in the following picture.
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→ →

→ →

→

Figure 4.10: Move 6
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(1ab) If l(t4) + 1 < l(t5), t−1
1 = t−1

4 cbat4t
−1
6 for some t6 ∈ 〈a, b, c〉. Therefore,

a−1t−1
5 c−1t5 = t−1

6 bt6t
−1
4 (cba)−1t4.

Note that the first letter of t−1
6 must be a−1, so t−1

4 cbat4 = t−1
5 ct5t

−1
7 bt7a, where t7 =

t6a
−1. Now, t4 = t3t

−1
2 ct2 plays the role of t3; t5 = t2a

−1 plays the role of t2; t7 =

t1t
−1
4 (cba)−1t4a

−1 plays the role of t1 and we also have: l(t4) < l(t3); l(t5) < l(t2); l(t7) <

l(t1). This transformation is induced by the the diffeomorphism of winding y8 around x1

clockwisely, going underneath y6, over y2 and underneath y1, then followed by Φ−1
4 .

(1b) If l(t3) ≥ l(t2) > l(t1), then by conjugating both sides with a, at−1
3 cbat3a

−1 =

at−1
2 ct2t

−1
1 bt1. Now we know t3a

−1 = t4t
−1
1 bt1 for some t4 ∈ 〈a, b, c〉. Therefore,

a−1t−1
1 b−1t1t

−1
4 cbat4 = t−1

2 ct2.

(1ba) If l(t1) ≥ l(t4) + 1, t2 = t5t
−1
4 cbat4 for some t5 ∈ 〈a, b, c〉. Then we have

a−1t−1
1 b−1t1 = t−1

4 (cba)−1t4t
−1
5 ct5, which implies t−1

4 (cba)t4 = t−1
5 ct5t

−1
1 bt1a. So t4 =

t3a
−1t−1

1 b−1t1 plays the role of t3; t5 = t2t
−1
4 (cba)−1t4 plays the role of t2; t1 does not

change and l(t4) < l(t3); l(t5) < l(t2). This transformation is induced by the the diffeo-

morphism of winding y8 around x1 counter-clockwisely, going underneath y1, y2 and over

y6.

(1bb) If l(t1) < l(t4) + 1, t−1
2 = a−1t−1

1 b−1t1t
−1
5 for some t5 ∈ 〈a, b, c〉. Then we have

t−1
4 cbat4 = t−1

5 ct5t
−1
1 bt1a. So t4 = t3a

−1t−1
1 b−1t1 plays the role of t3; t5 = t2a

−1t−1
1 b−1t1

plays the role of t2, t1 does not change and l(t4) < l(t3); l(t5) < l(t2). This transformation

is induced by the the diffeomorphism of winding y2 around x1 clockwisely, going underneath
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y1 and over y8, y6, then followed by Φ−1
4 .

(2) If t−1
2 ct2 is cancelled out by t−1

1 bt1a, then

t−1
1 bt1 = t−1

2 c−1t2t
−1
3 cbat3a

−1 = t−1
2 c−1t2a

−1t−1
4 cbat4

(??), where t3a
−1 = t4 and there is no cancellation between t2 and t−1

3 . Clearly, l(t4) + 1 6=

l(t2).

(2a) If l(t4)+1 > l(t2), then t−1
1 = t−1

2 c−1t2t
−1
5 for some t5 ∈ 〈a, b, c〉, so at−1

5 bt5t
−1
2 ct2 =

t−1
4 cbat4. Note, as we assume the last letter of t1 is neither a or a−1, either is t2 by(??). So

the first letter of t−1
5 must be a−1. The equation can written as t−1

6 bt6at
−1
2 ct2 = t−1

4 cbat4,

where t6 = t5a
−1. Clearly, l(t2) 6= l(t6).

(2aa) If l(t6) > l(t2), t4 = t7t
−1
2 ct2 for some t7 ∈ 〈a, b, c〉. Then we have t−1

6 bt6a =

t−1
2 c−1t2t

−1
7 cbat7 =⇒ t−1

7 cbat7 = t−1
2 ct2t

−1
6 bt6a. Now t7 = t3a

−1t−1
2 c−1t2 plays the role of

t3; t2 does not change; t6 = t1t
−1
2 c−1t2a

−1 plays the role of t1 and l(t7) < l(t3); l(t6) <

l(t1). This transformation is induced by the the diffeomorphism of winding y6 around x1

clockwisely, going over y2, underneath y1 and over y8, then followed by Φ−1
4 .

(2ab) If l(t6) < l(t2), t−1
4 = t−1

6 bt6t
−1
7 for some t7 ∈ 〈a, b, c〉. Then we have at−1

2 ct2 =

t−1
7 cbat7t

−1
6 b−1t6. Note the first letter of t−1

7 must be a, so 8t−1
8 cbat8 = t−1

2 ct2t
−1
6 bt6a, where

t8 = t7a. Now t8 = t3a
−1t−1

6 b−1t6a = t3t
−1
5 b−1t5 plays the role of t3; t2 does not change;

t6 = t1t
−1
2 c−1t2a

−1 plays the role of t1 and l(t8) < l(t3); l(t6) < l(t1). This transformation

is induced by the the diffeomorphism of winding y2 around x1 counter-clockwisely, going

underneath y6, over y8, and underneath y1.
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(2b) If l(t4) + 1 < l(t2), then t1 = t5t
−1
4 cbat4 for some t5 ∈ 〈a, b, c〉, so

t−1
4 (cba)−1t4t

−1
5 bt5 = t−1

2 c−1t2a
−1.

The last letter of t2 is not a, so the last letter of t5 must be a−1. Thus, t−1
4 (cba)−1t4at

−1
6 bt6 =

t−1
2 c−1t2, where t6 = t5a. Clearly, l(t4) + 1 6= l(t6), since otherwise the middle letter on the

left hand side is a, while the middle letter on the right hand side is c−1.

(2ba) If l(t4) + 1 > l(t6), t2 = t7t
−1
6 bt6 for some t7 ∈ 〈a, b, c〉, so t−1

4 (cba)−1t4a =

t−1
6 b−1t6t

−1
7 c−1t7 =⇒ t−1

3 cbat3 = t−1
7 ct7t

−1
6 bt6a. Now, t3 does not change; t7 = t2t

−1
6 b−1t6

plays the role of t2; t6 = t1t
−1
4 (cba)−1t4a plays the role of t1 and l(t7) < l(t2); l(t6) <

l(t1). This transformation is induced by the the diffeomorphism of winding y2 around x1

clockwisely, going underneath y1, y8 and over y6.

(2bb) If l(t4) + 1 < l(t6), t−1
2 = t−1

4 (cba)−1t4t
−1
7 for some t7 ∈ 〈a, b, c〉, so at−1

6 bt6 =

t−1
7 c−1t7t

−1
4 cbat4 =⇒ t−1

4 cbat4 = t−1
7 ct7t

−1
5 bt5a. Now, t4 = t3a

−1 plays the role of t3; t7 =

t2t
−1
4 (cba)−1t4 plays the role of t2; t5 = t1t

−1
4 (cba)−1t4 plays the role of t1 and l(t4) < l(t3);

l(t7) < l(t2); l(t5) < l(t1). This transformation is induced by the the diffeomorphism of

winding y8 around x1 counter-clockwisely, going underneath y1 and over y2, y6.

(3) If t−1
1 bt1a is is cancelled out by t−1

2 ct2, then t−1
2 ct2 = t−1

3 cbat3a
−1t−1

1 b−1t1 (? ? ?),

and there is no cancellation between t3 and a−1. Clearly, l(t3) + 1 6= l(t2).

(3a) If l(t3) + 1 > l(t1), t2 = t4t
−1
1 b−1t1 for some t4 ∈ 〈a, b, c〉, so

t−1
3 cbat3 = t−1

1 bt1t
−1
4 ct4a = t−1

1 bt1at
−1
5 ct5,

74



where t5 = t4a. Note that the last letter of t4 must be a−1, so l(t5) < l(t4). It is clear that

l(t1) 6= l(t5).

(3aa) If l(t1) > l(t5), t3 = t6t
−1
5 ct5 for some t6 ∈ 〈a, b, c〉, so t−1

5 c−1t5t
−1
6 cbat6 =

t−1
1 bt1a =⇒ t−1

6 cbat6 = t−1
5 ct5t

−1
1 bt1a. Now, t6 = t3t

−1
5 c−1t5 plays the role of t3; t5 =

t2t
−1
1 bt1a plays the role of t2; t1 does not change and l(t6) < l(t3); l(t5) < l(t2). This

transformation is induced by the the diffeomorphism of winding y6 around x1 clockwisely,

going underneath y2, y1 and over y8.

(3ab) If l(t1) < l(t5), t−1
3 = t−1

1 bt1t
−1
6 for some t6 ∈ 〈a, b, c〉, so t−1

6 cbat6t
−1
1 b−1t1 =

at−1
5 ct5. Note the first letter of t−1

6 must be a, so t−1
7 cbat7 = t−1

5 ct5t
−1
1 bt1a, where t7 = t6a.

Now, t7 = t3t
−1
1 bt1a plays the role of t3; t5 = t2t

−1
1 bt1a plays the role of t2; t1 does not change

and l(t7) < l(t3); l(t5) < l(t2). This transformation is induced by the the diffeomorphism

of winding y2 around x1 counter-clockwisely, going over y6, Y8, and underneath y1, then

followed by Φ4.

(3b) If l(t3) + 1 < l(t1), t−1
2 = t−1

3 cbat3t
−1
4 for some t4 ∈ 〈a, b, c〉, so t−1

1 b−1t1 =

at−1
4 ct4t

−1
3 (cba)−1t3 = t−1

5 ct5at
−1
3 (cba)−1t3, where t5 = t4a

−1. Note that the first letter of

t−1
4 must be a−1, so l(t5) < l(t4). It is clear that l(t3) + 1 6= l(t5).

(3ba) If l(t3) + 1 > l(t5), t−1
1 = t−1

5 bt5t
−1
6 for t6 ∈ 〈a, b, c〉, so t−1

6 b−1t6t
−1
5 c−1t5 =

at−1
3 cbat3 =⇒ t−1

3 cbat3 = t−1
5 ct5t

−1
6 bt6a. Now, t3 does not change; t5 = t2t

−1
3 cbat3a

−1

plays the role of t2; t6 = t1t
−1
5 bt5 plays the role of t1 and l(t5) < l(t2); l(t6) < l(t1).

This transformation is induced by the the diffeomorphism of winding y6 around x1 counter-

clockwisely, going underneath y8, y1 and over y2.

(3bb) If l(t3) + 1 < l(t5), t1 = t6t
−1
3 (cba)−1t3 for t6 ∈ 〈a, b, c〉, so t−1

3 cbat3t
−1
6 b−1t6 =

t−1
5 ct5a. Note, the last letter of t6 must be a, so t−1

3 cbat3 = t−1
5 ct5t

−1
7 bt7a, where t7 = t6a

−1.

Now, t3 does not change; t5 = t2t
−1
3 cbat3a

−1 plays the role of t2; t7 = t1t
−1
3 cbat3a

−1 plays
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the role of t1 and l(t5) < l(t2); l(t7) < l(t1). This transformation is induced by the the

diffeomorphism of winding y8 around x1 clockwisely, going over y6, y2 and underneath y1,

then followed by Φ−1
4 .

Note that in the above discussion, we can not assume that t−1
3 cbat3 is reduced. For

instance, if the first letter of t3 is a−1, then the 3 letters in the middle are acb instead

of cba. So if we require that Φ(y8) is reduced, there are 3 possibilities for the middle

3 letters: cba, acb and bac. The calculations for acb and bac are parallel to cba. For

instance, if Φ(y8) = t−1
3 acbt3, then t−1

3 acbt3 = t−1
2 ct2t

−1
1 bt1a. In step (1), we want to show

l(t1) 6= l(t2) which now is a little troublesome. Note the last letter of t3 is a, and so is

the last letter of t2, therefore, t−1
4 acbt4 = t−1

5 ct5at
−1
1 bt1, where t3 = t4a, t2 = t5a. If

l(t1) = l(t2), l(t1) = l(t5) + 1 so the first two letters of t−1
1 are cb. Let t−1

1 = cbt−1
6 , we

have t−1
4 acbt4 = t−1

5 ct5acbt
−1
6 bt6b

−1c−1. By comparing both sides, we know t5 = b−1t6 ;

c−1t5 = t6b
−1c−1. This implies b−1c−1t5 = t5b

−1c−1. So t5 = (cb)k, k ∈ Z, t1 = b(cb)k−1.

This contradicts with the assumption t−1
1 bt1 is reduced. The following steps are very similar

to the case Φ(y8) = t−1
3 cbat3, we omit these tedious calculations.

Remember we are still under the assumption Φ(x1) = x1, what we just proved is: by

composing appropriate automorphisms of G which are all induced by self-diffeomorphisms

of M , we can assume that Φ(y1) = y1, Φ(y2) = y2, Φ(y6) = y6, Φ(y8) = y8. Each of

these automorphism changes a1 into a1y, a1a2 into a1a2y
′, a1a2a3 into a1a2a3y

′′ for some

y, y′, y′′ ∈ 〈y1, y2, y6〉. Now, by rolling over the circles a1, a2, a3 to the other side as shown

in the following figure, we are able to modify Φ(x5), Φ(x6) and Φ(x7) in the same manner

until Φ(x5) = x5, Φ(x6) = x6, Φ(x7) = x7. Note, in this process, a−1
1 is transformed into

a−1
1 x, a−1

2 a−1
1 is transformed into a−1

2 a−1
1 x′, a−1

3 a−1
2 a−1

1 is transformed into a−1
3 a−1

2 a−1
1 x′′,

where x, x′x′′ ∈ 〈x1, x5, x6〉. So when we roll over a1, a2 and a3 back, y2, y6 and y8 does
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not change. Therefore, we are now in the very first particular case (S1): Φ(xi) = xi for

i = 1, 5, 6, 7 and Φ(yj) = yj for j = 1, 2, 6, 8. We’ve already known that all this kind of

automorphisms are induced by self-diffeomorphisms of M . Thus, we are done with the first

big case Φ(x1) = x1.

Case II: Φ(x1) = x−1
1 .

This case can be transformed into Case I by turning the picture upside-down (rotating

the plane containing this paper about the horizontal axis), then doing move 3.

turn upside-down−→

Figure 4.11: Turning upside-down

Case III: Φ(x1) = y1.

This case can be transformed into Case I by flipping the paper (rotating the plane con-

taining this paper about the vertical axis).
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flip→ →

→

Figure 4.12: Flip over

Case IV: Φ(x1) = y−1
1 .

This is just a composition of Case II and Case III.

We saw that except for the diffeomorphisms induced by move 1.1 and 1.2, all the other

diffeomorphisms do not change the spin structures of M . (They are indeed diffeomorphims

of 4 manifolds). Move 1.1 and 1.2 clearly do not interchange the spin structures induced

from X1 and X2, therefore, we obtain:

Theorem 4.5. There exist simply-connected smooth 4 manifolds (X1,M) and (X2,M),
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such that (QX1
,M) is isomorphic to (QX2

,M), but X1 is not homeomorphic to X2. The

heomoemorphism type is changed by a Gluck Twist.

Actually, we can construct four simply-connected smooth 4 manifolds X1, X2, X3, X4,

where X3 is obtained by doing Gluck Twist on T ; X4 is obtained by doing Gluck Twist on

both T and S, such that any two of them are not homeomorphic.

Figure 4.13: Doing Gluck twist on either S, T or both S and T
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