
CORTICAL LESIONS AND SEXUAL BEHAVIOR IN THE MALE RAT

Dissertation for the Degree of Ph. D. MICHIGAN STATE UNIVERSITY GAIL JOAN SELLSTROM 1973

This is to certify that the

thesis entitled

Cortical Lesions and Sexual Behavior

in the Male Rat

presented by

Gail Joan Sellstrom

has been accepted towards fulfillment of the requirements for

Ph.D. degree in Psychology

Major professor

Date November 9, 1973

O-7639

ABSTRACT

CORTICAL LESIONS AND SEXUAL BEHAVIOR IN THE MALE RAT

By

Gail Joan Sellstrom

Evans rats were observed during three preoperative and three postoperative 20 minute sessions. Between preoperative and postoperative sessions 10 males received full bilateral electrolytic lesions to the cingulate cortex, 8 males received bilateral neocortical lesions, and 9 males had sham operations. The remaining 12 males received no surgical treatment. Analyses of fourteen measures of sexual behavior failed to yield significant lesion group effects. Replication effects were significant in three of the analyses. The results confirmed the work of Beach (1940, 1941) and were inconclusive with respect to the studies reporting impaired ability to perform sequential responses following cingulectomy.

CORTICAL LESIONS AND SEXUAL BEHAVIOR IN THE MALE RAT

 $\mathbf{B}\mathbf{y}$

Gail Joan Sellstrom

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Psychology

1973

ACKNOWLEDGMENTS

I particularly wish to acknowledge the scholarly and theoretical assistance provided by Professor Lawrence I. O'Kelly. I wish to express my gratitude to Professor Raymond W. Frankmann who willingly advised with respect to statistical aspects of the experiment, Dr. Glenn I. Hatton who made available a great deal of technical information as well as the surgical and histological facilities necessary for the completion of the experiment, and Dr. Lynn Clemens who suggested techniques for manipulating reproductive cycles and provided training in the observation and identification of sexual responses. Computerized analysis techniques were made available by Dr. F. Samuel Bauer. Also I wish to thank Richard H. Radius for the constant encouragement so patiently given during the final stages preceding completion of this dissertation.

TABLE OF CONTENTS

ACKNOWLEDGMENTS	ii
LIST OF TABLES	iii
LIST OF FIGURES	iv
INTRODUCTION	1
METHOD	28
RESULTS	36
DISCUSSION	69
APPENDIX A	75
APPENDIX B	77
APPENDIX C	103
בוכת הם מההמתמת תחום	106

LIST OF TABLES

Table 1. Histological results for cingulate and neocortical lesion groups.	37
Table 2. Results of unweighted-means two by four factorial analyses of variance. The harmonic mean is 4.6602.	56
Table 3. Means and standard deviations for preoperative and postoperative measures of performance.	60
APPENDIX A. Table 4. Raw data: body weight in grams.	75
APPENDIX B. Table 5. Raw data: autogenital cleaning (a) and interresponse times (irt) in seconds for mounts (m), mounts with intromission (mi), and mounts with ejaculation (me).	77
APPENDIX C. Table 6. Raw data: postejaculatory responses not occurring within 20 minute sessions.	103

Figure 9. Mean difference score for preoperative and postoperative mean interval between ejaculations in replications I and II as a function of treatment group.	50
Figure 10. Mean difference score for preoperative and postoperative mean postejaculation interval in replications I and II as a function of treatment group.	51
Figure 11. Mean difference score for preoperative and postoperative unadjusted mean number of mounts per ejaculation in replications I and II as a function of treatment group.	52
Figure 12. Mean difference score for preoperative and postoperative adjusted mean number of mounts per ejaculation in replications I and II as a function of treatment group.	53
Figure 13. Mean difference score for preoperative and postoperative unadjusted mean number of mounts with intromission per ejaculation in replications I and II as a function of treatment group.	54
Figure 14. Mean difference score for preoperative and postoperative adjusted mean number of mounts with intromission per ejaculation in replications I and II as a function of treatment group.	55

INTRODUCTION

The influence of the cingulate cortex on reproductive behavior in rats, hamsters, and cats has been investigated by systematically destroying the cingulate cortex and observing, under carefully controlled conditions, the extent to which the preoperative behavioral sequence was disrupted.

In 1940 and 1941 Beach reported that destruction of 20 percent of the cortex, regardless of site of destruction. had no detrimental effect upon the sexual behavior of male rats. Destruction of a greater percentage, up to 80 percent, was found to result in increasingly severe detrimental effects on the male rat's behavior. Beach's results (1940, 1941) confirmed the work reported by Davis (1939). Beach's (1940, 1941) results, as represented in terms of Lashley diagrams showing the percentage of cortex damaged, suggest that Beach did not systematically destroy the cingulate cortex. Also, it is not possible to determine how much of the cortex was damaged since only the surface area damaged and some vague descriptions of subcortical damage are given. A more systematic approach to the problem of sexual behavior and cortical destruction is

found in the reports of Larsson (1962, 1964). Larsson (1964), on the basis of his work in 1962, concluded that "bilateral lesions in the lateral parieto-temporal area of the cerebral hemispheres have more severe effects upon the mating behavior of male rats than injury to the medial parts of the frontal, parietal, and occipital lobes. Whereas lateral lesions permanently eliminated mating in several of the animals and lowered the activity of others, removal of the median cortex in no case did permanently abolish sexual behavior."

A survey of the literature suggests that experiments dealing with the effects of cingulectomy upon behavior patterns present in the animal's repertory at the time of surgery and common to a species, i.e., what are sometimes called instinctive behavior patterns, have involved the use of rats, hamsters, and cats. If one is willing to grant that response to emotional stimuli falls within the general class of behaviors being considered, i.e., the instinctive, then the results of Bard and Mountcastle (1948) suggest that the cingulate area may be functionally related to the level of stimulus intensity necessary to arouse characteristic responses. Bard and Mountcastle (1948) reported that cats with cingulate lesions show a decreased sensitivity to emotional stimuli.

Food hoarding behavior following cingulectomy has been investigated by Stamm (1954) and Bunnell and Pinder

(1964), the researchers using rats and hamsters, respectively. A comparison of preoperative and postoperative hoarding behavior revealed that rats with 8 to 17 percent of the median cortex damaged showed a large decrease in the measure of hoarding behavior, these rats also differing significantly from the relatively unaffected control animals (lateral cortical lesions) (Stamm, 1954). When groups were compared in terms of latency of hoarding responses the differences were less marked. Stamm (1954) also found evidence for a positive relationship between severity of cingulate damage and disruption in hoarding behavior.

According to Bunnell, et al. (1966), Bunnell and Pinder (1964) have demonstrated that Stamm's (1954) results have some generality in that they have been extended and confirmed for the hamster. Apparently Bunnell and Pinder (1964) believe that "the lesion effects were upon motivational factors, or, in terms of Beach's theory (1955), upon the sexual arousal mechanism (AM). The threshold of the AM, which is presumed to have both a cortical and a subcortical component in mammals, is influenced by (a) internal states and responses of the organism, and (b) exteroceptive stimulation" (Bunnell, et al., 1966). In an investigation of cingulate effects on duration, amount, and kinds of sexual responses in the male syrian golden hamster, Bunnell, et al. (1966) reported that cingulate postoperative behavior differed

temporarily from preoperative behavior in respect to number of intromissions made, duration, and the ability to maintain the typical position during autogenital cleaning. the frequency of intromissions being significantly decreased, the time required to perform standard responses being longer, and some imbalance during autogenital cleaning being evident. The only differences observed by the end of postoperative testing involved frequency of intromissions, recovery being incomplete in four of the seven cingulectomized hamsters. There was no immediately apparent disruption in motor behavior (Bunnell, et al., 1966). Although extracingulate areas damaged included the dorsal hippocampus, corpus callosum, fornix, and dorsal septum, Bunnell, et al. (1966) found no evidence for a relationship between extent of lesion and behavior of cingulectomized subjects.

The results obtained by Stamm (1955) and Slotnick (1967), in their investigations of the effects of cingulectomy on maternal behavior in rats, parallel those reported by Stamm (1954) and Bunnell and Pinder (1964) with respect to hoarding behavior. The experiments of Slotnick and Stamm differed in that Stamm's (1955) rats had delivered many litters prior to serving as subjects while Slotnick's (1967) rats were primiparous at the time of surgery. Both investigators reported that following cingulectomy maternal behavior, including such responses as nest building, retrieving of pups, and string pulling,

was severely disrupted. Thus, the number of litters delivered prior to surgery does not appear to be an important variable with respect to the effects of cingulectomy on maternal behavior.

General theoretical accounts of the functional significance of the cingulate area are summarized by Bunnell, et al. (1966) as follows: MacLean (1958) favors the notion that the limbic system is implicated in the control of instinctive behavior patterns, there being evidence "that certain limbic structures. including median (cingulate and retrosplenial) cortex, are particularly important to behaviors promoting survival of the species (e.g., reproductive activities)." As noted by Bunnell, et al. (1966), Pribram has suggested that the "essential function of the limbic system is the integration of behavioral components into smoothly functioning sequences and...the changes in instinctive, affective, or other classes of behavior which follow limbic manipulations are the result of alteration or disruption of the sequencing of acts which comprise such complex behaviors." With the exception of the experiments by Beach (1940, 1941), Davis (1939), and Larsson (1962), the evidence from experiments involving hoarding. maternal, and sexual behavior has tended to provide support for Pribram's theory.

Acquisition and retention following cingulectomy have been the focus of interest in studies in which

various measures of learned behavior are viewed as the dependent variables and attempts are made to demonstrate functional relationships between these performance measures and various manipulations in the cingulate region. These experiments may be distinguished by appealing to task characteristics. Thus, studies involving some form of noxious stimulation which the animal escapes or avoids by engaging in a specific activity include running to escape shock in a T-maze, bar-pressing to terminate a loud noise, withholding a response (e.g., drinking) to avoid shock (passive avoidance), and performing a specific response (e.g., running to the opposite side of a shuttle-box when the CS comes on) to avoid shock (active avoidance).

Before considering the first loosely related set of acquisition and retention studies it might be of value to discuss briefly the major issue involved. In most instances cingulectomy results in disruption of original learning of active avoidance responses and has no apparent effect on original learning of passive avoidance responses. Two major accounts of the functional significance of the cingulate cortex have been proposed in response to these results. Lubar and Perachio (1965) distinguish between the responsefacilitation and the fear-facilitation drive hypotheses. Central to the response-facilitation hypothesis is the notion that the cingulate area facilitates behavioral

responsivity and that removal of the cingulate area might, therefore, be expected to result in an opposite pattern of effects, namely lessened behavioral responsivity. The fear-facilitation dirve hypothesis consists of the notion that this fear facilitation may be significantly related to inferior active avoidance responding. Two findings relating to the latter theory are those of Bard and Mountcastle (1950), in which cingulectomy reduced sensitivity to emotional stimuli, and Trafton (1965), in which cingulectomy increased freezing in response to what was presumably a fear stimulus.

The following three studies may be viewed as satisfying two cirteria: a) they involve some form of noxious stimulation; and b) they do not involve passive or active avoidance responding. Brady and Nauta (1953) observed CER retention in rats following training and surgical procedures appropriate to membership in the septal, cingulate, or unoperated control group. and Nauta (1953) reported that only the septals showed greater emotional reactivity and an increase in the magnitude of the startle response. An experiment involving the effects of combined limbic, adjacent cingulum (area cingularis anterior ventralis of LA), and striae lesions on retention of lever-pressing-toterminate-a-noxious stimulus behavior. was conducted by Lyon and Harrison (1959). In terms of extent of disruption of lever pressing to terminate a 105 db noise

•

•

. . . .

for 20 seconds, the complete cingulate and control rats were very similar, further evidence suggesting that partial destruction of the area cingularis anterior ventralis results in no disruption of the lever pressing response (Lyon and Harrison, 1959). In terms of amount of time required to attain preoperative performance levels, Lyon and Harrison (1959) found that the distributions of experimental and control groups showed a considerable amount of overlap.

While the two studies just cited were primarily concerned with cingulate effects on memory or previously learned behavior the study of Thompson and Langer (1963) was focused upon original learning in rats. After their animals had learned to run to escape shock in a T-maze Thompson and Langer (1963) subjected the rats to lesions at several sites (summarized with accompanying results below) and, 2 weeks later, tested the animals on a reversal of position task. In terms of the effects of lesions on reversal performance the eight groups were described by Thompson and Langer (1963) as follows: (a) normal and neocortical controls showed no effect, i.e., a high level of accuracy; (b) precallosal anterior limbic, hippocampal, septal, and preoptic hypothalamic animals were significantly inferior to controls; and (c) supracallosal anterior limbic and fornix column animals were not significantly deficient. The authors also reported that reversal performance was not effected by

lesions in the pretectal or parafascicular area of the thalamus, the subthalamus, the substantia nigra, or the amygdala (Thompson and Langer, 1963).

Several investigators have been concerned with cingulate lesions and passive avoidance responding. Kaada, et al. (1962), working with rats, and McCleary (1961), Lubar (1964), and Cornwell (1966), all working with cats having mid-cingulate lesions, have reported that cingulectomized animals do not differ from normal animals in acquiring a passive avoidance response. Lubar (1964) found that cats with combined limbic cortex-septal area and cingulate lesions showed normal passive avoidance acquisition, while animals with damage limited to the limbic cortex-septal area were inferior to normals with respect to passive avoidance acquisition. Lubar's (1964) cats with lesions limited to the mid-cingulate area were more resistant to extinction of the passive avoidance response than were normal cats or cats with combined lesions. Kaada (1962) also reported that passive avoidance acquisition was normal regardless of what parts of the cingulate cortex and adjacent corpus callosum were damaged, i.e., the medial cortex lying in front of and above the corpus callosum, or the posterior cingulate cortex and/or retrosplenial cortex.

Before discussing typical active avoidance experiments it might be noted that a study conducted by Pribram and Weiskrantz (1957) differs from the most

widely cited studies in terms of subjects, design, and results. Rhesus monkeys were trained to avoid shock in a shuttle-box prior to surgery, and, following a one week recovery interval, were tested successively under extinction, reacquisition, and extinction conditions.

Although active avoidance behavior was observed following lesions in several areas other than the medial frontal and cingulate cortex the only directly pertinent results were that cingulates did not differ from controls in terms of either extinction 1 or reacquisition performance and were superior to the controls (i.e., reached the extinction criterion more rapidly) in terms of extinction 2 performance (Pribram and Weiskrantz, 1957).

With the exception of the Peretz (1960) experiment, all of the studies below, focusing upon the acquisition of an active avoidance response following cingulectomy in rats, involved the use of a two-way shuttle box. When performance was evaluated in terms of trials to criterion, or a related measure, Thomas and Otis (1958), Thomas and Slotnick (1963), Trafton (1965), and Peretz (1960) found that cingulectomy resulted in inferior performance. One might note that in addition to damaging cingulum fibers connected to the posterior cingulate cortex, the experimental animals of Thomas and Otis (1958) sustained bilateral hippocampal damage. In the two experiments conducted by Thomas and Slotnick (1962), in which rats were postoperatively exposed either to CAR training

followed by maze training (Exp. I) or to the two procedures in reverse order (Exp. II), it was also found that cingulate lesions having an observable effect in the shuttle-box situation have no effect in the maze situation, regardless of procedure order, whereas prior maze learning significantly improved later CAR performance, the latter result being attributed to the handling of animals occurring during maze training.

The handling effect noted by Thomas and Slotnick (1962) might be considered in evaluating McCleary's (1966) account of Peretz's 1960 results. As noted earlier. Peretz (1960) obtained the typical active avoidance acquisition result in spite of his use of a one-way procedure in which rats avoided shock by running from a black to a white compartment. McCleary (1966), on the basis of the Candland, et al. (1962) finding that rats will learn to avoid a black compartment when the consequence of being present in the black compartment is a 20 second period of being stroked, head to tail, while being held in a gloved hand, claims that handling is aversive to the rat. McCleary (1966) further speculates that Peretz (1960) "may have introduced an approachavoidance conflict into his one-way procedure" which "augments the avoidance conflict in cingulectomized rats" to the point where the deficit is "great enough to be manifested in the one-way situation." Before continuing it might be of value to note that Peretz's (1960)

cingulate animals were also inferior to shams, in terms of both total trials and oscillation trials to criterion, when oscillation was substituted for shock as the aversive stimulus. In terms of resistance to extinction, cingulates took more trials to criterion under oscillation conditions and did not differ from shams under shock conditions (Peretz. 1960).

Thomas and Slotnick (1963), in addition to finding the characteristic deficit under 2 to 3 hours food deprivation conditions, found that cingulectomized rats fail to show the deficit in CAR performance when run under high drive (daily feeding occurs immediately after trials) conditions. Thomas and Slotnick (1963) account for their results by suggesting that "lesions affect performance by enhancing the tendency of rats to freeze in response to the CS and the high hunger drive counteracts the freezing response by inducing heightened general activity which protects Ss from lesion-induced behavioral loss." Evidence regarding differential effects of full, anterior, or posterior cingulate damage was provided by Trafton (1965). Either full or anterior cingulate lesions led to a very severe deficit; i.e., 24 of the 25 rats comprising these two groups failed to show any evidence of learning the shuttle-box avoidance response within 100 trials, while rats with posterior cingulate lesions tended to freeze when running was appropriate and thereby showed a deficit in CAR responding.

Although the results for cats are less consistent it is not clear that cats differ markedly, if at all, from rats in respect to acquisition of an active avoidance response following cingulectomy. For example, results obtained by Cornwell (1966) are regarded as evidence that mid-cingulate lesions disrupt acquisition of an active avoidance response. However, Lubar (1964) reports that the mean trials to criterion for all four groups (combined limbic cortex-septal area and cingulate gyrus, limbic cortex-septal area, cingulate gyrus, and normal controls) were nearly identical, and later expresses suprise at failing to confirm McCleary's (1961) finding with cats. Cornwell (1966) found that cingulectomized cats required a mean of 67.7 (range of 25 to 200) trials to the active avoidance criterion while sham operated cats required a mean of only 39.5 trials (range of 14 to 70). Cornwell's cingulates also required more first retraining and second retraining trials than shams, the two groups being very similar in terms of crouching to the CS and measures of urination and defecation. McCleary (1966) suggests that the discrepancy between his own results (1961), as well as those of Cornwell (1966), and those of Lubar (1964) could be accounted for if one were willing to view the one-way avoidance task used by Lubar (1964) as easier than the two-way task used by the other two investigators.

In 1964 Moore exposed cats to CAR training

procedures in a double-grill shuttle-box prior to removal of the cingulate cortex and subsequently measured retention during no shock trials. In addition to finding that 5 out of 6 cingulates failed the retention criterion, Moore (1964) also found that, relative to septal animals and animals with combined (septum and hippocampus) lesions, cingulate animals were least effected in terms of retention and relearning, the 5 cingulate animals failing the retention test subsequently relearning in fewer trials than were required to reach the criterion preoperatively. On the basis of these results Moore (1964) postulates that while the cingulate cortex may play a role in habit retention, this role is not essential for retention or relearning.

A further confirmation of McCleary's (1961) findings is provided in the report of Lubar and Perachio (1965). These authors, in addition to demonstrating that cingulate cats are clearly inferior to controls with respect to two-way active avoidance acquisition and somewhat inferior to controls with respect to one-way avoidance acquisition, found that both controls and cingulates receiving one-way training were clearly superior to comparable groups receiving two-way training (Lubar and Perachio, 1965). Following acquisition each group was then given training in the alternate situation, the following series of results being obtained for the transfer sessions: a) regardless of group membership

animals transferred from one-way to two-way avoidance were inferior to animals transferred from two-way to oneway avoidance training; b) cingulates were similar to controls during one-way transfer and clearly inferior to controls during two-way transfer; and c) while control animals transferred to two-way avoidance were superior to animals originally receiving two-way training, cingulates did not differ from controls with respect to this measure (Lubar and Perachio, 1965). Lubar and Perachio (1965) also reported that during transfer training on the twoway task subjects, regardless of group membership, vocalized more frequently than subjects transferred to the one-way task. The authors felt that their results supported the fear-facilitation drive hypothesis, their conclusion being that fear in cats may be facilitated by cingulate lesions and that this facilitation may be a significant determiner of the active avoidance response deficit (Lubar and Perachio, 1965).

The discussion will now focus upon behavioral studies in which acquisition or retention of an instrumental response takes place without aversive stimuli. The scope of this discussion will be further limited by excluding experiments involving lever pressing behavior.

Experiments satisfying these criteria involve visual discrimination, funnel displacement, and leg displacement. Because of their immediate relevance with respect to the present experiment, the alternation studies will be the

last non-aversive instrumental response studies considered.

Pribram. et al. (1962) pretested rhesus monkeys in a modified Wisconsin General Testing Apparatus, subjected them to surgical procedures designed to destroy pre-. sub-. and supracallosal cortex. and then gave them visual discrimination training. Pribram. et al. (1962) found that cingulates were slightly inferior to normals in terms of trials and errors to criterion. Peretz (1960). in the series of experiments previously cited, trained hungry cingulate and sham operated rats to discriminate between black and white cues. Using the correction procedure, Peretz (1960) found that cingulectomized animals were significantly superior to sham operated animals in terms of both trials and number or errors to criterion, there being no differences between groups in terms of latency of response on criterional trials. The cats used in the avoidance study of Cornwell (1966) learned to displace a funnel for food according to a VR schedule. Cingulates required a mean of 5.3 sessions (range of 2 to 10) and shams required a mean of 4.7 sessions (range of 0 to 10) to reach the criterion of having at most a 5 second latency on at least 90 of the 100 daily trials for 3 consecutive days. Cornwell's (1966) cingulectomized cats were also similar to the sham operates during extinction of the funnel displacing response.

A further experiment falling within the category of

studies involving difficult to classify tasks was conducted by Brutkowski and Mempel (1961). Prior to destruction of either the rostral cingulate or the posterior cingulate area dogs were trained to respond differentially on the basis of a discrimination between two tones reflecting CS+ and CS-. food reinforcement being presented only when the foreleg was placed on the food tray during CS+ presentation. Errors included failing to place the foreleg on the food tray during CS+ presentation and placing the foreleg on the tray during CS-. The authors obtained evidence suggesting that lesion site is related to the extent of instrumental response retention in that posterior cingulectomy failed to disrupt retention performance while rostral (genual area) damage resulted in a marked failure to inhibit responding during CS-, 4 to 15 days of relearning being required to regain preoperative performance levels. Brutkowski and Mempel (1961) felt that their rostral cingulates made more reward motivated responses, expected food regardless of which CS was being presented, and were more vigorous in taking the food. These results thus confirmed the earlier work of Brutkowski and his associates in which genual (or rostral) cingulectomy resulted in a temporary inability to withhold defensive CRs and an increase in correct and incorrect responses, emotional responses (violent rage and angry behavior), and fear-like responses. These results are regarded as evidence

•

v

.

Ť

tice.

suggesting that "the genual portion of the anterior cingulate area is one of the critical forebrain regions for the inhibition of some affective responses" (Brutkowski and Mempel, 1961).

It has been found that cingulectomy may either markedly facilitate (Peretz, 1960) or mildly disrupt (Pribram, et al., 1962) acquisition of behavior patterns involving visual discrimination. Cornwell's (1966) study, lacking the discrimination element common to the other three studies, has yielded results easily falling within what appears to be the normal range; i.e., Cornwell's (1966) cingulectomized cats were similar to Pribram, et al's (1962) cingulectomized monkeys in being only slightly, and adversely, affected. Continuing this negative trend, it has been found that cingulectomy not only leads to marked retention deficits but also leads to a marked increase in emotional responses (Brutkowski and Mempel, 1961). This latter result might be regarded as disconfirming, in some weak sense, the earlier results of Bard and Mountcastle (1950).

Attention shall now be focused upon experimental attempts to evaluate the effects of cingulate lesions on various aspects of lever pressing behavior. Of the seven bar pressing experiments to be considered only three involve the retention design while five represent attempts to assess the effects of lesions on original learning. The latter set includes three experiments in

.

•

which reinforcement is provided according to DRL schedules, those of Stamm (1963, 1964) involving rhesus monkeys while Ellen. Wilson, and Powell (1964) worked with rats.

Using delays ranging from 10 to 70 seconds. Stamm (1963) found that cingulates were similar to normals for delays up to and including 30 seconds, no cingulate meeting the acquisition criterion when longer delays were used. Normal monkeys were able to meet the learning criterion when delay intervals of less than 60 seconds were in effect (Stamm. 1963). In his 1964 study Stamm tested each animal by making the delay interval 60 seconds longer than the last delay interval experienced during training and found that cingulate monkeys were superior to normal monkeys in terms of rates of multiple presses: i.e., significantly higher rates of multiple responses (responses occurring within 2 second intervals) were observed for normal monkeys. Stamm (1964) also analyzed interresponse time distributions and reported that the timing responses of normals were less clear than those of cingulate animals. Stamm (1964) speculated that the multiple presses of the normal monkeys might reflect frustrative behavior while the superiority of the cingulates might be related to motivational functions of the cingulate cortex. The results reported by Ellen, Wilson, and Powell (1964), using rats and a 20 second DRL schedule, were comparable to those reported by Stamm (1963) for monkeys: i.e., cingulectomized rats acquired

•

1

•

.

•

the timing response as readily as normal rats.

As the final experiment in his series of four, involving the same subjects throughout the series such that the rats were lesioned 8 months prior to the experiment now being discussed. Peretz (1960) trained his cingulectomized and sham operated rats to bar press for food according to a CRF schedule. The animals were maintained at a level 10 to 15 percent below normal body weight. Following CRF acquisition Peretz (1960) substituted a VI schedule (range of 10 seconds to 7 minutes; mean of 3 minutes) for the CRF schedule, the six days using the VI schedule being regarded as a test sequence. In terms of both rate of bar pressing, i.e., number of responses per 30 minute session, and mean rate over the six sessions, the cingulates were significantly superior to the sham operates (Peretz, 1960). interesting that in two experiments using subjects representing quite distinct levels of evolutionary development and involving quite distinct temporal reinforcement schedules the results are comparable to the extent that cingulectomy facilitates original learning of the lever pressing response (Stamm, 1964; Peretz, 1960).

In one of the few studies involving water reinforced operant response learning Ellen and Powell (1962) compared the acquisition performance of septal and cingulate lesioned rats under a multiple reinforcement schedule comprised of FR 15 and FI 2 minute schedules.

•

Although Ellen and Powell (1962) did not find that acquisition performance varied as a function of lesion site they were able to report that the rate of responding by cingulates under the VI 2 minute schedule was significantly inferior to the corresponding behavior of the septal animals.

The experiment of Ellen and Powell (1962) was designed so as to permit the collection of data relevant to the evaluation of the effects of cingulectomy on retention performance. For those animals trained on FR 15 and VI 2 minute schedules prior to surgery retention testing was carried out on postoperative days one through twelve. Retention performance under FR 15 conditions did not differ for either group from preoperative performance. However, Ellen and Powell (1962) did find that retention performance under the VI 2 minute schedule was related to site of lesion. septals showing a marked and permanent increase in number of responses emitted while cingulates showed only a temporary increase in the number of responses made during the final part of the interval and continued to pause following reinforcement.

Extending the work of Stamm (1963), Glickstein, et al. (1964) trained monkeys to respond according to a DRL reinforcement schedule, subjected them to frontal lesions similar in extent to those reported by Stamm (1963), and then conducted postoperative retention tests. The

•

pattern of results presented in these two reports might be regarded as a reversal of the usual pattern; i.e., Glickstein, et al. (1964) found that cingulate lesions led to a disruption in retention of DRL performance whereas Stamm (1963) reported that cingulate lesions failed to influence DRL acquisition. Because Stamm's (1963) training procedure involved the presentation of what could be regarded as a consistent discriminative stimulus (2-second white light after each reinforcement), Glickstein, et al. (1964) feel that the animals were being trained "not to respond in the presence of a light" in the first 2-second interval, "a procedure which limits any conclusion about timing per se."

The third and final bar press retention study to be considered involved the preoperative training of rats to bar press in the presence of a discriminative stimulus, food being provided as reinforcement in accordance with a VI 15 second schedule, and the postoperative testing of retention and extinction performance (Schwartzbaum, et al., 1964). Schwartzbaum, et al. (1964) found that, relative to preoperative performance, cingulate responding during presentation of the reinforced discriminative stimulus (3000 cps pulsing tone at 70 db) was greatly reduced while responding during the presence of the non-reinforced stimulus (550 cps tone at 70 db) was not altered. The authors also found that extinction was facilitated by cingulectomy; i.e., the cingulates

showed less resistance to extinction than sham operates (Schwartzbaum, et al., 1964). The extinction results are accounted for in terms of the assumed function of the septal area and McCleary's (1961) concept of "response specificity" which assumes that "the facilitatory and inhibitory systems which control response tendencies normally operate in some reciprocal relationship to one another." such that "damage to one would increase the effects of the other.... (Schwartzbaum, et al., 1964). That is, removal of the cingulate area increases outflow from the inhibitory system (intact septal area) and thereby results in a relatively rapid cessation of responding. In commenting on the somewhat anomalous results reported by Peretz (1960), Schwartzbaum, et al. (1964) speculate that the superior visual discrimination learning shown by cingulectomized rats may be attributable to "enhanced inhibition of incorrect response tendencies ... and later observe that the superior VI2 minute lever pressing performance of cingulate subjects reported by Peretz (1960) "was not evident in the cingulectomized subjects in the present study."

The alternation studies to be considered involve a design in which training is followed by surgery and effects of brain damage are evaluated by comparing postoperative and preoperative measures of performance on the same subjects as well as postoperative and preoperative measures between subjects. The results

•

* * * *

•

. . .

•

• • • •

•

provided by such experiments might be regarded as relevant to the question of the extent to which the cingulate area is an important determiner of processes related to original learning, retention of original learning (or memory). both of these, or, neither of these, The alternation studies also provide results relevant to Pribram's (1966) hypothesis involving the limbic system and the integration of responses in a given sequential It might be noted that Gross. et al. (1965) found that a deficit in original learning as well as in the retention of alternation behavior may result from lesions of the caudate nucleus, of the anterior cortex, of the hippocampus, or of dorsal thalamic structures. Thus the evidence does not appear to support the notion that the cingulate cortex has a unique function in the relevant processes.

the results reported for rhesus monkeys by Pribram, et al. (1962) and Pribram, et al. (1966) suggest that retention of neither a delayed alternation task nor of right left and go-no-go alternation is disrupted as a result of cingulate damage. However, in the former experiment acquisition of the delayed alternation task was disrupted following cingulectomy (Pribram, et al., 1962). In both cases an attempt was made to include the projection sector of the anterior thalamic nuclear group in the region destroyed (Pribram, et al., 1962; Pribram, et al., 1966).

•

The retention experiments cited seem to share a characteristic, namely, measures of retention performance do not appear to discriminate between normal and cingulectomized animals. Fortunately it is still reasonable to doubt the generality of this finding.

Using a complex measure of behavior, consisting of the starting and running speed ratios of nonreinforced to reinforced trials, Barker and Thomas (1965) found that full cingulate lesions led to a significant disruption of acquisition and retention of a runway alternation task.

Barker and Thomas (1965) also found that only one of five cingulate rats reached the relearning criterion within the 200 trials permitted, the remaining four rats failing to show any indication of retention or relearning.

On the basis of evidence obtained from experiments involving species-specific behaviors of the kind discussed in the present experiment, as well as the evidence reported by Michal (1965), Thomas, Hostetter, and Barker (1968) suggest that "the effects of lesions in dorsal limbic cortex on species-specific maternal and sexual behavior have indicated that mechanisms of temporal-response integration were impaired." The results of the series of studies conducted by Barker (1965) and Barker and Thomas (1965, 1966) are consistent with the hypothesis that the impaired functioning of mechanisms of temporal-response integration "might be evident in a behavioral end point in which a learned

sequence of responses was the dominant feature" (Thomas, Hostetter, and Barker, 1968).

The present experiment was conducted in order to determine the extent to which the cingulate cortex is, or is not, necessary to typically observed sexual behavior in the adult male Long-Evans rat. Preoperative and Postoperative sexual behavior was measured in terms of latency to first mount without penetration (mount), latency to first mount with brief penetration (intromission), latency to first mount with penetration and ejaculation (ejaculation). inter-response interval. number of mounts and intromissions occurring prior to each ejaculation, frequency of mounts, frequency of intromissions, frequency of ejaculations, postejaculatory interval, and presence or absence of autogenital cleaning between intromissions. These measures of sexual behavior were selected from those described in the reports of Bermant, et al. (1968), Dewsbury (1967), Beach (1956), Beach and Jordan (1956), and Beach and Whalen (1959).

On the basis of the evidence reviewed, the exceptions including the reports of Beach (1940, 1941), Davis (1939), and, perhaps Larsson (1962), it was supposed that full cingulectomy would lead to a disruption in the typical behavior pattern exhibited by the adult male Long-Evans rat. More specifically, it was supposed that the experiment would provide evidence indicating a failure to complete sequences of behavior

begun, such evidence being comparable to and consistent with the results obtained in studies of maternal behavior (Slotnick, 1967) and studies of alternation learning (Barker and Thomas, 1965, 1966). This supposition was not confirmed.

METHOD

Thirty-nine naive male and thirty naive female rats of the Long-Evans strain were obtained from the Chordata Corporation of Ontario. New York. The animals were 80 to 90 days old when first received and exposed to preexperimental conditions. The subjects were 94 to 104 days old when preoperative testing began. The subjects were 130 to 140 days old at the termination of the experiment. The males served as experimental subjects while the females were used as stimulus animals. The males were housed one per cage whereas the females were housed six per cage, cages for males being 20.9 cm. long, 15.4 cm. high, and 17.6 cm. wide. Cages for females were 20.9 cm. long, 15.4 cm. high, and 57.2 cm wide. All cages were of the wire bottomed variety manufactured by the Wahmann Company. Water and Wayne Mouse Breeder Blox were available ad lib in the home cages throughout the experiment. All experimental subjects were weighed every other day prior to surgery. Following convalescence the subjects were again weighed every other day. When it became necessary to terminate one of the experimental subjects due to pneumonia, all animals involved in the experiment were given an intramuscular injection of

penicillin. The injections were administered on the last day of surgery, between the last testing session for that day and the start of surgical procedures.

Maximize the probability of observing subjects during their periods of greatest sexual responsiveness.

Replication I animals were housed in the experimental room and subjected to observation during the dark portion of the light cycle. Because of their unanticipated early arrival, replication II subjects were housed in a similar but separate room during the first 11 days of the reversed light-dark cycle. Replication II animals were moved to the experimental room three days prior to session one. Replication II subjects were then maintained in the experimental room until termination of the experiment.

All animals were exposed to the reversed light cycle for 14 days prior to being observed under experimental conditions. Two Knight all purpose automatic reset timers were used to control the light cycle. After 10 hours of darkness a 100 watt lamp was turned on by one of the timers, this lamp remaining on for 14 hours. One hour after the first 100 watt lamp was turned on a second 100 watt lamp was turned on, this lamp remaining on for 12 hours. The dark part of the cycle was in effect during the time interval beginning at 7 a.m. and ending at 5 p.m., all observation procedures being carried out

.

the second second second

•

•

during these hours. Injections were administered during the latter part of the light portion of the light cycle.

All stimulus females used during preoperative and postoperative testing were brought into estrous once every 5 days. Ninety-six hours prior to the observation session the females were given a .05 cu. cm. subcutaneous injection of 1 microgram per .05 cu. cm. estradiol benzoate in sesame oil. This injection procedure was repeated 72 and 48 hours prior to observation. Six hours prior to observation the same females were given a .1 cu. cm. subcutaneous injection of .5 mg. per .1 cu. cm. progesterone suspended in sesame oil.

The apparatus consisted of a rectangular five sided plexiglass observation box and Esterline Angus recording equipment. The observation box was 50.6 cm. long, 37.4 cm. wide, and 37.4 cm. high, the missing panel in the rectangular box being the top panel. The plexiglass panels were approximately .5 cm. thick. During the observation sessions the floor of the observation box was covered with Royal Craft Cobmeal to a depth of approximately 6 cm. Indirect light was provided by a 15 watt lamp and animals were observed in an area screened off from the living cages.

Recording equipment consisted of a 20 channel
Esterline Angus Recorder and a remote control panel,
both of which operated through a 110 volt source. Two
channels of the recorder were used and a paper speed of

•

•

• • •

•

.

3.8 cm. per minute was used throughout the testing sessions. During each observation session <u>E</u> sat approximately one meter from the front panel of the observation box. The recorder remained on during any given session, the beginning and end of any given observation period being indicated by pressing one of the two buttons mounted on the remote control panel and connected to the terminals of the recorder. One channel of the recorder was used to indicate the limits of the observation period, mounts without intromission, and sexual behavior followed by autogenital cleaning. The second channel was used to indicate mounts with intromission and ejaculations, the latter initialed on the recording paper by E as "E."

During preoperative and postoperative testing all animals were systematically exposed to the observation apparatus and members of the opposite sex. A copulating male, not used as an experimental subject, was used to test each female for receptivity. Only females exhibiting the lordosis response were used during the test sessions.

Three 20 minute preoperative testing sessions were carried out using females which had met the receptivity criterion, i.e., made at least one lordosis response with a non-experimental male. The recording apparatus was operating when the animals were placed in the observation box. The male was placed in the observation box for 10 minutes prior to the beginning of any test session. After

the male had spent 10 minutes in the box <u>E</u> placed a stimulus female in the center of the box, one pen on the recorder being deflected as the female was placed in the box. Any sexual behavior occurring during the 20 minute test session was recorded by deflecting one of the two pens on the Esterline Angus Recorder. A final deflection of the first pen occurred at the end of the 20 minute session. Each male was returned to the home cage following any given test session. Only males which had ejaculated at least once during preoperative session one were used as experimental subjects. Preoperative sessions two and three were conducted using the procedures described for session one. Two or three days intervened between sessions one, two, and three.

of the 42 males observed during sessions one, two, and three, 10 were randomly assigned to the cingulate group, 10 were randomly assigned to the neocortical group, 10 were randomly assigned to the sham group, and 12 were randomly assigned to the normal group. Five cingulate subjects appeared in each replication. Due to illness, only 3 neocorticals appeared in replication I. Replication II involved 5 neocortical subjects. Sickness accounts for the fact that only 4 shams appeared in replication I. Replication II involved 5 sham subjects. Six normal subjects appeared in each replication.

All surgery was performed under ether anesthesia. Following anesthetization and head shaving, each animal

was immobilized by ear bars and bite bar of a Stoelting Stellar stereotaxic instrument. In order to avoid puncturing the ear drums, small bits of cotten were placed in the ear canals of each rat prior to placing the rat in the stereotaxic instrument. The top of the skull was exposed and the stereotaxic instrument was used to locate the point at which holes were to be drilled and to guide the electrode to the appropriate depth. The electrode consisted of a four cm. length of stainless steel dental wire .25 mm. in diameter, the electrode being insulated with epoxylite except for a .5 mm. tip.

In order to prepare the animal for cingulate lesions 10 small holes were drilled 0.8 mm. lateral to the midline on each side of the skull. The holes were drilled 1.0 mm. apart and extended from a point 4.5 mm. anterior to bregma to a point 4.5 mm. posterior to bregma. Full cingulate lesions were made at depths of 2.0 to 4.5 mm. below the skull in accordance with a brain map provided by David J. Barker (1966) and subsequently modified by E. In the case of each neocortical animal 10 small holes were drilled 1.5 mm. lateral to the midline on each side of the skull, the holes being spaced 1.0 mm. apart and being located symmetrically with respect to direction away from (posterior to or anterior to) bregma. All neocortical lesions were made at a depth of 2 mm. beneath the skull. In both lesion groups, i.e., full cingulate and neocortical, the dura was punctured

and anodal electrolytic lesions were produced by passing a 1.5 ma. direct current through the uninsulated tip of the electrode for 10 seconds. The lesion producing device was manufactured by the Stoelting Company.

Sham operation animals were subjected to the same surgical procedures used with cingulate and neocortical animals with the exception that operations were completed without puncturing the dura or in any way damaging the cortex. Normal animals were subjected to no surgical procedures.

The first postoperative tests were conducted 10 days after the completion of surgery. Stimulus females were brought into estrous and selected for receptivity as described for the preoperative tests. The three successive 20 minute postoperative test sessions were conducted in accordance with the procedures established prior to and existing during the preoperative testing sessions.

Upon completion of the third postoperative testing session the animals were sacrificed by overexposure to ether and perfused with physiological saline followed by an approximately 10 percent formalin solution. The brains were removed from the skulls immediately after perfusion and stored in approximately 10 percent formalin for at least three days. The brains were then transferred to a sucrose and formalin solution for at least three days prior to slicing and mounting. The brains of all

cingulate and neocortical animals were frozed and sliced into sagittal sections 50 microns in thickness, every section being mounted and stained. A cresyl violet Nissl stain for cell bodies was used. Using a microprojector and a magnification of 15%, alternate sections were projected for sketching. The extent of cortical damage was evaluated by measuring each sketch with a compensating polar planimeter.

RESULTS

Alternate sagittal sections were examined for each cingulate and neocortical animal completing the experiment. The results of histological analysis are summarized in Table 1. Total tissue damaged in cingulate animals varied from 24.5 to 61.5 cu. mm. Gliosis accounted for 6.5 to 26.5 cu. mm. of damage in the cingulate group, while 17.0 to 36.5 cu. mm. of brain tissue were completely destroyed in this group of animals.

Due to severe subcortical brain damage caused by a blood clot detected during histological analysis, data from neocortical subject number 20 (total damage involved 139.0 cu. mm. of brain tissue) are not included in any of the analyses.

Total brain tissue damage in neocortical subjects ranged from 26.0 to 90.0 cu. mm. Gliosis was apparent in 9.5 to 36.0 cu. mm. of brain tissue in neocortical animals, 16.5 to 57.5 cu. mm. of completely destroyed tissue accounting for the reamining damage.

Evaluation of pilot lesioned brains in terms of sketches on Lashley diagrams indicated that 10 percent or less of the surface area of the cortex is destroyed when

nucleus

Table 1

Structures Slightly corpus callosum corpus callosum corpus callosum corpus callosum corpus callosum Damaged ant, olfactory ant, olfactory ant. olfactory ant, olfactory Histological results for cingulate and neocortical lesion groups frontal pole frontal pole frontal pole frontal pole frontal pole hippocampus hippocampus nucleus nucleus nucleus Undamaged Cingulate mm3 0.010 0.014 00000 0.016 0.008 Destroyed 28.0 34.0 24.5 26.0 29.5 Gliosis mm3 26.5 20.0 10.5 6.5 13.5 Damage mm3 Total 44.5 39.5 54.5 40.5 39.5 Ø 12 18 9 2 Lesion Group cing Replication

Table 1 (cont'd.)

d Structures Slightly e Damaged	corpus callosum hippocampus caudate nucleus	corpus callosum hippocampus caudate nucleus frontal pole cingulum	corpus callosum hippocampus	corpus callosum frontal pole ant. olfactory nucleus	corpus callosum ant. olfactory nucleus	corpus callosum frontal pole lat. septal nucleus
Undamaged Cingulate mm3		0.024		0.008	0.024	0.008
Destroyed mm3	34.5	54.0	39.5	22.5	17.0	26.5
Gliosis mm3	28.5	36.0	21.5	20.0	7.5	12.0
Total Damage mm3	9 63.0	0.06	61.0	42.5	24.5	29 38.5
ωl	6	14	19	77	28	29
Lesion Group	neo			cing		
Repli- cation	I			II		

Table 1 (cont'd.)

Structures Slightly Damaged	corpus callosum frontal pole lat. septal nucleus	corpus callosum frontal pole hippocampus ant. olfactory nucleus lat. septal nucleus	corpus callosum hippocampus	corpus callosum hippocampus caudate nucleus	corpus callosum hippocampus
Undamaged Cingulate mm ³	0,012	900 • 0			
Destroyed mm3	36.5	23.0	19.0	57.5	0.04
Gliosis mm3	25.0	25.5	19.0	15.0	12.0
Total Damage mm3	4 61.5	9 48.5	38.0	72.5	6 52.0
ωl	34	39	27	31	36
Lesion Group	cing		neo		
Repli- cation	11				

Table 1 (cont'd.)

Structures Slightly Damaged		corpus callosum hippocampus frontal pole forceps major dorsal hippocampal commissure
Undamaged Cingulate mm3		
Destroyed mm3	16.5	30.5
Gliosis mm3	9.5	21.0
Total Damage mm3	26.0	51.5
ωl	04	41
Lesion Group	neo	
Repli- cation	II	

lesions damage 24.4 to 39.0 cu. mm. of brain tissue.

In addition to severe cingulate damage, cingulates showed damage to a minor degree to the corpus callosum, dorsal hippocampus, frontal pole, and the anterior olfactory nucleus. Neocortical subjects showed extensive neocortical damage as well as minor damage to the dorsal hippocampus, corpus callosum, and caudate nucleus. Exceptions to this typical result are included in Table 1. Note that neocortical subject number 14 had cingulate damage in addition to damage characteristic of neocortically lesioned animals. Cingulate tissue spared in cingulate animals and subject 14 is noted in Table 1. The amount of cingulate tissue spared in cingulates varied from 0.000 cu. mm. to 0.024 cu. mm.

In the case of each of the fourteen analyses of behavioral data, a mean score was computed for the three preoperative sessions. A mean score computed for the three postoperative sessions was subtracted from the mean score for preoperative sessions. These difference scores were analysed according to an unweighted-means two by four factorial analysis of variance, the harmonic mean for all analyses being 4.6602. The mean difference scores are presented as a function of group membership in Figures 1 through 14.

The results of analyses of behavioral data are summarized in Table 2. All of the analyses failed to yield significant F values for lesion group. Analyses of

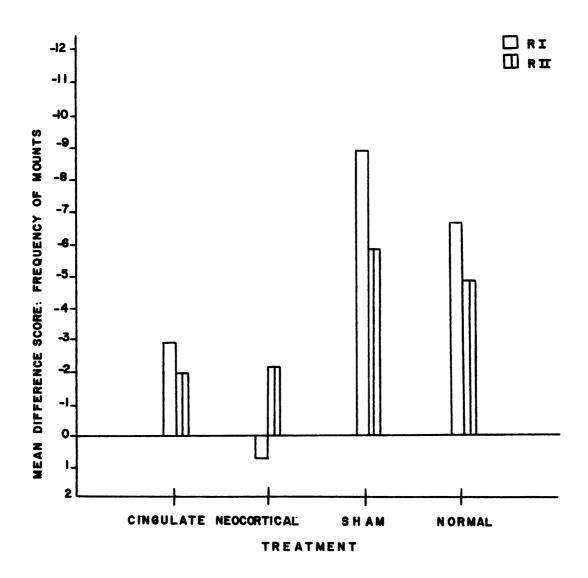


Figure 1. Mean difference score for preoperative and postoperative frequency of mounts in replications I and II as a function of treatment group.

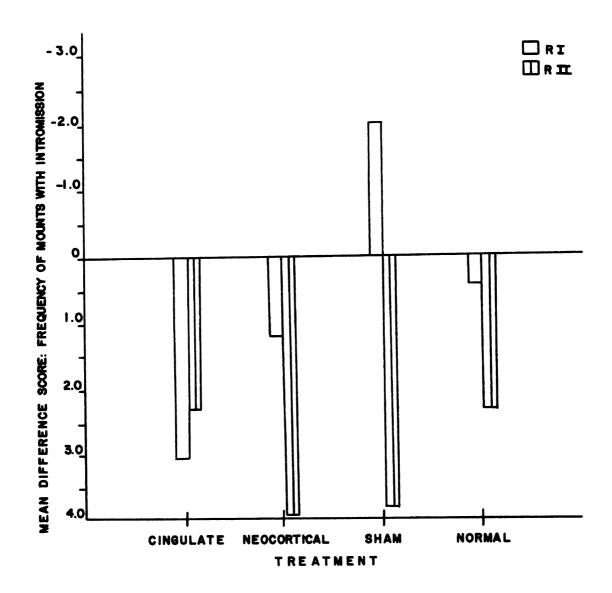


Figure 2. Mean difference score for preoperative and postoperative frequency of mounts with intromission in replications I and II as a function of treatment group.

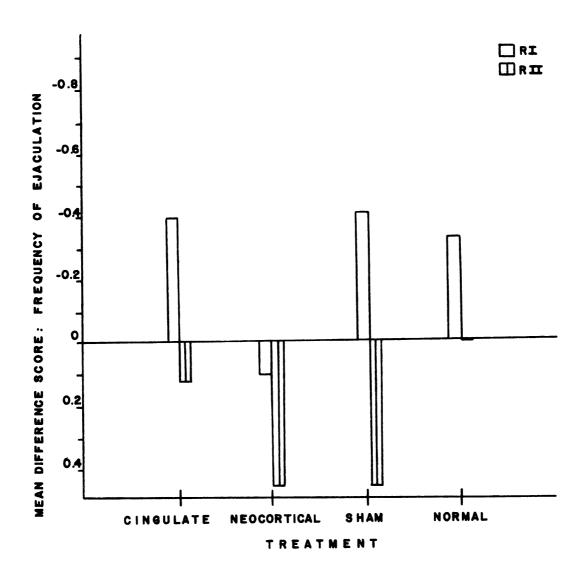


Figure 3. Mean difference score for preoperative and postoperative frequency of ejaculations in replications I and II as a function of treatment group.

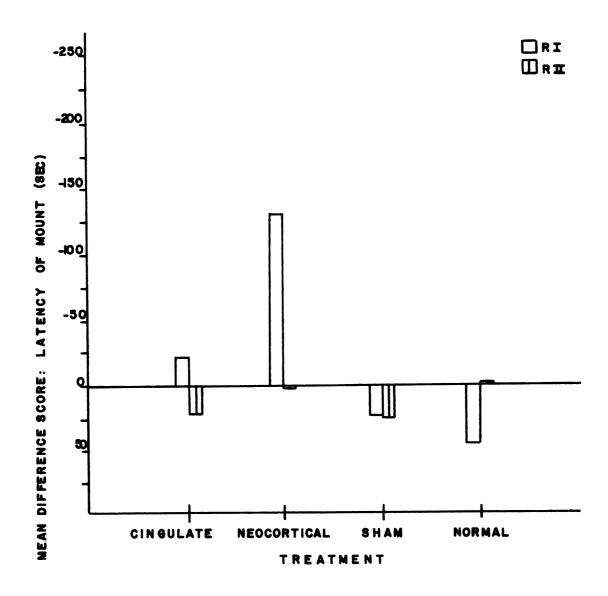


Figure 4. Mean difference score for preoperative and postoperative latency of mount in replications I and II as a function of treatment group.

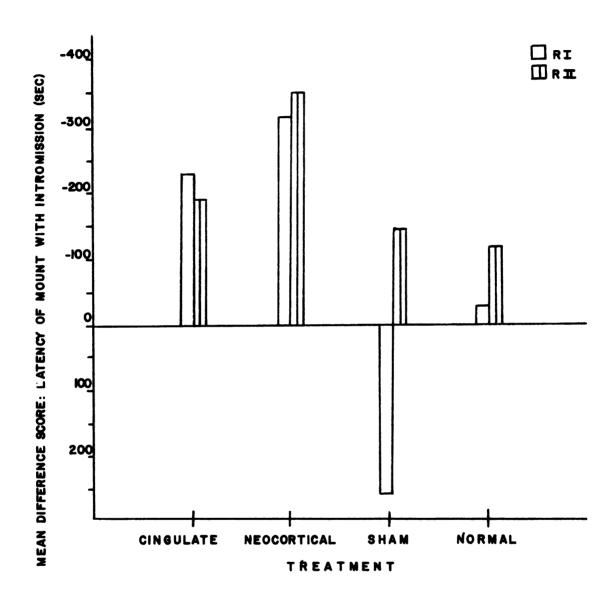


Figure 5. Mean difference score for preoperative and postoperative latency of mount with intromission in replications I and II as a function of treatment group.

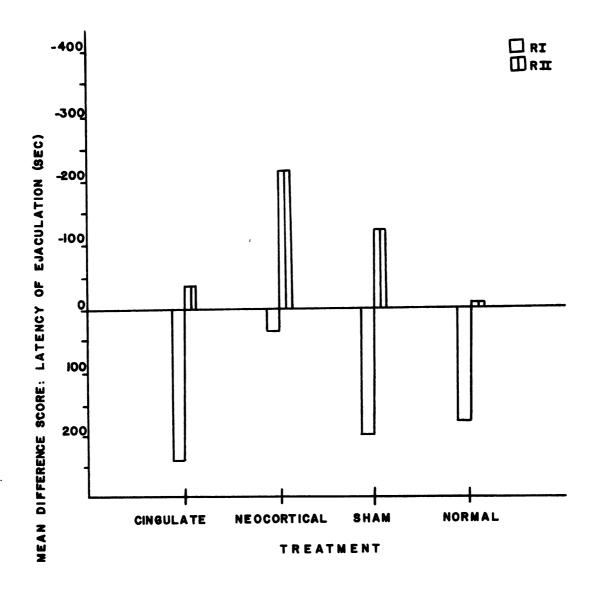


Figure 6. Mean difference score for preoperative and postoperative latency of ejaculation in replications I and II as a function of treatment group.

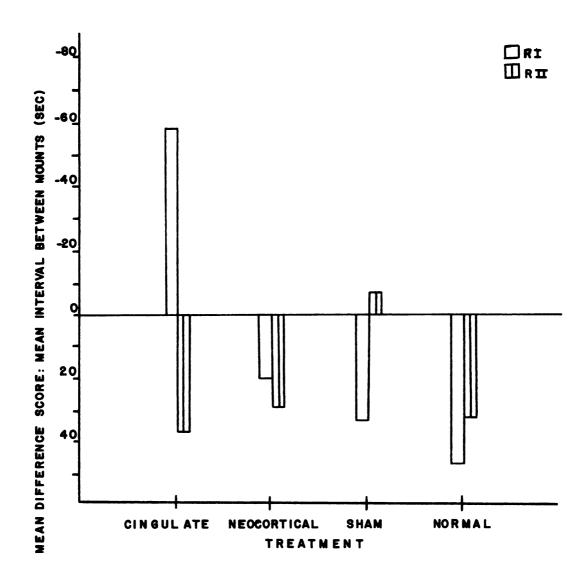


Figure 7. Mean difference score for preoperative and postoperative mean interval between mounts in replications I and II as a function of treatment group.

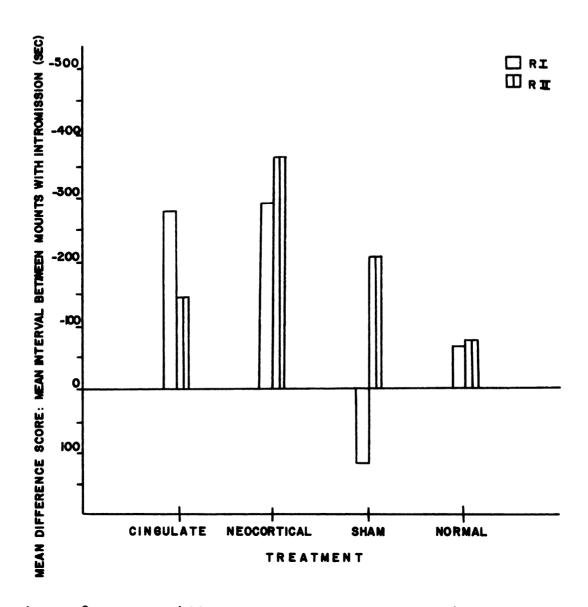


Figure 8. Mean difference score for preoperative and postoperative mean interval between mounts with intromission in replications I and II as a function of treatment group.

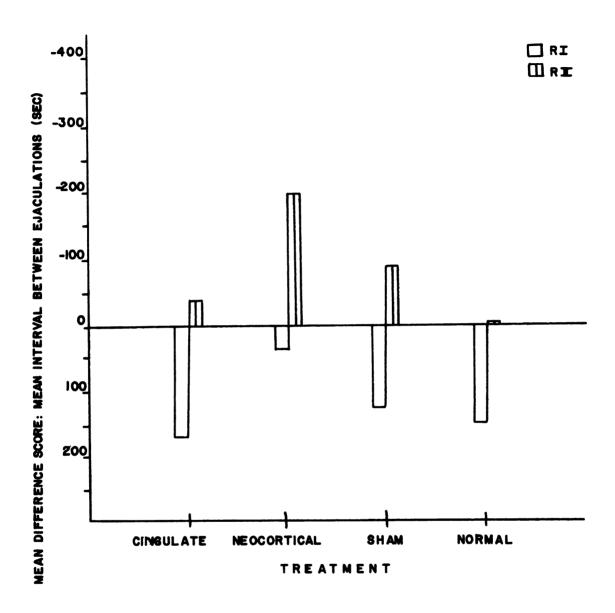


Figure 9. Mean difference score for preoperative and postoperative mean interval between ejaculations in replications I and II as a function of treatment group.

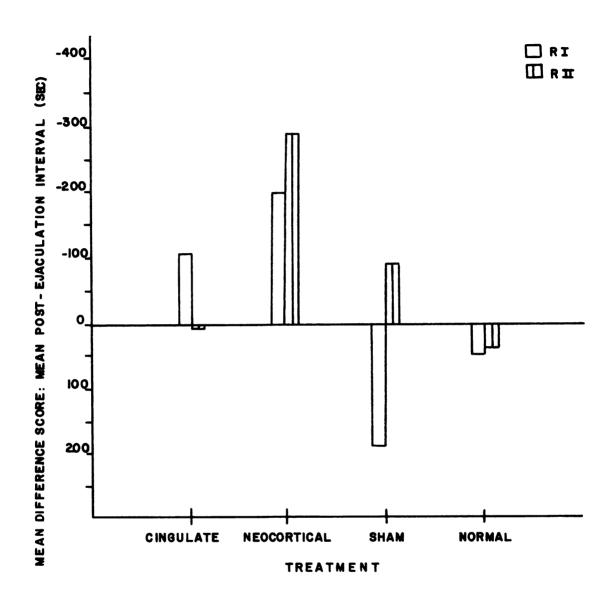


Figure 10. Mean difference score for preoperative and postoperative mean postejaculation interval in replications I and II as a function of treatment group.

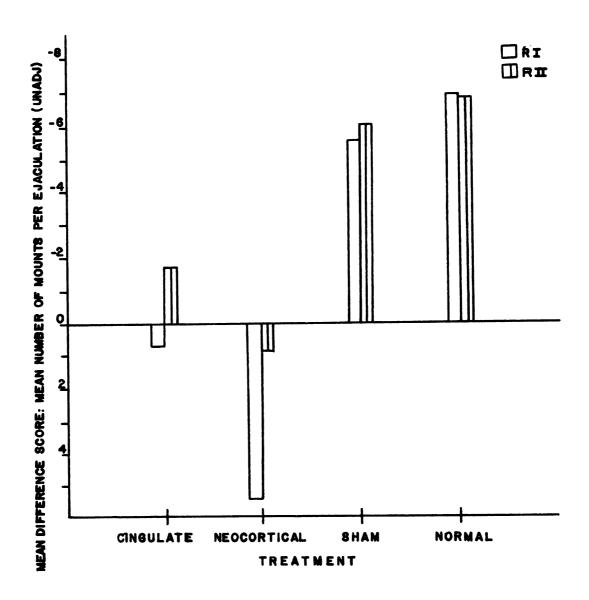


Figure 11. Mean difference score for preoperative and postoperative unadjusted mean number of mounts per ejaculation in replications I and II as a function of treatment group.

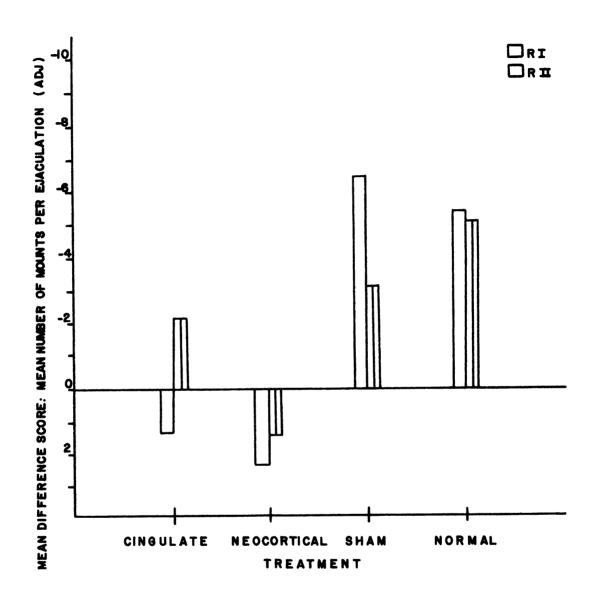


Figure 12. Mean difference score for preoperative and postoperative adjusted mean number of mounts per ejaculation in replications I and II as a function of treatment group.

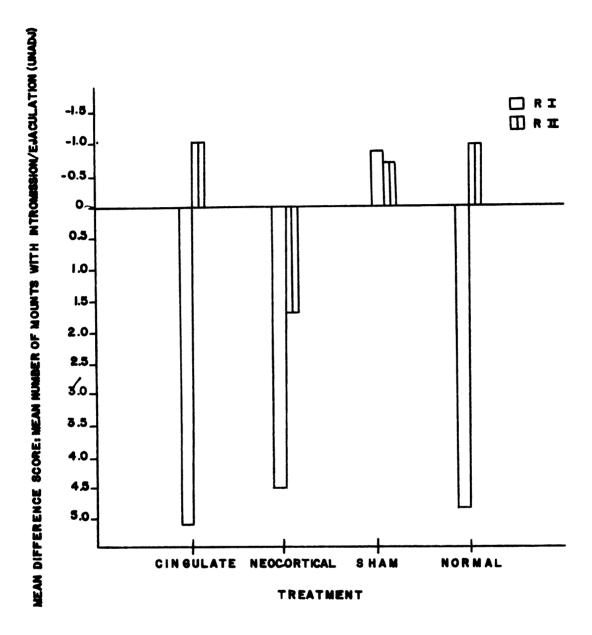


Figure 13. Mean difference score for preoperative and postoperative unadjusted mean number of mounts with intromission per ejaculation in replications I and II as a function of treatment group.

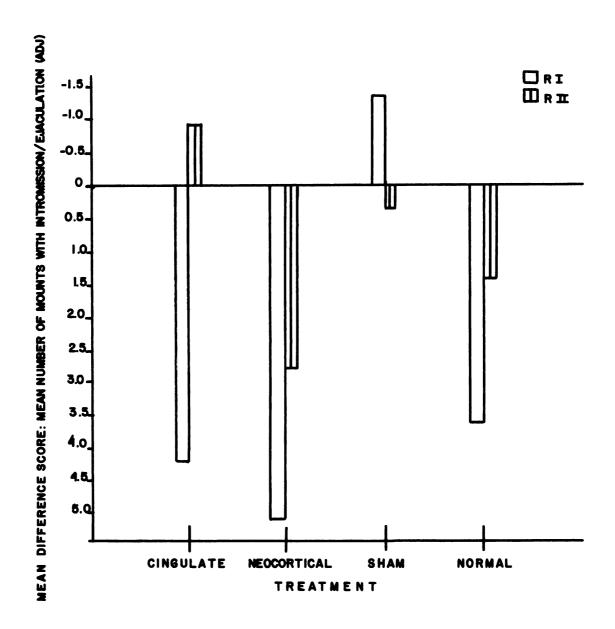


Figure 14. Mean difference score for preoperative and postoperative adjusted mean number of mounts with intromission per ejaculation in replications I and II as a function of treatment group.

Table 2

Results of of	unweighted-means two by variance. The harmonic	by four	factorial analyses is 4.6602 .	analyses	
Measure	Source	df	MIS	떠	뎩
Frequency of mounts	A(Replication) B(Lesion Gp.) AxB Within cells	3331	5.050 85.396 14.473 42.188	0.120 2.024 0.343	
Frequency of mounts with intromission	A(Replication) B(Lesion Gp.) AxB Within cells	3331	49.902 7.981 16.482 29.281	1.704 0.273 0.563	
Frequency of ejaculations	A(Replication) B(Lesion Gp.) AxB Within cells	33331	2.583 0.403 0.151 0.250	10.320 1.609 0.602	• 01
Latency of mount	A(Replication) B(Lesion Gp.) AxB Within cells	1 3 13 13 13 7	9891.836 15453.830 13362.473 7800.604	1.268 1.981 1.713	
Latency of mount with intromission	A(Replication) B(Lesion Gp.) AxB Within cells	1 143 3 267 3 888 31 105	143413.041 267732.974 88932.697 105514.084	1.359 2.533 0.843	

Table 2 (cont'd.)

Measure	Source	df	MS	떠	ᆈ
Latency of ejaculation	A(Replication) B(Lesion Gp.) AxB Within cells	3333	627287.971 68635.437 7639.814 57727.875	10.866 1.189 0.132	.01
Mean interval between mounts	A(Replication) B(Lesion Gp.) AxB Within cells	33331	1339.031 4279.943 8118.665 8881.004	0.151 0.482 0.914	
Mean interval between mounts with intromission	A(Replication) B(Lesion Gp.) AxB Within cells	Ээээ	42743.286 157491.949 83964.461 108585.536	0.394 1.450 0.773	
Mean interval between ejaculations	A(Replication) B(Lesion Gp.) AxB Within cells	33331	381823.604 48599.002 3020.723 47857.880	7.978 1.015 0.063	.01
Mean post- ejaculation interval	A(Replication) B(Lesion Gp.) AxB Within cells	3337	43767.649 176528.453 64421.810 77255.535	0.567 2.285 0.834	
Mean mounts per ejaculation unadjusted	A(Replication) B(Lesion Gp.) AxB Within cells	пест.	32.694 205.207 10.395 84.694	0.386 2.423 0.123	

Table 2 (cont'd.)

ы

Measure	Source	af d	MS	떠
Mean mounts per ejaculation adjusted	A(Replication) B(Lesion Gp.) AxB Within cells	37931	0.746 108.988 19.130 60.524	0.012 1.801 0.136
Mean mounts with intromission per ejaculation unadjusted	A(Replication) B(Lesion Gp.) AxB Within cells	3333	124.313 26.230 21.346 34.066	3.649 0.770 0.627
Mean mounts with intromission per ejaculation adjusted	A(Replication) B(Lesion Gp.) AxB Within cells	3333	36.863 32.432 18.807 22.856	1.613 1.419 0.823

• "

latency to first mount with ejaculation data, frequency of ejaculation data, and interval between ejaculations data yielded significant \underline{F} ratios for replication effect. Each of these replication effects involving a measure of ejaculation was significant at the .01 level.

Means and standard deviations for the 14 measures of preoperative and postoperative performance are presented in Table 3. Table 3 includes means and standard deviations for the following additional measures of behavior: mean mounts to ejaculation 1, mean mounts to ejaculation 2, mean intromissions to ejaculation 1, and mean intromissions to ejaculation 2.

Figure 1 shows that the only subjects failing to increase the frequency of mounts following surgery were those of replication I having neocortical lesions. The greatest increase in frequency of mounts for both replications occurred in animals subjected to sham operation procedures. In marked contrast, Figure 2 suggests that the only subjects failing to decrease the frequency of mounts with intromission following surgery were those subjected to sham operation procedures during replication I. The differences in frequency of ejaculation between subjects in replications I and II, shown in Figure 3, were large enough to be significant $(\underline{F}_{1,31} = 10.320)$. With respect to subjects showing the greatest deficits following surgery, the data summarized in Figures 2 and 3 are similar; i.e., in both cases the

Table 3

Means and standard deviations for preoperative and postoperative measures of performance

Measure	Repli- cation	<u>C</u> ingulat X	9	ជ	Neoco	ortica SD	цп	Sham X	SD	r	Norma X	.1 SD	ជ
Frequency of mount	l-pre l-post 2-pre 2-post	11.5 14.4 8.1 10.1	10.2	15	9.2 8.8 8.5 10.4	7. 7. 8. 8. 4.	9	10.0 19.7 17.0 22.9	9.3 11.2 8.3 9.0	12	12.3 19.0 14.7 19.6	8.0 11.4 12.6 11.5	18
Frequency of mount with intro.	l-pre l-post 2-pre 2-post	13.6 10.5 15.1	404° 804° 104°	15	10.3 8.9 14.5	20.00 20.00 20.00	9	10.8 12.8 15.9	13.6	12	12.3 11.9 14.3 12.1	000 04.00	18
Frequency of mount with ejac.	l-pre l-post 2-pre 2-post	 <i>و</i> د	1.088	15	0.00	1.00 1.00	9	11.1 83.62	∞∞∞~	12	8444 8444	~~~~~	18
Latency of mount	l-pre l-post 2-pre 2-post	90.9 113.6 31.7 11.5	156.3 302.7 41.7 13.0	15	61.9 191.1 43.2 40.5	65.8 216.0 61.4 51.5	9	20.7 28.7 10.9	57.0 43.2 33.7 11.8	12	66. 20. 27. 28. 7	120.6 27.5 38.5 71.5	18
Latency of mount with intro.	l-pre l-post 2-pre 2-post	162.7 393.9 102.1 293.6	165.4 514.0 305.3 495.0	15	282.7 598.2 134.1 421.9	402.1 586.6 302.7 573.5	9	399.3 140.0 203.7 350.1	450.8 340.6 394.6 537.7	12	277.8 306.2 183.1 302.9	364.8 462.9 380.4 476.1	18

Table 3 (cont'd.)

Measure	Repli- cation	<u>C</u> ingu X	gulate SD	۲	Neoco	cortica SD	ן מ	Sham X	SD	¤	Norma X	sd sd	۲
Latency of mount with ejac.	l-pre l-post 2-pre 2-post	854.4 616.0 549.6 587.5	293.4 393.5 345.8 368.2	15	830.7 794.2 611.2 828.0	312.5 418.2 266.7 452.4	9	681.3 485.7 695.7 822.9	3 56.6 366.6 336.8 357.5	12	857.6 682.9 633.1 643.8	313.6 357.9 347.4 370.3	18
Mean interval between mounts	l-pre l-post 2-pre 2-post	111.8 170.3 146.7 110.2	145.5 292.4 72.6 57.6	15	173.9 153.7 153.3 120.8	116.8 153.3 120.7 79.4	9	105.8 72.1 78.5 86.2	65.9 44.6 44.2 122.5	12	113.8 66.8 105.9 73.4	93.1 28.9 58.6 57.4	18
Mean int. bet. mts. w. intro.	1-pre 1-post 2-pre 2-post	96.3 376.2 143.7 293.2	71.4 517.4 294.4 471.6	15	285.4 577.8 151.1 509.9	393.2 594.3 293.6 574.2	9	278.1 163.8 156.1 365.7	433.9 327.8 302.1 523.6	12	207.1 273.3 191.0 268.2	305.1 431.4 368.9 431.4	18
Mean int. bet. mts. w. ejac.	1-pre 1-post 2-pre 2-post	866.5 697.9 618.9 657.8	272.6 329.3 296.7 311.0	15	846.0 813.8 654.3 856.9	292.6 391.1 231.8 412.3	9	704.1 587.2 754.1 845.9	335.4 295.4 275.5 323.5	12	880.7 734.2 668.7 673.4	281.9 310.4 315.3 327.6	18
Mean post ejac. int.	1-pre 1-post 2-pre 2-post	435.9 545.5 476.1 472.0	329.8 418.0 307.2 386.6	15	511.1 712.6 435.5 728.9	409.1 472.7 223.7 462.6	9	538.0 349.5 483.5 578.3	418.4 287.2 381.1 468.5	12	570.3 521.9 522.2 516.6	414.7 386.1 371.1 397.3	18

Table 3 (cont'd.)

Measure	Repli- cation	<u>C</u> ingu X	lat e SD	u	Neocc	ortica SD	al n	Sham X	SD	ជ	Norma X	SD	ч
Mean mts. per ejac. unadj.	1-pre 1-post 2-pre 2-post	10.6	13.03.0 5.03.0	13 13 13	8.3 7.1 7.6	21.4 20.25	1472	10.2 14.6 11.2 23.9	11.1 12.8 7.8 11.4	9 11 12 10	8.3 17.6 8.8 16.3	5.2 14.2 7.4 21.3	13
Mean mts. w. intro. per ejac. unadj.	1-pre 1-post 2-pre 2-post	16.2 8.6 10.7 10.8	04N0	111111111111111111111111111111111111111	11.2	~~~ ~~~ ~~~~	2×24 8	9.2 9.4 12.4 16.1	3 N N N	9111210	14.2 10.9 10.9 10.9	03.00 04.00	ななない
Mean mts. per ejac. adj.	l-pre 1-post 2-pre 2-post	6.7 6.3 6.3	41.50	12333	3572 4356	30.00	2 8 8	7.2 12.5 10.4 18.2	6.0 11.9 7.1	112	7.1 14.9 6.8 12.2	4.4 13.1 6.6 11.6	たなたら
Mean mts. w. intro per ejac. adj.	l-pre l-post 2-pre 2-post	90.00 90.00	4316 6470	111111111111111111111111111111111111111	9.7 7.0 11.3 10.8	2004 2000	トン 4 8	7.7 8.4 11.8 16.1	W442	9111210	9.6	2000 0004	14 th 17 th
Mean mts. per ejac. _l	l-pre l-post 2-pre 2-post	0470 07.4	41.66 64.70	13	8678 8166	4 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	25 8	12.2 12.2 9.7 18.5	12.6	112	15.3	4.7 12.3 6.4 11.8	れなれら

Table 3 (cont'd.)

Measure	Repli- cation	$\frac{C}{X}$ ingulate		¤	Neocol X	ortica SD		Sham X	SD	r	Norma. X	ı SD	Ę
Mean mts. per ejac.2	l-pre l-post 2-pre 2-post	0 440	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4000	14.0 3.0 2.2	00.00	40nn	8 8 8 7	0.4 W.C. 0.0 W.C.W	NUCU	6.0 1.9 6.9	3.00	2000
Mean mts. w. intro. per ejac.1	l-pre l-post 2-pre 2-post	12.7 8.9 10.4 11.2	53.65	13	9.7 7.4 11.7 11.8	とうとなる。	8422	8.6 9.6 12.2 14.3	4444 ~~~~	91111101	11.8 10.8 11.6 9.1	300 0300	れれれて
Mean mts. w. intro. per	1-pre 1-post 2-pre 2-post	6.0	0126 0178	H & & &	00 7 4 0 0 0 0 V 0 0 0 V 0 0 0 V 0 0 0 V 0 0 0 V 0 0 0 V 0 0 0 0 V 0 0 0 0 V 0 0 0 0 V 0 0 0 0 V 0	00 64	カタエエ	87 tv	24.5 0.00 0.00	2000	0000 0000	0000	2825

greatest deficits occurred during replication II in animals belonging to the neocortical and sham operation groups.

Figure 4 shows that only slight changes occurred in latency to first mount for all subjects except those from replication I having neocortical lesions, the latter subjects showing a relatively large postoperative increase in latency to first mount without intromission. The data summarized in Figure 5 suggest that only those animals subjected to sham operation procedures during replication I had shorter latencies to first mount with intromission after surgery than they did prior to The greatest increase in latency to first mount with intromission occurred in the neocortical lesion groups. Analysis of the data summarized in Figure 6 indicated that the subjects of replication I differed significantly ($\underline{F}_{1.31} = 10.866$) from those of replication II with respect to the difference in latency to first ejaculation before and after surgery. The animals in replication I showed postoperative decreases in latency to first ejaculation whereas replication II animals showed postoperative increases in latency to first ejaculation, the greatest postoperative changes appearing in the cingulate and neocortical groups.

As shown in Figure 7, the mean interval between mounts decreased postoperatively for all subjects except those in the replication I cingulate group and the

replication II sham group, the increase for the sham animals of replication II being slight relative to the increase shown by the cingulate subjects of replication I. In contrast to the data presented in Figure 7, the data summarized in Figure 8 show that the mean interval between mounts with intromission increased during postoperative sessions for all subjects except those in the sham group of replication I, the greatest postoperative increases occurring in the neocortical groups. Analysis of the mean interval between ejaculations difference scores yielded an F ratio significant at the .01 level $(\underline{F}_{1.31} = 7.978)$ for replication effects. Figure 9 clearly suggests that the subjects of replication I showed a shorter postoperative mean interval between ejaculations while the replication II subjects had a longer mean interval between ejaculations after surgery.

After any ejaculation, regardless of when it occurred during the 20 minute session, the animal remained in the observation box until the next mount occurred. The data presented in Figure 10 suggest that neocortical animals showed the greatest postoperative increases in mean postejaculation interval, a similar postoperative change in the opposite direction being shown by the replication I sham subjects.

The data presented in Figure 11 represent the difference scores for unadjusted mean number of mounts

per ejaculation, the greatest increases with respect to this measure of sexual behavior occurring in the normal groups and the greatest decreases in the neocortical groups. When the difference score for mean number of mounts for any subject during any session was based on only those mounts occurring prior to the last ejaculation for that session a difference score called the adjusted mean number of mounts per ejaculation resulted. Figure 12 shows that adjusting the mean difference scores for mean number of mounts per ejaculation resulted in a decrease in amount of postoperative change without altering the basic trends shown in Figure 11.

The apparent differences between replications I and II with respect to difference scores for unadjusted mean number of mounts with intromission per ejaculation, shown in Figure 13, were not statistically significant. Only the sham animals of replication I and the replication II neocortical animals failed to conform to the general trend of postoperative increases in unadjusted mean number of mounts with intromission per ejaculation for replication II subjects and decreases in this measure for replication I subjects. When the score for mean number of mounts with intromission per ejaculation was adjusted, as described for adjusted mean number of mounts per ejaculation, the general trends shown in Figure 13 were not preserved. As shown in Figure 14, the only subjects failing to show a decrease in adjusted mean number of

mounts with intromission per ejaculation were the replication II cingulates and the replication I sham operates.

Due to the infrequency of occurrence of mounts with intromission not followed by autogenital cleaning, the autogenital cleaning data were not statistically analyzed. Only 11 of the males made at least 1, and less than 3. mounts with intromission without the typical autogenital cleaning, 7 of these males being observed during replication I and 4 during replication II. All lesion groups were represented by the occasional absence of autogenital cleaning. That is, 4 of the males were from the cingulate groups, 2 were from the neocortical groups, 2 were from the replication I sham group, and 3 were from the normal groups. These males made between 44 and 115 mounts with intromission during the 6 sessions. 9 responses without autogenital cleaning occurring during preoperative sessions and 7 responses without autogenital cleaning occurring during postoperative sessions. trends were observable in the mounts with intromission not followed by autogenital cleaning data.

The experimenter was unable to detect signs of motor deficits in any of the males following surgery.

Observation of qualitative aspects of behavior suggested that there were only minor postoperative departures from normal, i.e., preoperative, sexual behavior. That is, during the first postoperative session animals 18

(cingulate) and 19 (neocortical) tended to fall back and to the side during autogenital cleaning. Animals 7 (cingulate) and 3 (sham) showed minor departures from the typical preoperative autogenital cleaning described for subjects 18 and 19. Notes on behavior, taken by <u>E</u> as each rat was observed, fail to suggest that the subjects in either of the lesion groups were unable to carry out the normal sexual responses in the normal order.

Body weight data collected on alternate days before surgery and after convalescence from surgery fail to support the notion that the animals were sick during postoperative sessions. No animals weighed less during the postoperative sessions than they did on the first day of the experiment. Only 2 males in replication I, 1 cingulate and 1 normal, showed weight losses between the last two sessions. Transitory slight weight losses occurred between the last two sessions in 3 replication II subjects, 2 cingulates and 1 neocortical. Because the subjects were maintained on Wayne Mouse Breeder Blox, it was occasionally the case that all food particles slipped through the openings in the bottoms of the cages. Thus, slight transitory weight losses could be attributed to the brief absence of food.

DISCUSSION

The results of the present experiment appeared to provide further support for Beach's (1940, 1941) claim that destruction of less than 20 percent of the cortex does not result in a disruption of the sexual behavior of adult male rats. Although the lesion effects reported in the present experiment were not statistically significant, Figures 2, 3, 4, 5, 6, 8, 9, 10, 11, and 14, reflecting several measures of sexual behavior, showed that neocortically lesioned rats tended to change more following surgery than did rats suffering cingulate The relatively large behavioral changes obtained lesions. following neocortical lesions might be interpreted as constituting no evidence contrary to Larsson's (1964) finding that lateral cortical lesions were more detrimental with respect to mating behavior in male rats than were lesions of the median cortex.

The results failed to provide further confirmation of the work of Stamm (1954), Bunnell and Pinder (1964), Bunnell, et al. (1966), Stamm (1955), and Slotnick (1967). More specifically, the results of the reported experiment could not be interpreted as evidence supporting the hypothesis that the cingulate cortex is an

•

• •

important structure with respect to typical instinctive Since the investigators obtaining evidence behaviors. supporting the existence of a relationship between cingulectomy and behavioral disruptions were not investigating sexual behavior in the adult male rat, except for the study of Michal (1965) discussed by Thomas, Hostetter, and Barker (1968), one might conclude that the results of the present experiment were merely irrelevant with respect to the instinct studies. Thus the results appeared to confirm, weakly in the case of Larsson (1964), the reports of investigations involving sexual behavior in male rats whereas the studies involving subjects other than rats and/or non-sexual measures of behavior were not confirmed. The results reported in this experiment are also not consistent with the results found by Barker and Thomas (1965, 1966) in their investigations of acquisition and retention of alternation behavior following cingulectomy. Thus, it is concluded that the present experiment has failed to yield evidence supporting the hypothesis that mechanisms of temporal-response integration might be impaired by cingulectomy. It is conceivable that the small amount of cingulate tissue spared in most cingulate subjects accounts for the fact that the present evidence does not confirm the results reported by Stamm (1954), Bunnell and Pinder (1964), Bunnell, et al. (1966), Stamm (1955), Slotnick (1967), Michal (1965), and Barker and Thomas (1965, 1966).

One might focus upon experimental procedures in attempting to account for the obtained results. Although the experimenter intended to use preoperative session one as a period for selecting responsive males and allowing the males to gain sexual experience, observations during the first and second replication I preoperative sessions resulted in elimination of the extra session. Since all sessions, including session one, were conducted under conditions as nearly identical as possible, the observation that many males showing a high degree of responsiveness (one or two ejaculations) in the first session made few or no sexual responses during session two resulted in no major experimental changes. Replication II was also conducted without the extra selection and experience session. Because the sessions lasted only 20 minutes and no rat ejaculated more than three times per session it does not appear reasonable to assume that the males had become sexually satiated two or three days earlier during session one. This conclusion was based on the results of an investigation of sexual exhaustion and recovery from exhaustion in the male rat reported by Beach and Jordan (1956). Beach and Jordan (1956) found that fully rested males reached the sexual exhaustion criterion, which consisted of no mounting for 30 successive minutes, after an average of 89.2 minutes (range of 61.5 to 141.5 minutes). Beach and Jordan (1956) also found that the mean number of ejaculations to

the exhaustion criterion was 6.9 (range of 5 to 10 ejaculations). In terms of the criterion established by Beach and Jordan (1956), the males in the present experiment had no opportunity to become sexually exhausted.

One might conclude that the present results do not constitute sufficient reason for pursuing this line of research. Although more precise techniques of destroying brain tissue might lead to more conclusive results, only minor procedural changes might be in order.

Due to severe time and space limitations, only 4 or 5 receptive stimulus females were available for 10 to 12 males on any given day. Although the females were used no more than three times on a given day and at least 90 minutes intervened between successive pairings, a preferable procedure would have involved the use of equal numbers of experimental males and receptive stimulus females.

During pilot observations the experimenter was unable to detect any changes in behavior following the replacement of the used cobmeal by fresh cobmeal. Since the females were tested for receptivity soon after the cobmeal was replaced each day and since all sessions were preceded by a 10 minute adaptation session, no male rat was tested in an environment free of olfactory stimuli from previous rats. A preferable procedure would have involved the use of fresh cobmeal for each experimental

rat during each session.

A click occurred each time one of the remote control panel buttons was depressed. That is, the measurement of any response was accompanied by a click. Since the animals were housed in the experimental room and in close proximity to the observation box, this extraneous source of auditory stimulation was not regarded as an important variability. However, the use of a silent control panel would have eliminated the possibility of auditory contamination.

A further procedural defect involved the speed at which the Esterline Angus Recorder was operated. A paper speed of 3.8 cm. per minute was selected because such a slow speed eliminated the possibility of running out of paper while a rat was being observed. This problem could be eliminated by using a different recording device or by improving the paper markings. A faster paper speed would allow finer time measurements than the four second minimum used in the present experiment.

The 1204 second time limit for latency measurements during sessions in which no responses occurred was selected because any given session, with the exception of longer sessions used to permit measurements of postejaculatory interval, lasted only 1200 seconds. Selection of some other latency might have led to different results.

Although any of these defects might have

influenced the results, it is unlikely that they would have obscured large postoperative changes in the sexual behavior of cingulectomized rats.

APPENDIX A

Table 4
Raw data: body weight in grams

s	Preopera	tive weighings 2	Postoper 1	ative 2	weighings 3
1234678911111111122245678901233	1 4255358412538962444089678167726	465 338 360 367 407 434 360 339 343 379 362 368 372 368 372 369 372 369 378 363 378 363 378 363 379 363 371 363 371 371 371 371 371 371 371 371 371 37		2 43574 4381 43	
35 36 37 38 39	353 347 355 345 324	364 349 358 358 325	414 371 397 417 337	421 372 401 424 332	431 382 408 429 336

76
Table 4 (cont'd.)

S P	reoperat l	tive weighings 2	Postoper 1	rative we	eighings 3
40	378	384	394	405	409
41	364	374	378	383	393
42	324	334	362	367	379
43	340	341	363	367	386

APPENDIX B

APPENDIX B

Table 5

Raw data: autogenital cleaning (a) and interresponse times (irt) in seconds for mounts (m), mounts with intromission (mi), and mounts with ejaculation (me).

$\frac{S}{beh}$ and	irt	$\frac{S}{beh}$ and	irt	$\frac{S}{beh}$.	irt	$\frac{S}{beh}$ and	irt	$\frac{S}{beh}$ and	irt	$\frac{S}{beh}$ an	
cing :	2	m	64	m	4	m	48	mia	16	m	72
Rep.	1	mia	4	mia	12	m	32	mia	24	m	120
Pre-l		mia	114	mia	44	m	16	mia	28	mia	52
m	48	mia		mia	52	m	28	mia	12	m	20
m	8	mia	60	mia	20			mea		mi	8
mia	4	mia		mia	28	mia	4	m	424	mia	56
mia	84	mia		mia	48	mia	16		20	mea	88
mia	84	mia	8	m		mia		mia	8	mia	188
mia	124	mea	76	mea	4	m	36	mia	24		
mia	76					mia	24		28	Pre-	2
mia		Pre-3		Post-	1	mia	28		36	m	24
mea	88	m		m		mia	40	mia	36	m	4
mia	444	m		m	12		28		36	mia	4
mia		mia		m		mia		mia	32	m	8
mia	68	mia		mia		mia		mea	48	m	24
		m		mia		mia	32			mia	8
Pre-2		mia		mia		mia	48			m	8
m	48			mia		mia		cing		mia	36
mia		mia		mia	48		28	Rep.	1	mia	24
m		mia		mia		mea		Pre-1		mia	20
mia	.8			mia	36		268			mia	24
m	68	m		mia		mia	216			mia	16
mia	16	m		mea		mia	20	m	20	m	20
mia	12		4	m	456			mia		mia	8
mia	16	mia		mia		Post-		m		mia	148
m	56	mia		mia		m	8			mia	104
mia	16	mia		mia		mia		mia		mia	56
mia	8	mia		mia	100	mia	16	m		mia	96
mia	20	mia	24			mia	20	mia		mia	128
mia	28	m		Post-		mia	36	m	12	mia	16
m	28		8			mia		mia	_	m	48
m	64	m	364			mia	44			mia	32
mia		m		m		mia	28	mia		\mathtt{mia}	40
mia	8	m	36	m	68	mia	24	mia	32	mea	40

Table 5 (cont'd.)

$\frac{S}{beh}$ and	irt	$\frac{S}{beh}$ and	irt	\underline{S} and beh.	irt	\underline{S} and beh.		$\frac{S}{beh}$ and	irt	$\frac{S}{beh}$	irt
D 2			24		<u> </u>	_:-	7.6				26
Pre-3	9.0	m	24 24			mia		mia mia	104		36
m		mia mia	_		8	mia		mia mia		mia mia	28 24
m		mia mia		m		m mea		mia mia		mia mia	28
m m	32	m a		m m	152	mea	24	шта	0	mia	20
m		mia	16	m	8			Pre-3			20
m	28			m		cing '	7	m	1.	m m	12
m		mia		m	Ĭ.	Rep.	, 1	m	_	m	8
m	40	mea		m	Ĭ.	Pre-1	L	mia	8	mia	16
m	56			m		mia		mia	12	m a	40
m	40		44	m		mia	148	m	144	m	4
m	36	m		m		mia	140	m		mia	4
m	20	m		m		mia	120	m		mea	12
m	24	m	24	m		mia		mia	12	mea	12
m		mia	72		60			mia		Post-2	,
m	12	m	- •	m		mia		mia		m	32
mia	20	m	4	m		mia		mia	112		16
mia	_		4	m		mia		mia		m	4
mia		mia				mea	72		_	m	4
mia	20		32		112			mia	4	m	4
m		mia	28			Pre-2		mia	96		8
mia		mea		Post-		m	28	mia		m	20
mia	12			m	4	m		mia	12	m	36
mia		Post-2		mia		m		mia		m	16
m	24	m	20			m			36		40
mia	4	m	4	m		m	104			m	36
mia	28	m	12	m	_	m	24	Post-	L	m	40
mia	36	m	4	m	24	m	28		56	m	4
mia	16	m	8	m		m	4	m		m	16
mia	20	m	32	mia	20	m	4	mia	12	m	52
mia	20	m		mia		m		m		mia	4
mia		m	12	mia	36	m	8	mia	8	m	4
mea	24	m	4	m	28	m	4	mia	92	m	88
m	248	m	16		28	m		mia	20	m	16
		m	4	mia	12	mi	4	mia	24	m	4
Post-		m	8	mia	28	mia		mia	52	m	4
m	48			mia		mia	28	mia	12	mia	4
mia	28		32		28	mia	20	mia	20	m	32
mia	20		48	mea		mia		mia	16	mia	4
mia	12		8			mia	44		16	m	24
m	12		12			mia	128		4	mia	8
m	20		24			mia	112			mia	44
mia	8		80			m	4			mia	24
mea	24		48			mia		mea		mia	24
m	168			mia		mia	144			mia	56
m	76			mia		m		m		mea	24
m	8	m	16	m	44	mia	4	mia	48		

Table 5 (cont'd.)

S and		S and		S and		S and		S and		S an	d
beh.			irt	beh.	irt	beh.	irt		irt	beh.	irt
Post-	3	mia	8	m	24	Trn	12	m	16	m	92
m	_	m		mia		mia		mia		mia	4
mia		m		mia		mia		mia	32		32
m		m		m	12		12			mia	4
m	_	m		mia		mia		mia		m	52
mia	40	m		mia	32			mia		mia	40
	_								20		
m	-	m		m	16		20				56
m mia		m		mea		mia	24			mia	4
mia		m		m	352			mia		mia	8
mia	48	m		m.		mia		mia		mia	40
m.	20	m		mia		mia		mia		mia	48
mia	28	m		mia	20			mia		mia	4
mia	32			mia	28			mia		mia	36
m .	24			mia	40		8		12		52 28
mia	8	m		mia		mea		mia		mia	28
mia		mia		mia	20	m		mia	16	mia	68
m		mia		mia	32			mia		mia	24
m		mia	24	m		m		mia		mea	32
mea		mea	32	m	20	m	32		44		3 28
m	372			mia	8	mia	4	mia	20	m	4
m	48	Pre-2		m		mia	40		36		
m	4	m	40	m	8	mia	44	mia	4	Pre-	3
mia	4	m	20	m	4	mia	20	mia	36		20
mia	32	m	40	mia	4	mia	56	mia	28		28
mia	44	m	20			m	16		28		4
m	32	m	4	Post-	l	mia		mia	8		8
mia	24		124	m	76	m		mia	16		24
m	28	m		m	32			mia	24		4
mia	32		72			m		mia		mia	
m		mia	4			m		m		mia	4 56
m		m		m		mea		mia	4		28
mea	4			m	140			mea		mia	76
		mia	12			Post-	3	ca		mia	32
cing]		m	208		16	1050)	Pre-2		mia	36
Rep. 1		m	104		8			m	100	mia	56
Pre-1	_	m	292			cing	18	m		mia	20
m	156	ы	272	m	90	Rep.				mia	4
m	28	Pre-3		Post-2	>	Pre-1	_	m	4	m	40
m	44	m rre-)	lı.	m	88		124	m		m mia	4
		mia		mia		m		mia	28		12
m		mia							4	m	
m mio		mia mia	20	mia		mia	20			m	88 4
mia	_					mia -		mia -		mia	
m		m		m 	12		16		24		24
m		mia		mia		mia	20			mia	4
m	00	mia		mia	24		52		16		16
m	4	mia	28	mia	24	mia	24	m	28	mea	8

Table 5 (cont'd.)

S and		S and		S and		S an	d	S and		S an	d
beh.		beh.	irt	beh.	irt	beh.	irt	beh.	irt	beh.	irt
m	328	Post-	2	Pre-l		m	12		432		168
m	12		20		52	mia	4			m	12
m	116	m		mia	36	m	16	mia	4	mia	12
m	12	m		m	12	mia		mia	12	mia	168
m	4	m	656	mia	356	mia	24	mia	20	mia	64
mia	4	m	32		124	m	24	mia	40	mia	120
m	24	m	148	mia	16	mia	52	mea	16	mea	32
m	8	m	44	mia	112	mia				m	308
mia	4	m	12	mia	224	mia	4	Post-			
mia	32	m	4	mea	28	m	20	m	40	Pre-	2
		m	32	mia	64	m	4	m	4	m	140
Post-	1	m	84	mia	8	mea	20	m	16	m	4
m	32	m	8	m	16	m	384	m	32	m	96
m	4			mia	12	m	20			m	32
m	4	Post-	3			m	36	Post-	3	m	32
mia		m	48	Pre-2		m		mia	72		80
mia	24	mia	12		64			mia	48		100
mia		mia	8		164	m		mia		m	172
mia	48	m	16			m		mia		mia	4
mia		mia	_	m	136			mia	. -	m	24
mia		mia	20			mia		mia		m	244
mia		mia	16		•	m		mia	24		
mia		mia		Pre-1		mia	16			Pre-	3 8
mia	_	mia	20		8	m	16			m	9
mia		mia		mia	8		12			m	96
m	28	mia		mia	8	•••		mia		mia	8
mea	-4	mia	20	m		Post	_1	m	40	mia	24
m		mea		m	4	m		mia	12	m	24
m	32	m		mia		mia		mea		mia	12
m	32	m		m		mia		mia		mia	28
m		mia	11			mia	12		20	mia	20
m		mia	24			mia	12		40		12
m		mia		mia		mia		mia	_	mia	24
m	4	mia		mia		mia		mia	20		20
mia	4		24			m		mia	36		24
mia		mia		mia		mia		mia		mia	16
mia	48		16		12			m		mia	36
mia		mia		mia		mea		mia		mia	16
mia	44	m	24			mia	344	шта	90		
mia		mea		mia		m	12			mia	52
mia	40			mia		mia		noo 1	J.	m	276
	24			mia mia		m ra		neo 1		m	20 20
m	16	111	00					Rep.	1	m	
m moo	12			m		mia		Pre-1	100	m	24
mea		n 00 0		mia		mia	16			mia	8
m		neo 9		mia	20		16			mia	24
m	12	Rep.	T	mia	TO	mea	12	mia	4	m	36

Table 5 (cont'd.)

S and		S and		S and		S and		S and		S an	ıd
beh.	irt	beh.	irt				irt	beh.	irt	beh.	
mia		m	28	mia		mia		\mathtt{mia}		Pre-	
m	16			m		mia		mia	40		48
m	40			m		mia	28	mia	36		24
mia		neo 19		m	48		_	m	284		24
mia		Rep. 1		mia		Post-2		mia	68		. 8
m.		Pre-1	0.1	m .	40			mia	28		40
mia		m		mia	4	m		mia	36		48
m	36			mia	36			mia	36		100
m		mia		m.		m		mia		m	148
m.		m		mia		m		mia	32		56
mia		m.		mia	52			mia		mia	76
mia		mia		mia		m		mia	28		24
m		mia		mia	60			mia		mia	12
mia		mia		mea	24			mia		mia	12
m			128			m		mia		mia	40
m			116			m		mia	24		16
mea	4			mia		m		mia		mia	12
		mia	104			mia		m	24		20
Post-		mia		mia	12			mia	24		4
m	476			mia		m		mia	20		24
m		mea	96	Post-		m		mia	24		8
m	120			m		mia	4			\mathtt{mia}	8
m	148	Pre-2		m	12		28			\mathtt{mia}	56
		m		mia		m		sham :		mia	28
Post-		mia	16			mia		Rep.	L	m	40
m		mia		m		mia		Pre-l	_	mea	4
m		mia		m		mia	20		108		216
m		mia		mia		mia	28		28		24
m		mia		mia		mia	24			Post	
m		mia		mia	32	mia		mia	84	m	20
m		mia		m		mia		mia		m	20
m		mia	72	mia		mea		mia		m	16
m		mia		mia	68			mea	48		44
m		mia		mia	44			mia	456		40
m		mia		mia	40			mia	36		40
m	216		32		40			mia	84		24
	_	mia	68	mia	68			mia	152		4
Post-		mea	64	mia	36	mia		mia		mia	8
m	120		468	mea	56	mia	24	mea	20	mia	28
m		mia		m	188			_		mia	36
m		mia	44			Post-		Pre-2		m	16
m	16	_		m		mia		m		mia	20
m		Pre-3		m		mia	28		184		16
m		m		m		mia	44			mia	16
m	64	mia	8	mia	4	mia	48	m	144	m	32

Table 5 (cont'd.)

$\frac{S}{beh}$	irt	S and beh.	irt	$\frac{S}{beh}$	irt	$\frac{S}{beh}$ and	irt	$\frac{S}{beh}$	irt	S and beh.	d irt
											
	0		0		16		20	D + 0	2	• .	20
m		mia m	8 16			mia mia	24	Post-		mia mia	20
m mia		mia	8			mia	32			mia	32 36
mia		mia	24			mia		mia		mia	40
m	16		12			mia		mia		m	36
m		mia	12		28	mia	28	mia	20		4
mia	20		12			mia		mia		mea	4
m		mia		mia		mia	32			mia	528
mia		mia	20			mia		mia	_	m	12
mea	20		12		8	mia	20		16		12
m	240		20		16		20			m	8
m	168		20			mia		mia		m	20
mia		mia	20			mia		mia		mia	16
m	20			mia		mia	16			m	24
mia		m	12			mea		mia		mia	24
mia	24			mea	4	m	180	M III TOT	_	m	20
m	32		16		56			mia		mea	4
m	28		20	111)0	mia	92		12	mea	~
mia		mia	28			m	28		40		
m	28			sham	3		32			sham	10
m		mia	24	Rep.	í	mia				Rep.	
m	4	m		Pre-1				mia		Pre-	
m	24	m			56		16		16		200
m	28		12		72		24			mia	40
m	28			mia		mea	4			m	16
m	12	mia		mia	88		148		208		48
m	56			mia		m	12		108		16
m	68			mea	76	m	88		52		28
m	96	mia		mia	432		96	mia	24		28
m	28			mia	68		_	mia	20		24
m	64	mia		mia	92	Post-	1	mia		mia	80
m	124	m	20	mia	52	mia	24	m	12		12
m	28	mia	28	mea	76	mia	8	mia	20	mia	44
m	48	m	28			mia	28	m		mia	28
m		mia	12	Pre-2		mia	56	m	8	m	28
m	212		20		56		40		16	m	20
m	20		20		28		16	mia	28	m	108
m		mia	12			mia	44			mea	32
m	44		16	m	288			mea	8	m	228
m	36		20	m	536	mia	184				
m	44		20			mia		Post-		Pre-	
m	120	m		Pre-3		mia	32			m	12
	_	m	24			m		mia		m	80
Post-		m	24			m		mia	12		92
mia		m		mia		mea	16	mia	20		40
m	8	m	20	mia	28			m	16	m	124

Table 5 (cont'd.)

S and		S and		Sand		Sand		Sand		Sar	nd
beh.	irt	beh.	irt	beh.	irt	beh.	irt	beh.	irt	beh.	irt
	•		•								

m	460	m	132	mia	28	mia	24	m	12	mia	28
m			4					mia			
m						mia	20			mia	
mia	4	m	44	m	12	mia	16		12		20
mia	68			m	16		24				8
mia	_	mia		mea		mea		mia	8		12
mia	16		16	m	240	m	344	m		mia	
m	36			m	32	mia	12	mia		mia	16
mia		mia	4	m	20	mia	12	m	20	mia	16
mia	28	m	20	m	64			mia	24	mia	32
mia	32	m	32	m	20	Post-	3	m	16	mia	36
mia	36	m	20	mia	72	mia	, П	mia	1.	• -	$\sim 1.$
mia		mia	77	m	່ ຄ	m	8	m	32	mea	52
mila		mia	48	mia	12	m	Ř	mea) <u>L</u>	m	372
Pre-3	8	m		mia	4	100 111	12	mia m mea	7	mia	8
m	R	111	12			mia	12			mia	52
m	Ř	m	44			mia	2	sham 2	22	mia	
m	4		A.A.	mia) Ji	mia	12	Don Don	 1	mia	
mia			4	m	£2	m	2/1	Rep.	L	mia	16
	12			mia	8	101	24	Pre-1	26	mia	40
m	12			mia m	0	m m: o	4	m	90	mia	20
m							4		24	mia	20
m		mia		mia					64		
mia	12		20	m	90	m	24	m •			60
mia		mia	8	D. 1		m		mia		mea	32
m				Post-	۷ .	m		mia	28	_	•
m	20		16			m		mia	20	Pre-	-3 4
mia	28			mia				mia			
mia	16			mia		mia		mia			4
m		Post-1			12			mia		mia	
m	8			mia				mia			8
m	12					m					4
m		mia			60				4		20
mia		mia		mia	16			m		mia	16
m.		mia		mia	16			mea	20		24
mia		m.		m.		mia		mia	448		20
m.		mia		mia		m.		mia		mia	16
mia		m		mia		mia		mia	100	mia	20
mia		mia		mia	16		28			mia	24
m	20			mia		mea		Pre-2	•	mia	24
m		mia		m .	24		256			mia	16
mia	28			mia	20		28			m	20
m	44			mia	32		116			m	16
m	12		16		20			mia		mea	4
mia	12			mea	52			\mathtt{mia}	16		252
mia		m.		mia		mia		m .		mia	4
mea	28	mia	4	mia	12	m	12	mia	40	mia	28

Table 5 (cont'd.)

$\frac{S}{beh}$ and								\underline{S} and beh. irt		
m	24	m		mia	36			m 28	nor	
mia	12	m		m	12		32		Rep.	
m		mea		mea	24			Post-1		
m	28	m		m		m			m	16
m	4	m	76		4	m	16		m	8
mea	4	D		m	12	m	32	m 172		12
mia		Post-2				m	4	5	mia	8
mia		m	12		80	m		Post-2	mia	28
mia	16	m		m.	4	m	40		m.	20
m		m		mia	4	m	40		mia	
mia	4	m		mia	36	m	32	m 68		160
m.	20	m	8	m.	20	m	8	m 76		16
mia	8	m		mia	24	m	28	m 48		32
m		m.	16	m.	28	m		m 20		316
m		mia		mia	20	m	228	m 28		24
mia	4	m		mia	28	m	16	m 4		28
m	24	mia	4	m	24	m			mia	68
	_	m		m		mia			mea	92
Post-		mia		mea	4	m	. 8		mia	104
m		mia	32		212	m		m 404	mia	160
mia	4	m	16	m	92	m	320			
_					_		J			
mia	12	m	4		•			Post-3		-2
mia	12	mia	4 8		•	Pre-3		m 4	m	4
mia mia	12 20	mia mia	4 8 36	nor 4	•		4	m 4 m 4	m m	4 12
mia mia mia	12 20 16	mia mia m	4 8 36 20	nor 4 Rep.1	•	Pre-3 m m	4	m 4 m 4 m 8	m m m	4 12 40
mia mia mia mea	12 20 16 24	mia mia m m	4 8 36 20 4	nor 4 Rep.1 Pre-1		Pre-3 m m	4 4 4	m 4 m 8 m 20	m m m m	4 12 40 8
mia mia mia mea m	12 20 16 24 216	mia mia m m mia	4 8 36 20 4	nor 4 Rep.1 Pre-1 m	148	Pre-3 m m m	4 4 4	m 4 m 8 m 20 m 44	m m m m m	4 12 40 8 8
mia mia mia mea m mia	12 20 16 24 216 52	mia mia m m mia mia	4 8 36 20 4 4 296	nor 4 Rep.1 Pre-1 m	148 8	Pre-3 m m m m	4444	m 44 m 52	m m m m m m	4 12 40 8 8 32
mia mia mia mea m mia mia	12 20 16 24 216 52 12	mia mia m m mia m	4 36 20 4 296 24	nor 4 Rep.l Pre-l m mia mia	148 8 112	Pre-3 m m m m m	4 4 4 4 24	m 44 m 20 m 24 m 52 m 16	m m m m m	4 12 40 8 8 32 24
mia mia mea m mia mia mia	12 20 16 24 216 52 12	mia mia m m mia m m	48 36 20 44 29 48 48	nor 4 Rep.l Pre-l m mia mia mia	148 8 112 72	Pre-3 m m m m m m	4 4 4 4 4 4 2 4 8	m 44 m 20 m 44 m 52 m 16 m 12	m m m m m m m	4 12 40 8 8 32 24 44
mia mia mea m mia mia mia m	12 20 16 24 216 52 12 16 16	mia mia m mia m m m m	4 8 36 20 4 4 4 296 248 4	nor 4 Rep.l Pre-l m mia mia mia mia	148 8 112 72 56	Pre-3 m m m m m m m	444444284	m 44 m 20 m 16 m 12 m 28	m m m m m m m m	4 12 40 8 32 24 44 12
mia mia mea m mia mia mia mia	12 20 16 24 216 52 12 16 16	mia mia m mia m m m mia mia	48 36 20 44 29 48 44 44	nor 4 Rep.l Pre-l m mia mia mia mia mia	148 8 112 72 56 32	Pre-3 m m m m m m m m m	44444 248 28	m 44 m 20 m 12 m 12 m 28 m 56	m m m m m m m m	4 12 40 8 32 24 41 12
mia mia mea m mia mia mia m	12 20 16 24 216 52 12 16 16 16	mia mia m mia m m m mia mia	48604466 29648444616	nor 4 Rep.1 Pre-1 m mia mia mia mia mia mia	148 8 112 72 56 32 40	Pre-3 m m m m m m m m m m m	444444 248 28 152	m 44 m 20 m 16 m 1	m m m m m m m m m m	4 12 40 8 32 24 41 12 4
mia mia mea m mia mia mia mia mia	12 20 16 24 216 52 12 16 16 16 20	mia mia m mia m m m m m m m mia m mia mia	4 8 6 0 4 4 4 6 6 4 8 4 4 4 6 1 6 1 6	nor 4 Rep.1 Pre-1 m mia mia mia mia mia mia mia	148 8 112 72 56 32 40 28	Pre-3 m m m m m m m m m m m m	44444 248 28 152 116	m 44 m 20 m 16 m 12 m 16 m 16 m 16 m 16 m 16 m 16	m m m m m m m m m m m m m m m m m m m	4 12 40 8 8 32 44 12 12 4 24
mia mia mea m mia mia mia mia mia mia mea	12 20 16 24 216 52 12 16 16 16 16 20 4	mia mia m mia m m mia m mia mia mia mia	48604466484466168	nor 4 Rep.l Pre-l m mia mia mia mia mia mia mia	148 8 112 72 56 32 40 28 72	Pre-3 m m m m m m m m m m m m	4444444 2484 2526 1116 48	m 44 m 20 m 16 m 1	m m m m m m m m m m m m m m m m m m m	42 40 88 32 44 12 12 44 24
mia mia mea m mia mia mia mia mia mea m	12 20 16 24 216 52 16 16 16 16 20 4 216	mia mia m mia m m mia mia mia mia mia mi	486044664844666820	nor 4 Rep.l Pre-l m mia mia mia mia mia mia mia mia	148 8 112 72 56 32 40 28 72 56	Pre-3 m m m m m m m m m m m m m	4444444 2848 282 1116 344	m 44 m 20 m 12 m 12 m 12 m 13 m 14 m 15 m 16 m 16 m 17 m 17 m 17 m 17 m 17 m 17	m m m m m m m m m m m m m m m m m m m	42 40 88 32 44 12 12 44 104
mia mia mea m mia mia mia mia mia mea m	12 20 16 24 216 52 16 16 16 16 20 4 216 36	mia mia m mia m m mia mia mia mia mia mi	48604466484446616828	nor 4 Rep.l Pre-l m mia mia mia mia mia mia mia mia mia m	148 112 726 32 40 28 726 24	Pre-3 m m m m m m m m m m m m m m	444444 2848 2568 11444 3	m 44 m 20 m 12 m 12 m 12 m 12 m 12 m 14 m 14 m 14	m m m m m m m m m m m m m m m m m m m	4 12 4 8 8 32 4 4 12 2 4 10 76
mia mia mea m mia mia mia mia mea m	12 20 16 24 216 52 12 16 16 16 20 4 216 36 4	mia mia m mia m m mia mia mia mia mia mi	4860446648444661682888	nor 4 Rep.1 Pre-1 m mia mia mia mia mia mia mia mia mia m	148 112 72 56 32 40 28 72 56 24 20	Pre-3 m m m m m m m m m m m m m m m	44444428482211484440 2844440	m 44 m 20 m 12		12 40 8 8 32 44 12 24 10 14 14 14
mia mia mea mia mia mia mia mia mea m	12 20 16 24 216 52 16 16 16 16 20 40 40	mia mia m mia m mia mia mia mia mia mia	4860446648444661682888	nor 4 Rep.l Pre-l m mia mia mia mia mia mia mia mia mia m	148 112 72 56 32 40 28 72 54 20 28	Pre-3 m m m m m m m m m m m m m m m m m m	444444 28482 1568444 24 24	m 44 m 20 m 16 m 1		12 40 8 8 32 44 12 12 4 4 10 14 16
mia	12 216 216 216 216 116 116 216 216 216 2	mia mia m mia m mia mia mia mia mia mia	486044664844466168088 2224441668088	nor 4 Rep.1 Pre-1 m mia	148 112 72 56 32 40 28 72 54 20 28 100	Pre-3 m m m m m m m m m m m m m m m m m m m	444444 2848266844048 114844048	m		42 48 82 44 12 12 44 10 14 16 32
mia	12 216 216 216 216 12 16 16 16 216 216 2	mia mia m mia m mia mia mia mia mia mia	48604466484446616888 292444466888 8	nor 4 Rep.1 Pre-1 m mia	148 112 726 562 40 28 754 20 28 100 48	Pre-3 m m m m m m m m m m m m m m m m m m m	4444444 2848266844 25114844 20480	m		42 48 82 44 12 12 44 10 14 16 38
mia	12 216 216 216 16 16 16 2 4 16 4 2 4 4 12	mia mia m mia m mia mia mia mia mia mia	486044648446680888888888888888888888888	nor 4 Rep.1 Pre-1 m mia	148 112 726 562 40 28 754 20 28 100 48	Pre-3 m m m m m m m m m m m m m m m m m m m	4444444 284826844404806 11143 2236	m		42 48 82 44 12 24 10 146 146 146 146 72
mia	12 216 216 216 216 16 16 16 16 216 40 214 12 12	mia mia m mia m mia mia mia mia mia mia	486044648444664888888888888888888888888	nor 4 Rep.l Pre-l m mia mia mia mia mia mia mia mia mia m	148 112 72 56 32 40 28 72 54 20 28 100	Pre-3 m m m m m m m m m m m m m m m m m m m	444444484828268 2568444048068 11144 2 2238	m		42 48 82 44 12 44 10 14 16 38 78 44
mia mia mia mia mia mia mia mia mia mea m m m m m m m m m m m m m m m m m	12 216 216 216 216 16 16 16 16 216 40 24 41 12 12	mia mia m mia m mia mia mia mia mia mia	486044648444664888888888888888888888888	nor 4 Rep.l Pre-l m mia mia mia mia mia mia mia mia mia m	148 112 726 562 40 28 754 20 28 100 48	Pre-3 m m m m m m m m m m m m m m m m m m m	4444444848226844404806824 2511444404806824	m		420 120 120 120 120 120 120 120 1
mia	12 216 216 216 216 16 16 16 16 216 40 24 41 12 12	mia mia m mia m mia mia mia mia mia mia	486044648444664888888888888888888888888	nor 4 Rep.l Pre-l m mia mia mia mia mia mia mia mia mia m	148 112 726 562 40 28 754 20 28 100 48	Pre-3 m m m m m m m m m m m m m m m m m m m	444444484828268 2568444048068 11144 2 2238	m		42 48 82 44 12 44 10 14 16 38 78 44

Table 5 (cont'd.)

S and beh.	irt	$\frac{S}{beh}$		$\frac{S}{beh}$				$\frac{S}{beh}$			
m m	32 56		16	m mia	12 12		20 12	Pre-2		mia mia	32 32
mia		m		m		mia	12			mia	104
mia	44			m		mia		mia		m	40
Pre-3	• •	m		mia		m	24			m	8
m	4	m		mia		mia	24		16		72
m		m		mia		mia		mia	16		4
mia	4	m		mia	24			mia		mea	4
m		m	28		32			m	4	mea	-
mia	52			m	28			mia		Post	- 1
mia	72		36			mia		mia	32		84
mia	80			mia	12	m		mia	88		20
mia		m		m		mea		mia	140		<u>5</u> 6
m	48			mia	4			mia	112		74
mia	28			mia	16			mia	68		72
mia	32			mia		m		mia	52		4
mia	48			m	-	m		mia	132		84
mia		m		mia	8		4	m	8		32
m		m	4		60			mia	_	m	4
mia		m		mia		m		mia	172		4
mia		mia		mia		mia	4	mila	- / ~	m	108
m		m	28			mia		Pre-3		m	204
mia		mia		mia		mia	48		16		156
mia		m	24			mia	28		32		24
mia		mia		mia		mia	60		24		168
mia	12			mea	12		36		20		4
m		mia	16		172		20		76	***	*
mia		m	24		72	mia		mia		Post	-2
m		mia	8		236 L	mila	•	mia		m	20
mia		mia	20		4			m	_	m	32
mia		mia		mia		nor I	וו	m	16		4
m		m	36	m		Rep.		mia		mia	4
mea	_	mia		mia		Pre-		mia	36	mia	16
		m	16		-~	m	96		24		8
Post-1		m		Post-	3	m	<u>ś</u> 6			mia	4
m	4	m	- 8	m		mia		mia		m	20
m		mia	4	m		mia		m	56		4
m	4	m	56		20			mia		mia	36
m		mia		mia		m		mia		mia	12
m		mia	12		40			mia		mia	20
m	40	m	36			mia		mia		mia	32
m		mea		mia		mia		mia		mia	24
m		m		mia		mia		mia		mia	40
m	20			mia		mea		mia		mia	24
m		Post-2	2	m		mia	300			mia	28
m		mia		mia		mia	132			mia	40
	•		•		~ ~		-)~	•11	~ ~	411 11 C4	7 🗸

Table 5 (cont'd.)

		$\frac{S}{beh}$									
ben.	11.6	ben.	11.0	ben.	TLC	neu.	11.0	ben.	11.0	ben.	11.0
	16			-:-	26		26				4
mia	16			mia mia				m m	8	mia	24
m		mia					3/1				
mia	36		20	m -:-	20	mia	1.0		8 8		12
mea		mia		mia		mia	48		0	T)	: - 3
m		mia		mia			24		40	Post	:- 3
mia		m	20		60		28		12		
m.	24			m		mia	8		8		4
mia		m		m		m	24		12		4
mia		m		mea		m		mia	16		4
mia	44			m		mia		mia		mia	4
mia				mia		m		mia	24		28
mia	40	nor 13		mia		m		mia		mia	20
m	28			mia	44		4	mia		mia	32
m	4	nor 13	3	mia	48	mea	4	mia	24	m	36
mea	4	Rep. 1	L	m	60			mia	36	mia	48
		Pre-1			4	Post-	1		20		4
Post-			20		8	mia	16	mia		mia	4
m	4	m		mia			16			mia	52
m	4	m	24	mia	20	mia	24		~4		28
mia	4		8	mra	20		36			mia	8
m	16			Pre-3			4		20		24
mia	20	111	80	m	h.	m 1111 CT	12		16		20
mia	12			m			4	 III	12		48
mia				mia		m	32		4		4
			88				4			mia	
mia		mia		mia		mia				m ra	36
mia					24		12			m	32 16
mia		mia					20				
m		mia		mia				mea		mia	40
m 		mia			44		16		384		28
mia		mia		m.	24		20			m	4
mia		mia			24	mia	8		4		4
mia		mia		m		m			40		28
m		\mathtt{mia}	56			mia		m	20		36
mia		m	92			m		mia		mia	. 4
m		mia		mia		mea		mia		mea	40
mia		mia	48			m		mia	36		396
m		mea	40	m		mia		m	56	m	4
mia	16			m	20	m		mia	4	m	16
m	320	Pre-2		m	4	mia	4	m	24	m	4
m	12		36	m	8	mia	20	m	4	m	24
m	36	m	32		4	m	16		4	mia	20
mia		mia		mea		mia	24			mia	36
m	16		28			mia	36			m	40
m		mia	40			mea	24		4		
mia		m		mia	4	-11-0-00		m	4		
mia		mia		mia		Post-2	2	m		nor	15

Table 5 (cont'd.)

$\frac{S}{beh}$ and	irt	$\frac{S}{beh}$.	irt	$\frac{S}{beh}$ and	irt	\underline{S} and beh. ir	Sand	irt	$\frac{S}{beh}$	d irt
Pan	1	m	16	3 00	20	mia	l wa	28	mio	20
						mia 1				
m	432					mita I				
						Post-3				
		mia	-8	mia	52	m 1:	mia	16	mia	20
mia	132	mia	24	m	12	m	mia	24	mia	
			24			mia 4			mia	
		mia					m		mia	
		mia					mia	28	mia	48
		mia				mia	mia	44	mia	56
		mio	28	***	16	-i-	mia	28	mea	24
Pre-2		mea	44	mea	4	mia a	mia	88	m	236
m	16	mia	492			mia	R mia		m	8
m	4	m	4	Post-2	,	mia	mia	4		48
m	4	mea mia m mia mia	4	m	28	mia 2	mia mia	1.		48
m	20	mia	40	m	4	m 3:	mia	28	mia	
m	8	mia		m	48	mia 33 mia 44 mia 14 mia 24 mea 33 m	mia	36	mia	12
m		m	12	m	4	mia 4	mia	20	mia	36
m	48	mia	68	m	4	mia 1	mia	8	mia	24
mia	4	mia	20	m	4	mia 2	∤ mea	20	mia	8
m	16	mia	28	m	4	mea 3	2 m	280	mia	28
m		mia	32	mia	4	m 41:	2 m	4	min	12
m	68	mea	40	m	40	m 6	mia	28	mia	12
mia	36	Post-1		m	4	m '	m1a	28	m	24
m	32	Post-1	_	m	80	mia '	∤ mia	12		
m	4	m	О	m		mia 2	mia mia	8	Pre-	3
mia	4	mia	4	m	160	mia 3	mia	32	m	4
m	8	m	52	m	52	mia 2	∤ mia	16	m	4
mia	. 4	m	16	m	4		m		m	4
m	44	mia	4	mia	4	mia 2) mia	4	m	4
m.	228	mia	24	mia	16	m 2	Pre-2		m	12
mia	4	m.	32	m.	24	m 10	Pre-2	- 1	mia	8
		mia					m		mia	
m.		mia		mia			m	8	m	28
mia		mia		mia			m	4	m	24
m		mia		m.	16		3 m	4	m.	4
m	120	mia	_	mia		mea 2			mia	8
D 0		mia		mia	20		m		mia	56
Pre-3	0	m		m	16	10	m		mia	28
m		mia		m	14	nor 17	m		mia	56
mia m		mia		mia		Rep. 1	m	8	m	60
m		mia mia		mia m		Pre-1	mia		mia	4
m mia		mea.		m mea			mia		mia	8
m			496		488		} m ∤ mia		mia mia	12 20
mia		mia		m			mia) m		mia mia	4
	1 ~	*** ** ***	U	412	~	111 6	, III	ے ر	mra	~

Table 5 (cont'd.)

		$\frac{S}{beh}$									
					····						
mea	4	m	44	mia	4	mia	56	mia	32	m	8
mia	508	mia		m	24	mia	44	mia	20	mia	8
mia		mia				mia		mia		m	36
m		mea				mia	40			mea	4
mia	8			m	68	mia	44	mia	12		352
mia	44	Post-2	2	mia	4	mia	88		12	mia	4
mia	12	m			16	mea	80	m	24	mia	20
m	12			m	48		272	mia	12	m	20
\mathtt{mia}	36	m		mia	4		4	mia	12	m	8
mia	20	m		mia				mia	12		16
mia	16		24	mia	20	mia	60	m	36	mia	12
m	20			m	20	mia	8			\mathtt{mia}	20
\mathtt{mia}	44		4	mea	4	mia	24	mea		m	20
mia	4		4			m m mia	20	m	412		12
m	16		4	Post-	3	m	12	mia	4	m	16
mia	4	m	16	m	8	mia	4	mia	16		4
		m	~	mia	~			m	16		4
Post-		m	4			Pre-2		m mia mia	8		48
m		m		\mathtt{mia}		mia	4	mia	44		8
mia	4		8	mia		mia	12	m		mea	8
mia	8		16		68	mia	12		12	m	320
m	12			mia	28	m	16	m	16		
m	12		36	mia	20		12	mia		Post	
m	4	m	8	mia		mia	12	mia	36		28
m.	44			mia	24		12		24		60
mia	4			mea		mia		mia	8		52
m.	8		12			mia	20		24		200
mia	32		116		60			mia	16		44
m.	24		36			mia	48		16		268
mia	4		20			mea	32		8		132
mia	24		24		24		272	mea	8	m	4
mia	44			mia	48		4	.			_
mia	40			mia	44			Post-		Post	
mia	40			mia		mia		mia		mia	4
m	16			mia		mia	20		20		8
m	60			mea		mia		mia		mia	8
mia	12		16	m	250	mia	16		_	mia	16
mia	20		28			m		mia		m.	36
mia	24		52		21.	mea	44			mia	36
mea	20		24	cing :	24 2	D 2		m		mia	40
m mia	452 8		44	Rep. Pre-1	د	Pre-3	٥	mia		mia	84
mia mia	20	m m	60		٥	mia		m mio		mea -	64
mia mia	16		36		4	mia m		mia mia	8 28	m mia	280
mia mia	24			m mia		m mia		mia m		mia mia	8 16
mia	24			mia		mia	20			mia mia	28
	~~	411	~	mra	U- 7	mia	20	111	~	шта	20

Table 5 (cont'd.)

S and		S and		S and		S and]	S and		San	ıď
beh.	irt	beh.									
mia		mia	28			mia		m	44	mia	20
mia		mia	16	mia	8	mia	4			m	24
m	24	mia	24	mia	16	m	12			m	24
mea	8	mia	24	mia	24	m	4	cing :	29	mia	16
m	276	m	20	mia	20	m	4	Rep.	2	mea	24
m	128	mea	20	mia	20	m		Pre-1		m	180
m	20	mia	356	m	20	mia	12	m	16	m	384
m	4	mia	8	m	8	m	16	mia	20	mia	4
mia	24	m	16	mia	16	mia		mia		mia	20
mia	12	m	16	m		mia		mia		mia	24
mia	24	mia	16	m	16	mia	16	m	16	m	24
		m		m		mia		mia		mia	20
		mia		mia		mia		mia		mia	20
cing 2	28	m		mia		mia		mia	16		28
Rep. 2		mea		mia		mia		mia		mia	20
Pre-1		m		m		mia		mia	16		64
m	40	m		mia	16			mia		mia	16
mia	4	mia		mia		mia		m	16		
m	28	mia		mia		mea		mea		Pre-	, 3
m		mia	8		24			mia	456		16
mia		mia	20			m		mia		mia	4
mia	36		28		4		-) -	mia		mia	4
m		mea		mea		Post-	.3	mia		mia	20
mia	4			mia	356	m		mia		mia	24
mia	36	Pre-3		m	16			m		mia	24
mia	28		32	mia	12	mia	4	mia	20		24
m	36			mia		mia	20			mia	40
mia		m		m		mia		mia		mia	16
m	32		-	m	12			mea	20		20
mea	32			m		mia	-8			mia	4
m	316		352		_	m	12)	m	48
mia	36			mea		mia		Pre-2		mia	4
mia	16	m	200			m	12		8	mia	16
m	16			Post-2	2	mea		mia		mia	36
mia	8	m	12			m		mia		mia	12
mea	20			m	16			mia		mea	16
m		Post-1	1	m	12			mia	36		580
mia	56			m	36	mia		mia		mia	4
	<i></i>	mia		m	104			mia		mia	20
Pre-2		mia		m	36	mia		mia	16		20
m	8	_		m		mia		mia		mia	4
mia	4	m	8	m	84			mia		mia	16
m	8	mia	4	m	64	mea		mia		mia	20
mia		mia		m	72			mia		mia	16
mia		mia		m	44			mia		mia	24
mia	12		16		96			mia		mia	16
					, •		~		~ ~	4	-0

Table 5 (cont'd.)

| S and |
|----------|----------|----------|----------|----------|----------|
| beh. irt |
-					
mia 12	m 56	mia 48	mia 8	mia 64	m 4
					mia 4
					mia 84
mia 8				mia 20	
mea 20	m 12			mia 32	mia 56
	m 472			mia 64	m 8
Post-1			mia 448		mia 4
m 4		m 48	m 16	mia 32	
mia 20	Post-3	mea 4		mea 32	mia 28
mia 16	Post-3	_	Post-1	m 372	
mia 20	m 4	Pre-2	m 8	mia 8	Pre-2
	mia 4				•••
	mia 28			mia 68	
	mia 48			mia 100	mia 20
		m 48			mia 12
mia 12			mia 40	_	m 36
	mia 4		mia 60	cing 39	mia 20
	mia 44		mia 68	Rep. 2	mia 20
		mia 72		Pre-1	
					mia 28
mia 24	m 48	mia 60			mia 60
mia 16					mia 36
					mia 32
					mia 36
mia 28		mia 120			
mia 20					mia 24
mia 28					mia 36
mia 24		mia 96			mia 24
mia 48			mia 20		mia 28
m 12				mia 48	
mia 40		mia 24	mia 84	m 12	mia 36
	mia 28	mia 92		mia 4	mia 20
mia 28	mia 84	m 24	Post-2		mea 40
	mia 48	5		mia 16	
		Pre-3	m 20		mia 12
mia 16		mia 4	D + 0		mia 24
			Post-3		mia 32
	mea 40	m 32			mia 20
m 160					mia 20
mia 4	aima 24	mia 8			mia 48
mia 28	cing 34				mea 20
	Rep. 2			mi 12	D 2
mia 16	Pre-1				Pre-3
Dogt 2			mia 12		
Post-2			mia 36		m 4
m 4	m 4	m 20	mia 32	m 32	mia 12

Table 5 (cont'd.)

		\underline{S} and beh. ir									
		_		_				_			
m.		mia 32		mia	20	m.	4	mia	1068	Pre-	·2
mia		mea 28				mia	16			m	8
mia	16	mia 232	•	mia		m.	12	Post	-2	m.	4
mia	12	mi /			40	mia	12	m	20	mia	12
mia	24	5				mia			24		
mia		Post-2					24		120		16
mia		mia 12			464		20	m	256	mia	16
mia	32	mia 8	•	m.	36	mla	28	. .	_	mia	36
mia						mia		Post	-3	mıa	28
m		m 12	•	mia	20		24		692		20
m.	4	mia 16)	mia	20	m .	16	m	360		
mia	4			mia		mia	24			mia	
m				mia						m	40
mea	4	mia 24	ļ	mia	36	m	16		31		
m		mia 16							2	m	
mia	4	mia 52	2	mea	48	mia	24	Pre-	1	m	
mia	48	mia 32	?			m mia	24		12		
m	32	mia 16)			mia	28	m	8		
mia	24	mia 20)	neo 27	,	mia	32				40
mia	56	mia 36 mia 20)	Rep. 2	2	m	24	mia		\mathtt{mia}	
m	28	mia 20)	Pre-1		mea	4	mia	24	\mathtt{mia}	20
mia	4	mia 28	3	m	36	mia	436	mia	32	m	28
mea	44	mea 44)	mia	4	m	28	mia	44	m	8
						mia		\mathtt{mia}			4
Post-						mia		mia			16
m		m 48				m		mia		mea	4
mia	12		3	mia	4	m	12	mia	24		416
mia	24	m 20)	m	28	mia	52	\mathtt{mia}	24	m	4
mia	16	mia 48	3	mia	36	mia	40	mia	32	m	12
mia		mia 24	-	mia	48	m	24	mea			28
mia		mia 20)	m	36	mea	24	m	308	mia	44
mia		mia 20)	mia	16			m	4		32
		mia 20)	mia	76	Pre-3		m	4	mia	
mia		mia 32			20			mia			100
mia				m	52			mia		mia	40
m					4			mia			
mia					56			\mathtt{mia}		Pre-	
mia		mia 24			20			mia		mia	
m		mea 44	ŀ	m	8			mia		mia	16
mea	48			mia	4	m		mia	40	\mathtt{mia}	20
		Post-3		mia				mia	32		48
mia	56	m /	ł	m	64	m	488	mia	28	m	4
mia	16	mia 16	•	mia	4			mia	108		4
\mathtt{mia}		mia 16	5	mea	36	Post-1	l	mia	48	mia	8
\mathtt{mia}		mia 20)		-	m		mia			28
m	36	mia 20)	Pre-2		m		mea		mia	4

Table 5 (cont'd.)

S and		S and		San	d	Sand		Sand		San	ď
beh.		beh.									
0011	110	0011	11 0	0011.	11 0	ocn.	11 0	oen.	11 0	ocn.	11 0
mia	36	m	368	m	20	mia	16	Post-	1	Post	- 3
m	184			mia		mia			8		4
mia		mia	12			mia		mia	132		4
m		mia		mia		mia	32		24		4
mia		mia	20		24		40		40		72
	32		20			mia		mia		mia	28
m		mia	20		8		72		64	m	48
m		mia	20			m	12	mia		mia	72
mia		mia	24			mia		mia		mia	
mea	16		16	neo	36	mia	1 6	m	68	mia	40
m					2			mia	56		72
m	84	m	32	Pre-	1	mia		mia		mia	36
m	24			m				mia		mia	48
m	72	Post-	3	mia					56		28
mia		mia	4	mia	76	mia		mia	88		40
mia		mia	12	mia		m		mia	52		36
m		mia			60			mia	64		24
m		mia		mia		mea	20			mia	
		mia	16		92					mia	
Post-	1	m		mia	24	Pre-3			•	mia	52
m	136	mia	20	\mathtt{mia}	52	m	8	Post-	2	mia	32
m	4	mia	40	mia	20	m	8	m	12	mia	32
m	40	mia		mia	76	mia	20	mia	4	m	28
m	120		20	m		mia	28		8	m	44
m	656	mia				mia		mia		mia	24
m	112	mia		mia		mia		mia		mia	44
		mia	24			mia	32		48		56
Post-2			20			mia	28			mia	
m	12			mea		mia		mia		mia	
m		mea	4			mia		mia		mia	
m	4	m			.2			mia		mia	52
\mathtt{mia}	4	m			8			mia	36	mia	32
m .	8	m			16			mia		mia	
mia		mia		mia		mea	20		48		16
mia		mia		mia		m		mia		mea	8
m		mia		mia		m		mia	56		
mia		mia		mia		mia		mia	44		
mia		mia		mia	76			mia		neo	
mia		mia		mia		m	28			Rep.	
m.		mia		mia		mia	36			Pre-	
mia		mia		m		mia	28				168
mia		mia		mia		mia		mia		m.	28
m		mia		mia		m.	28		_	mia	20
m		m m:-		mia	24	mia		mea		mia	16
m		mia		mia	24	mla	56	m	240	mia	20
mea	ğ	mia	24	m	32	m	32			m	20

Table 5 (cont'd.)

S and		Sano	1	S and		S and		S and		S an	d
beh.	irt	beh.	irt	beh.	irt	beh.	irt	beh.	irt	beh.	irt
								_			
\mathtt{mia}		m.		mia	20			mia		mia	32
m.		mia		mea	20			mia		mia	24
mia		mia	28		252			m		mia	
m		mia		m	24			mia	8		40
m.		mia		m	64	m	80	mia	20		16
mia		mia	28							mia	28
mea		mia		mia	20			m		\mathtt{mia}	
m .		mia		mi	12	Post-	3	mea	24		24
mia		mia	24	m	4	m	4	mia		mia	16
m		mia		mita	10	mra	~	шта		mia	
mia		m		mia		mia		m		mia	20
mia		m		mia	20	m		mia		m	24
m		mia		mia	16	mia	4		68		20
mea	8			mea	16	m	20		24	mia	4
		m.	420	Post-	_	m	12	mia	16	mia	20
Pre-2		mia	24	Post-2	2	mia		mia		m	24
m		mia	24	m	12	mia	16			mia	4
mia		mia	36	m	32	m	20	Pre-2		mia	
mia		mia	28			mia	•	***	_~	mea	20
mia	132	mia	36	m	8			mia	12		
mia		mea				mia		m		Post	
mia	32		•		64			mia		mia	12
mia	12	Post-	-1	m		mia		mea			32
mia	20		4			mia		mia		mia	
mia		mia	4			mia		mia		mia	
mea		\mathtt{mia}	12		4			mia		mia	
m	416	mia	20			mia		m		mia	32
mia	4		16		28			mea		m	36
mia		mia	16			\mathtt{mia}	4	Pre-3		mia	
\mathtt{mia}		mia	24		36		16	Pre-3		\mathtt{mia}	
mia	20		24			mia	24	m	14	mia	
mia		mia	24			mia		mia			56
mia		mia	24		76	mea	16	mia	32	\mathtt{mia}	20
mea	24	mia	20		4			mia	52		20
		\mathtt{mia}	24		24	m	4	mia		m	48
Pre-3	_	mia	24		20			mia	48	mia	32
m		m	16		24			mia		mia	20
m		mea	12			neo 4		mia		\mathtt{mia}	32
m	12		184		88	Rep.	2	mia			12
m		m	100		4	Pre-1		mia		mia	20
m		mia	16		64			mia		mia	32
m		mia	28			m		mia	24		40
mia		mia	24			mia		mia		m	20
m		mia	20		80			mia		mea	4
m		mia	16			mia		mia			348
m	4	mia	20	m	128	m	72	mia	16	mia	12

Table 5 (cont'd.)

\underline{S} and		S and		S and		S and		S and		S an	d.
beh.	irt	beh.	irt	beh.				beh.		beh.	irt
m	64	mia		mia		mia	40	Post-		mia	8
\mathtt{mia}	12	m	32	mea	40	mia	20		4	mia	20
mia	28	mia	16	m	220	mia	40	m	12	mia	32
m	28			m	72		16	m	12	mia	20
mia	52			mia	32	mia	24		16	mia	20
mea	36	sham 2	23	mia	24	m	44		8	mia	24
		Rep. 2	2	\mathtt{mia}	56	m	24	m	8	mia	24
Post-		Pre-1		mia	32	mia	24	m	4	mia	16
m	16	m	20	m	28		16	m	32	\mathtt{mia}	52
m		mia	28		24	mia	4	m	60	mia	16
m	24	m	36	mia	12	m	36	m	48	mia	20
m	12	mia	12	mia	20	mia	16	m	16	mea	20
m	24	mia	44	m		mia	48	m	48		
m	4	mia	32	m	4	mia	64	m	4	Pre-	2
m		mia	40		8	m	32			mia	12
m	80		32		4	m	12		72		12
m		mia		mia	8	m	28			mia	8
m		mia	36			mea.	4			mia	20
m		mia		mea	16	cu	•	m		mia	12
m		mia	32	mea		Post-	1	m		mia	20
m		mea		Pre-3		m	32		64		20
m	500		292		1.	m	4			mia	20
	24			mia	20	m	20			mia	
m		mia	28	m	12					mia	36
m	~				4	m	40	m			24
Doot '	2	mia	52	m —		m		m	36		20
Post-		mia	52		16	m	44			mia	20
mia		mia	60	m	8	m	312	_1	^ ~	mia	24
mia	12		40	m		m		sham 2		mia	20
m	12	mea	28	m	8	m		Rep.		mia	16
mia	16			m	8	m		Pre-1		mia	32
mia		Pre-2		m.	12	m	4	m .	96		28
mia	20		4	mia	4	m	144	mia		mia	20
m.		mia	8		12		_	mia		mia	28
mia		mia		mia		Post-		mia		mia	20
mia		mia		mia	24			mia		mia	32
mia	24			mia	24			mia		mia	12
mia		mia	16		20			mia		mia	24
m	20			mia	24			\mathtt{mia}	24		48
mea		mia	20		8	m	32			mia	12
m	392	mia	40		4	m	44	mia		mia	20
mia	4	mia	44	m	16	m	32	mia	24	mea	12
mia	12	mia	28	mia	20	m	228	mia	20		320
mia		mia	44		24			mea	28		28
mia		mia	16		28		424		244		4
mia		mia		mia		m		m	132		56
m		mia		mia	32		228			mia	4
			_		_						

Table 5 (cont'd.)

beh. irt	S and		S and		S and		S and		S and		S and	
m 44 mia 12 m 4 mia 4 mia 24 mia 16 m 4 mia 24 mia 24 mia 22 m 32 mia 20 m 20 mia 20 24 mia 8 mia 30 mia 24 mia 8 mia 20 mia	beh.	irt	beh.	irt	beh.	irt	beh.	irt	beh.	irt	beh.	irt
m 44 mia 12 m 4 mia 4 mia 24 mia 16 m 4 mia 24 mia 24 mia 22 m 32 mia 20 m 20 mia 20 24 mia 8 mia 30 mia 24 mia 8 mia 20 mia												
m 44 mia 12 m 4 mia 4 mia 24 mia 16 m 4 mia 24 mia 22 m 32 mia 20 mia 24 m 4 mia 8 mia 20 mia 20 m 20 mia 20 mia 20 m 20 mia 20 mia 20 m 20 mia 20 m 20 mia 24 mia 8 mia 30 mia 24 mia 8 mia 30 mia 24 mia 8 mia 30 mia 24 mia 8 mia 20 mia 24 mia 8 mia 16 mia 12 mia 24 mia	mia	12	m	16	m	16	m	L	m	12	m	12
mia 16 m 20 mia 24 mia 28 mia 20 m 32 mia 28 mia 20 m 32 mia 28 mia 20 m 4 mia 28 mia 20 m 22 mia 20 mma 22 mma 20 mma 20 </td <td></td>												
mia 20 mia 24 mia 4 mia 20 mia 24 mia 4 mia 20 mia 24 mia 4 mia 24 mia					***	*						
mia 20 mia 20 m 8 mia 20 mia 16 mia 24 mia mea 4 m 12 m 4 mia 28 mia 20 m 20 mia 20 mia 20 m 22 m 16 m 16 m 16 m 10 m 10 m 10 m 10 m 10 m 12 m 10 m 12 m					Post-	2						
mea 4 m 12 m 4 mia 8 mia 20 m 28 Pre-3 mia 24 m 4 mia 8 mia 28 Pre-3 mia 24 m 4 mia 20 mia 24 m 16 m 12 mia 24 mia												
mea 4 mia 24 mia 20 mia 20 mia 20 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 24 m 4 m 4 m 20 mia 24 m 4 m 4 m 20 mia 24 m 4 m 4 m 20 mia 24 m 4 m 8 m 30 mia 24 m 4 m 12 mia 24 m 12 m 16 m 60 m 24 mia											mia	~ 1
Pre-3 mia mia mia 20 m 24 m 4 mia 20 mia 20 mia 20 m 20 m 20 m m 12 m 24 m 8 m 304 m 24 m 4 m 16 m 20 m 28 m 20 m											Pre-	ł
Pre-3 mia 20 m 16 mea 24 m 16 m 4 m 8 m 304 m 24 m 4 m 4 m 4 m 4 m 4 m 4 m 20 m 22 m 16 m 16 m 20 m 16 m 16 m 22 m 16 m 24 mia 20 mia 16 mia 24 mia 20 mia 16 mia 24 mia	mea	•									_	
m 12 m 24 m 8 m 304 m 24 m 4 m 4 m 4 m 4 m 8 m 304 m 24 m 4 m 8 m 20 m 28 m 24 m 8 m 8 m 304 m 4 m 4 m 20 m 28 m 20 m 28 m 20 m 28 m 24 m 8 m 24 m 24 m 8 m 8 m 304 m 24 m 24 m 8 m 24 m 24 m 12 m 8 m 24 m 24 m 12 m 14 m 14 m 16 m 16 m 12 m 16 m 10 m 16 m 12 m 16 m 12 m 16 m 12 m 16 m 12 m 16 m	Pre-3											
m 20 mia 4 m 4 m 4 m 8 m 20 m 28 m m 4 mia 16 m 12 mia 24 m 8 m m 32 mia 36 m 56 sham 32 mia 24 m 8 m m 16 mia 16 m 72 Rep. 2 mia 24 m 12 mia 24 m 12 mia m 12 mia 16 m 40 Pre-1 m 16 m 68 mia 24 mia 26 mia 26 mia 28 mia 28 mia 20 mia 26 mia 20 mia	_	12										
m 4 mia 16 m 12 mia m 20 m 28 mia 36 m 56 sham 32 mia 24 m 8 mia 24 m 8 mia 24 m 18 mia 18 mia 18 mia 24 m 18 mia 24 mia 24 mia 28 mia 28 mia 28 mia 28 mia 28 mia 20 m 20 mia 20 mia 24 mia 24 mia 24 mia 24 mia 24 mia 24 mia 20 mia 24 mia 22 mia 24 mia 22 mia 24 mia 22 mia 24 mia 24 mia 22 mia <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><i>J</i> • ·</td><td></td><td></td><td></td><td></td></t<>								<i>J</i> • ·				
m 32 mia 36 m 56 sham 32 mia 24 m 8 m 16 mia 16 m 72 Rep. 2 mia 24 m 12 m 12 mia 16 m 40 Pre-1 m 16 m 68 m 20 mia 20 m 52 m 60 m 24 mia 24 mia m 16 m 4 m 236 mia 56 mia 24 mia 20 mia 24 mia 20 mia 24 mia 20 mia 24 mia 20 mia 24 mia 22 mia 20 mia 24 mia 28 mia 20 mia 24 mia 28 mia 20 mia 28 mia 20 mia 28 mia 20 mia 28 mia 20 mia 28 mia												
m 16 mia 16 m 72 Rep. 2 mia 24 m 12 mia 16 m 40 Pre-1 m 16 m 24 mia 8 m m 20 mia 20 m 52 m 60 m 24 mia 8 m m 72 m 16 m 76 mia 12 mia 24 mia 24 mia 28 mia 24 mia 20 mia 24 mia 22 mia 24 mia 22 mia 36 mia 24 mia 22 mia 36 mia 24 mia 23 mia 20 mia 24 mia 20 mia 24 mia 22 mia 36 mia 28 mia 20 mia 24							sham	32				
m 12 mia 16 m 40 Pre-1 m 16 m 68 m m 20 mia 20 m 52 m 60 m 24 mia 8 m m 72 m 16 m 76 mia 12 mia 24 mia 24 mia 24 mia 24 mia 16 m 16 mia 24 mia 24 mia 16 mia 24 mia 24 mia 20 mia 20 mia 16 mia 16 mia 16 mia 16 mia 16 mia 20 mia												
m 20 mia 20 m 52 m 60 m 24 mia 8 m 72 m 16 m 76 mia 12 mia 24 mia 24 mia 24 m 16 mia 4 m 236 mia 56 mia 24 mia 24 mia 24 m 16 mia 4 m 120 mia 20 m 16 m 12 m 16 mia 32 m 12 mia 64 m 20 mia 20 m 16 mia 32 mia 40 mia 36 mia 40 mia 20 m 16 m 12 m m 16 m 20 mia 20 m 16 m 28 mia 28 Post-3 m 36 mia 20 mia 20 m 16 m 8 m 4 m 32 mia 20 m 20 m 36 m 12 m 4 mia 24 m 24 m 24 m m 32 mia 4 mia 4 mia 48 m 20 m 20 m m 16 m 24 mia 32 m 56 mia 12 m 40 m 16 m 21 m 8 mi								_				
m 72 m 16 m 76 mia 12 mia 24 mia 24 mia 24 m m 16 mia 4 m 236 mia 56 mia 44 m 16 m 16 m 16 m 16 m 16 m 12 mia 20 m 16 m 12 mia 20 mia 24 mia 20 mia 24 mia 20 mia 24 mia 20 mia 24 mia 24 mia 20 mia 24 mia								60				
m 16 m 4 m 236 mia 56 mia 44 m 16 m 12 mia 20 m 16 m 12 mia 16 m 12 mia 36 mia 40 mia 16 m 12 mia 40 mia 36 mia 40 mia 16 m 20 mia												
m 16 mia 4 m 120 mia 20 m 16 m 12 mia 40 mia 16 m 12 mia 40 mia 16 m 16 m 16 m 16 m 16 m 20 mia												
m 56 mia 24 m 440 mia 36 mia 40 mia 16 m m 16 mia 32 m 12 mia 64 m 20 mia 20 mia m 16 m 12 m m 16 m 20 mia 16 m m 28 mia 28 Post-3 m 36 mia 28 mia 20 m 20 m m 16 m 8 m 4 mia 24 m 24 m 20 m 20 m m 36 m 12 m 4 mia 24 m 24 m <td></td>												
m 16 mia 32 m 12 mia 64 m 20 mia 20 mia 16 m 20 mia 24 mia 22 mia 20 mia 24 mia 28 mia 20 mia 4 mia 28 mia 20 mia 36 mia 21 mia 24 mia 28 mia 28 mia 28 mia 40 mia 28 mia 28 mia 30 mia 36 mia 28 mia 24 mia												
m 16 m 12 m m 16 m 20 mia 16 m m 28 mia 28 Post-3 m 36 mia 28 mia 20 m 20 m m 16 m 8 m 4 m 32 mia 20 m 20 m 20 m m 36 m 12 m 4 mia 24 m 28 m 40 m 20 mia 32 mia 36 m 40 m 32 mia 28 m 40 m 32 mia 36 m 40 m 32 mia 36 m 40 m 32 mia 36 m 32 mia 36 m 32 mia 36 m 40 m 32 mia 36 m 40 mia												
m 28 mia 28 Post-3 m 36 mia 28 mia 20 m 20 m m 36 m 12 m 4 mia 24 m 40 m 24 m 40 m 28 m 40 m 28 m 40 m												
m 16 m 8 m 4 m 32 mia 20 m 20 m m 36 m 12 m 4 mia 24 m 24 m 24 m 24 m m 32 mia 4 mia 4 mia 48 m 20 m 4 m 24 m 24 m 24 m 24 m 40					Post-	3						
m 36 m 12 m 4 mia 24 m 20 m 4 m 4 m 20 m 4 m 4 m 20 m 4 m 4 m 20 m 4 m 28 m 40 m 24 m 40 m 40 m 24 m 40 m				8								
m 32 mia 4 mia 4 mia 48 m 20 m 4 m 16 m 24 mia 32 m 56 mia 12 m 40 m 112 mea 4 mia 20 mia 4 mia 28 m 40 m 76 m 212 m 8 mia 28 m 32 mia 36 m 8 m 264 mia 12 m 80 m 4 m 24 mia 4 m 24 mia 4 mia 4 mia 4 mia 4 mia 28 m 24 mia 4 mia 4 mia 28 m 24 mia 4 mia 28 m 24 mia 4 mia 20 mia 24 mia 24 mia 24 mia 24 mia 24 mia 20 mia 28 mia 24 mia 20 mia 20 mia 20 mia 20 mia 20 mia 20 mia												
m 16 m 24 mia 32 m 56 mia 12 m 40 m 112 mea 4 mia 20 mia 4 mia 28 m 40 m 76 m 212 m 8 mia 28 m 32 mia 36 m 8 m 264 mia 12 m 80 m 4 m 24 m 24 m 24 m 4 m 24 m 4 m 24 m 24 m 4 m 24 m 4 m 24 m 4 m 24 mia 4 m 24 mia 4 mia 4 mia 4 mia 20 mia 28 m 24 mia 48 mia 20 mia 28 m 48 mia 48 mia <td></td> <td>_</td> <td></td>		_										
m 112 mea 4 mia 20 mia 4 mia 28 m 40 m 76 m 212 m 8 mia 28 m 32 mia 36 m 8 m 264 mia 12 m 80 m 4 m 24 m 24 m 24 m 4 4 m 24 m 24 m 4 m 24 m 24 m 4 m 4 m 28 m 24 mia 4 m 4 mia 20 mia 28 m 24 mia 28 m 4 m 4 mia 20 mia 28 m 48 mia												
m 76 m 212 m 8 mia 28 m 32 mia 36 m 8 m 264 mia 12 m 80 m 4 m 24 m 16 m 4 m 20 m 24 m 24 m 4 m 16 m 4 m 20 m 24 m 24 mia 4 m 32 m 24 m 16 mia 32 mia 20 mia 28 m 28 m 4 m 20 mia 56 m 28 m 48 m 36 m 4 mia 4 mia 60 mia 8 mia 48 m 4 mia 4 mia 60 mia 8 mia 4 m 4 mia 36 m 16 mia 24 m 4 mia 36 m 16 mia 24 m 192 mia 8 mia 20 m 52 m 28 mia 24 m 24 mia 32 m 16 m 36 m 16 mia 52 m 76 mia 12 m 56 m 16 mea 16 mea 16 mea 16 mea m 52 m 4 mia <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						_						
m 8 m 264 mia 12 m 80 m 4 m 24 m m 16 m 4 m 20 m 24 m 24 m 4 m 4 m 4 m 28 m 24 mia 4 m 32 m 24 m 16 mia 32 mia 20 mia 28 m m 28 m 4 m 20 mia 56 m 28 m 48 mia 48 mia m 36 m 4 mia 4 mia 60 mia 8 mia 4 mia 4 mia 24 mia 25 mia 28 mia 24 mia 25 mia 28 mia 24 mia 24 mia 24 mia 25 mia 28 mia 24 mia 24 mia 25 mia 28 mia 24 mia 24 mia 24 mia 24 mia 25 mia 28 mia 24 mia 26 mia 26 mia <td></td> <td>_</td> <td></td>		_										
m 16 m 4 m 20 m 24 m 24 m 4 m 4 m 4 m 28 m 24 mia 4 m 32 m 24 m 16 mia 32 mia 20 mia 28 m 28 m 4 m 20 mia 56 m 28 m 48 m 36 m 4 mia 4 mia 60 mia 8 mia 4 m 4 mia 36 m 12 m 20 m 16 mia 24 m 4 mia 36 m 16 m 48 16 mia 24 m 192 mia 8 mia 20 m 52 m 28 mia 24 m 24 mia 32 m 16 m 36 m 16 mia 52 m 76 m 76 mia 12 m 56 m 16 mea 16 m 52 m 4 mia 16 mea 4 mia 20 m 224 m 8 mia 16 mea 4 mia 20 m 224 m 8 mia 16 mea m 8 m 60 m 4 mia												
m 4 m 4 mia 4 m 28 m 24 mia 4 m 32 m 24 m 16 mia 32 mia 20 mia 28 m 28 m 4 m 20 mia 56 m 28 m 48 m 36 m 4 mia 4 mia 60 mia 8 mia 4 m 4 mia 36 m 8 m 20 m 16 mia 24 m 4 mia 36 m 8 m 60 m 16 m 48 m 192 mia 8 mia 20 m 52 m 28 mia 24 m 24 mia 32 m 16 m 36 m 16 mia 52 m 76 m 76 mia 12 m 56 m 16 mea 16 m 52 m 4 mia 16 mea 4 mia 20 m 224 m 8 mia 16 mea 4 m 12 m 92 Post-1 m 8 mia 16 mea 4 m 20 mia 8 mia 4 m 4 mia 16 mea 4 m 40 mia 40 mia </td <td></td>												
m 32 m 24 m 16 mia 32 mia 20 mia 28 m 48 m 28 m 4 m 20 mia 56 m 28 m 48 m 36 m 4 mia 4 mia 60 mia 8 mia 4 m 4 mia 36 m 8 m 20 m 16 mia 24 m 192 mia 8 mia 20 m 52 m 28 mia 24 m 24 mia 32 m 16 m 36 m 16 mia 52 m 76 m 76 mia 12 m 56 m 16 mea 16 m 52 m 4 mia 16 mea 4 mia 20 m 224 m 8 mia 16 mea 4 m 12 m 92 Post-1 m 8 mia 16 mea 4 m 12 m 92 Post-1 m 4 mia 16 pre-2 m 20 mia 8 mia 4 m 4 mea 12 mia 24 m 40 mia 40												
m 28 m 4 m 20 mia 56 m 28 m 48 m 36 m 4 mia 4 mia 60 mia 8 mia 4 m 4 m 4 m 12 m 20 m 16 mia 24 m 4 mia 36 m 8 m 60 m 16 m 48 m 192 mia 8 mia 20 m 52 m 28 mia 24 m 24 mia 32 m 16 m 36 m 16 mia 52 m 76 m 76 mia 12 m 56 m 16 mea 16 m 52 m 4 mia 16 mea 4 mia 20 m 224 m 8 mia 16 mea 4 m 12 m 92 Post-1 m 8 mia 16 mea 4 m 12 m 92 Post-1 m 4 mia 16 pre-2 m 20 mia 8 mia 4 m 4 mea 12 mia 24 m 40 mia 40	m											
m 36 m 4 mia 4 mia 60 mia 8 mia 4 mia m 4 m 4 m 12 m 20 m 16 mia 24 mia m 4 mia 36 m 8 m 60 m 16 m 48 mia m 192 mia 8 mia 20 m 52 m 28 mia 24 mia m 24 mia 32 m 16 m 36 m 16 mia 52 mia m 76 m 76 mia 12 m 56 m 16 mea 16 mea 16 mea m 52 m 4 mia 16 mea 4 m 12 m 92 mia Post-1 m 8 mia 16 mea 4 m 12 m 92 mia Post-1 m 8 mia 16 mea 4 m 20 mia 8 m m 4 m 4 mia 16 mea 4 m 40 mia 40 mia	m							56	m			
m 4 m 4 m 12 m 20 m 16 mia 24 mia m 4 mia 36 m 8 m 60 m 16 m 48 mia 24 mia 28 mia 24 mia 24 mia 24 mia 20 m 52 m 28 mia 24 mia 24 mia 24 mia 24 mia 25 mia 24 mia 25 mia 24 mia 26 mia 26 mia 26 mia 26 mia 26 mia 26 mia 27 mia 28 mia 27 mia 28 mia 24 mia 26 mia 26 mia 26 mia 27 mia 28 mia 24 mia 26 mia 27 mia 28 mia 24 mia 26 mia 27 mia 28 mia 24 mia 24 mia 26 mia 28 mia 24 mia 26 mia 26 mia 27 mia 28 mia 24 mia 26 mia 27 mia 28 mia 24 mia 26 mia 28 mia	m	36	m	4	mia							
m 192 mia 8 mia 20 m 52 m 28 mia 24 mia 24 mia 32 m 16 m 36 m 16 mia 52 m m 76 m 76 mia 12 m 56 m 16 mea 16 mea 16 mea 16 mea 16 mea 224 m m 8 mia 16 mea 4 m 12 m 92 m 92 mia 8 m 60 m 60 mia 8 m </td <td>m</td> <td>4</td> <td>m</td> <td>4</td> <td>m</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>24</td>	m	4	m	4	m							24
m 24 mia 32 m 16 m 36 m 16 mia 52 m m 76 m 76 mia 12 m 56 m 16 mea 16 mea 16 mea 16 mea 16 mea 16 mea 12 m 92 mea 12 mea 92 mea 12 mea 12 mea 12 mea 12 mea 10 mea 10 mea 12 mea 12 mea 10 mea <t< td=""><td>m</td><td>4</td><td>mia</td><td>36</td><td>m</td><td></td><td></td><td>60</td><td>m</td><td></td><td></td><td>48</td></t<>	m	4	mia	36	m			60	m			48
m 76 m 76 mia 12 m 56 m 16 mea 16 mea 16 mea 16 mea 16 mea 224 mea m 8 mia 16 mea 4 m 12 m 92 mea 12 mea 92 mea 16 mea 10 mea 10 mea 10 mea 10 mea 16 mea 16 mea 16 mea 16 mea 16 mea 10 mea	m	192	mia	8	mia	20	m	52	m	28	mia	24
m 76 m 76 mia 12 m 56 m 16 mea 16 mea 16 mea 16 mea 16 mea 224 mea m 8 mia 16 mea 4 m 12 m 92 mea 12 mea 92 mea 16 mea 10 mea 10 mea 10 mea 10 mea 16 mea 16 mea 16 mea 16 mea 16 mea 12 mea 10 mea 10 mea 10 mea 16 mea 16 mea 16 mea 16 mea 12 mea 10 mea	m	24	mia	32	m	16	m	36	m	16	mia	52
m 8 mia 16 mea 4 m 12 m 92 Post-1 m 8 mia 16 m 8 m 60 m 4 m 4 mia 16 Pre-2 m 20 mia 8 mia 4 m 4 mea 12 mia 24 m 40 mia 40	m	76	m	76	mia	12	m	56	m			
Post-1 m 8 mia 16 m 8 m 60 m 4 m 4 mia 16 Pre-2 m 20 mia 8 mia 4 m 4 mea 12 mia 24 m 40 mia 40	m	52	m	4	mia	16	m	4	mia	20	m	224
Post-1 m 8 mia 16 m 8 m 60 m 4 m 4 mia 16 Pre-2 m 20 mia 8 mia 4 m 4 mea 12 mia 24 m 40 mia 40		•	m	8	mia	16	mea	_				
m 4 m 4 mia 16 Pre-2 m 20 mia 8 mia 4 m 4 mea 12 mia 24 m 40 mia 40	Post-	1	m							8	m	
mia 4 m 4 mea 12 mia 24 m 40 mia 40	m	4	m	4	mia	16	Pre-2					
	mia							24				
	mia	12	m									

Table 5 (cont'd.)

				$\frac{S}{b}$ and		\underline{S} and				$\frac{S}{beh}$	
					110	ocn.	11 0	DCII.	110	0011	11 0
											
m	24	m	24	m	20	m	36	mia	20	mea	20
		m		mea		mia	20		24		184
Post-1		m	24			mia	28		_	m	92
m	8	m	48			mia		mia	_	m	4
m	4	mia	4	m	64	m	48	m	16	m	4
mia	4	m	20	m	64	mea	4	m	20	mia	96
m	16	mia	32		60			mia		mia	20
m	8	m	24	m	64	m		mea	16	mia	20
mia	4	mea	4	m	4	m	4			mia	24
m	12			mea	8	m	60	Pre-2		mia	28
m	16	Post-2		m	40	m	32	m	116	mia	20
mia	16	m	16	m	52	m	16			mia	40
mia	8	m	4	m	_	m	60			m	16
mia	8	m	4	m	4	m		m		mia	16
m	20	m	4	m	24	m		m		mia	16
m	12	m	8	m	20	m		m		mia	20
mia		mia		mia		mia		m		mia	20
mia		mia	20		28	m		m		mia	20
m	20	m	4		~~	m	20			m	32
m	4			Post-3			16			mia	20
m	32			mia		m	20			mia	32
mia		mia	20	m	4	m	32		12		24
m	20	m	28		8	•••)~	m	36		4
m		m	4	m	8			m		mia	16
mia	4	m		mia		sham	42	m		mia	32
m		m	40			Rep.		m	196		20
m		mia		mia		Pre-1	_	m		mia	4
m	24	m		mia	28		24			m	32
m	28	m		mia		mia	24		76		4
m	40	mia		mia		mia		mia		m	4
mia	40	m	32			mia		mia		mea	4
m		mia	12			mia		mia	20		•
m		mia		mia		mia	32			Post	-1
mia	16		48		12		24			mia	_ 4
m	20			m		mia		Pre-3		mia	
mia	28			m	8			m		m	28
m	20		24			m		mia		mia	12
m	24			mia		mia		m		mia	24
m	8		4			mea		mia		mia	36
m	16			mia	24			mia		mia	16
mia	48			m		m		m		mia	24
m	16			mia		mia		mia		mia	8
m	40			mia		mia		mia		m	16
m		mia		mia	24			mia		mia	24
m	16			mia		m		m		mia	16
m	48			mia		mia		mia	16		24
			•	-			•	· · · · · · · · · · · · · · · · · · ·			•

Table 5 (cont'd.)

$\frac{S}{beh}$	irt	$\frac{S}{beh}$ and	irt	$\underline{\underline{S}}$ and beh.	irt	$\frac{S}{beh}$ and	irt	$\frac{S}{beh}$	irt	S and beh.	i irt
• _	4/		0.0			•	0.0			•	0.0
mia	16					mia		m.		mia	
m	16					m	10	mia		mia	
mia	20					mia	20	m 		mia	
mia	20	m 		mia				mia			_
m	24		20	mia				mia			
m		m	1.1.			mia				mia	
m						m				mia	
mia		m	230	mia	24	m	8	mia		mia	
m				mia						mia	
m 	20	m		mia							24
mia	4	m	148	mia	20	m	300	mia	4		
m.	28	m	44	mia m mia	52	m	52	mia	24		36
mia		m	52	m	20	_		m	12		20
mia	12	m	32	mia	32	Pre-2		mia	24	mia	
m		m	8	mia	16	m	20	m	16	mia	
mia	20	m	4	m	4	m	36	m	52	m	32
m	20	m	172	m	4	m	12	m	8	m	16
m	16			m m m mea sham 4 Rep. 2 Pre-1 mia	4	m m m m m	12	m	4	m m mia	24
mea	8	Post-	3	m	4	m	36	m	52	m	28
m	396	m	4	mea	12	m	8	m	4	mla	40
mia	8	m	4			mia	32	m	12	mia	52
mia	12	mia	4			mia	68	mia	4	mıa	10
m	20	m	12	sham 4	3	m	16	mia	28	m	12
mia	16	m	4	Rep. 2		mia	8	mia	32	mia	48
m	20	m	4	Pre-1		m	8	m		mia	16
mia	8	m	12	mia	20	mia	4	m mia mia	28		28
mia	10	mita		411	1 ~	TET	27	mra	12	mia	24
mia		mia	24	m		mia	20	m	16	mia	36
mia		mia	20	m	4	mia	20	mia	24	m	32
m	12	m	20	mia	24	mia	16	m	12	m	20
m	8	mia	20	m	16	mia	48	mea	4	m	36
m	8	mia	20	m	16	mea	32	mea mia	452	mia	4
m	4	m		mia		m	224	m	16	m	8
m		mia	24		40		68		28		4
mia	4	mia	24		24		96	mia	4	m	4
		m		mia	52		76	mia	16	m	4
Post-2	2	mia		mia	48		4	m	20	m	4
m		\mathtt{mia}		mia		mia	8	m	20	m	32
mia	4	m	24		16	mia	28	mia	4	m	4
m		mea		mia	32	mia	44	mia	16	m	4
mia	68			mia	32	mia	60			m	4
m	36	m	44	m	12	mea	4	Post-	1	m	28
m		m	4	m	4			m	4	mea	44
\mathtt{mia}	4	m		mia	20	Pre-3		m	4		
m	20			mia	20	mia	8	mia	12	Post-	-2
m	12	m	76	m	44	mia	28	m	16	m	12

Table 5 (cont'd.)

$\frac{S}{beh}$ and		$\frac{S}{beh}$	in+	$\frac{S}{heh}$ and	int	$\frac{S}{beh}$	int	S and	int	S an	d int
oen.	110	Den.	11.0	oen.	110	oen.	11.0	Den.	11.0	oen.	11 0
m	20	mia	8	mia	52	m	280	m	4	mia	20
m	40	mia		mea	24	m	96	m	48	m	24
m		mia	36	mia	284			m	60	mia	12
m	4	m		mia		Post-1		m	8	m	20
m	12	m	24		16		4			\mathtt{mia}	12
m		mia		mia	36		4		112		24
m	44			mia	40		4			mia	
m	80	m		mea	24	m	16			mia	24
m		mia	40			m	32		312		24
mia		mia		Pre-2		mia		mia		\mathtt{mia}	4
m		mia		mia	4			mia		mia	16
mia		m		mia		mia		mia	24		20
m		mia		mia	24			mia	20		8
m		m		mia	16			mia		\mathtt{mia}	8
m		mia		mia		mia		mia		mia	16
mia		m		mia	28			mia	24		12
mia		mia	12		44		20			\mathtt{mia}	4
mia	16			mia		mia	4		4		220
mia	40			mia		mia		mia	4	m	60
m		mea		mia		mia	32		_		
m	28			m .		mia		Post-			
m		mia		mia		m		m.	8	nor	30
m		mia		mia	48			mia	g	Rep.	2
m		mia		mia	24			mia		Pre-	
mia		mia		mia	20			m	16		16
mia	36			mea		mea		m		mia	8
mia		mia	32			mia		mia	24		24
mia	48			m		mia		mia		mia	8
m	12	mam 26	•	m	28			mia		mia	12
m	13	nor 26)	m	4	mia		mia		mia	40
mia		Rep. 2 Pre-1	•		40	mia mia	40	mia	12	mia mia	28
m		m),	m mia							36
m		mia			52 36			mia mia		mia	
m m		mia m	52	m mia	36 152			mia	12	m mia	28
m mia		mia		mia	172	m	8	mia		mia	16
m		mia		mia	32			mia		mia	24 28
m		mia		mia	60		16		16		20
mea.		mia	28	mita	00	mia		mea		mia	4
m		mia		Pre-3		m	20			mia	36
m		m	32		Я	mia	28			mia	48
411	7	mia	24	m	20		40			mia	24
Post-	3	mia	36		24		4			mea	32
m		m	28	m		mea	4		36		3 88
m		mia	12		148		-▼	mia		mia	40
m		mia	28			Post-2	?	m		mia	32

Table 5 (cont'd.)

S and		S and		S and	<u>l</u>	S and	đ	S and		San	d
beh.	irt	beh.	irt	beh.	irt	beh.	irt	beh.	irt	beh.	irt
-											
mia		mia	48	mea	4	m		mia	24	m	16
mia	36	mia	20			m	128	mia	16	m	4
mia	24	m	52	Post-	2	mia		mia	16	mea	4
mea	24	mia	40	m	4	mia		mea		mia	376
		mia	28	m	32		32	m		mia	20
Pre-2		mia		m	12	mia	16	m	44	m	16
mia	12	m	40	m	8		24	mia	24	m	4
mia	12	mia	4	m	8	mia	4	mia	20	mia	40
m	12	mia	32	mia	12	m		mia	12		16
mia	12	mia		m	44	m	8	mia	56	mia	
mia	28	m		mia		mia	4	mia	16		20
mia	28	mia	4	m	24			m	20		4
mia		mia	48	mia		mea		mia		mea	
mia		mia	8	m	20			mea	16		
mia		m	44	m	4			m		Post	-1
mia	28	mea	8	m	36	nor	33		_	mia	4
m	12			mia	4	Rep.	2	Pre-3		mia	
mia	16	Post-1	L	mia	24	Pre-	1	m	16	mia	8
mia	12		24	mia	20	m	24	mia		mia	12
m	36	mia	4		24	m		mia	16		20
mia	16		20	mia	4	m		mia	8		12
mea	20	mia	20		32	mia	16		8		12
m		m	44			mia		mia	8	mia	12
mia	4	mia	12	mia		mia	36	m		mia	20
mia		mia	36			mia		mia		mia	40
mia	68	mia	20	mia	24	mia		mia		mia	16
mia	16	m		mia		mia		mia	16	mia	16
mia	20	mia	20			mia		mia		mia	16
mia		mia		mia		mia	52			mia	20
mia		mia		mea		mia	8	mia	12	mia	16
mia		mia	36		644	m	76		32	m	16
mia	20		32		8	mia		mia		mia	16
mia		mea	4	m	36	mia		mia	32	m	20
mea	32		380	mia		mea	52		36	mia	44
		mia		mia	20			mia	20		40
Pre-3		mia	56			mia	56		16		16
m	36		12			mia		m		mia	12
mia	8		16	Post-	.3		_	mia		mia	12
m		mia	32	mia		Pre-	2	mia		mia	36
mia	24		40		52	m		m	16		8
m		mia		mia		mia		mia		mea	20
m	12		16		24		12		16		264
mia	28			mia		mia	12			m	8
m		mia		mia		mia	12			mia	20
m		mia		mea		mia		mia		mia	12
mia		m	32		324			mia	56		12
			-		-				_		

Table 5 (cont'd.)

S and		S and		S and		S and		S and		S and	d
beh.			irt	beh.	irt	beh.	irt		irt	beh.	
	•						•		•	00	0
mia	8	mia	12	mia	24	m	32	Post-1		m	92
m		mia		mia	72			m	4	m	68
mia	24	mea	20	m		mia		m	4	m	140
mia	16	m	152	m	88			m	8	m	108
mia	16	mia	196	m	40	Pre-3		m	4	m	196
mia	16	mia	-	mia		m	4	m	8	m	264
m	16	mia	20	m	44	mia	8		12		
m	32	m	12	m	4	mia	20	mia	4	Post	-3
m	8	mia	20			m	12	m	36		4
m	16	mea	20	Pre-2		mia	20	m		mia	4
mia	20	m	436	m	4	mia	20	m	44	m	16
mia	8	mia	4	m	4	mia	20	m	8	m	16
m	20	mia	20	m	4	m	24	m	16	mia	20
m	24	mia	16	m	20	mia	32	mia		mia	32
mia	4	mia	16	mia		mia		mia	24		24
m	24	mia		mia		mia		mia		mia	4
mia	8	mia		mia	20	m		mia	56		24
mia	28	m		m		mia	28		48		28
mea		mea		mia		m		mia		mia	4
				m		mia		mia	32		28
Post-	2			mia	20	m	36		28		20
m		nor 35		mia	16	m	- ·	mea		mia	16
m		Rep. 2		m	40	m			152		36
m		Pre-1		mia	20	m	48	m		mea	4
m	4	m	8	m		mia	104	m		m	172
m	40	mia	4	m	16	m	20	m		m	24
m	64	m	24	m	-8	m	24	m	52	m	92
m		mia		mia	24	mia		mia	4	m	152
m	4	m	32	m	4	m		mia	28	m	32
m	_	mia	28	m		mia	28	m		mia	80
m		mia	28	m		mia		mia	28	mia	20
m		mia	32	m		mia	_	m		mia	24
m	72		40			mia	32			mia	24
m		mia		m	40		16			mia	20
m	168			m	32		24		28		24
m		mia		mia		mia	72			mia	44
m		mea		m	12			mia	4	m	56
m	28		88		16		12	m		mia	12
		mia		mia	4	m	28		8	m	40
Post-	3	m	20	m		mia	40		_	mea	4
mia	4			mia		mia	28	•••	Ŭ	mea	•
mia	12	m		mia	60			Post-2			
mia	20		40		28		104		Ш	nor	37
mia	16			mea		mia		m		Rep.	
mia	24		32		284		24		2/L	Pre-	1
mia	20		36		32	411	٤.4	m	80		
	20	411		TIT	٦4			111	\cup \cup	111	32

Table 5 (cont'd.)

Sand beh. Jeh.	S and		S and		S and		San	d	S and		San	d
mia 20 mia 28 m 4 m 4 mia 24 mia 32 mia 52 mia 28 mia 56 m 4 m 24 m 20 mia 52 mia 4 mia 4 mia 20 m 20 mia 52 m 4 mia 4 mia 8 mia 20 m 4 mia 36 mea 4 mia 40 mia 32 mia 16 m 4 m 4 Pre-3 mia 40 mia 32 mia 16 m 4 mia 4 mia 40 mia 32 mia 20 m 24 m 4 mia 36 mia 12 mea 28 mia 20 m 24 mia 16 m 4 <td>beh.</td> <td>irt</td> <td>beh.</td> <td>irt</td> <td>beh.</td> <td>irt</td> <td>beh.</td> <td>irt</td> <td>beh.</td> <td>irt</td> <td>beh.</td> <td>irt</td>	beh.	irt	beh.	irt	beh.	irt	beh.	irt	beh.	irt	beh.	irt
m 52 mia 28 mia 56 m 4 mia 20 m 20 m 20 m 20 m 20 m 20 m 4 mia 8 mia 20 m 4 mia 36 mea 4 mia 64 mia 16 mia 20 m 12 m 64 Pre-3 mia 28 mia 28 mia 24 m 8 mia 4 m 4 mia 40 mia 32 mia 14 m 4 ma 4 mia 40 mia 32 mia 24 m 8 ma 36 mia 12 mea 28 mia 24 mia 32 mia 4 mia 24 mia 4 mia 24 mia 4 mia 24 mia 16<												
m 52 mia 28 mia 56 m 4 mia 20 m 20 m 20 m 20 m 20 m 20 m 4 mia 8 mia 20 m 4 mia 36 mea 4 mia 64 mia 16 mia 20 m 12 m 64 Pre-3 mia 28 mia 28 mia 24 m 8 mia 4 m 4 mia 40 mia 32 mia 14 m 4 ma 4 mia 40 mia 32 mia 24 m 8 ma 36 mia 12 mea 28 mia 24 mia 32 mia 4 mia 24 mia 4 mia 24 mia 4 mia 24 mia 16<							•					
mia 4 m 36 m 4 mia 8 mia 20 m 4 mia 8 mia 20 m 4 mia 8 mia 20 m 4 mia 36 mea 4 mia 64 mia 16 mia 20 m 12 m 4 mia 4 mia 40 m 32 mia 16 m 4 m 4 m 4 mia 40 m 32 mia 16 m 4 m 4 m 4 mia 40 m 32 mia 16 m 4 m 3 m 24 m 4 mia 12 m 4 mia 12 m 4 mia 12 m 4 mia 12 m 4 m 12 m 4 m 16 m 20 m 24 m 16 m 0 m 16 m 10 m 10 m	mia				m	4	m			24	mia	32
mia 4 m 36 m 4 mia 8 mia 20 m 4 mia 8 mia 20 m 4 mia 8 mia 20 m 4 mia 36 mea 4 mia 64 mia 16 mia 20 m 12 m 4 mia 4 mia 40 m 32 mia 16 m 4 m 4 m 4 mia 40 m 32 mia 16 m 4 m 4 m 4 mia 40 m 32 mia 16 m 4 m 3 m 24 m 4 mia 12 m 4 mia 12 m 4 mia 12 m 4 mia 12 m 4 m 12 m 4 m 16 m 20 m 24 m 16 m 0 m 16 m 10 m 10 m					mia	56	m					
ma 36 mea 4 mia 40 ma 32 mia 16 m 4 mia 40 mia 28 mia 8 m 24 m 8 mia 4 m 4 mia 28 mia 24 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 24 mia 25 mia 20 m 16 m 4 m 4 m 20 m 16 m 4 m 4 m 20 m 4 mia 12 m 4 mia 20 m 24 mia 16 m 4 m 18 m 24 mia 16 m 4 m 12 m 4 m 12 m 4 m 12 m 4 m 12	mia			36	m	16	m	4	mia	20	m	20
ma 36 mea 4 mia 40 ma 32 mia 16 m 4 mia 40 mia 28 mia 8 m 24 m 8 mia 4 m 4 mia 28 mia 24 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 24 mia 25 mia 20 m 16 m 4 m 4 m 20 m 16 m 4 m 4 m 20 m 4 mia 12 m 4 mia 20 m 24 mia 16 m 4 m 18 m 24 mia 16 m 4 m 12 m 4 m 12 m 4 m 12 m 4 m 12	mia	52	m	4	mia	4	mia	8	mia	20	m	4
m 64 mia 40 m 32 mia 16 m 4 mia 4 pre-3 mia 20 mia 24 m 8 mia 36 mia 12 mea 28 mia 24 mia 52 mia 20 ma 36 mia 28 prost-2 m 24 mia 52 mia 20 mia 316 mia 28 prost-2 m 24 mia 12 m 4 mia 24 mia 12 m 4 mia 24 mia 12 m 4 mia 24 mia 8 m 28 m 20 m 24 m 8 m 28 m 20 m 16 m 4 mia 24 m 32 m 4 mia 16 m 4 mia 24 <t< td=""><td>mia</td><td>36</td><td>mea</td><td>4</td><td>mia</td><td>64</td><td>mia</td><td>16</td><td>mia</td><td>20</td><td>m</td><td>12</td></t<>	mia	36	mea	4	mia	64	mia	16	mia	20	m	12
mea 28 mia 28 mia 24 mia 52 mia 20 m 16 m 4 mia 20 m 16 m 4 mia 24 mia 12 m 8 m 28 m 24 mia 24 mia 8 m 24 mia 8 m 28 mia 32 mia 36 m 4 mia 16 m 20 m 16 mia 24 m 16 mia 24 mia 24 mia 20 m 16 mia 24 mia 24 mia 24	m	64			mia	40	m	32	mia	16	m	4
mea 28 mia 28 mia 24 mia 52 mia 20 m 16 m 4 mia 20 m 16 m 4 mia 24 mia 12 m 8 m 28 m 24 mia 24 mia 8 m 24 mia 8 m 28 mia 32 mia 36 m 4 mia 16 m 20 m 16 mia 24 m 16 mia 24 mia 24 mia 20 m 16 mia 24 mia 24 mia 24	m	4	Pre-3		mia	28	mia	8	m			8
mea 28 mia 28 mia 24 mia 52 mia 20 m 16 m 4 mia 20 m 16 m 4 mia 24 mia 12 m 8 m 28 m 24 mia 24 mia 8 m 24 mia 8 m 28 mia 32 mia 36 m 4 mia 16 m 20 m 16 mia 24 m 16 mia 24 mia 24 mia 20 m 16 mia 24 mia 24 mia 24	mia	4	m	4	mia	40	mia	32	mia	4	m	4
mea 28 mia 28 post-2 m 24 mia 12 m 8 mia 12 mia 28 m 4 mia 24 mia 12 m 8 m 60 m 36 m 4 mia 12 m 4 mia 8 mia 32 mia 36 m 4 mia 16 m 4 mia 32 mea 60 mia 24 m 8 m 24 m 4 mia 16 m 4 mia 16 mea 60 mia 24 m 8 m 24 m 4 mia 16 m 4 mia 16 mea 20 mia 32 m 44 mia 16 mia 4 mia 20 m 16 mia 20 mia 52 m 16 mia 24 mea 12 m 48 mia 20 mia 52 m 16 mia 24 mea 12 m 48 mia 16 mea 20 m 4 mia 24 mia 24 mia 28 20 m 20 m 40 mia 16 mia 24 mia 28 m <	m	36	mia	12	mea							20
mia 316 mia 28 Post-2 m 24 mia 8 m 28 mia 12 mia 28 m 4 mia 24 mia 8 m 28 m 20 mia 24 mia 8 m 24 m 4 mia 16 m 20 m 16 m 20 m 16 m 20 m 16 mia 24 m 16 mia 24 m 16 mia 24 m 16 mia 24 m 12 m 18 m 12 m 14 mia 24 mia 20 m 16 mia 24 mia 20 m 4 mia 24 mia 20	mea											
m 60 m 36 m 4 mia 12 m 4 mia 8 mia 32 mia 36 m 4 mia 16 m 4 m 32 mea 60 mia 24 m 8 m 24 m 4 mia 16 17 17 18 18 18 18 18 18 18 18 <		316	mia	28	Post-2		m					
m 60 m 36 m 4 mia 12 m 4 mia 8 mia 32 mia 36 m 4 mia 16 m 4 m 32 mea 60 mia 24 m 8 m 24 m 4 mia 16 17 17 18 18 18 18 18 18 18 18 <		12	mia	28	m	4	mia					
mia 32 mia 36 m 4 mia 16 m 4 mia 32 mia 36 m 4 mia 16 m 4 mia 168 mia 24 m 4 mia 168 mia 24 m 8 m 16 m 20 m 16 m 20 m 16 m 16 m 20 m 16 mia 24 mia 20 m 48 mia 48 mia 20 mia 48 mia		60	m	36	m	4	mia			ŭ	mia	28
mea 60 mia 24 m 8 m 24 m 4 mia 16 8 m 24 m 8 m 16 Pre-2 mia 36 m 24 m 16 m 20 m 16 m 20 m 16 m 20 m 16 m 20 m 16 mia 24 m 20 m 16 mia 16 mia 24 mia 20 m 16 mia 24 mia 20 m 28 m 24 mia 20 m 28 m 20 m 4 mia 4 mia 28 m 16 mia												
Pre-2 mia 28 m 20 m 24 m 8 m 16 m 28 mia 32 m 44 mia 16 mia 20 m 16 m 20 mia 52 m 16 mia 24 mea 12 m 48 mia 20 m 36 m 4 mia 24 mea 12 m 48 mia 16 mea 20 m 4 mia 24 mia 24 mia 24 mia 24 mia 4 mia 36 mia 40 m 28 m 28 m 20 m 40 mia 20 mia 52 m 104 m 20 m 8 m 20 m 40 mia 24 mia 32 m 104 m 20 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 9 m 9 m 9 m 9 m 9 m 9 m 9 m 9 m 9 m 9 m 9 m 9 m 9 m 9 m					m	Ŕ	m					168
Pre-2 mia 36 m 24 m 16 m 20 m 16 mia 4 mia 20 m 16 mia 4 mia 20 m 48 mia 20 m 48 mia 20 m 48 mia 20 m 48 mia 24 mea 12 m 48 mia 20 m 48 mia 24 mia 24 mia 22 m 344 m 28 m 28 m 28 m 28 m 20 m 40 mia 44 mia 48 mia 44 mia 44 mia 48 mia 24 mia 44 mia 48 mia 24 mia 44 mia 48 m 20 m 40 m 40 mia 44 mia	mea	00										
m 28 mia 32 m 44 mia 16 mia 4 mia 20 m 48 mia 20 m 48 mia 24 mea 12 m 48 mia 20 m 48 mia 32 m 344 m 28 m 28 m 20 m 48 mia 24 mia 24 mia 24 mia 24 mia 48 mia 48 mia 48 mia 48 mia 48 mia 40 mia	Dro-2											
m 20 mia 52 m 16 mia 24 mea 12 m 48 mia 20 m 36 m 4 mia 32 m 344 m 28 mia 16 mea 20 m 4 mia 24 mia 24 mia 4 mia 36 mia 404 m 28 m 28 m 20 m 40 mia 20 mia 52 m 104 m 20 m 8 m 8 m 12 m 40 mia 24 mia 32 m 4 mia 48 m 12 m 4 m 20 m 4 mia 4 m 4 m 20 m 4 mia 4 m 4 m 20 m 4 m 4 m 20 m 4 mia 4 m 20 m 4 m 4 m 20 m 4 m 20 m 4 m 20 m 4 m 20 m 20 m 20 m 4 m 20 m 20 m												
mia 20 m 36 m 4 mia 32 m 344 mia 28 mia mia 16 mea 20 m 4 mia 24 mia 24 mia 4 mia mia 36 mia 404 m 28 m 28 m 20 m 40 mia mia 20 mia 52 m 104 m 20 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 12 m 4 m 20 m 20 m 4 m 4 m 20 m 20 m 4 m 4 m 20 m 20 m 4 m 4 m 20 m 24 m 20 m 24 m 20 m 24 m 20 m 24 m 20 m 24 m 20 m 24 m 24 m 24 m 24 m 24 m								27	mia			
mia 16 mea 20 m 4 mia 24 mia 24 mia 4 mia mia 36 mia 404 m 28 m 28 m 20 m 40 mia 20 mia 52 m 104 m 20 m 8 m 8 m 24 mia 32 m 4 mia 48 m 12 m 4 m 4 mia 24 mia 28 m 8 m 12 m 4 m 20 m 4 m 4 m 20 m 4 m 4 m 20 m 20 m 20 m 4 m 4 m 20 m 20 m 20 m 4 m 20 m 24 m					m	10	mia					
mia 36 mia 404 m 28 m 28 m 20 m 40 mia 20 mia 52 m 104 m 20 m 8 m 8 m 24 mia 32 m 4 mia 48 m 12 m 4 m 4 mia 24 mia 28 m 16 mia 28 m 4 m					m	44 J.	mia					
mia 20 mia 52 m 104 m 20 m 8 m 8 m 4 mia 48 m 12 m 4 mia 4 mia 48 m 12 m 4 mia					m	- 4	mla					
m 24 mia 32 m 4 mia 48 m 12 m 4 m												
mia 24 mia 28 m 88 m 12 m 4 m 4 m mia 36 mia 44 mia 28 m 16 mia 28 m 4 m mia 36 mea 32 m 64 mea 20 m 20 m 4 m mia 32 mia 8 m 424 m 16 mia 8 m mia 16 Post-1 m 28 m 36 m m 4 m mia 16 m 4 m 28 mia 4 m 8 m 8 m mia 16 m 4 m 28 mia 4 m 8 m 8 m 8 m mia 40 m 4 mia 12 mia 16 m 4 m 20 mia 12 mia 16 mia 24 m 12 mia 16 mia 24 mia 16 mia 24 mia 16 mia 24 mia 26 mia 28 mia 20 mia <td></td>												
mia 36 mia 44 mia 28 m 16 mia 28 m 4 mia mia 36 mea 32 m 64 mea 20 m 20 m 4 mia mia 16 Post-1 m 28 m 36 m m 4 m mia 16 Post-1 m 28 m 36 m m 4 m mia 16 m 4 m 20 m 4 m 8 m 8 m 8 m mia 16 m 4 m 28 mia 4 m 8 m 9 m 16 mia 12 mia 12 mia 14 m 12 mia 14 m 12 mia 14 mia 12 mia 14 mia 16 mia 12 mia 14 mia 16 mia 24 mia 36 mia 14 mia 16 mia 24 mia 36 mia 16 mia 32 mia 16 mia 32 mia 16 mia 32 mia					m							
mia 36 mea 32 m 64 mea 20 m 20 m 4 mia 16 Post-1 m 28 m 36 m 4 16 mia 8 mia 16 Post-1 m 28 m 36 m m 4 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 4 m 8 m 4 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 8 m 10 m 4 m 20 m 12 m 14 m 12 m 14 m 12 m 14 m 12 m 14 m <t< td=""><td></td><td>24</td><td>mia</td><td>28</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		24	mia	28								
mia 16 Post-1 m 28 m 36 m 4 m 20 m 4 mia 4 m 20 Pre-2 mia 12 mia 16 m 4 m 28 mia 4 m 8 m 8 mia 40 m 4 mia 12 mia 16 m 4 m 20 mia 4 m 4 mia 24 mia 36 mia 4 m 12 mia 20 m 32 m 48 mia 28 m 16 m 16 m 16 mia 24 m 4 mia 12 mia 24 mia 16 mia 24 m 16 mia 24 mia 16 mia 24 mia 36 mia 24 m 36 mia 24 m 36 mia 24 m 36 mia 24 mia 36 mia 28 mia		36	mıa	44								
mia 16 Post-1 m 28 m 36 m 4 m 20 m 4 mia 4 m 20 Pre-2 mia 12 mia 16 m 4 m 28 mia 4 m 8 m 8 mia 40 m 4 mia 12 mia 16 m 4 m 20 mia 4 m 4 mia 24 mia 36 mia 4 m 12 mia 20 m 32 m 48 mia 28 m 16 m 16 m 16 mia 24 m 4 mia 12 mia 24 mia 16 mia 24 m 16 mia 24 mia 16 mia 24 mia 36 mia 24 m 36 mia 24 m 36 mia 24 m 36 mia 24 mia 36 mia 28 mia		36	mea	32	m	64	mea					
mia 16 m 4 m 28 mia 4 m 8 m 8 mia 40 m 4 mia 12 mia 16 m 4 m 20 mia 4 m 4 mia 24 mia 36 mia 4 m 12 mia 20 m 32 m 48 mia 28 m 16 m 16 mia 24 m 20 mia 12 mia 24 mia 16 mia 24 mia 20 m 24 mia 36 mia 28 m 24 m 36 mia 24 m 4 mia 28 mia 16 mia 32 m 4 mia 24 m 4 mia 28 mia 16 mia 32 m 4 m 32 m 4 mia 32 mia 16 mia 32 m 4 m 32 m 4 mia 32 mia 16 mia 32 m 4 m 32 m 4 mia 52 mia mia 16 mia 24 m 4 m 32 m 4 mia 52 mia mia 12 m 4 mia 28 mia 76 mia 28 pre-1 mia 8 m		32		_	mia			424	m	16	mia	
mia 16 m 4 m 28 mia 4 m 8 m 8 mia 40 m 4 mia 12 mia 16 m 4 m 20 mia 4 m 4 mia 24 mia 36 mia 4 m 12 mia 20 m 32 m 48 mia 28 m 16 m 16 mia 24 m 20 mia 12 mia 24 mia 16 mia 24 mia 20 m 24 mia 36 mia 28 m 24 m 36 mia 24 m 4 mia 28 mia 16 mia 32 m 4 mia 24 m 4 mia 28 mia 16 mia 32 m 4 m 32 m 4 mia 32 mia 16 mia 32 m 4 m 32 m 4 mia 32 mia 16 mia 32 m 4 m 32 m 4 mia 52 mia mia 16 mia 24 m 4 m 32 m 4 mia 52 mia mia 12 m 4 mia 28 mia 76 mia 28 pre-1 mia 8 m		16	Post-1	L.	m			36			m	
mia 4 m 4 mia 24 mia 36 mia 4 m 12 mia 20 m 32 m 48 mia 28 m 16 m 16 mia 24 m 20 mia 12 mia 24 mia 16 mia 24 mia 20 m 24 mia 36 mia 28 m 24 m 36 mia 24 m 4 mia 28 mia 16 mia 32 m 4 m 24 m 4 mia 32 mia 16 mia 32 m 4 m 32 m 4 mia 52 mia 16 mia 32 m 4 m 32 m 4 mia 28 mia 16 mia 32 m 4 mea 4 mia 4 mia 52 mia mia 12 m 4 mia 28 mia 76 mia 24 mia 24 mia 20 m 4 mia 24 mia 32 mea 8 m 300 m 12 m 4 mia 24 mia 32 mea 8 mia 300 m 12 m 4 mia 28 mea 56 mia 4 mia		20	m	4	mia	4	m	20	Pre-2		mia	
mia 4 m 4 mia 24 mia 36 mia 4 m 12 mia 20 m 32 m 48 mia 28 m 16 m 16 mia 24 m 20 mia 12 mia 24 mia 16 mia 24 mia 20 m 24 mia 36 mia 28 m 24 m 36 mia 24 m 4 mia 28 mia 16 mia 32 m 4 m 24 m 4 mia 32 mia 16 mia 32 m 4 m 32 m 4 mia 52 mia 16 mia 32 m 4 m 32 m 4 mia 28 mia 16 mia 32 m 4 mea 4 mia 4 mia 52 mia mia 12 m 4 mia 28 mia 76 mia 24 mia 24 mia 20 m 4 mia 24 mia 32 mea 8 m 300 m 12 m 4 mia 24 mia 32 mea 8 mia 300 m 12 m 4 mia 28 mea 56 mia 4 mia					m	28	mia	4	m	8	m	
mia 4 m 4 mia 24 mia 36 mia 4 m 12 mia 20 m 32 m 48 mia 28 m 16 m 16 mia 24 m 20 mia 12 mia 24 mia 16 mia 24 mia 20 m 24 mia 36 mia 28 m 24 m 36 mia 24 m 4 mia 28 mia 16 mia 32 m 4 m 24 m 4 mia 32 mia 16 mia 32 m 4 m 32 m 4 mia 52 mia 16 mia 32 m 4 m 32 m 4 mia 28 mia 16 mia 32 m 4 mea 4 mia 4 mia 52 mia mia 12 m 4 mia 28 mia 76 mia 24 mia 24 mia 20 m 4 mia 24 mia 32 mea 8 m 300 m 12 m 4 mia 24 mia 32 mea 8 mia 300 m 12 m 4 mia 28 mea 56 mia 4 mia								16	m	4	m	
mia 24 m 20 mia 12 mia 24 mia 16 mia 24 m mia 20 m 24 mia 36 mia 28 m 24 m 36 mia 28 m 24 m 36 mia 32 m 4 mia 32 m 4 mia 4 mia 32 m 4 mia 4 mia 24 m 40 mia 28 m 40 mia 28 m 40 mia 40 mia 24 m 40 mia 24 mia 40 mia 24 mia 20 m 40 m 56 m 20 m 4 mia 4 mia </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>36</td> <td>mia</td> <td>4</td> <td>m</td> <td></td>								36	mia	4	m	
mia 20 m 24 mia 36 mia 28 m 24 m 36 mia 24 m 4 mia 28 mia 16 mia 32 m 4 m 24 m 44 m 32 mia 16 mia 24 m 32 m 4 mia 52 mia 28 m 40 mea 4 mia 4 mia 24 nor 38 mia 12 m 4 mia 312 mia 72 mia 24 Rep. 2 m 24 m 4 mia 28 mia 76 mia 28 Pre-1 mia 8 m 20 m 4 mia 8 mia 76 m 40 m 56 m 20 m 4 mia 24 mia 32 mea 8 m 300 m 12 m 4 mia 28 mea 56 mia 4 m 24 m 4												16
mia 24 m 4 mia 28 mia 16 mia 32 m 4 m 24 m 44 m 32 mia 16 mia 24 m 32 m 4 mia 52 mia 28 m 40 mea 4 mia 4 mia 24 nor 38 mia 12 m 4 m 312 mia 72 mia 24 Rep. 2 m 24 m 4 mia 28 mia 76 mia 28 Pre-1 mia 8 m 20 m 4 mia 8 mia 76 m 40 m 56 m 20 m 4 mia 24 mia 32 mea 8 m 300 m 12 m 4 mia 28 mea 56 mia 4 m 24 m 4	mia							24	mia	16	\mathtt{mia}	24
mia 24 m 4 mia 28 mia 16 mia 32 m 4 m 24 m 44 m 32 mia 16 mia 24 m 32 m 4 mia 52 mia 28 m 40 mea 4 mia 4 mia 24 nor 38 mia 12 m 4 m 312 mia 72 mia 24 Rep. 2 m 24 m 4 mia 28 mia 76 mia 28 Pre-1 mia 8 m 20 m 4 mia 8 mia 76 m 40 m 56 m 20 m 4 mia 24 mia 32 mea 8 m 300 m 12 m 4 mia 28 mea 56 mia 4 m 24 m 4	mia			24	\mathtt{mia}	36	mia	28	m	24	m	36
m 32 m 4 mia 52 mia 28 m 40 mea 4 mia 4 mia 24 nor 38 mia 12 m 4 m 312 mia 72 mia 24 Rep. 2 m 24 m 4 mia 28 mia 76 mia 28 Pre-1 mia 8 m 20 m mia 8 mia 76 m 40 m 56 m 20 m 4 mia 24 mia 32 mea 8 m 300 m 12 m 4 mia 28 mea 56 mia 4 m 24 m 4	mia	24	m				mia	16	mia	32	m	
m 32 m 4 mia 52 mia 28 m 40 mea 4 mia 4 mia 24 nor 38 mia 12 m 4 m 312 mia 72 mia 24 Rep. 2 m 24 m 4 mia 28 mia 76 mia 28 Pre-1 mia 8 m 20 m 4 mia 8 mia 76 m 40 m 56 m 20 m 4 mia 24 mia 32 mea 8 m 300 m 12 m 4 mia 28 mea 56 mia 4 m 24 m 4	m	24	m	44	m	32			mia	16	mia	24
mea 4 mia 4 mia 24 nor 38 mia 12 m 4 m 312 mia 72 mia 24 Rep. 2 m 24 m 4 mia 28 mia 76 mia 28 Pre-1 mia 8 m 20 m mia 8 mia 76 m 40 m 56 m 20 m 4 mia 24 mia 32 mea 8 m 300 m 12 m 4 mia 28 mea 56 mia 4 m 24 m 4	m	32	m	4	mia							40
m 312 mia 72 mia 24 Rep. 2 m 24 m 4 mia 28 mia 76 mia 28 Pre-1 mia 8 m 20 mia 8 mia 76 m 40 m 56 m 20 m 4 mia 24 mia 32 mea 8 m 300 m 12 m 4 mia 28 mea 56 mia 4 m 24 m 4	mea					24	nor '	38				
mia 28 mia 76 mia 28 Pre-1 mia 8 m 20 m mia 8 mia 76 m 40 m 56 m 20 m 4 m mia 24 mia 32 mea 8 m 300 m 12 m 4 m mia 28 mea 56 mia 4 m 24 m 4 m												
mia 8 mia 76 m 40 m 56 m 20 m 4 mia 24 mia 32 mea 8 m 300 m 12 m 4 mia 28 mea 56 mia 4 m 24 m 4						28	Pre-	1				
mia 24 mia 32 mea 8 m 300 m 12 m 4 mia 28 mea 56 mia 4 m 24 m 4												
mia 28 mea 56 mia 4 m 24 m 4												
						J						
	mia				Post-3							4

Table 5 (cont'd.)

$\frac{S}{heh}$ and	irt	$\frac{S}{beh}$ and	irt	\underline{S} and	irt	\underline{S} and	irt	$\frac{S}{heh}$ and	irt
	11.0	ocn.	11.0		11 0		11 0		11 0
m		m	4	m		m		mia	8
m	36	mia	4		4		28	mia	32
m	4	m	12	m	28	m	4	m	32
m	4	m	8		12	m	8 28	m	16
\mathtt{mia}		mia	12		20	m	28	m	16
m		m	16		52	m	4	mia	16
m		mia	12	m	4	m	124	m	48
m	4	m	12	m	8	Post-		mia	16
m		m	12	m	20	Post-	3	m	40
m	4	mia	8	m	12	m	4	mia	4
m	4		36	mea	4	m	4	m	64
		m	20		188		4	m	8
Pre-3		mia	16			mia	16		20
m	44	m	20			m	24		12
m		m	24			mia		mia	12
m	28		8	mia	92	m	20		44
m	20		20	Post-2		m	4		12
m	48		4	Post-	2	mia	8	m	20
m	56						24		
m	120		8	m	20	m	20		
m		mia	8	m	4		12		
m	56	m	28	m	4	mia	16		
m	24		12			m	16		
m	24		8	m	12		12		
m	16		8		16		8		
m	8		16			mia	4		
m	4		4			m.	24		
m	20		24	m		mia	4		
m	140		16	m	4	mia	32		
m	32	m	16	m	28	m	16		
m	4		16	m	4		12		
m —	40	m 	12	m 		m	4		
m 	44	m	4	m 	סנ	m	8		
m	4	m	20	m	44 4	m	8		
m —	16 8	m	28	m		m	4 8		
m	8	m	24 20	m	72	m	4		
m	16	m	4	m	4	m			
m	24	m	4	m	28 4	m	8		
m	8	m	4	m	16	mea	12		
m	40	m	8	m	44	m	284		
m	24	m	24	m	160	m m	16 44		
m m	248	m m	4	m	84	m			
m m	8	m m	12	m	148	m mio	32 4		
m	O	m m	32	m	16	mia	20		
Post-1	1	mia	20	m m	12	m m	20		
1030-1	•	1111111	20	*111	14	T 11	20		

APPENDIX C

APPENDIX C

Table 6

Raw data: postejaculatory responses not occurring within 20 minute sessions

Subject	Rep.	Session	Response	Interval in seconds
cing 2	1	Pre-2 Pre-3	m m	236 304
cing 6	1	Post-3 Pre-2 Post-1	m mia m	248 352 144
cing 7	1	Post-3 Pre-1 Pre-3 Post-1	m mia m m	372 484 500 292
cing 12	1	Post-3 Pre-1 Post-2	m mia m	452 104 328
cing 18 neo 9	1	Pre-1 Post-1	mia m	232 404
neo 19 sham 1	1	Pre-l Pre-1	mia mia	400 516
sham 3	1	Pre-1 Post-1 Post-2 Post-3	mia m m m	536 460 260 236
sham 10 sham 22	1	Post-3 Pre-2	m m	432 352
		Post-2	m	400
nor 4 nor 8	1	Pre-1 Pre-3	mia m	396 324
nor 11	1	Pre-3 Post-2 Post-3	m m m	372 264 304
nor 13	1	Pre-1 Pre-3 Post-1	mia m m	412 208 416
nor 15	1	Pre-3 Post-1 Post-3	m m m	300 352 392
nor 17	1	Post-1	m	264

Table 6 (cont'd.)

Subject	Rep.	Session	Response	Interval in seconds
		Post-2	m	304
cing 24	2	Pre-2	mia	420
		Pre-3	m	356
cing 28	2	Pre-2	m	412
		Post-2	m	304
cing 29	2	Pre-3	m	472
Ů,		Post-3	m	276
cing 34	2 2	Pre-1	m	300
cing 39	2	Pre-2	${\tt mia}$	484
		Pre-3	m	460
		Post-2	m	184
		Post-3	m	392
neo 27	2	Pre-1	m	572
		Pre-2	m	348
neo 31	2	Pre-1	m	304
neo 36	2	Pre-1	m	344
-		Pre-2	m	364
		Post-3	m	248
neo 40	2	Pre-1	m	320
		Pre-3	m	2 88
		Post-1	m	280
neo 41	2	Pre-2	m	480
		Pre-3	m	280
		Post-2	m	236
sham 23	2	Pre-1	m	260
		Pre-2	m	156
		Pre-3	mia	3 88
sham 25	2	Pre-1	m	224
		Pre-2	m	164
sham 32	2	Pre-1	m	442
		Post-1	m	228
sham 42	2	Pre-l	m	3 20
		Pre-3	m	260
		Post-1	m	232
sham 43	2	Pre-2	m	412
		Post-1	m	132
nor 26	2	Pre-1	m	368
		Post-1	m	364
nor 30	2	Pre-1	m	392
		Pre-2	m	392
		Pre-3	m	560
		Post-1	m	404
	_	Post-3	m	472
nor 33	2	Pre-3	m	216
		Post-1	m	268
•	•	Post-3	m	140
nor 35	2	Post-3	m	268

105

Table 6 (cont'd.)

Subject	Rep.	Session	Response	Interval in seconds
nor 37	2	Pre-1 Pre-2 Pre-3 Post-1	mia m mia mia	428 564 552 344 456
		Post-2	m	450

LIST OF REFERENCES

- Bard, P., and Mountcastle, V. B. Some forebrain mechanisms involved in expression of rage with special reference to suppression of angry behavior. Res. publ. ass. ner. ment. Dis., 1948, 27, 362-404.
- Barker, D. J. Brain map. Private communication, 1966.
- Barker, D. J., and Thomas, G. J. Ablation of cingulate cortex in rats impairs alternation learning and retention. J. comp. physiol. Psychol., 1965, 60, 353-359.
- Barker, D. J., and Thomas, G. J. Effects of regional ablation of midline cortex on alternation learning by rats. Physiol. & Behav., 1966, 1, 313-317.
- Beach, F. A. Effects of cortical lesions upon the copulatory behavior of male rats. <u>J. comp. Psychol.</u>, 1940, 29, 193-239.
- Beach, F. A. Copulatory behavior of male rats raised in isolation and subjected to partial decortication prior to the acquisition of sexual experience. <u>J</u>. comp. Psychol., 1941, 31, 457-470.
- Beach, F. A. Characteristics of masculine "sex drive". In M. R. Jones (Ed.), Nebraska symposium on motivation. University of Nebraska Press, Lincoln, 1956, 1-31.
- Beach, F. A., and Jordan, L. Sexual exhaustion and recovery in the male rat. Quart. j. exp. Psychol., 1956, 8, 121-133.
- Beach, F. A., and Whalen, R. E. Effects of ejaculation on sexual behavior in the male rat. J. comp. physiol. Psychol., 1959, 52, 249-254.
- Bermant, G., Glickman, S. E., and Davidson, J. Effects of limbic lesions on copulatory behavior of male rats.

 J. comp. physiol. Psychol., 1968, 65, 118-125.

- Brady, J. V., and Nauta, W. J. H. Subcortical mechanisms in emotional behavior: affective changes following septal forebrain lesions in the albino rat. J. comp. physiol. Psychol., 1953, 46, 339-346.
- Brutkowski, S., and Mempel, E. Disinhibition of inhibitory conditional responses following selective brain lesions in dogs. Science, 1961, 134, 2040-2041.
- Bunnell, B. N., Kriel, J., and Flesher, C. K. Effects of median cortical lesions on the sexual behavior of the male hamster. J. comp. physiol. Psychol., 1966, 61, 492-495.
- Bunnell, B. N., and Pinder, G. D. The effects of median cortical lesions on the hoarding behavior of the hamster. Paper read at the Southern Society for Philosophy and Psychology, Lexington, Kentucky, March, 1964.
- Candland, D. K., Horowitz, S. H., and Culbertson, J. C. Acquisition and retention of acquired avoidance with gentling as reinforcement. J. comp. physiol. Psychol., 1962, 55, 1062-1064.
- Cornwell, P. Behavioral effects of orbital and proreal lesions in cats. J. comp. physiol. Psychol., 1966, 61, 50-58.
- Davis, C. D. The effect of ablations of neocortex on mating, maternal behavior and the production of pseudopregnancy in the female rat on copulatory activity in the male. Amer. j. Physiol., 1939, 127, 374-380.
- Dewsbury, D. A quantitative description of the behavior of rats during copulation. Behavior, 1967, 29, 154-178.
- Ellen, P., and Powell, E. W. Effects of septal lesions on behavior generated by positive reinforcement. <u>Exper. Neurol.</u>, 1962, 6, 1-11.
- Ellen, P., Wilson, A. S., and Powell, E. W. Septal inhibition and timing behavior in the rat. <u>Exper. Neurol.</u>, 1964, 10, 120-132.
- Glickstein, M., Quigley, W. A., and Stebbins, W. C. Effect of frontal and parietal lesions on timing behavior in monkeys. <u>Psychon</u>. <u>Sci.</u>, 1964, 1, 265-266.

- Gross, C., Chorover, S., and Cohen, S. Caudate, cortical, hippocampal and dorsal thalamic lesions in rats: alternation and Hebb-Williams maze performance. Neuropsychologia, 1965, 3, 53-68.
- Kaada, B. R., Rasmussen, E. W., and Kveim, O. Impaired acquisition of passive avoidance behavior by subcallosal, septal, hypothalamic, and insular lesions in rats. J. comp. physiol. Psychol., 1962, 55. 661-670.
- Larsson, K. Mating behavior in male rats after cerebral cortex ablation. I. Effects of lesions in the dorsolateral and median cortex. J. exp. Zool., 1962, 151, 167-176.
- Larsson, K. Mating behavior in male rats after cerebral cortex ablation. II. Effects of lesions in the frontal lobes compared to lesions in the posterior half of the hemispheres. <u>J. exp. Zool.</u>, 1964, 155, 203-213.
- Lubar, J. Effect of medial cortical lesions on the avoidance behavior of the cat. J. comp. physiol. Psychol., 1964, 58, 38-46.
- Lubar, J., and Perachio, A. A. One-way and two-way learning and transfer of an active avoidance response in normal and cingulectomized cats. J. comp. physiol. Psychol., 1965, 60, 46-52.
- Lyon, M., and Harrison, J. M. The effects of certain neural lesions in the rat on the reaction to a noxious stimulus. I. The limbic region. J. comp. Neurol., 1959, 111, 101-114.
- McCleary, R. A. Response specificity in the behavioral effects of limbic lesions in the cats. <u>J. comp. physiol. Psychol.</u>, 1961, 54, 605-613.
- McCleary, R. A. Response-modulating functions of the limbic system: initiation and suppression. In Stellar, E., and Sprague, J. M. (Eds.), <u>Progress in physiological Psychology</u>, New York: Academic Press, 1966, Volume 1, pp. 210-272.
- Michal, E. K. The effects of lesions in the limbic system on courtship and mating behavior of male rats. Unpublished doctoral dissertation, University of Illinois, 1965. Discussed by Thomas, G. J., Hostetter, G., and Barker, D. J. in Behavioral functions of the limbic system. In Stellar, E., and Sprague, J. M. (Eds.), Prog. physiol. Psychol., V. 2, New York: Academic Press, 1968, pp. 230-311.

- Moore, R. Y. Effects of some rhinencephalic lesions on retention of conditioned avoidance behavior in cats. J. comp. physiol. Psychol., 1964, 57, 65-71.
- Peretz, E. The effects of lesions of the anterior cingulate cortex on the behavior of the rat. <u>J. comp. physiol. Psychol.</u>, 1960, 53, 540-548.
- Pribram, K. H., Lim, H., Poppen, R., and Bagshaw, M. Limbic lesions and the temporal structure of redundancy. J. comp. physiol. Psychol., 1966, 61, 368-373.
- Pribram, K. H., and Weiskrantz, L. A comparison of the effects of medial and lateral cerebral resections on conditioned avoidance behavior of monkeys. J. comp. physiol. Psychol., 1957, 50, 74-80.
- Pribram, K. H., Wilson, W. A., Jr., and Connors, J. Effects of lesions of the medial forebrain on alternation behavior of rhesus monkeys. Exper. Neurol., 1962, 6, 36-47.
- Schwartzbaum, J. S., Kellicutt, M., Spieth, T. M., and Thompson, J. B. Effects of septal lesions in rats on response inhibition associated with food-reinforced behavior. J. comp. physiol. Psychol., 1964, 58, 217-224.
- Slotnick, B. M. Disturbances of maternal behavior in rats following lesions of the dorsal limbic cortex.

 <u>Behavior</u>, 1967, 29, 204-236.
- Stamm, J. S. Control of hoarding activity in rats by median cerebral cortex. J. comp. physiol. Psychol., 1954, 47, 21-27.
- Stamm, J. S. The function of the median cerebral cortex in maternal behavior of rats. <u>J. comp. physiol.</u>

 <u>Psychol.</u>, 1955, 48, 347-356.
- Stamm, J. S. Function of the prefrontal cortex in timing behavior in monkeys. Exp. Neurol., 1963, 7, 87-97.
- Stamm, J. S. Function of cingulate and prefrontal cortex in frustrative behavior. Acta Biologiae Experimentalis, 1964, 24, 27-36.

- Thomas, G. J., Hostetter, G., and Barker, D. J.

 Behavioral functions of the limbic system. In

 Stellar, E., and Sprague, J. M., (Eds.), <u>Progress in physiological Psychology</u>, Volume 2, New York:

 Academic Press, 1968, pp. 230-311.
- Thomas, G. J., and Otis, L. S. Effects of rhinencephalic lesions on conditioning of avoidance responses in the rat. J. comp. physiol. Psychol., 1958, 51, 130-134.
- Thomas, G. J., and Slotnick, B. Effects of lesions in the cingulum on maze learning and avoidance conditioning in the rat. J. Comp. physiol. Psychol., 1962, 55, 1085-91.
- Thomas, G. H., and Slotnick, B. M. Impairment of avoidance responding by lesions in cingulate cortex in rats depends on food drive. J. comp. physiol. Psychol., 1963, 56, 959-964.
- Thompson, R., and Langer, S. K. Deficits in position reversal learning following lesions of the limbic system. <u>J. comp. physiol. Psychol.</u>, 1963, 987-995.
- Trafton, C. L. Effects of septal and cingulate cortex lesions on conditioned suppression of activity and avoidance behavior in rats. J. comp. physiol. Psychol., 1967, 63, 191-197.

