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ABSTRACT

NORMAL p-SUBGROUPS IN THE AUTOMORPHISM

GROUP OF A FINITE p-GROUP

BY

Dawn Rickard Shapiro

Let G be a finite p-group, p an odd prime. The

primary purpose of this dissertation is to study the non-

trivial normal p—subgroups of the group Out G = Aut G/Inn G

of outer automorphisms of the group G.

Given a chain of subgroups s:G = G '2 G1 2,..2 G = 1,

define Stab(s) by

Stab(s) = {a 6 Aut G[(giGi+1)a = 916 for all
i+1'

gi eGi' 1:091'2’00091‘1-130

In a finite p—group G, the stability group of a characteristic

chain is a normal p—subgroup of Aut G. Also, if A is a

normal p-subgroup of Aut G, then A determines a unique

characteristic chain in G which it stabilizes. When

B‘g Stab(s), 5 denotes the closure of B, where

13 = Stab(G 2 [6,8] 2 [G,B,B] 2...2 1), and B is said to

be closed if B = 5. Moreover, if B 3 Aut G. then

fiig Aut G. We use these facts in our efforts to determine

normal p-subgroups of Aut G.
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In Chapter I, we prove the following embedding

. theorems:

(1) Let G ‘be a finite group, G = HK where

H g_Z(G) is cyclic of order pn, p a prime,

and K is normal in G. Suppose H n K

is characteristic in K. Then Aut K

embeds isomorphically in Aut G.

(2) Let G be a finite group. Let H and K

be characteristic subgroups of G such that

H'2‘K. There exists a homomorphism a a &'

mapping Aut G to Aut H/K such that

a 6 CAut(3(H/K) if and only if

a = 1Aut H/K'

We also show that an extra—special p-group of exponent p,

p an odd prime, contains no proper characteristic extra—

special subgroups.

Chapter II deals with p-groups of Hall type, where p

is an odd prime. First we derive some basic prOperties of

G, then we show that the maximal normal p-subgroup of Aut G,

Op(Aut GL is the group of central automorphisms of G.

Finally, we determine necessary and sufficient conditions for

a non—trivial normal p-subgroup of Aut G to be closed as a

stability group and, when G is not extra-special, show that

a non-trivial normal p-subgroup of Aut G which is closed as

a stability group, proPerly contains the group of inner

automorphisms of G.
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In the final chapter, Chapter III, we show that

under certain conditions, lifting a stability group of a

chain in a normal subgroup, will produce a normal and even

closed stability group in the automorphism group of the

whole group. Included in this chapter are results which can

be used to Obtain closed abelian stability groups.
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INTRODUCTION

In 1966, Gaschutz [3] showed that the outer

automorphism group of any finite non-abelian p—group, p

a prime, possesses a non—trivial p-subgroup. Later, in

1976, Schmid [7] determined all finite p-groups for which

the group of outer automorphisms contains a non-trivial

normal p-subgroup. This dissertation is a direct result

of efforts to characterize the normal p-subgroups of

Aut G, and thus of Out G, when G is a non-abelian

Stability groups and subgroups of stability groups

play an important role in this search for normal p-subgroups.

The examples of normal p-subgroups in the outer automorphism

group of a finite p-group which were Obtained by Schmid in

[7] are stability groups. Moreover, in 1974, Bertelsen [2]

showed that stability groups and their subgroups offer a

viable means by which we may obtain normal p-subgroups in the

automorphism group of a finite p-group. He shows that if a

normal p—subgroup A of Aut G is a subgroup of a stability

group then A, the closure of A, is a stability group

which is a normal p-subgroup of Aut G. When A is a subgroup



of a stability group and A = A then A is said to be

closed. We ask how the non-trivial normal p-subgroups of

Out G and the normal closed stability groups of Aut G

are related.

Chapter I contains definitions and results which are

used in later chapters. We derive some embedding theorems

which prove to be useful in the study of p—groups of Hall

type, where p is an odd prime, and show that an extra-

special p-group of exponent p, where p is odd, contains

no proper characteristic extra-special subgroups.

In Chapter II we consider p-groups G of Hall type,

where p is an odd prime. After deriving some basic facts

about G, we show that the maximal normal p—subgroup of

Aut G is the group of central automorphisms. We Obtain a

partial answer to our question about the relationship between

non-trivial normal p—subgroups of Out G and the normal

closed stability groups of Aut G. When G is of Hall type

but not extra—special, we determine necessary and sufficient

conditions for a non-trivial normal p—subgroup of Aut G

to be closed as a stability group and show that a non-trivial

normal p-subgroup of Aut G which is closed as a stability

group preperly contains the group of inner automorphisms of G.

The final chapter, Chapter III, consists primarily of

two topics: (1) extending (lifting) a group of automorphisms



of a normal subgroup to a group of automorphisms of the

whole group and (2) closed stability groups. we consider

groups G which are split extensions and show that under

certain conditions, a stability group of a chain in a

normal subgroup can be lifted to a normal and even closed

stability group in the automorphism group of the whole group.

We also include results which can be used to obtain closed

abelian stability groups.



CHAPTER I

PRELIMINARY DEFINITIONS AND RESULTS

This chapter contains definitions and results which

are used in later chapters. All groups are assumed to

be finite.

Definition 1.1. Let H and K be subgroups of an
 

arbitrary group G such that H 2_K. Define

c:AutGm/K) by

_ -l a
cAutGm/K) — {a EAut Glh h EK for all h 6H}.

Definition 1.2. Let s:G = GO-Z Gl-2"52 Gn = 1 be

a chain of subgroups for an arbitrary group G. Define

the stability group of s, denoted Stab(s), by

Stab(s) = {a €.Aut G[(giGi+l)a = giG for all
i+l

gi eGi, 1=O,1,..o,n-1}.

n-l

With the above definitions, Stab(s) = F] C (G./G. ).
i=0 AutG 1 1+1

Result 1.3 ([2],p.5). If each Gi is characteristic

in G then Stab(s) gAut G.



Definition 1.4. Let A g_Aut G. Set 'YGAO = G, and

YGA1+1 = [YGA1,A], for i 2 0.

Result 1.5. Using the notation of 1.2, let A g_Stab(s).
 

Then

(i) YGA1_<_Gi, i=0,l,...,n.

(ii) The prime divisors of A are the same as the

prime divisors of [G,A].

Proof: See Schmid [8].

The following remark is an immediate consequence of

this result.

Remark 1.6. If G is a finite p-group and
 

s:G = GO-Z Gl-2°"2-Gn = 1, then Stab(s) is a p-group.

Result 1.7 ([2],p.l6). Let G be a group. Let

A 3 2(6) the center of G, c3 = 9A and a e Stab(G _>_ A _>_ 1).

Then

Stab(G 2 A Z 1) e: Hom(G/A,A)

by the mapping a « fa: g 4 9-1 ga.

Result 1.8 ([4],p.200). Let H be an abelian subgroup
 

of an arbitrary group G. Let A = Stab(G 2.H‘2 1). Then

A is abelian.

Definition 1.9. Let A g_Aut G. We say A stabilizes
 

a chain 5 if A < Stab(s). Following Schmid [8], 'we denote

by TG the collection of subgroups of Aut G stabilizing a

chain.



We now define a concept introduced by Bertelsen in

[2].

Definition 1.10. For .A E T , define E by
G

0.2 YGRPZ--a2 VGAn(A), where n(A) is the first integer

n(A)

S:YGA

such that YGA = 1. Define A, the closure of A, by

A Stab(E). We say a stability group A is closed if

A=A.

Result 1.11 ([2],p.6). Let A 6 TG. Then

(i) A g A.

(ii) If A g_B < A, then yGBl = YGAl for all i.

(iii) A = A.

i
(iv) If e 6 NA (A), then (ycAi)B = VGA .

utCB

(v) If A _<_1 Aut G, then A g Aut G.

(vi) A and A have the same prime divisors.

Remark 1.12. By 1.11 (iv), if A 6 TG and A g Aut G

then YGA1 is characteristic in G for all i.

Result 1.13 ([2], p.9). Let H g_§(G), the Frattini

subgroup of G. If B = CAut<3(G/H) then B is a closed

stability group.

Definition 1.14. Let G be a p-group and A g_Aut G.

A is said to be of K—type if

(i) A is a p-group.

(ii) A is normal in every p-Sylow of Aut G that

contains A.



(iii) A is the intersection of all the p-Sylows

of Aut G that contain A.

Result 1.15 ([2],p.21). If G is a p-group and A
 

is of K-type then A is a closed stability group.

Definition 1.16. Let G be any group. OP(G) will
 

denote the unique maximal normal p-subgroup of G.

Op(G) may be obtained by intersecting all p-Sylows

of G. Hence Op(Aut G) is the smallest K-type stability

group.

 

Corollary 1.17. If G is a p—group and A = Op(Aut G)

then A is a closed stability group.

Definition 1.18. A finite non-abelian p-group G is
 

extra-special if the center Z(G) is cyclic of order p

and G/Z(G) is elementary abelian.

Definition 1.19. If G is a pegroup,

1 . i

Qi(G) = (x 6 Glxp = 1) and (51(G) = (xp Ix E G>.

Result 1.20. Let G be a finite non-abelian p-group
 

containing no non-cyclic characteristic abelian subgroups.

Then the Frattini subgroup §(G) of G is cyclic. Moreover:

(i) If p is odd, 01(G) is extra-special of

exponent p and G = 01(G)Z(G).



(ii) If p = 2, U = CG(§(G)) is of index at most

2 in G and one of the following holds:

(a) G is extra-special.

(b) G is a dihedral, semi—dihedral or

generalized quaternion group.

(c) §(G) = @(U) is of index 2 in the

cyclic subgroup Z(U).

This result is an unpublished theorem of P. Hall and can

be verified by using the details given in the proof of Satz

111.13.10 in [5].

Definition 1.21. A group G satisfying the hypotheses

of 1.20 will be called a p-group of Hall type.

Result 1.22 (J. Thompson, [9]). Let G be a finite
 

p-group. Given any maximal characteristic abelian subgroup

Z of G, there exists a characteristic subgroup K of G

such that CG(K) = Z(K) = Z and K/Z is an elementary abelian

central factor of G.

This is a modification of Lemma 3.7 in [9]. A proof may

be found in [4], pages 185—186.

Definition 1.23. A characteristic subgroup K of a

p-grOup G is called a critical subgroup of G if CG(K) =

Z(K) and K/Z(K) is an elementary abelian central factor

of G.



Corollary 1.24 (Schmid, [7]). A finite non-abelian

p-group G is of Hall type if and only if the center of

any critical subgroup of G is cyclic.

We will later show that if G is of Hall type and p

is odd then the only critical subgroup of G is G itself.

Result 1.25 (Schmid, [7]). Suppose that G is a

finite non—abelian p-group having a subgroup N such that

Stab(G _>_ N _>_ 1) is equal to@(G) 3 NS Z(G) then c

Inn G if and only if N = Z(G) is cyclic. In any case,

C contains Inn G.

Theorem 1.26. Let G = HK [where K.g G and H = <x>

is cyclic of order p“, p a prime. Suppose H's Z(G). If

H rlK is characteristic in K then there exists a homomor-

phism which embeds Aut K isomorphically in Aut G.

Proof: If H FIK = H then G = K and we are done.

Suppose H n K #’H. Then IH rlKl = p1 for some i such

n—i

that 0 3.1 < n. Thus H 0 K = (XP >. Let K = <y1,...,yt>.

Then G = <x,y1,...,yt>.

Let a €.Aut K. Since H rlK is characteristic in K,

n-i a n-i a n—i L

(xp ) is a generator of H rlK. Thus (xp ) = (xp )

where (£.p) = 1. If i = 0, we will take 1 = 1.

Let g be an arbitrary element of G. Since G = HK,

we can write 9 = xmk where 0 g_m < pn and k E‘K. Given
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a and L as above, we define a map a from G to G by

(ka)a = xm“ kg.

The map a is well-defined and dh< = a.

Claim: a is an automorphism of G.

l and xsk2 be elements of G = HK.

Since H‘S Z(G) and a E Aut K,

(i) Let er

r s a _ r+s 5
(x klx k2) - (x klkz)

_ r£+s£ a
— x (klkz)

. xrzxsagkg
_ r a s a _ r a s a
— x Aklx lkz - (x k1) (x k2) .

Hence a is a homomorphism.

(ii) Since (£,p) = 1, x‘ generates H; and

since a 6 Aut K. {Y?}§=1 generates K.

Therefore a is onto.

(iii) If 1 = (xrk)a = xr‘ko‘, then x” = (161)0‘

n-i n-i

6 H H K = <xp >. Thus xr‘ = (xp )m where

i n-i n
1 g_m g.p . It follows that rt 5 m(p ) (mod p ).

Since Llrz and (£,p) = 1, film. Let m = lq.

. n—i

Then r a qr-pn-l (mod pn) and xr‘ = (xp )q£

n-i -l

= (xq°p )a = (xr)a. Thus xr = (xr‘)a =

-1

((k-l)a)a = km1 and xrk = 1. Therefore a

is one-to-one.

The mapping a 4 a maps Aut K to Aut G. Let

a,B €.Aut K. Then dB 6 Aut K and 5,5,55, as defined

above, are automorphisms of G such that alK = a. EIK = fl

and 551K = 05.



11

First we show a a a is a homomorphism.

Clearly y? = qu, j = 1,...,t.

n-i n-i n-i

Suppose (x p )S and (x

where (s,p) = l = (r,p) and if H rlK 1, then r = s = 1.

n-i n—i

(xp )O‘B = ((xp )O‘)B

n—i

= <<xp )5)B

n—i

= <<xp )B)S

n—i r n—i

= ((xp ) >5 = (XP )rs.

Clearly (rsapl = 1. Thus XOLE3 = xrs = (XE)S = (XS)E = (xa)E

E—'= 55 on the generators so OBI: OS.

If A = 5 then a = B. Thus the mapping a 4 5 embeds

Aut K isomorphically in Aut G.

Corollary 1.27. Let G be as in 1.26 and C g_K such
 

that C is characteristic in G. Then C is characteristic

in K.

Proof: Let a E Aut K. Extend a to a 6 Aut G as

above. Then Ca = Ca = C.

Theorem 1.28. Let G be an extra-special p—group of

exponent p, p odd. If H § G is an extra-special subgroup

of G then H is not characteristic in G.

Our proof depends upon the following results.
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Lemma 1.29 ([4], p.195). Let C be an extra-special
 

subgroup of the p—group P such that [P,C] g Z(C). Then

P = CCP(C).

In the following results, Hm denotes the central

product of m cepies of the group H.

Lemma 1.3Q_ ([4], p.204). An extra-special p—group P

is the central product of r 2_l non—abelian subgroups of

order p3. Moreover, if p is odd, P is isomorphic to

Nk Mr"k where

2

N <x,y|xp = yp = 1, xy = xl+p> and

P _
M <x,y,z]xp = y — zp = 1, [x,z] = [y,z] = 1, and

[X:Y] = 2>o

and [p] = 2r+1.

From the proof of this lemma it follows that the r

factors involved commute elementwise. Thus we have the

following corollary.

Corollary 1.31. Let P be an extra-special p—group,

p odd, such that P is isomorphic to the central product of

n 2_1 non-abelian subgroups Mj such that

p p p
M. = ,, , ,, , = ' . = , = = 1,

3 (X3 Y3|[XJ Y3] z X: Y) z

[xj,z] = [yj,z] = 1) j = 1,...,n.
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Then

P = ., . ., . = , ., . = 1 ' ' ',<xj YJ[[XJ Y3] 2 [X1 YJ] 1f 1 s 3

[Xj'z] = [Yj'z] = l, [Xirxj] = [Yi'yj] = l,

x? = y? = zp = 1, i,j = l,...,n>.

J 3

Proof of 1.28: By 1.30, H est Mr-k where N and M
 

are as in the lemma and r'2 1. Since H 3’s and G has

exponent p, exp H = p and thus k = 0.

Since H is extra-special, we may choose x in

H‘\Z(H) and y in H such that [x,y] = z ¢ 1. Thus

(2) = Z(H) = Z(G) since H’ = Z(H) and G’ = Z(G) are cyclic

of order p and H’ g_G’. Also, [G,G] g Z(G) = Z(H) so

[G,H] g_Z(H). Lemma 1.29 implies G = HR where R = CG(H).

Since R centralizes H and R is a p-group, Z(R) = Z(H).

It follows that R is non-abelian for otherwise, G = H.

Thus R’ = G’ = Z(G) and R/Z(G) g G/Z(G) is elementary

MS

Rabelian so R is extra-special. Exp R = p. Thus R

by 1.30, where s 2 1.

Applying 1.31, H and R have the following presentations:

H = <xj.yjl[xj.yj] = 2. [xi.yj] = 1 if i e j.

x? = y? = zp = l, [xj,z] = [yj,z] = [Xi'xj]

= [Yi'yj] = 1, i,j = 1,...,r> and

R = <xj:yjl[xjoyj] = 2: [Xiij] = 1 if i A j'

- y. - z = 1. [xj.z] = [yj.z] = [xi.xj1

= [Yi'Yj] = ll ioj = r+l,..o,r+S>.
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Since G = HK and K = CG(H),

G= -: . -o - = o -o - = ' . 'o<xJ yJHXJ yJ] 2 [x1 ya] 1 1f 1 # 3

XP = Y? = 2p = l, [Xj12] = [yjIZJ = [Xilxj]

= [Yi'Yj] = 1! ilj = loooo'r,r+l,ooo,r+s>o

Let t = r4-s.

t

Let g E G. Then we have 9 = ( H xj

0 c.,d.,a < , ° = 1,...,t.

S" J J p 3

Define a mapping a:G o G by

a t a c. a d. a

g = < n (x.) 3 (y.) 3)z
j=1 J 3

where

a a . .

. = ., . = . f lat(x ) X3 (Y3) Y3 1 3 #

a _ a _

(X1) — xtl (Y1) — yt

a a

(Xt) ‘ Xl' (Yt) ’ Y1°

The mapping a is a homomorphism which fixes Z(G) elementwise.

Suppose g 6 Ker d. Then ga = l and hence

cl d1 t-l c. d ct dt a

J j _
(A) xt yt (j32 xj yj )x1 y1 z — l.

c d t-l c. d. c d
1 1 j j t

t yt (3'22 xj Yj )X1 Y1

left fixed by a. Therefore

t
It follows that x 6 Z(G) and is

c d t-l c. d. c d t .

1 l j 3 t t _ 3 j

Xt Yt (j=2 Xj Yj )X1 Y1 ' jfl xj Yj '
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Hence, by substituting this result into (A) we see

that g = 1. Thus a is one—to-one. Since G is finite

and a is one—to-one, a is an automorphism of G.

By the way we have defined a it follows that Ha # H.

Thus H is not characteristic in G.

Since the original draft of this thesis it has been

brought to our attention that Theorem 1.28 may be generalized

as follows.

If G is an extra-special p-group of exponent p

then Z(G) is the only non-trivial characteristic subgroup

of G. (See [5], Aufgabe 32, p.360).

This generalization directly affects Theorem 2.3 and

Theorem 1.32. Let G be an arbitrary group. Let H
 

and K be characteristic subgroups of G such that H 2LK.

Then there exists a homomorphism a 4 a mapping Aut G to

Aut H/K such that a e cAutG (H/K) if and only if a = 1

in Aut(H/K). Here (xK)O‘ = xO‘K, x EH.

Proof: Define 5:H/K 4 H/K by

(xK)a = xO‘K x e H.

The map a is well-defined for if xK = yK then

xy-1 6 K. Since K is characteristic in G, xOL(yOL)'1 =

O.

1)” eK. Thus xaK =yOK. Also, if x 61-1 then X en(xy-

since H is characteristic in G and thus 3 maps H/K to

H/K.
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The map E is an automorphism of H/K. Furthermore,

-1 a

a E C (H/K) e x x 6 K for all x e H
Aut(3

e xK = xaK for all x E H

e xK = (xK)a for all x e H

Let a,B E Aut G. Then OB 6 Aut G and E,§ and OB,

as defined above, are automorphisms of H/K. Let x E_H.

Then (xK)aB = xaBK = (xaK)B = ((xK)a B = (xK)aB. Hence

a 4 5 is a homomorphism.

Corollary 1.33. Let G,H,K and the map a 4 3’ be as

in 1.32. Suppose [H:K] = p and a 6 Aut G has order a

power of p. Then a 6 CAut(3(H/K)'

Iggggf: Let a in Aut H/K be as defined in 1.32.

Since a 4 5' is a homomorphism, [3| [a]. Also, since

[H:K] = p, H/K is cyclic of order p and thus [Aut H/K]

= p-1. Therefore [a] p-1. Since (p,p-1) = 1, a = 1

in Aut H/K. Hence by 1.32, a 6 CAut(3(H/K)°



CHAPTER II

p-GROUPS OF HALL TYPE

In this chapter we show that every non-trivial closed

normal stability group of a finite non-abelian p—group G

of Hall type, p an odd prime, properly contains the group

of inner automorphisms, Inn G, of G, provided G is

not extra—special.

Lemma 2.1. Let G be a finite non—abelian p—group
 

of Hall type, p odd. Then

(i) 01mm) = zmlmn.

(ii) 6’ [01(G)J’= Z(01(G)) = “film”

= elm) n Z(G).

(iii) G/z(G) is elementary abelian.

(iv) Ui(G) =ui(2(s)) for i 2 1.

01<2(o)) if [2(a)] >p

2(3) if [Z(G)] = p.

(V) MG) =

Proof: From result 1.20 (i), 01(G) is extra-special

of exponent p and G = 01(G)Z(G). Let x = wxzx and

y = wyzy be elements of G» where wk,wy E 01(G) and

zx,zy 6 Z(G).

l7



(i)

(ii)

(iii)

(iV)

(V)
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Since G is a p—group, Z(G) #’l, whence

1 5" {21(Z(G)) _<__ Z(01(G)). Now 01(G) is

extra—special and so [Z(Ql(G))l = p and

it follows that 01(Z(G)) = Z(Ql(G)).

For x,y 6 G, [x,y] = [wxzx,wy zy] = [wx,wy].

Thus G’.S [01(G)J’.S G’. Therefore G’ =

[01(GH’. Also. [01(GH’ = zmlmn = “alum

because 01(G) is extra-special. Hence by

part (i), G’ = 01(Z(G)) and thus 1 7! G’ g

Z(G) n 01(G) which is cyclic of exponent p.

Therefore G' = 01(6) 0 Z(G).

By part (ii), (3’ g Z(G). Therefore G/Z(G)

is abelian. Moreover, since exp 01(G) = p

and G = 01(G)Z(G), le(G)| = lwszZ(G)| =

[wa(G)| = p for any x E G. Thus G/Z(G)

is elementary abelian.

It suffices to show thatzjl(G) =(31(Z(G)). For

any x E G, xp = (wxzx)p = wfi zg = 2:. There-

foreul(G) 301mm) 301(6).

1(6) . (SeeSince G is a p-group, §(G) = G’lj

[5], p.272). Thus by part (iv), §(G) =

G'Ul(Z(G)). If [Z(G)] = p then s' = 2(6)

since by part (ii), 1 7’ G'_<_ Z(G) . Also,

01(Z(G)) =1. Thus MG) =c =Z(G). If

[Z(G)] = pk where k > 1 then Z(G) = <z>
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where 2 has order pk since G is of Hall

k—l k—2

type. But then G’ = <zp > = <(zp )1”) _<_

01(z(G)). Thus <§(G)=01(Z(G)).

In view of Lemma 2.1 (ii), we Obtain the following

corollary of Theorem 1.26.

Corollary 2.2. Let G be a finite non-abelian p—group

of Hall type, p odd. Then Aut 01(G) can be embedded

isomorphically in Aut G.

2522:: By Result 1.20 (i), G = Z(G)01(G). Since

Z(G) is an abelian characteristic subgroup of G, it is

cyclic of prime power order. By 2.1 (ii), Z(G) n 01(G) =

[01(G)]' and thus is characteristic in 01(G). Set

H = Z(G) and K = 01(G) and apply Theorem 1.26.

Theorem 2.3. Let G be a finite non—abelian p-group
 

of Hall type, p odd. If C is a non-abelian subgroup of

01(G) such that C is characteristic in G then C is

extra-special.

Proof: Since C is non-abelian, 1 # C’.g [01(G)]’.

But |[Ql(G)]’| = p so C' = [01(G)]' is cyclic of order p.

Furthermore, §(C) = C'01(C) = C' because C is a p-group

and exp C = p. Since Z(C) is characteristic in C and

C is characteristic in G, Z(C) is a characteristic

abelian subgroup of G and thus is cyclic. Exp C = p.
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whence [Z(C)] = p. This in turn implies Z(C) = C'

since 1 # C’.§ C and Z(C) 2 Z(C) n.c’ # 1. Thus C is

extra—special.

Theorem 2.4. Let G be a finite non-abelian p-group
 

of Hall type, p odd. Then the only subgroups of 01(G)

which are characteristic in G are 01(G), 9(01(G)) and l.

gooof: Let 1 # C's 01(6), where C is characteristic

in G. Then 1 #’C n Z(G). Moreover, by 2.1 (ii),

c n Z(G) _<_ 01(6) n Z(G) = “01“»). Thus, since

ls(nl(s))l = p, c n Z(G) = “01“»). Hence i(ol(e)) gc.

If C is abelian then C is a characteristic abelian

subgroup of G and thus C is a cyclic subgroup of 01(G).

It follows that [CI = p because exp C = p. We now have

1 # §(01(G)) S.C and [C] = p. Hence C = §(01(G)).

Suppose C is non-abelian. Corollary 2.2 states that

Aut 01(G) can be embedded isomorphically in Aut G. Thus

C is characteristic in 01(G) as C.S 01(G) and C is

characteristic in G. By 1.20 (i), 01(G) is extra—special

of exponent p. Since C is a non-abelian subgroup of

01(6) and C is characteristic in G, Theorem 2.3 applies

so C is extra-special. This in turn, by 1.28 implies

that C is not characteristic in 01(G) unless C = 01(6).

we conclude that if C is non-abelian then C = 01(6).

Therefore, the only subgroups of 01(G) 'which are

characteristic in G are l, §(01(G)) and 01(6).
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Corollary 2.5. Let G be a finite non-abelian p—

group of Hall type, p odd. If C is a critical subgroup

of G then C = G.

2222:: Since C is critical, Z(G) g_cG(c) = Z(C) g,c.

Let K = 01(G) n C # 1. Since K is the intersection of

characteristic subgroups of G, K is characteristic in G.

Hence by 2.4, either K = §(01(G)) or K = 01(G).

If K = 9(01(G)) and c = wczc is any element of C

where wC 6 01(6) and 2c 6 Z(G) g C then WC 6 K =

01(G) n C. Since K = §(01(G)), 2.1 (ii) implies K g Z(G)

whence wC E Z(G) ‘which in turn implies c E Z(G). But

then C = Z(G). This is a contradiction since Z(G) is not

critical as CG(Z) = G and G'g Z(G) = Z(Z(G)). Hence

K = 01(6) and G = Z(G)01(G) g c. Thus G = c.

Remark 2.6. Essentially the same proof can be used to
 

show that if C is a characteristic subgroup of G and

Z(G) g c then either c = G or c = Z(G).

Theorem 2.7. Let G be a finite non-abelian p—group
 

of Hall type, p odd. If [Z(G)] = p‘ then 0k(G) =

ukkm) (21(G), where L 2 k 2 1.

Proof: Let Z(G) = <z> be cyclic of order p‘. By 2.1

‘”“T" . . j

(iv). 03(6) =uj(z(G)). j_>_ 1. Clearly 03mm = <zP >.

Let k.2 1. Let x = wxzx where wk 6 01(G) and

2x 6 Z(G). Then
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x is a generator of Qk(G)

k

a (w 2 )P — 1

x x

k t-k

e (2X)p = 1 so zx 6 (2p > = Ubk(Z(G)).

Thus if I, > k _>_ 1, then x is a generator of (3((G)

L-k
e x = zxwX for some 2x 6 U (Z(G)), wX 6 01(6)

e x e (3"k(Z(G))01(G)

e x e (gt-kw) 01(G) since l-k 2 l whence 2.1 (iv)

implies 01—k(Z(G)) = Ubkm) .

Hence 0km) = UL—k(G) 01(G) if L-k _>_ 1.

I. L

If k = 1., (3((G) = <x e Glxp = 1>. Now xp = 1 e

14 l. I)

(wxzx)p = l e (zx)p = 1. But ~[Z(G)] = pl whence (zx)p

= 1 for any zx E Z(G). Thus 01(6) = G. Since

oblm) 01(G) =UO(G)01(G) = G, we also have 01-k(G)01(G) =

G: {2k(G) for k= 2.

Theorem 2.8. Let G be a finite non—abelian p—group

of Hall type, p odd. If [Z(G)] = pl then

0p(Aut G) = Stab(G > Q£_1(G) > 0‘4 (G) >...>

01(G) > G’ > 1).

Proof: By Theorem 2.7, 0km) = 01—k(G) 01(G) for

12. 2 k > 1. Thus

[0"]‘(G)|101(G)|
 

 

l (6)] = _

Q, [u‘km n We)!

pk|01(G)l

p if _<_k < 1.

[GI if k=£
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= kl|()1(G)| if l_<_k<£,

1191(6)] if k = z

= pk-llol(G)l if 1 g k g 1.

Therefore if 2 g_k 3.2 then

I 0,, (G) l pk’ll 01 (6)1
[ (G): _ (6)] = = _ .-

0" Q" 1 “ix-1m] k 2101(GH

Let a 6 Aut G have order a power of p. By Corollary

1.33, o e cAutG(nk(G)/nk_l(o)) for 2 gk 3 L and

AutG(G ) since [0k(G): Qk_1(G)] = p and [G I

Let s : G > “lo—1(6) > 0‘_2(G) >...> 01(6) > G’ > 1.

L

Stab(s) = fl cAutG(nk(G)/q(_1(s)) n CAutG(Ol(G)/G') n

a E C

k=2

C (G’) is a normal p—subgroup of Aut G since 5 is a
Aut(3

characteristic chain and G is a p—group. (See 1.3 and 1.6).

Thus Stab(s) 5-Op (Aut G). On the other hand, 0P(Aut G)‘g

kQZ CAUt G (m(G) /nk-1(G)) n CAUtG (G ’) 0 Hence Stab (S) =

0p(Aut G) n C (01(G)/G'). Let A = 0p(Aut G). By 1.17,
Aut<3

A is a stability group. Therefore by 1.12, VGAi is

characteristic in G for all i. Let j be the least

integer such that YGAj 3 01(6). (we know j g_£-1 by

1.5 (i).) Since YGAj g_01(G) is a characteristic subgroup

of G, Theorem 2.4 implies that YGAj = 91(G) or §(01(G))

or 1.

If \(GAJ = 1 then A g Stab(s).

If yGAJ a! 1 then VGAJ+1 < yGAj,
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since there exists a smallest integer n(A) such that

n(A) j+l
yGA = 1. It follows that yGA = §(01(G)) or 1.

Thus A _<_ CAutG

Hence A = 0p(Aut G) g_Stab(s).

(01(G)/G') since 9(01(G)) = G’ by 2.1 (ii).

We conclude that 0P(Aut G) = Stab(s).

In [1], Adney and Yen investigated CAut<3(G/Z(G))

which they called AC. They defined a purely non—abelian

p-group to be a group which does not have an abelian direct

factor and Obtained the following result.

Result 2.9. If G is a p—group which is purely non—
 

abelian then the group Ac of central automorphisms is

also a p-group.

Result 2.10 ([2], p.24). Let G be a p-group and
 

Z be the center of G. If G"2 Z then

Ac = Stab(G 2 z _>_ 1) genome/G22).

Theorem 2.11. Let G be a non-abelian p—group of
 

Hall type, p odd. Then G is purely non-abelian.

Proof: Suppose not. Then G = A x B where A is
 

abelian and A FIB = 1. Since G/B RsA and A is abelian,

G' _<_ B. Thus G’ n A = 1. However, A _<_ Z(G), G’ g Z(G),

[6’] = p and Z(G) is cyclic. Hence G" ,A. This is a

contradiction. Therefore G is purely non-abelian.
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Corollary 2.12. Let G be a non-abelian p—group of

Hall type, p odd. Then the group AC of central automor-

phisms is a p—group.

Proof: The conclusion follows immediately from 2.9

and 2.11.

Theorem 2.13. Let G be a non-abelian p-group of

Hall type, p odd, such that [Z(G)] = pl. Let

s :G 2 Z = 00(Z) 2 (31(2) 2...2 G' = (ft-1(2) > 1, where

Z = Z(G). Then AC = Stab(s).

Pgoof: Since Z(G) is cyclic of order pg, Ui(Z)

is cyclic of order pL-i, 0 g_i 3.1. Therefore

[01(2) :Ui+1(z)]= p for o_ i g z- 1. By 1.33, if

a E Aut G has order a power of p then a 6 CAut(;QJi(Z)/

1(2)) where 0 g_i g_£-l. Hence since AC is a p-

group by 2.12, we have Stab(s) = Ac'

Theorem 2.14. Let G be a non-abelian p-group of

__ O

Hall type, p odd. Then Ac — CAutGml (G)/G ).

Proof: Let a E‘Ac and w E 01(G). Then wrlwa E

Z(G) n 01(G) = G . Therefore a e CAutG (01(G)/G ). It

follows that Ac 3 cAutG (01(G)/G ).

Let a E C (01(G)/G') and g = E G ‘where
Aut<3 W929 1

-1a z-lza - a
W9 6 01(6) and 29 E Z(G). Then g ga 2g 2g wg wg 6

Z(G)- G = Z(G). Therefore a 6 AC and CAut(;(01(G)/G ) 5 Ac'

Thus AC = CAut(;(01(G)/G ).
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Corollary 2.15. Wlth G as above, CAut(3(Ql(G)/G )

is a p-group.

Proof: The conclusion follows immediately from 2.12

and 2.14.

Theorem 2.16. Let G be a non-abelian p-group of

Hall type, p odd, such that [Z(G)] = pl. Then Ac =

0 Aut G .p( )

Proof: Let s : G > Q£_1(G) >...> 01(6) > G' > 1.

Then by 2.8, 0p(Aut G) = Stab(s) and by 1.33 and 2.15,

CAut(;(Ql(G)/G ) = Stab(s). Thus 2.14 implies 0p(Aut G) = Ac'

Theorem 2.17. Let G be a non-abelian p-group of

Hall type, p odd. Then for i,j 2 l, CAutG (G/UJ(G)) =

CAut G (aim/ui+j (G)) n 0P(Aut s) .

Proof: Let i,j 2.1.

. j . . . . j
Since 0 (G) is characteristic in G, CAut<3(G/U (G))

g Aut G. By 1.11 and 1.6, CAutG (G/UJ(G)) is a p-group

since G is a p~group and 03(G) g §(G). Thus

3'
CAut G (G/u (G)) g 0p(Aut G).

Henceforth 03 ‘will denote 03(6) 'which by 2.1 (iv)

equals 03(Z(G)). Since Z(G) is a characteristic abelian

subgroup of G, it is cyclic. Let Z(G) = <x> and suppose

[x] = p‘.
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. —1cx .

If (1 écAutGm/UJ) then x x 603. Thus

i -l i a —1 a i i+°
(xp ) (xp ) = (x x )p 615 3. It follows that

i i+'
a ecAutGQ) /o 3).

Now let a. e c G (Oi/(31+)) n 0p(Aut G). Theorem 2.8
Aut

1

implies a 6 C (01(G)/G’). Furthermore, (x-leL)p =
Aut G

i i C I O

p —l p a 1+] -1 a j j

(x ) (x ) E 0 so x x 6 (5 whence o. E CAut G (Z/o ).

Ifl g = 29:79 6 GI where. 29 6 Z(G) and wg E ()1 (G) then

- 0L _ - a - a j . = j J
g g — 2g 2g wg W9 6 U G (5 . Hence a 6 CAutG (G/o ).

j _ i i+j

It follows that CAutG (G/o ) — CAutG (u A) ) n

0 (Aut G).

P

Corollary 2.18. If G is‘as in 2.17 and i+j = k

then c (G/Uk'imn = c
i

AutG
(G)) n 0P(Aut G).

Aut G (0

Theorem 2.19. Let G be a finite non-abelian p-group

i
l

of Hall type, p odd. Let A = Stab(s) where s : G >0 >

12 it. max[i1,j}

0 >--->U = 1 and I. 2 2. Then A = CAutG(G/U )

ik ik

where j= max [is+1—is}. Here U =0 (G),

s=1,....L-l

k = 1,000; to

Proof: Let t E [l,...,l-l] such that 1t+1-1t = 3.

Then for any 5 E [l,...,L—l}, is+1 _g j+is and it follows

i i i +j i i +j

that u S >u “12 us . Thus CMtGHJ‘Q/us )g

1 1
5 3+1

CAutG(U /u ) for .s =.l,...,.¢-1, whence by 2.17,

° 13 13+1
cAutG (G/UJ) _<_ cAutG (u /u ) n Op(Aut G) for s = 1,...,
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L—l i. i

3 3 3+

CAutG (G/u ) _g 891 CAut G (U /U 1) n Op(Aut G)

i i
t t+1

g cAut G (o /u ) n Op(Aut G)

_ j . . _. _.
— CAutG (G/U) by 2.18, Since 1t+l lt—j.

i .

_ 1 3
It follows that A - CAut G (G/U ) fl CAut G (6/!) )

CAut G (G/U )'

Theorem 2.20. Let G be a finite non—abelian p—group

j _ J'
of Hall type, p odd. Then CAutG (G/U ) - CAut G (Z(G)/U )

n 0P(Aut G) for j 2 1 and uj = uj(G).

Proof: Let j2 1.

By 1.11 and 1.6, CAutG (G/uj) is a p—group since

G is a p-group and (33 3 (MG). Thus CAutG (G/UJ) g

j
CAutG (Z(G)/0 ) n 0p(Aut G).

Let oi e CAutG (Z(G)/uj) n 0P(Aut G). By Theorem 2.8,

o. e CAutG(Ql(G)/G’). If g = zgwg e G where 29 e Z(G)

and W9 6 01(G) then. g'lga = 2:512; wglw; 6 Uj . G' ___ Uj'

Hence a 6 CAut G (G/UJ) .

It follows that CAutG (G/uj) = CAutG (Z(G)/Uj) fl

0 AutG .p( )

Theorem 2.21. Let G be a finite non-abelian p-group

of Hall type, p odd. Let A = Stab(s) where s : G >

11 12 it.
Z(G) >0 >15 >...>u =1 and 1.22. Then A:

/ max{ilpj) {

C (G U ) where j = max i

AutG . . s=1,...,£-1

1k 1k
Here (5 =0 (G) k=1,...,£.

s+1 - ls} °
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Proof: As in 2.19, CAut(;(G/U ) = SCH CAut<3(U /U
3+1)

n 0p(Aut G). Therefore

i .

_ 1 J

= C

i .
1 J

1 l

_ 1 j -
— CAut G (G/‘U ) n CAut G (G/o ), Since 0

max[il,j]

AutCE<GA5

1 _<_ Z(G)

=c ).

Remark 2.22. If G is a finite non-abelian p-group

of Hall type, p odd, and G is not extra-special then Inn G

is not a closed stability group.

Proof: Let A = Inn G. Since Z(G) is cyclic, 1.25

implies A = Stab(G > Z(G) > 1). Thus

A = Stab(G > [G,A] = G’ > [G,A,A] = 1)

= Stab(G > G > 1) = c1!th (G/G) by 2.19.

Let G = <x,wl,...,wt> where Z(G) = (X) and

01(6) = <w1,...,wt>. Since G is not extra—special,

Z(G) > G’ thus if Ix] = pk then k.2 2.

Define a mapping a from G to G by

k-l

X"XXP

w. ... We.

1 1

Then as in the proof of 1.26, a is an automorphism of G.

Furthermore, a e c (G/G’) \Inn G = A\A. Thus Inn G
Aut<3

is not closed as a stability group.
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Theorem 2.23. Let G be a finite non-abelian p-group
 

of Hall type, p odd, G not extra-special. Let A be a

non-trivial normal p-subgroup of Aut G. Then A =

CAutG (G/UJ) for some j such that k - 1 _>_ j 2 l where

[Z(G)] = pk.

Proof: Since A is a normal p-subgroup of Aut G,

A g 0p(Aut G). Thus by 2.14, and 2.16, A g c (01(G)/G').
Aut G

Let g = zgwg 6 G and a €.A where 29 E Z(G) and

-1 a _ -1 a -l a , _
wg 6 01(G). Then g g - Z9 29 W9 wg 6 Z(G) G — Z(G).

Thus [G,A] g Z(G).

By 1.17, 0P(Aut G) is a stability group, whence there

exists an integer n such that V G 0p(Aut G)n = 1. This

follows from 1.5 (1). Since A‘g 0P(Aut G), yGAn = 1 also.

Now n #’l since A # 1. Furthermore, if [G,A] = Z(G)

then n # 2, otherwise A = Stab(G > Z(G) > 1) and 1.25

implies A = Inn G since Z(G) is cyclic. But this is a

contradiction since A is closed by 1.11 (iii) while Inn G

is not closed (see 2.22). Therefore

1 i
1.

A Stab(G>Z(G) >ul>...>u =1) 1

h
/

N

or

11 it

Stab(G >0 >...>u = 1) LA 2.

h
/

. - - _ j
In either case Theorems 2.19 and 2.21 imply A - CAut(3(GAU )

for some j such that 1 g_j g k-—1 where [Z(G)] = pk.
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Corollary 2.24. Let G be as in 2.23. Let A be
 

a non-trivial normal p-subgroup of Aut G. Then A = A if

. _ j .
and only if A - CAut(3(Gfl5 ) for some 3.2 1.

Proof: The conclusion follows immediately from 2.23

and 1.13 since 0] g §(G).

Theorem 2.25. Let G be a finite non-abelian p-group
 

of Hall type, p odd, G not extra-special. If A is a

non-trivial normal p—subgroup of Aut G then A > Inn G.

. " _ 3' -
Proof. By 2.23, A — CAut(3(Gfl5 ) for some 3 such

that k- ‘2 jig l, ‘where [Z(G)] = pk. Since G’ = uk-1 3

 

U]. Inn G < A. Moreover, by 2.22, Inn G is not closed.

Hence Inn G < A.

Corollary 2.26. If G and A are as in 2.25 and A

is closed as a stability group then A > Inn G.

Proof: By 2.25 and the definition of closed, A = A >

Inn G.

Remark 2.27. Let G be an extra-special p—group of
 

Hall type, p a prime. It follows from the proof of PrOposi—

tion 3.2 in [7] that 0p(0ut G) = 1. Therefore Aut G

possesses no normal p-subgroups properly containing Inn G.

Moreover, 0P(Aut G) = Inn G) whence, by Corollary 1.17,

Inn G is closed as a stability group.



32

An obvious question remains. What happens when G

is a 2-group of Hall type, G not extra-special?

Consider the Generalized Quaternion group of order 16

which is given by

Q4 = <XIYIX4 = Y2 = m0 m2 = 1: Y-lxy = X-l>

and has the following subgroup lattice.

  

4

<y.x2> <x> <xy.xg>

/

\

3
<Y> 2 <X Y> <XY>

<x y> <X.2>

<x4>

1

Since §(QG) = Q; = <x2> and Z(Q4) = <x4>, Q4 is

not extra—special. MDreover, 04 is of Hall type.

An automorphism of Q4 takes x to one of the four

3,x5,x7) and y to one ofelements of order eight (x,x

the eight elements of order four, (xly where i = 0,1,...,7).

Thus [Aut 04] = 32.
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Inn Q4 RzQ4/Z(Q4) = 04/<x4> &:D where D is the

Dihedral group of order eight.

Set A = Stab(04'2 Z(Q4)'2 1). Then A is a normal

abelian 2-group of Aut 04. Since Inn G RsD is non-abelian,

Inn G g.A. The automorphism a such that xa = x5 and

ya = y is a non—trivial automorphism in A. Moreover,

A = A. Thus 1 #'A 42 Aut Q4 and A = A does not guarantee

that A prOperly contains Inn G.



CHAPTER III

CLOSED SUBGROUPS AND LIFTING

OF AUTOMORPHISM GROUPS

As was demonstrated in Chapter I, an automorphism of

a normal subgroup can sometimes be extended to an automorphism

of the whole group. In this chapter we show that under

certain conditions, lifting a stability group of a chain in

a normal subgroup will produce a normal and even closed

stability group in the automorphism group of the whole group.

The material in this chapter stems from our consideration

of p—groups which are not of Hall type and our efforts to

determine the normal p—subgroups in the automorphism group

of such a group.

Let G be a non-abelian p—group, p a prime, and N o_G.

We consider the group of extensions of N by G/N.

We use the following results from cohomology groups:

the notation Hn(B,A) denotes the nth cohomology group of B

over A, n.2 1. (See [6], pp.128-130).

Result 3.1 ([6], p.131). Let A be an abelian group.
 

The second cohomology group H2(B,A) coincides with the group

34
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of non-equivalent extensions of A by the group B with a

given associated homomorphism 9.

Result 3.2 ([6], p.142). Suppose there exist extensions

of the group A by the group B with associated homomorphism

9. Then there exists a one-to—one correspondence between all

non-equivalent extensions of A by B associated with e

and all non-equivalent extensions of the center Z(A) of A

by B associated with e.

Schmid, in [7], Obtains the following criterion for

extending automorphisms of normal subgroups to automorphisms

of the whole group.

Result 3.3 (Schmid, [7]). Let N'o G such that CG(N) =

Z(N) and H2(G/N,Z(N)) = 1. Let D denote the group of

automorphisms of N induced by G, and let AN. be any

automorphism group of N. Then

i) There is an automorphism group A of G normali-

zing N and inducing AN on N if and only if

AN normalizes D.

ii) If AN centralizes D/Inn N, then AN can be

lifted to G and any automorphism group of G

extending A acts trivially on G/N.
N

Let G» be an arbitrary finite group. Suppose N‘g G

and AN.S_Aut N such that AN can be lifted to A g_Aut G.

The following question arises. What properties of AN are

inherited by A? As a partial answer to this question when

AN is a stability group, we have the following.
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Theorem 3.4. Let N o_G where G is an arbitrary
 

finite group. Let AN g_Stab(N = N0*2 N1'2"”2~Nk = 1).

Suppose AN extends to a subgroup A of Aut G such that

A centralizes G/N. Then

YGAi _<_ YNAi-l _<_ Ni_1 for i 2 1.

.ggoog: Induct on i.

If i = l, YGA.g N since A centralizes G/N. Also,

N = NG = YNAg = YNAO since A extends AN.

Suppose YGAJ.S YNAJ'l S Nj-l' for j g.i. Then

VGA1+1 = [YGA1,A] g [YNAl-1,A] = YNAl. Moreover, since A

i-l .
extends AN and yNAN '3 Ni—l' it follows that

i-l _ i-l _ i—l ~ _ i
[yNA ,A] — [yNAN ,A] — [YNAN ,AN] — YNAN 3 Ni.

Let G,N,A and AN be as in 3.4. We have:

Corollary 3.5. A g Stab(G 2 No 2 N1 _>_. ..__>_ Nk = l) and

k
A _<_ Stab(G 2 YNA: 2 YNA; 2...2 yNAN = 1).

Let B = Stab(G.2lyNA§‘2 YNA;.2..22’YNA: = l) and

BN = BIN. Then YNB; _<_ YNA; for all i 2 0. Since A g B,

S-BN' Consequently YNA; g yNB; for all i'2 0. Thus

' i . l
YNA; = YNBN for 1 2 0. Hence BN _<_ Stab (N 2 YNAN 2...2

k —— _
YNAN — 1) — AN and therefore AN'S-BN-S AN.

If AN is closed then AN = BN and B is a stability

group extending AN. If, in addition, N is characteristic

in G and AN is normal in Aut N then by 1.3, B is
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normal in Aut G since for i 2.0, YNA; is characteristic

in N and thus in G.

In summary, we have the following theorem.

Theorem 3.6. Let N.o G where G is an arbitrary
 

finite group. Let AN _<_ Stab (N = NO 2 N1 2...2 Nk = 1).

Suppose AN extends to a subgroup A of Aut G such that

A centralizes G/N. If AN is closed, then AN extends

to a stability group in Aut G, namely B = Stab(G _>_ WA: _>_

YNAéIZ...2_yNA§ = 1). Moreover, if N is characteristic

in G and AN is normal in Aut N then AN extends to a

normal stability group in Aut G.

Theorem 3.7. Let N.g G where G is a finite group.

Let ANgAutN such that ANSStab(N=NGZN12...2Nk=1).

Suppose A extends to a subgroup A of Aut G such that
N

1 _ __.

A g cAutG (G/YNA ). Set B — AIN. Then B 3 AN and B

extends to A.

Proog: Since N g_G, YNA g_yGA. 0n the other hand,

YGA _<_ YNA since A g cAutG (G/YNA). Thus yGA = YNA which

in turn implies YGAi = YNAi. It follows from 3.5 and 1.11

(ii) that for i 2 1, YNAi _<_ YGAi = YGAi = yNAi _<_ YNAi and

so YNAi = YNAi.

Let K‘N-S Aut N be the restriction of A to N. Then

for i 2 o, YNAI; = mil, thus WA]; = YNAl = YNA;I for i 2 o.
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It follows that AlN _<_ Stab(N 2 yNAN 2...2 WA: = 1) = Ag.

Thus B = AIN g AE' and B extends to A.

Corollary 3.8. Let G, AN’ A and B be as in 3.7.

If AN is closed then A is closed.

Proof: From 3.7, ANSAIN=BSA§.

closed then B = AN’ and therefore A = A. Hence A is

Thus if AN is

closed.

Remark 3.9. Let N be a normal subgroup of a finite
 

group G such that CG(N) = Z(N) and H2(G/N,Z(N)) = 1.

Suppose AN-S TN. such that AN centralizes D/Inn N

where D is the group of automorphisms of N induced by

G. Then AN = A;' in Aut N implies AN extends to a stability

group in Aut G. Moreover, if N is characteristic in G

and AN is normal in Aut N then AN extends to a normal

stability group in Aut G.

Proof: By 3.3, AN can be lifted to an automorphism

group of G ‘which centralizes G/N. Now apply Theorem 3.6.

Remark 3.10. It should be noted that:
 

(i) If G is a p-group then a critical subgroup K

of G is characteristic in G and has the

property that CG(K) = Z(K). (See [4], p.185).

Thus a proper critical subgroup of a p-group

would be a candidate for N in 3.9.
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(ii) If N is a prOper normal subgroup of a finite

group G such that there is only one non-

equivalent extension of N by G/N associated

with a given homomorphism 9 then

H2(G/N,Z(N)) 1. (See Results 3.1 and 3.2).

The following results were motivated by my search for

examples where the above theorems hold and my efforts to

produce normal p—subgroups in the automorphism group of a

finite p-group.

Remark 3.11. Let G be a semi—direct product of K'g G

and H. Let AK 3 Aut K. If the automorphisms of K in-

duced by H are contained in CAutI((AK) then AK can be

extended to a subgroup A of Aut G such that A g_CAut(3(G/K).

Proof: Let a 6 AK. Define ma from (3 to G by

T

(hk) 0‘ = hko‘.

In [2], Lemma 1.23, Bertelsen showed that ¢b' as defined

above, is an automorphism of G = HK. Also a centralizes

G/K. Let A = [male 6 AK]. A has the desired properties.

Corollary 3.12. Let K be a finite group. If AK g_Aut K

is an abelian group and G = K 1 AK then AK can be extended

to a subgroup A of Aut G centralizing G/K.
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Proof: Let a 6 AK' k 6 K. The automorphism which

a

fora induces on K is a itself since a-lka = k

every k 62K. Thus the group of automorphisms of K induced

by AK 15 just AK. Since AK [is abelian, AK S-CAutI<(AK)°

Hence, by Remark 3.11, AK extends to a subgroup A of

Aut G such that A.S_CAut(;(G/K).

In the same vein, we have the following.

Remark 3.13. Let K be a non-abelian p-group such that
 

K’_<_Z(K). Let G=K<JAK where AK=Stab(K=KG2K12...

2Kn = 1) and K1 _<_ Z(K). Then [G,K] _<_ Z(K).

Proof: Let k €,K and g = xa 6 G where x E K and

a 6 AK. Then g-lkg = a-lx—lkxa = (kx)a = kx - z for some

2 6 K, since a 6 AK' It follows that k-lg-lkg =

151'sz e K’K1 g Z(K).

Theorem 3.14. Let G be a non—abelian p-group. Let
 

A = Stab(G 2'N'2 l) where N.o G and exp N = p. Then A

is elementary abelian.

Proof: Since N is abelian, 1.8 implies A is abelian.

Let a E A and g 6 G. Then ga = gn for some n E N.

i .

We now show that ga = gn1 for all i.2 l.

1

If i = 1, ga = gnl.

ck k

Suppose g = gn . Then
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(
o I

(
6
‘

(gnk)a by the induction hypothesis

 

= gn .nk = gnk+1.

It follows that 90Lp = gnp = 9 since exp N = p. Hence

up = 1 so [al‘p.

Thus A is elementary abelian.

Remark 3.15. Let K be a non-abelian p—group such

that MK) 3 Z(K), [Z(K)] > p, and exp Z(K) = p. Let

AK = Stab(K 2 Z(K) 2 1). By 1.25, with G =1K and N =

AK>Inn K. Let 0L 6A.K\Inn K. Set G=K1<a>. Then

(i) CG(K) = Z(K)

(ii) [G.K] 32(K) and

(iii) cl(K) g_2 and K/Z(K) is elementary abelian.

Proof: Let g = x8 6 G where x E K and l # B 6

Let k 6 K.

(i) By 3.14, a has order p. Thus 8‘: a1 for

some i, 0 < i < p. Also, since a A Inn K

and [a] = p, it follows that G g Inn K. Now

g-lkg = k @ B-lx-lka = k

T

e (k x)E5 k where mx 6 Inn K

e (kB)cpX - k since Inn K g_ and

' Ax

AK is abelian

()-

e kB = k wk 4 B E Inn K.

Thus CG(K) = Z(K).

Z(K).

(a).
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(ii) Since K is a p—group, §(K) = K"-U](K).

(See [5], p.272). Thus K’g (MK) _<_ Z(K).

By 3.13, [K 1 AKfK] S_Z(K). Since

[G.K] = [K :1 <a>,K] g [KaAK,K], we have

[G,K] g Z(K).

(iii) Result (iii) follows from the fact that

MK) _<_Z(K).

By result 1.8, abelian stability groups may be found

by considering Stab(G'Z H.2 l) where H is an abelian

subgroup of the group G.

The following results produce closed abelian stability

groups.

Theorem 3.16. Let G be a non-abelian p-group. Let

1 #’H g_Z(G) such that exp H = p. Then B = Stab(G 2_H.2 l)

is closed.

3mg: By 1.5 (i). [6.8] 3H and [G,B,B] = 1. Let 1 a!

x 6 H and MR be a maximal subgroup of G containing Z(G).

Then Mx-Q~G of index p and [x] = p. Hence there exists

f e Hom(G,<x>) with MK 3 ker f. Thus f e Hom(G/H,H). Let

of E B be the corresponding automorphism of G guaranteed

by 1.7. Then <x> = [G,af] g [G,B]. Hence H _<_ [G,B].

Therefore H = [G,B] and B = Stab(G 2 [G,B] 2 l) =

Stab(G2H2l) =B.
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Corollary 3.17. Let G be a non-abelian p-group.

Let 1 ¥ H‘g Z(G) and exp Z(G) = p. Then B = Stab(G 2LH‘2 1)

is closed.

Proof: Since H g_Z(G) and exp(Z(G)) = p, H has

exponent p. Thus 3.10 applies to give the desired con-

clusion.

Corollary 3.18. Let G be a non-abelian p—group such

that §(G) g_Z(G). Let H g_G’, the derived group. Then

B = Stab(G 2 H'2 l) is closed.

We first prove the following lemma.

Lemma 3.19. Let G be a p-group such that G’Ig Z(G).

Then exp G’ = exp(G/Z(G)).

Proof: Since G’ g_Z(G), [x,y]3 = [x,y]] for j‘2 0

and x,y 6 G.

If t = exp(G/Z(G)) then yt 6 Z(G) for every y 6 G.

Thus [x,yt] = l for every x 6 G and hence [x,y]t 1 for

every x,y 6 G. Thus exp G' g_exp(G/Z(G)).

Now suppose t = exp G’ and x,y 6 G. Then [x,y]t = 1

= [x.yt] = 1 =’yt e Z(G) = exp(G/Z(G)) 3 exp G’o

Hence exp G’ = exp(G/Z(G)).

Proof of 3.18. Since i(G) g Z(G), exp(G/Z(G)) = p.

Thus by 3.19, exp G’ = p. Also, since G is a p-group,
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§(G) = G’Ul(G). (See [5], p.272). Thus G’.g Z(G). Since

H.S G', it follows that exp H = p and H'g Z(G). There-

fore by 3.16, B is closed.

Theorem 3.20. Let G be a purely non—abelian p—group

then the group AC of central automorphisms is closed.

Proof: By results 2.9 and 2.10, AC is a normal p-

subgroup of Aut G. Hence 0p(Aut G) is a stability group

containing AC and we may consider AZ; Since YGAC.S Z(G),

we have

= Stab(G_>_ yGAC 2 YGA

Definition 3.21. A p—group G is called special if

either G is elementary abelian or G is of class 2 and

I

G = Z(G) = 9(G) is elementary abelian.

Example 3.22. Let K be a special non—abelian p—group
 

such that [Z(K)] > p then

(i) K is purely non—abelian.

(ii) Ac = Stab(K > Z(K) > 1) is a closed stability

group which is elementary abelian and contains

an outer automorphism a.

(iii) Let a 6Ac be an outer automorphism. If

G): K d <a>, then Ac can be extended to a

normal subgroup of Aut G which centralizes

G/K and is closed as a stability group in Aut G.



45

‘Proof: (1) Suppose K is not purely non-abelian.

Then K = A x B, the direct product of A and B, where

A is abelian. It follows that A g_Z(K). Also, A ng’

since K'.g B and A n B = 1. But this is a contradiction

since K is special and therefore K’ = Z(K). Thus K is

purely non-abelian.

(ii) By 2.10, AC = Stab(K 2;Z(K)'2 1) since

K’ = Z(K). Moreover part (i) and 3.20 imply that AC is

closed. Since exp Z(K) = p, it follows from 3.14 that

AC is elementary abelian. Finally, using Result 1.23,

AC > Inn K since §(K) = Z(K) and Z(K) is not cyclic.

(iii) Since a 6 Ac, Ac is abelian and the automorphism

a induces on K, namely a-lka 4 kg for every k 6 K, is

just a, Remark 3.11 states that AC can be extended to a

subgroup A of G which centralizes G/K. Moreover, by

Corollary 3.8, A is closed.
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