BYNAMIC RESPONSE OF PLATES ON ELASTIC FOUNDATION

Thesis for the Degras of Fh. U,
MICHIGAN STATE UNIVERSITY
Biyush €. Sharma
1964



THES!S

This is to certify that the
thesis entitled

"DYNAMIC RESPONSE OF PLATES
ON ELASTIC FOUNDATION"

presented by

Piyush Chandra Sharma

has been accepted towards fulfillment
of the requirements for

Ph. D. degree in Civil Engineering

et £~ o ATew

Major professor

Date e flimdts, 3, 1964

0-169

LIBRARY

Michigan State
University




RCCi USE O



ABSTRACT

DYNAMIC RESPONSE OF PLATES
ON ELASTIC FOUNDATION

by Piyush C. Sharma

In this thesis a numerical method for the dynamic anralysis of
plates on elastic foundation is presented. The method is based on a
discretization of the plate by use of the classical finite difference
expansion of the space derivatives in the governing partial differential
equation. The resulting ordirnary differential equations for the dis-
crete system (with time as the independent variable) are integrated
numerically,

The purpose of this thesis is twofold: (1) To investigate the
practicability of finite difference methods in solving dynamic response
problems of plates, particular attention being given to the accuracy
of the method and the efficient adaptation to the computer. {i1) To
demonstrate the workability of this approach in handling problems
whose exact solutions are not known and perhaps impossible to obtain,

For this study, computer programs have bee'n prepared so that
not only their solutions but the generations of the equations of motion
(with the boundary conditions appropriately taken into account) are

all done by the computer for arbitrary grid sizes.



Abstract 2 Piyush C, Sharma

Two methods of numerical integration are considered: (i) The
Runge -Kutta method, and (ii) the Beta method. It is observed that while
both methods give same order of accuracy the Beta method takes
only half as much computer time as Runge-Kutta method. As regards
accuracy, it is observed that for square plates a 16 x 16 grid produces
reasonably accurate results (error for maximum deflection and
bending moment is of the order of 0.1% and 3%, respectively).

The method is applied to study briefly several physical prob-
lems. The effect of foundation damping on the response is studied.
The procedure of obtaining solutions of static problems by use of the
dynamic analysis is considered. An effective method is to introduce
into the system an amount of damping equal to the critical damping
for the first mode and use a rectangular pulse type loading.

Some numerical results are also obtained to study the influence
of boundary condition and the foundation stiffness. It is observed that
stiffnesses of both have similar influence in reducing the response
values.

The case of a free plate subjected to a concentrated load at the
corner is studied. The distribution of principal bending moment is ok -
tained. It is found that the maximum principal bending moment occurs
in the same general area as in the case of static loading. The effect of
foundation damping, and the rise rate of the loading function is also con-
sidered. It is observed that corner loading produces the most severe

effects.
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CHAPTER 1

INTRODUCTION

1.1 Object and Scope

The dynamic theory of plates finds many applications in modern
technology such as the analysis and design of buildings, aircrafts, ship
hulls, and pavements. Except for a few exceedingly simple cases
(e.g., rectangular plates with opposite edges simply supported) an
exact mathematical analysis of such problems is practically impossi-
ble. This is even more so for the case of plates on elastic foundation,
which is important, for example, in rigid pavement design.

Many investigations have been made in the past to calculate
the normal modes and natural frequencies of plates using the finite
difference approach or the Raleigh-Ritz method. Presumably, one
could then use these modes and frequencies to calculate the dynamic
response to external loads by the method of modal analysis, although
seemingly few applications of this type have been recorded in the
literature.

To obtain an approximate solution for the dynamic response
of structures, it is not necessary to follow the normal modes
approach., By first reducing the continuous structure to a discrete
system, one can directly integrate the equations of motion governing

the displacements of the discrete points of the structure., This



method has been applied extensively in one-dimensional structures
such as beams and plane frames. A similar approach is used here
for the treatment of plates.

In this thesis for the dynamic analysis of plates a method is
presented that by-passes the use of normal modes concept. It is
based on: (a) first replacing the continuous plate by a discrete set
of lumped masses and (b) integrating the equation of motion of each
mass. The replacement in (a) is effected by the usual finite difference
expansion of the derivatives in the space domain. Although the inte-
gration in (b) is carried out numerically, from the theoretical view-
point at least, the application of numerical procedure is not essential,
as it is in the case (a).

With regard to the relative merits of the approximate methods
of calculating normal modes using the Rayleigh-Ritz type and the finite
difference methods, it may be pointed out that the former requires the
use of certain sets of approximating functiors which may be difficult
to obtain because of boundary conditions. The use of the method is
usually limited to a few degrees of freedom. Furthermore, it requires
the evaluation of a number of definite integrals which could not be
efficiently carried out by the computer, and have to be done by the
analyst himself.

In the case of the finite difference solution, the procedure is

straight forward in concept. There is also the advantage of the ease



in handling the discontinuities in the structure-load system and the
boundary conditions. A major disadvantage of this approach is that it
requires a large amount of numerical work. This, however, has been
overcome to a large extent by modern computer technology. The accu-
racy of finite difference method depends upon the size of the finite
difference grid. By making use of the digital computer effectively, not
only the solution of the equations are obtained by the computer, all the
equations can be generated inside the computer also. Hence, increas-
ing the grid divisions does not increase the work of the engineer,

Finite difference methods have been used for a variety of prob-
lems and satisfactory solutions have been obtained, particularly for
the case of the static analysis of plates. However, very little work
has been reported in relation to the forced vibrations of plates (see
the next article on "Review of Literature'). Thus it would seem worth-
while to investigate the practicability of such an application.

The purpose of this thesis is twofold:

(1) To investigate the practicability of finite difference methods
in solving dynamic response problems of plates, particular attention
being given to the accuracy of the method and the efficient adaptation
to the computer.

(2) To demonstrate the workability of this approach in handling
problems whose exact solutions are not known, and perhaps impossible

to obtain,



The method of analysis is developed in detail in Chapter II. As
noted before, the continuous displacement function of the plate is
represented by the displacements of a discrete set of points. The
resulting equations of motion are integrated numerically., Two
methods of numerical integration are considered: (a) the Runge-
Kutta method (30), and (b) the Newmark Beta method (42). A
comparison of the accuracy and efficiency of these methods is given
in Chapter III.

In the same chapter the question of the accuracy of the finite
difference method is studied by comparing numerical solutions with
the mathematically exact solutions. The comparisons are made on
the basis of bending moments as well as displacements. The hand-
ling of concentrated load is discussed. The effect of such parameters
as foundation damping, foundation stiffness and the boundary condi-
tions are briefly considered. It is shown also that the method can be
applied efficiently to obtain the static response of plates, thus avoid-
ing the re-formulation of the problem for a static analysis, if such
is desired.

Most of the preceding solutions relate to problems for which
exact solutions are not difficult to obtain. For the same reason the
accuracy of the numerical methods may be discussed.

To demonstrate the applicability of the method to problems for

which exact solutions seem impossible to obtain, the problem of a



plate free on all edges resting on an elastic foundation is treated. It
may be pointed out that this problem has important applications in
the analysis and design of highway and airport pavements.

The final chapter summarizes the findings of the study and
points to a few possible fruitful directions for the extension of the
present work. Certain pertinent details regarding computer usage
in this thesis are given in Appendix A. The mathematically exact
solutions used for purposes of estimating the accuracy of the results

obtained by the numerical method are presented in Appendix B.

1.2 Review of Literature

The general subject dealt with in this thesis is related to several
areas. For convenience, the review of past work has been given in
three groups: (a) free vibrations, natural frequencies and mode shapes,
(b) forced vibrations of plates, and (c) plates on elastic foundation
connected with pavement design.

1.2.1 Free Vibrations: Investigations primarily concerned

with the calculation of natural frequency and normal modes for the

plate are too numerous to be covered here. Therefore, only those

deemed most important have been listed in the bibliography.
Sezewa (34)!', (1931)2 solved the problem of vibration of

rectangular plates with all 4 edges clamped by making the solution

!Numbers in the first parentheses refer to reference listed in
the Bibliography.

¢Numbers in the second parentheses refer to the year of
publication of the work,



satisfy the governing differential equation allowing small residual
slope at some portion of the boundary. Young (46), (1950) used

the Ritz method to compute the characteristic values and shapes of
vibrating plates with different boundary conditions. He made use of
functions which define the normal modes of vibration of uniform
beams. Mindlin (23,24), (1950, 1956) studied the effect of rotary
inertia and shear in plate vibrations in a manner similar to that used
by Timoshenko for the one dimensional theory of beams. Also the
coupling of modes was studied for the case of one pair of parallel
edges free and other pair simply supported.

Stanisic (36), (1955) considered the case of damping in the
plate material and calculated the natural frequencies of plate fixed
along each edge with arbitrary aspect ratio. Similarly Raskovic
(31), (1959) dealt with the problem of free vibrations of elastic
homogeneous plates considering the influence of internal viscous
damping. He also used functions defining normal vibration mode of
uniform beams and obtained the solution for a square plate with all
the four edges clamped.

Feldman (4), (1959) and Bradley (1), (1961) used the finite
difference method to solve the eigenvalue problem of plate vibrations.
Leissa (19), (1962) used the method of point-matching to obtain the
eigenvalues and eigenfunctions of vibrating plates. By setting up a

digital computer program, frequencies and mode shapes were obtained



for a clamped square plate. Leckie (18), (1963) applied the method
of transfer matrices to plate vibrations, to obtain the natural fre-
quencies and normal modes.

Kennedy (16), (1964) obtained the linear and non-linear vibra-
tion characteristics of rectangular plates utilizing finite difference
technique on an operational analog computer. The effects of aspect
ratio, large amplitudes of vibration, and grid sizes on the accuracy of
natural frequency of vibration were studied.

1.2.2 Forced Vibrations: For the forced vibrations of plates,

only solutions to very special cases have been obtained because of
the difficulties involved in finding a general solution to such problems.
Takabayasi (37), (1936) used the method of integration in plane
of complex variable to solve the problem of elastic vibration of cir-
cular clamped plate acted on at its clamped edge by an external
periodic force. Yeh et.al. (44) (1955) studied the forced vibration
of a clamped rectangular plate in fluid media. They used the charac-
teristic shape functions and Lagrange equations of motion of plate to
set up the equation of motion in generalized coordinates, and obtained
some numerical results, Forsyth et.al. (5), (1960) studied theo-
retically and experimentally the transient vibration of rectangular
plates. They showed that for the case of a cantilever plate subjected
to an impulse load, reasonable agreement was obtained between the

theoretical and experimental results,



Mase (22), (1960) solved the problem of the bending of viscous
elastic plates of Maxwell and Kelvin types. He used Laplace trans-
form to obtain the quasi-static deflection of laterally loaded plates
and the dynamic response of simply supported plate under no load.
The solutions for the free vibrations of Maxwell and Kelvin type plates
are also obtained. Solecki (35), (1960) studied the free and forced
oscillations of a triangular lamina in the form of an equilateral
triangular. The bending function is expressed in the form of an infinite
Fourier's series.

Kalman (15), (1962) investigated the problem of transverse
vibrations of a stiffened rectangular elasto-plastic plate. The finite
difference approach used in this thesis is similar to the one used by
him for the dynamic response of elasto-plastic plates. He assumed
that the plastic flow is proportional to the maximum moment only, and
there is no interact:ion of moments. The report is very brief and the
question of accuracy has not been considered.

Sandi (33), (1962) studied the case of dynamically loaded plates
composed of hard elastic material, the rheological behavior of which
is linear, resting on a half space composed of the same material.

The author gives a mathematical description of the phenomenon based
on the general method of expressing the dynamical displacements of
bodies by means of a multiple integral equation of Volterra type with

regard to time, and of Fredholm type with regard to the coordinates



of the contact surface which is supposed to be prescribed. The author
further discusses the phenomenon of dynamic contact.

Kurlandzki (17), (1962) considered the reduction of initial
boundary value problems of elasticity to Fredholm integral equations
of second kind. He reduced the dynamic problem of an elastic plate
to Fredholm's integral equations of the second kind by a finite sine
and cosine transformation in relation to the time variable. These
equations in which integrals with respect to two variables and a rela-
tively complicated structure appear may be solved by successive
iterations. No example of application is given.

Reismann (32), (1963) studied the dynamic response of elastic
plate strip to moving line load by formulating it as a boundary value
problem within the framework of classical small deflection theory of
thin plates and obtained solutions in terms of trigonometric series.

It is shown that the shape of resulting deflection profile of plate is
strongly dependent upon speed propagation of the load and magnitude
of damping coefficient. In the absence of damping, denumerable
infinity of critical speeds exist at which deflections become unbounded.
However, with damping,deflections remain bounded.

1.2.3 Plate on Elastic Foundation: Most of the work in the

area of pavements has been limited to static analysis except a few
recent works like those of Holl (11), (1950), Livesley (21), (1953)

and Sandi (33), (1963) which have dealt with certain highly idealized
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cases such as infinitely long plate or simply supported plates.

There is a great deal of literature available on the bending of
plates over elastic foundation. Westergaard (43), (1925) analyzed
theoretically a rigid pavement, and presented some semi-empirical
formulae for evaluating the maximum bending moments. He
showed that the maximum moment occurs when the load is applied
at a corner. Murphy (25), (1937) calculated the stresses and deflec-
tions in loaded rectahgular plates on elastic foundation by solving the
classical plate equation. Similar results were presented by Holl (11),
(1938).

Holl (12), (1950) studied the case of simply supported plate
under dynamic loading on elastic foundation. He considered various
kinds of subgrade reactions, using influence functions and transform
solutions. The solutions are limited to simply supported plate or
circular plates with symmetry. Similarly Livesley (21), (1953)
commented on the mathematical theory of loaded elastic plates rest-
ing on elastic foundations. He studied the problem of a uniformly
travelling load on an infinite plate and showed that there exists a
certain critical velocity beyond which stresses and deflections
become infinite.

Pickett (28,29), (1951) studied the stresses in the corner
region of concrete pavement slabs under large corner loads and
calculated the influence charts for bending moment in rigid pavements

under such loading.
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Nagdhi (26), (1953) solved the problem of axially symmetric
plates on elastic foundation taking into account the effect of transverse
normal stress and shear deformation. Schleicher's functions were
used to obtain the solution. Frederic (6), (1957) solved the same
problem for the case of rectangular plates considering various types
of fixity of edges involving 3 boundary conditions. He obtained the
solution in both Levy and Navier forms. Chen (2), (1960) used both
Ritz and Galerkin methods of variation to solve the problem of iso-
tropic as well as orthotropic plates with free edges on elastic foundation.,

Leonards et al. (20), (1961) dealt with the analysis of concrete
slab on ground. In this paper a number of practical points such as
the effect of subbase on stresses, often neglected in theoretical studies,
have been considered. Harr (9), (1962) studied the effect of vehicle
speed on pavement deflections. Here he considered the pavement slab
as a single degree of freedom system. Jones (14), (1962) carried
out detailed theoretical investigation using a digital computer to study
the static effect of concentrated loads on pavement deflections,

Since this thesis is concerned with establishing the suitability
of a numerical method for the dynamic response problem and its use
to solve the pavement problem, no attempt has been made in this
brief review to give a comprehensive survey of the published litera-
ture. The few references mentioned here are intended only to provide

background information on available solutions for the dynamic response
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of plates on elastic foundation and problems associated closely with

it.

1.3 Notations

The notation listed in the following has been adopted in this

thesis.

Each symbol is defined when first introduced and is collected

here in alphabetical order for convenience of reference. '"Fortran'®

notation is listed separately in Appendix A.

ij

F(t)

G(x,vy)

1

length of the longer side of the plate;

length of the shorter side of the plate;

V4, the biharmonic operator in finite differences form;
foundation viscous damping constant;

critical damping for the mode (i,j), used in Appendix B;
Eh3/ 12 (1 - vz) , flexural rigidity of the plate;

error in deflections at point (1);

modulus of elasticity of plate material;

0. P‘, ., non-dimensional forcing function at point (1i,j);
magnitude of concentrated force used in Appendix B;
time dependent part of the forcing function P(x, vy, t)
used in Appendix B;

space function part of the forcing function P(x, y, t)

used in Appendix B;

Fourier coefficient for G(x, y) used in Appendix B;



Zn 2

o]

ij
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plate thickness;

variable subscripts to denote points in space;
foundation stiffness constant;

mass per unit area of plate;

bending moments as used in Appendix B;

MX = My' bending moment used in generic sense;
algebraically larger principal bending moment;
algebraically smaller principal bending moment;
M1 a/D, dimensionless Ml;

Mza/D, dimensionless Mz;

moment at a point (i) derived from derived
deflections W

moment at a point (i) derived from the deflections v;'i;
true moment at a point (i);

a/\, number of grid divisions;

magnitude of forcing function used in Appendix B;
forcing function at point (i, j);

forcing function;

natural circular frequency of the (i, j)th mode of the

plate used in Appendix B;

V pij2 - rz, damped natural circular frequency used

in Appendix B;
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q(x,y) = static loading function acting over the plate;
r = Ei—n, a viscous damping parameter;
rcr(ij) = r, corresponding to the critical damping of the (i, j)th
mode;
S.. = sin %~ gin &L , used in Appendix B;
ij a b
1/2
1 ma4 4 4.1/2
T, = ;( D) /{1 + ka /4Dm ]
first fundamental period of simply supported plate on
elastic foundation;
_ 4 1/2
To = (—5—) ; factor to divide t, to make it dimensionless;
Ts = shortest period of the plate system;
t = time;
to = time parameter used in Fig. 24,
tl = time parameter used in Fig. 24;
tl = duration of loading pulse used in Appendix B;
W . .
u = a dimensionless deflection;
u = width along x-coordinate direction of the partially loaded
area used in Appendix B;
uij = dimensionless deflection at the point (i, j);
v = width along the y-coordinate direction of the partially

loaded area used in Appendix B;
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{lij’ dimensionless velocity at the point (i, j);
deflection;

true deflection at point (1i);

derived deflection at point (1i);

space coordinate;

space coordinate;

4
ka . . . .
D dimensionless foundation stiffness constant;
ca4
DT dimensionless foundation damping constant;
o

prefix denoting 'increment'’;
biharmonic operator;
grid size
t/To, dimensionless time;
4 1 .
a /Dh; factor to be multiplied to Pij to make it

dimensionless,



CHAPTER II

METHOD OF ANALYSIS

2.1 General
The governing differential equation for the small deflections of

an elastic thin plate subjected to a lateral loading q(x,y) is given! by:

4 4 4
4 9w 9w 9 w _q(x,vy)
V'w = + 2 > 2+ 2D

8x4 ox 0y oy

(1)

in which w is the deflection, x and y are space coordinates and D is
the flexural rigidity of the plate.
For the case of dynamic loading and Winkler type elastic

foundation with viscous damping, the ecjuation of motion is obtained

2
by replacing q(x,y) by - (mazw + c aaL: + kw) + P(x,vy,t) where
azw * ow
i > is the inertia force, and c Et—-*- kw is the reaction of the
ot

foundation including the effect of viscous damping, and P(x,vy,t) is

the forcing function. Thus, Eq. 1 becomes:

2
4 k c ow mod w _ P(x,vy,t)
v w+Dw+D 8t+ Datz = D (2)

This equation together with the appropriate boundary and initial
conditions governs the dynamic response of the plate system to the

dynamic loading P(x,y,t).

Timoshenko (39), pp. 79-82.

16
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Mathematically speaking, this partial differential equation is of
the parabolic type, and is referred to as a propagation problem in two
space dimensions. The solution ""marches!' in the time domain start-
ing with the initial conditions, and confined in space by the boundary
conditions. In other words, for the case of rectangular plates, con-
sidered in this thesis, the solution has to march inside a box (as
depicted in Fig. 2), whose base is made up of the initial conditions,
and all the four sides are made up of the boundary conditions, the top
being open,

It is difficult to find exact closed form solutions to the partial
differential equation, Equation 2, except for a few simple cases where
the two opposite edges of the plate are simply supported. Therefore,
one has to resort to some kind of approximate or numerical procedure.
The procedure used here is based on the well known finite difference
method. There are two distinct steps in the numerical solution of the
problem:

(1) finite difference is applied to the space domain, replacing
the continuous plate by a set of discrete points; and the partial differ-
ential equation by a set of simultaneous ordinary second order linear
differential equations;

(2) the set of ordinary differential equations is solved by

numerical integration,
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2.2 Non-dimensional Form

Since it is convenient to work with non-dimensional quantities,
Equation 2 is transformed into non-dimensional form by dividing it
a4
throughout by the quantity Dh where a is the length of the longer side

of the rectangular plate and h is the thickness of the plate. Then

Equation 2 may be written in the following form:

2
4 4
aVu+au+B8—“’+av’=F(x,y,T) (3)
oT 2
oT
in which
u = w/h, dimensionless deflection (3a)
T = t/TO, dimensionless time (3b)
4 1/2
To = (ma /D) / , a parameter (3c)
4
a = ka /D, dimensionless foundation stiffness constant (34)
B = ca4/DTO, dimensionless foundation damping constant (3e)
F(x,y7m = 6-P(x,y, 1), dimensionless forcing function (3f)
6 = a.4/Dh; a parameter (3g)

2.3 Discretization of Space Domain

The reduction of the partial differential equation (together with
the boundary conditions) for the continuous system to the set of
ordinary differential equations for the discrete replacement system
may be accomplished '"physically" or "mathematically.'" In the
"physical' approach, a discrete model is invested with lumped physi-

cal characteristics of the continuous system. The governing
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equations are then obtained from the physical laws applied directly to
the lumped parameter model.

In the '""mathematical' approach, the continuous formulation is
reduced to a discrete formulation by simply replacing the derivatives
in the differential equation with finite difference expressions. The
use of the '"physical' approach has the advantage that the model pro-
vides something which is easily visualized, and facilitates the treat-
ment of difficult boundary conditions. The ""mathematical' approach
has the advantage that it is straight-forward and does not require the
judgment needed in devising an appropriate physical model.

In this thesis essentially the second approach is used. The
space derivatives in Equation 3 are replaced by the second order finite
difference patterns as shown in Fig. 4. Thus, for a given point (i, j)
Equation 3 takes the following form:

4 . "
n BHO (u,.)) +au,  +pu. . +u,  =F,. (4)
1) 1) 1) 1) 1]

where "BHO' denotes the biharmonic operator in finite difference
form, Fij denotes the value of F evaluated at point (i, j), and each
dot superscript represents a differentiation with respect to T.
Applying Equation 4 to every point in the domain and with the
boundary conditions properly taken into account, one obtains a set of
ordinary differential equations. Of course, the forms of "BHO" are
different from Fig. 3 for points on and adjacent to the boundary in the
manner similar to the case of the use of finite difference in the static

analysis of plates.
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In passing it might be mentioned that there is a physical model
which would lead to the same equations as those given by the finite

difference formulation of the static plate problem as given in (8).

2.4 Numerical Integration of the Set of Differential Equations of

the sttem

The set of differential equations of the type of Equation 4 may
be considered as representing a continuous propagation problem in-
volving a set of mass points. However, if the time domain is also
discretized simultaneously with space domain, then one obtains, for
each time instant, a set of simultaneous algebraic equations. Detailed
discussions of these approaches have been given by Crandall (3).

The set of differential equations can also be conveniently solved
by numerical integration using a computer., There are a large number
of numerical integration procedures available in the literature [for
example Crandall (3), Ralston and Wilf (30)]. Among the most well
known and widely used is the Runge -Kutta method. This method is
generally applicable to differential equations of any order., On the
other hand, there is a class of procedures developed primarily for
problems of structural dynamics. In this group the '"Beta Method" is
representative. In the following two sub-sections these two methods
are briefly commented upon. In Chapter III, a comparison of these
two methods will be made from the standpoint of their applications to

the method of analysis used in this thesis.
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2.4.1 Runge-Kutta-Gill Method: This method comes under

the general category of Runge -Kutta methods, and is a modified
version of Runge -Kutta fourth order method. The derivation will not
be given here, as it can be found in many textbooks on numerical
analysis, e.g., (30) and (7).

The Runge -Kutta numerical integration method is a non-iterative,
step by step, and self starting procedure. Accuracy is derived by
using several estimates of the dependent variable for each increment
of the independent variable. Usually the method is set up for first
order equations. However, it can be easily adapted to higher order
equations. Second order differential equations are handled by first
transforming them into a set of first order differential equations. For
example each of the equations (4) is transformed into two first order
differential equations. Thus,

o

ij ~ Vij (5a)

v

4
..=F, . -n BHOwu..-au. . -Bv.. (5b)
ij 1j 1

J 1) 1)
: . . . 5
The truncation error for one integration step is of order (A7)
for this fourth order method, where (A~) is the increment of the
independent variable. Theoretically, there are no limits on the
increment size in regard to convergence and stability. The size of
the time increment of integration is decided so that it is not too small

as to require excessive computation labor or result in large round off
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errors; neither it should be so large as to give rise to large trunca-
tion errors.

2.4.2 Newmark Beta Method: This method of integration is a

step by step, self starting and generally iterative method. It handles
a set of second order differential equations. A rather comprehensive
study has been made on this method and has been reported in (27, 42).
The scheme for one step of integration is as follows:
(1) Calculate the initial acceleration from the governing
differential equation. For example, using the given initial conditions,

4
(a..) =[F..-n BHOu, . -au, -pu,.]
ijir=r ij ij ij ijir=T

(2) Assume an acceleration, (i, .)
1) T1=T0+A'r

(3) Using the values from (1) and (2) calculate the values

(&

u, ) (
1)

T°+A'r’ uij) To+ A from the following formulae which essentially

represent the Beta Method:

ﬁ(TO)+ﬂ[u1,(T )+ i (1 +AT)]
j. o ij’ o

uij(To+AT) >

w (r +87) =u (1) +Ara (1) + (A7)2 (5 - Beta) G (7 )
ij' o ij' o ij' o 2 1 o

+

(AT)% (Beta) i, (1 +AT)
ij° o

in which '"Beta'' represents a fraction ranging in value from zero to
one-fourth,

(4) Substitute these values of ﬁij(-ro+A-r) and uij( S +AT)
calculated from step (3) into the differential equation given in step

(1) and obtain u..(T +AT).
ij’ o
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(5) Compare iiij( -ro+A-r) from step (4) with the assumed one,
i.e., iiij(To+A-r) of step (2). If they agree within a specified
tolerance for all the variables then one step of integration is complete.
If for one or more variables, iiij('ro+A-r) does not converge, the
whole process is repeated starting from step (1) but with the new
assumed acceleration equal to that found in step (4).

It may further be pointed out that the size of time increment
of integration can not be chosen arbitrarily. It has to be less than
about one-third of the shortest period of the system. The method

may become unstable for larger time increments.

2.5 Evaluation of Bending Moments

After the deflections at the discrete points are obtained
numerically, the bending moments are calculated from these deflec-
tions using the usual second order finite difference expression to
represent the curvature. Although this approach has been generally
used in the past, for problems of statics, it seems that the accuracy
of such a procedure has not been studied. Since bending moments are
significant quantities from the engineering standpoint, it seems
desirable to devote some space to consider this question.

Let w, denote the deflection at a point (i) obtained numerically
and V\-/i be the true deflection at the same point such that v;i -w, ey,

is the error in the deflection at the point (i). Corresponding to the
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finite difference pattern used herein (Fig. 3), this error is of order
2 2 - .

N\, thus e = O(N"). Let M_1 and Mi represent the bending moments

obtained from the deflections W, and v;i, respectively, by using the

second order finite difference expressions, and I\=/Ii be the true value

of the moment. For simplicity, let D =1 and v = 0; thus,

Wiop AW Wi
M_1 = > (6a)
A
W -2w. + w
- -1 i i+l
M, = L 21 . (6b)
A
also
- - 2
M, = M +O0()) (6¢c)

Now substituting for w,1 in terms of \;,i in Equation 6(a) one obtains;

Wi TAW t W et tey
M, = 2 * 2
X x
2
=1\’/Ii+o(;‘)
X
- 0
=M +O0(\) (6d)

The error in moment is thus,

I\z/[i-Mi:O()\Z) o) (be)

It is seen that the second term of error on the right hand of
Equation 6(e) cannot be made smaller by using smaller grid sizes;

i.e., it will stay constant regardless of how fine a grid is used. An
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apparent good agreement between the values of the bending moment
obtained by the numerical procedure and the exact solution would indi-
cate that this error term is probably small in magnitude. Indeed, a
preliminary study for the simple case of a beam indicates that if the
loading varies linearly along the span length, the corresponding con-
stant error term would be zero, except for errors introduced by the

boundary considerations.

2.6 Use of Computer

In this study several computer programs have been prepared.
They were written in a general fashion in order to handle rectangular
plates of different aspect ratios, different boundary conditions, and
different grid sizes. Some of the relevant details related to the pro-
gramming and a representative version of the program are given in

Appendix A.



CHAPTER 1I1

RESULTS AND DISCUSSION

3.1 Comparison of Runge-Kutta and Beta Methods

As mentioned in the preceding chapter, the Runge-Kutta and
Beta methods of numerical integration are being considered for use
in the numerical method of dynamic plate analysis being investigated
herein. While the Runge -Kutta method may seem to be more accu-
rate, the Beta methods appear to be simpler to use. Hence, it seems
a matter of practical interest to compare the relative merits of
these methods from the standpoint of adaptation to the method of
analysis used in this thesis.

The comparison will be made based on the study of a specific
problem: a simply supported square plate resting over an elastic
foundation (a = 414.7, B = 0) is loaded by a triangular pulse of peak
pressure F (x,y,0) = 36.6 acting over an 1/8 x 1/8 area of the plate
at the center. The duration of the pulse is equal to .675 times the
first fundamental period of the plate (Tl/To = ,222). This problem
physically corresponds to a simply supported concrete slab 12' x 12'
x1' (E=2x 106 psi), resting over a firm soil (k = 614.4 1bs/'1n3,

c = 0) and loaded at the center by an impulsive load of 640 psi peak
value.

The problem, the boundary conditions in particular, is chosen

26
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because its exact solution can be obtained for purposes of comparison
with that obtained by the numerical method. The comparison will be
made on the basis of: (i) accuracy of the results; (ii) stability of
integration; and (iii) computer time needed.

Before proceeding further, an estimate of the time increment in
integration will be made. This increment will be expressed in terms
of Ts’ the smallest period of vibration of the plate which is approxi-
mately equal to the fundamental period of a plate one grid square in

size. Hence, from Appendix B:

! 4 1/2
T =L (®mh /L\/1+kx4/4w4D
s ™ D

Assuming the physical parameters of the problem are such that the

. . . ) o1 mr4 .
denominator is approximately equal to unity, Ts *7 D and in

dimensionless form Ts/To = 1/('.rrn2) . A fraction of this quantity is
used as the increment in the numerical integration.

3.1.1 Accuracy: In Table 1 are listed the values of the center
point deflections and bending moments (both in dimensionless form)
for two time instants. The data presented include results as obtained
by different methods of integration and different time increments
used in the integrations. The numerical solutions were obtained by
use of a 16 x 16 grid. In Table 2 are presented the maximum response
values for the same problem,

The following observations may be made from an examination
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of the data: (i) The deflections obtained by these methods agree
very well with each other, and with the exact answer. (ii) As
expected, the agreement in bending moments is not as good as that
in deflections. But it is still quite satisfactory. (iii) The size of
time increment of integration is not of great importance whenever
the method is stable.

Graphs of the entire deflection and moment histories of the
problem as computed by the use of Runge-Kutta and Beta method
(Beta = 0) also indicate very good agreement. In fact, they virtually
overlap each other, and hence are not presented here.

3.1.2 Stability: When the time increment of integration is
increased, less computer time is needed for the solution of a given
problem. But beyond a certain limit of the increment, the solution
obtained would deviate more and more from the true solution, and
instability in the numerical integration is said to have occurred.
Hence there is a limit as to the largest time increment that can be
used in the integration. It may be seen from Tables 1 and 2 that the
Runge -Kutta method has a slightly larger range of stability than the
Beta methods.

3.1.3 Computer Time: For a given problem, generally

speaking, the Runge-Kutta method takes about twice as much computer
time as either the Beta methods considered. This difference should

be regarded as of practical significance because of the cost of
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computer time. Between Beta = 1/6 and Beta = 0, the latter takes
somewhat less time.

Since all three methods considered yield results having essen-
tially the same order of accuracy, and since the Beta method needs
only half of the computer time needed for the Runge -Kutta method,
on the basis of the study of this particular problem, the Beta = 0
method is used to obtain the numerical results presented in the

subsequent sections.

3.2 Comparison of Numerical and Exact Solutions

It has generally been observed, in using finite difference meth-
ods for static analysis, that the finer the grid, the better are the
results., However, for the dynamic problem, this is true only to a
certain extent. This is because the nature of errors in the numerical
solution is quite complex. They may arise from: (i) discretization
in space of the continuum; and (ii) numerical integration of the dif-
ferential equations,

Since the stability of the numerical integration depends upon the
size of the time increment of integration (AT) in relation to the short-
est period of any mode present in the system [see (42)], AT has to be
inversely proportional to the square of the grid division (n). The
number of differential equations of the system is proportional to the
square of n. Thus the total number of numerical integrations or

computer time, is proportional to the fourth power of n.
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It is reasonable to assume that the round-off errors in the
numerical solution increase with the computation time. Therefore,
although a larger number of grid divisions will better approximate
the continuous plate in the space domain, as a result of the still
larger amount of numerical calculations required, the numerical
solutions obtained may not necessarily be more accurate than those
obtained using a smaller grid division.

The question arises naturally as to the value of n at which the
advantage of a more closely approximated space domain is offset by
the disadvantage of the accumulation of round-off error. In order to
answer this question one would need a rigorous error analysis of this
problem, which would seem quite impracticable, considering the
general difficulties involved in error analysis in numerical solutions
and the complexities of the problem under investigation. In view of
these factors, it would seem desirable to study the problem empiri-
cally by considering the effect of grid sizes on the numerical solution
of a specific problem.

The specific problem selected here is the same as described in
section 3.1, except that the loading is applied uniformly over the entire
plate with a peak pressure of 10 psi (thus making the total load applied
over the entire plate the same as in problem of section 3.1).

In Fig. 5 are presented the deflection histories of the center

point for the following grids: 4 x 4, 8 x 8, 12 x 12, 16 x 16 and 20 x 20.
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It may be observed that all these curves are very close to one an-
other. Indeed, curves corresponding to 16 x 16 and 20 x 20 grids
coincide with the curve obtained by the exact solution (which is not
shown here).

In Fig. 6 are shown the response histories for center point
bending moments for various grid sizes. It may be observed that
as the number of grid division increases the results get closer to
one another. The effect of higher modes cannot be seen by using
lower numbter of grid divisions; the response history for the 4 x 4
grid hardly shows any higher modes. In Fig. 7 is shown a compari-
son of the moment response history for the 16 x 16 grid and that
corresponding to the exact solution. It is seen that the agreement is
reasonably close,

Fig. 8 shows the comparison of the history of bending moment
at x = a/4, y = a/2 (hereafter referred to as the "Quarter Point") for
a 20 x 20 grid and the exact solution. Agreement between the two is
seen to be as good as for the case of the center point.

In Table 3 are listed the maximum values of center point
deflections and bending moments, the times of occurrence of these
values and the associated errors for various grid sizes. It may be
observed that for the 16 x 16 grid the error for the maximum deflec-
tion is 0.1%, and in maximum bending moment is 3%. The corre-

sponding errors in the times of occurrence of these maximums are
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0.7% and 1.9%, respectively. Similarly in Table 4 are listed the
deflection and moment values for the quarter point. The error for
the 16 x 16 grid in maximum deflection is 0.3%, and in maximum
moment is 0.8%. The error in the times of occurrence of these
maximums is 1% and 7.2%, respectively, for deflection and moment.
From Tables 3 and 4, it may further be observed that for
deflections the error keeps on reducing with increasing number of
grid divisions, while in case of moments it does not follow any set
pattern. At the same time it is to be noted that errors for grid
divisions of 4, 8, and 12 seem to reduce with increasing grid divi-
sions, while beyond 16 grid divisions the error in moments éeems to
increase in the opposite direction, particularly for the quarter point.
However, the errors in deflections and moments both seem to be
within reasonable limits for the 16 x 16 grid. This grid therefore can
be thought of as a ''critical grid.'" Almost all the subsequent results

have been obtained using this 16 x 16 grid.

3.3 Treatment of "Concentrated Load"

Because of its practical importance, the case of ''concentrated
load" is studied in this section. Two schemes were used to represent
the concentrated load in the numerical approach. In the first approach,
the loading area is kept equal to one grid square unit, and the load

intensity is varied to make the total load on the plate constant. This
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will be referred to as the ''shrinking area loading.'" In the second
scheme the load is spread over a fixed area which is independent of
the grid size. This will be referred to as the ''partial loading."

The specific problem considered here for this study is the same
as that described in section 3.1. In both cases of loading, the total
peak load applied over the entire plate is a constant (144, 000 lbs).

In the case of ''shrinking area loading' a peak pressure of 10 (nz) psi
is used; hence, for an 8 x 8 grid, the peak pressure will be 640 psi.
In the case of the ''partial loading, ' the load is distributed over an
1/8 x 1/8 area of the plate with a peak pressure of 640 psi.

3.3.1 Shrinking Area Loading: The histories of the center

point deflection as obtained by using the 16 x 16 grid and that from
exact solution are presented in Fig. 9. The values of the maximum
deflections and moments for various grid divisions are listed in
Table 5. It may be observed from these data that the center point
deflection as obtained by use of the 16 x 16 grid is quite close to the
exact solution. It may be also observed that the bending moment
under the load appears to be divergent. This is, of course, not
surprising since the series representation of this moment as given
by the exact solution is divergent.

In Fig. 10 are presented the response histories for the bending
moment at the quarter point for different grid divisions. It may be

seen that the moment response histories for different grid divisions



34

differ from each other appreciably. This may be because of the
nature of the problem, as it is known that the series for the exact
solution converges very slowly. In Fig. 11l are shown the response
histories for the quarter point bending moment as obtained by using
the 16 x 16 grid and that from the exact solution. It is seen that the
numerical solution agrees reasonably well with the exact solution.
Similar comparisons of deflections are given in Fig. 12, The agree-
ment is, as expected, excellent. In fact, the two curves practically
coincide. In Table 6 are listed the values of the maximum responses
(deflections and moments) at the quarter point for the various grid
divisions. It is of interest to note that the values of the maximum
bending moments for the different grid sizes are quite close, although
the history curves differ appreciably.

The error in the maximum deflection for the center point
(under the load) for the 16 x 16 grid solution is 5.5% and for the quarter
point is 0.6%. The numerical solution for the maximum bending
moment at the quarter point has an error of only 1. 5%.

3.3.2 Partial Loading: In Fig. 13 is shown the comparison of

the center point deflection histories for the 16 x 16 grid and that
obtained by using the exact solution for this case of partial loading.
The two results are seen to be quite close to each other. Similarly
in Fig. 14 is shown a comparison of the response histories for the

center point bending moment for the 16 x 16 grid and that obtained by
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using the exact solution, It may be observed that although the agree-
ment is satisfactory, it is not as good as in the case of deflections.
The maximum values of the responses for the center point are listed
in Table 7 for the various grid sizes. The errors in the maximum
center point deflection and bending moment for the 16 x 16 grid are
2.5% and 6.6%, respectively.

In Figs. 15 and 16 are presented a comparison of the quarter
point response histories for deflection and bending moment, respec-
tively. For moment, the agreement between the numerical solution
and the exact solution is reasonably good, while for deflection the
curves practically coincide. The maximum response values for the
various grid divisions are listed in Table 8. The errors in the maxi-
mum response values for the 16 x 16 grid are 0.4% and 5.1%, respec-
tively, for the quarter point deflection and bending moment.

Inasmuch as in actual engineering applications it is practically
impossible to have a case of a real concentrated or point load, from
the preceding it would seem reasonable and practical to use the 'par-
tial loading'" approach to deal with the case of nominal '""concentrated"

loading.

3.4 Consideration of Foundation Damping

In this section numerical solutions involving foundation damping

will be studied, The same plate system described in section 3.1 is
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considered here with the following changes. Two types of uniform
loading are used: (i) a constaint load is applied suddenly; and (ii) the
load is increased linearly from zero to a maximum value and held
constant thereafter, Varying amounts of damping are introduced into
the system.

The response histories for the center point deflection are
plotted in Fig. 17. The numerical solutions were obtained by use of
a 16 x 16 grid. For the case of the suddenly applied loading, it may
be seen that for B = 56.52 (slightly less than lst mode critical damp-
ing) the numerical solution is practically identical to the exact
solution. It may be seen also that the influence of damping in re-
ducing the magnitude of response is quite pronounced. It can be
further noted that for values of B = 56.52 the dynamic response
approaches the static response monotonically from below. This
would point to the possibility of obtaining static solutions by use of
dynamic analysis. So far as that objective is concerned, it would
seem from the data presented in this figure that the use of g = 56.52
is most efficient in the sense that larger amounts of damping would
take longer for the solution to approach the static value within a given
percentage.

In Fig. 17 is also shown the damped response (B = 56.52) for
the case of gradually applied loading. As expected the response also

approaches the static value monotonically from below. However, it
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approaches at a slower rate than that for the case of suddenly applied
load. Hence it is considered to be a less efficient type of loading so
far as obtaining the static response is concerned.

It should be pointed out that, in general, if the static solution
is the only objective, one would not use this approach. However, in
this case the computer program for the dynamic analysis is already
available, and it would be more convenient to make use of it, instead
of preparing a new program for that specific purpose. It might be
mentioned also that this '"pseudo-dynamic' approach for static anal-
ysis may be usefully extended to inelastic problems as recently dem-
onstrated for the case of one dimensional structures by Heidebrecht
et.al. (10).

In Fig. 18 are presented data similar to those given in Fig. 17
except that the result concerns bending moment instead of deflection.
It may be seen that the trends of these results are similar to those

discussed in the preceding.

3.5 Effects of Boundary Conditions and Foundation Stiffness

In this section the effects of boundary conditions and foundation
stiffness will be briefly considered. Except for these particular
parameters, the plate system dealt with here for this study is the
same as described in sub-section 3.3.2. In addition to the simply

supported, plates with all edges fixed and all edges free are
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considered. It is reasonable to consider the ''stiffness'' of a free
edge to be less than that of a simply supported edge, the stiffness of
which in turn, to be less than that of a fixed one.

In Fig. 19 are presented deflection histories for the simply
supported and fixed plates for the case of a = 0 (no foundation stiff-
ness) and for a = 414.7. It may be observed that the stiffness of the
boundary conditions and that of the foundation have similar effect on
the response. The effect is to reduce the magnitude of the response
as well as the duration of its positive phase. Also, all the history
curves remain practically identical to each other up to a certain
time, T = .0375 (which is .143 times the first fundamental period of
the simply supported plate with @ = 0)., Thus, it seems that it
takes a finite length of time for the influence of the boundary or the
foundation stiffness to come into play.

Similar observations can also be made from the results on
bending moments presented in Fig. 20 for the same plates considered.
In Fig. 21 are presented additional data on the influence of boundary
conditions including the case of a free plate also. The problem con-
sidered is the same as the preceding, except that the load is applied
over an 1/16 x 1/16 area. This result also corroborates the observa-

tions made in the preceding.
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3.6 Study of Free Plates

In this section the dynamic response of plates with all four
edges free and resting on an elastic foundation will be studied in some
detail. In contract to most of the numerical results presented in the
preceding, exact solutions of this type of problem are practically
impossible to obtain. However, the problem is of considerable
practical interest because it may be used as an analytical model for
such technical applications as studies of rigid pavements of highways
and airport runways.

It is not intended here to make extensive investigation of these
technical problems; the purpose here is to demonstrate the feasibility
of the use of the numerical method for such problems. The great
majority of the numerical data presented in this section concerns the
dynamic response of such plates to a load applied at one of the corners
of the plate. This is because this type of loading is thought to be most
critical for such plate structures as observed in the case of pavement
slabs (45). From the design standpoint, the principal bending moments
are the significant quantities. These moments have been considered
in the following sub-sections. The numerical problem studied here,
except for the boundary conditions and the loading is the same as in
section 3.1,

3.6.1 Influence of Grid Size: Before discussing the case of

corner loading the effects of grid size will be considered. This is
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done in order to reasonably ensure the accuracy of the numerical
procedure for this type of problem in the absence of an exact solution.
In Fig. 22 are shown the response histories for the center point
deflection for various grid sizes for a '"shrinking area type'' triangular
loading pulse as described in section 3. 3. It may be observed that
the response for the 16 x 16 grid is quite close to those for 20 x 20
and 24 x 24 grids. Moments under the load diverge as expected, and
therefore they are not presented here.

3.6.2 Response Histories: For data presented in this and the

subsequent sub-sections unless otherwise specified the loading is as
follows: A ''partial type' of triangular loading as described in sub-
section 3.3.2 is applied at one of the corners over an 1/16 x 1/16 area
of the plate. In order to identify the location of points on the plate
the coordinate system is depicted in Fig. 23.

In Table 9 are listed the maximum deflections and principal
bending moments and their locations for a number of time instants.
These maximums will be referred to as ''space -maximum, '' while the
term ""maximum'' without a prefix will be reserved for the quantity
which is the maximum with respect to both time and space. Thus it
is seen that for different instants the space-maximum deflections and
principal moments occur at different locations. Representative
response histories are presented in Figs. 25, 26 and 27, respectively,

for the corner point deflection, principal bending moment M' at point

1
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(2,2), and principal bending moment M'_ at point (3, 3) with the load

2

applied at the corner point (1,1). (M'1 and M'  are, respectively,

2

the algebraically larger and smaller principal moments.) It is of
interest to note from the Fig. 27 that the peak value of M'2 is attained

rather early relative to the duration of loading.

3.6.3 Contours of Response: Fig. 28 shows the deflection

contour at a time close to the occurrence of the maximum deflection.
It is noted that the maximum (downward) deflection occurs at the
corner under the load, and at the opposite corner, the plate has the
maximum negative (upward) displacement. In Fig. 29 is shown the
contour for M'z at a time close to the occurrence of the maximum M'Z.
It may be observed that the space distribution of the moment is simi-
lar to that in the case of static loading. The maximum value occurs

at points a short distance away from the corner along a diagonal line.

3.6.4 Effect of Foundation Damping: In Table 10 are listed the

time instants, locations of occurrence, and the values of maximum
deflection and principal bending moments for the cases of foundation
damping corresponding to B = 0 and B = 56.52. It may be observed
that, relative to the undamped case, the magnitudes of the maximum

deflection and M', are about 50% smaller, and M!

! only about 20%

2

smaller. Furthermore, the influence of damping is to hasten the time
of occurrence of the maximum response. Representative history
curves of deflection and M'2 for the damped case are also shown in
Figs. 25 and 26,



3.6.5 Effect of Pulse Shape: In Table 11 are listed the time

instants, locations of occurrence, and the values of maximum
responses for various triangular pulse shapes obtained by varying
the time parameters defined in Fig. 24, It may be seen from this
table that the values of the maximum responses become slightly
greater with the reducing rise rate of the loading (larger value of
to) . Meanwhile, the time instants of occurrence of these maximums
are delayed.

3.6.6 Effect of Load on Point Adjacent to Corner: Listed in

Table 12 are the time instants, locations of occurrence and the values
of the maximum responses for a triangular loading pulse applied at
the corner point (1,1) and at the point (2,1) next to the corner. It may
be seen that the values of the maximum responses for the corner
loading case are somewhat larger than those due to the loading at the
adjacent point. This is in agreement with the observation in the case
of static loading, that corner loading is most critical for this type of

plates.



CHAPTER IV

SUMMARY AND CONCLUSIONS

In this thesis a numerical method for the dynamic analysis of
plates on elastic foundation has been presented. The method is based
on a discretization of the plate by use of the classical finite differ-
ence expansion of the space derivatives in the governing partial
differential equation. The resulting ordinary differential equations
for the discrete system (with time as the independent variable) have
been integrated numerically.

As expected the accuracy of the method depends on the grid
size. The finer the grid, the more accurate would be the results.
However, this is true only to a certain extent, As the grid size is
made smaller, the amount of computation increases, and so does the
round-off error. It seems that for a square plate a grid of 16 x 16
would represent a ''critical' size in the sense that any finer grid may
not necessarily produce more accurate results. On the other hand,

a 16 x 16 grid or even coarser ones, depending upon the degree of
accuracy needed for the particular problem being considered, can
yield sufficiently accurate results. For example, for the test problem
considered, the errors in maximum deflection and maximum bending

moment for an 8 x 8 grid are less than 1% and 6%, respectively,
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The relative accuracy and efficiency of the classical Runge-
Kutta method and the Beta method for the numerical integration of the
equations of motion of the system have been studied by considering a
specific numerical problem. Based on the data obtained it seems
that, although Runge-Kutta method has a somewhat larger range of
stability, the results produced do not seem to be any more accurate
than those given by the Beta method. On the other hand, Beta method
is more efficient in regard to programming as well as computer time
for the type of problems considered--problems of structural dynamics
governed usually by a system of simultaneous second order differential
equations.

It has been demonstrated that the tedious part of the work
associated with this method--that associated with the formulation of
the equations and the lengthy computations, can all be handled by the
computer. In order to obtain numerical solutions of problems one
needs to supply to the computer only the most basic parameters such
as the size of the plate, grid size, and loading. The generation of the
differential equations (with the influence of the boundary conditions
appropriately taken into account) and the solutions of these equations
have all been handled by the computer. It might also be mentioned
that the amount of computer time needed for a solution with sufficient
accuracy for most engineering purposes is not excessive. For

example, in the case of a free plate with a 16 x 16 grid, a complete
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history curve for about one fundamental period, including the selec-
tion of maximum response values in the space as well as time domain,
takes about 9 minutes of computer time for a Control Data 3600
System.

After having established the reliability of the method it is ap-
plied to study briefly several physical problems. Among these is the
case of the concentrated load. The load is first assumed to act over
one grid square. It was found, as the grid size decreases the bend-
ing moment under the load does not converge to a definite value. This
is, of course, not surprising in view of the static theory of plates.
However, if one treats the concentrated load as a distributed load over
a finite area then the bending moment under the load converges as the
grid size is reduced.

The case of a free plate subjected to a concentrated load at the
corner was studied and the contours at the instant of occurrence of the
maximum deflection and the principal bending moment, respectively,
have been obtained. It was found that the maximum principal bending
moment occurs in the same general area as in the case of static
loading. Also the effect of foundation damping, pulse shape and the
location of loading were briefly studied for the case of a free plate.

It was observed that the corner loading produced the most severe
effects; and the effect of foundation damping was quite pronounced in

reducing the values of maximum responses.
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For the case of a simply supported plate, the maximum deflec-
tion was reduced by 50%, and the maximum principal bending moment
by about 20% due to a foundation damping equal to the critical damp-
ing for the first mode and using a rectangular pulse type loading
function. The practicability of getting a static solution from the
dynamic analysis was also studied., It was indicated that this could
be most conveniently done by introducing an amount of damping equal
to the critical damping for the first mode and using a rectangular
pulse type loading function.

Some numerical results were also obtained to study the
influences of boundary condition and the foundation stiffnesses. It
was observed that as the stiffness of either the foundation or the
boundary condition 1s increased, the value of the maximum response
and the duration of the positive phase of the response are reduced.

For further work along the line of investigation described
herein, it is suggested that the technical problem of dynamic stresses
in airport and highway pavements be studied. Because of the flexibility
of this method, it is believed that a more realistic analytical repre-
sentation of the physical system could be obtained. Furthermore, it
might be fruitful to try to adapt this approach for a dynamic analysis
of inelastic plates. Like m?st numerical problems, the propagation
type in pargicular, the influence of round off error can always be a
serious problem. Obviously, a systematic and rational investigation

of this problem 1is of basic importance,
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APPENDIX A

USE OF COMPUTER AND PROGRAMMING

The computer programs used in this study are written so that
only the most basic parameters need to be supplied to the computer,
The generation of the equations of motion for the plate system and

their integrations are carried out by the computer.

A.1 Generation of Equations of Motion

The main job in the generation of the equations of motion is
the evaluation of "BHO!" at each point. For simply supported and
fixed plates there is only one basic '""BHO'" pattern, whereas in the
case of free plates there are six "BHO" patterns. For convenience
simply supported and fixed plates are handled by one program, and
a separate program is prepared for the case of free plates.

A.1.1 Simply Supported and Fixed Plates: The first step in

evaluation of "BHO" for a point is to express the deflections of
points outside the plate domain in terms of deflection of the points
inside the plate domain.

In the program this is done by 4 ""DO' loops for points adjacent
to the edges. Generality is introduced in the treatment of boundary
conditions by incorporating a factor denoted by "BCF'" for each edge

(or a portion of the edge in the case of mixed boundary conditions
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for that edge). For example,1 for the upper edge (Fig. A.l),
W(I,J) = BCF1*W(3,7J), for J = 3 to NC.

After the deflections of all the relevant points outside the plate
are expressed in terms of deflections inside it, the "BHO" is evalu-
ated for all the points. In order to make use of a library subroutine
for integration by the Runge -Kutta method, all variables are changed
to single subscripted variables; thus:

K= (I-3)-NC +J-2

W(IL J) = Y(K)
for I =3, to MM and J = 3, NN, and then '"BHO" is evaluated thus:

BHO(K) = 20 W(L,J) - 8[W(I,J-1) + W(L, J+1), +

W(I-1,7) + W(I+1,7J)]
+ 2 [W(I+1,J-1) + W(I-1, J+1)+W(I+1,J-1)+W(I+1, J+1)]

+ W(I-2,7J) + W(I+2,J) + W(I,J-2) + W(I,J+2).

A.l1.2 Free Plate: There are 6 basic "BHO'" patterns as shown
in Fig. A3. They are applied to 25 different sets of points shown in
Fig. A2. These patterns have been derived after taking into consider-
ation the boundary conditions. Therefore, all these patterns are such
that they do not involve any point outside the plate region. One "BHO"

pattern is taken at a time. Points which are similar in location in the

!Notations are given in the section A. 4,
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region of the plate are handled in a sequence using one particular
kind of pattern.

To take care of the orientation of "BHO" pattern two variable
subscripts IS and JS are introduced. These are added to I and J
subscripts. Such that by changing IS, JS from 1 to -1, the orientation
of "BHO'" pattern is changed. For example, to deal with all the four
corner points, 1 through 4 of the plate, pattern type l is used thus:
for the upper left corner pointl, I =3, J =3, IS=1, JS =1 and

BHO(K)

"

R3[-W(I, J) + W(IL,J+JS) + W(I + 1S, J)]

+ Rl[W(I,J + 2JS) + W(I + 2IS, J)]

+ R6W(I + 1S, J + JS).
The expression for '""BHO'" remains the same for the other 3 corner
points for which the values of I, J, IS and JS are as follows. For
the upper right corners, point 2; 1 =3, J=NC+ 2, IS =1, JS = -1,
for the lower right corner, point 3; I = MR + 2, J =NC + 2, IS = -],
JS = -1; and for the lower left corner point 4; 1 = MR + 2, J = 3,
IS = -1, JS = 1. The remaining points on the edges adjacent to corners,
points 5-16 are handled in a similar manner using the patterns 2 and
3 of "BHO." Points on the edges and adjacent to edges, points 17-24
are handled as above using patterns 4 and 5. '"DO'" loops are used for

points on the same edge. The points in the interior, points type 25 are

handled all at once using ""BHO'" pattern 6 by a '""DO" loop.
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A.2 Numerical Integration of Equations

After generating the equations of motion they are numerically
integrated using either the Beta method or Runge -Kutta method. A
program is written for the Beta method on the basis of the description
given in sub-section 2.4.2. In this case the equation of motion, Equa-
tion 4, is put in the form:

ACD(K) = HZ[T- P(K) - AA- DPA(K) - BHO(K) DV4] -H - VEA(K)

For the case of Runge -Kutta method, Library Function Sub-
program "RKLDEQ'" has been used. Equation 4 is transformed into
a set of first order differential equations for I = 1 to NE, thus:

F(I) = Y(I + NE)

F(I+NE) =T- P(I) -AA-Y(I) -B-Y(I+NE) - BHO(I) - DV4

A.3 Time Requirements of the Computer*

In order to compute the deflections, bending moments and the

maximum values of these in the range of integration, the Beta method
. -3

takes approximately 2.2 x 10 ~ seconds per degree of freedom per step
of integration. The Runge -Kutta method takes about twice as much,
If the maximum responses (deflections, moments and principal
moments) in the space domain for each time instant are desired in
addition to the maximum values in the range of integration, an addi-
. . : -3
tional time of approximately 1.5 x 10 = seconds per degree of freedom

per step of integration would be needed.

*Control Data 3600,
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A.4 List of Fortran Variables

A list of Fortran variables used in the programs and in this
appendix is given in the following:
A = constant used in Runge -Kutta-Gill function sub-program "RKLDEQ";

AA = a, dimensionless soil elastic constant;

ACA(I) = assumed acceleration of point (I);

ACD(I) = derived acceleration of point (I);

ACF(I) = final acceleration of point (I);

ANGLE = orientation of the direction of principal moment;
ANG 1* = orientation of space -maximum M' ;

1,

ANGIT = orientation of the maximum M'l;

B = B, dimensionless soil damping constant;
BETA = parameter of Beta method;

BCF 1, BCF 2

. . ) .
BCF 3, BCF 4 boundary condition factors (+1 or -1) for each side;

BMX = M'x, dimensionless bending moment Mx;

BMY = M'y, dimensionless bending moment M _;

b

BMXY = M'xy’ dimensionless twisting moment Mx

BMPI1 = M' , dimensionless principal bending moment;

1’
BMPIMS = space-maximum Mi;

BMPIST = maximum M'l;

BMMMP = maximum center point M',;

*Number 2 in the suffix similarly will correspond to M';.
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BMMQP = maximum quarter point M'x;

n-h . .
C = ~ factor used in the evaluation of moments;

D

D, flexural rigidity of plate;

DMMP = maximum center point deflection;

DMQP = maximum quarter point deflection;

DPA(I) =assumed deflection of point (I) obtained by using Beta-formula;

DPF(I) = final deflection of point (I);

DPEFMS

space maximum deflection at any instant;
DPFST = maximum deflection;

DV = n in floating point;

E = E, modulus of elasticity;

F(I) = derivative of Y(I) with respect to time;

GS = \, grid size;

H = AT, time increment in numerical integration;
I,J,K,L,M = variable subscripts;

LR = a/b, aspect ratio;

LOCDPF = location of occurrence of maximum deflection;
LOCMP1 = location of occurrence of maximum M'l;
MDS = location of maximum deflection at any instant;

MID = subscript for the center point;

MPIS = location of occurrence of maximum M‘1 at any instant;

MR = number of rows of grid lines;

N = number of first order differential equations;
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NB

number of grid divisions on smaller side;

NC = number of columns;

NE = number of second order differential equations and also the
number of dependent variables;
NL = n, number of grid divisions on larger side;

NQP = subscript for the quarter point;

NT = a variable used in "RKLDEQ"';

PF = peak value of the forcing function;

P(I) = forcing function at a point (I);
PR = v, Poisson's ratio;

Q = temporary region used by "RKLDEQ'"';

2
=(l-v)/2
RZ--4+21/+2V
2
R3=-3+Zv+v
R4 2-v
R5 -6 + 2v
R6 2 - 2v
2
R7 8 - 4y - 3v
R8 7.5 -4y - 2. 51/

RANGE = range of integration in Beta method;
S = a variable used in "RKLDEQ"';
SIZE = a, length of the longer side of the plate;

T = 6, constant to be multiplied to p(x,y,t) to make it dimensionless;
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TDMMP = time of occurrence of maximum center point deflection;
TDMQP = time of occurrence of maximum quarter point deflection;
TDPST = time of occurrence of maximum deflection;

TEND = tl, duration of action of forcing function;

THICK = h, thickness of plate;

TIME = 1, dimensionless time;

TINT = to’ time parameter used in Fig. 24 to denote rise rate;
TMPIST = time of occurrence of maximum M'l;
TO = To’ a parameter;

TOLER = tolerance for testing the convergence in Beta method;
VEA(I) = assumed velocity of point (I) obtained by using Beta-formula;
VEF(I) = final velocity of point (I);

WCI = weight per cubic inch of plate;

W(I,J) = u(i,j), dimensionless deflection of point (i, j);

WT = m, mass per unit area of plate;

X = 1, dimensionless time in Runge -Kutta method,;

XEND = final value of 7, range of integration in Runge -Kutta method;

Y(I) =dimensionless deflection of point (I) in Runge-Kutta method; and

Y(NE+I) = derivatives of Y(l) with respect to T in Runge -Kutta method.
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AeS FORTRAN COMPUTER PROGRAMS
Ae¢Sel RUNGE-KUTTA METHOD FOR SIMPLY SUPPORTED AND FIXED PLATES:

PROGRAM DYNAZ

DIMENSION Y(2048)¢F(2048)+Q(2048)+P(1024)W(36436)+BHO(1024)
1 +BMX(1024)8MY(1024) +B8MXY(11024)
PLATE SIZE

LR=1

SIZE=120.

THICK=12e

NL=16 .

DV=FLOATF (NL)

GS=SI1ZE/DV

C=DV#THICK/GS

PLATE MATERIAL PROPERTIES
WCi=144./1728.

E=z2e%#]10e#%6

PR=¢25

FOUNDATION MATERIAL PROPERTIES
SEK=614.4

DO 7000 1JK=2.2

FIUK=FLOATFE (1JUK)
SDC=3¢SH#(FlUK~14)

PLATE BOUNDARY CONDITIONS
BCFi==1.

BCFZ"‘.

BCF3=-1)

BCFa=-1,

FORCING FUNCTION PARAMETERS
PF=10e

TEND=O,

PRINTING COUNTER PARAMETERS
NI=NL#NL /8

INDEPENDENT VARIABLE(TIME) INCREMENT AND LIMIT
H=1e/(10, #DV*#%2)

XEND= 20

X=0e0

OMMP =0,

DMQP =0

BMMMP =0,

BMMQP =0 ¢
D=(ERTHICK#%#3) /(12 % (] ¢—-PR#%2))
WT=WCI#THICKALAMBG6 4
TO=SQRTF ( (WTFRSIZE*#4) /D)

AA= (SEK®S IZE®*®%4) /D
B=(SDCRSIZE# )/ (D#TQ)
T=(SIZE*¥*4 )/ (D#*THICK)

NC=NL~1

NB=NL/LR




112

102
222

111
101

501
5011
S02
106
10S

10

12

13

14
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MR=NB-1

NE aMR®#NC

N=z2 *NE

MM=MR+2

NN=NC+2

MID=NC®#(NL/2-1)+NL/2

MIM=MID~-1

MIP=MID+1

NQP=NC# (NL/2-1)+NL/4

JJI=0

NT=0

PRINT 112+AA+BeTsHBCF1+BCF2+BCF3:BCF4TENDPF

FORMAT (1HO ¢ 3HAAZ= sE9 e8¢ 3X 4 2HB=¢EF 0B ¢ 3X s 2HT R 4EFe 4 { 3X 4 2HH= yFB8e 793X
14HBCF =98 (F4el ¢2X) 0 1XeSHTEND=¢F4¢3¢3Xe3HPF=4F6¢2)
PRINT113¢TOWNI oNL

FORMAT(1HO«3HTO=4FB8e6+3X+3HNI=,13420Hs NUMBER OF GRIDS =,12)
DO102 I=1+N

Y{(1)=0e0

PRINT 222

FORMAT (1 HO«8X e 1HXe13Xe1HY 211X :3HBMX 111 Xe3HBMY s 10X +4HBMXY)
PRINT 111eXeY(MID)

FORMAT(1HOs2(F9e7¢5X))

IF(X=-TEND)SO01 +502+502 .

DO S011 I=1NE

P(1)=PF
RRHXFEREHRXEND LOADING ROUT I NE 33833 3 336 3 363 3 336 %
GOTO 105

DO 106 I=1.NE

PCEl)=PF

BEGIN GENERATION OF EQUATIONS
DO 10 I=3+MM

DO 10 J=3+NN

K= (I=3)#(NN-2)+J-2
W(IleJ)=Y(K)

DO12 J=3+NN
W(1leJ)=BCF2%XW(3+J)
W(MM+24J)=BCF4XW (MM, J)
L=NN+1

DO 13 u=2sL

W(2+J)=0e

W(MM+1 4J) =0

DO 14 =3 .MM

W(l+2)=00

W(INN+1)=0o.
W(I«NN+2)=BCF3*W (I +NN)
W(lel)=BCFI#W(]+3)

DO 15 13, MM

DO 1S U=34NN
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K (I=3)% (NN=2)+J=-2
BHO(K)Z20e#W( I o J) B (W(IaJ=1)4+W(IoJ+1)+W(I=1eJ)+W(I+14J))
142eF(W(I=1eJ=1)4+W(I=1eJ+1)+W(I+1¢J=1)+W(I+10 J*+1))

24WI=2,0J)+WTI+2 ¢ J)+W(] ¢ J-2)+W(] e J+2)

DO 103 I=14NE

F(I)=sY(I+NE)

FOI+NE)=T*P(1)~-AAXY(1)-B#Y(I+NE)-BHO(])*DV#¥*4

END GENERATION OF EQUATIONS

SzRKLDEQ(NsYesFeQoeXeHNT)

IF(S-1¢0)200+101+300

PRINT201

FORMAT (1 1HOERROR IN S)

CONT I NUE '

FHHH R AR X AR R XCOMPYUTE MOME NT S 338 33 33 33 33 F36 3630 363636 36 3030 3000 96 39039 3 %
DO 601 1=3.MM

DO 601 J=3+NN

K=(I=3)®#(NN=2)+J-2

W(leJ)=Y(K)

DO 602 1=3 MM

DO 602 J=3+NN

K=(I=3)%(NN-2)+J-2
BMX(K)2=CH(—(2¢+2e ¥PR)FW (I o J)+W( I oJ=1)4+W(I o J+1I+PRE(W(I—1eJ)+W(

11+14J)))

BMY(K)==CH (= (2,42 #PRHIXFW (I s J)+W(I=10J)+W(I+1 s NI+PRE(W(]I e J=1)+W(IsJ+1)))

1+1)))

BMXY(K)=CH#(1e—=PR)I#B(WII=1eJ=1)+W(I+1eJ+1)=W(I+1eJ-1)~-W(I=1esJ+1))/4,
IF(ABSF(Y(MID))—ABSF (DMMP) )603+,603+604
DMMP=Y (MID)

TOMMP =X
IF(ABSF(Y(NQP) )—-ABSF (DMQP) )605:605¢606
DMQP =Y (NQP)

TOMQP =X

IF (ABSF (BMX(MID) )-ABSF(BMMMP) )607¢607+,608
BMMMP=BMX (M]ID)

TBMMMP =X

IF (ABSF (BMX(NQP) )~ABSF (BMMQP ) ) 609609, 700
BMMQP =BMX (NQP )

TBMMQP =X

CONT INUE

JI=JJI+1

IF(JJ-N1)302¢303+302

CONT I NUE

PRINT 804¢XesY(MID) +BMX(MID) +BMY(MID) +BMXY(MID)
FORMAT(1HO+S(F9e7¢5X))

PRINT 80SsY(NQP) «BMX(NQP ) +BMY(NQP ) « BMXY {NGP)
FORMAT (1 HO+14HQUARTER POINT +4(F9e7¢5X))
JJ=0

CONT INUE

IF(X=-XEND)101400+¢400
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Q400 CONTINUE
807 FORMAT((1HO+96H TOMMP DMMP ToMGP oMaQP
1 TBeMMMP BMMMP TBMMQP BMMQP )
PRINT 807
PRINT 806« TOMMP , DMMP 4 TDMQP ¢ DMQP o TBMMMP  BMMMP , TBMMGP « BMMQP
806 FORMAT(1HO.8F12.7)
7000 CONTINUE
7010 CONTINUE
END
FUNCTION RKLDEQ(NesYeFeQeXeHaNT) RKLDQ
TEST OF ALGOL ALGORITHM
DIMENSION Y(2048)+F(2048),Q(2048)
REAL XsH==INTEGER NNT-~COMMENT--BEGIN INTEGER [+JsL-REAL A
NT=NT+1
GO TO (142¢3¢4) NT
GO TO S(NT)
1 DO 11 JU=1«N
11 Q(J)=0.
A= ¢S
X=X+H/2
GO TO S
2 A= 29289321881
GO TO 5
3 A=17071067812
X=X+H/2 ¢
GO TO S
4 DO 41 I=14N
41 Y(I)=Y(I)+HREF (1) /6e=Q(1)/3¢
NT=0
RKLDEQ=2.
GO TO 6
S DO S1 L=1«N
Y(L)=Y(L)+AR(H®*F (L)-Q(L))
S1 QL) =2 e RARHEF (L )+ (1 e~3e%*A)#Q (L)
RKLDEQ=1.
6 CONTINUE
END
"END

AeSe2 BETA METHOD FOR FREE PLATE:
PROGRAM BETAZ2
DIMENSION ACA(625) +ACD(625) +ACF(625)+VEA(625) s VEF (625) +DPA(625)
1 DPF (625) +W(29:¢29) +BHO(625) +P(625)
1 +BMX(625) +BMY (625) +BMXY (625) s ANGLE (625) +BMP1 (625) +BMP2(625)
COMMON ACA ACDJACF +VEA'VEF o+ DPAIDPF ¢ WeBHO P +BMX BMY «BMXY
1 +ANGL.E +8MP] «BMP2
PRINT 8888
8888 FORMAT(1HO+11HBETA METHOD)
9999 FORMAT(1HO.14HALL EDGES FREE




() Ol

64

1/725HCONCes LOAD(CONSTANT AREA))

PRINT 9999

PLATE ST ZE %333 3 3 3 3 36 36 3 3 3 3t 36 36 3 3 3 3 36 3¢ % % 3

LR=1

SI1ZE=120.

THICK=12,

RRRFRRAGRID S ZE ¥4 335333 3 3 3563 3833 %

NL=16

NB=NL /LR

DV=FLOATF (NL)

GS=S1ZE/DV

C=DV#THICK/GS

PLATE MATERIAL PROPERT | ES¥ #8338 33 3% 3% -3 43 3305 3 3
WCI=144,/1728.

E=2¢%#10e%#%6

PR=¢25

R1=(1-PR¥PR)/2¢

R2==4 ¢ +2 ¢ ¥PR+2 ¢ #*PR*#PR

R3==3¢4+2 ¢« ¥*PR+PR#PR

R4=2.-PR

RS==6e¢+2¢ *PR

R6=2¢—2¢ #PR

R7=8¢~4¢#PR-3 ¢, #PR¥PR

RB=T¢5=4 ¢ #PR—2 ¢ S*¥PR#MPR

FOUNDATION MATERIAL PROPERT IE S¥%3# %33 %3 33 %3 3 3 3 33 93¢ 3 %
SEK=614.4

SDC=Qe

PLATE BOUNDARY CONDITIONS(FACTORS) APPLICABLE ONLY TO SIMPLY SUPPORTED
AND FIXED PLATES 3#3%#%% %3333 33633036 3 3 3% 338 3 3 3309 3 336 3 3 3335 10 3536363 30 4 36 98 36996 36 3¢ 3¢
BCFi==1e

BCF2=-1.

BCF3=~-1e

BCFa=~1,

FORCING FUNCT]ION PARAME TERS %% 3353 3 3 3638 3 3¢ % 3 3 3 33 3¢ 3¢ 3 96 36 3 3¢ 36 9 3%
PF=Qe%#10e%64¢

TEND=«15

TINT=0.

INDEPENDENT VARIABLE(TIME) INCREMENT AND L 1M T #0006 2 3505 34 536 290 5%
H=1e¢/(10e#DVH*#DV)

RANGE=,15

TIME=0.

PRINTING COUNTER PARAMETERS 3333 3% 3t 330 3 695 -3 3 3 96 330 3¢ 3¢ %
NP=NL#NL /16

JJ=0

R RHRAAXBETA METHOD OF INTEGRATION PARAME TERS¥#%%E%#FRER
BETA=0e¢

TOLER=,00000005

D= (E*THICK##3)/(12:%(] ~PR¥%2))
WT=WCI*THICK/386.4
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TO=SQRTF( (WT*SIZE#%#4)/D)

AA= (SEK*S[ZE*#4) /D

B=(SDC#SIZE#¥%#4 )/ (D#T0)

"T=(SI1ZE#%#4)/(D#*THICK)

EVALUATION OF NUMBER OF ROWS AND COLUMNS.NUMBER OF EQUATIONS ETC
CASE OF FREE PLA TE %3 #3#3% % 3 33 3 33 3 3 3 3 3 3 3 3696 3 3636 3 3036 3 3 3 963036 263035 3 3 3 33 38 3634 -3 -3 3096 9
NC=NL+1 FREE
MR=NB+1 FREE
NE =MR#NC

MM=MR+2

NN=NC+2

MID=NC#NL/2+(NC+1)/2 FREE
MIM=MID-1

MIP=MID+1

PRINT 112+AA+BeT+H'BCF1+BCF2+BCF3+BCF4+TEND+PF

FORMAT (1 HO ¢ 3HAA= 4E9¢ 4 +3X 4 2HB=4EQ e84 ¢ 3X e 2HT=¢EQe @ ¢ 3X s 2HH= sFBe 7e3X»
14HBCF =44 (FAe1 ¢2X) s 1XsSHTEND= 1F8¢3+3X+s3HPF=,F9.2)

PRINT113.TONP¢NL

FORMAT (1HO+3HTO= sF84¢643X+3HNI=413+s20He NUMBER OF GRIDS =,12)
TOPST=0e

LOCDPF=0.

DPFST=0e

TMP1ST=0.

LOCMP1=0.

BMP1ST=0.

TMP2ST=0.

LOCMP2=z0,

BMP2ST=0e

ANG1T=0e

ANG2T=0e

DO 100 I=1,4NE

ACA(1)=0.

ACD(1)=0e

ACF(1)=0e

VEA(I)=0e

VEF(1)=0e

DPA(1)=0e

DPF(1)=0.

AR RREXRCOMPUTE INITIAL ACCELERAT I ONEEIE 3383 31636 34 &
PFTI=PF#TIME/TINT

P(1)=1e#PFTI

P(2)=«S5*PFT1

DO 101 I=3,NC

P(1)=0e

P(NC+1)=¢S*PFT1

P(NC+2)= e 25#PFT1

DO 1011 I=20+NE

P(1)=0,

BEGIN COMPUTATION OF INITIAL ACCELERAT | QNG 3830545 540 80 3308340 00 4 3 33959098 00
FREE PLA TE % 3% %3 33 3% 3% 3 33t 33 3¢ 3¢ 3¢ 3 330353038 030098 3 36 3969038 8 3698 3836 36 3436098 ¢ F-35-30 35 J-19F 303 33
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DO 102 1I=1.NE
ACF(]l )sHX*HRT®*P (])
102 ACD(1)=ACF (1)
END COMPUTATION OF INITIAL ACCELARAT] ONIt® 3333033 3 33 3 33 32030 340 3 33
200 TIME =TIME+H
IF(TIME~-RANGE )300+300¢900
300 DO 301 I=1.NE
ACA(1)=ACD(1)
DPA(]1)=DPF (I)+VEF(1)+(S-BETA)Y®ACF (1 )4+BETA#ACA(])
301 VEA(I)=VEF (I )+5S*(ACF(1)+ACA(]))
IF(TIME-TINT)402+4024+403
402 CONTINUE
REREXRXENHUHBEGIN LOADING ROUT I NE #3533 3% 3 5 3 333 3 3
PFT1=PF#TIME/TINT
P(1)=1e®#PFTI
P(2)=eS*PFTI
DO 104 1=3,NC
104 P(1)=0,
P(NC4+1)=S#PFT]1
P(NC+2)=¢25#PFT1
DO 1041 1=20s+NE
1041 P(1)=0e.
GOTO 405
403 IF(TIME-TEND)4031,4031,4032
4031 PFTI=PF#(TEND-TIME)/(TEND-TINT)
P(1)=1#PFT1
P(2)=eSHPFTI
DO 10491=3,NC
1049 P(1)=0.
P(NC+1)=e5#PFT1
PINC+2) =+ 25*#PFTI
DO 1042 1=20sNE
1042 P(1)=0e
GOTO 405
4032 DO 4033 I1=1.NE
4033 P(1)=0e

C END LOADING ROUT I NE %333 3 3% 33 353 3 3 3 3¢ 3 3 3¢ 3 3% 3 3% 3 3 3¢ 3¢ 3 3 3¢

405 CONTINUE
C BEGIN GENERATION OF DIFFERENTIAL EQUATIONS FOR FOR PLATE WITH ALL EDGES
c F REE 333t 3¢ 3 3 3 3 3 3¢ 3 9 3 3 36 3% 3 3 369 3 36 396 3 36 363 36 33 369 36 343 36 3 3 3638 3636 36 36 3 96 36 34 36 36 9 96 3 3 -6 9 9%

DO 10 I=3+MM
DO 10 JU=3+NN
K=(I-3)#NC+JU-2

10 W(Ie+J)=DPA(K)

C POINTS AT CORNER ON BOUNDARY(POINTS 1 THRU 4)

I=3
J=3
1S=1
JS=1
CF=¢25
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Kz (] -3)#NC+J-2

BHO(K)=R3¥ (=W (I s J)4+W(T o J+IS)I+W(I+ISeJ))I+RIB(W(] ¢ J+28IS)+W(]I4+2%#]ISeJ))
1))4+RE6*W(I+ISeJ+JS)

ACD(K)=H¥H® (T#P (K) ~AA¥DPA (K)-BHO (K ) #*DV#DV#DV#DV/CF ) -B#H#VEA (K)
1=3

J=NC+2

1S=1

JS=-1

K=(1-3)#NC+U-2

BHO(K)=R3*¥ (=W (T e J)+W(] o J+ISH+W(IH+ISeJ)I+RIF (W] ¢ J+2%IS)+W(I4+2%][SeJ))
1))4RE6*W(I+1SeJ+JIS)

ACD(K) zH#H*# (T*#P (K ) -AA#DPA (K) =BHO (K ) #DV#DV#DV#DV/CF ) -B#H#VEA (K)
I=MR+2

J=NC+2

[S=-1

JS=-1

K=(]=-3)%#NC+J-2

BHO(K)=RI3 ¥ (=W (I o J)+W(I o J+IS)H+W(IH+ISeJ)I+RIF(W(] s J4+2RIS)+W(1+2#1SeJ))
1))+RE*¥W(I+1SeJ+JS)

ACD(K)=H®*H*# (T#P (K ) ~AA¥DPA (K)=-BHO (K ) #¥DV*DV#DV#DV/CF ) -B#H#VEA (K )
1=MR+2

Je3

1S=-1

JS=1

K=(I~=3)%#NC+J-2

BHO(K)=R3¥ (=W (I e J)+W(] o J4+IS)HWII+ISeJ)I+RIF (W] ¢ I4+2RISHI+W(I4+2%#]1SeJ))
1))+REXW(I+ISeJ+JIS)

ACD(K)zH¥H®* (T*P (K ) ~AA#DPA (K) -BHO (K ) ¥DV*#DV#DV#DV/CF ) -B#H®#VEA (K
POINTS AT INTERIOR CORNER(POINTS 5 THRU 8)

I=4

J=4

1S=1

JS=1

CF=1e

Kz (]=3)#NC+JU-2
BHO(K)=18e#W(I0J) =B8R (Wl s J+IS)+W(IH+ISoJ))I+2eFW(IH+]ISeJI+JIS)
14+1eR (WCIH+2¥ISeJ)+W(TI s J+2¥US))I+RAFX (W (I =ISeJ+JIS)I+W(I+]ISeJ=JS))
14RSH(W(I=1SeJ)+W(] s J=JS))+RE¥W(I=1IS s J=JS)

ACD(K) zH®*H¥ (T*¥P (K ) -AA#¥DPA (K)-BHO(K) ¥DV¥DV*DV*DV/CF ) ~-B#H¥*VEA (K)
1=4

J=NC+1

1S=1

JS=-1

K=(I=-3)#NC+U-2

BHO(K)=18e¥W( I 9 J) =B8R (Wl oJ+ISIHW(IHISeJ))+2e%XW(I+]1ISeJ+JS)
1+lo*(H(I+2*ISoJ)+W(loJ+2*JS))+R4*(U(I-IS:J+JS)+U(I+IS.J-JS))
14RSHE(W(I=ISeJ)I+W(] ¢+ J=JS))I+REXW(I=1S+J=-JS)

ACD(K) =H¥*H¥ (T#P (K) —AARDPA (K ) -BHO (K ) #DV#DV*#DV#DV/CF ) ~-B#HR*VEA (K )
I=MR+1

J=NC+1
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1S=~]

JS=~1

K=(1-3)%#NC+J-2
BHO(K)=18¢#¥W([oJ)=B8eH(W(IoJ+ISHHWIHISeJ))I+2+*¥W(I+ISeJ+JS)
141 e (WCIH2¥ISeJ)+W( 1 e J+2%IS) I+RAH(W(I=ISeJ+JS)I+W(I+ISU~-JS))
14RSE(W(I=ISeJ)+W(T ¢ J=US) )+RERW(I=1SeJ=-US)

ACD(K)aH®#H®* (T#P (K) —AA®DPA (K)—-BHO (K ) ¥DV¥#¥DV*DV*DV/CF ) —~B*H*VEA (K)
I=MR+1

J=4

1S=-1

JS=1

K=(1-3)%#NC+J-2
BHO(K)=18eX¥W([9J)=8eH(W(IoJ+JISI+WIIHISsJ))I+2eFW(IH+]IS+J+JIS)
141e X (WCIH+2RISeJI+W(I o J+2%IS)I4REGF(W(I=ISeJ+IS)I+W(I+IS,U=-JS))
1+RSHE(WI=ISeJ)+W(] e J~US) ) +REXW(I=-1S J-JS)

ACD(K)zH¥H®# (T#P (K) —AA*DPA (K)-BHO (K ) #*DV#DV*DV*DV/CF ) -B*H®*VEA (K)
POINTS ON BOUNDARY ADJACENT TO CORNERS(POINTSY9 THRU 16)
ROWS(POINTS 9410+411,412)

=3

J=4

1S=1

JS=1

CF=,5

K=(]-3)#NC+J-2

BHO(K ) =RB¥W(I + J)+RIXW(] ¢+ J=JIS)+R2¥W( [ o+ J+IS)+R1¥W(] ¢ J+2%#US)
1+RAX (W(I+ISsJ=US)+W(IH+ISsJ+IS) I+ROEW(I+ISJI+W(I+2%]S,4J)

ACD (K) =H#H# (T#P (K) -AA#DPA (K) -BHO (K ) #DV#DV#DV*DV/CF ) —B#H#*VEA (K )
I1=3

J=NC+1

1S=1

JS==~1

K=(1=3)%#NC+J-2

BHO(K) =RB¥W (1 s J)+RIAW( [ o J=JS)+R2EW( [+ J+JIS)+RIF¥W( ] + J+2#US)
14RA¥ (W I+ ISeJ=JS)I+W(I+ISeJ+IS) I+RSHW(I+ISeJ)+W(I+2%#]S,4J)
ACD(K) =H®#H® (T#P(K) -AA#DPA (K)—BHO (K ) #*DV#DV#DV#DV/CF ) -B#H#*VEA (K )
[=MR+2

J=NC+1

1S=~1

JS=~1

K= (I-3)#NC+J=-2

BHO(K)zRBRW(I s J)+RIH¥W( 1 o U=JS)+R2¥W( [ s J+JIS)+RIFW(] s J+28#JUS)
14+RAX(W(I+ISeJ=US)+W(I14+1SeJ+JIS)I+RSHEW(I+ISe JI+W(I+2%#]1SJ)
ACD(K)=H¥*H¥* (T*#P (K) ~AA#DPA (K)-BHO (K ) #DV*#DV#DV#DV/CF ) ~-B#H#VEA (K )
I1=MR+2

J=4

IS=-1

JS=1

K=(1=3)#NC+JU-2

BHO(K)=RB¥*W (1 ¢+ J)+R3I¥W( [ +J=JIS)I+R2¥W( ] e J+JIS)+R1%#W(] ¢+ J+2%#US)
14RA¥ (W(IHISeJ=US)+WII+ISsJ+IS)I+RSEW(I+ISeJ)+W(I+2#ISeJ)
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ACD(K)sH¥H¥ (T*P(K)-AA#DPA (K)—-BHO (K) ¥DV#DV*DV#DV/CF ) -B*H*VEA (K
COLUMNS( (POINTS 13+14415.16)

1=4

J=3

IS=1

JS=1

K=(1-3)#NC+U-2

BHO(K)zR8¥W(I s J)+R3¥W(I-ISeJ)+RIXW(I+2%[SeJ)+RAX(W(I—1SeJ+JS)
14+WIHISeJ+US) ) +RSHW(T o J+US)I+W (T o J+2¥HIS)+R2XHW(I+]ISeJ)

ACD(K) =H®#H* (T*#P (K) —~AA¥DPA (K)-BHO (K) ¥DV#DV¥DV#DV/CF ) -B*H*VEA (K)
1=4

J=NC+2

K=(I-3)%¥NC+J-2

1S=1

JS=-1

BHO(K)=zRB8¥*¥W( I+ J)+RIXW(I=ISeJ)+RINW(I+2#[ISsJ)+RAX(W(I-1SesJ+JS)
1+WCIHISeJ+US) IHRSHW( T e JHIS)HW( ] ¢ J+2HIS) +R2¥W(I+ISeJ)
ACD(K)=H¥H* (T#P (K) -AA¥DPA (K)-BHO (K) ¥DV#DV¥DV#DV/CF ) —-B*H*VEA (K)
1=MR+1

J=NC+2

I1S=-1

JS=-1

K=(I-3)%#NC+JU-2

BHO(K) =R8*W (I ¢ J)+RI¥W(I—ISeJ)+RI¥W(I+2%# IS+ J)+RA¥(W(I=-1SsJ+JS)
14W(I+ISeJ+IS) I+RSHW( T ¢ JHUS)I+W( ] ¢ J+2%US)+R2¥W(I+ISeJ)

ACD(K) =H¥#H* (T*#P (K) —AA¥DPA (K )-BHO (K) ¥DV#DV*DV*DV /CF ) —-B*H*VEA (K
I1=MR+1

J=3

IS=-1

JS=1

K=(I=3)*¥NC+J-2

BHO(K)=R8*¥W (I +J)+RIXW(I=ISeJ)+RIXW([+2% ISy J)+RAX (W(I-1SeJ+JS)
1+WIH+ISeJ+IS) I+RSEW(T ¢ J+US)IH+W( T o J+2RHUS)+R2¥W(I+ISeJ)

ACD(K) =H¥H¥® (T*#P (K) ~AAXDPA (K)—BHO (K ) ¥DV#DV#DV#DV/CF ) —-B*H*VEA (K)
POINTS ON THE BOUNDARY THIRD FROM CORNERS

TOP ROW(POINTS TYPE 17)

I1=3

1S=1

CF=e5

DO 12 JU=5sNC

K=(1-3)#NC+JU=-2

BHO(K)=R7¥W(I s J)+R2H(W( T oJ=1)+W( (I e J+1))+RIB(W(I ¢ J=2)+W (] +sJ+2))
1+RA*¥ (W(I+ISeJ=1)+W(IH+ISeU+1))I+RSEW(I+ISeJ)I+W(I+2%][SeJ)
ACD(K)=H®*H* (T#P (K) ~AA¥DPA (K)-BHO (K ) ¥DV#DV*#DV#DV/CF ) ~B#H#*VEA (K
BOTTOM ROW(POINTS TYPE 18)

I=MR+2

1S=-1

DO 13 JU=S.NC

K=(I-3)*#NC+U-2

BHO(K)=R7¥W(I s J)+R2¥ (W T oJ=1)+W(I o J+1))+RIF(W(] +sJ=2)+W(] sJ+2))
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14+RA¥ (W(IH+ISeJ=1)+WII+ISeJ+1))I+RSHEWIIH+ISoJ)+W(I+2%ISeJ)

ACO(K)=H®#H* (T*P (K) ~AA#DPA (K) -BHO (K ) ¥DV#DV#DV#DV/CF ) -B¥*H#*VEA (K)
LEFT COLUMN BOUNDARY(POINTS TYPE 19)

J=3

JS=1

DO 14 1=54MR

K=(I1-3)#NC+J~-2

BHO(K)=R7¥*¥W(I s J)+R2¥(W(I=1eJ)+W(I+1 e J))+RIF(W(I=2¢sJ)+W(I+2sJ))
1+RA¥ (W(I—=10J+IS)IHW(I4+]1 e J4+UIS)I+RSHEW( I s J+JS)+W (] s U+2%US)

ACD(K)=H¥H* (T*P (K) —AA®DPA (K)-BHO (K ) *DV#DV*DV*#DV/CF ) —-B#H#*VEA (K )
RIGHT COLUMN BOUNDARY(POINTS TYPE 20)

J=NC+2

JS=-1

DO 15 I=5+MR

K=(1=3)#NC+J-2

BHO(K)=R7¥W( I s J)+R2¥(W(I=1eJ)4+W(I+1 o) )+RIB(W(I=2:J)+W(I+2e¢J))
14+RAF (W(I—1eJ+IS)I+W(I+]1 e J+IS))+RSHW( T s J+JIS)IH+W(] s J+2%US)

ACD(K)zH®H* (T*#P (K) ~AA¥DPA (K) =BHOQ (K ) ¥DV#*DV¥*DV#DV/CF ) —B*H*VEA (K
POINTS INTERIOR AND ADJACENT TO BOUNDARY

TOP ROW(POINTS TYPE 21)

I=4

1S=1

CF=1e

DO 16 J=5.NC

K=z (1-3)#NC+J-2
BHO(K)=19e#W(ToJ)-8BeF¥(W(IsJ—1)+W(I o J+1)+W(IHISeJ) ) +2e#(W(I+ISeJ—-1)
14W(I+ISeJ+1))I+WITH2HIS UI+RAX(W(TI=ISeU=1)14+W(I=1SeJ+1)}+RSHW(]I=-1SJ
1)+W(T o J+2)+W( 1 e U-2)

ACD(K)zH*#H* (T#P (K) ~AA¥DPA(K)—=BHO (K ) #*DV*DV#DV#DV/CF ) -BR*H*VEA (K)
BOTTOM ROW(POINTS TYPE 22)

I1=MR+1

[IS=-1

DO 17 JU=54NC

K=(1-3)#NC+J-2
BHO(K)=19e®¥W(IaJ)=8Be¥(W(IoJ=1)4+W( (T oJ+1)I+W(IH+ISeJ))+2e¥(W(I+ISeJ-1)
T4W(I+ISeJ+1) ) +W(TH2H[SGJ)+RAX(W(I=ISeJ=1)+W(I=ISeJ+1))+RSHW(I~-1S+J
1)+W(T e U+2)+W (] 4J=-2)

ACD(K)=H#H®* (T#P(K)-AA*DPA (K)-BHO (K ) #DV*DV¥*DV#DV/CF ) -B#H*VEA (K)
LEFT COLUMN(POINTS TYPE 23)

J=4

JS=1

DO 18 [I=5«MR

K= (1-3)%NC+J=-2

BHO(K)=19e¥W( [ oJ) =8 (W(I=1eJ)+WCI+1eJ)+W(I s J+JIS))+2eH(W(]I=10J+JIS)
T4+WUTI+1 oJ+US)IHWT o J+2%US)+RGF (W =1 e J=US)+W(I+]14+J=US))+RSH*W (] ¢J=-JS
1)+W(I=2¢J)+W(I+24J)

ACD(K)=H¥H® (T*#P (K) ~AA*DPA (K)=BHO (K ) ¥DV#DV#DV#*#DV/CF ) -B#H#VEA (K )
RIGHT COLUMN(POINTS TYPE 24)

J=NC+1

JS=-1

DO 19 I1=S+NC
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K=(I-3)%¥NC+J-2

BHO(K) =19 ¥W( T oeJ)=8¢%¥(W(I=1eJ)+W(I+10J)+W(IsJ+UIS))I4+2e¥(W(I=10eJ+JS)
14WI4+1 o J+IS)I+W(T o J42%US)H+RAX(W(I—1eJ=US)+W(I+]1eJ=-JS))I+RSHEW (] sJ-JS
1)4+WI=20)+WI+2,4J)

ACD(K)=H*H* (T*P(K) ~AA%¥DPA (K)~BHO (K ) ¥DV¥DV*DV*DV /CF ) —-B¥*¥H*VEA (K)
POINTS IN THE INTERIOR(54S)e(S5eN)e(MeS) s (MeN)

POINTS TYPE 25.

CF=1oe

DO 20 I=5+MR

DO 20 J=54NC

K=(1-=3)%NC+J-2

BHO(K)z20e¥W( [ 94 J)=8e ¥ (W(IoJ=1)+W(TeJ+1)+W(I=1eJ)+W(I+1,4J))

1426 ¥ (W(I=10J=1)+W(I=10eJ+1)+W(I+1eJ=1)+W(I+1s J+1))
24WI=2sJ)H+W(IH+2+U)+W(] s J=2)+W(]sJ+2)

ACD(K)=H*H®(T*P (K)-AA¥DPA (K)~-BHO (K) ¥DV#DV*DV*#DV/CF ) -B#H*VEA (K
END GENERATION OF EQUAT I ONS* %333 3 3 3 3 3% 9 3 36 3 3 36 3 3 3 36 9 3 3 3 3 3 3¢ 3 3 3 3 36 39 3 34 3 3% 3%
TEST CONVERGENCE 3% % 3 % 3 3% % 3% 3% % 3 3% 3 % % % %

MARK =0

DO S00 I=1.NE

ERROR=ABSF(ACD(1)-ACA(1))

IF(ERROR-TOLER)YS00+500+600

MARK =1

CONTINUE

IF (MARK)B800¢800+300

DO 801 I=1eNE

ACF(1)=ACDI(1)

VEF(1)=VEAI(I)

DPF (1)=DPA(1)

HHHHREERNXARXICOMPUTE MOME NT S 43 33 3 3363 3 36 3 396 3 3% 3 3 3 3 3% 3 3035 3¢ 3% 3% 9 3% 9% 9 %

DO 601 =3 MM

DO 601 J=34NN

K=(1=-3)%(NN=-2)+J-2

W(]»J)=DPF(K)

MMM=MM-1]

NNN=NN-1

DO 602 =4 MMM

DO 602 J=4+NNN

K=(1=3)%(NN=2)+J=-2
BMX(K)==CH(=(2¢+2e%¥PR)IXW (I o J)+W(I o J=1)+W(I o J+1)+PRE(W(I=10J)+W(
11+14J)))
BMY(K)=—CH¥(=(2¢+2e ¥PR)¥W (] ¢ J)+W(I=1sJ)+W(I+1 s J)+PR¥E(W(] s J-1)+W(]eJ
i+1)))
BMXY(K)zC#(1e=PR)I¥(W(I=10eJ=1)4+W(I+1oJ+1)=W(I+1eJ-1)=W(I=1eJ+1))/4,
TOP  ROW* %9 3 3 3 3 3 36 3 3 3 3 3 3 3 9 3% 3 3 33 3 33 % %

1=3

1S=1

DO 603 J=4 NNN

K=(I-3)%NC+J-2
BMX(K)==CR(W(TeJ=1)=26F¥W(ToJ)+W(IoJ+1)+PRE(2¥W (I e J)=Se*W(I+ISeJ)
148 ¥W(I4+2%[SeJ)-W(I+3%]S4J)))
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BMY(K)=0e

BMXY (K)=0s

BOTTOM RO W 33 3 3 % 3 3% 3 3 % 3 3 3 3 3 % 3 3 3 3 3 % *

1=MM

I1S=-1

DO 604 J=4 +NNN

K=(1-3)*NC+JU-2
BMX(K)==CH(W(TeJ=1)=2e* W (I oJ)+W(I s J+1)+PR¥(2e¥W(]sJ)=Fe*¥W(I+ISeJ)
144 XW(I+2¥[SeJ)-W(I+3%#]ISeJ)))

BMY (K )=0e

BMXY(K)=0e

LEFT HAND COLUMN® ¥ 3% 3% 3 3% % 3 % % 3 3% 3 % 3¢ 3% %

J=3

JS=1

DO 605 I=4,MMM

K= (1=-3)%NC+J-2

BMX(K)=0e
BMY(K)zs=CH(W(I—=1sJ)=2e¥W(IoJ)+W(IH+]sJ)+PRE(2*¥W(]eJ)=Se*W(]sJ+JS)
148 W (o J+2XIS)—W (] J+3%US)))

BMXY(K)=0oe

RIGHT HAND COLUMN

J=NN

JS=-~1

DO 606 =4 .MMM

K=(1-=3)%¥NC+J-2

BMX(K)=0e
BMY(K)==CH¥(W(I=10J)=2e¥W(IoJ)+W(I+]1 s J)+PRE(2¢H¥W(IoJ)=Se¥W(I +eJ+JS)
144 #W (] o J+2HIS) =W (] e J+3%US)))

BMXY (K)=0e

DO 607 I=1.NE

ANGLE (I )=ATANF (2 %#BMXY (1 )/7(BMX([)=-BMY (1)) )#.5%57,2958

BMP1 (I1)=(BMX(I)+BMY(])) #,S+SAQRTF(((BMX(1)-BMY(]))*S)%#%#24+BMXY () **
12)
BMP2(1)=(BMX(1)+BMY(]))*#,S5-SARTF(((BMX(I)-BMY(1))*,5)%%24+BMXY (])*#*
12)

END MOMENT EVALUAT I ON3 333 3% 3% 3% 3% 3% 3 3 3% 3% 3% 3 3¢ 3 3 3¢ 3 % 3% 3%

BEGIN MAXIMUM QUANTITIES EVALUATION [N SPACE%3%% % %% 3 3% 3 3 3 3 33 % 3 3% 3 3 3% %
BMP1MS=0.

BMP2MS=0.

DPFMS=0e.

DO 608 I=1,NE

IF(ABSF(BMP1(]1))-ABSF(BMP1IMS))608+608+:609

BMPIMS=BMP1 (1)

ANG1 =ANGLE (1)

MP1S=1

CONT INUE

DO 700 I=1.NE

IF(ABSF(BMP2(1))~-ABSF(BMP2MS) )700+700+701

BMP2MS=BMP2(1)

ANG2=ANGLE (1)
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MP2S=1
700 CONTINUE
DO 702 I=14NE
fF(ABSF(DPF(l))—ABSF(DPFMS))7020702.703
703 DPFMS=DPF (1)
MDS=1
702 CONTINUE
ENDIN MAXIMUM QUANTITIES EVALUAT I ON®R #3333 33 33036 30 3636 3 396 36 38 3496 3 9 3 38 303303
BEGIN MAXIMUM QUANTITIES EVALUATION IN T]ME %3#%33#5% %% %53 3 333 3 3 -3¢ 30 3 %
IF(ABSF(BMPIMS) —ABSF(BMP1ST))7044+704,705
705 BMP1ST=BMP1IMS
LOCMP1=MP1S
ANG1T=ANG1
TMP1ST=TIME
704 IF (ABSF (BMP2MS) -—-ABSF (BMP2ST))706+7064707
707 BMP2ST=BMP2MS
LOCMP2=MP2S
ANG2T=ANG2
TMP2ST=T | ME
706 1F(ABSF(DPFMS)-ABSF(DPFST)) 70847084709
709 DPFST=DPFMS
LOCDPF=MDS
TOPST=TIME
708 CONTINUE
END MAX EVALUATION IN T1ME #3383 33 3 33 36 3 3¢ 3 36 3 3 338 3836 36 333 96 3 396 36 38 363098 36 3 -5
JIs=JJ+1
IF(JJ-NP) 8028034803
803 CONTINUE
PRINT 8031.TIME
8031 FORMAT(1HO«S5X +SHTIME=4F847)
PRINT 804 +MDSDPFMS.MP 1S BMP1MS,MP2S .8MP2MS
804 FORMAT(1HO+QHMDS=413¢3X6HDPFMS=4F9e¢7¢3XeSHMP1S=,413¢3X¢7HBMP1IMS=,
1F9e7e3XeSHMP2S=4 13 ¢3X 9 7THBMP2MS=4F9,47)
PRINT 8044 ,ANG1 +ANG2
8044 FORMAT(1IH +SHANG1=¢F7e¢3¢5X+SHANG2=e¢F7¢3)
JJ=0
802 GOTO 200
900 CONTINUE
PRINT 8050.TDPST +LOCDPF ¢DPFST
8050 FORMAT (1 HO+OHTDPST=eF9e7¢3Xe7THLOCDPF =413 ¢3X+6HDPFST=¢F9e7)
PRINT 8051.TMP1STLOCMP1 ,BMP1ST
8051 FORMAT(1H +7HTMP1ST=sF9e7¢3Xe7HLOCMP1=413¢3Xe7HBMP1ST=4F9¢7)
PRINT 8052+TMP2ST +LOCMP2 ,,8MP2ST
8052 FORMAT(1H +7HTMP2ST=¢F9eT7e¢3X sy 7THLOCMP2=413¢3X ¢+ 7HBMP2ST=,F9.7)
PRINT 8053+ANG1T+ANG2T
8053 FORMAT(1H +6HANGIT=sF 763 ¢SXe6HANG2T=eFT7e3)
1000 CONTINUE
1001 CONTINUE
END
END



APPENDIX B
EXACT SOLUTIONS

The '"'exact' solution of the problem of forced vibrations of a
simply supported rectangular plate resting on an elastic foundation is
presented here. It has been used as a basis of comparison for the
evaluation of the accuracy of method presented in the thesis.

Referring to the same plate as described in section 2.1, the

exact solution of Equation 1 may be written as:

w
w= Z z Si'Ti' (B1)
izl j=1 Y
where Si' = sin me sin %r_z, and Tij is a function of time only.

Also assume the loading function be given as:

P(x,y,t) = G(x,y) F(t) (B2)
where, G(x,y) is a function of the space coordinates, 'x' and 'y"
only and F(t) 1s a function of time, t only.

Let G(x,y) be expanded in a double sine series:

© @ imTx jTm
G(x,y) = £ Z g, . sin— sin X (B3)
. . 1] a b
i-1 j=1
in which
a b
_ 4 .imx . gmy
gij =% f fG(x,y) sin — sin dxdy (B4)
o o

Substituting the preceding expressions (Bl), (B2), and (B3) into the
equation of motion, Equation 1 of section 2.1, the following equation is

obtained:
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2 2 4
® O x4 i jTr
zz:(l)ST L)ab(!-l-simu)s"r
1=l =1 1) J 1) ij ij
v 1 4Ss T 4T g gy -0 (B5)
D ij j D ij "1j D ij "1ij D ij
Since Sij is not identically zero, one obtains:
. q..
T o+2rT . +p °T, =—F(t) (B6)
ij ij ij ij m
where r = ﬁ , and pij is the natural undamped circular frequency

of the (i, j)th mode of the plate:

2
p.. v {(m ‘4 )2} +%] (B7)

1j

For the case of zero initial displacement and velocity the solution

of Equation (B6) may be written! as

t

q.. el
T = —3 [ pr)e T i q..(t-7) dr (B8)
ij mqij 1)
o

in which q, is the damped natural circular frequency given by
qQ.. =\/ p.. -r (B9)

The '‘critical damping" €y for the system can be obtained

by setting qij2 = 0, thus;
V D, im. 2 im 2,2
c (i) =2 km\/[1+ = {57+ (5711 ( B10)

! Timoshenko (38), pp. 104-109,
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It may be observed that the factor inside the bracket shows
effect of the flexural rigidity of the plate and the mode shapes (value
of i and j) on the value of the critical damping for the (i, j)th mode.

For any given loading the solution can be obtained from Equation
Bl by use of Equations B4 and B8. The exact solutions of the various
problems that have been used for purposes of comparison in the text
of this thesis are given in the following.

1, Triangular Pulse Loading: In this case P(x,y,t) = P(1 - tt—)

1
is constant over the entire plate and taking r = 0 (no damping), for

a square plate, Equation B4 yields:

16P
q.. =

ij ﬂzij

Equation B8 yields:

Tij=—2—- (1-—) smp (t-7) d~
™ mijp . 1
ij
sin p,.t
=¢ (1-—t--cosp..t+—1‘l—)
- t i t, p..
‘rrml_]plj 1 174j

finally substituting into Equation Bl one has

o©w sin p, .t
W(X.Y,t) = 16P = Z — [1 -—+ t_L -cosp t]
Tm i=1 j=1 1_]p 1 lpl_]
s1n-]-ﬂi smﬂu (Bl11)
a b
fort <t

1
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Bending moments are calculated from:

2 2
M =—D(a\;+va\;)
* ox oy
2 2
M =-D(a‘;+va§,) (B12)
y oy 9x
2
0w
Mxy- D (l-v) 5x Dy
2. Partial Loading: The loading is the same as the preceding one

except that it is applied over an area u x v whose center is located at

(L,n). In this case Equation B4 yields:

. oP sin ird sin im0 sin imu sin oy
4Y; T 2 a b 2a 2b
T ij uv

When the load is concentrated, i.e., u,v—» 0 and P u*v —>» F

(a constant), the abtove equation yields:

_ g . img ) l'm‘;
qij YN sin - sin 5

The complete solution can be written as before.

3. Rectangular Pulse: The load P is applied uniformly over the

plate. In this case the effect of foundation damping is also included.

From Equations B4 and B8 one obtains, respectively

~
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1j

t
T.. = —-16—P- f e-r(t-'r) sin qij(t-T)dT

ij 2..
mm 1) qij o

-rt
16P 1 e )
5 [ 5 > {1 T (r sin qijt+qij cos qijt)}]
Tijm r + Qy; ij

The complete solution is given by Equation Bl as:

16P 1 -rt, r
——————————————— - — 1
T z 5 [1-e ( sin qijt+ cos qijt)]

mT i=1 j=1 ij(r2+qij) ij

w(x,y,t) =

for allt> 0 and c.. < c__(ij) (B13)
1j cr
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TABLE 1. COMPARISON OF RESULTS OBTAINED BY RUNGE-

KUTTA AND BETA METHODS (1 = .0625 AND t=,125)
' Method of T =.0625 T =.125
Time lution
incre - S0 Deflection Moment Deflection Moment
ment (u = w/h) (Ma/D) (u = w/h) (Ma/D)
AT

Exact .0027852 . 0054363 . 0024640 .0023591
> Runge -Kutta .0027480 .0048949 .0025019 .0027559
1/10 n Beta = 0 .0027512 .0048474 .0025021 .0027973
Beta = 1/6 .0027462 .0046217 .0025019 .0027462
’ Runge -Kutta .0027478 .0046850 .0025018 .0027483
1/5n Beta = 0 .0027589 .0051735 .0024948 .0023365
Beta =1/6 .0027412 .0044529 .0025025 .0027645
2 Runge -Kutta .0027477 .0046896 .0025017 .0027365
1/4n Beta = 0 .0027619 .0052392 .0025015 .0027001
Beta =1/6 .0027401 .0044650 .0025034 .0028201
> Runge -Kutta .0027481 .0047205 .0025018 .0027367
1/3 n Beta = 0 unstable unstable unstable unstable
Beta = 1/6 unstable unstable unstable unstable
2 Runge -Kutta unstable unstable unstable unstable
1/2.5n Beta = 0 unstable unstable unstable unstable
Beta =1/6 unstable unstable unstable unstable
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TABLE 2. COMPARISON OF RESULTS OBTAINED BY RUNGE-
KUTTA AND BETA METHODS FOR MAXIMUM VALUES
OF RESPONSES

Maximum deflection Maximum moments
, Method of (u=w/h) (Ma/D)
Time solution
incre- Instant Magnitude Instant Magnitude
ment
AT Exact .0906250 . 0044553 .0812500 .0114936
2 Runge -Kutta .0933594 .0045647 .0941406 .0120576
1/10 n Beta = 0 .0933594 . 0045688 .0937500 .0122500
2 Runge-Kutta .0937500 .0045633 .0937500 .0119689
1/5n Beta= 0 .,0927688 .0045739 .0929688 .0123821
2 Runge -Kutta .0937500 .0045624 .0937500 .0119323
1/4n Beta= O ,0927734 . 0045718 .0917969 .0123091

2 Runge -Kutta .0937500 .0045606 .9375000 .0118662
1/3n Beta= 0 unstable unstable unstable unstable
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TABLE 3. COMPARISON OF NUMERICAL AND EXACT VALUES
OF MAXIMUM RESPONSES FOR CENTERPOINT

(DEFLECTION)
Method . Maximum % error
Time ) % error .

of (r=t/T ) deflection in time in
solution o (u =w/h) deflections
Exact .0927083 ,0014727
n=4 .0937500 .0014904 1.1 1.2
n=8 .0890625 .0014720 -3.9 0
n=12 .0951389 .0014700 2.6 - 0.1
n=16 .0933594 .0014747 0.7 0.1
n =20 .0937500 .0014738 1.1 0.1
n =24 .0927083 .0014750 0 0.2

(MOMENT)

Method , Maximum % error
of 'I—‘1me moment 07.0 er-ror in
solution (r = t/To) (Ma/D) in time moment

Exact . 1135000 .0019342

n=4 . 0937500 .0018623 -17.4 -3.7
n=28 .0765625 .0018244 -31.6 -5.7
n=12 . 0666670 .0018835 -41.3 -2.6
n = 16 . 1156250 .0019921 1.9 3.0
n = 20 ., 1135000 .0019908 0 2.9
n =24 . 1177083 .0019823 3.7 2.5
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TABLE 4. COMPARISON OF NUMERICAL AND EXACT VALUES
OF MAXIMUM RESPONSES FOR QUARTER POINT

(DEFLECTION)
Method , Maximum % error
Time . % error )
of deflection .. in
solution (r = 1:/To) (u =w/h) in time deflection
Exact .0955000 .0010955
n=4 .0937500 .0010249 -1.8 -6.5
n=2_8 .0953125 .0010781 -0.2 -1.6
n=12 .0951389 .0010904 -0.4 -0.5
n = 16 . 0945313 .0010922 -1.0 -0.3
n =20 .0955000 .0010939 0 -0.1
n = 24 .0937500 .0010945 -1.8 -0.1
(MOMENT)
Method ) Maximum % error
Time % error .
of ~ moment e in
solution (r= t/To) (Ma/D) in time moment
Exact . 0989583 .0015198
n=4 . 1000000 .0011621 1.1 -23.5
n=2_8 . 1000000 .0014512 1.1 -4.5
n=12 . 1013889 .0014479 2.4 4.7
n=16 . 1058594 .0015324 7.2 0.8
n = 20 . 0970000 .0015515 2,0 2.1
n =24 .0989583 .0015682 0 3.2
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TABLE 5. COMPARISON OF NUMERICAL AND EXACT VALUES
OF MAXIMUM RESPONSES FOR CENTER POINT
FOR SHRINKING AREA LOADING

Maximum deflection Maximum moment

Me(:imd (u = w/h) (Ma /D)
solution Instant Magnitude Instant Magnitude
Exact .0885417 . 0045861 - -
n=4 . 1250000 .0039174 .0375000 .0094701
n=28 . 1062500 .0046439 . 1078125 .0128272
n=12 .0930556 , 0048937 .0916667 .0177950
n=16 .0937500 ., 0048373 .0941406 .0186278
n =20 .0905000 . 0047537 .0880000 .0190685
n =24 .0885417 .0047438 .0881944 .0200436
TABLE 6. COMPARISON OF NUMERICAL AND EXACT VALUES
OF MAXIMUM RESPONSES FOR QUARTER POINT
FOR SHRINKING AREA LOADING
Method Maximum deflection Maximum moment
of (u = w/h) (Ma/D)
solution Instant Magnitude Instant Magnitude
Exact .0968750 .0027068 . 0750000 .0039659%*
n=4 . 1062500 .0028196 . 1062500 .0040440
n=2_8 . 0890625 .0026812 .0687500 ,0037722
n=12 . 1048611 .0027166 . 1055556 .,0041591
n=16 .0976563 .0027224 .0781250 . 0040260
n =20 . 0980000 . 0027008 .0752500 . 0046592
n = 24 .0993056 .0027086 .0756944 .0048213

*Slowly convergent series (i,j = 61).
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TABLE 7. COMPARISON OF NUMERICAL AND EXACT VALUES
OF MAXIMUM RESPONSES FOR CENTER POINT
FOR PARTIAL LOADING

Method Maximum deflection Maximum moment

of (u=w/h) (Ma/D)

luti
solution Instant Magnitude Instant Magnitude
Exact .0906250 .0045530 .0812500 .0114936
n=4 . 1250000 .0039174 . 0375000 .0094701
n=28 . 1062500 .0046439 . 1078125 .0128272
n=16 .0933594 . 0045688 .0937500 .0122500

TABLE 8. COMPARISON OF NUMERICAL AND EXACT VALUES
OF MAXIMUM RESPONSES FOR QUARTER POINT
FOR PARTIAL LOADING

Method Maximum deflection Maximum moment

of (u =w/h) (Ma/D)

luti
solution Instant Magnitude Instant Magnitude
Exact .0968750 .0026678 .0718750 .0035596
n=4 . 1062500 .0028196 . 1062500 .0040440
n=28 . 0890625 .0026812 .0687500 .0037722

n =16 . 0980469 .0026583 .0789063 . 0033425




TABLE 9. MAXIMUM DEFLECTION, MOMENT AND THEIR
LOCATIONS OF OCCURRENCE FOR A FREE PLATE
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DUE TO IMPULSE APPLIED AT CORNER

Maximum deflection

Maximum principal moment

T= /T ) (u=w/h) (M'2 = Mza/D)
Location Magnitude Location Magnitude Angle (o)
. 00625 (1, 1) .0020594 (2, 3) -.0106407 -33.99
.01250 (1, 1) .0052294 (3, 3) -,0155448 45
.01875 (1, 1) .0084516 (4, 2) -.0170862 31.11
.02500 (1,1) .0115648 (4, 3) -.0173257 39.06
.03125 (1, 1) .0144917 (2,5) -.0173016 -29.54
.03750 (1, 1) .0171819 (2,6) -.0168504 -26.78
. 04375 (1, 1) .0195983 (2,6) -.0164369 -27.95
. 05000 (1, 1) .0217115 (6, 2) -.0157487 28.90
.05625 (1, 1) .0235093 (8, 2) -.0152735 22.58
. 06250 (1, 1) .0249184 (7,2) -.0147616 26.34
. 06875 (1, 1) .0260576 (5,5) -.0143696 -45
.07500 (1, 1) ,0269365 (4, 3) -.0129368 42.06
. 08125 (1, 1) .0272545 (3, 10) -,0135985 -26.42
. 08750 (1, 1) .0267395 (11, 1) -.0130943 0
.09375 (1, 1) ,0264301 . (8,9) -.0118132 -41.86
. 10000 (1, 1) .0261363 (9, 8) -,0124041 39.31
. 10625 (1, 1) .0253643 (10, 6) -.0108537 26.76
. 11250 (1, 1) ,0241840 (4, 8) -.0075699 -36.19
. 11875 (1, 1) .0229904 (6,6) -,0099431 -45
. 12500 (1, 1) .0216093 (16, 10) -.0093487 -22.02
. 13125 (1, 1) .0196472 (16, 10) -.0081454 -31.43
. 13750 (1, 1) .0165115 (17, 7) -.0099522 0
. 14375 (1, 1) .0131160 (17,6) -.0109074 0
. 15000 (1, 1) .0092761 (17,6) -.0102734 0
. 15625 (6, 1) .0067519 (17, 4) -.0093470 0
. 16250 (8, 1) .,0060155 (7, 17) -.0076295 0
. 16875 (8, 1) .0054800 (17, 7) -.0076760 0
. 17500 (17, 17) -.0052681 (3, 3) -.0059784 -45
. 18125 (17, 17) -.0063015 (3, 3) -.0055748 -45
. 18750 (17, 17) -.0071057 (10, 7) -. 0043090 -40.75
. 19375 (17, 17) -.0079991 (12, 12) -.0056715 45
.20000 (17, 17) -.0090625 (14, 14) -,0082439 -45




TABLE 10,

86

COMPARISON OF MAXIMUM VALUE OF RESPONSES
WITH DAMPING AND WITHOUT DAMPING

MAXIMUM DEFLECTION (u)

Amount of Time Location Magnitude Angle
damping (r = t/To) (©)
=20 .0796875 (1, 1) .0272863 -
B = 56,52 .0757813 (1, 1) .0133758 -

MAXIMUM PRINCIPAL MOMENT (M'l)
=20 . 1757812 (1,8) .0144665 0
B =56.52 . 0355469 (2,2) .0077713 -45

MAXIMUM PRINCIPAL MOMENT (M'Z)

W ™
non
wm O

. 0285156 (5,2) -.0174413 28,82
. 0222656 (3,3) -.0140118 -45




TABLE 11,

87

MAXIMUM DEFLECTION (u = w/h)

MAXIMUM RESPONSE VALUES FOR DIFFERENT
PULSE SHAPES APPLIED AT CORNER POINT
OF FREE PLATE

Rise time Time , . Angle

(Fig. 24) (r = t/To) Location Magnitude ()

t = 0 .0796875 (1, 1) .0272863 -

t) = .025 . 0933594 (1, 1) .0282670 -

t = .05 . 1062500 (1, 1) .0293000 -

t, = .075 . 1175781 (1, 1) .0301443 -
PRINCIPAL MOMENT (M'1 =M. a/D)

t, = 0 .01757812 (1,8) . 0144665 0

t, = . 025 .0535156 (2,2) .0109976 0

t, = .05 .0710938 (2,2) .0115884 45

to = ,075 . 0863281 (2,2) .0117586 45

PRINCIPAL MOMENT (M'Zz Mza/D)

t, = 0 .0285156 (5,2) -.0174413 28.82

t, = .025 . 0441406 (2,5) -.0182763 -29.47

to = .05 . 0644531 (2,5) -.0185709 -30.71

t =.075 . 0843750 (2,5) -.0185767 40. 19
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TABLE 12. MAXIMUM RESPONSE VALUES FOR LOADING
APPLIED AT DIFFERENT POINTS ALONG EDGE
OF FREE-PLATE

MAXIMUM DEFLECTION (u = w/h)

&

Position Time . . Angle
of load (r = t/To) Location Magnitude ()
(1, 1) .0796875 (1, 1) .0272863 -
(2,1) .081250 (1, 1) .0251775 -

MAXIMUM PRINCIPAL MOMENT (M'1=M1a/D)

(1, 1) . 1757812 (1, 8) .0144665 0
(2, 1) . 1765625 (1, 8) .0133560 0

MAXIMUM PRINCIPAL MOMENT (M'Z = Mza/D)

(1, 1) . 0285156 (5,2) -.0174413 28.82
(2, 1) . 0289062 (2,5) -.0153038 -24,54




89 q(x,y) load intensity

a >
x
F——_—t——_—-— — ———— + >
7
0 R N — _ %)
b vl
s 7 Y
// // '
1’ // | XY,
A |
// ’,l ( \ M Q
VR Wi yx X
Vg VR
Yy
y |

'
Qy'¢w = middle plane displacement

z

FIG. 1. PLATE NOTATION

i.
X 7
—e—f - - -
Ve
/
/ . .
J boundary conditions
T
/1nitial
‘ conditions y
ot —

Kboundary conditions

FIG. 2. PICTORIAL REPRESENTATION OF PROPAGATION
PROBLEM



— e a —_——

simply supported edges

FIG. 3. PHYSICAL MODEL OF DISCRETE SYSTEM

pre— ———
1
V

DU WS WL VNG WG

| i

u + O()\Z)

]

olelca
e

|
|
f
|

N
ol
Relele

clelelefe

- _

FIG. 4. BIHARMONIC OPERATOR



91

SHZIS dI¥D SNOTYVA ¥OJd NOILDHATAIA INIOd YAINAD ¥YO4A SHAIYOLSIH HASNOJSHY 'S "DIA

Ao.H\u = 1) awl], Ssojuotsusawig

00¢° TAN oSt st oort’ SLO° 0S0° S20° 0
A _ ¥000" -
|
|
|

|

1
|
o

S _ T - $000°
L - - 8000 °
i
¥
o R R S B A, A .
91 X 91 @ _ A C ” A K
AR AN :
8 X8 W :
PXp & 91

| ‘ ‘ 9100 °

(Y/m = n) UOT3D9[I3( SSITUOTSUIWII(]



SUZIS dITYD SNOIdVA dO0Jd

\

LNIWOW INIOd ¥YFALNJIAD ¥Od SHIYOLSIH JASNOJSHYH

‘9 'OIld

! 000 -
_ .
. _ |
i !
| ‘
| | |
a— 0
W
\ , |
R e N / e 44 , $000
/T |
_ /.... [}
_ /
! _ m
N ! M :
o ﬁ - - 4 \\ ———- ——— 8000°
! y
m
T N | \ : 7100 "
| | yay "
i ! |
| \ _
yexXpz R a‘ VS S | ,
02 X027 @ . \»’/ \ A 9100
91 X 9T % ’L‘k | |
Aaxzia v ( w ! .
R . a @ .
1 |
Pxy _ L _ 0200°
007" SLT” 0S1° SLO" 050 520" 0

(°L/3 = 1) aw1] ssajuolsusawiqg

(/e ) IUSWOIN ssajuolsuawi(g



93

INTIWOW INIOd YHINJIAD ¥OJd SNOILNTOS LOVXH ANV TVIOIIINWNAN J0 NOSITIVAWOD °L 'DIA

(°L/3 = 1) sw1] ssauorsuswig

GLT" ., 0ST° SZ1° 001" SLO" 050 ° 520"
: 9 0%00°-
|
0
m
!
o
: ovoo" 3
: o]
i : n
| o
, 2
[¢]
| . )]
R \ 1]
: 0800°
(@]
3
¢]
o]
ot
! _ >
! ! -
T 0?10 e/
m _ 5
; _
m |
“ 0910 °
| |
m |
91 X 91 © _
. oExXy @ w
| i .
0020°




94

LNIWOW INIOd ¥dLYVND ¥OJ SNOILNTOS LOVXH ANV TVIOIYHIWNNAN JO0 NOSTIVAWOD '8 "DId

Ao.H\u = 1) awrg, mwwﬁdommcwmﬁﬁﬂ

SLT 051" 521 001" 5L0° 050" 520" 0
T 2000 °-
/ i
2000° U©
3
o
. o]
$000° @
(o]
B,
. [¢]
9000° ®
S
8000° 3
o
=4
L 0100° =
L
®
7 ztoo° 2
N $100°
Pexy m
02 X007 ©
\ 1 9100°




95

ONIAVOT VHYV ONININITYHS
YOA NOILDITAIAA INIOd YALNIAD ¥YOJA
SNOILNTOS LOVXHA ANV TVIOIIINWAN 4O NOSIHVAWOD °6 "DIA

AO,H\“ = 1) swrJ, ssajuolsusawig

0GT"* G21° 001" - GL0° 0S0° G20°

w q !

91X 9T ®m

uoﬁxm (o]

100°

200°

€00°

¥o0°

S00°

900°

L00°

(4/m = n) UOTIDIF( SSITUOTSUIWIIT



96

ONIAVOT VHYV DNIINIYHS ¥Od SHZIS dIYD SNOIYVA
JYOJA ILNIWOW INIOd ¥ILIVND ¥Od SHIYOLSIH ASNOJSHY 01 "DIA

AO,H\» = 1) awtr] sSsofuorsuswiqg

TAS 0ST° K48 00T ¢ SLO° 050 ° G20°

},w__

m—

_—

<t
M X
Fon

——
O«Hﬂ '

¥00°

€00°

200°

100°

100°

200°

€00°

¥o0°

S00°

(d/®N) IUSWOIN s8Sa[UOTSULIWIQ



97

ONIAVOT VHYV DNIMNIYHS dOd ILNINWOW INIOd ¥d3LIVAD
HO4d SNOILNTOS LOVXHd ANV TVIOIIINNAN J0 NOSITIVAWOD °IT "DId

o
("1L/3=1+) owr] ssajuotsuswiqg

SLT” 0sT1” s2t” oor - SLO” 0s0° S20°
T v00°

A -
oY,

_ — f——%00"

, : 900"
9T X 91 w M
exy © _

- 800 °

(/BN ) IUSWON Ssoajuotsuawig



98

ONIAVOT VIYV DNDBINIYHS YOJd NOILDATAHA INIOd ¥3LYVNAD
YO4d SNOILNTOS LOVXH ANV TVOIMINWNN JO NOSIHVdAWOD 21 "DId

.

AO_H.\H H.—.v QW] ssajuolsuawulg

GLT” ost” se2t” oor’ SLO°® 050 ° 520°

1 S | -~ N S NN U B

L ) I N U S R L | S B
10Xy w i
9T X 91 ©

200 -

100"~

100°

200°

€00°

00 °

S00°

(4/m = n) uorld9[Ja( SSITUOTSUIWIT



99

ONIAVOT TVILIVd dO4d NOILDHTAHA INIOd YHALNAD

"YOA SNOILNTOS LOVXH ANV TVOIIIWNN JO0 NOSITYVAWOD ‘€1 "DId
AO.H.\u = 1) swrt] ssajuortsusawiq
0s1” qe1° oot’ SLOo” 0S0° s20°
joexy v
91 X 91 ©

200°-

100°-

100°

200°

€00°

voo°

S00°

900°

(y/m = n) uolda[Fd(  SsSaUOTSUIWIIT



100

DNIAVOT "TVILYVd 404 LNHAWNOW INIOd ¥YHALNAD
YOJd SNOILNTOS ILOVXH ANV TVOIMANWNN J0 NOSTIVAWOD ‘¥1 "DId

AO.H.\u = 1) awI1], ssajuorsuawi(q

SLT” os1’ ser’ oort’ SLO° 0s0° G20°

108X ¢
OT X 91 @

200 °-

200°

voo-

900"

800°

010"

210°

¥10°

(Q/eN) IusWON ssajuorsuawig



101

ONIAVOT TVILYVd ¥OJd NOILDATAAA ILNIOd ¥IALIVND
HOJAd SNOILNTOS LOVXA ANV TVOIIIWNAN A0 NOSTIVAWOD ‘ST "DId

Ao.H\u = L) swr], ssajuolsuawig

SLT” ost” 21’ 00T’ SLO° 0s0° s20°
200 -

™ 100°-

100°

200°

€00°
Pexy w

91 X 91 © %00

(Y/m = n) uo13da[§J9( SSa[UOISUIWIJ



102

DNIAVOT TVILYVd Y04 ILNAWOW LNIOd ¥IdLIVNO

¥OJd SNOILNTOS ILOVXA ANV TVOIIAWAN A0 NOSTHVAWOD ‘91 "DId
Ao,H\u = 1) aw], ssajuolsusawlg
SLT® ost’ gt oot* GLO° 0S0° S20°
2N

N

Joexy w
91 X me

voo°

200°

200°

vo0 -

900°

800 °

(/BN ) IUSWO S89[UOISUIWI(]



103

SANTVA ONIJINVA NOILVANNOJ SNOTYVA ¥Od SHTIOLSIH JASNOdJSHEY NOILDATATAA L1 "DIA
AO.H\“— = L) awr] ssajuorsusawig
g1 oot-’ SL0°
. 0
¥000°
8000 °
— 1013091J9p D1pels
(D zs79s=dy Bop
2100°
0 =9,
~q
@ 9100°
0
@ QO _ 1700-
1€o11ownu
padweq @
12ex9 exy v
StIdWInN ©
1921 N®| 00

. A\ PP AT AR AT L SN LY MUY AT FATT AT YT P

d ow 1 aa



104

SINTVA DNIAINVA NOILVANNOJA SNOIYVA ¥O4d SHATYOLSIH ASNOdSHY

Ao.H\u = 1) w1 ssajuolsuswig

LINIWOW °81 "DId

002" TAR oG1’ S?1° 00T~ A 050" g20°
L L
| : A :
| ; o z
| 1 “
i ‘ Nm.om .
A i . : “ :
| ‘ , \nﬂ\ﬂ\n\ R A 1 . —_—
AR Ty en=dl (U \ | j v/
R N\ _ I : L N S ]
|||||| = —— — g — ~.|.‘“ _ 1 i
{ (s 9s na~ _ osﬂwxyquﬁdum _ _ _ : m
L_ o | pi A Ia-m - S .*-‘_(lr---l R 4 - P
A i ) w _ . i m ~ _ '
(@=9 o P |
N A
® O O ]
_ - —+ . . - i i _— e b - U
\_ _ m m padweqg B
- g i 10ex’ ] v
i 0 | _ m _ [edtIawinN ©

5000 -

5000°

0100°

S100°

0200°

G200°

0€00°

(A/®W ) IUSWO Sssajuotsuawiqg



105

SHNTVA SSINJAILS NOILVANNOJA ANV SNOILIANOD X¥VvAaNNod
J0 SIJAL SNOTYVA ¥OJd SHIYOLSIH HASNOSHY NOILDIATATA ‘61 "DIA

Ao.H\u = 1) aw], ssajuorsusawig

SLT” 0sT1” 21 oor-° - Gl0° 060~ 620"

i

-+

RSN IV S P —

_ N A 15 4 T 2 X
| | L'PTh =2 *°S’S
“ Ei

0=D ‘PaxI
0=? “S'S

GOE S

€00 °-

100°-

100°

200°

€00

¥00°

S00°

900°

L0O"

(4/m = n) uorld9[J3( SSaTuUOISUdWII(



106

SANTVA SSINJJIILS NOILVANNOJA ANV SNOILIANOD A¥VANNOHL
JO SEJAL SNONIVA ¥YO4d SHIYOLSIH ASNOASITY ILNIAWOW 02 "DId

(°1/3 = +) swr], ssayuorsuswiqg

007" SLT 0S1° SZ1° SLO° 050" 520"
i L000"-
|
|
$000" -
0
i ¥000°
|
m
—————18000"
- - - e el 7100
0=2 L'¥1p = D paxg @
‘s°8 L'¥1H=? 'S'S ®
. 0=? PaxXid o
| o b=2 "S'S Z|ci00"

(Q/eN) IUSWOIN ssajuolsuawiqg



SNOILIANOD A¥VANNOd J0 SHJAL SNOIYVA ¥O4d SHIYOLSIH ASNOdSHY NOILDATATA °12 "DId

(°L/3 = +) sw] ssajuotsuawI(
0s1” g21° 001" SL0° 0S0° sz20°

0100 -

N\ ;
fiu \\‘ 5000
gf m //( ;\\\ 0100°
— S100°

n) UO1}d3Ja( SSajuorsuswig

j
o~ / J/
2
0200°
| $200°
_ "
. %
_ 0£00° 3
| SO S S€00°
kuuommzm Aduwts “ " :
R m :
poxty wm “ ore0
9917 © _
S'S ¥ | L S¥00




108

JILVId 3344 ¥04d SHZIS dIYdD SNOIYVA ¥Od
SUTYO.LSTH JdSNOJSHY NOILDHATATA INIOd YHAILNAD 22 "DId

AO,H: = 1) aw], ssajuolsuawig

SLT” 0s1” st SLO° 0s0° 520°

100°

200°

€00°

¥00°

(4/m = n) uot13daJa(  SSafUOTSUdIWI



109

17

F"—- F—1 O

11

13 —

15

17

FIG. 23. COORDINATE SYSTEM FOR POINTS
ON FREE PLATE FOR l6x16 GRID

P
(x,y,t)

to t1

FIG. 24. LOADING PULSE WITH VARYING RISE
RATE (BY VARYING to)



110

&

(1°1) INIOd 1V @dITddV advOT1 Ol dnd
(T ‘1) INIOd LV NOILDATAAA YOJd XAYOLSIH ASNOJSHAY °S7 "DIA

Ao.H\a = 1) awr], SSaTuoTsuUauII(]

SLT - oSt ” ser’ (o]0] o SLO° 0s0° S20°

a paduieq
©| padwepun

10°

10°

20°

€0°’

n) UOT}D9[J3( SSOTUOTISUIWI(]

(q/m



111

(1 ‘1) INIOd 1LV ddI'lddV dvOo1 Ol dnd
(2‘27) INIOd 1V LN INAWOW TVAIDONIYd ¥Od AYOLSIH ASNOJSHAY ‘97 "DIA

(°L/3 = 1) swr] ssajuorsuswig

SLT” 0s1” g1’ oor- SLO° 0s0° S20°
. T : - : 200 °-
h 4_
: o
. - 0 o
3
o
o
200 3
2
o
w
v00° ®
g
| m
! 900 o
B K L\ 800" X
4 u 1
—_— _ ——t - — o010 Z
i . T
i i -
' _ . G
U S m S S — 4 -— 71 0 -
padweq@ .
d
badwiepun ® | ¥i0-




112

(1‘1) INIOd 1V adIriddv dvoT1 Ol dAna (€ ‘g)
INIOd 1V %N INAWOW TVJIONINd ¥OJd AYOLSIH ASNOdSAY ‘L7 "OId

Ao.H\u = L) QW] SS9[UOTISUIWI(]

SLT” ost” 621" oot SLO° 0s0° SZ20°
- . 200°

¥00
i ‘ 900°

K 800
B Ll

PR —_— s - - - e . - - - N.HO.

/ ¥i0°
1 - //Io\ e

810°

.
I
/

(q/‘ezw = 2,}/\{) JUDWIOJA SS3[UOTSUIWI(]



113

g
t”uuutlllllllll.u.lul.ll ———- I:/a
a Tsem——o NG LES
R Rl et
l— ’I
. St ~
———m e mm—cme————— ————————— -
& AN -]
N S o
~———— -
B Ss J
r N\, = o\ 4
,/ { N, ~ i i /
4
~ \ Yok ¢
~ \ {
sy
W
.
AN
! 1y
\ [}
1 [} \ /
[ NN
\
\ Yl
ARY " '
LN n
__ AN .f 1
[ AR
ik 1)
R
L
HE B
. 1
Bt A
]
ST
] LI
; 1
s 1 ' .
N R
3. Y e
\
1 N
] .
' \
H

-
b
9

FIG.28. CONTOUR OF DEFLECTION



114

‘\i )
= i
A |
R /!
' ’ /
19} /
% o/
177 f' / Pig
"o ] !
iJ ] ] 4
1 ] 1
o '
I” !
' !
'

ys

FIG.29. CONTOUR OF PRINCIPAL BENDING MOMENT M'z



115

edge
(1,1) (1, NN)
2 ' J
135 . B
edge — t+— te—tedge
(MR 1R
Ri12) (2
(MM, 1) - (MM, NN)
edge

FIG. Al. GRID LINES FOR SIMPLY SUPPORTED PLATE

(1) 1) H (1, NN)
T T T
1 9 g7 10 12
7i {
T 5 T -v_—ﬁfdk:
. |
ol cs;s;; f%,m?a’ﬂ
sl
’ /%535‘;/
‘ +(’r17esi.:5) —1= me,m"-ﬁ
1d .
Tl e[ 1218 -
B t =1 -
(MM, 1) L (MM, NN)

FIG. A2. LOCATION OF POINTS ON FREE PLATE
AS USED IN PROGRAMMING




R3HR6
|
| \
|
io1-
R3 RZHR 1
R4HR5HR4) |
| 1 ' |
' l
| !
' ! .

-3-
AraHrsHRY
1 W -sHlio]{ -8
(2 H-8K 2

1 i

|

i

-5-
FIG. A3,

]} (R3

116

RIH R2HR7

+-(R4H R5HR4

-4-

1

1 2 K -8
i 1- H -8HRoO

i | '

S22 H-8

1
-6-

SIX DIFFERENT TYPES OF "BHO"

PATTERNS

R2HRI1 ) -




=

=

I
il
|I‘




