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ABSTRACT

DYNAMIC RESPONSE OF PLATES

ON ELASTIC FOUNDATION

by Piyush C. ‘Sharma

In this thesis a numerical method for the dynamic analysis of

plates on elastic foundation is presented. The method is based on a

discretization of the plate by use of the classical finite difference

expansion of the space derivatives in the governing partial differential

equation. The resulting ordinary differential equations for the dis»-

crete system (with time as the independent variable) are integrated

numerically.

The purpose of this thesis is twofold: (i) To investigate the

practicability of finite difference methods in solving dynamic response

problems of plates, particular attention being given to the accuracy

of the method and the efficient adaptation to the computer. (ii) To

demonstrate the workability of this approach in handling problems

whose exact solutions are not known and perhaps impossible to obtain.

For this study, computer programs have been prepared so that

not only their solutions but the generations of the equations of motion

(with the boundary conditions appropriately taken into account) are

all done by the computer for arbitrary grid sizes.



Abstract 2 Piyush C. Sharma

Two methods of numerical integration are considered: (i) The

Runge -Kutta method, and (ii) the Beta method. It is observed that while

both methods give same order of accuracy the Beta method takes

only half as much computer time as Runge -Kutta method. As regards

accuracy, it is observed that for square plates a 16 x 16 grid produces

reasonably accurate results (error for maximum deflection and

bending moment is of the order of 0.1% and 3%. respectively) .

The method is applied to study briefly several physical prob-

lems. The effect of foundation damping on the response is studied.

The procedure of obtaining solutions of static problems by use of the

dynamic analysis is considered. An effective method is to introduce

into the system an amount of damping equal to the critical damping

for the first mode and use a rectangular pulse type loading.

Some numerical results are also obtained to study the influence

of boundary condition and the foundation stiffness. It is observed that

stiffnesses of both have similar influence in reducing the response

values.

The case of a free plate subjected to a concentrated load at the

corner is studied. The distribution of principal bending moment is ob-

tained. It is found that the maximum principal bending moment occurs

in the same general area as in the case of static loading. The effect of

foundation damping, and the rise rate of the loading function is also con-

sidered. It is observed that corner loading produces the most severe

effects .
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CHAPTER I

INTRODUCTION

1. 1 Object and Scope
 

The dynamic theory of plates finds many applications in modern

technology such as the analysis and design of buildings, aircrafts, ship

hulls, and pavements. Except for a few exceedingly simple cases

(e. g. , rectangular plates with opposite edges simply supported) an

exact mathematical analysis of such problems is practically impossi-

ble. This is even more so for the case of plates on elastic foundation,

which is important, for example, in rigid pavement design.

Many investigations have been made in the past to calculate

the normal modes and natural frequencies of plates using the finite

difference approach or the Raleigh-Ritz method. Presumably, one

could then use these modes and frequencies to calculate the dynamic

response to external. loads by the method of modal analysis, although

seemingly few applications of this type have been recorded in the

literature.

To obtain an approximate solution for the dynamic response

of structures, it is not necessary to follow the normal modes

approach. By first reducing the continuous structure to a discrete

system, one can directly integrate the equations of motion governing

the displacements of the discrete points of the structure. This



method has been applied extensively in one -dimensional structures

such as beams and plane frames. A similar approach is used here

for the treatment of plates .

In this thesis for the dynamic analysis of plates a method is

presented that by-passes the use of normal modes concept. It is

based on: (a) first replacing the continuous plate by a discrete set

of lumped masses and (b) integrating the equation of motion of each

mass. The replacement in (a) is effected by the usual finite difference

expansion of the derivatives in the space domain. Although the inte—

gration in (b) is carried out numerically, from the theoretical view-

point at least, the application of numerical procedure is not essential,

as it is in the case (a).

With regard to the relative merits of the approximate methods

of calculating normal modes using the Rayleigh-Ritz type and the finite

difference methods, it may be pointed out that the former requires the

use of certain sets of approximating functions which may be difficult

to obtain because of boundary conditions. The use of the method is

usually limited to a few degrees of freedom. Furthermore, it requires

the evaluation of a number of definite integrals which could not be

efficiently carried out by the computer, and have to be done by the

analyst himself.

In the case of the finite difference solution, the procedure is

straight forward in concept. There is also the advantage of the ease



in handling the discontinuities in the structure-load system and the

boundary conditions. A major disadvantage of this approach is that it

requires a large amount of numerical work. This, however, has been

overcome to a large extent by modern computer technology. The accu-

racy of finite difference method depends upon the size of the finite

difference grid. By making use of the digital computer effectively, not

only the solution of the equations are obtained by the computer, all the

equations can be generated inside the computer also. Hence, increas --

ing the grid divisions does not increase the work of the engineer.

Finite difference methods have been used for a variety of prob-

lems and satisfactory solutions have been obtained, particularly for

the case of the static analysis of plates. However, very little work

has been reported in relation to the forced vibrations of plates (see

the next article on "Review of Literature") . Thus it would seem worth-

while to investigate the practicability of such an application.

'The purpose ofthisthesisis hwofoht

( 1) To investigate the practicability of finite difference methods

in solving dynamic response problems of plates, particular attention

being given to the accuracy of the method and the efficient adaptation

to the computer.

(2) To demonstrate the workability of this approach in handling

problems whose exact solutions are not known, and perhaps impossible

to obtain.



The method of analysis is developed in detail in Chapter II. As

noted before, the continuous displacement function of the plate is

represented by the displacements of a discrete set of points. The

resulting equations of motion are integrated numerically. Two

methods of numerical integration are considered: (a) the Runge-

Kutta method (30), and (b) the Newmark Beta method (42) . A

comparison of the accuracy and efficiency of these methods is given

in Chapter III.

In the same chapter the question of the accuracy of the finite

difference method is studied by comparing numerical solutions with

the mathematically exact solutions. The comparisons are made on

the basis of bending moments as well as displacements. The hand-

ling of concentrated load is discussed. The effect of such parameters

as foundation damping, foundation stiffness and the boundary condi-

tions are briefly considered. It is shown also that the method can be

applied efficiently to obtain the static response of plates, thus avoid-

ing the re -formulation of the problem for a static analysis, if such

is desired.

Most of the preceding solutions relate to problems for which

exact solutions are not difficult to obtain. For the same reason the

accuracy of the numerical methods may be discussed.

To demonstrate the applicability of the method to problems for

which exact solutions seem impossible to obtain, the problem of a



plate free on all edges resting on an elastic foundation is treated. It

may be pointed out that this problem has important applications in

the analysis and design of highway and airport pavements .

The final chapter summarizes the findings of the study and

points to a few possible fruitful directions for the extension of the

present work. Certain pertinent details regarding computer usage

in this thesis are given in Appendix A. The mathematically exact

solutions used for purposes of estimating the accuracy of the results

obtained by the numerical method are presented in Appendix B.

1. 2 Review of Literature
 

The general subject dealt with in this thesis is related to several

areas. For convenience, the review of past work has been given in

three groups: (a) free vibrations, natural frequencies and mode shapes,

(b) forced vibrations of plates, and (c) plates on elastic foundation

connected with pavement design.

1.2. 1 Free Vibrations: Investigations primarily concerned
 

with the calculation of natural frequency and normal modes for the

plate are too numerous to be covered here. Therefore, only those

deemed most important have been listed in the bibliography.

Sezewa (34) l, (1931)‘2 solved the problem of vibration of

rectangular plates with all 4 edges clamped by making the solution

 

1Numbers in the first parentheses refer to reference listed in

the Bibliography.

2Numbers in the second parentheses refer to the year of

publication of the work.



satisfy the governing differential equation allowing small residual

slope at some portion of the boundary. Young (46) , ( 1950) used

the Ritz method to compute the characteristic values and shapes of

vibrating plates with different boundary conditions. He made use of

functions which define the normal modes of vibration of uniform

beams. Mindlin (23, 24), (1950, 1956) studied the effect of rotary

inertia and shear in plate vibrations in a manner similar to that used

by Timoshenko for the one dimensional theory of beams . Also the

coupling of modes was studied for the case of one pair of parallel

edges free and other pair simply supported.

Stanisic (36), (1955) considered the case of damping in the

plate material and calculated the natural frequencies of plate fixed

along each edge with arbitrary aspect ratio. Similarly Raskovic

(31) , ( 1959) dealt with the problem of free vibrations of elastic

homogeneous plates considering the influence of internal viscous

damping. He also used functions defining normal vibration mode of

uniform beams and obtained the solution for a square plate with all

the four edges clamped.

Feldman (4) , (1959) and Bradley (1) , (1961) used the finite

difference method to solve the eigenvalue problem of plate vibrations.

Leissa ( l9) , (1962) used the method of point—matching to obtain the

eigenvalues and eigenfunctions of vibrating plates. By setting up a

digital computer program, frequencies and mode shapes were obtained



for a clamped square plate. Leckie ( 18), ( 1963) applied the method

of transfer matrices to plate vibrations, to obtain the natural fre-

quencies and normal modes .

Kennedy ( l6), ( 1964) obtained the linear and non-linear vibra-

tion characteristics of rectangular plates utilizing finite difference

technique on an operational analog computer. The effects of aspect

ratio, large amplitudes of vibration, and grid sizes on the accuracy of

natural frequency of vibration were studied.

1. 2. 2 Forced Vibrations: For the forced vibrations of plates,
 

only solutions to very special cases have) been obtained because of

the difficulties involved in finding a general solution to such problems.

Takabayasi (37), ( 1936) used the method of integration in plane

of complex variable to solve the problem of elastic vibration of cir-

cular clamped plate acted on at its clamped edge by an external

periodic force. Yeh et.a1. (44) (1955) studied the forced vibration

of a clamped rectangular plate in fluid media. They used the charac-

teristic shape functions and Lagrange equations of motion of plate to

set up the equation of motion. in generalized coordinates, and obtained

some numerical results. Forsyth et_a1. (5) , (1960) studied theo-

retically and experimentally the transient vibration of rectangular

plates. They showed that for the case of a cantilever plate subjected

to an impulse load, reasonable agreement was obtained between the

theoretical and experimental results .



Mase (22), (1960) solved the problem of the bending of viscous

elastic plates of Maxwell and Kelvin types. He used Laplace trans—

form to obtain the quasi-static deflection of laterally loaded plates

and the dynamic response of simply supported plate under no load.

The solutions for the free Vibrations of Maxwell and Kelvin type plates

are also obtained. Solecki (35), ( 1960) studied the free and forced

oscillations of a triangular lamina in the form of an equilateral

triangular. The bending function is expressed in the form of an infinite

Fourier" 5 series .

Kalman ( 15) , ( 1962) investigated the problem of transverse

vibrations of a stiffened rectangular elasto -plastic plate. The finite

difference approach used in this thesis is similar to the one used by

him for the dynamic. response of elasto -plastic plates. He assumed

that the plastic flow is proportional to the max1.mum moment only, and

there is no interaction of moments. The report is very brief and the

question of accuracy has not been conSidered.

Sandi (33) , ( 1962) studied the case of dynamically loaded plates

composed of hard elastic material, the rheological behavior of which

is linear, resting on a half space composed of the same material.

The author gives a mathematical description of the phenomenon based

on the general method of expressing the dynamical displacements of

bodies by means of a multiple integral equation of Volterra type with

regard to time, and of Fredholm type with regard to the coordinates



of the contact surface which is supposed to be prescribed. The author

further discusses the phenomenon of dynamic contact.

Kurlandzki ( 17) , ( 1962) considered the reduction of initial

boundary value problems of elasticity to Fredholm integral equations

of second kind. He reduced the dynamic problem of an elastic plate

to Fredholm's integral equations of the second kind by a finite sine

and cosine transformation in relation to the time variable. These

equations in which integrals with respect to two variables and a rela-

tively complicated structure appear may be solved by successive

iterations. No example of application is given.

Reismann (32), ( 1963) studied the dynamic response of elastic

plate strip to moving line load by formulating it as a boundary value

problem within the framework of classical small deflection theory of

thin plates and obtained solutions in terms of trigonometric series.

It is shown that the shape of resulting deflection profile of plate is

strongly dependent upon speed propagation of the load and magnitude

of damping coefficient. In the absence of damping, denumerable

infinity of critical speeds exist at which deflections become unbounded.

However, with damping,def1ections remain bounded.

1.2. 3 Plate on Elastic Foundation: Most of the work in the
 

area of pavements has been limited to static analysis except a few

recent works like those of H011 (11), (1950), Livesley (21), (1953)

and Sandi (33) , ( 1963) which have dealt with certain highly idealized
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cases such as infinitely long plate or simply supported plates .

There is a great deal of literature available on the bending of

plates over elastic foundation. Westergaard (43), ( 1925) analyzed

theoretically a rigid pavement, and presented some semi-empirical

formulae for evaluating the maximum bending moments. He

showed that the maximum moment occurs when the load is applied

at a corner. Murphy (25), (1937) calculated the stresses and deflec-

tions in loaded rectangular plates on elastic foundation by solving the

classical plate equation. Similar results were presented by Holl (11),

( 1938) .

Holl ( 12), (1950) studied the case of simply supported plate

under dynamic loading on elastic foundation. He considered various

kinds of subgrade reactions, using influence functions and transform

solutions. The solutions are limited to simply supported plate or

circular plates with symmetry. Similarly Livesley (21), ( 1953)

commented on the mathematical theory of loaded elastic plates rest-

ing on elastic foundations. He studied the problem of a uniformly

travelling load on an infinite plate and showed that there exists a

certain critical velocity beyond which stresses and deflections

become infinite.

Pickett (28, 29), (1951) studied the stresses in the corner

region of concrete pavement slabs under large corner loads and

calculated the influence charts for bending moment in rigid pavements

unde r such loading .
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Nagdhi (26), (1953) solved the problem of axially symmetric

plates on elastic foundation taking into account the effect of transverse

normal stress and shear deformation. Schleicher's functions were

used to obtain the solution. Frederic (6) , (1957) solved the same

problem for the case of rectangular plates considering various types

of fixity of edges involving 3 boundary conditions. He obtained the

solution in both Levy and Navier forms. Chen (2) , ( 1960) used both

Ritz and Galerkin methods of variation to solve the problem of iso-

tropic as well as orthotropic plates with free edges on elastic foundation.

Leonards et al. (20), ( 1961) dealt with the analysis of concrete

slab on ground. In this paper a number of practical points such as

the effect of subbase on stresses, often neglected in theoretical studies,

have been considered. Harr (9) , ( 1962) studied the effect of vehicle

speed on pavement deflections. Here he considered the pavement slab

as a single degree of freedom system. Jones (14), (1962) carried

out detailed theoretical investigation using a digital computer to study

the static effect of concentrated loads on pavement deflections.

Since this thesis is concerned with establishing the suitability

of a numerical method for the dynamic response problem and its use

to solve the pavement problem, no attempt has been made in this

brief review to give a comprehensive survey of the published litera-

ture. The few references mentioned here are intended only to provide

background information on available solutions for the dynamic response
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of plates on elastic foundation and problems associated closely with

it.

1. 3 Notations

The notation listed in the following has been adopted in this

thesis. Each symbol is defined when first introduced and is collected

here in alphabetical order for convenience of reference. "Fortran”

notation is listed separately in Appendix A.

a = length of the longer side of the plate;

b = length of the shorter side of the plate;

BHO = V4, the biharmonic operator in finite differences form;

c = foundation viscous damping constant;

ccr(ij) = critical damping for the mode (i,j), used in Appendix B;

D = Eh3/ 12 (l - V2) , flexural rigidity of the plate;

ei = error in deflections at point (i);

E = modulus of elasticity of plate material;

Fij = 9 - Pij’ non-dimensmnal forcing function at point (i,j);

F . = magnitude of concentrated force used in Appendix B;

F(t) = time dependent part of the forcing function P(x, y, t)

used in Appendix B;

G(x, y) = space function part of the forcing function P(x, y, t)

used in Appendix B;

g_. = Fourier coefficient for G(x, y) used in Appendix B;

1.]
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ij

P(x, y. t)

ij

ii
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plate thickness;

variable subscripts to denote points in space;

foundation stiffness constant;

mass per unit area of plate;

bending moments as used in Appendix B;

MX = My, bending moment used in generic sense;

algebraically larger principal bending moment;

algebraically smaller principal bending moment;

Ml a/D, dimensionless Ml;

MZa/D, dimensionless M2;

moment at a point (i) derived from derived

deflections wi;

moment at a point (i) derived from the deflections v51;

true moment at a point (i);

a/X, number of grid divisions;

magnitude of forcing function used in Appendix B;

forcing function at point (i, j);

forcing function;

natural circular frequency of the (i, j)th mode of the

plate used in Appendix B;

V pijz - r2, damped natural circular frequency used

in Appendix B;



q(X.y) =

I.CI'(1J)

ij

13'

3n

14

static loading function acting over the plate;

c . .
, a Viscous damping parameter;

r, corresponding to the critical damping of the (i, j)th

 

 

mode;

sin NIX sin LEX- , used in Appendix B;

1/2

1 ma4 4 41/2

;( D) /[l+ka /4DTr]

first fundamental period of simply supported plate on

elastic foundation;

41/2

(£151) ; factor to divide t, to make it dimensionless;

shortest period of the plate system;

time;

time parameter used in Fig. 24,

time parameter used in Fig. 24;

duration of loading pulse used in Appendix B;

g, dimensionless deflection;

width along x-coordinate direction of the partially loaded

area used in Appendix B;

dimensionless deflection at the point (i, j);

width along the y-coordinate direction of the partially

loaded area used in Appendix B;
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1113,, dimensionless velocity at the point (i, j);

deflection;

true deflection at point (i);

derived deflection at point (i);

space coordinate;

space coordinate;

 

4

k—a
.

I

u
c

D , dimenSionless foundation stiffness constant;

ca4

DT , dimensionless foundation damping constant;

0

prefix denoting "increment";

biharmonic operator;

grid size

t/TO, dimensionless time;

4 . . .

a /Dh; factor to be multiplied to Pij to make it

dimens ionle s s .



CHAPTER II

METHOD OF ANALYSIS

2.1 General

The governing differential equation for the small deflections of

an elastic thin plate subjected to a lateral loading q(x,y) is given1 by:

4 4 4

v4.=_8;;.2 ng.av;=a__<gv> (1)
8x 8x 8y 8y

 

in which w is the deflection, x and y are space coordinates and D is

the flexural rigidity of the plate.

For the case of dynamic loading and Winkler type elastic

foundation with viscous damping, the equation of motion is obtained

 

 

2

by replacing q(x, y) by - (mazw + c 2%? + kw) + P(x, y, t) where

' 3t

82w 3w

m 2 is the inertia force, and c 3t+ kw is the reaction of the

at

foundation including the effect of viscous damping, and P(x, y, t) is

the forcing function. Thus, Eq. 1 becomes:

2

V4W+%W+%EM+EB_W:EBSL§ (z)

This equation together with the appropriate boundary and initial

conditions governs the dynamic response of the plate system to the

dynamic loading P(x, y, t) .

 

lTimoshenko (39). pp. 79-82.

16
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Mathematically speaking, this partial differential equation is of

the parabolic type, and is referred to as a propagation problem in two

space dimensions. The solution "marches" in the time domain start-

ing with the initial conditions, and confined in space by the boundary

conditions. In other words, for the case of rectangular plates, con-

sidered in this thesis, the solution has to march inside a box (as

depicted in Fig. 2) , whose base is made up of the initial conditions,

and all the four sides are made up of the boundary conditions, the top

being open.

It is difficult to find exact closed form solutions to the partial

differential equation, Equation 2, except for a few simple cases where

the two opposite edges of the plate are simply supported. Therefore,

one has to resort to some kind of approximate or numerical procedure.

The procedure used here is based on the well known finite difference

method. There are two distinct steps in the numerical solution of the

problem:

(1) finite difference is applied to the space domain, replacing

the continuous plate by a set of discrete points; and the partial differ-

ential equation by a set of simultaneous ordinary second order linear

differential equations;

(2) the set of ordinary differential equations is solved by

nume rical inte gration .
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2. 2 Non-dimensional Form
 

Since it is convenient to work with non-dimensional quantities,

Equation 2 is transformed into non-dimensional form by dividing it

4

throughout by the quantity 1251-1 , where a is the length of the longer side

of the rectangular plate and h is the thickness of the plate. Then

Equation 2 may be written in the following form:

 

2

4 4

a V u+ au+ B-a-E-t 8 “=F(X.Y,T)
8T 2

ET

in which

11 = w/h, dimensionless deflection

T = t/TO, dimensionless time

4 l 2

T0 = (ma /D) / , aparameter

4 . . . .

a = ka /D, dimenSionless foundation stiffness constant

(3 = ca4/DTO, dimensionless foundation damping constant

F(x,y-r) = 0 - P(x, y, T), dimensionless forcing function

4

9 = a /Dh; a parameter

2. 3 Discretization of Space Domain
 

(3)

(3a)

(3b)

(3C)

(3d)

(36)

(3f)

(3g)

The reduction of the partial differential equation (together with

the boundary conditions) for the continuous system to the set of

ordinary differential equations for the discrete replacement system

may be accomplished “physically" or "mathematically. " In the

"physical" approach, a discrete model is invested with lumped physi-

cal characteristics of the continuous system. The governing
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equations are then obtained from the physical laws applied directly to

the lumped parameter model.

In the "mathematical" approach, the continuous formulation is

reduced to a discrete formulation by simply replacing the derivatives

in the differential equation with finite difference expressions. The

use of the "physical" approach has the advantage that the model pro-

vides something which is easily visualized, and facilitates the treat-

ment of difficult boundary conditions . The "mathematical" approach

has the advantage that it is straight-forward and does not require the

judgment needed in devising an appropriate physical model.

In this thesis essentially the second approach is used. The

space derivatives in Equation 3 are replaced by the second order finite

difference patterns as shown in Fig. 4. Thus, for a given point (i, j)

Equation 3 takes the following form:

4 . ..

n BHO(u,,)+au..+Bu..+u..=F.. (4)

1.1 1.1 1J 1.1 1.]

where "BHO" denotes the biharmonic operator in finite difference

form, Fij denotes the value of F evaluated at point (i, j), and each

dot superscript represents a differentiation with respect to T.

Applying Equation 4 to every point in the domain and with the

boundary conditions properly taken into account, one obtains a set of

ordinary differential equations. Of course, the forms of "BHO" are

different from Fig. 3 for points on and adjacent to the boundary in the

manner similar to the case of the use of finite difference in the static

analysis of plates .
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In passing it might be mentioned that there is a physical model

which would lead to the same equations as those given by the finite

difference formulation of the static plate problem as given in (8) .

2. 4 Numerical Integration of the Set of Differential Equations of

the System

 

 

The set of differential equations of the type of Equation 4 may

be considered as representing a continuous propagation problem in-

volving a set of mass points. However, if the time domain is also

discretized simultaneously“ with space domain, then one obtains, for

each time instant, a set of simultaneous algebraic equations. Detailed

discussions of these approaches have been given by Crandall (3) .

The set of differential equations can also be conveniently solved

by numerical integration using a computer. There are a large number

of numerical integration procedures available in the literature [for

example Crandall (3) , Ralston and Wilf (30)]. Among the most well

known and widely used is the Runge -Kutta method. This method is

generally applicable to differential equations of any order. On the

other hand, there is a class of procedures developed primarily for

problems of structural dynamics. In this group the "Beta Method” is

representative. In the following two sub-sections these two methods

are briefly commented upon. In Chapter III, a comparison of these

two methods will be made from the standpoint of their applications to

the method of analysis used in this thesis.
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2. 4.1 Runge -Kutta-Gill Method: This method comes under
 

the general category of Runge -Kutta methods, and is a modified

version of Runge -Kutta fourth order method. The derivation will not

be given here, as it can be found in many textbooks on numerical

analysis, 6. g. , (30) and (7) .

The Runge -Kutta numerical integration method is a non-iterative,

step by step, and self starting procedure. Accuracy is derived by

using several estimates of the dependent variable for each increment

of the independent variable. Usually the method is set up for first

order equations. However, it can be easily adapted to higher order

equations. Second order differential equations are handled by first

transforming them into a set of first order differential equations. For

example each of the equations (4) is transformed into two first order

differential equations. Thus,

uij -"-' Vij (5a)

. 4

v.. F..-n BHOu..-au..-Bv.. (5b)

1.1 1J 1J 1J 1J

The truncation error for one integration step is of order (AT)

for this fourth order method, where (AT) is the increment of the

independent variable. Theoretically, there are no limits on the

increment size in regard to convergence and stability. The size of

the time increment of integration is decided so that it is not too small

as to require excessive computation labor or result in large round off
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errors; neither it should be so large as to give rise to large trunca-

tion errors.

2. 4. 2 Newmark Beta Method: This method of integration is a
 

step by step, self starting and generally iterative method. It handles

a set of second order differential equations. A rather comprehensive

study has been made on this method and has been reported in (27, 42).

The scheme for one step of integration is as follows:

(1) Calculate the initial acceleration from the governing

differential equation. For example, using the given initial conditions,

4
(ii..) =[F..-n BHOu..-GU..'F3u--]u Tao 13 11 1J 11 TzTo

(2) Assume an acceleration, (131,.)

13 T1=T0+AT

(3) Using the values from (1) and (2) calculate the values

((uij) T0+AT' uij) 70+ AT from the following formulae which essentially

represent the Beta Method:

{1.1T +AT) 13(T)+31[~i.(-r )+ii..(T +AT)]
ij 0 o 2 ij 0 ij 0

u,,(-.~ +AT) u,.(T)+AT1°l,,(T )+(AT)2(i- Beta) MT)
13 o 0 ij 0 2 13 o1.1

+ (AT)?- (Beta) ii,,(T +AT)
ij 0

in which "Beta" represents a fraction ranging in value from zero to

one-fourth.

(4) Substitute these values of {iij( TO+ AT) and uij( To +AT)

calculated from step (3) into the differential equation given in step

(1) and obtain ii..(T +AT).

ij 0
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(5) Compare iiij( TO+AT) from step (4) with the assumed one,

i.e. , iiij( TO+AT) of step (2) . If they agree within a specified

tolerance for all the variables then one step of integration is complete.

If for one or more variables, fiij(TO+AT) does not converge, the

whole process is repeated starting from step (1) but with the new

assumed acceleration equal to that found in step (4) .

It may further be pointed out that the size of time increment

of integration can not be chosen arbitrarily. It has to be less than

about one -third of the shortest period of the system. The method

may become unstable for larger time increments.

2. 5 Evaluation of Bending Moments
 

After the deflections at the discrete points are obtained

numerically, the bending moments are calculated from these deflec-

tions using the usual second order finite difference expression to

represent the curvature. Although this approach has been generally

used in the past, for problems of statics, it seems that the accuracy

of such a procedure has not been studied. Since bending moments are

significant quantities from the engineering standpoint, it seems

desirable to devote some space to consider this question.

Let w,1 denote the deflection at a point (i) obtained numerically

and v51 be the true deflection at the same point such that v51 -w,1 = ei,

is the error in the deflection at the point (i). Corresponding to the
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finite difference pattern used herein (Fig. 3), this error is of order

2 2 - .

X , thus e,1 = O( )x ). Let M.1 and Mi represent the bending moments

obtained from the deflections wi and wi, respectively, by using the

second order finite difference expressions, and Mi be the true value

of the moment. For simplicity, let D = l and U = 0; thus,

 

 

wi-l ' 2W1 + Wm

Mi : 2 (63‘)
)x

w - 2w + w

- '-1 ' '+l
Mi: 1 g 1 (6b)

X

also

= - 2
Mi=Mi+O()\) (6c)

Now substituting for wi in terms of v5.1 in Equation 6(a) one obtains;

  

 

W14 ‘Zwi+wi+i ei-l-Zei+ei+1
M.= 2 + 2

1 i x

2
— i

=Mi+o(2)

i

- o
=Mi+0(>.) (6d)

The error in moment is thus,

Mi-Mi=O(>\Z)-O(>\O) (6e)

It is seen that the second term of error on the right hand of

Equation 6(e) cannot be made smaller by using smaller grid sizes;

i.e., it will stay constant regardless of how fine a grid is used. An
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apparent good agreement between the values of the bending moment

obtained by the numerical procedure and the exact solution would indi-

cate that this error term is probably small in magnitude. Indeed, a

preliminary study for the simple case of a beam indicates that if the

loading varies linearly along the span length, the corresponding con-

stant error term would be zero, except for errors introduced by the

boundary considerations .

2.6 Use of Computer
 

In this study several computer programs have been prepared.

They were written in a general fashion in order to handle rectangular

plates of different aspect ratios, different boundary conditions, and

different grid sizes. Some of the relevant details related to the pro-

gramming and a representative version of the program are given in

Appendix A .



CHAPTER III

RESULTS AND DISC USSION

3.1 Comparison of Runge -Kutta and Beta Methods
 

As mentioned in the preceding chapter, the Runge -Kutta and

Beta methods of numerical integration are being considered for use

in the numerical method of dynamic plate analysis being investigated

herein. While the Runge -Kutta method may seem to be more accu-

rate, the Beta methods appear to be simpler to use. Hence, it seems

a matter of practical interest to compare the relative merits of

these methods from the standpoint of adaptation to the method of

analysis used in this thesis.

The comparison will be made based on the study of a specific

problem: a simply supported square plate resting over an elastic

foundation ((2 = 414.7, (3 = 0) is loaded by a triangular pulse of peak

pressure F (x, y, 0) = 36.6 acting over an 1/8 x l/8 area of the plate

at the center. The duration of the pulse is equal to .675 times the

first fundamental period of the plate (Tl/To = . 222) . This problem

physically corresponds to a simply supported concrete slab 12' x 12'

x l' (E = 2 x106 psi), resting over a firm soil (k = 614.4 lbs/in3,

c = 0) and loaded at the center by an impulsive load of 640 psi peak

value.

The problem, the boundary conditions in particular, is chosen

26
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because its exact solution can be obtained for purposes of comparison

with that obtained by the numerical method. The comparison will be

made on the basis of: (i) accuracy of the results; (ii) stability of

integration; and (iii) computer time needed.

Before proceeding further, an estimate of the time increment in

integration will be made . This increment will be expressed in terms

of Ts’ the smallest period of vibration of the plate which is approxi-

mately equal to the fundamental period of a plate one grid square in

size. Hence, from Appendix B:

41/2 4.

T = (£n_>._) N1+kx4/4nn
s D

Assuming the physical parameters of the problem are such that the

 

=
1
|
*
-
‘

l mk4

1T D

II
?

 

denominator is approximately equal to unity, TS and in

dimensionless form Ts/To = 1/(1Tn2) . A fraction of this quantity is

used as the increment in the nume rical. integration.

3.1.1 Accuracy: In Table l are listed the values of the center

point deflections and bending moments (both in dimensionless form)

for two time instants. The data presented include results as obtained

by different methods of integration and different time increments

used in the integrations. The numerical solutions were obtained by

use of a 16 x 16 grid. In Table 2 are presented the maximum response

values for the same problem.

The following observations may be made from an examination
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of the data: (i) The deflections obtained by these methods agree

very well with each other, and with the exact answer. (ii) As

expected, the agreement in bending moments is not as good as that

in deflections. But it is still quite satisfactory. (iii) The size of

time increment of integration is not of great importance whenever

the method is stable.

Graphs of the entire deflection and moment histories of the

problem as computed by the use of Runge -Kutta and Beta method

(Beta = 0) also indicate very good agreement. In fact, they virtually

overlap each other, and hence are not presented here.

3.1. 2 Stability: When the time increment of integration is

increased, less computer time is needed for the solution of a given

problem. But beyond a certain limit of the increment, the solution

obtained would deviate more and more from the true solution, and

instability in the numerical integration is said to have occurred.

Hence there is a limit as to the largest time increment that can be

used in the integration. It may be seen from Tables 1 and 2 that the

Runge -Kutta method has a slightly larger range of stability than the

Beta methods .

3.1. 3 Computer Time: For a given problem, generally
 

speaking, the Runge -Kut.ta method takes about twice as much computer

time as either the Beta methods considered. This difference should

be regarded as of practical significance because of the cost of
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computer time. Between Beta 2 1/6 and Beta 2 0, the latter takes

somewhat less time.

Since all three methods considered yield results having essen-

tially the same order of accuracy, and since the Beta method needs

only half of the computer time needed for the Runge -Kutta method,

on the basis of the study of this particular problem, the Beta = 0

method is used to obtain the numerical results presented in the

subsequent sections .

3. 2 Comparison of Numerical and Exact Solutions
 

It has generally been observed, in using finite difference meth-

ods for static analysis, that the finer the grid, the better are the

results. However, for the dynamic problem, this is true only to a

certain extent. This is because the nature of errors in the numerical

solution is quite complex. They may arise from: (i) discretization

in space of the continuum; and (ii) numerical integration of the dif-

ferential equations.

Since the stability of the numerical integration depends upon the

size of the time increment of integration (AT) in relation to the short-

est period of any mode present in the system [see (42) ], AT has to be

inversely proportional to the square of the grid division (n) . The

number of differential equations of the system is proportional to the

square of n. Thus the total number of numerical integrations or

computer time, is proportional to the fourth power of n.
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It is reasonable to assume that the round-off errors in the

numerical solution increase with the computation time. Therefore,

although a larger number of grid divisions will better approximate

the continuous plate in the space domain, as a result of the still

larger amount of numerical calculations required, the numerical

solutions obtained may not necessarily be more accurate than those

obtained using a smaller grid division.

The question arises naturally as to the value of n at which the

advantage of a more closely approximated space domain is offset by

the disadvantage of the accumulation of round-off error. In order to

answer this question one would need a rigorous error analysis of this

problem, which would seem quite impracticable, considering the

general difficulties involved in error analysis in numerical solutions

and the complexities of the problem under investigation. In view of

these factors, it would seem desirable to study the problem empiri-

cally by considering the effect of grid sizes on the numerical solution

of a specific problem.

The specific problem selected here is the same as described in

section 3.1, except that the loading is applied uniformly over the entire

plate with a peak pressure of 10 psi (thus making the total load applied

over the entire plate the same as in problem of section 3.1) .

In Fig. 5 are presented the deflection histories of the center

point for the following grids: 4 x 4, 8 x 8, 12 x12, 16 x16 and 20 x 20.
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It may be observed that all these curves are very close to one an-

other. Indeed, curves corresponding to 16 x16 and 20 x 20 grids

coincide with the curve obtained by the exact solution (which is not

shown here).

In Fig. 6 are shown the response histories for center point

bending moments for various grid sizes. It may be observed that

as the number of grid division increases the results get closer to

one another. The effect of higher modes cannot be seen by using

lower number of grid divisions; the response history for the 4 x 4

grid hardly shows any higher modes. In Fig. 7 is shown a compari-

son of the moment response history for the 16 x 16 grid and that

corresponding to the exact solution. It is seen that the agreement is

reasonably close.

Fig. 8 shows the comparison of the history of bending moment

at x = a/4, y = a/2 (hereafter referred to as the "Quarter Point“) for

a 20 x 20 grid and the exact solution. Agreement between the two is

seen to be as good as for the case of the center point.

In Table 3 are listed the maximum values of center point

deflections and bending moments, the times of occurrence of these

values and the associated errors for various grid sizes. It may be

observed that for the 16 x 16 grid the error for the maximum deflec-

tion is 0.1%, and in maximum bending moment is 3%. The corre-

sponding errors in the times of occurrence of these maximums are
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O. 7% and 1. 9%, respectively. Similarly in Table 4 are listed the

deflection and moment values for the quarter point. The error for

the 16 x 16 grid in maximum deflection is 0. 3%, and in maximum

moment is 0. 8%. The error in the times of occurrence of these

maximums is 1% and 7. 2%, respectively, for deflection and moment.

From Tables 3 and 4, it may further be observed that for

deflections the error keeps on reducing with increasing number of

grid divisions, while in case of moments it does not follow any set

pattern. At the same time it is to be noted that errors for grid

divisions of 4, 8, and 12 seem to reduce with increasing grid divi-

sions, while beyond 16 grid divisions the error in moments seems to

increase in the opposite direction, particularly for the quarter point.

However, the errors in deflections and moments both seem to be

within reasonable limits for the 16 x 16 grid. This grid therefore can

be thought of as a "critical grid. " Almost all the subsequent results

have been obtained using this 16 x 16 grid.

3.3 Treatment of "Concentrated Load"
 

Because of its practical importance, the case of "concentrated

load" is studied in this section. Two schemes were used to represent

the concentrated load in the numerical approach. In the first approach,

the loading area is kept equal to one grid square unit, and the load

intensity is varied to make the total load on the plate constant. This
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will be referred to as the "shrinking area loading. " In the second

scheme the load is spread over a fixed area which is independent of

the grid size. This will be referred to as the "partial loading. "

The specific problem considered here for this study is the same

as that described in section 3.1. In both cases of loading, the total

peak load applied over the entire plate is a constant (144, 000 lbs).

In the case of "shrinking area loading" a peak pressure of 10 (n2) psi

is used; hence, for an 8 x 8 grid, the peak pressure will be 640 psi.

In the case of the "partial loading, " the load is distributed over an

1/8 x 1/8 area of the plate with a peak pressure of 640 psi.

3. 3.1 Shrinking Area Loading: The histories of the center
 

point deflection as obtained by using the 16 x 16 grid and that from

exact solution are presented in Fig. 9. The values of the maximum

deflections and moments for various grid divisions are listed in

Table 5. It may be observed from these data that the center point

deflection as obtained by use of the 16 x 16 grid is quite close to the

exact solution. It may be also observed that the bending moment

under the load appears to be divergent. This is, of course, not

surprising since the series representation of this moment as given

by the exact solution. is divergent.

In Fig. 10 are presented the response histories for the bending

moment at the quarter point for different grid divisions. It may be

seen that the moment response histories for different grid divisions
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differ from each other appreciably. This may be because of the

nature of the problem, as it is known that the series for the exact

solution converges very slowly. In Fig. 11 are shown the response

histories for the quarter point bending moment as obtained by using

the 16 x 16 grid and that from the exact solution. It is seen that the

numerical solution agrees reasonably well with the exact solution.

Similar comparisons of deflections are given in Fig. 12. The agree-

ment is, as expected, excellent. In fact, the two curves practically

coincide. In Table 6 are listed the values of the maximum responses

(deflections and moments) at the quarter point for the various grid

divisions. It is of interest to note that the values of the maximum

bending moments for the different grid sizes are quite close, although

the history curves differ appreciably.

The error in the maximum deflection for the center point

(under the load) for the 16 x 16 grid solution is 5. 5% and for the quarter

point is 0. 6%. The numerical solution for the maximum bending

moment at the quarter point has an error of only 1. 5%.

3. 3.2 Partial Loadig: In Fig. 13 is shown the comparison of
 

the center point deflection histories for the 16 x 16 grid and that

obtained by using the exact solution for this case of partial loading.

The two results are seen to be quite close to each other. Similarly

in Fig. 14 is shown a comparison of the response histories for the

center point bending moment for the 16 x 16 grid and that obtained by
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using the exact solution. It may be observed that although the agree-

ment is satisfactory, it is not as good as in the case of deflections.

The maximum values of the responses for the center point are listed

in Table 7 for the various grid sizes. The errors in the maximum

center point deflection and bending moment for the 16 x 16 grid are

2. 5% and 6. 6%, respectively.

In Figs. 15 and 16 are presented a comparison of the quarter

point response histories for deflection and bending moment, respec-

tively. For moment, the agreement between the numerical solution

and the exact solution is reasonably good, while for deflection the

curves practically coincide. The maximum response values for the

various grid divisions are listed in Table 8. The errors in the maxi-

mum response values for the 16 x 16 grid are 0.4% and 5.1%, respec-

tively, for the quarter point deflection and bending moment.

Inasmuch as in actual engineering applications it is practically

impossible to have a case of a real concentrated or point load, from

the preceding it would seem reasonable and practical to use the "par-

tial loading" approach to deal with the case of nominal "concentrated"

loading .

3. 4 Consideration of Foundation Damping
 

In this section numerical solutions involving foundation damping

will be studied. The same plate system described in section 3.1 is
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considered here with the following changes. Two types of uniform

loading are used: (i) a constant load is applied suddenly; and (ii) the

load is increased linearly from zero to a maximum value and held

constant thereafter. Varying amounts of damping are introduced into

the system.

The response histories for the center point deflection are

plotted in Fig. 17. The numerical solutions were obtained by use of

a 16 x 16 grid. For the case of the suddenly applied loading, it may

be seen that for (5 = 56. 52 (slightly less than lst mode critical damp-

ing) the numerical solution is practically identical to the exact

solution. It may be seen also that the influence of damping in re-

ducing the magnitude of response is quite pronounced. It can be

further noted that for values of 8 = 56. 52 the dynamic response

approaches the static response monotonically from below. This

would point to the possibility of obtaining static solutions by use of

dynamic analysis. So far as that objective is concerned, it would

seem from the data presented in this figure that the use of (3 = 56.52

is most efficient in the sense that larger amounts of damping would

take longer for the solution to approach the static value within a given

percentage.

In Fig. 17 is also shown the damped response ((3 = 56. 52) for

the case of gradually applied loading. As expected the response also

approaches the static value monotonically from below. However, it
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approaches at a slower rate than that for the case of suddenly applied

load. Hence it is considered to be a less efficient type of loading so

far as obtaining the static response is concerned.

It should be pointed out that, in general, if the static solution

is the only objective, one would not use this approach. However, in

this case the computer program for the dynamic analysis is already

available, and it would be more convenient to make use of it, instead

of preparing a new program for that specific purpose. It might be

mentioned also that this "pseudo-dynamic" approach for static anal-

ysis may be usefully extended to inelastic problems as recently dem-

onstrated for the case of one dimensional structures by Heidebrecht

et.al. (10) .

In Fig. 18 are presented data similar to those given in Fig. 17

except that the result concerns bending moment instead of deflection.

It may be seen that the trends of these results are similar to those

discussed in the preceding.

3. 5 Effects of Boundary Conditions and Foundation Stiffness
 

In this section the effects of boundary conditions and foundation

stiffness will be briefly considered. Except for these particular

parameters, the plate system dealt with here for this study is the

same as described in sub-section 3. 3. 2. In addition to the simply

supported, plates with all edges fixed and all edges free are
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considered. It is reasonable to consider the "stiffness" of a free

edge to be less than that of a simply supported edge, the stiffness of

which in turn, to be less than that of a fixed one.

In Fig. 19 are presented deflection histories for the simply

supported and fixed plates for the case of a = 0 (no foundation stiff-

ness) and for a = 414.7. It may be observed that the stiffness of the

boundary conditions and that of the foundation have similar effect on

the response. The effect is to reduce the magnitude of the response

as well as the duration of its positive phase. Also, all the history

curves remain practically identical to each other up to a certain

time, T = . 0375 (which is .143 times the first fundamental period of

the simply supported plate with a = 0) . Thus, it seems that it

takes a finite length of time for the influence of the boundary or the

foundation stiffness to come into play.

Similar observations can also be made from the results on

bending moments presented in Fig. 20 for the same plates considered.

In Fig. 21 are presented additional data on the influence of boundary

conditions including the case of a free plate also. The problem con-

sidered is the same as the preceding, except that the load is applied

over an 1/16 x 1/16 area. This result also corroborates the observa-

tions made in the preceding.
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3. 6 Study of Free Plates
 

In this section the dynamic response of plates with all four

edges free and resting on an elastic foundation will be studied in some

detail. In contract to most of the numerical results presented in the

preceding, exact solutions of this type of problem are practically

impossible to obtain. However, the problem is of considerable

practical interest because it may be used as an analytical model for

such technical applications as studies of rigid pavements of highways

and airport runways .

It is not intended here to make extensive investigation of these

technical problems; the purpose here is to demonstrate the feasibility

of the use of the numerical method for such problems. The great

majority of the numerical data presented in this section concerns the

dynamic response of such plates to a load applied at one of the corners

of the plate. This is because this type of loading is thought to be most

critical for such plate structures as observed in the case of pavement

slabs (45) . From the design standpoint, the principal bending moments

are the significant quantities. These moments have been considered

in the following sub—sections. The numerical problem studied here,

except for the boundary conditions and the loading is the same as in

section 3.1.

3.6.1 Influence of Grid Size: Before discussing the case of
 

corner loading the effects of grid size will be considered. This is
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done in order to reasonably ensure the accuracy of the numerical

procedure for this type of problem in the absence of an exact solution.

In Fig. 22 are shown the response histories for the center point

deflection for various grid sizes for a "shrinking area type" triangular

loading pulse as described in section 3. 3. It may be observed that

the response for the 16 x 16 grid is quite close to those for 20 x 20

and 24 x 24 grids. Moments under the load diverge as expected, and

therefore they are not presented here.

3.6. 2 Response Histories: For data presented in this and the
 

subsequent sub-sections unless otherwise specified the loading is as

follows: A “partial type" of triangular loading as described in sub-

section 3. 3. 2 is applied at one of the corners over an 1/16 x 1/16 area

of the plate. In order to identify the location of points on the plate

the coordinate system is depicted in Fig. 23.

In Table 9 are listed the maximum deflections and principal

bending moments and their locations for a number of time instants.

These maximums will be referred to as "space-maximum, " while the

term "maximum“ without a prefix will be reserved for the quantity

which is the maximum with respect to both time and space. Thus it

is seen that for different instants the space-maximum deflections and

principal moments occur at different locations. Representative

response histories are presented in Figs. 25, 26 and 27, respectively,

for the corner point deflection, principal bending moment M' at point

1
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(2, 2), and principal bending moment M' at point (3, 3) with the load

2

applied at the corner point (1,1). (M'1 and M"2 are, respectively,

the algebraically larger and smaller principal moments.) It is of

interest to note from the Fig. 27 that the peak value of M"Z is attained

rather early relative to the duration of loading.

3.6.3 Contours of Response: Fig. 28 shows the deflection
 

contour at a time close to the occurrence of the maximum deflection.

It is noted that the maximum (downward) deflection occurs at the

corner under the load, and at the opposite corner, the plate has the

maximum negative (upward) displacement. In Fig. 29 is shown the

contour for M'Z at a time close to the occurrence of the maximum M'Z.

It may be observed that the space distribution of the moment is simi-

lar to that in the case of static loading. The maximum value occurs

at points a short distance away from the corner along a diagonal line.

3. 6. 4 Effect of Foundation Damping: In Table 10 are listed the
 

time instants, locations of occurrence, and the values of maximum

deflection and principal bending moments for the cases of foundation

damping corresponding to 8 = O and (3 = 56. 52. It may be observed

that, relative to the undamped case, the magnitudes of the maximum

deflection and M' are about 50% smaller, and M' only about 20%

1 2

smaller. Furthermore, the influence of damping is to hasten the time

of occurrence of the maximum response. Representative history

curves of deflection and M'Z for the damped case are also shown in

Figs. 25 and 26.



3. 6. 5 Effect of Pulse Shape: In Table 11 are listed the time
 

instants, locations of occurrence, and the values of maximum

responses for various triangular pulse shapes obtained by varying

the time parameters defined in Fig. 24. It may be seen from this

table that the values of the maximum responses become slightly

greater with the reducing rise rate of the loading (larger value of

to) . Meanwhile, the time instants of occurrence of these maximums

are delayed.

3. 6. 6 Effect of Load on Point Adjacent to Corner: Listed in
 

Table 12 are the time instants, locations of occurrence and the values

of the maximum responses for a triangular loading pulse applied at

the corner point (1, l) and at the point (2,1) next to the corner. It may

be seen that the values of the maximum responses for the corner

loading case are somewhat larger than those due to the loading at the

adjacent point. This is in agreement with the observation in the case

of static loading, that corner loading is most critical for this type of

plate 5 .



CHAPTER IV

SUMMARY AND CONCLUSIONS

In this thesis a numerical method for the dynamic analysis of

plates on elastic foundation has been presented. The method is based

on a discretization of the plate by use of the classical finite differ-

ence expansion of the space derivatives in the governing partial

differential equation. The resulting ordinary differential equations

for the discrete system (with time as the independent variable) have

been integrated numerically.

As expected the accuracy of the method depends on the grid

size. The finer the grid, the more accurate would be the results.

However, this is true only to a certain extent. As the grid size is

made smaller, the amount of computation increases, and so does the

round-off error. It seems that for a square plate a grid of 16 x 16

would represent a "critical" size in the sense that any finer grid may

not necessarily produce more accurate results. On the other hand,

a 16 x 16 grid or even coarser ones, depending upon the degree of

accuracy needed for the particular problem being considered, can

yield sufficiently accurate results. For example, for the test problem

considered, the errors in maximum deflection and maximum bending

moment for an 8 x 8 grid are less than 1% and 6%, respectively.

43
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The relative accuracy and efficiency of the classical Runge-

Kutta method and the Beta method for the numerical integration of the

equations of motion of the system have been studied by considering a

specific numerical problem. Based on the data obtained it seems

that, although Runge ~Kutta method has a somewhat larger range of

stability, the results produced do not seem to be any more accurate

than those given by the Beta method. On the other hand, Beta method

is more efficient in regard to programming as well as computer time

for the type of problems considered--problems of structural dynamics

governed usually by a system of simultaneous second order differential

equations.

It has been demonstrated that the tedious part of the work

associated with this method--that associated with the formulation of

the equations and the lengthy computations, can all be handled by the

computer. In order to obtain numerical solutions of problems one

needs to supply to the computer only the most basic parameters such

as the size of the plate, grid size, and loading. The generation of the

differential equations (with the influence of the boundary conditions

appropriately taken into account) and the solutions of these equations

have all been handled by the computer. It might also be mentioned

that the amount of computer time needed for a solution with sufficient

accuracy for most engineering purposes is not excessive. For

example, in the case of a free plate with a 16 x 16 grid, a complete
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history curve for about one fundamental period, including the selec-

tion of maximum response values in the space as well as time domain,

takes about 9 minutes of computer time for a Control Data 3600

System.

After having established the reliability of the method it is ap-

plied to study briefly several physical problems. Among these is the

case of the concentrated load. The load is first assumed to act over

one grid square. It was found, as the grid size decreases the bend-

ing moment under the load does not converge to a definite value. This

is, of course, not surprising in view of the static theory of plates.

However, if one treats the concentrated load as a distributed load over

a finite area then the bending moment under the load converges as the

grid size is reduced.

The case of a free plate subjected to a concentrated load at the

corner was studied and the contours at the instant of occurrence of the

maximum deflection and the principal bending moment, respectively,

have been obtained. It was found that the maximum principal bending

moment occurs in the same general area as in the case of static

loading. Also the effect of foundation damping, pulse shape and the

location of loading were briefly studied for the case of a free plate.

It was observed that the corner loading produced the most severe

effects; and the effect of foundation damping was quite pronounced in

reducing the values of maximum responses.
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For the case of a simply supported plate, the maximum deflec-

tion was reduced by 50%, and the maximum principal bending moment

by about 20% due to a foundation damping equal to the critical damp-

ing for the first mode and using a rectangular pulse type loading

function. The practicability of getting a static solution from the

dynamic analysis was also studied. It was indicated that this could

be most conveniently done by introducing an amount of damping equal

to the critical damping for the first mode and using a rectangular

pulse type loading function.

Some numerical results were also obtained to study the

influences of boundary condition and the foundation stiffnesses. It

was observed that as the stiffness of either the foundation or the

boundary condition is increased, the value of the maximum response

and the duration of the positive phase of the response are reduced.

For further work along the line of investigation described

herein, it is suggested that the technical problem of dynamic stresses

in airport and highway pavements be studied. Because of the flexibility

of this method, it is believed that a more realistic analytical repre-

sentation of the physical system could be obtained. Furthermore, it

might be fruitful to try to adapt this approach for a dynamic analysis

of inelastic plates. Like most numerical problems, the propagation

type in pargicular, the influence of round off error can always be a

serious problem. Obviously, a systematic and rational investigation

of this problem is of basic importance.
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APPENDIX A

USE OF COMPUTER AND PROGRAMMING

The computer programs used in this study are written so that

only the most basic parameters need to be supplied to the computer.

The generation of the equations of motion for the plate system and

their integrations are carried out by the computer.

A.l Generation of Equations of Motion
 

The main job in the generation of the equations of motion is

the evaluation of "BHO" at each point. For simply supported and

fixed plates there is only one basic "BHO" pattern, whereas in the

case of free plates there are six "BHO" patterns. For convenience

simply supported and fixed plates are handled by one program, and

a separate program is prepared for the case of free plates.

A.l.l Simpbr Supported and Fixed Plates: The first step in
 

evaluation of "BHO" for a point is to express the deflections of

points outside the plate domain in terms of deflection of the points

inside the plate domain.

In the program this is done by 4 “DO" loops for points adjacent

to the edges . Generality is introduced in the treatment of boundary

conditions by incorporating a factor denoted by "BCF" for each edge

(or a portion of the edge in the case of mixed boundary conditions
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for that edge). For example,1 for the upper edge (Fig. A.l),

W(I,J) = BCF1° W(3,J), for J = 3 to NC.

After the deflections of all the relevant points outside the plate

are expressed in terms of deflections inside it, the "BHO" is evalu-

ated for all the points. In order to make use of a library subroutine

for integration by the Runge -Kutta method, all variables are changed

to single subscripted variables; thus:

K = (I-3) - NC + J-2

W(I,J) = Y(K)

for I = 3, to MM and J = 3, NN, and then "BHO" is evaluated thus:

BHO(K) = 20 W(I, J) - 8[W(I, J-l) + W(I,J+l), +

W(I-1,J) + W(I+1, J)]

+ 2 [W(I+1, J-1)+ W(I-l, J+1)+W(I+1, J-1)+W(I+1, J+1)]

+ W(I-2,J) + W(I +2,J) + W(I,J-2) + W(I,J+2).

A.l.2 Free Plate: There are 6 basic "BHO" patterns as shown
 

in Fig. A3. They are applied to 25 different sets of points shown in

Fig. A2. These patterns have been derived after taking into consider-

ation the boundary conditions. Therefore, all these patterns are such

that they do not involve any point outside the plate region. One "BHO"

pattern is taken at a time. Points which are similar in location in the

 

1Notations are given in the section A. 4.
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region of the plate are handled in a sequence using one particular

kind of pattern.

To take care of the orientation of "BHO" pattern two variable

subscripts IS and JS are introduced. These are added to I and J

subscripts. Such that by changing IS, JS from 1 to -1, the orientation

of "BHO" pattern is changed. For example, to deal with all the four

corner points, 1 through 4 of the plate, pattern type 1 is used thus:

for the upper left corner point 1, I = 3, J = 3, IS =1, JS 2 land

BHO(K) R -W(I,J) + W(I,J+JS) + W(I + IS, J)]3[

+ R1[W(I,J + 2.15) + W(I + 215, J)]

+ R6W(I + IS, J + JS).

The expression for "BHO" remains the same for the other 3 corner

points for which the values of I, J, IS and JS are as follows. For

the upper right corners, point 2; I = 3, J 2 NC + 2, IS =1, JS = -l,

for the lower right corner, point 3; I 2 MR + 2, J = NC + 2, IS = -1,

JS = -l; and for the lower left corner point 4; I = MR + 2, J = 3,

IS = -1, JS = 1. The remaining points on the edges adjacent to corners,

points 5-16 are handled in a similar manner using the patterns 2 and

3 of "BHO. " Points on the edges and adjacent to edges, points 17—24

are handled as above using patterns 4 and 5. "DO" loops are used for

points on the same edge. The points in the interior, points type 25 are

handled all at once using "BHO" pattern 6 by a "DO" loop.
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A. 2 Numerical Integration of Equations
 

After generating the equations of motion they are numerically

integrated using either the Beta method or Runge -Kutta method. A

program is written for the Beta method on the basis of the description

given in sub-section 2. 4. 2. In this case the equation of motion, Equa-

tion 4, is put in the form:

ACD(K) =HZ[T- P(K) -AA- DPA(K) - BHO(K) ° DV4] -H 'VEA(K)

For the case of Runge -Kutta method, Library Function Sub-

program "RKLDEQ" has been used. Equation 4 is transformed into

a set of first order differential equations for I = l to NE, thus:

F(I) = Y(I + NE)

F(I-1~NE)=T° P(l) -AA-Y(I) -B -Y(I+NE) -BHO(I) ° DV4

A.3 Time Requirements of the Computer*
 

In order to compute the deflections, bending moments and the

maximum values of these in the range of integration, the Beta method

. -3

takes approx1mately 2. 2 x 10 seconds per degree of freedom per step

of integration. The Runge -Kutta method takes about twice as much.

If the maximum responses (deflections, moments and principal

moments) in the space domain for each time instant are desired in

addition to the maximum values in the range of integration, an addi-

. . -3

tional time of approx1mately l. 5 x 10 seconds per degree of freedom

per step of integration would be needed.

 

*Control Data 3600 .
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A. 4 List of Fortran Variables
 

A list of Fortran variables used in the programs and in this

appendix is given in the following:

A = constant used in Runge -Kutta-Gill function sub -program "RKLDEQ";

AA = a, dimensionless soil elastic constant;

ACA(I) = assumed acceleration of point (I);

ACD(I) = derived acceleration of point (I);

ACF(I) 2 final acceleration of point (I);

ANGLE = orientation of the direction of principal moment;

ANG 1* = orientation of space -maximum M' '
1,

ANGlT = orientation of the maximum M‘l;

B = (3, dimensionless soil damping constant;

BETA = parameter of Beta method;

BCF 1, BCF 2

= ' ' + _ - .
BCF 3’ BCF 4 boundary condition factors (. 1 or 1) for each Side,

BMX = M'X, dimensionless bending moment Mx;

BMY = M'y, dimensionless bending moment My;

xy;

BMPl = M'l, dimensionless principal bending moment;

BMXY : M'xy' dimensionless twisting moment M

BMPlMS = space-maximum Mi;

BMP IST maximum M' ;

l

BMMMP = maximum center point M'X;

 

*Number 2 in the suffix similarly will correspond to M'Z.
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BMMQP = maximum quarter point M' ;

x

n-h

C = T , factor used in the evaluation of moments;

D = D, flexural rigidity of plate;

DMMP = maximum center point deflection;

DMQP = maximum quarter point deflection;

DPA(I) = assumed deflection of point (I) obtained by using Beta-formula;

DPF(I) final deflection of point (I);

DPFMS space maximum deflection at any instant;

DPFST = maximum deflection;

DV 2 n in floating point;

E = E, modulus of elasticity;

F(I) = derivative of Y(I) with respect to time;

GS = X, grid size;

H = AT, time increment in numerical integration;

1, J, K, L, M = variable subscripts;

LR = a/b, aspect ratio;

LOCDPF = location of occurrence of maximum deflection;

LOCMPl = location of occurrence of maximum M'l;

MDS = location of maximum deflection at any instant;

MID = subscript for the center point;

MPIS = location of occurrence of maximum M'1 at any instant;

MR = number of rows of grid lines;

N = number of first order differential equations;
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NB 2 number of grid divisions on smaller side;

NC = number of columns;

NE = number of second order differential equations and also the

number of dependent variables;

NL = n, number of grid divisions on larger side;

NQP = subscript for the quarter point;

NT a variable used in "RKLDEQ";

PF peak value of the forcing function;

P(I) = forcing function at a point (1);

PR = V, Poisson's ratio;

Q = temporary region used by "RKLDEQ";

R1 = (1 - V2) /2

R = -4+ 2v+ 2122

2

2

R3= -3+ 212+ v

R4=2-V

RS— -6+ 2V

R6=2 -2V

R7=8 -4V -3l/

2

R8=7.5 -4V -Z.5V

RANGE = range of integration in Beta method;

S = a variable used in "RKLDEQ";

SIZE = a, length of the longer side of the plate;

T = 0, constant to be multiplied to p(x,y,t) to make it dimensionless;
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TDMMP = time of occurrence of maximum center point deflection;

TDMQP = time of occurrence of maximum quarter point deflection;

TDPST = time of occurrence of maximum deflection;

TEND = t1, duration of action of forcing function;

THICK = h, thickness of plate;

TIME = T, dimensionless time;

TINT = to, time parameter used in Fig. 24 to denote rise rate;

TMP lST = time of occurrence of maximum M'l;

TO 2 To, a parameter;

TOLER 2' tolerance for testing the convergence in Beta method;

VEA(I) = assumed velocity of point (I) obtained by using Beta-formula;

VEF(I) = final velocity of point (I);

WCI = weight per cubic inch of plate;

W(I, J) = u(i, j), dimensionless deflection of point (i, j);

WT = m, mass per unit area of plate;

X = T, dimensionless time in Runge -Kutta method;

XEND = final value of T, range of integration in Runge -Kutta method;

Y(I) = dimensionless deflection of point (I) in Runge-Kutta method; and

Y(NE+I) = derivatives of Y(I) with respect to T in Runge -Kutta method.
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‘300 CONTINUE

{307’ FORMAT((1H0996H TDMMP DMMP TDMQP DMQP

l TBMMMP BMMMP TBMMQP BMMQP)

PRINT 807

PRINT 806QTDMMpoDMMpoTDMOPODMQPQTBMNMPOBNNMPQTBMHQPQBNNGP

£306 FORMAT(1H008F1207’

.7000 CONTINUE

'7OIO CONTINUE

END

FUNCTION RKLDEQ(NQYOFQQQXOHQNT) RKLDO

TEST OF ALGOL ALGORITHM

DIMENSION Y(2048)0F(2048)OQ(2048)

REAL X9H"1NTEGEQ NQNT-*CONMENT‘“BEGIN INTEGER IoJoL-REAL A

NT=NT+1

GO TO (1929394)9NT

GO TO S‘NT)

1 DO 11 J310N

11 G(J)=Oo

A305

X=X+H/20

GO TO 5

2 AFOZ9289321881

GO TO 5

3 A=IO7O71067812

X3X+H/20

GO TO 5

4 DO 41 I=ION

41 YTI’3Y(I)+H*F(I)/6o-O(1)/3o

NTBO

RKLDEQ‘Z.

GO TO 6

5 DO 51 L310N

Y(L)=Y(L)+A*(H*F(L)-Q(L))

51 OIL)320*A*H*F(L)+(10“3.*A)*Q(L1

RKLDEQRIO

6 CONTINUE

END

[END

A.5.2_§§TA METHOD FOR FREE PLATE:

PROGRAM BETAZ

DIMENSION ACA(625>.ACO(625).Acscszsi.VEA(625).VEF(625).OPA<625)

i.OPF(625).w(29.29).sHO(625).P(625)

1.sMX(625).sMY(625).sMXY(625).ANGLE(625).BMPi(easioaflpatszs)

COMMON ACAoACDoACFoVEAoVEFo OPA.OPF.w.sHO.P.BMX.sMY.sMXY

loANGLEoBMPloBMPE

PRINT 5388

8886 FORMATtlHOollHBETA METHOD)

9999 FORMAT(1H0914HALL EDGES FREE
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TOISQRTF((WT*SIZE**4)/D)

AAt(SEK*SIZE**41/D

BB($DC*SIZE**4)/(O*T01

‘thSIZE**4)/(O*THICK)

EVALUATION OF NUMBER OF ROWS AND COLUMNSQNUMBER OF EQUATIONS ETC

CASE OF FREE PLATE*****************§*******.§********************§***

NC=NL+1 FREE

MR=NB+1 FREE

NE=MR*NC

MM=MR+2

NN=NC+2

MIDBNC*NL/2+(NC+1)/2 FREE

M1"=MID‘1

MIPBMID+1

PRINT 1129AAOBOTOHQBCF1cBCFZoBCF3vBCF40TENDoPF

FORMATC1H0¢3HAA=9E90493X02HBB0E9o¢03X02HT=9E9o‘o3XQ2HH89F80703X0

l¢HBCF=041F4oloZX)91X95HTEND8vF4o3v3X93HPF=oF902)

FRINT113'TOONPONL

FORMAT(1H003HT039F80693X93HN1=9I3020H0 NUMBER OF GRIDS 3912)

TDPST=OO

LOCDPF‘O.

DPFST=OO

TMPIST'O.

LOCMPIBOO

BMPIST‘OO

TMPZST=Oo

LOCMPZ‘O.

BMPZST=OO

ANGLT=OO

ANG2T=OO

DO 100 IgloNE

ACA(I’3OO

ACD(1)3OO

ACF(1)=OO

VEA(T)=OO

VEF(I)'OO

DPA(113OO

DPF(I)=OO

*********COMPUTE INITIAL ACCELERATION***************

PFTI=PF*TIME/T1NT

P(1)=lo*PFT1

P(2)305*PFTI

DO 101 1=3QNC

P111300

P(NC+1)305*PFT1

P(NC+2)3025*9FTI

DO 1011 1:209NE

9(11300

BEGIN COMPUTATION OF tNITIAL ACCELERAT10N&#*iiiii}*§§*¥i§4*§§§§§§*

FREE pLATEi§ii§§i§*******ii&*§**§*§******&************§*§*isieiiis
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MP2$=I

CONTINUE

'DO 702 I=I.NE

IFIABSFIOPFII)I-ABSFIOPFMSII702.702.703

DPFMS=DPF(I)

M0521

CONTINUE

ENDIN MAXIMUM QUANTITIES EVALUATION*******************************

BEGIN MAXIMUM QUANTITIES EVALUATION IN TIME***********************

IF(ABSF(BMP1MS) -AB$F(BMPI$TII704.704.705

BMPIST=BMP1MS

LOCMP1=MP15

ANGIT=ANGI

TMPIST=TIME

IF(A85F(BMP2MS) -Asss(sMpasTI)7os.706.707

smpastsmpams

LOCMP2=MP25

ANGZT=AN62

TMpasT=TIME

IFIABSEIOPFMS)-ABSFIOPF5TI1708.708.709

DPFST=DPFMS

LOCDPF=MDS

TDPST=TIME

CONTINUE

END MAX EVALUAT 1 ON IN T 1 ME*ii-‘I'Iii‘I’I-iifiii-i*‘i‘liiiifiw'fifliiW!!!‘

JJ=JJ+1

IF(JJ.NP) 80298039803

CONTINUE

PRINT sosi.TIME

FORMATIIHO.ssx.5HTIME=.Fs.7)

PRINT soa.mos.OPFM5.MPIs.sMPIMs.Mpzs.sM92M5

FORMATIIHO.4HMOS=.13.3x.6HOPFMs=.F9.7.3x.5HM91s:.13.3x.7HsMPiMs=.

IF90703Xc5HMP25=0I303X07HBMP2MS=0F907)

PRINT 8044'ANGIOANGE

FORMATIIH QSHANGI=9F70305X05HANGZ=9F703I

JJ=O

GOTO 200

CONTINUE

PRINT 80500TDPST9LOCDPFQDPFST

FORMATIIH096HTDPST=oF9¢7o3X97HLOCDPF=oI393X96HDPF5T=9F9071

PRINT BOSIOTMPIST'LOCMPIQBMPIST

FORMATIIH 97HTMPIST=9F90703XQ7HLOCMPI=9I393X97HBMPI$T=qF907)

PRINT 80529TMP28TOLOCMPZQBMPZST

FORMAT<IH 07HTMPZST=oF9o7o3Xv7HLOCMP2=oI393X07HBMPZST=QF907I

PRINT 80539ANGIT9ANGET

FORMAT(IH Q6HANGIT=OF70395XQ6HANGZT=9F703)

CONTINUE

CONTINUE

END

END



APPENDIX B

EXACT SOLUTIONS

The "exact" solution of the problem of forced vibrations of a

simply supported rectangular plate resting on an elastic foundation is

presented here. It has been used as a basis of comparison for the

evaluation of the accuracy of method presented in the thesis.

Referring to the same plate as described in section 2.1, the

exact solution of Equation 1 may be written as:

(I) CI)

w = 2 >3 5.. T.. (B1)
, ij ij

where Sij = 5111 L? sin j—E-X, and Ti' is a function of time only.

Also assume the loading function be given as:

P(x.Y.t) =G(X.Y)F(t) (B2)

where, G(x, y) is a function of the space coordinates, "x" and "y"

only and F(t) is a function of time, t only.

Let G(x, y) be expanded in a double sine series:

0000

G(x,y) = Z3 2 g,. sin fl sin w (B3)

. . 13 a b

1-1 j=l

in which

a b

gij : afg- f [G(x, y) sin Ezra—X sin Lil dxdy (B4)

0 0

Substituting the preceding expressions (B1), (B2), and (B3) into the

equation of motion, Equation 1 of section 2.1, the following equation is

obtained:

74
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2 2 4

2 z (1)5..T..+ (1") (J) 5.114(3) S..T..
. a ij 13 ab ij ij b ij ij

1:1 3:1

+115 T +35 T +-“ls‘i" Cfilsrm—o (135)
'DijijDijijDijijDij ’

Since Sij is not identically zero, one obtains:

q..
.. - 2

T..+2rT.,.+p.. T..=—11F(t) (B6)
ij ij ij ij m

where r = ErEn— , and pij is the natural undamped circular frequency

of the (i, j)th mode of the plate:

-‘\/E9[{(31‘—)2+(11)Z}2+5] (B7)
pij " m a b D

For the case of zero initial displacement and velocity the solution

of Equation (B6) may be written1 as

t

qij -r(t-T)

T., = F(T)e sin q..(t-T) dT (B8)

ij mqi. 1.1

J O

in which qi is the damped natural circular frequency given by

q..= p.. -r (B9)

The "critical damping" Ccr for the system can be Obtained

 

2

by setting qij = 0, thus;

. . ‘V D 'TI 2 'TI 2 2

ccr(i,j) = 2 km\/[l+ I: 812-) + (lb—) }] (B10)

 

lTimoshenko (38), pp. 104-109.
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It may be observed that the factor inside the bracket shows

effect of the flexural rigidity of the plate and the mode shapes (value

. . . . . . . th

of i and j) on the value of the critical damping for the (1,3) mode.

For any given loading the solution can be obtained from Equation

Bl by use of Equations B4 and B8. The exact solutions of the various

problems that have been used for purposes of comparison in the text

of this thesis are given in the following.

 

1. Triangular Pulse Loading: In this case P(x, y,t) = P(l - 'tt—)

1

is constant over the entire plate and taking r = 0 (no damping), for

a square plate, Equation B4 yields:

_16P

qij " 2..
1T 13

 

Equation B8 yields:

 

t

T., = -—-—16P (1 - i) sin p.. (t-T) dT

1‘] rami' 2 t1 1']
' inj 0

sin p,.t

: 16P (l-i-COSP..t+—'_ll_)

2 .. 2 t ij t p..

1T mlinj l l ij

finally substituting into Equation Bl one has

 

oo OO sin p,,t

w(x,y,t) = 1613 Z Z: —1--—[l-—+ —-l']- -cos p.,t]

If m i—l ._1 .. t1 1:1 p.. ij

' - J- lJplj 1.]

sin 3 sin fl (B11)

a b

for t <t .

1
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Bending moments are calculated from:

 

2 2

MX = -D(—821+ v—82?)

8x 8y

2 2

M _ -D (5333" v 3325’) (312)

y 8y 8x

2

8 w

Mxy- D (1-1!) 8x8y

2. Partial Loading: The loading is the same as the preceding one
 

except that it is applied over an area u x v whose center is located at

(6.77 1 . In this case Equation B4 yields;

_ ————16P sin LII-g- sin L—jnn sin -—-ifiu sin __8'rrv

qij ‘ 2.. a b 2a 2b
Tr ij uv

When the load is concentrated, i.e. , u, v -> 0 and P ° 11 ' v -’- F

(a constant), the above equation yields:

4 ‘_ j

q = 3 sin LT; sin Tm

ij ab a b

The complete solution can be written as before.

3. Rectangular Pulse: The load P is applied uniformly over the
 

plate. In this case the effect of foundation damping is also included.

From Equations B4 and B8 one obtains, respectively

\
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16P

qij : "‘2'”

TT ij

t

1
.. -

T., : __6£’_ f. m 7’ sin q..(t-T)dT
ij mTTZijq

1.1

ij o

-rt

16P l e .
z 2 [—2—7 {1- — (r Sinqi.t+qi.COSqijt1jl

Trljm r +-q.. qij J J
11

The complete solution is given by Equation Bl as:

CDCD

16P l -rt r
2 Z 1- — ‘ +2 [ e ( Sln qijt cos qijt)]

mTr i=1 j=l ij(r2+qij) ij

  

W(X.y.t) =

. i‘rrx , 'Tr

Sin -— Sin

a b

< ..
for all t > 0 and Cij Ccr(1_]) (B13)
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TABLE 1. COMPARISON OF RESULTS OBTAINED BY RUNGE-

KUTTA AND BETA METHODS (T = .0625 AND T: .125)

 

 

 

 

. Method of T = .0625 T = .125

Time solution

incre - ” Deflection Moment Deflection Moment

ment (u = w/h) (Ma/D) (u = w/h) (Ma/D)

AT

Exact .0027852 .0054363 .0024640 .0023591

Runge —Kut.ta .0027480 .0048949 .0025019 .0027559

Beta = 0 .0027512 .0048474 .0025021 .0027973

Beta 2 1/6 .0027462 .0046217 .0025019 .0027462

Runge -Kutta .0027478 .0046850 .0025018 .0027483

Beta = 0 .0027589 .0051735 .0024948 .0023365

Beta : 1/6 .0027412 .0044529 .0025025 .0027645

Runge -Kutta .0027477 .0046896 .0025017 .0027365

Beta = 0 .0027619 .0052392 .0025015 .0027001

Beta = 1/6 .0027401 .0044650 .0025034 .0028201

Runge -Kutta .0027481 .0047205 .0025018 .0027367

Beta = 0 unstable unstable unstable unstable

Beta 2 1/6 unstable unstable unstable unstable

Runge --Kutta unstable unstable unstable unstable

Beta = 0 unstable unstable unstable unstable

Beta = 1/6 unstable unstable unstable unstable
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TABLE 2. COMPARISON OF RESULTS OBTAINED BY RUNGE-

KUTTA AND BETA METHODS FOR MAXIMUM VALUES

OF RESPONSES

Maximum deflection Maximum moments

, Method of (‘1 =W/h) (Ma/D)

Time olution

inc re - S Instant Magnitude Instant Magnitude

ment

AT Exact .0906250 .0044553 .0812500 .0114936

2 Runge -Kutta .0933594 .0045647 .0941406 .0120576

l/lO n Beta = 0 .0933594 .0045688 .0937500 .0122500

2 Runge —Kutta .0937500 .0045633 .0937500 .0119689

1/5 n Beta: 0 .0927688 .0045739 .0929688 .0123821

2 Runge -Kutta .0937500 .0045624 .0937500 .0119323

l/4n Beta: 0 .0927734 .0045718 .0917969 .0123091

2 Runge -Kutta .0937500 .0045606 .9375000 .0118662

1/3 n Beta-.- 0 unstable unstable unstable unstable
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TABLE 3. COMPARISON OF NUMERICAL AND EXACT VALUES

OF MAXIMUM RESPONSES FOR CENTERPOINT

 

 

 

 

 

(DEFLECTION)

Method . Maximum % error
Time , % error _

of (T : t/T ) deflection in time in

solution 0 (u = w/h) deflections

Exact . 0927083 . 0014727

n = 4 .0937500 .0014904 1.1 1.2

n = 8 .0890625 .0014720 *3.9 0

n _ 12 .0951389 .0014700 2.6 - 0.1

n — 16 .0933594 .0014747 0.7 0.1

n = 20 .0937500 .0014738 1.1 0.1

n - 24 .0927083 .0014750 0 0.2

(MOMENT)

Method , Maximum % error

of Time moment a]? error in

solution (T - tlTo) (Ma/D) In time moment

Exact . 1135000 . 0019342

n = 4 .0937500 .0018623 -17.4 -3.7

n - 8 .0765625 .0018244 -31.6 ~5.7

n = 12 .0666670 .0018835 ~41.3 ~2.6

n= 16 .1156250 .0019921 1.9 3.0

n = 20 . 1135000 . 0019908 0 2. 9

n = 24 . 1177083 .0019823 3.7 2.5
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TABLE 4. COMPARISON OF NUMERICAL AND EXACT VALUES

OF MAXIMUM RESPONSES FOR QUARTER POINT

 

 

 

 

 

(DEFLECTION)

Method . Maximum % error

of Time deflection 0.70 error in

solution (T : t/To) (u = w/h) m time deflection

Exact . 0955000 .0010955

n = 4 .0937500 .0010249 -1.8 -6.5

n = 8 .0953125 .0010781 -0.2 -1.6

n = 12 .0951389 .0010904 -0.4 -0.5

n - 16 .0945313 .0010922 -1.0 -0.3

n - 20 . 0955000 . 0010939 0 -0.1

n — 24 .0937500 .0010945 -1.8 -0.1

(MOMENT)

Method . Maximum % error

Time % error ,

of moment . . in

solution (T = tlTo) (Ma/D) m time moment

Exact . 0989583 . 0015198

n = 4 .1000000 .0011621 1.1 -23.5

n = 8 . 1000000 .0014512 1.1 -4. 5

n = 12 . 1013889 .0014479 2.4 4.7

n = 16 . 1058594 . 0015324 7.2 0. 8

n = 20 .0970000 .0015515 2. 0 2.1

n = 24 .0989583 .0015682 0 3.2
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TABLE 5. COMPARISON OF NUMERICAL AND EXACT VALUES

OF MAXIMUM RESPONSES FOR CENTER POINT

FOR SHRINKING AREA LOADING

 

Maximum deflection Maximum moment

Method

 

 

of (u=w/h) (Ma/D)

1 .

SO ution Instant Magnitude Instant Magnitude

Exact .0885417 . 0045861 - -

n = 4 . 1250000 .0039174 .0375000 .0094701

n = 8 . 1062500 .0046439 . 1078125 .0128272

n = 12 .0930556 .0048937 .0916667 .0177950

n = 16 .0937500 .0048373 .0941406 .0186278

n = 20 .0905000 .0047537 .0880000 .0190685

n = 24 .0885417 .0047438 .0881944 .0200436

 

TABLE 6. COMPARISON OF NUMERICAL AND EXACT VALUES

OF MAXIMUM RESPONSES FOR QUARTER POINT

FOR SHRINKING AREA LOADING

 

Maximum deflection Maximum moment

 

 

h

Meg,“ (u = w/h) (Ma/D)

s l '

O ution Instant Magnitude Instant Magnitude

Exact .0968750 . 0027068 . 0750000 . 0039659*

11 = 4 .1062500 . 0028196 .1062500 . 0040440

n = 8 .0890625 .0026812 .0687500 .0037722

n = 12 . 1048611 .0027166 . 1055556 .0041591

n = 16 . 0976563 . 0027224 . 0781250 . 0040260

n = 20 . 0980000 . 0027008 . 0752500 . 0046592

n = 24 .0993056 .0027086 .0756944 .0048213

 

*Slowly convergent series (i,j = 61) .
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TABLE 7. COMPARISON OF NUMERICAL AND EXACT VALUES

OF MAXIMUM RESPONSES FOR CENTER POINT

FOR PARTIAL LOADING

 

 

 

Method Maximum deflection Maximum moment

of (u = w/h) (Ma/D)

solution Instant Magnitude Instant Magnitude

Exact .0906250 .0045530 .0812500 .0114936

n = . 1250000 .0039174 .0375000 .0094701

n = 8 .1062500 . 0046439 .1078125 .0128272

n = 16 .0933594 .0045688 .0937500 .0122500

 

TABLE 8. COMPARISON OF NUMERICAL AND EXACT VALUES

OF MAXIMUM RESPONSES FOR QUARTER POINT

FOR PARTIAL LOADING

 

 

 

Method Maximum deflection Maximum moment

of (11 = W/h) (Ma/D)

solution Instant Magnitude Instant Magnitude

Exact .0968750 .0026678 .0718750 .0035596

n = 4 .1062500 . 0028196 .1062500 . 0040440

n = 8 .0890625 .0026812 .0687500 .0037722

n = 16 .0980469 .0026583 .0789063 .0033425

 



TABLE 9. MAXIMUM DEFLECTION, MOMENT AND THEIR

LOCATIONS OF OCCURRENCE FOR A FREE PLATE

85

DUE TO IMPULSE APPLIED AT CORNER

 

Maximum de fle ction Maximum principal moment

 

 

TEE/’11:) (u = w/h) (M'Z = MZa/D)

Location Magnitude Location Magnitude Angle (0)

.00625 (1,1) .0020594 (2,3) .0106407 -33.99

.01250 (1,1) .0052294 (3,3) .0155448 45

.01875 (1,1) .0084516 (4,2) .0170862 31.11

.02500 (1,1) .0115648 (4,3) .0173257 39.06

.03125 (1,1) .0144917 (2,5) .0173016 -29.54

.03750 (1,1) .0171819 (2,6) .0168504 -26.78

.04375 (1,1) .0195983 (2,6) .0164369 -27.95

.05000 (1,1) .0217115 (6,2) .0157487 28.90

.05625 (1,1) .0235093 (8,2) .0152735 22.58

.06250 (1,1) .0249184 (7,2) .0147616 26.34

.06875 (1,1) .0260576 (5,5) .0143696 -45

.07500 (1,1) .0269365 (4,3) .0129368 42.06

.08125 (1,1) .0272545 (3,10) .0135985 -26.42

.08750 (1,1) .0267395 (11,1) .0130943 0

.09375 (1,1) .0264301 . (8,9) .0118132 -4l.86

.10000 (1,1) .0261363 (9,8) .0124041 39.31

.10625 (1,1) .0253643 (10,6) .0108537 26.76

.11250 (1,1) .0241840 (4,8) .0075699 -36.19

.11875 (1,1) .0229904 (6,6) .0099431 -45

.12500 (1,1) .0216093 (16,10) .0093487 -22.02

.13125 (1,1) .0196472 (16,10) .0081454 -3l.43

.13750 (1,1) .0165115 (17,7) .0099522 0

.14375 (1,1) .0131160 (17,6) .0109074 0

.15000 (1,1) .0092761 (17,6) .0102734 0

.15625 (6,1) .0067519 (17,4) .0093470 0

.16250 (8,1) .0060155 (7,17) .0076295 0

.16875 (8,1) .0054800 (17,7) .0076760 0

.17500 (17,17) - 0052681 (3,3) .0059784 -45

.18125 (17,17) - 0063015 (3,3) .0055748 -45

.18750 (17,17) - 0071057 (10,7) .0043090 -40.75

.19375 (17,17) - 0079991 (12,12) .0056715 45

.20000 (17,17) - 0090625 (14,14) .0082439 -45

 



TABLE 10.

86

COMPARISON OF MAXIMUM VALUE OF RESPONSES

WITH DAMPING AND WITHOUT DAMPING

MAXIMUM DEFLECTION (u)

 

 

 

 

 

 

Amount of Time Location Magnitude Angle

damping (T = t/TO) (O)

(3 = 0 .0796875 (1, 1) .0272863 -

(3 = 56. 52 . 0757813 (1,1) .0133758 -

MAXIMUM PRINCIPAL MOMENT (M'l)

(3 = 0 . 1757812 (1, 8) .0144665 0

(3 = 56. 52 . 0355469 (2, 2) .0077713 -45

MAXIMUM PRINCIPAL MOMENT (M'Z)

p: 0 .0285156 (5,2) -.0174413 28.82

(3 = 56. 52 . 0222656 (3, 3) -. 0140118 -45

 



TABLE 11.
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MAXIMUM RESPONSE VALUES FOR DIFFERENT

PULSE SHAPES APPLIED AT CORNER POINT

OF FREE PLATE

MAXIMUM DEFLECTION (u = w/h)

 

 

 

 

 

 

Rise time Time , , Angle

(Fig. 24) (T : t/To) Location Magnitude (0)

t0 = 0 .0796875 (1, 1) .0272863 -

t0 = .025 .0933594 (1, 1) .0282670 -

to = .05 .1062500 (1, 1) .0293000 -

t0 = .075 . 1175781 (1,1) .0301443 -

PRINCIPAL MOMENT (M'1 = M . a/D)

to = 0 .01757812 ( 1, 8) .0144665 0

t0 = .025 .0535156 (2, 2) .0109976 0

to = .05 .0710938 (2, 2) .0115884 45

t0 = .075 .0863281 (2, 2) .0117586 45

PRINCIPAL MOMENT (M'zz MZa/D)

t0 = 0 . 0285156 (5, 2) -.0174413 28.82

to = .025 .0441406 (2, 5) -.0182763 -29.47

t0 = .05 .0644531 (2, 5) -.0185709 -30.71

t = .075 .0843750 (2, 5) -.0185767 40.19
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TABLE 12. MAXIMUM RESPONSE VALUES FOR LOADING

APPLIED AT DIFFERENT POINTS ALONG EDGE

OF FREE-PLATE

MAXIMUM DEFLECTION (u = w/h)

4"

Position Time , . Angle

of load (T = t/TO) Location Magnitude (o)

(l, 1) .0796875 (1, 1) . 0272863 -

(2,1) .081250 (1, 1) .0251775 -»

MAXIMUM PRINCIPAL MOMENT (M'1=M1a/D)

(1, 1) .1757812 (1,8) .0144665 0

(2,1) .1765625 (1,8) .0133560 0

 

MAXIMUM PRINCIPAL MOMENT (M'Z = Mza/D)

 

(1.1)

(2.1)

.0285156 (5,2) -.0174413 28.82

.0289062 (2, 5) —.0153038 -24.54
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