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ABSTRACT

NUMERICAL METHODS OF BIFURCATION PROBLEMS

VIA SINGULAR VALUE DECOMPOSITIONS

AND HOMOTOPY METHODS

By

Yun-qiu Shen

A relation between bifurcation theory and the singular value decomposition,

homotopy methods in numerical analysis is studied. Given a nonlinear equation, we

give a local analysis in a neighborhood of a solution via the Liapunov-Schmidt method

and the singular value decomposition. This analysis is applicable to regular, turning

or bifurcation points. In the case of a bifurcation point, homotopy methods are used

for solving the bifurcation equation. A numerical method for global bifurcation prob-

lems based on the above analysis is presented.
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CHAPTER 1

INTRODUCTION

Let F: XxR‘ -> Z be a Fredholm operator, where X, Z are Banach spaces and

R‘ is the usual 5 dimensional space in which the parameter vector It sets. The

Liapunov - Schmidt method can be used to reduce F(x,h) = O to a finite dimensional

system f(y,7L) = O with f: Rme‘ —9 R". The bifurcation behavior of the solution set

of f determines the bifurcation behavior of the solution set of F. In the boundary value

problem of ODE or PDE, a finite element method or a finite difference method also

can be used to approximate the problem by a finite dimensional system. If the original

differential equation contains parameters, then the finite dimensional system which is

of the same form as f obtained from the Liapunov- Schmidt method also contains

parameters. Furthermore, many problems themselves are finite dimensional prob-

lems. Therefore studying the behavior of the finite dimensional system with parame-

ters is meaningful.

In this paper we present a new numerical methods for the bifurcation problem

f(x,?») = O with f : Rme—->R”‘. The methods include using reliable ways to distin~

guish the bifurcation and non-bifurcation, to factor out the bifurcation equation, and

to solve the problem in either cases.

Bifurcation occurs at the points of the solution set when the Jacobian matrix of f

at these points is rank deficient and a point of the solution set is near a bifurcation point

when the Jacobian matrix at that point is nearly rank deficient. We relate this Jacobian
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matrix with the singular value decomposition(SVD). Because an effective way to

detect and neat rank deficient problems in numerical analysis is to compute the singu-

lar value decomposition. see [6]. If the singular value decomposition of the Jacobian

matrix at some point is performed, we certainly want to use the informations from it

as much as we can. In this thesis, we connect it with the Liapunov- Schmidt method

in the bifurcation theory. The major results which relate this are:

Theorem 3.2.2 The Liapunov-Schmidt method via SVD;

Theorem 4.1.1 A numerical bifurcation equation via SVD;

Theorem 6.1.1 A matrix result via 5VDfor the Newton's iterates;

Algorithm 7.2.1 A numerical method ofglobal bifurcations via SVD.

After a numerical bifurcation equation, which is a system of special polynomi-

als, is obtained via SVD, we need a reliable method to solve it. The development in

1976 by Chow, Mallet-Paret and Yorke [2] is an advance in the homotopy methods.

The methods are called the probability one homotopy methods which provide practical

ways for solving nonlinear equations [10]. For the general case of a syStem of polyno-

mials, the problem of finding all zeros has already been solved in [3]. The numerical

bifurcation equation which appears in this paper is a system of special polynomials.

Only some of the solutions are to be solved. The others can be obtained by symmetry.

We develop a special homotopy equation to find these required solutions by using

some techniques in [2] [3]. We obtain a method which only requires half of the usual

number of computations. The result is obtained in:

Theorem 5.2.6 A probability one homotopy method with symmetry for solving

the numerical bifurcation equation.



In most chapters, we assume f satisfies the following two conditions:

(a) fis C", 1:22;

(b) there are only finite smooth curves passing each bifurcation point of the solu-

tion set of f(x,A) = 0.



CHAPTER 2

THE SINGULAR VALUE DECOMPOSITION

§ 2.1. Definitions and Theorem

Singular value decomposition (SVD) is one of the most important tools in matrix

computations. It is a reliable method for detecting and treating rank deficient prob-

lems. In this section we briefly describe the results of SVD which are needed in this

thesis. We will present them by restricting to real matrices. For proofs or details,

see, for example, Golub and Van Loan [6], Dongan‘a et a1 [4]. Similar results for

complex matrices also can be found in Stoer and Burlisch [9]. But for the purpose of

our research, we only need the case for real mauices which is presented in the follow-

ing definitions and theorems.

Let A be a real m by n matrix. It is known that there exist an m by m orthogonal

mauix U and an n by n orthogonal mauix V such that

A=U£VL (LU

where

D
2, = 0’ g (1.2)

  

is an m by n matrix, and D, is a r by r diagonal mauix. Furthermore

D, = diag(0'1,0'2, ° - - ,o,), where 612022 - - - 20', > 0. VT is the transpose of V.

4

 



Definition 1.1. (1.1) is called the singular value decomposition of the matrix

A. Let

p = min(m,n), and define o,+1=o,+2=...=cp = 0. Then 01,62, - - ' ,op are called the

singular values of A.

Theorem 1.2.

(a) The number of nonzero singular values is equal to the rank of A ;

(b) oioé, . . . , a? are the positive eigenvalues of ATA and AAT ;

(C) the columns of V are corresponding eigenvectors of A TA ;

(d) the columns of U are corresponding eigenvectors of AA T .

Definition 1.3. The columns of V are called the right singular vectors of A,

while the columns of U are called the left singular vectors of A.

Definition 1.4. The pseudo-inverse A1” is defined tobe the mauix

 

A+=v2+ UT, (1.3)

where

D"1 0
2*: 0' 0 (1.4)

. 1 1
m D 1=c1 —,—-, , —w1 rag( 1 02 0r )

It’s easy to verify the properties of the pseudo-inverse:

 



Theorem 1.5.

(a) AA+A =A;

(b) A+AA+ =A+;

"I '1

(c) AA+=U (33 UT;

I
l

(d) A+A = V

  
11. 0
L00

(c) (1111+)2 =AA+;

(r) (A+A)2 =A+A.

Regarding A as a linear transformation from R" to R’" under certain bases,

denoting U = [ u1,u2, ° - - ,um] and V = [ v1,v2, - ' - ,vn ], the following theorem is

obtained:

Theorem 1.6.

(a) NUll(A) = Span{ vr+lavr+2’ . ° . 9vn}; and

(b) Range (A) =Span { u1,u2, -°-,u,}.

§ 2.2. Computational Methods

Theoretically Theorem 1.2 already gives a way to compute SVD of A. i.e., ATA

and AAT can be used to obtain SVD of A. However it is not a satisfactory way for

the computational purpose due to that the round off errors often destroy pertinent infor-

1 O

mation. For example, letA = [a 0] ,where (1 satisfies 80 < a < V80 and 80 is the
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l-l-a2 0
machine precision. Then theoretically ATA = 0 a2] gives the singular values of

 

A with 0'1 = Vl+a2 and 02 = a since obviously the eigenvalues of ATA are 1+ a2 and

a2. But the computational results due to the round off errors yield ATA = [(1) 8]

gives the singular values of A withol = 1 and 02 = 0 . The second singular value is

qualitatively incorrect.

The basic computational method is the Golub-Reisch SVD algorithm [6] in 1970

which contains Householder bidiagonalization, the decoupling calculation and the

Golub-Kahan SVD step of a bidiagonal square matrix having no zeros on its diagonal

and superdiagonal. We will briefly illustrate these methods. For more details, see

[4] [5] [6] [7] .

Let A be an m by n matrix. In this section, we assume rn 2 n, otherwise con-

sider AT. Two orthogonal mauices are involved in this algorithm, they are:

Definition 2.1. A Householder matrix U is a mauix of the form U = I -

2uuTluTu, where u is a column vector.

Definition 2.2. A Givens rotation matrix U is a mauix of the form

.1 ]

cosO sine

-sin6 c056

  

Then the matrix A can be transformed into a bidiagonal mauix by:



Theorem 2.3 ( Householder Bidiagonalization ). There exist products of House-

holder mauices U3 = Ule - - - U" and VB = V1V2 - - ~ Vn_2 such that

B

UBTAVB = ....... (2.1)

0 ,

where

difZ

dzfs

B = d3 ..

. . f"

L dud  

cat11- attest 11:00 #1100 #11100 $11100 tar-00

taste it! not one 111-1- n-c #:1-

tottulxgcctxvlgcctuzxgottxvz80¢9U3xgotgu‘x80c9

-> —) —> -> -) —)not: 0:111:11: 0:11:11: 00:12-13 0011-11- 000: 000*

Ito-11:1: 0111*: 0:11:31: 00:11:11 0011:11- 000: 0000

U 2C

OC ‘1’} .6. (VBVC)T.

  

If B has a zero on its superdiagonal, B can be immediately decoupled into two

smaller upper bidiagonal square matrices. If B has a zero on its diagonal, B also can

be decoupled into two smaller upper bidiagonal square matrices by multiplying by a

Givens mauix. Therefore using the decoupling calculations, upper bidiagonal square

submatrices with no zero on their diagonal and superbidiagonal always can be obtained



except for these submatrices on the diagonal of B with size 1.

An example of a 5 x 5 upper bidiagonal mauix with (3,3)-th entry zero is illus-

trated as following( +,0 denote the enuies which are changed in that step):

s
a
c
o
o

Now we discuss a method to diagonalize the above mentioned upperbidiagonal

submatrices . Without losting generality we just assume B with no zero on its diagonal

or superdiagonal since the decoupling calculations always can be used to change to

smaller mauices.

Choosing Givens rotations 55.3.1.1, Tim. i=1,2,...,n-1, leaving T13 open, B is

transformed as following:

      

    

at 1 ’*#+ 1 1:0 1

+ III III 0 at a: a1 :11

XTIJ .1. :1: be a1: :1: xTu + :1- :1:

B _.’ * ... _) * _) *

. a1: :1: :1-

1: :1: a1:

'1: :1: 1 :1- 1: 1

* * + T * *

sgsx 0 a1: :11 San—1.11x 111

—> * -> ->

:1: ... :1-

1: 0 :1

~ _ T _ T

B -(Sr.252.3 ‘ ' '5n—1.n) 3(T1,2T2,3 "'Tn-1.n) -5 BT (2.2)

which is again an upper bidiagonal mauix.

Now T13 is chosen as following:
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' 1

costtz simttz

‘Slmbiz COS¢12

  

T12 ___ 1
(2.3)

1

such that

cos¢1,2 -Sin¢1,2 di 'IJ- __ [1‘]
(2 4)

Sin¢1.2 COS¢1.2 d if2 0 . .

where u is the eigenvalue of

2 2

dn-1+fn-l daz-lf;
(2.5)

dn-lfn dn+fn

which is closer to d?, + f3.

The algorithm for obtaining E from B by (2.2) - (2.5) is just the Golub—Kahan

SVD step.

Let B“) = B. Recursively 8““) can be obtained by using B“) instead of B

in the above step. If for some B“), there are zeros on its diagonal or superdiagonal,

smaller matrices will be considered. It is known that fan—>0 and dam->0" at least qua-

dratically when i —9 co. Disregarding exception, the convergent rate is even cubic.

Hence the singular value decomposition of B always can be obtained by itera-

tions.

The subroutine SSVD in Linpack [4], SVD and MINIF in Eispack [5] are all

based on the Golub-Reisch SVD algorithm.

A different way of computing the bidiagonalization in the Lawson-Harson algo-

rithm in 1974 is to upper triangularize the mauix A first, which is faster when m > n.

The subroutine LSVDF in IMSL Library [7] is based on the Lawson-Harson SVD

algorithm.



CHAPTER 3

THE SINGULAR VALUE DECOMPOSITION AND

THE LlAPUNOV-SCHMIDT METHOD

§ 3.1. The Liapunov-Schmidt Method

Many problems in analysis and applied mathematics can be reduced to the deter-

mination of the zeros of a function in a Banach space. A bifurcation occurs when a

multiple zero exists. A technique which is called the Liapunov-Schmidt Method

(LSM) can be used to simplify bifurcation problems. In this section we want to estab-

lish the connection between the singular value decomposition and the Liapunov-

Schmidt method. Therefore a reliable numerical method can be used to solve the

bifurcation problems.

We first state the following theorem which gives the Liapunov-Schmidt method.

Theorem 1.1 ( Chow-Hale [1]). Suppose X, Z are Banach spaces, A: X —> Z

is a continuous linear operator, N: X —9 Z is a continuous nonlinear operator and I

is the identity operator in X. Let W and E be continuous projections in X and 2

respectively. Suppose

Null(A) = Xw , Range(A) = 25 ,

where XW is the range ofW in X and 25 is the range of E in Z. Then there is a

11
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bounded linear operator K: Z5 —9 X1_w. called the right inverse of A , such that

AK = I on Z3 , KA = I - W on X. Moreover, the equation

Ax-Nx=0 (1-1)

is equivalent to the following equations

z-mm@n)=a um

demon)=a am

where

x = y+z, yeXw, zeX,_w.

For the proof of this theorem, see [1].

§ 3.2. AConnection of SVD and LSM

Consider a C 1 function f: Rme‘ —) R’". Such a function can be viewed as a

function from R’" to itself with 5 parameters. In our discussion, we treat Rme‘ as

Rm+3

The first derivative of f at some point x0 6 Rm” can be represented as a real m

by m+s Jocabian matrix, which is denoted by Df(xo). Assume the rank of this

mauix is r, 0 S r S m. The singular value decomposition of Df(x0) is denoted by

Df(xo) = UoZng .

The following Lemma is obvious.
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Lemma 2.1.

DO
0 U5 is the projection from R" to {Range[ Df(xo)] };(a) U0

  

IVrO
0Vois the projection from Rm” to { Null[Df(xo)] }—;(13) V0

  

(c) [Df(xo) 1+ = V023US is the right inverse of Drag).

Proof: Identify Df(xo) as A in Theorem 2.1.5, then Theorem 2.1.5 /(c),(e)

give (a); Theorem 2.1.5/(d),(f) give (b). (Df(xo) )+ is just the pseudo-inverse of

Df(xo), therefore Theorem 2.1.5/(c),(d) give

I, 0

Df 0:0)th (xoir = U0 [0 OJUE

I, 0

lDf (xo)]+Df (X0) = Vo [ OJVT’

then (a),(b) and the definition implies (c). C]

Theorem 2.2. Let f: R’"+’—>R"‘ be C1, f (x0)=0. Let Df (x0)=U0>:0V[; has

rank r with OSrSm. Then there is a neighborhood 1] of x0 such that f(x)=0 , x e n

if and only if

z—zo=Vo£3Ug [Df (x0)(x—x0)-f(x)] and (2.1.a)

[m '

§u0.i,r+1fi(x)

=0 , (2.1.b)

§u0.t.M(x)
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where z - 20 is the projector of x - x0 in Rm” to { Null [ Df( x0) ] }l which is the

orthogonal complementary subspace of Null[Df( xo)] in R’"” and

f1(x)

f(x) = . . . .

firm

In the case r=m, the second equation disappears.

Proof: Consider f(x)=0, which is same as

Df (xo)(x -xo) - [Df(onx-xo) -f(x)]=0 - (22)

Regarding Df(xo) as the operator A, Df(x0)(x- x0) -f(x) as the continuous operator

N(x), x- x0 as x in Theorem 1.1, the right hand side of (1.1) in the theorem gives that

(2.2) is equivalent to:

(Z ‘Zo)-KE [Df (onx*xo)-f (101:0

(I-E)[Df (xo)(x-Xo)-f (x)]=0 ,

(2.3)

where (z- 20) is the projector of x - x0 in R’"” to { Null[Df(x0)] jl .

From Lemma 2.1/(a), we have:

(l-E)[Df (xo)(x-xo)-f (10]

’ 1

=Uo g I": UgonZoV€(x-Xo)-f(X)l

q,

=U0 8 ,0 Hit-foo]
. “"1  
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-(uo,,1 1f1(x)+uo.,21f2(x)+-,+u0m.1fm(x))

(“ourmfl(x)+u02mf2(x)++110»th (16))

  

01m-

0

0

'-2 uO,i,r+1fi(x)

i=1

  
--Zuo.i,ntfi(x) ~

i=1

From Lemma 2.1/(a),(c), we also have:

I
[(5 = (vozanTXUo 0'

 

0

011107) = virivi

Combining (2.3) and the above two equalities, the conclusion of the above

theorem connecting SVD and LSM is followed. III

In Chapter 4 and Chapter 6, we will restrict to the case s = 1. We are going to

change (2.1) further in different situations according the rank r. In the deficient rank

case, we obtain a bifurcation equation via the singular value decomposition in

Chapter 4, and in the full rank case, we obtain a mauix result via the singular value

decomposition in Chapter 6.



CHAPTER 4

A NUMERICAL BIFURCATION EQUATION

§ 4.1. Theorems

SVD can be used for detecting bifurcations because that it is a way for detecting

rank deficiency, and a bifurcation occurs at the point where the rank of the Jacobian

matrix of the derivative of the map is deficient. Now we are going to derive a bifurca-

tion equation by using the Liapunov-Schmidt method via SVD which is a system of

polynomials whose coefficients are expressed in terms of the enuies of the orthonormal

matrices in SVD.

In Chapter 4, 6, 7, we use s=l, i.e. f: R’"+1—>R’" is a function containing one

parameter. In Other words, we deal with one-parameter problems or equivalent

one-parameter problems ( if several parameters are involved, we give more condi-

tions to change them to one-parameter problems). Furthermore we assume that there

are only finite smooth curves passing each bifurcation point of the solution set of

f(x)=0, and f e C" , k 2 2 for some integer k which is discussed later in this chapter

such that (1.1) holds.

In this chapter, we assume f(xo)=0 for some x0=(x0,1,x0.2, - ~,xo.,,,.,1)T in

Rm“. Df(x0)=Uozovg withrankr, OSrSn—l, where

V0.1.1. ' ° ° V0.1.m+1

V0 = O O O O O I

V0,m+1,l ° ° ° v0,m+l,m+1 .

l6
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Ziumnifior)

Consider the Taylor series of about x=xo. Obviously the constant

£u0.i,n1fi(x)

i-l  L

term is zero, Also its linear term is zero, since

1

 

  

§u0,i,r+lfi(x)

D( .. (xo))=D(Uo g lilugfxxo)

.Zluosnfdx)

=Uo 3 ,3, U3(Df(xo))=(Uo 3 ,3, levozovg)

    

=0.

Denote x=(x1,x2, - - - ,x,,,.,1)T . We assume that f has enough smoothness such

that Taylor’s Theorem holds:

  

 

    

"" ' ' a ,. "'
i§u0,i,r+lfi(x) dr+l! [(xi-xo,1)3;+° - -+(xm+1-xo,m+1) <9me Id l(gr‘iuon',+1fi(xo))l

= +

m I a d,” m

guahmfdx) HUM-10,1 )Xl—i' ’ ' ' +(xm+1-Xo.m+1) axm+1 I (iéuo.i,mfl(xo))

L J .

 ___.__..l _ __8__ __ ‘9 dr+1+1m . . _.
(dr+1+1)! [(Xi JCo,1)axl + +(xm+1 xo'm+l)8x,,.+1 I (Euo,.,,+1fi(xo+e(x xo))

3

axm+l

 

WK?1-xo,1 )fii' ' ' ' +(xm+1-xo,m+1) 1d"I+l (gammaxowu-xo»

  .J

(1.1)
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where O < 9 < 1, d122, j=r+1, r+2, , m are positive integers and the second term

of the right hand is continuous.

Actually if there exists a positive integer k for the smoothness such that:

k> max (dp +1), (1.2)
r+l<pSm

then fe C" will have(1.1). Note that rs m-l, k2 3.

Now we have the following theorem :

Theorem 1.1. The unit tangent vector g at x0 along one of the branches

satisfies:

V0.1,r+1 V0.1.r+2 V0.1,m+1

(a) 5.1: Yr+l ' ° ' +yr+2 ° ' ° + ° ° ' +ym+l

v0,m+l,r+l Vo,m+1,r+2 v0,m+l,m+l ;

"+1 111+! 111+]

(b) [( 2 ij0”1j)aa +( z ij02,j)-a:— +( Z ij0,"1+1,j)—x_—a1" (zu0,i,pfi)(x0)--

j8r+l X1 jar-7+1 jar-+1 "1+

for p = r+1, r+2, , m, where dp is from (1.1);

2

(C) yg+1 +y3+2 + +Ym+l :1.

Here y;, i = r+1, , m+1, are real numbers.

In the generic case, d,+1 = dr+2 = ' ‘ ‘ ‘-' (1”, = 2 , we have the following corollary:
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Corollary 1.2 (The Quadratic Bifurcation Equation ).

In Theorem 1.1, if d,+1 = d,+2 = - : ~ =d,,, = 2, then the conclusion (b) has the fol-

lowing matrix form:

V0.1.r+1 ' ' ° v0,m+l,r+1 V0,l,r+l ' ° ' V0.1,m+1 Yr+1

(Yr+lv"'1ym+l) Qp =0

v0,l.m+l ' ° ' V0,n1+l,m+l v0,m+1.r+1 ' ° ' v0,m+l,m+l Ym-t-l

for p = r+1, r+2, , m, and

  

82 111
82 m

811axl (guo.i,pfi(x0))
r - . . , 311610..” (igu0.;.pfi(X0))

Qp = 2 m
. . . 82 m

Lax;—+13xt(i§UO,i,pfl(x
O)). . . . , m(5§uo'i'

pfl(XO))

This corollary gives a different way to derive the quadratic bifurcation equation

with [ 8 ] in the generic case.
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§ 4.2. Proofs

Proof of Theorem 1.1: We first prove Theorem 1.1 by starting with (3.2.1), f(x)=0

is equivalent to the equations:

2‘20 = VOZEUE [Df(xo)(x-xo)-f (16)]

and

zu0,i,r+1f1‘(xfl

i=1

Zuo,i.»tfi(x)

i-l   .1

Let II x - x0 ll be small. Dividing both sides of the first equation of the right

hand side of the above expression by II x - x0 ll , note that

l 0

z—zo=V0 [(3 0]VoT(x-xo ),

we get

 

Df(Xo)(x-Xo)-f(X)]. (2.1)

I lx—xol I

 

Ir 1' x—xo + T

—— v i: U
”[0 0]V0(le-xoll)= ° ° °

Let x set on the branch of the solution set of f(x) = 0 near x0 and tend to x0.

x—xo .
Then I I I I —-)§, the unit tangent vector along that branch by the assumed

x -x0

 

smoothness condition. Note that Df (xo)(x —xo)-f (x)=o(| lx-xol I), therefore the

following equation is obtained from (2.1):
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I, 0

V0 [0 0]Vg§=01

i.e.,

' o l

O

)G+l

  95n+l

V0.1,r+1 V0.1,r+2 V0.1.m+1

=Yr+1 . . . +yr+2 . . . + . . . +ym+l . . . (2'2)

v0,m+l,r+l Vo,m+1.r+2 Vo.m+1,m+1

that is exactly (a) in Theorem 1.1.

r i

Xuo.i,r+1fi(x)

i=1

The second equation =0 in (3.2.1) can be replaced due to (1.1)

Xuo.i.ntfi(x)

Lia!   
and the smoothness condition (1.2) of f by

 
 

 

  

- 4.. 1 ,, 1
[(11—101) a: + ‘ ' '+(Xm+1-xo.m+1)‘5‘xi—+'l—Idm(guatnifxxoD+ “NI-:1)! IOU lJ‘DJEOI '4' I

... :=0

[txt-xn ”far - - - aroma-xi...» ax: figurtmuo» +mica Ix-xol 1"]

(2.3)

Divide both sides of the first component by l lx—xol Id”l , the second component by

I Ix-xol ld'”, , the last component by I lx-xol Idm“, then let llx- x0 II —> 0,

hence the second term in each component goes to zero. For the first terms in all
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components, the orders of the derivatives are just the same as the orders of the powers

of II x - x0 ll , therefore we distribute through to each of xl—on, xz—xo; ,...,

a denominator II x - x0 ll . By all the hypotheses of f assumed, the
xm+l—x0,m+l

limit can be performed in all above mentioned quotients, and the limits of these quo-

 

tients are just the components of the unit tangent vector, by (a), they are

m+1 m+1 m+1

z YjVOI. j, Z iijOHZj’ 2 yJ-vanHJ. The limit of the second term of each

j=r+l j=r+l j=r+l

component is zero. Therefore the limit of (2.3) gives (b), 1 e

. m+l "1+1 d In -

[( Z ij0.,1,')% +( Z ijOHm+lj)ax I '+1(2uo.i,r+ifi)(xo)

j=r+l j=r+l ”1+1 i=1

=0 (2.4)

m+1 m+1

[( z ijOHl'93—:- +( 2 Yij,111+]j)axIdm(zu0,i,mfi)(x0)

j=r+l j=r+l i-I  

(c) of Theorem 1.1 is obvious. Hence the theorem is proved. Cl

Proof of Corollary 1.2: Corollary 1.2 can be immediately followed since the

second derivative can be written in the matrix form:

 

m+1 m+1

[( Z ijOHlj)—:—a +( z ij0,m+l,j)ax—'—T1I2(g(x0»

j=r+l j=r+l

"1+1 01+] 01+] 32800)

=2 ( 2 ijOHij 2 lijOqu)——’axMax

p,q=l jar-+1 j=r+l

"1+1 n+1

= [( Z 1ijO,,lj) ( Z lijOm-i-l j)I

j=r+l j=r+l

_ 823010) 32g(xo) q r mil .v . I

axnlaxl a151339;.“ j=r+lyl 0'”

328 628 m+l .

___.(_XL)- . . . _—(x(.))_ Z ijO,m+l,j

dxml 8x1 8xm+1 met ] j=r+l    
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V0.1,r+l v0.m+l,r+l

= (YH-lv ' - - 9ym+l)

V0.1.m+1 v0.m+l,m+l

P 2 1

a gtxo) 328(10)

8x 131 1 axlaxnwl Vo,i.r+1 V0.1.m+1 Yr+1

3280(0) 328(10) v0.m+l,r+l Vo,m+1.»t+1 Ynt+1

axm+l 8x1 axm-I-laxm-I-l J  

The bifurcation equation in Theorem 1.1 and Corollary 1.2 are systems of polyno-

mials. They can be solved by the probability one homotopy methods which can

guarantee finding all the roots. We will describe them in the next chapter.



CHAPTER 5

A PROBABILITY ONE HOMOTOPY METHOD

§ 5.1. Introduction

The bifurcation equation reduced from bifurcation problems via SVD in Chapter

4 is a system of special polynomial equations. There are m+1~r equations and vari-

ables. For sake of convenience, in this chapter, we use n instead of m+1-r.

Denmc ( n+1 .yr+2. "'1)’m+1 ) by Z = ( 21.22. “.21. ) and n polynomials by

P1(Z),P2(Z), - ~ ~ ,Pn(Z) which can be regarded as components of a polynomial vec-

tor P(Z).

Homotopy methods can be used to solve nonlinear equations, i.e., if we want to

solve P(Z) = 0 , we first solve a simple equation Q(Z) = O, and then set a homotopy

function H(Z,t) = (l-t) Q(Z) + t P(Z). Solve H(Z,t) = 0 by following the homotopy

curves ( solution set of H(Z,t) = O ) from t=0 to t=1, hence the zeros of Q(Z) lead

to the zeros of P(Z). The nonsingular Jacobian matrices of H(Z,t) are important for

tracing the homotopy curves.

The development in 1976 by Chow et al can finally avoid singular Jacobian

matrices by constructions called the probability one homotopy methods . In the

methods, for almost all the choices of the homotopy parameters, the methods are

globally convergent. This is an advance over earlier homotopies, since the philosophy

and the resulting software are fundamentally new [ 10].

The numerical bifurcation equation is a system of special polynomial equations.

24
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Observe that if Z = ( 21,22, . . . ,zn ) is a solution of this system, then -Z = (

-zl,-zz, . . . ,—z,, ) is also a solution of it. Therefore we wish to construct a sym-

metric homotopy function such that only half of the solutions need to be computed. In

the next section, we will use the fundamental idea of "probability one" and the tech-

niques in [2][3] to construct such a function.

§ 5.2. A Probability One Homotopy Method for the Bifurcation Equation

The system of polynomials appear in the bifurcation equation above is a system

of homogeneous polynomials with degree d;22 for each polynomial P;(Z), i = 1, 2,

..., n-l, except the last one Pn(Z) = 2% +z§+...+z?,-1. Without losing generality, we

can assume that the first 5 polynomials are of odd degree, i.e., d,-23, fori = 1, 2, ...,

s, and the rest of the polynomials are of even degree, OSsSn —1. Note first that there

is at least one even degree polynomial ( the last one ), and secondly that Z = 0 is not

a solution of the above system, although it satisfies all the polynomial equations

except the last one. Thirdly DP(O) =0, since P(Z) has no linear term.

We constrict the following symmetric homotopy function:

1‘11(Z.t)

”(2,1) = °

Hn(Z,t)

. d -

211-17121
,, a,

.d. 0
2‘11,ij

Z,‘-b,2_, [31(2) 131.

=(1-t) 2311‘ -b.+t + t - ~- + NH) . d (2.1)

. . . Pn(Z)
an-lszn-l

2:11:11 Tbn-l
1:1 2 ’

.2121-bn j zlanrjzj j

I1:
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where Z = ( zl,z2, ° ° ' ,zn)T e C" and H(Z,t) =

(H 1(Z,t),I-12(Z,t), - - - ,Hn(Z,t))T e C". The parameters are chosen in random by

2

a=(a11,... ,a1ma21, . . . ,a2,., . . . ,am.)Te C" andb =(b1, . . . ,bn)Te C".

The difference of this homotopy function and the known homotopy function is

that b 121, . . . , bsz, are used instead of b1, . . . ,bs in the first 3 components. There-

fore the transversality condition should be checked. We have:

Lemma 2.1. Let W= { (a,b)e anxC" |b1,-~-,b,, #0 }, and A={ (2.0 e

n . . 8(H11'HaHn)

C xR }. Then the submatrix of the Jacobi of (2.1) 8( Z a b) has full rank on

A x W ( i.e., rank is n if one regards the mauix as a n x [n + n2 +n ] complex mauix,

 

or the rank is 2n if one regards the matrix as a 2n x [ 2n + (2n)2 + 2n] real matrix ).

Proof: Case 1: t = 0.

Consider a submatrix :

l'

l -1

dIZl' —b!

..zI

1,-1

8” 61,2, "b‘

—— a In -1

312.1») d '.MIzloI _1

d...‘ “l

dl-Izl-l

  

(2.2)

. . d--l . .

which has full rank Since one of djzj’ — bj, -zj lS nonzero, for 1 s 1 SS. There-

fore the assertion is true in this case.

Case 2: 16 (0,1) and 21, °--,z,, are not all zero.

Consider a submatrix:
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1(1-1 "11-1 1"

a” )2" '( )2 10-021" ..... ((14):?
an ......

1" *4 ..... l :41( [)11 K .4): ((14):?..... “1'02:

(2.3)

which has rank n as soon as one of 21, - - - ,z,, is nonzero.

Case3: 16 (0,1) and zl=--- =z,,=0.

In this case 3—2 = 0 and also the partial derivatives to Z of the terms in (2.1),

which have degrees of Z greater than one, are zero.

 

  

  
  

iii-obi 0 .

aH _ —(1-t)b, ' ' 0 .

3(Zb) - 0 —(1_:)

0 -(1-1)

(2.4)

which gives rank n. [I]

Now define the homogeneous part of (2.1) by:

- Putz.»

H(Z.t)= ,_

H,(Z,t)

ct

n d1

..
2a 1' '2 '

21" 191(2) ,.t ’ ’

=<1-t) a... H pn'jjz) +t(1-t) . a.-. (2.5)

:21 2%4- : ° ° +23 [Earn—1,11} .

Xaw'zi
i=1 :
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Since 6_H is just as case 2 of (2.3) , we have:

6a

Lemma 2.2. The Jacobi of (2.5) has fullrank w.r. t. (z,t) x (a,b)

on { (C” - {0}) x (0,1)] x W.

Now we need a transversality theorem (see [ 3 D.

Definition 2.3. Let F be a smooth map : open set A c; Rd-eR” , then a point y e

R” is called a regular value of F on S g A provided that Range { DF(x) } = RP

for

all x e S n F‘1 (y). Those x’s are called regular points.

Theorem 2.4 ( Transversality Theorem ). Let A 1; Rd and W ; R4 be

open sets, and F: A x W —> R" be C' smooth with r > max {0, d-p}. Suppose

for some set S g: A that y e R” is a regular value of F on S x W. Then for almost

every w e W ( in the sense of either Baire category or Lebesgue measure ), y is a reg-

ular value of F( o ,w) on 8.

Lemma 2.1 and Lemma 2.2 give the full rank of the Jacobians of Hand H

( regarding them as real mauices by C = R2), therefore they give two onto linear

transformations. This implies that 0 e C" is a regular value of H on [ C” x

[0,1)]xW and of H on [(C" - {0} )x (0,1)]xW. Also direct computation gives that 0

is a regular value of H on [(C" - {0} )x 0 ]xW. Hence the transversality theorem

gives:
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Lemma 2.5. For almost every (a,b) e C"2 xC", 0 e C" is a regular value both of

H( - , . ,a,b) on C"x[0, 1) and ofH(o,-,a) on (c" -{0})x[0,1) .

As soon as Lemma 2.5 is established, the rest of work is same as [3] . i.e.,

the first part implies the homotopy curves are one-dimensional manifolds, also gs!- >

0 where s is the arclength; the second part guarantees the curves not going to the

infinity before t -) l. The degree theory argument guarantees all the solutions of P are

the end points of these curves. Therefore we have:

Theorem 2.6. For almost every (a,b) e C"2 xC", the solution set of H(Z,t) = 0

forms d = dlx - - - xdn_1 x2 one-dimensional homotopy curves beginning with d dis-

tinct roots of H(Z,0) = 0 which are easily obtained and leading to all solutions of

H(Z,1) = P(Z) = 0 with each curve reaching one zero of P(Z) or approaching the

infinite ( this occurs if the number of zeros of P(Z) is less than d including multipli-

city) when t —-> 1.

Observe that if Z is a solution of (2.1), so is -Z. Thus only half of the curves are

needed to be followed. We can pick the beginning points by choosing 21 coordinate

zero or one of (d1 -1)-th roots of b1, , z, coordinate zero or one of (d3 -1)-th roots

of b3, zs+1 coordinate one of dHI-th roots of b,“ , , z,,_1 coordinate one of dn-1 -th

roots of b,,_1, but choosing 2,, coordinate only the positive square root of b,, ( or only

the negative square root of b,. ). As soon as half of the solutions of P(Z)=0 are

obtained, the another half are just negative of them.

The solutions of the numerical bifurcation should be real numbers, and the homo-

topy method gives the complex numbers, hence we only pick those solutions of the

homotopy function with imaginary part zero theoretically and near zero numerically.



CHAPTER 6

THE SINGULAR VALUE DECOMPOSITION

AND REGULAR POINTS

§ 6.1. A Matrix Result

Let f: R’"+1 —-)R”', f(xo) = 0, f 6 C2. Suppose x0 is aregular point of the

solution set. i.e., Df(xo) has full rank. The question is how to find some points near

x0 in the solution set, on a one-dimensional smooth manifold. Let g be the unit

tangent vector along this one-dimensional smooth manifold. Using a limit procedure

as in Chapter 4, we have:

f(x)=0 => §l=o

vl,m+l

i.e., g: (1.1)

Vm+1,m+l .

Let f(x) = o, Df(x) = usz with rank m.

 

 

  

'21:. . . . aft '
V1.1 ° ° ° V1,m+1 8x1 31ml

V= Df(x)=

Vm+1,1 ' ' ' Vm+l,m+l ’ 3:11 _ . . afm

axl axm+l J

30



31

Let le‘m+l l=1smsilnx1|vi'm+ll it 0. Denote Df (x) as the matrix from Df(x) by

1 +

deleting one column :

 

 

 
 

  

2a an art aft“
- 3X 1 311-1 31m 316nm

Df(x)=
(1.2)

an. an an. 8f...

bit—1 . . . axii-1 311ml axm-I-l

and we have:

Theorem 1.1. Among all m x m submatrices of Df(x) , [if (x) is the only

submatrix which is always nonsingular.

Proof: First we prove that it is nonsingular. From f(x) = 0, we have by (1.1)

    

' 1 ' 'l

V 1,111+] Bfl

vl,m+l .. vk-l +1 dxk

0 =Df(x) ~~ =Df(X) ,k 1"" l + Vimn ---
Vm+1.m+1 ‘2 37* 8f...

_Vm+l,n1+ld _ axk J

P - r- -

V l,m+l 3f]

. . . -vk.m+1$

" vk—l,m+l k

Df(x) vk+i n+1 = O . .8f (13)

' m

. . . ’vk,m+1—

_vm+l,m+l L axk ..    

vkmm at 0 means as soon as vhmsfl is known, the rest of the components of

( v1,m+19 . . . ,vmr1,m+1)r are known since the null space is one-dimensional. That is

equivalent to say (1.3) is uniquely solved, i.e., 15f (x) is nonsingular.

L
‘
—
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To prove that it is the only m x m submatrix which is always nonsingular, we

V 1.m+1

pick the case when § = -

Vm+1,m+l

Df(x) =U z VT

  

  

r 0 '1

0

l --- k-th . Therefore

0

. 0 .

' T

”1.1 V1,m OI

Vk—IJ vk-IJII 0

o o 1

Vk+1.l Vk+1,m 0

me+1,1 vm+l,m 0

V1.1 viz—1,1 0 Vk+l,l Vm+1.1

V1,». viz-1,111 0 vk+l,m vm+l,m

0 . o . 0 l 0 . . . 0

Thus any in x m submatrix deleting the i-th column of Df(x) with i 3* k must include

the column

0 0

0
omO 1

which is the zero column. Thus the theorem is proved. Cl
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By this theorem, among all m+1 coordinate directions, this is the best direc-

tion for keeping the derivative invertible.

§ 6.2. A Newton’s Method via SVD

We may use the following method to find some point near x0 on the solution set

of f.

Method 2.1. Compute SVD of f at x0. If k is the coordinate index such that

ISiSm+l

set predictor:

x‘O) =xo =h -—-k-th (2.1)

 o
z
o
~
o
g
o

 

for some small real number h>0 .

Obtain x‘ = lim x(") by keeping the k-th coordinate fixed xiv) =x10), and

v—-)oo

changing the other coordinates from

Pxfiv+l)_xiv) '

~ \NU;:V)

Df(1M) :égl)_:’{{): = ‘f (1M) (22)

  
vH v

XIn+1)-x§nli
.. .I
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forv =0,1, 2, .

If f( x0 ) = 0, in the neighborhood of x0, f(x) is small. And 15f (x0) is non-

singular. f e C2 implies Df is Lipschitz in that subspace. Therefore the following

theorem can guarantee the above convergence quadratically. After a few iterates, x'

can be approximated by high accuracy.

Theorem 2.2 ( Newton-Kantorovich [9] ). Given g : Q t: R’" —>R”‘ and the

convex set (21 c: Q , let g be continuously differentiable on 91 and satisfy the con-

ditions:

(a) ll Dg (y)- Dg (z) II 57 II y - 2 II for all y, z in (21;

(1» II ng‘0’)“g<y‘°’) II .<.ot;

(c) II Dg(y(0))"1 II SB, for some ya” 6 Q].

Consider the quantities

h: = 01137

l-ql-Zh

1 = ———oc.

h

1+Vl-2h

Y2 = —'—"z———(X.

If h s 1/2 and the closed ball 5,,1 M”) c 91, then the sequence { yM } defined by

y("+1) = y(") — Dg(y(")) ‘1 g(y(")) for v =0, 1, remains in S 71 0(0)) and converges

to the unique zero of g( y ) in (21 n57201(0)) .



CHAPTER 7

A NUMERICAL METHOD OF

GLOBAL BIFURCATIONS

§ 7.1. Rank Detecting, Curve Following and Curve Switching Via SVD

Let f: R"'xR—->R"’, and suppose f is sm00th enough so that the Taylor Theorem

in Chapter 4 holds. Df(x)=U 2 V‘ , where

  

  

I

01 0

D, 0

21— 0 0 — 0,

cm 0

by setting O',+1=O',+2="'=O'm=0.

We also assume that there are only finite smooth curves passing each bifurcation

point of the solution set of f(x)=0. In this chapter, we assume that the solution set is

connected, otherwise we just consider a component of the solution set.

We present in this section several numerical methods by using the singular value

decomposition which are going to be used in the next section for an algorithm.

Theoretically 0,, = 0 is a criterion for a bifurcation point. Numerically we can

choose a very small number 8 which is machine dependent, hence

35
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Om <8 (1.1)

is a criterion for the bifurcation point. Since SVD is a reliable way for detecting rank

deficiency and near deficiency, the above method should be accurate to decide the

bifurcation point.

If a point x is detected as a regular point, according to the tangent vector which is

obtained by SVD, i.e., the m+1-th right singular vector

(v1.,,,+1,v2.,,,+1. - - - ,v,,,+1,,,,+1)T , we can find xk the largest coordinate changing the

solution. Consequently Newton’s method, i.e., Method 6.2.2., can be used. Namely

choose a suitable positive number h which is dependent on 0’," monotonically, denoted

  

it by:

h =g(om) (1.2)

such that

. 0 .

0

x<°>=x +1; (1) —--kth; (1.3)

o

and

P xsv+l)_xiv) I

.. at): v)
Df(xv) :jéimfi'fi = -f<x<v>) (1.4)

ASP-x1111  

for v = 0,1,2, , where
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Ea an an aft”
.. 8x1 311-1 311m 3Xm+1

Df(xv)=

31a at». at». 6f»-
8x1 311-1 8x“, axm-t-l 

After a few iterates, we get a point x(v°) for some v0 which is a numerical solu-

tion of f(x) = 0 different from x. Note that (1.2) also can be used to avoid missing

bifurcation points since by our methods the step size h varies and the h is smaller when

x is close to the bifurcation point, especially h is smaller when x is near the bifurcation

point.

Using Newton’s method via SVD, we can follow the branch to the bifurcation

point x. When h is very small, we can detect the bifurcation point by detecting the

last singular values along the tangent direction. If a bifurcation point x is detected,

using Theorem 4.1.1 and 5.2.6, all the unit tangential directions i can be determined.

Deleting one direction which is opposite the direction while the bifurcation point is

obtained, we have points on the other branchs near the bifurcation point numerically:

:= x +8§, (1.5)

where 8 is a small positive number.

Now connecting all methods above, we have a numerical method of global bifur-

cations which is described in the next section.

§ 7.2. A Numerical Method of Global Bifurcations via SVD

We consider an open bounded region. So if the solution set is bounded in this

region, then the algorithm which we will describe below gives all branchs numerically.
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If the solution set is unbounded, or the set is too large comparing the open region we

set, then the algorithm gives the subset of the solution inside the region numerically. A

suitable chosen region will give the major character of the solution set.

The method begins at one point of the solution set in the region. Usually if the

problem has a trivial solution, we will take it with some value of the parameter as a

starting point which is a regular point. Then trace the solution curve to get the global

behavior.

Algorithm 2.1. Given f(x)=0 with f: R’"+1 —) R’" and the hypotheses in the

beginning of this chapter, the following algorithm gives the solution set numerically.

Procedure Solution_Via_SVD

begin

define a bounded open region B;

initialize x=(x1, . . . ,xm+1 )T ( * in B and fails to satisfy (1.1) am < e * )

and two directions ( * based on the last right singular vector of Df * );

L=2 ( * L is the label of branchs to be followed * );

while L>0 do

L:=L-1;

while 0‘," 2 e in (1.1) and x in B do

generate x1 ( * based on (1.2),(1.3),(1.4) * ), set x:= x1 ;

end while

if x in B then

case (to judge if the bifurcation point x has been met before) begin

x is a new bifurcation point:

find points with directions on N branchs to be followed

( * based on (1.5) * ), set L:=L+N;

x is a previously found bifurcation point:

then the branch to this point x determines a branch with opposite

direction emanating from x to the starting point. Delete this

branch that emanates from x from the list of branches to be followed

when x is used as a starting point; Set L: = L-l; ( * See Figure 1 * )

end case

end if

end while

end procedure ;
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H 11 x2
I
'
I
N

l
e
l

For example if path 3 starting at x1 leads to x2, then the path 5

leading from x2 to x1 is deleted when x2 is used as a starting point

Figure 1. An illustration of the algorithm.
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§ 7.3. An Example

We give an example to show the above algorithm. This example is obtained

from the bifurcation problem in Banach space of codimension 4, reducing into the

null space by the Liapunov-Schmidt method which has been theoretically done in [1] .

Let 1:112 xR4 —)R2 bywx (tt,v,ot1,ot2 )—->0with C(w) + ot1 1.1 w + 0:2 1.2 w =

0 , where

3 2

w1 w1 +11th2 __ 10 __00

W: [W2], C(W)= [vwfivz + w% ]' L1 — [01] and L2 — [01].

By selecting 3 parameters, we get an equivalent one-parameter problem , and so the

Algorithm 2.1 can be used to get the global bifurcation numerically. Figure 2 is the

computer graph of this example. The value on the horizontal axis represents the value

of the parameter a1, and the value on the vertical axis represents the sum of the

values of WI and w; . The following table gives five different choices of 11 , v, a2 (

for the reason of such a choice also see [1]). For all such choices beginning with( wl ,

W2 , 011) = ( 0.0, 0.0, -1.5 ), five different diagrams are obtained.

 

case (a) (b) (C) (d) (c)

 

tt 2.0 0.75 0.5 0.5 1.5

 

 

012 1.0 1.0 1.0 1.0 1.0        
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3- 3 j

2 2 I

o a}; :

-r -1 ~ ;

-... -2 §

-3 —3 I

-2 -1 O 1 2 3 4 -2 -1 0 1 2 3 4

(a) (b)
3_

a p

‘ ’1'

° A-1

-.. §

...3'   

 
  

    
 

Figure 2. Five computer graphs for the example.
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