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ABSTRACT

NUMERICAL METHODS OF BIFURCATION PROBLEMS
VIA SINGULAR VALUE DECOMPOSITIONS
AND HOMOTOPY METHODS

By

Yun-qiu Shen

A relation between bifurcation theory and the singular value decomposition,
homotopy methods in numerical analysis is studied. Given a nonlinear equation, we
give a local analysis in a neighborhood of a solution via the Liapunov-Schmidt method
and the singular value decomposition. This analysis is applicable to regular, turning
or bifurcation points. In the case of a bifurcation point, homotopy methods are used
for solving the bifurcation equation. A numerical method for global bifurcation prob-

lems based on the above analysis is presented.
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CHAPTER 1

INTRODUCTION

Let F: XxR* — Z be a Fredholm operator, where X, Z are Banach spaces and
R® is the usual s dimensional space in which the parameter vector A sets. The
Liapunov - Schmidt method can be used to reduce F(x,A) =0 to a finite dimensional
system f(y,A) =0 with f: R™xR* — R". The bifurcation behavior of the solution set
of f determines the bifurcation behavior of the solution set of F. In the boundary value
problem of ODE or PDE, a finite element method or a finite difference method also
can be used to approximate the problem by a finite dimensional system. If the original
differential equation contains parameters, then the finite dimensional system which is
of the same form as f obtained from the Liapunov- Schmidt method also contains
parameters. Furthermore, many problems themselves are finite dimensional prob-
lems. Therefore studying the behavior of the finite dimensional system with parame-

ters is meaningful.

In this paper we present a new numerical methods for the bifurcation problem
f(x,A) =0 with f: R™XR—R™. The methods include using reliable ways to distin-
guish the bifurcation and non-bifurcation, to factor out the bifurcation equation, and

to solve the problem in either cases.

Bifurcation occurs at the points of the solution set when the Jacobian matrix of f
at these points is rank deficient and a point of the solution set is near a bifurcation point

when the Jacobian matrix at that point is nearly rank deficient. We relate this Jacobian

1



matrix with the singular value decomposition(SVD). Because an effective way to
detect and treat rank deficient problems in numerical analysis is to compute the singu-
lar value decomposition. see [6]. If the singular value decomposition of the Jacobian
matrix at some point is performed, we certainly want to use the informations from it
as much as we can. In this thesis, we connect it with the Liapunov- Schmidt method

in the bifurcation theory. The major results which relate this are:

Theorem 3.2.2 The Liapunov-Schmidt method via SVD;
Theorem 4.1.1 A numerical bifurcation equation via SVD;
Theorem 6.1.1 A matrix result via SVD for the Newton’s iterates;

Algorithm 7.2.1 A numerical method of global bifurcations via SVD.

After a numerical bifurcation equation, which is a system of special polynomi-
als, is obtained via SVD, we need a reliable method to solve it. The development in
1976 by Chow, Mallet-Paret and Yorke [2] is an advance in the homotopy methods.
The methods are called the probability one homotopy methods which provide practical
ways for solving nonlinear equations [10]. For the general case of a system of polyno-
mials, the problem of finding all zeros has already been solved in [3]. The numerical
bifurcation equation which appears in this paper is a system of special polynomials.
Only some of the solutions are to be solved. The others can be obtained by symmetry.
We develop a special homotopy equation to find these required solutions by using
some techniques in [2] [3]. We obtain a method which only requires half of the usual

number of computations. The result is obtained in:

Theorem 5.2.6 A probability one homotopy method with symmetry for solving

the numerical bifurcation equation.



In most chapters, we assume f satisfies the following two conditions:

@@ fis C* k22;

(b) there are only finite smooth curves passing each bifurcation point of the solu-

tion set of f(x,A) =0.



CHAPTER 2

THE SINGULAR VALUE DECOMPOSITION

§ 2.1. Definitions and Theorems

Singular value decomposition (SVD) is one of the most important tools in matrix
computations. It is a reliable method for detecting and treating rank deficient prob-
lems. In this section we briefly describe the results of SVD which are needed in this
thesis. We will present them by restricting to real matrices. For proofs or details,
see, for example, Golub and Van Loan [6], Dongarra et al [4]. Similar results for
complex matrices also can be found in Stoer and Burlisch [9]. But for the purpose of
our research, we only need the case for real matrices which is presented in the follow-

ing definitions and theorems.

Let A be a real m by n matrix. It is known that there exist an m by m orthogonal

matrix U and an n by n orthogonal matrix V such that

A=UzVT, (1.1)
where
_|bro
=00 (1.2)

isanm by n matrix, and D, isa rbyr diagonal matrix. Furthermore
D, =diag(c,,0,, - - -,0,), where 626,220, >0. VT is the transpose of V.
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Definition 1.1. (1.1) is called the singular value decomposition of the matrix

A. Let

p = min(m,n), and define G,,,=0,,2=..=0, =0. Then ©,,02, - - *,0), are called the

singular values of A.

Theorem 1.2.
(a) The number of nonzero singular values is equal to the rank of A ;
(b) o%,o%, cees 03 are the positive eigenvalues of ATA and AAT ;
(c) the columns of V are corresponding eigenvectors of ATA

(d) the columns of U are corresponding eigenvectors of AAT

Definition 1.3. The columns of V are called the right singular vectors of A,

while the columns of U are called the left singular vectors of A.

Definition 1.4. The pseudo-inverse A* is defined to be the matrix

At=vztUT, (1.3)
where
Do
Tt = 0’ 0 (1.4)
. 1 1
th D;! =diag(—,—,..., —
wi iag( s o,)

It’s easy to verify the properties of the pseudo-inverse:




Theorem 1.5.
(@) AA*A =A;

(b) A+AA+ =A+;

() AAT=U

SO
c
LN

——

d) A*A=V

QQ
<
.S

'Q:“ IQ‘Nl

() (AA*)?=AA*;

) (A*A)2 =A"A.

Regarding A as a linear transformation from R" to R™ under certain bases,
denoting U = [ u,us, - **,u,] and V=[v,vy,---,v, ], the following theorem is

obtained:

Theorem 1.6.
(@) Null(A) = Span{ Vrt1sVr42, °°° ,V,,}; and

(b) Range (A) =Span { u,,usz, - -,u,}.

§ 2.2. Computational Methods

Theoretically Theorem 1.2 already gives a way to compute SVD of A. i.e., ATA
and AAT can be used to obtain SVD of A. However it is not a satisfactory way for

the computational purpose due to that the round off errors often destroy pertinent infor-

10
mation. For example, letA = [a O] ,where a satisfies €y <a < Veg and ¢ is the
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machine precision. Then theoretically ATA = 1+61 aoz] gives the singular values of

A with oy = ‘/—l-l-a—2 and 0, = a since obviously the eigenvalues of ATA are 1+ a? and
a?. But the computational results due to the round off errors yield A7A = [(1) 8]
gives the singular values of A with 6; =1 and 6, =0 . The second singular value is
qualitatively incorrect.

The basic computational method is the Golub-Reisch SVD algorithm [6] in 1970
which contains Householder bidiagonalization, the decoupling calculation and the

Golub-Kahan SVD step of a bidiagonal square matrix having no zeros on its diagonal

and superdiagonal. We will briefly illustrate these methods. For more details, see
[41[51061(7] .
Let A be an m by n matrix. In this section, we assume m 2 n, otherwise con-

siderAT. Two orthogonal matrices are involved in this algorithm, they are:

Definition 2.1. A Householder matrix U is a matrix of the form U =1 -

2uuT/uTu, where u is a column vector.

Definition 2.2. A Givens rotation matrix U is a matrix of the form
: ]

cosO sin@

~sin® cos

Then the matrix A can be transformed into a bidiagonal matrix by:



Theorem 2.3 ( Householder Bidiagonalization ). There exist products of House-

holder matrices Up = U U4 - - U,and Vg =V V, - - - V,,_5 such that

where

An example of 5 x 4 matrix is illustrated as following:

* % % % * %00 * % (0 .
% %8 . % . % % . x

ttttulxgt-:uxvlg..-uzxgottxvzg
I I B IR Bl [ I IR el ' W SRR il 1y
R 0O*** 0* *» 00™** 0

2.1

If B has a zero on its superdiagonal, B can be immediately decoupled into two

smaller upper bidiagonal square matrices. If B has a zero on its diagonal, B also can

be decoupled into two smaller upper bidiagonal square matrices by multiplying by a

Givens matrix. Therefore using the decoupling calculations, upper bidiagonal square

submatrices with no zero on their diagonal and superbidiagonal always can be obtained



except for these submatrices on the diagonal of B with size 1.

An example of a 5 x 5 upper bidiagonal matrix with (3,3)-th entry zero is illus-

trated as following( +,0 denote the entries which are changed in that step):

O # 00
COO # =
cooQ+
OO0 & »

Now we discuss a method to diagonalize the above mentioned upperbidiagonal
submatrices . Without losting generality we just assume B with no zero on its diagonal
or superdiagonal since the decoupling calculations always can be used to change to
smaller matrices.

Choosing Givens rotations S; ;+1, Tji+1, i=1,2,...,n-1, leaving T, open, B is

transformed as following:

* & x & + * X 0
L I 0 * % . %
xTy2 - S{zx * % XTay | + » *
B - - * - *
- * *
* * *
* % * X
* x4 * X
S§23%X| O ** ST aX¥ *
- * - -
* * %
® 0 *
B=(512523 """ Sac1,n) B(T12T23 *** Tuo1,n) =STBT (2.2)

which is again an upper bidiagonal matrix.

Now T, is chosen as following:
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- .
cosdy2 sindy;
=siny2 cosd;z

Typ= 1 (2.3)
1

such that

cosdyz -sindyz | di-n|_ [] o8

singy 2 cosdyz | [dif2| 1O, '
where U is the eigenvalue of

dnrtfa-y n-rfy 2.5)

dn—lfn d'l+f"

which is closerto d2 + f 2,

The algorithm for obtaining B from B by (2.2) - (2.5) is just the Golub-Kahan
SVD step.

Let B® =B. Recursively B¢*D can be obtained by using B¢) instead of B
in the above step. If for some B®, there are zeros on its diagonal or superdiagonal,
smaller matrices will be considered. It is known that ff,‘ ) 50 and dff)—)on at least qua-

dratically when i — o. Disregarding exception, the convergent rate is even cubic.

Hence the singular value decomposition of B always can be obtained by itera-

tions.

The subroutine SSVD in Linpack [4], SVD and MINIF in Eispack [5] are all
based on the Golub-Reisch SVD algorithm.

A different way of computing the bidiagonalization in the Lawson-Harson algo-
rithm in 1974 is to upper triangularize the matrix A first, which is faster when m > n.
The subroutine LSVDF in IMSL Library [7] is based on the Lawson-Harson SVD

algorithm.



CHAPTER 3

THE SINGULAR VALUE DECOMPOSITION AND
THE LIAPUNOV-SCHMIDT METHOD

§ 3.1. The Liapunov-Schmidt Method

Many problems in analysis and applied mathematics can be reduced to the deter-
mination of the zeros of a function in a Banach space. A bifurcation occurs when a
multiple zero exists. A technique which is called the Liapunov-Schmidt Method
(LSM) can be used to simplify bifurcation problems. In this section we want to estab-
lish the connection between the singular value decomposition and the Liapunov-
Schmidt method. Therefore a reliable numerical method can be used to solve the

bifurcation problems.

We first state the following theorem which gives the Liapunov-Schmidt method.

Theorem 1.1 ( Chow-Hale [1]). Suppose X, Z are Banach spaces, A: X = Z
is a continuous linear operator, N: X — Z is a continuous nonlinear operator and I
is the identity operator in X. Let W and E be continuous projections in X and Z

respectively. Suppose

Null(A) = Xw , Range(A) = Zp ,

where X,, is the range of W in X and Zg is therange of Ein Z.  Then thereisa

11
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bounded linear operator K: Zr — X;_w, called the right inverse of A, such that

AK=IonZg, KA=I-WonX. Moreover, the equation
Ax-Nx =0
is equivalent to the following equations

z -— KEN(y+z) = 0,

(/-E)N(y+z) = 0,

where

x = y+z, yeXy, zeX;_w.

For the proof of this theorem, see [1].

§ 3.2. A Connection of SVD and LSM

(1.1)

(1.2)

(1.3)

Consider a C! function f: R™xR* — R™. Such a function can be viewed as a

function from R™ to itself with s parameters. In our discussion, we treat R™xR* as

Rm+s

The first derivative of f at some point xo € R™** can be represented as a real m

by m+s Jocabian matrix, which is denoted by Df(xg). Assume the rank of this

matrix ist, 0 Sr<m. The singular value decomposition of Df(x ) is denoted by

Df (xg)=UoZeVy

The following Lemma is obvious.
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Lemma 2.1.

@) Uy Ug is the projection from R"” to {Range[ Df(x()]};

1*0.:*-
OO,

) Vo v is the projection from R™** to { Null[Df(x¢)] }*;

IO‘NI
.on

(©) [Df(xo) I* = VoZU? is the right inverse of Df(x ).

Proof: Identify Df(xg) as A in Theorem 2.1.5, then Theorem 2.1.5 /(c),(e)
give (a); Theorem 2.1.5/(d),(f) give (b). (Df(xg) )* is just the pseudo-inverse of
Df(x), therefore Theorem 2.1.5/(c),(d) give

I, O
Df (xo)Df (xo)I* = Uy [0 0] )

I, O
[Df x)I*Df (x0)=Vo 0} Vi,

then (a),(b) and the definition implies (c). O

Theorem 2.2. Letf:R™*—R™be C!, f(xq)=0. Let Df (x0)=U020V5 has
rank r with 0Sr<m. Then there is a neighborhood 1 of xq such that f(x)=0,x e 1

if and only if

2-20=VZ5UG [Df (x0)(x=x0)=f (x)] and (2.1.a)

['m b
Suo,ir+1filx)

i=l

=0 , (2.1.b)
X uo,imfi(x)

i=l
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where z - z( is the projector of X - xg in R™** to { Null [ Df( xg) ] J4 which is the

orthogonal complementary subspace of Null[Df( x()] in R™* and

f1(x)

f=|--|
fm (X)

In the case r=m, the second equation disappears.

Proof: Consider f(x)=0, which is same as
Df (xo)(x —x¢) = [Df (x0)(x—x0) - f *)]=0 . (2.2)

Regarding Df(x() as the operator A, Df(xg)(x- xg) -f(x) as the continuous operator
N(x), x- xg as x in Theorem 1.1, the right hand side of (1.1) in the theorem gives that

(2.2) is equivalent to:

(z-29)-KE[Df (x9)(x—x0)-f (x)]=0
(I-E)[Df (xg)(x=xo)-f (x)I=0 ,

(2.3)

where (z- z) is the projector of x-xo in R™** to { Null[Df(xq)] }* .

From Lemma 2.1/(a), we have:

(I -E)[Df (x0)(x=x0)-f (x)]

=00 |9 19 |UBWezeVEx—xo)-f )

:
=00 |3 ,2 |vhi-f
NG
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O O
O Ipr

—(uo,1,1 /1) Hug2 1 2+ Fug m, 1fm(X))

=U, .
=01, mf1xX)HUQ 2, mf2(X)+.. FUo mmf (X))

o
o

-_Z'iuo.i.rnfi(x)

m

L=Y uo,imfi(x) -
i=1

From Lemma 2.1/(a),(c), we also have:

I
4 0](15) = Vo303

KE = (VoZ§UDWo |4 o

Combining (2.3) and the above two equalities, the conclusion of the above

theorem connecting SVD and LSM is followed. O

In Chapter 4 and Chapter 6, we will restrict to the case s = 1. We are going to
change (2.1) further in different situations according the rank r. In the deficient rank
case, we obtain a bifurcation equation via the singular value decomposition in
Chapter 4, and in the full rank case, we obtain a matrix result via the singular value

decomposition in Chapter 6.



CHAPTER 4

A NUMERICAL BIFURCATION EQUATION

§ 4.1. Theorems

SVD can be used for detecting bifurcations because that it is a way for detecting
rank deficiency, and a bifurcation occurs at the point where the rank of the Jacobian
matrix of the derivative of the map is deficient. Now we are going to derive a bifurca-
tion equation by using the Liapunov-Schmidt method via SVD which is a system of
polynomials whose coefficients are expressed in terms of the entries of the orthonormal

matrices in SVD.

In Chapter 4, 6, 7, we use s=1, i.e. f: R™*! 5R™ is a function containing one
parameter. In other words, we deal with one-parameter problems or equivalent
one-parameter problems ( if several parameters are involved, we give more condi-
tions to change them to one-parameter problems). Furthermore we assume that there
are only finite smooth curves passing each bifurcation point of the solution set of
f(x)=0, and fe C*, k 22 for some integer k which is discussed later in this chapter

such that (1.1) holds.
In this chapter, we assume f(xo)=0 for some xo=(xg;,X02, """ ,xo,,,,ﬂ)T in

R™1 | Df(xg)=UoZoV} withrankr, 0<r<m-1, where

Voi,1, "7 Vo,m+1
Vo= ces e
Vom+1,1 """ VOm+1,m+1 )

16



Consider the Taylor series of

17

.Zluo,i,mfi(x)

about x=xo. Obviously the constant

Y uo,imfi(x)

i=]

-

term is zero, Also its linear term is zero, since

e

_mzluo,i,mﬁ(x)
p(|” - |xo)=DWo |9 Imo_’]Ugf)(XO)
_Zluo,.',mfi(x)
=, (3,2 [vE@r xon=wo | ;© |UDWozovD)
=0 .

Denote x=(x,,x3, **

that Taylor’s Theorem holds:

[ A p) 4. m

Eluo.i.mf;(x) dou! [(x1—x0, )'5’:4- © HX 1 =X m41) P ] 1(Eiuo,.'_r+1f.-(lto))
m - P A o

Euo.i,mfi(x) "I;!‘[(I 1=X0,1 )Xl—*' c H Xt 1 X0, m+1) P ] (Eluo.i.mfi(xo))
Lm0 =t - HhmarTomet) s T (S o, Sitco+00cro))
(dr+l+1)! 1740,1 axl m+1"20,m+1 8x,,,+1 foe] 0,i,r+1Ji
002t i —Xoma ) I (B i (HHOCE=0))

(dn+1)! 0 5y M0 Xt &7 0hm

. ,x,,,+1)T . We assume that f has enough smoothness such

1

(1.1)
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where 0< 6 < 1, d;22, j=r+l,r+2, ..., m are positive integers and the second term

of the right hand is continuous.

Actually if there exists a positive integer k for the smoothness such that:

k2 max (d, +1), (1.2)
r+l<psm

then fe C* will have (1.1). Notethat r< m-1, k2 3.

Now we have the following theorem :

Theorem 1.1. The unit tangent vector & at xo along one of the branches

satisfies:
Vo,1,r+1 Vo,1,r+2 Vo,1,m+1
@ &=y | 0 | *¥e2| 0 |+ +Ymn
Vom+l,r+l VOo,m+1,r+2 Vo,m+1,m+1 |
m+l m+1 m+l 4
(b) [( E yJVOI 1) +( 2 )’,Vo_z.,) +( 2 )’,Vo m+] /) ] (zuOApft)(xo) -
jur+l X1 Jjur+l jar+l Xm +1 i=]

forp=r+l,r+2, .., m, where d, is from (1.1);

2
(c) )’3+1 +)’3+2 + +Yyma =1

Here y;, i=r+l,..,m+1, arereal numbers.

In the generic case, d,;) =d,;3 = -+ =d, =2, we have the following corollary:
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Corollary 1.2 ( The Quadratic Bifurcation Equation ).

In Theorem 1.1, if d,,; =d,.2 = -+ =d,, =2, then the conclusion (b) has the fol-

lowing matrix form:

Vo, r+1 °°° VOom+l,r+l Voi,r+1 """ Vol,m+l Yr+1
Or+1s " " s Yme1) -+ [=0

Vol,m+l " " VOom+l,m+l Vom+l,r+l " VOom+l,m+l| [Ym+1

forp=r+l,r+2,...,m, and

82 m aZ m
9x10x, (igluo.i.pﬁ(xo)), %10 (iguo.;'pﬁ(xo))
Qp = 52 i e 2 _
Lax’“la_xl (Euo.i.pfi(XO)). ceey m(gquﬂ(xo»

This corollary gives a different way to derive the quadratic bifurcation equation

with [ 8 ] in the generic case.
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§ 4.2. Proofs

Proof of Theorem 1.1: We first prove Theorem 1.1 by starting with (3.2.1), f(x)=0

is equivalent to the equations:

220 = VoZ4U§ [Df (o)xx0)-f ()]
and

Z uO.i.r-blfi(xﬂ

i=1

Y uo,imfi(x)

i=]

-

Let Il x - xo Il be small. Dividing both sides of the first equation of the right

hand side of the above expression by Il x - xg Il , note that

I, O

we get

Df (xo)(x—xo)—f (x)]' an

y O T X=X0 +7T
Vo [0 o]"o( ||)=V°E°U°[ =N

llx=xg

Let x set on the branch of the solution set of f(x) = 0 near x¢ and tend to xj.

X=X .
Then TI——l—I——)&, the unit tangent vector along that branch by the assumed
X =X0

smoothness condition. Note that Df (xo)(x—=x¢)—f (x)=0 (| Ix=x¢ | |), therefore the

following equation is obtained from (2.1):
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Vo [Io, O]Vgi =0,

ie.,

[0 |
0

Yr+1

Nyl
I

Vo

_)’m+1_

Vo,1,r+1 Vo,1,r+2 Vo,1,m+1
S| [t | A Yma | 22)

Vo,m+1,r+1 Vo,m+1,r+2 Vo,m+1,m+1

that is exactly (a) in Theorem 1.1.

r b

Y ug,ire1filx)

i=]

The second equation =0 in (3.2.1) can be replaced due to (1.1)
> uo,imfi(x)
L= _

and the smoothness condition (1.2) of f by

d 4!
[(x1—x01 )axil*’ e +(xm1—xo,..+1)ra’:']‘d (i-zl“o.i.nlﬁ(xo)) + (d,.,-:-l)! [o (1 1x=xq11%!]
ces =0
[1mas ) 3ot e —omet) g1 (Bt + oo (1 x50 1]
2.3)

Divide both sides of the first component by | |x—xg | 1%+ the second component by
I x=xgpl ld””, ... , the last component by | Ix-xg!| Id"'“, then let lix- xo I = O,

hence the second term in each component goes to zero.  For the first terms in all
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components, the orders of the derivatives are just the same as the orders of the powers
of Il x - xog I, therefore we distribute through to each of x;—=x¢;, X2-x02 ..,
Xm+1—X0,m+1 a denominator Il x - xo Il . By all the hypotheses of f assumed, the
limit can be performed in all above mentioned quotients, and the limits of these quo-

tients are just the components of the unit tangent vector, by (a), they are

m+1 m+1 m+1
Y YiVoljs X YjvVo2j» - X, YjVom+1,j- The limit of the second term of each
j=r+l Jj=r+1 Jj=r+l

component is zero. Therefore the limit of (2.3) gives (b), i.e

-~ -

m+] m+] m
(@ y,m,) + (T Yome)3; 4t (S i1 ko)
Jj=r+l Jj=r+l m+1 i=]
=0 (2.4)
m+1 m+1
[( Z yJVOI /) +( Z )’,Vo m+1 j) "(Zuo,mf,)(Xo)
j=r+l J=r+l i=] ]

(c) of Theorem 1.1 is obvious. Hence the theorem is proved. [

Proof of Corollary 1.2: Corollary 1.2 can be immediately followed since the

second derivative can be written in the matrix form:

m+1 m+1 a
[( z YjYo,2, /) ©+( 2 y]v0m+1 ]) ] (g(xo))
j=r+l j=r+l
m+l m+l m+l1 azg(xo)
=2 (X ijoPl)( Z )’,Vo“) ax,9x,
p.q=1 j=r+l
m+l m+1
= [( Z yJVOI ]) “a ( E ijO,m+l.j)]
J=r+1 J=r+l
[ 3% (xo) Fgo) |[ '
axlaxl o axlaxml j;:ﬂy,vo,l.,
82 (Xo) e (xo) i
———— ¢ 0 C—— -y m .
0Xpm 410X O0Xm+10Xm+1 ] j=§rlyj Oml.s
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Voi,r+1 """ VOm+l,r+l
= (YH-I' oo vym+l)
Vol,m+l " VOom+l,m+l
Pgxo)  Fglxo)
0x0x; 0X 10X 41 VoLr+l  CC Volm+l | |Yr+
9%g (xo) %8 (x0) Vom+lr+l "7 VOomelmel | [Ymel
axm-ﬁ-l ox 1 axm+1 axmd‘l

The bifurcation equation in Theorem 1.1 and Corollary 1.2 are systems of polyno-
mials. They can be solved by the probability one homotopy methods which can

guarantee finding all the roots. We will describe them in the next chapter.



CHAPTER 5

A PROBABILITY ONE HOMOTOPY METHOD

§ 5.1. Introduction

The bifurcation equation reduced from bifurcation problems via SVD in Chapter
4 is a system of special polynomial equations. There are m+1-r equations and vari-
ables. For sake of convenience, in this chapter, we use n instead of m+l-r.
Denote ( ¥r4+1:¥r42,"**s¥m+1 ) by Z=(2y,23,°*,z, ) and n polynomials by
Py(2),Py(2), - ,P,(Z) which can be regarded as components of a polynomial vec-
tor P(Z).

Homotopy methods can be used to solve nonlinear equations, i.e., if we want to
solve P(Z) =0, we first solve a simple equation Q(Z) =0, and then set a homotopy
function H(Z,t) = (1-t) Q(Z) + t P(Z). Solve H(Z,t) =0 by following the homotopy
curves ( solution set of H(Z,t) =0 ) from t=0 to t=1, hence the zeros of Q(Z) lead
to the zeros of P(Z). The nonsingular Jacobian matrices of H(Z,t) are important for

tracing the homotopy curves.

The development in 1976 by Chow et al can finally avoid singular Jacobian
matrices by constructions called the probability one homotopy methods . In the
methods, for almost all the choices of the homotopy parameters, the methods are
globally convergent. This is an advance over earlier homotopies, since the philosophy

and the resulting software are fundamentally new [ 10 ].

The numerical bifurcation equation is a system of special polynomial equations.

24
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Observe that if Z = ( z4,29,...,2, ) is a solution of this system, then -Z = (
-Z1,~22,...,=2, ) is also a solution of it. Therefore we wish to construct a sym-
metric homotopy function such that only half of the solutions need to be computed. In
the next section, we will use the fundamental idea of "probability one" and the tech-

niques in [2][3] to construct such a function.

§ 5.2. A Probability One Homotopy Method for the Bifurcation Equation

The system of polynomials appear in the bifurcation equation above is a system
of homogeneous polynomials with degree d;>2 for each polynomial P;(Z), i=1,2,
.., N-1, except the last one P,(Z) =z%+z%+...+z?,—l. Without losing generality, we
can assume that the first s polynomials are of odd degree, ie., d;23, fori=1,2,..,
s, and the rest of the polynomials are of even degree, 0Ss<n-—1. Note first that there
is at least one even degree polynomial ( the last one ), and secondly that Z =0 is not
a solution of the above system, although it satisfies all the polynomial equations

except the last one. Thirdly DP(0) =0, since P(Z) has no linear term.

We constrict the following symmetric homotopy function:

Hl(zot)
HZ1)= :

H,(Z,1)

_d 1

2y =b12) n “
.d. . zal,jzj

24" —bsz, P,@2) =l

= (1=p) |25 by [ +2] o | #2010 | " 2.1)

oo P,,(Z) Za’l-l,jzjn-
dp- <

zn-ll —bn-1 jnl ,
zlzl—bn § Za,.'jzlz'

X 5
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where Z=(2y,2z9, """ ,z,,)T € C" and H(Z,;) =

H,(Z,t),H,(Z,1), - - - ,H,,(Z,t))T e C". The parameters are chosen in random by

2
a=(a11,.--+10sa20s -« +A2ns - - - +ann)! € C* and b = (b, ...,b,)T € C*.

The difference of this homotopy function and the known homotopy function is
that byzy,...,bsz, are used instead of by,...,b; in the first s components. There-

fore the transversality condition should be checked. We have:

Lemma 2.1.Let W = { (ab) € C*’xC" 1by, - ,b, #0 ), and A= (Zt) €

. . a(Hl"'.an)
C"%R }. Then the submatrix of the Jacobi of (2.1) NZ a b has full rank on

A X W (i.e., rankis n if one regards the matrix as a n x [n + 72 +n ] complex matrix,

or the rank is 2n if one regards the matrix asa2n x [ 2n + (2n)2 +2n] real matrix ).

Proof: Case 1: t=0.

Consider a submatrix :

d-1
dyz'" -b,
-z,

4,-1
oH d,l. —b,

— dso1-1 =2,
a(z'b) dadz:‘ll -1

dn-1-1
dl-lzl-—l

22, -1

(2.2)

1

which has full rank since one of djz}i"— —-bj, -z; isnonzero, for 1<j<s. There-

fore the assertion is true in this case.

Case2: te (0,1) and z,,---,z, arenotall zero.

Consider a submatrix:
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1(1=)2d!

oH

da o1 ey
CA=E e ot (e (=022, . . . 1(1=)2?

which has rank n as soon as one of z,, **-,z, isnonzero.

Case3: te (0,1) and z;=--- =2, =0.

In this case g—’z’ = 0 and also the partial derivatives to Z of the terms in (2.1),

which have degrees of Z greater than one, are zero.

‘(l-‘)bl 0
oH _ ~(1-1)b, o
AZb) o -1
0 —(1-1)
2.4)
which givesrankn. O
Now define the homogeneous part of (2.1) by:
- H\(@Z.1)
HZn=|_
H,(Z,t)
Zal. 4 !
2 P1(2) o
=(1-1) z;‘;'.l +1t P,...;il) +1(1-t) | » . (2.5)
ol I L
Y. a0 27

L j=I
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Since 9H is just as case 2 of (2.3), we have:

da

Lemma 2.2. The Jacobi of (2.5) has full rank w.r.t. (z,t) X (a,b)

on{ (C"-{0})x(0,1)] x W.
Now we need a transversality theorem (see [ 3 ]).

Definition 2.3. Let F be a smooth map : open set A  R“—R?, then a point y €
RP s called a regular value of F on S ¢ A provided that Range { DF(x) } = R?
for

allxe S N F~l(y). Those x’s are called regular points.

Theorem 2.4 ( Transversality Theorem ). Let A ¢ R% and W c R? be
open sets,and F: AXxW — RP be C” smooth with r> max {0, d-p}. Suppose
for some set S ¢ A thaty € R? is a regular value of F on S x W. Then for almost
every w € W (in the sense of either Baire category or Lebesgue measure ), vy is a reg-

ular value of F(+,w)on S.

Lemma 2.1 and Lemma 2.2 give the full rank of the Jacobians of H and H
( regarding them as real matrices by C = R2), therefore they give two onto linear
transformations. This implies that 0 € C" is a regular value of H on [ C" x
[0,1)]xW and of Hon [(C" - {0} )x (0,1)]xW. Also direct computation gives that 0

is a regular value of H on [(C™ - {0} )x 0 ]xW. Hence the transversality theorem

gives:
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Lemma 2.5. For almost every (a,b) € c” xC", 0 € C" is a regular value both of
H(e,*,ab)on C"x[0,1) and of H(s,*a) on (C" -{0})x[0,1) .

As soon as Lemma 2.5 is established, the rest of work is same as [3] . i.e,,
the first part implies the homotopy curves are one-dimensional manifolds, also —:f >

0 where s is the arclength; the second part guarantees the curves not going to the
infinity before t — 1. The degree theory argument guarantees all the solutions of P are

the end points of these curves. Therefore we have:

Theorem 2.6. For almost every (a,b) € C’l2 xC", the solution setof H(Z,t) =0
forms d =d;x- - - xd,_1%2 one-dimensional homotopy curves beginning with d dis-
tinct roots of H(Z,0) = 0 which are easily obtained and leading to all solutions of
H(Z,1) = P(Z) = 0 with each curve reaching one zero of P(Z) or approaching the
infinite ( this occurs if the number of zeros of P(Z) is less than d including multipli-

city) whent — 1.

Observe that if Z is a solution of (2.1), sois-Z. Thus only half of the curves are
needed to be followed. We can pick the beginning points by choosing z; coordinate
zero or one of (d; -1)-th roots of b, ... , z; coordinate zero or one of (d; -1)-th roots
of b, z;,1 coordinate one of d;.,;-th roots of b, ... , Z,—1 coordinate one of d,,_; -th
roots of b,_;, but choosing z, coordinate only the positive square root of b, ( or only
the negative square root of b, ). As soon as half of the solutions of P(Z)=0 are

obtained, the another half are just negative of them.

The solutions of the numerical bifurcation should be real numbers, and the homo-
topy method gives the complex numbers, hence we only pick those solutions of the

homotopy function with imaginary part zero theoretically and near zero numerically.



CHAPTER 6

THE SINGULAR VALUE DECOMPOSITION
AND REGULAR POINTS

§ 6.1. A Matrix Result

Letf: R™1 5 R™, f(xg) = 0, f € C2. Suppose xg is a regular point of the
solution set. i.e., Df(x() has full rank. The question is how to find some points near
xg in the solution set, on a one-dimensional smooth manifold. Let & be the unit
tangent vector along this one-dimensional smooth manifold. Using a limit procedure

as in Chapter 4, we have:

fx)=0=>&L=0

Vim+1
ie., §= .. (1.1)

Vm+1,m+1 .

Letf(x)=0, Df(x)=UZV7 withrank m.

o _on
VIl Vimel ox; 0Xm 41

v=| --- Df(x)=|:--
Vm+1,l " Vm+l,m+l , ai . afm

30
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Let 1vime I=lsmsixllv,-',,,+ll # 0. Denote 5f (x) as the matrix from Df(x) by
] +

deleting one column :
o on o _on |
- oxy OXp_| OXp4 0Xm41
Df(x)= | --- (1.2)
Ofm . m .  m
ox) OXg_1  OXgsl 0Xm41
and we have:

Theorem 1.1. Among all m x m submatrices of Df(x) , 5f (x) is the only

submatrix which is always nonsingular.

Proof: First we prove that it is nonsingular. From f(x) =0, we have by (1.1)

[ ) [ b
Vim+l af1
Vim+l - Vk-:l. ' " ox
O=Df )| - [=Df)|, """ |+ Vigmar | -
Vm+1,m+1 + .m+ Ofm
_Vm+l.m+1‘ | ax* )
Vim+l af,
e -v,",,,ﬂ ?
D" Vi-1,m+1 k
fx) | = (1.3)
k+1,m+1 afm
e “Vim+l 5
_vm+l,m+l_ L axk i

Vim+1 # 0 means as soon as Vi ,4+; is known, the rest of the components of

(Vim+ls--- ,v,,,+1',,,+1)T are known since the null space is one-dimensional. That is

equivalent to say (1.3) is uniquely solved, i.e., 5f (x) is nonsingular.
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To prove that it is the only m X m submatrix which is always nonsingular, we

r 0 -
Vim+l 0
pick the case when § = -+« |=1|1 [--k-th . Therefore
Vm+1,m+1 0
[ 0 |
DFx)=UZTVT
-vl.l .o vl,m 0 TT
o 0 []ve-11 Ve-im O
=U| - o | B TR
Om 0 [|Vesr Vesrm O
Vmstl 7 Ymam O
o1 o 1Pt " Vemr 0 Vimn 0 Ve
6. 0 |IPtm " Vim0 Venm  Vmelm
m 0o --- 0 1 0 . 0

Thus any m x m submatrix deleting the i-th column of Df(x) with i # k must include

the column

(o] 0 0
U
on O (1)

which is the zero column. Thus the theorem is proved. O
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By this theorem, among all m+1 coordinate directions, this is the best direc-

tion for keeping the derivative invertible.

§ 6.2. A Newton’s Method via SVD

We may use the following method to find some point near x( on the solution set

of f.
Method 2.1. Compute SVD of f at xy. If k is the coordinate index such that
IVem+1 |= max v 41, then

I<ism+1

set predictor:

x(°)=xo=h — — —k~th 2.1)

©c.o=0.0

for some small real number h>0 .

Obtain x" = lim x by keeping the k-th coordinate fixed x{” =x{, and
y —)oo

changing the other coordinates from

[ )9 ]

- V+6;: v)
Dfx™) N | -faM) (2.2)

xfD -k

v+l v
XD =xh
L E
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forv=0,1,2,.. .

If f(xp ) =0, in the neighborhood of xg, f(x) is small. And 15f (xg) is non-
singular. fe c? implies 5f is Lipschitz in that subspace. Therefore the following
theorem can guarantee the above convergence quadratically. After a few iterates, x~

can be approximated by high accuracy.

Theorem 2.2 ( Newton-Kantorovich [9] ). Given g: Q < R™ —R™ and the
convex set Q; < Q, letg be continuously differentiable on Q; and satisfy the con-
ditions:

(@) IIDg(y)-Dg(z)lisylly-zll forally, zin Q,;
® 1Dge ) gl <oy
©) 'Dgy®11<p, forsome y@ e Q.

Consider the quantities

h:=afy
1-V1-2h
1= —E—a.
1+V1-2h
Y2 = —h—a.

Ifh<1/2 and the closed ball Sy (') € Q;, then the sequence { y } defined by
yVUD =yM _poy™y 1 g(yM) forv =0, 1, ... remains in Sy, o) and converges

to the unique zero of g(y) in Q; Sy, ¢?) .



CHAPTER 7

A NUMERICAL METHOD OF
GLOBAL BIFURCATIONS

§ 7.1. Rank Detecting, Curve Following and Curve Switching Via SVD

Let f: R™xR—R™, and suppose f is smooth enough so that the Taylor Theorem
in Chapter 4 holds. Df(x)=U Z V*, where

Oy 0
D, O
=10 o|= Sr
o, 0
by setting G,,] =C,43 = *=0C, =0.

We also assume that there are only finite smooth curves passing each bifurcation
point of the solution set of f(x)=0. In this chapter, we assume that the solution set is

connected, otherwise we just consider a component of the solution set.

We present in this section several numerical methods by using the singular value

decomposition which are going to be used in the next section for an algorithm.

Theoretically 6, =0 is a criterion for a bifurcation point. Numerically we can

choose a very small number € which is machine dependent, hence

35
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Om < €

(1.1)

is a criterion for the bifurcation point. Since SVD is a reliable way for detecting rank

deficiency and near deficiency, the above method should be accurate to decide the

bifurcation point.

If a point x is detected as a regular point, according to the tangent vector which is

obtained by SVD, i.e., the m+1-th right singular vector

Vim+1,V2m+1, """ ,v,,,+1‘,,,+1)T , we can find x; the largest coordinate changing the

solution. Consequently Newton’s method, i.e., Method 6.2.2.,

can be used. Namely

choose a suitable positive number h which is dependent on G,, monotonically, denoted

it by :

such that

and

forv=0,1,2, ...,

where

h=g(0n)
0
0
xO=x+n |1 |-—=kth;
0
0
[ D {9 1
- v+l).__ v)
Df(x") x| —f (x™)

)
SO

(1.2)

(1.3)

(1.4)
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-

of1 ofi ofi 9N
- % g M OXm+1
DfcV)= | ---

9fm Ofn Ofm  _Ofm

%X M 0Xpm 41

After a few iterates, we get a point x“ for some Vo which is a numerical solu-
tion of f(x) = O different from x. Note that (1.2) also can be used to avoid missing
bifurcation points since by our methods the step size h varies and the h is smaller when
x is close to the bifurcation point, especially h is smaller when x is near the bifurcation
point.

Using Newton’s method via SVD, we can follow the branch to the bifurcation
point x. When h is very small, we can detect the bifurcation point by detecting the
last singular values along the tangent direction. If a bifurcation point x is detected,
using Theorem 4.1.1 and 5.2.6, all the unit tangential directions & can be determined.
Deleting one direction which is opposite the direction while the bifurcation point is

obtained, we have points on the other branchs near the bifurcation point numerically:
x :=x +3&, (1.5)

where  is a small positive number .

Now connecting all methods above, we have a numerical method of global bifur-

cations which is described in the next section.

§ 7.2. A Numerical Method of Global Bifurcations via SVD

We consider an open bounded region. So if the solution set is bounded in this

region, then the algorithm which we will describe below gives all branchs numerically.
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If the solution set is unbounded, or the set is too large comparing the open region we
set, then the algorithm gives the subset of the solution inside the region numerically. A

suitable chosen region will give the major character of the solution set.

The method begins at one point of the solution set in the region. Usually if the
problem has a trivial solution, we will take it with some value of the parameter as a
starting point which is a regular point. Then trace the solution curve to get the global

behavior.

Algorithm 2.1. Given f(x)=0 with f: R™*! — R™ and the hypotheses in the

beginning of this chapter, the following algorithm gives the solution set numerically.

Procedure Solution_Via_SVD
begin
define a bounded open region B;
initialize x=(x1, . . . »Xm+1 )T (* in B and fails to satisfy (1.1) G,, < € * )
and two directions ( * based on the last right singular vector of Df * );
L=2 (* L is the label of branchs to be followed * );
while L>0 do
L:=L-1;
while6,, 2€in (1.1) and x in B do
generate x; ( * based on (1.2),(1.3),(1.4) * ), set x:=x; ;
end while
if x in B then
case (to judge if the bifurcation point x has been met before) begin
X is a new bifurcation point:
find points with directions on N branchs to be followed
( * based on (1.5) * ), set L:=L+N;
x is a previously found bifurcation point:
then the branch to this point x determines a branch with opposite
direction emanating from x to the starting point. Delete this
branch that emanates from x from the list of branches to be followed
when x is used as a starting point; Set L: =L-1; ( * See Figure 1 *)
end case
end if
end while
end procedure ;
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For example if path 3 starting at x, leads to x,, then the path 5

leading from x, to x is deleted when x is used as a starting point

Figure 1. An illustration of the algorithm.
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§ 7.3. An Example

We give an example to show the above algorithm. This example is obtained
from the bifurcation problem in Banach space of codimension 4, reducing into the
null space by the Liapunov-Schmidt method which has been theoretically done in [1].

Let f: R2 x R* = R? by w x (1,v,011,05 )= O with C(w) + oty Ly w+ 0oy Ly w=

0, where
_ [ wio+pwiwil —-[10] and L ——[00
w= wyl’ Clw)= vw%wz + w% ’ 1= 7101 277101

By selecting 3 parameters, we get an equivalent one-parameter problem , and so the
Algorithm 2.1 can be used to get the global bifurcation numerically. Figure 2 is the
computer graph of this example. The value on the horizontal axis represents the value
of the parameter a;, and the value on the vertical axis represents the sum of the
values of w, and w, . The following table gives five different choices of u, Vv, o, (
for the reason of such a choice also see [1]). For all such choices beginning with( w ,

wa ,04)=(0.0,0.0,-1.5), five different diagrams are obtained.

case | @) | ® | © | @ | (e

p | 200750505/ 15

o 10 10 { 1.0 | 1.0 | 10
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13 1 §
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-1 -4 .
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Figure 2. Five computer graphs for the example.
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