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ABSTRACT

MINMAX MODELING AND CONTROL
APPROACH TO UNCERTAIN SYSTEMS

By

Frank Saggio III

This thesis is concerned with the determination of a controller
for a linear time-invariant parameter uncertain system with correspond-
ing performance measure. The uncertain system is described in state
space and the system matrices, which contain constant but uncertain
parameters, are given in companion form. The true parameter values
are not known, but are assumed to lie within a given rectangular set.

A two step, minmax modeling and control procedure is proposed as
a new and improved method of obtaining a controller for the system in

the presence of parameter uncertainty. In the first step, an optimal
model for the uncertain system is derived. The modeling problem is

viewed as a two-person game of design against nature, and the game
is played with the designer minimizing the maximum value of game cost.

The model obtained from step one is optimal in the minmax sense and
represents a guaranteed cost model for the uncertain system. The
game cost is taken as the norm of the difference between system and
model matrices.

The concepts of controllability and stability are applied to the
uncertain system and optimal minmax model. An upper bound on the error
between uncertain system and minmax model trajectories is formulated

as a function of the game cost, for the case where the uncertain
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system is asymptotically stable for all parameter values.

In the second step of the proposed procedure, a controller for
the uncertain system is sought, based on the optimal minmax model state
equation and a model performance index analogous in form to the given
system performance measure. It is claimed that the minmax modeling
and control procedure provides a solution to the problem of controlling
the uncertain system, whenever a solution to the control problem in
step two exists. The application of the minmax modeling and control
approach is illustrated by example problems. Comparisons are made

with alternate techniques from the literature.
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CHAPTER 1

INTRODUCTION

In applications of optimal control theory, an engineer is often
confronted with the problem of determining a controller for a system
whose characteristics are not known exactly. It is assumed that the
structure of the system is accurately represented by a vector differ-
ential equation which depends upon a finite number of parameters. It
is the uncertainty in these parameters that defines the system
uncertainty.

For complex physical systems, this uncertainty may be due to
numerical limitations of the identification procedure, or the system
parameters may vary slightly with environmental conditions. Alter-
nately, it may be required to determine a fixed controller for an
ensemble of systems which differ because of nonzero component
tolerances.

The control problem is to determine the system inputs which
optimize a given performance criterion, and satisfy all necessary
system and control constraints. The performance criterion is
generally chosen subjectively and represents the control cost. How-
ever, controller complexity imposes a cost which is difficult to
represent in a performance index. Therefore, a useful control
policy should also be simple to determine and implement, while

maintaining satisfactory performance.
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Several approaches have been used to determine the optimal
controller for an uncertain system, and three are mentioned here.
The approaches differ in their assumptions about the parameter

uncertainty, and in their definition of an optimal control policy.

1.1 Stochastic Approach

The first approach is that of stochastic optimal control, where
an a priori probability is assumed for the uncertain parameters.
A controller is sought which minimizes the expected value of a given
performance index [A-1]. If the statistical properties of the
uncertain parameters are not known a priori, but can be estimated
during the dynamic process, the concept of adaptive stochastic
control is used ( [C-1], [C-2], [S-4] ). Adaptive control implies
further identification of parameters as well as the ability to modify

the control as the parameter estimates change [S-3].

1.2 HMinmax Cost Approach

The minmax cost approach has received some attention in control
literature. The true parameter values are not known, but are assumed
to belong to a given compact set. When the performance criterion is
written as a cost functional, thé determination of the minmax cost
controller is viewed as a two person game [B-1]. The first player
is the designer whose objective is to determine the control law.

His adversary, referred to as nature, chooses the system parameters.
It is assumed that nature is perverse and actively seeks to maximize

the cost which the designer is attempting to minimize. The design

AN



objective is to choose a control which minimizes the maximum value
of the cost over all possible parameter variations. The optimal con-
trol derived from the minmax strategy yields the smallest guaranteed
upper bound on the performance functional [B-1]. It is also referred
to as the worst case design [W-1].

Dorato and Kestenbaum [D-3] consider several minmax cost control
problems where a saddle point solution exists. Schmitendorf [S-2]
develops sufficient conditions and a technique for determining a
minmax = cost controller. His method is applicable to problems in
which a saddle point solution does not exist. Blum [B-1] states a
minmax theorem which is applicable to the minmax feedback control
problem. By introducing mixed strategies over the uncertainty set,

a saddle point problem is created which is equivalent to the original
problem. Barmish [B-2] determines a guaranteed performance controller
for linear systems when the initial state is uncertain. Witenhausen
[W-1] considers minmax cost control of sampled linear systems.

By introducing a Lyapunov-like function, Chang and Peng [C-3]
have developed a method for determining a simple guaranteed cost
controller. Their method, along with the work done by Sworder [S-4],

is also applicable to the minmax adaptive control problem.

1.3 Minmax Sensitivity Approach

Dorato and Kestenbaum [D-3] have commented that the minmax cost
controller is overly pessimistic and is too concerned with the worst
that can happen. Furthermore, controls based on this design meth-

odology induce conservative system performance. To meet these



objections, the minmax sensitivity approach was developed.

In this approach, a controller is sought which minmaximizes not
the performance index (or cost), but the sensitivity of that cost
[R-1], [S-3]. Analogous to the minmax cost approach, the design
procedure is posed in a game-theoretic setting. That is, the
performance index is written as a cost functional and the true
parameter values are unknown but assumed to belong to a given compact
set. Contrary to many perturbation techniques (see for example [C-4],
[C-5]), the minmax sensitivity design procedure is concerned with the
large parameter deviation case [S-3].

Rohrer and Sobral [R-1] define a relative sensitivity functional
which is dependent on both the unknown system parameters and the
controller. The control function is chosen which minimizes the
relative sensitivity when the system parameters are at their worst
- possible values. Implicit in their argument is that the controller
obtained be exactly optimal at some point within the parameter
uncertainty set.

Salmon [S-1] expands the concept of relative sensitivity and
determines a minmax sensitivity controller based on this generalization.
He assumes that the controller structure is known beforehand and thus,
he has complete freedom in specifying the control parameters. This
additional degree of freedom allows Salmon to design a controller
which may be suboptimal at every point within the parameter uncertainty
set. For the case where the uncertain system parameters are constants,
he develops an algebraic minmax algorithm which aids in the search for

the desired controller parameters.



Werner and Cruz |W-2] and Kokotovic, et.al. |K-3] have considered
the optimally adaptive sensitivity control problem, but these tech-

niques do not use a minmax criterion.

1.4 Comparison of the Basic Approaches

The stochastic approach requires the knowledge of an a priori
probability distribution for the uncertain parameters. Such infor-
mation is often not available to a designer. Computation of an
optimal control is generally very complex, with the end result being
that only the expected value of the performance index is minimized.
Furthermore, the optimal controller is typically a random device, or
a deterministic device selected at random [W-1].

Minmax cost control yields the smallest upper bound on the
cost functional: there is some value in knowing what the worst case
system performance is. But this approach is too pessimistic and
results in conservative system performance even when the system
parameters are perturbed from their worst case values. In general,
game-theoretic saddle points fail to exist, thereby complicating
the computation of a minmax cost control. Mixed strategies can
create a saddle point condition, but only at the expense of
introducing probabilities over the uncertainty set.

Controllers based on the minmax sensitivity approach yield
good performance over most of the parameter uncertainty set. This
methodology eliminates much of the pessimism found in minmax cost
controller design. But this improvement is achieved by increasing

the complexity of the required computations. Analytic methods are



rare even in the simplest cases [R-1], and the designer is forced to
employ graphical approximation procedures, or to develop iterative
computer search techniques. These can be both time consuming and
expensive. Numerical stability and convergence problems further
complicate this approach.

Adaptive stochastic, guaranteed, and sensitivity controllers
give good system performance. But the difficulty and expense of

realizing these control policies prohibits their usefulness.

1.5 Minmax Modeling and Control (MMAC) Approach

The purpose of this dissertation is to present a different and
improved approach to the determination of a controller for an uncer-
tain system. A two step procedure, hereafter referred to as the
minmax modeling and control (MMAC) approach, is proposed. The first
step is to determine an optimal model for the uncertain system by
using a minmax criterion. In the second step, the controller for the
uncertain system is designed, based on the optimal model parameters
and a pre-specified cost functional. It is important to note that the
placement of the minmax criterion into the modeling phase followed
in sequence by the determination of an optimal controller is sig-
nificantly distinct from the aforementioned approaches, which apply
the minmax criterion directly to controller determination.

Attention is restricted to systems described by single input,
multi-output, linear differential equations of nth order, with
constant but uncertain coefficients. The initial conditions are known

exactly. The true coefficient (or parameter) values are not known, but



are assumed to belong to a rectangular set in Euclidean m-space,
where m is the number of uncertain parameters. There are at most
n + 1 unknown coefficients. No probability measure is assigned to
the rectangle. Furthermore, no ' input-output data pairs are
available from the uncertain system.

It is assumed that the bounded set description of the parameter
uncertainties is the end result of a system identification phase.
That is, further refinement of set estimates is neither cost

effective nor desired at this time.

1.6 MMAC - Related Works

Perkins, et. al. [P-1] have considered a two step procedure
in the feedback design of linear time-invariant parameter uncertain
systems, described by Laplace transfer functions. Their first step
is to specify a desired overall system transfer function. In the
second step, a feedback structure is chosen which optimizes a scalar
sensitivity index, for a specific system input. Perkins, et. al.
comment that many meaningful problems can be attacked using a two
step procedure. However, they do not consider the optimal control
problem.

Bandler and Srimivasan [B-3] have developed computer algorithms
which aid in determining minimax models for linear time-invariant
systems. This is not .minmax in the game-theoretic sense. Rather,
their criterion is the determination of model parameters which
minimize a Chebychev norm [D-5], [K-2] of the difference between

the model trajectory and a known system trajectory, for a specific



input. The Chebychev measure is taken over the independent variable,
which is usually time.

Genesio and Pome [G-2] have presented a minmax modeling and
control approach to the problem of controlling a plant which is
described only by input-output data. The plant is supposed linear
and time-invariant, and is represented by state equations with
constant but unknown matrices. The performance measure is restricted
to be quadratic in form, with no terminal error cost. A linear,
stationary, reduced order state space model is sought which guarantees
the minimum deviation between the system performance and the model
performance. The model performance measure is also quadratic in
form. The optimal model is determined by minmaximizing a suitable
function of the performance deviation. The solution of the modeling
problem involves the use of the plant input-output data, which is
further assumed to be uncorrupted by noise. A numerical procedure
is necessary to obtain the optimal model parameters [G-2]. Once the
optimal model is obtained, a minmax control policy for the plant is
found by solving an appropriate matrix Riccati equation.

The approach formulated by Genesio and Pome is similar in
outline to the MMAC approach presented here. However. two comments
are in order. First, Genesio and Pome's method assumes that the
performance index is quadratic in form, which is not the case with
the MMAC approach. Second, and most important, the input-output data
pairs play an integral role in obtaining a solution to the modeling
problem. This is not true in the MMAC approach - data pairs are

neither necessary nor required. Thus, the two approaches share only



a common name and purpose.

1.7 MMAC - Step One

The MMAC procedure presented in this thesis is an analytic
approach that differs considerably from previous works. As a starting
point, the uncertain system is given a state space representation,
where the sytem matrix is written as a companion matrix. For single
input, nth order linear differential equations, this is always pos-
sible [B-4], [D-4]. The system matrix and corresponding input matrix
become functions of the uncertain parameters.

The determination of the optimal model in step one is viewed as
a two person game. The first player is the designer who must choose
a stationary model matrix (expressed in companion form) and a cor-
responding input matrix. His opponent, referred to as nature, chooses
the system matrix and input matrix. The norm of the difference
between system and model matrices is taken as the cost functional.
The value of the cost index is viewed as the designer's loss and
nature's gain, resulting from a choice of a candidate model. Here,
nature takes the role of an intelligent adversary, who attempts to
maximize the cost which the designer is attempting to minimize. The
design strategy is to choose the model which minimizes the maximum
value of the cost for all possible system and input matrices.

The matrix norm induces a scalar algebraic cost equation of the
uncertain system and model parameters. Therefore, the selection of
the optimal model and corresponding worst case system matrices is

accomplished by solving a parameter optimization problem, using a
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minmax criterion.

For linear time-invariant systems as described above, completion
of step one results in the determination of a unique model, optimal
in the minmax sense. The model parameters are unique, completely
known, and lie in the interior of the rectangular uncertainty set.
Thus, step one of the MMAC method removes the uncertainty from the
problem by specifying a fixed and known model, from which a controller
can be designed (in step two).

The minmax criterion by which the optimal model is chosen yields
the smallest guaranteed upper bound on the cost. It is therefore
appropriate to describe the minmax model as a guaranteed cost model.
Here the cost, taken as a matrix norm of differences, represents the
mismatch between the system and model matrices.

An upper bound on the norm of the error between system and model
trajectories can be determined as a product of a constant times the
cost functional specified in step one of the MMAC approach. All
states are considered observable. Thus, as the modeling error is
made arbitrarily small, the system and model trajectories are forced

to coincide.

1.8 MMAC - Step Two

In step two of the MMAC approach, the controller for the un-
certain system is designed, based on the minmax model and a given
performance index. Since the minmax model is completely known,
step two can be stated as a deterministic optimal control problem.

This is easier to solve than the corresponding minmax cost control
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or sensitivity problems.

The control law derived from the MMAC approach no longer achieves
the best guaranteed performance. This is the main disadvantage of
the approach. However, the MMAC controller exhibits more satisfactory
system performance than a guaranteed cost controller when the system
parameters are perturbed from their worst case values. Also, the
minmax modeling and control policy is designed optimally for para-

meter values which lie in the interior of the uncertainty set.

1.9 Outline of the Dissertation

The outline of the dissertation is as follows. Chapter II
provides pertinent definitions and results from the mathematical
theory of games. Only those elements of game theory which are
necessary in understanding the problem of modeling and controlling
an uncertain system are presented.

In Chapter III, the problem of controlling an uncertain system
is formulated. The two-step, MMAC procedure is proposed as a solution.
Formal statement and proof of the optimal modeling problem (step one)
is given. Several examples which demonstrate step one of the MMAC
approach are presented. Comments regarding controllability and
stability are made. An upper bound on the error between uncertain
system and optimal model trajectories is derived.

In Chapter IV, the application of the second step of the MMAC
approach is illustrated by continuing the’éxamples presented in the
previous chapter. Comparisons are made with several techniques from

the literature.
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Chapter V contains a summary of the results in this thesis and

recommendations for further research.



CHAPTER 1II

MATHEMATICAL BACKGROUND - GAME THEORY

The mathematical theory of games is concerned with optimization
problems involving two or more players with conflicting interests.
A basic feature of game theory is that the final outcome depends
primarily on the combination of strategies selected by the adversaries.
Therefore, particular emphasis is placed on the decision-making
processes of the players.

The discussion in this chapter is limited to the topic of
two-person, zero-sum continuous games. For a more general treatment

of the theory of games, see Karlin [K-1], McKinsey [M-1], or Owen [O-1].

2.1 Two-person, Zero-sum Continuous Games

As the name implies, a two-person game involves only two
adversaries, a player I and a player II. Zero-sum indicates that
one player wins whatever the other player loses, so that the sum of
the net winnings is zero. In a continuous game, both players have a
continuun of possible strategies from which to choose. For each pair
of strategies, there is a corresponding payoff or cost. The payoff
function represents player I's loss and player II's gain. Therefore,
player I attempts to minimize the payoff, while II attempts to maximize
it. This is a perfect information game in the sense that each player

knows the strategies available to himself, the ones available to his

opponent, and the corresponding cost.

13
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The development of rational criteria for selecting a strategy is
a primary objective of game theory. This is accomplished by assuming
that both players are rational, and that>each will actively attempt
to do as well as possible, relative to the opposition. This is in
contrast to statistical decision theory (see for example, [H-1]
Chapter 4), where it is assumed that a decision-maker is playing a
game with a passive opponent who chooses his strategies in a random
fashion.

In general, a game is characterized by:

i) the strategies for player I

ii) the strategies for player II

iii)  the payoff or cost function.

The following definitions clarify these concepts.

2.2 Games with Pure Strategies

Definition 2.2.1: A pure strategy for player I is any element

u € U, where U is compact and represents the set of all choices for

I. Similarly, a pure strategy for player II is any element v ¢ V,

where V is compact and represents the set of all choices for II.

Definition 2.2.2: The payoff (or cost) is a real-valued, con-

tinuous function L(u,v), defined on the Cartesian product space U x V.

Remark 2.2.3: To facilitate the presentation, u and v will

hereafter be regarded as scalar variables, L(u,v) a continuous function
of two variables, and U and V closed real line intervals.
Example 2.2.4: A typical cost function might be

L(u,v) = 2u2 - v2
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where
U= [0,1], V= [2,3].

A pure strategy for player I would be any u such that 0 <u < 1. Player
II's pure strategies would consist of any v such that 2 <v < 3.

As previously mentioned, Player I attempts to choose a pure
strategy such that the cost is minimized, while II attempts to choose
a pure strategy that maximizes the cost. The following theorem shows
that the order in which maximization and minimization are performed
is important. Thus, it makes a difference which opponent plays first.

Theorem 2.2.5 ([M-1]): Let L(u,v) denote a real-valued, continuous

function defined whenever u ¢ U, v ¢ V, where U and V are compact

sets.

Suppose that

max min L(u,V)

veV uel

and
min max L(u,v) both exist.
uelU veV

Then

max min L(u,v) < min max L(u,vV).
veV uel ueU veV

Proof of Theorem 2.2.5 follows immediately from the definition of
minima and maxima for a continuous function. Details are given in
McKinsey [M-1] and Karlin [K-1].

Next, the concept of value is defined.

Definition 2.2.6 ([K-1]): A real number % is called the

upper value of the cost iff
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min max L(u,v) =2

uel veV 1

Similarly, a real number 22 is called the lower value of the cost iff
max min L(u,v) = 12.
veV uel

For the case where L(u,v) is a real-valued, continuous function

defined for everyueU, veV where U and V are compact sets, 21 and

22 always exist |0-1]. Furthermore, Theorem 2.2.5 implies that

Example 2.2.7: Let

L(u,v) = (u—v)z; 0<uc<l, 0<v<l.
It is easy to see that

min max (u-v)2 =1/4 =%

uelU veV 1

(u plays first)

and
. 2 _ A~ _
max min (u-v)~ = 0 = 2
veV uel
(v plays first)
Note that
22 =0<1/4 = 21.

It is possible to state a necessary and sufficient condition for the
equality of the upper and lower values, zl and 22. First, the concept
of a game-theoretic saddle point needs to be defined.

Definition 2.2.8 ([M-1]): Suppose that L(u,v) is a real-valued,

continuous function defined whenever u € U, v € V, where U and V are

compact sets; then a point (uo,vo), u ¢ U, v, € V is called a game-

(o}

theoretic saddle point of L(u,v) if the following conditions are
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satisfied:
i) L(uo,v) f-L(uo’Vo) VvelV
ii) L(u,v)) < L(u,v)) VuelU

Example 2.2.9: Consider

L(u,v) = u2 - vz;-l <u<l, -1<v<l.

The function L(u,v) has a game-theoretic saddle point at (0,0) since

for all u ¢ [-1,1] and v ¢ [-1,1],

O2 _ v2 < 02 _ 02 < u2 _ 02.

Remark 2.2.10: Note that the definition for a game-theoretic

saddle point is not equivalent to the usual conditions for a calculus

saddle point, which are ([0-2], [K-4], or [B-5] Chapter 9):

. L _ oL

l) m = 5\—,' 0

.. 82L BZL azL 2

=) =) - Gy <0
ou Y

The next example illustrates this point.

Example 2.2.11: Let

L(u,v) has a game-theoretic saddle point at (0,1) since for all

ue [0,1] and v € [0,1],

However
2 2 2 2

CHEn-Em = @ @-0dto,
ou oV

for any u ¢ [0,1], v €[0,1]. Therefore no calculus saddle point exists

for L(u,v) = u2 + vz.
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Remark 2.2.12: From Definitions 2.2.6 and 2.2.8, it can immediately

be verified that:

i) L(uo,v) <L VVvelV

2

ii) 21 E.L(“’Vo) vV ucelU.

The following simple criterion is often useful in determining when

21 and 22 are equal. Moreover, it demonstrates the connection

between the existence of a game-theoretic saddle point and the

equality of the upper and lower values.

Theoreum 2.2.13: ([M-1]): Let L(u,v) be a real-valued, con-

tinuous function defined whenever u € U, v € V, where U and V are
compact sets. Suppose that

max min L(u,v) = 32

veV uel
and
min max L(u,v) =2.1 both exist.
uel veV
Then a necessary and sufficient condition for 21 = 22 is that L(u,V)
posses a game-theoretic saddle point. If (uo,vo) is any game-
theoretic saddle point of L(u,v), then L(uo,vo) = 21 = 22.

Standard proofs are provided by McKinsey [M-1], Karlin [K-1], or

Owen [0-1].

The existence of a game-theoretic saddle point provides a
necessary and sufficient condition for the equality of the upper and

lower values of the cost. Theorem 2.2.13 further implies that the
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order of minimization and maximization may be interchanged: it makes
no difference which opponent plays first. This consequence becomes
useful when it is easier to solve a maxmin problem than to obtain
the solution directly from the corresponding minmax problem (or
vice-versa). Unfortunately, game-theoretic saddle point solutions

involving pure strategies seldom exist.

2.3 Games with Mixed Strategies

Consider a game in which

min max L(u,v) > max min L(u,vV)
uel veV veV uel

where u,v, U,V, and L(u,v) have been appropriately defined. By
Theorem 2.2.13, the inequality of the upper and lower cost values
implies that a game-theoretic saddle point solution involving pure
strategies does not exist. Furthermore, the order of minimization
and maximization cannot be interchanged. This poses a dilemna for
game-theoreticians who seek solutions to problems in which the order
of play does not lead to an advantage.

They resolve this difficulty by having each player assign a
probability distribution over his set of pure strategies. This
randomization defines a mixed strategy. The problem then becomes
one of determining a mixed strategy pair which optimizes the expected
value of cost, where the expectation is taken over the probability
mixes for both players. It is a consequence of the minmax principle
of Von Neuman and Morgenstern [N-1] that the difference between

minmax and maxmin can be equalized on an expected value basis.
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Unfortunately, the solution to the revised problem yields a
mixed strategy pair (i.e., a pair of optimal probability distributions).
The solution to the original problem (of optimizing a deterministic
payoff function) yields a pure strategy pair. These answers are not
equivalent.

The following remarks formalize these ideas.

Definition 2.3.1 ([0-1]): A mixed strategy for player I is a

probability distribution F(u) defined over the set U of all pure

strategies. Similarly, a mixed strategy for player II is a probability

distribution G(v) defined over the set V of all pure strategies.

Definition 2.3.2 ([0-1], |M-1]): Let the payoff function

L(u,v) be given. Then for each pair of mixed strategies (F(u), G(v)),

the expected payoff E(F,G) is defined as the Stieltjes integral:

E(F,G) A IVIU L(u,v) dF(u) dG(v).
The revised game is viewed as follows: player I attempts to choose a
probability distribution F(u) which minimizes the expected payoff.
Player II tries to choose a probability distribution G(v) which
maximizes the expected cost. To see that the order of play is no
longer important in this revised game, consider the following theorem:

Theorem 2.3.3 ([M-1]): If L(u,v) is a real-valued, continuous

funtion defined on the Cartesian product space U x V with U and V
compact, then the quantities

min max E(F,G)
FeD GeD
u v

and

max min E(F,G)
GeD_ FeD
vV T u

exist and are equal.
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Du and Dv are given as the sets of all possible probability distribu-
tions for U and V respectively.

Proof of this theorem is provided in McKinsey [M-1].

Theorem 2.3.3 states that the introduction of mixed strategies
creates a game-theoretic saddle point solution to the problem of
optimizing the expected payoff. Therefore, the interchange of the
order of minimization and maximization is permitted, since it makes
no difference which opponent plays first. Note however, that the
optimization is performed over the mixed strategies F and G. Thus,
the solution to this modified problem is a pair of probability
distributions (F*,G*) which optimize the expected payoff E(F,G).
This revised problem is not the same as the original problem of
determining a pure strategy pair (u*,v*) which optimizes a given

payoff function L(u,v).

2.4 Solution of kMinmax Games

Consider a minmax game in which a pure strategy solution is
sought. That is, given an appropriate payoff function L(u,v), it
is desired to find a pure strategy pair (u*,v*) such that

min max L(u,v) = L(u*,v*),
uel veV

where U and V are given compact sets.
Unfortunately, there is no general approach to obtaining a

pure strategy solution to a game-theoretic minmax problem#. However,

# The same statement is true concerning the solution of a game-
theoretic maxmin problem.
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there are several basic methods which may lead to a solution,
These are [S-1]:
1) To locate a game-theoretic saddle point (if it exists),
and show that it represents a global solution,
2) To analytically solve the maximization step for a

fixed u € U, and then to minimize,

3) To develop an iterative procedure and search for a
solution,
4) To introduce mixed strategies over V and create a

game-theoretic saddle point solution.

In method (1), the existence of a game-theoretic saddle point
involving pure strategies implies that the order in which maximi-
zation and minimization aée performeé is not important. It is
therefore possible to apply the necessary and sufficient conditions
for locating extremum, given in the calculus, to optimize the cost.
The major difficulty with this method is that game-theoretic saddle
points involving pure strategies seldom exist.

Method (2) ignores the existence of a game-theoretic saddle
point. For a fixed u € U, an analytic solution to the maximization
step is sought such that

¢(u) = max L(u,v).
veV

$(@) is then substituted into the payoff function. The next step involves
minimizing L(u,¢(u)) with respect to u, and the desired solution pair
is given by

(u*,v*) = (u*,¢(u*)).
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Danskin [D-1]) has shown that the principal difficulty with this
method is that ¢(u) is, in general, a non-differentiable function even
when L(u,v) is quite smooth. Nevertheless, method (2) provides an
analytic approach to solving minmax problems in the absence of
game-theoretic saddle points.

Computer programs typically facilitate the implementation of
method (3). Salmon [S-1] and Demjanov [D-2] have developed search
techniques which allow for the non-differentiability that generally
arises in the absence of game-theoretic saddle points. A typical
search algorithm decomposes the original minmax problem into a series
of simpler optimizations. The simpler problems are not trivial, and
the algorithm fails when the minimizations cannot be solved. How-
ever, method (3) is capable of solving many practical minmax problems.

Method (4) presents a different approach to obtaining at least
a partial solution to a minmax problem. Two additional assumptions
are implicit Qith this method. These are:

i) That it is easier to solve the corresponding maxmin

problem (i.e., to minmize first),

ii) That interest is centered on obtaining explicitly

the optimal pure strategy u*, but not necessarily v*.
Often the form of the cost function L(u,v) is such that there exists
an adyantage to minimizing first. This is particularly true in
minmax cost control problems (cf. |B-1]). Under such circumstances,
the first assumption is valid.

The second assumption is realistic when considering most games

of design against nature. Here, the designer is player I whose goal
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is to minimize the payoff. His opponent, called nature, actively
seeks to maximize the cost. The designer is interested in obtaining
an explicit pure strategy u* € U which minimizes the maximum value
of cost over all of his opponent's choices. The strategy u* € U and
the optimal value of cost L(u*,v*) are desired, but not necessarily
the corresponding strategy v* e V.

The following steps outline the theoretical basis of method (4)
as presented by Blum [B-1]. This procedure is typical of the method
(cf., Schmitendorf [S-2]).

a) An explicit u* e U is sought which optimizes

min max L(u,v).
uel veV

This is a standard minmax problem, except that
only the optimal u* € U is desired explicitly.

b) Mixed strategies G(v) are introduced over player II's
set of pure strategies V.

c) A lemma is proven which shows that there exists a pure
strategy u* £ U such that

min max L(u,v) = min max E(u,G).
uel veV uel G€Dv

Thus, the u* that optimizes the payoff L(u,v) also
optimizes the expected payoff E(u,G)* D, is the set
of all possible probability distributions for V.

d) Finally, the proof of a minmax theorem permits the
interchange of the order of maximization and minimi-
zation in the modified problem. That is, there exists
a pure strategy u* € U such that

# By a slight abuse of notation, the cost criterion with mixed strategies
over V is denoted by E(u,G) = fv L(u,v) dG(v).



25

min max L(u,v) = max min E(u,G).

uel veV Geq, uel
The solution to the modified problem is given by the pure strategy
u* € U and the optimal probability distribution G*(v). Hence, v*
is not stated explicity. Frequently, the solution to the maximization
step is obtained over a finite subset of V. In this case, v* (which
is often not unique) may be readily identified.

Schmitendorf [S-2], Blum [B-1] and others have developed tech-
niques which implement the theory of method (4). Their applications
are in the area of optimal control theory.

This completes the presentation of background material in the
mathematical theory of games. However, these concepts will be used
in the chapters that follow, when the problem of modeling and con-

trolling an uncertain system is considered.



CHAPTER III

MMAC APPROACH - THE OPTIMAL MODELING

PART OF THE PROBLEM

In this chapter, the problem of controlling a linear time-invariant
parameter uncertain system is formulated. The two step MMAC procedure
is proposed as a solution. A precise statement and proof of step
one of the MMAC approach, the optimal modeling problem, is given.
Several examples which demonstrate step one of the MMAC approach are
presented. Comments regarding controllability and stability are made.
Chapter III concludes with a derivation of an upper bound on the error
between uncertain system and optimal model trajectories.

3.1 Preliminary Remarks

Consider the class S of linear time-invariant parameter uncertain
systems (to be controlled)
S: x(t) =Ax(t) +Bu(t), x(to) = x, te [to,tf] (3.1.1)
where x(t) ¢ R" is the system state,
u(t) e R1 is the control,
A is the n x n system matrix written in companion
form ([B-4], [D-4]) and parameterized by the first

n-entries of the uncertainty vector q,

26
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8 )
0100 . . .0
001 0 ., . 0
A = A(q) = . ,

0o 000 . . .1

9 9% 9% 9% - - - Y

- -

B is the n x 1 input matrix parameterized by the (n+l)th

entry of the uncertainty vector q,
B=B(@)=[0 000 . . . 0 a1,

qeQcC Rn+1 is the (n+l)-vector of time-invariant uncertain

parameters, and the set Q is a given rectangle in Rn+1,
x(to) = X, are known initial conditions,
and the time interval [to,tf] is prescribed.

If q were known exactly then the usual statement of the optimal
control problem could be given. Here, however, the actual value of
q is not known but is assumed to lie in the compact rectangle Q in
R™

A control wu(-) will be called admissible if it is piecewise
continuous and u(t) € U for every t ¢ [to,tf], where UC R1 is a given
set. The set of admissible controls will be denoted by M. Note that
for every u(-) € M and q € Q, there always exists a solution of (3.1.1)
on [to,tf], where x(-) is the solution or system trajectory which
corresponds to the input u(-) € M [A-2].

The control cost depends on the choice of input u(-) and the

parameter vector q:
t

J),q) = hx)) + 5 g, u@) d (3.1.2)
o
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where h(x(tf)).i 0 represents the terminal cost and the integral from
t, to t. represents accumulated cost along the path.

Until q is known exactly, the minimization of J(u(*),q) with
respect to u(-) cannot be carried out. Using the MMAC approach, the
procedure for deriving a controller begins with a determination of
an optimal model for S, with a corresponding fixed parameter vector
p* € Q. The optimal modeling criterion is taken as minmax. The
uncertainty is removed from the problem once the unknown parameters
have been assigned the stationary values p*. The remaining control
problem is to determine the optimal control u*(-) based on the
minmax model, i.e., find an admissible u*(-) ¢ M which minimizes

te

JE) = hGE) + s ex(D), ue) dt (3.1.3)

~ o
where x(t) ¢ R" is the model state which corresponds to the control

input u(-). That is, u(*) drives the state equation

.
A

M x(t) = Ax(t) +Bu(t), x(t) = x = x, (3.1.4)

to generate a trajectory ;(-). Note that the functionals h(-) and
g(-) are the same as in (3.1.2) except that ;(t) replaces x(t).

Exiétence of the optimal control u*(-), of course, depends
upon the functionals h(-) and g(*), the time interval [to,tf], the
class of systems S, the initial conditions x(to) = X» the given
sets U and Q, and the function space M. The question of existence
of an optimal control is a very difficult one to answer [A-2], |K-5];
nevertheless, Lee and Markus [L-1] have proven existence theorems
for several linear and nonlinear processes with various cost functionals.

In the specific examples considered in this thesis, the existence of

optimal solutions is guaranteed.
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Remark 3.1.1: The problem statements which result from employing

the minmax cost or minmax sensitivity procedures are fundamentally
different but closely related to the MMAC approach taken here. In
the minmax cost approach, the problem is to find an admissible

control u*(-) which satisfies

max J(u*(-),q) < max J(u(-),q) (3.1.5)
qeQ qeQ

for all u(-) € M. The performance functional J(u(-),q) is given
by equation (3.1.2). Thus, the worst case parameter vector q* € Q
and the corresponding minmax controller u*(-) ¢ M are found by

minmaximizing the cost functional J(u(+),q)

J(u*(-),q*) = min max J(u(-),q) (3.1.6)
u(-)eM qeQ
t
= min  max [h(x(tp)+ [, g(x(t),u(t)) dt]
u(-)eM qeQ o

with x(t) € R given as the solution of equation (3.1.1).
In the minmax sensitivity approach the problem is to find an

admissible u*(-) which satisfies

max S(u*(-),q) < max S(u(-),q) (3.1.7)
qeQ qeQ

for every u(*) € M. The sensitivity functional S(u(+),q) is typically

written as (|R-1], [S-3])

. _ J(),q) - IE°(),q)
S(u(+),q) = TR

(3.1.8)

indicating a relative index, or

S(-),q) = J@(-),q) - JW°(-),q) (3.1.9)

which is the expression for the absolute sensitivity. The functional
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J(u(+),q) is specified in equation (3.1.2), and uo(-) is the optimal

control corresponding to a fixed choice of q € Q [R-1]

JW’(),q) = (mi)nM J(u(-),q)- (3.1.10)
uf-j)e

The basic philosophy is to choose the control which makes J(u(-),q)
stay as close as possible to the optimal value J(uo(-),q) for all
values of q € Q. Analogous to the minmax cost approach, the
parameter vector q* € Q and the corresponding minmax sensitivity
controller u*(-) € M are found by minmaximizing the sensitivity

functional S(u(-),q), and

S(u*(*),q*) = min max S(u(-),q), (3.1.11)
u(-)eM qeQ

where all quantities in the above expression have been previously
defined.

In the MMAC approach, the problem of determining a controller
for an uncertain system is essentially decomposed into two parts:
1) determine a minmax model for the uncertain system,

2) find an optimal controller based on the minmax model
(equation (3.1.4)) and a specified performance index
(equation (3.1.3)).
A precise development for the selection of the optimal model with
stationary parameters p* € Q is given in the next section.

3.2 Optimal Modeling Problem Formulation - MMAC Step One

Consider the class S of linear time-invariant parameter uncertain
systems (3.1.1) written in companion formand parameterized by the

uncertainty vector q € Q. It is desired to find a model M (3.1.4)
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with stationary model and input matrices A, B also written in

companion form, which provides an optimal representation of S.

following comments are in order.

where

and

Remark 3.2.1:

M: ;(t) =

The model M takes the following form

A x(t) +Bu(t), ;(to)

x(t) ¢ R" is the model state,

u(t) e R

is the control,

~
X = X
o o

The

(3.2.1)

A is the nX nNmodel matrix written in companion form and

parameterized by the first n-entries of an uncertainty

vector p,
- -
01 0 O 0
0 01 O 0
A = A(p) =
0 0 0 O 1
P, Py P3Py - P
— A
B is thenx 1input matrix

entry of the uncertainty vector p,

B

= ﬁ(p) =

[0 0 0 O

parameterized by the (n+l1)th

T
0 pn+1] ’

P eQ C:Rn+1 is the (n+l)-vector of time-invariant uncertain

parameters (to be determined), and the set Q is the

identical rectangle contained in Rn+1 which is given

in (3.1.1).

The next definition describes what is meant by a rectangular set in R".
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Definition 3.2.2: A rectangle iB.BT is a set W of the form

W= { (WysWaseesW )2 2 < W, i=1,2,...,m}.

< b,
1 1 —

1’
All a; and bi are finite numbers.

Remark 3.2.3: Alternately, if W is a rectangle in Rm, then

W=I, xI,x...xI,I = [ai,bi], i = 1,2,...,m,

where x indicates the Cartesian product [P-2].

Remark 3.2.4: From Definition 3.2.2 and Remark 3.2.3, it is

clear that the uncertainty vectors q = [qlq2 ...qnqml]T and

T .
p = [p, Py--- P, pn+1] can be described by

qeQ = a; <q; < bi’ i=1,2,....,n+l (3.2.2)

PeQ = a. <p.

< b.
1 1 —

: 1,2,....,n+l (3.2.3)

-
[N
]

where Q is given by the €artesian product

Q = I1 X 12 X «v. X In X In+1’ Ii = [ai’bi]’ i=1,2,....,n+l.
(3.2.4)

The determination of the optimal model in step one of the MMAC
approach is now viewed as a two person game with pure strategies
peQ qe Q [cf. Section 2.2]. The p-player is the designer who
must choose a model matrix R and a corresponding input matrix E. The
q-player, also referred to as nature, chooses the system matrix A
and the input matrix B. Heuristically, if the designer can select
a model matrix R which is "close'" to A and a matrix é which is
""close'" to B, then the model and system trajectories ;(') and x(°)
should also be '"close'" for every input u(-). Alternately, nature

desires to choose her matrices in such a way that the correspondence

between the model and system is as poor as possible.
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The natural selection for the measure of game cost is the norm
of the difference between system and model matrices. The value of
the cost index is given as the designer's loss and nature's gain,
resulting from a choice of a candidate model. Thus, the designer's
strategy is to select the model which minimizes the maximum value
of cost for all possible system and input matrices.

The matrix norm induces a scalar algebraic cost equation of
the uncertain system and model parameters (q and p). Therefore,
the determination of the optimal model and corresponding worst case
system matrices is accomplished by solving a parameter optimization
problem, using a minmax criterion.

The following definitions formalize these ideas.

Definition 3.2.5: A model M (3.2.1) for the system S (3.1.1)

is optimal (in theminmax sense) when the n+l model parameters p; are

given as the solution of the following criterion:

i) min max ||A- Al (3.2.5)
PeQ qeQ

ii) min max |[|B-B|l . (3.2.6)
PeQ qeQ

The choice of matrix norm ||-|| in equations (3.2.5) and (3.2.6) is
taken to be the square root of the maximum eigenvalue of FTF, where

F is any érbitarylnxrxmatrix [B-6], [D-4], [K-6]. That is,

IIlEll & V& (3.2.7)

max
where Amax is the maximum eigenvalue of FTF.
The optimal modeling problem can now be stated:

Optimal Modeling Problem: Given an uncertain system (3.1.1)
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with uncertainty vector q € Q, determine an optimal minmax model M

(3.2.1) with corresponding parameter vector p* e Q such that

max ||A(Q) - A <

qeQ

and

max ||B(q) - E(P*)”.
qeQ

| A

nax [|A(Q) - APl (3.2.8)
qeQ
max ||B(q) - B(p) | (3.2.9)

qeQ

for all p € Q, where the induced matrix norm H-|| is defined by

(3.2.7).

3.3 Solution of the Optimal Modeling Problem

In order to solve the optimal modeling problem, it is necessary

to determine the eigenvalues of (A-A)T (A-A) and (B-B)T (B-B), where

—
0 0
0 0
A-A =
(a,-P,) (a,-P,)
and
r~ 0 n
0
B-B =

L(qn,,l-pml)

The following lemma will aid in

ﬁ
0
0
, (3.3.1)
(q,-P,)
(3.3.2)

this development.



35

Lemma 3.3.1 (LB-4], p. 140): Let F be an arbitrary real m x n
matrix, so that FTF and FFT are n x n and m x m matrices respectively.
Then A is a nonzero eigenvalue of FTF iff it is a nonzero eigenvalue

of FFT.
Proof: Assume A # 0 is an eigenvalue of FTF. Then by definition

([D-4], p. 151), there exists some nonzero vector x (called the

eigenvector of FTF associated with the eigenvalue 1) such that

FIF x = A x. (3.3.3)
Multiplying by F gives
FFL(F x) = A (F x) (3.3.4)
or
FFlz =\ z, where z = F x. (3.3.5)

Thus, A and z are an eigenvalue and eigenvector pair of FFT provided
that z # 0. But since Ax# 0, z =Fx # 0; otherwise FTFx= 0, which
would violate the assumption. Therefore, A # 0 and x # 0 are an
eigenvalue and eigenvector for FTF implies that A and z are an
eigenvalue and eigenvector pair for FFT.

Now assume that

FFlz = Az, A#0, z #0. (3.3.6)

Multiplying by FT gives

FIF (F2) = A (F'2) (3.3.7)
or
FTF Yy = Ay, where y = FTz . (3.3.8)
T

Sincex z #0, then y = F'z # 0; otherwise FFTz = 0, which would
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violate the assumption. Therefore, A # 0 and z # 0 are an eigenvalue

and eigenvector for FFT implies that A and y are an eigenvalue
and eigenvector pair for FTF. This proves the lemma.

Q.E

.D.

An immediate consequence of Lemma 3.3.1 is that (A-A) (A-A)T has

the same nonzero eigenvalues as (A-A)T (A-A). Forming the product

(A-A) (A-A)T yields

~ -
0 0 0
0 0 0
. ~.T .. .
(A-A) (A-A) " = , (3.3.9)
° 2
0 0 z (ql-pl)
- i=1 J
where the only nonzero coefficient is
[A-A) A-7] RN SO (3.3.10)
Taking the product (B-B)T (B-B) yields the scalar quantity
-8)T 8-B) = (a_., -p_)° (3.3.11)
el n+l’ °
The eigenvalues of (A-A) (A-A)T are found by solving the character-
istic equation [B-4]
c(A) = det {AI - (A-A) (A-A)T} =0, (3.3.12)
where I is the identity matrix, and det {-} denotes the determinant.
From (3.3.9) and (3.3.12), it is easy to see that
n-1 n 2
c() = x (-2 (a;-P;) )= 0, (3.3.13)
i=1

and therefore,
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Ay o= 0 j = 1,2,...,n-1 (3.3.14)

n

I (qi-pi)z. (3.3.15)
i=1

*n

By Lemma 3.3.1, the maximum eigenvalue of (A-A)T (A-A) is given by
(3.3.15),

or
n

2
Moo = 351(@57P) (3.3.16)

Finally, the norm of (A-A) can be written as

~ n
la-All & v =/z (qi-pi)2 . (3.3.17)

max .
i=1

Since (B-B)T(B-B) is a scalar quantity (3.3.11), a trivial calculation

yields

II8-8]l = Vo P, )% (3.3.18)

Remark 3.3.2: The p* and q* which minmaximize |A-A]| (3.2.5) and

llB—élI (3.2.6) can be obtained by optimizing llA—RlIz and ||B—§||2
[B-4]. 1herefore, using the expressions for ||A-R||and ||B-§||given
by (3.3.17) and (3.3.18), and recalling (3.2.2) thru (3.2.4), the
solution of the optimal modeling problem involves determining values

for the vector p* = [p;*p,*... P.* P *]T such that
1 2 n+l

n
n 2 n 2
max .2 (qi-pi*) < max ) (qi—pi)
qie[ai,bij i=1 qie[ai,bi] i=1
i=1,2,...n i=1,2,...,n (3.3.19)
and
max (q,,,-Pp 2 < max (@ .,-p..,)> (3.3.20)
*1 "n+l - +17Pn+1 e

qn+1€[an+1’bn+1] qn+1€[an+1’bn+1]



38

for a1l P; € [ai’bi]’ i=1,2, .... , n, n+tl.

For notational convenience, define the functions

A 2 .
Li(pi’qi) = (qi-pi) , 1i=1,2,... , n, n+l (3.3.21)
and let
L(P,Q) = L(Pl»pz: cee pnx Pn+1’ q1’ qz, e qn’ qn+1)
n+l n+l
b s L(p..q.) = I (g - p.)> (3.3.22)
oy il o b TP

Remark 3.3.3: Note that

a2 ~ 2
L(p,a) = [l A-A|l“ + | B-B]| (3.3.23)
since
n+l 2 n ) )
L(p,a) = & (a4-p;)" = Z (q;7py) + (a4 ,1°P )
1=1 D I G
| A-Alf /i B-B|f (3.3.24)

It is obvious that IiA-AIF and IiB-BIE can be written as

T2
|| A-A]]

L(pl,pz, “ees Po» o, 955 95 ... 94 0)

+0 (3.3.25)

"
nm~ms
~
0
]
ae)
-

and

| B-8|F = L(0,0, ..., 0, p

n terms (3.3.26)
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From Remark's 3.3.2 and 3.3.3, it is clear that the optimal
modeling problem defined in Section 3.2 can be solved by minmaximizing

L(p,q) given in (3.3.22). Consider the following lemma.

Lemma 3.3.4:
n+l

min max L(p,q) = I min max L. (p.,q.) (3.3.27)
. i3t

peQ q=Q i=1 pieIi qiEIi

T T
where P [plp2 "'pnpn+1] , q = [ql'q2 e Q qn+1] s

Ii = [ai’bi]’ i

Q=1 x 12 X o00 X In x I 1,2,...,n,n+1,

1
and Li(-) and L(-) are defined in (3.3.21) and (3.3.22).

n+l’

Proof: Using (3.2.2), (3.2.3), (3.2.4) and (3.3.22),

min max L(p,q) min max L(pl’PZ’ e Pri10970920 0 59,q)
eI, €1,
peQ qeQ pJ j qJ j
j=1,2,...,n+1 j=1,2,...,n+1

+
= min max r (ag-p,)° (3.3.28)
.eI. .e1. i=1
pJ J qJ€ J t
j=1,2,...,n+1 j=1,2,...,n+l
Expanding the sum in (3.3.28) gives
. . 2 2
min max L(p,q) = min max {(ql-pl) + (qz'Pz) +
eQ qeQ eI, el
pPeQ q PJE j qle 3
j=1,2,...,n+¢1 j=1,2,...,n+1
cee + (q -p. %) (3.3.29)
n+l “n+l : T

Minmaximizing each term in (3.3.29) yields
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min max L(p,q) = min max (ql—pl)z +

€ € .€1. .el.
PeQ qeQ Py €l qJeIJ

j=1,2,...,n+1 j=1,2,...,n+l

min max (qz-pz)2 +
€1, .el.
Pj% 95%%;
j=1,2,...,n+1 j=1,2,...,n+l
. 2
.+ min max (qn+1-pn+1) .
p.cl. q.el.
J ) 1]

j=1,2,...,n+1 j=1,2,...,n+l

(3.3.30)
But for each term in (3.3.30),
. 2 _ . 2
min max (qk-pk) = min max (qk-pk) s
pjst qjte pkeTk qksIk
j=1,2,...,n+1 j=1,2,...,n+l (3.3.31)
where k is arbitrary.
Therefore,
. _ . 2 . 2
min max L(p,q) = min max (q,-p,)  + min max (q,-p,)
€eQ qeQ el el 151 I I 272
PER 4 P18 9% Po&ly 9%
. yi
+ ... 4 m;? max (qn+1—pn+1) .
pn+1 n+l qn+1EIn+1
(5.3.32)
Finally, collecting terms and using (3.3.21)
n+l 2
min max L(p,q) = I min max (qi—pi)
peQ qeQ i=1 p.el. q.el.
iTi i
n+l
= I min max Li(pi’qi) (3.3.33)

i=1 pieIi qieIi

which is the desired result. Q.E.D.
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An immediate consequence of Lemma 3.3.4 is that the minmaximizing
solution of L(p,q), a function of 2(n+l) variables, can be obtained
by minmaximizing the Li(pi’qi)’ where the constraints are a; <Py :-bi
and a; < a; f-bi’ for i = 1,2,...,n+l. Thus, the original minmax
problem has been transformed into n+l1 simpler problems. Since the
functions Li(pi’qi) are identical in form for every i{ it will suffice
to study a single function Lk(pk,qk) for an arbitrary integer k,

1 <k < n+l.
In view of the preceding discussion, consider the following

subproblem:

s . 1 1 * *
ubproblem: Determine the optimal Py and Q. such that

* * = s
Lk(pk T ) min max Lk(pk,qk) s (3.3.34)
Prely ey

where Lk(pk’qk) = (qk-pk)z, Ik = [ak,bk], and k is an arbitrary
integer 1 < k < n+l.

The subproblem is solved as follows.

Lemma 3.3.5: The qk* which maximizes Lk(pk’qk) does not lie in
the open interval (ak’bk)'

Proof: Let Py be arbitrary and pke(ak,bk).

From the calculus, necessary conditions for a qk* € (ak’bk) to

maximize Lk(-) are [0-2]:

. aLk(')
i) s " O (3.3.35a)
2Ly (+)
i) —5— < 0 . (3.3.35b)
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Performing (3.3.35a) yields

aLk(.)

3qk

2 (qk-pk) = 0 = qk* = pk (3.3.36)

as a candidate for a maximum.

Checking (3.3.35b) at qi = Py gives

2L, ()
aqk2

= 24 0 . (3.3.37)

Condition (ii) fails at qk* = P+ Therefore, there is no

* . ..
q* € (ak,bk) which maximizes Lkﬁpk,qk). QE.D

From Lemma 3.3.5, the qk* which maximizes Lk(-) must lie on the

boundary of Ik' Therefore, there are two possibilities:

ar = a (3.3.38)

or

* =
ap bk . (3.3.39)

. * = - -
Evaluating Lk(pk,qk) at q ay and qk* bk yields

_ 2 2 2
L (Pps2) = (a-p )" = 2 2a,p, * P, (3.3.40)

and

2 2 2

k-pk) bk - Zbkpk + P - (3.3.41)

L (b)) = (b

Writing bk = (bk-ak) *a and substituting this expression into the
right hand side of (3.3.41) gives

(a,*+b,)
Lk(pk’bk) = Lk(pk’ak) + 2 (ak—bk) [pk = _—2—“— ]

(3.3.42)



43

Now
(ak+bk)
Lk(pk’bk) > Lk(pk,ak) when (ak-bk) [pk - -__i___] >0 (3.3.43)
and
(a_k+bk)
Lk(pk,bk) < Lk(pk,ak) when (ak-bk) [pk - -——7?———] < 0, (3.3.44)
Therefore, the maximizing qk* is given by
a, +b. )
k 'k
b, when (a,-b) [p, - (X750

+b
. - a, when (a,-b,) [Py (335—5)] <0

- (ak+bk)
either a, or bk when (ak-bk) [pk - -——7———4 = 0

(3.3.45)

Using a slightly modified signum notation (cf. [0-2] p. 36)

1 x>0
sgn x = ( -1 x<0 , (3.3.46)
*+1 x =0

(3.3.45) can be written as

a, +b (a,-b)) , (a, +b.)
qk* = 2 - k2 k sgn {(ak'bk) [pk - kz k ]}‘

(3.3.47)

Equations (3.3.40) and (3.3.41) can be combined and rewritten

2 ay +by

Lk(pk’qk*) = (qk*-pk) = [(T - pk) =

(@b (@ o) 2
7~ sen {(a-by) [pp- —5—= 13 1 (5 5 45y
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or
a, +b (a,+b.)  (a,-b, ¥
_ kK k.2 Ok kK k
Lk(pk’qk*) = (pk - 3 )+ Iak'bkl lpk . 2 + 3
(3.3.49)
since x sgn x = |x| |0-2], where |:| denotes the absolute value.
Clearly the pk* which minimizes (3.3.49) occurs when
a, +b
P* = kz £ (3.3.50)
and
. (ak“bk)2
min max Lk(pk’qk) = —g - (3.3.51)

Prely  agely

Thus, the solution of the subproblem (3.3.34) for every k, 1 <k < n + 1,

is
a, +b
k "k
* =
Py > (3.3.52)
- :
Qe either a, or bk (3i3.53)
(ak_bk)z
Lk(pk*,qk*) = — g - (3.3.54)
From Lemma 3.3.4, L(p*,q*), p*, and q* are given as
n+l 1 n+1 2
L(p*,q*) = EoLilpytag) E e (a;-b;) (3.3.55)
i=1 i=1
T a;+b;
p* = [pl*pz*...pn*pn+l*] , pi* = 5 i=1,2,....,n+1 (3.3.56)
and
T .
= *q * * = . i =
q* [ql q, ...qn qn+1*] > Q4 either ay or bi’ i 1,2,...,n+l.

(3.3.57)
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From Remark 3.3.3,
~ 2 - 2 -
Lip*q*) = [l A(@*) - A@»|I “ + [IB@@*) - B® || ",  (3.3.58)

where

”A(q*) - A(P*)”z L(pl*’Pz*'“:pn*’osql*’qz*’“- ’qn*’o)

n 2
= *_.p * ..

izl (q;*-P; ™) (3.3.59)

and
N 2
il Ba*) - B(e*) || ® = L(0,0,...,0,p ,;*,0,0,...,0,q, %)
2
= *_
(qn+1 P . (3.3.60)

Finally, Remark 3.3.2 equivalences the solution of (3.3.19) and
(3.3.20) (given by (3.3.56), (3.3.57), (3.3.59) and (3.3.60) to (3.2.8)
and (3.2.9). Therefore, the solution of the Optimal Modeling Problem

using step one of the MMAC approach is given as

T a;+b,
= *py * * * = Po=
p* = [P *py*e--p 0% By > 1= 1,2,...,n+1
(3.3.61)
0 1 0 0 0
0 0 1 o0 0
A(p*) = .
o 0 0 0 . . . 1
* nn * n * 1 % *
Pp" Pp" P37 Py - - - Ppy (3.3.62)
— -
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B T  (3.3.63)
*) = 0 0 .o
B(p*) (o 0 0 p_,q*]
q* = [ql*qz*...qn+1*]T, q;* = either a, or b,, i=1,2,...,n+1
(3.3.64)
— -
0 1 0 o0 . 0
0 0 1 0 0
A(q*) =
o 0 0 o0 . . . 1
q* qz* qz* q4* . . . qn* (3.3.65)
- o~
T
= *
B(q*) [0 0 0 O q.,,*]" (3.3.66)
~ 1 n 2
lAG@) - AEn | = 3 V/ I (a;-b,) (3.3.67)
i=1
and
5 B 21 2 <
| B(a*) - B = ZR/?an+1-bn+1) : (3.3.68)

Remark 3.3.6: When the uncertainty set Q is given as a rectangle

in R™! (cf. Definition 3.2.2 and Remark 3.2.3), the solution of the
Optimal Modeling Problem yields an optimal model parameter vector p*

of values pi*, i=1,2,...,n+1 which are uniquely specified in (3.3.61).
Not only does p* lie in the interior of the rectangular uncertainty set -

it can be considered as defining the center point of Q. In a different yet
related problem Schweppe [S-5] also chooses the center point as a '"best

estimate'" when he considers the estimation of parameters for a static
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linear system described by an unknown but bounded model (cf. [S-5],

Since there is a strong correspondence between the vector

Chapter 5).
p* and the matrices A(p*) and B(p*), the uniqueness of p* e Q implies

that the model (3.2.1) is also umique.
Remark 3.3.7: Note that the maximizing q* € Q given by (3.3.64)

However, each qk*, k =1,2,...,n+1 lies on the boundary

is not unique.
It is also interesting to note that the qk*,

of the uncertainty set Q.
written as a function of Py in (3.3.47) with k arbitrary, is not
differentiable at Py = pk* (3.3.52). This phenomena was discussed in

Section 2.4.
The optimal minmax model (3.2.1) with matrices

Remark 3.3.8:
A(p*) and B(p*) given by (3.3.62) and (3.3.63), yields the smallest
It is therefore

guaranteed upper bound on the cost (3.2.8) and (3.2.9).

appropriate to describe the optimal minmax model as a guaranteed cost

That is, if the true value of the uncertain system parameter

model.
vector q € Q is given as A rue # q*, with U rue €Q, then the actual

cost will always be less than or equal to that specified in (3.3.67)

and (3.3.68).
Remark 3.3.9: If 1 < r < n+l of the system parameters are known

exactly, the determination of the optimal minmax model can proceed
without difficulty if the uncertainty intervals, Ik = [ak,bk], cor-

responding to the r known parameters are written as point sets.
After the optimal model has been found using step

Remark 3.3.10:
one of the MMAC approach, the remaining control problem is to determine

an admissible control function for the uncertain system (3.1.1) based

on the optimal minmax model (3.2.1), (3.3.62), and (3.3.63) and the
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specified performance index (3.1.3). That is, find an admissible

u*(+) € M which minimizes

- - t -
J((-)) = hix(te)) + ftf g(x(t), u(t)) dt (3.3.69)
o
subject to the constraints
. = A ) é * ° -
x(t) (p*) x(t) + B(p*) u(t), x(t,) X_- (3.3.70)

The solution of (3.3.69) and (3.3.70) is step two of the MMAC

approach. Since (3.3.70) involves quantities that are completely known,

step two requires the solution of a deterministic optimal control pro-

blem. The control portion of the MMAC approach will be considered in

Chapter IV.
In the next section, three examples which illustrate the selection

of the optimal model (3.2.1) using step one of the MMAC approach are

presented.

3.4 Optimal Modeling Examples

The following examples illustrate the technique developed in

Section 3.3 for optimal model selection.

Example 3.4.1: Let the uncertain system S (to be controlled)

have the following representation:

. 0 1 0
S: x(t) = e 0 x(t) + 1 u(t) (3.4.1)
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x@ = [.501T, te[o,m], ace[1,4, Ju)] <1

with control cost

J(u(-),a) - %, (M) (3.4.2)

where x(t) = [x1 (t) xz(t)]T.
Using the notation developed in Section 3.1 thru 3.3, S can be

rewritten as

S: x(t) = [? ; ] x(t) + [?3] u(t) (3.4.3)
1 2

x(0) = [.50]T te [0,1], Jut)] <1

(11 € ['4:-1]’ q2 € [O)OJ, q3 € [1)1]

and the control cost J(u(-),a) is the same as (3.4.2).
The determination of the optimal model M of the form (3.2.1) is
trivial and is accomplished by selecting (cf. (3.3.61))

_o-a-1 _ 00 _ 5 U
pl* = —— = -2.5, pz* = > = 0, p3* = > = 1.

The optimal model is given as

: o 1. 0
m: x(t) = |, o o] x(®) + [ u® (3.4.5)

;(O) = x(0)

L]

[.5 of; te [0,7], |u(t)] <1
and the control cost for the model J(u(°)) is

JE)) = - x M (3.4.6)
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where x(t) = [x;(t) x,()]".
As can be seen, the determination of the optimal model simply
requires the computation of the center of each uncertainty interval

\ai,bi] . Note that the dimension of the state equations remains un-
changed. It is therefore possible to merely write down the optimal

model and control cost for any uncertain system described by (3.1.1).
The next two examples utilize this abbreviated approach.

Example 3.4.2: Let the uncertain system be

S: x(t) = a x(t) + u(t) (3.4.7)

x(0) = 2, te [0,»), o€ [-2.5,-0.5]s

u(t) is unconstrained, and the control cost is

I = 1 2(t) + ui(t)) dt, (3.4.8)

where x(t) is a scalar quantity.

The minmax model M is given by

M ox(t) = -1.5 x(t) + u(t) (3.4.9)
;((0) = 2, t € |0,»), u(t) is unconstrained,
and
° 1 = "2 2
J()) = 7fo (x“(t) + u"(t)) dt, (3.4.10)

where x(t) is a scalar quantity.

Example 3.4.3: Let the uncertain system be
S: x(t) = -2x(t) + B u(t) (3.4.11)

x(0) =5, t e [0,»), Be |1,5], u(t) is unconstrained,
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and the control cost is

J(u(-),g) = %-g“ (xz(t) + uz(t)) dt (3.4.12)

where x(t) is a scalar quantity.

The optimal model M is

M: x(t) = -2x(t) + 3u(t) (3.4.12)
;(0) =5, t e [0,0), u(t) is unconstrained,

Ju()) = %—g” (2t) + ui()) dt (3.4.13)

where x(t) is a scalar quantity.
These three examples will be considered again in Chapter IV, when

the problem of determining the MMAC controller is presented.

3.5 Controllability

In control theory, a basic question is if it is possible to transfer
any initial state to any desired state (often taken as the origin) in a
finite length of time by applying an appropriate control input. Kalman
[K-7] introduced the concept of controllability and gave an answer to
this basic question. This concept can be applied to the optimal
minmax model (3.2.1) and to the uncertain system (3.1.1).

First, consider the deterministic linear system

x(t) = F x(t) + G u(t), x(t) = x, (3.5.1)
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where x(t) € R" is the state,
u(t) e R" is the control,
F is a constant n x n matrix,
and G is a constant n x m matrix.
Definition 3.5.1 ([K-5], p.21): If there is a finite time t, 2t

and a bounded measurable control u(t), t € [to,tl], which transfers

the state x, to the origin at time t;, the state x  is said to be

1,

controllable at time to. If all values of x, are controllable for all

t , the system is completely controllable, or simply, controllable.

0’

Relative to the optimal control problem, the significance of
complete controllability can be easily grasped. It would be meaningless
to search for an optimal control if for a given initial state, no
bounded input exists which can drive the system to the zero state in
finite time. It should be noted however, that controllability does
not guarantee the existence of a solution to every optimal control
problem (cf. [B-4], p. 346).

Remark 3.5.2: Kalman |K-7] has shown that a linear time-invariant
system (3.5.1) is controllable iff the n x mn matrix

é n-1

E ic| k| F%G| . . .| F*lg) (3.5.2)
has rank n. If there is only one control input (m = 1), a necessary

and sufficient condition for controllability is that the n x n matrix
E be nonsingular ([K-5], p.21).

It can be shown that the optimal minmax model (3.2.1) with fixed
parameter vector p* € Q given by (3.3.61) is completely controllable
provided Pn+1* is restricted from assuming a zero value. The next

theorem formalizes this statement.
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Theorem 3.5.3: The linear time-invariant minmax model described

by (3.2.1), (3.3.61), (3.3.62) and (3.3.63) is completely controllable

iffp ,* # 0.

n+l
Proof: Let p* € Q be fixed according to (3.3.61). It then follows
that the minmax model has a completely deterministic representation.
From Remark 3.5.2, a necessary and sufficient condition for a linear
time-invariant system with a single input to be controllable is that

the n x n matrix E defined in (3.5.2) be nonsingular. It is a well
known result in the theory of matrices that a square matrix E is
nonsingular iff the determinant of E does not equal zero [G-1]. Forming

the partitioned matrix E and taking the determinant yields

nl.

ldet (3] = [(p* ) (3.5.3)

Now if p*n+1 # 0, then E is nonsingular. Consequently the optimal
minmax model is controllable. Conversely, if the minmax model is
controllable, then det {E} # 0, which implies that p* ., # 0- This
proves the theorem. Q.E.D.

From (3.3.61), it is easy to see that p*n+ will never equal zero

1
. th . .

provided that the (n+l) interval of the rectangular uncertainty set

Q is not symmetric with respect to the origin. Therefore, the linear

time-invariant minmax model is completely controllable iff

A+l # -bn+1’ (3.5.4)
where Q= I1 b I2 X eo0 X In x In+1’
I, = [ai’bi]’ i = 1,2,...,n,n+l.

Next, consider the following definition (cf. [B-1]).

Definition 3.5.4: The linear time-invariant parameter uncertain
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system (3.1.1) with uncertainty vector q € Q is completely controllable

iff it is completely controllable for each q € Q.

Checking the controllability of an uncertain system is a for-
midable task since by definition, the system must be examined for each
fixed q € Q. It is doubtful that the rank condition (3.5.2) represents
an appropriate test for controllability of the uncertain system (3.1.1).
An integral test may provide a more reasonable approach. No attempt to
verify the controllability property of the uncertain system (3.1.1) is
made in this thesis.

However, it is obvious that if the problem of controlling the
linear time-invariant parameter uncertain system (3.1.1) is to be
meaningful, it is necessary that In+l be restricted from containing

the zero element. That is,

0 £1 la (3.5.5)

n+l n+1’ bn+1]'
For if Qe = 0, then the control input has absolutely no
influence on the state. This condition (3.5.5) is reasonable and will

be assumed in all subsequent discussions.

3.6 Stability

Stability is an important concept to be considered in the design
of a controller for a system. In this section, the stability
properties for deterministic, linear time-invariant systems are applied
to the uncertain system described by (3.1.1). For a more extensive
treatment of stability theory, see [K-6], [0-3] and [B-4].

Consider the deterministic system

;(t) = F x(t) + G u(t), x(to) = X, (3.6.1)
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where x(t) € R? is the state,
u(t) € R" is the control,
F is a constant n x n matrix,
and G is a constant n x m matrix.
If u(t) = O for all t, the system in (3.6.1) is said to be free (or

unforced) [K-6]:
x(t) = F x(t). (3.6.2)

Definition 3.6.1: ([0-3], p. 438): For the free system (3.6.2),

Xg is called an equilibrium state iff

Fx = 0 (3.6.3)

for all t.

Note that if F is nonsingular, then the origin is the unique
equilibrium state of (3.6.2). If F is singular, then there exists an
infinite number of equilibrium states [B-4].

Next, the concepts of stability, asymptotic stability, and
instability (in the sense of Lyapunov) are defined.

Definition 3.6.2 ([0-3], pp 438-439): An equilibrium state Xq

of the free dynamic system (3.6.2) is stable if for every real number

e > 0 there exists a real number 6(e,to) > 0 such that

| x5 - x|l < & implies || x(t) - x || < e for all t >t

Definition 3.6.3 ([0-3], pp 439-440): An equilibrium state X, of

the free dynamic system (3.6.2) is asymptotically stable if

(i) it is stable,

(i1) every solution starting at a state X5 sufficiently near Xo
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converges to x, as t increases indefinitely. Namely,
given two real numbers 8§ > 0 and p > 0, there are real numbers

€ > 0 and T(u,8,t) such that

| X " xell < & implies || x(t) - x|l < e for all t >t and
Il x(t) - xell <u for t >ty * T(u,a,to).

Definition 3.6.4 ([0-3], p. 441): An equilibrium state X of the

free dynamic system (3.6.2) is unstable if it is neither stable nor

asymptotically stable.

Definitions 3.6.2 and 3.6.3 represent the precise and formal
definitions for stability in the sense of Lyapunov and asymptotic
stability in the sense of Lyapunov, respectively. Note that stability
and asymptotic stability are defined with respect to the equilibrium
state Xg? which may be nontrivial if F is singular. Nevertheless,
the stability characteristics of all equilibrium states for (3.6.2)
are the same [K-8] and are related to the eigenvalues of the coefficient
matrix F as stated in the following criterion:

Stability Criterion ([A-2], p. 149 and [B-7], p. 241): Let the

eigenvalues of the matrix F in (3.6.2) be denoted by

a, + jBy i = 1,2,...,n, (3.6.4)

where the a's and the g's are real numbers and j = /-1, The system

(3.6.2) is stable iff 1) as < 0 for all i, 2) if a, + jBk is a multiple

root of the characteristic polynomial of F, then a < 0. The system

(3.6.2) is asymptotically stable iff @, < 0 for all i.
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Once the characteristic polynomial of F is calculated, there are
a variety of methods which implement the stability criterion stated
above. Two commonly used approaches are Routh's method and Hurwitz's
method. These procedures will not be detailed here, but may be found
in Ogata ([0-3], Chapter 8).

Now, consider the linear time-invariant parameter uncertain system

described in (3.1.1) with uncertainty vector q € Q, where Q is compact.

When u(t) 0 for all t

x(t) = A(q) x(t) (3.6.5)

is said to be unforced. From the previous discussion, the following
definition is appropriate:

Definition 3.6.5: The free, linear time-invariant parameter

uncertain system (3.6.5), with q, A(q), and Q described in (3.1.1),

is stable (asymptotically stable) iff it is stable (asymptotically

stable) for each q € Q.

Remark 3.6.6: Suppose it is desired to find if the uncertain

system (3.6.5) is asymptotically stable. The characteristic equation

for (3.6.5) is readily determined as

c(h) = A qlAn-l - qzkn-z - . - qn-lA -q = o,

(3.6.6)

where the coefficients q; are constant but arbitrary. Using Routh's

implementation of the Stability Criterion ([0-3], Chapter 8), conditions
which the q; must satisfy in order that all the eigenvalues in (3.6.5)
have negative real parts are given. These conditions are written as

algebraic inequalities in the parameters q;- It is then a simple matter
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to check if the constraints q; € [ai,bi] are compatible with the derived
conditions for asymptotic stability (see [0-3], Example 8-1, p. 445).

Other methods of investigating the stability properties of linear
time-invariant parameter uncertain systems are available (see for
example, [H-2]). However, Routh's or Hurwitz's methods ([0-3] Chapter
8 or [D-6] Chapter 5) are appealing since the characteristic equation
for the uncertain system (3.6.5) is easily found.

Finally, it is obvious that if the free portion of the uncertain
system (3.1.1) is stable for every q ¢ Q, then the unforced part of
the optimal minmax model, described by (3.2.1), (3.3.61) and (3.3.62),
is also stable. The more interesting case is when the free part of the
uncertain system (3.1.1) is not stable for every q € Q. In this case,
it is entirely possible to determine a minmax model with parameters
P* € Q whose free portion is stable, while for some q € Q, q # p*, the
unforced uncertain system is unstable (or vice-versa).

A difference between model and system stability properties may
prove to be disastrous when implementing step two of the MMAC approach,
especially over the infinite time interval t € [0,~). This presents
an area of further study which is not pursued in this thesis. In the

specific examples considered in this thesis, no complications arise.

3.7 Trajectory Error Bound

In this section an upper bound on the norm of the error between
system and model trajectories is determined as a function of the matrix
error norms (3.3.67) and (3.3.68). This adds substance to the claim

made in Section 3.2: that if the model matrix A is chosen 'close' to
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~

A and if the matrix B is chosen ''close'" to B then the model and system
trajectories x(+) and x(-) should also be 'close'. The norm of dif-
ferences is taken as the measure of closeness.

Use will be made of the matrix norm || - || defined by [K-6]:

A
I Ell= /A, (3.7.1)

where Amax is the maximum eigenvalue of FTF, and of the norm inequalities

[k-6]

lF+G|| <|le | + |Gl (3.7.2)

e all < I[E] -lle ]l . (3.7.3)

The vector norm || |}, defined on L,([t _,t ,Rr) as [A-2]:
2 o’ f

1

t
£ Tty z(t) dt 127, z(t) € R® (3.7.4)

Iz, & 1,
(o]

and the inequalities (|K-6] and [B-6] p. 184)

Iy +z@®, < lly®ll, + lzwl,  (3.7.5)

Iy -z, <y, - Il zwll, (3.7.6)

t t

1 1
I fto 2(t) dt [l o foo 2@, de, g >ty (3.7.7)
o

will also be useful.

Before proceeding with the derivation of the trajectory error
bound, some preliminary results are required. Consider the linear
time-invariant system

2(t) = Fz(t) + G u(t) (3.7.8)
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where
. n
Z(to) = 2z, € Zo, Eo is a bounded subset of R, (3.7.9)
t e [to,tf], (3.7.10)

u(t) € U for every t ¢ [to,tf], U is a bounded subset of Rl,
(3.7.11)
and z(t) is the n x 1 state vector,
u(t) is the scalar control,
F is an n x n matrix,
G is an n x 1 matrix.
Let the origin by an asymptotically stable equilibrium point

(cf. Section 3.6, Definition 3.6.3) for the unforced system

2(t) = Faz(t) . (3.7.12)
Kalman [K-6] and others [B-4], [D-7] have shown that the origin
is an asymptotically stable equilibrium point of (3.7.12) if and only
if there exist finite positive constants M; and kj such that the

transition matrix ¢(t,t), defined by the infinite series [B-4]

o(t,1) = e (D &1y Freon) 4 %3F2(t-1)2 + }!p3(t-r)3 e,
t>t>t, (3.7.13)
is bounded in norm by
loce, ol = leFE D) < Mle'kl(t°ﬂ, t>T>t. (3.7.14)

By using (3.7.14) and observing that (3.7.9) and (3.7.11) imply that

there exist finite positive constants M_ and M3 such that:

2

Iz Il <M, <= (3.7.15)
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and
lu)ll, <My <= forallt>t, (3.7.16)

it is possible to bound the norm of the solution to (3.7.8) by a finite
constant.
The derivation proceeds as follows.

From variation of parameters, the solution of (3.7.8) is [B-4]

2(t) = (%) 2 v st FETg y(n) ar . (3.7.17)
(o]

Taking the norm of z(t) and generating the string of inequalities

lzcll, = e %) 2 vyt Doy ar], (3.7.18)
(o)

F(t-t )

<lle g ll, + 14 eFE D6 umad , by (3.7.5) (3.7.19)

(o]

F(t-t ) i

<lle Ozl + £ REED g6l - ueo hdr (3.7.20)

(0]
by (3.7.3), (3.7.6), (3.7.7)

_ _ -k, (t-1)

<M e ky(t-ty), M, + fttoMl e ! .M, My d (3.7.21)

by (3.7.14), (3.7.15), (3.7.16) and by observing that

0 < ”G“ <M'4 < ® (3.7.22)

is true for finite dimensional linear transformations [B-6].
Integrating (3.7.21) and continuing the string of inequalities

yields
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-k, (t-t ) MMM -k, (t-t )
. 1 (o} 134 1 o]
llth)||2 < MM, e + > (1 -e ) (3.7.23)
MMM, -k (t-t ) MMM
=mm - 234 e 10 13 (3.7.24)
12 K K
1 1
M. MM -k, (t-t ) MMM
134 1' o 134
< ]MIMZ - "i;’"’l le + | K | (3.7.25)

by well known properties of the absolute value [0-2].

-k -
Since |e 10t to)l <1 for t > t, | z(t)]|2 can be bounded by

Iz, <N <=, (3.7.26)
where
M. MM M. MM
_ 17374 134
N, = |M1M2 - K + K | > o. (3.7.27)

It is now possible to derive an upper bound for the norm of the
difference between the model and uncertain system trajectories.
Consider the uncertain system (3.1.1) with an arbitrary choice
of q € Q. In order to make use of the previous results, it is conve-
nient to assume that the origin is an asymptotically stable equilibrium
point for the unforced part of (3.1.1) and for all q € Q (cf. Section
3.6, Definition 3.6.5). Also let the input u(t) be bounded in norm
by a finite and positive constant M. Furthermore, let the optimal
minmax model be given by (3.2.1), (3.3.61), (3.3.62) and (3.3.63).
The uncertain system and optimal model state equations are repeated

here for convenience:



63

s: x(t) = A x(t) + B u(t), x(t) = x, telt,,tg (3.7.28)

u(t) e U, U CR1 is a bounded set.

.

M: x(t) = A* x(t) + B* u(t), x(t)) =x,=x,, te [t,tgl,

o (o]
(3.7.29)
where the star (*) indicates that the matrices A and B are evaluated

at the optimal p*. That is,

A* A(p*) (3.7.30)

~

B* B(p*), (3.7.31)

where p* is given by (3.3.61).
Forming the difference between system and model state equations

gives

x(t) - x(£) = A x(t) - A* x(t) + (B-B*) u(t). (3.7.32)

Adding A x(t) - A x(t) to the right hand side of (3.7.32) and collecting

terms yields

x(t) - x(t) = A (x(t) - x(t)) + (A-A*) x(t) + (B-B*) u(t).
(3.7.33)

Using variation of parameters, the solution of (3.7.33) is

. A(t-t ) . . .
x(t) - x(t) = e ° (x,-X,) * qf AET) (ALA%) x(1) dr +
o
I AT (5 B*) u(r) dr. (3.7.34)
o

A

Since X, = xo,(3.7.34) reduces to
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GAlt-1) (A-R*);(T) dt + 4} eA(t-T)(B'E*) u(t) dr.
o o

x(t) - x(t) = ftt

(3.7.35)

Taking the norm of x(t) - x(t) and generating the string of inequalities

Ixt) - x)ll, = 145 A @aan x(0) dr +
o
I AT (3 B%y u(r) dr| 5 (3.7.36)
(o]
< AT (alav) x(1) dr I+
(o]
I Itt AT (gry u(r) dr| 5 (3.7.37)
(o]
by (3.7.5)
t A(t- - -
< g5 I aas] -l x@ ], e
(o]
t g A(t- -
e T B luo 4 (3.7.38)
(o}
by (3.7.3), (3.7.6), (3.7.7)
~ -k, (t-1)
t 2
< || A-A*|| fto M, e - N, dt
- t —kz(t-r)
+ || B-B*|| L Mg e . Mg dr, (3.7.39)
(o]
where
_ -k, (t-1)
NrED) < me 2 Lttt (3.7.40)
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lli(T)lg SN, <, 1 (3.7.41)

| v
(ad

v
ct

i u(r)Hz,i Mo < =, T > (3.7.42)

follow from (3.7.14), (3.7.26), and the assumptions of asymptotic
stability of the free uncertain system and the boundness of u(t),
t z_to. Note that MS’ M6’

Integrating (3.7.39) and continuing the string of inequalities

N, and k, are all positive finite numbers.

yields
Ix(t) - x(®) L < [l A-A*|l- £¢8) + || B-B*|| - g(t)  (3.7.43)

where ©(+) and g(-) are positive-valued monotonically-increasing

functions of t given by

M_N -k, (t-t_ )
f(r) = -{%jé (1-e 2 ° ), t >t (3.7.44)
2 - (o]
MM -k, (t-t )
g(t) = — © e T Yy, et . (3.7.45)
2 - 0

Since f(*) and g(-) are positive-valued, monotonically-increasing

functions, the maximum values for each are finite and can be written

as
c, =  max £(t) = f(tp) < (3.7.46)
te[to,tf]
c, = max g(t) = g(tf) < © (3.7.47)
te[to,tf]
Combining these results yields
I x(t) - x|, < e Il A-A*]j + c, || B-B*]| . (3.7.48)
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Evaluating || A-;\*ll and || B-f;*ll at q = q* gives the upper bound

| x(t) - x(®) I, < ;[ A-A*]| + <, || B-B*|

< eyll &r-as ]| + eyl o2 (3.7.49)

where A* = A(q*), B*= B(q*), and q* is given by (53.3.64)., This is

the desired result.



CHAPTER IV

MMAC APPROACH - THE OPTIMAL CONTROL

PART OF THE PROBLEM

In the previous chapter, the problem of controlling a linear
time-invariant parameter uncertain system was formulated. The two step,
MMAC procedure was proposed as a solution methodology, and the optimal
minmax model was derived from step one,

The problem that remains is to determine an admissible controller
for the uncertain system based on the optimal minmax model and a speci-
fied performance index. This is the second step of the MMAC approach
and it is considered in this chapter.

The application of step two requires the solution of example
problems and several are presented. Comparisons are made with various
techniques from the literature.

4.1 MMAC Approach - A Brief Review

The problem of controlling the linear time-invariant parameter
uncertain system (3.1.1) is stated in Section 3.1. Since the perfor-
mance index J(u(-),q) (3.1.2) is functionally dependent on the uncertainty
vector q, the minimization of J(u(-),q) with respect to u(-) cannot be
carried out unless q is fixed and known. Thus, the usual statement of
the optimal control problem cannot be given.

In order to obtain a solution to the problem of controlling the

uncertain system, the two step MMAC approach is proposed. In the first

67
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step, an optimal minmax model for the uncertain system is derived (Sections
3.2 and 3.3). The determination of the optimal model is viewed as a two-
person game, where the designer selects the model matrices (R,ﬁ) and his
opponent, called nature, chooses the system matrices (A,B). The game

cost is taken as the norm of the difference between system and model
matrices, and the game is played with the designer minimizing the max-
imum value of cost.

The completion of step one results in the determination of a unique
model, optimal in the minmax sense (cf, Chapter III, Definition 3.2.5).
The model parameters are unique, completely known, and lie in the interior
of the rectangular uncertainty set. For convenience, the optimal modeling

solution is repeated here:

t = ;\ * X B ) = . =
x(t) (P*) x(t) + B(p*) u(t), x(t)) = x X, t e [t ,te]
(4.1.1)
0 1 0 0 0
0 0 1 0 . 0
A(p*) = . ... . (4.1.2)
o 0 G o0 . . . 1
pl* pz* p3* p4* . . . pn*

~ T
B(p*) = [0 0 0 0 . . . Phe1*] (4.1.3)
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[ )
1]

P* = [p;*Py* - . - P ], Pyt T 1,2,..,n+1 (4.1.4)

where ;(t) e R is the state,
u(t) € R1 is the control,
and the ai's and bi's describe the rectangular
uncertainty set (cf. Section 3.2, equation
(3.2.4)).
It is possible to write a performance index for the optimal model
which is analogous in form to (3.1.2). This index is given by (3.1.3)
and repeated here for convenience

A - t N
Jw)) = b)) + s glx(t), u) dt, (4.1.5)
o

where h(;(th represents the terminal cost and the integral from to
to te represents accumulated cost along the path.

In summary, step oneof the MMAC approach effectively removes the
uncertainty fromthe problem of controlling (3.1.1) by specifying a
fixed and known model, from which a controller can be designed (in
step two). This completes the review of the MMAC approach.

4.2 Control Problem Formulation - MMAC Step Two

After the minmax model has been found using step one of the MMAC
approach, the remaining problem is to determine an admissible control
function for theuncertain system (3.1.1) based on the optimal minmax
model (4.1.1), (4.1.2), (4.1.3), (4.1.4) and the performance index
(4.1.5). This control problem is stated as follows:

Control Problem: Find an admissible u*(-) € M which minimizes

A A t ~
J)) = hxt) + 1,7 gx(t), u(r)) at (4.2.1)
(o)

subject to the constraints
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X(t) = AG®Y X(t) + BRY) u(t), k() = x, = x, (2.2

A L)

where A(p*) and B(p*) are given by (4.1,2) and (4.1,3) and xo is given
by (3.1.1).

Definition 4.2.1: If a u*(*) € M exists which solves the Control

Problem, then letit be called the MMAC controller for the uncertain

system given by (3.1.1).

The solution of the Control Problem is step two of the MMAC approach.
Since the minmax model state equation and initial condition vector (4.2.2)
involve parameters that are completely specified, step two requires the
solution of a deterministic optimal control problem. Hence, the nec-
essary conditions for optimality developed by Pontryagin [P-3], and the
interpretations and refinements given by Athans and Falb [A-2], Kirk
[K-5], Lee and Markus [L-1] and others, may aid in deriving the MMAC
controller.

Of course, there is no guarantee that a u*(-) e .| exists which
solves (4,2.1) and (4.2.2) (cf. Section 3.1). Nevertheless, since
existence theorems are in rather short supply, it is claimed that the
two step MMAC approach provides a solution to the problem of controlling
an uncertain system, whenever a u*(-) ¢ M exists.

To demonstrate the. MMAC approach, specific choice of parameters
for the uncertain system (3.1.1) (to be controlled) and performance index
(3.1.2) must be made. In order to emphasize step two of the approach,
the three examples presented in Section 3.4 are solved for the MMAC

# . . .
controller . As a comparison, the examples are reworked using various

#The solutions of step one of the MMAC approach are presented in Section
3.4,
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techniques from the literature.

Since these are specific examples, no general conclusions should be
drawn from the comparisons. That is, it may be possible to construct
other more pathological problems which exhibit drastically different
results. The basic intent is to exhibit the MMAC approach as a method
which works well in some cases.

4.3 Notation

In the examples which follow, a consistent notation is need-

ed in order to differentiate between the various performance

indices and optimal controllers. Therefore, the MAC performance index
and optimal MMAC controller are denoted by:

J(u () and u*(e) e M,

the minmax cost performance index and optimal minmax cost controller

are denoted by:

Jy(uy(),q) and uy*(+) e M,
the optimal performance index and corresponding optimal controller for
each q € Q are given by:

J3 (03(',q),q) and us*(',q) e M,

and the minmax sensitivity performance index and optimal minmax sensitivity

controller (using the method in [R-1]) are denoted by:
T4y (-),) and uy*() e M,

where 1ﬁ*(-) minmaximizes the relative sensitivity
S(u, (), q).

4.4 Example I

Consaider the determination of a controller for the uncertain
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first order stationary linear system described by

;(t) = q x(t) + u(t) (4.4.1)
with
q € l-2.5, -0,5], (4.4.2)
time interval
t e [0,2), (4.4.3)
initial condition
x(0) = 2, (4.4.4)

and the quadratic cost functional

J(u(-), q,) = %-g” Px2(t) + R u’(t)} dt (4.4.5)

where P =1 and R = 1.

Four controllers are derived for comparison:
1) MMAC controller ul*(-)
2) minmax cost controller uz*(-)

3) optimal controller u3*(-,q1)

4) minmax sensitivity controller u4*(')-

MMAC Approach

Using the optimal minmax model given in Example 3.4.2, the problem

is to determine an admissible ul*(-) e M that minimizes
J.(u,(*)) = L 0w ;2(t) + R uz(t)} dt (4.4,6)
1'71 2 é 1 G

subject to the constraints
x(t) = -1.5 x(t) + uft), (4.4.7)

t ¢ [0,x), (4,4.8)
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x(0) = 2 (4.4.9)

?
where ul(t) is unconstrained and P = 1, R =1,
This is a classical linear regulator problem with quadratic perfor-

mance measure. From deterministic optimal control theory, a solution
exists and is given by [K-5]:
u () = R bk x(t), (4.4.10)
where k satisfies the scalar Riccati equation [K-5]
2ka-p+ RBE = 0 (4.4.11)
with a = -1,5 and b = 1.

Solving for k and substituting into (4.4.10) yields

u*(t) = o x(t) (4.4.12)
where
¢, = -0.303. (4,.4.13)
Evaluating Jl(') at ul*(-) gives
Jl(ul*(-)) = 0.6056. (4.4.14)

Minmax Cost Approach

In the minmax cost approach, the problem is to find a uz*(~) e M

which minimizes

) 2 2
max ] Jyuy(0),q)) = max %IO{P x“(t) +R uz(t)} dt,
q.€[-2.5,-0.5 q.e[-2.5,-0.5
1 1 ] (4.4.15)

subject to the constraints given by (4.4.1), (4.4.2),(4.4.3), and
(4.4.4). AlsoP =1, R=1.
As in the previous calculation, the optimal control uz*(t) can be

realized by linear feedback of the state variable
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uz*(t) = < x(t). (4.4.16)
By solving a scalar Riccati equation, it is found that ¢, must

lie in the interval

.5 - /1.25 < ¢, < 2,5 - V7,25, (4.4.17)

1

Following the procedure given in [R-1], the performance index Jz(-) can
be written as a function of the unknowns < and q-
A simple calculation yields

1+ e,

— (4.4.18)
Q4 * ¢

Jp(e59;)

It is easy to see thatthe problem of determining a uz*(') e M has been
transformed into a parameter optimization problem. That is, find the

optimal cl* which minimizes

(1 + clz)
max -, (4.4.19)
qle[-Z.S,-O.S] q; * ¢
where
c,*e[.5- v1.25, 2.5 - /7.51]. (4.4.20)

Solving this equivalent problem gives

c,* = - 0.618, (4.4.21)

and therefore

u,*(t) = -0.618x(t). (4.4.22)

Also the worst case value of q, is

q* = -0.5 (4.4.23)
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and the corresponding cost is

. * ~
Jy (uy*(+)59;%) 1.2361, (4.4.24)
Using the minmax cost approach, (4.4.24) is the guaranteed upper bound

on the cost. That is for any q; € [-2.5, -0.5],

Jz(uz*(-),ql) < Jz(uz*(-),ql*) = 1.2361. (4.4.25)

Optimal Control Approach

Consider the uncertain system described by (4.4.1) thru (4.4.4),
and the performance index (4.4.5). Since Q; is not known exactly, the
usual statement of the optimal control problem cannot be given. There-
fore, the determination of a controller requires the solution of a
modified problem, and the previous two methods typify such approaches.

However, for comparison purposes only, it is possible to determine
the optimal controller Us*(- ql) for each fixed q, € [-2.5, -0.5]. From
deterministic optimal control theory, Uz*(t,ql) is given by [K-5]

ugk(t,q;) = R71b k x(1), (4.4.26)
where k satisfies
1.2 .2

-2k a -P+R bk = 0 (4.4.27)

and a = q;> b=1 for q; € [-2.5, -0.5].

Solving for k and substituting into (4.4.26) gives

w(t,q) = -(q) + /q,%+1 ) x(2). (4.4.28)

For each q; € [-2.5,-0.5], the optimal cost can be written as
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1+ (q) + /ﬁlz +1)?2

Jo(ug*(*,9;)59;) =
33 10 4612 + 1

' (4.4.29)

Minmax Sensitivity Approach

In the minmax sensitivity approach as reported by Rohrer and

Sobral |[R-1], the problem is to find a u4*(') e M which minimizes

ANCHORBEACRIORS
max S(uy(*),qy) = max (24 10 4~ 4 17y
q,€1-2.5,-0.5] q,e[-2.5,-0.5] Ja(uy"()sq))

(4.4.30)

subject to the constraints given by (4.4.1), (4.4.2), (4.4.3) and

(4.4.4).
J4(u4(-),q1)1s given as
3,000 = g 760 + uie)) de (4.4.31)
4 0)a) = 7 [ Ix 4 e
and
Jy(u,°(-3,a) = min J,(u.(-),q)) (4.4.32)
u4(-)e

for each fixed q; € [-2.5, -0.5].
As before, the optimal control u4*(t) can be realized by linear

feedback of the state. By solving the Riccati equation, it is found

that
u*(t) = ¢ x(t) (4.4.33)
where
5 - /125 < ¢y < 2.5 - /7.25 . (4.4.34)

Identical to the minmax cost approach, J4(-) can be written as a function

of 5 and 9,
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~(1 + clz)
J4(c1,q1) = —q, *c. (4.4.35)
1 1
From (4.4.29), it is obvious that J4(u4°('),q1) is given by
o 1+ (qq + /q12+1 )2
Ja(u, (4),q,) = . (4.4.36)
474 1 /' 2
q," + 1
Combining (4.4.35) and (4.4.36) yields
_(1+c12) - 1+(q ¢ Jhlz + 12
q,+c /
171 ql2+1
S(cl,ql) = , (4.4.37)
1+ (q1 + /q12+1 )2
/aiz +1

where the relative sensitivity S(-) has been written as a function of
< and q;-

The value of c1 which minimizes

max S(Cl’ql)
q,e[-2.5,-0.5]

is given by

R

0.405. (4.4.38)

Therefore,

u,*(t) -0.405 x(t)-. (4.4.39)

ComEarison

In order to compare the performance of the uncertain system (4.4.1)
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to the different control laws, each of the four derived controllers
is applied as the input and q; is allowed to vary from -2.5 to -0.5.
Plots are made of the system performance (4.4.5)

Ju* (), = L (x°(t) + ui(t)) dt  (4.4.40)

versus q, where i = 1,2,3,4.

Figure 4.4.1 shows the performance of the MMAC controller ul*(-),
the minmax cost controller uz*(°) and the optimal controller us*(-,ql)
Vversus q- Figure 4.4.2 compares the performance of the MMAC controller
ul*(-) and the minmax sensitivity controller u4*(-) versus q,. Table
4.4.1 tabulates J(u;*(), ql) versus q, for discrete values of

q, € l-2.5,-0.5].

As can be seen, the MMAC controller ul*('] competes very well with
the minmax cost and sensitivity controllers (the optimal controller
us*(v,ql) is displayed as a reference). The MMAC controller deviates
furthest from optimal when q; is in the range -0.75 <9 < -0.50. How-
ever, the MMAC controller outperforms the minmax cost controller
uz*(') for -2.5 <9 < -1.0, which is more than half of the uncertainty
interval [-2.5, -0.5]. Also ul*(') exhibits a better performance than
the minmax sensitivity controller u4*(~) when -2.5 < q < -1.5.

Example I demonstrates that the MMAC approach may be useful in
determining a controller for a linear system with uncertainty in the

system matrix, and whose performance index is quadratic in form.

4.5 Example II

In this example, reported by Schmitendorf [S-2], the problem is to

determine a controller for the uncertain system described by
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TABLE 4.4.1 J(ui*(-),ql) i=1,2,3,4 versus 9

for Example I.

MMAC Minmax Cost Optimal Minmax Sensitivity
Q, Ju*()ha)  J*a)  Jugr()a)  Iw*(),ay)
-2.50 0.3993 0.4432 0.3852 0.4007
-2.25 0.4345 0.4819 0.4244 0.4385
-2.00 0.4779 0.5279 0.4721 0.4840
-1.75 0.5331 0.5836 0.5311 0.5402
-1.50 0.6056 0.6525 0.6056 0.6111
-1.25 0.7055 0.7398 0.7016 0.7034
-1.00 0.8529 0.8541 0.8284 0.8285
-0.75 1.0945 1.0102 1.0000 1.0078

-0.50 1.5691 1.2361 1.2361 1.2861
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. 01 0 T
x(t) = x(t) + |, ] u®), x(®) = [x(1) x,(®], (4.5.1)

with

q, € [-4,-1], (4.5.2)

time interval

t e [0,7], (4.5.3)
initial conditions
_ T
x(0) = [.50] ", (4.5.4)
controller constraint
lu(t)| <1 for t e [0,7], (4.5.5)

and the non-quadratic performance measure

J(),a) = -x(mM). (4.5.6)
Three controllers are derived for comparison:
1) MMAC controller ul*(-)
2)  Minmax cost controller u,*(+)  (from [s-2])

3) Optimal controller u3*(-,q1).

MMAC Approach

Using the optimal minmax model given in Example 3.4.1 the control

problem is to determine a ul*(-) which satisfies (4.5.5) and minimizes

I () = -;l(m). (4.5.7)

The minmax model state equation is
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. 0 1 - 0
x(t) 2,50 X®* i wm®) (4.5.8)

where the initial conditions and time interval are the same as (4.5.4)
and (4.5.3).
Writing the Hamiltonian [K-5]
H(x(t), ul(t), A(t)) = Al(t) xz(t) - 2.5 Az(t) xl(t) +

Ay () u, (t), (4.5.9)

where Al(t) and Az(t) denote the costate, necessary conditions for

optimality are [K-5]:

|
}
—

(4.5.10)

A1) 2.5 Ay (1), Ay(m) =

|
o

) = A, Ay (1) = (4.5.11)

and (4.5.8) with initial conditions (4.5.4).
Since H(*) is linear in the control, the minimum principle implies

that [K-5], [B-5]

- *
1 AZ (t) > O
ul*(t) = +1 AZ*(t) < 0 (4.5.12)
undetermined Azﬂt) = 0

After straightforward but tedious calculation AZ*(t) is given by:

M) = el cos(ZE )+ cp* sin(Y25), O <t <

(4.5.13)

where

c.* = -sin(v2.5 m) = .6120,
! V2.5 (4.5.14)
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and
™ =~
o * = Sos(v2.5 ) .1595 (4.5.15)
2 V2.5
The switching time tl* is found by equating (4.5.13) to zero:
t* = (v2.5 - D7 = 1.1547 - (4.5.16)
V2.5
Combining (4.5.12) thru (4.5.16) yields
_ -1 0<t<t.*
u*(e) = - 1 (4.5.17)
+1 t.*<t<mw
1 —_
Evaluating Jl(ul(')) at ul*(.) gives
J (W *()) = -x*(m) = -1.4269. (4.5.18)

Minmax Cost Approach

In the minmax cost approach, the problem is to find an admissible

uz*(°) which satisfies (4.5.5) and minimizes

max Jz(uz(.),ql) = max -xl(ﬂ), (4.5.19)
qle['4,'1] qle['4"1]

subject to the constraints

. 01 0
x(t) = x(t) + uz(t), (4.5.20)
q, 0 1

q, € [-4, -1, lutt)| <1, (4.5.21)
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where the initial conditions and time interval are the same as (4.5.4)
and (4.5.3).

Schmitendorf solves this example in [S-2] by following the
algorithm which he develops in the same report. A Hamiltonian function
similar in form to (4.5.9) is written, except that there are twice as
many state and costate equations. By invoking the minimum principle,
the minimizing uz*(') again has the form of a bang-bang controller.

From [S-2], uz*(t) is given by

-1 0<t<tyt
u,*(t) = (4.5.22)

+1 tz* <t<m
where
cos t,* = VI - 1. (4.5.23)
The worst case values of q, are

q* = -1 or -4, (4.5.24)

and the corresponding cost is

R

I(u*(),a,%) = -x (M) -.9641 . (4.5.25)

Optimal Control Approach

Consider the uncertain system described in Example II by (4.5.1)
thru (4.5.6). As in Example I, it is possible to compute the optimal
controller us*(-,ql) for each fixed value of q; € [-4,-1].

Writing the Hamiltonian function and proceeding as in equations

(4.5.9) thru (4.5.12), it becomes obvious that for each q, € [-4,-1]:
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-1 Ap*(tq) > 0
ug*(t,q)) = { +1 A*(tq) < 0 (4.5.26)
= 0

undetermined Az*(t,ql)

where
Az*(t,ql) = cl*(ql)- cos (V-qlt) + CZ*(ql) . sin (r’-q1 t),
(4.5.27)
-sin (/31 )
cl*(ql) = . (4.5.28)
V-ql
and
cos (V-q; ™)
¢ *(a)) (4.5.29)
=

The switching time tS*(ql) is found by equating (4.5.27) to zero:

‘() (v-ql -1) . 7 ( 0
t.*(q = . 4.5.3
3 ' —
-ql

Therefore,

-1 0<t< ts*(ql)

us*(t’ql) =
+1 tz*(q) <t <™

where t3*(q1) is given by (4.5.30).
After much tedious work, the optimal cost for each q; € [-4,-1]

can be written as:

J(us*("ql)!ql) = - xl*(ﬂ) = - dz(ql). cos (/E"ﬂ’) -
d5(a) + sin(/mqq * ™) *Eli (4.5.31)

1
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where
dap) = eos(Fay - tgtap) - [y - eosOFay - ttap) ¢ 2]
+d)(a)) sin’ (/q] - tg*(a)), (4.5.32)
dstap) = l4y(ap) - osAa -t e 10 IR0 ¢ tray)
- dy(q)) - sin(qq * tg*(qp)) - cos(V=q - tz*(a;)),
(4.5.33)
d (@) = %-él , (4.5.34)

and tS*(ql) is given by (4.5.30).

ComEarison

Comparison is made by applying each of the three derived controllers
as the input to the uncertain system (4.5.1), while a; varies from
-4 to -1. Figure 4.5.1 compares the performance of the MMAC controller
ul*(-) with the minmax cost and optimal controllers uz*(-) and uz*(',ql)
for -4 < q; < -1. Table 4.5.1 gives the value of J(ui*(-),ql) versus
q for selected q, € [-4,-1].

Note that the system performance (4.5.6) J(uif('),qi) is given as

J(ui*(.))ql) = - XI(TT) (4'5°35)

for 1 = 1,2,3.
As can be seen, the MMAC controller ul*(-) outperforms the minmax
cost controller u2*(°) for -4 <q <_-2.25, which is over half of the

uncertainty interval [-4,-1]. In this same region, the performance with
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Figure 4.5.1 J(ui*(-),ql) i=1,2,3 versus q For Example II.
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TABLE 4.5.1 J(ui*(’),ql) i=1,2,3, versus q, for Example II.
MMAC Minmax Cost Optimal

q J(u,*(+),q;) J(uy*(+),q;) J(uz*(-),q;)
-4.00 -1.3366 -0.90641 -1.5000
-3.75 -1.4240 -1.0608 -1.5515
-3.50 -1.4870 -1.1419 -1.5790
-3.25 -1.5219 -1.2048 -1.5806
-3.00 -1.5254 -1.2477 -1.5551
-2.75 -1.4944 -1.2690 -1.5030
-2.50 -1.4269 -1.2683 -1.4269
-2.25 -1.3218 -1.2462 -1.3333
-2.00 -1.1792 -1.2048 -1.2337
-1.75 -1.0012 -1.1481 -1.1484
-1.50 -0.7917 -1.0824 -1.1123
-1.25 -0.5575 -1.0170 -1.1884
-1.00 -0.3084 -0.9641 -1.5000
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the MMAC controller is very close to optimal, However, for

-2 < q; 2 -1, the minmax cost controller u,*(-) is far superior to u ().

Example II demonstrates that the MMAC approach may be useful in
determining controls for uncertain systems with non-quadratic cost

criteria.

4.6 Example III

Consider the determination of a controller for the uncertain first

order linear system described by

i(t) = -2x(t) + q; u(t) (4.6.1)
with
q, € [1,5], (4.6.2)
time interval
t e [0,2), (4.6.3)
initial condition
x(0) = 5, (4.6.4)

and the quadratic cost functional

J(u(-),qy) = %-4?'{x2(t) + uz(t)} dt (4.6.5)

with u(t) unconstrained for 0 < t < «.

In this problem, the parameter uncertainty is in the input matrix
(i.e., B(q) = ql). Since none of the authors cited have considered
such an example, only two controllers are derived for comparison:

1) MMAC controller ul*(-)

2) Optimal controller us*(-,ql).
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MMAC Approach

The optimal minmax model found in Example 3.4.3 is

x(t) = -2 x(t) + 3u1(t), t e [0,»), x(0) = 5 (4.6.6)
and the corresponding model performance index is

3, (u,(+)) = %-4?'{;2(t) " ulz(t)} dt.  (4.6.7)

The control problem is to determine a ul*(-), where ul*(t) is
unconstrained for 0 < t < «, that minimizes (4.6.7) subject to the
constraints given in (4.6.6). This is a scalar linear regulator
problem with quadratic cost index. A solution exists and is given by

[K-5]
w*(t) = R bk X(t) = - 3k x(t),  (4.6.8)
where k satisfies the scalar Riccati equation [K-5]
ak -1 + 9k% = 0 (4.6.9)

Solving for k and substituting into (4.6.8) yields

u * (1) iz:gfii) x(t) = -0.5352 x(t). (4.6.10)
Evaluating Jl(-) at ul*(é) gives
J (u*(-)) = 2.2299 . (4.6.11)

Optimal Control Approach

As in the previous two examples, it is possible to compute the
optimal controller u3*(-,q1) for each q; € [1,5]. From deterministic

control theory, us*(t,ql) is given by [K-5]

ug*(t,q)) = R lbk x(t) = -q;k x(t), (4.6.12)
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where k satisfies

4k -1 + qlzkz - o. (4.6.13)

Solving for k and substituting into (4.6.12) gives

(2- /4+qlz )

uzt(t,q)) = - x(t) - (4.6.14)

For each q1 € [1,5], the optimal cost can be written as

[1+ (c,*@N% - 25

Jo(uz*(*,9.),9;) = —7 2-a,- °1*(q1)] s (4.6.15)
where
. ) 2 - v‘4+q1
c;*(q) = —p/— (4.6.16)

Comparison

Comparison is made by applying ul*(o) and us*(',ql) as the input
to the uncertain system (4.6.1), while q; varies from 1 to 5. Figure
4.6.1 compares the performance of the MMAC controller ul*(') with the
optimal controller u3*(-,q1) for 1 <q < 5. Table 4.6.1 lists values
of J(ui*(-),ql) versus q; for discrete q; € [1,5].

Note that the system performance (4.6.5) is given as

1 e 2 2
J(ui*( ),ql) = 5 4) {x7(t) + uy (t)} dt , (4.6.17)
for i = 1 and 3.
The MMAC controller gives near optimal performance for 2 29 < 4.
Forlf_q1 < 2 and 4 < q, < 5, the MMAC performance deviates less than

4.5% from optimal.
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Figure 4.6.1 J(ui*(-),ql) i=1,3 versus q; for Example III.
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TABLE 4.6.1 J(ui*(-),ql) i = 1,3 versus 9, for Example III.
U St ()a,) et
1 ! 3 *1
1.0 3.0691 2.9508
1. 2.8261 2.7778
2.0 2.6052 2.5888
2.5 2.4065 2.4031
3.0 2.2299 2.2299
3.5 2.0755 2.0726
4.0 1.9432 1.9314
4.5 1.8331 1.8052
5.0 1.7451 1.6926
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Example III demonstrates that the MMAC approach may be useful in

determining controls for systems with uncertainty in the input matrix.



CHAPTER V

SUMMARY AND RECOMMENDATIONS

5.1 Summary

This dissertation is concerned with the determination of a con-
trolier for a linear time-invariant parameter uncertain system. Due
to the uncertainty in the system state equation the usual statement
of the optimal control problem cannot be given. To circumvent this
difficulty, a two-step, minmax modeling and control (MMAC) approach
is proposed as a new method for selecting a controller.

In the first step, an optimal minmax model for the uncertain
system is derived. The determination of the optimal model is viewed
as a two-person game of design against nature. The game cost is
taken as the norm of the difference between system and model matrices,
and the game is played with the designer minimizing the maximum value
of cost. When the true parameter values are known to lie within a
bounded rectangular set, it is shown that the optimal model exists
and is unique. The optimizing model parameters define the center
point of the uncertainty set.

The minmax criterion by which the optimal model is chosen yields
the smallest guaranteed upper bound on the cost. It is therefore
appropriate to describe the minmax model as a guaranteed cost model.
The mismatch between system and model matrices is shown to induce an

upper bound on the error between uncertain system and optimal model

96
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trajectories, for the case where the origin is an asymptotically stable

equilibrium point for the uncertain system with arbitrary q € Q. It is
also shown that the optimal minmax model is completely controllable
provided that the model parameter in the input matrix is restricted
from assuming a zero value.

In the second step of the MMAC approach, a controller for the
uncertain system is sought, based on the minmax model state equation
and a model performance index analogous in form to the given system
performance mc¢asure. This controller is denoted as the MMAC :=ontrolier
for the uncertain system. It is claimed that the two step MMAC approach
provides a solution to the pfoblem of controlling the uncertain sys-
tem, whenever an admissible MMAC controller exists.

The application of the MMAC approach requires the solution of
example problems and several are presented. Comparisons are made
with various techniques from the literature. Although these examples
are specific, they show that the MMAC approach competes well with
the opposing techniques.

In summary, this dissertation proposes a new and improved
approach to the determination of a controller for an uncertain system.
The MMAC approach may be useful in deriving controls for linear
time-invariant systems with uncertain parameters in both system and
input matrices, and whose performance measure may be either quadratic

or non-quadratic.

5.2 Recommendations for Further Research

There are a number of topics for further research based on this
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work, for example:

(1) The completely analytic solution of the optimal modeling
problem relied heavily on the geometry of the uncertainty set, i,e.,

Q was a known and bounded rectangle. If this restriction was relaxed
and Q was simply given as a compact, convex set, then the goptimal
model parameters and the corresponding worst case system parameters
might be attainable by employing a nonlinear programming algorithm.

(2) The problem of controlling a linear time-invariant parameter
uncertain system where the system and input matrices, A(q) and B(q),
are not restricted to companion form should be investigated. This
may require the definition of a more suitable matrix norm for com-
putation.

(3) As noted in Section 3.6, there may be some q € Q for which
the stability properties of the uncertain system and minmax model
are different. This difference may prove to be disastrous when
implementing step two of the MMAC approach, especially over an infinite
time interval, and should be studied.

(4) An interesting extension to this work would be the design
of an MMAC controller based on a reduced order minmax model, determined
from observations of the uncertain system states.

(5) By allowing the uncertain system matrices to be time varying,
the MMAC approach might be extended to a broader class of problems.

In this case, the modeling problem would be to determine stationary model
matrices which minimize the maximum value of game cost. The game cost

might be written as a Chebychev norm of matrix differences.
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