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ABSTRACT

MICROSCOPIC THEORY OF FERROELASTIC

PHASE TRANSITIONS IN ALKALI CYANIDES

BY

Devarai Sahu

Alkali cyanides are classic examples of ionic

molecular solids which show anomalous elastic and phonon

softening in their high temperature pseudo-cubic phases. As

the temperature is decreased, there is a critical

temperature at which they order ferroelastically via a first

order phase transition. In this work we have developed a

microsc0pic theory based on a translation-rotation (TR)

model, originally proposed by Michel and Naudts, to explain

the above mentioned prOperties of both the disordered and

the ordered phases.

We use Zubarev's Green's function technique and an

RPA-type approximation to obtain the phonon frequencies in

the disordered phase. We find important competing mechanisms

in these solids which had been missed in previous works.

These are (i) competition between short range repulsion and

quadrupole electric field gradient contribution to TR

coupling, (ii) competition between short range single site



potential and direct quadrupolar interaction, and (iii)

competition between direct quadrupolar interactions and

lattice mediated interactions. To explain the observed

elastic properties we have to assume that the quadrupole

moment of the anion in the crystal environment is consider-

ably reduced from its free ion value. This conclusion

agrees with the results of molecular dynamics simulations on

orientational correlation functions hi KCN. However, in

contrast to Imolecular dynamics shnulations for CsCN our

calculation predicts a strong dependence of elastic

properties on the quadrupole moment of the anion.

To study the ordering in the ferroelasic phase, we

use a canonical transformation to eliminate the linear TR

coupling and derive an effective orientational Hamiltonian.

We use this Hamiltonian to obtain the free energy in terms

Iof five orientational order parameters. We find that the

form of this free energy has all the necessary third order

terms to account for the first order nature of the

transitions and the symmetries of the ordered phases. As a

concrete example we apply our theory to CsCN. We point out

the difficulties associated with explaining simultaneously

the properties of both the disordered and ordered phases in

terms of a single microscopic Hamiltoninan. Finally we

suggest improvements which can give better results.
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CHAPTER 1

INTRODUCTION

The theory of phase transitions has been a very

active area of research in recent years. Understanding the

nature of phase transitions in a variety of physical systems

such as fluids, magnets, superconductors, molecular solids

and so forth has been quite challenging. In the study of

phase transitions in these systenw one can ask several

interesting questions, for example: what drives the phase

transitions? Is there any universal behavior in the phase

transitions in spite of the diversity of the systems? What

are the origins of the observed macroscopic properties?

Eventhough we do not attempt to answer all these questions

in this thesis, we would like to point out two main

directions iri which theories of phase transitions have

proceeded to answer some of these questions.

The first approach has been to concentrate on the

universal aspects of the phase transitions. In this

approach one uses the fact that a physical system is charac-

terized by its spatial dimensionality (D), the dimensional-

ity of its order parameter (d), and the syrrmetry of its

order parameter. Systems otherwise distinct, but having the

same D, d and symmetry of its order parameter are said to



belong to the same universality class. Such systems exhibit

identical critical behavior in spite of the fact that the

interactions which give rise to this behavior are entirely

distinct. In particular, one can add terms to the

Hamiltonian consistent with a given universality class and

yet leave the critical behavior unchanged. The details of

the interactions are relatively unimportant hi such an

approach (Fis 79, Fle 81).

On the other hand, in a different approach, one

identifies the physical Inechanisnu that drive the phase

transitions and studies the relative importance of various

competing processes that contribute to the phase

transitions. In particular one likes to know whether the

parameters that enter the theory have a microscopic justifi-

cation and if not, whether they are even plausible from a

microscopic point of view. In this approach the emphasis is

on the details of interactions, their sources and

microscopic origin.

The work in this thesis is based on the latter

approach. The motivation for pursuing such an approach is

due to the fact that not nmch enmhasis has been given in

recent years to develop microscopic theories of structural

phase transitions. On the other hand, phenomenological

theories of structural phase transitions have been

reasonably successful in explaining soft mode behavior,



order-disorder transitions etc. in terms of adjustable

parameters. One can ask several pertinent questions

regarding such phenomenological theories. Do these theories

convey any information as to the details of the interac-

tions? Are there any competing processes on which the

observed properties depend sensitively? A proper microscopic

theory can address and shed light on some of these

questions.

R.A.Cowley has formulated stringent criteria (Cow

81) to find out whether a theory is microscopic or not.

According to Cowley a proper microscopic theory of phase

transition should be able to predict parameters such as

transition temperature, soft mode wave vector, the symmetry

of the soft mode etc. If one has to introduce extra

parameters to explain the above properties, then one should

be also able to predict other properties such as phonon

dispersion relation, optical reflectivity of a metal and so

on. On the basis of these criteria Cowley points out that

there has been little progress in so far as the microscopic

theory of structural phase transitions is concerned. It is

therefore clear that developing a proper microscopic theory

has been a challenge to theorists. Hence we have chosen such

an approach.

The outline of this thesis is as follows. lri

chapter 2 we summarize the experimental observations



pertinent to the systems under investigation, viz. the

alkali cyanides. In chapter 3 *we review the earlier

theoretical works in the literature that attempt to explain

soft mode behavior in these systems. In chapter 4 we

present our theory of phonon softening and discuss the

different sources that contribute to translation-rotation

(TR) coupling iri these solids: short range repulsion and

anisotropic electrostatic interaction. The latter has not

been taken into account in previous works (except in recent

molecular dynamics simulations, see Bou 81, Kle 81,82) and

is shmwn to play a significant role in understanding the

physics of these solids. In chapter 5 we present the results

of our elastic and phonon softening calculations and show

that the two effects mentioned above compete against each

other. In chapter 6 we review an earlier theory (deR 81)

which tried to explain the ferroelastic order in the

cyanides in a semi-phenomenological way. We point out some

of the inadequacies of this work and present our microscopic

theory starting from Bogolyubov's variational principle for

the free energy. As a concrete example we apply the theory

to understand the ferroelastic order in CsCN. In the last

chapter we summarize our results and point out some of the

unresolved problmns which should be taken in) in a future

investigation.



CHAPTER 2

SUMMARY OF EXPERIMENTAL DATA

In this chapter we summarize some of the experimen-

tal data on the alkali cyanides MT(CN)', where M=Na,K,Rb and

Cs. The high temperature (high T) solid phase in these

compounds is denoted as phase I (pseudo-cubic phase) while

the low T non-cubic phases are denoted as phases II and Ill

respectively. Many of the phase transformation properties of

the alkai cyanides can be traced to properties of the

cyanide ion. For example, eventhough the alkali cyanides

are structural kins of the alkali halides, the two families

show remarkably different physical properties. In the

latter, phases II and III are absent (Nor 58), “mile in

phase I the isothermal elastic constants C44 and C11 harden

with decrease of T (e.g. Figure 2.1). Over a range of T from

300K to 4K, C44 and C11 increase by 5% and 19% respectively

for KCI. This is due to the fact that at low T, absence of

lattice anharmonicities renders the alkali halide lattice

hard. On the other hand, in alkali cyanides precisely the

opposite effect happens: C44 and C11 dramatically soften (in

phase I) with decrease of T. It is clear that this softening

is due to the interactions of the CN' molecular ions (Hau

73) with the lattice and with themselves. Thus it is
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apprOpriate to discuss some of the properties of the CN‘ ion

before summarizing the properties of the cyanide crystals.

(a)The Free CN' Ion
 

The free CN' ion has a nonspherical shape. Its

properties are characterized by the following parameters

(Bou 81): total charge q0=-eo (e0 is the charge on a

proton), dipole moment pz=0.318 Debye, quadrupole moment

Qo=-4.51 DebyexA. Taking a typical lattice distance r, the

energy scale of the direct dipole-dipole (d-d) interaction

Edd=p2/r3=10K while the energy scale of direct quadrupole-

quadrupole (Q-Q) interaction is ten times larger i.e.

EQQ=QZ/r5=100K. Thus to a first approximation Q-Q interac-

tions dominate over d-d interactions. The» two nuclear

centers of the molecule are separated by a distance of

2d=1.19A. Bound et al. (Bou 81, also referred to as BKM)

have assumed a dumbbell model of the CN' ion for their

molecular dynamics (MD) calculations with the following

charge distribution: qN=-1.28eo, 9C=‘1-3790aqc.m.=1-5590-

Recently LeSar and Gordon (LeS 82) have constucted a seven

charge model of the anion which takes into account the

higher multipole moments of the anion. Another quantity of

interest is the rotational frequency of the free CN'



molecule: 10'1=3x1010 1/sec (Lut 81,83). In phase II of the

solid, imaginary part of the dielectric response measure-

ments (Lut 81) show that 1'1(T)=a.exp(-b/kT)<Io'1, whereas

in phase ': T-1lleT0'1. This suggests that in phase I the

CN' ions undergo quick molecular reorientations whereas in

the ferroelastically ordered phase, the reorientation rate

is thermally activated.

(b) Crystal Structure and Orientational Probability in the

Disordered Phase
 

In phase I the alkali cyanides have pseudo-cubic

structure (see Figures 2.2 and 2.3). Powder X-ray

diffraction measurements (Ver 38, Bii 40) show that NaCN,KCN

and RbCN have NaCI-type structure whereas CsCN has CsCl-type

structure (Lel 42). In this phase the CN' ions are randomly

oriented so that the crystal symmetry is effectively cubic.

However the probabilities of orientations are not the same

for all directions and they change with T. Single crystal

neutron scattering data (Row 75) in NaCN and KCN suggest

that the CN' orientation probability is large along (111)

and (100) directions. We have made plots of the T-

independent single site steric potential Vo(n) to find out

the maximum and the minimum of the potentials, on the basis

of a simple Born-Mayer form of the potential. For KCN (e.g.



Figure 2.4) it is found that the orientation probability,

P=exp[-BVO(n)] is a maximum for the eight (111) directions,

minimum for the six (100) directions and saddle points

(s.p.) for the twelve (110) directions. The discrepancy

between experiment and theory as regards the orientational

probability distribution could be due to the fact that

experimentally it is hard to isolate the single site

effects, whereas the theoretical plot is a plot of the

single site potential. In contrast, for CsCN (e.g. Figure

2.5) the maxima and minima are along (100) and (111) respec-

tively whereas (110) is still the saddle point. The form of

the single site potential plays a very important role in

determining the bare orientational susceptibilities in the

paraelastic phase. In the lowest order, there are five such

susceptibilities for the pseudo-cubic phase, two of “Mich

have Eg symmetry ( for example <(3cosZB-1)2>), and the rest

have T2g symmetry (for example<(sin6cos¢sinesin¢)2>), where

the angular brackets indicate thermal averaging with respect

to the single site potential.

(c)Some Physical Properties
 

Single crstals of Na,K and Rb cyanides are

transparent in phase I (Hau 73,77; Kon 79). As the

temperature is lowered, there is a first order ferroelastic

phase transition at T=T. to a non-cubic phase (phase II).



10

 

 

 

   
 

   

KCN

D

a, o =K*

.0 =(CNI'

0——

o 5 fl

<———— 2Q——->

PHASE I

 

 
PHASE II

FIGURE 2.2 Crystal structure of KCN



11

CsCN

 

 

 

   
 

  
 

<——2a——s

PHASE I

 

 

 

  
PHASE II

FIGURE 2.3 Crystal structure of CsCN



      

  \\
\\
\\
\\
\\\\
\\
\\
\\
\\
\\
\\
\“S
"f
tm
th
fm

\\
\\
\\\‘
\\

“\
“\
\\
\\
\‘
\\
\\
\

\\
MM
MM
M“
W“

\“

‘“
‘\
§\
1\
\\
\\
\

\\\
\\\

\\\
\\\

\\\
\

l

\\\
l

   

      

   

    

 

Il
l/
Il
lI
]

""
1:
Z,
%,
,,

 

 

 

        

“

3“”411115/44,’“I!

IIII“;’II

{I

 

F
I
G

Kc
UR
E

N.

2

I
V

.
4

m

5.

99
"g

1,
,

le

K

s.

I

V

l
t
e

m
i
n
=
8
3
g
h
o
r
t

0K

a
n
g
a
v
n
g
e

l'

5

e
p

'P

=
8
u
l

7
K

n

.

D
o
t

en ti aI f
0 I’



13

 

  

  

     

   

\‘\\\

'1'0"w.. \\\\ \.
. MO‘0‘

:;\§\ .3::::.&..”.’:.:.’:MO.[7”]7”4““ ....

”4,101? \‘MRR1“:\\\:“‘W. 4“.

9'33.” ‘:\\\\\\\ 04:?” , ‘8“\

\‘\\‘o‘“”’47?"{:‘\g“\\“33$“\\\“

$\\\\!

 

    

V
0

(
9
.
4
»
)

G
C
>

9:“

¢=O

FIGURE 2.5 Single site short range repulsion potential for

CsCN; Vmax=6082K, Vmin=5578K, Vs.p.=5919K.



14

In the ferroelastic (FE) phase all the CN' ions orient along

some definite fixed direction in the crystal. It has been

pointed out in the case of KCN (Sto 81) that there is

evidence of some elastic disorder in phase II, which however

averages out to zero. In the FE phase there is still a head

to tail randomness of the anions, so that there is no

electric dipole order. We list below some of the changes in

the properties of the crystal in the l-ll transition. (i)

The changes in the crystal symmetry and the directions of

the FE ordering of the anions are given in Table 2.1. (ii)

The single crystals of phase I give rise to multiple domains

upon transition to phase II. Typically the domains have a

mean size of 80 microns and because of strong light

scattering from the domains the crystal becomes opaque upon

transition. (iii) The phase transition is first order and

accompanied by changes in the configurational entropy (AS),

the dielectric constant (As) and enthalpy (AH) (see Table

2.2). Experimental measurement of specific heat (Lut 81) in

the neighborhood of the FE phase transition indicates the

existence of hysteresis effects. (iv) The most dramatic

consequence of the transition is a strong pre-transitional

softening of the (001) TA phonons and to a less remarkable

extent that of the (001) LA phonons. Ultrasonic (Hau

73,77,79), Brillouin (Kra 79; Boi 78,80;Sat 77;Reh 77) and

inelastic neutron scattering (Loi 80a,b;82) experiments show
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that the elastic constants C44 and C11 decrease with

decrease of 'L. The extrapolated temperatures T44 and 111

where the respective elastic constants vanish are such that

T44>T11. Since: the actual transition is ‘first order, the

experimental transition temperature T. is higher than the

extrapolated temperature TC=T44 where the elasic constant

C44 vanishes. The numerical values of the actual and the

extrapolated transition temperatures are given in Table 2.2.

(v) A plot of ln(T') vs. the lattice constant 2a shows that

T = a"3 (Lut 81). Since there is no electric dipole order in

phase II, this has lead to suggest (LUt 81) that the FE

ordering in phase II is due to elastic dipole interaction.

(vi) Apart from the changes in the static properties, there

are changes in the dynamic pr0perties. Eventhough we will

not be concerned directly with these properties, we mention

two of these properties briefly. (a) In the high-T phase the

Raman spectrum is liquid like and structureless, whereas in

the low-T phase, the Raman spectrum shows well defined

lines. In stress aligned samples in the low-T phase, there

is a prominent Raman scattering peak due to the CN'

stretching vibration. (b) In the high-T phase, the

dielectric response is loss free, whereas in the low-T phase

there is a frequency dependent dielectric loss.
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TABLE 2.1 Symmetry changes H1 l-II transition in

alkali cyanides.

System NaCN & KCN RbCN CsCN

Phase I fcc fcc sc

Phase II body-centerd monoclinic trigonal

orthorhombic

 

 

FE order (110) dir of (111) (111)

phase I

Reference Kon 79 Kon 79 deR 81

In addition to phases l and II, there is a phase

III which is realised in some systems as the temperature is

further lowered. In this phase there is evidence for

electric dipole ordering (Lut 81). In NaCN and KCN this

ordering is antiferroelectric in nature while in RbCN the



TABLE 2.2 Transition temperatures,entropy,enthalpy,

 

 

 

 

 

and dielectric constant changes in I-lI transition in

alkali cyanides.

System NaCN KCN RbCN CsCN

TC(K) 255.4 156 130 150

T'(K) 288 168 132 193

AS(erg/K/mole) Rln4 RIn2.7 R|n2 Rln3.7

AH(ca|/mo|) 783.7 339 177 461

Ae/e 15% 5% 3% -

Reference Kon 79 Kon 79 Kon 79 deR 81,

Sug 68

electric ordering is perhaps that of a! dipolar glass. In

CsCN on the otherhand, no electric ordering has been

reported upto 14K.

with the

cyanides.

In this work we shall

low-T electrically ordered phases of

not be concerned

the alkali



CHAPTER 3

REVIEW OF EARLIER THEORIES OF ELASTIC AND PHONON

SOFTENINC IN ALKALl CYANIDES

In this chapter we review the earlier theories on

elastic and phonon softening in the alkali cyanides. The

soft phonon frequencies, in which we are interested in,

depend on two quantities: (a) the phonon frequencies of the

bare lattice and (b) the corrections arising from the

translation-rotation (TR) coupling. Since the calculation of

bare phonon frequencies for ionic solids is. by itself a

complex problem and has been exhaustively studied (Har 79),

we will not deal with such theories in the present chapter.

We will only review the earlier theories which take into

account the corrections to bare phonon frequencies. We

categorize these theories as (a) purely phenomenological,

(b) semi-phenomenological, and (c) microscopic. In a purely

phenomenological theory the coupling of the lattice strains

to the other degrees of freedom is written down in a form

that is consistent with the symmetry of the high-T phase,

but the coupling constants themselves are obtained by

fitting the theory to experimental data. In a microscopic

theory the coupling constants are calculated from interac-

tions which have been obtained independently. A semi-pheno-

18
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menological theory is a combination of the former and the

latter. In the following we review these theories.

(a)Purely Phenomenological Theories:
 

(i) The phenomenology of elastic softening and coupled

order- parameter dynamics was given by Courtens (Cou 76) in

a work relating to succinonitrile. In this compound the

molecule has an anisotropic polarizability Pi which gives

rise to a polarizability-polarizability interaction of the

forni (1/2)BiiPiPi and a strain(ei)-polarizability

interaction of the form Diipiei' In addition, the lattice

has the usual harmonic strain energy terms. IA canonical

transformation leads to the appearance of an extra strain-

strain term which in the low frequency limit leads to the

renormalization of the elastic constants.

(ii) Boissier et al. (Boi 78,80) explain the elastic

softening in KCN and NaCN, the phonon line shapes, and

address the question of owientational order “1 phase II.

They expand the free energy upto second order in the orien-

tational order parameters n1,n2 and n3 (having T2g

symmetry). These second order terms correspond to a pseudo-

spin exchange energy. They also include a linear coupling

between the order parameters and the strains. For TA

phonons with wave vectors along (110) direction and “Nth

polarization vector e=(001) the free energy is



20

F1=(1/2)C44°(652+862)+s<e5n2+e6n3)+(1/2>(T-To)1(n22+n32)

where ITO is the pseudo-spin exchange energy and e's are the

strains. Note that n12 has been dropped in the above

equation because it does not lead to any softening. Assuming

further that the spin dynamics is diffusive, Boissier et al.

obtain the equations for softening of the elastic constant

C44 and the line shapes for the corresponding phonons. For

LA phonons, however, the coupling of strains can be through

order parameters of E8 symmetry only (due to symmetry

reasons) and these strains cannot couple directly to the

order parameters of T28 symmetry. But the LA phonons can

couple to the squares of the order parameters of T2g

symmetry. This fact gives rise to the softening and line

broadening of the LA phonons in the theory of Boissier et

al.

This phenomenological theory of Boissier et al.

gives good fits for the elastic constants and for phonon

life times (in the small wave vector regime) for KCN.

However it fails to explain the C44 softening in NaCN

because for this system the experimental softening of C44

goes linearly with (T-To). Moreover there is usually a wide

range of values of To over which C11 and phonon line widths

could be fitted equally well. Besides, one serious drawback

of the theory is that these authors neglect the fact that
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the strains corresponding to LA phonons can couple linearly

to the order parameter of £8 symmetry.

(iii) Rehwald et al. (Reh 77) expand the free energy

of phase I upto second order in terms of a different set of

order parameters which are assumed to be the six discrete

<110> orientations of the cyanide ions. Linear combinations

of these six orientations are taken to obtain orientations

of following symnetry: one of A18 synmetry, two of £8

symmetry (£1,52) and three of T2g symmetry (n1.n2 and n3).

The strains c's couple linearly to the order parameters so

that

Fc=8t(“164*nzestn3eeltfiel51(81*52'263ltfi2lez'63ll

This gives rise to

C44=C44°(T'728'l/(T+To)

and c=co(T-T.g')/(T+To)

Here To is positive and the quantities T28. and Tea. are

related to the coupling strengths 8t and Be respectively,

and C=(1/2)(C11-C12).

One of the drawbacks of this theory is that in the

high T phase, all orientations are possible, not just the

six discrete ones chosen in the model. In fact the nmst

probable orientation is not along (110), but along <111>.

In addition in the Landau expansion third and fourth order
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terms have been neglected in the works of both Boissier et

al. and Rehwald et al. Since the actual transition is first

order, these terms are extremely important and should be

included to have a proper understanding of the first order

nature of the transition.

(b)Semi-phenomenological Theory:
 

Loidl et al. (Loi 808,b;83) apply the theory of

magneto-elastic coupling in rare-earth solids to the

molecular solids and map the electronic degrees of freedom

into the rotational degrees of freedom of the molecular

species. In presence of TR coupling and three phonon

anharmonic processes, the frequencies of phonons are given

by the equation:

w(k)2=w0(k)2+2wo(k)w(k,m)-2A2w02(k)x(k,w)

where mg is the bare phonon frequency; w is an anharmonicity

parameter, A is a TR coupling constant and x is the

rotational susceptibility in presence of direct anion-anion

interaction. By taking the long wave length limit of the

above equation Loidl et al. obtain the renormalization of

the elastic constants, similar in form to that obtained by

(Reh 77).

The following limitations of the equation used by

Loidl et al. should be noted. First, there is as single

coupling constant A for both LA and TA phonons. Second, it
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is not clear from the above equation, the role, for any

general k, of the off-diagonal elements of the susceptibil-

ity matrix in phonon softening. Moreover, the parameters of

the phonon Green's function which give rise to the

excitation frequencies given above, have well-defined

microscopic origin. However Loidl et al. donot obtain these

parameters from independent sources, instead they fit their

theory with experimental data in cyanides to obtain these

numbers. In addition this theory does not explore the

interesting competition between various physical effects,

which we show are crucial to have a proper understanding of

phase transition in these systems.

(c) Microscopic Theories:
 

(1) Elastic Softening:

A nficroscopic theowy ‘har anomalous thermoelastic

behavior in the alkali cyanides with NaCl type structure in

phase I was first given by Michel and Naudts (Mic 77a,77b).

We will review their theory in some detail because the

present work is similar in spirit to theirs. They start

from a nmdel in which the anion is taken to be a dumbbell

with two repulsion centers at the positions of the two

nuclei. Each molecule is surrounded by an octahedral cage of

six alkali ions. The single site repulsive potential on a

given molecule due to its nearest neighbors (nn) is given by
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6

V0(i)=i§1V0(Riirni) (3.1a)

with V0(Rii,ni)= X C1exp[-C2|Rii+sdni|] (3.1b)
5=+'-

and "i is a unit vector specifying the orientation of the

ith molecule. The lowest order term in the crystal field

potential Ms a Devonshire potential involving spherical

harmonics of order l=4. However as the cations move from

their average positions, the potential does not have cubic

symmetry. This instantaneous noncubic potential as given by

(3.1b) is then expanded upto terms linear in the displace-

ments “ii

VO(R+uIn)=V0(R'n)-P(R,n)ou+o00oo

Here R=Rii0, and “="ii- The coefficient of the linear term

P(R,n) hs again expanded iri spherical harmonics. If one

retains only l=2 terms, one obtains the leading order con-

tribution to the TR Hamiltonian:

HTRU)=iZaYa(ni)vaR<Ri,0).u, (3.2)

Here and in the following two chapters the five symmetry

adapted spherical harmonics (not all normalized) of order

l=2 are defined by:

Y1(n)=(5/4n)1/2(1/2)(3ct2-1)
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Y2(n)=(1.5)(5/4n)1/25t2(cp2-sp2)

Y3(n)=-c.st2.sp.cp (3-3)

Y4(n)=-c.st.ct.cp

Y5(n)=-c.st.ct.sp

where c=(15/2fl)1/2, ct=cosB, st=sin6, cp=cos¢, sp=sin¢, 9

and ¢ being the angles associated with the unit vector n.

It is well known that Y1 and Y2 have Eg symmetry whereas Y3,

Y4, and Y5 have T2g symmetry.The TR coupling matrix due to

repulsion, Vua: are calculated from:

vua(l)=ca2pr(l,Q)Ya(9)dQ ; (l=nn vector)

where ca'2=fYa2dQ (3.4)

For NaCl type structures the 3x5 coupling matrix v has only

two independent coefficients which we will denote as AR and

BR, where the subscript R stands for repulsion contribution.

The non-spherical shape of the cyanide ion, therefore leads

to a TR coupling which leads to an effective indirect

orientation-orientation interaction of the form

(1/2) X Ya'(k)la8(k)Y3(k)
aBk

where the indirect interaction matrix I is given by

la5(k)=-i% vai(k)Rii(k)viB(k)
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and R'1(k)=MO is the bare dynamical Inatrix. Ya(k) is

defined by

va(k)=(1/N)1/2Zexp(ik.ki)Ya(ni)

I

The TR coupling not only introduces an effective orienta-

tional interaction, but also changes the dynamical matrix

from M0 to M such that

M=[1+F.R]'1M0 (3.5a)

where F=vxvt (3.5b)

In presence of the indirect interaction I, the rotational

susceptibility x=x(k) is given in the molecular field

approximation by the solution to the matrix equation

x=x°-x°|(k)x (3.6)

where xaBo=(1/kT)fexp(-8V0)YQ(Q)YB(Q)dQ/Z (3.7a)

with z=fexp(-8vo)dn (3.7b)

It should be pointed out that the TR coupling matrices enter

not only in equation (3.5) but also in equation (3.6)

through indirect interaction I. Such a treatment leads to

the correct equations for the elastic and phonon softening.

In contrast, in our theory (see section (e) of Chapter 4)

when the renormalized phonon frequencies are calculated in

RPA (Randmn Phase Approximation), it: is not necessary to
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include the indirect interaction in the expression for the

susceptibility x, because it will lead to overcounting of

interactions. The equivalence between the approach of this

thesis and that of MN (Mic 77a) is proved in Appendix A.

Taking the elastic limit in equation (3.5) and (3.6)

Michel and Naudts (MN) obtain the softening of the elastic

constants:

C44=C440[1-(ZBR2xt0)/(aC440)] (3.83)

C11=C110[1-(8AR2xe0)/(aC110)] (3.8b)

where 2a is the lattice constant (see Figures 2.2 and 2.3),

xo's are susceptibilities of appropriate symmetries.

The parameters AR and BR in equation (3.8) depend

on: the strength C1 and inverse range C2 of the Born-Mayer

potential; on a and on the bond length 2d. They are given in

Appendix B of (Sah 82,enclosed with this thesis) and were

first derived by MN (Mic 77a).

For KCN the above theory for elastic softening gave

good agreement with experiment. However while checking the

orientational susceptibility curves of E8 and T28 symmetry

given in Figures 1 and 2 of (Mic 77a,b) we were unable to

reproduce these curves. We also noted that a different

choice of the repulsion strength C1, viz. C1=2CMN could

easily reproduce their curves. However since AR and BR are

proportional to C1 it is clear that doubling C1 should also
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double the coupling constants AR and BR and as such will

spoil the agreement between theory and experiment. In other

words a simple rescaling of the parameters would not give

the reported (Mic 77a) agreement between theory and

experiment. Therefore it is clear that in order to obtain

agreement of the theory with experimental data one has to

invoke additional physical processes. We outline such a

physical process in section (d).

(2)Phonon Softening Over the Entire Brillouin Zone (Bl):

The original microscopic theory of MN was primarily

focused on calculating elastic properies. However there have

been several attempts to apply the theory to calculate

phonon dispersion relations. We review these theories

below.

(i) Strauch et al. (Str 79) start from the basic TR

coupling matrix discussed above and write the dynamical

matrix as M=M0+5M, where GM is :3 6x6 matrix which can be

partitioned into sub-matrices of order 3x3. The upper left

hand side sub-matrix in 6M is then given in terms of the TR

coupling matrix v and the bare susceptibilities x0. Strauch

et al. find that the use of v as given by MN does not give

good agreement between theory and experiment for the systems

NaCN and KCN. Hence they chose different constants that

give good fits to the experiment. It is clear that there is
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no microscopic justification for the choice of parameters

used in this work [but see (Sah 82)].

(ii) Ehrhardt et al. (Ehr 80,83) obtain the phonon

dispersion relations for RbCN basing their theory again on

the microscopic model of MN. Their dynamical matrix is

identical to that given in equation (3.5) where the

rotational susceptibilities are calculated in the presence

of lattice mediated interaction, i.e. according to equation

(3.6). Note that the dynamical matrices of (i) above and

that of (Ehr 80) are different from each other. Whereas in

(i) the upper right hand side submatrix in GM is a 3x3 null

matrix, in (Ehr 80) the corresponding quantity is a non-null

matrix.

It should be pointed out that in both the works (i)

and in (ii) the rotational susceptibilities have been

assumed to be frequency independent. This certainly breaks

dowm when the time scales of orientational motion are

comparable to phonon time scales. For a proper dynamical

calculation involving projection operators, we refer the

reader to the later work of MN (Mic 78).

(d) Suggestions for Improvement:
 

As mentioned earlier, the model due to MN (Mic 77a)

which had only SR contribution to TR coupling, failed to

account har the observed thermoelastic softening hi KCN.
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Moreover the theory of Loidl et al. (Loi 80a,b), in which

the phonon frequencies were calculated from the poles of

phonon (Breen's function, were ultimately fitted to the

experiments to obtain the parameters, thus revealing no

information at the microscopic level. Our aim in the next

chapter is to develop a microscopic theory similar in spirit

to the work of MN, but uses the Green's function formalism

to derive an equation similar to that used by Loidl et al.

(Loi 80a,b). The combination of the two approaches and the

inclusion of a physical mechanism mentioned below, leads to

a theory that brings out the essential physics of the

softening in the alkali cyanides in a straight forward

manner.

One of the major contribution of this work was to

realize that an improved agreement theory and experiment

could be obtained by incorporating TR coupling due to

quadrupole moment (Q) of the anion interacting with the

fluctuating electric field gradient (efg) at the site of the

anion. Since Q happens to be negative, the TR coupling con-

tributions due to SR repulsion and Q-efg interaction compete

against each other. To see the physics of this competition,

consider a (CN)' ion oriented along the z-axis and a

positive charge also on the positive zeaxis, at a distance a

from the c.m. of the anion. If one moves the positive charge

towards the anion along the z-axis, then the short range

repulsion energy increases, whereas the electrostatic energy



31

decreases because of the charge distribution associated with

the anion. Thus we see that there is a competition between

these two effects in their contribution to TR coupling which

is important in understanding the observed elastic softening

in the alkali cyanides. The details of this and other

competing processes are presented in the next chapter.



CHAPTER 4

MICROSCOPIC THEORY OF ELASTIC AND PHONON SOFTENING

IN IONIC MOLECULAR SOLIDS

In this chapter we present a microsc0pic theory of

elastic and phonon softening in ionic molecular solids in

general, with particular application to solids with NaCl and

CsCl structures. We show that our theory reproduces the

earlier microscopic theory of MN (Mic 77a) in the

appropriate limiting cases. Improvements over the earlier

microsconic theory which takes into account the non-

vanishing electric quadrupole moment Q of the molecular ion

are presented. These improvements are two fold: (i) there

is a non-zero contribution to TR coupling arising due to Q-

efg interaction, (ii) there is a modification of the

rotational susceptibility arising from direct Q-Q

interaction between the anions. We show that the presence

of (i) drastically modifies the conclusions of earlier

works. We find that in the contribution (i) it is

inadequate to retain just the nn contributions because con-

tributions from other neighbors may be of opposite in sign

to nn contributions. It is also found that going upto third

nn is usually adequate. However for direct Q-Q interaction

nn approximation is adequate because the contributions fall

32
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off as 1/R5.

We divide this chapter into seven sections. Details

of some of the results given in this chapter can be found in

Appendix B of this thesis.

(a) Model and Crystal Field (CF) Potential

We treat the CN‘ ion as a rigid dumbbell which has

two identical centers separated by El distance 2d. The

alkali ion M4' on the other hand is represented by a

Spherically symmetric charge distribution. The short range

(SR) repulsion between a given (CN)' and an M+ ion is char-

acterized by two constants C1 and C2 which represent the

strength and the inverse range of the repulsion potential

respectively. Since we are treating the two centers of the

anion as identical, there is only one set of atom-atom

potential parameters C1 and C2 for each cyanide crystal.

Since the short range potential falls off exponentially with

distance, we will ignore the SR interaction beyond the first

nn. With these assumptions, the orientation dependent

single site CF potential is easily obtained from equation

(3.1).

(b) Hamiltonian
 

The Hamiltonian H consists of three parts H=HT + “R

+HTR. The translational part HT is obtained by treating the
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ions as spherical charge distributions and keeping the

harmonic terms

HT=<1/2)kg"[(1/mK)pu'(r.k)pu(x.k)+

3;CHU(K,A,k)uu.(K,k)uu(A,k)] (4.1)

where mK is the mass of the Kth ion (+,-) in a unit cell, k

is the wave vector, 11 is the cartesian component x,y,z;

CuU(K,A,k) is the dynamical matrix (note that the matrix M0

introduced in Chapter 3 gives only the acoustic modes), and

u,p are the fourier transforms of the displacements (from

the appropriate cubic structure) and momentum respectively.

The rotational part of the Hamiltonian is obtained

by fixing the c.m. of the (CN)‘ ions at cubic lattice sites:

H = 2 1 2| L A,k 'L A,k +Ev - 2 v " 4.2R kAl /( )l ( ) ( ) i 0(n.)*<ii> d(I]) ( )

where I is the moment of inertia of the dumbbell about each

of its two principal axes (i.e. A=1,2) and L(A,k) is the

fourier transform of the angular momentum L(A,i), VO(“i) is

the CF potential energy term already discussed in the

previous section. The tern: Vd(ij) represents the direct

interaction between two molecules at sites i and j and

oriented arbitrarily with respect to crystal axes.
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The TR coupling term HTR represents a coupling

between the owientational degrees of freedom Yh(ni) of a

molecular ion and the translational degrees of all the other

ions. Following MN we*write

HTR=iauXKkYQ'(k)vau(1<,k)uu(k,k) (4.3)

This tenn is obtained by displacing the c.m.s from their

equilibrium positions and keeping terms linear in the dis-

placements. Equation (4.3) is a fourier space representation

of equation (3.2) after summing over all lattice sites i.

The coupling matrix v will be discussed in detail in section

(f).

If we describe the translational degrees of freedom

in terms of phonons, then HT and “TR can be rewritten in

terms of phonon creation and destruction operators b. and b

respectively. Let k and j denote the wave vector and the

polarization index respectively. Then

HT=ikaik0(bjk.bik+1/2) (4-4)

where the bare phonon frequencies “jko are obtained by

solving a secular equation involving the dynamical matrix C

in equation (4.1). For detailed description about the

calculation of bare phonon frequencies in ionic solids with

long range interactions but without TR coupling we refer the



36

reader to the book by Hardy and Karo (Har 79). We can

express the displacements Uu(K,k) as a sum over the normal

modes of vibration:

uu(K,k)=%(ZwOmK)'1/2eu(K,kj)(bik+bi-k.) (4.5)

where eu(K,kj) is the polarization vector of a K type ion

for the phonon mode jk. One then obtains

HTR=iiEkYQ'(k)VQi(k)(bik+bi-k.) (4.6)

where Vaj (k)=(2wjk°)'1/2 Z (mK)‘1/2eu(1<kj)vua(r<,k) (4.7)

pK

(c) Direct Interaction
 

Direct interaction between two nmlecules at sites

Ri and RI can arise due to (a) 0-0 interaction, (b)

anistropic dispersion (AD) interaction and (c) short range

repulsion (R) interaction. One can write this interaction as

(Koh 60)

leill=r§1AmY2,m(‘”i)Y2,-m(wj) (4.8)

where the unit vectors mi and mi are the orientations of the

molecules i and j respectively with respect to the line

joining their c.m. taken as the polar axis. The coeffi-

cients Am can be written as
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Am=A.n(QQ)+Am(AD)*Amm) (m=-2.2)

and A.m=Am

The individual contributions to the direct interaction from

the various sources are given in Table 4.1 (Coo 71,Dun

77,deB 42). As seen from this Table, the 00 interaction

falls off as 1/R5, while the AD interaction falls off as

1/R5. In Table 4.1, e and o are parameters of the Lenard-

lones potential and K is the anistropic polarizability. To

obtain the anionic repulsion interaction that is listed in

Table 4.1 a power law potential of the form 4A/R12 between

the anion centers was assumed. In this work we neglect the

effects C” IN) and R contributions. Because of the large

quadrupole moment of the (CN)' anion, and large intermolecu-

Iar separation, this assumption is justified. Estimates of

p,q and r give the following values (for nn anions):

q=1146K, p=-41K and r=1K where we have used the following

parameters e=118K,o=3.46A, K=.25 and A=8x107K(A)12.

Moreover since the dipole moment of the (CN)' ion is small,

we ignore the direct dipole-dipole interaction. The direct

interaction between the anions arising due to their

quadrupole moments can be written as (using 4.8):

Hd=1/2 X Da8(k)va(k)'Y5(k) (4.9)
oBk
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TABLE 4.1 Strengths of direct interaction between a

pair of molecules

 

 

 

QQ AD R

A0 q p 8.41r

A1 (2/3)q (2/3lp (5/3r)

A2 (1/6)q (1/3)p 37.33r

where q=24an/5R5 p=-48n€06K2 r=2411336Ad4

/5R6 /5R16

 

 

The form of the interaction term Da8(k) is explicitly given

in (Sah 82), attached to this thesis as Appendix B. In

evaluating the direct interaction terms above one has to sum

over the Euler angles of the lattice vectors joining a given

anion to its nn anions (see Figures 2.2 and 2.3). These
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Euler angles are given in Tables 4.2 and 4.3 for NaCl and

CsCI structures respectively.

The k-dependence of the direct interaction matrix

D(k) for various symmetry directions will be given in

chapter 5 and will be discussed in that chapter.
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TABLE 4.2 Euler angles of nn

for NaCI structure

intermolecuar axis

 

 

position(units of a) 'B,-Y(units of u)

 

1/2,1/4

1/2,7/4

1/2,5/4

1/2,3/4

1/4,1/2

1/4,3/2

3/4,3/2

3/4,1/2

1/4,0

1/4,1

3/4,1

3/4,0
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TABLE 4.3 Euler angles for nn intermolecular

axis for CsCI structure

 

 

 

position(units of 2a) -B,-Y(units of w)

1,0,0 1/2,0

-1,0,0 1/2,1

0,1,0 1/2,1/2

0,-1,0 1/2.3/2

0,0,1 0,0

0,0,-1 1,0

 

 

(d) Renormalization of Phonon Frequencies
 

In alkali cyanides the bare phonon frequencies of

the high-T phase are renormalized because of the TR coupling

given by equation (4.6). 'h: obtain these modified phonon

frequencies we use Zubarev's Green's function technique (Zub
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60). We define the time- and temperature-dependent retarded

Green's function G by

Ciklt't')=(1/i)<[¢ik(t),¢jk.(t')]>6(t-t')
(4.10)

For simplicity of»notation if we drop the jk's for the

moment, then ¢(t)=b(t)+b.(t) is the phonon field operator in

the Heisenberg representation. The square bracket is the

conmutator, < > stands for the average over a canonical

ensemble and 6(t-t') is the step function. The equation of

motion for C is

i(d/dt)c(t-t')=6(t-t')<I¢<t>.¢'<t')1>

+<1/i)e<t-t'><[[¢<t).H1,¢'<t')1>

The fourier transfornrof C(t-t') is given by

w<<¢;¢’>>w=<[¢,¢'l>+<<[¢.Hl;¢'>>w (4.11)

where "

<<¢;¢'>>w=C(w)= l<3(r)exp(imr)dr (4.12)

The Hamiltonian H appearing in the above equation is the sum

of rotational, translational and TR parts. Following the

treatment given in Appendix B, we obtain the renormalized

phonon frequencies in RPA as:

mik2=(wiko)2-2wik0£%vai(k)x08(kw)v8i(k) (4.13)
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where the rotational susceptibility is defined as the time

fourier transform of the angle-angle Green's function:

xaB(k,w)=-<<Ya(k);YB'(k)>>w (4.14)

We would like to point out the assumptions under which

equation (4.13) has been derived. One assumption is that

the rotational dynamics is determined by HR alone, i.e. the

rotational dynamics has a faster time scale compared to

translational dynamics. N1 the elastic reginw this is a

reasonable approximation. For higher phonon frequencies,

one has to consider the retardation effects in an adequate

fashion. Another assumption in obtaining equation (4.13) has

been that a Green's function involving two orientational

Operators and two phonon operators has been replaced by the

average value of orientational Operators times the Green's

function of the phonon operators.

(e) Rotational Susceptibility
 

For calculation of elastic: constants it is

sufficient to consider the w=0 limit of the rotational sus-

ceptibility. We will further assume that xag(k), which we

define to be the zero frequency limit of the susceptibility,

can be replaced by the isothermal susceptibility xaBT(k).

We calculate this latter susceptibility in presence of

direct interaction between the molecules within a MF approx-
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imation. We have also neglected fluctuation effects in our

calculations. As we have shown (Sah 82) this susceptibility

in the paraelastic phase is obtained by solving the matrix

equation

x<k)=[1+x°D(k)1'1x° (4.15)

where X0 is the bare susceptibility given by equation (3.7)

and is calculated by taking the thermal average over the

single site potential V0. Because of cubic symmetry xago is

diagonal in 0,8 and has only two independent elements xeo

and xtoz

xaa°=(xe°.3xe°.xr°.xt°.xt°) (4.16)

Similarly in the elastic limit (k+0), the direct interaction

matrix is diagonal with

Daa(k=0)=(f.f/3.8.8.8) (4-17)

where f=D110, g=D330. Note that the factors 3 and 1/3 in

equations (4.16) and (4.17) respectively appear because the

symmetry adapted spherical harmonic Y2 is unnormalized (see

equation 3.3). From equations (4.15) to (4.17) it follows

that for k=0, x is diagonal with

xaa=(m,3m,n,n,n) (4.18)
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where num11, and n=x33. H1 the absence of single site

potential, i.e. for a free rotator, one has xeo=(1/kT)(1/4n)

and xt0=(1/kT)(1/2n). Clearly these values will be modified

when the single site potential is non-zero, the precise

nature of the modification will depend on the type of

lattice considered. The completeness relation of the

spherical harmonics allows one to write down a sum rule on

the bare susceptibilities:

2er+1.5xt0=(1/kr)(5/4r) (4.19)

Next we quote, for the sake of completeness, how

equation (4.15) is modified if we include self-interaction

(Geh 75) effects. Self-interactions can alter the single

site susceptibility in two ways: (1) by changing the single

site potential and (2) by changing the effective indirect

interaction between the molecular ions. In presence of self-

interactions the new single site potential is VT:

VT(9)=V0(9)+V5(Q)

where V0 is defined in equation (3.1) and

v 0 = Z I k Y 0 Y 0 4.20s()a8ka3()a()3() ( )

with the indirect interaction between the molecules given by

'a8(k)='§2Vaj.(k)V8j(k)/(wjk0) (4.21)
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One has then to calculate the bare susceptibility given by

equation (3.7) with respect to the total single site

potential VT(Q). In addition the nutrix equation for the

susceptibility (4.15) becomes

x(k)=l1+x°(D(k)-Elag(k))l'1x° (4.22)

Note that equation (4.22) has been obtained by defining the

self-interaction contribution to the single-site potential

through equation (4.20). One could as well define pVS

(where r) is an arbitrary number) as the self-interaction

contribution to single site potential with the consequence

that H1 equation (4422) (NH! obtains -plaB(k) instead of

-IaB(k). In an exact calculation such arbitrariness

(through the number p) is expected to have no effect.

However since we are using a meanfield approximation, the

nature of this arbitrariness might affect the final results.

(f) Rotation Translation Coupling Coefficients
 

In this section we discuss in detail the different

contributions 'N) the 'HQ coupling nmtrix that appears in

equation (4.6). These coefficients can be written as a sum

of two parts:

v(K,k)=vR(K,k)+vef3(K,k), (K=+,')

where R indicates SR repulsion contribution and efg

indicates the contribution coming from the interaction
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between the Q of the anion and the fluctuating efg produced

at its site by all the other ions (taken to be point

charges). Here K indictes the sign of the charges and could

be + or - depending on the type of neighbor considered. For

SR repulsion, it is sufficient to retain contributions from

nn's only (K=+), while for efg terms we include contribu-

tions upto third nn's.

(1) Repulsion Contribution
 

The TR coupling matrix due to repulsion, in

coordinate space, is calculated from equation (3.4) with the

help of equation (3.2). We discuss two cases:

(i)NaCl structure:

This case has already been discussed by MN (Mic 77b)

and the corresponding results for the k space is also

discussed by them. It should be noted that there are only

two constants AR and In; in this coupling nntrix. These

constants depend on the parameters C1,C2,d and a which are

given in Section (a) of Chapter 5 which deals with the

calculation of parameters (see Table 5.1).

(ii)CsCl structure:

We will evaluate the coupling matrix for this case

in the coordinate space for the nn lattice vector I=(a,a,a)

(see Figure 2.3). Let N be an operator such that Nl=l and
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Nn=n', where n is a unit vector specifying the direction of

the molecule. From equation (3.4) we obtain

vua(l)=ca2f[NPu(l,n)][NYa(n)]dn (4.23)

Choosing N=Sxy, an operator for reflection along the [110]

direction and also choosing N=R3, an operator for 3-fold

rotation about the [111] axis, we find that there are three

independent constants ARrBR and CR. In contrast, for NaCI

structure the SR coupling matrix has only two constants AR

and BR. The coupling matrix for CsCI structure in direct

space and in momentum space are given in Tables 4.4 and 4.5

respectively.

(2) Q-efg_Contribution
 

As the lattice vibrates, there is a deviation from

local cubic symmetry at the positions of the molecules and

the resulting efg couples to Q. To the lowest order in dis-

placements this leads tx: an additional coupling between

rotation and translation. Depending on the sign of Q the net

TR coupling will be either enhanced or suppressed.

The Q-efg interaction is given by (Coh 57)

H'=(1/6)i%iQ|i(i)U|i(i) (4.24)

where the Cartesian components of the Quadrupole and field

gradient tensors at site i are:
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Q|j(i)=f[3riIrii-6|ir52]p(ri)dr (ri=r-Ri) (4.25)

U|j(i)=(8/3xl )(a/axi))'qn/IRi-Rnl, (xeRi) (4.26)

n

TABLE 4.4 The transpose of the coupling matrix

vR(a,a,a) for CsCI structure.

p=AR/4,q=BR/4,r=CR/4.

 

 

 

x y z

1 p p -20

2 -p p 0

3 q q r

4 q r q
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TABLE 4.5 The transpose of the coupling matrix

(1/8)vR(k) for CsCI structure, where

si=Sin(kia),ci=Cos(kia),i=x,y,z.

 

 

 

x y z

1 p.sx.cy.cz p.cx.sy.cz -2p.cx.cy.sz

2 -p.sx.cy.cz p.cx.sy.cz o

3 q.cx.sy.cz q.sx.cy.cz -r.sx.sy.sz

4 q.cx.cy.sz -r.sx.sy.sz q.sx.cy.cz

5 -r.sx.sy.sz q.cx.cy.sz q.cx.sy.cz

 

 

Here p(ri) is the charge density at site i and U|i(i) is the

second derivative of the electrostatic potential at the ith

site due to all the other charges. We can express the

Cartesian quadrupole moment tensor as a linear combination

of spherical quadrupole moment tensors of rank 2:

02m(i)=frr2Y2m(i)p(ri)dr (4.27)
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SO that H'=.Z sz(i)U2'm(i) (4028)

r,m

where Uz'm(i)'s are appropriate linear combinations of

U|i(i)'s. Now we can express 02m: which is defined with

respect to lab axes, in terms of Q which is measured with

respect to the nmlecular axes. Let (9i:¢i) be the polar

coordinates of the principal axis of the molecule i with

respect to the lab axes. Then an Euler angle transformation

gives:

szli)=Y2m(9i.¢i)Q (4-29)

Equations (4.28) and (4.29) can then be rewritten as

H'=Q.Z Ya(i)Ua(i) (4.24')
to

where the Ua(i)'s are appropriate linear combinations of the

second derivatives of the electric potential given in

equation (4.26), and are given in the reference (Sah 82, see

Appendix 8). Finally, one can take the fourier transform of

the Q-efg interaction term and express it as:

H'=ikEuYa'(k)vuaef8(K,k)uu(K,k) (4.30)

We now discuss the coupling constant matrix vuaef8(K,k) for

the two types of lattices that we are interested in.
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The explicit expressions for the coupling matrices

coming from Q-efg interaction are given in Appendix A of

(Sah 82) for NaCI-structure.

The coupling matrix for Q-efg interaction for the

CsCI structure are easily obtained from those of the NaCl

structure by making use of the correspondence shown in Table

4.6. Note that the factors p, q and r defined in that Table

take care of the different signs and different distances of

the neighbors of the CsCI-structure as compared to that of

NaCI-structure.

(g) Elastic Constants
 

The elastic constants can be obtained from the k=0

limit of “jk' We define:

Aeff=AR+aAQ

Beff=BR+aBQ

a=1+1/(4/2)-8/(27/3)-1/16=0.943 (NaCl) (4.31)

e=8/(27/3)+1/16-1/(64/2)=.2225 (CsCI) (4.32)

AQ=i/(9n/4)Qeo/(a5), (+ NaCI, - CsCI) (4.33)

BQ=-AQ/(2/3) (4.34)



TABLE 4.6 The correspondence
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for obtaining

 

 

 

 

 

via9f8(K,k) for CsCI-structure from that of

NaCI-structure, where p=1/16, q=1/64/2 and

r=8/27/3.

NaCI CsCI

2a 23

1st nn 2nd nn

2nd nn 3rd nn

3rd nn 1st nn

A0 ‘PAQ

AQ qAQ

AQ 'fAQ

Case 1:

For a wave along

and kz=k and consider LA and TA phonon frequencies.

(001) direction we take kx=0, ky=0

The LA
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frequency in the limit k=0 is

wLA2=(C11/D)k2

and the corresponding polarization vector is

C(K,k)=/(mK/m)(0,0,1)

where mK is the mass of the K-type ion, m=m++m- and p is the

mass density: p=m/(2a3) for NaCI structure and p=m/(8a3) for

CsCI structure. From equation (4.13) one then obtains

C11=C110'a11Aeff2Xe (T) (4'35)

where a11=8/a for NaCI structure and a11=2/a for CsCI

structure. Similarly for the TA phonon branch one has

wTA2=(C44/D)k2

e(K,k)=/(mK/m)(1,0,0)

and

C44=C44°'a443eff2thg(Tl (4°35)

where a44=2/a (NaCI) and a44=1/(2a) (CsCI)

Case 2:

For a wave propagating along (110) direction we take

kx=ky=k//2 and kz=0. For a TA wave in the xy plane one has
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wTA2=(k2/2)(C11'C12)/D.

e(K,k)=/(mK/2m).(1,-1,0)

so that

C12=C120*a12Aeff2Xeg(T) (4.37)

where a12=4/a (NaCl) and a12=1/a (CsCI)

Equations (4.35) to (4.37) are in agreement with the results

of Michel and Naudts (Mic 77a) although they have been

derived in a completely different and straight forward way.

Note also that the notational susceptibilities “1 these

equations have to be calculated in presence of direct inter-

actions. The numerical results of our calculations will be

discussed in the next chapter.

The summary of the final results of elastic

softening are given in Table 4.7 (see next page).
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TABLE 4.7 Summary table.

 

 

 

quantity NaCI CsCI

a11 B/a 2/a

344 2/a 1/28‘

a12 4/3 1/3

 

C11=C110'a11Aeff2Xeg(T)

C44=C440’a443effzxtzg(T)

C12=C12°*a12Aeff2Xeg(T)

 

 



CHAPTER 5

RESULTS AND DISCUSSIONS ON THE DISORDERED PHASES

In the previous chapter we developed a theory of

elastic and phonon softening for the orientationally

disordered phase of the alkali cyanides. In this chapter we

indicate how the various parameters appearing in the theory

are calculated and then discuss our results. We then make

comparision with experiment and comment on various aspects

of the theory.

(a)CalcuIation of Parameters
 
 

We calculate the atom-atom parameters C1 and C2 of

equation (3.1b) from the data of Fumi and Tosi (Fum 64) and

of Hirshfeld and Mirsky (Hir 79). The former work lists the

repulsion parameters between identical pairs of alkali ions

while the latter work lists the repulsion parameters between

C-C and N-N atoms. The parameters for the alkali cyanides

are then obtained by applying simple averaging schemes. For

example, for calculating C1 for a dissimilar pair of atoms

we take the geometric mean of the constituent pairs while

for calculating C2 we take the arithmatic mean of the values

of the pairs. For simplicity we further assume that C and N

ends of the anion are identical. For the alkali cyanides we

57
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found that this turns out to be not too bad an assumption. We

indicate below the calculation of C1 and C2 for KCN as a

concrete example. The repulsion energy between a pair of K+

ions is

V(r)=C1(K‘-K*)exp[-C2(K*-K*)r]

so that following the notation of equation 3 of (Fum 64)

c1(K*-K*)=c..b.2 and c2(K*-K*)=1/p

Here b+2=(46.92)2 erg/molecule and p=0.3394 A, and the

Pauling constant c++=1.25. In a similar fashion we obtain

the atom-atom parameters for C-C and N-N repulsion. Then we

use

C1(K-CN)=[C1(K-K)2.C1(C-C).C1(N-N)]1/4

and C2(K-CN)=(1/4)[2C2(K-K)+C2(C-C)+C2(N-N)]

The parameters obtained in this way are listed in Table 5.1.

It should be noted that there are two sets of parameters for

C1 nd C2 given in Table 2 of (Fum 64). Our final results are

not very sensitive to choosing either of these two sets.

This agrees with the observation of Bound, Klein and

McDonald (BKM) (Bou 81) that modest changes of atom-atom

potentials do not affect their MD results in the disordered

phase to any appreciable extent. Moreover the parameters

for NaCN obtained by us agree with those listed by Klein and
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adopted by Raich and Huller (Rai 79) in their work on the

azides. In the MD study of KCN, BKM (Bou 81) found that f

approximately equal to 0.5 gave good agreement between their

MD calculations on the orientational probability distribu-

tion functions and the experimental results. Our calcula-

tions also suggest that f<1. For cyanides having NaCI-type

structure we found that f=0.6 gave reasonable agreement of

our theory with experimental softening of the elastic

constants C11 and C44. For CsCN on the other hand we found

that f is less than 0.15. This should be contrasted with the

MD simulations for CsCN by Klein et al. (Kle 82) who found

that the cnfientational probability distribution functions

and phonon dispersion relations (for a few k points) are not

affected appreciably by choosing different f values. Our

calculations, on the other hand suggest that the phonon

dispersion relations are sensitively dependent on f for both

type of structures (for all k).

Next we discuss about the constants AR, BR, CR, AQ

and BQ which play an important role in elastic and phonon

softening. These constants are calculated from a knowledge

of C1, C2 and Q about which we have already mentioned. For

an NaCI type structure with short range repulsion between

the nearest neighbors CR=0 and for a CsCI-type crystal

eventhough CRaéO, it does not appear in the calculation of

elasic constants. We have listed values of these constants



in Table 5.2.

have been calculated by taking

factor f that is indicated
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in the table.

The quadrupolar contributions

into account the

in this

TABLE 5.2 Repulsion and quadrupolar contributions

to TR coupling

 

 

 

 

 

table

reduction

quantity NaCN KCN RbCN CsCN

f 0.6 0.6 0.6 0.15

AR(K/A) S578 4379 3323 -706.5

BRl') -1390 -988 -713 3261.7

CRl') x x x 4127.2

AQ(') -3065 -2064 -1693 2822

BQ(') 2503 1685 1382 -2304

BR/AR -0.249 -0.226 -0.215 -4.617

BQ/AQ -0.816 -0.816 -0.816 -0.816

Another set of parameters that enter our calcula-

tions are the bare elastic constants C110, C440, and C120.

MN (Mic 77a) obtained the bare elastic constant C440 by
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fitting the experimental value of the extrapolated

transition temperature to their theoretical value. Another

procedure is to use the high T elastic constants of the

alkali bromides as the bare elastic constants because Br'

and (CN)' ions are roughly of the same size (deR 81). Both

these fitting schemes have some limitations. For example it

is well known that near but above the transition, fluctua-

tions become very large and can in cases reduce the

transition temperature significantly. Since the present

theory does not incorporate fluctuation effects the first

fitting procedure is unreasonable. The second procedure,

though less unsatisfactory, has the limitation that it

refers to a crystal other than the one under investigation.

We have, therfore, followed a different procedure. We have

obtained the bare elastic constants by fitting to the exper-

imental values of the elastic constants of the cyanides at a

temperature Tfit far above the transition temperature. In

fact we choose Tfit as the highest temperature at which the

elastic constants have been nmasured. The values of the

bare elastic constants and Tfit are given in Table 5.3.

In our calculations we have incorporated the

effects of anharmonicity on elastic constants by supposing-

ing that there is an additional renormalization of elastic

constants which decrease linearly with T, at the tempera-
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tures of interest, i.e. 6Ciian=-yiT . The reason for this

assumption is that experimentally anharmonicity effects in

the alkali halides show a similar variation. To find 7; we

have further assumed that Yi(MCN)=yi(MBr). These values are

given in Table 5.3 and have been obtained from (Nor 58, Cha

70, Ove S1, Rei 61). The elastic constant can now be

expressed as

Cij(T)=Cij°+5Ciia"(T)*5CijTR(T) (i,j=1, 2,0r 4) (5.1)

where the TR coupling contributions to the renormalization

of the elastic constants are given by equations (4.35) to

(4.37). The importance of the anharmonic terms is discussed

at the end of section (c).

(b)Isothermal Rotational Susceptibility
 

The isothermal rotational susceptibility x08(k) can

be calculated with a knowledge of the bare susceptibilities

and the direct interaction between the anions (see section

(e) of Chapter 4). The bare susceptibilities were calculated

using equation (3.7) by numerical techniques. We used the

16-point Gaussian quadrature formula of Fehlner and Vosko

(Feh 76) to calculate the bare susceptibilities. For temper-

atures T>100K, this interpolation formula gives the

paraelastic susceptibilities quite accurately. For lower

temperatures, though, one should use an interpolation
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TABLE 5.3 Bare elastic constants, Tfit and anhar-

monicity parameters in units of 1011 dyn/cmz, K and

109 dyn/cmZ/K respectively

 

 

 

 

 

quantity NaCN KCN RbCN CsCN

C110 5.749 5.115 4.022 2.548

c440 0.752 0.470 0.411 1.190

Tfit 473 453 380 300

Y4 0.019 0.013 0.008 0.106

formula of still greater accuracy. The susceptibilities of

the paraelastic phase are plotted in Figures 5.1 and 5.2

over the temperature range of about 150 to 500K. In the long

wave length limit'we have

Xii(k=0)=XiiO/l1+Dii(k=0)xii°I (i=1 or 4) (5.2)

where X110=xego and X440=Xt230° The TVdependence of the

bare susceptibilities can be written as XiiolT)=5ii(T)/Tr so

that the total susceptibility can be expressed in a Curie-
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Weiss forn1with a T-dependent 'Curie Constant',i.e.

xii(k=0)=Sii(T)/[T+Tcwi] (5.3)

From equation (5.3) it is clear that the direct interac-

tions, depending on their sign, can either enhance or

suppress the susceptibilities from their bare values. We

have plotted, for the sake of illustration, the enhancement

factors R1=Xeg/Xeg0 and R4=Xt2g/Xt2gQ for KCN in Figure 5.1.

Note that in our theory the Curie-Weiss temperatures are not

only functions of T but also different for IE8 and T28

symmetries. We list these quantities for two temperatures

in Table 5.4 and compare than with other works. We would

like to point out that in our work the Curie-Weiss tempera-

tures for susceptibilities of E8 and T28 symmetries are of

opposite sign and (H‘ different magnitude, whereas in the

other works they are of the same sign and of equal

magnitude. Note also that the Curie-Weiss temperatures for

CsCN are very close to zero which is a consequence of the

fact that quadrupole Imoment of the anion in the solid

environment is reduced by about 85% of its free ion value.

The short range potential strongly affects the bare

rotational susceptibilities. In the limit T approaching e,

the anions tend to be more like free rotators so that $1 is

about 0.08 and S4 is about 0.16. In the presence of a CF

potential, though, the anions prefer to orient along some



66

KCN

 

1
.
1
3

(a)

1
.
1
2

1
.
0
9

1
.
1
0

1
.
1
1

v

i

l
l

L

0
.
2
6

0
.
3
6

0
.
4
6

T
x
g
x
i
o

1
.
0
8

0
.
1
6  

 

p

u
)
-

).

TilO’K)

KCN

 

(b)

0
.
2
5

0
2
3

1
x
3
.

 
A A   
3

1002 x)

FIGURE 5.1 Single site susceptibilities TXiiO and

enhancement factors Ri=Xii(T)/Xiio(T) for KCN. (a)i=1 (eg)

(b)l=4 (t2g)
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specific directions of the crystal. For NaCI structure,

there are strong repulsion centers along the principal

crystal axes, whereas no such centers exist along the body

diagonal directions. Hence for NaCI structure S4>S1. In

fact from Figure 5.1 it is found that 54/51 is about 10 for

the temperature range of 100 to 500 K. However as T becomes

very large, this ratio tends to the free rotator value of 2.

On the other hand for CsCI structure, it is found from

Figure 5.2 that S4/S1 is of the order of 1 in the same

temperature range. For CsCI structure S1 is large in the

low-T regime because orientations with IE8 synmetry reduce

the repulsion energy. With increase of temperature,

however, S1 decreases and 54 increases. In contrast in the

NaCl structure the (opposite happens. These differences

strongly affect the nature of elastic and phonon softenings

in the alkali cyanides with different crystal structures.

Next we examine the effect of direct interactions on

the rotational susceptibilities and hence on the elastic

softening. We discuss two cases:(i) KCN and (ii) CsCN. For

KCN, taking f=0.6, we find that D11(O)=-704K and

D44(O)=235K. From equation (5.2) it follows that R1>1 and

R4<1 which indicate that direct intermolecular interactions
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TABLE 5.4 'Curie-Weiss' temperatures for

KCN(f=.6) and CsCN(f=.15) for k=0

 

 

 

this work 100 -13 212

' 500 -34 47

KCN Boi 78 x 86 86

Reh 77 x 231 230

Loi 80 200 -42 -42

this work 150 17 -4

CsCN ' 500 13 -6

Loi 83 x 0. 0.

 

 

enhance CH1 softening and suppress C44 softening. Since

54/51 is about 10 in the temperature range of interest we

have 1.08<R1<1.13 and 0.6<R4<0.9. For CsCN, the suscepti-
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bilities and enhancement factors show a completely different

behavior. Taking, for example, a value of f=0.4 we find

that D11(O)=947K and D44(O)=-316K. Hence over a temperature

range of 100-500K, 0.42<R1<0.85 and 1.28>R4>1.09, so that

044(0) tends to enhance C44 softening. Since 54/51 is about

1, direct interactions are important for both types of sus-

ceptibilities. In the limit f=1 and Yi=0, direct interaction

produces most dramatic effect on elastic softening. In this

limit BR is approximately -aBQ, and therefore Beff=0. 50 C44

shows a very gradual softening in the range 300-500K.

However since Tcw4<0, the denominator in equation (5.2)

enhances C44 softening. Hence as T+chw4l, the rotational

susceptibility of T2g symnetry diverges. From equation

(4.13) we find that there is an abrupt softening of the

elastic constant C44 (see Figure 5.6b) in the neighborhood

of Tcw4-

For the sake of completeness we have plotted the

k-dependence of DaB(k) for the three symnetry directions

(001), (110) and (111) in figures (5.3) through (5.5). Some

of the direct interaction strengths show quite a bit of

dispersion for some of the directions considered. Also

notice that the direct interaction strengths change sign in

some cases as one goes from the zone center to the zone

boundary. We will discuss more about phonon softening at

non-zero k for KCN later in section (d) of this chapter.
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FIGURE 5.3 Direct interaction strengths D(00k) (in units of

100K) as a function of the reduced wave vector x; KCN

(f=.6), CsCN (f=.4)
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(c)E|astic Softening and Transition Temperatures

As seen from equations (4.35) to (4.37), the elastic

softening due to TR coupling depends on A3 and Bi (i=R.Q)

and the rotational susceptibilities of E8 and T28

symetries. First we discuss the effect of the coupling

constants. The relevant quantities that deternfine the

elastic softening are the squares of Aeff and Beff.

Eventhough the signs of the coupling constants are not

relevant for elastic softening, diffuse inelastic neutron

scattering can probe the signs of these quantities. For KCN

Rowe has found that our sign of Beff (which is positive)

agrees with his experimental findings (Row 82). The second

POI"t to notice is that AR and A0 are opposite in sign as are

BR and 80. Thus there is a cancellation effect in Aeff and

Beff and this arises due to the fact that Q is negative. The

nature of this cancellation is quite different for the two

types of structures that we have studied. For the NaCl

structure, the 2nd and 3rd neighbors of a given anion have

opposite charges and it turns out that they very nearly

cancel out each others contributions to Q-efg coupling thus

making a about 1 (equation 4.31). In contrast for the CsCI

structure, in spite of the opposite signs of the charges of

the second and third neighbors, they donot cancel each
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other's contribution appreciably, so that a is about 0.2225

(equation 4.32). Thus the exact nature of the cancellation

depends not only on the sign and value of Q, but also

sensitively on the structure.

Next we discuss the results of our calculations in

various limiting cases.

(i)Anharmonicity Absent

In the lhnit Q=0, for land Beff/Aeff=-0.226. The

large value of Aeff leads to a very strong C11 softening and

a relatively weak C44 softening. In this limit one expects

to recover the results of MN (Mic 77a) who only considered

SR repulsion contribution to TR coupling. However we donot

recover their numerical results because of a factor-of-two

error in their calculation of rotational susceptibilities.

For a brief discussion on this point we refer the reader to

the papers (Mah 82 ,page 938 reference 10; Sah 82 ,page

2993). In the other limit where repulsion is small (or T is

large) and f=1, Beff/Aeff is about -0.8 and S4/S1 is about

2, so that the TA phonons soften appreciably leading to a

vanishing of C44. ln realistic cases both repulsion and

quadrupolar effects are important and vwe have found that

f=0.6 gives a good fit to the experiment (see Figure 5.6a

and Figures 5.7 to 5.9).

For CsCN the situation is completely different. In

the limit Q=0, Beff/Aeff='4.62 so that there is a strong C44
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softening (Figure 5.6b) and a weak C11 softening. In the

limit f=1, BR and aBQ are comparable in magnitude but

Opposite in sign. Hence Beff is small. Thus for large T ,

C44 doesnot soften appreciably whereas C11 shows a

pronounced softening due to the large difference in the

values of AR=-706.5K/A and aAQ=4186K/A. With decrease of T,

though, the susceptibility Of ng symmetry becomes hnportant

and shows a very sharp drop Off (Figure 5.6b). To Obtain a

good fit to the experiments (Loi 83) f=0.4 seems a good

choice provided anharmonicity effects are neglected.

(ii)Anharmonicity Present

The combined effects of TR coupling and anharmoni-

city' are given ir1 equation (5.1) and the anharmonicity

parameters in Table 5.3. lt is clear from that table that

for NaCI structure 74/11 is about .1 so that anharmonicities

affect C11; more strongly than C44. For NaCN and KCN the

overall agreement of C11 with experiment (Figures 5.7 and

5.8) seems to be very good. In particular the peak in C11(T)

is understood in terms of a competition between the TR

coupling and anharmonicity affect. For RbCN inclusion of

anharmonicity gives a peak, but the agreement (Figure 5.9)

is not as good. This might be due to the mean field nature

of the theory. The temperatures T44 where the elastic

constants C44 would extrapolate to zero are given in Table

5.5 . For NaCI structure the affect of including anharmoni-
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city is to reduce T44 by about 10K. For CsCN anharmonicity

effects are not only important for C11, but also for C44

because y4/y1 is about 0.9 (Table 5.3). We have calculated

the elastic softening in CsCN using equation (5.1) for f=0

and f=0.15 which are plotted in Figure 5.10. For f=0, the

agreement between our theory and experiment is excellent for

C11 and C=(C11-C12)/2 , whereas the agreement is reasonable

for C44, if we note that ours. is a rnean field theory.

Choosing f=0.15 tends to improve the agreement of our theory

with experiment for C44 but the agreement for C11 and C is

not as good. This suggests that for CsCN the bare quadrupole

moment of the anion has to be reduced by more than 85% to

obtain fits to the elastic constant data. The T-dependence

of the elastic constants are plotted in Figures 5.6 to 5.10

We conclude this Chapter by giving a brief

discussion of the softening of phonons over the entire

Brillouin Zone (Bl). For brevity we choose KCN, although

the arguments are general.

(d)Phonon Softening in KCN
 

In chapter 3 welhentioned the two theories Of phonon

softening (Ehr 80,Str 79) in alkali cyanides which incorpo-

rated the TR coupling model. Our phonon calculations are

improvements over both the above works since we have incor-

porated the effects of ionic quadrupole moment on both the

TR coupling and the rotational susceptibility. We compare
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our calculated changes ir1 phonon frequencies due to TR

coupling in KCN with the work of (Str 79) who in turn

Obtained good fit with experiment (Sah 82).

TABLE 5.5 First order FE transition temperature

T°(expt), extrapolated and theoretical C44

softening temperatures Tc and T44

 

 

 

system T.(K) TclK) T44(K)

NaCN 288 255.4 337.5

KCN 168 '156 190

RbCN 132 130 179

CsCN 193 150 179
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It should be pointed out that Strauch et al.

considered only 1H1 contribution to V4Q(K,k). Our

calculation provides a microscopic justification for the

validity' of this assumption because we showed that the

secomd and third nn contributions to the coupling matrix

very nearly cancel each other out for the NaCl structure.

However Strauch et al. considered only SR repulsion contri-

bution whereas our analysis also brings out the importance

of quadrupolar effects.

We define rjk=lek02'wjk2)1/2/1o13 as a measure of

phonon renormalization. We have calculated rjk for the

acoustic phonons propagating along the (001) direction. Our

results for phonon renormalization and those of Strauch et

al. are given in Table VI Of (Sah 82). It should be pointed

out that the calculation of Fig involves the calculation of

polarization vectors Of phonons. In the limit k=0 one can

analytically calculate these polarization vectors. But for

arbitrary k the calculation (H: polarization vectors is

nontrivial. We have calculated these polarization vectors

numerically by taking a rigid ion model for an fcc crystal.

While it is well known that rigid ion model is inadequate

for describing the lattice dynamics of an ionic solid, we

have nevertheless used this model tO calculate the eigenvec-

tors, mainly for simplicity. We find that at T=300K
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inclusion (H: direct interaction affects LA softening by

about 7% whereas the TA phonons are affected to a maximum of

25%. It is clear from Figure (5.3) that D11(00k) shows a

wider variation in its range of values than D44(00k). In

spite of this, the TA phonons are influenced more strongly

by direct interaction. This is due to the fact that S4/S1 is

about 10 in the temperature range 100-500K. As can be seen

from Table VI of the attached reprint (Appendix B), for LA

phonons our calculated values are about 15-30% higher than

experiment while for TA phonons our calculated values are

about 7-32% unaller than experiment. These differences most

likely arise due to the fact that we have used a static sus-

ceptibility ir1 our calculathm1 of the renormalization of

phonon frequencies. For a proper phonon calculation one

should use the dynamical susceptibility xa3(k,w). As

discussed in (Sah 82) the inclusion of prOper dynamical sus-

ceptibility should improve the agreement with experiment.



CHAPTER 6

LANDAU THEORY OF ORIENTATIONAL ORDER

To study the orientational order in the FE phase of

the alkali cyanides we start from a variational form of the

free energy due to Bogolyubov. Then we make a Landau

expansion Of that free energy in terms of the tensor order

parameters "i (i=1,5). The coefficients of the free energy

expansion are obtained in terms of the parameters Of the

microscOpic Hamiltonian introduced in Chapter 4. The free

energy is then minimized with respect to the orientational

order parameters to obtain the ordering. Thus we would like

to understand not only the high-T elastic properties of

these molecular solids, but also the nature of low-T orien-

tational order with the help Of the model that we have

introduced. As a concrete example we examine the orienta-

tional order in CsCN which undergoes a first order FE phase

transition frmn a pseudo-cubic to a trigonal structure at

Tc=193K.

(a)Ear|ier Theony
 

There has been only one serious attempt (deR 81) to

explain the orientational order in the cyanides of Na,K and

Rb. We will refer to this as the work by dBM. They

86
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eliminate the TR coupling by means of a canonical transfor-

mation and write down an effective orientational Hamiltonian

which is then approximated by its mean field value Hmf. The

free energy is then calculated from

Fd3M=-lenTr[exp(-8Hmf)]-

One should then self-consistently solve the AM: equations

na=<Ya>mf and obtain the free energy. However dBM donot

perform such a self-consistent calculation. Instead, they

expand FdBM in powers of "i and minimize the free energy

with respect to "i° Since the above procedure does not

necessarily give the true minimum (Sah 83b), we have

followed a different procedure and Obtained the free energy

from Bogolyubov's variational theorem.

In the work of dBM the interaction terms TQB=DQB+IGB

appear in all orders in the expansion (see section (c) Of

Chapter 4 for discussion on direct interaction and equation

(4.21) for an expression for indirect interaction). In

contrast, in our treatment T08 appears only in the second

order terms. This is particularly useful since the non-

analytic terms involving the indirect interactions as k+0

(the indirect interaction depends on the direction in which

k+0; see Geh 75) appear only once in our expression. The

Landau coefficients in our theory depend on the single site

susceptibilities and hence on the nature Of the short range
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CF potential. It should be pointed out that for simplicity

dBM take the CF potential to be a constant, which is rather

unrealistic (Figures 2.4 and 2.5). Our calculation is free

from this unrealistic assumption.

Furthermore dBM assunm» that the ordering fields

have T28 synnmtry. Before making such an assumption one

should examine whether the ordering energies associated with

Eg-type symmetry are indeed high enough to be ignored from

the minimization process. For NaCN,KCN and RbCN we find

that the assumption of dBM about the ordering fields is not

quite correct whereas for CsCN ordering energies associated

with Eg-type symmetry are considerably higher up in energy

than those of ng-type symmetry.

(b)Effective Hamiltonian
 

We start lnr defining normalized symmetry adapted

N

spherical harnmnics ‘Ya=caYa’ Ca(-2)=IYa2d9o where the un-

normalized spherical harmonics have been defined through

equation (3.3). Then the effective rotational Hamiltonian

is

Heff=§lvoli)*vs(i)

~ ~ ~

+(1/2)Zi'T08(ii)Y0(i)YB(l)] (6.1)
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For the sake of convenience we will drop the tilde (~) in the

following. In equation (6.1) the total interaction matrix T

is the sum of the direct quadrupolar interaction matrix D

and the indirect interaction matrix I. Matrices D and I can

be obtained from equations (4.9) and (4.21) by multiplying

these equations by proper normalization constants. In

equation (6.1), Vs(i) is the self-interaction part of the

indirect interaction which contributes to the single site

potential, defined through equation (4.20), and the prime in

the second summation indicates that the term i=j should be

excluded .

(c)Variational Free Energy
 

Let us consider the Hamiltonian H=Heff given by

equation (6.1). Let Fex be the exact free energy for this

Hamiltonian. Then the Bogolyubov variational free energy

theorem (Hub 68) states that Fex‘Fvar with

Fvar=<H'Ht>t'le"Tl[€XD('BHt)] , (6.2)

where the subscript t indicates that the trace has to be

performed with respect tO a trial density matrix

pt=Ilpit (6.3a)

i

with pit=exp(-3Hit)/Trexp(-BHit) (6.3b)
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and Hir=Vo(i)+2ha(i)Ya(i) (6.4)

01

Here ha(i) is a variational parameter at site i with

reference to the trial density matrix. Note that we have

neglected the term Vs(i) in equation (6.4) for the sake of

simplicity. We define the tensor order parameters by

nal=tr[Ya(i)exp(-BHit]/tr[exp(-8Hit)] (6.5)

Since we are dealing with FE ordering we choose nai=na for

all i. In addition we define the following susceptibilities

with respect to the single site SR CF potential ( for

simplicity Of notation we will drop the superscript 0 in the

susceptibilities):

XaB=(1/kT)<Y0YB>

xaBY=(1/kT)2<YaYBYY> (6.6)

XaBy6=(1/kT)3<YaYBYYY5>

The order parameters can be expressed as a function Of the

ordering fields , i.e. na=<Ya>t=f(ha) which can be formally

inverted to give:

ha=¢a5n5+¢a55in5n51+...... (6.7)

Consistency then demands that
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¢aé='(x-1)ad

9688'='(1/2)¢au¢cu¢8'exuue (6-3)

We can now expand the free energy in powers of her and

eliminate the ordering fields in favor of the order

parameters through equation (6.7) to Obtain

fvar=vaar'F0)/N=12*f3*14 (6-9)

f2=(1/2)[Ta8(k+0)+(1/pa)5ag]nan3 (6.10a)

f3=('1/6)(1/papoy)XaBynqn8"y (6-10b)

f4=1/24(1/papgpypal

xl'XaBY5i3BpadeaBGY5

+(3/pp)GpoxasprGOlnaanYn5 (6.10c)

and pa=B<Ya2>

Define g=p1

r=p3

Imposition of cubic symmetry on the susceptibilities further

simplifies the third and fouth order terms in the free

energy. The nonvanishing susceptibilities M1 the third

order are

CA=X111=-X122=82e3(1/2)(54A6+9A4-5)
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and

Here (x,y,z)
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CB=x345=82t3A6

CC=x331=82(e.t)(1/6)(18A6+A4-1)

CD=X441=xss1=(-1/2)X331

CE=x442=-x552=‘[({3)/2]X331

e=/(5/16n)

t=/(15/4n)

A4=<x4+y4+z4>

A6=<x2y222>

A4s=<(x4+y4+z4)2>

specify the orientation of the molecule.

Similarly the non-vanishing suceptibilities in the fourth

order are

CF=x1111=x2222=3x1122=B3e4(3/2)(9445'5A4ti)

CG=x3333=X4444=xsss5=83t4(1/12)(A4s'ZA4'8A6tl)

CH=X3344=X4455=X5533=53t4A6/3

C|=X1133=B3(et)2(1/6)(1-A4-18A6)

CJ=X1144=X1155=B3(et)2(1/12)(13A4'9A4s+18A6-4)
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CK=x2233=B3(et)2(1/6)(3A4-2A4s+6A5-1)

CL=X2244=X2255=B33let)2(1/12)(A4'A4s'646)

CM=X1244=-X1255=B3/3(et)2(1/12)(3A4s-5A4-18A5+2)

We can now express f3 and f4 as:

f3=(-1/6)[(CA/g3)n1(n12-3n22)+6(CB/r3)n3n4n5

+(1.5CC/gr2)( n1(2n32-n42-n52)+31/2n22(n52-n42))j

f4=(1/24)[ A41(n12+n22)2+A42(n34+n44+n54)

+A43(03204ztn420523‘n52032)

+841012032+B42012M42+nszP343022032

+B44022("42*0521’34501nzln42‘nszl l

where A41=-CF/g4+3/(T.g2)+3CA2/85

A42=-cc/r4+3/(T.r2)+3cc2/(g.r4)

A43=-6CH/r4+6/(T.r2)+(3/r4)(4CB2/r-CC2/g)

B41=-6CI/(g.r)2+6/(T.g.r)+(3/g2r2)(2CA.CC/g+4CC2/r)

B42=-6CJ/(g.r)2+6/(T.g.r)+<3/gzr2)(CCZ/r-cc.CA/g)

B43=-6CK/(gr)2+6/(T.g.r)-(6/g2r2)CA.CC/g

B44=-6CL/(gr)2+6/(T.g.r)+(3/g2r2)(CA.CC/g+3CC2/r)
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B45=-12CM/(g.r)2+6[(3)1/2/(g.r)2](CA.CC/g+CC2/r)

The B-coefficients are run: all independent. In fact a

symmetry analysis Of the fourth order terms using polynomial

invariants (syzygies) of rank 2 gives (Sah 83b)

B41/B43=(4R-1)/3; 842/843=(R+2)/3

B45/B43=2(R-1)/(3)1/2

R=B44/B43

These relations provide a check (”I the B-coefficients in

equation (6.10c') that we Obtain by using the parameters of

equation (6.1). Before presenting our results Of orienta-

tional order in CsCN, we would like to discuss about the

indirect interaction rnatrix l which appears in equation

(6.10a).

(d)lndirect Interaction
 

It is well known (Geh 75) that the indirect

interaction matrix I is non-analytic as k+0. As a result,

the eigen values of the matrix I depend on the direction in

which k approaches zero. We examine the eigen values of I

along the three symmetry directions (001), (110) and (111)

in the limit of long wavelengths. For CsCN we find that the

lowest eigen values are realized for both (001) and (110)

directions. We would like to remind the reader that in order
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to fit our theory to the elastic softening data, we had to

choose a value of the quadrupole moment of the anion in the

which was considerably reduced from its free ion value,

namely f=0.15. With this choice of f, the non-vanishing

elements Of the indirect interaction matrix I for the (001)

direction in k-space are:

l11=-2Aeff2/(C110a)=-3.6K,

'44='55='Beff2/(2C44°a)=-2924K

For (110) cHrection the l nutrix is complicated because

there is some mixing between E8 and T28 symmetries. However

since this mixing is less than 2%, we ignore the mixing and

confine ourselves to T28 symmetry for which all elements of

I have lower energy compared to those of E8 symmetry. We

have

l33='23eff2/I8(C11°+C12°+2C440)]=-1447K

and l44=|55=l45=-Beff2/[2aC440]='1462K.

Eventhough both the directions give the lowest energy in the

(n4, n5) space, we have preferred the (110) direction over

the (001) direction for our analysis because the former

gives the possibility of obtaining a lower free energy

through a non-vanishing n3 order.
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(e)Results

We discuss our results for CsCN in two limiting

cases of the total interaction: (i) in which the direct

interaction is dominant and we assume that I=0 and, (ii) in

which the indirect interaction is dominant (i.e. Q=.15Q0 or

Q=0). It should be reminded that in the latter case alone we

were able 1x) explain the elastic softening U1 CsCN (Sah

83a).

(i) In the quadrupole dominated direct interaction

regime, i.e. when f=1, we find that D11(O)=D22(0)=5916K and

D33(O)=D44(0)=055(0)=-3942K. Thus the ordering is in a

manifold which has T2g symmetry. Hence putting n1=n2=0 and

n3=n4=n5=n in the free energy we Obtain

fvar=(3/2)(033(0)*1/r)nz-(1/r3).CB.n3+(1/8)(A424A43)n4

Minimizing with respect to n we find that there is a first

order phase transition at Tc=255K; n=.3no at T=Tc-e where

no=(1/3)/(15/4n) and e+0(+). When the strength of the single

site potential is reduced to zero (free rotator limit), we

Obtain Tc=335K and n=.3no. Thus we see that the effect of

the single site potential is to lower the transition

temperature. Physically this makes sense because the single

site potential has minima along (001) directions and hence

disfavors ordering with T2g symmetry.
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(ii) Eventhough (i) provides an explanation for the

first order nature Of the transition and gives rise to an

(111) ordering as seen in the experiment for CsCN, the

direct quadrupole dominated interaction is inconsistent with

elastic softening. Hence we take the reduced values of Q

(with f=.15 and 0) to investigate nature of the order. For

the k-vector along the (110) direction we find that the

transition is second order with Tc=175.2K and n3=.0005no,

n4=n5=.02n0 at T=Tc-e. For Q=0, the results are not quali-

tatively different, although the transition temperature is

increased to 209K because Beff is increased.

It should be noted that if one arbitrarily increased

I33 by a factor of 2, one could get a first order phase

transition. (Mu: has this freedom ir1 a phenomenological

theory, but not in a microscopic theory. Hence although in

principle we know how to Obtain a first order transition in

CsCN having a (111) ordering, such a transition is not

compatible with values of the parameters used in the theory

to explain the experimentally observed elastic softening in

the high-T disordered phase.

Thus ("1 the basis Of the nficrosc0pic Hamiltonian

used by us, we can understand the origin of (111) orienta-

tional order in CsCN, but the order of the transition

Obtained by us is different from that of experiment. We

Obtain a second order I-lI phase transition, whereas experi-
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mentally the transition is first order. “1 our work we

investigated the effect Of quadrupole moment of the anion on

TR coupling and the direct interaction between anions and

also on the order of the transition. Since the cyanide ion

has higher electric multipole moments (LeS 82), it would be

interesting to investigate the effect of these moments on

the couplings and interactions mentioned above and to the

order of the transition.



CHAPTER 7

SUMMARY

In this thesis we have investigated the orienta-

tional order-disorder phase transitions in the alkali

cyanides with the help of a nflcroscopic Hamiltonian. we

have tried to understand both the elastic properties of the

disordered phase and the nature of orientational order in

the FE phase in terms of a given microscopic Hamiltonian. We

have proposed a physical mechanism, e.g. the quadrupole

moment of the anion interacting with the fluctuating efg

which contributes to TR coupling in the cyanides. We have

showed that in the absence of this mechanism previous expla-

nations Of acoustic phonon softening become incorrect.

Evidence in support of the contribution Of Q of the anion to

the properties of KCN crystal has come from MD simulations

(Bou 81). For CsCN, the MD simulations (Kle 82) do not

predict a strong dependence of the properties Of phase I on

the quadrupole moment of the anion. In contrast, we find

that the elastic prOperties of CsCN depend on the quadrupole

moment of the anion. Furthermore diffuse inelastic neutron

scattering data for KCN and NaCN (Row 82) has established

the fact that sign Of the coupling constant Beff is

positive. This is in agreement with our theory, but does

99
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not agree with the earlier work of MN. It would be

intersting to see if our prediction of a positive Beff for

CsCN is borne out by diffuse inelastic neutron scattering

studies in this system.

This work has focused attention, for the first time,

on several important competition effects in the alkali

cyanides . These are: (i) competition between SR repulsion

and Q-efg contribution to TR coupling, (ii) competition

between SR CF potential and ordering via direct quadrupolar

interaction and (iii) competition between direct and lattice

mediated interactions. We have also found that the nature of

this competition depends sensitively on the crystal

structure. Exploring these competing mechanisms has been

one of the major contributions of this thesis.

We have also studied the orientational order in the

alkali cyanides by (deriving, an expression for the free

energy based on Bogolyubov's variational theorem. We found

that the third order terms in the free energy involve terms

which not only have E8 and T28 symmetries, but also have

ngng mixed symnetry. This finding holds promise for

explaining Observed (110) order in KCN because such an order

can be expressed as a combination of the two types Of

symmetries involed. As a concrete example of the

application of our variational theory, we have investigated

the cubic to trigonal distortion in CKCN. Eventhough we
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understand the circumstances in which our theory can give a

first order phase transition, the actual parameters used in

the calculation of elastic softening give a: second order

transition for CsCN. It would be intersting tO see how

inclusion of other interactions affect our results

Our study has shown that the anomalous thermoelas-

tic properties of the cyanides can be understood by

postulating a reduction in the value value of the free ion

Q, e.g. 40% for NaCI structure and more than 85% for CsCI

structure. One can therefore ask: *what is the physical

basis for such a reduction? This is a difficult question to

answer and perhaps electronic band structure calculations

might throw more light on this aspect of the problem. In a

recent density functional calculation (LeS 82) it was found

that there is I“) evidence for appreciable reduction of

quadrupole and higher order electric multipole moments of

the cyanide ions in the 'solid'. Therefore one can ask the

following questions: what are the effects of including

higher order (l>2) electric multipole moments on the TR

coupling? DO these higher moments always lead to a

softening, Of elastic constants or do they compete with

quadrupolar and SR coupling terms in the TR Hamiltonian? In

the former case one has to look for additional mechanisms

that suppress the softening. In the latter case, on the

other hand, it would be necessary to examine whether the
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assumption of an effective quadrupole moment is equivalent

to full Q plus higher order multipole moments.

For the sake of simplicity we have assumed a very

simple model for anharmonicity and obtained the parameters

in a phenomenological way. One needs to investigate why

anharmonicity effects are important for LA phonons and not

so important for TA phonons for NaCI structure. One needs

also to understand why anharmonicity effects are important

for both LA and TA phonons for CsCI structure.

A source of difficulty in the study of orientational

order is the non-analyticity Of indirect interaction matrix

I(k) as k+0. We have looked at the symmetry directions of k

and took that direction as the ordering direction that gave

minimum eigen value. One needs to find out if there is a

better way of handling this non-analyticity of the lattice

mediated interactions.

Another intersting question is: does the

application of an external perturbation to the Hamiltonian

(6.1) lead to a cross over from first order to second order

behavior? If indeed such a cross over point exists then one

should study the nature of elastic softening near the

tricritical point. Moreover one can make a renormalization

group calculation and extract the critical exponents.

we would like to conclude by saying that our work on

the alkali cyanides has focused attention on the importance
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of some of tflu: physical mechanisms involved ir1 the under-

standing of structural phase transitions in these systems.

Improvements over our work could be the starting point for

further future studies.
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APPENDIX A

EQUIVALENCE WITH AN EARLIER THEORY

In this appendix we prove that equations (3.5) along

with equation (3.6) [which were derived by MN (Mic 77a)]

reduces to equation (4.13) derived by us for arbitrary k if

we assume that direct intermolecular interactions are zero

in equation (4.13). Incidentally, it may be mentioned that

our method is less cumbersome because we donot have to

invert matrices, whereas this is the case in the work of MN.

From equation (3.5) and (3.6), the dynamical matrix

in presence of TR coupling is

M=(1+F.R)'1M0 (A-1)

F=vxvt (A.2)

where x, the rotational susceptibility in presence of

lattice mediated interaction is given from equation (3.6) by

x'1=xo'1"I

and I=-vth

Hence R=(M0)'1=-(vt)"1lv'1

Let F0=vavt
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where )u) is the bare susceptibility in the absence of any

interaction. Then

F-1=Fo-1-(M0)'1
(A.3)

From equation (A.1) using equation (A.3) we Obtain

MOM'1=(FO-1-R)-1Fo-1

which gives M=Mo-F0=M0-vxovt (A.4)

Since the eigenvalues of the dynamical matrices M and M0 are

w2 and woz respectiveLy, it is easy to see that equation

(A.4) is the same equation (4.13) derived by us provided we

put the direct interaction to be zero in the latter

equation. This proves the equivalence of the two

approaches.
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We have carried out a theoretical study of the effect of coupling between rotational and

translational degrees of freedom first proposed by Michel and Naudts on the elastic con-

stants and phonon frequencies of ionic molecular solids. We have applied our theory to

the high-temperature plastic phase of alkali cyanidu NaCN, KCN, and RbCN. We find

that the competition between short-range repulsion and the interaction of the electric

quadrupole moment of the CN’ ion with the fluctuating electric field gradient strongly

influences the elastic softening and ferroelastic instabilities in these systems. The effect

of direct intermolecular interaction and anharmonicity is found to be significant in some

cases. The ferroelastic transition temperatures for the above three compounds are found

to be 337.5, 190, and 179 K which compare favorably with the experimental values 255.4,

156, and I30 K if we note the mean-field nature of our theory. Within our model we can

understand the qualitative differences between the cyanides and the superoxides, a similar

class of compounds showing drastically different ferroelastic behavior. Our calculations

provide a microscopic justification for the use of certain phenomenological parameters by

Strauch er al. in their calculation of phonon frequencies in NaCN and KCN at 300 K.

I. INTRODUCTION

Ionic molecular solids undergo a series of struc-

tural phase transitions and show anomalous ther-

moelastic prOperties which are intimately connect-

ed with the orientational, spin, and orbital degrees

Of freedom of the ionic molecular species. Typical

examples are alkali cyanides"7 (MCN), superox-

ides"'° (MOz), azidas“ (MN3), hydroxides”

(MOE), and nitrites" (MN02) where M is an al-

kali ion. In this class cyanides are the simplest,

the (CN)' molecular ion possessing only orienta-

tional degrees of freedom whereas the superoxides

are perhaps the most complex, the 02‘ ion pos-

sessing all three, i.e., orientational, orbital, and spin

degrees of freedom.

The structure of the highest-temperature solid

phase in almost all these systems is face-centered

pseudocubic, the molecules undergoing hindered

rotations between several equivalent directions of

minimum energy. This high-temperature solid

phase (referred to as phase I in the literature)

shows anomalous thermoelastic properties and the

systems behave like plastic crystals. In the case of

cyanides careful measurements"3'° of elastic con-

stants have been made and it is found that Cn and

C“ decrease with temperature and Cu approaches

zero at a temperature T‘ where one expects a fer-

roelastic instability of the pseudocubic phase.

251

However, the transition to the ferroelastic phase is

usually"”"‘ first order, the transition tempera-

ture 7', being higher than 7“ (see Table I for

values of T, and T‘ in cyanides).

The symmetry of the low-temperature phase

(phase II) is different for different classes of these

systems. For example, in cyanides, the orientation

of the (CN)" molecular axis is along the original

[110] direction" of the phase I; the structure of

phase II is body-centered orthorhombic. In con-

trast, the average orientation of the superoxide

molecule is parallel to the z axis, and the structure

of phase II is body-centered tetragonal (CaC;

structure). There are, however, significant fluctua-

tions in the molecular orientations about the c axis

due to the Jahn-Teller (IT) splitting of the 02’ or-

bital degeneracy.u In this work we are primarily

concerned with the cyanides and superoxides al-

TABLE I. First-order ferroelastic transition tempera-

ture T, (experimental), extrapolated and theoretical C“

softening temperatures T', and T“.

 

 

System T‘ (K) T‘ (K) T“ (K)

NaCN 283.5 255.4 337.5

KCN I68 156 I90

RbCN I33 I30 I79
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though our results should be applicable to other

ionic molecular solids as well.

In this paper we deveIOp a microscopic theory of

elastic softening and phonon renormalization in

these systems. We analyze the effect of the orien-

tational degrees of freedom on the elastic proper-

ties and phonons by extending the earlier work of

Michel and Naudts" (MN). In the evaluation of

the coupling between the translational and rota-

tional degrees of freedom, we include" the effects

of (i) short-range steric (repulsion) forces, (ii) aniso-

trOpic electrostatic forces,” and (iii) the effects as-

sociated with the splitting of the orbital degeneracy

of the molecular ions. In addition we include the

direct interaction between the molecules. We do

not consider here the coupling between the spin

and either the translational or the rotational de

grees of freedom. Alkali superoxides show low-T

structural phase transitions involving large-scale

molecular reorientations (referred to as magneto-

gyric phase transitions) which can be understood in

terms of spin-rotational coupling (see Ref. 19).

This interaction does not appreciably affect the

high-T ferroelastic phase transitions. One possible

exception is the ordered pyrite to marcasite transi-

tion in NaO; (see Ref. 20) which occurs at about

200 K.

For cyanides, (iii) is not present and only (i) was

. considered in the earlier work" on elastic soften-

ing. The importance of (ii) for the cubic phase of

cyanides was recently discussed by Bound er al.,2|

although for the noncubic phase of superoxides it

has been pointed out by Mahanti and Kemeny.20

Bound et al., in their molecular dynamics calcula-

tion of the rotational-translational dynamics of

KCN, NaCN, and RbCN, have found that the in-

clusion of the electric quadrupole moment Q of the

(CN)' ion was essential to understand the experi-

mental orientational probability distribution func-

tions (OPDF) and other low-frequency local

dynamic prOperties. A careful study of the inter-

play Of (i) and (ii) in the observcd"'3 anomalous

elastic softening, ferroelastic phase transitions, and

phonon softening in cyanides is the main subject of

this paper. In a separate paper we will report the

combined effects of (i), (ii), and (iii) on the ferro-

elastic instabilities and apply our theory to the case

of superoxides.

Our main results can be summarized as follows.

Because of the large electric quadrupole moment

(Q) of the (CN)’ molecular ion, there is an appre-

ciable contribution to the rotational-translational

coupling (I‘Q) arising from the interaction between

Q and the fluctuating electric field gradient (EFG)

present in the high-T orientationally disordered

pseudocubic phase. Because of the negative sign of

Q, this coupling has Opposite sign to that obtained

from considering short-range repulsive forces alone

(to be denoted as I“). We find that when 1‘,$0

and I‘Q=0, c..—40 at a temperature T“ which is

higher than T“ where C44-+0. On the other

hand, when 1‘. =0 and rgeeo. T“ > T“, i.e., C“

softens at a higher temperature than C11 which is

observed experimentally in NaCN, KCN, and

RbCN. Actually 1‘9 and I“. are nonzero and ap-

preciable, with I'Q dominating the ferroelastic in-

stabilities in cyanides. In contrast, I“ is more im-

portant ir1 superoxides because of smaller value of

Q Of the 01’ ions. As a result C”-+0 at higher

temperature than C“ and since C” couples to the

order parameter (1’20 ), one expects the molecules

to orient parallel to the c axis, giving rise to a

CaC; structure. This structure is seen experimen-

tally.I However, for a quantitative understanding

of the ferroelastic transition temperature in the su-

peroxides one must incorporate the orbital degen-

eracy of the superoxide ion and go beyond simple

molecular field theory.22 Within a molecular field

treatment of translational-rotational coupling and

the intermolecular interaction, our theoretical tran-

sition temperature T“ compares favorably with

the experimental values for the three cyanides (see

Table I).

For a better agreement between theoretical and

experimental Cn and C“ values, we find that

anharmonicity effects,23 particularly for Cn are

very impo ant. As a measure of the anharmonici-

ty we take the values of dC” /dT (for Tz300 K)

appropriate for alkali-halide crystals and find that

the observed peak in CM?) for the cyanides can

be understood in terms of two canceling contribu-

tions to dC” /dT; one coming from anharmonicity

effects and the other from the rotational-transla-

tional coupling. The results for NaCN and KCN

are extremely good but for RbCN there are

discrepancies.

The outline of the paper is as follows. In Sec. II

we discuss the model and the Hamiltonian that we

have used to study the elastic properties and pho-

nons of ionic molecular solids. In Sec. III, a

Green‘s-function method is used to calculate pho-

non frequencies and elastic constants which are re-

normalized by the coupling between the transla-

tional and rotational degrees of freedom. Section

IV contains a brief discussion on the isothermal ro-

tational susceptibility which plays an important
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role in the T dependence of elastic softening. In

Sec. V, we discuss the different contributions to

the translational-rotational coupling. Finally in

Sec. VI we discuss our results and make compar-

ison with earlier theories and available experi-

ments.

II. HAMILTONIAN

A. Model

We treat the CN' ion as a rigid dumbbell con-

sisting of two identical centers separated by a dis-

tance 24. Each molecule sits in an octahedral cage

(in the highoT phase) of six nearest-neighbor (NN)

M* ions, the NN distance being a. The M 1’ ions

are represented by spherically symmetric charge

distributions.

In addition to the electrostatic forces, there are

short-range (SR) repulsive forces between the ions.

This repulsion can be expressed in a Born-Mayer

for'm,

V33<fl=tc.).,e"cz’°“?‘ , (2.1)

where a (or 5) stands for any one of the two atoms

of the anion or cation. The constants (C . )GB and

(C2)” represent the strength and the inverse of the

range of the repulsion potential, respectively. The

quantities (C 1 I“ and (C2 la, are available in the

literature,"‘” and one can use the equations

(C1)”: V (C) )MIC1)”

and (2.2)

(C,).,,=-;- (C,),,+(c,),,]

to Obtain the values of C1 and C; for appropriate

systems.

The short-range repulsive interaction between a

(CN)" ion whose center of mass (c.m.) is at R,- and

a M "’ ion at R, is given by a sum of atom-atom

potential,

VZR+(CN,-(ij)=C,‘ 2+ Ie’cz' “‘I*‘“" , (2.3)

where if,- is a unit vector specifying the orientation

of the (CN)’ ion with respect to the crystal axes.

We have also assumed that both C and N atoms

can be replaced by an average atom whose repul-

sion with M 1’ is characterized by the parameters

C I and C2. Following MN we discuss the elastic

properties of these systems using a Hamiltonian H

that consists of three parts, i.e.,

H =11, +H,,, +19“, , (2.4)

where

 

f .0 —0

H"=iz.,, 2m, pu(x| k)p,,(x| k)

+%_. 2 Cw-(xx'l Itohrzlxl It.)u,,v(x'| k)

“"3"" (2.5)

represents the translational part of the Hamiltonian

in the harmonic approximation and is obtained by

treating the ions as spherical charge distributions.

For example, this part would be analogous to that

of a KBr crystal.” Here m‘js the mass of the xth

ion (+ or -) in a unit cell, k is the wave vector,

y is the Cartesian component x,y,z; CM-(xx'l k) is

the dynamical matrix and 11,3 are the Fourier

transforms of the displacements (from the fee

structure) and momentum, respectively. Here and

in the following we define Fourier transforms by

the equation

fir): ftir'k‘r'T. (2.6)
I

~47 ’5-
where N is the total number of unit cells. We will

use l/t/I—V- in the definition unless otherwise speci-

fied. The rotational part of H is Obtained by fix-

ing the c.m. of all the ions at fcc sites (a?) and is

given by

2 _, 4 N

3,0,:2 2 fiLXIkILLIkH-Z V001,.)
k 1-] [II

+ 2 Vd(ij) . (2.7)

(:1)

Here I is the moment of inertia of the dumbell

about each of the two principal axes and L is the

angular momentum. Vo(fi,-) is the orientation-

dependent single-site potential which is given by

6 -°0 ..

Volfin=q 2 2 e-C2| “‘I*""" . (2.8)

I I I S I 11

Only the repulsion contributes to VOW) because

the electric field and electric field gradient at the

lattice sites vanish because of cubic symmetry. In

Eq. (2.8) only NN contributions are retained be-

cause Of the short-range nature of the repulsive

potential. The other contribution to the cubic

single-site potential will come from the anisotropic

dispersion interaction between (CNI‘ molecules.

This contribution was evaluated20 for sodium su-

peroxide (NaOzl and was found to be about 6% of

the short-range repulsion contribution. We expect

a similar behavior for the cyanides.

We have included the term le1’]) in Eq. (2.7)

which represents thedirect interaction between two

(CN)' ions at sites R? and R). We write
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2

V,(ij)= 2 .4... ma, )Y;"(o,) , (2.9)

n --2

A... =AEQ+A:'+A.’,‘° . (2.10)

Here A... is a measure of the strength of the direct

interaction which has three main sources”:

quadrupole-quadrupole interaction, short-range

repulsion, and anisotropic dispersion, the last one

arising from the fluctuating dipole moments of the

(CN)’ ion. In addition, for cyanides there is a

direct electric dipole-dipole contribution to V4117)

and its effect will be discussed later. The unit vec-

tors 0, and (’0‘,- are the orientations of the molecules

i and j with respect to the intermolecular axis tak-

_I

  

4 2

V,(ij)=2t/4rr(21+1) 2 A...

[.0 III—2 m

  

en as polar axis. The coefficients 4,?“ are explicit-

ly given as follows:

489:124775102/(1/‘211 )5 .

AWeAggs-i-AEQ , (2.11)

499=4€i=iAF°.

where Q is the quadrupole moment of the mole-

cule. For the rest of the coefficients we refer the

reader to the literature.”

In order to go from a system of reference where

the intermolecular axis is the z axis to the crystal

axis system one makes a transformation involving

the Euler angles” (01113111711) associated with the

vector Ru to obtain

2 I

M) m; -—(m1+m;)

X YLRI+M1(BU’YU)YZM (fiiyhfifij) . (2.12)

where the quantities in the square brackets are the Clebsch-Gordan (CG) coefficients. Using the prOperties

of CG coefficients one finds that only even I terms contributein Eq. (2.12). Further if one considers only

the quadrupole contribution to A,” then only the 1=-4 term survives.

Next we introduce the five symmetry-adapted spherical harmonics I’. (see Ref. 16) through

5

rh(£,)= 2 c,.Y,(fi,-) ,

  

(2.13)

«In!

where the 5x5 matrix (cu) is given in Table II, and obtain

2 my): ~23 2 0,,(E’)r§(i€)r,(it'), (2.14)

((1) It c.5-l

where j

.. - - 2 2 2 2 4

D (1t)= “P" War
68 Rae ”£2 "1' n1; —("1)+M2) §Am "I —m 0

X Ym'+mz(Bfi,Yfi )cmacmzp . (2.15)

Here the sum Ris over (CN)’ ions surrounding

the central (CN)" ion at R=0.

Finally the last term in Eq. (2.4) represents a

coupling between the orientational degrees of free-

dom Y. of the molecular ion and the translational

degrees of freedom of the anions and cations. We

write

H.,.,,=i2 2 Y;(i£)v.,,(x I if»), (x I it‘).

kuach‘F'

(2.16)

This is obtained by displacing the center of mass

 

I

from the equilibrium position, i.e., i, =§?+ii,

and calculating terms in the Hamiltonian which

are linear in the displacements 11,. The elements

of the coupling constant matrix 124,, form a 3x5

matrix. An explicit form of 0,,“ including dif-

ferent contributions will be given in Sec. V.

B. Phonon description

If we describe the translational degrees of free-

dom in terms of phonons, then H"and H"m, can

be rewritten in terms of creation (b7;) and destruc-
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TABLE 11. Coefficients of expansion of unnormal-

ized real order parameters Y. in terms of Y;,,,‘s.

 

 

 

N 1 2 3 4 s

—2 o \/l—/_6 i/2 o o

—1 o 0 0 —% in

o 1 o o o o

1 o o 0 § :72

2 o m —1'/2 o o
 

 

tion (bi?) Operators of phonons of wave vector I;

and polarization index j. We have

11,, =2 fingflbI-gbj; + -;-) . (2.17)

The bare phonon frequencies (of? are obtained by

solvingthe secular equation

[Cw-(xx'l k.)—w%2‘5w'8“o| =0. (2.18)

In terms of phonon creation and destruction Opera-

tors, we have

H,,,,,,,=i 2 r;(E)Va,(E)(bj-,o+bj_;),

1.411:

(2.19)

 V,,(iE)=(1/2w,°-;)"’2
\/1— e”

(2.20)

In Eq. (2.20), eu(x| 11'j) gives the pin component of

polarization vector for x-type ion for the mode jk.

V,,-( k)is determined from a knowledge of bare

phonon frequencies, the masses, polarization vec-

tors, and the coefficients 1),“.

III. RENORMALIZATION OF PHONON

FREQUENCIES AND ELASTIC CONSTANTS

The rotation-phonon coupling [Eq. (2.19)] renor-

malizes the phonon frequencies from their bare

value (09;. We use the Zubarev’s Green’s-function

method to obtain the renormalized phonon fre-

quencies “jif- We define the time- and tempera-

ture-dependent retarded Green’s function G by

I l + I I

Gjrtr—r )=7([¢j;(1),¢j;(t )])9(t—r ) , (3.1)

where ¢j;(t)=bj;~(t)+b;_;-(t) is the phonon field

operator in the Heisenberg representation. The

e(x | kj)vau(x l k) .

square bracket is the commutator, ( ) stands for

the average over a grand canonical ensemble, and

9(1—1') is the step function. The equation of

motion for G is

. d ,

IEijU-I )

=5“—r')([d,;-(r),¢;;(r')])

+1.90 -t')<[[¢,;~(:),H],¢};(i')]> . (3.2)

For simplicity of notation let wo=w°;° and

d,‘. =42).11 (r =0). The Fourier transform of

G,-,~(: —r') is given by the equation

w(<¢,;~;¢};->>.=Media-l)

+ « [¢,;.H1;¢};))., . (3.3)

where

((¢,r;¢;r)).,='_-Gj;(w)= f; G,;-(:)e‘°'d:.

(34.)

Since b}; and b3; satisfy the usual boson commu-

tation relations, we obtain

[¢j"k oHtrl=w0¢j~k s

I¢i?'”ml=l¢jrflmml=0.
(3.5)

[d’jrsutg]=wo¢j‘
r ,

where

1

"OF jr- ;r. (3.6)

Using the above equalities it follows that

(mi—eg)((¢,;;¢};»,

=22)o 1+2 V:,<< hm]; »., . (3.7)

a

and

w«Y¢;¢:-;°»..=«Y1.a;¢;1‘»., . (3.3)

where

Y,,,(E)E[Y,(E),Hm] . (3.9)

It is clear that to obtain the Green's functions on

the right-hand side (RHS) of Eq. (3.7) one needs

the Green's function on the RHS of Eq. (3.8) and

the hierarchy of equations extends to infinity. We

further write

Yr.a(E)=[Yr—l.a(E)oHrot]

(f=2,3,...,oc). (3.10)
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Note that the operators Y,”1’2.m. . .do not con- ‘ with d and H". Hence one can write. using Eq.

tain the operators b and b and hence commute (2.19),

1

a)« Y.,.;¢};~»,z (< 1'2,.;¢};~»,.+2 V,,-(E)([Y,,,(E).1',(i’)])«(iflmj-r», . (3.11)

a?

In obtaining Eq. (3.11) we have replaced the commutator [Yup 11,] by its average value. This is equivalent

to a random-phase approximation. We can now generalize Eq. (3.11) to higher-order Green’s functions and

obtain

[w2—w3—2,r(w)l((¢,;;¢]; ))..=2wo . (3.12)

where the phonon self-energy 2,,(w) is given by

2;(a))=2wo2 V;,(k)V,,(k)2w——+T,<[Y,,,(i€), Y;(k)]). _ (3.13)

We will now relate the phonon self-energy to the frequency and wave-vector-dependent rotational suscepti-

bility rag kpm)

The rotational susceptibility is defined by a related orientational Green’s function,

 

x,,( i,:—:')= —%([Ya(k°,r),}';( E,:')])9(1 —t'). (3.14)

The time Fourier transform of Xa5( kit—1') is given by the equation

rad Em): _ (( 1'.( E); min)”: - % f_" :11 ew'eu -1')( [m E1), Y;( 16,131) , (3.15)

w((Ya(k.);Y5(k.)»u=((Y1.5(E),Y;(k.)». (3.16)

1

Let us assume that the rotational response is deter- 2 o2 0 -° , '° "
.-o.-. 2.20,... V‘ k , V ~ k .

mined by Hm, alone. With this approximation, 0’ k a” k I "B “1‘ ”(‘5‘ k w) B’( )

which is equivalent to the assumption that rota-

tional dynamics has a faster time scale compared

to translation,31 we obtain

e(( 13,211}, ».,=(1r.,.,.Y;1)

+ << Y”; Y} )>., . (3.17)

Generalizing this procedure to higher-order

Green‘s functions, we obtain

«11.3%»=2([Y,,(E),Yg(i£)]>—

r-I

(3.18)

Using Eqs. (3.18) and (3.15) in Eq. (3.13) we get

217(w)=—2¢ooEbfij(k)V,J-(k)xap(k,w) .

a.

(3.19)

Thus from (3.11) and (3.18) and noting that the

renormalized phonon frequencies ((1).; are obtained

from the poles of the Green’5 function

«blindly )).,. we get

(3.20)

The above equation ignores vertex corrections

and is not adequate when the time scales of rota-

tional and translational dynamics are comparable.

However, we are primarily interested in the elastic

softening (“1):—>0) at relatively high temperatures

where the rotational motion is rapid and the above

approximation is quite reasonable. For the calcula-

tion of phonon frequencies at finite k particularly

when ((1,), ~01”, where aim, is a characteristic rota-

tional frequency, onehas to consider the frequency

dependence3| of lad k,w) and also include vertex

corrections.

From Eq. (3.20) one can easily obtain the effect

of rotational-translatiogal coupling on the elastic

constants by choosing k along several symmetry

directions and studying the frequencies oflongitu-

dinal and transverse phonons1n the li_r_nit k,(1)—.0.

The details of the calculation of X0,“k ,0) are dis-

cussed in Sec. IV and in Sec. V, we will give expli-

cit expressions for the renormalized elastic con-

stants.
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IV. ROTATIONA}. SUSCEPTIBILITY

Id k,m-=0)

For the calculation of elastic constants and pho-

non frequencies we replace X.p( k,w) by its static

values Xadk)=X.g(k,(11:0). This1s adequate for

the elastic constants and the limitations for phonon

frequency calculation will be discussed in Sec.

VIE. I'd k)ts the static susceptibility of an iso-

lated system subjected to an adiabatic perturbation.

Following the commonly made approximation for

large systems we rgalace lad k) by the isothermal

tibility 14 k), 1e we assume that

I‘d k )zl’dk) even though the differences be-

tween the two need not be zero in general.32 Next

we calculate 115 k)1n the presence ofonly the

direct intermolecular interaction Dap( k) using a

molecular field approximation.

The rotational response is determined by H“,

which is replaced by its man-field value H“F:

11.5 I!

(4.1)

where

m,(i€)=<1',(i£1> . (4.2)

We apply a staggered external field ha( 1:) which

adds a term H“, to the Hamiltonian H”F,

11...: —2 h,(i€)Y,(iE) , (4.3)

B

and calculate the susceptibility X in the limit when

the external field vanishes. In the presence of

hp( k)

m,( k )= Tre-‘Vk'nmm+”“‘) . (4.4)

The generalized susceptibility matrix X.g( link"),

defined by the equation

 

m.(i£') , (4.5) 

a
X k',k)= lim

d hr“, 8h,(k)

is found to satisfy the matrix integral equation,

1

‘ f9 -voto.Te)/k.Y‘(0¢)Y5(91¢)sin6d94¢.

x.,( in?)

=x°.,(i",i°)— x°....(it",i°")

«'5 "f"

xnd,.(i’")x,.,( it"s?) .

(4.5)

where

1:,(i‘,i")=-‘—-[(r:(i°')r,(i‘))
1,1

-<Y:(i"))(1',(i'))l. (4.7)

the thermal averages being taken1n the absence of

H“,.For the disordered phase (Y+(k))=-0and

Hur-=2VOW) and we have

x°.,(i(", E1=x°., 5;. 1... ‘ (4.8)

where X2,1s the k-independent single-site suscepti-

bility. '6 In this case Iadk, k')1sdiagonalin the k

index and defining XJk):-—X.g(k, k), we obtain

x.,1i£1=x°.,— 2 1°...Dd,-(i'1x,.,(i‘). (4.9)

a’fi'

From Eq. (4.9) one obtains,

mal solution

X=(1+X°D)"X° . (4.10)

As shown in Ref. 16 because of cubic symmetry 1°

is a diagonal matrix with

r°..=(x?..3x?..x23.x‘3..x231 . (4.11)

where the first two quantities have e, symmetry

and the last three have 1,, symmetry. Similarly1n

the k-eO limit D(k)is diagonal with

D"(k—+0)=(D?.,;D”,D§’,,D§,,D§3).

(4.12)

From (4.8)-(4.10) 1: follows that in the iii-.0 lim-

it I is diagonal with

xm=(X|1,3X11.XJ3.X33,X33) °

The k-independent susceptibility X24 T) is calcu-

lated from

symbolically, the for-

 x°,,,(r)= kT
-V(0,T‘)/k

[9 o a
sm6d6d¢

(4.13)

V. ROTATIONAL-TRANSLATIONAL COUPLING COEFFICIENTS

As discussed1n the Introduction, there are two main physical sources that contribute to the rotational-

translational coupling matrix vm(x| k) and we write down this as a sum of two parts,
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“(x1i1+u§§°(x1i') (x=_t),

(51)

vuhrl kl=vk

where 1:2,,(xl k) denotes the short--range repulsion

contribution and 113°(xl k) denotes the contribu-

tion coming from the interaction between electric

quadrupole moment of the (CN)' ion and the flue-

tuating EFG produced at its site by all the other

ions (taken to be point charges). We denote by

l,2,3,. . . the contributions from first, second,

third, etc., . . . neighbors, respectively, which have

charges +, -, +, and soon. Then

L,(+|i€)=6,,(+|i’).+v:,,,(+|k),

+ . .. 11:11, rare), (5.2a)

vg,(— 1 E1=v:.,,(— | if),+v:.,.(— If).

+ - -- (1' =12, EFG). (5.2b)

Following Michel and Naudts" we will take

2,,(xl k)=v:,,(+ l k), because the short-range

repulsion falls off rapidly with distance. In calcu-

lating 05:00:]k) we include contributions up to

fourth neighbors only, further neighbors making

 

A. Short-range repulsion contribution

:J + I k )1

The coefficients 0' in k space can be obtained

from their F-space values through the relation

.. .. ‘30

5.1+ 11:),= 2651-1112319 0. (5.3)

I.

where the_sum is to be carried over all the NN

positions R3 given by (10.9.0.0), (0,169.0).

(0,0,:45‘). From Ref. 16 we have

)1. -4. 0 o 0

6:,(+1a£).= 0 0 a. 0 0 ,

0 0 0 a. o

'0 0 a. 0 0

65,,(+|ay).= A. A. 0 0 0 , (5.4)

L0 0 008.

l 0 0 0 a. 0

62,,(+ |a£),= 0 0 0 0 3,.

-2A,. 0 0 0 O

The quantities AR and 8,; depend on C1, C2, (1,

and a. They are explicitly given in Eqs. (A13) and

(A15) of Ref. 16. The values of C1, C2, (1, and a

for the cyanides are given in Table III and the

values of A, and B. are given inkTable IV. The

 

 

insignificant contributions since the interaction Fourier-transformed quantities 0‘”H- I k )1 are

falls off as l/r‘. then

1

4,5, —A.s, 3,5, 3,3, 0 ’

65,,(4- | i).=2 11,5, 4,5, 8,5, 0 13.5, , (5.5)

—ZARS, O O 8.5, 3.8,

1

where net rotation translation coupling is either enhanced

. or suppressed.

Sg=flnk‘a, Cl=005kla (I =X,y,Z) . (5.6)

3. Calculation of 83°(x1i')

As the lattice vibrates there is deviation from

the local cubic symmetry at the positions of the

molecules and the resulting EFG couples to Q. To

the lowest order in displacement this leads to an

additional coupling between rotationand transla-

tion with strength given by vffiGMIk). Depend-

ing on the sign of the quadrupole moment Q the

TABLE III. Repulsion parameters (C..C;), lattice

constant (a), molecular size (21!), and free-ion quadru-

pole moment value (Q0). See Eq. (2.11) for .4 8°.

 

 

NaCN KCN RbCN

c, (10’ K) 1.013 2.347 3.421

C2 (A"l 3.3382 3.3382 3.3382

0 (A) 2.944 3.250 3.415

d (A) . 0.615 0.600 0.575

Q0 (10-'° esu A2) —4.64 -—4.64 —4.64

.189 (K) 1870 1143 892
 

 



TABLE IV. Repulsion (A.,B.) and quadrupolar

(240,89) contributions to the translation-rotation cou-

pling.

  

 

 

NaCN KCN RbCN

Q= 0-6Qo 06% 0696

A. (K/A) 5578 4379 3323

a. (it/A) -1390 —988 ..713

.19 (it/A) -3065 -2064 —1693

so (K/A) 2503 1685 1382

B. M. —0.249 —O.226 —0.215

some -0.816 -0.816 —0.816
 

 

The quadrupole EFG interaction can be written

33
as

2 Q;,U;',, , (5.7)

i um

where the Cartesian components of the quadrupole

moment and the field gradient tensor at site 1' are

QL.= f13x,,,x,,-8,,,;})p(r,)dr

 

 

(5.8)

(fl,V=X,y,Z;fi=?—R;) ,

:- .__§_ 3 ~
U" — 6X” 8X, U(X)

6 a (I; ~
=— ' (XER,)

6X, 6X, 5;: 111,—le

(5.9)

Here p(r,- )is the charge density at the site 1' and

U(R ) is the electrostatic potential at the ith site

due to all other charges q, at the R. We can ex-

press Q“, as a linear combination of spherical

quadrupole moment tensors of rank 2 defined by

Q5... = f r,’i',,.,(?,1p(r,)dr (5.10)

so that Eq. (5.7) can be rewritten as

2

=2 2 Q§,U{”(i), (5.11)

i ll! .1 -2

where UI""s are appropriate linear combinations

of Uzv’s. Since Q is measured with respect to

molecular axes (MA) one should transform from

the lab axes to the molecular axes, i.e.,

ng .—_ Yum, )Q , (5.12)I
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2

z " pmdr (5.13)

2 MA

Using (5.11) and (5.12) we can write

, .

H'=QZ 2 743.102.. (5.14)

l 0.1

where (dropping the superscript i in UL)

U, =1/iT/‘5tl.

u,=1/u743(u,.-U,,).

U,= —1/2';r/—15U., , (5.15)

U,= - VziT/Tw.

U, = nan—71511,.

The components 0,,' are obtained from Eq. (5.9),

i.e..,

523'”A:[(Xiivulu'l'xiiuulv)

"(sji'jjifi—Oflyliu’fijl , (5J6)

WhCl’C iij=§?-fitog £7 =21) /Xu, 8116! X0, is the

vth component of le' In obtaining Eq. (5.16), be-

cause of inversion symmetry the Ti, terms drop out

when the sum over j is carried out. Finally one

obtains the coefficients ”er-‘0‘“ | X11) and its

Fourier components from”the identity

H=2nmwg

l

= 2 ms, 16555132111141.
Ma.»

El; Y;(klvg,

k.“

The quantities vEFthlk) have beenexplicitly cal-

culated in Appendix A.

F0(1:1'1't')ii,,(x|i€). (5.17)

C. Elastic limit

To extract information regarding the elastic con-

stants C11” we take the long-wavelength limit

( k-sO) and retain the leading terms in sines and

cosines and obtain

Aefka -Aefi’kx Beffky Bell": 0

u,p(+ 1E)+u,,,(—|'1E'1=2a A,,,k, A,,,k,

—2.(,,,k, 0

Bmkx 0 Beflkz , (5.18)

0 Bmk, Bah,
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where

Aefl=AR +GAQ , (5.19.)

BdT=BR +089 , (5.19.2)

and

AQ=V9«/5flf—L= —\/3/239 .
a

(5.20)

a=1+1/(41/2)—8/(271/§1-%+~-

I. Care!

For a wave along [001] direction we take 1:,

=k,=0 and k,==k and consider the frequencies of

LA and TA branches.’4 Thelongitudinal acoustic

(LA) frequency in the limit k—~0 is given by

mi,=(c,,/p)k2 (5.21a)

and the polarization of the vibration is

0

e,,(x| k)=\/m./m 0 , (5.21b)

1

where m, is the mass of the x-type ion, m =m .,_

+m _, and p is the mass density (m /Za 3l. Substi-

tuting (5.18) and (5.21) in (2.20) and using (3.20)

we obtain

Cu=C?1-%Agflx“(n . (5.22)

Similarly for the transverse acoustic branch (TA),

using

mi-A=(C«/p))c2

and

1

("(KI kl=v al./m 0 ,

0

we obtain

c“=c2, — %B§,x.,( T) . (523)

2. Case 2

For a wave propagating along the [110] direc-

tion, we take 1:, =k,=k/t/2, k,=0. For a TA

wave in the xy plane, using

612,,=k’(c,,—c,,1/(2p1

and

1

2.11:1 i)=\/——m./m 1M2 -1 ,

0

we obtain

c.,=c?,+-:-A;,x,.m . (5.24)

Equations (522)-1524) are in agreement with

the results of Ref. 16 when Q20, although they

have been derived in a completely different way.

These equations will be used in the next section to

study the T dependence of the elastic constants for

the cyanides.

VI. RESULTS AND DISCUSSION

The temperature dependence of elastic constants

C", C“, and Cu given in Eqs. (5.22)-(5.24) de-

pend upon (i) the short-range repulsion (243.83)

and quadrupole contributions 049,89) to the

translational rotational coupling, and (ii) the rota-

tional susceptibility 1.51 k) obtained in the pres-

ence of directinteraction D.p( k ). The T depen-

dence of Xdk) comes from that of X25, the

single-site susceptibility. From Eq. (4.13) we see

that apart from the l/k3T factor, the T depen-

dence ofmk) is determined by the single-site po-

tential V001} ). In the cubic phase, the electric field

and the electric field gradient vanish at the lattice

sites and therefore the only contribution to V0033)

comes from the repulsive (steric) forces and be-

cause of the short-range nature of the latter only

the neighboring cations contribute to 170(6)). In

Fig. l we give the (0,¢) dependence of Vo(fi,l for

KCN which shows the four minima along the

[111] and equivalent bodyodiagonal directions. The

maxima are along the [i100], [0:10], [0011], and

the saddle points are along the [110] and its

equivalent directions. The values and the T depen-

dence of the different components of the single-site

susceptibility X3 are determined by the strength of

the repulsion and will be discussed in detail later.

For the superoxides, there is an additional contri-

bution to V008,) which comes from the splitting of

the orbital degeneracy of the 02" ion as the mole-

cule orients away from the symmetry directions.20
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FIG. l. Single-site potential Vo(0.d) for KCN. Vo(0,0)=99l4 K (max); Vo(99,1r/4)=8350 K (min), where 00: 54';

Vo(1r/2.rr/4)=8387 K (saddle point). 9 is measured from the [00l] and 4: from the [100] axis.

A. Repulsion parameters and quadrupole moment

In the present and all earlier"2| calculations, C

and N atoms of the (CN)‘ molecule have been as-

sumed to be equivalent so far as the strength of

atom-atom repulsion is concerned. In other words,

the repulsion parameter between a positive ion M

and any one atom of the CN molecule is given by

C1 = V (Cl )M-C(Cl )M-N v
I (6.1)

2="[(C2IM.c+(C2IMit]-

Using Tosi-Fumi" parameters for metalions and

the parameters of Mirsky el al. 25 for CC and NN

we have calculated C l and C2 and the values are

given in Table III. Bound et al.2! have used the

same values (excepting for a few minor differences)

in their molecular dynamic (MD) study. Actually

there are two sets of parameters given in the paper

by Tosi and Fumi; our final results are not very

sensitive to the choice of these two different sets.

The value21 of the quadrupole moment (Q0) of the

free (CNI' ion is given in Table III. In their MD

study involving KCN molecules confined to a fin-

ite cube, Bound et al.“ found that in order to ex-

plain the on'entational probability distribution

function (OPDF) they had to reduce the value of Q

by a factor f=0.5, i.e., Q=fQo. They argued that

such a reduction could arise from the charge redis-

tribution of (CN)" ion when it is placed in a solid

environment. While this is an important physical

effect. the precise value off depends on the nature

of the approximations made in obtaining the

OPDF. In particular, Bound et al. considered a

small system and did not allow for volume fluctua-

tions. Instead of using their value of f, we have

used a slightly different value, i.e., f=0.6 to fit the

long-wavelength elastic constant data for the three

compounds NaCN, KCN, and RbCN.

For the superoxides we find that the repulsive

forces are slightly stronger compared to cyanides

whereas the free-ion quadrupole moment20 is about

a factor of 2 smaller. These differences along with

the orbital degeneracy of the 02" ion are primarily

responsible for the experimentally observed” qual-

itative differences between the cyanides and super-

oxides as regards the nature of structural phase

transition in these systems is concerned. In Table

III we also give the values of a quantity

A8m=(2411'/5)Q(‘~;(\/2_a)s which measures the

strength of the direct intermolecular quadrupole

interaction. The repulsion and anisotropic disper-
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sion contribution to the direct interaction which

was found20 to be important for NaOz are not so

important for the cyanides because of large Q and

for the other superoxides because of a large value

of a. lnthe present calculation, repulsion and an-

isotrOpic dispersion contributions to the direct in-

termolecular interaction are ignored.

We would like to make a few comments about

the effect of the nonzero electric dipole moment

(9 ) of the (CN)‘ ion on the elastic softening at

high temperatures. Taking the calculated value2|

of la | =.O30, we find that the strength of the

dipole-dipole interaction measured by the quantity

e.=92/tax/2')3~ ID x whichIS a factor of 10

smaller than the quadrupole-quadrupole interaction

energy measured by 69:=Qo/(a\/2)5= 100 K.

Therefore the dipole-dipole interaction can be

neglected while calculating Xap. The coupling be-

tween .9 and the fluctuating electric field E can

soften the phonons just like the coupling between

Q and the fluctuating EFG. But we have found

that for symmetry reasons the former does not

J

a
5,:—

R

and depends upon the parameters (d /a) and (C20).

For the cyanides 532—025 (see Table IV) and it

turns out that if one considers repulsion alone, C,1

goes to zero at a higher temperature than C“.

The parameters Ag and Hg depend on the values

of the quadrupole moment of the (CN)" ion in the

solid. As has been pointed out before, there is

some evidence from the molecular dynamic stud-

2' of rotational autocorrelation functions in the

cubic phase of KCN that Quid < Q0, the free-ion

value. For the entries in the Table IV, we have

used the value Q=O.6Qo; this value was obtained

by making a reasonable fit to the experimental

values of elastic constants Cu and C“ over a large

temperature range. With Q=0.5Qo (a value sug-

gested by Bound et al.) we were unable to obtain a

decent fit over the entire experimental temperature

range. Of course it is possible to change the value

of repulsion parameters slightly and obtain a dif-

ferent value for Q which gives an equally good fit.

However, our main purpose is to point out the im-

portant role of the quadrupole-fluctuating EFG in-

teraction on the elastic softening rather than to ob-

tain a very good fit to the experiment. It will be

pointed out later that anharmonicity and non-

mean-field effects are important and should be tak-

contribute to the softening of the elastic constants

becausein the presence of this coupling only

(02 —woc: k‘ for k—vO.

B. Rotational-translational coupling

A]. Bl: A09 ’0

Knowing Cl and C; for the various compounds

we have calculated A, and BR using the expres-

sions of Michel and Naudts (MN)."’ For the sake

of completeness we have reproduced their expres-

sions for A, and B, in Appendix B. Our values

of A, and B, (see Table IV) for KCN are about a

factor of 2 larger than that given by MN and this

difference is due to the large value of C; given by

Tosi-Fumi parameters. An important quantity

that determines the nature of the ferroelastic insta-

bility, i.e., which of the two elastic constants C“

or C“ softens first, is the ratio 8,; MR. This ratio

(see Appendix B) is given by

=-‘/élad I[(ft-f3)/[3f2—fo+‘;(ft-3f3)JJ
(6-2)

 

l

en into account for a better quantitative under-

standing of the experiment.

It turns out that the dominant contribution to

Ag and Bo comes from the nearest-neighbor posi-

tive ion. This is because the second and third

neighbors [see Eqs. (5.1%) and (5.1%)] make con-

tribution! of opposite sign and almost equal

(within 0.1%) magnitude to A9 and 39- The

fourth neighbor‘s contribution is 57% of that of

the nearest neighbor. For the quadrupolar contri-

bution we find that

SQ =BQ( l + ' ° ' )/AQ(1+ ' =BQ/AQ

= —V 2/3 . (6.3)

The large value of [SQ I compared to [5,. I causes

C44-+0 at a higher temperature than CI. if we

consider the quadrupole contribution to the trans-

lational-rotational coupling alone. The above

analysis concerning the competition between qua-

drupolar and repulsive forces in determining the

effective rotation-translation coupling suggests that

there should be interesting pressure effects because

of the different volume dependences of AR,BR and

AQ,BQ. Such a study is under present investiga-

tron.
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C. Isothermal rotational susceptibility 1.;

The temperature dependences of Cu and C“ are

determined by 1¢p( k). For the symmetry direc-

tion k=-[0O k] that we are interested1n, 1.3(k)

=6a51m ( k) and furthermore1n the limit k—cO,

whichis relevant for the calculation of elastic con-

stants

xa101=xg/[1+Du(it‘=o1xfil . (6.4)

where 1° is defined in Eq. (4.13). As has been dis-

cussedin the first agraph of this subsection, the

T dependence of 1581’s determined by the single-site

potential Vo(fi,). Because of cubic symmetry 1°

=3x22=x and x‘,’,=x2.=x‘,’,=x, and the

quantities T10, and T10 are given in Figs. 2(a)

and 2(b). Our results differ from that of MN even

if we use their C1 and C2 parameters and this

difference is due to a factor of 2 error in the calcu-

lation of their VOUI‘, ). In fact, their numerical

values of rx‘.’. and 7x2, given in Figs. 1 and 2 are

apprOpriate for a system for which C1 22C?", a

value much closer to that obtained from Tosi-Fumi

parameters. However, for this stronger repulsion,

AR and Hg should be increased by a factor of 2.

This will change their results on T dependence of

C“ and C“ drastically and spoil the agreement

with the experiment that they found.

In Figs. 2(a) and 2(b) we also give R1=1n/X?1

and R,=x,,/x2,, x” and x“ being the c, and) t2,

susceptibilities obtained in the presence of direct

quadrupole-quadrupole interaction. Using the

value of Q=0.6Qo, we find that Du(k=0)

= —704 K and D«(k=0)=235 K. From Eq.

(6.4) we immediately see that 1"/1?| > 1 and

 

Ara/xi, <1 which indicates that direct intermolec-

ular interaction enhances C" softening and

suppresses C“ softening. Over the temperature

range of interest 1(1) 5 1000 K,

1 man/1°. <1.13, and o.sgx“/x£’,<o..9 Thus

effect of the direct interaction on elastic softening

is quite important for C“ and not so for C11

which is essentially due to the fact that

124/13": 10 in the temperature range of interest.

From Eqs. (5.22) and (5.23) we see that the effect

of direct molecular interaction is to decrease T“

andincrease T". the actual amount of decrease

will depend upon other parameters like C“,C11

and values of 10.,124. The maximum effect of

direct interaction on T. in cyanidesis found to be

~20%.

D. Elastic constants C“ and Cu

and transition temperature

Before presenting the results on the T depen-

dence of C"(T) and C44(T) and the temperature

where they approach zero, we would like to discuss

the importance of anharmonic effects on C11 and

C“. It is well known23 that anharmonic effects

give rise to phonon-phonon interaction and renor-

malize the elastic constants, i.e.,

cgm=c3+sc5nm . (6.5)

At high temperatures 8C§“(T)= -r, T. For

alkali-halide crystals careful elastic constant mea-

surernents35’” have been made and it is found

that y, »74. In order to incorporate anharmoni-

city effects in our calculation, we assume that
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Single-site susceptibility 1147' and enhancement factor R4=Xu( T)/12.( T) for 1;, symmetry (KCN).
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cyanides are equivalent to bromides“ excepting for

the nonzero translational-rotation coupling in the

former and therefore use

n(MCN)=‘n(MBr), M=Na ,K ,Rb . (6.6)

The values of y. and y. are given in Table V.

In the presence of both translational-rotational

(tr-rot) coupling and anharmonicity effects, we

then have

cum=c3+scrm+5c3W1r1 , (6.7)

where SCE'MU') is given by Eqs. (5.22) and (5.23).

To calculate C"(T) and C“(T) we need to

know the values of bare elastic constants C0. and

c2, In their calculation" MN obtained c.I and

C24 by fitting to the experimental value of the

transition temperatures T“ and T“. Since the

present theory is of mean-field nature and there-

fore does not include fluctuation effects, we have

obtained 6}. and C2. by fitting to the experimental

values of C" and C“ at temperatures Tm far

above the transition temperature T,. The values of

T“, are given in Table V and those of Te in Table

I

As has been pointed out earlier, the value of the

quadrupole moment that we have used in our cal-

cuiation is 0.6Qo compared to 0.5Qo used by

Bound et al. in their MD study. In Fig. 3 we give

C“( T) vs T for three values of Q, i.e., Q=O.SQ0,

0.6Qo, 0.75Qo in the absence of anharmonicity ef-

fects. We find that the temperature at which

C“-o0 are (1(1), 200, 300, respectively. In-

clusion of anharmonicity effects reduces the transi-

tion temperatures further although by only a few

percent. Since our theory of phonon softening is

of mean-field nature, we expect that inclusion of

fluctuation effects will reduce the transition tem-

perature still further for Q=O.5Qo (away from the

experimental value 7“: 156 K). The choice

Q=0.6Q0 gives TIM Z 7:,“ and a reasonable fit

over the entire range of the experiment. For

Q=O.75Qo the agreement between theory and ex-

TABLE V. Anharrnonicity parameters (71.74) bare

elastic constants (C‘h,C2.) and temperature Tm where .

theoretical and experimental values are fitted.

NaCN KCN RbCN

 

 

y, (10" dyn/cm’K) 0.26 0.27 0.28

y. (10’ dyn/ctn’K) 0.019 0.013 0.008

C2, (10" dyn/cm’) 5.749 5.115 4.022

C2. (10" dyn/em’) 0.752 0.470 0.411

r... (x) 473 453 380
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FIG. 3. Tdependence of C... (in units of 10'

dyn/cm’) for KCN for different values of the (CN')

quadrupole moment Q =fQo, where Q, is the free-ion

value.

periment for T» T‘ is rather poor. For all the

cyanides, instead of choosing different values of

Q to obtain an optimum fit, we have chosen

Q=O.6Qo. The overall agreement between theory

and experiment (to be discussed shortly) using this

value is quite good.

Before discussing individual systems separately

we make a few general remarks. If we consider

only the repulsion contribution to the translation-

rotation coupling, i.e., Ag =Bg =0, then we find

that C”—+0 at temperature T“ which is higher

than T“ where C44-90. Thus the repulsive forces

tend to soften C" much more than C“. Since C"

couples to order parameter Y., one expects that

C” —o0 will imply a nonzero (Y1) in the ferro-

elastic phase. This corresponds to molecules

orienting ‘along the z axis with a concomitant

tetragonal structure. Such a structure is not seen

in the cyanides but in the superoxides. If on the

other hand, we choose A)1 =33 =0 and Ag,Bg;£=O,

then we find that T“ > T” which is observed in

the cyanides. Of course as can be seen from the

Table IV, A3, BR, Ag, and Hg are all important

for the cyanides. The fact that in these systems

T“ > T” is due to the dominance of Hg over 8,;

and a significant reduction in AR caused by nega-

tive Ag. Since the quadrupole moment of the 02’

ion is about a factor of 2 smaller than that of

(CN)" and since the short-range repulsion is

stronger in the superoxides, we believe that the

qualitative features of the ferroelastic instability in

superoxides is determined by the short-range repul-

sive forces. However, for a quantitative under-

standing of the transition temperatures in superox-

ides, one has to include anisotr0pic (quadrupolar)

electrostatic forces and the effect of orbital degen-
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FlG.j4. Tdependence of C” (in units of 10"

dyn/cmz) for NaCN. 1: experiment, 2: theory with

anharmonicity, 3: theory without anharmonicity.

eracy of the superoxide ion.

In Figs. 4—9, we give the T dependence of C11

and C“ with and without the inclusion of anhar-

monicity effect and compare with the experimental

result. For NaCN and KCN, the overall agree-

ment appears to be very good. In particular the

peak in C”(T) is understood in terms of a com-

petition between the two contributions to the re-

normalization of the elastic constants 8C}? and

8C'1'; '°'. For a proper understanding of the T

dependence of C 11 it is important to include the

anharmonicity effect whereas for C“( T) this is not

so. For RbCN, inclusion of anharmonicity effects

in C11 gives a peak but at a much lower tempera-

ture than that seen experimentally. Our feeling is

that although our calculations bring out the impor-

tance of various physical effects it is necessary to

go beyond a simple mean-field theory for a com-

plete understanding of the elastic softening in the

orientationally disordered phases of molecular crys-

tals. In this regard we propose to extend the work

of Naudts and Mahanti38 on spin-phonon systems
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FIG. 5. Tdependence of C... (in units of 10”

dyn/cm2 ) for NaCN. 1: experiment. 2: theory with

anharmonicity, 3: theory without anharmonicity.
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FIG. 6. Tdependence of C11 (in units of 10"

dyn/cm’) for KCN. 1: experiment. 2: theory with

anharmonicity. 3: theory without anharmonicity.
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and apply to molecular crystals.

The value of T“ is given in Table I. The effect

of including anharmonicity is to reduce T... by

~10 K. Comparing the theoretical values of T“

with T' (see Table I), we see that the agreement is

reasonably good in view of the mean-field nature

of the present theory. Particularly remarkable is

the trend in T“ in going from NaCN to RbCN.

The T dependence of elastic constants in CsCN are

not available but they will provide an additional

test of the present microscopic theory.

E. Softening of phonons over the entire

Brillouin zone

Strauch e1 01.39 have used the translation-rota-

tion (tr-rot) coupling model to calculate the pho-

non frequencies of NaCN and KNC at 300 K for

the three symmetry directions [4‘00], [cg-g], and

[ggg]. For the bare phonon frequencies which are

determined by the dynamic matrix M°, they have

used a IO-parameter shell model. Translation-
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FIG. 7. Tdependence of Cu (in units of 10"

dyn/cmzl for KCN. 1: experiment. 2: theory with

anharmonicity, 3: theory without anharmonicity.
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FIG. 8. Tdependence of C" (in units of 10"

dyn/cm’) for RBCN. 1: experiment, 2: theory with

anharmonicity, 3: theory without anharmonicity.

rotation coupling is incorporated by adding to Mo

a contribution 6M given by

  

831+ 0

5M: 0 0 (6.8)

where

15114, = —ux°v* , (6.9)

where v and 1° are the tr-rot coupling and rota-

tional susceptibility matrices discussed in Sec. III

of this paper. Only the nearest-neighbor contribu-

tions to v, i.e., the interaction between a (CN)' ion

and its nearest-neighbor M+ ion was considered in

Ref. 39 just as in Ref. 16. Strauch er al. did not

include the direct interaction between the (CN)"

molecules and therefore their renormalized phonon

frequencies are the same as those given in Eq.

(3.20) of this paper with 1.3( it',w) replaced by 12,,

the single-site static susceptibility. Thus our re-

sults can be thought of as a generalization of their

work.
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FIG. 9. Tdependence of C“ (in units of 10”

dyn/cm’) for RBCN. 1: experiment, 2: theory with

anharmonicity, 3: theory without anharmonicity.

Since in the limit k—o 0, 6M+ gives the renor-

malization of elastic constants, the latter complete-

ly determines 5M provided only nearest neigh-

bors contribute to v,“ k). Then knowing 6C1. and

5C“ at T= 300 K, one can calculate “51"" (05";

for all values of jk at this temperature. Strauch

et al. had to use values of 5C 11 and 6C“ different

from those obtained by Michel and Naudts"’ to fit

to the experimental data. In our analysis of the

short--range repulsion and quadrupole contribution

to 1:3,,(11) we found that because of near perfect

cancellation between second- and third-neighbor

contributions to 11,,(k). considering only the

nearestneighbor contribution to v.“( k), is an ex-

cellent approximation. However, both the above

mechanisms contribute to 11;,( k ). As we discuss

below our present calculations provide a micro-

scOpic justification of the values of 5C” and 5C“

chosen by Strauch et al. to fit to the experiment.

Since these authors, with their phenomenological

choice of 6C11 and 5C“, found excellent agree-

ment with experiment we will use their calculated

values of wfy- r; as an experimental measure of

the phonon renormalization;

We define a quantity I" " =(a1fiz—wfi )"2/10l3

cps which is a measure_of phonon renormalization.

We have calculated I" " for phonons prOpagating

along the [00k] direction by using Eq. (3.20) and

noting that the tr-rot coupling matrix (including

both short-range and quadrupole contributions) has

typically a form like Eq. (5.5) with k, =k,=0 and

k, =k_.. In Table VI the results of our calculation

of I" " are given along with those obtained from

the Fig. l of Ref. 39 where the phonon frequency

v=w/21r is given in units of THz. Using the ap-

propriate polarization vectors of phonons given in

Sec. VC it is easy to see that I" k for the LA and

TA phonons are determined by the rotational sus-

ceptibilities of e, and 12‘ symmetries, respectively.

These susceptibilitiesin turn depend on the direct

Q-Q interaction Dag(k) through Eq. (4.10). We

find that at T=r300 K inclusion of direct interac-

tion affects LA phonon softening by about 7%

whereas the TA phonons are affected by 5—25 %.

The TA phonons are influenced more strongly by

direct interaction because at this temperature

191/12, le, in spite of the fact that D”(k)IS

—704 K at k =0 and 1955 K at k=kaz and that

044(k) is 235 K at k =0 and -652 K at k=kaz.

As can be seen from Table V1, for LA modes our

calculated values of I" " are about 15-30%

higher than experiment. This difference is due to

the fact that for a proper calculation of phonon
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TABLE VI. Renormalization of TA and LA phonons along [001) direction;

r‘[(a)3)’-(w‘)’]'”/10" cps; i=LA, TA.

 

 

 

k/Ir... 1‘M (present) 1‘“ (Ref. 39) r“ (present) 1‘“ (Ref. 39)

0 0 0 0 0

0.2 024 035(5) 0.71 . 061(5)

0.4 0.42 0.52 1.12 0.88

0.6 0.49 0.53 1.11 0.37

0.8 0.35 038(5) 071 0.56

1.0 0 0 0 0

softening one has to include the frequency depen- ‘3. Conclusion

dence of 1.,( law). If one is far away from the

phase transition temperature, i.e., T > T, (this may

not be true foLNaCN) then the frequency depen-

dence of 1.4 k,a)) is determined primarily by that

of 125m). The rotational dynamics at T5300 K

will be almost diffusive with a frequency scale

I‘M-05x 10'3 cps, i.e.,

‘ " it' 0) r21(k,a)) 1( , F2+wz .

On physical grounds‘O one expects that for high-

frequency phonons (a) >wm,l‘m) the effect of tr-

rot coupling will be reduced from the values given

in Table VI. This will improve agreement between

theoretical and experimental values of mud k ).

On the other hand, for TA phonons one finds.

from Table VI that our calculated values of I" “

are smaller than the experimental values by about

7—32%, the large discrepancy being in the low-k

region. However, because of the direct interaction,

the agreement with experiment (~ Strauch et al.’s

work) is fairly good for large values of k. There-

fore, for the low-frequency TA phonons, if one ap-

proximates the rotational dynamics by a resonant-

type behavior, i.e., by

r2

+(w—wm)2

 1(k',a))~1(it',0) r2

with I‘~a),.,,, then one can improve the agreement

between experiment and present theory. There is

some evidence of the behavior of the form given

above from the MD calculation.2| For the high;

frequency TA phonons though, the quantity 1" k.

may depend sensitively on the values of 192‘,

Didi), and the frequency scales involved and the

above-mentioned quantitative agreement should be

reexamined carefully. A quantitative study of the

phonon softening including the prOper frequency

dependence of 1,5( 16,10) is beyond the scope of the

present work.

In summary, we believe that the anomalous ther-

moelastic properties and softening of phonons in

the orientationally disordered phase of the cyanides

can be adequately described by the tr-rot coupling

model."“7 The physics of these systems depends

sensitively on the commition between the short-

range repulsive and anisotropic electrostatic

(predominantly quadrupole-EFG interaction)

forces.” Furthermore, anharmonicity effects are

also important for a proper understanding of the T

dependence of C11- For the phonons in general, it

is necessary to include the retardation effects by

considering the frequency.dependence of the rota-

tional susceptibility 1.4 k,a)). Fluctuation effects

not included in the present mean-field theory ap-

proach should be considered for a better quantita-

tive understanding. We propose to extend our

theory to CsCN which has a different high-T cubic

structure and see if we can understand the large

ferroelastic transtition temperature“ Tom2200

K. Finally for the alkali superoxides (which will

be discussed in detail in a separate paper) short-

range repulsion dominates over the quadrupole

coupling and the orbital degeneracy of the superox-

ide ion plays an important role.
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APPENDIX A: ROTATIONAL-TRANSLATIONAL

COUPLING FROM QUADRUPOLE

EFG INTERACTIONS

In this appendix we evaluate the coupling con-

stant matrices arising from the contribution of

various NN‘s to the electric field gradient. We ex-

plicitly consider the cases 0 =1 and a =4. other

terms being readin obtainable from these by sym-

metry considerations.
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1. First NN contribution

From (5.16), choosing the origin at R?

3 e
U.(ar)= - U.( —a2‘)= — J‘s-Lu," ..

(AI)

We use (5.6), (5.15), (5.17), and (Al) and express

the displacements iii in terms of their Fourier

components and obtain for a=1 [see Eq. (5.6) for

the definition of 5,, C," etc.]. We have
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Sx

ufifGH |1't’)..—.2A,2 3, (A4)

“ZS:

Similarly for a=4,

(was): —U.,(—ar)=3-l"71-u,,. .. , (A5)
a

2 giant, 1113:2139 2 Y1( it‘)[u,(it‘)s, +u,(1't')s, 1

t r

 

(A6)

2 91301.10: =2“,2 Z rl(it°)[u,('1?)s, +u,(it')s, where
l

k _. Bg = — t/2/3AQ , (A7)

—2u,(k)S,] ,

and therefore,

(A2)

where
am .. S,

e.,, (+llt)|=23g 0 (A8)
Ana/$32.19. (A3) 5

a
I

so that ‘ Hence we obtain

A95, —AQs, 199$, 199.9, 0

uEfGt+|it°).=2 A95, .495, rigs, 0 nos, (A9)

4.105, 0 0 199$, 119$,

l

. . — 12. Second NN contnbutton
=——

40 4,540 (A12)

From (5.16) we again obtain so that

U,(a£+afi)= - U.( —a£—af) s,(3c, —2C,)

EFG '* _ - _=_235,:a‘(up+ub)’ e.,, (4102—249 sec, 26‘.) (A13)

(A10) —s,(c,+c,)

Ua(a£—af)= - Uzi “fwd” Similarly with

- e (u u ) " ‘ (A14)

__ k- , =___
25004 1) Bg “/2 Bq .

and
.

gamma: “’c 0m“
l'

. - _. .. S(C —4C).1124 1"(1t1u (2)5(30 —2C) .. - ’ ‘ ’
92,; ' [" _.‘ ‘ ’ u$G(—|1t),=%ag s,(4c,-C,) ,

+u,(1t)s,(3c,—2C,)
ss,(C,—C,)

+u.(i°)S.(Ca+C,)] . s,(3C,—2C,)

EFG " "

0where
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s,(3c,—2c,)

v$G(—IE)2=2§Q 0 s

s.(3c,-2c,)

and

0

u§f°(— |'1'E),=2§Q s,(3c,—2c,)

' s,(3c,-2c,)

3. Third NN contribution

Defining

. f=_%ag, (A16)

59": _ 37873-39 , (A17)

we obtain the following terms for the coupling

constant matrix:

_ s,c,c,

DF:G(+ I E)3=ZIQ SnyC: 9

45.0.6, 1

ngq

"$G(+|E)3=ZXQ S,C,C. '

0

I s,c,c,

EFG " :
113,, (+ I k)3=2-BQ SnyCs ’ (A18)

k-%s,s,s, 

 

' s,c,.c,

uf,”(+|it’),=2§,, —%s,s,s, ,

L s,c,c,

’ '_%st,s’

vf;,""(+|it’),=2§‘2 s,c,c,

i S,C,C,

APPENDIX B: ROTATIONAL-TRANSLATIONAL

COUPLING FROM SHORT-RANGE REPULSION

Equations (A13) and (A15) of Ref. 16 are

correct. There is an error ofa factor of l/t/i in

Eq. (A14) where B, BB is expressed in terms of

I“ ’(a,;0), but the other equations are correct.

The parameters A and B (which are A3 and B, in

the present paper) are

A, 5.4 =t/Er'rc,c,(d’+a1)-m

x[a(3f,—fo)+d(f,-3f,)] . (BI)

19,, 53:: —\/3Trrc,c,(d’+a’)-md(/, -f,) .

(132)

where

1. =8"'“’jg(1 —y’)"e-"’dy (B3)

and

h =C2(d2+a’)m , (34)

8=Zda /(d’+a’) . (as)

In the above equations C“C; are the repulsion

parameters discussed in Sec. VIA of the text , 241

is the internuclear separation, and a is the distance

between the (CN)‘ ion and its nearest M1“ ion.

 

'S. Haussiihl, J. Eckstein, K. Recker, and F. Wallrafen,

Acta Crystallogr. A 3}, 847 (1977)

2S. Haussiihl, Solid State Commun. 13,, 147 (1973).

3S. Haussfihl, Solid State Commun. 32, 181 (1979).

‘J. M. Rowe, J. J. Rush, N. J. Chesser, K. H. Michel,

and J. Naudts, Phys. Rev. Lett. 99, 455 (1978).

5y. Kondo, D. Schoemaker, and F. Liity, Phys. Rev. B

12, 4210 (1979).

6H. D. Hochheimer, W. F. Love, and C. T. Walker,

Phys. Rev. Lett. 18, 832 (1977).

7H. T. Stokes, T. A. Case, and D. C. Ailion, Phys. Rev.

Lett. 51, 268 (1981).

3V. M. Ziegler, M. Rosenfeld, W. Kanzig, and P. Fisch-

er, Helv. Phys. Acta 52, S7 (1976).

9W. Kinzig and M. Labhart, J. Phys. (Paris) Colloq. 1,

39 (1976).

”M. Rosenfeld, M. Ziegler, and W. Kinzig, Helv. Phys.

Acts :1. 298 (1978).

”J. C. Raich and A. Ht'iller, J. Chem. Phys. 10, 3669

( I979).

12J. J. Rush, L. A. de Graaf, and R. C. Livingston, J.

Chem. Phys. 18, 3439 (1973). See also H. Bleif and

H. Dachs, Acta Crystallogr. Sect. A 11, $188 (1975)

for the case of sodium hydroxide.

l3K. D. Ehrhardt and K. H. Michel, Phys. Rev. Lett.

£6, 29] (I981).



3000 D. SAHU AND S. D. MAHANTI 26

"In Na02, the transition is from an disordered to a

four-sublattice antiferroelastic phase and there are no

accompanying elastic anomalies.

u"I'here is some evidence that in RbCN, the molecular

orientations in the ordered phase is along [111] direc-

tion (see also Ref. 41).

l6K. H. Michel and J. Naudts, Phys. Rev. Lett. 32, 212

(1977); J. Chem. Phys. 61, 547 (1977).

r’S. D. Mahanti and D. Sahu, Phys. Rev. Lett. 18, 936

(1982). ‘

“In their work on structural phase transition in NON),

Raich and Huller (see Ref. 11) took into account the

quadrupole and hexadecapole moment of the N3' ion

and found that Cu—o 0 at T.. However, owing to the

complicated nature of the system, they did not study

the effect of competition between short-range repul-

sion and anistropic electrostatic effects on the elastic

softening. .

”M. A. Bt'isch, M. E. Lines, and M. Labhart, Phys.

Rev. Lett. 45, 140 (1980); M. E. Lines and M. A.

Bt'isch, Phys. Rev. B 21. 263 (1981); M. E. Lines, ibid.

21, 5248 (1981).

2"S. D. Mahanti and G. Kemeny, Phys. Rev. B 29, 2105

(1979); the sign of Q given in Table II should be nega-

tive.

2‘D. G. Bounds, M. L. Klein. and I. R. McDonald,

Phys. Rev. Lett. 46, 1682 (1981); Chem. Phys. Lett.

18, 383 (1981); Phys. Rev. B 24, 3568 (1981).

22J Naudts, Z. Phys. B 42, 323 (1981).

23H. B. Huntington, in Solid State Physics, edited by F.

Seitz, D. Turnbull, and H. Ehrenreich (Academic,

New York, 1958), Vol. 7, p. 214; G. Leibfried and W.

Ludwig, in Solid State Physics, edited by F. Seitz and

D. Turnbull (Academic, New York, 1961), Vol. 12, p.

276.

2‘F. G. Fumi and M. P. Tosi, J. Phys. Chem. Solids 25,

31 (1964).

25F. L. Hirshfeld and K. Mirsky, Acta Crystallog. Sect.

A 15, 366 (1979).

2"B. deRaedt, K. Binder, and K. H. Michel, J. Chem.

Phys. 15, 2977 (1981).

2"B. C. Kohin, J. Chem. Phys. 3,1, 882 (1960).

2'D. A. Goodings and M. Henkelman, Can. J. Phys.

52. 2898 (1971).

2"P. V. Dunmore, Can. J. Phys. 55, 554 (1977).

3"D. N. Zubarev, Usp. Fiz. Nauk 11, 71 (1960) [Sov.

Phys—Usp. 1, 320 (1960)].

3'When the time scales of rotational motion is fast com-

pared to the translational mOtion (valid for elastic

response). the effects of modes other than the particu-

lar one under investigation (j k.) can be included by

carrying out a canonical transformation. This leads

to a correction to the direct intermolecular interaction

and to‘the single-site susceptibility. However, in the

limit k _. 0, the modification of the direct interaction

is only through optical phonons and hence very small.

Quantitative effects of this mode-mode coupling on

the elastic softening will be discussed elsewhere [8. D.

Mahanti and D. Sahu (unpublished)].

32R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).

33M. H. Cohen and F. Reif, in Solid State Physics, edit-

ed by F. Seitz and D. Turnbull (Academic, New

York, 1957), Vol. 5, p. 322.

3‘C. Kittel, Introduction to Solid State Physics (Wiley.

New York, 1967). p. 120.

35M. H. Norwood and C. V. Briscoe, Phys. Rev. 112,

45 (1958).

3"’M. Ghafelehbashi, D. P. Dandekar, and A. L. Ruoff,

J. Appl. Phys. 11, 652 (1970).

37W. C. Overton, Jr. and R. T. Swim, Phys. Rev. 85,

758 (1951).

38J. Naudts and S. D. Mahanti, Phys. Rev. B 25, 5875

(1982).

39D. Strauch, U. Schroder, and W. Bauernfeind. Solid

State Commun. 10, 559 (1979).

”A careful study of the coupled translation—rotation

dynamics has been made by K. H. Michel and J.

Naudts [J. Chem. Phys. 68, 216 (1978)] when

mm~p...,...,~r,.. using Mori’s projection Operator

tecnhique.

“F. Lt'ity, paper presented at International Conference

on Defects on Insulating Crystals, Riga, 1981 (private

communication).



LIST OF REFERENCES



Boi

Boi

Bou

Coh

Cou

Cow

deB

deR

Dun

Ehr

Ehr

Feh

Fis

40

78

80

81

57

76

81

42

81

77

80

83

76

79

LIST OF REFERENCES

].M.Bijvoet and J.A.Lely; Recl. Trav. Chim.

Pays. Bas.Lig,908(1940).

M.Boissier, R.Vacher, D.Fontaine and R.M.Pick;

l.de Physique, 22, 205(1978).

M.Boissier, R.Vacher, D.Fontaine and R.M.Pick;

). de Physique, il,1437(1980).

D.G.Bounds, M.L.Klein and |.R.McDona|d; Phys.

Rev. Lett. 12,1682(1981).

M.H.Cohen and F.Reif; in Solid State Physics,

edited by F.Seitz and D.Turnbuli(Academic,

N.Y. 1957) vol.5, p. 322.

 

E.Courtens; J. de Physique Lett., EZJL-

21(1976).

R.A.Cow|ey in Structural Phase Transitions, by

A.D.Bruce and R.A.Cow|ey (Taylor and Francis,

London, 1981), p.106.

 

l.de Boer; Physica, 2,363(1942).

B.DeRadet, K.Binder and K.H.Miche|; J. Chem.

Phys. ZE,2977(1981).

P.V.Dunmore; Can. J. Phys. 22,554(1980).

K.D.Ehrhardt, W.Press, l.Lefebvre and

S.Haussuhl; Solid State Commun., 31,591(1980).

K.D.Ehrhardt, W.Press and l.Lefebvre; ]. Chem.

Phys. 18,1476(1983).

W.R.Fehiner and S.H.Vosko; Can. J. Phys.,

§5J2159(1976).

M.F.Fisher in Proceedings of the 23rd Robert

107



Fle

Fum

Geh

Cha

Coo

Hau

Hau

Hau

Hub

Koh

Kon

Kle

Kle

81

64

75

70

71

79

73

77

79

79

68

60

79

81

82

79

108

A.We|ch Foundation Conferences on Chemical

Research, Modern Structural Methods (Houston,

Nov.12-14,1979), p.75. I am grateful to Dr.

M.F.Fisher for giving me this refernce.

P.A.Fleury, Science,211,125(1981).

F.G.Fumi and M.P.Tosi; J. Phys. Chem. Solids,

33,3111964).

G.A.Cehring and K.A.Gehring; Rep. Prog.

Phys.L28,1(1975).

M.Chafelebashi, D.P.Dandekar and A.L.Ruoff; J.

Appl. Phys., _1,652(1970).

D.A.Coodings and M.Henkelman; Can. J.

Phys.L12,2898(1971).

J.R.Hardy and AuM.Karo; Lattice Dynamics and

Statics of Alkali Halide Crystals, (Plenum,

N.Y.,1979).

 

 

S.Haussuhl; Solid State Commun., 13,147(1973).

S.Haussuhl; l.Eckstein, K.Recker and

F.Wa|lrafen; Acta Crystallog. A 33,847(1977).

S.Haussuhl; Solid State Commun., 32,181(1979)

F.L,Hirshfeld and K.Mirsky; Acta Crystallog.

A, 33,366(1979).

A.Huber in Mathematical Methods in Solid State

and Superfluid Theory, edited by R.C.Clark and

G.H.Derrick (Plenum,N.Y.,1968).

 

 

B.C.Kohin; J. Chem. Phys., 22,882(1960)

Y.Kondo, D.Schoemaker and F.Luty; Phys. Rev. B,

13,4210(1979)

M.L.Klein and I.R.McDona|d; Chem. Phys.

Letts., 18,383(1981)

M.L.Klein, Y.Ozaki and |.R.McDona|d; J. Phys.

C, Solid State, 15,4993(1982).

W.Krasser, B.Janik, K.D.Ehrhardt and

S.Haussuhl; Solid State Commun., 22,33(1979).



Lel

LeS

Loi

Loi

Loi

Lut

Lut

Lyn

Mah

Mah

Ove

Rai

42

82

803

80b

83

81

83

83

79

82

77a

77b

78

81

58

51

79

109

J.A.Lely; Dissertation, Utrecht(1942).

R.LeSar and R.G.Gordon; J. Chem. Phys.,

11,3682(1982).

A.Loid|, K.Knorr, J.I.Kiems and S.Haussuhl; J.

Phys. C, Solid State, 1;,L349(1980).

A.Loidl, K.Knorr, J.Daubert, W.Dultz, and

W.J.Fitzgerald; Z.Physik B, 28,153(1980).

A.Loidl, S.Haussuhl and J.K.ijns; Z. Physik

3,32,187(1983) .

F.Lutyq paper presented at International

Conference on Defects in Insulating Crystals,

Riga, 1981 (private communication).

F.Luty and J. Ortiz-Lopez; Phys. Rev.

Lett.,50,1289(1983).

R.M.Lynden-Bell, l.R.McDonald and M.L.K|ein;

(preprint)

S.D.Mahanti and C.Kemeny; Phys. Rev. B,

29,2105,(1979).

S.D.Mahanti and D.Sahu; Phys. Rev. Lett.,

18,936(1982).

K.H.Michel and J.Naudts; J.Chem. Phys.,

91,547(1977).

K.H.Michel and J.Naudts; Phys. Rev. Lett.,

32,212(1977).

K.H.Michel and J.Naudts; J. Chem. Phys.,

£8,216(1978).

C.Muhlhausen and R.C.Gordon; Phys. Rev. B,

23,900(1981).

M.H.Norwood and C.V.Briscoe; Phys.

Rev.,112,45(1958).

W.C.Overton,Jr. and R.T.Swim; Phys. Rev.,

81,758(1951)

J.C.Raich and A.Huller; J.Chem. Phys.,

10,3669(1970).



Reh

Rei

Row

Row

Sah

Sah

Sah

Sat

Sch

Sto

Str

Sug

Ver

Zub

77

61

75

82

82

83a

83b

77

79

81

79

68

38

60

110

W.Rehwald, J.R.Sandercock and M.Rossinelli;

Phys. Stat. Sol.(a), 12,699(1977).

K.Reinitz; Phys. Rev., 123,161S(1961).

J.M.Rowe, J.J.Rush, N.Vagelatos, D.L.Price,

D.J.Hinks and S.Susman; J.Chem.

Phys.L§2,4551(1975).

J.M.Rowe; Private communication (1982).

D.Sahu and S.D.Mahanti; Phys. Rev. B,

32,2981(1982).

D.Sahu and S.D.Mahanti; Solid State

Commun.L11,203(1983).

D.Sahu and S.D.Mahanti; preprint,(1983).

S.K.Satija and C.H.Wang; J. Chem. Phys.,

£6,2221(1977).

P.C.Schmidt, A.Weiss and T.P.Das; Phys. Rev.

8,19,5525(1979).

H.T.Stokes, T.A.Case and and D.C.Ailion; Phys.

Rev. Lett., 11,268(1981).

D.Strauch, U.Schroder and W.Bauernfeind; Solid

State Commun., 32,559(1979).

M.Sugisaki, T.Matsuo, H.Suga and S.Seki; Bull.

Chem. Soc. Japn., 41,1747(1968)

H.J.Verweel and J.M.Bijvoet; Z.Kristallogr.

Kristallgeom. Kristallphys. Kristall-

chem.,100,201(1938).

D.N.Zubarev; Usp. Fiz. Nauk, Zl,71(1960) [Sov.

Phys- Usp. 2,320(1960)].



  WTIWITWJIWWNW"WM”
3 1293 03174 6963


