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ABSTRACT

STABILITY OF THE LIKELIHOOD RATIO

IN SIGNAL DETECTION USING PER TURBATION OPERATORS

by Andres C. Salazar

Attention has been focused in recent years on the continuity

of a signal detection scheme with respect to a small change in the

noise power. This continuity may correspond to the stability or

robustness of the stochastic decision-making hypothesis test.

The case for stability investigated here is that of detecting

a sure signal sent through zero-mean Gaussian noise with continuous

autocorrelation R(s, t) on the finite interval 0 _<_ t E T with a

maximum likelihood test. Once the entire detection scheme is set

on the LZI: O, T] mathematical platform, the operator RO

corresponding to the original noise autocorrelation is perturbed

with 6 R where e is a small real parameter and R1 is a
1

positive semidefinite operator of norm less than R The likeli-0 .

hood ratio, an integral part of the detection plan, has a form

 

where ak and w are Fourier coefficients of the sent signal and
k

received signal respectively relative to the eigenfunctions (Pk

of the noise autocorrelation and where )\k are the eigenvalues of

the autocorrelation kernel. With R0 in force the ratio has a

certain variance and with chosen threshold completes the detection
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scheme. Now that RO has been perturbed what changes are

instituted in y ?

A brief summary of the work of William L. Root in this

area is followed by an explanation of the difference between that

work and the one contained in this thesis. Static perturbation
 

is a term applied to Root's work since it deals With changes in

the likelihood ratio stochastic properties keeping the parameters

ak and Xk the same before and after perturbation.

Simple examples of dynamic perturbation, a term used to
 

denote consideration of all changes of. the likelihood ratio after

perturbation, are followed by a lengthy discuSSion of changes both

stochastic and function-wise of the ratio when an arbitrarily small

norm perturbing operator is used. The method for finding the

perturbed ratio coefficients is similar to the one used in perturbing

the Hamiltonian operator in quantum mechanics. That. is,

+64) +R + 6 R1 is the perturbed noise operator while <i>k 1' <1) kl
0 k0

€24) +. and X 2X +€X +€ZX + arethek2 .. - k k0 k1 kg .0. . ' ,_. i

th . . . .
perturbed k eigenfunction and eigenvalue. The parameter (T 15

small enough so that first order terms are assumed thig- significant

ones; hence, the solutions to the first Set of recursive equations

(formed for each power of 6)

(R -i
o ko‘chkl 0‘ I'RWk1 1

(<10k1 lcbko) = o

I :(d3
kl (1)ko IR1 ko)
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are sufficient to determine y 2 Yo + (-3 Y1 and Var v 't Var yo + . . .

+ 6 2 Cov (YO, Y1) the new liklihood ratio form and variance where

v1 and Gov (YO, yl) are rather involved expressions. Upon

determining these new quantities we can account for the way the

detection test is kept Optimum while an 6 ”distance" away from

the original one (yo, Var Y0 and threshold tVO). In this way a

continuity or stability can be shown for a finite variance detection

scheme.
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CHAPTER I

INTRODUCTION

The detection of a finite energy sure signal in additive

Gaussian noise is our major concern in the first stages of our

problem. We shall deal briefly in this chapter with the back-

ground material necessary to set up a plausible detection scheme

for such a signal on a finite interval.

1. DETECTION OF A KNOWN SIGNAL IN NOISE

The known signal will henceforth be denoted a(t) , an

integrable square function on the interval [ O, T] . The total noise

process present in the communication channel as well as in the

receiver is additive and will be described by a zero mean real

second order stochastic process, x(t), continuous in the mean

square sence, i. e. , with continuous autocorrelation function,

R(s,t).

R(s,t) = Ex(t)x(s) 0< s,t< T (1.1)

The symbol E is the expectation operation relative to the

probability measure imposed upon the model. From this measure

two hypotheses can be distinguished.

H : signal is not present in the received waveform.

O

H : signal is present in the received waveform.
l

The received waveform can then be accordingly:

w(t) x(t) for H0

a(t) + x(t) for H1.w(t)



Autocorrelation functions, R(x, y), form kernels in L2

space if they are L1 integrable. If they are also wide sense

stationary they have a Fourier transform. This type of co-

variance function has a relative maximum at the origin which

is unsurpassed at any other point but can be equalled and is an

even positive semidefinite function. Second order stationarity

permits by means of the Fourier transform convenient spectral

analysis of the detection problem. Studies of noise through

Fourierspectra, emphasized by N. Wiener, help in determining

in what frequency range the noise power is somewhat attenuated

so that the desired signal power strength can be concentrated

there for a. better overall signal to noise ratio.

The ergodic hypothesis to which the importance of second

order stationarity owes its importance implies stationarity which

claims that the noise energy level and structure will not change

relative to time. The concept of ergodicity and to a lesser degree

the weaker condition of wide sense stationarity is based on

homogeneity and an isotropic media. The situation is random

but the prime assumption is that the "natural course of fluctuation"

is allowed at all times. This assumption may be unreasonable for

a macrosc0pic experiment where several factors causing significant

change in the environment may prevail for different sections in the

communication channel causing truly an unstable media. It may

 

lNorbert Wiener, Time Series, Chapter III (Cambridge, Mass.:

MIT Press, 1949).

 



therefore be presumptuous in some cases to try and measure time

varying noise energy levels and fit them to an ergodic or weaker

wide sense stationary formula for use in signal detection schemes.

No claim should be made concerning the niagni'tude of variation of

the noise energy structure. It would be just as presumptuous to

assume the noise is never ergodic. On the contrary, the tendency

toward ergodicity should always be recognized.

Indeed, the approach in this thesis is to rec0gnize the small

but significant variations about, the ergodic value of the noise energy.

This variation, it is maintained, may be the cause of either detection

test instability and/ or type I and type II errors whose magnitudes

may not conform to estimates given by the wide sense stationary

model.

II. AUTOCORR ELATION FUNCTIONS

Before we set up the detection. scheme we are going to use

it is best to describe the properties of the autocorrelation function.

First, when we speak of autosorrei'atious we do not irnplicity mean

"time avera e" or the wide. sense stationar statistical avera e
g Y g

E :~;(t) x(t+7‘} - R(’r’) .

Specifically, a second order random function x(t) on J,

an index set,with properly defined probability space (52,6, p)

is a family of second order random variables such that

 

E lxit) < 00 for every t (-7 J .

We will always assume the random functions have zero mean.



The second order moments are called variances and the function

defined on the set J x J is termed the autocorrelation function

or covariance function.

R(t,s) 2 Ex(t)x(s) (1.1)

It can be shown by the CBS inequality that the function exists and

is finite almost everywhere (Loéve p. 465). The reverse is also

true; R(s,t) finite implies

2

Elxmy = R(t,t) < co teJ.

Hence, covariances or autocorrelation are a manifest nature of

the second order random function.

The properties of the autocorrelation can be summarized

with a few notes (Lo‘eve pp. 466-8).

1. A function R(s,t) on J x J is an autocorrelation

if and only if it is nonnegative definite (sometimes

termed positive semidefinite).

2. The class of autocorrelations is closed under

additions, multiplications and passages to the

limit.

3. Since every nonnegative number is an autocor relation

it follows then that polynomials of covariances with

positive coefficients and their limits are also

autocorrelations.

4. Given a continuous autocorrelation. on a closed interval

J the stochastic process x(t) is normal or Gaussian

if and only if the random variables



, : 1' .) , .'
kn f} XU’.) ¢n(t' dt (1 Z)

are normal or Gaussian‘, {¢n(t)}:_1 here are

the eigenfunctions corresponding to the discrete

spectra of the autocorrela tion function via the

Karhunen-Lole‘ve expansion (section I. 3).

If the autocorrelation is not positive definite, its eigen-

function sequence is not necessarily a generating set for all

L2(J) where J is the closed interval of the continuously indexed

random process. Later we will see that this point implies that

the detection procedure maybe singular, i. e. there exists a

signal in L2(J) which can be detected without error.

III. LZ(J) KERNELS AND THE KARIIUNEN-LOIIVE EXPANSION

A spectral theoreri’i for stochastic processes known as the

Karhunen-Lo‘eve Expansion plays a. central role in the signal

detection scheme of interest here. It permits the noise process

x(t) to be expressed as

x(t) = 2: x <;‘> (x; O<t<T (:J) (1.3)

where the equal sign really represents convergence in a stochastic

CD

as well as an L2(J) mean square norm. Here the {¢k}l\ 1 are

the eigenfunctions of the autocorrelation R(x, y) , an L2(J) kernel,

and per se have no statistical properties. The Fourier coefficients

Xn assume then the entire stochastic characteristic of x(t) . We

\ - . . . .

have the Karhunen-Loeve Expansmn then splitting the noise process

into two orthogonal sequences (Appendix D), the functions {(Pk}k-l
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and the stochastic set {xk}k 1 . Each set can now be dealt with

more clearly.

We now see the importance of dealing with LZ(J) kernels

and indeed the whole L2(J) space structure. From Appendix C

we see that an LZ(J) kernel is a bivariate function K (x, y) for

which both functions

T ,2, '. 1/2 , T 1/2

A(X) = [ID k \X: y) dyl BKY) = [f K (29y) dX] (1.4)

O

exist almost everywhere in J and belong to class L2(J) . It can

be shown that every symmetric and nonnull LZ(J) kernel has at

least one eigenvalue. Further, any nonnull symmetric L2(J) kernel

has an infinite number of eigenvalues or is a PG kernel, i. e. , a

Pincherle-Goursat kernel whose expression is generally put as

N

2. - . < < <K we rig in 451(k) «inm N 00, o_ x,y__ T

N _ N , .

where {(1) l and {A } are the eigenvectors and eigenvalues
n 11:1 Tl 11:1

respectively. A Hilbert—Sc hmidt kernel on the other hand is one for

which the following is true:

‘ Z

tiff i K(X, Y) dxdy < m

o0

This indicates a PG kernel is Hilbert'Schmidt but not necessarily

vice versa.

In our case the autocorrelation function, in view of its

properties, forms an LZ(J) kernel and hence submits to eigen-

function expansions. The Karhunem-Loeve Expansion is such an

expansion. Hence, the second order characteristics of the random



‘
1

process will form the properties of the covariance function.

If the L J) kernel, R(x, y), is a positive definite2(

function then the stochastic process is of the proper type; but

if the kernel is only positive semidefinite then it is improper.

These kernels will correspond to positive L2(J) and nonnegative

LZ(J) operators. From Hilbert space terms we understand

positive operators will yield eigenfunction sets which generate

all of L2(J) space while nonnegative operators will have a null

space which does not merely contain the zero vector.

The common assumption, due in part to the fact that

natural disturbances are commonly of Gaussian distributions, is

that the noise process is of Gaussian character as is the kt‘h

Fourier coefficient of the noise relative to the kth eigenfunction

of R(x, y) . This is true for k r l, 2, 3, . .

The following will partially suniiriarize the background

needed for the detection scheme to be discussed in the next

section.

Let x(t), O: t _<_ T _: J, be a real second order

Gaussian random process continuous in mean square with mean

zero. R(s, t) z E x(t) x(s) is then a symmetric, nonnegative

definite continuous function in [ O, T] x [ O, T] and an integral

operator's kernel in L (J).
2

[Rf] (t) = IT Runs) as) ds = gm 6 Law) (1.5)
O

R is self adjoint, nonnegative definite and Hilbert-Schmidt. If

R is positive definite its eigenvectors will form a total sequence

in LZ(J) .





(D

Denote the eigenvectors and eigenvalues of R by {Cbn} and

n=1
:1:

{kn} 1 respectively. By the spectral theorem for stochastic

n:

processes:

X(t) = nEI Xn¢n(t) (1.5)

using the stochastic mean square as the metric where

T 6xr1 = f0 x(t) ¢n(t) dt . (1. )

Let

T

ar1 = [O a(t) ¢n(t) dt (1.7

where a(t) is a known waveform in LZ(J) . If w(t) = a(t) + x(t)

then wn at an + xn are uncorrelated random variables for all n .

Since the stochastic process is Gaussian wn , n : 1, 2, . . . , are

also independent.

IV. HYPOTHESIS TESTING FOR SIGNAL DETECTION

For distinguishing between two hypotheses which in our

case is between signal and no signal present in the received

waveform the maximum likelihood test is an Optimum Bayes

procedure. The integral part of this test is the likelihood ratio

of the two distributions assumed for two hypotheses.

Probability density (observation taken/Hl true) f1

Probability density (observation taken/HO true) f0 (1' 8)

 

Use of the ratio in various detection procedures varies only in

regard to selection of the threshold t for deciding the



boundary between the two hypothesis regions. More knowledge

or differing defection penalties of error would influence the

selection of a threshold.

For each experiment A > t implies III is true while

A < t is the result of HO predominant. The ratio A is a

random variable with two distributions defined on the sample

space of possible observations. it then has possibly two means

and variance corresponding to its two distributions.

> :: ‘ "g .P1 (A. t) IA d Fl(_) (1 9a)

1

A1 = region of sample space for which A > t

< : -PO(A t) fAT d F0(x) (1.9b)

Two kinds of errors may evolve from this simple hypothesis

test and they are called respectively errors of the first (type 1) kind

and second (type. ll) kind.

Error type I: Prob (l-l true) -2

0 "ii

I

C ho s (311/ Hl (1.10a)

Error type II? Prob (I-I chosen/fl1 true) :— e (1.101))
0 ll

In our case we consider the likelihood ratio for Gaussian

noise studied under second order variations. Several auto-

correlations with different operator spectra and corresponding

eigenfunctions may have Gaussian statistical natures. Second

order properties of a stochastic process have to do with the rules

joining the familial members, this fact corresponding to "energy"

for an engineer and first order properties corresponding to the first

order distribution of each random variable. x(t) . The situation
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we want to investigate is then the energy or power variations of the

noise in a communication channel and how these variations affect

the general signal detection procedure as exemplified by a general

likelihood ratio. We insist on first order stationarity at all times

so that the general assumption, namely that of a Gaussian

distribution for each random variable in the noise stochastic

process, is valid.

Continuing with the Gaussian example we form a detection

test which is a form of likelihood ratio test when a sure signal

is sent. Denote with f the probability (conditional) density
0

function of no signal and f , signal (Root, 1964).
1

2

 

eXpClz’ £311 in l1 n:

N/Zir iliz...>.N n

(1.11a)

f0 {w1,w2,w3,...,le O} =
 

2

N (wn-an)

1 1

I eXPEanl x )

\FZTrX X ...)x

 f1{w1,w2,...,lel} =
 

 

 

12 N n

(1.11b)

f Nw a N a2

_ _ _ n n l n
A — f — exp[23 k - Z Z ——)\ ] (1.12)

O n n

2

Wnan 1 an
n=lnAz>3 h -2-Z—-X— (1.13)

n n

The latter term is simply a constant Ll; so Y can be defined as

1
n+¢=n+-Z->3 k (1.14)

.
< H
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The decision rule is then to compare Y with a threshold t

>

WW) = Z? nxn < tY (1.15) 

We compute the means and variances according to the different

hypotheses.

2

a

_ _ _fi _ Z
EOY — O Ely — 23 Xk _ [3 (1.16a)

Z

ak 2
Var y = Var y : E — = B (1.16b)

o l Xk

If L32 is finite no mistake free decision can be made. An example

of this will be shown in Chapter II. We call 52 < 00 the non-

singular case and 52 = 00 the singular case. Actually singularity

as such is usually defined to be the mistake free case if realizable.

Grenander (1950) has shown that the problem can be singular

in two ways. First, the integral Operator kernel R(s, t) may have

a nonzero null space whereas a(t) has a nonzero projection onto this

null space. Hence, there exists an element, p ,

p e L2(J) 3 (plen) : o n=1,2,... (1.17)

(I)

where {4)n} 1 is the set of eigenfunctions for R but

11:

(pla(t)) #0 (1.18)

The operation (p I w(t)) where w(t) = a(t) + x(t) will distinguish

between the two hypotheses with probability one. Second, the

series

2

ii if N=°°

W g
m
z w

W



may diverge so from certain Grenander theorems there exists a test

for distinguishing both hypotheses With probability one.

The question arises as to whether a singular test ever

exists in a linear realizable receiver. One claim is that the

case is inherently prevented in the equipment if not in the

incongruence of the mathematical model to the real noise

process.

V. OBJECT OF THESIS

This then is the problem. Fixing the threshold tY for

the assumed stochastic structure of the noise x(t) and its

autocorrelation function we wish to know how badly the effect

of either not knowing the precise autocorrelation function or of

varying it slightly from the presumed value can affect the

likelihood ratio of the detection test. We wish to know how the

likelihood ratio will be affected first, in its functional form,

second, in its statistical properties and third, in the detection

test apparatus. The problem is then one of p(.Ittlll)dtlu)l’l.

Distrubing the kernel R(x, y) of an L2H) operator does what

to the eigenvalues, eigenfunctions which are an integral part of

the ratio? The perturbation is restricted to an additive and

small operator, 6 R1 .

R(e) = R +€R (1.19)

 

2

U. Grenander, "Stochastic Processes and Statistical

Inference,"Ark. 13431.1:195-277, 1950.
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The parameter 6 here is a small positive number and R1 is

bounded operator with positive semidefinite symmetric kernel.

Property 3 of the autocorrelation (Section II) permits the kernel

of R(e) to be an autocorrelation also.

In Chapter II William L. Root's work in the analysis of

stability of the likelihood ratio will be reviewed.

The method for finding the perturbed likelihood ratio

coefficients in Chapter III is similar to the one used in perturbing

+€Rthe Hamiltonian Operator in quantum mechanics. That is, R0 1

is the perturbed noise operator while

and

t . . .

are the perturbed k h eigenfunction and eigenvalue. The parameter

E is small enough so that first order terms are assumed the

significant ones; hence, the solutions to the first set of recursive

equations (formed for each power of e )

(R0 " Kk0 1’ ‘ka

(¢k1l¢ko) —- o

x

; (x I-R

k1 - (cbko IR1 Cbko)

are sufficient to determine y 2 Yo + eyl and Var y : Var Yo +

. . . + 6 2 Cov(y0, Y1) the new likelihood ratio form and variance

where Y1 and Gov (yo, y are rather involved expressions. Upon1)

determining these new quantities we can account for the way the

detection test is kept optimum while an 6 “distance" away from the

original one (YO, Var yo, and threshold t ). In this way a continuity

Y 0

or stability can be shown for a finite variance detection scheme.



CHAPTER II

STATIC STABILITY ANALYSIS

In this chapter we wish to review one method used for investi-

gating stability of the likelihood ratio in signal detection (Root 196+)

which sheds light into how the problem may be approached and

studied. The summary of Root's work presented here will help

establish an attitude towards the problem which might not come

about easily since the references may not be readily accessible.

The method consists of perturbing the central or assumed

autocorrelation function with a symmetric PG kernel. It then

will be shown that the likelihood ratio will be subject to a larger

variance than in the unperturbed case. This fact will force larger

type I and type II errors for a fixed threshold. Finally, a summary

of the operations used in such a stability examination will be put

into a Hilbert space trio of equations for the special case in which

ak 2

E (f— < 00 .

k

I. PINCHER LE-COURSAT PER TUR BATION

We wish to know what effect a perturbation of the auto-

correlation function with a PG kernel will have on the likelihood

ratio. We are still considering a sure signal a(t) on [0, T]

corrupted by an additive Gaussian, zero mean noise process with

continuous positive semidefinite autocorrelation function R t, s)0(

whose operator has a discrete L2[ 0, T] spectrum. The

corresponding RO normalized eigenfunction sequence denoted

l4
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by {¢k(t)}::l may or may not be a generative basis for L2[ 0, T] .

The family or random variables representing the noise indexed

by the interval [ O, T] is Gaussian or normal with zero mean before

and after perturbation.

Let R0(t, s) be perturbed by R1(t, s) , the kernel of

operator Rl .

(R1¢k(t)l¢j(t)) ckc. k,j=1,2,...N (2.1)

Otherwise, R1 is the zero Operator for all other k, j . The ¢k's

are eigenfunctions of R0(t, s) . The autocorrelation of the second

order perturbed noise process is

R(t,s)=R(t,s)+R(t,s) O_<_t,s,_<_T, (2.2)
O 1

Defining R in this manner implies it is Hilbert Schmidt, self-
1

adjoint, real, positive semidefinite and continuous since the set

members {¢>k(t) ¢j(s)} are continuous. For the sake of

perturbation we insist Rl's operator norm is equal to 6 , a

small real c onstant.

HZ

NN 2

HR1 = ZZI(R1¢kI¢j)l 2 22¢

(2.3)

Since Rl(t, s) is a positive semidefinite function it is a covariance

function. The sum of two covariance functions is a covariance

function.

The signal' 3 expansion

a(t) =k§1ak «pkm (2.4a) ak2f:a(t)¢k(t) dt (2.4b)
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makes sense if a(t) belongs to the space [{Cbkl] . For a real

noise process with R0(t, s) as its autocorrelation,

xn = f: x(t)¢n(t) dt (2. 5a) E x x = xn ann k (2.5b)k I

II. PERTURBED LIKELIHOOD RATIO

Of interest is the change in variance of the likelihood ratio

when the autocorrelation has been perturbed. From equation 1. 15

the ratio is

 

wk k r
Y(w) : Z (2. 6a) w = f w(t) <1) (t) dt (2.6b)

with decision rule:

accept H1 (signal present) if y(s) > tY

reject Hl (signal absent) if y(w)< tY

where tY is the threshold.

In what follows the subscript indicates hypothesis 0 or 1

while the prime mark means the expectation is with respect to

the measure of the perturbed model.

  

00 a:

13' Y(W) = 0 12' \/(W) = z .—
0 1 11:1 )\n

(2.7)

Var ww) = E' Ive/HZ
O 0

Expanding the latter equation,

2 anwn akwk anak
1 .. 1 ________ _. 1

Eoly(w)l _ E0 2 x z X -232 x x Eownwk

n n n k

(2.8)
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However,

12' w w = E' fTw(t) 4: (t) dt rTw(s)¢ (5) ds
0 n k 0 o n '0 k

T

= [TI ¢k(s)¢ (t) E'w(t)w(s) dtds (2.9)
o nO

claiming for the moment the measures commute in the latter

step. For hypothesis 0 we have w(t) = x(t) so

E; w(t) w(s) = R(t, s)

where

R(t,s) = R t,s)+Rl(t,s).0(

Expanding equation 2. 9:
l):'.~"‘

ngn Wk : 1‘ng {R0(t, s) + R1(t, 3)} ¢n(t)¢(s) dtds

0

n

i ank + f:~r:R1(t’s)¢n(t)¢k(s) dt da

ik ank+ (Rlcpnlcpk) (2.10)

where fink is the kronecker delta

 

1 n=k

5 =

“k 0 n7§k .

We conclude that

1 a'nalk

VaroY(W) :22 X x {xnénkHRlcbnlcpkn (2.11a)

n k

a2

92.51 +AZ 952+A2 (2.11b)

:
3
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where

2 anak
A _ :2 ‘x "k (Rl¢k|¢n)

n (2.12)

2 _ ncn 2 _ Nan n

A-lzkl IAI—Iz, I
n n

Now

2

an

Var'1 WW) = EilNW) -Ex—|

n

2 2

= E) |v(w)l - IE(Y(w))| (2.13)

where

2- anak
I _ I

E1|Y(W)i - E1 22X A wnwk

n k

a'nak
_ __ l
_ 232 X X E1 (xn+an)(xk+ak) (2.14)

n k

2 a'na'k
I _. I

E1 ly(w)| _ >323 X X E1(xnxk+anak)

n k

anak

2 22 x i ”nankHRii’k ¢n)+anak)
n k

a2 a2 a2 a a
k n k n k

z 3:— +>:2————)\x +22————>\X (Rlcpnlqak)

k n k n k

2

an ncn 2 an 2
=2—+|2 +(23-—-) (2.15)

R A X

k n k

so

a2 a2 a c 2 a2 2

n 2 n n k

Vari(y(w)) = 21.11 +(Z r) +kz x i -(E r)

n n n k

2
a anon 2

= )I (2.16)
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Finally,

2 Varb y(w) . (2.17)Vari v(w) = (32+ A

For the unperturbed model, the error probabilities are:

 

Co 2

eI = l S e-u/'Z du (2.18a)

tY

2

6” /Z du . (2. 18b)

The error probabilities for the perturbed model are:

°° 2

ei = J— 5 e"u /Z du (2.19a)

NIZTr t

_l____

BZ+AZ

t -B2 2

eh : _l__ W e-u /Z du . (2.19b)

'\/ZTr B

For a fixed threshold note that ei > eI and eh > eH. Since

the integrals are continuous the error probabilities are

2

continuous relative to the perturbation parameter A . That

is, as [A I goes to zero, ei approaches eI and eh

reduces to eII .

If t = k (33/2 is chosen we have

2

e.u /2 du

_ 1

el _ «f2? «Skpl/Z

(2.20)

—- e du

1/2

6 l 3143 *3 -u2/2

H m 00
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As (3 aproaches 0° ,eI and eII approach 0. Thus, singularity

is implied. Later, we will {see that, if tY is not} taken in this manner

this case is unstable in that A2 could be finite or infinite for

comparably small 6 .

III. SINGULARITY AND NONSINGULARITY

A few remarks about both the singular and nonsingular cases

of detection in regard to the gross magnitude Of [32 are in order

here. Examples Of both cases will be given.

It may be that R0 as well as R1 are not positive Operators

so that they have a nontrivial nullspace within L2[ 0, T] . In this

case the singular case Of detection exists. That is, there exists

a signal a(t) in L2[ 0, T] which is independent of the RO eigen-

function sequence. It may be shown then that this signal is mistake-

free detectable (Grenander (1950) or Root (1963)). However, this

case of singularity is discounted (Davenport and Root) by the

argument that a linear system is always used to receive the wave-

form w(t) = a(t) + x(t) . Hence, w(t) represents the signal

corrupted by the transmission media noise and any introduced by

the receiver. The important idea here is that the detection does

not occur until _a_f_t_e_1;the receiver whether it introduces noise or

not. Be it as it may, we shall consider this singular case and its

ramifications only briefly.

We will now proceed with specific cases for [32 but first

must consider a most important mathematical lemma.
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(I)

Landau's Lemma: Given a series 21 qn = 00 then for arbitrary

n:

L: 00

a)

6 > 0 there exists a series 23 z = 6 such that Z q z
n 11:1 11 n

This lemma will be used extensively in the following

. . 2 . .
discussmn Of B examples in detection.

1. singular case

 

a 2
2 _ n

H - 7-7 (X— - 0°

n

(a) N finite

N a c

z nxn : A < (I)

n=l n

(b) For N = 00 and any 6 we have a possibility

g anc

n21 xr1

 

by Landau's Lemma. SO regardless Of the smallness in

perturbation described by 6 we may still have

A2 = 0° or A2 < 00. For fixed tY this may mean

unbounded errors as seen in equations 2.19a, 2.19b.

2. nonsingular fig < 00

 

N

(a) For finiteNand 231 c2 = 6 or for

n:

a2

m

z; 1.11 = (32 < oo

11:]. n

we have

ancn
<Z X 00
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co 2 anco

(b) For N=°° and Z c =6 it is possible {—} is
11:1 n An n=l

at ancn
unbounded while 2 3:— is convergent so 2 X = 00

k n

is not forbidden by Landau’s Lemma.

3. nonsingular

a2

Z —}-2- : “,2 < <1)

k
n

(a) N finite

a'n Cn
Z < co

n=l kn

°° 2
(b) N infinite Z c =6 then by CBS inequality

)nzl n )

an C:n an 7 P 2 I
< — <X _ Z (X ) Z cn 00

n n

. 2
4. Singular (3 :00

(a) N finite

a c

Z n)\ n _ A < 00

n  

(b) N infinite Z) c: :6. Then

I.
1.

2

a

EYE <2:

max n P
’

m

s
N
I
s
N

so the A = 00 possibility exists.

The preceding cases show that a great part of the stability

°° ak 2 2
question depends on whether 23 (-)\—) = p is finite or not.

= k
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Smaller variance indicates stability (Root 1963) in that A2 can

not have value range from a finite magnitude to an infinite one.

IV. REFORMULATION OF PROCEDURE IN SPECIAL CASE

A formulation Of the approach presented in this chapter

a 2

k <to detection stability for the special case of E (f— 00

can be put in terms of the unbounded Operator R0 when R0

is CC.

°° ak 2 -1
If E (r) < 00 then a(t) is amember Of the RO

k=1 k

domain. That is,

 

T

f R0(t, s) g(s) ds = a(t) O i t E T (2.21)

O

has a solution g(t) in L2[ 0, T]

-1
R0 a = g

Acutally, g(t) = 133:1 )‘k since

T 00 an T i so

Rt,s tzz ——- Rt,s¢(tdt=Ea¢(s)=a(s) (2.22)

'ro( )g()k=1)‘nfo( )n) n=1nn

O 5 s E T

RO g = a

Recalling

m a W

k k

Y(W) = 73 x
:1 k

we see readily

(g(t) lw(t)) = v(w)
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because

a a w

_ n n k k _ n k

(31W) “2 i '2‘?” - 22—f— 6nk
n k n

so a w
k k

(gm = 131 )1. = w) (2.23)

Further, we claim A = (ng/g). This can be seen when we put

A2 from equation 2. 12 in the following form:

2 8'n 3'k

a'kcbk Z) 8'n ¢n )

"k 5:n

(R1g|g) (2.24)

A

 (R12)

We then have a trio of equations in compact form describing

the entire detection and perturbation procedures.

WW) = (g(t) )W(t)) "’ Y = (g'lw)

[Rs] (t) = a(t) ~ Rg’ = a (2. 25)

A2 = (Rg(t) | g(t)) ~ A2 = (R l g)

We have thus formulated the detection procedure into a series

of integral equations in L2[ 0, T] . This likelihood ratio's

variance is augmented with A2 which approaches zero in mean

square as Rl approaches the zero operator in Operator norm.



CHAPTER III

DYNAMIC PERTURBATION

Dynamic perturbation considers the changes which will occur

to the parameters in the likelihood ratio expression as well as the

changes in the stochastic properties such as variance and mean.

Error probabilities should then point up a "dynamic“:‘change‘in

magnitude since we are using the Optimum hypothesis test in both

the unperturbed and perturbed models as differentiated from the

models in the static case. The continuity property can be studied

under the condition that a true likelihood ratio is being used before

and after perturbation.

The key to this dynamic approach is Operator perturbation

theory. If some type of "small" Operator is added to the original

what changes in the eigenvalues and vectors are instituted? Some

theorems have been developed to answer this question but are

entrenched in a mathematical mire of notation and at times in

quantum theoretic arguments and so must be modified for our

pruposes here.

Besides considering simple examples of dynamic perturb-

ation, this chapter outlines the assumptions needed to establish

for the likelihood ratio a perturbation procedure similar to the

one used to perturb the Hamiltonian Operator in quantum mechanics.

Work by Franz Rellich (1953) will help in formulating the procedure

needed to obtain the first order equation set from the groups of

25
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recursive equations set up by this type of Operator perturbation.

Once the changes in the likelihood ratio parameters are found the

stochastic aspect Of the ratio is investigated after perturbation.

It will be shown that both stochastic and functional facets of the

ratio will change proportionately to a small perturbation (6)

parameter. Continuity of the detection scheme relative to a

small change in noise energy structure will then be implied

through stability Of the finite-variance likelihood ratio hypothesis

test.

I. COMMENTS ON STATIC PERTURBATION

In the previous chapter the changes in detection error

probabilities were examined under the hypothesis that the

perturbation kernel R'(s, 1:) would affect only the variance of the

likelihood ratio. This is to say, the same eigenvalues and eigen-

functions were used in the likelihood ratio while its variance

changed and duly affected the detection error probability integrals.

This approach to the perturbation problem might be called the

“static” one and its basis warrants further discussion and closer

examination before more interpretation is devoted to it. In the

following brief review of the Chapter II approach it is hoped that

the need for a more comprehensive perturbation approach will

become apparent. This second approach is termed the ”dynamic"

one for reasons which will become apparent in due time.

In the perturbation example found in the preceding chapter

the autocorrelation function, R(s, t), is presumed known at first.
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If Gaussian noise is assumed its eigenvalues and eigenfunctions

establish probability density functions as well as a likelihood ratio

and threshold for the hypothesis test. The variance and means of

the likelihood test statistic are determined. Now if a second order

perturbation is assumed on the autocorrelation function, the change

in the original likelihood ratio comes in second order form, namely

in the variance of the ratio under either hypothesis. The error

probabilities are made greater by the increase in variance. If

the proper threshold is chosen it can be shown, however, that as

the perturbation approaches zero in magnitude the errors will

approach their unperturbed magnitudes. The error probabilities

are hence ”continuous " at a chosen threshold point with respect

to the second order perturbation parameter.

Now the question raised here is why the original ratio was

used with parameters, ak and Xk, made Obsolete by the perturbation

itself. Root (1964) maintains that this procedure yields an indication

of “stability" Of the hypothesis test relative to the second order

noise statistics. An objection tO this reasoning is that it really

is unfair to use Obsolete parameters to show the continuity of the

test despite the fact that this procedure simulates the change in

error probabilities actually experienced by a receiver-processor.

Although a nonadaptive receiver processor would indeed use

obsolete parameters when the noise structure is perturbed, the

question raised here is not that the decision making apparatus

used obsolete parameters but that a true measure of changes in

error probabilities is not Obtained. That is, it is unfair to claim
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that the change in error probabilities is shown entirely by comparing

the variances of the likelihood test function in the original and

perturbed states and by the effect these variances have on the

error integrals. Consequently, it may be claimed improper

continuity and untrue error changes are the result Of the Chapter

II procedure.

II. DYNAMIC PERTURBATION--SIMPLE EXAMPLES

Following are some rather simple examples Of dynamic

perturbation of a likelihood ratio. We will forego the statistical

analysis Of the perturbation and will only demonstrate models of

continuity in the "function" aspect Of the likelihood ratio. In

essence we will additively perturb the autocorrelation R(s, t)

will kernels which range in simplicity from a diagonal to a general

commuting one and then see what happens to the likelihood ratio

parameters.

Example 1. Perturbation relative to a diagonal PG Operator

N
2

: < <Let R1(t, s) kEI ck ¢k(s) ¢k(t) O _ t, s _ T

be the perturbing kernel. We have that 2 Ci = 62 and that

R(t, s) + A(t, s) have eigenvalues X + c2 and the same eigen-

N k k

vectors {<1>k(t)}k=1 up to the index N while R(t,s) continues

m

with {<l>k(t)}kzl ; ak will not change in the likelihood detection

 

ratio y.

N a W a) a W

A k k k k

y(w) = E -——-—Z + E k (3.1)

k2]. Xk-l-ck kZNTi‘l k

where " denotes the perturbed models.
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2 2

A N ak co ak

Var y(w) = Z ———-2- + Z) r— < Var y(w)

k=1 X +c k=N+l k

k k

Var y(w) > Var/9(w) and we certainly have

A

lim Var y(w) = Var y(w)

52-»0

Example 2. Perturbation relative tO a CC diagonal Operator

This example is really an extension of the second in case

CD

'23 c: = 62 < 00 and

k=l

a a2co W <1)

9(w) : k2 '——'k——1'(-Z- and Var IY\(W) = kzl k 2

:1 Z
Xk + Ck kk + ck

Example 3. Perturbation relative to a general commuting Operator

In the previous examples the pervading quality of the perturbing

Operators was that they commuted with R . These foregoing cases

can really be included in the general case Of operators which commute

with R . It is this type Of Operator which permits the eigenvalue set

to be perturbed while the eigenfunction set remains the same.

Let us assume we have reindexed the eigenfunctions

{¢k}:=l so that R0¢k = kk¢k and R1 43k = )‘kcbk k =1, 2, .. .

with equal multiplicity and same order. If

(RO +6R1)<1>k = >\k(1+6)<1>k

then

AA, A A A i

ch _xqak xk_>.k(1+e)
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A

with say 6 a small parameter. Since (bk = (Pk, ak remains the

same in the likelihood ratio Y .

m a \N

’Y‘ —_. 2 4i

k=1 Xk(l+6)

312

A2 _ A _ 'k

(3 — Vary _ Z? ——xk(l+€) (3.2)

Case 1. If 6 > 0 then the variance (32 < 00 if (32 < 00;

(32 < (32 < 0° . The other possible cases have already been

discussed.

As noted above, the eigenfunctions do not change in this

type of perturbation. Hence the parameters ak remain the same

and the only "perturbed parameters" are the eigenvalues in the

Operator spectrum. As recalled, this was not the case in the

Chapter II example. When the Operator was perturbed no

guarantee was made that the other parameters which include

eigenfunctions and eigenvalues changed as well as the variance.

The next step would be to broaden the class Of perturbing

operators tO either a general CC class or a bounded class.

SO far we have considered the continuity of the likelihood

ratio relative to changes in the eigenvalue set only. We

accomplished this by examining perturbing operators which

commuted with R . The eigenvector set and thus the ak sequence,

a)

signal Fourier coefficient relative to {¢k(t)} . the R

eigenvector set, remained untouched by the fluctuation. This

type of perturbation can intuitively be seen as an inward or
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introverted disturbance since the Operator's own structure, namely

the eigenvalue or eigenvector sets, is being used for describing

the varying behavior. This is the simplest type Of perturbation

which can occur. Nevertheless, it does seem plausible that the

noise structure as described by the autocorrelation kernel and

corresponding Operator will in fact vary about a center functional

pattern with additive variations which are themselves describable

by the central function pattern.

The time has come however to consider the more general

case which includes both perturbed eigenvectors and eigenvalues.

Hence, we must consider now the change in ak (wk) , the Fourier

coefficient of the sent (received) signal, as well in the likelihood

ratio which leads to the hypothesis test. We will need to delve a

little into operator perturbation theory in order to extract the

needed mathematical results and formulations. However, these

more general cases will give the broader view into kernel

perturbations needed to deal with the effect second order noise

fluctuation has on a signal detection scheme With likelihood ratio

hypothe sis test.

III. AN INTRODUCTION TO FIRST ORDER PERTURBATION

Before we proceed to investigate the signal detection

problem it would perhaps be appropriate to pause here to

consider what uses perturbation theory has had in other scientific

areas and point out how this use has prompted the study manifested

in this paper. There is indeed more than a passing analog between
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its use elsewhere (especially in quantum mechanics) and its purpose

here.

The following analysis of the signal detection perturbation

has been instigated by work in quantum mechanics and systems whose

behavior is described by Operators, eigenvectors and eigenvalues.

Corson (1950), and Rellich (1953) and Powell-Craseman (1961)

references all deal with Q-M (quantum mechanics) problems of

perturbing Hamiltonian operators or the differential Operators

appearing in the Schroedinger equation. These references, for the

most part, deal with differential Operators while the Operator of

interest in signal detection has integral kernel representations.

The analogy between differential and integral Operators theories

will be exploited and the theorems develOped for differential

operators will be adopted to our purposes.

In the foregoing chapters it has been pointed out that the

signal detection problem is being split into two subproblems. In

one, the noise autocorrelation function is known or is unchanged in

form. The second investigates the effect Of an unknown additive

perturbation to the autocorrelation or a sudden change in the auto-

correlation. This perturbation incurs change in eigenvalues and

eigenvectors of the unperturbed problem structure. In Q-M the

Operators perturbed are Hamiltonians K and H, i.e., system

energy representations. These Operators are analogous to the

noise energy representation in the time domain, the autocorrelation
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function. The wave function or eigenfunction Of the H and K

Operator depict the state behavior Of the system, whether atomic

or grossly mechanical, while the eigenfunction of R portrays

the function basis or distinct ”function states” Of the noise, i. e.

co

Mklkzl .

In Q-M, disturbance Of eigenvectors and eigenvalues

resulting from operator perturbation will reduce in a continuous

way to the original unperturbed Operator and corresponding eigen-

structure as the perturbing operator reduces to zero norm. This

continuity hypothesis is hard to understand if the spectra of the

unperturbed and perturbed models are discrete (continuous) and

continuous (discrete) respectively since a discontinuous change

occurs in the vanishing perturbing Operator nature. As will be

stated later in a fuller context, singularities might appear in the

sense discrete spectra may become continuous.

Consider a brief lOOk into first order perturbation for a

system using the Hamiltonian operator H; kn is the nth energy

level while on is the nth state function.

HO+6H1H(6)

dink) 44110 + 6 ¢n1

xn(6) )‘nO + 6 xnl

where the second subscripts correspond to the order Of perturbation.

Suppose

H(€) link) = Xn(€) Link) .
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Then substituting, we have

2

Ho LI"no + 6 (H1 q’no + H0 q’ni) : )‘no Ll’no + “x111 L”no + )‘no q’ni) + 0‘6 )

Equating equal powers of 6 :

HO ilan 2 XnO 1.on zeroeth order

(3. 3)

HO ipnl + H1 4an xnl 1.)an + XnO tilnl first order

Taking the Hilbert space product on both sides with qlno we have,

since H0 is self adjoint

(inOlHownl) = (Hoinolwnl)

then,

(‘i’no iHi‘i’no) : )‘ni (inolll‘Pno)

x : (vnOlfilwnO)

“1 W110 W110) (3' 4)

 

The increase of energy level Of the nth state is then the expectation

Of the perturbing Operator relative to the nth original state vector.

The foregoing brief use Of perturbation techniques in Q-M

should demonstrate the analogy with our problem at hand. Although

not done in this thesis, it is hoped that this analogy may be carried

further in due time so that extraction of results on one side may be

adapted to the other.

Finally, we turn to a more general formulation of Operator

perturbation so that we can consider the case of signal detection.

The notation followed is that used in the Appendices A-D . For
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engineers and especially those in finite state systems the z trans-

form or generating function concept is well known and is pointed out

where applicable. The procedure followed is aligned well with that

found in Rellich, Powell-Crasemann and similar references but is

specifically altered and augmented where necessary for signal

detection perturbation.

Consider the following Operator and vector equation.

(RO+€R1)¢k:>‘k¢k (3.5)

A I\
.

where (bk and k are the new eigenvector and eigenvalue relative
k

to the new and perturbed Operator R + 6 R1 .
0

A A

Assuming 6 is small we suppose X and (pk can be put
k

into the following power series of 6 , a form Of the z transform

or generating function Of 6 parameter.

22 Z

(RO+6R1)(¢kO+6¢k1+6 ¢k2+..) — (x +6Xk1+6 xk2+..)(¢ko+6¢k1+6 ¢k2+°°
ko

Of course,

(R0+€R1)§(€) = Mask)

where §(6) and M6) are generating functions with 6 parameter

and M6) a scalar model and §(6) actually a function model, i. e. ,

assuming convergence

§(6) = ¢k0(t)+6¢k1(t)+ (3.6)

If the convergence Of §(6) and M6) were not possible the above
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formulation is presumptuous. Suppose, however, the convergence

of §(6) and M6) are sufficiently "well behaved" so that term by

term multiplication is permitted.

, 2 2
(RO+6R1)(¢kO+6¢k1+..) — (Rooko+6RO¢kl+6 R0¢k2+..)+6R1¢k0+6 R1¢k1+...

2

R0¢ko + €(R0¢kl+Rl¢kO)+€ (RO¢kZ+R1¢kl) +

(1. 0+6). +62). +..)(¢ko+e¢kl+...)
k kl k2

4- I

kO ’6‘ku ‘i’

2

4’ ”kod’ki)“ ()‘k2¢ko+"k1¢k1xko kO

+xk0¢k2) +

By equating equal powers Of 6 we can Obtain the following recursive

equations for any k integer:

R0¢ko : >‘ko‘i’im

R0¢kl +R1¢ko : Xkl¢ko+xko¢kl (3'7)

X

R0¢kn ‘ xkocpkn 2 x1mi’1<o+‘\kn.1‘i’kiJ""'I k1¢kn-1 'R1¢kn-1

(3.8)

for arbitrary n, a positive integer. TO find exact values for the

unknowns indexed by n 2% O we revert to Hilbert space methods.

The first equation
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is really

R0¢k ' )‘k‘i’k. : O

which is the unperturbed equation and yields no new information.

The general equation, however, is Of the form

RO (bkn - xko¢kn : akn a vector also. (3. 9)

(R0¢kn - >\kocpkn lcpko) : (akn lcbko)

Recall our inner product is

T

f a(t) b(t) dt = (al b)

0

Since R0 and R1 are symmetric we have

(R0 <i>

l

7 .
9
.

knlcbko) (¢kn'RO¢kO)

(akn ii’ko) : (R o ¢kni¢ko) " )‘kom

: )‘ko‘cbkni ¢ko) ' )‘kom

Thus akn is perpendicular to ¢ko for n arbitraryaé O

(akn l¢ko) : )‘knw’kol¢ko)+)‘kn-1(¢kol¢k1)+”°”kimkol‘pkn-i

' (‘i’ko IR1 ¢kn-1)

For n=l

Remain.) -<¢kolR1¢>k0) = (Calm) = o

>\kl “ka l(pko) : mko IRl ¢ko)
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Wko |R1¢k0)

(<ka |¢k01

>
’

I kl (3.10)

If xko had its corresponding eigenvector ¢ko normalized then

this would be further simplified to

)‘k1 = (Cpko IR1 ¢ko)

Referring back to our recursive equation (3. 7) we have the right

side of

-)x

R0¢kl kocbkl Z >‘ki‘i’ko -Rl¢ko

known. Now to put a further restriction on the eigenfunction series.

Let us continue the normalization of eigenfunctions as follows

arbitrary k: ll¢k(e) H‘Z =1 = (¢ko+e¢k1+.. l¢ko+€¢kl'+"°)

Again, using the generating function assumption which permits term

by term multiplication and addition;

1 = ( <1» k0 like)

0 = (¢k0|¢k1) + (¢k1|¢ko)

(3.11a)

Since R0 and R1 are symmetric we must have real perturbing

eigenfunctions so

wkjlcbkp = (¢k,l¢kj)

for all 1, k integers > 0 .
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We conclude that for n = l

2(¢kol¢k1) = 0 or (¢ko)¢k1) . 0

We have then sufficient conditions to determine uniquely ¢kl

k = l, 2, . . . from the second order equation

(R0 ‘ )‘koll‘l’ki : (M11 ' Rl)¢ko

and the first order equation

(¢kol¢k1) = 0 (3.11b)

Similar equations are set for other powers Of 6:

x R Cb
Pb¢kn -)\ko¢kn : xkn¢ko+xkn-1¢kl+°°°+ k1¢kn-l ’ 1 kn-l

0 = (¢kol¢kn)+(¢k1]¢kn_l)+... +(¢kn|¢k0)

It is readily seen from the preceding argument that the higher orders

of approximating eigenvalues and eigenfunctions are determined in a

sequence which begins with X k0 and éko and proceeds to as high

an index n as is desired.

Although the disturbing Operator R was in the beginning
I

assumed to be such that the generating functions ¢(6) , M6) were

convergent it need not be necessarily the case especially if no

other restrictions are placed on Rl besides symmetry. It can

happen, for example, that R is an unbounded Operator and this
1

may cause havoc in the a priori generating function convergence.

Such an example is given in Rellich's notes which perhaps was a
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motivating factor in his investigation and eventual theorem claiming

a "boundedness'condition" is necessary for the perturbing operator.

An unbounded Operator's perturbation may cause an eigenvalue to

move from a finite position on the real line to an infinite one

regardless Of how small an 6 is used. Consequently, the like-

lihood ratio y which is our main concern in this paper in relation

to the distrubance Of its parameters becomes unwieldy. in the sense

of having infinite components (infinite eigenvalue in the denominator

of a series term).

The use Of an unbounded Operator as a perturbation may be

dismissed easily by some workers in signal detection by arguing

the noise autocorrelation function is at all times bounded and hence

yields a bounded Operator as well. Also, the Karhunen-Lobve

expansion leads one to believe pure point spectra are the rule for

autocorrelation functions. The perturbing unbounded Operators

beside causing unbounded spectra at times can cause the disappearance

Of point spectra and replacement with continuous spectra. Hence,

we cannot state that a small perturbation parameter indicates a small

perturbation in the Operator's eigenvector structure. Neither may

only the first order perturbation parameter equations be the

significant ones. Also, the sign of the parameter 6 may have a

large effect on how the perturbed operator behaves. There is no

question that careless generalizations such as "a perturbation of

a bounded Operator does not boundlessly change the eigenvector

structure" is unwarranted. For our case of likelihood ratios there

should exist a doubt of whether perturbations of bounded auto-
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correlations and associated Operators can indeed cause not small

but very significant changes in the Operator's structure and the

likelihood ratio which is heavily dependent upon it.

Another facet Of the perturbation procedure Of the first

order here concerns the eigenvector sequence of the perturbed

operator. There is no guarantee (Rellich, p. 153) that the new

eigenvector sequence is a basis for L2[ 0, T] . Hence, the

perturbed Operator is to be assumed a positive one at all times.

IV. PERTURBATION OF A DISCRETE SPECTRUM

In the previous discussion we have written the form

2
¢k(6)—¢ko(t)+6¢kl(t)+6 ¢k2(t)+... (3.12)

w(s)—x +1 +2). + (313)
k—koek16k2'” '

k=1,2,3,... 051;: T.(Jinterval)

for; small 6 real in the sense Of a generating function. We

neglected to specify a possible region Of convergence relative

to 6 and more seriously omitted mentioning the type Of norm we

are to consider for the convergence. Since 3.12 is a function

series while Xk(6) is a scalar series we need tO specify

appropriate convergence criteria for both.

From 3.13 we may use the normal mathematical rule for

convergence of a power series since it is a scalar series. Since

we are speaking of Of; operators, i. e. , bounded Operators, we

have



k(

for some scalar M < 00 . We have then that the least upper bound

(sup) Of 6 such that 3.13 converges is any 6 for which

Is! < 1

is true for any k. Note the norm for scalars used here is the

absolute value. Analogously, we use the LZ(J) pseudonorm

instead of the absolute value and apply the Cauchy-Hadamard

theorem (p. 382 Fulks) to 3.12. The radius Of convergence for

3.12 is

1
 (3.14)

pk Ill/n

Erin sup H (bk

CO

<so that ¢k(6) converges for ]€] pk . Then for {¢k}k:l the

radius Of convergence is p = ifif {pk} .

An added point we can make here is the existence Of

2

R(6) — RO+€R1+€ R2+"'

and its convergence region. Define an element f(6) in L2H) for

'6] < p as regular if a power series in 6 exists in terms Of a

sequence {f0, f1, . . .} all in LZ(J) . Define an operator R as

regular if there exists a pO ,£ 0 and p0 > 0 real such that for

arbitrary f 6 L2(J) , R(6)f is a generating function sequence

or equivalently is a regular element in L2[ 0, T] for I 6] < pa.

Accordingly, if

)1an 5. .11“an
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then p = i— if such a d exists. This criterion is in terms Of a

majorant series. Another rule (Riesz—'Nagy p. 373) is

 

M

HRan : 9*1 (llfll + HROfH) n=1,2,...

with M: sup {HRnH} and r real positive providing r exists.

n

Our concern is autocorrelation functions and L2(J) kernels so

2

R(x,y,6) = R0(x, y) +6R1(x, y) +6 R2(x, y) f...

is convergent for ]6] < p and uniform in 0 E x, y, E T (= J

interval) with Rn(x, y) continuous in J . If

I Rn(X. y)l E dnH

for 6 < I? with such a d existent R(x,y,6) is a generating

function or power series in 6 .

This background has then set up the proper attitude for

understanding the theorems (Riesz Nagy p. 373-9, Rellich p. 76,

99-, 153 -) which in a following brief summary can give the

conditions necessary for 3.12, 2.13 and the following equation

for a finite multiplicity prOper value (indexed by k) and

corresponding eigenfunction power series in 6 to exist.

: <R(d ¢ke1 kalékk) lel r (i15)

k = l, 2, . . .

Note first that we have neglected to state how the domain 4(6)

is reacting relative to 6 . In the beginning, we assumed R was

self adjoint or hypermaximal (closed and symmetric and defined
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over all LZ(J)). A Hermitian Operator is symmetric but defined

only on a dense subspace Of L J) . For different 6's the domain2<

40;“) might enlarge or reduce relative to L2(J) . For our

consideration it is desirable and indeed necessary that the domain

’01:“) remain stable with respect to the parameter 6 . There is

no reason to consider an unstable domain in the perturbation Of an

autocorrelation function since we are discussing them in the light

of being defined over all LZ(J) .

Let us then speak Of R(6) 6 Xc defined on L2(J) ,

convergent in a nonnull 6 neighborhood and symmetric. If Xk

is the kth isolated eigenvalue Of R(0) with m multiplicity then
k

there exists generating functions or power series KS)(€),XL2)(€), . . .

1

thmht) and corresponding (13:116), ¢]{2)(6), . . . , ¢E<m)(6) all

convergent in their respective norms in the same 6 neighborhood.

. . _ < < .

Let Xk be isolated in kk d k Xk + (12 for nonzero d1, d2.

The following then holds.

(a) R(e) 125%) = 19(6) ¢fj)(e) (3.16)

(i) _
(b) 1k (0) _ wk

(1) 111%. _
(c) wk (e)|<1>k (-1) - 611

(d) in 11k - di < k < )xk + dé the spectrum Of R(6) has

been split into x(klhe), . . . , kim)(€) for some existent

1 1 - 1 < 1 <
(11, (12 With (11 d1, d2 d‘2 .

 

Convergence Of each of the three types Of power series is

with respect to the metric Of each one respectively (scalar, L2(J),

or Operator norm).
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The important hypothesis here is that R (6) Gage and that it has a

 

domain independent Of 6 and is convergent in Operator norm in a
  

 

g neighborhood. Our previous example Of perturbation R0 + 6 R1
 

treated in section 2 Of this chapter was certainly such a R (6) .

This condition or hypothesis may be weakened tO R(6) hermitian
 

and regular with domain 4(6) valid for the eigenvector set

{¢(i) (6)} m (Rellich Theorem 3 100) Note the weakened

k 1:1 ' ' P° -
 

condition has a varying Oar/{(6) . We treat next a criterion for

CD

the completeness Of {<1)k(6)}kzl .

If the Operator R(O) is positive definite and has a

discrete spectrum we wish rules to guarantee the operator may be

perturbed by R(6) and still remain positive with discrete spectrum.

Nonsingularity in the detection problem, consequently, would be

preserved. This doubt is not to be taken lightly for if nonsingularity

leads to singularity through perturbation (or vice versa) then the

detection or hypothesis test perturbation problem is not well posed.

Equivalently, how strong are the conditions which must be met in

order to preserve positivity for the Operator or completeness Of

(11

the eigenvector {¢k(6)} k:1 sequence?

a)

Criterion: (Rellich p. 153-162) Consider {Rk}k-O with Rk all

hermitian in L2 [ 0, T] with R CC and sequence bounded. Let

0

H Ran 5 k“ H ROfH (3.17)

for some positive constant k and every n index, f 6 L2[ 0, T] .

2

R(6) -— Roi-6R1 +6 R21"...
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is hermitian bounded, regular for '6] < Ek— with eigenvalues

CD 0)

{)\k(6)}k___1 and eigenfunctions {<]>k(6)}k:1 all convergent power

series in l6] < L}; and

(a) R(6) ¢n(€) = Xn(€) ¢n(€)

(b) {<])k(6)}ookZl complete in L210, T] (3.18)

(c) lkn(6)]-*0 as n-00.

As long as the domain 4(6) is independent Of 6 and R(6) is

regular for some 6 neighborhood and R(0) is self adjoint with

discrete spectrum then R(6) has a regular discrete spectrum.

For an integral Operator 3.17 may be put as (Rellich p. 155)

Huanu): 5 knhulROuH ,

T T 2 .

folfo R(x,y,e)u<y)dyl dx: MZIIIIT R(x,y,01u(y)dy|2 (3.19)
O

or

T T __.__ T T _____

]f f R(x, y, 6) u(x) u(y) dx dy] E Mf f R(x, y, 0) u(x) u(y) dx dy

O O O O

V. STATISTICAL PROPER TIES OF THE LIKELIHOOD EXPANSION

In the preceding section we have explained the conditions

for the existence Of the forms R(6) , ¢k(6) and Xk(6) and some

Of their important properties such as completeness of {¢k(€)}k-l .

Now we wish to consider changes in the statistical instead Of the

function aspects Of the likelihood ratio with perturbation.
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From 2. 6 the likelihood ratio is

where ak is the coefficient Of the sure signal relative tO the kth

eigenfunction Of R(x, y), the autocorrelation function of the noise

process; wk is the coefficient Of the received waveform relative

to the same function, ¢k(t), while k is the statistical variance
k

of nk the Fourier coefficient Of the noise process relative to

¢k(t) . The following expression has meaning when taken in light

Of what we have considered previously in this chapter. The

prime will signify, for the moment, the perturbed likelihood

ratio.

 (3.20)

We want to know how this perturbed ratio compares with

the unperturbed one either in function parameters or statistically.

Since we have dealt with the first order perturbation of the Operator

kernel it is only consistent that we consider first order approximations

to the eigenvalues and eigenvectors in view of the fact that conver-

gences for the three perturbed parameters may be comparable. It

is indeed impractical to assume one series will converge much

faster than another when dealing with our assumed small 6 parameter.

Expanding from 3.13, 3.12:



 

 
 

 
 

 

 

 

  

 

 

 

 

I) (1) fl

2. Z‘ :

CD J:0 6 akJ .620 L Wk”

y’ : Z + (3.21)

k:] OJ m

23 \ 6

m:0 km

. ako Wko . V akowkl + Wko akl 2

221-161 *6“ \ +e\ ”3(6)
k0 k1 'ko ’ k1

akOWkO / l akowkl + Wkoakl

:: E \ \ ‘F6 2 'x +-ex

'kO ’ k1 kO k1
1 -(~6 \ )

1‘0 (3.22)

a w on k, n a_ w’ +w a
kc; kO Z (_6 {53‘} + E 2 kc; lir Exko k1 + C(62)

k=1 kO n‘ ko 1m k1

1, w a

é 23 kc; k_c_)__ (l 6 xkl) 1. Z 13:) kip Xko kl + O(EZ)

kO ko k k1

a w , w )c a )1

=2: 1‘3“” +e{245§—~‘11-1-ekk1)12 1‘] k0(1- —-—)\kl)+

'ko 'ko ko kO kO

a _ w , )c
. + _ E k; k) (Xkl) + C(62)

‘kO kO

"W, a w a W,
.2 YO + 6 Z _iSiXLILL + L “1&1 ko _ 23 k)? ko xkl +

kc) ko ko k0

2

+ O(6 ) (3.23a)

. (I) 3. JW

y' 5: y + 6V + C(62) where Y *— E M (3.23c)
O .1 1 k=l )xko

(3.23b)

. 2 ..

Dropping the reference to the terms of order 6 or greater we

have
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I _’__

Y — YO+€Y1

Let us consider Y1 alone for the moment:

 

00 W 00 a W 00 a W

Y1 = Z kp k1 + 2 k1). ko _ 23 kc; ko xkl ' (3.24)

k:1 k0 k=1 ko k=1 ko kO

The minus sign and corresponding term will not make y' negative

)c

if Eris-l < 1 even when the first two terms Of Y1 vanish. The

ko

question remains as to how important this assumption is. Since

we have assumed convergence Of the )x 6) series we must haveR(

6 xkl < xko for all k especially when the perturbation of the

spectrum is assumed small corresponding to small 6 R But we1 0

shall discuss this later in more detail. 5 Terms of the first and

zero order are present in Y1 and the first order perturbation

terms are in the numerator. From 3. 7, 3.10, 3.11b:

(R0 ‘ >‘koll‘i’ki : ()‘kil " R1)¢ko

(¢k1|¢ko) = o k=1,2,3,...

)‘kl : Wko iRl (bko) (3° 2'5)

Solving for ¢kl for k=1,2,3,... will yield a for k: l,2,3,...

k1

needed for Y1 through

T

an -- .10 a(t) ¢k1<t1dt

k: l,2,3,...
T _

wkl = 10 w(t)¢kl(t)dt .

 

See discussion after equation 3. 38.
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Hence, we can find the entries for Y1 from the above 3. 25

equations. Note here that the first order perturbation operator

is 6 R1

R' R +6R

C ompute now7

(3.26)Var (YO+6Y1) Var Yo + 6 Z COV(Y O, Y 1)

Consider for the moment Cov(YO, Y 1) using 3. 23c, 3. 24

 

)‘ko >‘ko xko )‘ko xko

a w a w a w a w )c

COVWO1 Y1) : Cov 2; M, ()3 M4. 2M _ 2; k0 k0 k1)

(3. 27)

For the zero hypothesis or no sure signal in the received waveform

w(t) we have wkl = nk1 and wk0 = nk0 for k = 1, 2, . . . . where

nkl and nkO have zero means. Equation 3. 27 then becomes

 

a n a n a n a n )x

k k k l kl k k k l

Covwo. v1) = 21/011 = E(z ——‘;\——9)(2 —):’—k— + z ————)\0 - >3 0). 0 1k )

ko kO ko ko kO

(3.28)

When we discussed the perturbation technique on a function and kernel

basis we neglected to affirm that its statistical property via the

 

v 7 v17

6
The effect of this second order perturbation on the first

order statistical nature of n(t) , the noise process, is not one of

an additive stochastic process y(t) necessarily, i. e., n(t)—' n(t)+ y(t)

is not necessarily true.

7 Cov (Y., Y )j, k > 1 can be shown to be less or Of equal

magnitude to thdt O Var YO, COV (YO, Y ) so that the 62 or higher

orders of 6 coefficients Will diminish their significance.
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Karhunenioéve expansion has not changed. That is, for the

perturbed process, regardless Of the parameter 6:

1 _.

E nk(€)nj(€) - 6kj>xk(€) . (3.29)

Expanding,

CO (I)

E'n (6)n.(6) = E' Z 11 £62 23 n. 6m

R J [:1 k ITIZO Jm

, .

but E nk(6) nj(6) is equal to )ik(6) ij

E'n(€)n(€)=)\ +€)\ +62)\ +63k +
k j kO k1 k2 k3

For proper convergence Of the 6 generating functions or power

series we may equate like powers Of 6 so:

1 _.

E nkO njO _ xko 6kj

1 1 ._

E nk1 njO + E nk0 njl - xkl ij

(3.30)

1 1 1 _

E nk1 nJ1 I E nk2 njo + E nk0 nJ2 )‘k2 ij

1 1 l 1 _

E nk1 nJZ + E nk2 nJ1+ E nk nj3 + E nk3 njo — k3 kj

simplifying, this bec omes

Varn : k

k0 kO

2 Cov nk1 nk0 : )‘kl

2 Cov nkZ nk0 + Var nk1 : 1k2

2 Cov nk1 nk2 + 2 Cov nk0 nk3 = )ka

 

8We will drop the prime superscript after this point.
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Thus, cov (nkj' nkfl) may not equal zero, although cov (nkj' nml) :

for k}4m; j,l =1,Z,...

We are still considering first order perturbation here so

Var(wk + 6w )=Varn +62cov(n
o 0k1 k kl’ nko)

= Var 11kO +62Enk1nk0 = Xko+€xkl

under hypothesis 0:

Ewk0 = Enko = 0.

C onclude

l

E nk1 r1k0 — —2— Xkl — cov (nko’ nkl) (3.35)

Returning to the original calculation Of cov (Y0, Y1) Of 3.28 we have

 

x I

akonko a.on.1 a.1n.o a.0n.o X.1

COv(Y,Y)=EYY=E EZ( \(JJ+—l—l—-—l—J—-J—)
O O l O l - X. )x. X. X.

J k kO jO jO 30 30

akOa. ak a.1 ak a. X'l

: 22 “—41—?— En n. +-—£—J——En n. --—-—-9—-12-J—En n.

j k kO jl Xkoxjo kO 30 k X k. kO JO

 

 

  

,n ) .

J k k0 JO k k 31 kkoxjo kO jk xkoxjo J0 kO jk

a2 a a a2 )\

: Z) kq_ cov(n n )+ k0 k1 kO ( k1

k xkoxko ko k1 )ck )ck )ck

But from 3. 35 we have then

a2 a a a2 >\

Cov(Y ,y) = z ———-k0 (L). )+ —————k°1‘1 - k0 1‘1 (3.36)
O 1 k k2 2 k1 )xk )xk )ck

k0 O O 0

But simplifying 3. 36 reduces to
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2

a a a )c

k kl 1 k k1

Cove/0.11) = 2 79—— - 2— 1 ° 16—) (3.37)

k kO kO kO

We can now write 3. 26 in its true form using 3. 23c and 3. 37

Z . Z

 

 

 

a a a a )1

k k k1 1 k k1

Var(YO+6Y1)=Z()\ O)+622 -—)\O———-f {43(7)

k ko k kO kO ko

2

a )c 2a a

:2 Kko (1_€>\k1)+€( 1:1 k0)

k ko kO kO

aZ )\ co 2a aCD

Var(YO+6Y1) = z kk°(1-e)\k1)+e 2: +119- (3.38)

k=1 kO kO k=1 ko

Note that as 6 -* 0 Var(YO+6 Y1) -* Var Yo independent of H Rl I]

(whose influence is manifested in )c and a Further,
k1 k1)°

Var(YO + 6Y1) "‘ Var YO independent of 6 if H R1 H -’ 0 since

then xkl -' 0 as well as ak1 "’ 0 . Therefore, this result 3.38

is consistent with the zeroeth order variance since it collapses

 

 

 

into it if either [I R1 H or e —- o.

6kk1

Since 6 is small x < I certainly in ]6] < 1 since

)‘k'+1 1” >‘1<'+1
We must have + < 1 for convergence if Tl— —’ l . SO

xkl kj kj

l -6 h— > 0 for infinitely many k if '6] < 1. Yet this is

kO

not enough to guarantee

2
a )c

2 Xko (1-155(1) > 0

ko kO

but it does say the greatest number Of series terms are positive.

The series will be positive if 6km < xko however for k : l, 2, . . .

This requirement is manifested by RO > 6 R or that R0 is a
1

larger operator than 6 R1 which is Obviously the case since the

perturbation is indeed assumed small, much smaller than the
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original Operator. Note the order Of eigenvalues here 6 )‘k1 < xko

and that we are _r_1_ot implying xkl are eigenvalues Of R1 .

2
a R 2a a

Var(Y +EY) = 2 k0 (1-6—5—1-)+6Z k1 k0 (3.40)
O l )1 )1 )1

kO kO ko

Could the conclusion be drawn that the new variance is smaller or

larger than the original one? That is, can the following hold true?

 

 

 
 

2

- ako in . zaklako ‘

L 1 ‘1 " Z 1 Z)
kO kO kO

2
a )1 a '2

. 1 -
z Xko (Xk1 -2 35—) > o (3.41)

kO kO ko

For Var(YO + 6 Y1) to be smaller than Var YO we need for k )4 0

xkl akO
————-- 2

Xko ak1

> 0 

such that the whole sum 3. 41 is positive. It can be seen that if

)1

JEL k = 1, 2, . . . are very small for all k this may be impossible.

X
ko

Otherwise, the restrictions we have placed on our perturbation

technique could permit

< -
Var(y0 + 6 Y1) Var YO

Let us try tO compute bounds for Var (Y0 + 6 Y1) in terms

of Var Y0 and a few parameters we may derive now. Let a(t)

be a signal integrable square on [0, T] = .I . Let perturbation

,andk >)\ k=l,2,... Let>be such that R0 R1 k0 k1

R1

1

0 5_ a»: inf {X31 } < 1

k ko
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)1

0< fi’ = sup {kid} 5 H‘< 00, Haconstant. (3.43)

k k0

= . > 2m 331p {13..ak1_ Kj ako k 1,2,...} (3.44)

m finite since ak's are finite

: 0 ° < : -M 1311 {13. Iak1]_ K]. lakO] k 1,2,...} (3.45)

M finite since ak's are finite

then

2 2

a a )1 2a a

2 ko_€z)\ko 1k1+ Z 1:11“):

k0 kO kO kO

_<_ Var YO - 6 (Var YO)-ts-+ 2 6 (Var Yo) M (3.46)

2 2

ako ako xk1
VarY -6fi'VarY +26mVarY < 2 -6E -— +

O O o— )1 )c )\

kO k0 kO

2a a

+6 2 kxl kO

kO

so

max (0, Var yo (1 - 6(fi-2m)) E Var(YO+€Y1): Var YO(1+6(2M --u1- ))

(3.47)

GEVar(YO+6Y1): (9

For 6 small enough we need not worry about limiting the left hand

side of the inequality so we have

-6(fi'-2m) E A Var _<_6(2M--w-) (3.48)
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Let G = max (fi-Zm,2M-w-) then

- 6 G E A Var 5 6G

lAVar] : as (3.49)

VI. RESULTS RELATIVE TO THE THRESHOLD

In previous sections of this chapter we have compared what

we have called the nuclear likelihood ratio YO with a perturbed

model Y(6) . It perhaps should have been stressed that this

comparison is seemingly unjust if a fixed threshold is to be

involved. As we recall from 1.16 the threshold was chosen for

Y simply because 1') in 1.15 was different from the expression

by a c onstant.

 

 

2

fl Wna'n 1 an
nzlni—zz A --2—E->-\— (1.15)

O n n

2

1 an

n

wnan >

y = z 1 < t (1.16b)
n Y

The constant, Of course, supposedly is L]; . Yet if perturbation Of

the second order properties Of the noise is considered this quantity

is not a constant relative to the disturbance parameter 6 .

 

2
a.

(1,0 = é— 2: “0 = %- p: (3.46)

no

212(6)

w(s) = fi—2 X3375 = é— (33(5) (3.47)
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Thus, in order to consider the changes in the detection structure

relative to a threshold, we will have to explicate the changes

occurring to 1]) as well. To do this, it is important to use the

expression for the likelihood ratio in 1) form. We must keep in

mind, however, that Y0 and no as well as Y(6) and 17(6)

have the same stochastic variance and properties except mean.

 

wn(e) ans) I aim
n(e) : Z - — Z (3.48)

)1n(6) 2 )1n(6)

= Y(6) “12(6)

From 3. 23c,

2

+6 an2+...)

)1 + 6)1 + 62X

no n1 n

E (ano + 6 ar11

 

L11(6)

N
|
'
—
‘

Z+...

Approximating to the first few orders of 6 we have

 

 

 

 

 

é—Eaz +6(2a a )+e‘2(ai2 +2a 2a )+...
111(6) 5 no no n1 n1 n no

>\nl 2 an

11n0(l +€‘>:-“- +6 )1 )

no no

a2 +(2a a )+O(62)
,_ _l_ 7.3 no no n1

— 2 )‘nl

)1n0(l - (-6 )1——))

no

)1

2 7 2 n1 2

1 {am +e(-anoan1) + 0(6)} (1 -€ 1 + O(6)

é _ 2 no

2 )1

no

2 2

s l_ E ano + {2 anoa'nl _l_ 2 8'no (xnl )} + O( 2)

‘ 2 1 €— 1 " 2 1 1 6
no I10 no no
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111(6) : 1|) + 6 1111 (3.50)

l ano nl
1111 - ~2- Z X— (2 anl -ano ) (3.51)

no nO

>\nl
If r— is small for n = 1, 2, . . . 1111 may be positive if it is

no

convergent. However, there is no apparent reason to rule out

1111 < 0.

)1 1
Nevertheless, L]J(€) is still positive since 6 {£— << 1

no

2

1 8'110 )‘n1 1 Z anoa'nl

$k)=§ Z (l-ef—4+e§-Z-———-— (153

no no

so L|J(€) > 0.

There is a strong resemblance between 3. 38 and 3. 52 .

nb

This

means that the unperturbed relations 3. 46 is kept after perturbation

in the since that

we) = %Var1(t) = 13%)

Now we can compare both expression for 1') before and after

perturbation:

But to the first

nk)

 

O 1

-YO-Lpo~>:n):)n -22
no

.— an(6) wn(6) 1— 331(6)

‘ 1h“) ’ 2 1h“)

= YK)-¢k)

order:

(YO+€ Y1) -(¢O+€¢l)

‘(Yo'Yo)+dY1'¢N

 )1 (3. 53a)

(3. 53b)

(3.54a)
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27(6) = no + enl

 

  

(3.54c)

From 3.24 and 3. 51,

a w a w a w X

n1={z———k§’\k1+z—————kik° -2 k)? k"(K1:1)}+... (3.55)

ko ko no ko

x
1 ako k1

- — Z) (2 a - a )
2 xko k1 ko )‘ko

We can see from 1.15 that Var n : : Var y .

Var no 2 Var Yo (3. 56a)

Var 20(6) 2 Var y(6) (3. 56b)

Hence,

AVarn : IVarn(6)-Var no): lVary(6)-Varyol

A Varn : A Vary

The change in variance then is nil relative to consideration of the

L): expression.

Say the threshold for n is tn and for y is tY

>

< t tY Y 77 < T?

are the respective likelihood tests. The differences between

thresholds are

 

2

1 no

At = t -t = — 2

Yo U0 2 xno

2

1 an(€)

At(6)  

 



 

1 ago
Ato = ~2— EX : 410 (3.55)

no

At(6) 2 41(6) 2 ¢0+6¢1 (3.56)

change in At = At(6) -AtO = 6411 (3.57)

Equation 3. 57 is noteworthy. It gives the magnitude of the change

in threshold needed to preserve a true maximum likelihood test

(or modified) quaranteed by the Neyman Pearson lemma to be the

most powerful test for determining H0 or H1 .

Thus, in order to consider energy changes manifested by 6 R1

and their effect on the detection test used, namely the likelihood

ratio, the first order approximation to the threshold dispersion

between 7L and L required to maintain it is less than the 3. 57

m. To calculate the actual threshold change required to

maintain the likelihood ratio test we need the rule for deciding

what the new threshold will be. Suppose for example the threshold

tn chosen is midway between the means of n under hypothesis 1

and O. From 3. 53a

 

2

1 ano

I“:0 no 2 -2- )‘no

2 (3.58)

_ 1 no

E31% ‘ 2 Z x
no

then t = 0

no

From 3. 54c and 3. 55

E0 77(6) : Eo 770+ 6 E0 771

 



 

 

 

  

 

2

a a h

_ L no L ko k1

Eon“) '2 Z i +262). (koi '2 k1)
no ko ko

a2 a a a a a2 X

Eln(6)=:—ano+6{22 §1k°-z klxko -zi39XEL+.

no ko ko ko ko

2

a X

. + "1&2 >\kO Xkl}

ko ko

a2 a a a2 k

En(6)=-l—E n°+€{z_1£l_1_<2_1_2._§2(k1)}

l 2 x x 2 k X

no ko ko ko

t = -1—{E n(6) +E 10(6)}
17(6) 2 o 1

2 k 2

a a a a a a

:%{:—e{2kko(xkl)-ZZ k>okl}+ {2 1:1 ko_:_xko Xkl}}

ko ko ko ko ko ko

t, : O 3.59

n(6) ( )

t t -t : O 3.60

A 77 77(6) no
( )

For the Y test:

E0Y0 : Eono+Eo¢o : Eono+4jo

ElYozElno+E1¢ozElno+qjo

(3.61)

EOY(€) = E0 n(6) +12O M6) = E0 n(6) +446)

E1 Y(6) = E1n(6)+E1LIJ(6) = E1n(6)+ l11(6)

t : -1— {4) +12 n +E n} = t +-1— Ll)

yo 2 o o o l o no 2 o

t -l- LlJ(€)+t

Y(6) 2 ()
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1
t : t _ t : t + — - 3.62A Y Y(6) YO A n 2 (Me) 410) < >

For example, we have from 3. 51 and 3. 59,

At =t +1—e4) (3.63)
)1 M6) 2 l

a a a2 )x

: _:_ 6 {Z} k: kl _ :_ 2 no xnl }

ko no no

Aty = A 1:Y =é—ELPI (3.64)

The 3. 64 result is an example of the change in threshold required

to maintain the modified maximum likelihood test in a detection

problem with second order perturbation of the form 6 R1 .

 

What we have said about convergence in the past still holds

throughout this section. If convergence occurs then a singular case

is in play. As mentioned in chapter one, we are acutely interested

in the nonsingular case for perturbation. It is the nonsingular case

2

 

a

in which 23 {Ii-9- < 00 is generally found. We see that in this case

ko
)x

3.64 is convergent if k1 E l for k = l, 2, 3, . . . or at least for

ko

infinitely many k . It is significant to note the direct dependence

on 6 of 3.64. If the series is convergent, for small parameter 6

the quantity of changes in threshold necessary is small also.



CHAPTER IV

AN EXAMPLE AND THESIS CONCLUSIONS

The ideas and theory expounded in Chapter III will be put

into more tangible form in this chapter with an example taken in

this case of perturbing a wide sense stationary autocorrelation

with a non wide sense stationary one. The signal chosen will be

a sine wave. After a few comments on this example a general

summary of the thesis will follow in which its results will be

coordinated and explicitly outlined.

I. AN EXAMPLE

In order to avoid tedious mathematical detail the example

to be taken here will be one for which the unperturbed and

perturbed kernels are in simplest terms. The procedure for

extracting the eigenfunctions of the unperturbed kernel is outlined

in Davenport and Root (pp. 99-101 and Appendix p. 371) so that

only the final results of that extraction will be shown here.

The autocorrelation function of the original or nuclear

noise process is

emit.-SI , -T< s,t< T,Roms) = Rout-s!) =

whose eigenfunctions and eigenvalues can be shown to be solutions

to the differential equation

x 4>”(t)+ 7‘ ix ¢(t) = o (4.1) 

with 0 < R < 2 only.
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The eigenfunctions and eigenvalues of the unperturbed kernel

are known to be in a split form:

  

  

 
 

A A . A

¢k(t) = Ck COS bkt (4. 2a) ¢k(t) = ck Sln bkt (4. 2b)

T A 8 'I‘ 1 4 3bk tan tk — 1 (4.3a) bk cot k — ( . b)

2 2 I

)‘k : b2 +1 (4.4a) Xk 2 [B2 +1 (4. 4b) .

k k

l l
Ck = i fl (4.5a) ck = a, (4. 5b)

sian T sin 2 T

k k

T + 2b T - A

k 2bk  

a non wide sense
BY ChOOSing R1(t,s):e('|t

l ”'S')

stationary covariance function the three important equations of

fir st orde r pe rturbation,

(RO - xkol) 41d = (xkll - R1) 41m (3.25a)

Wkl l¢k0) = 0 (3.25b)

)‘k1 : (¢kolR1 4’ko) (3'25”

k: 1,2,...

can now be put into integral forms. Equations 3. 25c, 4. 2 are used

tofind

2

4c

k 2 2

X = : c X (4.6)

kl (1 +1313) k ko

“—1 E Ck: —1 k=l.2.o-- (4.7)

VZT' VT
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The dual nature of the eigenstructure of R0 incurs a

A

similar calculation for xkl .

A

ikl = o 1<=1,2,

To find ¢k1 equations 3. 25a, 3. 26c are used along with the

new found knowledge of 4. 6, 4. 2 and 4. 4. The resulting calculations

are lengthy but involve only algebraic manipulations.

¢k1_ Bktsinb t+A cosbkt
k k

2 2

Bk ‘ Ck xko

C3 (4.9)

_ k 1 2
Ak — -----2- (2 -Tck cos ka)

b
k

A - o
¢k1 ‘

A few characteristics of this particular example are examined

before Chapter III equations involving the change in variance are

broughtin.

 

 

 

First, we note that kkl < )‘ko for infinitely many k since

)‘ko -’ O as bk —’ 0° and eventually c: xko < 1. From 4. 6

)‘k1 = Ci xko where Ck is bounded above and below

1 < Ck : 1 < ——l——

«I2T' \/ sin 2 ka «11"

T + "2 bk

Second, ak1 is related to ak0 in the following manner from 4. 9:

_ 2 Z . L 2 2
ak1 — ck kko (t 8111 bktl a(t)) + (Z - Tck cos ka) ak0 (4.13)

U
‘
O

W
N
W
N
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A A

Recalling "k1 = o and 41d = 0, we have 91d = o . (4.14)

The nuclear autocorrelation function R0(t, s) has the split

nature of eigenfunction sets but only one of the sets will be perturbed

by the kernel R1(s,t) = e-' tl - l SI .

If the signal a(t) = A sinwmt, - T j t E T the following

c oefficients result:

  

  

A _
ak0 — O

ako -_- Ack “risk ' ‘06)“): - 8:101; “gm” (4.15)

k ‘ “m k ”m

2 . . ,
_ _C__k_ {-1- Tczcoszb T} A51n(bk-wm)T Sln(bk+h)m)T

akl‘zz‘k kck b-b.) "b+w
bk k m k m

(4.16)

There exists (Om such that

l
=O=a— e.g. wm=§bEfor somek>0.

ako k1 '

Finally, the variance of the perturbed likelihood ratio can be computed

from 3. 38 for this example.

 

2 2

)‘k1 _ Ckkko _ C2 1. < >‘ko (417)

X _ X — k ko -- T °
ko ko

a2 X 2a a

Var(y +6y)= 2—53(1-e k1)+ 2 1‘1 k0 (3.38)
o l X X X

ko ko ko

For large bk’

2 ~ 1
CR T (4.18)
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so that the series term of 3.38 approaches

 

1

2 2 T 1 2
(1 —e T)+6(2akO-—-—-2— (2 -cos ka):)

k0 Zbk

(4.19)

 (4.20)

II. CONCLUSIONS

An attempt has been made in this thesis to underscore the

importance of the stability of a signal detection scheme. An example

of a scheme, namely one involving the likelihood ratio for a sure

signal in zero-mean Gaussian noise with continuous autocorrelation

on a finite interval J , has been perturbed by a slight change in the

second order noise statistics. After reviewing previous work and

setting up simple examples, a more general case of perturbation is

formulated in additively distunbing the autocorrelation function with

an LZ(J) positive semidefinite kernel. The change in form and

variance of the perturbed likelihood ratio is found to be of the

order of 6 , a small positive parameter. Using the parameter

strategically, continuity of the signal detection scheme is shown

through stability of a finite -variance likelihood ratio. The concept

kept in mind throughout Chapters III and IV (Section I) which encompass

the new results is that the detection test was to be kept the Optimum

Bayes procedure both before and after perturbation.

Changes in the form of the likelihood ratio is illustrated by

equation 3. 23a while change in variance is shown by 3. 38. Threshold
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dispersion between the true Gaussian likelihood ratio and the one

used predominantly in the thesis is demonstrated by 3. 57. In

selecting the point midway between the means of the ratio under

either hypothesis (before and after perturbation), the change in

threshold necessary for an optimum signal detection scheme is

shown to vary directly also with 6 parameter (equation 3. 64).

In Chapter IV, Section I, kernels corresponding to the

R and R operators in equation 3. 25 are chosen, the former
O 1

a wide sense stationary one and the latter a non-wide sense

 stationary one, so that the forms of the series in the results of

Chapter III involving the changes in form and variance of the

likelihood ratio can be seen more easily. Choosing the sine

wave as the sure signal, the perturbed forms are seen to vary

directly and simply with parameter 6 , most clearly shown for

large index as demonstrated by 4. 20.

The relevance of showing continuity of a detection scheme

is made clear by the fact that there is no guarantee the hypothesis

test for detecting the presence of a sure signal in additive noise is

robust or stable. If not stable relative to small changes in the

noise energy, the error probabilities would be liable to drastic

change and the detection model would then be little more than

useless. What this thesis has £1.23 done is shown how good the additive

Gaussian noise with continuous autocorrelation function model is

in relation to noise experienced in actual signal detection equipment.

We have not tried to defend the model as a good or true one, but have

tried to show its stable character. In this way perhaps, an indirect

defense for its "goodness" may be implied.



APPENDICES



A. HILBER T SPACE

Many concepts in signal detection theory can be put into

simpler mathematical forms when the notion of a hilbert space is

introduced. In this appendix section are outlined some important

hilbert space concepts which are used throughout the text.

 

r

I. PREHILBERT SPACE

A prehilbert space (PHS) is a complex vector space P with I

1

a scalar product of any two vectors, x, y 6 P, denoted by (X! y), E

9

defined with the following properties: L

l. (x, y) 2W (where bar denotes complex conjugate)

2. (x+yl 2) = (xl 2) +(yl 2)

3. (Xx) y) = X(x| y), 1. a scalar.

4. (x) y) > 0 when xfi 0, the zero vector.

The above four statements imply the following elementary theorems:

Theorem:

1. (xly+ 2) z (x! y) + (xl 2)

2. (X) Mr) = MXI Y)

3. (6 ly) = (y [6) = 0

4.1x -yl 2) = (xl 2) -(yl z); (xly - z) = (xly) -<xl 2)

5. If (x) z) : (y( z) for all 2 then x = y.

Every PHS is a metric space with the distance function

defined through the inner product thus:
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2 2

d (x.Y) = (X-YI X-Y) = H X-YH -

Hence, the NORM of a vector in a PHS is given by

Hxll = «f(xlx)

Properties of the norm are expressed through the following:

Theorem:

1. IIXxH = N llxll

2. ”x“ > o if x15 9, the zero vector.

3. u x + y” 2 + ”any” 2 a 211x112 + 2 u y” 2 parallelogram law

4- |(xl y)! =1/4{Hx+yllZ - ll x-yll 2 + ill x+iyll 2 -i ”x-iYH 2}

Polarization identity

5. l (xl y)l E H x” H y” Cauchy-Schwartz-Boniakovsky Inequality

(CBS Inequality)

6- Hx+yll _<_ ”X” + “Y” \

7- Hx-Y” > 0: ”X'Y” =0" x=y (

8. ”x-y” = ”y-x" . , Metric character

 
9. Hx-zll _<_ llx-vll + lly-zll

II. HILBER T SPACE

Once the norm is defined, it is possible to speak of the

convergence of a sequence in a prehilbert space and only then will

the concept of a hilbert space naturally follow.

 

Definitions. Let xm be a sequence of vectors in a PHS.

1. The sequence of vectors converges to a limit vector x
 

if ”xn-x"-’0 asn-‘CD, i.e., give 6> 0,

EN 3n> N implies ”xn -n” < 6 and x is unique

in the PHS.
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xmll-w2. The sequence of vectors is Cauchy if H xn -

as m,n-’00,i.e.,given6> 0 3Nal'Xm-anl <6

if m,n > N.

3. A PHS is Complete if every Cauchy sequence converges.

A PHS which is complete is called a hilbert space.

To find a set of vectors which will generate the entire hilbert

space H is a problem demanding a few more specialized definitions.

(I)

By the word ”generate" we mean that a sequence {xk}k 1 generates

co _

H if for any vector x in H, scalars {ak}k exist such that

CO

x — 1:1 Gk xk .

Definitions .
 

1. For x,yin a PHS, x is orthogonal to y l?
 

(x(y) = 0, that fact denoted by xi y. If Xin ,

co

j=l,2,3,... then X‘L{Xj}‘1 and X‘L[{XJ}]

J:

2. An orthogonal sequence {xj} has xki Xj’ jfi k.
 

3. An orthonormal se_quence {xj} has xk _L Xj’ jf- k

kall :1 for k = l,2,3,...

4. A set S of vectors in a PHS P is total if the only

vector 2 of P orthogonal to every vector of S is

the zero vector 2 = 9 . A total sequence is defined
 

accordingly.

5. An orthonormal basis for a hilbert space H is a set

{xa}

6. A hilbert space is separable if it possesses a total set

 

CD

1 which is both total and orthonormal.
n-

in V, the vector space it is defined over.



B. 12, L2 AND OPERATORS

Two prime examples of hilbert spaces are those denoted by

L2 and 12 . Besides being the best known and most utilized spaces

they provide exceptional insight into general hilbert space theory.

In the following we will try to give an informal definition of these

two hilbert spaces after which we will proceed to give a short

. . . . . 2 2
introduction 1nto Operators and their character 1n L and 1 .

I. L‘2 AND 12

. 2 .

The space 1 is the set of all square summable complex

sequences. Each sequence is a countably infinite dimensional

vector. The inner product associated with 12 is

(alb)=.
J

J
L
M
B

9
1

0
‘

where a=(a1,a2,...) and b=(bl,b2,...)

and both belong to 12 .

The space L2 is the set of all square Lebesque-summable

complex functions over the open infinite plane. An analogous space,

L2[ a, b] is the set of all square Lebesque-summable complex

functions over the finite interval [a, b]. The inner product used

in L2[ a, b] is demonstrated by the following:

b __

fa f(t) g(t) dt = (fl s)

where f(t) and g(t) both belong to L2[a,b].
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II. OPERATOR S

An operator or linear transformation defined on a hilbert

space H is a continuous linear mapping T such that

T(o.x + By) 2 OTx + BTy

is a bona fide vector in H for any x, y in H and any scalars F“.

G. , (3 in the scalar field defined with the vector space.

A bounded operator is one for which there exists a constant

M greater than zero for which the norm of any vector in its range

 is less than M times the vector's norm. That is, T is bounded

if and only if for all x in H there exists a M > 0 such that

(I TX“: M H x

preceding holds is called the operator norm, denoted by H T”

  
. The smallest such constant M such that the

 

”T" = inf {Maconstant> o: ”TX” 5 Mllxll a11xinH.}

M

The collection of all bounded operators is denoted byot c .

It is easily seen that a bounded Operator will carry bounded sets

into bounded sets. If it also carries any bounded set into a

convergent set than it is termed CC, Completely Continuous or

Compact. A CC operator is sometimes referred to as a "small"

Operator since it somewhat "compresses” a vector set which is

bounded into a convergent form.

An Operator's adjoint Operator is defined by the following

equation:

>1:

(Txl y) = (xl Ty) for all x, y in H, a hilbert space.
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We can now define more Operator types using this "adjoint" notion.

Definitions. Let T be an operator defined on H, a hilbert space.
 

l. T is isometric if T*T = I where I is the identity
 

operator, i.e., Ix = x for all x in H.

2. T is unitary if T*T= TT* = I.

3. T is self adLoint if T* = T .
 

4. T is normal if T*T = TT* .

An Operator T has as a proper value or eigenvalue and x
 

as its corresponding eigenvector if Tx = x. It will be seen in
 

appendix C that self adjoint operators are easily characterized

by their eigenvalues and eigenvectors.

Operators in L‘2 are bivariate kernels of either two complex

variables if L2 is complex function space or two real variables if

L2 is restricted to be a real function space. The space 12 has

infinite dimensional matrices as its operators. Both types of

operators are characterized by the following:

  

T

l. (Tx)(s) = f T(t,s)x(t)dt=y(s) DisiT

O .

(Tx 2 y in L2[0,T])_

Z. T : a11 a12 .. x— x1

3.21 3.22 ... X2

L..-

r- '1

Tx = E a .x. = .

11 J y

Ea .x

_21 J

1.. ° _  
(Tx=y in £2 ).



C. LZ KER NELS

The space of functions which provides a platform for the

integral equations we are going to consider is L2[ 0, T] . Integral

operators on this space, denoted by capital roman letters R, K, . . .,

have corresponding kernels R(x, y), K(x, y) some of whose

properties are explained in the following discussion.

If a(t) and (3(t) belong to L2]: 0, T] the general integral

equation of interest can be written

T

f R(t,s) a(t) dt = (3(3) 0: s _<_ T (C.1)

O

Abstractly, Ra = [3 . If for every O6 L2[ 0, T], RC1 belongs to

L2[ 0, T] also then we say R is an L2[ 0, T] kernel and is "defined"

over all L2[ 0, T] . Otherwise R is simply an operator and

R(t,s) is its kernel.

For any element, f(t) 6 L2[ 0, T], its norm, I] f” , is

defined by the following:

 

T 2

limb/10 lie)! dt . (c.21

Convergence in the space L2[ 0, T] is based on this norm.

T 2

lim f [g(t) - Za_f(t)] dt=0 (c.3)
k k

N-“lo o

N

H g(t) = lim 2 a f (t)

N—vw -1 k k

76



77

A kernel K(s, t) is self adj oint or hypermaximal if it is
  

defined over all L2]: 0, T] and

K(s,t) = K(t,s) .

If the latter equation holds but K(s, t) is defined only on a dense

subspace of L2[ 0, T] then it is hermitian. Symmetric kernels

are usually thought of as real L2[ 0, T] kernels which have the

following prOperty:

R(t, s) = R(s, t). (C. 4)

Autocorrelation functions form symmetric kernels if they

are a product of a second order real stochastic process. Also,

autocorrelations are either nonnegative or positive kernels (the

latter implies the former):

T

f K(s,t) g(s) g(t) ds dt _>_ 0 nonnegative definite

O

(C. 5)

T

_r K(s,t) g(s) g(t) ds dt > 0 positive definite

o

where K(s, t) is the kernel in question and g(t) is any member of

00k], the domain of operator K which has K(s, t) as its kernel.

Symmetric kernels have at least one eigenvalue X and

corresponding eigenvector Cl) . That is,

T

f K(X.Y)¢(X)dx=>\ <l>(Y) 0: Y: T (C-6)
0

holds for some X and <l>(y) where K(s,t) is a symmetric kernel.

An extension of this is given by the following theorem.
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Theorem. Every nonzero symmetric L2[ 0, T] kernel

either has an infinite number of eigenvalues or is a PG kernel.

(Tricomi, p. 105).

A Pincherle-Goursat kernel (PG) or a kernel of finite rank

has a finite number of eigenvalues and can be represented by

K(s.y) = .5 x. 4.1x) My) "(0.7)

N N

where {Xj}, 1 and {ij}. 1 are its eigenvalues and eigenvectors,

J: J:

respectively.

m _—

For any symmetric kernel, if .23 XJ. ¢j(s) <l>j(t) converges

J=1

uniformly then

 

CD

K(s,t) = >3 x. ¢.(s) <l>.(t) (C.8)

m (I)

where {Xj} and {ij} are K(s,t)‘s eigenvalues and eigen-

jzl .1: co

functions as above. Whether {¢k}k-l is complete or not the

following is true for any symmetric kernel; K(x, y):

N

K(x, y) = lim .2 x. ¢.(x) oly) (c.9)

Mercer's theorem claims uniform as well as mean square convergence

for symmetric, continuous, positive definite kernels. That is, both

.C. 8 and C. 9 hold for such kernels.

Orthogonality of a function in L2[ 0, T] relative to the kernel

K(s,t) is expressed by

T

f K(s,t) y(s)ds = 0 . (C.10)

O
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If C. 10 holds for a symmetric kernel than y(s) is orthogonal to

K‘s eigenfunctions (Tricomi p. 109).

Picard's theorem gives a criterion for the expansion of

a function in terms of the kernel's eigenfunction set:

Picard Theorem. The equation
 

for symmetric kernel R(t, s),

T

f R(t, s) x(t) dt = y(s) for 0 5 s _<_ T,

o

has a solution in L2[ 0, T] if and only if

(a) y(t) = l.i.m. 151 on“)

T

(b) Yn = lo y(t) <l>n(t) dt

 

 

(C) E —P- < 00 where {X } are R(t, s) eigenfunctions.

n=l Kn n n21

N Yn<l>n(t)
(d) x(t) = l.i.m. E ' —-3\———- 0< t<T

n=1 n — '—

Q)

The expansion expressed in (d) is unique if {¢n(t)} 1 is complete.



D. KARHUNEN LOEVE EXPANSIONS

Of singular importance in the study of vector spaces or

stochastic processes is a spectral theorem which breaks down

into simpler components either operators defined on the vector

space or the stochastic process. We will give a version of the

spectral theoremin hilbert space (CC self adjoint operators) and

will follow that with the analogous spectral theorem in stochastic

processes known as the Karhunen-Loéve Expansion theorem.

Spectral theorem for self adjoint CC operators.

A nonnull CC self adjoint operator T in a hilbert space

H has:

co

1. an eigenvector set {cbn} 1 corresponding to the

n:

(I)

existent eigenvectors {X } of T.

n n=1

2. Xj -* 0 as j —’ 00

G)

3, {Ch} generate all H if T has no null space except 9 .

— CO

4. Tx 2 Z X. (¢.lx)<l>. forany x in H.

Karhunen-Loéve Expansion theorem.

A stochastic process x(t) with zero mean on [0, T] and

continuous autocorrelation function R(t, s) = E x(t) x(s) has:

1

m

l. a series expansion for x(t) relative to {¢j}j_ the

orthonormal set of R(t, s) eigenfunctions.

00 T

x(t) = n21 xn ¢n(t) where xn = f0 x(t) ¢n(t) dt

80
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(2:). .2. Exnxk=0 for n75k and Elxn

' N

3. E]x(t)- Z x (l) (t)]2 —*0 as N-’00 forall t in

n=l n n

[0.T]-

4. the above expansion of x(t) unique and

T

f0 R(t, s) ¢n(s) ds = Xn¢n(t) 0: t: T
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