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MODIFICATION OF SCATTERING FROM THICK
CYLINDERS AND RADIATION FROM LOOPS
BY IMPEDANCE LOADING

By

John R. Short

The modification of the scattering from a thick, slotted cylinder
and the radiation and circuit properties of a circular loop antenna by
impedance loading are investigated in this thesis.

The modification and control of the scattering of a plane elec-
tromagnetic wave by a thick, conducting, infinitely long cylinder loaded
with several impedance-backed longitudinal slots is investigated in
Part I of this thesis. The incident plane wave is polarized with its
electric field vector perpendicular to the cylinder axis. The slots are
electrically narrow and the electric fields across them are assumed to
be constant. Within this assumption an exact theory is developed.
Synthesis procedures are developed to find load impedances and purely
reactive load impedances that cause the scattered field to vanish in one
or more desired directions. Synthesis proceduyres are also developed
for finding a single purely reactive load impedance that produces mini-
mum scattering in one direction and load impedances which result in
zero scattering in one direction at several frequencies. The frequency
dependence and bandwidths of the different loadings are also considered.
Extensive numerical results are presented. The theoretical predictions
are confirmed with an experiment.

The modification of the radiation fields and circuit properties
(impedance) of a loaded, circular-loop antenna is investigated in Part
II of this thesis. An improved theory for the loop antenna is developed
which includes a finite gap excitation. '"Effective'' gap widths are de-
fined for the cases of a loop antenna driven by a two-wire line or a
coaxial line. Excellent agreement between theoretical antenna admit-

tances is found. The maximum and minimum gain attainable from a



loop loaded by a single impedance is presented for loops up to five
wavelengths in circumference. A procedure is developed to facilitate

the design of loaded loop antennas that have specified radiation patterns.
Several examples of loaded loop antennas which have relatively direc-
tive patterns with respect to unloaded loop antennas are given. A scheme
for matching a loop antenna to a transmission system is presented and

its efficiency is compared to that of a conventional base tuning network.
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PART I

MODIFICATION OF EM SCATTERING FROM A THICK
CYLINDER BY MULTI-SLOT IMPEDANCE LOADING






CHAPTER I

INTRODUCTION

The modification of the electromagnetic wave scattered by a
thick infinite cylinder using the technique of impedance loading is in-
vestigated in this study.

When a conducting body is illuminated by an electromagnetic
wave a surface current is induced on the conducting body. This sur-.
face current, in turn, reradiates a scattered field. Distributed or
lumped impedances can be installed on the surface of the conducting
body which will alter the amplitude and phase of the induced surface
current, thus modifying the scattered field. This method of modifying
the field scattered by a conducting body is known as impedance loading.
The modification or control of electromagnetic scattering has appli-
cations in the areas of antenna design, electromagnetic compatibility,
scattering cross section modification and others.

The history and development of the impedance loading technique
can be found in a review paper by Schindler, Mack, and Blacksmith. 1
Since the writing of this review paper, scattering modification by the
impedance loading technique has received considerable a.ttent:i.on.z-17
A review of the literature shows that nearly all the studies have been
concerned with impedance loaded thin wire rods or loops. To present,
there have been only two published studies on impedance loading of
electrically thick objects. Liepa and Senior18 considered a conducting
sphere loaded with a single impedance backed circumferential slot, *
and the a.uthors15 considered a thick cylinder loaded with a single im-
pedance backed longitudinal slot. There is a noticeable lack of any
information on the modification and control of the field scattered by a

thick object loaded with more than one impedance.

*Chen and Vincent 6, 10also loaded a sphere with two loaded wires
which is another technique of loading an object. This differs from the

discreet surface loading considered in this study.
1



This study is concerned with an electrically thick conducting
cylinder loaded with N impedance-backed longitudinal slots. The
cylinder is illuminated with a normally incident plane electromag-
netic wave polarized with its electric field vector perpendicular
to the cylinder axis. The incident field induces a circumferential sur-
face current on the surface of the cylinder. The control of the sur-
face current, which in turn controls the scattering, is accomplished
by the longitudinal loaded slots which intersect the induced current.

The purposes of this study are 1) to determine the extent of the
control over the scattering that can be accomplished with different
types of loading, 2) to develop and analyze procedures for determining
optimal loadings which result in zero or minimum scattering in desired
directions, 3) to determine what procedures lead to broad band loadings
and 4) to develop broad banding techniques.

In Chapter II the basic theory used in analyzing the scattering
from the loaded cylinder is developed. The theory is of a general form
into which all multi-loaded scatters fall. 19, 20

Chapter III deals with general synthesis procedures for finding
optimal impedances that result in zero or minimum scattering in one
or more desired directions. First, a procedure is developed for
finding N load impedances which cause zero field to be scattered
in N directions. This synthesis procedure is similar to the one
used by Strait 21, 22, 23 in synthesizing radiation patterns of loaded
antennas and arrays. Secondly, a procedure is developed for finding
N purely reactive load impedances that result in zero field scat-
tered in N/2 desired directions. After this, procedures are devel-
oped for finding a single purely reactive load impedance that produces
minimum scattering in one direction and a set of N load impedances
which result in zero scattering in one direction at Ndifferent fre-
quencies.

Numerical results of these procedures and other loading schemes
are presented and discussed in Chapter IV. The frequency dependence
and bandwidths of these loading techniques are also considered.

The theoretical predictions are confirmed with an experiment.
This is described in Chapter V.

Chapter VI summarizes the work presented in this study.



CHAPTER II

THEORETICAL FORMULATION OF PLANE WAVE SCATTERING
BY A MULTI-LOADED, SLOTTED CYLINDER

2. 1, Formulation of the Problem and Boundary Conditions

A perfectly conducting cylinder of infinite length and radius a has
N impedance-backed longitudinal slots cut on its surface as indicated
in Figure 2.1. The center of the nth slot is located at 6 = Gn. The
nth slot has angular width 6 and is loaded with an impedance zZ that
is lumped in this slot region on the cylinder surface. The cylinder is
illuminated by a plane electromagnetic wave which is linearly polarized
with its E -field vector perpendicular to the cylinder axis. This inci-
dent wave induces a circumferential surface current KO (6 ) on the
cylinder, which in turn, radiates a scattered electromagnetic field.

The tangential E -field must vanish at the cylinder surface except
in the slot regions since the cylinder is assumed to be perfectly con-
ducting. The slots are taken to be electrically narrow and thus the
tangential E -field is assumed to have a constant, uniform distribu-
tion within each slot region. The potential difference across the nth

slot is

On, -5 /2 _
- S n Ee (r=a ) ad® = ab Egq (r=a™,6=0_)

0 +6 /2 n n
n n
and is a slot voltage since the slots are electrically narrow so that the
quasi-static approximation is valid. The boundary condition on the

tangential E -field at the surface of the illuminated slotted cylinder is

n
. —_— 0 -6 <
gl (r=a+) + ES (r=a+) - a6n for | n| 6n/2
0 0 n=1,2,..., N
0 elsewhere (1)
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(b)

Figure 2. 1. An infinite cylinder with N longitudinal slots illuminated by

a plane EM wave with its E -field vector perpendicular to
the cylinder axis.

(a) Front view. (b) Cross Section view.
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where Ele and E
E -fields, respectively. The nth load impedance is defined by

are the 6 components of the incident and scattered

A%
n

Zn KG (6 :On)

- Zn Hz(r:a, 60=0 n) (2)

It is noted that the physical dimension of the load impedance Zn is

ohm-meter.

2. 2, Superposition

The field scattered by a cylinder with N impedance-backed, longi-
tudinal slots can be obtained by the superposition of the field scattered
by an unloaded solid cylinder illuminated by a plane wave and the field
radiated by a cylinder with N longitudinal slots having slot voltages
Vn’ n=1,2,...,N impressed across the slots. A mathematical state-

ment of this superposition is

ES - ES+E (3)

oo
1]
sl
+

(4)

where E % and B ® represent the field scattered by a slotted cylinder
illuminated by a normally incident plane wave, E®and HS represent
the field scattered by a solid cylinder illuminated by the same incident
plane wave, and Efand HT represent the fields radiated by a slotted
cylinder driven by slot voltages Vn' The excitation of the nth slot, Vn’
must be determined in accordance with the total surface current on the
illuminated slotted cylinder at the location of the slot and the impedance
backing the slot. This superposition is indicated schematically in
Figure 2. 2.

The boundary condition (1) for the illuminated slotted cylinder
can be separated into the boundary condition for the illuminated solid

cylinder
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0 (r:a+) = 0

i +
Ee (r=a )+ E (5)

and the boundary condition for the driven slotted cylinder

[ v 5
a5 for |6 - Gn | < 5
r + n=1,2,...,N
Ee (r=a ) :{
g 0 elsewhere (6)

Boundary conditions (5) and (6) define the scattering and radiation prob-

lems to be discussed in the following two sections.

2. 3, Scattering from a Solid Cylinder

Consider a perfectly conducting cylinder of radius a which is il-
luminated by a normally incident plane electromagnetic wave with an
E-field vector perpendicular to the cylinder axis. The geometry of the
problem is defined in Figure 2. 2(b).

The incident plane wave can be represented by the following field

. 24
expansions
Hzl - e-ka - e-_]kr cos 6

78

on (-j)™ cos (nB) J_(kr)
n=0 (7)
i i i
He = Hr = Ez = 0 (8)
E; S I - I H?®
wey Jor z

= ity z €on (-5)™ cos (n@) J! (kr)
n=0 (9)



i -j 18 i
Er - wey T 90 Hz
[o0]
_ j 1 _an .
= —J_weo - Z GOn( j) 'n sin (nG)Jn (kr)
n=0 (10)

where Jn (kr) is the nth-order Bessel function of the first kind and €on
is the Neumann factor and equals unity for n=0 and is equal to 2 other-
wise. The impedance of free-space {, is 120m ohms, and k is the free-
space wavenumber. The eJ ©t time- -dependence factor is implied.

The solution for the fields scattered by a perfectly conducting

infinite cylinder illuminated by a plane wave are well knownZS’ 26 and
are given by
S 1,® g
- - -1 1
Hz = eon( j) cos (n6) Jn (ka) . 27 o)
n=0 n (11)
(] C Cc
Hy = Hg = E, =0 (12)

© ( )(k )

g - 11 Z €. ()™ sin (n0) J! (ka) i

r  we r s on '7J 125' (ka)
(13)

c a1 ' Hn(z)l (kr)
Ee = (,0 z cos (n9) Jn (ka) . 7
n

(ka) (14)

(2)

where Hn (kr) is the nth-order Hankel function of the second kind.

2. 4. Radiation from a Cylinder with N Driven Slots

The field radiated by a cylinder with N longitudinal slots which
1 VZ' “eos VN impressed across them [see Figure
2.2 (c)] can be found by solving the boundary value problem subject to

have voltages V

boundary condition (6).
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The magnetic field has only a z component which is governed by
the wave equation,

2 2 r
(Vv +k)Hz=O (15)

The cylinder and slots are infinitely long and the excitation is assumed

uniform axially, thus the radiated field has no z-dependence, that is
9 -

s - 0. The wave equation for H: becomes
2 2
0 1 d 1 9 2 r
[ + = + +k"] H =0
al'_2 r Or rZ 56 2 z

This partial differential equation can be solved by the method of

separation of variables. The appropriate solution is

@
H - z [A_ cos (n6)+ B_ sin (n)] H_ ) (kr)

n=0 (16)
where An and Bn are unknown coefficients to be determined by boundary
condition (6) and Hx('nZ) (kr) is the nth order Hankel function of the second
kind which represents an outward traveling cylindrical wave. The other
components of the radiated field can be determined from Equation (16)
and Maxwell's equations. Coefficients An and Bn are found by applying

boundary condition (6) to the Eg component of the field [ See Appendix

A] and are

nd
. : N sin(—"—)
AL = e T Z Yo T, 0
n Jﬂago Hn (ka) m=1 i ( Zm) (17)
ndé
€0 1 N sin ( 7 )

By = Emat. (@ Z Vm Tms,, - sin (0 )
n  jemat, o (ka) o, m

n m=1 (——) (18)

The field radiated from the cylinder with N driven slots is now
completely determined and is given by
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. n6
. - H 2 ) & sin (7—)
Ee = 5 Z € (2) Z V ————— cos(n(6 -Om))
n=0 (ka) 71 °m )
2 (19)
né
r 1 - (kr) N 51n( Zm)
E. = 7akr Z (2) Z Voo 75— sin(n(6-6_))
n=1 n (ka) m=1 m)
2 (20)
r _ r _ ..r
Ez = Hr = He = 0 (21)
nd
. y H ® k) sin(—)
Hz = m-g—— Z € On (2) Z V cos (n(e -em))
0o Lo e 2™ Bm
B 2 (22)

2. 5. Scattering from a Cylinder with N Loaded Slots

The slot voltages Vn which excite the slots of the driven cylinder
must now be determined in view of our intent to combine the results of
the preceding two sections. The voltages Vn can be expressed in terms
of the impedances backing the slots, Zn’ and the total surface current

on the illuminated slotted cylinder. From Equation (2).

v
n

-Z H (r=a, 6=06 )
n z n

-z [H + HY +H]

r=

0 = 6
n

N

-zn [-Kn0+ Z Vm Y nm ]
m=1 (23)
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where

~
"

i c
n0 —[Hz+ Hz]

on
n

n

[«o]

= H (® (ka)
Z € gp (-7 cos(p ) [T (Kka) - I! (ka) P ]

(2)'
Lo H' (ka)
2 = +1 cos(p® n)
T ke op (1) H (&) (ka)
p=0 P (24)

which is the value of the surface current on the unloaded solid cylinder

evaluated at the position of the nth slot, and the terms

&
sin(—2) H:JZ) (ka)
Yom = —J—ago p6 I 2y a) cos (p(© n-e m))
p=0 73 P (25)

are the self and mutual short circuit radiation admittances of the slots.
The dimensions of these admittances are mho/meter.

Equation (23) can be written in matrix form as

r 1
ymt Y, Y12 c e YN Vi Ko
Y21 Yoot Y, - -2 Yon AP K20
RS N2 o INNTYN| [V ] [Bro] 26

where Yn = l/Zn and is the load admittance of the nth slot. The vol-
tages Vn are found by solving the above matrix equation. From the
superposition picture it is seen that the voltages, Vn’ depend on the

short circuited radiation admittances of the driven slotted cylinder
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and the surface current on the illuminated solid cylinder.

The fields scattered by an infinitely long, perfectly conducting
cylinder with N impedance loaded longitudinal slots is now completely
determined and can be obtained by the superposition of the results of
the preceding  two sections in accordance with Equations (3) and (4),
and the solution to Equation (26).

In the radiation zone the scattered field behaves as an outward
traveling TEM cylindrical wave, which can be observed by replacing
Hn(z) (kr) and its derivative with their principal asymptotic forms for

large arguments. 21 This procedure yields

2 - J' (ka)
ST - _Jae e-J(kr—w/4)Z [go €0p cos(pe)—P——H (2)'(ka)

P
p=0 P
Po
€ ptl N sin(———-r—n—)
Op () v 2
Zma L (2) m T pb cos (p(® -6,)) ]
H (ka) “ o (Fom
P 2 (27)
sr sr sr sr
EY = EXT = BT = H = 0 (28)
sr _ sr
H, = Eg/t, (29)

where the second superscript denotes radiation zone fields.

2. 6. Bistatic Scattering Cross Section

The bistatic scattering cross section per unit length of the illumi-

2 & tedq slotted cylinder is given by

2
=S
c(0) = fim 2mr|[EL8)
re E (30)

WVhe xe O defines the direction in which the scattered field is received,
a
A the illuminating plane wave is incident from the direction 6 = 180°.

Using Equation (27), the bistatic scattering cross section can be
Titten
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N 2
c(8) = — SO+Z V.S
m=1 (31)
where
it J' (ka)
S, = Z € cos(pe)—L———-
0 Op H () (xa)
p=0 P (32)
and
© Po
1 +1 Sin(——) cos (p(6 -6 _))
Stn = Zmat z €op (3P po @)
0 -0 ( m) H (ka)
p= 2 P (33)

Looking at Equation (31) from the superposition picture, S0 cor-
responds to the contribution of the solid cylinder to the bistatic
s cattering cross section. The Sm coefficients multipled by the appro-
P riate slot voltages correspond to the contribution of the driven

s lotted cylinder to the bistatic cross section.

2. 7. Generalizing the Theory
The physical interpretation of the quantities KnO’ Yom? So’ and

s allows the theory just developed to be interpretated in a more

& emneral manner. Consider, from the point of view of superposition,
th e scattering of an EM wave by a multi-loaded conducting body of any
& xr bitrary shape. If the geometry of the loading is such that unique
1oaq voltages can be defined, then a matrix equation, having a form
identical to Equation (26), relating the load voltages to the short cir-
<'xit radiation admittances of the structure and the surface current on
= S imilar unloaded structure can be formulated. The values of the
TR AQiation admittances and the surface current may be found exactly,
== <was done in this chapter, or by some approximate method.
Silhilarly a result for the bistatic scattering cross section of the
XAl ti-loaded body can be formulated in terms of the load voltages as
wWas done in Equation (31). Harringtonlg' 20 has pursued this idea
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in his multiport network parameter representation.
The loading techniques and synthesis procedures developed in

the next chapter are completely general and can be applied to conducting
bodies of arbitrary shapes.

| g =~ =PRI
i#a.



CHAPTER III

THE SYNTHESIS OF LOAD IMPEDANCES THAT RESULT
IN ZERO OR MINIMUM SCATTERING

FOR ONE OR MORE DIRECTIONS OR FREQUENCIES

In this chapter procedures are developed for finding load imped-
ances that result in zero scattering in one or more directions and load
impedances that result in zero scattering in one direction at several
frequencies. Procedures are also developed to find purely reactive .
load impedances that result in zero or minimum scattering in one or

more directions.

3. 1. Zero Scattering in N Directions
A set of N load impedances that causes the field scattered by the

IN -slotted, loaded cylinder to vanish in N directions may be determined by

the following synthesis procedure.

If the load admittances Yl’ YZ’ e, YN
Ikxnowns, matrix Equation (26) contains 2N complex unknowns, the N
Since matrix Equation (26)

are assumed to be un-

1 oad admittances and the N slot voltages.
< ontains only N complex equations, N complex constraint equations may
b e chosen to completely determine the problem.

It can be seen from Equation (31) that

So (0=8¢y)* i Vi Sm (0=0¢gy) = 0
m=1 (34)
XX lies the radiation zone field scattered by the loaded cylinder will
V= x21 sh in the direction 0 =6 o1 Similarly a system of N complex con-
SE€x qint equations, involving the N unknown slot voltages, which force

t .
he radiation zone scattered field to vanish in directions 901, 6 02 "t

o
Oy c@n be expressed as

15
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- 1 v S
Ci1 12 Cin 1 €10
Ca1 Co2 -+ Conl V2 C20
Cn1 Sn2 Can| VN CNo (35)
. p= . — - -

where Ci' = Sj (6 =OOi).

The load admittances that result in zero scattering in the N direc-
tions are found from Equation (23) to be

N
Y, = [KnO' Z yanm] /Vn
m=1 n=12...,N (36)
where Vl, 20t VN are the slot voltages found by solving Equation
(35).

The admittances found by the above procedure may have negative
r e al parts which are difficult to physically realize.

If the positions of
the slots are free to be changed, it is possible in many cases to find
to

slot positions such that the load admittances will have positive real
Pa xts.

This topic will be considered in Section 4. 3.

In some cases when the load admittances have negative real parts
it IXray be more practical to consider purely reactive loading.

3- 2. Zero Scattering in N/2 Directions
Using Purely Reactive Load Impedances

In the previous section, the introduction of N complex load ad-
™Mittances led to the elimination of the scattered field in N directions
be <= use N complex constraint equations were allowed to be introduced.
e ony Ppurely reactive load impedances are considered, it is possible to
elirrlinate the scattered field in N/2 directions only. This is due to the

£
|<e that N purely reactive load impedances gives the same number of

fr‘_‘ﬁ‘"—- e
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degrees of freedom as N/2 complex load impedances and thus only
N/2 complex constraint equations for zero scattering are permitted.
A set of N purely reactive load impedances that result in zero
field scattered in N/2 directions may be determined by the following
synthesis procedure.
The condition that the N load admittances be purely reactive is

equivalent to N real constraint equations, and may be written

| 8
Y +Y % =0 n=1,2,...,N [
n n =
where Yn* is the complex conjugate of Yn. Using Equation (36) this ;
condition can be written |
N ]
* * - * * * = [
(KnOVn * KnO vn) Z (ynm vmvn * Ynm Vm Vn) 0 L-
m=1

n=12...,N (37)

which is a set of N real nonlinear constraint e‘quations involving the
slot voltages. (Note: N real equations are equivalent to N/2 complex
e qguations.) To completely determine the problem N/2 complex con-
s traint equations must still be chosen.
The scattered field will vanish in the N/2 directions 6 o1 @ 02
- e e, SON/Z if the slot voltages satisfy
[ 1 L]

€1 €12 -+ SN Vi Cio

. VZ

Cn/2! Cny2? - N/2

— - b -

A%
| N | (38)

Equations (37) and (38) comprise a system of nonlinear equations
whs
thh can be solved for the slot voltages, provided a solution exists.

<€ again, the load admittances may be found by substituting the
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solution of Equations (37) and (38) into Equation (36). These load ad-
mittances will be purely susceptive and will cause the scattered field
to vanish in directions 0 or’ 0 02" *°° 0 ON/2"

The special case of two slots (i.e., N=2) is worked out in detail
in Appendix B. The admittances are found to be the solutions to a
quadratic equation. The position of the slots on the cylinder surface
is a crucial factor in determining whether or not solutions to this prob-
lem exist. This topic is discussed in detail in Section 4. 4.

The non-existence of a purely reactive loading that results in zero
scattering in one or more directions does not imply that the reduction
of the scattering to levels other than zero in these directions by a
purely reactive loading is impossible. In many cases the scattering
can be significantly reduced below the unloaded level by purely reac-

tive loading.

3. 3. Minimum Scattering Using Purely Reactive Load Impedances
In general, the field scattered by a loaded cylinder camnot be
reduced to zero in a given direction when the load impedances are
purely reactive and all equal (i.e., jX = Z1 = Z2 C—— ZN). This does
not, however, rule out the possibility of reducing the scattered field
to a minimum in a given direction by a suitable choice of the loading
reactance. An optimum reactance, xOp’ for minimum bistatic scat-
te ring cross section can be determined by differentiating the bistatic
S cattering cross section with respect to X and setting this derivative
© qgual to zero. The optimum reactance is found by solving the resulting
€ qguation.
Applying this procedure to the case N=1 yields the following
< sult.

X, = l/Z[G:tJGZ+4I] (39)

Op
Whe xre

&%+ F%) - (c®+ D% (A% BY
(c® + D?) (BE - FA) + D(E® + F?)

G =
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p(a®+ B%) + (BE - FA)

1 =
(c% + D%) (BE - FA) + D(E® + F?)

and the constants on the right hand side of the above two equations
are real and defined by

A+jB = S_(8

0 0) =
C+ jD = yll (60)

E+ jF = (yll SO + KIO Sl)

6=6 0
Equation (39) yields two solutions one of which results in a mini- }
mum and the other a maximum bistatic scattering cross section in the =
direction 6 =0 0"

Other procedures can also be developed for determining the op-
timal loading reactances for minimum scattering by cylinders with

rmore general configurations of purely reactive loadings.

3. 4. Zero Scattering at N Different Frequencies..
Many times it is of interest to modify the scattering properties
o f an object at several different frequencies or over a large band of
fxr equencies. Consider the problem of the synthesis of N load imped-
& x ces that reduce the scattered field to zero in one direction at N
different frequencies w PP W ot Wy

At the first frequency, w,, the constraint equation is

1’
N

ClO+Z Vm (wl)clm =0
m=1

“VhexeC,. =5 (6:0, 0=0).
Th 1j J 0 .
< gecond constraint equation is
N

m=1
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where Czj = Sj (6 =06 o v =w2). The slot voltages in the first equation,
{Vm (wl), m=1,2,..., N} , and the slot voltages in the second equa-
tion {Vm (wz), m=1,..., N} are in general not equal and must be con-

sidered as independent variables. Likewise all other slot voltages at
the other frequencies must be treated as independent variables.

Using matrix Equation (26) all the voltages can be eliminated
from the problem and the constraint equations written directly in terms

of the admittances. Consider the nth constraint equation

N

Cn0+z Cnm m(w):O
m=1

Evaluating matrix Equation (26) at w=w and augmenting it with the

above constraint ®quation yields

- S 1T -
ymt Y Y12 - YIN Vil ) ! [ %o
Y21 Y2t ¥y - -+ Yon Valwp) | | Kz
YN1 YN2 - -+ YN YN KNo
Cnl CnZ e CnN VN(wn) 'CnO
= - - ~ (40)

“here all the coefficients Ynm and K no 2F€ evaluated at w=w and the
1o aq admittances Y are assumed to be frequency mdependent
The first matrix in Eq uation (40) becomes N by N+1 at this step.

E QAu ation (40) however, can be rewritten as
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_ - _
yth Y12 <N Ko [Vilwy)
Y21 Y28 Y, - - - Yono Kool [Valwy)
= 0
YN1 YN2 «+ - YN YN Enol | Vn(@n)
| St c_, ... Cn S 1

which will have a solution only if the determinant of the coefficient
matrix vanishes. Similar arguments hold for all N frequencies and

this gives a system of N nonlinear equations in terms of the N load

admittances.
ymt Yy Y2 - i Ko
Y21 Y225 ¥, - - - Yan Ky
-0
YN1 YN2 -+ YnN YN BNo
Cn1 Ch2 -+ Cin Cho (41)

for n=1, 2, ..., N with all the Ynm and K n0 coefficients

evaluated at w=w .

Provided a solution exists, this set of equations can be solved for the

load admittances Yl’ Y , Yn which will give zero scattering in the

2t
direction 6 =0 0 at the frequencies W W

y ceey Wage
The special case of zero scatteringzin one di:\;ction at two fre-
quencies is examined in detail in Appendix C. The impedances are
found to be solutions to a quartic equation.
Throughout this section it has been assumed that the scattering
was forced to zero in the same direction, 6 =6 0 at all N frequencies.

Examining the theory shows that this restriction is not necessary.
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The scattering can be reduced to zero in one direction at one frequency,
a different direction at the second frequency, and so forth. However,
at any one frequency the scattering is still reduced to zero in only one
direction.

An assumption has been made through the development of this
last procedure that the load impedances are constants with respect to
frequency. The practical application of this procedure as a broad
band technique is thus limited by the frequency dependence of the load
impedances actually available for implementation.

-y

fP_Km. g B s
]



CHAPTER 1V

NUMERICAL RESULTS AND DISCUSSION

In order to gain a firm understanding of the theory and proce-
dures developed in the previous two chapters a considerable amount
of numerical results were calculated. This chapter deals with the

presentation, interpretation, and discussion of these results.

4.1. Numerical Method

The series SO’ Sm’ Yom’ and KnO involved in the expressions for
the bistatic scattering cross section and the slot impedances were evalu-
ated on the Michigan State University CDC 6500 computer. Series SO’
Sm’ and KnO converged rapidly and the computations were straight
forward. Thirty terms were retained in these series. This gave
eight-digit accuracy over the range of cylinder size considered (i.e.,
1= ka= 13). The theory is not limited to this range but for larger
cylinders it may be necessary to retain more terms to attain this ac-
curacy.

The evaluation of series Yom? the self and mutual radiation ad-
mittance of the slots, is complicated by the slow convergence of its
imaginary part. Mathematically the imaginary part of Ynm approaches
infinity as the slot width 6m approaches zero. Physically this implies
an infinite stray capacitance existing at the slot with an infinitesimal
gap width. The real part of Yom remains finite for any slot width cor-
responding to the existence of a finite radiation resistance for a slot
radiator. Thus the numerical calculation of Yom requires special
attention.

The actual computation of Yom is accomplished by summing 300
terms of the series. The first M terms of the series are treated
exactly, where M depends on ka and varies from 95 to 149. In the next

(150-M) terms the approximation

23
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1 ) Y (k Y ka) o
n  (ka) o (ka) n-1 (ka

~ -

Hn("‘)' (ka) Y! (ka) ) Y_ (ka) -kaJ

is made since | Yn (ka)| >> | I (ka)| for n>>ka. The Bessel func-
tions are replaced by their asymptotic expressions for large order

in the last 150 terms. This leads to the approximation

(2) -1
H,  (ka) - ( n-1 )n-l/z(eka ) n
- = -
H (2) (ka) n 2n ka
n
where e = 2.71828... . The real part of Yom has eight-digit accuracy

while the imaginary part may be in error by as much as one per cent,

but in most cases the error is much less than this.

4. 2. Effect of the Slot Width

As discussed in the previous section, the slot width has a signi-
ficant effect on the imaginary part of Ynm® It is thus reasonable to
expect the slot width to have some effect on the load admittances re-
sulting from the synthesis procedures. Numerically, extensive cal-
culations were performed for different load configurations at several
values slot width 6. It was found the real parts of the load admittances
obtained from the impedance synthesis procedure are only slightly af-
fected by the slot width, however, its effect on their imaginary parts
is more significant.

It was also found that the bistatic scattering patterns for zero
scattering in several directions are nearly identical for different slot
widths.

One more remark on the slot width is also important. The value
of § limits the size of a cylinder that can be considered with this theory
since the slot width 6a is assumed to be electrically narrow. If
6a<\ /10 the slot can be considered to be electrically narrow and it

follows that the electrical cylinder size is limited by

T

ka< —%
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4.3. Zero Scattering in Several Directions

Numerical results of the impedance synthesis procedure of
Section 3.1 are presented and discussed in this section. The slot con-
figuration and the directions in which zero scattering is desired are
specified and the impedances necessary to realize these scattering
modifications are calculated using Equations (35) and (36). It is of
interest to examine numerically the effect the number of slots and
their location (relative to the incident wave and directions of zero
scattering) have on the synthesized load impedances.

The superposition picture is useful in interpreting the numeri-
cal results. It should be remembered, the modified scattered field
of a loaded cylinder is the superposition of the field scattered from a
solid cylinder and the fields radiated by a series of driven slotted
cylinders whose driven slots are located at positions corresponding
to the loaded slots on the loaded cylinder [See Equation (31)]. The
slot voltages driving the slotted cylinders are determined by the sur-
face current on the unloaded cylinder, the short circuit radiation ad-
mittances of the slots, and the load impedances [See Equation (26)].
The impedance synthesis procedure yields impedances such that the
radiation zone field '"radiated'' by the driven slotted cylinders has ex-
actly the same amplitude and is 180° out of phase with the field scat-
tered from the unloaded cylinder in directions where the total scat-
tered field has been constrained to be zero.

Consider a brief description of the surface current and the bi-
static scattering pattern of a thick solid cylinder illuminated by a
plane wave whose E -field vector is polarized perpendicular to the

25, 26 The amplitude of the surface current is nearly

cylinder's axis.
constant in the region about the center of the illuminated side of the
cylinder. Progressing toward the shadow region, it decreases nearly
linearly until it becomes slightly irregular in the center of the shadow
region. The backscattering and forward scattering cross section as a
function of electrical cylinder size ka are displayed in Figure 4.1 and the
bistatic scattering cross section patterns for ka equal to 2,5, and 10

are shown in Figure 4. 2. The backscattering cross section, forward
scattering cross section, and bistatic scattering cross section are

normalized to the geometric-optics value of the backscattering cross
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Figure 4. 1. (a) Normalized backscattering cross section and
(b) Normalized forward scattering cross section, for a
solid cylinder as a function of cylinder size, ka.
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section, ma. It is seen that the bistatic scattering pattern of a

thick cylinder is fairly uniform in the region around the backscat-

tered direction while the remainder of the pattern consists of many

sublobes with one very large lobe in the forward scattered direction.
The final component in the superposition picture is the radiation

pattern of a thick driven slotted cylinder. 29, 30

The pattern has a
fairly uniform amplitude over a region of about 60° on either side of
the slot, then falls off to a much smaller value and becomes non-
uniform on the side of the cylinder opposite the slot.

Slot loading impedances, calculated by the procedure described
in Section 3. 1, that result in zero scattering in one, two, three and
four directions are displayed as a function of electrical cylinder
size ka in Figures 4.3, 4.5, 4.7, 4.9, 4.11, and 4.13. Correspon-
ding bistatic scattering cross section patterns for ka equal to two, five,
and ten are shown in Figures 4.4, 4.6, 4.8, 4.10, 4.12, 4. 14, and
4.15. The load impedances are normalized to the slot width 6a. These
normalized impedances are the wave impedances of the slot fields evalu-
ated at the center of the slots. It should be noted, the scales of the
impedances vary from figure to figure. The bistatic scattering cross
section patterns are normalized to the geometric-optics value of the
backscattering cross section, ma.

The resistive parts of the load impedances are negative over a
large range of cylinder size for many slot configurations. This means
that a device with negative resistance characteristics such as a tunnel-
diode must be used in implementing these impedances. The reactive
parts are in general inductive and decrease in amplitude with in-
creasing frequency (i. e., negative slope). In most cases both the
resistive and reactive parts become increasingly smooth and uniform
as the cylinder size increases.

Figure 4. 3 displays the slot impedance necessary for zero back-
scattering from a cylinder with one loaded slot located at 6 =180° as
a function of electrical cylinder size ka. Figure 4.5 displays the slot
impedances necessary for zero scattering in directions 6 =170° and
190° from a cylinder with two slots which are located at 6 =170° and
190°. The resistive and reactive parts of the load impedance in

Figure 4.5 are more nonuniform than those in Figure 4. 3. The load
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Figure 4.3. Slot impedance for zero backscattering as a function of

cylinder size ka.
(a) Normalized resistive part of load impedance.
(b) Normalized reactive part of load impedance.



L Ty -

load at

patterns,
6 =180° with (a) ka=2.0, (b) ka=5.0, and (c) ka=10.0.

section

cylinder loaded with one

static scattering cross
for a thick

a(8)/ma,

Figure 4.4. Normalized bi



R/aé, ohms

x/aé , ohms

31

10000 | Y Y | | T  § T Y m \J T
8000 b -
" -
6000 » i
4000 - -
= -
2000 = +
0 y | 'l
2
10000
T T T Y T T 1§ T T T T Y
i (2]
8000 |
NS )
gt k
=l =
N=2
6000 }= 6,=170° .
(¢} 2= 190°
R 61=62=0. 05 rad. -
4000 - . _
1772
2000 = -
0 [ A 1 A A A il A 4 1 A A
2 4 6 8 10 12
ka
(b)

Figure 4. 5. Slot impedance for zero scattering in directions 6 =170° and
190* as a function of cylinder size ka.
(a) Normalized resistive part of load impedance.
(b) Normalized reactive part of load impedance.
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Slot impedance for zero scattering in directions 6 =90°, and
180° as a function of cylinder size ka. (a) Normalized resistive
part of load impedance. (b) Normalized reactive part of load
impedance.
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Slot impedance for zero scattering in directions 6 =90°, 135°,
180°, and 225° as a function of cylinder size ka.
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Figure 4. 13. Slot impedance for zero scattering in directions 6 =90°, 135°,
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Figure 4. 14. Normalized bistatic scattering cross section patterns,
(0 )/ma, for a thick cylinder loaded with four loads at
6=0°, 90°, 180°, and 225° for zero scattering in the
directions 6 =90°, 135°, 180°, and 225° with (a) ka=10.
and (b) ka=2. 0.
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resistance in Figure 4.5 is always positive which makes the implemen-
tation of this impedance easier than the impedances shown in Figure

4. 3. The bistatic scattering patterns corresponding to Figures 4. 3 and
4.5 are nearly identical, but with a reduction of the scattered field
over a slightly larger angular excursion (i. e., null width) in the

second case.

The cylinder considered in Figure 4. 7 has the same slot configu-
ration as the cylinder considered in Figure 4.5, however, the direc-
tions of zero scattering are now taken to be 6 =90° and 180°. Com-
parison of these two figures shows that the load resistance in Figure
4. 7 is no longer always positive, but takes on large negative values.
Examining the corresponding bistatic scattering patterns indicates
that forcing the scattered field to be zero at 6 =90° has produced large
enhanced scattering in directions other than those constrained to have
zero scattering. The null widths have also markedly decreased. The
enhancement of the scattering is to be expected whenever the load
impedances have large negative resistive parts since this will, in
general, result in an increase in scattered power above that scattered
by the unloaded solid cylinder.

¢ This enhancement of the scattering, as shown in Figure 4.8, can
also be explained by the superposition picture. The field scattered from
the thick solid cylinder and the fields ''radiated' from two slotted cylin-
ders with slots located at 6 =170° and 190°, respectively, must sum
to zero at 6 =90° and 180°. The scattering enhancement arises from
the condition that the fields sum to zero at 6 =90°. The '"driven" slots
are located at 170° and 190° so that 90° is in the region where their
radiation patterns have fallen off to a small value. Large driving vol-
tages are thus necessary to produce enough radiation in the direction
0 =90° to cancel the field scattered from the solid cylinder. Hence
in directions other than those constrained to have zero total scatter-
ing, the total scattered field from the loaded cylinder may be very
large. This type of argument indicates that large negative load re-
sistances and enhanced scattering in some directions other than those
constrained to have zero scattering might be expected whenever the
directions of zero scattering do not lay in the same region as the slots

are located. Figures 4.12, 4.14, and 4. 15 can also be explained by
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this type of argument.

Figure 4. 9 displays the slot impedances necessary for zero scat-
tering in directions 6 =135°, 180°, and 225° from a cylinder with
three slots located at 6 =170°, 180°, and 190° as a function of ka.
The load resistances are in general negative but are very flat and have
fairly small amplitudes. The absolute value of the normalized load
resistances are less than 400 ohms for 2< ka< 13 and in particular
| RZI /a6< 10 ohms for 5< ka< 13. Impedances that have a very simi-
lar form to these have been realized using Negative Impedance Con-
verters. 31 The corresponding bistatic scattering patterns are shown
in Figure 4. 10 and exhibit the widest null widths considered. It should
be noted that in this case the directions of zero scattering and the slot
positions lay in the same region and furthermore the slot positions
are in the center of the illuminated region of the cylinder.

Figures 4. 11 and 4. 13 display impedances that result in zero
scattering in directions 6 =90°, 135°, 180°, and 225° from a cylin-
der with four slots. The cylinder considered in Figure 4. 11 has all
its slots located in the center of the illuminated region of the cylin-
der while the cylinder considered in Figure 4. 13 has its four slots
equally spaced around the cylinder so that one slot is in the center of
the illuminated region, one in the center of the shadow region, and the
remaining two slots are located on the borders between the two re-
gions. The load resistances in Figure 4. 13 are predominantly more
negative than those in Figure 4. 11. Also, the load reactances are
more irregular in Figure 4. 13 where all the slots are not located
in the center of the illuminated region. Considering the correspon-
ding bistatic scattering patterns, again it is seen that the larger the
amplitude of the negative load resistances is, the greater the enhanced
scattering is in directions other than those constrained to have zero
scattering.

Figures 4. 16, 4.17, and 4. 18 examine the change in backscat-
tering cross section when a loaded cylinder is rotated while the load
impedances and relative slot positions are held constant. The cylin-
der considered in Figure 4. 16 has a load configuration identical to
the one considered in Figure 4. 3 and cylinder size of ka=5.0. The

load impedance is taken to have the value of the impedance shown in
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Figure 4.3 when ka=5.0, hence, the backscattering is zero when
0 =180°. Likewise Figures 4.17 and 4. 18 correspond to the load
configurations and impedances described in Figures 4.7 and 4. 9 when
ka=5.0. It is seen that changing the number of slots does not signifi-
cantly change the result. These results are typical of the results ob-

tained for other cylinder sizes.

4.4. Zero Backscattering by a Cylinder Loaded
With Two Purely Reactive Impedances

Numerical results of the impedance synthesis procedure of Sec-
tion 3. 2 for the case of two slots (N=2) are presented in this section.
This synthesis procedure yields purely reactive load impedances. The
difficulty with this procedure is that the constraint equations are non-
linear.

The load reactances for the case of two slots may be found in
terms of a quadratic equation which is derived in Appendix B. Since
the load reactances are solutions to a quadratic equation, real solutions
do not always exist. The existence of a solution depends on the cylin-
der size, slot configuration, and direction of zero scattering. The
existence of solutions to Equation (B-7) for zero backscattering from
several different size cylinders each having one slot located at 6 =180°
and the second slot's position varied from 6 =0°to 6 =170° is indicated
in Figure 4.19. An '"x'" indicates a solution exists for the particular
position of the second slot and cylinder size described by the position
of the '"x'". Likewise, the absence of an "'x'"' indicates no solution exists
for that particular geometry. Examining this figure it appears that
there is an area on the shadow side of the cylinder where no solution
exists when the second slot is located in this area. As the cylinder
size increases, the size of this area also increases. This trend was
examined and found to continue for larger values of ka than shown in
this figure.

Solutions for purely reactive loading impedances that result in
zero backscattering from a cylinder with slots located at 6 =160°
and 180° exist over the entire range of cylinder size 1< kas 12.

These reactances are displayed in Figure 4. 20. The two solutions to
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the quadratic equation which determines these load reactances are
labeled (Xl, XZ) and (X',X'Z). The unprimed reactances are consid-
erably smoother than the primed set. The reactances have negative
slope and thus can not be realized by passive elements32, but work has
been done on realizing such reactances using active elements. 31

Comparison of the bistatic scattering patterns resulting from
cylinders loaded with the two different sets of reactances is made in
Figures 4. 21, 4. 22, and 4. 23. The shape of the scattering patterns
and the null widths differ considerably between the two cases.

Figure 4. 24 displays the reactances that produce zero backscat-
tering from a cylinder with slots located at 6 =175° and 185°. A
solution exists only in the regions 1= ka=s 2.11 and 2.53=< kas 3. 04
and it is very irregular. Due to the symmetry of the two slot loca-
tions with respect to the incident wave and the directions of zero scat-
tering the two solutions are degenerate and thus only one distinct set
of load reactances exists. Comparison of Figures 4. 20 and 4. 24 shows
that a relatively small change in a slot configuration may drastically
change the region over which solutions for zero backscattering exist.

Purely reactive loading impedances that result in zero backscat-
tering from a cylinder whose two slots are located 20° apart are dis-
played as a function of the first slot position in Figure 4. 25. Solutions
exist over only a small region mainly in the center of the illuminated
side of the cylinder. Although not shown by the figure, no solutions
exist in the region OSE)l < 40°.

Figure 4. 26 examines the change in backscattering cross sec-
tion when a cylinder loaded with two reactive slots located 20° apart
is rotated with respect to the incident wave. The load reactances are
held constant and are chosen to give zero backscattering when 61 =160°
[See Figure 4.20]. The two curves represent the two different solu-
tions that are produced by the synthesis px.'ocedure. It can be seen
that the position of the slots is considerably more critical in the case
of the second solution.

An examination of the numerical results of this section seems to
indicate that the best positions the slots can be located in, such that
a solution to the synthesis procedure exists, are in the center of

the illuminated region of the cylinder. Of the slot configurations
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considered, one was found that yielded solutions over the entire re-
gion 1= ka= 13.

It should be pointed out, that even though no solution exists for
a purely reactive loading that results in zero backscattering, a suit-
able set of load reactances can usually be found which significantly

reduces the backscattering.

4.5. Scattering By a Cylinder Symmetrically Loaded
With Equal Purely Reactive Impedances

It has been shown that the backscattering cross section of a
discretely loaded cylinder is strongly dependent on the orientation
of the cylinder with respect to the incident wave. Thus if a cylinder
is slowly rotating about its axis, or is randomly orientated with re-
spect to the incident wave, the impedance loading schemes previously
discussed must be modified to remain effective. One method to
overcome this problem is to adjust the loading impedances as the
position of the cylinder changes. A second, simpler method might be
to symmetrically load the cylinder with several loadings in an at-
tempt to reduce the sensitivity of the backscattering to the cylinder
orientation. This second method is now considered.

This section examines the scattering modifications that can be
obtained by a cylinder loaded with one, two, three, and four purely
reactive slots located symmetrically around the cylinder. Further-
more, the restriction is added that all the reactances loading a cylin-
=X_=X_=X

)o
1772773774
Figure 4. 27 displays the relative backscattering cross section

der are to be equal (i.e., X=X

of cylinders of size ka=2. 2 having one, two, three, and four sym-
metrically located, purely reactive loaded slots. Since all the slots
of a cylinder are loaded by reactances having equal value, the net
effect is very similar to that of a single load. The result for N=3

is superimposed and indistinguishable from the result for N=1 over
the portion of the curve where X< 0. The curves approach asymp-
totic values ranging from approximately -7db for the case N=2 to

-5db for N=4 for large values of inductive and capacitive loading.

The greatest minimization of the backscattering is attained by the cyl-

inder with two slots. The ability of the loading to minimize the
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backscattering degenerates as the number of slots is increased to

three and then four. Figures 4. 28 and 4. 29 display the corresponding
bistatic scattering cross section patterns for the cases of minimum
backscattering when N=1, 2, 3, and 4 and maximum backscattering when
N=4. Only the upper half of the scattering patterns are displayed

since the lower halves are identical to the upper halves due to symme-
try.

Figure 4. 30 displays the optimum minimum and maximum back-
scattering cross section as a function of slot position for cylinders of
size ka=2. 20 loaded with one and two purely reactive slots. In the
case of a single slot, it was found in general, the control over the
scattering was markedly decreased for ka>5 and also when the slot
is located in the shadow region of the cylinder. The introduction of
the second slot considerably increases the slot positions where signi-
ficant reduction in backscattering can be accomplished. Figure 4. 31
displays the load reactance required to obtain the optimum minimum
backscattering from a single slotted cylinder as described in the
previous figure. The technique described in Section 3. 3 was em-
ployed in calculating the results in the last two figures.

The backscattering cross section as a function of slot orienta-
tion for fixed, purely reactive loading is displayed in Figure 4. 32.
Cylinders with one, two, three, and four slots are considered and in
all cases the load reactances are chosen to minimize the backscattering
at © l=180° . Significant reduction of the backscattering is obtained
over the largest region of slot orientations when the cylinder with
three slots is considered. In all cases some slot orientations exist
where enhancement rather than reduction of the backscattering is

experienced.

4.6. The Frequency Dependence of the Modified Scattered Field

The techniques that have been discussed in this chapter are con-
cerned with modifying the field scattered by a cylinder at one fre-
quency only. It is usually desired, however, that the scattering be
modified over a band of frequencies. In this section the frequency
dependence of the fields scattered by loaded cylinders will be dis-

cussed.
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The frequency dependence of the field scattered by a loaded
cylinder depends directly on the frequency dependence of the load im-
pedances. For example, if a set of load impedances can be found that
have exactly the same frequency dependence as the desired loading
that results in zero backscattering, zero backscattering will be at-
tained at all frequencies.

Three types of load impedances will be considered: (1) the
short circuited TEM parallel plane line; (2) the short circuited TEM
parallel plane line in series with a resistance; and (3) the constant im-
pedance (i. e., an impedance that is constant with respect to fre-
quency).

The geometry of the short circuited TEM parallel plane line is
shown in Figure 4. 33. The input impedance of the line is purely re-

active and given by33

Z. = j Z.tank{ ohm-meter

in 0

where

ZO = ;0 d ohm-meter
is the characteristic impedance of the line, f is the length of the
line, d is the separation between the parallel planes and Lo is the im-
pedance of the medium between the parallel planes. This type of
impedance is easily implemented behind the slots in a cylinder sur-
face as a load impedance. This topic is discussed in detail in Chap-
ter 5.
The short circuited TEM parallel plane line with a resistance
in series yields an impedance with a constant resistance and a reac-
tance which behaves as a short circuited line. This type of impedance
could be easily implemented by installing a narrow resistive strip
along each input terminal of the parallel plane line discussed above.
No attempt is made to explain the implementation of a constant
impedance. It is presented to give a comparison of the frequency de-
pendences of differing cylinders and loadings. All end effects at the

junction of the load impedance and the cylinder surface are neglected.
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Figure 4. 33. Short circuited TEM parallel plane line.
(2) Geometry (b) Schematic (c) Short circuited line
with series resistance.
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The bandwidth of a loaded scatterer is defined as the frequency
band over which the backscattering cross section is reduced by
10db or more below the level of the backscattering cross section of
an unloaded cylinder of the same size. The backscattering vs. fre-
quency curves are not symmetric about the point of zero or minmum
backscattering. Hence, it is convenient to define an upper half band-
width, UHBW, which is the portion of the bandwidth above the point of
zero or minimum backscattering and similarly a lower half bandwidth,
LHBW. The bandwidths are given in percent of the frequency of zero
or minimum backscattering.

The frequency dependence of the backscattering from a one-
slot cylinder loaded with a constant impedance is shown in Figure
4. 34(a). The backscattering cross section of the loaded cylinder is
normalized to the backscattering cross section of an unloaded cylin-
der of the same size and plotted as a function of ka, which is linearly
proportional to frequency. The load impedance is obtained from
Figure 4. 3 with ka=6.5 which results in zero backscattering at this
frequency. The UHBW is 43% while the LHBW is 18% for an overall
bandwidth of 61%. Figure 4. 34(b) displays the frequency dependence of
a three-slot cylinder loaded with a constant impedance obtained from
Figure 4. 9 with ka=6.5. The bandwidth is extremely narrow. Com-
paring Figures 4. 3 and 4. 9, the impedances necessary for zero back-
scattering, shows them to be very similar for ka>4, yet the corre-
ponding curves in Figure 4. 34 differ greatly.

Figure 4. 35(a) compares the frequency dependence of the back-
scattering from a two-slot cylinder loaded first with a TEM line in
series with a constant resistance and secondly a constant impedance.
In both cases the value of the load impedances at ka=6. 4 is set equal
to the value obtained from Figure 4.5. This results in zero scat-
tering in directions 6 =170° and 190° at ka=6.4. The characteristic
impedance of the TEM line is Zo/a6 = 2407 ohms which corresponds
to an air-filled parallel plane line with the planes separated by twice
the slot width, that is d=2aé.

In the case of the TEM line in series with a constant resistance
the UHBW is 14% and the LHBW is 25%, while in the case of the con-
stant impedance, the UHBW is 49% and the LHBW is 43% which is a
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Figure 4. 34. Relative backscattering cross section as a function of

cylinder size ka for cylinders with (a) one slot,
(b) three slots.
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significant improvement. Comparing the frequency dependence of
the short circuited line (i. e., tankf! which has a positive slope) and
the constant reactance to the reactance in Figure 4. 5(b) (which has
a negative slope), shows that the constant reactance matches the de-
sired reactance in Figure 4. 5(b) better than the short circuited line
does. This explains the wider bandwidth in the case of the constant
impedance. Figure 4. 35(b) displays the bistatic scattering cross
section at 6 =170° as a function of frequency for the same constant
impedance loading used in Figure 4. 35(a). The UHBW is 38% and
the LHBW is 58% with general shape of the curve similar to the back-
scattering cross section curve shown above.

Figures 4. 36 and 4. 37 describe the frequency dependence of
the bistatic scattering pattern of a cylinder loaded with the same con-
stant impedance load configuration that was a consideration in the
previous figure. The bistatic scattering patterns are normalized to
the geometrical-optics value of the backscattering cross section.

The frequency dependence of the backscattering cross section
of a cylinder loaded with two purely reactive loads that yield zero back-
scattering when ka=6.5 is displayed in Figure 4. 38(a). Three differ-
ent types of load reactances are compared: (1) A short circuited TEM
parallel plate line with Zo/a6 = 120w ohms, 1 l/a. = 0.197, and
£ Z/a = 0.402., (2) A short circuited TEM parallel plate line with
Zo/a6 = 240w ohms, 1/a. = 0.159, and ¢ 2/a. = 0. 440., (3) A constant
reactance with Xl/acS = 1267. and Xz/aﬁ = -220.5. The bandwidths
for the three types of loading are: (1) UHBW 3%, LHBW 3%, (2) UHBW
5%, LHBW 4%, and (3) UHBW 18%, LHBW 12%. The values of the
load reactance for the two cases of short circuited TEM lines are
shown in Figure 4. 38(b). Comparing these reactances with the de-
sired reactance function displayed in Figure 4. 20 explains the dif-
ferences in bandwidth for the three different types of loading. Com-
paring the curves for constant reactance loading and those for con-
stant impedance loading (i. e., with non-zero resistances) shows that
in most cases the purely reactive loading has a significantly narrower
bandwidth than general impedance loading.

It has been seen that the reactances necessary for zero back-

scattering generally have a negative slope as a function of frequency
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Normalized bistatic scattering cross section patterns, o (0 )/rra,

Figure 4. 37.
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while a short circuited TEM line has a tankf! dependence, which has
a positive slope. Furthermore, in many cases large reactances are
required which force the short circuited line to be operated near
antiresonance (i.e., kf~ w/2). In this region tank{ is a rapidly
changing function of frequency which is undesirable from the view-
point of bandwidth. Increasing the characteristic impedance of the
line moves the operating region away from the antiresonance point
thus in most cases increasing the bandwidth. 13

Examing Figure 4. 27 suggests a broad band reduction of ap-
proximately -5dB in the backscattering might be attained with very
large purely reactive loading. This is confirmed for the case of a
constant reactance of Xl/aﬁ = 20, 000 ohms in Figure 4. 39(b). The
practical problem with this scheme is in realizing a very large reac-
tance which is constant with respect to frequency.

The loading technique developed in Section 3. 4 for zero scat-
tering in one direction at several different frequencies suggests a

method which might lead to broadband scattering modifications.
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CHAPTER V

EXPERIMENT AND COMPARISON TO THEORY

To confirm the preceding theoretical predictions a series of
backscattering measurements were performed on a cylinder with one

purely reactive loaded slot.

5.1. Experimental Model and Experiment

The experimental model [See Figure 5.1(a)] consisted of a
cylindrical brass tube, 7/8-inch OD, 3/4-inch ID, and 36 inches
long, with a 1/8-inch wide longitudinal slot cut in its surface. The
slot impedance is implemented by installing a curved parallel plane
TEM line interior to the cylinder. The inner wall of the slotted cylin-
der forms one of the conductors of the line, with the outer surface of
a brass cylinder of OD 1/2-inch, installed coaxial with the slotted
cylinder forming the other conductor. One end of the line opens at
the slot in the cylinder's surface while the other end is short circuited.
The short location is adjustable so that the length of the line can be
varied, which in turn varies the slot impedance.

The experiment is conducted inside an anechoic chamber at
frequencies ranging from 8. 4 to 9. 4 GHz. The experimental arrange-
ment and block diagram of the test instrumentation are shown in
Figure 5. 1{a) and (b), respectively. The source separation method34
is used to measure the backscattering cross section of the cylinder.

The horn antenna does not illuminate the cylinder with a plane
wave. The amplitude and phase of the incident wave vary along the
axis of the cylinder. It was found that by placing the cylinder about
ten wave lengths in front of the horn the consequences of the nonuni-
form illumination and the end effects (arising from the finite length
of the scattering model) were small, while the detection system

provided the desired sensitivity.
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Figure 5. 1. Scattering Model and Experimental Arrangement.
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5.2. Comparison of Theory with Experiment

The first comparison is made with data which depends on the
slot orientation but only indirectly on the value of the load impedance.
Figure 5. 2 compares experimental data and theoretical calculations for
the maximum and minimum backscattering cross section, which can
be achieved by one purely reactive load, as a function of slot location.
The experimental points were determined by setting the position of
the slot, then determining the maximum and minimum possible back-
scattering by varying the short position. The theoretical results were
calculated from Equation (31) with the reactances for maximum and
minimum backscattering calculated from Equation (39). The agree-
ment between experimental and theoretical results is excellent.

In order to compare results directly involving values of the load
reactance, a mathematical model must be developed for the impedance
backing the slot in the experimental scattering model. The load im-
pedance of the slot is modeled as a short circuited TEM parallel
plane line [See Section 4. 6] in series with a lumped reactive imped-
ance which accounts for end effects and the right angle bend at the
input end of the line [See Figure 5.3(b)]. The length of the parallel
plane line is taken to be the mean length of the curved line

1
L = a;b¢ = 0.79375¢ cm.

where a'is the inner radius of the outer cylinder, b is the outer ra-
dius of the inner cylinder, and ¢ is the angular displacement of the
adjustable short [See Figure 5.3(a)]. The separation of the plates

of the line is
d=a'-b=20.13175 cm.

The approximate model of the impedance backing the slot in the ex-

perimental scattering model is

Zl = jXE + j1.197 tan (0. 007937k¢) ohm-meters.
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(a)

Zl jt;od tan kit
®
(b)

Figure 5.3. Cylinder with curved parallel plane line short circuited at ¢.
(a) Cross-section view. (b) Equivalent circuit for cavity load.
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Figure 5. 4 compares theoretical and experimental results of
backscattering as a function of the angular length of the cavity. The
experimental points are obtained by setting 6 1=180° and observing the
backscattering while varying the position of the short, ¢. The theo-
retical calculations involve first calculating the slot impedance for a
given ¢ using the above expression, then calculating the backscattering
cross section from Equation (31). The lumped end effect reactance
XE was obtained by matching the position of the first minimum point
of the theoretical and experimental results which required a 12 degree
shift. This corresponds to an inductive reactance of 0. 427 ohm meters.
The agreement between the theoretical and experimental results is
again excellent. This indicates that not only is the theory valid, but

the approximate model for the curved parallel plane line is reasonable.
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CHAPTER VI

CONCLUSIONS

In the preceding chapters the scattering behavior of a con-
ducting cylinder loaded with N impedance backed longitudinal slots
and illuminated with a normally incident plane electromagnetic wave
polarized with its E -field vector perpendicular to the cylinder axis
has been considered. The slots were assumed to be electrically nar-
row but finite and with constant electric fields across them. Under
this assumption the analysis was exact.

It has been shown that the field scattered by a cylinder loaded
with N slots can be:

1. reduced to zero in N directions when the load

impedances are complex and can take on all
positive and negative values,

2. reduced to zero in N/2 directions when the

loading impedances are purely reactive,

3. reducedto zeroin one direction at N different

frequencies.

Synthesis procedures have been developed for finding load
impedances that produce the above results. For Case (1) the proce-
dure is straightforward, involving only the solution of a system of
linear algebraic equations. On the other hand, the constraint equa-
tions involved in the procedures for Cases (2) and (3) are nonlinear.
This complicates the procedures, and in fact, solutions to these equa-
tions do not always exist.

It was found the position of the slots on the cylinder surface
is a critical factor in whether or not solutions exist to the last two pro-
cedures. The case of a cylinder loaded with two purely reactive slots
has been numerically examined in detail. A set of slot positions has

been found such that solutions exist for zero backscattering over the

83



84

entire range of cylinder size considered (i.e., 1=ka=13). These
numerical results seem to indicate that the best positions for the slots
are in the center of the illuminated region of the cylinder. For these
slot positions, purely reactive loadings which significantly reduce the
scattered field in the desired directions can usually be found even when
no solution exists for zero scattering in these directions.

The positions of the slots were also found to be important
factors in determining the form of the bistatic scattering cross section
patterns and null widths for all types of loading impedances. Two dif-
ferent slot configurations having the same number of slots and both
being constrained to have zero scattering in the same directions, may
have grossly different bistatic scattering patterns and null widths.

The frequency dependence of the fields scattered by the loaded
cylinders was considered for three types of load impedances.

1. a short-circuited TEM line.

2. a short-circuited TEM line in series with a

constant resistance.
3. a constant impedance (i. e., constant with
respect to frequency).
Considerably wider bandwidths are, in general, obtained with load im-
pedances which have resistive parts rather than purely reactive load
impedances. Bandwidths of nearly 1:1 are demonnstrated.

An experiment has been performed which confirms the theory.

The basic advantage of multiple impedance loading, over load-
ing by a single impedance, is that it gives additional degrees of free-
dom which can be used to control the scattering of an object over both

space and frequency domains.
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APPENDIX A

DERIVATION OF FOURIER COEFFICIENTS

In this appendix the Fourier Coefficients (17) and (18) for the
problem of radiation from a cylinder with N driven slots are derived.
The z component of the HT-field is given in terms of the un-

known coefficients An and Bn’

[e o]
H; = Z [Ancos (n6 ) + Bn sin (n6 )] H;Z)’ (kr)
n=0 (16)

The coefficients are determined from the boundary condition at the

cylinder surface ~
lind f 5
Vv m
m_ for [6-8 | < ——
m 2
ad

Ele‘ (r:a+) =< m m= l, Z,uoo,N

0 elsewhere (6)

-
The Eg component of the field can be determined from Equation (16)

by using Maxwell's equation for a source free region

Vx_ﬁr = jwe EF
This gives
Er _ i 0 Hr
0 we g or z
@
1
SRR Z [A_cos (n6) + B_ sin (n6)] H ()" (kr)
n=0 (A-1)

where the prime denotes a derivative with respect to kr.
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Using (A-1), boundary condition (6) can be expressed in terms
of the unknown Fourier coefficients

@
r,__+ . . (2)!
Ee(r_a ) = Jgo Z [An cos (n9)+Bn sin (n6 )] Hn (ka)
n=0
p 6
Vm for |6 -6 | <-I
=5 m 2
=4 m m=1,2,..., N
0 elsewhere (A-2)

The coefficient An can be found by multiplying (A-2) by cos
(p6 ), integrating with respect to 6 over the domain [-m, 7], and using

the orthogonality property of the sine and cosine functions. For the
case n} 0 this gives

N C 5m/z v

itga H ) (ka)n cos (n6 ) dO

o -5 /2 2%,
m m

nd
2 N Sin( m)
2y
m

__—(ném)z cos (nem)

s0
N noé
2 1 sin
A = = Z v cos (n6_ )
- 2 (A-3)
For the case n=0
N 0 +6 2
@' 4 2 mm/? v 40
jita A, H (ka) 27 = z
0 0 0 0 -8 /2 ab
m=1 m m
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SO

N
Ay = j21:a§, Z Vi
0 H_ (ka) =1 (A-4)
with the Neumann factor
1 for n=0
€on

2 otherwise,

Equations (A-3) and (A-4) can be combined into the final expression

fbr the coefficient

N (nﬁm
€ 0n Z sin sin\—5—/
A = - V cos (n6_ )
n JZTrat;o H_ (Z) (ka) . ( n6m) m
m= 2 (17)

Similarly coefficient Bn is also found from Equation (A-2)
by multiplying it by sin{p0 ) and integrating over the same domain.

The result of this derivation is Equation (18).



APPENDIX B

PURELY REACTIVE IMPEDANCE LOADS
FOR ZERO SCATTERING IN ONE DIRECTION
FROM A TWO-SLOT CYLINDER

In this appendix an equation is derived whose solutions are the
purely reactive load impedances that cause the field scattered from
a cylinder loaded with these loads to be zero in a direction 6 0 The
constraint equation that forces the scattered field to be zero in the

direction 0 is[See Equation (38)]

o) = 0 (B-1)

C“(O 0) Vl + C12 (6 0) Vot ClO (6
Instead of using the nonlinear constraint Equation (37) to force the load
impedances to be purely reactive, a different procedure will be used
which directly determines an equation for the load reactances. It
can be shown that both procedures yield identical results.

Matrix Equation (26) for the case N=2 is

ymtY Y12 Vi Ko

Y21 Yoot Yol (Ve Ko (B-2)

Equation (B-2) may be used to eliminate the slot voltages from
Equation (B-1). This results in a constraint equation which directly

involves the load admittances.

AYI + BYlY2 + CYZ +D =0 (B-3)

where
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A = Crovae* Cr2Ka0
= C1o

= Crovn t C1ikro

€11 C12 S0

D=1v11 Y12 Ko

Ya1 Y2z %po

The real part of the load admittances are now set equal to

zero so that

Y, = ip,

Y

2 = B,
where By and B , are the load susceptances. This step is equivalent

to enforcing constraint Equation (37). The complex coefficients of

Equation (B-3) are written

A = A_+jA,
r 1

B = B_+ jB,
r 1
C = C_+jcC,
r 1
D = D_+jD.
r 1

where the subscripts r and i refer to the real and imaginary parts
of the coefficients, respectively.

With these definitions, complex constraint Equation (B-3)
can be separated into real and imaginary parts. This results in two

real equations

APy -BBB,-Cp,tD. =0 (B-4)

AB) -BBP,+CB*+D =0 (B-5)
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Solving these equations for 3 1 and B 2 gives

B = Dr B ci 52
1 A+ BB, (B-6)
and
G:NG2_-4F (A D +AD,)
B - r r 1 1
2 2F (B-7)
where
F = BC +B.C,
r r 1 1
G =

A.C -AC.+B.D. -B.D
i'r ri roi ir
The solutions to Equation (B-6) and (B-7) are the susceptances
that give zero scattering in directions 6 =6 0 There are two possible
sets of susceptances to achieve the same purpose. The purely reac-
tive load impedances that result in zero scattering in direction 6 =96 0
are Z, = --j/ﬁ1 and Z, = -i/B 5"
Equations (B-6) and (B-7) have suitable form for programming

on a digital computer.
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APPENDIX C

ZERO SCATTERING IN ONE DIRECTION
AT TWO DIFFERENT FREQUENCIES

In this appendix an equation is derived whose solutions are
load impedances which result in zero scattering in one direction

6 =06 0 at two different frequencies, W, and w5 Equation (41) for
the case N=2 gives

ymtYy Yy K10
Y21 Yoot Yo Ky =0
n €12 €10 : = “;1
=70
ymt Y Y12 K10
Y21 Yoot Yo Ky =0
Ca1 €22 €20 w=w,
0 -0,

Evaluating these determinants leads to

A1Y1+BYY +C, Y +D, =0

1 1Y, € ¥, * D) (C-1)
A,Y +B,Y Y, +C,¥,+D, = 0 (C-2)
where
Ay = [Cygya + €Kyl - 0
6 -0

0
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Bl = Clo(uzwl, 0 =90)

Cy = [Crovm1 * C1i¥ro0lu - W,
0 =0,
i1 C12 1o
D=1y Y1z Ko
Y21 Y2 “Kaolu - W)
6 =0,
Ay =[Gy C2%o0ly, - W,
0 =0,
B, = C,p(w=w, 0=0)
Cp = [Cov1 ¥ Car¥roly - )
0 -0,
€21 €22 Ca0
Dy Y12 Ko
Y21 Y22 Kool w = w,
0 =0,

Equations (C-1) and (C-2) are easily manipulated into the

form
Y1+LY2+ M =0 (C-3)
2

Y, +NY,+P = 0 (C-4)

where
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L - C,B, - C,B,
A B, - AB,

M - DIBZ - DZBI
AIBZ - AZBI

N - A2L+ BZM-C2
BZL
AM-D
P - 2
BZL
Define
Y2 = GZ+JBZ
and

L = L +jL.
r 1

M = M_+jM,
r 1

N = N_+ jN,
r 1

P

Pr + _]Pi

where the subscripts r and i refer to the real and imaginary parts of
the coefficients, respectively. Separating Equations (C-3) and (C-4)
into real and imaginary parts and performing some alegebra these

equations become

Gy = -L,G,tLig, - M, (C-5)
By = LB, -L14Gy - M
N L

2 Ni + sz (G-T7)



4 3 5N12 er 2 (N13 Nr2N1)
Byt 2N; B, +( i " T2 ‘Pr) B t\7 — -NP =7 )P,
N_N.P, P2  nN.%p
+ r 11 _ 1 _ 1 r = 0
4 4 4 (C-8)

Equation (C-8) is a quartic equation which may have real or complex
roots. The only roots that are solutions to this problem are the real
roots. Substituting the real roots of Equation (C-8) into Equations

(C-5), (C-6), and (C-7) gives admittances

Yl = G1+JB1

YZ = GZ + Jpz
which result in zero scattering in direction 6 = 6 o 2t frequencies

w =W, and w =W,
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PART 1I

MODIFICATION OF RADIATION FIELDS AND
CIRCUIT PROPERTIES OF A LOOP
ANTENNA BY MULTI-IMPEDANCE LOADING
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CHAPTER I

INTRODUCTION

The modification of the radiation and circuit properties of a cir-
cular wire loop antenna by lumped impedance loading is investigated
in this study.

When a wire antenna is excited, a current is induced on the
antenna. This current radiates an electromagnetic field and deter-
mines the input impedance of the antenna. Lumped impedances can
be installed along the antenna to modify the magnitude and phase of the
antenna current which, in turn, modifies the antenna radiation and
input impedance. The modified current can assume quite an irregular
distribution and hence a fairly accurate theory must be developed.

The problem of determining the current distribution on a cir-
cular loop antenna can be formulated in terms of two coupled integral
equations. 1 These equations reduce to a single one dimensional inte-
gral equation after the 'thin wire' approximation is introduced. Fourier
series solutions to the thin wire integral equation have been studied by
Hallenz, Storer3, and Wul. An iterative solution has been considered
by Adachi and Mushia.ke4’ 3,

based on the work of Hallen, Storer, and Wu.

The theory formulated in this study is

A point exists in Hallen's series where the terms become very
large and for some antenna dimensions infinite. Hallen concluded that
the series was divergent and could only be used as an asymptotic series.
He suggested that the problem arose from the one dimensional approxi-
mation. Storer extended Hallen's result by summing the first five terms
of Hallen's series exactly and using an approximate integral technique
to sum the remaining terms. The troublesome point in Hallen's series
now occurred under an integral which Storer evaluated as a Cauchy
principle value. Wu questioned Storer's technique and re-examined
Hallen's solution. He pointed out that Hallen's difficulty did not arise
from the one dimensional integral equation, but arose from other ap-
proximations made. Wu used a less approximate Kernel and modified

Hallen's solution eliminating the troublesome point.
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All of the above authors assumed a 6-function (or slice) voltage
generator in their model of the loop antenna. This leads to an infinite
input susceptance and thus a divergent series for the input admittance
of the antenna. Wul suggested a possible procedure for calculating
the apparent input admittance of a half loop antenna above a conducting
ground plane driven by a coaxial line, but unsolved problems still
exist in applying this procedure to the loop antenna.

King, Harrison and Tingleyé’ 7 have calculated values for the
input admittance of, and current distribution on, moderate size loop
antennas using Wu's theory. They retain twenty terms in Wu's series.
The number of terms retained in the divergent series for the loop sus-
ceptance appears to be somewhat arbitrary. For example, the sus-
ceptance of a thin loop one half wave length in circumference increases
by more than 20% when thirty terms rather than twenty are retained.

In this study further reference to this theory will be made as the twenty
term theory.

An alternate approach to modeling the voltage driver is taken
in this study. The generator is assumed to be of finite size and to
exist over a finite gap along the loop. This leads to a convergent series
for the admittance of the loop and the number of terms retained in the
series is determined by the desired accuracy of the solution. A dis-
cussion and justification of the 'finite gap' theory is given in Chapter
III of this study. It is shown that by introducing the finite gap into the
theory, the agreement between the theory and experimental results is
improved. Very recently, Ito, Inagaki, and Sekiguchi8 published a
paper on arrays of loop antennas where they also introduced a finite gap
generator.

Multiloaded loop antennas have been investigated by Iizukag’ 10
and Harringtonl l. Iizuka developed his theory by the superposition of
Storer's results and found a significant discrepancy between his theory
and his measured admittances. Harrington based his results essen-
tially on Hallen's series and did not include Wu's correction. He did
not compare his theoretical results with any experimental results. Both
authors developed their theories for more than one loading, but restricted
their results and discussions to singly loaded loops. Furthermore,
most of the existing results are confined to resonant loops of one wave

length in circumference.
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When a loop is loaded by more than one load the number of
variables (i. e., load resistances, load reactances, position of the
loads, etc.) becomes overwhelming. To overcome this problem,
synthesis procedures are developed in this study to facilitate the de-
sign of a multiple-loaded loop antenna.

The major purposes of this study are (1) to develop an improved
theory for the loaded loop antenna, and (2) to develop and analyze pro-
cedures for the design of a multiple loaded loop antenna that results in
desired radiation or circuit characteristics.

In Chapter II an integral equation for the multi-loaded loop
excited by a finite gap generator is developed and a Fourier series
solution is obtained.

Numerical methods used in evaluating the theory results are
discussed in Chapter III. In addition, a comparison of the 'finite gap"
theory to other existing theories and experimental results is made. A
brief discussion of the characteristics of unloaded locp antennas is also
presented. Since the 'finite gap'' theory is more applicable to larger
loops than Storer's theory or the twenty term theory, some examples
of impedances, currents, and radiation fields of large loop antennas
are also presented.

Chapter IV deals with procedures for determining (1) the load-
ings necessary for a specific modification of the radiation pattern of a
loop antenna, (2) the optimum reactive loading to produce maximum
gain in a specified direction from a loop loaded with a single impedance,
and (3) the set of reactive loadings that leads to a specified input
impedance.

Chapter V summarizes the results obtained in this study.



CHAPTER 11

THEORY OF THE LOADED LOOP ANTENNA

2.1. An Integral Equation for the Current on the Loaded Loop Antenna

A transmitting circular loop antenna of radius b and constructed
of perfectly conducting wire of radius a is loaded with N impedances as
shown in Figure 2. 1. The loop is excited by a finite-gap, voltage gen-
erator which produces a uniform, impressed electric field in the gap
region |¢] < 60/ 2. The nth load impedance Zn is lumped into a gap
region of angular width Gn whose center is located at ¢ = ¢n' There
are two components of surface current density induced on the loop,
K¢(¢, ¢) flowing around the loop in the ¢ direction and K¢(¢. J) flowing
about the wire in the ¢ direction. Integral equations for the currents on
the loop can be obtained from the boundary condition on the tangential
component of the electric field at the loop surface.

The problem is greatly simplified by assuming a thin wire loop
whose gap generator and load impedances are restricted to regions
small with respect to a wave length, that is

a? << b and Ka << 1 (1)

and

6nb << A for all n. (2)

where k = o\ §_ = 2m/x is the propagation constant. Harmonic
time dependence of the form eIt is assumed. .

Under the thin wire assumption, the Y component of surface
current will be small in comparison to the ¢ component of surface cur-
rent and can be neglected. It is also reasonable to assume the total

current flowing in the loop is

I,(4) = 2ma K (4) .

The integral equation for I¢(¢) can be derived from the boundary
condition on the ¢ component of the electric field at the loop surface
which is
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Finite gap
generator

(a)

(b)

Figure 2. 1. Loop antenna loaded with N impedances: (a) Geometry,
(b) Schematic.
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i a
[E¢ = E¢]

where E} is the impressed electric field at the surface of the loop and

=0 --- at the surface of the loop (3)

E; is the induced electric field at the surface of the loop maintained by
the current and charge on the antenna.

The impressed field is

-V, P_(¢) -——for |¢] <& /2
i = - as
Ey = (L0 )2 P (0 -¢.) for_l;b ¥m I /2 @
0 --- elsewhere on the loop
where
# ---for |¢]| < 5_s2
P (¢) = (5)
0 --- elsewhere

is a unit area pulse function. The distance from the center of the loop

to the observation point of the field on the loop surface has been taken

to be b everywhere which is consistent with the thin wire assumption.
The induced field is

E; = -%9%-3@% (6)
where
o) - 1 L e” kR '
4“60 Sv p(r" dv
and

A = 2 S& TEy e ——

are the scalar potential and the ¢ component of the vector potential,
respectively. p(;') and :f(?') are volume charge and current densities
and R = I; - ¥'| is the distance between the source point T' and field
observation point r. For the loop

(¢')
TEyav! - & ady' bde'
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pEav' ~ 18D aqyr bag!

where q(¢') is the total charge per unit length on the loop and is related

to the total current on the loop by the continuity equation

2 RCY
b ) = -jwq(e') .
The potentials maintained by the current and charge on the loop are
now
! ™ 919"
°0) = -5 aE g sy Wb - ") do' (7)
Ay = 32 (" 167 We - 1 cos e - o1 a0 ®)
-1T
where
m -jkR
Wb - 6" = -‘%S S —— @ . (9)
-T

Substituting equations (7) and (8) into equation (6) yields

EX$) = —— 2 " 2k Wb - ¢') d'
¢ ) Jm4ﬂ't b %— - ¢

jwpo 4 1 ' ! !

] —‘ﬁ—g_ﬂrq,(«b)ww - &') cos (6 - &) db

Integrating the first integral in the above expression by parts and

noting that % W(b-6") = - % W(é - ¢') gives

a —
E2¢) - 4ﬂbS (¢')[kb + Kb cos (b -6 | W(e -6 o’
(10)
where l;o = Vpo7 & is the intrinsic impedance of the medium. Sub-
stituting equations (4) and (10) into equation (3) results in the following

integral equation for the current on the loaded loop antenna.

V P () = g L )Z P (5-6 )+ 4ﬂb§ (4") M($-0") do"*
m=1 (11
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The kernel is now

M6 - 6 = [ Kb cos (6 - 9 +k—lga%:z] W - ¢ (12)
where
- e-jkle
Wi -6 = 5= ‘Lr —Rl—dqﬂ (13)
with
R, = R/b
: [a® sin® (04 /2] + 42® sin® (4'/2)
b
= J4 sin” [(6-41/2] + A%/b* (14)
where

A = 2asin(y'/2).

The approximate expression for R given above is consistent with the
thin wire assumption and retains the essential characteristic of the

singularity in the integrand of W(¢ - ¢').

2.2. Fourier Series Solution for the Current on a Loaded Loop Antenna
A solution of integral equation (11) can be obtained in the form of
a Fourier series. The current I¢(¢'), the kernel W(¢ - ¢'), and the

pulse function Pm(tl> - ¢m) are expanded in Fourier series.

L6 = i 1 e”ind’ (15)
n=-0o
QO
W(¢-¢') - Z Kne'Jn(d"‘d)') (16)
n=-co
- in(é-6_)
P_(4-6_) i B e (17)
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where In' Kn’ and Bnm are unknown Fourier coefficients which are

defined by the following integrals.

I = ZﬂSI L (6" ™" ao (18)
1 (" in(¢-4"
Kn——,,S W(o - d"e dé
-
- K__ (19)
" i(6-0_)
B =5\ P (-0 )e ™ db (20)

Bnm is easily evaluated by substituting equation (5) into equation (20)

and performing the integration. The resultis

nd
(=) N
nm  27b nd (21)

m

(~==)

A Fourier series expansion of the kernel M(¢ - ¢') is obtained by sub-

stituting equation (16) into equation (12) and is

M - ¢') = § ane‘jn(¢“¢') (22)
n=-0o
where
kb n2
n T 2 (Kn+l * Kn-l) ~ kb Kn (23)
Substituting equations (15), (17), and (22) into integral equation
(11) gives
@ N
; -Jn(¢-¢ )
-jnd m
Vo Z Bnoe Z I(¢ )Z Z
n=-0o m=1 n—-oo

_ ms‘ Z 1 onine’ Z a, 601 4o,

™h=-00
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it .
- o -Jné
- 2b i In 2n€

n=-qo

The following expression for I is derived from the previous equation

by using the orthogonality prOperty of the eJ né functions.

_2b J'n¢m
L = it _a [o no Z (¢m) m Bam © ] (24)

on

The series determining the current on the loaded loop antenna is given
by equations (15), (21), and (24) and is

s ] sin —2—
1¢(¢) - §,_.L Vo[a— +2 Z cos (n¢)]
° n=1 n

" (=)

o
nd
i Lo )2 [i+ , i sin (—221-) cos (n((b -tbm)):l
B 4>¢m m| a nbd a
m=1 ° n=1 ( Zm) n

The values of the current at the positions of the loads must

(25)

now be determined. Load voltages are defined as

Vm = L) Zm (26)

m

where Vrn is the voltage drop across the mth load impedance Zm. It
is also convenient to define

nd
. & sin£ m) COSLD(¢-¢ Q
y4 -4 ) = g—;-’;[%ﬂz “5; a = ](27)
5 (5e)

which has the same dimension as admittance but is actually the current

distribution on an unloaded loop antenna driven by a generator of unit
voltage located at ¢ = ¢n. For the case of the voltage generator located
at ¢ = ¢° = 0° the notation y($) will be used and it is implied that

6 = 60. Evaluating equation (25) at the N positions of the load im-
petiances and noting that ¢(¢ )=V _ Y where Y = l/Zm and is the

load admittance gives N mmultaneous equatwns-
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N
V.Y =V ye) - E vy -¢_)
m=1

n =12, ..., N (28)

With the notation

Yom = Y, -9 ) Y

y_) (29)

n

the previous set of simultaneous equations can be written in matrix

form as
~ ar —
Yty Yi2 ... YIN Vi Yy
Y1 Ya2tY, Y2N v, )
. A (30)
RSS! YNz Yan' N || V| | YN

which can easily be solved for the load voltages.
The current on the loaded loop antenna is now completely de-

termined and given by

L(®) = Vv, y(@) - i Vv -4 ) (31)

m=1

The corresponding input admittance is

N
I1,(0)
e z 7
Yin v = Y mem (32)
o
m=1
where
Vm = Vm/Vo

is the normalized load voltage.

The above results can be interpreted in terms of a superposi-
tion picture which will be useful later. Equation (31) shows that the
current on the loaded loop antenna is the superposition of N + 1 cur-
rents. The first current (corresponding to the first term on the right

hand side of equation (31)) is equivalent to the current on an unloaded
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loop driven at ¢ = 0° by V _, the second current is equivalent to the

current on an unloaded 100p driven at ¢ = d)l. by - Vl' etc. The load

voltages Vir Voo ooy VN are determined by matrix equation (31).
The input impedance and current distribution of the loaded loop

antenna depend on the coefficient

2

n
+ Kn-l) - k_bKn (23)

where Kn has been defined as [ see equations (13) and (19)]

LT e jn(e-¢")
K_ = (—2;)—2- S:ﬂ(&ﬂ R dy’ )e do (33)
and
R, = J4 sinz((¢-¢‘)/2) + 4(a% /%) sin® (¥'/2)
wals 11 12 g evaluated this integral under the assumption az << bz

and obtained

kb
K, = %In(%) -%S\: [2 (x) +jT (%] dx (34)
K _1[—— na, v na, , 1 Zk}EQ +3T d
n Ko(b_) (T) n] -2 Jo Zn(x) J Zn(x)] x
3
where (35)
-1
C_ = tn(4n) +y - zlz El+—l (36)
m=0

and Yy = 0.5772... is Euler's constant, To(x) and fo(x) are the modi-
fied Bessel functions of the first and second kinds of order 0, J (x) is

the Bessel function of the first kind and order n, and Q (x) is the
*13, 14

Lommel-Weber function defined by
1 "
Qn(x) = = Sv 8in(x sin® - n6) do . (37
o

* .
Some authors define the negative of this function as the Weber function
denoted En(x). that is En(x) = -Qn(x).
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2.3. Radiation Fields of a Loaded Loop Antenna

The electromagnetic fields radiated by a loaded loop antenna
can be obtained by integrating term by term the Fourier series expan-
sion of the current on the loop. The electromagnetic fields in terms

of the vector potential are given by

V(- &)

- - - + -

E(r) jwk Jor <. (38)

AT = L vxa (39)

p‘O
where
— P‘o - e-ij

AT) = ESVT(r') = av' (40)

and R = ]; -;'I

Consider the loaded loop antenna which lies in the 0 = 90° plane
with its center at the origin of a spherical coordinate system as shown
in Figure 2.2. Dropping terms of higher order than 1/r and making
the following standard radiation zone approximation

r-1-1 --- for the phase term

R =
r --- for the amplitude term

equations (33), (34), and (35) become

E(r) = -jw(SAe(‘r’) + $A¢(}’)) (41)

H(r) = -jk (-$A¢(}’) + $Ae(?)) (42)

- B _~jkr n2w A -

AF) = z‘,’;%—f 1,606 I KT T b gt (43)
o ‘

which is valid in the radiation zone where r >> b.

The integral that results from substituting equation (31), the
current on the loaded loop, into equation (43) can be integrated exactly
in terms of Bessel functions of the first kind. A similar integral for
the unloaded loop has been evaluatedls’ 16 and the result for the loaded
loop can be obtained by superposition in accordance with equation (31).

The resulting radiation fields of the loaded loop antenna are
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Figure 2. 2. Coordinate system for the fields radiated by a loop
antenna. :
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BE(FT) - 6Ee+$E¢ (44)
- - A A
HF) = - 6E, /L, +dE/t, (45)
where
kb e-Jkr § _
EO - J_-rr— r Vo [Feo - Vm Fem (46)
m=1
‘Kb e-jkr i _ ]
E, = 1= - VO[F¢O - VnFom (47)
m=1
and
nd
= (.)n sin(———zm) 1
Fo,, = cosb Z Ja— —5—— 5 [J__,(kb sin6)
= °n ( m)
2
J +1(kb sin 8] sin (n(d) - ¢m))
¢y w5
.n sin J (kb sin 6)
- cos® Z . N (n(¢ -¢m)) (48)
n:l n m
(=)
n6m
J (kb 51n0) n s1n( )
Fom = - Z () 2 /1 [3__,(kb sin®)

(nS)?

- Jn+l(kb s5in0)] cos (n(d> - ¢n))

nd
J! (kb sin®) G siri—zm)
> + i . J! (kb sin6) cos (n(¢ - ¢n))

a'0 n n m
n=1 ( > ) (49)

1

where J (Z) is the Bessel function of the first kind and J' (z) —Q- J (z).
Exarmnatlon of equations (44) through (49) indicates that the rad1at10n
fields are outward traveling spherical waves. It also indicates E9

and E¢ are in phase implying that the radiation is linearly polarized.
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A parameter which is useful in describing antenna radiation is

the gain of the antenna. The gain of an antenna is defined by

G(6, ¢) =

47 POWer density per unit solid angle in direction 6, ¢

total input power to antenna

(50)

The gain of an antenna differs from its directivity by a factor which

takes into account the efficiency of the antenna.

For the loaded loop antenna the gain is given by

4(kb) ) Z -
G(6, ¢) t wG. Feo VmFGm +
o in m=1

where Gin is the input conductance of the loop.




CHAPTER III

IMPEDANCES, CURRENTS, AND RADIATION
FIELDS OF A LOOP ANTENNA EXCITED
BY A FINITE GAP GENERATOR

This chapter deals with the numerical method used in calculat-
ing the results of the loaded loop antenna with the finite gap excitation
which was developed in the previous chapter. Theoretical results
based on the finite gap excitation and theoretical results based on the
6 -function generator are compared with existing experimental results.
Finally, some examples of impedances, currents, and gain patterns

of large loop antennas excited by finite gap generators are presented.

3. 1. Numerical Method

Numerical results based on series expansions for the radiation
fields, current distributions, and input admittances of loop antennas
have been evaluated on a CDC 6500 computer system. These series
depend on coefficients a which are functions of the kb and a/b. These
coefficients also depend on the Kn integrals [ see equation (23)] which
were evaluated using Wu's expression as given in equations (34), (35),
and (36). A standard M. S. U. computer li<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>