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MODIFICATION OF SCATTERING FROM THICK

CYLINDERS AND RADIATION FROM LOOPS

BY IMPEDANCE LOADING

BY

John R. Short

The modification of the scattering from a thick, slotted cylinder

and the radiation and circuit pr0perties of a circular 100p antenna by

impedance loading are investigated in this thesis.

The modification and control of the scattering of a plane elec-

tromagnetic wave by a thick, conducting, infinitely long cylinder loaded

with several impedance -backed longitudinal slots is investigated in

Part I of this thesis. The incident plane wave is polarized with its

electric field vector perpendicular to the cylinder axis. The slots are

electrically narrow and the electric fields across them are assumed to

be constant. Within this assumption an exact theory is deve10ped.

Synthesis procedures are deve10ped to find load impedances and purely

reactive load impedances that cause the scattered field to vanish in one

or more desired directions. Synthesis procedures are also deve10ped

for finding a single purely reactive load impedance that produces mini-

mum scattering in one direction and load impedances which result in

zero scattering in one direction at several frequencies. The frequency

dependence and bandwidths of the different loadings are also considered.

Extensive numerical results are presented. The theoretical predictions

are confirmed with an experiment.

The modification of the radiation fields and circuit pr0perties

(impedance) of a loaded, circular -100p antenna is investigated in Part

II of this thesis. An improved theory for the 100p antenna is deve10ped

which includes a finite gap excitation. "Effective" gap widths are de-

fined for the cases of a 100p antenna driven by a two-wire line or a

coaxial line. Excellent agreement between theoretical antenna adrnit-

tances is found. The maximum and minimum gain attainable from a



100p loaded by a single impedance is presented for 100ps up to five

wavelengths in circumference. A procedure is deve10ped to facilitate

the design of loaded 100p antennas that have specified radiation patterns.

Several examples of loaded 100p antennas which have relatively direc-

tive patterns with reapect to unloaded 100p antennas are given. A scheme

for matching a 100p antenna to a transmission system is presented and

its efficiency is compared to that of a conventional base tuning network.
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PART I

MODIFICATION OF EM SCATTERING FROM A THICK

CYLINDER BY MULTI-SLOT IMPEDANCE LOADING





CHAPTER I

INTRODUCTION

The modification of the electromagnetic wave scattered by a

thick infinite cylinder using the technique of impedance loading is in-

vestigated in this study.

When a conducting body is illuminated by an electromagnetic

wave a surface current is induced on the conducting body. This Sure.

face current, in turn, reradiates a scattered field. Distributed or

lumped impedances can be installed on the surface of the conducting

body which will alter the amplitude and phase of the induced surface

current, thus modifying the scattered field. This method of modifying

the field scattered by a conducting body is known as impedance loading.

The modification or control of electromagnetic scattering has appli-

cations in the areas of antenna design, electromagnetic compatibility,

scattering cross section modification and others.

The history and development of the impedance loading technique

can be found in a review paper by Schindler, Mack, and Blacksmith. 1

Since the writing of this review paper, scattering modification by the

impedance loading technique has received considerable attention?"17

A review of the literature shows that nearly all the studies have been

concerned with impedance loaded thin wire rods or 100ps. To present,

there have been only two published studies on impedance loading of

electrically thick objects. Liepa and Senior18 considered a conducting

sphere loaded with a single impedance backed circumferential Slot, *

and the authors15 considered a thick cylinder loaded with a single im-

pedance backed longitudinal Slot. There is a noticeable lack of any

information on the modification and control of the field scattered by a

thick object loaded with more than one impedance.

 

*Chen and Vincent 6’ 10also loaded a Sphere with two loaded wires

which is another technique of loading an object. This differs from the

discreet surface loading considered inlthis study.

1



This study is concerned with an electrically thick conducting

cylinder loaded with N impedance-backed longitudinal slots. The

cylinder is illuminated with a normally incident plane electromag-

netic wave polarized with its electric field vector perpendicular

to the cylinder axis. The incident field induces a circumferential sur-

face current on the surface of the cylinder. The control of the sur-

face current, Which in turn controls the scattering, is accomplished

by the longitudinal loaded slots which intersect the induced current.

The purposes of this study are l) to determine the extent of the

control over the scattering that can be accomplished with different

types of loading, 2) to develop and analyze procedures for determining

optimal loadings which result in zero or minimum scattering in desired

directions, 3) to determine what procedures lead to broad band loadings

and 4) to develop broad banding techniques.

In Chapter II the basic theory used in analyzing the scattering

from the loaded cylinder is developed. The theory is of a general form

into which all multi-loaded scatters fall. 19’ 2°

Chapter III deals with general synthesis procedures for finding

optimal impedances that result in zero or minimum scattering in one

or more desired directions. First, a procedure is deve10ped for

finding N load impedances which cause zero field to be scattered

in N directions. This synthesis procedure is similar to the one

used by Strait 21’ 22’ 23 in synthesizing radiation patterns of loaded

antennas and arrays. Secondly, a procedure is developed for finding

N purely reactive load impedances that result in zero field scat-

tered in N/2 desired directions. After this, procedures are deve1-

0ped for finding a single purely reactive load impedance that produces

minimum scattering in one direction and a set of N load impedances

which result in zero scattering in one direction at Ndi fferent fre-

quencies.

Numerical results of these procedures and other loading schemes

are presented and discussed in Chapter IV. The frequency dependence

and bandwidths of these loading techniques are also considered.

The theoretical predictions are confirmed with an experiment.

This is described in Chapter V.

Chapter VI summarizes the work presented in this study.



CHAPTER II

THEORETICAL FORMULATION OF PLANE WAVE SCATTERING

BY A MULTI-LOADED, SLOTTED CYLINDER

2. l. Formulation of the Problem and Boundary Conditions

A perfectly conducting cylinder of infinite length and radius a has

N impedance-backed longitudinal slots cut on its surface as indicated

in Figure 2. l. The center of the nth Slot is located at 0 = 0 In The

nth Slot has angular width °n and is loaded with an impedance Zn that

is lumped in this slot region on the cylinder surface. The cylinder is

illuminated by a plane electromagnetic wave which is linearly polarized

with its E -field vector perpendicular to the cylinder axis. This inci-

dent wave induces a circumferential surface current K0 (0 ) on the

cylinder, which in turn, radiates a scattered electromagnetic field.

The tangential E -field must vanish at the cylinder surface except

in the Slot regions since the cylinder is assumed to be perfectly con—

ducting. The slots are taken to be electrically narrow and thus the

tangential E -field is assumed to have a constant, uniform distribu-

tion within each slot region. The potential difference across the nth

slot is

0n.-5 /2 _

V = -S n Ee(r=a )ad9 = a6 E9(r=a',0=0 )

en+5n/2 n n

and is a slot voltage Since the slots are electrically narrow so that the

quasi-static approximation is valid. The boundary condition on the

tangential E -field at the surface of the illuminated slotted cylinder is

V
11

a6

. 15140-0 |<5/2

Ele (r=a+) + E: (r=a+) =( n n n

n=1,2,...,N

 LO elsewhere (1)



 

(a)

 

N

<

c
o
)

  

  

1 +

E A

o 1'

e 2 Ph‘. 9 . Z)

1 ._ 9 0:0

Hi x

a

(b)

Figure 2.1. An infinite cylinder with N’longitudinal slots illuminated by

a plane EM wave with its E -field vector perpendicular to

the cylinder axis.

(a) Front view. (b) Cross Section view.



where E19 and E; are the 0 components of the incident and scattered

E -fie1ds, respectively. The nth load impedance is defined by

V

11

Zn K9 (0 =0n)

- Zn Hz(r=a, 0 :0 n) (2)

It is noted that the physical dimension of the load impedance Zn is

ohm-mete r.

2. 2, Superposition

The field scattered by a cylinder with N impedance—backed, longi-

tudinal Slots can be obtained by the superposition of the field scattered

by an unloaded solid cylinder illuminated by a plane wave and the field

radiated by a cylinder with N longitudinal slots having slot voltages

Vn’ n=1, 2,. . .,N impressed across the Slots. A mathematical state-

ment of this superposition is

Es : EC+Er (3)

"111° : fi°+fir (4)

Where E S and H 8 represent the field scattered by a slotted cylinder

illuminated by a normally incident plane wave, E C and 11° represent

the field scattered by a solid cylinder illuminated by the same incident

plane wave, and E r and Hr represent the fields radiated by a Slotted

cylinder driven by slot voltages Vn' The excitation of the nth slot, Vn'

must be determined in accordance with the total surface current on the

illuminated slotted cylinder at the location of the slot and the impedance

backing the slot. This superposition is indicated schematically in

Figure 2. 2.

The boundary condition (1) for the illuminated slotted cylinder

can be separated into the boundary condition for the illuminated solid

cylinder
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E; (r=a+) + E
C

+

9 (r=a) = O (5)

and the boundary condition for the driven slotted cylinder

  

Fvn 5n

- <aén for '0 9n I 2

r + n : 1, Z, O 0., N

Ee (r=a ) :(

‘L 0 elsewhere (6)

 
Boundary conditions (5) and (6) define the scattering and radiation prob-

lems to be discussed in the following two sections.

2. 3. Scattering from a Solid Cylinder

Consider a perfectly conducting cylinder of radius a which is il-

luminated by a normally incident plane electromagnetic wave with an

E-field vector perpendicular to the cylinder axis. The geometry of the

problem is defined in Figure 2. 2(b).

The incident plane wave can be represented by the following field

 

expansions

H 1 : e-ka _ e-Jkr cos 0

z

co

-2 H" ( e ) J (kr)— EOn J cos n n

n=0 (7)

i i 1

He _ Hr : Ez : O (8)

El : _J 8 H1

9 1060 3r 2

: jgo E °0n (-j)n cos (n0) ng(kr)

n=0 (9)



E 1 —_. _:.1__ L .3)... Hi

1‘ 1.060 r 80 z

00

_ j _1_ _.n .

— (060 r °0n( J) n Sln(n0)Jn(kr)

n=0 (10)

where Jn (kr) is the nth—order Bessel function of the first kind and €On

is the Neumann factor and equals unity for n=0 and is equal to 2 other-

wise. The impedance of free-space to iS 120“ ohms, and k is the free-

space wavenumber. The ert ti me-dependence factor is implied.

The solution for the fields scattered by a perfectly conducting

 

  

 

infinite cylinder illuminated by a plane wave are well known25’ 2° and

are given by

C i n Hnm (111-)
- _ _' 1

Hz — °0n( J) cos (n0) Jn(ka) H (2), (ka)

n=0 n (11)

c c c

Hr'He‘Ez’O (12)

00 (2)

EC : 1 —1— 2 e (-')n+ln Sin (n0 ) J' (ka) H“ (kr)
r we r 0n J n (”T

O _ H (ka)
n—O n

(13)

° H (2)' (111-)

EC - g 6 (-j)n+1 cos (n0) J' (ka) n
0 7 0 On 11 H (2)' (ka)

n=0 n (14)

(2)
where Hn (kr) is the nth-order Hankel function of the second kind.

2. 4. Radiation from a Cylinder with N Driven Slots

The field radiated by a cylinder with N longitudinal Slots which

have voltages V1, V2, . . . , VN impressed across them [see Figure

2. 2 (c)] can be found by solving the boundary value problem subject to

boundary condition (6).
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The magnetic field has only a 2 component which is governed by

the wave equation,

2 2 r

(V +k)I-Iz=0 (15)

The cylinder and Slots are infinitely long and the excitation is assumed

uniform axially, thus the radiated field has no z-dependence, that is

8 _

 

 

—a-; : 0 . The wave equation for H: becomes

2 2

8 l 8 l 8 2 r
[ + —— + + k ] H = 0
M2 r 8r r2 39 2 z

This partial differential equation can be solved by the method of

separation of variables. The appropriate solution is

00

H: : Z [An cos (n0 ) + Bn sin (110)] Hum (kr)

n=0 (16)

where An and En are unknown coefficients to be determined by boundary

condition (6) and HS) (kr) is the nth order Hankel function of the second

kind which represents an outward traveling cylindrical wave. The other

components of the radiated field can be determined from Equation (16)

and Maxwell's equations. Coefficients An and BH are found by applying

boundary condition (6) to the E; component of the field [See Appendix

A] and are

 

 
 

 

 

  

 

n6

6 N sin( m )

A : .2 0n (2)1, E V n62 cos (n0 m)

n J «ago Hn (ka) m=1 m ( m) (17)2

e- N Sin (nfim )

B : .2 0“ ml. 2 v n62 sin (n0 )
n J «ago H (ka) _ m m m

n 111-1 ( 2 1 (18)

The field radiated from the cylinder with N driven slots is now

completely determined and is given by
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1 n6

° ‘2’ (kr) N sin( m)
1131‘ - 1 Z n 2 V ——-——Z 0 0 ))
0 - 21ra €0n H (2)' (ka) m nfim cos(n( ' m

n:0 n m=1 ( 2 ) (19)

n6

r 1 on (2) (kr) N sin( 2m ) '

Er - wakr Z n (2), Z Vm n6 Sln(n(0-0m))

n=1 I{n (ka) m=1 ( m)
2 (20)

r _ r _ r _

Ez - Hr _ H9 - ° (21)

n6

r °° Hn‘2) (kr) N sin;2‘“)

H = ——-L— 25 Z Vm cos (n(0-9 ))

z 21151130 60n Hnn(2)'(ka) °m m

“=0 m1("'2—") (22)

2. 5. Scattering from a Cylinder with N Loaded Slots

The Slot voltages Vn which excite the slots of the driven cylinder

must now be determined in view of our intent to combine the results of

the preceding two sections. The voltages Vn can be expressed in terms

of the impedances backing the Slots, Zn’ and the total surface current

on the illuminated slotted cylinder. From Equation (2).

V

n

-2 H (r=a, 0:0 )
11 Z 11

=3.2 [H1+H°+Hr] r

 

N

-zn [—KnO + Z Vm Ynm]

m=1 (23)
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where

7
: 1| -[Hiz +H:=]ra

9:6
11

n0

 

0° . p HZ() (ka)

.2 60p (-J) cos(p 0n) [Jp(ka)--Jp(ka)JHa), (ka)

p=0 Hp

 
 

(D

_ :5 p+1 cos(pG n)

_ - 1Tka '

p:

(Z)
0 HI) (ka) (24)

which is the value of the surface current on the unloaded solid cylinder

evaluated at the position of the nth slot, and the terms

 

 

 

p6

sin( am) Hi?) (ka)
z _-.i__ 0 -0

ynm Zflaéo 0 (P5m ) H (2)' (ka) COS (p( n m”

P 2 P (25)

are the self and mutual short circuit radiation admittances of the slots.

The dimensions of these admittances are mho/meter.

Equation (23) can be written in matrix form as

 

r ‘r " " ' 1
V114r Y1 V12 ' ' ‘ y1N V1 K10

y21 "22Jr Y2 ' ° ' y2N V2 K20

L YNl y1512 ' ' ' yNN+YI\L bVN~ LKNO_ (25)     
where Yn = l/Zn and is the load admittance of the nth slot. The v01-

tages Vn are found by solving the above matrix equation. From the

superposition picture it is seen that the voltages, Vn’ depend on the

Short circuited radiation admittances of the driven slotted cylinder



12

and the surface current on the illuminated solid cylinder.

The fields scattered by an infinitely long, perfectly conducting

cylinder with N impedance loaded longitudinal slots is now completely

determined and can be obtained by the superposition of the results of

the preceding two sections in accordance with Equations (3) and (4),

and the solution to Equation (26).

In the radiation zone the scattered field behaves as an outward

traveling TEM cylindrical wave, which can be observed by replacing

Hn(z) (kr) and its derivative with their principal asymptotic forms for

large arguments. 2'7 This procedure yields

 

 

  

 

7‘ (k /4) m I JP (ka)sr __ -j r-w E g e cos(pO) '
E9 - - wkr e ’ 0 Op H (2) (ka)

p—0 p

N
60p )p+1 sin(—755531.)

+ 21ra H(2)' XV 136 C03 (P(9 -9m))]

(ka) m- 0 m )

Hp 2 (27)

sr sr sr sr

Er _ Ez _ Hr : H9 : O (28)

SI.‘ 51'

Hz : E9 /§0 (29)

where the second superscript denotes radiation zone fields.

2- 6- Bistatic Scattering Cross Section

The bistatic scattering cross section per unit length of the illumi-

hated slotted cylinder is given by

2
8

(7(9) = Iim 21rr {911—9—1—

r-roo E (30)

he re 6 defines the direction in Wthh the scattered field is received,

a.

nd the illuminating plane wave is incident from the direction 9 : 180° .

Using Equation (27), the bistatic scattering cross section can be

I.i‘-‘»‘l:en



l3

 

 

 

N Z

a(9):-E— 50+: vms]m

m=l (31)

where

°° J' (ka)

S = Z 6 C08(p0)—R-——-—

0 OP H (2) (ka)

and

a. Pém
1 +1 sin(—r—) cos (p(9 -6m))

srn : Zwag Z 60p”)p p6 (2)'

O :0 ( m) H (ka)

P 2 P (33)

Looking at Equation (31) from the superposition picture, So cor-

responds to the contribution of the solid cylinder to the bistatic

scattering cross section. The Sm coefficients multipled by the appro-

priate slot voltages correspond to the contribution of the driven

slotted cylinder to the bistatic cross section.

2- 7. Generalizing the Theory

The physical interpretation of the quantities KnO’ Ynm’ So’ and

S allows the theory just developed to be interpretated in a more

general manner. Consider, from the point of view of superposition,

the scattering of an EM wave by a multi-loaded conducting body of any

arbitrary shape. If the geometry of the loading is such that unique

load voltages can be defined, then a matrix equation, having a form

identical to Equation (26), relating the load voltages to the short cir-

Quit radiation admittances of the structure and the surface current on

a. 8 imilar unloaded structure can be formulated. The values of the

radiation admittances and the surface current may be found exactly,

as Was done in this chapter, or by some approximate method.

S:i‘:b-'=1'.i.lar1y a result for the bistatic scattering cross section of the

1“-1].ti-loaded body can be formulated in terms of the load voltages as

as done in Equation (31). Harringtonlg’ 20 has pursued this idea
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in his multiport network parameter representation.

The loading techniques and synthesis procedures deve10ped in

the next chapter are completely general and can be applied to conducting

bodies of arbitrary shapes.
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CHAPTER III

THE SYNTHESIS OF LOAD IMPEDANCES THAT RESULT

IN ZERO OR MINIMUM SCATTERING

FOR ONE OR MORE DIRECTIONS OR FREQUENCIES

In this chapter procedures are developed for finding load imped-

ances that result in zero scattering in one or more directions and load

impedances that result in zero scattering in one direction at several

frequencies. Procedures are also deve10ped to find purely reactive .

load impedances that result in zero or minimum scattering in one or

more directions.

3. 1. Zero Scattering in N Directions

A set of N load impedances thatcauses the field scattered by the

N—slotted, loaded cylinder to vanish in N directions may be determined by

the following synthesis procedure.

If the load admittances Y1, Y2, . . . , YN are assumed to be un-

knowns, matrix Equation (26) contains 2N complex unknowns, the N

load admittances and the N slot voltages. Since matrix Equation (26)

contains only N complex equations, N complex constraint equations may

be chosen to completely determine the problem.

It can be seen from Equation (31) that

SO(G=901)+§ VmSm(9=901) = 0

mzl (34)

Implies the radiation zone field scattered by the loaded cylinder will

var-:11 311 in the direction 6 =6 01. Similarly a system of N complex con-

Str aint equations, involving the N unknown slot voltages, which force

12 .
he radiation zone scattered field to vanish in directions 601, 9 02, . . . ,

B

0N can be expressed as

15



 

l6

- I. (-

C11 ch ClN c10

C21 C22. C2N C20

0 c 1"”
N1 N2 NN J N0 (35) E

.J. b b ..     
where Cij = Sj (9 :901).

The load admittances that result in zero scattering in the N direc-

tions are found from Equation (23) to be

r
m
_

‘
T
-
"
“
-
"
_
‘

1

N

Yn : [KnO- Z ynmvm1/Vn

m” n=1,2,...,N (36)

where V1, V2, . . . , VN are the slot voltages found by solving Equation

(35).

The admittances found by the above procedure may have negative

re a1 parts which are difficult to physically realize. If the positions of

the slots are free to be changed, it is possible in many cases to find

to slot positions such that the load admittances will have positive real

parts, This t0pic will be considered in Section 4. 3.

In some cases when the load admittances have negative real parts

it may be more practical to consider purely reactive loading.

3" 2- Zero Scattering in N/Z Directions

Using Purely Reactive Load Irnpedances

In the previous section, the introduction of N complex load ad-

mittances led to the elimination of the scattered field in N directions

be Qa-use N complex constraint equations were allowed to be introduced.

If N purely reactive load impedances are considered, it is possible to

eliminate the scattered field in N/Z directions only. This is due to the

:E

act that N purely reactive load impedances gives the same number of



£8“

 



17

degrees of freedom as N/2 complex load impedances and thus only

N/Z complex constraint equations for zero scattering are permitted.

A set of N purely reactive load impedances that result in zero

field scattered in N/Z directions may be determined by the following

synthesis procedure.

The condition that the N load admittances be purely reactive is

equivalent to N real constraint equations, and may be written

Y +Y*=O n=1,2,...,N

,
—
”
“
4
“
‘
3
1

'
I

where Yn* is the complex conjugate of Yn. Using Equation (36) this

condition can be written

N

.c * _ * 3k ’3 :

(Kn0an< + Kn0 Vn) Z (ynm van + ynm Vrn Vn) O

m: l

[
M
M
-
u
p
w
-

r
J
H
J
a

.
.

r

n=1,2,...,N (37)

which is a set of N real nonlinear constraint equations involving the

slot voltages. (Note: N real equations are equivalent to N/2 complex

equations. ) To completely determine the problem N/2 complex con—

straint equations must still be chosen.

The scattered field will vanish in the N/Z directions 6 01, 6 02’

- - - , GON/Z if the slot voltages satisfy

    
  

r c “ r ‘
C:11 12 ' ' ' CIN 1 C10

. VZ

1L CN/Zl cN/Zz . . . cN/lei _CN/ZO.L

v
_ NJ (38)

Equations (37) and (38) comprise a system of nonlinear equations

W ~

hlch can be solved for the slot voltages, provided a solution exists.

Lee again, the load admittances may be found by substituting the
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solution of Equations (37) and (38) into Equation (36). These load ad-

mittances will be purely susceptive and will cause the scattered field

to vanish in directions 9 01, 6 02, . . . 6 0N/2'

The special case of two slots (i. e. , N=2) is worked out in detail

in Appendix B. The admittances are found to be the solutions to a

quadratic equation. The position of the slots on the cylinder surface

is a crucial factor in determining whether or not solutions to this prob-

lem exist. This topic is discussed in detail in Section 4. 4.

The non-existence of a purely reactive loading that results in zero

scattering in one or more directions does not imply that the reduction

of the scattering to levels other than zero in these directions by a

purely reactive loading is impossible. In many cases the scattering

can be significantly reduced below the unloaded level by purely reac-

tive loading.

3. 3. Minimum Scattering Using Purely Reactive Load Irnpedances

In general, the field scattered by a loaded cylinder cannot be

reduced to zero in a given direction when the load impedances are

purely reactive and all equal (i. e. , jX = Z1 = Z2 = . . . = ZN). This does

not, however, rule out the possibility of reducing the scattered field

to a minimum in a given direction by a suitable choice of the loading

reactance. An optimum reactance, XOp’ for minimum bistatic scat-

te ring cross section can be determined by differentiating the bistatic

S Cattering cross section with respect to X and setting this derivative

e qual to zero. The optimum reactance is found by solving the resulting

e quation.

Applying this procedure to the case N21 yields the following

1'e 8 u1t.

= 1/Z[G¢~(GZ+4I] (39)XOP

Whe re

sz + F2) - (c2 + D2) (42+ BZL
G :

(c2 + D2) (BE - FA) + D(E2 + F2)
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I : AAZ+ Bz)+ (13E - FA)

(c2 + D2) (BE - FA) + 130::2 + F2)

and the constants on the right hand side of the above two equations

are real and defined by

A+jB s (e
O 0) In»

C+jD : y11(90)

_ 0 1

Equation (39) yields two solutions one of which results in a mini- !

mum and the other a maximum bistatic scattering cross section in the "

direction 9 :6 O .

Other procedures can also be developed for determining the op-

timal loading reactances for minimum scattering by cylinders with

more general configurations of purely reactive loadings.

3- 4. Zero Scattering at N Different Frequencies..

Many times it is of interest to modify the scattering properties

of an object at several different frequencies or over a large band of

frequencies. Consider the problem of the synthesis of N load imped-

ances that reduce the scattered field to zero in one direction at N

different frequencies to 1, (oz, . . . , wN.

At the first frequency, w l’ the constraint equation is

N

Clo+ Z Vm(w1) C1m : 0

m=l

Whe re CI'

The sec Jond constraint equation is

N

c20+ Z Vm(“’2)CZm = 0

m=1

=Sj(9:90, wzwl).
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where Czj = Sj (9 :9 0’ to 21.32). The slot voltages in the first equation,

{Vm (w l), mzl, 2, . . . , N} , and the slot voltages in the second equa-

tion {Vm (wz), mzl, . . . , N} are in general not equal and must be con-

sidered as independent variables. Likewise all other slot voltages at

the other frequencies must be treated as independent variables.

Using matrix Equation (26) all the voltages can be eliminated

from the problem and the constraint equations written directly in terms

of the admittances. Consider the nth constraint equation

      

N
1 .‘

Cn0 + Z Cnm Vrri (wn) : 0 i

m=l
1

Evaluating matrix Equation (26) at wzwn and augmenting it with the E‘

above constraint equation yields
4 '

r " " 1 r “

y11 + Y1 y12 ' ‘ ‘ y1N V1(“’n) K10

y21 y22+Yz ' ' ' y2N V2(“’n) K20

VNI yN2 ' ' ' YNN+YN KNo

Cn1 Cn2 ° ° ° CnN VN(wn) -Cn0

b ’ b ’ ‘ (40)

Where all the coefficients ynm and Kn0 are evaluated at wzwn and the

load admittances Yn are assumed to be frequency independent.

The first matrix innEquation (40) becomes N by N+l at this step.

E(in ation (40) however, can be rewritten as
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V11+Y1 3'12 ' ' ‘ y1N “K10 Vlwn)

3’21 y22+Y2 ' ° ' y2N ‘Kzo V2(wn)

= 0

YN1 yN2 ' ' ' yNN+YN'KNO VN(“’n)

JLc:r11 an . . . an cno L1   
which will have a solution only if the determinant of the coefficient

matrix vanishes. Similar arguments hold for all N frequencies and

this gives a system of N nonlinear equations in terms of the N load

admittance s .

y11+Y1 Viz ° ° ’ YIN ’Klo

+. . . . _
V21 3’22 Y2 y2N K20

= o

yN1 yN2 ' ' ' YNN+YN 'KNo

C:nl Cn2 ' ° ° CnN Cn0 (41)  
for n = l, 2, . . . , N with all the Ynm and K n0 coefficients

evaluated at (0:an .

Provided a solution exists, this set of equations can be solved for the

load admittances Y1, Y2, . . . , Yn which will give zero scattering in the

direction 9 :9 O at the freq uenc1es ml 2, . . N'

The special case of zero scattering in one direction at two fre-

, w . , w

quencies is examined in detail in Appendix C. The impedances are

found to be solutions to a quartic equation.

Throughout this section it has been assumed that the scattering

was forced to zero in the same direction , 9 :9 0' at all N frequencies.

Examining the theory shows that this restriction is not necessary.
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The scattering can be reduced to zero in one direction at one frequency,

a different direction at the second frequency, and so forth. However,

at any one frequency the scattering is still reduced to zero in only one

direction.

An assumption has been made through the develOpment of this

last procedure that the load impedances are constants with respect to

frequency. The practical application of this procedure as a broad

band technique is thus limited by the frequency dependence of the load

impedances actually available for implementation.
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CHAPTER IV

NUMERICAL RESULTS AND DISCUSSION

In order to gain a firm understanding of the theory and proce-

dures deve10ped in the previous two chapters a considerable amount

of numerical results were calculated. This chapter deals with the

presentation, interpretation, and discussion of these results.

4. 1. Numerical Method

The series 80’ Sm' ynm

the bistatic scattering cross section and the slot impedances were evalu-

ated on the Michigan State University CDC 6500 computer. Series S

, and Kno involved in the expressions for

O,

Sm, and Kno converged rapidly and the computations were straight

forward. Thirty terms were retained in these series. This gave

eight-digit accuracy over the range of cylinder size considered (1. e. ,

15 ka5 13). The theory is not limited to this range but for larger

cylinders it may be necessary to retain more terms to attain this ac-

curacy.

The evaluation of series Ynm' the self and mutual radiation ad-

mittance of the slots, is complicated by the slow convergence of its

imaginary part. Mathematically the imaginary part of ynm approaches

infinity as the slot width 6m approaches zero. Physically this implies

an infinite stray capacitance existing at the slot with an infinitesimal

gap width. The real part of ynm remains finite for any slot width cor—

responding to the existence of a finite radiation resistance for a slot

radiator. Thus the numerical calculation of ynm requires special

attention.

The actual computation of ynm is accomplished by summing 300

terms of the series. The first M terms of the series are treated

exactly, where M depends on ka and varies from 95 to 149. In the next

(ISO-M) terms the approximation

23
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H1112) (ka) Yn (ka) Yn_l (ka)
~

  

Hn‘z)' (ka) — Y1; (ka) Yn (ka) ka

is made since I Yn (ka)] >> I Jn (ka)| for n>>ka. The Bessel func-

tions are replaced by their asymptotic expressions for large order

in the last 150 terms. This leads to the approximation

(2) -1
Hn (ka) 2 ( n-1)n‘1/2(eka) - L

Hn(2)' (ka) n 2n ka

   

where e = 2. 71828. . . . The real part of Ynm has eight-digit accuracy

while the imaginary part may be in error by as much as one per cent,

but in most cases the error is much less than this.

4. 2. Effect of the Slot Width

As discussed in the previous section, the slot width has a signi-

ficant effect on the imaginary part of ynm‘ It is thus reasonable to

expect the slot width to have some effect on the load admittances re—

sulting from the synthesis procedures. Numerically, extensive cal-

culations were performed for different load configurations at several

values slot width 6. It was found the real parts of the load admittances

obtained from the impedance synthesis procedure are only slightly af-

fected by the slot width, however, its effect on their imaginary parts

is more significant.

It was also found that the bistatic scatterirg patterns for zero

scattering in several directions are nearly identical for different slot

widths.

One more remark on the slot width is also important. The value

of 6 limits the size of a cylinder that can be considered with this theory

since the slot width 6a is assumed to be electrically narrow. If

6a< X/lO the slot can be considered to be electrically narrow and it

follows that the electrical cylinder size is limited by

ka<
 

Tr

56
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4. 3. Zero Scattering in Several Directions

Numerical results of the impedance synthesis procedure of

Section 3. l are presented and discussed in this section. The slot con-

figuration and the directions in which zero scattering is desired are

specified and the impedances necessary to realize these scattering

modifications are calculated using Equations (35) and (36). It is of

interest to examine numerically the effect the number of slots and

their location (relative to the incident wave and directions of zero

scattering) have on the synthesized load impedances.

The superposition picture is useful in interpreting the numeri-

cal results. It should be remembered, the modified scattered field

of a loaded cylinder is the superposition of the field scattered from a

solid cylinder and the fields radiated by a series of driven slotted

cylinders whose driven slots are located at positions corresponding

to the loaded slots on the loaded cylinder [See Equation (31)] . The

slot voltages driving the slotted cylinders are determined by the sur-

face current on the unloaded cylinder, the short circuit radiation ad-

mittances of the slots, and the load impedances [See Equation (26)] .

The impedance synthesis procedure yields impedances such that the

radiation zone field ”radiated" by the driven slotted cylinders has ex-

actly the same amplitude and is 180° out of phase with the field scat-

tered from the unloaded cylinder in directions where the total scat-

tered field has been constrained to be zero.

Consider a brief description of the surface current and the bi-

static scattering pattern of a thick solid cylinder illuminated by a

plane wave whose E -field vector is polarized perpendicular to the

cylinder's axis. 25’ 26 The amplitude of the surface current is nearly

constant in the region about the center of the illuminated side of the

cylinder. Progressing toward the shadow region, it decreases nearly

linearly until it becomes slightly irregular in the center of the shadow

region. The backscattering and forward scattering cross section as a

function of electrical cylinder size ka are displayed in Figure 4. l and the

bistatic scattering cross section patterns for ka equal to 2, 5, and 10

are shown in Figure 4. 2. The backscattering cross section, forward

scattering cross section, and bistatic scattering cross section are

normalized to the geometric-optics value of the backscattering cross
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(b) Normalized forward scattering cross section, for a

solid cylinder as a function of cylinder size, ka.
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section, Ira. It is seen that the bistatic scattering pattern of a

thick cylinder is fairly uniform in the region around the backscat-

tered direction while the remainder of the pattern consists of many

sublobes with one very large lobe in the forward scattered direction.

The final component in the superposition picture is the radiation

pattern of a thick driven slotted cylinder. 29’ 30 The pattern has a

fairly uniform amplitude over a region of about 60° on either side of

the slot, then falls off to a much smaller value and becomes non-

uniform on the side of the cylinder opposite the slot.

Slot loading impedances, calculated by the procedure described

in Section 3. 1, that result in zero scattering in one, two, three and

four directions are displayed as a function of electrical cylinder

size ka in Figures 4. 3, 4. 5, 4. 7, 4. 9, 4. 11, and 4. l3. Correspon-

ding bistatic scattering cross section patterns for ka equal to two, five,

and ten are shown in Figures 4. 4, 4. 6, 4. 8, 4. 10, 4. 12, 4. l4, and

4. 15. The load impedances are normalized to the slot width 6a. These

normalized impedances are the wave impedances of the slot fields evalu-

ated at the center of the slots. It should be noted, the scales of the

impedances vary from figure to figure. The bistatic scattering cross

section patterns are normalized to the geometric-optics value of the

backscattering cross section, 17a.

The resistive parts of the load impedances are negative over a

large range of cylinder size for many slot configurations. This means

that a device with negativeresistance characteristics such as a. tunnel-

diode must be used in implementing these impedances. The reactive

parts are in general inductive and decrease in amplitude with in-

creasing frequency (i. e. , negative 310pe). In most cases both the

resistive and reactive parts become increasingly smooth and uniform

as the cylinder size increases.

Figure 4. 3 displays the slot impedance necessary for zero back-

scattering from a cylinder with one loaded slot located at 9 :180° as

a function of electrical cylinder size ka. Figure 4. 5 displays the slot

impedances necessary for zero scattering in directions 9 =170° and

190° from a cylinder with two slots which are located at 9 =170° and

190° . The resistive and reactive parts of the load impedance in

Figure 4. 5 are more nonuniform than those in Figure 4. 3. The load
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(b)

Slot impedance for zero scattering in directions 6 =90" , and

180° as a function of cylinder size ka. (a) Normalized resistive

part of load impedance. (b) Normalized reactive part of load

hnpedance.
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Figure 4. 9. Slot impedance for zero scattering in the directions

9 =135' , 180°, and 225° as a function of cylinder size ka.

(a) Normalized resistive part of load impedance.

(b) Normalized Reactive part of load impedance.
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(1))

Slot impedance for zero scattering in directions 8 =90° , 135°,

180° , and 225’ as a function of cylinder size ka. '

(a) Normalized resistive part of load impedance.

(b) Normalized reactive part of load impedance.
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resistance in Figure 4. 5 is always positive which makes the implemen-

tation of this impedance easier than the impedances shown in Figure

4. 3. The bistatic scattering patterns corresponding to Figures 4. 3 and

4. 5 are nearly identical, but with a reduction of the scattered field

over a slightly larger angular excursion (i. e. , null width) in the

second case.

The cylinder considered in Figure 4. 7 has the same slot configu-

ration as the cylinder considered in Figure 4. 5, however, the direc-

tions of zero scattering are now taken to be 9 =90° and 180° . Com-

parison of these two figures shows that the load resistance in Figure

4. 7 is no longer always positive, but takes on large negative values.

Examining the corresponding bistatic scattering patterns indicates

that forcing the scattered field to be zero at 9 =90° has produced large

enhanced scattering in directions other than those constrained to have

zero scattering. The null widths have also markedly decreased. The

enhancement of the scattering is to be expected whenever the load

impedances have large negative resistive parts since this will, in

general, result in an increase in scattered power above that scattered

by the unloaded solid cylinder.

I This enhancement of the scattering, as shown in Figure 4. 8, can

also be explained by the superposition picture. The field scattered from

the thick solid cylinder and the fields ”radiated'' from two slotted cylin-

ders with slots located at 0 =170° and 190° , respectively, must sum

to zero at 6 =90° and 180° . The scattering enhancement arises from

the condition that the fields sum to zero at 9 =90° . The "driven" slots

are located at 170° and 190° so that 90° is in the region where their

radiation patterns have fallen off to a small value. Large driving vol-

tages are thus necessary to produce enough radiation in the direction

0 =90° to cancel the field scattered from the solid cylinder. Hence

in directions other than those constrained to have zero total scatter-

ing, the total scattered field from the loaded cylinder may be very

large. This type of argument indicates that large negative load re-

sistances and enhanced scattering in some directions other than those

constrained to have zero scattering might be expected whenever the

directions of zero scattering do not lay in the same region as the slots

are located. Figures 4. 12, 4. l4, and 4. 15 can also be explained by
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this type of argument.

Figure 4. 9 diSplays the slot impedances necessary for zero scat-

tering in directions 6 =135° , 180° , and 225° from a cylinder with

three slots located at 6 =170° , 180° , and 190° as a function of ka.

The load resistances are in general negative but are very flat and have

fairly small amplitudes. The absolute value of the normalized load

resistances are less than 400 ohms for 2< ka< 13 and in particular

I R21 /a6< 10 ohms for 5< ka< l3. Irnpedances that have a very simi-

lar form to these have been realized using Negative Impedance Con-

verters. 1 The corresponding bistatic scattering patterns are shown

in Figure 4. 10 and exhibit the widest null widths considered. It should

be noted that in this case the directions of zero scattering and the slot

positions lay in the same region and furthermore the slot positions

are in the center of the illuminated region of the cylinder.

Figures 4. 11 and 4. 13 display impedances that result in zero

scattering in directions 0 =90° , 135° , 180°, and 225° from a cylin—

der with four slots. The cylinder considered in Figure 4. 11 has all

its slots located in the center of the illuminated region of the cylin-

der while the cylinder considered in Figure 4. 13 has its four slots

equally Spaced around the cylinder so that one slot is in the center of

the illuminated region, one in the center of the shadow region, and the

remaining two slots are located on the borders between the two re—

gions. The load resistances in Figure 4. 13 are predominantly more

negative than those in Figure 4. 11. Also, the load reactances are

more irregular in Figure 4. 13 where all the slots are not located

in the center of the illuminated region. Considering the correspon-

ding bistatic scattering patterns, again it is seen that the larger the

amplitude of the negative load resistances is, the greater the enhanced

scattering is in directions other than those constrained to have zero

scattering.

Figures 4. 16, 4. 17, and 4. 18 examine the change in backscat-

tering cross section when a loaded cylinder is rotated while the load

impedances and relative slot positions are held constant. The cylin-

der considered in Figure 4. 16 has a load configuration identical to

the one considered in Figure 4. 3 and cylinder size of ka=5. 0. The

load impedance is taken to have the value of the impedance shown in
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Figure 4. 3 when ka=5. 0, hence, the backscattering is zero when

0 :180‘ . Likewise Figures 4. 17 and 4. 18 correspond to the load

configurations and impedances described in Figures 4. 7 and 4. 9 when

ka=5. 0. It is seen that changing the number of slots does not signifi—

cantly change the result. These results are typical of the results ob-

tained for other cylinder sizes.

4. 4. Zero Backscattering by a Cylinder Loaded

With Two Purely Reactive Impedances

Numerical results of the impedance synthesis procedure of Sec-

tion 3. 2 for the case of two slots (N=2) are presented in this section.

This synthesis procedure yields purely reactive load impedances. The

difficulty with this procedure is that the constraint equations are non-

linear.

The load reactances for the case of two slots may be found in

terms of a quadratic equation which is derived in Appendix B. Since

the load reactances are solutions to a quadratic equation, real solutions

do not always exist. The existence of a solution depends on the cylin-

der size, slot configuration, and direction of zero scattering. The

existence of solutions to Equation (B-7) for zero backscattering from

several different size cylinders each having one slot located at 0 :180°

and the second slot‘s position varied from 9 =0° to 0 =170° is indicated

in Figure 4. 19. An "x” indicates a solution exists for the particular

position of the second slot and cylinder size described by the position

of the ”x". Likewise, the absence of an "x" indicates no solution exists

for that particular geometry. Examining this figure it appears that

there is an area on the shadow side of the cylinder where no solution

exists when the second slot is located in this area. As the cylinder

size increases, the size of this area also increases. This trend was

examined and found to continue for larger values of ka than shown in

this figure.

Solutions for purely reactive loading impedances that result in

zero backscattering from a cylinder with slots located at 6 :160°

and 180° exist over the entire range of cylinder size 15 ka5 12.

These reactances are displayed in Figure 4. 20. The two solutions to
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the quadratic equation which determines these load reactances are

labeled (X1, X2) and (X' ,X'Z). The unprimed reactances are consid-

erabl)r smoother than the primed set. The reactances have negative

slope and thus can not be realized by passive e1ements32, but work has

been done on realizing such reactances using active elements.

Comparison of the bistatic scattering patterns resulting from

cylinders loaded with the two different sets of reactances is made in

Figures 4. 21, 4. 22, and 4. 23. The shape of the scattering patterns

and the null widths differ considerably between the two cases.

Figure 4. 24 displays the reactances that produce zero backscat-

tering from a cylinder with slots located at 0 :175° and 185° . A

solution exists only in the regions 15 ka5 2. 11 and 2. 535 ka5 3. O4

and it is very irregular. Due to the symmetry of the two slot loca-

tions with respect to the incident wave and the directions of zero scat-

tering the two solutions are degenerate and thus only one distinct set

of load reactances exists. Comparison of Figures 4. 20 and 4. 24 shows

that a relatively small change in a slot configuration may drastically

change the region over which solutions for zero backscattering exist.

Purely reactive loading impedances that result in zero backscat-

tering from a cylinder whose two slots are located 20° apart are dis-

played as a function of the first slot position in Figure 4. 25. Solutions

exist over only a small region mainly in the center of the illuminated

side of the cylinder. Although not shown by the figure, no solutions

exist in the region 0501 S 40° .

Figure 4. 26 examines the change in backscattering cross sec-

tion when a cylinder loaded with two reactive slots located 20° apart

is rotated with respect to the incident wave. The load reactances are

held constant and are chosen to give zero backscattering when 61 =160°

[See Figure 4. 20]. The two curves represent the two different solu-

tions that are produced by the synthesis procedure. It can be seen

that the position of the slots is considerably more critical in the case

of the second solution.

An examination of the numerical results of this section seems to

indicate that the best positions the slots can be located in, such that

a solution to the synthesis procedure exists, are in the center of

the illuminated region of the cylinder. Of the slot configurations
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Figure 4. 22. Normalized bistatic scatteri

0'(0 )/1ra for a thick cylinder

reactive loads located at 9 =160°

(a) First solution.

,ka

(b) Second solution.
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Figure 4. 23. Normalized bistatic scattering cross section patterns,

«(6 )/1ra for a thick cylinder, ka=lO. 0, with two purely

reactive loads located at 9 =160° and 180° .

(a) First solution. (b) Second solution.
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considered, one was found that yielded solutions over the entire re-

gion 15 ka5 13.

It should be pointed out, that even though no solution exists for

a purely reactive loading that results in zero backscattering, a suit-

able set of load reactances can usually be found which significantly

reduce s the backs catte ring.

4. 5. Scattering By a Cylinder Symmetrically Loaded

With Equal Purely Reactive Irnpedances

It has been shown that the backscattering cross section of a

discretely loaded cylinder is strongly dependent on the orientation

of the cylinder with respect to the incident wave. Thus if a cylinder

is slowly rotating about its axis, or is randomly orientated with re-

spect to the incident wave, the impedance loading schemes previously

discussed must be modified to remain effective. One method to

overcome this problem is to adjust the loading impedances as the

position of the cylinder changes. A second, simpler method might be

to symmetrically load the cylinder with several loadings in an at-

tempt to reduce the sensitivity of the backs cattering to the cylinder

orientation. This second method is now considered.

This section examines the scattering modifications that can be

obtained by a cylinder loaded with one, two, three, and four purely

reactive slots located symmetrically around the cylinder. Further-

more, the restriction is added that all the reactances loading a cylin-

der are to be equal (i. e. , X:X1=X2:X3:X4).

Figure 4. 27 displays the relative backscattering cross section

of cylinders of size ka:2. 2 having one, two, three, and four sym-

metrically located, purely reactive loaded slots. Since all the slots

of a cylinder are loaded by reactances having equal value, the net

effect is very similar to that of a single load. The result for N=3

is superimposed and indistinguishable from the result for N21 over

the portion of the curve where X< O. The curves approach asymp-

totic values ranging from approximately -7db for the case N22 to

-5db for N=4 for large values of inductive and capacitive loading.

The greatest minimization of the backscattering is attained by the cyl—

inder with two slots. The ability of the loading to minimize the
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backscattering degenerates as the number of slots is increased to

three and then four. Figures 4. 28 and 4. 29 display the corresponding

bistatic scattering cross section patterns for the cases of minimum

backscattering when N: l, 2, 3, and 4 and maximum backscattering when

N=4. Only the upper half of the scattering patterns are displayed

since the lower halves are identical to the upper halves due to symme-

try.

Figure 4. 30 displays the optimum minimum and maximum back-

scattering cross section as a function of slot position for cylinders of

size ka=2. 20 loaded with one and two purely reactive slots. In the

case of a single slot, it was found in general, the control over the

scattering was markedly decreased for ka>5 and also when the slot

is located in the shadow region of the cylinder. The introduction of

the second slot considerably increases the slot positions where signi-

ficant reduction in backscattering can be accomplished. Figure 4. 31

displays the load reactance required to obtain the Optimum minimum

backscattering from a single slotted cylinder as described in the

previous figure. The technique described in Section 3. 3 was em-

ployed in calculating the results in the last two figures.

The backscattering cross section as a function of slot orienta-

tion for fixed, purely reactive loading is displayed in Figure 4. 32.

Cylinders with one, two, three, and four slots are considered and in

all cases the load reactances are chosen to minimize the backscattering

at 0 1:180“ . Significant reduction of the backscattering is obtained

over the largest region of slot orientations when the cylinder with

three slots is considered. In all cases some slot orientations exist

where enhancement rather than reduction of the backscattering is

experienced.

4. 6. The Frequency Dependence of the Modified Scattered Field

The techniques that have been discussed in this chapter are con-

cerned with modifying the field scattered by a cylinder at one fre-

quency only. It is usually desired, however, that the scattering be

modified over a band of frequencies. In this section the frequency

dependence of the fields scattered by loaded cylinders will be dis-

cussed.



65

The frequency dependence of the field scattered by a loaded

cylinder depends directly on the frequency dependence of the load im-

pedances. For example, if a set of load impedances can be found that

have exactly the same frequency dependence as the desired loading

that results in zero backscattering, zero backscattering will be at-

tained at all frequencies.

Three types of load impedances will be considered: (1) the

short circuited TEM parallel plane line; (2) the short circuited TEM

parallel plane line in series with a resistance; and (3) the constant im-

pedance (i. e. , an impedance that is constant with respect to fre-

quency).

The geometry of the short circuited TEM parallel plane line is

shown in Figure 4. 33. The input impedance of the line is purely re-

active and given by33

Z. = j Z tank! ohm-meter
1n 0

where

ZO = g0 d ohm-meter

is the characteristic impedance of the line, I is the length of the

line, d is the separation between the parallel planes and {,0 is the im-

pedance of the medium between the parallel planes. This type of

impedance is easily implemented behind the slots in a cylinder sur-

face as a load impedance. This tOpic is discussed in detail in Chap-

ter 5.

The short circuited TEM parallel plane line with a resistance

in series yields an impedance with a constant resistance and a reac-

tance which behaves as a short circuited line. This type of impedance

could be easily implemented by installing a narrow resistive strip

along each input terminal of the parallel plane line dis cussed above.

No attempt is made to explain the implementation of a constant

impedance. It is presented to give a comparison of the frequency de-

pendences of differing cylinders and loadings. All end effects at the

junction of the load impedance and the cylinder surface are neglected.
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(C)

Short circuited TEM parallel plane line.

(a) Geometry (b) Schematic (c) Short circuited line

with series resistance.

Figure .4. 3 3.
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The bandwidth of a loaded scatterer is defined as the frequency

band over which the backscattering cross section is reduced by

10db or more below the level of the backscattering cross section of

an unloaded cylinder of tke same size. The backscattering vs. fre-

quency curves are not symmetric about the point of zero or minmum

backscatte ring. Hence, it is convenient to define an upper half band-

width, UHBW, which is the portion of the bandwidth. above the point of

zero or minimum backs cattering and similarly a lower half bandwidth,

LHBW. The bandwidths are given in percent of the frequency of zero

or minimum backs cattering.

The frequency dependence of the backscattering from a one-

slot cylinder loaded with a constant impedance is shown in Figure

4. 34(a). The backscattering cross section of the loaded cylinder is

normalized to the backscattering cross section of an unloaded cylin—

der of the same size and plotted as a function of ka, which is linearly

proportional to frequency. The load impedance is obtained from

Figure 4. 3 with ka=6. 5 which results in zero backscattering at this

frequency. The UHBW is 43% while the LHBW is 18% for an overall

bandwidth of 61%. Figure 4. 34(b) displays the frequency dependence of

a three—slot cylinder loaded with a constant impedance obtained from

Figure 4. 9 with ka=6. 5. The bandwidth is extremely narrow. Com-

paring Figures 4. 3 and 4. 9, the impedances necessary for zero back-

scattering, shows them to be very similar for ka> 4, yet the corre-

ponding curves in Figure 4. 34 differ greatly.

Figure 4. 35(a) compares the frequency dependence of the back-

scattering from a two-slot cylinder loaded first with a TEM line in

series with a constant resistance and secondly a constant impedance.

In both cases the value of tIe load impedances at ka=6. 4 is set equal

to the value obtained from Figure 4. 5. This results in zero scat-

tering in directions 0 =170° and 190° at ka=6. 4. The characteristic

impedance of the TEM line is ZO/a6 = 240v ohms which corresponds

to an air-filled parallel plane line with the planes separated by twice

the slot width, that is d=2a6.

In the case of the TEM line in series with a constant resistance

the UHBW is 14% and the LHBW is 25%, while in the case of the con-

stant impedance, the UHBW is 49% and the LHBW is 43% which is a



68

 

 

 

    
 

 

 
 

 

  
 

g i I I I r I I I I I I I

V 10 __

m o d

b b

a. r- , solid 1

0 cylinder

“+3 0 Z

0

a

2‘ " 'I

8
o -10 L

to

.5
In I

§

8 -20 - constant impedance N=l .

3’; zl/a6=-490.+j1729. 52 9 :180°

3 _ 6 =0. 05 rad.
1 .1

.o

o

.3 ‘30 +- .1

E.
Q J I I I I I I I I I I

0 2 4 6 8 10 12

A ka

a (a)

m o I I I I I T

b b

u 10 Da d

.9.
u

8 1" solid -1

m c l' dm /— y 1!) er

a, 0

o

H

U D

an

.S

3 -10 .. constant impedance

3 z /a6=z /a6
a l 3

.9; )- :-108.+j1540. 9

x

g zZ/a6:-3. 3+jll67 Q

,0 ~20 P

o

>

“g r-

’53

m ~30 :-

1 I I I I

0 Z 4 
(b)

Figure 4. 34. Relative backscattering cross section as a function of

cylinder size ka for cylinders with (a) one slot,

(b) three slots.



 

69

 

 

 

  

 

 

    

  

    
 

 

 
  

 

   

 

a

'3

In 0 10 I I I V I l I I I T r I

b b

I g“ '- solid "

3 c linder

.5 o ]— y
6
GI

g; _. ‘— T s

8 ,_., “'

o ~10 . \ f\ 1’ .,
co " \ I"

.S " \ 1" ’
:3 . constant V I q

:3 resistances of ,’

3 -20 b R/a6=2332 $2 /" N22

:2 shorted TEM line 0 : 170° ‘

o reactance with 01-1 0,,

3 - zO/a5:24on9 2‘ 9 .

g) 30 I /a=0.198 51:0220. 05 rad.

o3 ' :-
cl

% ----constant impedance

m - zl/a6=zz/a6:2332+j2612 £2 .

a I I I I I I I I I I I I

3 0 2 4 6 8 10 12

A ka

7°C (a)

53 S 10
I: u I I I I I T F I I I I I

q, 8
j be - solid .

r—cylinder

r5 0

.2

‘5

g P

In

3' ~10 )-

'l-I

0

00 b

.S

:0; .20 b
+9

8
"’ .- constant impedance

_2 zl/a6=z2/a6

g -30 - =2332.+j2612$2

E

Q h

>
I:

2 I I L L J I

m
0 2 4 6

m

ka

0))

Figure 4. 35. Relative scattering cross section as a function of cylinder

size ka. (a) Backscattering cross section. (b) Bistatic

scattering cross section of 0 :170° .



70

significant improvement. Comparing the frequency dependence of

the short circuited line (i. e. , tank! which has a positive 810pe) and

the constant reactance to the reactance in Figure 4. 5(b) (which has

a negative sloPe), shows that the constant reactance matches the de-

sired reactance in Figure 4. 5(b) better than the short circuited line

does. This explains the wider bandwidth in the case of the constant

impedance. Figure 4. 35(b) displays the bistatic scattering cross

section at 0 =170° as a function of frequency for the same constant

impedance loading used in Figure 4. 35(a). The UHBW is 38% and

the LHBW is 58% with general shape of the curve similar to the back-

scattering cross section curve shown above.

Figures 4. 36 and 4. 37 describe the frequency dependence of

the bistatic scattering pattern of a cylinder loaded with the same con-

stant impedance load configuration that was a consideration in the

previous figure. The bistatic scattering patterns are normalized to

the geometrical-optics value of the backscattering cross section.

The frequency dependence of the backscattering cross section

of a cylinder loaded with two purely reactive loads that yield zero back-

scattering when ka:6. 5 is displayed in Figure 4. 38(a). Three differ-

ent types of load reactances are compared: (1) A short circuited TEM

parallel plate line with Zo/a6 : 120w ohms, 1 l/a = 0. 197, and

I 2/a = 0.402., (2) A short circuited TEM parallel plate line with

ZO/a6 = 240w ohms, 1 1/a : 0. 159, and I 2/a = 0. 440. , (3) A constant

reactance with Xl/aé = 12.67. and XZ/aé = -220. 5. The bandwidths

for the three types of loading are: (l) UHBW 3%, LHBW 3%, (2) UHBW

5%, LHBW 4%, and (3) UHBW 18%, LHBW 12%. The values of the

load reactance for the two cases of short circuited TEM lines are

shown in Figure 4. 38(b). Comparing these reactances with the de-

sired reactance function displayed in Figure 4. 20 explains the dif-

ferences in bandwidth for the three different types of loading. Com-

paring the curves for constant reactance loading and those for con-

stant impedance loading (i. e. , with non-zero resistances) shows that

in most cases the purely reactive loading has a significantly narrower

bandwidth than general impedance loading.

It has been seen that the reactances necessary for zero back-

scattering generally have a negative slope as a function of frequency
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while a short circuited TEM line has a tank! dependence, which has

a positive slepe. Furthermore, in many cases large reactances are

required which force the short circuited line to be Operated near

antiresonance (i. e. , k1 ~ 11/2). In this region tank! is a rapidly

changing function of frequency which is undesirable from the view-

point of bandwidth. Increasing the characteristic impedance of the

line moves the operating region away from the antiresonance point

thus in most cases increasing the bandwidth. 13

Examing Figure 4. 27 suggests a broad band reduction of ap-

proximately -5dB in the backs cattering might be attained with very

large purely reactive loading. This is confirmed for the case of a

constant reactance of Xl/aé : 20, 000 ohms in Figure 4. 39(b). The

practical problem with this scheme is in realizing a very large reac-

tance which is constant with respect to frequency.

The loading technique developed in Section 3. 4 for zero scat-

tering in one direction at several different frequencies suggests a

method which might lead to broadband scattering modifications.
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CHAPTER V

EXPERIMENT AND COMPARISON TO THEORY

To confirm the preceding theoretical predictions a series of

backscattering measurements were performed on a cylinder with one

purely reactive loaded slot.

5. 1. Experimental Model and Experiment

The experimental model [See Figure 5. 1(a)] consisted of a

cylindrical brass tube, 7/8-inch OD, 3/4-inch ID, and 36 inches

long, with a l/8-inch wide longitudinal slot cut in its surface. The

slot impedance is implemented by installing a curved parallel plane

TEM line interior to the cylinder. The inner wall of the slotted cylin-

der forms one of the conductors of the line, with the outer surface of

a brass cylinder of CD l/Z-inch, installed coaxial with the slotted

cylinder forming the other conductor. One end of the line Opens at

the slot in the cylinder's surface while the other end is short circuited.

The short location is adjustable so that the length of the line can be

varied, which in turn varies the slot impedance.

The experiment is conducted inside an anechoic chamber at

frequencies ranging from 8. 4 to 9. 4 GHz. The experimental arrange—

ment and block diagram of the test instrumentation are shown in

' Figure 5. 1(a) and (b), respectively. The source separation method34

is used to measure the backscattering cross section of the cylinder.

The horn antenna does not illuminate the cylinder with a plane

wave. The amplitude and phase of the incident wave vary along the

axis of the cylinder. It was found that by placing the cylinder about

ten wave lengths in front of the horn the consequences of the nonuni-

form illumination and the end effects (arising from the finite length

of the scattering model) were small, while the detection system

provided the desired sensitivity.
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5. 2. Comparison of Theory with Experiment

The first comparison is made with data which depends on the

slot orientation but only indirectly on the value of the load impedance.

Figure 5. 2 compares experimental data and theoretical calculations for

the maximum and minimum backscatte ring cross section, which can

be achieved by one purely reactive load, as a function of slot location.

The experimental points were determined by setting the position of

the slot, then determining the maximum and minimum possible back-

scattering by varying the short position. The theoretical results were

calculated from Equation (31) with the reactances for maximum and

minimum backscattering calculated from Equation (39). The agree-

ment between experimental and theoretical results is excellent.

In order to compare results directly involving values of the load

reactance, a mathematical model must be deve10ped for the impedance

backing the slot in the experimental scattering model. The load im-

pedance of the slot is modeled as a short circuited TEM parallel

plane line [See Section 4. 6] in series with a lumped reactive imped-

ance which accounts for end effects and the right angle bend at the

input end of the line [See Figure 5. 3(b)] . The length of the parallel

plane line is taken to be the mean length of the curved line

I

1 = ig-Etp = o.79375¢ cm.

where a' is the inner radius of the outer cylinder, b is the outer ra-'

dius of the inner cylinder, and <1> is the angular displacement of the

adjustable short [See Figure 5. 3(a)]. The separation of the plates

of the line is

d: a' - b: 0.13175 cm.

The approximate model of the impedance backing the slot in the ex-

perimental scattering model is

Z1 : jX + jl. 197 tan (0. 007937k¢) ohm-meters.
E
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(a)

 
  

  

 

 

 

E
N
]

  

21 ngod tan M

l

 

(b)

Figure 5. 3. Cylinder with curved parallel plane line short circuited at (I).

(a) Cross-section view. (b) Equivalent circuit for cavity load.
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Figure 5. 4 compares theoretical and experimental results of

backscattering as a function of the angular length of the cavity. The

experimental points are obtained by setting 9 1:180° and observing the

backscattering while varying the position of the short, (1). The theo-

retical calculations involve first calculating the slot impedance for a

given 4) using the above expression, then calculating the backscattering

cross section from Equation (31). The lumped end effect reactance

XE was obtained by matching the position of the first minimum point

of the theoretical and experimental results which required a 12 degree

shift. This corresponds to an inductive reactance of O. 427 ohm meters.

The agreement between the theoretical and experimental results is

again excellent. This [indicates that not only is the theory valid, but

the approximate model for the curved parallel plane line is reasonable.
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CHAPTER VI

CONCLUSIONS

In the preceding chapters the scattering behavior of a con-

ducting cylinder loaded with N impedance backed longitudinal slots

and illuminated with a normally incident plane electromagnetic wave

polarized with its E -field vector perpendicular to the cylinder axis

has been considered. The slots were assumed to be electrically nar-

row but finite and with constant electric fields across them. Under

this assumption the analysis was exact.

It has been shown that the field scattered by a cylinder loaded

with N slots can be:

1. reduced to zero in N directions when the load

impedances are complex and can take on all

positive and negative values,

2. reduced to zero in N/Z directions when the

loading impedances are purely reactive,

3. reduced to zero in one direction at N different

frequencies.

Synthesis procedures have been deve10ped for finding load

impedances that produce the above results. For Case (1) the proce-

dure is straightforward, involving only the solution of a system of

linear algebraic equations. On the other hand, the constraint equa-

tions involved in the procedures for Cases (2) and (3) are nonlinear.

This complicates the procedures, and in fact, solutions to these equa-

tions do not always exist.

It was found the position of the slots on the cylinder surface

is a critical factor in whether or not solutions exist to the last two pro-

cedures. The case of a cylinder loaded with two purely reactive slots

has been numerically examined in detail. A set of slot positions has

been found such that solutions exist for zero backscattering over the

83
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entire range of cylinder size considered (i. e. , 15 ka5 13). These

numerical results seem to indicate that the best positions for the slots

are in the center of the illuminated region of the cylinder. For these

slot positions, purely reactive loadings which significantly reduce the

scattered field in the desired directions can usually be found even when

no solution exists for zero scattering in these directions.

The positions of the slots were also found to be important

factors in determining the form of the bistatic scattering cross section

patterns and null widths for all types of loading impedances. Two dif-

ferent slot configurations having the same number of slots and both

being constrained to have zero scattering in the same directions, may

have grossly different bistatic scattering patterns and null widths.

The frequency dependence of the fields scattered by the loaded

cylinders was considered for three types of load impedances.

l. a short-circuited TEM line.

2. a short-circuited TEM line in series with a

constant resistance.

3. a constant impedance (i. e. , constant with

respect to frequency).

Considerably wider bandwidths are, in general, obtained with load im-

pedances which have resistive parts rather than purely reactive load

impedances. Bandwidths of nearly 1:1 are demonstrated.

An experiment has been performed which confirms the theory.

The basic advantage of multiple impedance loading, over load-

ing by a single impedance, is that it gives additional degrees of free-

dom which can be used to control the scattering of an object over both

space and frequency domains.
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APPENDIX A

DERIVATION OF FOURIER COEFFICIENTS

In this appendix the Fourier Coefficients (l7) and (18) for the

problem of radiation from a cylinder with N driven slots are derived.

The 2 component of the fir-field is given in terms of the un-

known coefficients An and En.

H: : Z [Ancos (n6 ) + Bn sin (n6 )] HLZV (kr)

n:0 (16)

The coefficients are determined from the boundary condition at the

cylinder surface ,.

 

 

V 6

m for [6 -6 | < m
a6 m 2

Eg(r:a+) :4 m m: 1,2,...,N

_ O elsewhere (6)

L 
The E; component of the field can be determined from Equation (16)

by using Maxwell's equation for a source free region

 

VX-I-Ir : jwe Er

This gives

r _ .1 8 1‘

E0 _ (1)60 8r Hz

(1)

I

: jgo Z [An cos (n6)+ Bn sin (n0)] 1411(2) (kt)

n:0 (A-l)

where the prime denotes a derivative with respect to kr.
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Using (A-l), boundary condition (6) can be expressed in terms

of the unknown Fourier coefficients

 

m

I

E; (r:a+) : j go 2 [An cos (n9 ) + Bn sin (n9 )] Hn(2) (ka)

n:0

V 6

m for '9 -6 I <_LI1_

a6 m 2

:4 m m=1,2,...,N

D

b

0 elsewhere (A— Z)

 

The coefficient An can be found by multiplying (A-Z) by cos

(p9 ), integrating with respect to 6 over the domain [-1r, 1r] , and using

the orthogonality property of the sine and cosine functions. For the

2

case 11:): 0 this gives

6+5 /2
m m V

S 711‘— cos (he ) d0

9 -6 /2 a m
l m m

n6

N Sin( 2m)
2 Vm n6 cos (nem)

m=l ( 2m)

j to An Hnm' (ka)1r

 

 

|

.
I
N

 

 

 

 

so

n6

2 1 EN: Sin(2m)
A = , , V -——-——-—cos(n9 ).

n JZwaLO Hn(2) (ka) m-l m (n6m) m

— 2 (A-3)

For the case n:0

 jgo A0 Hom' (ka)21r

3
M
2
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SO

 

N

A0 : jzhlaz; Z Vm

0 Hn (ka) m=l (A-4)

with the Neumann factor

1 for n=0

6On

2 otherwise,

Equations (A-3) and (A-4) can be combined into the final expression

for the coefficient

 

 

 

 

n6

€0n § sin( am)

A : , Vm cos (n9 )
n jZTIaLO Hn(2)1 (ka) 1 m( n6m ) m

m 2 (17)

Similarly coefficient Bn is also found from .Equation (A-Z)

by multiplying it by sin(p0 ) and integrating over the same domain.

The result of this derivation is Equation (18).



APPENDIX B

PURELY REACTIVE IMPEDANCE LOADS

FOR ZERO SCATTERING IN ONE DIRECTION

FROM A TWO-SLOT CYLINDER

In this appendix an equation is derived whose solutions are the

purely reactive load impedances that cause the field scattered from

a cylinder loaded with these loads to be zero in a direction 9 0' The

constraint equation that forces the scattered field to be zero in the

direction 9 0 is[See Equation (38)]

(311(9 0)V1+ (312(9 0)V2+ (510‘9 0) Z 0 (13-1)

Instead of using the nonlinear constraint Equation (37) to force the load

impedances to be purely reactive, a different procedure will be used

which directly determines an equation for the load reactances. It

can be shown that both procedures yield identical results.

Matrix Equation (26) for the case N=2 is

      

1 * '1 - 1

y11 + Y1 y12 V1 : K10

Yzl y22 + Y2 V2 Kzoq (13-2)

__ a 1- .4 I. —.1

Equation (B-Z) may be used to eliminate the slot voltages from

Equation (B-l). This results in a constraint equation which directly

involves the load admittances.

AYl + BYIYZ + CY2 + D = 0 (13-3)

whe re

88
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A : C10y22+ CIZKZO

‘ C10

C = C10Y11+ C11K10

C11 C12. C10

D: Y11 y12 'Klo

3'21 V22. 'Kzo  
The real part of the load admittances are now set equal to

zero so that

Y

1 jfi1

Y
2 jgz

where [51 and (3 2 are the load susceptances. This step is equivalent

to enforcing constraint Equation (37). The complex coefficients of

Equation (B-3) are written

A=A +jA.
r 1

B=B+jB.
r 1

C=C+jC.
r 1

D=D+jD.
r 1

where the subscripts r and i refer to the real and imaginary parts

of the coefficients, respectively.

With these definitions, complex constraint Equation (B-3)

can be separated into real and imaginary parts. This results in two

real equations

'AiBl ‘ Brfl 1F3 2 ' C1162 + Dr Z 0 (13-4)

A181 ' 1'3’51‘31‘3 2 + CrBZ + D1 = 0 (13-5)
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Solving these equations for (3 1 and (3 2 gives

 

 

 

F3 : Dr - C;i‘32

1 Ai+BrpZ
(B-6)

and

-G1JGZ-4F(A D +A.D.)
(3 = r r 1 1

2 2F (B-7)

where

F = B C + B.C.

r r 1 1

G : A.C -A C.+B D.-B.D
1 r r 1 r 1 1 r

The solutions to Equation (B-6) and (B-7) are the susceptances

that give zero scattering in directions 9 :9 0. There are two possible

sets of susceptances to achieve the same purpose. The purely reac-

tive load impedances that result in zero scattering in direction 9 =9 0

are Zl = -j/[3l and Z2 = -j/[3 2.

Equations (B-6) and (B-7) have suitable form for programming

on a digital computer.
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APPENDIX C

ZERO SCATTERING IN ONE DIRECTION

AT TWO DIFFERENT FREQUENCIES

In this appendix an equation is derived whose solutions are

load impedances which result in zero scattering in one direction

  

  

6 :9 0 at two different frequencies, ml and (1)2. Equation (41) for

the case N=Z gives

y11 + Y1 y12 ‘Klo

Val y22 + Y2 'Kzo z 0

C11 C12 C10 “’ z “’1

6 = 6 0

y11 + Y1 y12 “K10

3’21 Yzz + Y2 ‘Kzo : 0

C21 C22 C20 “’ z “’2

9 : 9 0

Evaluating these determinants leads to

AlYl + BlYlYZ + CIYZ + D1 : 0 (C-1)

A2Y1+ BZYIYZ + CZYZ + DZ : O

(C-Z)

where

A1 = [C10V22+ C12K2011. = 1.11

9:90



form

where

92

  

  

B1 : C10(“=“’1' 9 :90)

C1 = [C10Y11+ C11K1o]1.1 :61

e = e 0

C11 C12. C10

D1: y11 y12 'Klo

y21 Yzz ‘Kzo 1., = “1

e = 90

A2 = [Czoyzz + C22K20]w = 1.12

e = e 0

B2 : C20(w=w2, 0 :00)

C2 2 [C20y11+ C21K1011.) =62

e = 90

C321 C22 C20

D2: y11 Y12 'Klo

Val y22 ’Kzo w = 1.12

e = e 0

Equations (C-1) and (C-2) are easily manipulated into the

Y1+LYZ+ M : 0
((3-3)

2

Yz+ NYZ+ P _ o ((3-4)



Define

and

where the
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Cle - CZBI

AlBZ - AZBI

 

DlBZ - DZBI
M :

A1132 ' A231

AL+BM-C

 

 

Z Z 2
N :

BZL

AM-D

P _ Z

BZL

Y1: G1+inl

Y2 : GZ'I'JBZ

L=L+jL.

1‘ 1

M: M +jM.
r 1

N: N +jN.
1‘ 1

P P +jP.
1‘ 1

subscripts r and 1 refer to the real and imaginary parts of

the coefficients, respectively. Separating Equations (C-3) and (C-4)

into real and imaginary parts and performing some alegebra these

e quations be come

 

G1 = -Ler+ LipZ-Mr

51: -LrBZ-LiGZ'Mi

G PiDNrfiZ

: +2 Ni sz

(C-5)



  

 

 
 

4 3 5N12 er 2 (N1 Nr N1)

‘32 + ZNiflz +( 4 ' 2 'Pr) 82 + 4 ‘ NiPr + 4 F32

(N N.P. P.2 . P )
+ r 1 1 _ 1 _ ___1_'__ z 0

4 4 4 (C-8)

Equation (C-8) is a quartic equation which may have real or complex

roots. The only roots that are solutions to this problem are the real

roots. Substituting the real roots of Equation (C—8) into Equations

(C-5), (C-6), and (C-7) gives admittances

Y1: GI+JB1

Y2 : GZ‘I'JpZ

which result in zero scattering in direction 9

(11:101. andw 21112.

: 9 0 at frequencies
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ANTENNA BY MULTI-IMPEDANCE LOADING
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CHAPTER I

INTRODUCTION

The modification of the radiation and circuit prOperties of a cir-

cular wire 100p antenna by lumped impedance loading is investigated

in this study.

When a wire antenna is excited, a current is induced on the

antenna. This current radiates an electromagnetic field and deter-

mines the input impedance of the antenna. Lumped impedances can

be installed along the antenna to modify the magnitude and phase of the

antenna current which, in turn, modifies the antenna radiation and

input impedance. The modified current can assume quite an irregular

distribution and hence a fairly accurate theory must be deve10ped.

The problem of determining the current distribution on a cir-

cular 100p antenna can be formulated in terms of two coupled integral

equations. 1 These equations reduce to a single one dimensional inte-

gral equation after the "thin wire” approximation is introduced. Fourier

series solutions to the thin wire integral equation have been studied by

Hallenz, Storer3, and Wul. An iterative solution has been considered

by Adachi and Mushiake4' 5.

based on the work of Hallen, Storer, and Wu.

The theory formulated in this study is

A point exists in Hallen's series where the terms become very

large and for some antenna dimensions infinite. Hallen concluded that

the series was divergent and could only be used as an asymptotic series.

He suggested that the problem arose from the one dimensional approxi-

mation. Storer extended Hallen's result by summing the first five terms

of Hallen's series exactly and using an approm'mate integral technique

to sum the remaining terms. The troublesome point in Hallen's series

now occurred under an integral which Storer evaluated as a Cauchy

principle value. Wu questioned Storer's technique and re-examined

Hallen's solution. He pointed out that Hallen's difficulty did not arise

from the one dimensional integral equation, but arose from other ap-

proximations made. Wu used a less approximate Kernel and modified

Hallen's solution eliminating the troublesome point.
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All of the above authors assumed a 6-function (or slice) voltage

generator in their model of the 100p antenna. This leads to an infinite

input susceptance and thus a divergent series for the input admittance

of the antenna. Wul suggested a possible procedure for calculating

the apparent input admittance of a half 100p antenna above a conducting

ground plane driven by a coaxial line, but unsolved problems still

exist in applying this procedure to the 100p antenna.

King, Harrison and Tingley 7 have calculated values for the

input admittance of, and current distribution on, moderate size 100p

antennas using Wu's theory. They retain twenty terms in Wu's series.

The number of terms retained in the divergent series for the 100p sus-

ceptance appears to be somewhat arbitrary. For example, the sus-

ceptance of a thin 100p one half wave length in circumference increases

by more than 20% when thirty terms rather than twenty are retained.

In this study further reference to this theory will be made as the twenty

term theory.

An alternate approach to modeling the voltage driver is taken

in this study. The generator is assumed to be of finite size and to

exist over a finite gap along the 100p. This leads to a convergent series

for the admittance of the 100p and the number of terms retained in the

series is determined by the desired accuracy of the solution. A dis-

cussion and justification of the "finite gap" theory is given in Chapter

III of this study. It is shown that by introducing the finite gap into the

theory, the agreement between the theory and experimental results is

improved. Very recently, Ito, lnagaki, and Sekiguchi8 published a

paper on arrays of 100p antennas where they also introduced a finite gap

generator.

Multiloaded 100p antennas have been investigated by Iizukag’ 10

and Harringtonl 1. Iizuka deve10ped his theory by the superposition of

Storer's results and found a significant discrepancy between his theory

and his measured admittances. Harrington based his results essen-

tially on Hallen's series and did not include Wu's correction. He did

not compare his theoretical results with any experimental results. Both

authors deve10ped their theories for more than one loading, but restricted

their results and discussions to singly loaded 100ps. Furthermore,

most of the existing results are confined to resonant lOOp8 of one wave

length in circumference.
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When a leep is loaded by more than one load the number of

variables (i. e. , load resistances, load reactances, position of the

loads, etc.) becomes overwhelming. To overcome this problem.

synthesis procedures are deve10ped in this study to facilitate the de-

sign of a multiple -leaded leep antenna.

The major purposes of this study are (l) to deve10p an improved

theory for the loaded loep antenna, and (2) to deve10p and analyze pro-

cedures for the design of a multiple loaded 100p antenna that results in

desired radiation or circuit characteristics.

In Chapter II an integral equation for the multi-loaded loep

excited by a finite gap generator is developed and a Fourier series

solution is obtained.

Numerical methods used in evaluating the theory results are

discussed in Chapter III. In addition, a comparison of the "finite gap"

theory to other existing theories and experimental results is made. A

brief discussion of the characteristics of unloaded 100p antennas is also

presented. Since the "finite gap" theory is more applicable to larger

leaps than Storer's theory or the twenty term theory, some examples

of impedances, currents, and radiation fields of large loop antennas

are also presented.

Chapter IV deals with procedures for determining (l) the load-

ings necessary for a Specific modification of the radiation pattern of a

leap antenna, (2) the Optimum reactive loading to produce maximum

gain in a Specified direction from a leep loaded with a single impedance,

and (3) the set of reactive loadings that leads to a Specified input

impedance.

Chapter V summarizes the results obtained in this study.



CHAPTER II

THEORY OF THE LOADED LOOP ANTENNA

2. 1. An Integral Equation for the Current on the Loaded LOOp Antenna

A transmitting circular loop antenna of radius b and constructed

of perfectly conducting wire of radius a is loaded with N impedances as

shown in Figure 2. l. The 100p is excited by a finite-gap, voltage gen-

erator which produces a uniform, impressed electric field in the gap

region '4’] < 60/2. The nth load impedance Zn is lumped into a gap

region of angular width 6n whose center is located at d: = en. There

are two components of surface current density induced on the leep,

K¢(¢, LIJ) flowing around the 100p in the ¢ direction and K¢(¢>, 1p) flowing

about the wire in the 4: direction. Integral equations for the currents on

the 100p can be obtained from the boundary condition on the tangential

component of the electric field at the loep surface.

The problem is greatly simplified by assuming a thin wire 100p

whose gap generator and lead impedances are restricted to regions

small with reSpect to a wave length, that is

a2 << b2 and ka << 1 (1)

and

6nb << )\ for all n. (2)

where k = w Viz-5: = 211/). is. the prepagation constant. Harmonic

time dependence of the form ert is assumed. .

Under the thin wire assumption, the Ll} component of surface

current will be small in comparison to the 4) component of surface cur-

rent and can be neglected. It is also reasonable to assume the total

current flowing in the loop is

1,011 = 211a K¢(¢).

The integral equation for I¢(¢) can be derived from the boundary

condition on the <1) component of the electric field at the leap surface

which is
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Figure 2. l. LOOp antenna loaded with N impedances: (a) Geometry,

(b) Schematic.
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:1" - E2] .—. 0 --- at the surface of the loep (3)

where E1 is the impressed electric field at the surface of the 100p and

[E

E: is the induced electric field at the surface of the loop maintained by

the current and charge on the antenna.

The impressed field is

- Vo Po(¢) --- for ‘4" < 60/2

i _
12¢ — 11‘4”...) zm Pm(¢ - 4m) :rJf-gml <13...” (4)

0 --- elsewhere on the loep

where

1
qb— --- for |¢| < 6n/2

Pn(¢) = (5)

0 --- elsewhere

is a unit area pulse function. The distance from the center of the loep

to the observation point of the field on the loop surface has been taken

to be b everywhere which is consistent with the thin wire assumption.

The induced field is

a 13<I>

  

E4 ‘ 'Efi'j‘mt ‘6’

where

m?) = 4,2 5 p1?» e'likR dV'

0 V

and

_. 1* .... -ij
A¢(r) = 71%5‘V$.J(r')eR dV' 

are the scalar potential and the <1) component of the vector potential,

respectively. p(-r") and JG") are volume charge and current densities

and R = I; - ?'| is the distance between the source point r" and field

observation point 1". For the loep

_._, I (¢')

J(r’) dV' "‘ I?” %;ra— add). del)l
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p(?')dv' -> 32%)- amp' bd¢'

where q(¢') is the total charge per unit length on the 100p and is related

to the total current on the 100p by the continuity equation

31(¢')

%‘—%r' = ‘ijW'l-

The potentials maintained by the current and charge on the 100p are

 

now

w 81 (¢')
MI = -jw 41:60.0 S —§TW(¢-¢'Id¢' (7)

A¢(¢) = “S<<I>'IW(<I>- ¢')COS(¢- ¢')d¢' (8)

where

1r -ij

W(¢-¢') = 72—5 E—f— dLI'. (9)
-1r

Substituting equations (7) and (8) into equation (6) yields

Ea(¢) - ————zl ‘9 Tr T—al(M W(<I> ¢')d¢'
4) jw41rtob 53 -1r 4)

J'wIlo

"ZEB'S‘WI¢(¢')W(¢- ¢')COS(¢- ¢')d¢'

-11'

Integrating the first integral in the above expression by parts and

noting that %- W(¢ - (b') = - 3—3; W(<l> - cb') gives

a _. I I _ I I

E¢(¢) "4:b5:,1¢(¢’[1<1b3::+ kb cos (4» ¢ I] W(¢ ¢ I d¢

(10)

where go 2 Vpo7 50 is the intrinsic impedance of the medium. Sub-

stituting equations (4) and (10) into equation (3) results in the following

integral equation for the current on the loaded 100p antenna.

VOP0(<II = g I¢(¢ I2 P (¢-¢m)+4:25:1¢(¢')M(¢-¢')d¢'
m m m

m=l (ll)
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The kernel is now

 

 

 

2

MM» -<I>'I = [kb cos(«I -¢')+E%3:7] WW -<I>'I (12)

where

11' -jkle

W(¢ -¢') = Z—L-S e—R—dw' (13)
--TI’ 1

with

R1 = R/b

2' J4b2 sinZ [(¢-¢')/2] + 4a2 sin2 (LIN/2)

b

= J4 sin2[(¢-¢')/2] + Az/bZ (14)

where

A = Zasin(q:'/Z) .

The approximate expression for R given above is consistent with the

thin wire assumption and retains the essential characteristic of the

singularity in the integrand of W(¢ - ¢').

2. 2. Fourier Series Solution for the Current on a Loaded Loop Antenna

A solution of integral equation (1 1) can be obtained in the form of

a Fourier series. The current I¢(¢'), the kernel W(¢ - tb'). and the

pulse function Pm(¢ - dam) are expanded in Fourier series.

(I)

I¢(¢') : Z Ine-jmb' (15)

n=-oo

(I)

W(¢_¢I) : Z Kne‘Jn(¢‘¢') (16)

n=-oo

i -jn(¢>-<I>mI 1
me - ¢m) -- Bnme < 7)

113-0)
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where In’ Kn' and Bnm are unknown Fourier coefficients which are

defined by the following integrals.

I = lynx (¢'Ie3n¢'d¢' (18)
n Zn -174)

_ 1 " . ' (<I- ')
Kn Z? SWWW - ¢ IeJn ‘1’ act

= K-.. (19)

1 1' j(¢‘¢m)

Bnm : 2.1—r- -1r Pm“) - (1)111)e d¢ (20)

Bnm is easily evaluated by substituting equation (5) into equation (20)

and performing the integration. The result is

 

  

n6

1 sin( 2m)

nm : ZIrb no (21)

m

(T)

A Fourier series expansion of the kernel MM) - (b') is obtained by sub-

stituting equation (16) into equation (12) and is

MN) _¢l) : f ane‘jn(¢"¢') (22)

n=-oo

where

2

an = % (Kn+1 + Kn_1) - E—b Kn (23)

Substituting equations (15), (17), and (22) into integral equation

(11) gives

00 N 00 .

-jn¢ 'Jn(¢‘¢m)

V0 2 Bnoe - Z‘ I¢(¢m) Zm Z: Bnme

nz-(I) m=1 nz-oo

jLO 1T 00 -jn¢' 00 '11(¢-¢')

= as) 2 Inc 2 a: 8 d4"

n=-oo l 00
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51-. -
_ o - Jn¢

‘ 2b 3 In ane

nz-cx)

The following expression for In is derived from the previous equation

by using the orthogonality prOperty of the ejnn¢ functions.

_ 2b J'mbm

In - jg an[anor:11<|>(¢m)zm Bnme ] (24)

The series determining the current on the loaded 100p antenna is given

by equations (15), (21), and (24) and is

 

 I¢(¢) = .:i_ vO[—-—+2 n: Sin T coas(n¢)

1:1-2V°)

N I (ImIz —1—+z m Si“(::m) C°S(“‘: tn.)

51.1.0 2 (“2m ) ]}

The values of the current at the positions of the loads must

 

 

 

(25)

now be determined. Load voltages are defined as

V = I¢(¢m)Zm (26)
m

where Vm is the voltage drOp across the mth load impedance Zm' It

is also convenient to define

 

n6

, 0° sin( m) cosLnOb-(b fl

y(I-ImI = 53%;ng not: an m ](sz

(a I
which has the same dimension as admittance but is actually the current

 

distribution on an unloaded 100p antenna driven by a generator of unit

voltage located at ¢ : ¢n' For the case of the voltage generator located

at 4) = 4:0 = 00 the notation y(¢) will be used and it is implied that

6 = 60. Evaluating equation (25) at the N positions of the load im-

petctllances and noting that I444)m)-- Vm Ym whereY = l/Zm and is the

load admittance gives N simultaneous equations:



n: 1,2,...,N (28)

With the notation

Ynm = Y(¢n - ¢m). Yn Y(¢n) (29)

the previous set of simultaneous equations can be written in matrix

form as

r- 1- - r- -r

y11+Y1 y12 . . . y1N V1 Y1

Y21 y22+Y2 Y2N V2 Y2

= v0 . (30)

_ yN1 yN2. YNN+YN_ _VN_ _YN_      
which can easily be solved for the load voltages.

The current on the loaded 100p antenna is now completely de-

termined and given by

N

I¢(¢) = vowII - Z vmy<I -¢m) (31)

m=1

The correSponding input admittance is

I (0)
_ I _ _ Z —

Yin — V _ yo mem (32)
o :1

where

Vrn : Vm/Vo

is the normalized load voltage.

The above results can be interpreted in terms of a superposi-

tion picture which will be useful later. Equation (31) shows that the

current on the loaded 100p antenna is the superposition of N + l cur-

rents. The first current (corresponding to the first term on the right

hand side of equation (31)) is equivalent to the current on an unloaded
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100p driven at 4) = 00 by V0, the second current is equivalent to the

current on an unloaded 100p driven at 4) = (bl. by - V . etc. The load
1

voltages V1, V2, . . . , V are determined by matrix equation (31).

N

The input impedance and current distribution of the loaded 100p

antenna depend on the coefficient

kb 2
- __ .. L

8‘n ‘ 2 (Kn+l + Kn-l) kb Kn (23)

where Kn has been defined as [see equations (13) and (19)]

1 II II -jkle . ,
K S (S e R1 d4”) eJn(<1>"<1> 1d¢ (33)

n (211') -1r -1T

and

 

R 1 J4 sin2((¢-¢')/2) + 4(a2/b2) sinZ (IV/2)

Wul’ 11’ 12 has evaluated this integral under the assumption a2 << b2

and obtained

kb

K0 = ;II— 1n(8?b) - %5: [520(x) + j J0(x)] dx (34)

n — 77— K0( b ) (_b—) In] - 2- . o Zn(x) J 2n(x) x

3

where ( 5)

-l

Cn = 1n(4n) + V - 2.: Z—rnl—i-l— (36)

m=0

and y = 0. 5772. . . is Euler's constant, :(x) and ?o(x) are the modi-

fied Bessel functions of the first and second kinds of order 0, Jn(x) is

the Bessel function of the first kind and order n, and 52n(x) is the

* 13, 14

Lommel-Weber function defined by

1 1r

fln(x) : :7- 5, sin (x sine - n9) d6 . (37)

o

 

*

Some authors define the negative of this function as the Weber function

denoted En(x). that is En(x) = -Qn(x).
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2. 3. Radiation Fields of a Loaded LOOp Antenna

The electromagnetic fields radiated by a loaded 100p antenna

can be obtained by integrating term by term the Fourier series expan-

sion of the current on the 100p. The electromagnetic fields in terms

of the vector potential are given by

E?) -ij +m _ (38)

 

j(“L060

in?) = i v x15. (39)

where

KG) = 2'; Svfffi") 6-11m dV' (40)

and R = I? -;'I

Consider the loaded 100p antenna which lies in the 9 = 90° plane

with its center at the origin of a Spherical coordinate system as shown

in Figure 2. 2. DrOpping terms of higher order than l/r and making

the following standard radiation zone approximation

r - r '15 --- for the phase term

R :.'-

r --- for the amplitude term

equations (33), (34), and (35) become

E(?) = -jw(8A9(¥) + $A¢(?)) (41)

FIG-3 = -jk (-3A¢(}') + $A9(?)) (42)

—> -> P- ~jk1‘ 211. h ’ ‘ .-+l

A(r) = 3397—5 I¢(¢')¢'eJkr 1‘ deI (43)
0 .

which is valid in the radiation zone where r >> b.

The integral that results from substituting equation (31), the

current on the loaded 100p, into equation (43) can be integrated exactly

in terms of Bessel functions of the first kind. A similar integral for

the unloaded 100p has been evaluatedls’ 16 and the result for the loaded

100p can be obtained by superposition in accordance with equation (31).

The resulting radiation fields of the loaded 100p antenna are
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Figure 2. 2. Coordinate system for the fields radiated by a 100p

antenna. -
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E(r) = 6E9+$E¢ (44)

-> -v ‘ 5

H(r) = - 9134/40 + ¢E9/§o (45)

where

. -'kr
_ ka 6 J S -

E9 . If r Vo [F60 - VmFGm (46)

m=1

. -jkr __

E4) = 1:1” e r v0 [1?qu -§ va¢m] (47)

m:l

and

n6

( n sin(6 2m)l

Fem = cosG n: #211 2[Jn-l(kb sine)

(2...)
+ J +1(kb sin 9] sin (Md) - ¢m))

00 n sin(nam) J (kb sine)

= cos 9 Z gl— n62 n k?) sine sin (M43 - ¢m)) (48)

n=1 n m

( 2 )

n6

J l(kzb sine) (.)nsin(—m) 1

F¢m = - 1:1ng [Jn_1(kb sine)

 

(2m) 2
- J +1(kb sin 9)] coS (nob - 44))

  

n6

J'(kb sine) . n ski—m)

0 2a +§ g—l— n62 Jr'l(kb sin 6) cos (n(¢ -¢n))

o n=l n ( 2m (49)
 

where Jn(Z) is the Bessel function of the first kind and J'n(z): 553— Jn(z).

Examination of equations (44) through (49) indicates thatthe radiation

fields are outward traveling Spherical waves. It also indicates E9

and E4) are in phase implying that the radiation is linearly polarized.
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A parameter which is useful in describing antenna radiation is

the gain of the antenna. The gain of an antenna is defined by

C(G: ¢) =
417 power density per unit solid angle in direction 9, q)
 

total input power to antenna

(50)

The gain of an antenna differs from its directivity by a factor which

takes into account the efficiency of the antenna.

For the loaded 100p antenna the gain is given by

   

N 2
2

4(kb) Z —

(“9'4” g «G. F90 ' VmFGm +
0 1n m=1

where Gin is the input conductance of the 100p.

F¢O - SVmF¢m

n=1

 

(51)



CHAPTER III

IMPEDANCES, CURRENTS, AND RADIATION

FIELDS OF A LOOP ANTENNA EXCITED

BY A FINITE GAP GENERATOR

This chapter deals with the numerical method used in calculat-

ing the results of the loaded 100p antenna with the finite gap excitation

which was developed in the previous chapter. Theoretical results

based on the finite gap excitation and theoretical results based on the

6-function generator are compared with existing experimental results.

Finally, some examples of impedances, currents, and gain patterns

of large 100p antennas excited by finite gap generators are presented.

3. 1. Numerical Method

Numerical results based on series expansions for the radiation

fields, current distributions, and input admittances of 100p antennas

have been evaluated on a CDC 6500 computer system. These series

depend on coefficients an which are functions of the kb and a/b. These

coefficients also depend on the Kn integrals [see equation (23)] which

were evaluated using Wu's eXpression as given in equations (34), (35),

and (36). A standard M. S. U. computer library subroutinel7 was used

to generate the Bessel functions of the first kind. The modified Bessel

functions were calculated by polynomial approximationsl8 while a

13’ 14 was used to evaluate the Lommel-Weberseries expansion

functions.

Examples of the first four coefficients are shown in Figure 3. 1

as functions of kb with S2 : 21n(21rb/a) = 12. Increasing the value of 52

(i. e. , constructing the 100p with thinner wire) tends to sharpen the

peaks of the an while decreasing 52 tends to flatten the peaks.

The series determining the radiation fields [equations (48) and

(49)] are rapidly convergent if kb is not too large. In this study twenty

terms were retained to insure accurate results for kb 5 10.
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Figure 3.1. Real and imaginary parts of l/a , l/a , l/az, l/a

for $2 = 12. (a) Real parts. (b) Imaginary parts.
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The series determining the input admittance is given by expres-

sions (27), (29), and (32). The real part of this series which corre-

Sponds to the input conductance converges very rapidly independent of

the gap width. For example, with kb = 2. 5 three digit accuracy can be

obtained for the conductance rataining only four terms in the series.

On the other hand, the imaginary part of this series which correSponds

to the input susceptance is somewhat more troublesome. Consider

briefly the convergence pr0perties of this series. The input admittance

of the unloaded loop is found from eq. (32) to be

(I) 1'160

_ _ _. l Sing—T) l 7

Y " fink”; n6. 5;] ‘5?"
2

in

 

For large n with n >> kb

and when n >> b/a the dominant term in Kn is the term involving the

product of the modified Bessel functions. Retaining the first term in

an asymptotic expansion for this product19 results in the following ex-

pression:

l — na na 1 b

Kn N FKJ'E‘) 10(70— "’ ’z'rrra

Hence

hi ~ 2nkb(§) —1-
n n

and the nth term in the admittance series has the following asymptotic

form for large n

n6

sin(——i—)

a 2 l . (53)

 

When 60 > 0 the series converges,20 but when 60 = 0 (which is the case

of the 6-function generator), the series diverges. Physically this im-

plies an infinite stray capacitance existing at a gap with an infinitesimal

gap width. It is interesting to note that (53) depends only on the wire



118

sin (n 60/ 2)

size ka and the term , which arose from expandirg the 100p

(n 150/2)

 

excitation in aFourier series, and does not depend on the 100p size kb.

For small 11 the terms are also a function of kb. The above observa-

tions imply that the detailed behavior of the susceptance is determined

strongly by the manner of excitation of the 100p at the driving point. A

comparison of the input susceptances obtained from equation (52) with

50 = O. O and 60 = O. l rad. as a function of the number of terms re-

tained in the series is made in Table 3. l.

The actual computation of the input admittance Yin’ the current

distribution I¢(¢), and the self and mutual short circuit admittances of

the loading points ynm was accomplished by summing 1001 terms of

their respective series. The first 61 coefficients were calculated

exactly. The following approximate expression was used in calculating

the remaining coefficients.

_. 1— na — na 1 kb

Kn * ; K'o(—b_) 10(1)" ”Fifi—.1" (54)

The last term in the above expression arises from integrating the first

term in a series representation of the Lommel-Weber function. 13 This

method of calculation assures at least two digit accuracy. Only slightly

over one second of computer time was needed to generate the 1001

coefficients and sum them.

3. 2. Effect of Finite Gap Generator

The gap size has no effect on the conductance of small and

moderate size 100ps and only a slight effect on large 100ps in the range

of kb = 10. O. Physically this is to be expected since the conductance

is prOportional to the total power radiated by the 100p and should not be

significantly affected by the gap size.

The effect of the gap size on the susceptance is shown in

Figures 3. 2 and 3. 3. Decreasing the gap size tends to make the 100p

susceptance more capacitive. Figure 3.2 shows that the susceptance

of thick 100ps is more sensitive to gap size than thinner lOOpS. It can

be seen that the effect of the gap increases with increasing 100p size.

For very small 100ps the susceptance is nearly independent of gap width.

This can be explained by the fact that the current is essentially uniform
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Number of terms Susceptance, millimhos

in partial sum 60 = 0‘ 0 50: 0.1 rad. ’

2 -0.868 -0.868

4 -l.36 -l.36

6 -0.666 -0.673

8 -0.366 -0.378

10 -0.182 -0.199

12 -0.0527 -0.0762

14 0.0451 0.0153

16 0.123 0.0865

18 0.187 0.144

20 0.242 0.191

22 0.289 0.230

24 0.331 0.264

26 0.368 0.292

28 0.401 0.317

30 0.432 0.338

40 0.553 0.408

50 0.643 0.441

60 0.715 0.452

70 0.775 0.450

80 0.827 0.443

90 0.874 0.433

100 0.915 0.425

200 1.19 0.428

300 1.36 0.425

400 1.48 0.423

500 1.57 0.423

1000 1.86 0.424

Table 3. 1. Input susceptance of circular 100p antenna as a function of

terms retained in series solution with kb = 2. 5 and Q = 12. 0.



S
u
s
c
e
p
t
a
n
c
e

B
,

m
i
l
l
i
m
h
o
s

 

 

 

  
 

I T T T Y T 1 r r I T 1

600 d

1

500 d

.0

q

4.0 .1

d

3.0 d

d

2.0 .4

.1

1.0 4

d

0 I
.1

'L ‘
kb 2 0.1

_6.0 I. -------------------o q

- .1

.7.0 )- 4

I- .

-8.0 I-  
 

0. 0 0. 04 0. 08 0.12 0.16 0. 20 0. 24

Gap width, 6, radians

Figure 3. 2. Input susceptance of 100p antenna as a function of gap

width for $2 = 10 ( ) and f2 = 12 ( -----). 



 

 

 

T I T I I T F T T I I I

]-

41- ' _l

"' 1

3' q

"’ ‘ all

2)- .1

a, .. 6b_
0 . ?-16

IE 1’ III
a

53’ I- . .

03 ’
10.0

0 I I

«‘0‘ O . V

E. . I

U h )1 I d

g \ I 20.0

U) ’1)- / \p’ q

I

b l q

-21. q

I- 4

-3b I

'4‘ q

J l 1 l L I J j l l l l   
 

.2 .4 .6 .8 1.01.21.41.6 1.8 2.0 2.2 2.4

kb

Figure 3. 3. Input susceptance of 100p antenna as a function of kb for

6b/a = 1. 0, 10. o, and 20. 0 withQ = 12 (i.e., a/b =‘ 0. 0155).



122

on small 100ps and hence there is no charge build up on the 100p.

Thus, changing the gap width does not change the distribution of cur-

rent and charge and hence does not change the input susceptance of

the 100p.

3. 3. Comparison of "Finite Gap" Theory with Experimental Results

Theoretical analysis of wire antennas usually makes use of an

idealized generator, whether it be a 6-function generator or a finite

gap generator, that eliminates the transmission line which is usually

present in practice. The theoretical admittance of the antenna is thus

an intrinsic quantity of the antenna and idealized generator. On the

other hand, the measured admittance of an antenna is the apparent

admittance the antenna presents to a transmission line when connected

as a terminating load. The theoretical admittance neglects:

a. Electromagnetic coupling between the antenna and

transmission line near the junction between them.

b. Changes in the characteristic impedance of the

transmission line near the junction due to the fact

that the line is not infinitely long.

and, in addition, for the case of a two wire transmission line driving

the antenna:

c. The absence of the antenna in the gap between the two

conductors of the transmission line.

For the case of a dipole antenna driven by a two wire line,

King21 (this paper references other related works) has derived a

terminal-zone correction to relate the ideal, theoretical admittance

to the apparent admittance of the antenna. Likewise, correction terms

have been found for a mon0pole over a ground plane driven by a coaxial

22’ 23’ 24 No such terminal correction terms have been determinedline.

for the 100p antenna.

It is noted that the terminal zone corrections for the dipole

depend mainly on the transmission line geometry and not on the length

of the dipole and that the dominant term in the correction is a lumped

shunt susceptance. It has been seen in the last two sections that the

high order terms in the series determining the admittance of the 100p
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depend on the gap size and the 100p wire size but not on the size of the

100p,‘ and that changing the gap width affected the 100p admittance in

the same was as a lumped susceptance shunting the 100p would. In

view of the similar characteristics of the terminal zone corrections

and the finite gap generator, it is pr0posed that "effective" gap widths

be defined which result in theoretical 100p admittances which corre-

spond to apparent measured admittances. For the case of the 100p

driven by a two wire line the effective gap width is taken to be the dis-

tance between the centers of the two wires of the line. For the case of

a half 100p over a ground plane driven by a coaxial line the effective

gap width is taken to be the inside diameter of the outer conductor of

the coaxial line. The justification for these effective gap widths is

that they yield theoretical admittances that compare very well to

measured admittances.

Experimental measurements of the admittance of 100p antennas

driven by a two wire line has been reported by Kennedy. 25 A compari-

son of her measured conductances with theoretical results calculated

from equation (52) is shown in Figure 3. 4. The 6-function theories and

the finite gap theory give essentially identical conductances. Figure 3. 5

compares measured susceptances, twenty term, 6-function theory sus-

ceptances, and susceptances resulting from the finite gap theory with

two different gap widths. In the region 4. 0 < Irkb < 6. 0 the susceptances

of the twenty term, 6-function theory fall between those of the two

finite gap theories and are not shown. A detailed description of the

experiment is found in the above reference, but it is worth noting that

the eXperiment was performed at a constant frequency of 750 MHz

with the 100p size being changed from IIkb = l. 48 with fl = 21m?) =

8. 16 to Irkb = 9. 38 with $2 = 11. 84. A comparison of Kennedy? z(isata

’ It

is found that the finite gap theory gives susceptances that are in better

and Storer's 6-function theory can be found in the literature.

agreement to the experimental data than Storer's theory.

Iizukag

of a circular 100p antenna imaged into a conducting ground plane and

has reported measurements of the admittances of half

driven by a coaxial line. A comparison of the finite gap theory, the

twenty term, 6-function theory, and Iizuka's measured admittances is

shown in Figure 3. 6. The experiment was performed at 600 MHz and
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once again the physical size of the 100p was changed to effect changes

in kb. (2 : 21n(211b/a) takes on values which range from approximately

8 through 14 while kb changes from 0. 2 to 2. 2. The gap width is taken

to be the inside diameter of the outer conductor of the coaxial line which

results in 5Ob/a = 13. 6. Excellent agreement between theory and

measured admittances is obtained. Increasing the gap width to Bob/a :

27. 2 reduces the susceptance by approximately 0. 2 millimhos over the

range of kb considered. Reducing the gap width to 5013/3. = 6. 8 increases

the theoretical susceptance by roughly 0. 15 millimhos. Thus it

appears a gap width equal to the inside diameter of the outer conductor

of the coaxial line is optimum.

Values for the susceptance calculated by the twenty term theory

are denoted by an "a " in Figure 3. 6. At kb = 1. 0 and 2. 0 the twenty

term susceptance and the finite gap susceptance are essentially identi-

cal and no D is indicated. It is seen the twenty term theory does not

compare to the measured susceptances as well as the finite gap theory.

At kb = 0. 2 the twenty term susceptance is approximately 0. 6 millimhos

more capacitive than the measured value while at kb = 2. 2 the twenty

term value is approximately 0. 4 millimhos more inductive than the

measured value. This can be explained as follows. A numerical

study of the twenty term, 6-function theory and the finite gap theory

over the range of parameters considered in this experiment has shown

that truncating the 6-function series at twenty terms yields approxi-

mately the same susceptance as using the finite gap theory with 60 =

0. 15 radians. However, in Iizuka's experiment Bob/a was held con-

stant while b was varied, hence 60 varied as kb was changed. In the

experiment with kb 2 0. 2, 60 :' 1. 07 radians while at kb 2 2. 2, 60 ='

0. 1 radians. It is concluded that the inaccuracy in the twenty term,

6-function theory is introduced by not taking into account change in the

excitation of the 100p.

Iizuka9

with a lumped impedance Zl z 00. The load impedance is implemented

has also reported admittances of a loop loaded at <11 = 1800

by simply removing a short segment of the 100p at 4) 2 180°. The

theoretical gap width for the load, 61, was taken to be identical to the

physical gap width used in the experiment which was . 012). at 600 MHz.
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Calculations made using equations (30) and (32) are compared with

Iizuka's measured admittances in Figure 3. 7. Once again, excellent

agreement between the finite gap theory and the measured admittances

is obtained. Again, it is found that the twenty term admittances do

not agree with the measured admittances as well as the finite gap theory

does. Iizuka found a fairly large discrepancy between his theory and

his measured values (which are used in Figure 3. 7) and it may be con-

cluded that the finite gap theory is a significant improvement in the

theory of the loaded 100p antenna.

3. 4. Input Irnpedances, Currents and Radiation Fields of LOOp

Antennas

The electrical prOperties of small 100p antennas with kb S 0. l

26
are well known. The radiation resistance of a small 100p is

"Q

R =' 73 (kb)4 (55)

and the input reactance is inductive with an inductance of

. 8b

L _ “Chem—3) _ 2) (56)

The current on a small 100p is uniformly distributed and the radiation

fields have the form,

-jkr
e
 

—> A

E N 4) r sine . (57)

The input impedances of and the current distributions on 100ps

of moderate size up to kb = 2. 5 have been tabulated by Storer3 and

Kingb’ 7. Radiation patterns in the plane of the 100p for 100ps of size

kb = 1, Z, and 3 have been calculated by Sherman27 under the assump-

tion of a cos (kbcb) current distribution. Rao28 has reported the radia-

tion patterns of 100ps of size kb : l. 5, Z. 0, and 2. 5 with both measured

results and theoretical results calculated by using the first 5 terms of

Storer's series solution.

The input admittances of 100p antennas of size 0 5 kb 5 10 and

$2 = Zln(21rb/a) : 12 and 18 are di6played in Figure 3. 8. The corre-

sponding input impedance for the case S2 = 12 is shown in Figure 3. 9.
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These impedances and admittances were Gob/a : 12. 1 which is the

effective gap width for a 300 ohm, two wire line.

The current distributions on large 100ps of size kb = 5. 0 and

10. 0 are diSplayed in Figures 3. 10 and 3. 11. It can be seen that the

current distribution differs greatly from a cosinusoidal distribution.

The current distributions for gap widths of dob/a = 6 and 12 are shown

in Figure 3. 10. The current distribution for oob/a : 6 is plotted over

the range 00 < 4) < 80 which is the only region where it significantly

differs from the other distribution. A numerical study over a range of

100p sizes of O < kb S 5 showed that the gap width only affected the cur-

rent distribution in and very near the gap region itself.

LOOp antenna gain patterns for 100p sizes of kb : 1, 1. 5, 5, and

10 are shown in Figures 3.12, 3.13, 3.14, and 3.15. The figures dis-

play the patterns in: (a) the d) = 00 plane; (b) the <1) = 900 plane, and

(c) the 9 = 900 plane which is the plane of the 100p sometimes called the

E-plane of the loop. The 153-field is polarized in the 4) direction in the

(I) = 00 and 9 = 900 planes and has both a 9 and (b component in the <1) = 900

plane. The ratio of IE9] to the magnitude of the total field is also

shown in part (b) of each figure.
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CHAPTER IV

MODIFICATION OF RADIATION FIELDS AND

INPUT IMPEDANCES OF LOOP ANTENNAS

BY MULTI-IMPEDANCE LOADING

Several procedures are deve10ped in this chapter that determine

the loadings necessary to realize Specific modifications of the radiation

and circuit prOperties of loaded 100p antennas.

4. l. A L00p Loaded with a Single Impedance

A simple, approximate formula is deve10ped in this section that

shows the essential characteristics of radiation patterns of 100ps of

size kb S l. 0 loaded with a single impedance.

Examining Figure 3. l and equations (48) and (49) indicates that

the radiation fields of 100ps of size kb 5 l. 0 can be approximated fairly

well by the first three terms of their series solutions. With this series

truncation and approximating the Bessel functions by

. x 2

J00!) = 1-(2')

n

)

N
I
Xl

3,4Jn(x)

and using the relations

Jo (x) - Jl(x)

1

equations (48) and (49) become

I!
I

 

Fem £- 2%: cost) sin(¢-¢m)

.. 41:32 sine cosB sin (2(4) -c|>m)) (58)
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. ' Z . Z
F¢m : _ 41:30 Sine + 7337(1 - g—(kb) 81H 9) cos (4) -¢m)

- 41:32 sine cos (2(4) -¢m)) (59)

When a 100p is loaded with a single impedance the load is

usually located at ¢1 = 1800. This retains the symmetry of the 100p,

and for kb 5 1 it is the point at which maximum current occurs with the

exception of points near the driving point. With the restriction N = l

and p1 = 180°

Fe : FOO-VIFBI

: _15_[1+Vl] cosG sincb

 

 

 

Z l

- 41;: [l - V1] C089 sinB sin(2¢) (60)

and

F4) = F¢O -V1F¢1

:’ 41:30 [1 - V1] sine + Z—ja—l-[l + V1](1-%(kb)2 sin29)cos¢

.. 1%[1 - V1] sine cos(th) (61)

where

Y Y Z

Vl = _y11"+lYl : 1+;lllzl
(62)

is found from equation (30).

Consider two cases, a small 100p kb = 0. l and a resonant 100p

kb =1.0. First, when kb 2 0.1and52 :12

l
l
.

( ) 7.4+j9.lxlo'4 2' 7.4_1__
a

O

-0.O75+j1.8x10-5 =‘ —o.o75
l

(at—1‘)
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(‘5‘) e' .o.02.2+j2.4xlo‘9 =‘ -0.022

3.1;: 7.4.xlo'7-je.3xlo"3 mhos

. -7 . -3
3'11 : 8.0xl0 -J6.0x10 mhos

and equations (60) and (61) become

Fe = -j0.037[1+Vl] eose sin¢ + o. 0005[1-'\71] eose sine sin(2¢)

=' j0.037[1+ VI] eose sincb (63)

F4) 2' -0.18[1-V1] sine-jo.o37[1+Vl] cos¢ (64)

For the case of small 100ps the terms arising from (l/az) are always

small in comparison with the terms arising from (l/ao) and quantity

[1 + V1] appears in both terms. Thus, the (l/az) terms are dr0pped

in equations (63) and (64). This shows that the approximation of dr0p-

ping higher order terms is very accurate for very small 100ps.

The radiation fields of the small loaded 100p (<1)l = 1800) take on

two limiting cases. First, when VI =' O or 1 + VII =' 0

Fe=0

F ~ sine

<1>

which is the pattern of the unloaded 100p. This gives an omidirectional

pattern in the x-y plane and a sine pattern in the x-z plane. VI = 0

implies Z1 = O and 1+ VI = 0 implies 1:. -0. 01 -j81 ohms. The

second limiting case arises when '1 - VII :' 0. The fields then become

Fe ~ cos 9 sincb

F ~ cos4, <l>

This gives a cos¢ pattern in the x-y plane and an omidirectional pat-

tern in the x-z plane which is just a rotation of the first limiting case.

ll - V115 0 arises when '21] -* 00 or when 21 = -0.67 + j3300 ohms.

Now consider the second case with kb = 1. 0 and $2 : 12.
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(—) =‘ 0.67 +j0.06l :- 0.67

O

(—1—-) - 21+°3 oa — - . J .

1

l . .

(—-) = ‘0-29+JO.003Z = -o.29
a

2

yl ~_= .5.0x10'3’.j3.7x10'3

yll =' 5.1xlo"°’+j4.lxlo'3

With these coefficients

F6 =' -(l.5+jl.l)[l +71] eose sincb +0.075[1 -71] cose sine sin(2¢)

(65)

17¢ =’ -0.l7[l-V1] sine -(1.5+j1.l)[l+‘i71](1 -%—sin20)cos¢

+ o.o75[1 - V1] sine cos (26)

= -0.17[l-Vl] 1-0.44 eos(2¢) sine

- (1.2 -j0.89)[l +71] (1 +0.23 cos (29)) cos¢ (66)

In the x-y plane (9 : 900)

179:0

Fe

O

and in the x-z plane ((1) = O , 1800)

-0. l7[ 1 -V1] (1 - 0.44 cos (24») - (0. 93 +j69)[ l +Vl] cos¢

Fe = 0

F4) = -o.095[1-V1] sine¥(1.z+jo.89)[1+‘\71](1+o.23 cos(29))

oO

fore :

180°

Once again it is seen that there are two limiting cases of the loaded

radiation pattern.

None of the equations deve10ped in this section are used in

actual calculations.
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4. 2.. Maximum and Minimum Gain of a LOOp Loaded with a Single

Impedance

Many times it is of interest to determine the maximum and

minimum gain or directivity of an antenna, in a given direction. For

the case Of the loaded antenna it is also Of interest to determine the

Optimum loadings that result in the maximum or minimum gain. If

no restrictions are placed on the load impedances, it is found that many

times the optimum load impedances have large negative real parts.

TO eliminate this in this discussion, the load resistance is assumed to F1

have a fixed value and only the reactive part of the load is optimized.

For simplicity, the additional restriction is made that the direction in

which the gain is to be Optimized is in the plane 9 = 90°.

The gain of a loOp loaded with one impedance is found from

 equation (51) to be

F
v

W
F
‘
F
'
“

n
o
“
.
.
.

.
-
L
'
X
o
l
z
a
.
£
m

!
.

_
,
—

'
.

v
.
.
.

..
.

_
_

M
n
,

«
I

2 l
G(9=9OO,¢) : 8(kb)_ j

C'6" Y. +Yfk
In In

(67)

where the * sign denotes the complex conjugate of the quantity, and

F4) = F¢o --\71F¢1

and from equation (30)

Y1
V =

+Gll

 

Yll +JB1

where G1 is the fixed load conductance and B1 is the load susceptance

to be Optimized. After some algebra it is found

 

 

Z

Z A+CB +DB

8 b l l

G(e=9o°.¢) = “£2, 2 (68)

o H+IB1+JB1

where

A"IF '2] +GIZ-2Real[F*F (*‘LGH‘FIF 12! l2" cpo y11 1 ¢0 ¢1Y1y11 1 4’1 yl

C = 2Imag[Y11] IF¢olZ-Zhnag[F:oF¢lY1]



144

2

IF¢OI

2 Z :1:

- 2 Real [y1(y11+Gl)]m l
l ZRea1[yo] ly11+Gll

2
I = 4Rea1 [yo] Imag [3'11] - 2 Imag [Y1]

J = ZReallyol

are real constants and ''Real" and ”Imag" are Operators which retain

only the real and imaginary part of a complex quantity, rexpectively.

 

Differentiating equation (68) with reSpect to B1 and setting this result

equal to zero gives

(DI - Jcmi‘ + 2 (DH - JA) 131+ (CH - IA) = o (69)

 which can easily be solved for B1.

Several examples of the Special case Of a purely reactive

loading (i. e. , R1 = 0) are now considered. Figure (4. l) diSplays the

maximum and minimum gain and correSponding optimum load reac-

tances of a loop with kb = I loaded at 61 = 180° as a function of the

position where the gain is maximized. The unloaded IOOp gain is also

diSplayed. Figures (4. 2) and (4. 3) display the maximum and minimum

gains in the directions 4) = 900 and 4> = 1800 and corresponding optimum

reactances as a function of lOOp size kb. CorreSponding gain patterns

for kb = l. 0 and kb : 5. 0 are given in Figures (4.4) and (4.5).

It was found that by introducing a resistance into the load im-

pedance, the ability to modify the radiation is increased in many cases.

4. 3. Modification and Design of Radiation Patterns of LOOpS by Multi-

Impedance Loading

A method of determining the load impedances necessary to pro-

duce Specific modifications in the radiation pattern of a loaded IOOp

antenna is developed in this section. The idea is simply to Specify

the radiation pattern in N directions which determines a set of N Simul-

taneous linear, algebraic equations in terms of the N unknown, nor-

malized load voltages. This set of equations may be solved, and the

load impedances are determined from the normalized load voltages.
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Consider a 100p antenna loaded with N arbitrary load impedances.

The radiation pattern function Of either the 9 or 4) component of the

radiation zone electric field may be written as

F(9.¢) = Fo(9.¢) - ianmvn (70)

n=l

[See equations (44) through (49) where Fn represents either Fen or

F¢n] . It is convenient to work with pattern functions that have been P

normalized to the unloaded pattern function. With this in mind, the (

following normalization is defined: _

Fge, 9)

FO(9. ¢)

gm 4»
f = —-—-

n Fo(9, 4))

 3
"
"

and equation (70) becomes

f = 1- ivnfn (71)

n=1

The normalized unloaded loOp radiation pattern is a unit Sphere SO that

changes in the unloaded 100p pattern are easily Specified. This elimi-

nates the need to know the exact values of the unloaded loOp radiation

pattern and for most applications the general shape of the unloaded

pattern is all that is needed.

The value of the normalized pattern is Specified in N directions.

With equation (71) this yields the following System of N equations

f(9m,¢m) = l- ivninwmpm) (72)

n21 m: 1,2,...,N.

Defining

fm = Hem. <1>m) and fmn = fn(9m.¢m) (73)

equations (72) can be written in matrix form as
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F' a r " L1
1 -f1 fll £12 . . . le v1

1 " f2 f21 f22 V2

-.- I ' (74)

.1. - fl‘i 5N1 . . . fNNJ _de      
The term (l-fn) represents the difference between the unloaded and

loaded radiation patterns in the direction (On, ¢n)' Equation (74) is

easily solved and the load admittances are found from equation (30) to

be

Yn : (yn - i Ynmvm)/Vn' (75)

Care must be taken in choosing the directions in which the radi-

ation pattern is Specified because the matrix in equation (74) can become

Singular when too much symmetry is introduced into the problem.

This can be seen by examining equations (48) and (49).

Consider the design of a pattern which is relatively directive

with respect to the pattern of the unloaded IOOp. An attempt will be

made to

a. maximize the front to back ratio Of the loaded pattern

b. minimize the beam width of the loaded pattern

eliminate or minimize the need for negative load

impedances.

For Simplicity the following discussion will be restricted to the pat-

tern in the plane Of the lOOp (i. e. , 9 = 90°). The problem is, given

N loads, to determine the best set of N load positions and the best set

of N pattern Specifications to accomplish the above criteria.

It was found that one maximum point Should be Specified and

remaining points Specified as zeroes in the pattern. In many cases,

an attempt to Specify the pattern more exactly than this results in the

develOpment of large lobes in directions where none are desired.

Little success was Obtained using only two loadings while with three or

more loadings favorable results were obtained. For numerous exam-

ples considered, it was determined that the modified pattern shape was



152

predominantly determined by the directions in which the pattern was

specified and the positions of the loadings had only a Slight effect.

However, the values of the load impedances necessary to produce a

given pattern modification are strongly affected by the positions of

the loads.

Consider now, a 100p of Size kb = 1.0 loaded with three imped-

ances. It was determined that a Slightly better directivity could be

obtained in the 4) = 00 direction than in the direction 4) = 1800. The

best pattern Specifications for several different loading positions were F3

found to be {1(90", 0°) = 1. 0, f2(90°, 160°) = 0. 0 and {3(90", 200°) = 0.0. ’

Moving the points the pattern was Specified at farther apart, it only

Slightly decreased the beam width, B. W. , (the angle between half

power points in the plane of the 100p) with the back lobe increasing

 

more rapidly. The load reactances resulting from the above pattern

Specification are shown as a function of load position in Figure 4. 6.

It can be seen that all the load resistances are positive in the region

80° < 4) < 950. Figure 4. 7 diSplays the resulting gain pattern of the

100p when the loads are located at (bl = 85°, (pa = 1800, and 433 = 2750.

This pattern has a B. W. = 1100 which is approximately the same as

that for the unloaded 100p. The loaded IOOp has a front to back ratio,

F. B. R. , (ratio of the magnitudes Of the electric fields evaluated at

4> = 0° and o = 180°) Of 50 while the unloaded loop has a F. B. R =‘ l.

The lOOp load impedances are Z1 = Z3 =' 387 - j 1180 ohms and Z2 =

108 - j 140 ohms and the input impedance is Zin :' 224 - j 23 ohms.

Next, the effect of changing kb was investigated. It was found

that for the above pattern Specifications and load configuration the

resulting load impedances had positive real parts and were very smooth

functions Of kb for kb greater than 0. 3 and less than 1. 1. Outside this

region the loop impedances become quite irregular functions of kb.

The pattern retained its basic Shape up to kb < 1.3 for these pattern

specifications and load positions.

An example of a small lOOp (kb = 0.3) with these same pattern

Specifications and load positions as discussed above is shown in Fig-

ure 4. 8. The load impedances are Z1 = Z3 =' 39 + j 291 ohms and

Z2 =' 678 - j459 and the input impedance is Zin = 885 + j 40 ohms. The

very small values of gain arise from the fact that the gain of an
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antenna is equal to its directivity times its efficiency. The extremely

small values of gain imply that the radiation resistance of the loaded

lOOp is very Small compared with the input resistance of the loaded

100p.

Figure 4. 9 diSplays the gain pattern of a lOOp (kb = l. 0) loaded

with five impedances as indicated. The load impedances are Zl =

25 = 244 +j226 ohms, Z2 = Z4 = 274 + j779 ohms, and Z3 = -121+

j397 ohms and the input impedance is Zin = 230 - j 50. Some effort

was made to eliminate the one negative load resistance, but not all

possible load configurations were explored. It can be seen that the

beam width is much narrower than the case of three loads but at the

expense of increased side lobes.

4. 4. A Double Loaded Matched LOOp.

It is well known that the maximum power will be transferred

to an antenna if the impedance the antenna presents to the transmis-

sion System or generator driving it is the complex conjugate of the

impedance Of the transmission System or the impedance the generator

presents to the antenna. When this condition exists the antenna is said

to be "matched". In many cases there is a practical problem Of match-

ing the antenna. In particular, with electrical small antennas which

characteristically have very small input resistances and large reac-

tances the impedance transformers necessary to match the antenna are

in many cases very lossy. This leads to a very low efficiency for the

radiating system (which in this case is taken to include the antenna and

its matching network).

It has been Shown by Harrison29 and Nyquist, Chen and

30’ 31' 32’ 33 that the efficiency of electrically small dipoles,others

and Slot antennas can be improved by impedance loading.

In this section the possibility of increasing the efficiency of a

small lOOp by impedance loading is considered. The efficiency of the

loaded loop is compared to that of an unloaded lOOp of the same size

but matched at its input terminals with an impedance matching network.

The lOOpS themselves are considered lossless but the loading imped-

ances and matching impedances are assumed to be lossy inductors

and/or capacitors.

2
u
"
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l
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A different analytic technique than previously used iS used to

determine the values of the impedances necessary to match the lOOp.

Consider a lOOp loaded with two lumped inductors or capacitors

which have finite Q. The Q of the loads is defined as

 

  

Ix I I13 I
l l

= __ :
(76)

1 R1 G1

Ix I IE I
2 2

Q = = (77) '9“:

where R1 and R2 are the resistances that arise from the nonideal ele-

_
.

1
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1
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fi
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~
.

ments. The admittance of the loadings can be expressed in terms of

their Q's and susceptance as I!

 (78) ...:
l

l .

Y (79)
2

1 .

$11321 +JBZ

A constraint equation on the load voltages is Obtained from

equation (32) as

Yin = y0 - Vlyl (80)

where Yin is the Specified, desired input impedance of the 100p, and

the normalized load voltages are related to the load admittances by

Y Y Y
11 1 12 1 = 1 (81)

2 V2

which is found from equation (30). The normalized load voltages can

be eliminated from equation (80) by using equation (81). The resulting

equation is

AY1+CY1YZ+DY2+E = 0 (82)

where A, C, D, and E are constants defined in this section as

2

A ‘ y22(3’o ‘ Yin) ' y2

C I
I

(Y0 " Yin)



159

2

D _ y11(YO -Yin) -yl

y11 3’12 ”Y1

1'21 y22 "Y2

  'Yl 'Vz (Yo -Yin)

Defining the notation

A = Ar +jA1

c = cr+jci

D = Dr+jD1

E = 38’4ijl

and writing

IBlI = s 1 where SIZiI

IBZI 2 where s2: 11I I
n

N

complex equation (82) can be written as two real equations. These

equations may be manipulated into the form

 

 

131 =PBZ+R (83)

2
BZ+SBZ+T _ 0 (84)

1 Dr 1 11:)1 r)
F(—C3;SZ - D) -fi(b—Z_SZ+D

P:-1_ 162:. A1 1__‘°_*1_3 +Ar

F lel' 'H Q11

Ff. :53
R: _ F ‘F

1Ar 1 1A1 r

FIefsl A I 'fiIOj°1+A)
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The efficiency Of this matching technique is given by

l[ 2 2 2 1
IO R. - I R - I Reff = z l ( )l m l (¢1)I 1 l (42H 2 x 100%

l 2

311(011 Ri

 

n

_ 2 lBll _ 2 IBZI
= [1-lvll 57531-1sz m1XIOOO/o (85)

The impedance transform network Shown in Figure 4. 10 can be

used to base tune the unloaded lOOp.

 

 

   

    

  
    

  

...—— zt2 0e

Z _) Z1 Zunloaded

in t 10013

c 4‘16 

Figure 4. 10. Base tuning network.
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The tuning impedances are assumed to be nonideal capacitors or in-

ductors which have finite Q's. These impedances can be represented as

Z IXtZI + .X (81 X 86

= —— J = —+1) ( 1t1 ot1 t1 ot1 t1

Z .'__'_.,.,. 42.9,. ...,
t2 Qt2 t2 Qt2 t2

where 81: :t1 and S2 = :l:2.

Specifying a desired input impedance and given an unloaded loop im-

pedance, the values of th

cuit theory. The exact solution is found to be the roots Of a quadratic

and X 2 may be found by conventional cir-

equation. It can be shown that the efficiency of this network is given by

  

Z Runloaded

t1 100p
eff = . (88)

Zt1 + Zunloaded Rin

100p

This assumes IZlI 7! 0.

A numerical study was conducted, and it was determined that

in the case Of small lOOpS the loadings necessary for a purely resistive

input impedance are always inductive. However, when one load is

placed at (bl = 00 and the second at <|>2 = 1800 the loading necessary at

the driving point becomes capacitive. This configuration is desirable

Since capacitors are usually less lossy than inductors.

A comparison is made in Figure 4. ll of the efficiencies of a

loop loaded at o1 = 0° and 62 = 180° so that the input impedance is

300 ohms and the base matching network required to match the unloaded

100p input impedance to 300 Ohms. A Q of 300 ohms was assumed for

all the elements. The correSponding reactances are shown in Figure

4. 12. It is seen that the efficiencies are nearly identical for the loaded

loop and the matching network. In reality the matching network is

probably more efficient at least at lower frequencies where the Q of

capacitors is greater than 300.
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(b)

(a) Load reactances necessary for 300 ohm input im-

pedance to 100p. (b) Matching network reactances

necessary to match a lOOp antenna 82 = 12, 6b/a = 12. 1

to 300 Ohms.



CHAPTER V

CONC LUSIONS

In the preceding chapters, the circuit and radiation properties

of a circular lOOp antenna were considered. A refined theory of the

loaded lOOp antenna was deve10ped which included a finite gap excitation. .

The effects of the finite gap excitation were considered and effective m

gap widths corresponding to the situation when the loop is driven by a

two wire line and a coaxial line are prOposed. A comparison of the

finite gap theory including the effective gap widths is made with exist-

 
ing experimental input admittances. Excellent agreement between E j

theory and experiment is obtained. "l

Synthesis procedures have been deve10ped to facilitate the de-

sign Of multi-loaded lOOp antennas. First, an expression for the maxi-

mum and minimum gain attainable from a lOOp loaded with a Single

impedance was deve10ped. This expression gives upper and lower

bounds on the amount of antenna gain pattern modification that can be

accomplished by a Single load impedance. It was found for the case of

a purely reactive loading located at ct) = 1800, that in the plane of the

loop the antenna gain cannot, in general, be greatly modified in the

directions near 4) = 00 and 1800 but can, in most cases, be significantly

modified in directions near <1> = 90° and 270°.

A procedure was then deve10ped for the design of Specified

radiation patterns. Examples were given showing that relatively di-

rective patterns could be easily designed.

Finally, the possibility of loading a small loop antenna to pro-

duce a desired input impedance was considered. This technique does

not appear promising as a means Of improving the efficiency of the

radiating System.
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