
ABSTRACT

EFFECTS OF CONFINING PRESSURE ON POLYCRYSTALLINE ROCK

BEHAVIOR ANALYSED BY RHEOLOGICAL THEORY

by Ezra D. Shoua

The influence of confining pressure upon stress distri-

bution and deformation fields of polycrystalline rock under

load has heretofore been studied theoretically through empiri-

cal relations which have serious shortcomings in describing

accurately characteristic rock behavior. This inadequacy

may be attributed in part to the fact that rock is a hetero-

geneous material whose crystals possess physical prOperties

which differ from the grain boundary properties,

In this investigation, the rock behavior is simulated

by a rheological model composed of two independent systems,

one representing the crystal prOperties and the second the

prOperties of the grain boundaries. This unique arrangement

offers a means whereby in the mathematical analysis the sep—

arate contributions of the crystals and grain boundaries are

correlated to the degree of confinement. This rheological

description of rock behavior not only yields results in good

agreement with existing eXperimental data but furthermore

provides a basis for understanding the variation of physical

constants with changes in confining pressure.
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CHAPTER I

INTRODUCTION
 

1.1 Statement of the Problem
 

Geologists have long recognized that while most rocks

are capable of sustaining a rather large amount of flow with

little accompanying fracture in highly contorted regions of

the earth's crust, these same rocks exhibit an exceedingly

brittle behavior when deformed under ordinary atmospheric

conditions.

This great increase in ductility within the earth'S‘

crust has been attributed to the environmental conditions

thought to have existed at the time of deformation, and is

ascribed to the effect of any combination of the following

five significant factors:

1. Confining compressive pressure

2. Differential compressive pressure

3. Duration of time

4. High temperatures

5. Presence of solutions

Although these facts have been known for many years,

only since the turn of the century have investigators begun

to study the mechanical prOperties of rocks by attempting to

simulate in the laboratory the complex conditions under which

1
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they exist in underground formations.

1.2 Literature Survey
 

This transition from brittle fracture to ductile flow

in triaxially confined tested rock samples was first qual-

itatively shown to be dependent upon confining pressure

by Adams and Nicolson (1901)1 and later by Adams (1910)2

and (1912)3 and by Adams and Bancroft (1917)4 when they

compressed small cylinders of marble specimens under a con-

Piston

Specimen

Steel Vessel

 
Fig. 1.1 Schematic Diagram of Adams' Apparatus

for Testing Rocks Under High Confining

Pressure (After Adams and Bancroft)3

fining pressure provided by the walls of a steel vessel.

Their technique, however, had the following disadvantages:

(i) The confining pressure varied during the experiment.

(ii) The confining pressure could not be accurately computed

because of friction between a rock specimen and the steel vessel.

(iii) The specimen was not free to fracture.
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These findings were later verified quantitatively by Von

Karman (1911)33 and his student B3ker (i915)7. They obtained

accurate stress-strain diagrams by deforming jacketed cylindrical

specimens of Carrara marble and red sandstone in an apparatus

which permitted compressive loading of samples subjected ex-

ternally to liquid pressures of several thousand atmospheres.

Their results indicated that marble under high confining pres-

sure behaved much like a ductile material capable of sustaining

large permanent deformations.

In 1936 Griggs15 published a series of important con-

tributions to the problem of rock deformation utilizing more

precise equipment. His early apparatus (as shown diagram-

matically in Fig. 1.2) was designed for use up to a maximum

pressure of 13,000 atmospheres, or the equivalent of about 28

miles deep in the earth's crust.

Among the significant results of his work on marble and

limestone are the increase in the elastic limit and the ultimate

strength with increase in confining pressure and their dep—

endence upon the duration of the test.

More improved techniques and testing apparatus capable

of handling up to 50,000 atmospheres of pressure were later

used by Griggs (1939)16 (1940)17 to study the effects of time,

temperature and the chemical environment of solutions.

One of the important outcomes of his study was the

presentation of an empirical equation which describes the creep

of rock in compression in which he suggests that the total

strain e(t) at any time t can be represented by the relation-

ship

E(t) = A + B log t + c t (1.2-1)
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in which A, B, and C are constants of the material.
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Fig. 1.2 Griggs' Early Apparatus (After Griggs)15

More organized and systematic tests displaying the

effect of confining pressure were then performed by a number

of Geophysical research workers. Among them is Handin's

work (1953)1§ in which he obtained stress-strain curves of

rock salt deformed in compression, and Handin and Hager

(1957)19 in which stress-strain curves for a variety of poly—

crystalline rocks were presented. More recently, tests were

performed by Heard (1960)20 in which stress-strain curves of

Solenhofen Limestone Specimens (confined up to 5,000 atmos-

pheres) were obtained at different constant temperatures.
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In addition, tests were performed to evaluate the interstitial

fluid pressure effect within the interstices of a rock sub-

jected to high confining pressures during a triaxial test.

 

 

  

 

 

      
 

   
  

Fig. 1.3 Griggs' Later Apparatus (After Griggs)l7

Brace (1963)8 tested the ultimate strength of rocks

both in tension and compression, while Baron et al (1963)5

attempted to analyse both the dynamic and static elastic

constants for several types of rocks at various degrees of

confinement. In all of these studies data was compiled

together with analytic observation of microscopic fabric

changes in an attempt to establish the deformation mech-

anism that is involved.
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Although elastic and fracture prOperties were thoroughly

investigated, very little systematic tests were done on the

creep behavior of polycrystalline rocks. Robertson (1960)28

carried the second and only organized creep testings on Solen-

hofen Limestone specimens at constant room temperatures and

different confining pressures that varied up to 4,000 bars.

Some of his important conclusions were:

1. The creep behavior of polycrystalline rocks exhibit

three distinct stages: transient, steady state and

accelerating.

2. The following empirical relationship was deduced

ta = Kl = K S - K3 (1.2-2)
2

which fits the time t, transient creep strain rate

e and differential stress S of the experiments; K1'

K2, and K3 being constants for a given confining

pressure p.

1.3 Sc0pe and Objectives
 

Geologists and Geomechanic investigators have long

known that the behavior of polycrystalline rocks under load

are influenced by the five factors mentioned previously in

Sec. 1.1, but they have been unable to establish a satisfactory

theory correlating any combination of these factors so that

such a characteristic behavior could be explained or pre-

dicted.

The first attempt by Griggs (l939)l7, Robertson (1960)28

and others was to establish empirical relationships in an

effort to explain some aspects of such a behavior. However,
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it was found that the empirical relations could neither fit

the whole range of all the results obtained nor account for

the actual mechanism of the stress-strain-time relationship.

More recently, inspired by the application of mechanical

models to simulate viscoelastic creep behavior, several

efforts were made by Emery (l963)12, Price (l964)26, and

others to establish a satisfactory model that would represent

the characteristic mechanism of polycrystalline rock. These

mechanical models mostly simulated uniaxial behavior only and

failed to explain the transitional behavior from the uniaxial

to the triaxial state of stress.

In this presentation, based on observation of the

research work done so far on these polycrystalline rocks, a

new mechanical model is prOposed in which differential strain

and time are related as a function of both the differential

stress and the confining pressure, which accounts for the

change in behavior that is displayed over the range between

the uniaxial and triaxial stress states.

In view of the above, possible testing criteria are

established, thus demonstrating a need for the additional

systematic experiments which are proposed.



CHAPTER'II

ANALYSIS OF MATERIAL CHARACTERISTICS

2.1 Structure of the Material
 

Polycrystalline rocks exist as a compact composition of

an aggregate of crystal grains having various shapes and

orientations. Theory and experiment suggest that between a

crystal grain of one orientation and other neighboring ones,

there exists a grain boundary layer only a few atoms thick in

which randomly arranged atoms take up equilibrium positions

 

Fig. 2.1 Polycrystalline Rock Salt Specimen Showing

Randomly Oriented Crystals
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and possess a higher free energy than the compact geometrical

arrangement of the atoms within the crystal grains.

The mechanical properties of such a single-phase aggregate

are determined mainly by two factors:

(a) the properties of the crystals of the aggregate, and

(b) the properties of the amorphous grain boundary which

binds these individual crystals together to form the com—

posite mass.

2.2 Definition and Elastic Relationships Between Differential

Stress and Differential Strain

 

 

In order to simulate the behavior of the above poly-

crystalline material under load, it is important to define

the stress state that governs its deformation.

Consider a general state of triaxial principal stress

condition with ax, oy, and'oz acting in the x, y, 2 dir-

ections respectively, with Ox > 0y > 02. (For simplicity

oz will always be considered as the smallest principal stress.)

Compressive stress is considered positive.

X

 

 
0y

2— fl  

   

Fig. 2.2 General Triaxial Principal Stress State
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This general state of triaxial stress is equivalent to a

hydrostatic confining stress tensor, oz, acting in the x, y, 2

directions, plus a differential stress state tensor, Si, defined

as

Si = (oi — oz) (2.2-1)

acting in the x, y directions only.

 
/ °2

02/

Fig. 2.3 Hydrostatic Confining Stress State

Fig. 2.4 Differential Stress State

Corresponding to the above defined stress conditions, the

state of triaxial elastic strain is given by

Ee'x = Ox"- u(oy + oz) in the x-direction

Eg'y = 0y - p(OX + 02) in the y-direction (2.2-2)

Ee'z = oz - u(ox + oy) in the z-direction
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which can be resolved into a strain, 8? caused by the hydro-

1

static confining stress, namely

E8". = o - ”(Oz + o1 z in the x, y, z—directions (2.2-3)2)

and a strain caused by the differential stress tensor, defined

as differential strain tensor, 8i which is given by

 

Eex = E(e'X - e"X) = (0X - oz) - u[(oy - oz) + (oz - 02)]

or Eex = S - uS in the x-direction

X Y

Eey = Sy - uSX in the y-direction (2.2-3)

Eez = - u(Sx + Sy) in the z-direction

from which

62 " Ll

=
(2.2—5)

EX + 5y 1 - u

if we define

E

m = y (2.2-6)

6x

then we get the relationship

8 - (l + m)u

=
(2.2-7)

1 - u

 
 

2.3 Possible Criteria of Testing
 

With the above definitions, there are three possible

cases of loading: (i) uniaxial differential stress state, (ii)

balanced biaxial differential stress state, and, (iii) general

biaxial differential stress state. Cases (i) and (ii) rep—

resent the extreme conditionSqthe general testing pattern is

represented by case (iii).
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Case (i) Uniaxial Differential Stress State
 

  

in which

ox>0y=oz>0

giving

Sx = (0X - oz) - - T

Y

_ ‘ - S2 = 0-

0x

4'

02

Fig. 2.5 Uniaxial Differential Stress State

and Bax = SX

Eey = - uSX

Eez = - uSX

whence

e

m ziz —p

6x

(2.3-l)

(2.3-2)

(2.2-3)

Case (ii) Balanced Biaxial Differential Stress State

in which
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Fig. 2.6 Balanced Biaxial Differential Stress State

  

giving

-SX = (oX - oz) - - 1

- Sy = (0y - oz) - (2.3-4)

_ - - S2 = 04

and Bax = SX - uSy = Sx(l - u)

Eey = Sy - uSX = Sx(1 - u) (2.5-3)

Eez = - p(Sx + Sy) = - ZuSX

hence

e

m _____Y a 1 (2.3-6)

6x

Case (iii) General Biaxial Differential Stress State
 

in which

OX > 0y > Oz & 0

giving

-Sx = (0X - oz) - - -

- S = (0y - oz) - (2.3-7)

  



l4

OX>Oy

Fig. 2.7 General Biaxial Differential Stress State

and Eex = Sx - uSy

E6 = Sy - qu

Eez = - p(Sx + Sy)

hence

E

S =-—————%€ + us )

X 1 _ U2 X \y

\

but by equation 2.2-6

6 = max
Y

and therefore

S = = E 5x
X 1-112 eq

 

 

Equation 2.3—ll gives the

differential stress Si and the

a general biaxial differential

the equivalent elastic constant Ee

(2.3-8)

(2.3-9)

(2.3-10)

(2.3-ll)

relationship between the

differential strain £1 for

stress state. The change in

q with m is shown in Fig. 2.8.
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I?”

Uniaxial Differéntial Balanced Biaxial

Stress State (m-= - uh 23 A/"“ = 1/2.' differential stress

V r /
em:

/ 11:

IE'

1 3..

-l/2 -l/3 0 1/2 1 m

Fig. 2.8 Variation of Eeq with m

2.4 Behavior of MaterialyUnder Different Testing Conditions
 

It has been experimentally observed and verified (esp-

ecially by Brace (1963)8 who ran tests on polished sections

under dark field illumination) that for a certain constant

rate of uniaxial loading an idealized stress-strain curve

shows four characteristic stages as illustrated in Fig. 2.9.

In stages I and II the behavior is elastic; nearly all

the strain is recoverable. The degree of curvature in stage

I varies for different rocks, depending on their degree of

porosity or compactness. In general, compact rocks have a

straight stress—strain curve in this region whereas the loose

rocks show rather pronounced curvature which disappears when
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Differential Strain

Fig. 2.9 Idealized Stress—Strain Diagram

and if a small hydrostatic pressure is applied to the Specimen.

Starting with stage III, important permanent changes

in the microsc0pic character of the compact rock occur. The

rock takes a somewhat lighter color which was traced at high

magnification to reflection of light at grain boundary surfaces.

It was therefore apparent, that the crystal grains are becoming

detached at their boundaries; and, when this occurs, the

boundary becomes totally reflecting and therefore easily

visible.

These reflecting surfaces become more numerous as fracture

is approached in stage IV. However, this characteristic be-

havior in uniaxial deformation completely changes as soon as

a confining pressure is applied; rock specimens cease to fail



l7

 

Fig. 2.10 Failure of Rock Salt Specimen Tested Under

Uniaxial Differential Stress with a Confining

Pressure Equal to One Atmosphere

 

Fig. 2.11 Failure of Rock Salt Specimen Tested Under a

Balanced Biaxial Differential Stress with a Con-

fining pressure Equal to One Atmosphere
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along the grain boundaries, and fracture takes place both in

the crystals and their boundaries.

 

Fig. 2.12 Failure of Rock Salt Specimen Tested Under

Uniaxial Differential Stress With,a Con-

fining Pressure Equal to One Hundred

Atmospheres

These facts would indicate that:

(a) In a uniaxial differential stress test where the confining

pressure is negligible, failure will occur when the differently

oriented crystals tend to re-orient themselves in an effort to

resist the applied differential stress; thus transmitting part

of the load to the grain boundary layer or bond, and failure

will ultimately occur when these bonds are destroyed.

(b) When a confining pressure is applied, the ability of the

grains to reorient themselves will be restricted and hence a

greater proportion of the imposed differential stress will be

carried by the grains themselves rather than their being

partially transmitted to the boundary.
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The above physical characteristic behavior suggests

that the inhomogeneous polycrystalline rocks are made up

of two independent mechanical systems: (1) the grain boundary

system and, (2) the composite crystal grain system, each of

which will share the applied differential load in a pro-

portion depending upon the degree of confinement.



CHAPTER III

THEORETICAL ANALYSIS

3.1 Proposed Rheological Model

Griggs (1939)16, Robertson (1960)30 and other investigators

have shown that the time-strain pattern exhibited by almost all

polycrystalline rocks under a state of constant differential

stress is similar to the curves shown in Fig. 3.1.

Fracture

Differential Stress

ei(t) (>> Elastic Limit)

High Differential Stress

(> Elastic Limit) 
 

 
 

Initial '11——

Eigsgigstic Low Differential Stress

Deformation (Without Elastic Limit)

.112 1
Time

Fig. 3.1 Graph Representing the Different Creep Curves

at Varying Magnitudes of Differential Stress

These curves exhibit an instantaneous elastic strain

response which takes place upon the immediate application of

the differential stress and is represented by CA in Fig. 3.2.

'20
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There follows a period of primary creep AB in which the
 

rate of deformation decreases with time. Primary creep is

sometimes referred to as delayed elastic deformation or visco—
 

elastic flow, for if at any time T1 the specimen is unloaded,
 

there is first an elastic recovery BC followed by a time-elastic

recovery represented by the curve CD.

i

 

 

 
 

 

 

 
 

Visco-elastic Visco-plastic Accelera ing

or or or

Primary _ Secondary ‘ Tertiary

Creep"V Creep '7 Creepvl

Failure

. t61()

E _____ €i(t-)

l
A C '

| Permanent

, 1 D ! Jj‘Deformatigp

0 T1 T2 T3

time

Fig. 3.2 Typical Creep Curve at Constant Differential

Stress

However, if the load is not removed at time T1, and if

the differential stress is greater than the elastic limit,

the specimen begins to exhibit secondary creep, a phase of
 

deformation in which the rate of strain is constant, whence

the secondary creep is often called steady state creep.
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Because the rate of strain is constant and because the spec-

imen has undergone permanent deformation (as could be shown if

the specimen was unloaded at time T2) this deformation is also

sometimes termed pseudo-viscous or visco-plastic creep.
  

Many empirical equations were introduced (as shown

earlier by equations 1.2-l and 1.2-2) in an effort to estblish

a relationship between the differential stress-differential

strain-time elements which would fit experimental results;

however, these equations do neither succeed in describing

the full range of the experimental results nor do they

account forthe deformation mechanism of the material.

As a result, many investigators [e.g. Zener (1948)33,

Eirich (1956)11 and Bland (1960)6] find it convenient to

express the observed behavior of the material in terms of a

mechanical model that is comprised of a number of Simple
 

units (for which the usual assumptions are made regarding

isotropy and homogenity).

One such model which can be used to interpret time-

strain curves of this type is known as the visco-elastic or

Burgers Model, (see Fig. 3.3). It mainly consists of a Max—
 

well unit coupled in series with a Voigt unit, in which the

spring E represents the component of the body which gives

rise to the instantaneous elastic strain.

The Voigt unit consisting of a Spring and a dashpot

coupled in parallel (E*, n*) represents the component res-

ponsible for primary or visco-elastic creep. The component
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of secondary creep or visco—plastic flow is contributed

by the dashpot n. However, this model will eventually

exhibit permanent deformation even when the stress becomes

exceedingly small, and therefore represents a viscous

liquid.

In order to provide for a yield strength Y of the

material which exists before attaining a steady state creep

rate, a Bingham body is used to replace the dashpot of the

Maxwell unit and is used in series with the Spring and

Voigt units. This new composite model is called The SVB

(spring, Voigt, Bingham) Model, since there is no Specific
 

name given to it yet. AS in the visco-elastic model, the

spring E accounts for the instantaneous elastic deformation

and the coupled spring and dashpot (E*, n*) accounts for

the visco-elastic flow. However, before the visco-plastic

deformation of the dashpot n can take place, the frictional

resistance of the Slider Y must be overcome. This frictional

resistance in the model simulates the yield strength of the

original substance.

Since polycrystalline rocks are inhomogeneous and have

rather displayed the existence of two separate systems, the

following mechanical model (Fig. 3.5) is introduced not only

to relate the strain-time relationship as a function of the

differential stress but also as a function of the confining

pressure.

The model consists of a grain boundary system and a

crystal grain system in parallel; each system is represented
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Fig. 3.3 Burgers Model showing the relationship

between differential strain rate and

differential stress for the steady-state

or Visco-plastic creep.
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Fig. 3.4 SVB Model showing the relationship

between differential strain rate and

differential stress for the steady-state

or visco—plastic creep.
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Fig. 3.5 Proposed Mechanical Model

as an SVB model fixed at the bottom to a rigid base. At the

top, the two systems are coupled together by a rigid bar

hinged to each system, while the position of the applied

differential stress Si along the hinged bar relative to the

two systems varies according to the degree of confining pres-

sure C.

3.2 Assumptions
 

(i) The element constants shown in the prOposed model

representing the prOperties of the aggregate material are

statistical averages of the properties of the crystals and

their boundaries taken over all orientations.

(ii) Specimens sufficiently large to contain enough

crystal grains are assumed to be statistically isotropic.
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(iii) The crystal grain elements' constants are always

the same for a certain type of polycrystalline material;

however, the grain boundary elements' constants might differ

for the same material, depending on the previous temperature

and stress history to which the Specimens have been subjected.

(iv) The effect.of a hydrostatic principal stress tensor

(0x = 0y = Oz) on the deformation of polycrystalline rock is

assumed to be linearly elastic and to have negligible

variation with time. Thus it can be represented by the

equation

 

0- = G6. = e; (3.2-l)

where G is the hydrostatic elastic constant of the material.

3.3 Variation of Behavior.with Confining Pressure

The relationship between differential stress Si and

differential strain Ei and the degree of confinement c is

determined by utilizing the proposed rheological model (Fig.

3.6-a with a history of loading as shown in Fig. 3.6-b) in

which

E1, E: = Elastic constants of grain boundary bonds

ni, nl = Visco-Elastic and visco-plastic coefficients

of bonds

Y1 = Differential yield strength of boundary bonds

SE = Applied differential stress on boundary system

a? ‘= Differential strain of boundary system

E2, E3 = Elastic constants of crystal grains
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Relationship
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= Visco-elastic and visco-plastic coefficients

of grains

Y2 = Differential Yield strength of grains

S§'= Applied differential stress on grains

ti = Differential strain of grains

t = Time

From the equilibrium of the rigid bar,

S? = c S-

1 1 (3.3-l)

b _ _
Si - (l c) Si

and from the compatibility condition of the two systems

5i = CE + (1 - C) (a? - CE) = (l - c) a? + cs: (3.3-2)

but a? = [Bil] elastic + [£52] visco-elastic

+ [5:3] visco-plastic (3.3-3)

and by considering the constitutive relationship of the three

elements, it follows that:

 

  

- c _ 1 _
(i) Eil - c Si (_L) (3.3 4)

32

(") * deiz + E* C c s11 T12 -4——h E- — .

dt 2 i2 1

degz E; C

or . + ‘T 5:2 = * Sl *
dt n2 n2 E2

'1'

DZ -

and by using the integration factor e , we get

E2 t E5 t

3'3" 7"
,c b 2

d (ti2 e ) = c Si e

dt n;

'k

E t E t
t 2

11* C 11*

c 2 _ 2
or 512 e - _* Si e dt



 

 

 

 

 

assuming that 5E2 = 0 at t = 0.

*

-E2 t

Therefore *

l n

c _ _ 2 _
€12 — C Si[ _* (1 e )] (3.3 5)

Ez

9833
(iii) c Si = Y2 + n2 ( if c Si > Y2)

dt

d 8‘53 _ 1 .
or _ (cSi - Y2)

dt 712

t

or £9 = 1 (l - __ ) dt

13 CS

D2 1 O

. C = = .assuming €i3 0 at t 0

Therefore

Y t
c 2

= S. 1 - _ 3.3-6613 C l ( ) ( )

Hence, by substituting equations 3.3-4, 3.

equation 3.3-3, we obtain

3-5 and 3.3—6 into

1

53 = c Si {[._ 1 -+

. E2

*

-32 t

"_T—

n2
. Y2 t

+ [._: (l — e )] + [(1 --——-) - ]} (3.3—7a)

E2 CSi r12

*

-E1 t

Similarily, it can be shown that :;__

b 1 l l

8i = (1 - c) Si [ _ ] + [ _} (1 - e )]

El E1

Y1 t

+ [(l - ._______ ) _]} (3.3—7b)

(1 - C)Si n1
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By substituting equations 3.3-7a and 3.3-7b into equation

3.3-2, we get the general relationship

 

-El t

——7-

n1

2 1 l (l - e )

El El

-E3 t

——7-

n2

Y t l l ,

+ (l - 1 ) _ ]+ c2[ _, + _} (l ' e )

(l - C)Si n1 E2 E2

Y2 t

+ (l - )._ ]} (3.3-8)

C Si 02

which can be written as

(1 - c)2 c2

e- = S. {[ ________ + __ ]

1
El E2

representing the equivalent elastic response

 

  

* *

-El t -E2 t

"T‘ —~lr"'

(l - c)2 n1 c2 n2

+ [ ____1r___ (1 - e ) +-.1; (l - e )1

El E2

representing the equivalent viSCO—elaStic (3.3-8a)

response

(1 - c)2 t Y1 c2 t Y2

+ [ ———————— (l - ei)+ (1 - )1

representing the equivalent visco-plastic reSponse
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3.3a Variation of the equivalent elastic response with

the degree of confinement

From the derived general relationship (equation 3.3-8),

it was shown that

 

1 (1 - c)2 c2

.. =_ + _._

Eeq El E2

If we let E2 = a El (3.3-9)

1 (1 - c)2 c2

we get _ = ________.+

Eeq El a El

OLEl

or E = (3.3-10) 

eq 397+ a(1 - c)2

Maximizing equation 3.3-10 with respect to c, we obtain

d(Eeq) -aEl [2c - 2a(l - c)]

d c [c2 + a(1 - c)2]2

 

from which we find that (Eeq) max. occurs at

 

5 = (3.3-ll)

l + a

Hence (Eeq)max = (1 + a) E1 = E1 + E2 (3.3-12)

Also when Eeq = E2 ='a El' a quadratic equation of c is

obtained giving

c2 +a(l - c)2 - 1 = 0 (3.3-13)

which could be re-arranged as

[(a + l) c - (a - 1)] [c - 1] = 0

0:71

with two roots: c = 1 and c = '
 

a +11
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A typical curve showing the variation of Be with the
q

3.7 for the particular
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Fig. Typical Variation of Ee with c
q

value of a = 4; while in the next two pages, the calculations

(Table 3.1) and a graph (Fig.

for various values of a are presented.

3.8) showing this same variation

3.3b Variation of the equivalent visco-elastic response

with the degree of confinement

The visco-elastic creep response as obtained by the

derived general expression (equation 3.3-8) was shown to be:

 

-E§ t

 

11*

(l - e 2 )1
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a

1 1.22E2 1.47E2 1.72E2 1.92E2 2.0 E2 1.92E2 1.72E2 1.47E2 1.22E2 E2

2 0.61E2 o.76E2 0.93E2 1.14E2 1.33E2 1.47E2 1.49E2 1.39E2 1920E2 E2

3 0.41E2 0.52E2 0.64E2 0.81E2 1.00E2 1.19E2 1.32E2 1.32E2 1.19E2 E2

4 0.31E2 0.38E2 0.49E2 0.63E2 0.80E2 1.00E2 1.18E2 1.25E2 1.18E2 E3

5 d0.25E2 0.31E2 0.39E2 0.51E2 0.67E2 0.86E2 1.06E2 1.19E2 1.16E2 E2

6 0.21E2 0.26E2 0.33E2 0.43E2 0.57E2 0.76E2 0.97E2 1.14E2 1.15E2 E2

a

7 0.18E2 0.22E2 0.28E2 0.37E2 0.50E2 0.68E2 0.89E2 1.09E2 1.14E2 E2

8 0.15E2 0.19E2 0.25E2 0.33E2 0.44ES 0.61E2 0.83E2 1.04E2 1.12E2 E2

\

9 0.14E2 0.17E2 0.22E2 0.29E2 0.40E2 0.56E2 0.77E2 1.00E2 1.11E23E2

50 0.12E2 0.16E2 0.20E2 0.27E2 0.36E2 0.51E2 0.72E2 0.96E2 1.10E2 E2

Table 3.1 Calculations of Ee vs c for different values of a

q
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Degree of Confinement, c

Fig. 3. 8. Variation of Eeq vs. c for various values of at.
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If we let E; = d* E: (3.3—14)

*

a*(1 - c)2 c2 a (1 - c)2 n;

then 6i (t) = Sl {[ * + ‘7 ] - [ 1.1, e

E2 E2 E2

*

-E2 t

2 “T‘
C D2 7

+ _w e ]} (3.3-15)

32

By denoting

E; 1

T = —

n2 T2

(3.3-l6)

E: 3*

and _*.=.__

01 T2

n*

then _§.= a* 8* (3.3-16a)

n1

By substituting equations 3.3-16 into equations 3.3-15, we

obtain

-t

Si T2
6i (t) - _?.{[c2 + a* (1 - c)2] + [c2 e

E2
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which can be rewritten as

 

 

 

 

 

 
 

 

 

  

 

 

t

_ (8* + 1)

S' 2T2

Ei (t) =_: [c2+a*(l-c)2] +(\L* c2 (l-c)2e

E;

t t

e (s*-l) ** 2 _ (e*-1)
C2 212 a (l - C) 2T2

[ * e + e 1}

0 (l - c)2 c2

t

or _ (8* + 1)

S- 2T2

El (t) = _;.{[c2 + a (l - c)2] +~’a* c (1 - c) e

32

1 c2 1 t *

_ 10g * ‘— —— (8 - l)

2 a (1 - c)2 2 12

[e e

1 c2 t .*

-- log * 2 - (B - 1)

2 a (1 - C) 2T2

+ e e ]

or

t

_ (3* + 1)

8- 2T

5. (t) = l {[c2 + 0*.(1 - c)2] + ZA/a* c (1_- c) e 2
1 '1'

E2

1 * t c2 V

cosh — [(8 - l) _. + log * 2 ] (3.3-17)

2 T2 a (l - C)

This relationship between ei(t) and t is illustrated by

the curve shown in Fig. 3.9, in which the expected creep range
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t

 

 

*

- 2(8 +1)

e-(t) l 21 1 t

1 a _T{[c2+a*(l-C)2 +21/a* c(1-c)e cosh -3521) _

. + log _____1

a*(1-C)2
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R is the value approached by ei(t)/Si as t +w, given by

5- (w) l

—-—-——_ = R = [C

S. E*

l 2

2
 + a* (l-c)2] (3.3-18)

The variations of the range R with the degree of confine-

ment c is shown.in Fig. 3.10, and is dependent on the value of

a*. It is worthwhilesto note'that thecrange is always an in-

creasing function.of c whence is sufficiently*near to 1.

Thus, by finding:the appropriate values of 8* and T,

almost any visco—elastic creep behavior can be approximated,

after determining the.approximate-value of a* from the pre-

ceeding range analysis. To illustrate this characteristic

change in behavior, consider for simplicity, the variation

of the visco-elastic creep curves with the degree of con-

finement c in the following two cases:

*

Case-(a) a = 1

T = 2

B*=1

*

Case (b) a = l

T = 2

B*=5

By examining the two plots of cases (a) and (b) shown in

figures 3.11 and 3.12 respectively, we see that because 0* in

both cases was chosen to be the-same and équal to 1, the ranges

of the visco-elastic curves were equal for the same-c. However,

by changing-8*, the ratio of B*/T has beenChanged causing a

change in the dependence of the initial slope on c.
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In case (a) the initial slope increased as c increased, while

in case (b) the initial slope first decreased and then in-

creased as c approached l.

3.3c Variation of the equivalent visco-plastic response

with the degree of confinement

The visco—plastic response derived from the general

solution of the proposed model (equation 3.3-8) was given as

provided that

c S. > Y2

and (l - c) Si > Y1

now if we let

n2
_.=B

n

1 (3.3-19)

Y

_i.= A

Y1

and substitute equations 3.3-l9 into the above equation, we

 

 

  

 

.obtain

Si t Y Y2

ei(t)= [B(l-C)(l-c- )+C(c-__)]

"2 A Si Si

8. t Y B (l—c)

or ei(t)= l [B(l-c)2+c2-__2.(c+ )]

’02 Si. A

S. t Y B B

or e. (t) =: 1' B (l - c)2 + c2 -._E.[c (l - _) + _J1(3.3-20)

1

”2 Si A AI
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Again to illustrate the change in the steady state lepe

of the creep curve with the degree of confinement, we choose

for simplicity an example in which B/A = l, and therefore, the

visco-plastic response becomes

8- t Y

(t) = l [s (1 - c)2 + c2 - .3] (3.3-21)

from which the steady state slope of the creep curve is

 

obtained by differentiating 6i (t)with respect to t, thus

getting

Y2
- ——] (3.3-22)

Si

n2 21 (t) = si [s (1 - c)2 + c2

which when plotted for a constant c and varying Si will give

a straight line relationship as shown in figure 3.13.

In order to plot the variation of the differential strain

rate with the degree of confinement c, it is noticed that the

behavior will depend on the value of B, which is expected to

be much less than 1, since it is experimentally observed that

the grain boundary is much more viscous than the actual crystal

grains themselves. This fact has been observed even in metals

and verified by KS (1947)22 in a set of experiments on poly-

crystalline and single aluminum crystals, in which aluminum

wire was used in a torsion pendulum oscillating at a constant

frequency. K3 found a relaxation peak in the internal friction

when measured at different temperatures for polycrystalline

aluminum which was not observed when single aluminum crystals

were tested, and concluded that the phenomenon was primarily

due to the high viscosity of the grain boundaries.

Thus if we assume an arbitrary value for Y2/Si and a
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value of 8 less than 1, a decrease in the initial part of the

curve showing strain rate with the degree of confinement (Fig.

3.14) is observed, followed by an increase as c tends to ap-

proach 1.

n2 2(t)

Slope = 8(1 - c)2 + c2

(for a constant c)

Yield

Strength 
 

‘
7

Y2

Differential Stress Si

Fig. 3.13 Relationship Between Differential Strain

Rate and Differential Stress for the

Steady State Response

The value of c corresponding to the minimum value of the

differential strain rate is obtained by differentiating Si (t)

with respect to c

i =_i_[-2B(1—c)+2c]=o

dc rh
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Hence

2c (8 + 1) = 28

 

 

 

 

 
 

 

 
 

 

 

  
 

            

B

or (c) . = (3.3-23)

mm B + 1

for the case when 8 = A.

J /

.8 //

7 for B = 1/5 J

B A = l

.5 /

n2 81 (t) 4 11/,

S

l .3 B i l

.2 ' A / i

.lts‘
-~

3

O 0.2 0.4 0.5 0.8 1.0

Degree of Confinement, c.

Fig. 3.14 Relationship Between Differential Strain Rate

and Degree of Confinement



CHAPTER IV

APPLICATION AND PREDICTIONS OF THEORY

From most of the work that has been done to relate the

five factors affecting the behavior of polycrystalline rock,

all that can be concluded is that there exists some sort of

variation in the behavior; since, up to the present time, no

theoretical basis to guide investigators has been established.

As a result, only a very few regular and systematic

tests have been performed using a relatively wide range of

experimental variation to demonstrate the influence of con-

fining pressure and temperature. These will be utilized

here to show how the experimental results could be compared

with the theoretical solution obtained by utilizing the

proposed mechanical model if the prOper values of the dif-

ferent elements were known.

4.1 Variation of the Elastic Modulus BA with Confining

Pressure

 

q

After experiments done by Griggs (1936)15, Handin (195318

and 1957 19), Heard (1960)20, Brace (1963)8 and Baron (1963)5,

it has become an established fact that an increase in con-

fining pressure tends to increase the elastic modulus.

This could be explained by the fact that confining pressure

raises the activation energy of the crystal grains that con-

stitute the skeleton of the rock by restricting their dis-

placement or re-orientation.

.45
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Nevertheless, Heard (1960)20 and Baron (1963)5 working

with confining pressure up to 5,000 Kg/cm2 were surprised to

get an increase in the elastic modulus with an initial in-

crease in the confining pressure followed by a decrease of

the elastic modulus with a subsequent increase in the con-

fining pressure.

Such a behavior can easily be explained by examining

the solution of the proposed model as demonstrated by the

following two examples:

Example 1: Results of differential stress versus dif-
 

ferential strain of rock salt specimens at different con-

stant confining pressures were presented by Handin (1953)18

(Fig. 4.1). These results demonstrate the increase of the

elastic modulus with the degree of confining pressure. Upon
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Fig. 4.1 Differential Stress-Strain Curves of Rock

Salt Specimens Deformed in Compression

(After J. Handin (1953)18)
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measuring the initial elastic modulus, one finds the following

values E25 = 4,500 Kg/cm2

3100 = 24,000 Kg/cm2

E2000 = 42,000 Kg/cm2

32800 = 63,000 Kg/cm2

A fitting method was used to determine the best possible

values of the Springs El and E2 that could represent the same

variation. To do this, one must first assume what the ex—

pected maximum value of Be would have been had the test been

q

run for the full range. This value of (Eeq) is equal to
max

the sum of E1 and E2 as was shown previously. Again if E2

is not known, a feasible value of E2 is guessed and hence the

ratio of the two springs a is determined from these assumed

values. By knowing the value of a, a curve is plotted for

the experimental values of Eeq versus the degree of confine-

ment c, utilizing table 3.1. The actual points (Eeq, p) are

then plotted over this theoretically determined curve in an

effort to establish the relationship between the relative

degree of confinement, c.and the actual confining pressure,

p. If no fit is obtained between the two curves, a new set

of spring values should be assumed, and the same procedure

is repeated until a close fit between the theoretical and

actual variation is obtained.

For this particular example, it is found that by using

9,000 kg/cm2
E1

E2 63,000 kg/cm2

a = 7



8
0

7
0

6
0 O

00

O 0

w N

(gm/‘3)! 30Ix)

beg 10119131103 0113813 weI‘eAmbg

1
0

     
1
’
6

(
0
)
A
c
t
u
a
l

Y
a
m
'
a
t
i
m
L
—
_
_
.

 

3
2

M
/

0
T
h
e
o
r
e
t
i
c
a
l
V
a
r
i
a
t
i
o
n
A
s

m
i
n
g
:

 

  
 

(
e
a
?

2

/
c
m

 
E

=
6
3
x
1
0
3
k
g

 

 
=
7

l I a 1'

G
)

 
 

 
 
 

 
0
.
1

F
i
g
.

4
.
2
.

 
 

 
 
0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
9

R
e
l
a
t
i
v
e
D
e
g
r
e
e

o
f
C
o
n
f
i
n
e
m
e
n
t
,

c

L
1

I
l

1

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

A
c
t
u
a
l
C
o
n
f
i
n
i
n
g
P
r
e
s
s
u
r
e
s
,

p
(
a
t
m
o
s
p
h
e
r
e
s
)

G
r
a
p
h

o
f
E
e
q

v
s
.

p
f
o
r
R
o
c
k

S
a
l
t
a
t
C
o
n
s
t
a
n
t
R
o
o
m

T
e
m
p
e
r
a
t
u
r
e
.

1
.
0

5
0
0
0

48



49

a close agreement between most of the theoretical and actual

values is obtained (Fig. 4.2).

Example 2: Heard (1960)20 presented results of dif-
 

ferential stress versus strain curves at constant confining

pressures for Solenhofen Limestone specimens, at a constant

room temperature of 25°C as shown in Fig. 4.3.

 

. ///]......

l

  

 

 

 
 

 

    

 

 

u
n
n
u
m
u
I
n
-
I
-
a
w
fl
h
n
'

O

. “"'"‘"“'“‘ll

   
 

       

Fig. 4.3 Differential Stress-Strain Curves f0?0901-

enhofen Limestone (After H. C. Heard

From these curves, the following initial elastic moduli

were obtained.

E = 3.25 x 105 kg/cm2

_ 5 2
E3000 — 4.65 x 10 kg/cm

2
E5000 = 4.20 x 105 kg/cm
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Again, the same method of fitting is applied and by

assuming a value of E2 = 4.20 x 105 kg/cm2

E1 = 0.70 x 105 kg/cm2

a = 6

a close fit is obtained as shown in Fig. 4.4.

It is worthwhile to note the linear variation of the

degree of confinement c with the confining pressure p in

each of the above two examples.

4.2 Variation of the Visco-Elastic Range with Confining

Pressure

 

Creep experiments using polycrystalline rock were first

started by Griggs (1939)16 in an effort to investigate the

variation that takes place for various combinations of the

five influencing factors, and as a result some empirical

relationships were suggested.

Robertson (1960)28 has presented the only systematic

creep work; his work was on Solenhofen Limestone at different

levels of constant differential stress, different confining

pressures, and at constant room temperature. Some of his

plots are shown in Fig. 4.5. Several empirical relationships

were suggested in an effort to establish a correlation between

the differential stress-differential strain-time elements,'

and it was concluded that a more theoretical approach is

certainly needed to relate these variables and improve the

planning of creep experiments.

Price (1964)26 and others have recently applied model

analysis to some creep tests on rocks. However, since they
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used a single system model, it was only applied satisfactorily

to the behavior in the uniaxial state of stress.
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Specimens (After E.C. Robertsonze)

In analysing the work of Robertson which is replotted

in Fig. 4.6, the following two assumptions are made:

(i) The visco-plastic creep is negligible, or has not begun

during the whole analysis of the visco-elastic response.

(ii) The visco-elastic response is negligible (or has been

completed) during the steady-state creep.

Curves (i), (ii) and (iii) in Fig. 4.6, representing

the visco-elastic creep reSponse (since their differential

stress level is within the elastic limit) are normalized
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to the same differential stress level of curve (i) by reducing

their respective differential strain ordinate in the ratio

of the differential stress of curve (i) to the differential

stress of the respective curve. The normalized curves are

plotted in Fig. 4.7, and for comparison, they are again plot—

ted in Fig. 4.8 after being reduced to the same origin.

The range of each of these three curves is then est-

imated by making a reasonable assumption for the ordinate

approached as t-w-oo. The estimated ranges are plotted versus

the degree of confinement c (since the relationship of the

actual confining pressure p to the degree of confinement c

has already been established from the earlier elastic analysis)

as shown in Fig. 4.9.

By assuming what the maximum range would have been at

c = l, the usual method of fitting is applied to determine

(by trial and error) the best value ofa* to give the closest

fit. In this particular example, it has been found that if

a=l

and the maximum range = 2.2 x 10'3 cm/cm

(at c = 1)

a close fit is obtained.

Thus, it is worthwhile to note that by observing the

variation in behavior as obtained from experimental results

of systematic tests, the values of the elements of the grain

boundary system can be roughly determined if the exact values

of the elements of the crystal grain system have already

been established.



(ma/mo 8_(nx)

(1)13 mans renuaaamq

 

2
I

P
=
4
0
0
0
k
g
/
c
m
z

s
=
1
5
0
0
k
g
/
c

1
 

 
 

\
—

C
u
r
v
e

(
i
i
i
)

N
o
r
m
a
l
i
z
e
d

t
o
1
5
0
0
0
k
g
/
c
m

 

   

55

 

  
 

  “
4
W
2

—
1
5
0
0
k
i
t
/
c
m

I
I

2

C
C
‘
T
’
r
v
e

(
i
i
)

N
o
r
m
J
l
i
z
e
d

t
o
1
5
0
0
k
g
/
c
m

  
 

‘0‘

2

$

.
1
?

8
:
1
5
0
“
k
g
/
c
m
fl

P
a
fl
fi
l
L
k
g
/
c
m
 

 

    
 

 
 

 
 

 
 
 

 

 

4
0
0

6
‘
3
0

8
0
0

1
0
0
0

T
i
m
e

(
S
e
c

.
)

F
i
g
.

4
.
7
.

N
o
r
m
a
l
i
z
e
d
V
i
s
c
o
E
l
a
s
t
i
c
C
r
e
e
p
C
u
r
v
e
s

o
f
S
o
l
e
n
h
o
f
e
n
L
i
m
e
s
t
o
n
e

a
t
D
i
f
f
e
r
e
n
t

C
o
n
f
i
n
i
n
g
P
r
e
s
s
u
r
e
s
a
n
d
S
a
m
e

D
i
f
f
e
r
e
n
t
i
a
l
S
t
r
e
s
s
.



(TI)I 3 “13119 [enuelemq

(mo/um 8_mx)

  

 

 

 

_
s
:
:
1
5

0
I
0

 

9
:
4
0
0
1
0
k
g
/
C
m

 

 

 
 
 

:
1
0
0
0
k
g

0

p=
35
0

/c
4
1
—
.

I
’

R
=
l
.
8
3

R
=
1
.
3

 
 

N N

E
O

\

.3?
O

0

LG
H

A

w

l 8

$

\K

N

.a‘\

\

 
 

 

 
 
 

 

 

 

 

 

  
 
 

 
 

 
 
 

 

 
 

 
 

 
 

 
 

 
 

 
 '

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

T
i
m
e

(
s
e
c
.
)

F
i
g
.

4
.
8
.

C
o
m
p
a
r
i
s
o
n

o
f
t
h
e
E
f
f
e
c
t
o
f
C
o
n
f
i
n
i
n
g
P
r
e
s
s
u
r
e
o
n

t
h
e
R
a
n
g
e
a
n
d

i
n
i
t
i
a
l
s
l
o
p
e
o
f

t
h
e
V
i
s
c
o
-
e
l
a
s
t
i
c
C
u
r
v
e
s

o
f
'
S
o
l
e
n
h
o
f
e
n
L
i
m
e
s
t
o
n
e
.

'
"



(8 guano/um) (1)1 3 JO 331mg

2
.
4

2
.
2

2
.
0

1
.
8

1
.
6

1
.
4

1
.
2

1
.
0

  

Q
)
A
c
t
u
a
l
T
e
s
t
R
e
s

l
t
s

 

O
T
h
e
o
r
f
t
i
c
a
l
C
u
r
v
e
A
s
s
u
m
i
l
h
g
:

 

(i
)

a
*
=

1
/

(
i
i
)
R
a
n
g
e
=

2
.
2
x
1
0
“
3

/
c
m

/

 

(
a
t

C
=
1
)

 

 
  

 
 

 
 

 
 

 
 

 
 

 
 

0
.
1

g
0
.
2

0
.
3

0
.
4

0
.
5

0
.
4
6

0
.
7

0
.
8

0
.
9

1
.
0

R
e
l
a
t
i
v
e
D
e
g
r
e
e

o
f
C
o
n
f
i
n
e
m
e
n
t
,

c
,

I
l

I
I

g
I

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

A
c
t
u
a
l
C
o
n
f
i
n
i
n
g
P
r
e
s
s
u
r
e
,

p
(
a
t
m
o
s
p
h
e
r
e
s
)

(
c
-
p
r
e
l
a
t
i
o
n
s
h
i
p
o
b
t
a
i
n
e
d
f
r
o
m

e
l
a
s
t
i
c
a
n
a
l
y
s
i
s

F
i
g
.

4
.
4
)

F
i
g
.

4
.
9
.

C
o
m
p
a
r
i
s
o
n

o
f
T
h
e
o
r
e
t
i
c
a
l
a
n
d
A
c
t
u
a
l
T
e
s
t
R
e
s
u
l
t
s
f
o
r
t
h
e
V
a
r
i
a
t
i
o
n
o
f
t
h
e
R
a
n
g
e
w
i
t
h
C
o
n
f
i
n
i
n
g

P
r
e
s
s
u
r
e

a
t
C
o
n
s
t
a
n
t
D
i
f
f
e
r
e
n
t
i
a
l
S
t
r
e
s
s

(
S
=
1
5
0
0

k
g
/
c
m
z
)
.

 

57



58

4.3 Variation of the Visco-Plastic Differential Strain Rate

with Confining Pressure

 

 

From Robertson's creep curves (iv), (v) and (vi) in

Fig. 4.6, it can be observed that they exhibit Visco-plastic

or steady state differential strain rates (their differential

stress level being greater than or equal to the elastic

limit) with the following values:

Curve (iv) Confining Pressure = 2000 kg/cm2
 

Differential Stress = 5800 kg/cm2

Differential Strain Rate = 3.8 x 10'7 cm/cm/sec

Curve (v) Confining Pressure = 3000 kg/cm2
 

Differential Stress = 4700 kg/cm2

Differential Strain Rate = 8.8 x 10'7 cm/cm/sec

Curve (vi) Confining Pressure = 3000 kg/cm2
 

Differential Stress = 5700 k'g/cm2

Differential Strain Rate 12.5 x 10'7 cm/cm/sec

It is observed from curves (iv) and (vi) that with both

curves being almost at the same differential stress level,

an increase in the differential strain rate is observed

merely as a result of the increase of the confining pres-

sure. Also from curves (v) and (vi) which are at the same

2, an increase in the dif-confining pressure of 3,000 kg/cm

ferential strain rate takes place again with increase in

the differential stress level.

This variation is found to be qualitatively in good

agreement with the theoretically expected variation; how-

ever, due to thexundetermined values of the elements in

the Bingham units of both systems, it is difficult to show
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any fit between theoretical and actual values without at

least knowing the approximate values of Y2 and n2.

The actual values of the crystal grain system constants

can be determined from the elastic analysis and from creep

tests that should be conducted at a confining pressure cor-

responding to c = l and for different levels of constant

differential stress.



CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 Discussion
 

As a result of the interest that has developed at the

beginning of this century, a study of the deformation of

rocks under load was begun and several experiments were

performed in an effort to establish the factors that affect

the behavior of such materials.

One of the important factors that influences such a

characteristic behavior, is the effect of confining pres-

sure. Several empirical relationships incorporating this

effect were presented. However, such relationships had

serious shortcomings in describing accurately such a char—

acteristic behavior, and have failed to account for the

actual deformation mechanism that is responsible for such

behavior.

The slow progress in this field of study is due to the

following two reasons:

(i) It is a very expensive and tedious process to run

experiments on rock at extremely high pressures, and to

develop the necessary equipment by which such experiments

can be performed.

(ii) The current theories of elasticity and viscoelasticity

are inadequate to describe such characteristic behavior.

This inadequacy may be attributed in part to the fact that

60
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rock is a heterogeneous material whose crystals possess

physical properties which differ from the grain boundary

prOperties.

In this investigation, the rock behavior is simulated

by a rheological model composed of two independent systems,

one representing the crystal properties and the second the

prOperties of the grain boundaries. However, in order to be

able to use this new model to describe the transitional be-

havior from uniaxial to triaxial stress state, it was nec-

essary to redefine the effect of a general loading condition

as a superimposed sum of a hydrostatic confining stress

tensor and a differential stress tensor. As a result of

this new formulation, three testing criteria for the usual

case of a general principal compressive stress state were

established in Chapter II, namely:

(i) The uniaxial differential stress test

(ii) The general biaxial differential stress test

(iii) The balanced biaxial differential stress test

By utilizing this model, the separate contributions of

the crystals and grain boundaries are correlated to the

applied confining pressure by varying the position of the

applied differential stress relative to the two systems

according to the degree of confinement. This unique ar-

rangement offers a basis for the mathematical analysis shown

in Chapter III, where several variations in the characteristic

behavior are displayed, depending on the ratio of the physical

constants of one system to the other. The main characteristic
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features that were obtained from the mathematical analysis

can be summarized as follows:

(i) In the elastic analysis, the equivalent elastic modulus

increases with initial increase in confining pressure and

decreases with subsequent increase in confining pressure

depending on the value of a, which is the ratio of E2 to El°

(ii) In the Visco-elastic analysis, the creep range de-

creases with initial increase in the degree of confinement,

c, and increases with subsequent increase of c depending on

the value of a*, which is the ratio Of E; to E1. In addition,

the initial slope of the Visco-elastic creep curves either

increases with increase in confining pressure or first

decreases and then increases with subsequent increase in

confining pressure, depending on the value of 8* which is

the ratio of l/t2 to l/Tl.

(iii) In the Visco-plastic analysis, the steady state creep

rate first decreases and then increases with increase in

the degree of confinement depending on the value of B, which

is the ratio of 02 to 01; and it constantly increases with

an increase in the differential stress.

This rheological description has been compared with

existing data in Chapter IV yielding the following results:

(a) by means of graphical fitting, it was possible to deter-

mine approximately the value of a, and the relationship be-

tween the degree of confinement, c, and the actual confining

pressure, p. For the two particular cases that were pre-

sented, it was found that the relationship is linear, and

that the minimum confining pressure needed to isolate the
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effect of the crystals (corresponding to c = l) is approx-

imately 5,000 atmospheres.

(b) The range of the Visco-elastic creep was found to increase

with confining pressure, and from the variation obtained it

was possible to approximately determine the value of a*.

In this case, the initial slope of the Visco-elastic response

first decreased and then increased with increase in confining

pressure.

(c) The steady state creep rate of the Visco-plastic response

was found to increase both with increase in confining pres-

sure and differential stress; however, there was not enough

data to obtain quantitative results.

Thus, with this rheological description of rock be-

havior it was possible to obtain results in excellent

agreement with existing data and to provide a basis for under-

standing the variation of physical constants with changes

in confining pressure.

5.2 Future Research
 

Based on this presentation, it was found that very few

systematic tests were conducted on any particular kind of

polycrystalline rock that would enable one to determine the

ten physical constants of the model. This indicates the

need for performing further experiments from which a com-

plete analysis could be obtained.

In order to be able to fully determine the ten physical

constants of the proposed model, the following experiments

should be performed:

 



64

1. The first set of experiments is to obtain differential

stress—strain curves of specimens which are subjected to

various confining pressures. In this first type of exper-

iments it is important to use an apparatus that is capable

of furnishing the needed high pressure for determining the

isolated physical property of theycrystal grains. By

analyzing the results of this first set of experiments, it

will be possible to determine (i) the relationship between

the degree of confinement c, and the actual confining pres-

sure p; and (ii) the approximate values of El and E2.

2. The second set of experiments should be conducted to

obtain, at various differential stress levels, creep data

from specimens that are confined to a hydrostatic pressure

which correlates to a degree of confinment of unity (C: 1).

From the results obtained it will be possible to determine

E3, n3, n2 and Y2.

3. The third set of experiments is conducted with the aim

of obtaining, at a particular constant differential stress

level, creep data from specimens that are subjected to

various confining hydrostatic pressures. From the variation

in the behavior due to the changes in confining pressures,

*

it will be possible to roughly determine El’ 0:,01 and Y1

by fitting methods.

Other useful applications of this rheological rep-

resentation are:

(a) investigating the change in these physical constants with

temperature by repeating the above three sets of experiments

at Various degrees of temperatures.



65

(b) studying the effect of temperature and pressure history

on specimens by subjecting them in the laboratory to various

predetermined history conditions.

(c) determining the value of Poissons ratio of each system

from the elastic analysis of differential stress-strain

curves by performing first a set of uniaxial differential

stress tests at various constant confining pressures fol—

lowed by a set of balanced biaxial differential stress tests

at the same constant confining pressures.

(d) although this analysis is only valid for single phase

polycrystalline materials, yet it may serve as a first

step towards analyzing more complicated mechanisms of de-

formation that are exhibited in the behavior of multi-phase

polycrystalline materials such as ice.
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