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ABSTRACT

VOLTAGE STABILITY AND SECURITY
FOR ELECTRIC POWER SYSTEMS
By

Louis Parlai Shu

This thesis presents a new approach to voltage stability prob-
lems in electric power systems. The sfudy develops (a) the theory
that explains the different types and causes of voltage stability
and (b) the computer based methods for detecting when a power system
will experience voltage stability problems.

The rapid growth of the interconnections between different
electric utilities in recent years has brought on very serious and
frequent voltage stability problems. Voltages can collapse in cer-
tain regions and/or large sustained voltage oscillations have been
experienced. The lack of theoretical explanation of these stability
problems is due to their being a rather recent phenomenon and that
they are described by very large scale models that involve thousands
of nonlinear equations.

The voltage stability problem is shown here as a lack of suf-
ficient reactive power support within specific stiffly interconnected
groups of buses. Attempting to supply reactive power across the weak

transmission boundaries causes voltage collapse. Weak boundaries
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are theoretically shown to be a cause of a loss of voltage control-
lability and a loss of reactive load observability that ultimately
can lead to voltage stability or voltage collapse problems. Voltage
problems can result from insufficient transmission capacity, heavy
current loads on transmission lines in these weak boundaries. Shunt
capacitance for long transmission lines or for voltage control was
shown to be another cause for this loss of voltage controllability,
observability, and stability.

Methods for determining and ranking weak boundaries were tested
on a 30 bus New England system. The buses in the stiffly connected
groups were shown to act as an equivalent bus for loadflow simula-
tions of multiple line outage or loss of generation contingencies.
The buses in weak boundaries were also shown to experience large
voltage variations for these contingencies.

Increasing reactive flows across weak transmission boundaries
or providing capacitive reactive power for a stiffly connected group
requiring reactive support were both shown to further weaken the
weak transmission boundary and lead to voltage collapse. These com-
putational results thus confirm the theoretical results on the causes

of voltage stability and security problems on power systems.
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CHAPTER 1

INTRODUCTION

1.1. The Objective of This Thesis

The purpose of this chapter is to give an orientation of the
voltage problems and define the objectives of the thesis. There are
two kinds of voltage problems: (a) voltage collapse, and (b) volt-
age oscillations. The consequences of these voltage problems are
the following: the voltage collapse will cause the blackouts and
economic loss to the utilities and customers. The voltage oscilla-
tions will cause the maintenance problem and eventually lead to the
stability problems of the whole power system. Voltage collapse and
voltage oscillations can also cause the inability to transfer real
power from the location of generation to the location of the cus-
tomers. Today those transfers are widespread practice and are essen-
tial to the economic and reliable operation of power systems.

Back in the 1950's and 1960's utilities began to interconnect
their networks. Initially, they were reluctant to admit that they
had voitage problems. As they relied on those interconnections more,
these voltage problems became more frequent and severe. It is only
recently that utilities have been willing to admit the severity of

the voltage problems.






The following areas have experienced voltage problems and have
had to limit transfers of power: Florida, Pennsylvania/Maryland/New
Jersey power pool‘, Ontario, and California.

Some common characteristics of the power systems in the above
geographical areas are:

(1) they all heavily import power from other utilities; and

(2) the generation stations which supply the power to those
areas are located at far away remote sites.
There are many other utilities that have recently reported problems
and have indicated the severity of the problems. Although it is
Understood how severe the problems are, very little research has
been performed to date, and the causes and solutions are not well
Understood. The study of the causes and solution of these voltage
Problems has been established as the number one priority for research
A4S established by the transmission planning group within a recent
EPR] sponsored meeting organized to establish priorities for research
in power system operation and planning. One may ask why these inter-
COnnections cause problems and what are the causes. This thesis
T Nndjcates that:

(1) the weak boundary;

(2) the insufficient local reactive supply to maintain voltage;
(3) the installation of capacitors for reactive supply rather

than generators; and

(4) the capacitance associated with long transmission lines

in weak transmission boundaries






are some of the causes of the voltage stability problems. This
thesis will establish theoretically as well as experimentally that
the above four network conditions will cause voltage problems.
The objectives of this research are defined as follows:
(1) to define the structural causes for weak transmission
boundaries;
(2) to develop methods for identifying locations of weak
transmission boundaries;
(3) to categorize the causes of voltage stability problems as
due to:
(a) inadequate resources
(b) loss of voltage controllability
(c) loss of reactive observability
(4) to determine the necessary conditions that insure voltage
stability-will not occur for the above categories; and
(5) to determine conditions that will cause loss of voltage
sstability for the above categories.

L.2. The Natural Structure of Voltage Problems in
Large Scale Power Systems

A typical interconnected power network can be visualized by a
hybrid electromechanical analog model as shown in Figure 1.1. This
model highlights the structure of several stiffly interconnected
groups. The nodes with support of capacitor banks represent the

Sources of reactive power. The big and small masses represent the

reactive joads of different sizes. The heavy duty springs represent
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the stiff transmission lines with large power carrying capability.
The Tight springs are those weak tie-lines interconnecting different
utilities. The light springs that surround each stiffly connected
group can also be regarded as a weak boundary for that particular
group of buses.

Imagine that one of the masses was suddenly hit by a hammer,
which is an analog to a sudden impulse of load to this group. The
stiffly connected group of buses will oscillate together as one bus,
and this oscillation is analogous to the oscillation of the phase
angles or voltage magnitudes of the voltages at buses. Another
situation that might occur is when someone connects an additional
mass at a load bus (the mass pointed to by the arrow in Figure 1.1).
Suppose the originally designed supports (reactive sources) are not
strong enough to sustain the additional load. Then the whole group
Will sag. The analog in a power system is the decrease of voltage
rmagnitudes at each bus of this group. This electromechanical model
<is used to indicate and provide insight into the voltage problems.
“The electromechanical analog is not a one-to-one mapping of our
Theory but will be referred to in order to help provide understanding.

Figure 1.1 has shown the structural nature of a typical inter-
<onnected network. Based on these concepts this thesis will develop
@ set of reasonable assumptions, models, theorems, and operating

constraints for each bus as well as for each strongly interconnected
group of pyses in a power system transmission network related to

voltage stability and security.
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The stiffly interconnected groups

and their boundaries.

Figure 1.1. A hybrid electromechanical analog model.
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1.3. State of the Art

The stability of power systems has generally been associated
with real power such as steady state stability for real power flows
across transmission elements, transient stability for large contin-
gencies such as faults, and eigenvalue determined steady state
(dynamic) stability [4]. The relationship b.etween steady state
stability, eigenvalue based steady state stability, and steady state
security has been developed based on the work of Venikov [4] on
eigenvalue based steady state stability, recent research on power
system dynamic equivalents [2,3], and the recent EPRI 1999-1 project
entitled "Methods of Analysis of Generators Governor Response and
System Security" [1]. A similar set of analyses on stability and
security methods does not at present exist for voltage stability and
security but is the subject of this thesis. The analysis and compu-
tational methods for assessing steady state disturbance and eigen-
value based phase stability and security are now discussed. The
relatively poorly developed state of the art of present analysis and
computational methods for steady state disturbance and eigenvalue
based voltage stability and security will then be discussed.

Venikov [4] developed a method for analyzing voltage stability

Dy determining eigenvalues of the linearized transient stability
model
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has the same sign as the determinant of the Jacobian of the deter-
mminant of T since

nH n 2n

. H,
det T(s,) =) —Fdet A=) L) 1
: S

i
J=1 j=1 S i=1 A
where A; are eigenvalues of matrix A.
A
The changes in sign of T(Sk) for operation condition S, is

Used to check the eigenvalue based steady state stability for
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different operating conditions Sk. If the small positive eigenvalues
of T go negative a loss of eigenvalue based phase stability results.
The small eigenvalues of T correspond to the small imaginary eigen-
values of A (from this investigator's work [2,3] on the theoretical
basis for dynamic equivalents based on the model (i)), which always
describe the oscillations of stiffly connected generator groups
against one another. Thus, the loss of eigenvalue based steady
state phase stability occurs across these weak transmission bounda-
ries when for some reason the small positive eigenvalues of T go to
Zero and then negative, causing the associated eigenvalues of A with
small imaginary parts to go to zero and then become positive and
real. Positive real eigenvalues for A will obviously indicate an

€ igenvalue based loss of steady state stability.

The recent work under RP 1999, "Methods of Analysis of Gen-
€ rators Governor Response and System Security," showed that a loss
O f stability can occur across these weak boundaries between stiffly
< oOnnected generator groups for loss of generation contingencies.

T Fe lost generation for a loss of generation contingency is picked
W2 P by every generator in proportion to its inertia and thus these
r~eal power flows focus back to the generator bus where the loss of
9eneration contingency occurred. These real power flows all cross
the weak boundary of this stiffly connected generator group that
@Xxperiences the loss of generation contingency causing the already
Weak boundary to experience thermal insecurity or loss of steady

State Stability problems. Thus these weak boundaries connecting



stiffly connected generator groups have been shown through this
analysis to be associated with both eigenvalue based and loss of
generator disturbance based steady state stability problems.

This RP 1999 project also developed algorithms and computer
programs for:

(1) didentifying stiffly connected generator groups and the

associated weak transmission boundaries;

(2) determining and ranking (according to vulnerability to
stability or security problems) the network elements that belong to
the weak boundary surrounding each stiffly connected generator group;

(3) a security assessment methodology that includes:

(a) a contingency measure that can accurately detect
single, double, or triple loss of generation or line outage
contingencies that experience thermal or steady state stability
Timit violations on one or more network elements;

(b) a network element measure that can detect whether a
network element experiences one or more thermal overload or
steady state stability limit violations over the set of single,
double, and triple contingencies evaluated; and

(c) a system security index that measures all the rela-
tive thermal or stability limit violations over each contingency
and network element combination times the probability of occur-
rence of the contingency and times the relative weighting of
the network element's importance to security for the base case

Operating conditions.
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The existing steady state voltage stability methods [5-8]

address the eigenvalue based steady state stability problem. Sen-

sitivity matrices relating operating or dependent variables such as
load bus voltage to control variables such as terminal voltage E on

generators, turns ratios on off nominal tap changing transformer,

and susceptance of capacitors have been developed [5-8]. The papers

[5,6] showed that the sensitivity matrices, which are products of
an inverse matrix times another matrix, will have positive elements

as long as the matrix being inverted is approximately an M matrix

and thus has strictly positive eigenvalues. The sensitivity matrices

will then also have strictly positive entries. The paper [8] did

not attempt to analyze the structure of the sensitivity matrix relat-

1 ng operating and control variables as in [5,6]. The loss of sta-

b1ility was inferred if a significant percentage of the elements in
this sensitivity matrix change sign as the operating conditions

Change.  Such changes in sign obviously reflect changes in the sign

O F eigenvalues of the matrix that is inverted. Thus both methods

assess efgenvalue based steady state voltage stability.

1.4, An Overview of the Thesis

In order to achieve the objectives defined in section 1.1,
two parall e approaches will be used to explain the causes of the
VO ltage proplems. Since the nature of the structure dictates the
behavior and response of the network, both approaches concentrate on

the structyral causes of these voltage problems. The first approach

oo
-
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is the identification of weak boundaries. The second approach is

the sensitivity analysis.

Chapter 2 will develop the weak boundary identification pro-
cedure based on a linearized loadflow model. In a power network
each source bus has its own upper and lower limits for reactive

power generation. On the other hand, the reactive power at each

TJoad bus is specified. If the reactive requirement at a source bus
exceeds the limit the reactive power injection will be fixed at that
Timit. The source bus is then considered as a load bus, because it
can no  Tonger match the demands of the load reflected to it or adjust
for disturbances. If one increases the reactive power requirement
at load buses in a group until it exceeds the capability of all the
Source buses in_.a group, all source buses in that group will be con-
verted to load buses. This will cause that group of buses to lose
the voltage control. This problem is due to the fact that the

T ncreased reactive load is only reflected to reactive sources in its
Own group, and because the weak boundary isolates one group from the
O Ther groups. If reacﬁve load continues to increase and there are
NO sources in that group, sources in other groups will attempt to
Supply the reactive power but in so doing cause the voltage to col-
T apse. Once that specific group of buses loses voltage control, its
ne ighborj ng groups will not be able to use that part of the network

to transfer real power. Voltage collapse in the group can also

Cause vol tage problems for the whole system.
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Chapter 2 defines what is meant by a stiffly connected group
in terms of voltage phase and/or voltage magnitude. A method is
then proposed for determining the stiffly connected groups and is

then shown theoretically to detect such groups. Finally, the above

discuss ion of how these weak transmission boundaries can cause volt-
age col Tapse due to insufficient reactive reserve within each group
is discussed. Chapter 3 then presents computational results on the
New EngTand system that determines the stiffly connected groups and
indicates how the weak boundaries surrounding these groups are
affected by load level, line outages, capacitors, and local reactive
reserve.

In the second approach, the sensitivity analysis, the same
T inearized loadflow model will be used but for a different purpose.
Inorder to determine the controllability of voltage magnitudes at
The load buses and the observability of changes in reactive power
T oad at the source buses, two algebraic equations will be developed
Tn the sensitivity analysis. These two algebraic equations will be
Called the controllability equation and the observability equation,
Yespectively. Based on these two equations it can be shown that the
Tack of controllability will induce stability problems and the lack
O T observability will induce stability 'problems.

Chapter 4 will discuss the theoretical part of the sensitivity
Approach, which includes the mathematical model, a set of theorems
derived based on these two equations. These results indicate that a

loss of voltage controllability or observability can occur due to
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weak boundaries, thus combining the results of the weak boundary
and sensitivity épproaches. It is also shown that the capacitive
reactive sources at any bus or stiffly interconnected group are
constrained by the stiffness of the elements connecting the bus or
connecting this group to the rest of the system, respectively.
Chapter 5 will discuss the experimental results of the sensitivity

analysis. In both Chapter 3 and Chapter 5 the 30 bus New England

system will be used. Chapter 6 provides an overview of the theorems

and results of the thesis and their application to the power industry.

A brief discussion of future research is also included in Chapter 6.






CHAPTER 2

METHODS FOR THE DETERMINATION OF
WEAK TRANSMISSION BOUNDARIES

2.1. Introduction
The Tinearized load flow model developed in this chapter will

be uti1ized in this research to study interrelationship of sources
and loads. This load flow model will be used to first define what
ismeant by a stiffly connected group and a weak transmission bound-
ary. The basic concept of a stiffly interconnected group is similar
1 n nature to the concept based on the electromechanical analog
depicted in Figure 1.1. As pointed out in the previous chapter,
Tthese weak boundaries decouple the stiffly- connected groups and pre-
vent the real power from being transferred from one group to another.
A Tthough the existence of weak transmission boundaries is well under-
S Tood, there is no method for determining the location of these weak
b°“"dal"1es. Under normal operating conditions an experienced opera-
Tor may be able to tell where these weak boundaries are in his area.
However, for the larger regional interconnected networks that are
MoOre comp1 icated and for the case where abnormal operating conditions
Caused by multiple line outage or loss of generation contingencies,
OPerator experience may not be sufficient to locate these weak

bOundaries_ Systems planners also need methods to determine the

14



15

location of weak transmission boundaries and their relative level

of insecurity to ensure the security and reliability of the system.
Therefore the concept of strict synchronizing coherency for both
voltage and phase, and a set of measures will be developed for locat-
ing and ranking of the insecurity of weak boundaries. The measures

will then be proven to detect strict synchronizing and thus the q

T T

Tocation of weak boundaries. Finally, the decoupling of stiffly

L

connected groups of buses that characterize the weak transmission
boundaries will be justified as the cause of voltage problems, because
(a) the voltage changes at buses due to all line outage or loss of
reactive source contingencies are used in the algorithms developed
to detect the location and rank the insecurity of weak boundaries;
(Db) the weak boundaries decouple the buses in different stiffly
T nterconnected groups and thus prevent the requirement for reactive
Supply to cross such boundaries and the reactive supply to cross
The weak boundaries; and (c) the local reactive reserve within each
S Tiffly interconnected group may not be sufficient to handle the
reactive Toad change which cannot be met by sources in other groups
Que to the weak boundaries.

The sensitivity analysis in Section 4 will develop the neces-
Sary condi tions for loss of voltage stability due to loss of control-
1abi”t¥ and loss of observability. The existence of weak transmis-
Sion boundaries will then be shown to cause the loss of controllability

ANd observapility induced stability problems.
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2.2. The Linearized Loadflow Models and Stiffly
Connected Buses

The following three linearized loadflow models will be dis-
cussed in this chapter:
1) A.C. loadflow model:

AP aP/ae  3P/aVv] [ae
= (2.1)

aQ 3Q/98 aQ/aVv| | av

2) Real power and phase angle (P - 8) loadflow model:

CaP] = [aP/38][as] (2.2)

3) Reactive power and voltage magnitude (Q - V) loadflow
model:

[aQ] = [3Q/3v][av] (2.3)

W here

P is the vector of real power injections or residuals at the
buses

Q s the vector of reactive power injections or residuals at
the buses

® 1s the vector of voltage phase angles at the buses
V. is the vector of voltage magnitude at the buses

In generay s at any bus i we have

n
P. = z - -
J=



Where

n
j=1
n
j=1,3#1
n
J=1,3#i
n
j=1
n
Q. = i - - ] -y.
Q.,/:BV1 E ijij sin (61. 85 Yij) + V.Y.. sin (-y
j=1
Q. = i - -

(2.5)

(2.7)

(2.9)

Yij) * V¥4 cos (-vy5)

(2.10)

(2.11)

11')
(2.12)
(2.13)
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P and Q are the real and reactive power injections,

respectively

i,J are the index of buses

Yij is t@e magnitude of the admittance between buses i
and j

Yij is the phase angle of the admittance between buses i

and j

Since it is assumed that there is no power dissipation in the
network the Jacobian matrices are singular, therefore the inverse
matrix of each of the Jacobians does not exist unless we take one of
the buses as reference. Without loss of generality let the buses in
the network be indexed from O to N, with bus 0 as the reference bus,
and define the reduced Jacobian matrix as

~

AP 3P/a8  aP/aV] [as

~ -~

AQ 3Q/30  3Q/aV] [av

-

aPs/aeS aPS/aec

?Pc/aés aPc/aec

where
Jg is the phase Jacobian matrix

P s the vector of real power injections or residuals at the
buses except the reference bus

Q s the vector of reactive power injections or residuals at
the buses except the reference bus



A

.
N
.
.
-
.
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® s the vector of differences of voltage phase angle at the

buses with respect to the phase angle of the reference bus

V is the normalized vector of voltage magnitudes at the buses

with respect to the voltage magnitude of the reference bus

Note that from now on we will drop the symbol "™" for the referenced

power model and the term Jacobian matrix will replace the term

reduced Jacobian matrix in this thesis.

Definition: Strict Synchronizing Coherent Group (SSC)

A group of buses are called strict synchronizing coherent if
the voltage angles and relative voltage magnitudes of each pair of
buses in the group respond identically for any disturbance.

This definition of strict synchronizing coherencyhcan be
applied to the nonlinear model and to all three of the linearized
loadflow models. It will now be shown that a sufficient condition
for SSC to hold is that there be n - 1 elements with infinite admit-
tance that form a tree and connect all n buses in the SSC group. It
is intuitively clear that this sufficient condition will cause SSC to
hold in the nonlinear model since all n buses are shorted together
and thus form a single equivalent bus. This sufficient condition for
strict synchronizing coherency is now proven to hold in each of the
linearized loadflow models and is then proven to be detected by an
appropriate coherency measure. The proofs are developed for the P- 6,
Q - V, and AC loadflow models, respectively. It can be proved that
the n- 1 admittances connecting the n buses in a group to form a tree
will cause phase, voltage, and both voltage and phase angles for buses

in the same SSC group to respond identically for appropriate
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disturbance. Then a phase coherency measure and a composite voltage/

phase coherence measure can be established to detect this SSC property.

2.3. Detection of SSC Group in P - 6 Loadflow Model

The P - 8 loadflow model is now broken into a study group and
a test group and the group is then assumed to be connected by n - 1
infinite admittance elements forming a tree. This group of n buses
is then proven to be an SSC group. Now let

S be the index set of the study group, and S ={ 1, 2, ...., m}

C be the index set of the coherency test group, and
C={m+1,m+2, ...., m+n }

and the real power/phase angle Jacobian becomes

APS aPS/aeS aPs/aec aes
= (2.14)
APC- _aPc/aeS aPc/aeC Aec
where
aPs/aeS aPS/aeC
J, = (2.15)

BPC/865 BPC/BGC

is the phase Jacobian matrix. The sufficient condition for SSC
requires that there are at least n - 1 interconnections such that
Yij + = that connect all n buses in the test group. Therefore sub-
matrix [aPc/aeC] has the following properties:
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1) It is a symmetric matrix.

2) It has at least 2(n - 1) infinitely large off-diagonal
elements.

3) A1l the n diagonal elements are also infinitely large and

thus can be expressed as

[9P /30,171 = 1/ulH]  for u > 0 and u + 0 (2.16)
where the Hij is the element of H at the ith row and jth column.
Then

Hij = 0 if no connection between buses i and j

MEf5 if it is not an infinitely stiff connection
= €5 if it is an infinitely stiff connection
where eij's are non-zero real numbers in the same order of magnitude.

Property 2.1: If there is a set of n - 1 infinite admittances

connecting all n buses forming a tree in the n bus test group, then
(1) [oP /20.37" » [0] (2.17)
(i1) A8, + 0
for any disturbance AP and this test group is a strict synchronizing
coherent group.
Proof (i):
Since SSC holds in the P - & model, it can be shown that this

condition causes
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-1 -1
[aPc/aec] {1/u[H]}

(2.18)

u{[H]}'1
where u > 0 and u + 0 implies
[aP /36 ]'1 + [0]
¢ ¢
Proof (ii):

Given that [aPS/aeS] and [aPc/aec] are nonsingular square

matrices, and the corresponding partitioned Jacobian inverse is

STRRSY)
R (2.19)

Ka1 Koo
such that

Kip = {[aPS/aeS] - [aPS/aec][aPC/aec]'l[aPc/aeS]}'1

Ky -Ku[aps/aec][apc/aec]'1

(2.20)

-1
% -[aPc/aec] [aPC/aesjkl1

Kyp = [:;Pc/aec]'1 - [8Pc/89c]'1[apc/3GS]K12

Now if [apc/aec)'l ~ 0, then
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Ki2 [0]
K21 -+ [0] (2.21)
Kap + (0]
A8
Solving for in (2.14) and substituting (2.20), it is clear
that a8,
Aes APs K11 0] aP
= 1-1 -
= Je = (2.22)
Aec APC 0 0] aP

Therefore a8, + 0 for any APs and APc and thus the test group is SSC.
Having shown that the SSC sufficient condition holds in the

linearized P - 8 loadflow model, a measure

C,(k,1) = E{[Aek - Aei]z}l/z
aP

E{AP} =E =0 (2.23)
0P,

E{aPaP’} = R, (2.28)

is proposed and is then shown to detect the SSC property.

Before proceeding, the coherency measure is written as
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- (ot 3
Ce(k,l) = {eklseekl} (2.25)

where the jth element of the vector e is defined as

1 ifj

k

-1 ifj=1 (2.26)

{ekl}j =

0 otherwise

with k,1 =1, 2, ...., m+n

s = E{a0n8%} (2.27)

G

Property 2.2: The coherency measure satisfies Ce(k,l) < ¢ for

any small € > 0 if bus k,1 belong to the coherent group i.e.,
kl=m+1,m+2, ...., N
Proof:

Since

K11 K2
g7l =

ka1 Koz

which is partitioned into the study and SSC group respectively, then

i ar - _ -t
K11 K12 |2Ps K11 Kp2
t t .t
ABAB " = [APS APc] (2.28)
| Ka1 Koz [ | 2P K21 Koz
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but from property 2.2 we have

K12 -+ [0]
K21 + [0] (2.29)
K22 > [0]
so that
t, t ]
KHAPSAPSK11 0 |
AeAet > (2.30)
I 0 0

In order to detect the SSC group we can artificially create a set of
loss-of-generation contingencies such that E{APAPt} has all elements

on the principle diagonal nonzero. Therefore, the coherency measure

between each pair of buses becomes

- ot 3
Ce(k’l) = {eklseekl}

{ ezlE{AeAet}ekl}i

1/2
t,t
KllAPSAPsKll 0

t
> eklE ekl (2.31)

Hence Ce(k,l) + 0 if both buses k and 1 belong to the SSC coherent
group (k,1 =m+ 1, m+ 2, ...., N).
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2.4. Detection of SSC Group in Q - V Loadflow Model

The Q - V Toadflow model is now broken into a study group and
a test group, and the group is then assumed to be connected by n - 1
infinite admittance elements forming a tree. This group of n buses

is then proven to be an SSC group. Now let

AQs aQs/avS aQS/aVc AVS
= (2.32)
LAQC. _aQC/aVS an/avc_ _Avc_
Define
aQS/avS 3QS/avC
JV = (2.33)
_an/avs aQC/avC ]
If buses i and j belong to the SSC group, then

and the submatrix [aQC/aVC] has the following properties:
1) It is an asymmetric* matrix.

2) It has at least 2(n - 1) infinitely large-off diagonal
elements.

3) A1l the n diagonal elements are also infinitely large.

Let

*It can be structurally symmetric with all symmetric elements.
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[3Q./3V.] = 1/u[H] (2.35)

u>0and u-+0

Hij be the element of k at the ith row and jth column
Hij = 0 if no connection between buses i and j
= MEy if it is not infinitely stiff connection

€43 if it is an infinitely stiff connection

where eij's are non-zero real numbers in the same order of magnitude.

Property 2.3: If there is an n - 1 admittance connecting all

n buses forming a tree in the n bus test group, then
-1
(1) [aq/2v ™" » [0]
(if) AVc -+ [0]

(2.36)

for any disturbance AQ and this test group is a strict synchronizing
coherent group.

Proof (i):

Since SSC holds in the Q - V model, it can be shown that

{1/ulh]yt

[2Q./av 17"
(2.37)

w{([H]1
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where u > 0 and u + 0 implies
-1
[3Q /v ] +‘[0]

Proof (ii):
Assume that [aQS/aVs] and [an/aVc] are nonsingular square

matrices, and the corresponding partitioned Jacobian inverse is

- -

K11 Kp2
it - (2.38)
K21 Koz |
such that
-1 -1
Kyy = ([aQg/av ] - [20./av 1020 /av 17} [20 /v 1)

K12 = -Kll[aQs/BVCJEBQC/BVc]'l
(2.39)
Ky = -[Q./aV 1 [30./3V TK;

Kpp = [3Qc/aV,17h - [a0 /v 17100, /3V IK

Note that if [aqc/avc]‘1 ~ 0, then
STRaY
Ky > (0]

Kyp > [0]
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av

s
Solving for in (2.32) and substituting (2.39), we get
av,
AVs AQS K11 0 AQS
= -1 =
= J, =
av, 8Q, 0 of e,

Therefore av, > [0] for any 8Qg and aQ. and thus the test group is
SSC.
Having shown that the SSC sufficient condition holds in the

linearized Q - V loadflow model, a measure

= 2

AQS

E{aQ} = E

n
o

AQc

E{AQAQt} = Rv

is proposed and is then shown to detect the SSC property. Define

a diagonal matrix

[A] =
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where the ith

element on the principle diagonal of [1] is 1/Vi with
i=1,2, ....,m+n, €] as defined in (2.26), and define the

matrix

E(avavt)

wn
n

EC[AI[avavEiI[a ]

where Avk = AVk/Vk, then the coherency measure has the following

form:

PN 3
Cv(k,l) = {eklsVekl} (2.41)

Property 2.4: The coherency measure satisfies Cv(k,l) < e for
any small € > 0 if bus k,1 belong to the coherent group,

k,1=m+1,m+ 2, ...., m+n.

Proof:
Since
K11 K12T
-1
Jv = .
k K
| 21 22

which is partitioned into the study and SSC group, respectively,

then
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K11 Kp2 [] 49 K11 Kizft

avavt [2¢ 8Q(]

Ka1 Koz || 2Q¢ K1 Koz

aVavt = [aJravavticn)

K11 K12 ] 29 K11 Kpzft
= [a] (20} 201 D] (2.42)
Ka1 Koz | 4Qc Ka1 Koo

But from property 2.3, matrices K12’ Kops and K22 satisfy

Kpz > 0]
Ky > [0]
Ky > [0]
so that
t,t ]
. K118Q58Q5Ky; 0
AvAV™ > [A] (]
0 0
(2.43)
t,t
ASKIIAQSAQSKIIXS 0
AVAVE >
0 0
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In order to detect the SSC group in the Q - V model, we can
artificially createa set of loss-of-generation (reactive power)
contingencies such that E{AQAQt} has all elements on the principle
diagonal non-zero. Therefore, the coherency between each pair of

buses in the system becomes

= (af 3

ot ot 3
= {eklE{AVAV }ekl}
: t,t
AsK118Q58Q5K 1A 0 3
t
*1 ek &1
0 0
(A K, E{8Q_aQ k% A 1} 0
s'11 s°%s11%s 4
t
cv(k,1) + ey €1 (2.44)

Hence Cv(k,l) + 0 if both buses k and 1 belong to the SSC group.

2.5. Detection of SSC Group in A.C. Loadflow Model

The A.C. loadflow model is now broken into a study group and a
test group and the group is then assumed to be connected by n - 1
infinite admittance elements forming a tree. This group of n buses

is then proven to be an SSC group.



-1 ar -
AP P /38 AP /N, P /a8 OP /aV | |46,
8Q 3Qg/36, 30 /aV,  3Qc/38,  aQ./aV || AV
= (2.45)
AP aP/30, 9P /OV. 3P /e 3P /aV || a6,
_AQCJ _3Qc/395 3Q./3V,  2Q. /28, 3Q./3V || AV,
where
]
p- I -
aPs/aes 3PS/3Vs E aPs/aec aPS/avc
3Q /38, 3Q./aV i 3Q /30, 30 /aV,
B e L LI ELELs
]
aPc/aeS aPc/BVS E aPc/aec aPC/BVc
]
_3Qc/865 aQC/avSEan/aec 3Q./3V, -
J11 Y12
= (2.46)
a1 J22

and the submatrix

3Pc/86c BPC/BVc

BQC/BGC BQC/BVC

has the following properties:

*
1) It is an asymmetric matrix.

2) It has at least 4(n - 1) infintely large off-diagonal

elements.

*It can be structurally symmetric with all symmetric elements.
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3) A1l the 2n diagonal elements are also infinitely large and

thus can be expressed as
Jyy = 1/u[H] (2.47)

for u > 0 and u + O where

.th

h row and j~ column

be the element of k at the it

= =
]

ij = 0 if no connection between buses i and j

My 5 if it is not an infinitely stiff connection

eij if it is an infinitely stiff connection

where eij's are non-zero real numbers in the same order of magnitudes.

In order to simplify the expressions in the following proofs, let

t t
- rautautrs = raptaatantaat
AW = [ANSANC] [APSAQSAPCAQc]
t t
= ravtaytr = raataytaatayt
AX = [AXSAXC] [AesAVSAeCAvc]

Property 2.5: If there is an n - 1 infinite admittance connect-

ing all n buses forming a tree in the n bus test group, then
(i) Jyp =+ (o] (2.48)

(i) AXc + 0 for any disturbances AP and AQ

Aec

ji.e. +0

AVc



35

Proof (i):
Since SSC holds in the A.C. model, it can be shown that

Jé% {1/ufH]y!

(2.49)
u{[H]}'1

but u» >0 and u ~ 0 implies
Jpz * [0]

Proof (ii):
Assume that Jll and J22 are nonsingular square matrices, and

let the corresponding partitioned Jacobian inverse be

-1 (2.50)

(<
"

such that

-1
) -1
Kip = [911-91292292;]

) -1
K12 = -K11912922
(2.51)
-1
Kap = =922921%11
-1 -1

= Jp27d22921K12

<
N
N
i
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Note that if Jé% + 0, then

Ky = [0]

K21 + [0]

Koo + (o]
AXS

Solviny for in (2.45) and substituting (2.51) gives

AXc

[ax_| (x| [k, o] [aw.]

S S 11 s

= J-l =

-AX ] -AX c] I 0 Od _ch_J

Therefore aX . - [0] for any MW, and AW, and thus the test group is

SsC.

As a result, the SSC sufficient condition has been shown to

hold in the linearized A.C. loadflow model. A measure [9]

3
C(k,1) = E{(Aek - A91)2 + (AVk/Vk - AVl/Vl)Z}
(2.52)
= {ef [s.Je,, + el .[S.] }i
k1L2648k1 ¥ €k1lov4&

[AP
E =0

AQ

A
E | [A [aptat]d = R
Q
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is proposed and then shown to detect the SSC property. Let Se, Sv’
As’ and AC be defined as in the previous sections of this chapter.

Additionally, let

1 forj=korj=k+m
{ekl}j =J-1 forj=1lorj=1+m (2.53)
0 otherwise
s = E{iaxaxth) (2.54)
with
. 7
AS 0
3 =
I 0 AC |
(1 0]
Xs = (2.55)
[0 s ]
1 0 ]
Xc-‘-
L0 Ac ]

where
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X is 2m x 2m matrix

S

X is 2n x 2n matrix

3 s 2(m + n) x

2(m + n) matrix

Then from (2.53), (2.54), and (2.55)

C(k,1)

E{[Aek -

-t
=\e E{
{ k1 AVS

Aec

av

t t t = ot
{eklE{AeAe }ekl + eklE{AVAV }ekl}

r -
AGS

L ¢

H
2

3

3
t.ot, t,oto - }
[AeSAvSAeCAvc]}ek1

= {EEIXE{AxAxt}ékl} !

Property 2.6: If

k,1 belong to SSC then

C(k,1) < e for any small ¢ > 0

Proof:

Since

K11 K12

<
[l

Ko Koz

(2.56)
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which is partitioned into the study and SSC groups, respectively,

then
K K AW K K t
11 12 S 11 12
axaxt = [Aw:Aw'g] (2.57)
K1 Koz | [MW¢ K1 Koz
But from property 2.5 we get
STRa
K22 + [0]
so that
t,t
KllANSANSKll 0
axaxt » (2.58)
0 0

In order to detect the SSC group in the A.C. model, again we
canartificially create a set of loss-of-generation (real and reac-
tive power) contingencies such that E{AWAwt} has all elements on the
principle diagonal non-zero. Therefore, when measuring the coherency

between each pair of buses in the system we get



40

_ - - 3
C(k,1) = {eﬁlE{ awxax }ekl}

Ag  OF |aXg A )
s ) st t .t -
|ek1E EXSAXC] ekl ‘
_0 Aq fxq _O Aq
R ol [ O it o -K o- !
S 11 s'11 S -
-t e
-+ ‘eklE kl}
0 L 0 of Lo
A Kllaw AW K11 0 3
o st -
- ‘eklE ekl]
0 0
- t
AsKllE MWSAwgkllxs 0 3
_ st 2
“ 1% ekl]
0 0
since
C(k,1) EE] ékl}
0 0

Therefore C(k,1) -~ 0 if both buses k and 1 belong to the SSC group.

2.6. The Limited Sources and Weak Boundaries

Physically for each source bus or generator bus there is a set

of Tower and upper limits of reactive power injection, i.e.,



»
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Qmin,i E.Qi 5-Qmax,i at source or generator bus i. Whenever Qi hits
one of the limits, the reactive power injection will stay there. As
far as we are concerned in the loadflow solutions, this particular
source bus now is regarded as a load bus, and it can no longer take
action in responding to any reactive power disturbances to match
demands beyond its capability. If a stiffly connected group always
has the reactive power demands exceeding the total capability of the
group, eventually all its source buses will be converted into load
buses. Under this situation, due to the fact that the reactive
power cannot be transmitted over long distance (across weak bounda-
ries), this group will lose the voltage stability.

If each stiffly connected group is regarded as a single bus,
this group with heavy reactive load will be regarded as a load bus to
those interconnected networks. One may ask if this is the case then
can a set of guidelines or operational constraints be developed for
each of these stiffly connected groups based on our understanding
about the behavior of each individual bus. The answer is yes. If
the constraints and rules for voltage stability can be developed at
each bus then these constraints can be generalized to the groups.

We will show this in Chapter 4 using the sensitivity analysis.

The weak transmission boundaries for a power system are the
branches that connect the buses in different SSC groups. It is
clear that these boundaries are referred to as weak because none of
the branches that connect the buses in these groups has infinite

admittance where within each SSC group of buses there is an infinite
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admittance path connecting all buses. In practical networks the SSC
groups will not be connected by infinite admittance branches but
rather the collection of buses within each such group are more stiffly
interconnected than the buses between such groups. Operating condi-
tions such as loadflow can possibly modify the SSC groups in a net-
work. Moreover, the SSC groups defined based on phase, voltage, and
both voltage and phase (current) may be different. The next chapter
will investigate the SSC groups based on the phase, voltage, and
current coherency measures.

The weak transmission boundaries can cause the security and
stability problems for power systems. It was shown that the phase
coherency measure (regulated loss of generated contingencies) based
on inertial loadflow identified the weak transmission boundaries
that decoupled the dynamics of the classical transient stability
model in [1]. This decoupling could cause the phase oscillations
between regions in power systems that have recently been observed.
Furthermore, the weak boundaries identified by the phase coherency
measure have been shown to identify the branches that are severely
affected by any line outage or loss of generation contingency in a
49 bus test system. Thus the branches in the weak boundaries are
the insecure elements in the network and once identified indicate
the contingencies that could most severely affect system security by
affecting particular branches or groups of branches in these weak

boundaries.
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The above study [1] was performed for thermal and steady state
phase stability problems. The weak boundaries will be shown in
Chapter 4 to prevent changes in reactive load from being reflected
to reactive sources in other SSC groups. Thus, sources in one SSC
group will not provide reactive power for reactive load requirements
in another SSC group-

Furthermore, the weak boundaries will be shown in Chapter 4 to
require voltage support for load buses be provided by the voltages
established at reactive source buses in an SSC group. The voltage
at load buses in one SSC group of load and generator buses will
therefore not be significantly affected by the voltage magnitudes
established at source buses in other SSC groups. It is thus clear
that voltage control is local within each SSC group. Therefore,
if reactive load increases or decreases, the source buses in an SSC
group must compensate. If the reactive load continues to change
such that all source buses in an SSC group reach the upper or lower
1imit, these source buses in the SSC can no longer provide voltage
control. Additional changes in reactive load will also cause large
voltage changes within the SSC group as the network attempts to
provide reactive power through the weak boundaries.

It is thus clear that there must be sufficient positive and
negative reactive reserve in each SSC group to preserve voltage
stability problem and is investigated in the computational results

on the 30 bus New England system given in Chapter 5.



CHAPTER 3

DETERMINATION OF WEAK TRANSMISSION BOUNDARIES
FOR THE 30 BUS NEW ENGLAND SYSTEM

3.1. Introduction

The purpose of this chapter is to determine the weak trans-
mission boundaries for phase, voltage magnitude, and current on a
30 bus New England system. The weak transmission boundary for phase
is based on a phase coherency used to determine the coherent groups
to be aggregated to produce dynamic equivalents [3] for transient
stability studies. This same phase rms coherency measure evaluated
for all inertial loadflow simulated loss of generation contingencies
was shown [1] (a) to detect the weak transmission boundaries to cause
the phase oscillation problem based on an analysis of the classical
transient stability model, and (b) to determine the weak transmission
boundaries and the associated branches that experience thermal or
phase stability problems for line outage or inertial loadflow simulated
loss of generation contingencies.

The weak phase transmission boundary based on the rms phase
coherency measure is evaluated in this chapter based on load contin-
gencies at all buses in the network rather than just loss of genera-
tion contingencies. The loss of load disturbances at all buses should

be more robust and'should establish the weak transmission boundaries

44
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between groups of load and generation buses and not just between
groups of generator buses. The weak transmission based on this
phase coherency measure should establish the boundaries and associated
branches that are vulnerable to phase stability problems. The weak
phase transmission boundaries are determined for three cases: active
power load disturbances at every bus, reactive power load disturbances
at every bus, and complex power load disturbances at every bus. It
is found that the weak phase transmission boundaries for active and
complex power disturbances are quite similar and reflect the electrical
distance from the swing bus. This occurred because the mismatch due
to the loss of load is eliminated by a similar loss of generation at
the swing bus causing a power flow to the swing bus from the disturbed
bus. The weak phase boundaries for loss of reactive disturbance had
no pattern and reflect the weak coupling of phase and reactive power.
A voltage coherency measure is used to determine the weak volt-
age transmission boundaries for loss of load at all buses. The weak
voltage transmission boundaries reflect the boundaries between groups
of PQ and PV buses where voltage security and stability problems
should occur. This is confirmed by the results in Chapter 5 based on
a set of multiple loss of generation and 1line outage contingencies.
The weak voltage trammission boundaries between groups of PV and PQ
buses are determined by converting all PV buses to PQ buses so that
the PV buses can experience voltage swings that will reflect the
stiffness of the transmission grid and not the action of the voltage

controls. The weak voltage transmission boundary for active power



46

and reactive power disturbances encircle PQ and PV buses that are
all interconnected and 1ie in a small geographical area. The weak
boundaries for reactive power disturbances and real power distur-
bances are quite similar showing that weak voltage boundaries are
sensitive to both active and reactive power flows. The principal
difference between the weak voltage transmission boundaries for
active and reactive power disturbances is that there appears to be
additional separation of groups of buses near the swing bus for real
power disturbances, and the groups of buses for reactive power dis-
turbances appear to be based more on local transmission network
characteristics.

A current coherency measure is used to determine the weak
current transmission boundaries for loss of load disturbances at all
buses. The weak current transmission boundaries represent'the bounda-
ries between groups of PV and PQ buses where thermal security problems
should occur. A1l PV buses are converted to PQ buses so that the PV
buses can experience both phase and voltage swings that are determined
by the network and not the voltage controls. The weak current bounda-
ries determined for active and complex power disturbances are iden-
tical. Moreover, the weak current boundaries are very similar to the
weak phase transmission boundaries, reflecting that the phase stability
and thermal overload problems are related and are likely to occur on
the same transmission boundaries. This was tacitly assumed in the

recent EPRI study
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A1l computer simulations in this chapter as well as in Chap-
ter 5 use the 30 bus New England system. This system has 10 generator
buses, 20 load buses, and 37 branches as shown by Figure 3.1. The
solved loadflow data or the base case data is Tisted in Appendix 1,
using common format for loadflow data exchange.

The phase, voltage, and current coherency measures defined in
Chapter 2 were derived based on a linearized loadflow model and a
probablistic disturbance model. Although the coherency measures
defined in this manner were shown to detect the SSC groups, it is
not convenient for computing the rms measure.

It can be shown that the phase and current coherency measures

can be evaluated using measures

1
S, = { Z (a8, (1) - 85,()° ] (3.1)
iel | 2 %
SV'{Z<AV'\7£1) -AV$Z1)> ] a2
iel | . i
S =[ZI{(A<SK(1') - boy(1))2 + (AV\';S) i AV@j”) }, (3.3)
ie

where Ask(i) is the phase deviation and AVk(i) is the voltage devia-
tion at bus k for contingency i. The set of contingencies{I}must be
selected so that it models the statistical description of the

disturbance.
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It can be shown in a manner similar to that in [2] that if the
set of contingencies icl are a set of load disturbances at each of
the N buses fn the network, the statistics of the disturbance will
be an identity matrix and the coherency measure is strictly based on
the relative stiffness of the network model connecting buses k and
1. The phase, voltage, and current coherency measures are evaluated
for a set of N 100 MW loss of active power disturbances at each of
the N buses. The phase, voltage, and current coherency measures are
also evaluated for a set of N 100 MVAR loss of reactive power dis-
turbances at all N network buses as well as a set of N 100 MW and
100 MVAR loss of complex load disturbances at all N buses. The weak
transmission boundaries are determined for each coherency measure for
all three sets of active, reactive, and complex power disturbances.

An improved current rms coherency measure is now proposed.

Let

Avk(i)sj”km
AIk(i) =

12,137k

where lell and Yy are the magnitude and phase of/the impedance of
the branch connecting buses k and 1. The natural logarithm is a
monotonically increasing function of the argument, and thus will
preserve the relative magnitude of AIk(i) and AIl(i). Therefore

define AIkl(i)
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AIkl(i) = 1n AIk(i) - 1n AIl(i)

Avk(i)

= 1n +3(80, (1) - Ykl)
AVl(i)

- 1In +j(A61(i) - Ylk)
12,
(av, (1)

In W + (a8 (1) - 88,(i))

The improved rms current coherency measure is defined as

{ :E:)AJ:1|]

iel
oV, (i), 2 _ | '
- Z‘{ln W} + (8,(1) - 8,(1)) (3.4)
iel
The rms current coherency measure can be shown to detect stiffly
interconnected groups of buses and is zero if the Avk(i) = Avl(i) and
Aek(i) = Ael(i) which indicates buses k and 1 are coherent.
The identification of weak transmission boundaries is based on
a grouping method that utilizes the coherency measures evaluated for
all bus pairs k and 1. The grouping method is based on the commuta-
tive rule [ 2]. This rule for forming a group requires that a group
be formed if and only if all the generators are coherent with

respect to each other; that is, if the Group Gl is a group containing
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buses A and B, then bus C is added .to this group if and only if gen-
erator C is coherent with A, and C is coherent with B. This method
has been used [2,3] for clustering generators in coherent groups for
producing dynamic equivalents of the system for transient stability
studies.
The values of the coherency measures are ranked from the
smallest to the largest forming a ranking table; then the groups
are formed based on the following algorithm:
(1) Formthe first group (a pair) from the smallest coherency
measure at rank 1, r = 1.
(2) Decide which of the following possibilities apply to
buses k, 1 at the rank r = r + 1.
(3) If r=Nx iﬁ—%—ll , stop. N = number of buses.
(a) If neither k nor 1 has been previously identified as
belonging to a group, then this pair becomes a new group.
(b) If bus k(1) belongs to a group but bus 1(k) does not,
then
(i) If 1(k) has been previously recognized as
coherent with all members of the group to which k(1)
belongs except for k(1), then add 1(k) to the group con-
taining k(1).
(ii) If 1(k) has not been found previously to be
coherent with all other members of the group to which k(1)

belongs, then recognize that k and 1 are coherent but do
not add 1(k) to the coherent group containing k(1). Return
to (2).
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(c) If buses k and 1 belong to different groups, then

(i) If all possible bus pairs which can be selected
from the members of the two groups except k and 1 have
been previously recognized as being coherent, then merge
the two groups to form a single group containing all
members of the separate group.

(ii) If at least one pair of buses which can be
selected from the two groups other than k and 1 has not
yet been recognized as a coherent pair, then recognize the
pair k and 1 as coherent but do not merge the groups.
Return to (2).

The algorithm continues the procedure to the bottom of the
ranking table, and when every bus pair is checked, it terminates. As
one proceeds down the ranking table, individual buses are included in
groups and later groups are merged to form larger groups. As groups
are merged, the boundaries between groups should be continuously
weaker since a coherency measure between bus pairs indicates stiff
connection of the buses, and the coherency measures are ranked from
the smallest to the largest in this ranking table. Thus, the bounda-
ries may be ranked from the weakest to strongest based on the reverse
order of the group formation; that is, the last two groups to be
lumped into a single group have the weakest boundary between them,
and the second weakest belongs to the second-to-the-last group aggre-

gated, etc.
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The commutative grouping rules assure that all the buses in a
group formed have stiff connection by requiring a bus to join the
group if and only if it is coherent with all the buses in the group,
and groups are merged if and only if all the buses in group one are
coherent with every bus in group two. This ensures at least n - 1
stiff connections exist between buses in an n bus group.

Now to sum up the procedure for identifying vulnerable bounda-
ries, the following steps are given:

(1) Compute the coherency measure C(k,1) for all bus pairs.

(2) Rank the coherency measures from smallest to largest and
form a ranking table.

(3) Form groups by the commutative grouping rules and set a
group formation table.

(4) Rank the boundaries from the weakest to the strongest
based on the reverse order in the group formation table.

A Fortran computer program has been developed to implement this
procedure. It requires files of the base cases loadflow angles and
loadflow simulations of all loss of load contingencies to compute the
coherency measure. The output gives the groups of buses in reverse
order to formation indicating the increasingly stronger boundaries as

existing groups are broken up to form larger numbers of groups.

3.2. Weak Phase Transmission Boundaries

The weak phase transmission boundaries are identified based on
the rms coherency measure (3.1) evaluated for loss of load distur-

bances at every bus. As indicated above, the rms coherency measure
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has been utilized to (1) determine groups to be aggregated to produce
dynamic equivalents; (2) to identify the weak transmission boundaries
that cause decoupling leading to phase oscillation problems based on
classical transient stability model; and (3) to identify weak bounda-
ries that experience thermal overload and steady state stability
problems for line outage and loss of generation contingencies. The
rms phase coherency measure has previously been simulated for strictly
loss of generation contingencies using an inertial loadflow simula-
tion. The results in this section are based on loss of load contin-
gencies and a conventional loadflow simulation which reduces the
generation of the swing bus to compensate for the loss of load. The
inertial loadflow would reduce the power at every generator bus in
proportion to the ratio of its inertia to the total inertia of all
generators in the system.

Case 1: Real power loss of Toad disturbances

The phase coherency measure is computed for the set of 100 MW
loss of load disturbances and the grouping method is utilized to
identify the stiffly connected groups and associated weak transmission
boundaries. Figures 3.2, 3.3, and 3.4 show the weak boundaries for a
3, 4, and 6 group partition of the network. The three-group parti-
tion shows the three weakest transmission boundaries. The largest
group contains the swing bus (bus 30), most of the load buses in the
network, as well as generator buses 2 and 6. A1l of the remaining
buses are grouped based on their electrical distance to the swing

bus. The large group III containing the swing bus is split in the
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Figure 3.2. The weak boundaries for a 3-group partition based on
real power disturbance and phase rms coherency measure.
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four-group partition separating generator buses 2 and 6 from a group
of buses containing the swing bus. The buses joining generators 2
and 6 in this group are again the buses in group III furthest elec-
trically from the swing bus. Both groups II and IV in four-group
partition are further split in thg six-group partition again based
on electrical distance to the swing bus.

The groupings of buses based on electrical distance to the
swing bus appear to be based on the method of simulating the loss of
100 MW load contingencies. The loss of 100 MW in active power is
matched by a decrease in 100 MW of generation at the swing bus causing
an active power flow to the swing bus from the particular disturbed
bus. This method of simulating loss of load contingencies identifies
the sequence of continually weaker transmission boundaries between
the swing bus and the rest of the system.

An alternate method of simulating the loss of load contingencies
is an inertial loadflow where the 100 MW of generation requifed to
match the 100 MW of load is distributed to all generators based on
their inertia. This procedure used in [1] would identify the weak
transmission boundaries for the inadvertant flows caused by the
decrease in frequency after loss of load contingencies. The weak
boundaries based on the use of a swing bus to match loss of genera-
tion would be based on an operating procedure which utilizes a single
generator in the utility to perform regulation or alternatively is an

equivalent external system representation.
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A set of weak phase boundaries could also be identified by
simulating loss of load contingencies using distribution factors to
allocate the 100 MW decrease in generation among the generators in a
utility.

The comparison of results of determining the stiffly intercon-
nected groups for this same system based on an inertial loadflow
simulation of loss of generation contingencies and based on this set
of loss of load simulated contingencies indicates the weak transmis-
sion boundaries are similar. Thus it appears that the weak transmis-
sion boundaries depend more on the network rather than the type of
contingency (loss of load or loss of generation) and the type of simu-
lation (inertial distribution or swing bus).

The weakest boundaries are those observed in the three-group
partition and the boundaries formed by splitting these three groups
into four and six groups are successively stronger. It was observed
based on a study of 49 bus system in [1] that the branches in the
weaker phase transmission boundaries experience thermal overloads
more often and more severely than the branches in stronger phase
boundaries. Moreover, it was observed that all thermal overloads for
a set of multiple line outage and all loss of generation contingencies
occurred on branches in these weak boundaries.

The branches in the weak phase transmission boundaries should be
vulnerable to steady state stability problems rather than the thermal
overload problems. The weak current transmission boundaries based on

the current coherency measure (3.4) should determine the branches that
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experience thermal overloads. However, the results obtained for the
weak current transmission boundaries in section 3.4 indicate they
are nearly identical to the phase transmission boundaries, thus
explaining why thermal overloads would occur on the weak phase trans-
mission boundaries.

Case 2: Reactive loss of load disturbances

The weak phase transmission boundaries were determined based
on a set of 100 MVAR loss of load disturbances at every network bus.
The results from this case do not have any value for applications.
Moreover, the grouping and weak boundary identification are not
creditable. The groubs are formed based on the weak coupling of
reactive power disturbances to the phase deviation. Since the results
have no value for applications and show no viable weakness of the
transmission grid, the numerical results will not be shown here.

Case 3: Complex loss of load disturbances

The weak phase transmission boundaries were determined based on
a set of 100 MW and 100 MVAR Toss of load disturbances at every net-
work bus. The results of three-, four-, and five-group partition are
shown in Figures 3,5, 3.6, and 3.7, respectively. The coherent
groups in each case are very similar to the groups obtained from
case 1 with only real power disturbances. The reason for this simi-
larity is dﬁe to the fact that phase response is not sensitive to the
reactive disturbances. These results also show slight differences on

the groups obtained for the real and complex disturbances.
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3.3. Weak Voltage Transmission Boundaries

Weak voltage transmission boundaries are known to be much more
local than the phase transmission boundaries identified in the pre-
vious section. Previous efforts have focused on identification of
local voltage control areas for the purpose of providing proper volt-
age control. Recent papers have documented efforts to identify the
voltage control areas based on the magnitude of elements in sensi-
tivity matrices [15]. No effort has been made to determine and rank
the weak transmission boundaries for the purpose of voltage security
assessment. The identification and ranking voltage of weak trans-
mission boundaries would indicate the branches and boundaries where
voltage security problems exist and where line outage, loss of genera-
tion, or loss of switchable capacitors, or reactors could lead to
voltage collapse, low voltage profiles, or voltage oscillations.

Case 1: Real power loss of load disturbance

The weak transmission boundaries based on the voltage coherency
measure evaluated for the set of 100 MW real power loss of load con-
tingencies are shown in Figure 3.8, 3.9, and 3.10 for the 3, 4, and
6 group partition of the system. The local nature of the stiffly
interconnected groups or voltage control areas is clear in each case.
The transmission boundary and the associated branches are the loca-
tion where large voltage deviations occur for loss of load or genera-
tion contingencies as shown in Chapter 5. Moreover, line outages of
branches in these boundaries will be shown to severely aggravate the

voltage security or stability problems.
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The three-group partition shown in Figure 3.8 has both reactive
sources (generators) and loads in each localarea. The weak boundary,
which divides the system, is clearly defined by the lines connecting
the following pairs of buses: (1,2), (3,4), (8,9), and (14,15).

This is the weakest boundary of the system. The reactive power
supply in each of these groups must be sufficient to meet the local
loads. The four-group partition of the system, shown in Figure 3.9,
also has local control areas composed of both sources and loads.

The weak boundary in this case is defined by the following lines:
(1,2), (3,4), (8,9), (14,15), (2,25), and (17,27). The difference
between the three-group and four-group boundaries is that the latter
contains additional but less vulnerable elements (2,25) and (17,27).
For a very large system this procedure for identifying and ranking
the boundaries and branches in terms of voltage security provides
the system planner or the operator a very useful on-line tool to
predict the worst contingencies that would affect the weakest trans-
mission boundaries. Corrective actions could then be determined to
relieve this vulnerability. The weak boundaries could also be dis-
played graphically on the control panel to the system operator. The
operator would thus have a better picture to select the correct
zones to perform the contingency analysis.

Another interesting case is shown in Figure 3.10, where the
system is divided into six groups. From the base case data it is
found that bus 4 is carrying 500.0 MW and 184.0 MVAR load, and bus 14

is an intermediate bus which has no load and no generation. These
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two buses are at the center of the system and electrically close to
the swing bus making them a sort of buffer zone between different
control areas. The results for loss-of-reactive-load contingencies
are similar to those for the loss-of-real-load contingencies. But
the difference of these results is that they can identify the local
voltage control areas more precisely and always maintain sources and
load buses in each control area. This six-group partition based on
real power disturbance did not have a source in the bus 4 and bus 14
group. The interesting result of the identification of weak trans-
mission boundaries for real power loss of contingencies is that the
weak voltage boundaries identified for reactive power disturbances
in Case 2 are also vulnerable based on real power disturbances.

Case 2: Reactive loss of load disturbances

The weak voltage transmission boundaries are identified based
on the voltage rms coherency measure evaluated for the set of loss of
100 MVAR reactive load disturbances at each bus. Since reactive
power is much more strongly related to voltage than is real power,
the weak voltage transmission boundaries should be identified based
on the set of reactive power loss of local disturbances rather than
the loss of real power load disturbances. The five and six group
partition of the network using the reactive power disturbances, shown
in Figures 3.11 and 3.12 respectively, are similar to the four-group
partition in Figure 3.9 for real power disturbance. Group IV in
Figure 3.9 is split into three groups in both the five and six group

partition shown in Figures 3.11 and 3.12 for reactive power
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Figure 3.11. The weak boundaries for a 5-group partition based on
reactive power disturbance and voltage rms coherency
measure.
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disturbance. Group II in Figure 3.10 is ungrouped in Figures 3.11
and 3.12, which suggests it is a group separate from the other groups
in these 5 and 6 group partitions. Finally, group III in the five-
group partition in Figure 3.11 is broken into two groups each with a
source in the six-group partition in Figure 3.12. Note that all
groups in Figures 3.11 and 3.12 have a source bus and surrounding
load buses except for group II. Group II is a buffer zone between
groups I and II, and group IV and the ungrouped buses. Figure 3.13
shows the partition of the network based on the voltage coherency
measure evaluated for reactive disturbance when the generator bus is
regulated. Note that all the generators and closely related load
buses form a single group because their voltage controls hold their
terminal voltages constant. These groups really reflect the action
of voltage controls rather than the voltage control areas and weak
voltage transmission boundaries in the network. This is confirmed
by the results in Chapter 5 that indicate the weak voltage transmis-
sion boundaries of Figure 3.11 are indeed the location where voltage

problems occur for loss of generation and line outage contingencies.

3.4. Weak Current Transmission Boundaries

Weak current transmission boundaries should indicate the bounda-
ries and branches where thermal overload problems should occur.

'The three-group partition of the transmission grid based on the
current coherency measure evaluated for real power and for complex
power disturbances are identical and shown in Figure 3.14. This

three-group partition based on the current coherency measure is
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Figure 3.12. The weak boundaries for a 6-group partition based on
reactive power disturbance and voltage rms coherency
measure .
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similar to the six-group partition (but not the three-group partition)
based on the phase coherency measure shown in Figure 3.4 that group

ITI in Figure 3.14 is broken into four groups. This suggests that

the thermal overload security problems may be more severe on bounda-
ries closer to the swing bus and that phase stability problems may

be more severe on the weak boundaries of the subgroups that compose
group III in Figure 3.14. However, the results suggest that thermal
overload problems will 1ikely occur on the weak phase boundaries.

This severity of the violations and the number of contingencies causing
thermal problems on a boundary are not likely to be proportional to

the ranking of the weak phase boundaries.



CHAPTER 4

CONDITIONS FOR VOLTAGE CONTROLLABILITY,
OBSERVABILITY, AND STABILITY

4.1. Introduction

The objective of this chapter is to lay the groundwork for the
study of the structural causes of voltage stability problems. This
is accomplished by first developing sensitivity analysis based on
the linearized loadflow equations in section 4.2. A set of sensitivity
matrices is defined which relates the voltage magnitudes at load
buses and reactive power injections at the generator buses to the
voltage at generator buses and the reactive and real power at load
buses. Two algebraic equations are developed by this sensitivity
analysis in section 4.2. The first equation relates the voltage at
PQ buses to the voltage at PV (reactive source) buses and the reac-
tive load at PQ buses. Since the voltage at PV buses acts as a
control and the load at PQ buses acts at a disturbance to the voltage
at PQ buses, the equation is called the controllability equation.

The other equation will reflect the reactive demands of the system
at the source buses. Since under normal operations the reactive
demands from PQ can be observed at or reflected to the source buses

by this equation, it is called the observability equation.
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The voltage stability of an interconnected power system can be
affected by the lack of resources and the weakened boundary between
two regions. An example mathematical model of five buses system
will be introduced and the corresponding sensitivity matrices will
be determined in section 4.3 under light-load conditions.

In section 4.4 a set of theorems for voltage stability will be
derived based on the controllability and observability equations.
Finally, in section 4.5 we will integrate the.two parallel approaches
about voltage stability problems, which will post the very useful
Tocal and global operational constraints for the interconnected

power systems.

4.2. The Model Development

It is intended to establish the relationship among the various
controlled and observed variables of the system in this section.
This leads to a set of sensitivity matrices which can be derived

from the following loadflow equations:

fp (6,8,E,V) =0
G

fp (8,6,E,V) =0
L

fQG(G,e,E,V) =0

f. (8,6,E,V) =0

Q

where
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fp is the vector of the real power flow equations at all
G generator (PV) buses

is the vector of reactive power flow equations at all
generator (PV) buses

fp is the vector of the real power flow equations at load
L (PQ) buses where voltage V is not controlled

is the vector of reactive power flow equations at all
load (PQ) buses where voltage V is not controlled

E is the vector of voltage magnitude at the generator (PV)

buses

v is the vector of voltage magnitude at the load (PQ) buses

s is the vector of phase angle at the generator (PV) buses

) is the vector of phase angle at the load (PQ) buses

Then the Jacobian matrix which relates the change of input vector

X = [88,80,8E,aV]T ; A,

to the change of output function

is

af(s8,8,E,V) =
-
AL B
J=|A, 8,
A3 By
Ay By

o
af, (5,6,E,V
Pg

afy (8,8,E,V

PL

0g!
AfQ (5,0,E,V

af, (8,8,E,V

L

e

4

)
)
)
)

-

E; - Eip

-

AV. é.Xi_:_!iQ
Ei i Vi
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so that the following expression can be written

aP, Ay B C, D |as
AP A, B, C, D,| |ae
Ll - "2 B2 Y2 P2 (4.3)
8Qg Ay By Cy Dy |aE
AQLJ Ay By Cp Dy |av

If the phase angle changes at generator buses are assumed to be
neglectable in the calculation of voltage magnitudes, then AS can be

set to zero to solve for A8 in (4.3) using

APL = Ber + C2AE + D2AV (4.4)
to obtain
A8 = BEI(APL - CH0E - D,aV) (4.5)

Substituting for aAe in (4.3) when a8 = 0, the following expressions

for AQG and AQL are obtained

AQé = B3A6 + C3AE + D3AV
- -1 -1 -1
= (D3 - B3B7Dy)aV + (Cy - B3B3 C,)AE + ByBy AP (4.6)
AQL = B4A6 + C4AE + D4AV
= (D, - B,B3MD,)aV + (C, - B,B2LC,)aE + B,B laP (4.7)
4 4-2 ~2 4 4-2 ~2 472 'L :



80

Solving for AV in (4.7) the following expression is obtained
oV =-[D, - B,B;'D ]-1[0 - B,8;1c,]aE
4 472 -2 4 42 *2

-1
-1 -1
+ [04 - 8482 02] [AQL = 8482 APL]
Now define the following sensitivity matrices:

1

] 1.1 -1
SVE - - [D4 - 8482 Dz] [C4 = 8482 CZJ (4'8)

= -1
sQLV = [0 - B485D,] (4.9)
Then the above expression for AV becomes
= -1 -1

where SVE relates the voltage vector V at the PQ (reactive load)
buses to the voltage vector E at PV (reactive generation) generator
buses and SQLV relates the vector of reactive power disturbances at
the Toad buses QL to the change in voltage V.

Note that the voltages at load buses are controlled by the
voltages at generator buses. In order to have the proper control-
lability in the system, the matrix SVE must have all positive ele-
ments. This implies that changes in any elements of E will cause

changes in like sign in all elements of V. Similarly, the sensitivity
1

matrix SQL

v must have non-negative elements and be nonsingular so
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that changes in any element of reactive injections QL will cause
changes of like sign in all elements of V.
Now substituting AV in the expression in (4.6), the following

expression is obtained

-1
= -1 -1 -1
8Qg = [(C5 - B4B5°Cy) - (D3 - B4B57D,) (D, - B4B5 D)

-1
(C4 - 8482 CZ)]AE

-1 1

-1, -1 -1
+ (D3 - B3Bz Dz)(D4 = 8482 02) (AQL - 8482 APL)

+ B8 lap

382 4P

Now define another set of sensitivity matrices

-1

- -1 -1 -1

Soee = (€3 - B3B C5) - (D3 - B38570,)(Dy - B4B5 Dy)
-1

(C4 - B B2 C ) (4.11)

- . -1
SQGQL (D3 38 2)( D ) (4.12)

Then the expression for AQG becomes
-1 -1
8Q. = [Sy ~JAE - [S 1(aQ, - B,B,"AP,) + B,B, AP (4.13)
G QGE QGQL L 472 'L 372 7L
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If the system is assumed to be operating normally, then a positive
reactive power injection AQL at any load buses will induce a negative
power injection AQG at all generator buses. As a result, the matrix
SQGQL must have all positive elements under normal conditions. The
reactive injections at generators should increase with increase in

the magnitudes of the generator voltages E, so that the matrix SQ E
G

normally must have nonsingular with non-negative elements.

Based on the controllability and observability equations a
set of theorems regarding necessary conditions for voltage stability
will be derived. Changes in voltage AE at PV (source) buses and
changes in reactive injection QL at PQ (load) buses are considered
the control and disturbance input.

The state of the network is considered to be the voltage V at
PQ (load) buses. The network governed by (4.10) is said to be stable
if a vector of solely positive (negative) incremental changes AE
on one or more elements of E will cause only positive (negative)
increments on elements of V, and if a vector of solely positive
(negative) increments AQL on one or more elements of QL will cause
only positive (negative) increments in V. If there exists a vector
of solely positive (negativej incremental changes on elements of E
which produces no change on any of the elements of V, the network
is said to be structurally uncontrollable. Likewise, if some vector
of solely positivé (negative) incremental change on elements of Q

produces no change on any of the elements of V, the network is said

to be uncontrollable. The network is said to be structurally
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unstable if there exists a vector of solely positive incremental
changes AE that will produce a vector AV that has one or more nega-
tive incremental changes.

Similarly, a network is said to be unstable if there exists
some vector of positive (negative) incremental changes AQL that will
produce a vector AV with one or more negative elements. Thus from
equation (4.10), the network is stable and controllable if (a) SvE
has no negative elements and no zero rows, and (b) the square
matrix SQLV is positive definite with no negative elements. The
network is uncontrollable if either SVE has no negative elements

but has one or more rows, or if SQ v is positive semi-definite. A

system is unstable if SVE has one tr more negative elements, or if
SQLV is indefinite (or negative definite) or has negative elements.
A power system network that is structurally uncontrollable will have
multiple solutions, and a structurally unstable network will have no
solution and experience voltage collapse or voltage rise.

The reactive injection AQG at PV buses governed by (4.13) is
considered an output of the network because it is the reactive power

reflected to or requested of PV buses. If one or more PV buses

cannot serve the requested reactive injection due to constraints

Qe i <Qe <Q
Gi,m1n Gi Gi,max

then the reactive injection at that bus is set to QG
i
and the bus converts from a PV bus to PQ bus. In this case the

,min or QGi,max

system loses some degree of Qo]tage controllability due to the lack
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of reactive source at that bus. If all PV buses in a local area are
converted to PQ buses, then a voltage collapse will occur as dis-
cussed in Chapter 2.

QG is considered an output and (4.13) is an output equation
for the network. Either one of the following two conditions will
cause the output stability of the network:

1) If some vector of solely positive (negative) incremental
changes AQG in QG do not cause a vector of solely positive (negative)
changes AEG in EG, or

2) If some vector of solely negative (positive) incremental
changes AQL in QL do not cause a vector of solely positive (negative)
change in QG(AQG),
then the network loses observability. It is said to be structurally
output unstable.

If the square sensitivity matrix [SQGE]'1 is positive definite
with no negative elements, and sensitivity matrix SQGQL has no
negative elements or zero columns, then the network is said to be

observable and output stable. If the matrix S is semi-definite

QiE
or SQ Q has no negative elements but one or more zero columns, then
GL
the network is said to be unobservable. A network is output unstable
if either S is indefinite or has negative elements, or if S
Qqk QL

has one or more negative elements.

Now let us summarize the above concepts in more rigorous

mathematical format. The following definitions and facts are needed

for our theorems [13].
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Definition: A real matrix A is called positive if all of its
elements have positive value, A > 0. A is non-negative if all of
its elements are non-negative, A > 0.

Definition: A real n x n matrix A = (a,.) with Qij-i 0 for

1]
all i # j is an M-matrix, if A is nonsingular, and a1l > 0.

Fact 1: IfA ='(aij) is a real symmetric and nonsingular
n X n irreducible matrix, where a; 5 < 0 for all i # j, then Al >0
if and only if A is positive definite.

Fact 2: The Jacobian matrix of the linearized loadflow equa-
tion for any non-islanded power system network is irreducible.

From the discussion of the controllability and observability
equations the following theorems are established.

Theorem 1: A necessary condition for the network to be con-

trollable and stable is that SQ v be an M-matrix.
L

Theorem 2: A necessary condition for the network to be observ-

able and output stable is that SQ E be an M-matrix.
G

Theorem 3: A necessary condition for the network to be con-
trollable and stable is that SVE be a positive matrix.

Theorem 4: A necessary condition for the network to be observ-
able is that SQ be a positive matrix.

el
The necessary conditions that will cause S and S to be
QLV QGE
M matrices and S, and S to be positive will be investigated for
VE QGQL

light load conditions in Section 4.4. The conditions that assure

the above properties in these sensitivity matrices will indicate the
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causes for loss of observabi]ity and controllability induced sta-
bility problems.

Facts 1 and 2 indicate that a necessary and sufficient condi-
tion for the matrices SQLV and SQGE to be M matrices is that these
matrices be positive definite if the network is not islanded or has
nonsymmetric transmission elements. Therefore one can investigate
the satisfaction or the degree of satisfaction of the M matrix con-
dition by computing the eigenvalues of these matrices and noting the
magnitude of the small positive eigenvalues if a loss of controlla-
bility or observability is possible and the negative eigenvalues if
a loss of controllability or observability induced voltage stability
has occurred.

It is emphasized here that the sensitivity matrix SVE is the
matrix which reflects the voltage controllability of the system and
SQGQL represents the reactive power observability of the system.
They will be discussed in detail later.

In the analysis that follows, different forms of loadflow
equations and Jacobians are required for the analysis. The polar
form is given first and then the hybrid form. Relationships between
the elements in the bus admittance matrix are also given which will

be useful in this analysis.



i3 = Yi;l
Sij = Vivj
eij = 61- -

3

BPi/BGi

aPi/aej

301/36i

aQi/aej
viapi/avi

VjaPi/avj
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Cos y;; + J sin yi.)

J J

Yij

2

- (Q - V3Byy)
2

P1 - ViGi1
'Sij cos (61.j - yij)
_ 2
= Py + VG
= Sij cos (eij - Yij)

-G. .

1]

+ jB..

1J

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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_ 2

viaQi/avi = Qi - ViBii (4-21)

VjaQi/an = Sij sin (81j Yij) (4.22)
where

?ij is the (i,j)th element of bus admittance matrix

?10 is the shunt capacitance at bus i

?Lij is the admittance of line that connects bus i and bus j

YLij = Gij - jBij W1th Gij 2_0 and Bij z_o

The elements of the bus admittance matrix satisfy

i3 = YLy T 7Gy3 * 9By 173
n n
ii =‘§E: Lij * Yio = - :E:: iJ *Yio
J=1,j#i J=1,3#
where

RE{Yij} = Yij CcosS (Yij) = 'Gij
Im{Yij} = Yij sin (Yij) = Bij
Re{Y.q} = G;5 > 0

Im{Y,y} = B.g > 0 for capacitor



Re{Yii} =

Im{Yii}

Note that based

=1t

89

on the above properties of the admittance matrix

that the following property holds

n
Z Yij = Z
=1

n

j=1,J#1

(4.24)

(4.25)
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n
Im‘Z?ij‘ = B (4.26)
j=1

The loadflow equations can now be written in hybrid form as

n
Pi = Vivj['Gij cos (ei - ej) + Bij sin (ei - ej)] (4.27)
j=1
n
Qi = Vivj['Gij sin (ei - ej) + Bij cos (ei - ej)] (4.28)
j=1
so that
3P./30. = -Q. - V°B.. (4.15)
i i i1
3Q./30, = P, - V2G,. (4.17)
i i i iTii
_ 2
VjaPi/an = Vivj['Gij cos eij + Bij sin eij] (4.31)
V.3Q./3V, = Q. - V3. . (4.21)
%% i i iTiid



91

] (4.32)

J 1]

Both the polar form and the hybrid form will be used frequently in

the analysis of Sections 4.3-4.5.

4.3. The Controllability and Observability Equations and the
Sensitivity Matrices Under Light Load Conditions

In this section, the sensitivity model of (4.3) will be devel-
oped for the case of the light load conditions. Light load condi-
tions are assumed to satisfy the following conditions:

1) The network has no real or reactive power dissipation.

2) The R/X ratios are constant over all the transmission
lines of the system (Gij/Bij = q, 1 #J3).

3) V. =V.,=1p.u.

These assumptions are made to perform the analysis of the con-
ditions that will assure SVE and SQGQL to be positive, and the SQLV
and SQ E to be M matrices for light load conditions in Sections 4.4

G

and 4.5. Under the above assumptions the loadflow equations become

n n
p. =ZV1VJ‘Y1J cos (855 - vi5) = ) Vqg cos (v )
§1 1

n
=1

n
Qi = :E:: ViVjYij sin (eij - Yij)
j=1
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Recall that

1]
(2}
-
-
1]
M-
[}
—
(&)
+
(2]
-
o

RE{Yii}

n
(o]
1}
—~
]
@

Im{Yii}
Jj=1,3#i

Then (4.15)-(4.22) can be rewritten as follows:

) 2
8P;/38; = -Q; - ViByy
n
=ZY1.J. sin (YU) - B11
J=1
= Bijp - Byjy
n
= Big - lZ (-8i3) * Big
Jj=1,j#i
n
=Z Bij
Jj=1,j#i
aP;/265 = Sy sin (e1J Yij)
= B

LN

(4.15)

(4.16)
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aQi/aei =P, - VG, (4.17)

[}
[<p]
-
o
]
e e,
-
—
]
[p]
-
(&)
+
[p]
-
o
~~
[

. 2) (4.18)

n
'
w
(9]
o
wn
~—~
D
]
<

BQi/BSj

_ 2

n
=‘§E: Yij cos (Yij) + G5
j=1



n
wm

i3 i 7 Yij
= Yij cos (Yij)
= -G‘ij
V.3Q./3V. = Q. - VB..
1 1 1 1 1 11
n
== 2 Vi sin (vy5) - Byy
J=1
= -Big - Byj
n
= -850 - lz (-Bj3) + Bio'
j=1,j#i
n
= By - 2Byp
Jj=1,Jj#i
= -B‘ij

i#d

173

(4.20)

(4.21)

(4.22)

Now a general five-bus model is presented in order to make the

analysis of Sections 4.4 and 4.5 more manageable.

The results

obtained in the analysis can be generalized to any network.
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Let the five bus system be indexed from 1 to 5, where buses 1
and 2 are generator (PV) buses and buses 3 and 4 are load (PQ) buses.
Then the corresponding Jacobian matrix (4.2) in polar form is shown
in Figure 4.1.

Note that in the sensitivity matrices, all diagonal terms are
solely defined by the real/reactive power injections at each bus minus
the multiplication of the voltage magnitude square and the real/
imaginary part of the diagonal term of the admittance matrix. This
interesting feature brings the concerns of the voltage problem to the
operational constraints at each individual bus, which will be analyzed
in the next section.

The submatrices of the Jacobian are now determined for this

five bus system for light load conditions as

2 . ]
-Qp - ViByg S12 sin (815 - ¥p5)
A =
. 2
Spp sin (&) - vpy)  -Qp - V3By,
T
Bi; B12
_| J#1
| B2 Zszau
j#2
[ . ]
Sqp sin (83; - v31)  S3p sin (83 - v35)
A, =
Sg1 510 (841 = vg1)  Sgp sin (845 - vgp) J
i .
-B3;  -B3p
By By
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Sy3 sin (813 - 113)  S1g S1" (814 - via)]
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Syq S1n (834 - v34)

Qg - VaBag
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Pg - VaGgq

Y34)
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Pp V161

521 cos (621
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| -Gy

S

LS41 cos (841
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Sp3 sin (813 - vy3)  Syq sin (84 - vqq)
D, =
Sg3 51N (93 - vp3)  Spq sin (854 - ¥g4)
L ]
-B13 By
) ~
-Byz  -Byg ‘
- i
2 .
Q3 - V3B33 S34 sin (834 - ¥34)
D, =
. 2
Sg3 sin (843 - v43) Qg - VyByy

2333‘ - 83y By

_|J#3
-By3 :E:}4 284o
L j#a

From equations (4.8), (4.9), (4.11), and (4.12) the sensitivity

matrices can be expressed as

= -1
S SQLV MVE (4.33)

g1
SQGQL QGQL QL (4.34)

1
QG QGQL QLV SVE (4.35)
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are given below:
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DBy B By
Jj#l
81 ZBZJ - 2By
Jj#2
L -

- 17 ]
G3 G4 2333‘ By || !
j#3
Goz  Gpg -B43 ZBM'

j#a
=63  -63
-Ggp -Gy
DBy B
j#l
-B21 ZBZJ - 2839
j#2
Gz Gg ZB3J By ||t
j#3
Gy3 G4 843 2343‘
G3; 63
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At this point all important equations that are needed for sen-
sitivity analysis in sections 4.4 and 4.5 have been derived. Thus
the sufficient conditions for voltage stability are derived in the

next two sections.

4.4, The Theorems for Local and Global Voltage Stability

The system that will be studied here is assumed to be operated
under light load conditions, as it is defined in the previous section.
The local control at load buses will be discussed first. Setting
APL =0 in (4.8), the following expression relating the voltage V at
PQ bus to the control voltagé E at PV buses and the reactive load

disturbance AQL at PQ buses is obtained
V= [SVE]AE + [SQLVJAQL

It is shown in section 4.2 that for proper control of AV the
sensitivity matrices SVE must have all positive elements and SQLV
must be positive definite. One way to show the positive definiteness
is using the properties of M-matrix, which will be shown later.

The positiveness of both SVE and SQGE and the positive definite-
ness of SQGE and SQLV are the basis for proper voltage control. If
these properties are violated the loss of voltage control would
immediately result. Thus, the large capacitances of long trans-
mission lines or underground transmission lines will have been shown
to cause voltage control problems for 1ight load conditions. These

Problems are known to exist and are often solved by removing these
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long trammission lines or underground transmission under light load

conditions.

1
Ve
must be positive for the PV buses to properly support voltage at PQ

A1l elements of the sensitivity matrix SVE = Sa in (4.10)
buses. If SVE loses its positiveness, indicating a loss of control-
lability, then there are some PV buses that have no effect or have
reversed effect on some PQ buses. It will cause a loss of voltage
stability. This loss of controllability and stability would be seen
if raising E at PV buses has no effect at all on raising V at par-
ticular PQ buses and if increasing E at some PV buses actually would
cause decreases in V at some PQ buses, respectively.

Theorem 5: Under light load condition, a sufficient condition

for SVE to be positive is that SQ v be an M-matrix and the R/X ratios

L
of all lines are equal.
Proof: -

Recall that

i -1
Me = - [Cq - B4B5 Cpl

Ba1 B3
Bar  Ba2 ]
i 1 i
D85 G | (| 2Py B ||
. |37 373
~Gy3 Z%‘ “B43 2343'
j#4 j#4

.—l_

v A



’
\
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[G3; 63
1641 642
B3y B3 G3; 63
= + (R/X)
| B4y By Ggp  Ggp
B31 B3

= (1+ (R/X)9)

B B

41  °a2

Since all Bij‘s are positive, matrix MVE is always positive. Since
1

SQLv is assumed to be an M matrix, then SVE = SQL

vMVE is always
positive.
Next, a sufficient condition for SQ q to be positive, which
G L
in part assures observability, is considered. Recall that if

APL = 0, equation (4.13) becomes
8Q. = [Sn ¢JAE - [S 1aQ
G QGE QGQL L

- -1
SQGQL = MQGQL SOLv (4.34)

=M

QGE QGE - SQGQL SQLV SVE (4.35)
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Theorem 6: Under light load condition, a sufficient condition
that S be positive is that
Qe
1) SQLV be an M-matrix,
2) the shunt conductances Gi0 are negligible at all buses, and
3) R/X ratios of all lines are equal.
Proof: 1

Since

- -1

Bjz  Bp3
Bjg Bps
Gi3 G4 2533' -B3g || -!
. 373
Gz Gpq -B43 2343'

374

2633' * 2635 -Gy

Jj#3
-G43 Z%‘ + 264
j#4
Bijz Baz| [G13 Gig
: (R/X)
B
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Biz By Biz Big
- + (R/X)?
Bia Bpg Boz Bpg
Bjz Big
= (1+ (R/X)?) i
B g
Byy 24 :
i
then MQ is positive. Assuming that S v is an M matrix, then
¢ Q

SQGQL = MQGQL Saiv is a positive matrix.

Remarks: SQGQL must be positive if a positive reactive load
injection QL is to produce a negative reactive generator injection
at PV buses. If SQGQL has negative elements a continual voltage rise
or voltage collapse would occur based on the change in AQL
because the reactive sources would not compensate for changes in AQL
but actually reduce support.

Theorem 7: Under light load condition, a sufficient condition
for SQLV to be an M-matrix is

1) if D4 is an M-matrix, and

2) R/X ratios of all lines are equal.

Proof:

i -1
= [Dg - B4B5705)
2333' - 283y By

= | A3
“B43 2343' - 2Byg
374

SQLV




N RTE
Sy D Sug
i#h
ZB3J B3q
i#3

The above matrix
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) 2 ]
30
J—1 -8
Z 3 R\ 2 34
2 e [1+(3)"] 2
Sq v = (1+ | 7 ! =[1+(}) 1o,
L 28
-B43 Z Byj - ——R\2-
j#4 [1+(7) ]

If G30=G4o=0 for light load conditions B3 and B4> 0, and D4 is
assumed to be an M matrix, then SQLV must be an M matrix. From fact
2, since SQLV is irreducible, then it is also positive definite.
Remarks: SQLV can be positive definite, but could also be
semi-definite, indefinite, or even negative definite, since it depends
on the shunt Bio's in 04. BiO can represent either shunt capacitances
of transmission lines or switchable shunt capacitors banks at each
bus. Under light load conditions switchable shunt capacitors banks
would never be in the network. D4 could be indefinite or negative
definite if the shunt capacitance (830,840) of a long or an under-
ground transmission system was sufficient to overcome the positive
definiteness of 04 with these shunt capacitances eliminated. The
shunt capacitance of the transmission line not only makes D4 less
positive definite but possibly indefinite or negative definite. The
shunt capacitance can also possibly make SQLV indefinite or negative
definite. If SQLV should ever become negative definite, the effects
of load QL injection on voltage would be reversed from normal condi-
tions. More important, the positiveness of the matrices SVE’ SQGQL’

g» can only be assured if SQ v

and the positive definiteness of SQ

G L

is positive definite.
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Theorem 8: Under light load condition, a sufficient condition
for S is positive definite is that
QGE
1) SQ v be an M-matrix (D4 be an M-matrix),
L )

2) R/X ratios of all lines are equal, and

3) Matrix
3 D3 ™
€y D4

is positive definite.
Proof:
We know that SQGE = MQGE - SQGQL SQLV SVE' Since B1.0 s and
Gio's are assumed to be negligible, SQ y can be expressed as from
L

Theorem 7.
PN
73
S = \]f
QLV
-By3 2843'
i#4
i ] 1
2633' B34
+ (R/x) | 973
-643 2‘543'
54
- L - -
ZB3J- B34
| Ji#3

L j#4



+ (R/x)2 | 373

= (1 + (R/X)?)

ZBBJ' -B3g
3 2343'

-B,
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it

2833' B34

J#3

374

The matrix product SQGQL SQLV SVE becomes

-1

Sagq, o v Sve = (Mg, 5o v M)

=l1 + (/X))

(1+ (RX))}

(1 + (R/X)?)

B B

13 14

“By3 2543'
J

1

| T i e
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13 14

= (1+ (R/X)?)

The matrix MQ

M =
QqE

G

B8 B

23
ZB3J -834 -1 |8
j#3

By D By ’

i74

24

g can now be expressed as

Jj#l
-By) 2323' - 2By
j#2
Gz G4 2333' -B34
Jj#3
Gy3 Gy -By3 2843
374
31 63
g

31

41

B

32

42

-

-
(.
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ZBIJ' 812

L | 3A1
-B3; ZBZJ'
Jj#2
S13 614 2833' R T
. J#3
Gy3 6yy -Ba3 2843
i
G3; 63
Ggy G4
DBy by
J#l
-8, ZBZCI
j#2
Bi3 Bia 283:1 B ||
+ (R/X)2 373
Bos By ||| -Bas 2343'
i4
B3; Bs



The matrix SQ

S =
QqE

M
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g now becomes
G

-S S S
QgE ~ 0gQ “QV VE

Bi; B2
j#l
B Z”zj
j#2
Bi3 Bua :E:}3j B3
(R/X)? 373
Bys  Bog -B43 :E:}4j
 j7a
B3; B3 Bi3 By
- 1+ (R/X)?)
Bar  Baz P23 B
2333 B3 |1
j#3
-By3 2343'
i74
B31 B3
B

a1 Bagp

-1

1

[P YN
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2| J#1
821 ZBZJ'
j#2
Biz By
By3 By
By; Bag |1 |Bx; B3
j#3
“Ba3 122?43 Ba1  Ba2
7
= C, - D,DFIC
3 - D304 Cy

given that the matrices

and D4 are both positive definite. The inverse matrix has the form
(C3 - 0302104) and since the inverse matrix is positive definite if
the original matrix is positive definite, the submatrix [C3- D3D;1C4]

is positive definite.
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Remarks: If SQGE is positive definite then increasing voltage
at PV buses requires a large positive reactive injection. However,
if SQGE is semi-definite, then raising E at some PV buses has no
effect on raising QG at these buses. If SQGE is indefinite, then
raising E at PV buses could indeed require reduced positive reactive
injection which is contrary to how a power system is supposed to
support voltage.

The above results indicate that if SQLV is negative definite,
then a controllability induced loss of stability can occur directly
or because SVE has negative elements and a loss of observability
induced loss of stability can occur because SQGQL has negative ele-
ments or SQGE is negative definite. The results for light load con-

ditions indicate that for SQ v to be positive definite D4 must be

L
ositive definite, and for SQ E to be positive definite both D4 and
G

C3 04 must be positive definite. These matrices will be negative
g?in?ge if the capacitive admittance at generator or load bus exceeds
half the sum of all branch admittance connected to that bus. This
explains the operation practice of switching out certain long trans-
mission lines with large shunt capacitive admittance under 1ight load
conditions.
Although an analysis is not performed for normal or heavy load

conditions, it is hypothesized that the admittance of switchable

shunt capacitance at any bus should also be less than half the admit-

tance of all branch elements connected to that bus. This hypothesis

will be studied experimentally in Chapter 5.
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The above analysis is quite important because it has been
known that capacitance from long transmission lines can cause voltage
problems under light load conditions but the above analysis is the
first that analytically derives a 1imit on the capacitive admittance
at a bus to assure voltage controllability and observability induced
stability. Deriving a similar limit for normal and heavy load con-
ditions is a subject for future research.

4.5. Theorems Integrating the Weak Boundaries
and Sensitivity Analysis

In this section, two parallel approaches of the identifica-
tion of weak boundary and sensitivity analysis are integrated, and
summarize the corresponding mathematical results as theorems. In
order to show that the SSC groups preserve their coherency structure
in all sensitivity matrices, the following model of a three SSC

group network is introduced.

- t

AP

L = [ap 1oP poP 51"
20g = [80g;205p20531"
8, = [4Q ;49 229 51"

_ t
AS = [A61A62A63]
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_ t
A8 = [A61A62A63]
AE = [AE,AE AE,]"
177273

_ t
AV = [AVIAVZAV3]

(4.36)

The partitioned Jacobian matrix for this three-SSC-group system can

be expressed as in Figure 4.2.

Property 1:

Definition:

A11 submatrices in Figure 4.2 are square matrices.

(Dominant diagonal block) If a square matrix is

partioned such that the absolute value of any nonzero element in its

diagonal blocks is strictly greater than the absolute value of any

element off the diagonal blocks, then those diagonal blocks are

called dominant diagonal blocks of the matrix.

Property 2:

Matrices BZ’ B4, C3, DZ’ and D4 have dominant

diagonal blocks corresponding to the three SSC groups.

Property 3: Let matrices

Al A2 Bi1 B2
Amxk = and kan =

Aor Ap By B

I[f the submatrices All’ A22, Bll’ and 822 are dominant diagonal

blocks in A and B respectively, then the product matrix C = AB also

has the corresponding diagonal blocks dominant.
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A B c D
[3"61] Par  Pgr i Pg e Pg §[3P61] Mo Pg PP P P
361 352 364 5 38, 38, 384 5 aE1 aE2 aE3 5 av1 av2 av3
3Pg, [?Psé] Pga : Py Pgy  Pg § 3Pg [?PGé] L § 3Pgy 3Py 3Pg,
asl 352 364 § 38, 38, 364 5 aE1 aEZJ 353 5 av1 av2 3v3
3Pey  Pg3 [3963]5 Pa3 3Py 3Pg3 ez Pg3 aPG3]5 ez Pp3  3P3
361 36, 364 5 38y 38, 384 § aE1 aE2 3k, § av1 av2 3v3
Py Py 3P, EPPLl] Py 3Py 3P AP AP, EF’Pu] Py 3P
361 38, 364 ELae1 ae2 363 : aE1 aE2 aE3 5Lavl av2 av3
Pra Pa Pp P, [“’Lz] Pra 12 P Pia i Py PPLZ] Pra
Pz Py Py iR Py [ap,_3]§ Pz Py P 3iaPg Py |-3PL3];
e 36, I : 38; 38y 384 : aE1 aE2 aE3 : ;vl av2 L;v3 |
|3°t;1] Mg Qg : 30 Qg N §3°G1] Mgy g ¢ Qg Qg 30 |
361 asz 363 § ael aez ae3 g F) 1 aE2 aE3 § 3v1 avz 3v3
30g2 |3°ez] Mgy 330, Mgy g, 330, [3%2] Mgy : Vg, Qg 30, |
M3 Vg3 [3053 : Mgy g3 03 : g3 g |3°Gs]§ 03 N3 203
My 0y, Ay §PQL1] MW 0y 10 Ay Q, §F’°L1] MWy Ny
Wp W, Wp i, O, 2, P, 2, 0, i, l?’QLz] A,
aol 362 363 E 391 Laez_j 363 E aEl 3E2 3E3 E 3V1 BVZ 3V3
Mg M3 Q303 Ny, |3°L3]§ Ny W3 N3 1303 Ny, [?’QLs]
38y 38, 364 LN 38, 363 : aE1 352 aEé : av1 av2 av3J
Figure 4.2. The partitioned Jacobian matrix of a three-SSC group

network.
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Property 4: The inverse of a matrix with dominant diagonal
blocks has the same diagonal blocks dominant. |

It is essential to prove the following property, and then use
the mathematical induction to complete the proof of Property 4. If

matrix
BIGARLY.
H= _ (4.37)
a1 Haaly
where
(1) H11 and H22 are nonsingular square matrices, and

(2) Hll/“ and H22/u are dominant diagonal blocks in H, when

p + 0, then the inverse of H, which can be written as
K11 K2
Bl = (4.38)
21 Kpo

with the same partitioning as H, also have dominant diagonal blocks.
Proof:

By the inverse matrix lemma the following results are obtained:

. _ -1 -1
when u + 0, so that

Kll = (U)[Hll]-l
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(1) Kpp = - [KyyHyp(Hop/u) 1]

when p = 0
kyp = - (w)2[H]H] pHp5]

(119) Kpy = = [(Hpp/w) MHypKyy]
when u +~ 0

2
Kpp = -(u)2H3H, 11

. ol el
(V) Kyp = uHp5 = HyoHpiKy,

when u + 0

TS T
Kpp = WH3p = uH35Hp1 - () 2TH] 1H H57]

() [Hyp1 7!

n

Summarizing (i) to (iv), the following relationships hold:

~
—
—
[
—
=
~
M
x
—
—
—

n

)2
u) °[H] 1Hy o351

2
- (u)°TH35Hp1H7 1]

~
N
—

[}

= (u)[Hppl™!

nN
(AN
I

(4.39)
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Therefore H'1 has diagonal dominant blocks as declared.

Finally, the proof of Property 4 can be accomplished by mathe-
matical induction as shown in the following example:

Let

Hip/v Hpp o Hpg
H =lHyy  Hop/u

x

23

H3;  Hzp  Haz/w

where u + 0, and

1
K11 K2} K3
-1 - 1
T fai
]
K31 K3z} Ks3

The matrix can be partitioned into four blocks. Then by (4.39) it
can be asserted that submatrix K33 is a dominant diagonal block.

Similarly, by symmetry, if H is partitioned such that

B | T
s M2 f
-1 _ 1
HE =Ko | Kop Kpg
(]
K31 1 K32 Kgg

then the submatrix K11 is a dominant diagonal block. Also, when

u-+0

1-1
STRELSY. r”11/“ Hi2

n

K K H Hyo/u
LZI 22J L21 22 |
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then by (4.39) Koo is a dominant diagonal block. Therefore Prop-
erty 4 has been proven with three diagonal blocks and the generali-
zation into r finite dominant diagonal blocks can be easily obtained
by the reader.

Applying Property 1 to Property 4 under light load conditions,

the following sensitivity matrices
S,y = [D, - B,85%D,]
QLV 4 472 -2

I ]
2833' B34

(1 + (R/x)%) | 373

DMLY

i#4
and
SQGE = MQGE - SQGQL SQLV SVE
: .
ZBlj 812
= | J#1
821 ZBZJ'
j#2

- -

Bijz  Byg

LBZ3 Boq
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ZE:P3J -B3g |) -1 B3 B3
Jj#3
-B43 :E:}4j Bgy B4
37
= C, - D.D1C
3 = D3047°Cy

will both have dominant diagonal blocks.
In the following two theorems a detailed sensitivity model

will be used, where one of the SSC group in the system has no source

bus as shown in (4.40).

S F o« . E * * E - = -
Pa1 Av B iBip i G Dy iDp %
* »* E § * * §
PL1 Aot Bain i Baiz: Ca1 Pann i Darz| | Qu
".....‘........E.‘.;‘..‘g...‘.......‘.'...g...;‘..
PL2 Az Baa1 i Ba22i Co2 Doz1 i Doz | Q2
- oo-*nonocooc*oooc-goocoooo.gco-c*aooco-cc;oooogooooococ
Q61 A3 By iB3p iC3 D3y iDp Va1
W] P BainiBarzd Car Pan i Parz| |V
..‘...........'.§....*....E.....Q...‘...'...g...;‘...
Q2 Aga Bapy i Baopi Caz Dgpy 0422 | |Vi2
e - e - - -
(4.40)

This system has two SSC groups. The first group consists of both
source and load buses which are denoted as G1 and Ll, respectively.

The second SSC group has only load buses L2. The original Jacobian
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matrix for the sensitivity analysis is partitioned as shown in (4.40).
Note that each SSC group will have the corresponding dominant diago-
nal blocks as shown above, where the submatrices with "*" denote the
dominant blocks. Those dominant blocks are larger than the other
block by an order of 1/u, where 0 < u < 1. For example, Dzll=-% 0411,
where D411 has the same order as D412 does. The leading subscript
of each submatrix in (4.40) is identical to the subscript of the
original submatrix of (4.2). The second or third subscript indicates
the partitioned blocks of each original submatrix. Based on the
above model (4.40) the following theorems can be proven, respectively.

Theorem 9: If there is no source in an SSC group, then SVE
has zero rows and loss of controllability occurs.

Proof:

It is known that from the original sensitivity model

Sy = Séiv My

-1

S v [0, - B4B510,1 = (1 + (R/X)2)D,

n

M

n

ve = -[Cq - B4B§1C21 (1+ (R/X)Z)(-c4)

S

n

-1*
ve = Dy (-C4)

Now apply these results to the new model

ot o T et I R B e
a11  Da12 al |7 412 m
Sve = =
D D} -C D Dazz -
a1 Pazz| | a2 421 u R
- - - — - -




Let

-1

L

130

11

d

21 922

Similar to (4.39) as u +~ 0, then

11

12

21

22

and

VE

Therefore

n

[}

n

n

n

(

(

L

d

u)[D411]-1

2 -1 -1
(1)"[047104120422]
(120720 ]
s 422421 411

W) (04007

-C
41
11 ) +d

12(-C42)

D11(~Cay) -

- (1) [0 3041031, 1(-Cay) + (1) (Dz) (-Cyp)

dy (23 4 4 (-Cp)
21 u 22 42 1

(1) 2005110123221 (-C42)

(4.41)
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SVE > asu-+0

Thus the rows corresponding to the SSC groups without source bus
will go to zero, as the stiffness of the SSC group with the source
buses goes to infinity. A loss of controllability occurs for the
SSC group without a reactive source bus.

Theorem 10: If there is no source in an SSC group, then
SQGQL has zero columns anq loss of observability occurs.

Proof:

It is known that

g~ Mg, Séiv

o0, [0 = BaB20p1 = (1 + (RAD?)(-0y)
Sov 7 % - B48;'D, = (1 + (R/\)2)D,

Sog, = 0903

Applying these results to the new model



132

* -1
D11 Daz2
*
= -[D3; D3,]
Qe .
Dg21 D22

u 412

|
[}
o
:|Q,
—
N
——~
]
o
w
N
[ W |

Dg22

matrix Dil, where

has dominant diagonal blocks given in (4.41). Matrix SQ Q i
G L

D31 P31
Sagq, = 17w 911 7 Dagdar » T 912 - Dapdar]
B 03103131 + (-D3p)(- “2)[042204210411] ;
(-D3) (-w)[031101,037] + D32”“”’4%2]
Therefore

SQGQL + [(- 031)(0411) 0] asu~+0.



133

Thus the columns corresponding to the SSC groups without source buses
will go to zero as the stiffness of the SSC group with source buses
goes to infinity. A loss of observability thus occurs for the SSC
group without a reactive source.

From the above results, the effects of the weak boundaries
corresponding to the SSC groups (or the stiffly interconnected groups)
can be determined. If the dependent and independent variables of
the linear loadflow model are rearranged, then a partitioned Jacobian
matrix and a set of partitioned sensitivity matrices can be obtained
with dominant diagonal blocks corresponding to the SSC groups. By the
definition of SSC group, each SSC group can be modeled as a single
bus with respect to the whole system. Then, the constraints derived
for each bus in section 4.4 must be satisfied by the SSC group for
the voltage stability of the whole system. In other words, the SSC
group can be modeled as an equivalent bus to obtain a new Jacobian
matrix and carry out the sensitivity analysis. The following is
immediately valid from the new Jacobian matrix with the equivalent
bus representing each SSC group.

Theorem 11: A sufficient condition for the equivalent sensi-
tivity matrix §QLV to be an M matrix is that the sum of BiO over all
buses in the SSC group should not exceed the sum of Bij over all
transmission lines of the weak boundary surrounding the SSC group.

Proof:

Let AQL = SQ VAVL where

L
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t
AQ, = [4Q; 40, 2Q5 4Q, 4Qg 4Qg Q4]

t
AVL = [AV1 AV, aV3 AV, AVg AV AV7]

They are the deviations of reactive power injections and voltages
at all load buses, respectively.

Without loss of generality, let buses {1, 2, 3, 4} belong to
Group 1 and buses {5, 6, 7} belong to Group 2. Then the control-

lability equation can be transformed in the linear space as the

following:
[1 0 0 0i0 0 0]
010 0i0 00
001 0i0 00
u=[1 11 150 0 0
000 0i1 00
0000 éo 10
000 0i1 11
and
-1

uaq, = u[sQLV]uT(UT) oV,

-1
= < T
S v(U ) av

Q L

ne

AQL QLVAVL



Therefore

and

P ] o o
o o
o

o O o
o O o
o O o

AV, - AV,
AVZ - AV4
AV3 - AV4
AV4
AVs - AV7
AV6 - AV7

130 0 0
2130 0 0
10 0 0
10 0 0
0101
0i0 1 -1
0io 0 1

AV7

135

(4.42)
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= A
AQ = UAQ =
L L § }Q-
i

The matrix U in (4.42) sums up rows 1, 2, 3, 4, and rows 5,
6, 7 of SQLV, then put the result in row 4 and row 7, respectively.
The matrix U' in (4.42) sums up the columns 1, 2, 3, 4 and columns 5,
6, 7 of the preprocessed matrix [USQLV]. The result of the equiva-
lent sensitivity matrix SQLv given in Figure 4.3 carries the informa-
tion about the global constraints on area-shunt-capacitance on columns
and rows 4 and 7. A1l admittances of the lines that interconnect groups
are e]iminéted from the (4,4) and (7,7) elements during this trans-
formation. The only terms left on the equivalent diagonal elements
are capacitances of that group, and the negative of the sum of total
admittances of its boundary. Therefore, if the total shunt capaci-
tance of that group exceeds the total admittances of its boundary,
then the corresponding diagonal element will no longer dominate that
row and column. Furthermore, the equivalent sensitivity matrix SQLV

is irreducible and symmetric. Since the original SQ v is positive
L



137

1=} G=f

(Lol
]
har]

AEEA:

o
™

°~
N

Vo)
] ~
)

'~
—y

(7]
I\N

9S¢

9¢¢

9

91

6S..

9

.l.......‘....O..................I.l.......................

[=1 [=1
Y
14 14

G¢

S

S1

000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000000

1
-A om X143eWw AJLALILSUIS JualeALlnba 3yl g p aunbr4

"-J

~N

n
"

L 1=l
14
1=(

3

1=

e
v

<

-1 1=f

1
X
v v

g=1
s <
L

mom

€S¢

.......'......I..........l.‘............QI.....l.....

[=1
e
14

€€

€

mﬂm

G=1
¢

L

¢

¢Sg

¢lg

¢le

G=1

s
L

19

Il




138

definite, then §Q v must be diagonally dominant to be an M-matrix.

Therefore the sumLof the area shunt capacitance must not exceed the
total admittances of the weak boundary of that area for §QLV to be
an M matrix and for the system to remain controllable, observable,
and stable from Theorems 5-8.

Now it becomes very clear that the voltage stability problems
are not simply caused by the lack of reactive sources in an SSC
group, but also are caused by the wrong type of sources (capacitor
banks). The installation of the capacitor banks as reactive sources
is much cheaper than the generation of synchronous condensers. There-
fore when the reactive supply or reserve is not sufficient to meet
the demand, it is preferred to install more capacitor banks in that
area without knowing the side effects to the whole system. In sum-
marizing all theoretical results up to this point, it is understood
that

(1) from the proof and identification of weak boundaries of
Chapter 2, there are weak boundaries to prevent the transmission of
reactive supply over long distances; and

(2) from sensitivity analysis of this chapter, the weaker the
boundary around an SSC group the less the amount of area reactive
supply can rely on the capacitor banks.

Now one may ask why a utility does not eliminate the weak boundaries
of the system by requiring all utilities to be uniformly stiffly

interconnected, such that there will be no weak boundaries. At

kR
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this point it might appear to be a good idea, but any contingency
and even system operations may break the uniformity of the intercon-
nections. The cost-benefit considerations and the impossibility of
obtaining rights of way for such redundant transmission makes such
an idea impossible for the EHV transmission grid, although it can be
approximated on distribution networks. The following property will
show that such a uniform connectivity will cause the singularity for
the suggested system. By pivotal condensation and mathematical
induction the following property can be proven.

Property: Let c # 0 and d be constants and A be an n x n

matrix with ;= ¢ and aij =dif i # j. Then
det {A} = (c - d)"'1 (c + (n-1)d)

From the above property, A will be singular if and only if ¢ = d or
d =-(1/(n - 1))c. Physically, this implies that an isolated, uni-
formly interconnected non-SSC group can lose controllability and
observability under light conditions, due to its structural uniformity.
In conclusion, one has to live with the existing weak bounda-
ries in the large scale power networks. The voltage problems can be
solved by understandiﬁg the impact and interference of weak bounda-
ries to the system controllability and observability. The next
chapter will establish experimentally the theoretical results devel-

oped in this chapter.



CHAPTER 5

VOLTAGE STABILITY AND SECURITY EVALUATION
ON THE 30 BUS NEW ENGLAND SYSTEM

5.1. Introduction

A methodology for determining and ranking weak transmission
boundaries for phase, voltage, or current variations was developed
in Chapter 2. The methodology was applied to a 30 bus New England
test system in Chapter 3. Voltage controllability, observability,
and voltage stability were defined in Chapter 4. A necessary condi-
tion for controllability and stability was shown to be that SQLV be
an M matrix and that SVE be positive. A necessary condition for
observability and stability was shown to be that SQGE be an M matrix
and that SQGQL be a positive matrix. It was shown that a sufficient
condition for SQGQL to have zero columns and SVE to have zero rows
and thus violate the necessary conditions for observability and con-
trollability is that there exist no reactive sources in a stiffly
interconnected group of buses. It is thus clear that having deter-
mined the stiffly interconnected groups for any operating condition,
sufficient reactive power reserve must be maintained in each group to
accommodate load change and loss of reactive source contingencies. A
further sufficient condition for Vo]tage stability under 1ight load
conditions is that the shunt capacitive admittance at all buses in a

stiffly interconnected group must not exceed the admittance of the
140
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lines in the weak boundary connecting the group to other stiffly
interconnected groups. This condition may well justify the utility's
practice of switching out some of the long transmission lines with
large shunt capacitance under light load conditions.

Line outage and loss of generation contingencies are simulated
for the same 30 bus New England system model used in Chapter 2 to
test the methodology for determining and ranking weak transmission
boundaries. The results of these simulations using a Philadelphia
Electric (PE) Load Flow are presented in Section 5.2. The bus voltages
in each stiffly interconnected group respond similarly for each con-
tingency. Line outages of elements in the weak voltage boundaries
are shown to cause large voltage drops at buses in load groups and
large voltage increases at buses in supply groups. Loss of generators
in a load group with insufficient reactive supply is shown to cause
the same large voltage drops in load groups and large voltage increases
in the supply groups. These results confirm that sufficient reactive
reserve must be maintained in each group for proper voltage control
and that the weak transmission boundaries decouple the voltage con-
trols (reactive sources) in one group from supplying load in another
group (loss of voltage controllability). The results confirm that
the need for reactive support will be observed and thus occur locally
unless insufficient reactive resources exist in a stiffly intercon-
nected group. The reactive requirements can be observed across weak
boundaries if there is insufficient resources in a group and thus

cause the large voltage variations across the weak boundaries.
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The study, performed in subsections 5.3 and 5.4, is intended
to show that adding shunt capacitance in a stiffly interconnected
group can cause loss of controllability, observability, and stability
for non light load condition, confirming the analysis performed in
Chapter 4 for light load conditions. An experiment is performed
where a stiffly interconnected group with a weak transmission boundary
is forced to be reactive resource deficient due to loss of generation
contingencies. Capacitive reactive support and load is simultaneously
increased at a bus in this group. The results indicate that the
voltages at buses drop with increased capacitive admittance until
the loadflow no longer converges. Moreover, eigenvalues of the
Jacobian rapidly decrease to zero from large positive values as the
capacitive admittance is increased. The elements in the eigenvectors
associated with these rapidly decreasing eigenvalues experience sign
changes and magnitude changes for those elemenfs in the group experi-
encing the voltage collapse. Thus the addition of capacitances for
voltage support can actually weaken the boundary around the group,
causing a voltage collapse and a loss of voltage controllability and
observability induced stability.

5.2. The Systematic Impacts of the Weak Boundary to
the Voltage Stability

The original New England System is very stable because each
group in the system has sufficient reactive sources. In order to

observe the voltage problems, two strategies are applied in this
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section to simulate contingencies which will cause the voltage sta-
bility problems:

(1) loss of generation contingencies that cause one group to
have insufficient reactive supply, which then causes complex power
to flow over the weak transmission boundary; and

(2) 1line outage contingencies that remove elements in weak
transmission boundaries, which further weaken these boundaries.
Several line outage and loss of generation contingencies were simu-
lated. The effects of 1ine outages of elements in weak boundaries
always had much greater security problems than outages of branches
within stiffly interconnected bus groups.

Case 1 is a multiple loss of generation and line outage contin-
gency that both affect stiffly interconnected group IV in Figure 5.1.
The loss of generation leaves the group with insufficient reactive
supply and the line outage weakens the transmission boundary for
that group. Note that the results for this case, presented in
Table 5.1, show low voltage violations at several buses in this
group. Moreover, high voltage violations are observed at generator
buses in groups I and II.

Case 2 is a multiple loss of generation contingency of genera-
tors 6 and 10 in stiffly interconﬁected group IV in Figure 5.1. Note
that in this case all voltage in this stiffly interconnected group
have low voltage violations and the generator buses in a neighboring

group have high voltage violations.
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Table 5.1. Summary of results for case 1.

System configuration

Removed generator(s): 6
Removed line(s): (4,3)

Changes of load and shunt capacitance

Load: none
Total: N/A
Shunt capacitor(s); none

Abnormal voltages (V < 0.95 or V > 1.05 p.u.)

Low: V4 0.937 V5 = 0.944 Vg = 0.946 VvV, =0.938

V8 = 0.939

High: V19 = 1.051 V,, = 1.051 Vog = 1.058 v29 = 1.051
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These results clearly show that buses in a stiffly connected
group behave as a single bus for line outage and loss of generation
contingencies. Furthermore, the large voltage variations across
elements in the weak boundaries indicate that both a loss of voltage
control and a loss of observability of the need for reactive support
occur in these weak boundaries.

5.3. Local and Global Effects of Capacitance
on Voltage Stability

The theoretical results in Chapter 4 indicate that under light
load conditions a sufficient condition for voltage controllability
requires that the magnitude of the shunt capacitance at any bus in a
stiffly connected group be less than the admittance of all branches
connected to that bus. Likewise, a sufficient condition for voltage
controllability for light load conditions is that the sum of the
admittance of all shunt capacitance in a stiffly connected group
must be less than the sum of the admittance that connects this group
to other groups and thus belongs to the weak boundary for that group.
These results do not necessarily apply for non 1ight load conditions.

A hypothesis, that replacing generation reactive support by
capacitive reactive support can cause loss of voltage controllability
and observability and lead to a voltage collapse, is tested. A special
test case was developed to provide a test for the hypothesis. Gen-
erators 6 and 10 are removed from stiffly interconnected group IV in
Figure 5.1. Generators 2, 25, and 29 make up for the lost real power

generation evenly. Case 1 results in Table 5.1 suggest that these
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generators also attempt to provide reactive support over the weak
transmission boundary. Line (30,9) is removed to prevent the swing
bus from directly supplying reactive support for group IV in Fig-

ure 5.1. The stiffly connected groups for this system were then
recomputed and are given in Table 5.3 and Figure 5.1. The system

at this point does not have sufficient reactive supply and the load-
flow did not converge. A 600 MVAR shunt capacitor is placed at bus 11
in group 4 of Table 5.3 that should experience voltage problems. The
capacitor is placed at bus 11 because it is located electrically
between the buses where generators 6 and 10 were lost.

The summary of the abnormal voltages from the PE loadflow is
shown in Table 5.4. There is no low voltage reported and the high
voltages are right on their maximum desired limits, indicating that
this case is normal.

Case 4 is shown in Table 5.5, where only a 500 MVAR shunt
capacitor is inserted at bus 16. One low voltage is reported at
bus 8, which indicates that group 4 has difficulty in importing
reactive power across its weak boundary. At this point, the voltage
problem still appears to be a local problem.

The results for Case 5 are shown in Table 5.6, where a smaller
400 MVAR capacitor is inserted. The voltage problem is spread over
all the buses in groupIV. It is clear from Cases 4-6 that the sen-
sitivity to the capacitive reactive support appears to be large.
Four cases were simulated with 700 MVAR, 800 MVAR, 900 MVAR, and

1000 MVAR capacitors, respectively. A1l of these cases have no Tow
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Table 5.2. Summary of results for case 2.

System configuration

Removed generator(s): 6, 10
Removed line(s): none

Changes of load and shunt capacitance

Load: none
Total: N/A
Shunt capacitor(s): none

Abnormal Voltages (V < 0.95 or V > 1.05 p.u.)

Low: Vg = 0.917 V5 = 0.909 Ve = 0.908

V8 = 0.904 Vio = 0.914 V11 = 0.911
V13 = 0.917 V14 = 0.928
High: V19 =1.051 V,, =1.051 Vog = 1.058

Vy = 0.902
Vig = 0.897
Vog = 1.051
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Table 5.3. New groups obtained from the weak boundary identifica-
tions based on voltage measure.

Group 1
Generator(s): 2, 25, 29, 30

Load: 1, 3, 16, 27, 28
Group 2

Generator(s): 19, 20, 22, 23

Load: 21
Group 3

Generator(s): none .

Load: 15, 16, 17, 18, 24
Group 4

Generator(s): none

Load: 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14




150

Table 5.4. Summary of results for case 3.

System configuration

Removed generator(s): 6, 10
Removed line(s): (30,9)

Changes of load and shunt capacitance

Load: none

Total: N/A

Shunt capacitor(s): 600 MVAR at bus 11
Abnormal voltages (V < 0.95 or V > 1.05 p.u.)

Low: none

High: V 9= 1.051 V22 = 1.051 v

1 25

= 1.058

V29 = 1.051
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Table 5.5. Summary of results for case 4.

System configuration

Removed generator(s): 6, 10
Removed line(s): (30,9)

Changes of load and shunt capacitance

Load: none

Total: N/A

Shunt capacitance: 500 MVAR at bus 11
Abnormal voltages (V < 0.95 or V > 1.05 p.u.)

Low: Vg = 0.948

High: V

19 = 1.051 Voo = 1.051 V25 = 1.058

V29 = 1.051
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Table 5.6. Summary of results for case 5.

System configuration

Removed generator(s): 6, 10
Removed line(s): (30,9)

Changes of load and shunt capacitance

Load: none
Total: N/A
Shunt capacitance: 400 MVAR at bus 11

Abnormal Voltages (V < 0.95 or V > 1.05 p.u.)

Low: V, =0.921 Vg = 0.915 Vg = 0.918
Vg = 0.899 Vg = 0.905 Vig = 0.940
Vig = 0.924 V,3 =0.938 V= 0.938
High: V19 =1.051 V,, =1.051 V,e =1.058

vV, = 0.902
Vi1 = 0.941
V29 = 1.051
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voltage reported, but all have several generator buses outside
group 4 reach their upper voltage limits.

Case 4, where the 500 MVAR capacitor is insufficient to meet
reactive load in group 4, is studied further to determine if increas-
ing reactive power load and increasing capacitive reactive support
at bus 11 can cause a weakening of the weak boundary between group 4
and the rest of the system. It was hypothesized that a loss of
voltage stability and thus a voltage collapse as predicted in Theorem
11 for light load conditions would occur and this is confirmed in
the following results. Case 4 is chosen to initiate the experiment
because the low voltage at bus 8 indicates there is both insufficient
reactive support within group 4 and a reliance reactive flow that
crosses the weak transmission boundary.

Case 6 shows the loadflow results when 1250 MVAR of capacitive
reactive support and 750 MVAR of reactive load injection are inserted
at bus 11. Case 6 is identical to Case 4 in terms of having a net
500 MVAR of reactive support at bus 11. The results in Table 5.7
indicate that buses 4, 5, 6, 7, and 12 now have low voltage problems
in addition to the low voltage at bus 8, which was also observed in
Case 4. Several cases were run where the capacitive reactive support
and reactive load injection at bus 11 were both increased in a manner
that maintained a net 500 MVAR of reactive support. The PE loadflow
failed to converge for all of these cases. These results from Cases 4,
6, and these additional cases indicate that capacitive reactive

support in a stiffly interconnected group that is reactive resource
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Summary of results for Case 6.

System configuration

Removed generator(s):

Removed line(s):

6, 10
(30,9)

Changes of load and shunt capacitance

Load:
Total:
Shunt capacitance:

Abnormal voltages:

0.935

Low: V4
V8 0.918
High: V19 = 1.051

750 MVAR at bus 11
N/A
1250 MVAR

(V<0.950rV>1.05p.u.)

Vg = 0.933 Vg = 0.937
Vi = 0.944
Voo = 1.051 V25 = 1.058

Vy = 0.921

Vzg = 1.051
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deficient can cause a loss of controllability and observability
across the weak transmission boundary that leads to voltage stability
and voltage collapse. A stiffly interconnected group that had suf-
ficient reactive support from 600 (Case 3) to 1000 MVAR of capaci-
tance reactive power support did not have stability problems. Thus,
it appears that capacitive support may only cause voltage stability
problems when the group it has been inserted in still has insuffi-
cient reactive support and is also relying on weak transmission
boundaries for support.

Case 6 shows that the voltage problem at bus 8 in Case 4
spreads over the entire group but the voltage at bus 11 can still be
maintained within the desired range. It also indicates that the
shunt capacitor solves the voltage problem at bus 11 locally, but
the neighboring buses start to experience the Tow voltage problem.

In Chapters 2 and 3 the theory and the measures of weak bound-
ary for a power system were developed, tested, and confirmed. In
this chapter the effects of the weak boundary to the voltage sta-
bility are checked experimentally. Except for the base case, all
the simulations are carried out under heavy load conditions. Using
the same New England 30 bus model, a series of contingencies are
simulated in section 5.2. It confirmed that the weak boundary will
prevent the reactive power from being transferred from one SSC group
to the other. Therefore the voltage problem can only be solved in

the local area.
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In this section and section 5.4 the effects of shunt capacitor
under heavy load condition are investigated. In general, there are
three sources of reactive power which can be used to support the
voltage in the local area: (1) generators, (2) synchronous conden-
sers, and (3) shunt capacitors. The costs of these different kinds
of equipment are quite different and the shunt capacitor is the
cheapest one among them. Since the side effects of the shunt capaci-
tor were not well understood before this investigation, the system
planner usually preferred to use the shunt capacitor as the supple-
mental device for reactive power supply for a local area. It is a
widespread practice in the industry to install shunt capacitors as
reactive supply to meet reactive load and support voltage in each
local area.

The results obtained in this section can be further explained
by the eigenvalue analysis of the sensitivity matrices in section 5.4.
It will be shown that a large positive eigenvalue is reduced to
nearly zero as the reactive load injection and capacitive supply are
increased. The results obtained in this section are very important
in today's power system planning and operations, because the system
planners can easily concentrate on the fact that the capacitors can
always keep the local bus within the desired voltage limit as it did
in the above case at bus 11. When the system has a voltage collapse,
it is really difficult to convince oneself that the capacitance at
all-looks-normal bus 11 instead of some other factor caused the

system collapse. Without the sensitivity analysis, eigenvalue
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analysis combined with the identification of the weak boundary, the
understanding of voltage problems for a large scale system is dif-
ficult. The sensitivity/eigenvalue analysis of Cases 3-6 is analyzed
in the next subsection.

5.4. The Effects of Shunt Capacitor on the Controllability
and ObservabiTity of the Steady State Voltage Problem

The sensitivity matrices S and S are computed for

QgE QY
Cases 3-6 and are displayed in Tables 5.8-5.11. The matrices are
diagonally dominant and all the large elements lie in diagonally
dominant blocks because the generator buses and load buses were
reordered according to the buses in the four stiffly interconnected
groups in Table 5.3. Thus, the ordering of buses in SQGE is 2, 25,
29, 30, 19, 20, 22, 23. The SQGE matrix has two diagonal sub-blocks
of (2, 25, 29, 30) and (19, 20, 22, 23) which are the only two stiffly
interconnected groups with PV (generator buses). The ordering of
buses in SQLV is (1, 3, 26, 27, 28), (21), (15, 16, 17, 18, 24), and
(4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14), where the brackets represent
the PQ (load) buses -in the four stiffly interconnected groups in

Table 5.3.

The eigenvalues and eigenvectors for the SQ E and SQ v matrices
L

are also displayed in Tables 5.8-5.11 for Cases 396. In Case 3,

with 600 MVAR capacitance, the SQLv eigenvalue 6 in Table 5.8 is the
smallest of the eigenvalues and has value 237. The largest elements
of an eigenvector indicate the buses at which the eigenvalue has the

most effect. Eigenvalue 6 has value .88 at bus 4 which lies in
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group IV which has the voltage collapse. In Case 4 with 500 MVAR
capacitance, the eigenvalue 6 has value of only 2.20 and the eigen-
vector 6 no longer has a large element value (.88) at only bus 4 at
group 4, but now has moderately large values 11-40 at all buses in
group 4 except bus 11. In Case 5 with 400 MVAR of capacitance, the
eigenvalue 6 drops further and the magnitude of the elements for the
eigenvector increases at all buses in group 4 except at bus 4, which
originally had the large dominant value in these eigenvectors. The
value of the eigenvector element for bus 11 is still small. In

Case 6, with the 1250 MVAR capacitance and 750 reactive load, the
eigenvalue decreases to 0.13 but the eigenvector for eigenvalue 6 is
similar to the values in Case 5. It is evident that reducing the
capacitive reactive support in Cases 3-5 causes reliance on the weak
transmission boundary and thus causes a weakening of this boundary
as evidenced by:

(1) A large reduction in the magnitude of eigenvalue 6.

(2) A significant increase in the magnitude of the elements
of the eigenvector for eigenvalue 6 at all buses in group 4 except
buses 4 and 11. Bus 11 with the capacitance is no longer part of
the group since its voltage is maintained by the capacitance. The
increase in eigenvalue elements at all other buses in group 4 except
bus 11 indicates eigenvalue 6 becomes a group against group eigen-
value rather than a local bus 4 eigenvalue. The evolution of group
eigenvalues reflects the fact that the reactive flows so weaken the

boundary of the group that it effectively acts as an equivalent bus.
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(3) The sign of elements in eigenvector 6 in group 4 changes
sign, indicating that eigenvalue 6 is destabilizing the network as
the boundary is weakened.

In Cases 3-5 the addition of capacitance and reactive load
injection confirms that adding capacitance in the group and retaining
the reliance on reactive support across the boundary reduces eigen-
value from approximately 2.2 to 0.13 from results in Cases 4 and 6.
Moreover, adding this capacitance and load simultaneously also
increases the magnitude of elements in group 4. Both of these results
indicate the addition of capacitance in a group with a weak boundary
significantly weakens the boundary and causes the group to act as é
single equivalent bus. Further additions of capacitance in this
group would appear to cause the eigenvalue 6 to go negative and the
elements of eigenvector 6 in group IV to further increase. These
results were not obtained because the PE loadflow did not converge
for the cases run with additional capacitance and load at bus 11.

The SQGE eigenvalues 4, 5, and 8 experience major changes as
capacitance is added in Cases 3-6 in Tables 5.3-5.8. The eigen-
value 4 decreases initially as the capacitance is decreased from
600 MVAR to 500 MVAR in Cases 3 and 4. However, all three eigen-
values increase rapidly for Cases 5 and 6, where the boundary is
weakened due to additional flows across the boundary or additional
capacitive reactive support, respectively. Eigenvector 4 has large
values at generators 25 and 19. Eigenvector 5 has a large element

at 19, and eigenvector 8 has a large element at 22, all of which
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experience high voltages in Cases 5 and 6. Thus, the effect of
capacitance at bus 11 in group 4 has an effect on the SQGE even
when there are no generators in group 4 because the weakened bounda-
ries raise voltages at generators in other groups. This raise in
voltage at generator buses in other groups is effected by increases
in the eigenvalues that have eigenvectors with large components at
these generator buses.

A loss of observability and stability is thus evidenced by the

increases in eigenvalues in SQ E and the increases in elements of

G
the associated eigenvectors at generator buses that experience high

voltage problem.

Vo



CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

6.1. Review

The existence and location of weak transmission boundaries is
well known to utility system planners and operators based on their
years of experience with a particular system. Formal methods for
determining the location of weak transmission boundaries, ranking
the relative vulnerability of the boundary, and determining the
transmission elements that belong to the weak transmission boundaries
did not exist.

A method for determining and ranking weak phase transmission
boundaries was recently developed in [1]. These weak phase trans-
mission boundaries were shown to cause phase oscillations and thermal
and steady state stability problems for either inertial loadflow
simulated loss of generation contingencies or line outage contingen-
cies. A computer package was developed that allowed ranking of the
network branches in terms of their impact on either thermal security
or based on steady state stability. Contingencies that most severely
affect each of the most vulnerable network branches are also deter-
mined as part of this package [1].

This thesis extends these previous results by defining weak

transmission boundaries for voltage and for current variations. The
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groups of buses within a stiffly interconnected group surrounded by
a weak voltage transmission boundary will be a voltage control area.
The weak voltage and weak current transmission boundaries should be
those boundaries across which large voltage variations occur and
large current changes that lead to thermal overload occur. The weak
phase transmission boundaries defined in [1] should determine the
network branches and boundaries where steady state stability problems
should occur.

A phase, voltage, and current coherency measure is proposed
and theoretically shown to detect the weak phase, voltage, and current
transmission boundaries. A method for determining and ranking weak
phase, voltage, and current transmission boundaries was developed
and was applied to the 30 bus New England System model. Weak phase,
voltage, and current transmission boundaries were determined and
ranked. The current and phase boundaries are similar but the ranking
of the boundaries is different. The weak voltage boundaries are
quite different from either the phase or current boundaries and
separate buses into local voltage control areas as would be expected
from engineering judgment.

Voltage controllability, observability, and stability are
defined in section 4. Necessary conditions on the properties of
sensitivity matrices SVE’ SQLV’ SQGE, and SQGQL were found that assure
voltage controllability, observability, and stability. Finally, it
was shown that lack of PV (reactive sources) buses in any stiffly

interconnected group is a sufficient condition for a loss of voltage
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controllability or observability. A sufficient condition for loss
of stability for light load conditions is that the shunt capacitive
- admittance at all buses in a stiffly interconnected group exceed the
admittance of all branches in the weak transmission boundary that
surrounds the group. These results suggest that sufficient reactive
reserve must be maintained in each control area since relying on
reactive support across weak transmission boundaries can cause a
loss of voltage controllability and observability that may lead to
voltage collapse. Moreover, the percentage of reactive support and
reactive reserve in any control area made up of switchable shunt
capacitance should be limited depending on the weakness or possible
contingency induced weakness of the voltage transmission boundary.
Thus the more expensive synchronous condensers may have to be used
rather than switchable capacitors as is the present practice when
insufficient generation reactive support is available in a stiffly
connected group. Long transmission lines with large shunt capacitance
may also need to be switched out under light load conditions to avoid
having total shunt capacitance in a stiffly connected group exceed
the admittance of the weak boundaries for that group. A further
sufficient condition requires the network to be nonuniform since if
all buses in a group are connected together by nearly identical
branch elements, a loss of stability can occur. This could occur on
a power system distribution network where all buses are often inter-

connected by nearly identical transmission elements.
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The simulation of multiple loss of generation and line outage
contingencies confirms that buses in a stiffly connected group behave
similarly and that large voltage variations occur across weak bounda-
ries. These results confirm that weak transmission boundaries cause
voltage security problems due to loss of voltage controllability and
observability. A loss of voltage stability is then shown to occur
for a network where a group has weak transmission boundaries. The
greater the reliance on the boundary for reactive support the greater
and more widespread the Tow voltage problem is within the group.

This reduction in the magnitude of eigenvalues, the increase in mag-
nitude of elements of the associated eigenvectors within the group
experiencing Tow voltage problems, and the sign change of elements
of eigenvectors for buses in the group all indicate that requiring
additional reactive power flow across weak boundaries will lead to
loss of voltage stability and thus voltage collapse. Addition of
capacitance in the stiffly connected group in a like manner caused
dramatic reduction of positive eigenvalues, an increase in the mag-
nitude of elements for buses in the group, and finally a decrease
of voltage at buses in the group. The loadflow would not converge
if too much capacitive admittance was inserted. The results clearly
confirm that reactive flows across weak transmission boundaries and
capacitive support within the stiffly interconnected group can both
cause loss of voltage controllability and loss of observability,

voltage security problems, and ultimately voltage collapse.



185

6.2. Recommendations for Future Research

Future research on voltage stability and security problems
could:

(1) Determine whether the constraints on the shunt capacitive
admittance in stiffly interconnected group developed for light load
conditions can be applied or modified for non 1light load conditions.

(2) Define phase controllability, observability, and sta-
bility in a similar manner as performed for voltage and determine
necessary conditions for phase controllability, observability, and
stability.

(3) Determine sufficient conditions that assure phase and
voltage controllability, observability, and stability.

(4) Relate how phase and voltage stability affect the asymp-
totic stability of the non classical transient stability model.

(5) Determine a fast computational method for determining and
ranking the voltage security of elements based on a voltage network
element security measure. The method for determining and ranking
the contingencies that most severely affect the most insecure ele-
ments would also be desired. This security assessment methodology
could be based on the work performed for phase stability or thermal
overload security problems [1].

(6) Determine a pattern recognition procedure that could
identify voltage security and stability problems based on steady
state estimation data or for a simulated contingency. The problems

would be identified without the checking of voltage constraints,
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reactive reserve constraints, or capacitive support constraints in
each voltage control area [14].

(7) Developmgnt of robust operating constraints that can
assure voltage security and stability in each stiffly interconnected

group.
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