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ABSTRACT

YIELD OPTIMIZATION ANALYSIS OF COMPLEX

CHEMICAL REACTIONS IN ISOTHERMAL CHEMICAL

REACTORS UNDER FORCED PERIODIC OPERATION

By

Richard Dale Skeirik

Periodic forcing of feed concentration to isothermal CSTR's

with Van de Vusse kinetics has been examined. Square wave and

sinusoidal forcing to homogeneous reactors and square wave forcing

to a CSTR with one dimensional diffusion inside the catalyst pellets

have been considered. For the homogenous reactors, analytic or semi-

analytic solutions have been developed for species concentrations as

well as time averages. The heterogeneous reactor was treated

numerically. All cases showed a decrease in yield of the inter-

mediate and an increase in yield of the side product. The effects of

periodic operation increase as the forcing frequency decreases,

hence the maximum effect of forcing can be achieved by a smaller steady

state reactor.
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CHAPTER I

PERIODIC SQUARE WAVE FEED CONCENTRATION TO

A HOMOGENEOUS ISOTHERMAL CSTR WITH

VAN DE VUSSE REACTION NETWORK
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Chemical reactors under forced periodic operation often give a time

average output which is different from the corresponding steady state.

In general, this is true whenever some of the output variables depend in

a non-linear way on the forcing input variable. For those selectivity

reactions which exhibit an absolute maximum yield or selectivity under

steady state operation, forced periodic operation is a promising method

of improving on steady state performance.

A large segment of the work done in this area has centered on non-

isothermal systems, which allows the exploitation of the exponential

non-linearity of the Arrhenius rate expression. However, the complexity

of the simultaneous heat and mass balances combined with at least one

exponential non-linearity virtually eliminates the possibility of obtaining

an analytic solution. Hence the treatments have been either approximate,

usually through the use of some kind of perturbation technique, or numerical.

While Douglas and coworkers [l] [2] [3] [4], Renken [5] [6], and Farhadpour

and Gibalaro [l4] have studied specific reacting systems under forced

periodic Operation, no one has yet obtained a fully analytic prediction

of system behavior.

In contrast, this work treats complex kinetics occurring in an iso-

thermal CSTR with a square wave feed concentration and provides fully

analytic solutions for the reactant and product concentrations as well

as their time averages.

THE CHOICE OF THE SYSTEM

In deciding on a complex kinetics system, the number of possible

choices is infinite. Some important characteristics led to the choice
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of the Van de Vusse system, A+B+C, 2A+D, for this work. As Van de Vusse

proposed, the system cannot be easily classified by general reactor

selection guidelines. The intermediate B exhibits an absolute maximum

concentration under steady state operation [8], thus this is a system

which explores the real potential of periodic operation. Probably most

important from the perspective of enhancing reactor performance, under

some reactor conditions,the intermediate B increases through a transient

maximum, even though it is already above the steady state it is approaching.

Hence periodic operation provides an inviting method to capitalize on

this phenomenon. Any initial optimism about this aspect of the system

must be tempered, however, by the fact that B also goes through a transient

minimum even when below the eventual steady state [7].

THE METHOD OF COMPARISON

In order to draw any meaningful conclusions from the study of periodic

Operation of chemical reactors, comparison against a corresponding steady

state is necessary. In addition, the comparison is subject to certain

restrictions.

(l) Residence Time:

(a) For those products for which steady state operation can be

made more effective by simply using a longer residence time

(for example, the reactant A in the Van de Vusse kinetics

scheme), the comparison should be based on the same residence

time for periodic and steady state operation.

(b) For those species which exhibit an absolute maximum concen-

tration with respect to residence time in steady state mode,

the comparison should be between the optimum steady state

concentration and the optimum periodic concentration, regard-

less of the periodic process residence time.
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(2) Equal time average molar flow rates of reactant species into the

reactor should be used in both periodic and steady state mode.

(3) Initial transients are ignored. For steady state (i.e., non-

periodic) mode, only the steady state concentrations should be

considered. For the periodic mode, time averages should be taken

only after the effluent concentrations achieve a stable repetitive

cycle (limit cycle).

(4) For the feed concentration disturbance used here, volumetric flow

rate in the periodic process should not vary with time.

THE PERIODIC SCHEME

The input disturbance used here consists of a symmetric square wave

reactant feed concentration. The feed oscillates between dimensionless

concentrations of 0.0 and 2.0. Each phase of the cycle lasts for a period

to, giving the inlet disturbance an overall period of Zto. The steady

state against which the periodic process is compared is simply the same

process with an invariant dimensionless feed concentration of l.0. To

simplify the solution, the process is arbitrarily defined to begin

operation at time t=O with a feed concentration of 2.0 at the beginning of

a feed cycle.

The square wave input disturbance has several important character-

istics. First, the input concentration during either half of the feed

cycle is constant. The transient mass balance for the reactant species

during either portion of the feed cycle can therefore be represented by an

autonomous ordinary differential equation. If some other disturbance,

such as a sine wave, were introduced, the reactant mass balance would

become nonautonomous, and an analytic solution would most likely be

impossible.
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Second, because of the different inlet molar flow rates, the reactant

mass balances for the two portions of the feed cycle are different, and

there does not appear to be any way to combine the two. The mathematical

treatment of the problem thus becomes a series of initial value problems,

in which the final value of the solution in one region becomes the initial

value for the solution in the next region.

In order to do a rigorous analysis of the periodic process, the

governing mass balances should be solvable, which for this kinetics

virtually requires the system to be autonomous. However, the treatment

of the system as a series of initial value problems presents some serious

difficulties. The solution, although its value is always continuous,

is not represented by a single function. During one portion of the feed

cycle, the solution is given by one expression; during the other portion,

by a different expression. It is not possible to conclude from inspection

of the solution that the output will exhibit a stable periodicity as time

becomes large. Hence, even after the solutions to the system concentrations

as a function of time are known, a great deal of analysis remains to deter-

mine how the system will behave as time progresses. Once it is shown that

the system goes to a stable, repetitive cycle, or limit cycle, the con-

centration functions can be integrated over one cycle to obtain the time

average concentrations.

The original objective of this work was to examine Van de Vusse

kinetics. However, because of the apparent difficulty of proving the

limiting behavior of the system, we first examined simple first order

kinetics, and then extended the techniques of that analysis to Van de Vusse

kinetics.

In each case the approach to the problem was the same. First, full

transient solutions for the species in question were obtained. Then, by
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a qualitative examination of the governing differential equations, the

limiting behavior of the system was established. This qualitative

information about the system allowed calculation of the asymptotic

limits of the output concentrations at the end of each region of the

feed cycle. The transient solution for the ouptut concentrations were

then integrated over the time period of one feed cycle, using the limiting

values as initial and final conditions, giving analytical expressions

for the time averages of these quantities.

Definitions
 

The treatment of the periodic process necessitates the definition

of some terminology. Since there will be separate solutions to the mass

balances for each part of the feed cycle, the two are distinguished by

subscripts. The subscript l is used to designate that half of the feed

cycle in which the dimensionless feed concentration is 2.0; this is

identified as Region l. The subscript 2 designates the portion of the

cycle with a feed concentration of 0.0; call this Region 2. Moreover,

the solution takes the form of a series of functions, each of which

depends on the value of the solution at the end of the previous region.

Since each portion of the feed cycle lasts for a duration 60 (=to/T),

and since we have defined the process to start at t=0 at the beginning

of Region 1, then Region T will always end and Region 2 begin on an odd

multiple of 60. Similarly, Region 2 will end and Region 1 begin on even

multiples of 60. The symbols

n00 0,260,460,... (13)

jeo = 60,360,560,... (1b)

allow a general representation of the beginning of either region.
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The "initial" condition for any concentration function in a region

is expressed by the subscript representing the region and the nomencla—

ture for the beginning of the region i.e., eqns (l). Thus the solution

to f(6) in Region l, beginning at n60, has its initial condition represented

by f1(neo). Similarly f2(6) would have the initial condition f2(jeo).

Although the solutions depend on time, it is only the time elapsed

since the beginning of the region which is important. The substitution

- e-neo ; Region l (2a)

4
* l

- O-jeo ; Region 2 (2b)0
1 l

is defined.

FIRST ORDER KINETICS

Although a first order reaction

k1
A + B

taking place in an isothermal CSTR shows an increase in conversion under

periodic Operation, the methodology used for this case illustrates the

methods used for Van de Vusse kinetics. The transient mass balance on

the reactant species is given by

qu - qA - k1VA = -—- (3)

The problem is treated as two separate differential equations for the

two regions of the feed cycle. Substituting the dimensionless variables

- A_. = X. = I. =f-AO 1 q a T K1 1k, (4)

we obtain the following two differential equations

0
.

f1

8
= 2 - (l+K1)f1 (5a)

0
.



31—2—1: - (1+K1)f1
(5b)

The solutions to equations (5) are given by

f1(€) = fSSI- [f551-f1(ne°)] eXP [’(ITK1)€] (6a)

f2(350) eXP ['(ITK1)€] (5b)f2(5)

The solution to equation (5a) with the time derivative set equal

to zero is

 

System Behavior
 

The behavior of the system for large a can be established by a

qualitative examination of the governing differential equations, (5).

First, ggl-< O, and f2 approaches zero asymptotically. Also

giL <0,f1>f551

d6 - O ’ f1 - f$51

> O , f] < fSSI

and f1 approaches fS asymptotically.
$1

df dfz
If f(6=0)>fsw both—LdB and do are <O at least for the first cycle.

f1 and f2 will decrease with time until f2 crosses fssx at some 6 Once

this happens, we have 331') O and %%;-< 0. Moreover, since the functions

C'

approach their steady states asymptotically, the values of f1 and f2 are

df dfz
bounded by f and O, which guarantees—Ld6 > O and dT < 0 for e>ec.

551

Hence we have an oscillation for f.

df

551’ dB

oscillation is immediately established. Here Be becomes immaterial.

dfz
For the case f(e=O)< f >0 and 36—'< O for all 6 and hence
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At any time 6* (at the start of some cycle or half a cycle) during

the oscillation, one of three events could occur, viz. f (e*+260) §=f(e*).

By the property of uniqueness of ordinary differential equations, it

becomes evident that f(6*)§f(6*+260)§f(6*+4eo), etc. Therefore, the

system produces a characteristic of either increasing, decreasing, or

).unchanging sequence of initial conditions. Furthermore since fc(0,fSSl

the sequence of initial conditions must approach an asymptotic limit.

Hence, a limit cycle is established. The uniqueness of the limit cycle

is discussed next.

Asymptotic Limits and Time Averages
 

Denoting the asymptotic limits at n60 and jeoby the symbols

f1(n60)m and f2(jOo)m, we make use of the fact that if f2(jeo)co is the

initial condition for f2(E), then its value after a time 80 must equal

f1(neo)w. Similarly f1(n60)oo used as initial condition for Region 1

over an interval 60 must return the value f2(jeo)m. This gives

f1(050)m = f2(jeo)co eXP [’(1+K1)eo] (7a)

f2(.leo)co = [SSI’LT f1(neo)w]9XP['(]+K1)eo] (7b)

The solution of this linear system is unique and is easily found to be

551'
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_ l-EX - T+K1 O

f‘(ne°)w ' f$51 [2 sinh l+K1 60 (88)

f (.6 ) = f 9X 1+K1 O ’1 .1 (8b)

2 3 ° w 551 2 sinh l+K1 60]

Once these limits are known, we can integrate over one full cycle

using these values as initial conditions to determine the time average f.

We define the time average, f as

(:°f.<g)da +ji°f2(g)da

260 (9‘3)
; = 
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where, f1(E=O) = f1(neo)co 3 f2(€=0) = f2(j60)m (9b)

Evaluation of the integrals gives

? = (WA; , (106)

The steady state against which comparison is made is identical except

for its invariant dimensionless feed concentration of l. The steady

state solution to this system, fss’ is simply

f = 1 (10b)
55 (l+K1)

The time average for the periodic limit cycle is equal to the corresponding

steady state f. Hence there is no enhancement of conversion for the

first order case under periodic Operation.

VAN de VUSSE KINETICS

Van de Vusse kinetics is a good example of a complex kinetics

scheme which exhibits an absolute maximum steady state concentration of

an intermediate Species. The scheme,

AKIBEZC , A + A 530

also gives second order, A + A + D, and consecutive, A+B+C, kinetics if,

respectively, k] or k, is made sufficiently small. The transient mass

balances for components A, B and D are

qu - qA - V(k1A + k3A2) = v %Q- (lla)

fo - qB - szB + VklA = v §%- (llb)

qu - q0 + Vk3A2 = V g%- (llc)



ll

We assume that no products are present in the feed, and using the

dimensionless variables in (4) along with

b = B/Ao d = D/A0 K2 = kz/kl K3 = Tk3A (12)
O

we Obtain

a
t
;

c
p

-
h

n

2 ' (1+K1)f1‘ Kgf‘} (136)

3—1} = - (1+K.)f2- Kafé (13b)

 d; - (l+K2)b]. + m1. ,1: 1,2 (l3c)

- d1 + Kaffi , 1 1,2 (l3d)
85"

with initial conditions

6:0: f=f(O); b = 0, d = O. (l3e)

where again the subscript l refers to the region Of the feed cycle in

which the dimensionless feed concentration is 2.0, while the subscript 2

denotes the region in the cycle for which the feed concentration is 0.0.

The subscript i indicates the region where the differential equations

for b and d apply.

Equations (l3a) and (l3b) can be solved in a straightforward manner.

The solution to (l3c) using a series expansion is given by DeVera and

Varma [7]. Equation (l3d) can be solved with techniques similar to

those used for (l3e). Making the minor variable substitution in (2),

the solutions are

 

_ l+c d(ne )e'c2€

f1(€) ' f 3 o '143)

551 ll - d(n60)e'czg \
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f2(g) = 'C1a(je°)e-le (14b)
1 + K,a(je,)e “15

where

C1 = (1+K1); C2 = 1[(1‘1'1<11‘{+8K3 3 C3 = %2%;_ (14C)

2 1

_ 2K3f1(neo)+C4'C2 d

d(nBO) - 2K3f11n961+C1+C2 (14 )

' - = 'f21j60) 146

d(JBO) K3f213601+C1 ( )

= C2'Cl
f

fSSl 2K3
(14 )

and

b.<a)=b.<neo>e‘c“€+f551k. 3573.2.[an.a(e.>1+c.w.[a.a(neo)1} <15a>

 

 

 

 

\ 3:0

where j

0 - 'Czj€_ ”Cui'. - _
C5j+1 1. e J9 CSJ f 1

WI[€OJOQJ = .
(15b)

c..Or]Ee'C“g ; c5j = -l

c ?c % w.(a.a.a) ; c. finite
'. 2 --

j-O

V2(€aa) = _ (15C)

g;_e-Cu€ 1n [1-016 ng . C = m

C 'ng ’ 5

2 1-oe

r j ('+1)a c aCl “C2 J _ " u . ° _
C6j+1 [9 9 J 9 C63 f 1}

V3(€.J.G1 = < g (15d)

[o3(c.-c2)Ee'c“€ ; cej = -l  
J

mm = b2(je.)e'°r’=-K.c.aneowaaneon (ise)
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( -

__113:11-FZ0W5( .i a) ; K2? 1

Wu15sa) = < (15f)

'C15 C15 ,-

Le 1n §___:££% ; K2 = 1

C1 1 + Kaa

 

I-K3a|£ (2+1))C1€_e-Cug] ; C72 f -1

_ c7 t+ l

WS19329a) - (159)

L'Kaa]Q K1(K2'1)€e-C“€ ; C72 = -1

-C K3f:s -f m

d1(g)=d1(n60)e 5' ‘—E:—i'<icz[1'e 71+2(1+C3) 5*6[592.0(neo)] +

Q:

(l+ca)2 73° (i-l) ve[€.£.a(neo)1> (166)

2:2

QQC -C 2' -E

WG(€OQOQ) = E:E%T [e 2 9_e J (16b)

1/C1oo

: = - -, -€_ C1 'Q G

M.) (image—(13,961 2-foaming2amen] (16c)

_ _- 2+2-1/C1 _ _

W7(€,Q,Q) = E+%K:]1/C1 [8 (£+2)CI€'e a]

= . = ___. = c2 , = C

u 1 + K2. Cs Cu . Ce C2-Cu . C7 'ETIfjfg) (159)

System Behavior

 (16d)

 

 

The qualitative behavior of f is identical to the first order case,

therefore the solution to f will oscillate regularly, and approach

asymptotic limits either from above or below, except in the case where

the asymptotic limit is established immediately.

The proof of the limit cycles for 6(6) and d(e) rest on phase plane

arguments. Since the form Of equations (l3c) and (l3d) are similar, the

phase plane behavior of b(f) and d(f) are also similar.
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The differential equations governing the behavior in the phase

plane of b(f) and d(f) are Obtained by dividing equations (l3e) and

(l3d) by either (l3a) or (l3b), depending on which region is being

considered. Points in the phase plane where gg-Or gg-become zero are

found by setting the numerators of these expressions to zero. This is

equivalent to solving for the locus of steady state solutions to (l3c)

and (l3d). The loci of zero slope in the phase plane (loci of steady

state values) are given by

KlfS 2

b5 = (__W'TKZ , d5 = K3fs (17)

For the purpose of the proof that follows it is sufficient to note that

both loci are monotone increasing and pass through the origin. Hence.

the proofs for the two cases are similar.

The four differential equations in the phase plane can be represented

by

dgj _ F(f11'9i

d—f.‘ ‘ ___.”. H” 1’2 (‘8)
1 B__'_|_

dO

where 9 represents either b or d, F(f) is given by equations (l7), and

B is a positive constant. The numerators of equations (18) will be

positive for g < F(f) and negative for g > F(f). Since we know the

signs of 351 after oscillation of f has begun, the signs of (l8) are

known

Region l (l9a)
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1?

< 0 3 92 < F(fz)

0
.

f2

Region 2 (19b)

0
.

T
\
)

d > O 5 92 > F(fZ)

—
h

2

Also, from equation (18) and equations (l3a,b), it follows that

> O , i = l

91” (19c.d)
/
\

O o _
a
.

II

N

since F(fi) is monotone increasing.

The behavior of 9 will depend on the behavior of f, hence the limit

cycle for 9 cannot precede that of f. Moreover, after f has reached its

limit cycle, 9 need not have yet achieved its limit cycle. At f(ew),

9 could be in any Of three regions of the phase plane, viz.,

g<F1(f1(nBo)w) 5 F1. 9>F(T2(Jeo)m) 5 F2 and 9€[F1.F2]- If 9>F21<F11a

then from the limit cycle behavior of f and equations (l9a,b) 9 must

decrease (increase) until gc(F1,F2). Because of the uniqueness of solution

for first order ODEs and the uniqueness of extrema in each region, 9 will

approach a limit cycle bounded by F1 and F2.

Asymptotic Limits and Time Averages

As in the first order case, the first asymptotic limit used as an

initial condition over a time 60 must give the other asymptotic limit.

For f, the initial condition appears twice as shown by equations (l4d,e),

hence the solution for f1(neo)w and f2(jeo)m gives quadratics. With

persistent analysis, one root can be shown to be negative in both cases.

The resultant asymptotic limits are

'Ce+VCe'zC3C10

2C9

 

T201901co = (208)
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’CIITVC11'4C12C13

2C12

 

¢1(1'C15) + ¢2(1 + C15)C8

C9 = ¢3(1‘C151 + ¢u(1+C15)

C10 = c1(Ci-c§)(l-cis)

C11 = $5 + $6 ' 2K3C1C1~f55111+C3C151

Clz = 2K§(1'C1u)fssl(1+cacls) + 2K3C111'C15)

C13 = -c1c1~f551[ci + c2 + c3c15(c1-C2)1

O1 = 2K3c§cla + 2K3c§ + K3(l-c1.)(cf-c§)

o2 = K3c1c2(2-4c1.)

$3 = 2K§C1(1+C1u1

o. = 2K§c2(l-c1.)

$5 = K311'C1u1fSSILC1+C2 + C3C15(C1-C2)]

¢6 = C1LC1+C2 ' C15(C1’C2)]

-C100 -c O

C1u = e , C15 = e 2 0

The assymptotic limits for b are

D (n6 ) = 8 60,0 n00 - 9 ,a .6 eCueo

1 ° w 2 sinh 1c.e,1

O - .

- = We[60:0(n901m]ecu °'¢9[909013901m1

”2(3601w 2 sinh (c.607

watmi = Kass];— mm...) + C3VJ2(E.OL)]
Hj=0

(20b)

(20C)

(20d)

(20e)

(20f)

(209)

(20h)

(201)

(ZOJ)

(20k)

(20l)

(20m)

(20n)

(200)

(21a)

(21b)

(2lc)
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W9Lisa] = K1C19Wu(€:51 (219)

The assymptotic limits for d are

 

 

 

'1 " - e

= '910190,Q(n90)qfl" B ,0 9 m e 0

dl(n60)oo 2 $1nh 1901 4"QL'L—_“ (228)

O - .

-A = 'W10[90:01099)mje O‘W11[90:0(Jeo)x1
d2(JUO)w 2 sinh (60) (22b)

K3fés w ..

WIO[€3&] = _—E——l' ['C2(]-e T)+2(1+C3)Z¢5(€,£,Q)+(1+C3)ZZ (2'1)¢6(;s£90)]

2 2=T 2:2

(22c)

- _: 1/C1 a.

V11[§,&] = CIA'J) Z (2+11W7(§,£s0) (22d)
K3(C1-])/C1£ O

The time averages are Obtained by integrating the concentration

functions with respect to time over one cycle and dividing by the cycle

time. The mathematics are straightforward but laborious. With dedication

we obtain

13 = _L. .1— 1n l+K3&(Jeo)mc1. + fSS 1n 1/C15'01n90199}+

l+K3a(jeo)m C2 1‘“("6°)w

1-O n0 c
C31” {l-a n80 m } (23)

260
(24a)

W12
b1(neo)m -cu00

(l-e )+K1fssl[caw1.+ ET)? alsrjfl
c

24b3:0 ( >I.

2.22.20. 0 -C 6 - .

c“ 'e A 0) ' K1C10(Jeo)wW17 (24C)
W13
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r 00

OCHOC ” 2015(j) ; C5 finite 1.

u 2 j=0

= <a(n6a).o_ exsan-a(neo)wc1al + ln[l-a(neo)w]-lfll-c15010164000 +>

1’“ c2 c2 d(neolwu

_ C151HL1-0(n90)gJ‘ = m

L 50 C15 c2 C6 1

f . . -

d(n002i ltc13+]) _ l-e c160 ; csj f _1 1

CsJ+1 1+1 c2 c»

W16(j) = >

d(nQ )i (c -c;) ec“e° -c e .

”° “ -eoe “ ° ; C6.) = -l
K Cu eCu /

- ,5 . '1

f 0. n0 j A. 1 :23- ; J f 0 ‘l e-c‘060 \

( 901w - . . _

C5341” . ’ C1, 9 C53 f 1

W15(1) = < b 60 , J - 0 _ >

- ‘Cueo

01(neo)J [L - 60 e'c“e°] ; csj = -l

K m c. 2

f
\

_—1?2:11-F20W1e( 2) ; K2 2 l

W17 =fi
>

%%i In 1+K3&(ng)w 1 1n l+K3&(jeo)mc;. ; K2=1

kl 1/C13+K3(1(j90)oo CTK301jeO)m 1+K3a(j80)co J

K - . 2 (2+1) “C060 1

[Lfiflyfififllel_ 1'Clu _ 1'9 . _

cyt + l (2+l1c1 c. ’ c7£ # 1

W18(£) =< 'Cueo >

[-K3&(j60) 1R K1(K2-Il [1- 9 e c161; C72 ' '1
w Cu Cu

F J

a = W13 + W29

200

K3f2 _

9 = d110901m11‘e-60) ' "‘EEEL <§2[1‘90‘e e01+2(1+C3)

(1+C312 % (1‘11W21(

£=2 £1

Q=1

 

 

 

 

020W211i) +

(24d)

(24e)

(24f)

(24g)

(24h)

(25a)

(25b)



2 1 i-e2C290, -6

W21(£) = 0(neo)mC2 RCZ-l RC2 T e 0'] (25C)
 

cl['a(j90)w]]/Cl

KgC1-])/C1

 

wzo = d2(j50)m(l'e-60) - §(m+i)u,2(m) (25d)

m 0

(m+2)c1+l

' - - " +2)C160

_ C1 ’0 90 .K3] C1 1-9 (m '60_

W22(m) - ——£——&%fi—%§7L1 _ 1 [ (m +23c1 + e l (25e)

 

  

_ 2K3fl(n€Q)m + Cl’Cz
 

 

0(ne°)m ' 2K3f1(neolm + c; + c2 (25f)

and

amen, = 'f2(3'“°)°“ (259)
K3f2(j60)m + C1

CALCULATIVE RESULTS

All of the solutions presented are exact analytic solutions.

Unfortunately, the complexity of the results has frustrated all efforts

to draw a patent conclusions. This reduces the analysis of the results

to the examination of the trends calculated from the analytic expressions.

Numerical simulation of the process was performed as a check. The

analytic predictions match the numerical simulation with deviations on

the order of the accuracy of the simulation technique using the IMSL

subroutine DVOGER.

Table l shows the predicted enhancement of the time average outlet

concentrations over the corresponding steady state outlet concentrations.

As mentioned in the section on the method of comparison, the comparisons

for f and d are made with the periodic residence time equal to that of

the steady state (nonperiodic) process, while b is compared with the

optimum steady state bS [8].
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TABLE l. Enhancement of time average periodic concentrations over

steady state concentrations. Approximation to consecutive

reactions when K320. Approximation to second order

reaction when K120, K220.
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Several trends can be distinguished from the data. Except for

very small deviations in the case of consecutive reactions, conversion

is enhanced for all of the constants examined. Frustrating the objective

of the study is the result that periodic operation appears to be always

detrimental to the yield of intermediate b. The only encouraging result

is that the time average concentration of d is enhanced for all of the

constants examined. The drop in f ranges from O-Zl.5%, while b drops 0-

84.3%. d, however, is enhanced by as much as 95% over the steady

state.

d is most enhanced when the kinetic constants favor the formation

of b and c. This is logical, since the rate of formation of d is second

order in f, while the formation of b is first order in f. By increasing

the feed concentration, the amount of f in the reactor is increased.

The rate of reaction of d grows as the square of that for b, hence

production of d should rise. If, however, the kinetic constants_already

favor the formation of d, then mostly d would be formed without cycling,

making the possible enhancement small.

The effect of cycling on enhancement increases as the period 60

increases. The influence of large 60 is shown in Figure 2. Notice the

concentrations spend a large fraction of their time close to the respective

steady state for the region. This configuration approaches a single CSTR

with feed concentration equal to twice that of the steady state process

being compared, operated for one half the total length of time.

The approximation to consecutive kinetics where K3m0 has two dis-

tinctive characteristics. First, there is virtually no enhancement in

f (Table l). The apparent loss of production of b comes about because

this comparison is made against the optimum b5. When compared to the

steady state with the same residence time as the periodic process, the
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periodic time averages closely match bs' Second, there is no change in

enhancement (b or f) as 60 is varied. Both of these trends should be

expected, since the consecutive system is completely linear.

Figures l, 2, and 3 show the system behavior for 3 different

combinations of kinetic constants and cycling frequencies. Figure l

is a case of intermediate cycling frequency with 60 = l. Figure 2 shows

a system which gives 5l% enhancement of d. This is slow cycling, with

60 = l0. As mentioned, the concentrations are near their respective

steady states most of the time. It is also interesting that the trajectory

in the b-f phase plane need not stay close to the locus of steady states.

This behavior is expected for quasi-steady state operation where the

change in the process input occurs so slowly that the system always

stays near the steady state corresponding to the inlet condition. The

rapid switching of feed concentration, however, makes this case different

from quasi-steady state.

Figure 3 shows a case of rapid cycling with 60 = .3. The concentrations

are rapidly changing most of the time, and many cycles are required for

the system to approach a limit cycle. The magnitudes of the oscillations

are small compared to slower cycling.

CONCLUSIONS

The analytic expressions for time average outlet concentrations

resulting from square wave cycling of feed concentration to an isothermal

CSTR with Van de Vusse kinetics are apparently too complicated to yield

qualitative a priori predictions. Analysis of trends resulting from

various system constants shows that time average concentrations of f and

b appear always less than the corresponding steady state concentrations.

Time average of f compares with the steady state process having the same

residence time as the periodic process while the time average of b is
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FIGURE l.(a-d) Behavior of the Van de Vusse system for a case of

intermediate cycling frequency. K1 = K2 = K3 = l,

90:].
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FIGURE 2.(a-d) Behavior of the Van de Vusse system for a case of

slow cycling frequency. K, = K2 = K3 = l, 80 = l0.
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FIGURE 3.(a-d) Behavior of the Van de Vusse system for a case of

rapid cycling frequency. K1 = K2 = K3 = l, 60 = .3.
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always compared with the optimum steady state. Time average concentra-

tion of d appears always greater than the corresponding steady state

with residence time equal to the periodic process. The subcase of

consecutive kinetics shows no change under periodic operation. The

subcase of second order kinetics has its product distribution shifted

toward d and away from f. Hence square wave cycling of feed concentration

appears detrimental whenever b is desired, and the optimum steady state

process should be used. When d is desired, square wave cycling of feed

concentration can give enhancement close to l00% over steady state

operation.

Periodic operation of porous catalytic systems is only beginning to

be explored [9] [10] [ll] [l2]. The interaction of diffusion within a

catalyst pellet with cycled feed concentration to the bathing medium

adds a new dimension to the problems so far considered. The coupling of

the mass balances for the medium and the catalyst pellet, combined with

a complex kinetics makes this a challenging problem, and it is currently

being studied by these authors.



CHAPTER 2

PERIODIC SINUSOIDAL FEED CONCENTRATION TO A

HOMOGENEOUS ISOTHERMAL CSTR

WITH A VAN OE VUSSE REACTION NETWORK

4o
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Chemical reactors operated under forced periodic operation sometimes

give time average outlet concentrations which differ from the corresponding

steady state concentrations. This is generally observed when the governing

mass balances contain a non-linear term, either from non-linear kinetics,

or, for non-isothermal systems, from the exponential temperature dependence

of one or more kinetic rate constants. A good deal of theoretical research

in this area has focused on kinetic schemes in which conversion is the

only economically important criterion, probably because this approach avoids

the complicated expressions which result from more complex kinetics. Con-

version can usually be increased, however, by simply using a larger reactor

at steady state, and this provides a much simpler remedy.

A potential application of periodic reactor operation is in complex

kinetics for which the yield of a desired intermediate product exhibits

an absolute steady state maximum. A simple example is the consecutive

reaction A + B + C. More difficult problems, which are considered here,

are the kinetics scheme proposed by Van de Vusse A + B + C and 2A + D,

and the consecutive-parallel reactions A + B + C and A + D, in both of

which the desired product is the intermediate B.

Douglas and coworkers have done a substantial amount of work on

isothermal systems in this area. Douglas and Rippin [l] considered a

sinusoidal feed concentration input to an isothermal CSTR with a second

order, irreversible reaction. Using numerical simulation, they were

able to show a very small increase in conversion for small amplitude

variations in feed composition. Douglas [2] considered the same problem

using a perturbation approach in which he introduced an arbitrary perturbation

parameter. He was able to show good agreement of his analytical and

numerical work, reinforcing the conclusions in [l]. Dorawala and Douglas [3]

considered both parallel and consecutive reactions, using a sinusoidal flow
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rate disturbance. They were able to show small (.3%, .02%) improvements

in yield over the steady state system. Other investigators [4,5,6,7,lO] have

looked at different aspects of forced periodic operation of reactors.

Bailey [8] provides a review of work through 1973.

We have presented [l3] analysis of the Van de Vusse system taking place

in an isothermal CSTR under square wave cycling of the feed concentration.

The results presented there were exact analytic predictions of the time

average outlet concentrations which, unfortunately, frustrated all

efforts to draw a priori conclusions as to the direction of change. In this

work, using a very accurate approximation, we are able to draw a priori

conclusions as to the direction of change of the time average concentrations

from the steady state concentrations. This is most valuable, since it

gives the relative effectiveness of cycling independent of the system

constants, without resorting to numerical calculations.

THE METHOD OF COMPARISON

In order to make a meaningful comparison of steady state operation

to periodic operation, several conditions must be observed.

(1) Residence time: For those products for which steady state

operation can be made as effective as desired by simply using a longer

residence time (for example, the reactant A in both the consecutive-

parallel and Van de Vusse schemes), the comparison is based on the same

residence time for both periodic and steady state operation. For those

products which exhibit an absolute maximum concentration with respect to

residence time in steady state mode, the periodic residence time which

produces the largest time average concentration is used. Any increase

over the steady state maximum, regardless of residence time, is clearly

beneficial.
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(2) Equal time average molar flow rates of reactant species into the

reactor must be used in periodic and steady state mode.

(3) Initial transients are ignored. For the steady state mode, only

the steady state concentrations are considered. For the periodic mode,

time averages are taken only after the effluent concentrations achieve a

stable repetitive cycle (limit cycle).

(4) Volumetric flow rate does not vary with time in the periodic process.

CONSECUTIVE PARALLEL REACTIONS

Basic Equations

For consecutive parallel reactions taking place in an isothermal

CSTR, the transient mass balances for A and B are:

- ea
qu - qA - (k1+k3)AV - v dt (la)

qB - qB - (k B-k A)V = v 5‘3 (lb)
f 2 1 dt

Here we take the feed concentration of B to be zero. The disturbance of

the inlet concentration of reactant is given by

Af = A0 [1 + e sin(wt)] (2)

where c is a parameter adjustable between zero and one and w is the

frequency of the input disturbance. Introducing the dimensionless variables:

f 2—,b ,AEwT (3)

O

, 6I
I
I
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e
-
v
-

—B— T

A0

and substituting equation (2) gives for equations (l)

%%.+ [1 + 1(k1+k3)]f = l + a sin AO (3a)

%%-+ (l + Tkz)b = 1k1f (3b)

with initial conditions

6 = O: f = f(O); b = 0 (3C)
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Analytic Solutions

The solutions to (3) are easily found to be

 

f(9) = _l__+ c{a2251n AB - A cos A6}
+ -60 “ 4

622 agz + A2 a31 eXP ( .25) ( )

_ 1 E _ 2 ~ _
b(O) ' Tkl [311312 ‘1' (a§2+A2)(a211+/\7) {5611322 A ) Sin A6
  

 

 

  

3316 EXP ("3115); 611:31

A(a,,+a22) cos A6 + ( ) +a32exp(-a116) (5)

a3leXP “3229 .
, a aa11_a12 11¢ 1

where

=1 + (k +k )' =1 + k - a =f(O) - 1 + E“322 - T 1 3 a all - T 2’ 31 ’ 322 532+AY (6a)

( ) 0 B 311 = 312

_ 1 EA 611+612 + C .

632 ' - Tk1 311312 + (a32+f~.2)(a¥1+/F) __311‘322 9 all #312 (6b)

The solutions are periodic with the same frequency as the input disturbance.

Evaluation of Enhancement
 

The time average limit cycle concentrations are found by taking the

limits of (4) and (5) as 6 becomes large, integrating over one cycle, and

dividing by the cycle time A/Zn. The terms containing the constants in

both equations vanish as 9 becomes large, and the contributions from the

integrals of the sin and cos terms are zero, giving the time average

reactant concentrations

.._1_
f - azz (7a)

_ Ik,

5 - 311322 (7b)

The right hand sides of equations (7) are just the steady state values of

f and b corresponding to e = 0. Hence we see that for consecutive-parallel

reactions, sinusoidal forcing of the inlet concentration gives time average

outlet concentrations equal to the corresponding steady state values.
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VAN DE VUSSE KINETICS

Basic Equations
 

The reaction scheme

k1 k2 k3

A + B + C , A + A + D

was proposed by Van de Vusse [9] as a simple example that defied general

reactor selection guidelines. The transient mass balances for this kinetics

in an isothermal CSTR are

v 31—? = qu - qA - k1VA - k3VA2 (8a)

dB ,
V aE'- QBf - QB ' k2VB + k1VA (8b)

v git:- = qcf - qC + szV (8c)

v g? = q0f - qD + kgAZV (8d)

Imposing the condition in (2) and using the dimensionless variables in

(3) and bf = cf = df = O we obtain

gg+cfi+$zlf2=i+esinxxe (9a)

$5- + ctb = mf (9b)

{1—2 + c = tkzb (9c)

3%.» d = Ik3A0f2 (9d)

where

C1 5 (1+Tk1): C2 5 2Tk3Ao, C3 5 [CT+2C2]]/2: Cu 5 (1+Tk2) (10)

with initial conditions

6 = O: f = f(O), b = O, c = 0, d = O (11)
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Perturbation Solution

An analytic solution to (9a) is apparently not possible. In

order to develop an approximate one, the solution is assumed to be com-

posed of a non-periodic term and a sum of periodic terms:

f(6) = F1(9) + 6P1(6) + €2P2(9) (12)

This imposes the restriction on (9a) that e be small enough so that term

on the order of c3 are negligible. Substituting (l2) into (9a) and collecting

terms of like order in 5 gives the following three differential equations:

 

 

dF

351 + {c1 + czrlip, = sin AB (130)

3:2 + {C1 + C2F11P2 = 'P12 (13C)

Note that the zero order equation returns the transient mass balance for

an unperturbed (e=O) feed.

The solutions to equations (13) are straightforward but are fairly

tedious. Defining for convenience the steady state values corresponding to

e = O:

k f Tzk k f
= (cg-c1) = T 1 s = 1 2 s = Tk3A0f2

fS c2 , bS Cu , cS -——7::———, dS s (14)
 

we obtain [ll] for the solutions to equations [l3]

 

 

 

= 2c30e'C36
F1(6) f5 + c2(]-ae_c3e) (15a)

P1(9) (1 1-c36)2{W1(91'ZG¢2(9)+0293(9)+1le-ae} (15b)

-ae

P<e>= ‘ {1 ‘ae ( +2 (1-ae-c39)2 29 ’Wu 6) Ws(9) ‘ 96(9)} (15C)
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a sin A6 - A cos AB
 

 

 

 

 

 

 

 

 

 

WAG) = a2 + A2
(15d)

92(9) = e-C39 (a-%;)C:;g ABA; A cos Ag (l5e)

W3(6) = e-2c36[(a-%§3%3§;n+Aiz- A cos A6] (15f)

w~(9) = ?O(i+1)a‘{wv(i.e)+wa(i.e)-wg(i.e)} (159)
1:

5 2+] A 9,1 'C3(£+1-1)9

w7(1,e) - zg-l) [B.** ZA ][AZ +4A2 ][%1“A9(A2 i sin AB -

Q:
,

a

2 -

3A . ; A2,1 # 0 1

2A cos A0) + 1’1

..2. ‘39. -
in We ,Az’i - 0 — (15h)

. 5 2+] e-c3(t+i+l)e

we(1.6) = Z](-l) YR (YR .+4Az cosAB(A; 1 cos A6 + 2A sinAB)

2= ,1 ”

- 2

+ 2,1 ’ (lSi)

k 2A266-66,A£ 1 = 0

-c (2+i-l)e

5 ”29 3 . 2 .

09(i,e) = Z (_])R+l 2A Sln AB (153)

i=1

05(6) = 211% (i+l)oi{ E (-1)£+1 ?;[a+ca§f:igl)]ilo(i.2.e)> (l5k)

i=0 £=l 2,1‘3

010(i,2,6) v [(AQ i-a)sinAe-AcosAB]-oi[(kfi i-a)cosAe+AsinAe] (l5l)

 

It

W6(e) = 111:0(1+1)a -EC:TYS:F
(15m)

and

c f O +c -c .

= ciféog+ci+ci 9 a=C39 AQ,1 = C3(2-Q-1) (150)
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e, = 5%, 82 = 2515,, e, = 25,6, + 5%, e, = 2516,, 85 = 6% (15p)

Y1 = 55. Y2 = 25252, Y3 = 25252 + 5%, yt = 25252, Y5 = 6% (15q)

O1 = 25152: 02 = 2(5152 + 5251), ns = 2(5152 + 5152 + 5152) ,

04 = 2(5152 + 5251) : NS = 25152 (15?)

v1 = 51, v2 = 51, v3 = El (155)

01 = 52, 02 = 52, 03 = 52 (15t)

51 = 80;, 52 = A0; (15D)

51 = O; 52 = 2002A (15v)

E; = -0203c3, Ez = 0203A (15w)

0; = 03 = (a2+A2)'] , 02 = 1/712 (15x)

Evaluation of the constants 11 and 12 requires the use of the initial

condition as well as the differential equations. Since F1(O) = f(O)

for all e, we have P1(O) + cP2(O) = 0. Setting a = O in equations (l3b),

(l3c) gives relations between PI(O), P§(O) and P1(O), P2(O). Eliminating

Pf(O), P§(0), and P2(O) gives P1(O) = 0, from which P2(O) = 0. Since

P1 only contains 11, and P2 only contains 12, their values are readily

found to be

11 = 2992(0)'W1(0)'02W3(0) (1SY)

12 = w.(0) - 05(0) + 06(0) (152)
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The Solutions to b, c, and d
 

In solving the differential equations for b, c, and d, no assumptions

about the form of the solutions were made. For b, the expression for f

derived above was substituted directly into the differential equation

and solved. Because of the complexity of the square of the full solution

for f, the full transient solution for d was not obtained. The limiting

d equation (6+w) was obtained by first taking the limit of f as 6+w,

squaring the limiting form, and using that form in the differential

equation for d. The b equation was used directly in the differential

equation to find the solution to c. As a consistency check, the limiting

c equation was evaluated by the limiting method used to find the d

equation, and this result was compared with the limit as e+w of the full

c solution. As expected, the two forms showed perfect agreement.

The full transient b solution, which in comparison makes the solution

of f look.easy, turns out to be of the form

mm=anxm+em01+aAW)-€“eu1 (m)

. . fs 2c

wnere 61(6) = E:'+ “Ej‘ 011(0) (173)

.% 9J+1 W12(9.j) 3 C3 f Cu

3'0 (170)

a - O

zz-e C3 1n[ec3e-o] ; c3 = c,

W11(9)

C5

W12(9:3 (17C)

L e(C5'C4)e ; C5 f 0

) =

'Cue

Be ; c5 = 0

C5 = Cu ' (5+11C3 (17d)
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and ( )

m . 3 C3 1+1-1 B

P3(9) = Z (1+1701‘z '1)£+1 w: + A2 913(is1ae) +11W1u(1s9) (185)

1:0 :1 £01

013(2.i,e) = (u£w£,i-GQA)51nAe+(Ap£+fi£w2 1)cos AB (18b)

e-(cai+a)6 .

Cu'Cai-a ; c. 5 C3] + a

Wlu(1se) =
(18C)

ee'c“e ; c, = c3i + a

w£,i = C0-C3(£+1'1) (18d)

U1 = 51, U2 = 519 U3 = 61 (189)

and

E1 = 52: 02 = 529 Na = 62 (18f)

_ w k , , w w . i+k .

P.(6)-12£a (k+l)v15(k,6)+2 a(1+1)(k+1)a w15(k.1.6) (l9a)

k=O k=O i=0

where e-(a+c3k)e

Cu’a'C3k , Cu f a+C3k

915(k19) = (19b)

ee-c,6 ; ct = a + c3k

5

3

w16(k91se))= Z (])£+]{—w17('
k, 2,1,97'W18(k,

2,1,9)}+211Z(
-1)2+1

M=
2:1

WI9(k!£!ise) ' I?W20(koiae) (19C)

re[C1(ksi,i)-
c,]e

.
. ,

CTIK441)2+4A2 W21(ka2a1,6); c10s2.1)#0

1 I r (19d)

‘C09 6 51" 2A9 .

e [-- -——————— ; k,2,i = 0K 2 4A €1( )

2

021(k .1,i,e) =C-%§:§—;)+ sinAB[:1(k,£,i)sinAO-2AcosAe] (19e)

 

W17(k,£,1,9)

  



0,60,11,09) =<

51

 

e

 

CS(£9i)

“C49

(C511g1)

$2

92

(90.0.2001 k , 1,9

1 k,£,1 +4A

7(R,1,9) ; A£,1=0

T 925(k,£,l,6)];cl((k H2 1 )f0 T

(21(k92’31)
O

W22(k92a1:5)=Cu(£,1)W21(k,£,1,9)+Y£A 2 MW23(k 1,1H9)+¢2u(k,£,1 6) (199)

202

023(k,2,i,6)=:‘TETET‘

Illzu(kagsise)=f1§2(

1025(k ,9. ,1,6) = 2(12C3(£,1)J

029(k,2,1,e) ; A£,1 = 0

‘
J

,

e-a5 1 .

i1(k,2,i)-a [6' ;1(k,g,1)-a ; C1(k,R,l) f a 1

l(1)28(k 99. 91,6) =

2
.

9"9-§1(k’£’1)e ; C1(k,2,i) = a

K e 51“ 2A8 sin 2A9

026(2.1,e) = §“(£’1)[2" 4A 1 + Y242,112 4A.‘“J

2

--£-L--2 cos 206 + 2“ ;3(g ,1)e

2, i

. 2 , _

427(2,l,9) = éaéflfll) cos 2A8 - 2A a 2 1) e a6[e + g]

$19(k9Q91196) =

w29(k9£9126)

W30(k:Q1199)

)+cosAe[§1(k,2, i)cosAe+2A sin A6]

2.i)[c1(k,2,i) sin 2Ae-2A cos 2A6]

[
1
 

 

 

 

' A
A£,i§1(k,2,1) 2,1

 

 

 

1

f 0

 

 

e-[a+ca(k+£+i-])]e[@29(ks£9136)'w30(k0£9196)]

(11 i-a)? + A2 90,11,114]? + A2

[D
292.1

'a) ' ORA] [(C1(k9£:i)
-a) sinAe-AcosAe]

= [V£A+o£(A£,1-a)] [(;,(k.2.1)-a)cosAe+As1nAe]

(19h)

(19i)

(191)

(19k)

(191)

(19m)

(l9n)

(l9p)

(190)

 

(19f)
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e-[a+c3(i+k)le ‘

(a+c.1)[c.-a-c.(1+k)1 ;

 

ct # a + c3(i+k)

 

 

mum) - > (19r)

6e-C“e .

(3—3—E377' ; C» = a + C3(l+k) J

and

c1(k,£,i) = cu-Ca(k+fi+i-1) (195)

n}. .

mm) = we,- ‘Lz—K’i (l9t)

l" A .

43H.” = 1, +8, + 12;" (1911)

n A .

1;»(941): A151 (6; '1' ifil) (19V)

t5(2,1) = A: i + 4A2 (19w)

The double summation appearing in equation (lQa) is a condensation

of a quadruple summation which occurs when the term l/(l-oe’cBe) is

written in series form and squared. The constant of integration 13 was

found by setting a = 0 and b(6=0) = 0. The result is simply

13 = 31(0) + €P3(0) + €2Pu(0) (20)

The simplicity of equation (20) belies the triple summations which it

contains.

The full transient solution for C(B) was evaluated by substitution

of equations (16)-(20) into (9c) and integrating. The result is almost

twice as lengthy as b(e). It was used here as a check to the limiting

form (6+w) of c(e) found by using the limiting form of b(e) in the

differential equation. Because the full transient c equation is almost

twice as lengthy as b(e), and because we are largely interested in the

limiting behavior of the components, it is not included here.
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Limit Cycle Forms
 

From the perspective of analyzing process performance, we are

interested in looking at the behavior of the system over a long time

period. It can be seen from equations (lS)-(l9) that both f(e) and b(e)

consist of sin and cos terms, many of which are damped out as 6+w (this

is easier to see when the equations are written on one line; however,

this requires a sheet of paper almost 12 feet long). As e+w all of the

exponentials become zero or one, and the only 6 dependence remaining

arises from the trigonometric functions. The functions oscillate regularly,

and both functions complete one cycle in the longest period of their

component functions, Zw/A. Moreover, since C(8) and d(e) are obtained

by integrating an exponential times either f2(e) or b(e), both C(8) and

d(e) will retain the cyclic properties of f(e) and b(e).

As 9+m, many of the terms in f(e) and b(e) drop out, and we obtain the

simpler forms:

 

  

 

 

mew) = f,
(2la)

P1(8w) = a s1nage+-AQ COS A9
(2lb)

81 T fliéigg. , . 2A2p2(ew) _ - Af,o+ 4 AY SinAe(A1,o s1nAe-2AcosAe)+ 11.0

_ 1
. 2A2 nlsinZAGXETETZK7' cosA6(A1,ocosAe+2A51nAe)+ Al 0+ 2A (21c)

b5

31(em) = $13-
(22a)

p3(em) = (“1“11°'P’Ai§::Af')9“L+plwl’°)
C°SAG (22b)

2A2 0 2 o

Infar- 4’ c..s1n AB-ASlI'lZAGJ 9

m - 2A(CE+4A2) - A190+4A (22C)

.
0

5
'

A

C
D

v

'

 



W33(9) = £2(
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W31(9) = X1 + W33(9)

CE + 4A2

The limiting forms of the c and d equations are:

where

and

where

C(eco

W37

W38

Wul ’

) = C5 + T2k1k2EEP5(9m) + €2P6(9m)]

_ p3. sinAe-was cosAe

(131,0 TA?) ( 1 +117)

V

I

V

I

' Was + $37 siner + Was sin 2A6

= d5 + Ik3AO [6P7(€m) e2P3(6m)]

2fs[(a-A2)sinAe-A(l+a)cosAe]

w) ' (a2+A2) (l+A7)

 

. 2 .

- Wu1$1n AG’qu Sln2A6 + Wug8
V I

= (U1w1,o ‘fi1A) ’ A(AU1+fi1qu)

= A(ulwlfi-Q1A) + (AUI + filwlfl)

2A ’
X3 + (T:E377'[A(X~+Xz) + X5]

= 1 4A2
T35X7 [Xv-4AX5- (7§§%:ZKT)J

1 4A3x

1+41?’[(1§,,+ZAY1' AX“ ’ X51

1g2_A2)_4aA2

- (a2+A?)2 + 2fs [Xus'4flwue]

(1+4A3)

 

(22d)

l,0){A[(A10+ct)sin2Ae-2Ac052AGJ-ctklfisin2 A9}

(22e)

(23a)

(23b)

(23c)

(23d)
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az-A2 +a A

11137121171"+ 2fs[w“5A + w“6] (23m) 

 

 

 

  

 

 

w“2 = 1+4A2

A21);§32§§§2*za) + 2f5[2121.s+2Aw..J
was = (1+4A2) + 215w~~ (23”)

1““: (Ai:1+4A2) [2A21131’0) 1 Y‘A"°] (23p)

Was = 271.1% C2(1 0) (23(1)

1).. = fi—fifim‘r on0) <23r)

= 2112222012112 +1.1.) 11-1—2— <23»

x: = $21—59 (23t)

X3 ‘ c.t’c‘214.-a ' Eli—+71“! (23”)

X“ "' 2113337177 €132,331.) 123”

A(>\1:0+C~)X2 + 111 (23w) 

X5 = A11014112 516E:ZKTT

All four equations are limit cycles with longest period 2n/A. In

each case the first order correction term (:1) is composed of first

powers of sinAe and cosAe. The second order corrections (52), contain

siner, sinzxe and constants.

Analysis of Time Average Concentrations

The time average concentrations are found by integrating the concen-

tration functions over one period and dividing by the length of the period.

The longest period appearing in an equation determines its overall period,

which here is 2n/A for all four equations. Notice that since the first
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order terms are all composed of sines and cosines of A6, their integral

over one period is zero. Hence the first order terms taken alone do not

give a time average concentration which differs from the steady state

concentration.

Similarly, the sin2A6 terms which appear in the second order (52)

terms have a zero integral over one cycle. However, the sin2A6 term

yields a constant when integrated, and this combined with the constants

appearing in the second order terms allow the time average concen-

trations to take on a value different frOm the steady state.

Considering the complexity of the full transient solutions, the values

of the time average concentrations, with dedicated manipulation, can be put

into remarkably simple forms. After integration and simplification, we

obtain for the time averages:

2

 

 

_ E

1 ’ fs ' 2a(a2+A2)
(24a)

5 = b TklAe2[(a2+A2)cEa2+2A“(a2+ c3+4A2)] (24b)

5 ' (AROMA?) (62+qu

' _ €2T2k1k2(Y1+81)
c - cS - 2C“A1,0 (24c)

0
.
!

l
l

0
.
.

+

2 _2_C'+ C -2 C3

S e on 251W}— (24d)

lUl of the time average concentrations are less than the

steady state except 6, which varies depending on the magnitude of the

constants c1, c2, c3. Qualitatively, it appears that only when c1 and c2

are both small will a be less than ds'

From these results, it is clear that if’B or C is the desired product,

sinusoidal fluctuation of the feed concentration (when 53 is negligible)

is detrimental to product formation. If D is desired, then for moderate
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values of c1 and c2, the average concentration of D from the reactor may

be greater under sinusoidal concentration perturbation than at steady state.

The magnitude of any enhancement can be calculated from equation (24d).

If B is desired, then our aim is to exceed the maximum steady state

b. However, 5 is always less than bS at the same residence time. Since

bS at any residence time is less than or equal to the maximum steady

state bg we are guaranteed that the steady state process is more effective.

The objective of enhancing the yield b in Van de Vusse kinetics by a

small (53:0) sinusoidal perturbation of the feed can never be achieved.

NUMERICAL RESULTS

The heuristic nature of the perturbation solution to f(e) requires

verification. Since equations (9) are not highly non-linear, they are

easily integrated numerically with high accuracy. In this case the SO1U-

tion to equations (9) was simulated using the IMSL subroutine DVOGER on

MSU's Control Data Corporation Cyber l70 model 750 computer. The results

are presented in terms of the dimensionless groups Tkl, k2/k1, Tkng, A,

and c. The initial conditions used for all calculations were f(0) = l

and b(0)=c(0)=d(0)=0.

In the formation of the perturbation solution, the assumption was

made that terms on the order of 53 were negligible. However, for some

kinetic constants the solution gives reasonable accuracy for 5 up to

the physical maximum of e=l (since e>l requires the feed concentration

to be negative). The equations used to evaluate the perturbation solu-

tions were the full transient solutions for f and b, equations (l5),

(l6)-(l9), and the limit cycle forms of c and d, equations (23). The

perturbation solutions were found to show good agreement with the numerical

simulation for the values Tkl = k2/k1 = TkaAo = A = l. These values of
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the constants will be used as a starting point to show how the deviation

of the approximate solution from numerical simulation changes with the

various system constants.

Figures 1 and 2 show the results for the constants tk, = kz/k1=

Ikng = A = 1. For 6 = .l and e = l. Figures le and 2e show the b-f

phase plane. As expected, the limit cycle is much larger for a larger

perturbation. Virtually all of the calculations of concentration vs time

showed behavior qualitatively similar to that in Figures 1 and 2.

Figures 3 and 4 and parts e and f of Figures l and 2 show the percent

deviation of the approximate solution from the numerical solution for 5

values of .l, .25, .75 and l. The error increases significantly with

a, but for e=l remains within about 115% except for periodic spikes.

The Spikes are caused by a relatively constant error when the value of the

function itself gets small enough for the error to be significant.

Considering the initial assumption that e3 is negligible, the agreement

is quite surprising.

Figures 5 and 6 show the sensitivity of the solution accuracy to

increasing Tkng to 5. The agreement is still good for c - .25, but

increases sharply for c = .75. Figures 7 and 8 show the error for

Tk1 = k2/k1 = 5. Even for c = .75, the error remains small, showing

a small sensitivity to these two constants.

Figures 9 and lo show what happens when 1k; = k2/k1 = Tszo = 5.

The error increases sharply even from 1k; = kz/kl = l; TkaAo = 5, which

already showed a substantial error. Hence, although the solution

accuracy always deteriorates as Tkng is increased, the effect of Tk]

and k2/k1 may be large or small.

Finally, the effect of increasing A is shown in Figures ll and 12.

Decreasing A is shown in Figures l3 and 14. The error remains small



59

except for A = .2 and e = .75, where the d equation spikes up to almost

twice the numerical simulation. Why this should occur for this slow

cycling is not clear.

Notice that in many cases, the initial response of the perturbation

solution to f drops below the numerical simulation, giving a sharp down-

ward spike in the error. The b solution initially tends to climb above

the numerical, giving a sharp upward spike in the error. Exactly why

this occurs is certainly not clear from the huge equations, but the

perturbation solution apparently cannot follow the rapid changes in the

initial region. It may be that higher order terms contain higher harmonics

which are quickly damped, hence they could add (or subtract) an initial

spurt to the solution before they die out. It may also be due in part

to the initial inaccuracy in the numerical simulation, since a fixed

step size is required to obtain the time average concentration by inte-

gration of the numerical simulation.

A typical plot over 3 cycles required about 1.5 central processing

seconds on the CDC 170 model 750. This involves about 90 evaluations

of the b and f equations which totalled an average of about .15 CP

seconds, or 10% of the total computing time. A reasonable estimate is at

least 1.0 CP seconds were required for the numerical simulation, with the

remainder used to evaluate c and d. Hence, the perturbation solution,

while much more laborious to program, runs much more efficiently in

spite of the triple summations that must be evaluated in each call.

The evaluation of enhancement by numerical simulation requires that

the differential equations be solved and then integrated over time, in

this case an average of about 1 cp second for each set of constants.

The predictions from the perturbation expansion, equations (24), are

much simplen requiring a small fraction of the time and memory. Hence
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FIGURE l.(a-g) Behavior of Van de Vusse system for Tkl = kz/kl =

Tk3AO = A = 1, E = .1.
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FIGURE 2.(a-g) Behavior of Van de Vusse system for Tkl = kz/kl =

Tk3A0 = A = 1, e = 1.



(
a
)

(
b
)

F
I
G
U
R
E

2
.

t-OI'

“
‘
1

(
c
)

I
p
e
r
t

I

09‘0

m
n
l
u
n
n

10‘

Or

96 '

00

 

 
 

 
1

I
1

v
1

6
0
.
0
0

0
1
5
0

1
1
0
0

1
1
5
0

2
.
0
0

2
.
5
0

3
.
0
0

“
2
.
0
0

2
.
5
0

3
.
0
0

3
1
5
0

4
.
0
0

4
.
5
0

5
.
0
0

N
U
H

C
Y
C
L
E
S

N
U
H

C
Y
C
L
E
S

64

09

09‘

p
e
r
t

 

00‘

 
  
 

'
1

‘
1

1
T

I
1

O O

0
0
.
0
0

0
1
5
0

1
1
0
0

1
1
5
0

2
.
0
0

2
.
5
0

3
.
0
0

c
2
.
0
0

2
.
5
0

3
.
0
0

3
1
5
0

4
.
0
0

4
.
5
0

5
.
0
0

N
U
H

C
Y
C
L
E
S

N
U
H

C
Y
C
L
E
S



F
I
G
U
R
E

2
-

c
o
n
t
i
n
u
e
d

09'0

l
(
9
)

0r OZ'O

 
 

)-

00-03

.
0
0

0
-
2
0

0
.
4
0

0
.
6
0

0
-
8
0

1
-
0
0

1
.
2
0

OO'ZZ

fi

00-;1

183d SA HON

0039

A30 83d

00-25”

D .
0

0
1
5
0

1
1
0
0

1
1
5
0

2
1
0
0

2
1
5
0

3
1
0
0

N
U
H

C
Y
C
L
E
S

OO'OZ

183d SA

a

00'0

(

(

I

u

OO'OZ'

HflN A30 383d

 
T

Y

.
0
0

2
.
5
0

3
.

3
1
5
0

4
1
0
0

4
.
5
0

5
.
0
0

0
0

N
U
H

C
Y
C
L
E
S

00'01-N

65



FIGURE 3.(a-b)

FIGURE 4.(a-b)
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Behavior of Van de Vusse system for Tkl

Tk3A0 = A = 1, e = .75.

Behavior of Van de Vusse system for 1k,

1k3Ao = A = l, e = .25.

kz/k1

kz/k1
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FIGURE 5.(a-b)

FIGURE 6.(a-b)
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Deviation of perturbation solution from numerical

simulation for Van de Vusse system Tkl = k2/k1 = l

Ck3A01005 A = 1 e = .25. % error = (Cpert - Cnum)/

num

Deviation of perturbation solution from numerical

simulation for Van de Vusse system Tkl = k2/k1 = l

Ek3A01305 A = l c = .75. % error = (Cpert - cnum)/

num’
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FIGURE 7.(a-b)

FIGURE 8.(a-b)
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Deviation of perturbation solution from numerical

simulation for Van de Vusse system rkl = kz/kl = 5

Ek3A01301 A = 1 e = .25. % error = (opert - cnum)/

num°

Deviation of perturbation solution from numerical

simulation for Van de Vusse system Tkl = k2/k1 = 5

Ck3A0100] A = 1 e = .75. % error = (Cpert - Chum)/

num'
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FIGURE 9.(a-b)

FIGURE lO.(a-b)

72

Deviation of perturbation solution from numerical

simulation for Van de Vusse system Tkl = k2/k1 =

Ck3A01005 A = 1 e = .25. % error = (Cpert - Cnum)/

num

Deviation of perturbation solution from numerical

simulation for Van de Vusse system Tkl = k2/k1 =

TkaA - 5 A = 1 e = .75. % error = (Cpert - Cnum
o

Cnum-lOO.

)/
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FIGURE 11.(a-b)

FIGURE 12.(a-b)
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Deviation of perturbation solution from numerical

simulation for Van de Vusse system 1k; = kz/kl =

Ck3A9100] A = 5 c = .25. % error = (Cpert - Cnum)/

num '

Deviation of perturbation solution from numerical

simulation for Van de Vusse system Tkl = kz/kl =

Ck3A°1001 A = 5 c = .75. % error = (Cpert - Cnum)/

num
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FIGURE 13.(a-b)

FIGURE 14.(a-b)
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Deviation of perturbation solution from numerical

simulation for Van de Vusse system Tkl = k2/k1 =

Ek3A91301 A = .2 e = .25. % error = (Cpert - Cnum

num '

Deviation of perturbation solution from numerical

simulation for Van de Vusse system Tkl = kz/kl =

Ck3A°1001 A = .2 e = .75. % error = (Cpert - Cnum

num'
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the perturbation solution gives an accurate and convenient prediction of

the time average system behavior.

Table 1 shows the predictions from the perturbation solutions for

those values of the system constants which appear in the figures. The

first 4 columns give the percent error in the average concentrations

calculated from equations (24) when compared to the numerical simulation.

The largest error is 5.43%, including all the cases where the error in

the functions themselves were large. The second four columns give the

predicted enhancement in concentration. Again, I, E, and 3 compare to

the steady state with the same residence time as the periodic process

while 5 compares to the optimum steady state b given by DeVera and

Varma [12].

Several trends can be discerned from the data in Table 1. These are

very similar to the behavior of the Van de Vusse system under square wave

feed concentration [13]. As with square wave cycling, the effect of

periodic Operation on the time averages increases as the period of the

feed disturbance increases, or as A decreases. This trend implies that

the most effective cycling for this case is quasi-steady state cycling,

where the process input changes very slowly. In that case, the process

responds quickly enough to always be near the steady state corresponding

to the instantaneous value of the input. If the effects of cycling are

desirable, it may be more advantageous to run several steady state

processes in parallel, since the performance of a quasi-steady state

process can be approached in this manner.

The form of the analytic expressions (24) show that conversion is

always enhanced, yields of b and c are diminished, and yield of d is almost

always enhanced. These a priori conclusions reinforce the same trends in

the data for the square wave feed, although a priori predictions were not

possible in that case.



79

TABLE 1. Percent deviation of approximate time average concentra-

tions [equations (24)] from numerically simulated time

average concentrations; percent enhancement of approximate

time average concentrations over steady state concentra-

tions.
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One other trend is observed which also appeared in square wave cycling.

The effects of periodic Operation were most pronounced when the kinetic

constants favor the formation of B over the formation of D. This is in

fact logical. If the kinetic constants favor the formation of D, then

little B or C would be produced, making it impossible to sizeably shift

the product distribution from B and C toward 0.

CONCLUSION

Sinusoidal concentration fluctuations to an isothermal CSTR with

either consecutive parallel or Van de Vusse kinetics is ineffective in

increasing the yield of intermediate product B, or the output of product

c. For Van de Vusse kinetics, however, output of the side product 0 can

be sizeably enhanced by up to 25% by such an input disturbance. The

perturbation solution given above provides a convenient and calculationally

simple method of approximating the time average output of the reactor.



CHAPTER 3

PERIODIC SQUARE WAVE FEED CONCENTRATION TO AN

ISOTHERMAL CSTR WITH A VAN DE VUSSE REACTION

OCCURRING IN POROUS SLAB CATALYST PARTICLES

82
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Periodic operation of chemical reactors has its most significant

impact in the area of heterogeneously catalyzed systems, which are by

far most important from an industrial viewpoint. The complexity Of the

mathematics evolving from the treatment of such systems, however, is

immense. For this reason, research in this area has either relied heavily

on extreme simplifying assumptions, has used approximate or numerical

approaches, or both.

Bailey has explored the theoretical aspects of periodically

operated catalytic processes. His early work emphasized a control

oriented approach to the tOpic and neglected diffusional or mass transfer

effects entirely [l,2,3,4,5,6]. His later work considers a less idealized

case in which a porous catalyst pellet is examined under the influence of

a periodic boundary condition [7,8]. He was able to show increases in

selectivity using numerical and approximate analytic techniques.

Others have studied similar problems from a theoretical viewpoint.

Oruzheinkov et a1. [9] used an approach similar to the early work of

Bailey and concluded that selectivity in a non-porous catalyst could be

improved by periodic Operation. Rice and coworkers [10,11] looked at the

transient, non-periodic behavior of a porous catalyst both with and

without external mass transfer limitations. Experimental work in the area

has centered on problems in which diffusional effects are absent [12,13,14],

with the exception Of Unni, et al., who showed an increase in conversion

from concentration cycling [15].

The Model

Unlike the other models, e.g., Bailey, we consider here a case where

the perturbation is caused by an external forcing function. A CSTR in

which porous catalyst pellets are contained is fed with a stream whose
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concentration varies in a square wave. The pellets are considered

to be one-dimensional. A complex reaction network named after

Van de Vusse

A+A53O

takes place on the active surface within the catalyst with no reaction

volume change. The diffusivities Of the various species may be unequal

but are considered constant. Mass transfer coefficients are assumed

equal for all species. Adsorption-desorption effects are lumped into

effective rate constants which give the rate Of surface reaction in terms

Of the adjacent fluid phase concentrations. Diffusional resistance within

the pellet is considered important and an external mass transfer resistance

is included. Components A and B will be considered.

The Basic Equations
 

Two mass balances are involved for each component: the balance

with the catalyst slab and the balance on the fluid medium in which the

particles are bathed, which will be referred to as the bulk phase. For

component A in the slab we have

32A 2_ 35
DeA §;7-- k1A - k3A - at (la)

and the in the bulk phase

“ 3.13 . . 93 (11.1q Af(t) qA DeAax (x L,t)Anp Vc dt

with boundary conditions

“ _ _ , _ _ , 8A _ _ , 3A _ _ “ _
A(t-O)-O, A(x,t-0)-0, §;-(x—0)-0, D ——(x-L)-kq[A-A(x-L)] (1c)

eAax
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For component B in the slab,

828
DEB-377+k12=gA-1(B

fl
I
I
C
D

and in the bulk

“ BB _ _ 51_
fo- qB- DeB SE-(x—L,t)Anp - Vc dt

and boundary conditions

“_-. ==.8_B==.§_1_3.==“_=
B(t-0)-0, B(x,t 0) 0, ax(x 0) 0, DeBax (x l) kng B(x 1)]

Defining the following dimensionless variables,

  

 

 

.4 : lez ':._X_- U:A_. K :k3AO
V- De 3 _L, uO-As 3-kl

A

CD 0

E = 9A . b . 3.. , z 52. h . _EA
- L ’ - A ’ “2 - k1 ’ D

0 e

B

V60 0 n A
9 ep

: A : A :th

“T’ 5- qL V-oe

x x A

A A A B
u:- b:—

A0 A0

the mass balances can be made dimensionless as follows

2U

 

-¢ lu+Ka u]=

Q
J
O
J

C
I
)
:

”a

A “ Bu _ _ .92
0f - u - 6-53 (g-1,0) - 0 dB

with dimensionless boundary conditions

(€= o1=oo;-§! (a=1) = v1G-u<a=111319:0); u1a.e=01=o ; 3 a
E

for b

325 2 _ _a_13
5?.»011101251 41%

(2b)

(2C)

(3a)

(3b)

(4C)
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l
l

'
9
'

Q
2
0
)

(
D
U
)

(61.6)

0
2
0
)

«
1
0
'

A A E

bf'b'h ;

with boundary conditions

0
'

8

B(e=o>=o;b(;.e=0)=o;—(a=0)=o. <a=n=hv[B-b(a=m (Sc)

Q
)

J
“

Q
)

{
'
1
0
'

Equations (4) are coupled but independent of equations (5); equations (5)

are unidirectionally coupled to equations (4).

The periodic forcing function of interest is the square wave

0; tc[0,n/A)

uf = ; uf(t+2n/A)=uf(t); bf = 0 (6)

2; tE[T/A,2W/A)

There is no intermediate b in the feed. The steady state anologs of

equations (4) and (5) are obtained by setting the time derivatives equal

to zero and letting uf equal one.

Of the 4 steady state and 4 transient equations, only the steady state

counterparts of the reactant balances (4) were found amenable to solution.

The solution to u(§) takes on one of three simple forms depending on

whether u(§=0) >< = l/2K3, or l/2K3 > l. Since the evaluation of u(£=0)

requires a knowledge of the solution form, it is convenient to determine

the value of ¢0(=/$%)which corresponds to u(g=0) = l/2K3. By maximum

principles and the uniqueness of solution, it can be shown that

935%:9)< 0, so that the value of ¢ determines which form of the solution

applies. The result is for ¢ > $0, or if l/(2K3)>l

2 -

u(€) = c + (uo-c) dc2{‘/Eg§%igi-E)i} ; ¢>¢o (7a)

The value of uo is found for ¢>oo by solving the following equations

simultaneously:
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_£§2—- /(U1-Uo)(U1-b)(U1-C) = 135v [i-ulJ (7b)

u, = c + [uo-c] dc2{\/K39[éu°’C7 } (7c)

where

b+ C_ '(Uo+3/2K3)i/(%0+3/2K3)2'4U0(“0+3/2K3)
(7d)

The notation b+,c_ in equation (7d) implies that b corresponds to

the plus sign and c to the minus sign. For ¢ = o0, the solution takes

on a simple form

um = uon+3 tanz (g—am ; we (8)

l-cn[/2K3/3g2 oil

l+cn[/2K3/3g2 ¢€J

 

°A, ¢<¢o (96)

Here, do and cn are the Jacobian elliptic functions. Again uo is found

for ¢<¢o by the simultaneous solution of 2 equations, viz.,

+ l-cnfi/2K37392 $] ,A (9b)

l+cn[v2K2739 $1

and equation (7b). The quantities needed for evaluation of (9b) are

U1 = U0

A2 = (bl'Uo)2 + a12 (9C)

_ 2

9 =1/m9 bl = mzi 9 af = ' b4C (9d)

where b and c are again defined by (7d).

When l/(2K3)>l, o0 need not be calculated; otherwise the value of

$0 is found by solving

_ , 1/2 _
./—123K 2 tan {MW—l”2&5] [u1+l/KJE11-l/2KJ= 21:72:71 (lOa)
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for u). The result is substituted into the following equation and

solved for do:

u1 = i/2K3{i+3tan2(-¢‘—g)} (lOb)

The bulk phase concentration is given by a simple algebraic relationship:

“ _ l + BVU(§EJ)
u - l+Bv (ll)

The steady state counterparts to equations (5) can be solved by

variation of parameters in combination with equations (7-10). However,

the integrals arising from such a treatment contain expressions of the

at at
e e 0 0

form J ESE—E? dt or I EEEYEf-dt which cannot be expressed in terms of a

finite series of elementary functions or, to our knowledge, any infinite

but convergent series. The periodic equations (4,5,6) are nonlinear

partial differential equations and are presumed to have no exact solution.

As of yet no applicable approximate solutions have been found, although

such work is in progress.

NUMERICAL RESULTS

The steady state forms, which give second order ordinary differential

equations (ODE's) with boundary values, were solved using the iterative

McGuinness method [19]. The periodic forms were treated by the method

of lines [20], in which the spatial derivatives are discretized, yielding

a coupled system of ODE's with respect to time. These are solved

simultaneously with the ODE governing the bulk phase concentration. All

of the ODE's encountered were solved with the IMSL routine DGEAR using

Adam's method.

The steady state solution for u(g) was checked against numerical

simulation and gave arbitrarily close agreement within the accuracy of

DGEAR for all three solution regions. Thereafter, in all steady state
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calculations, including the numerical simulation of b(g), the analytic

expression for u(§) was used.

Table l summarizes the results of the numerical solution of the

periodic process for square wave forcing. As can be seen for the results

with h = 5., the accuracy of the results change dramatically with the

number of spatial increments used. Close convergence of the results with

increasing number of increments is elusive, because computing time

increases very rapidly. In some cases as much as l25 CP seconds on

MSU's Cyber 750 model l70 were needed to perform a simulation with 25

spatial increments.

Rows l and 2 of Table l, marked Ref, give the results when all of >

the system constants are equal to one. Row 2 with 20 spatial increments

is the more accurate and provides a reference against which the other

results can be compared. In each case one constant was varied and all

others were held fixed at one. The column on the left shows which

constant was varied.

Figures l through 5 show the system behavior for the case where all

constants are equal to one. There is an abrupt break in the slope of

3(6) (Fig. l), whereas 3(a) (Fig. 2) shows no abrupt changes in slope.

Figure 3 shows the phase plane for the bulk phase concentrations.

Figures 4 and 5 show the concentration profiles within the pellet at

five different points in the cycle. The horizontal sections on the

right of each profile show the bulk phase concentrations. The diagonal

lines connecting the values at the outside of the catalyst pellet to those

in the bulk represent a physical gradient which imparts an impression of

the concentration difference across the external boundary layer. It is

interesting that the bulk phase behavior, Figures l, 2, 3, is quite

similar to that observed for the square wave forced homogeneous system [l6].
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FIGURE 1. Bulk phase reactant concentration vs. time for square wave

cycling. ¢=l. v=l. B=l. K3=l. h=l. K2=l. A=l. w=l.
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FIGURE 2. Bulk phase intermediate concentration vs time for square

wave cycling. ¢=l. v=l. B=l. K3=l. h=l. K2= . A=l.

w=l.
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FIGURE 3. Bulk phase plane behavior for square wave cycling.

¢=l. v=l. B=l. K3=l. h=l. K2=l. A=l. w=l.
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FIGURE 4. Reactant concentration profile within the pellet at five

selected points in the limit cycle. ¢=l. v=l. B=l.

K3=l. h=l. K2=l. A=l. w=l.
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FIGURE 5. Intermediate concentration profile within the pellet at

five selected pointed in the limit cycle. ¢=l. v=l.

8=l. K3=l. h=l. K2=l. A=l. w=l.



F
I
G
U
R
E

5
.

 

82'0

 

SZ'O

 

99

 

 

 

I

80.0

 

  

  
l

I
l

E
b
.
0
0

0
1
2
0

0
1
4
0

0
1
6
0

0
1
8
0

1
1
0
0

1
.
2
0

1
.
4
0

1
.
6
0

D
I
N
-
L
E
S
S

D
I
S
T
H
N
C
E



100

TABLE 1. Percent increase in time average of periodic bulk phase

concentrations over steady state concentrations for

square wave perturbation.



lOl

 

 

 

 

 

 

 

 

TABLE 1.

c 6 0 k, h K; 7. : ~51+ 5.0 ’.—b

1. 1. 1. 1. 1. 1. 1. 1. 5 2.43 - 2.03

Raf 1. 1. 1. 1. 1. 1. 1. 1. 20 - .074 - 3.82

Dec .1 1. 1. 1. 1. 1. 1. 1. 5 .340 -19.1

a .1 1. 1. 1. 1. 1. 1. 1. 20 .026 - 4.97

.4 1. 1. 1. 1. 1. 1. 1. 5 1.77 -12.0

Inc 1. 1. 1. 1. 1. 1. 1. 5. 5 3.30 2.11

. 1. 1. 1. 1. 1. 1. 1. 5. 10 1.43 .777

1 1 1 1. 1 1 1 5 20 .637 - .112

Dec 1. 1. 1. 1. 1. . 1. 1. 0 1.09 - 6.62

k, 1. 1. 1. 1. 1. .2 1. 1. 16 .119 - 5.47

Dec 1. 1. 1. .2 1. 1. 1. 1. 10 1.39 .438

k, 1. 1. 1. .2 1. 1. 1. 1. 20 .557 - .421

1. 1. 1. 1. .1 1. 1. 1. 12 .440 - 2.66

1. 1. 1. 1. .2 1. 1. 1. 10 .71 - 2.4

vary- 1. 1. 1. 1. 5. 1. 1. 1. 5 2.49 - 9.68

‘“9 1. 1. 1. 1. 5 1. 1. 1. 15 .17 - 6.09

h 1. 1. 1. 1. 5. 1. 1. 1. 25 - .07 - 5.6

1. 1. 1. 1. 10. 1. 1. 1. 15 .044 - 1.24

lnc v 1. 10. 1. 1. 1. 1. 1. 1. 15 - .377 - 5.86
 

+NSI is the number of spatial increments used in the method of lines.
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Discussion
 

Over a narrow range of physical parameter variation, the preliminary

results presented here are less than encouraging for the effort to

increase yield by periodic operation. Those parameters related to mass

transfer resistance, namely 0, v, and h, do not seem to combine in any

way to enhance time average yield. For instance, decreasing 0, which has

the effect of rendering diffusion of A more significant in comparison to

reaction of A, appears to be detrimental to both time average conversion

and time average yield. An increase in 0 can be interpreted in several

ways, e.g., the most direct is an increased residence time. This results

in a decrease in both conversion and yield. The same effect is produced

by a decrease in either K2 or K3. Variation of h, the ratio of diffusion

coefficients for A and B, shows no systematic pattern in its effect on

periodic operation and is not beneficial to yield in any case. It

should be noted that changing h should not affect the time average of A.

This is closely born out for those cases with 15 or more Spatial increments.

Lastly, an increase in v, reflecting lesser external mass transfer

resistance relative to diffusion, markedly decreases average yield, but

has a slight favorable effect on average conversion.

It appears, for those cases considered, that steady state Operation

is superior. While no definitive instances of yield enhancement are

presented in this work, this effort should not be abandoned. The results

presented here reflect only a few combinations of system constants,

and the possible variations of eight system constants are enormous.

Moreover, the probable error in this calculation via the method of lines

is as high as l00% for the lower values of enhancement. In fact, the

results in Table l illustrate that in some cases the enhancement changes

sign as the number of Spatial increments is increased.
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It was not possible to achieve strict convergence because of the

excessive computation time involved. Clearly a more efficient numerical

technique is necessary to allow a larger range of system constants

to be examined. Orthogonal collocation, as used by Bailey [8], may be

appropriate.

CONCLUSION

For the heterogeneously catalysed Van de Vusse reaction occurring

in slab catalyst particles in an isothermal CSTR, periodic square wave

forcing of the input concentration may not be effective in enhancing

yield relative to steady state. Preliminary approximate results show

mainly detrimental effects on both yield of intermediate B and conversion

of reactant A. Additional work,specifically on mathematical analysis

of the integro-differential equation resulting from the model,is necessary.
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