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ABSTRACT
ON A GENERALIZATION OF THE LOTOTSKY SUMMABILITY METHOD

by Herbert B. Skerry

A. Jakimovski defined his (F’dn) summability method
as a generalization of the Lototsky method. Subsequently,
G. Smith generalized the (F,dn) method to the (f,dn) method,
and later generalized this to the (f,dn,zl) method. Let
f Dbe analytic &t the origin and suppose z; 1is a point
in its disc of convergence. Let cg¢ = 1, Cop = 0 for
k >0, and

n f(zz,) + a, @ x

T = 3 c .,z for n > 1.
1 f(zq + dv k=0 nk

Then the (f,dn,zl) method is defined by the matrix (cnk).
The (f,dn), (F'dn)’ and Lototsky methods are, respectively,
the methods (f,dn,l), (z,dn,l), and (z,n-1,1).

Chapter 1 is concerned with the generalization (f,dn,zl)*

of (f,dn); it is defined by the matrix (c*_ where

k)'

cfo = 1, cgy = 0 for k > 0, and

n f£f(z) + a, o) "
q ?T;ITITEC =k§0 cnk z for n > 1.
Various properties of this method, which behaves quite
differently from Qf,dn,zll are extracted.
Sufficient conditions for the regularity of (f,dn) have
been given by Smith, but all require that £ have real,
non-negative Taylor coefficients. Chapter 2 presents some

sufficiency conditions for the regularity of (f,dn,zl)
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under different restrictions on f.

Chapter 3 concerns itself with the coincidence of the
(f,dn,zl) method with various other methods, including the
Sonnenschein, Hausdorff, quasi-Hausdorff, Norlund, and
Riesz methods, and the modified quasi-Hausdorff method of
M. S. Ramanujan.

The last chapter deals with questions of inclusion
between two (f,dn,zl) methods and between (f,dn,zl) and
several other methods, e.g., the Riesz, Abél, Y, and (E,p)

methods.
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INTRODUCTION

A sequence summability method S is a way of associ-
ating a unique number with each of a class of sequences.
The largest class of sequences for which S performs this

function is called the summability field of S. If S

associates L with x = [xn} we say S sums x to L.

If S sums every convergent sequence, then S is con-
servative, and if, moreover, S sums each convergent se-
quence to its limit, then S is reqular. We will be con-
cerned only with complex sequences.

Every complex matrix having infinitely many rows and
columns defines a sequence summability method. If A 1is
such a matrix, then for suitable sequences x the A-trans-
form, t = Ax, determined by matrix multiplication is a
sequence; if it converges we say A sums.' x to lim tn'
It is clear that the summability field of A is the class
of sequences whose A-transform exists and converges.

Necessary and sufficient conditions for such a matrix

A = (ank) to be conservative are well-known ([8], p. 43).

They are
(0.1) sup 3 lankl < o ,
n k
(0.2) lim § a ., = ¢ exists,
n k nk
(0.3) l;m a, = a exists for each k.
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A is regular if and only if it is conservative with ¢ =1
and a, =0 for each k ([8], p. 43).
Given the methods S and S*, we will say S 1is at

least as strong as S*' if the summability field of §'

is a subset of that of S. Under these conditions the

two methods are consistent if each element of the smaller

summability field is summed to the same number by both
methods.

A number of the classical sequence summability methods
are matrix methods. The best-known among them are probably
the Cesaro methods (see [8]). In [10] Lototsky defined a
method which Agnew considers to rival the Cesaro methods
in importance (see [4]). This method was subsequently
generalized by Jakimovski [9] to his (F,dn) method, and
this in turn was generalized by Smith [15] to the (f,dn)
method. Finally, in a paper to appear [16], Smith general-
ized (f’dn) to (f,dn,zl). We will concern ourselves with
the last three methods.

The following definitions and conventions will be used.

Definition 0.4: Let f Dbe holomorphic at the origin

@

and let {dn}1 be a sequence of complex numbers with
d. # -f(z,), where z; is in the disc of convergence of f.
Let

n @ X

— >

(0.5) T (£(z) + dk) = 2 pyp % . n Z 1.

1 k=0
Then the method (f,dn,zl) is defined by the matrix C = (cnk),

where



k
1, k=0 P21
(0.6) Cox " and ¢, = nk , n =
0 0, k>0 n #(f(z )+ )
1 1)%dy

In terms of the above definition, the Lototsky method
is the method (z, n-1, 1) and (F,dn) is the method (z,dn,l).
The (f'dn) method is defined to be (f,dn,l).

We will assume throughout that 2z, # 0. For conveni-

ence we will use Jakimovski's notation:
n
T (£(z) + 4,) = (£(z) + dn). .

The definition of (f,d ,z;) insures that the condition
(0.2) holds with ¢ = 1, so we need only consider the re-
maining two conditions in any questions of regularity or
conservativity that arise in connection with (f,dn,zl)

and its various special cases.



CHAPTER I
THE METHOD (f,dn.zl)*

We have remarked that Smith first defined and in-
vestigated the method (f,dn) and only later generalized it
to (f,dn,zl). The question arises as to whether some
other generalization is not equally as natural and as use-

ful. 1In this light, consider the

o)
Definition 1.1: Let f,[dn}1 , and z; Dbe as in

definition 0.4. Then the method (f,dn,zl)* is given by

the matrix C* = (c;k), where
1,x=0 P
* - * = nk .
(1.2) Cok {O,k .o and Chk (f(z1)+dn)l , N2 1.
k
It seems clear that Smith inserted the factor z; in
the expression for cnk to preserve the property

% cx = 1 which obtains for (f,dn). We have dropped this
factor in the above definition and have accordingly lost
this convenient property, but it is not obvious that any-
thing more than convenience has been lost.

The following necessity conditions for regularity are
restatements of theorems in [15] with £(z,) substituted
for £(1). For the sake of completeness we include the
proofs, which are essentially Smith's. We will use the
notation

(1.3) Re f(z) = u, Im £(z) =v, d_ = x + iy = p.e ,



5

Theorem 1.4: Let dn # -£(0) Then a necessary
condition that (f,dn,zl)* be regular is that there exists

a strictly increasing sequence [nk] of positive integers

such that
£(0) + d, 2
k
s (1 - ) = ©.

Proof: By setting z =0 in (0.5) and using (1.2),

we see that

. 2 £(0) + a,
no 1 £(z,) + 4 -
Since the method is regular, lim c;0 = 0. It follows
n
immediately that
y . 2 _oo|E(0)+d 2 ©1-(1 £(0)+d, |2
Ao | ho | B HENES m{1-01= 57 +d, 1)

=7 (1 -a_ ) =0, where a, < 1.

k

et )
T x

Clearly, an infinite number of ak's must be positive in

ao
order that (1 - ak) = 0; let {ank] be the sequence of
1
00 @
positive ak's. Then 7 (1 - a, ) = 0, whence X a, = @
k=1 k k=1 "k

as claimed.

Corollary 1.5: Let dn # -f£(0) and let £(0) and

f(z;,) be real. Then a necessary condition for the regu-
larity of (f,dn,zl)* is the existence of a strictly in-

creasing sequence {nk] of natural numbers satisfying

£(0) + £(z,) + 2xn
k

@
b

2 = .
k=1 |£(z1) + dnkl
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Proof: Since f£f(0) and £(z;) are real we have

£(0) +d_ 2 £(z,) + £(0) + 2x

(1.6) 1- k = [£(zy) - £(0)] E

£lzy) + dnk |£(zy)+ @

The above theorem then says that

o E(z1) + £(0) + 2x
z - 0 =
[£(z2) - £0)) = TR dnklz ®

so the result follows.

Corollary 1.7: Let d_ # -£(0). Then a necessary
condition for the regularity of (f,dn,zl)* is that
|£(zy) + dn| > |£(0) + dnl for infinitely many n. Fur-
thermore, if £(0) and f(z,;) are real, a necessary con-

dition is that

X > - %[f(o) + f(z,)] > -£f(z;) when £(z;) > £(0)
and

X, < - %[f(o) + f(z4)] < -f(z,) when f£(z,) < £(0)

for infinitely many n.

Proof: In the proof of theorem 1.4 it was observed

£(0) +a_ |?
that 0 <1 - z.) + dn <1 for infinitely many n,
£(0) + d_ |2
i.e., 0 < F(zg) + a_ <1 for infinitely many n. The

first statement of the corollary follows. This last in-
equality together with (1.6) says that
f(z,) + £(0) + 2x_ > 0 when f(z,) > £(0), i.e.,
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x_ > - 2[£(0) + £(21)] > -£(z;).

The remaining statement of the corollary is proved in a

similar manner.

Corollary 1.8: If d # -£(0), a necessary condition

for the regularity of (f,dn,zl)* is that f(z,) # £(0).
Proof: This is an immediate consequence of Theorem 1.4.

Theorem 1.9: If (f,ddzl)* is regular, then

@© 1
s
1 [£(0) + 4]

= 0.

Proof: If £(0) +d = 0 for some n, the theorem
follows trivially. Hence, suppose £(0} + a, # 0. Let
{nk] be the sequence of positive integers whose existence
is assured by Corollary 1.7; then ]f(z1)+dnk| > ]f(0)+dnk|.

It follows that

£(0) + dnk 2 |f(zy) + dnk|2 - |£(0) +a_ |?
1 - =
f(Z]_) + dnk If(zl) + dnklz
) (|£(zy) + dnkl-lf(o) + dnkl)(lf(zl) + dnk|+lf(0) + dnkl)
|£(zy) + a_ |
Ty
. | (£(zy) + dnk)—(f(o) + dnk)l(lf(zl)f+ dnk|+|f(o) + dnkl)
|£(zq) + d_ |
k

|£(z1) + a |+|£(0) + &

l z -
- |£(z1) - £(0)] i | 2|£(21)-£(0) ]
z z d
|£(z,) +a_ | |£(zq)+ nkl

Pk



2|f(z,) - £(0)] s if §> 1
. us 1i converges,
[£(0) + dnkT’ Keq 1£(0) + dnk[ g

<

. £(0) + dnk 2

so also does k§1 (1- Tz, )+ d ) in violation of Theorem

1.4.

Corollary 1.10: If d # -£(0), then (f,dn,zl)* is

(o0)
regular only if Z-ﬁ; = o for arbitrary N.
N

Corollary 1.11: If d # -£(0), then (f,dn,zl)* is

0o 1
regular only if = = o, N arbitrary.
N Tf(zly + dnl

For reference purposes we include the following three
lemmas, which occur in essence in [15] either as results

or as portions of proofs,

Lemma 1.12: Let dn 2 0 and let the power series

expansion of f about the origin have real, non-negative

coefficients. Then (f,dn) is regular if and only if
oo
1 =
P I +a T
Proof: This is Lemma 2.2 in [15].

Lemma 1.13: In the notation of (1.3),

'f(z . {’pn[(u-a)cos en + (v-b)sin en]
exp
le+d

|£(zy) + a_[*

u2 + v2 - a2 - p2 }

+ 2
2lf(zl) + dnl
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- exp Re([fﬁ)-f(zl)]in) + u2 + V2 - az -2b2
|£(zy) + a_| 2|£(zy) + 4|

£(z) + a_|*
Proof: Let x = 3 - 1 and use the fact
—_— z, )+ dn

that 1 + x = e* to get the result by a short calculation.

Lemma 1.14: Let 2z be fixed. In the notation of

(1.3), let
s 1

— =, 6 — 6, p —> 0.
pp#0 Pn B

n

Then
O f(z) + 4
T n

1 fles+”dn =0 if (u-a)cos 6+(v-b)sin 9§ =

Re([f(z) - f(zl)]eie) <0
and
ol f(z) + a . ‘
T ?TEIT:—EK = o if (u-a)cos 6+(v-b)sin 6 =

Re([E(z) - F(z;)1e*%) > o.

Proof: Let

) pn[(u-a)cos 6n+(v-b)sin 6,1 . u2 + v2 - a2 - b2

|£(z4) + a_|? 2[£(z,) +da_|”

n

and Q = (u-a)cos 6 + (v-b)sin 6. It is clear that

P9y —> Q- If Q < 0, then there is a K > 0 such that

-K > ann for all large n, so g S > Qn for large n.
n

f(z) + 4

n
By Lemma 1.13, lm

< exp {Qn} < exp (- §L] for
n
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large n. Then

o |f(z) + dn - © 4 ]
T |=7———=— = exp {(-K & — = 0.
N f(z,)+ dn N Pn

If Q > 0 we may use essentially the same argument, inter-

changing the roles of 2z and 2z; in Lemma 1.13, to show

o|f(z,) + 4 I o |[f(z) + 4
that 71 dl:l = 0, whence T R—)—-d—n o0 .
N f(z) + nl 1 zy)+ 4
i6_
Theorem 1.15: Let T = Im[(f(z;) - f(1))e ™M)
ien
let d = pe # -£(0). Suppose

(i) a + ib = £(z,) # £(1) = a + ip,

and

(ii) 6_ is bounded away from 6% + 2¢7 for large n,

n

and either

(iii) 1lim inf T, >0
or

(iv) 1lim sup T, < O.

Then (f,dnzl)* is not regular.

Proof: Suppose the contrary. Then, in the notation

of (1.2),
£(1) + d_
f(z,)+ d

* =
i c nk

=3 B

As a consequence,

£(1) + d. ‘

-1
_fizl5+ dm

£(1) - £(z,)
f(z,)+ d

so p, —> . From (ii) we may suppose that 6* + 6 =

1 as n —> ©.

l —> 0 as m —> oo,

<
o, —

6* + 2r - & for large n. Since Pp —> 00, we may use this

same branch of the argument for Ym = arg[f(1) + dm]

and
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£(1) + a.

Ym = arg[f(z,) + dm] for large m. Let gn = arg-?rg;y;jig

£(1) + a
The factors ?T;;T:_a;'——> 1, so we may use the principal

branch of the argument for ¢m = Ym - W& for large m.

oo f(1) + 4

The convergence of T ?T——T——JE implies the convergence
1 Zl+dm

0o
of 2 ﬂn' For a given large m, if neither q + X, hor
1

a + x is zero, we have, by choosing the appropriate branch

of the inverse tangent function for each of ¥ and Yg,

1 Bty , 1Bty
that \I’m = tan T % and ‘I’m = tan 7 7 x Then
m m
Bry, P+yy
= _ ' _a + X a + x -
tan ¢m tan (Ym Wm) m m

+ +
B ym.b Yo
a + x a + x
m m

1 +

(a+x ) +y) - (a+x)(b+y)
(@+x)(a +x) * (B +y,)(b+ ym)= Qn -

SO

Ly (awx) (Btyy) = (atx) (bty,)

a-

(o) (2, )+ (BH7,) (BHy,)

-1
(1.16) ¢ ,=Tan =~ Q = Tan

where Tan~' denotes the principal branch.

It can be easily.shown by routine calculation that
(1.16) is still valid if o + - 0O or a + X, = 0. Now
write

(a+pmcosem)(B+pmsin6m)-(a+pmcosem)(b+pmsin9m)

pQ =
mm m(a+pmcosem)(a+pmcosem)+(5+pmsin6m)(b+pmsin9m)

rl-(aB—ab)+pm(5-b)cosem+pm(a\—oc)sinem
Téa+b6)+pm(a+a)cos@m+pm(b+5)sin6m+p;
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o(1)+(p-b)cos 6 + (a-a)sin 6 o(1) + T,
= o(1) + 1 =0o(1) +1

If (iii) holds, then for all large m we have mem.l 5 >~ 0,
so, in particular, Qm > 0. Then (1.16) implies ¢m >0
and thus ¢m —_ 0+. But now, since Qm-——> 0+ from (1.16),

¢ Tan Q

-E— = -1 = ——-——-——m - >
-1 mean Qm Q mem —€e>0
Pm m
for large m, so p;I = g'lwm. Then the convergence of

z ¢m implies that of =2 p;I in violation of Corollary 1.10.
1f, on the other hand, (iv) holds, the argument proceeds

in a similar manner.

We remark here that the above proof depends only on
the conservativity condition (0.2) with ¢ # 0 and on
Corollary 1.10. 1Inspection of the proofs of this corollary
and its antecedents shows that the only regularity condition

used is lim c;0 = 0. We may thus state
n

Corollary 1.17: Under the hypotheses of Theorem 1.15,

the (f,d z,)*-method cannot satisfy both 1lim cSo =0 and
n

lim £ ¢, = 0.
in 3 cfy = C 7

The following corollary appeared in the proof of

Theorem 1.15.

Corollary 1.18: Let lim 3 c;k =t # 0. Then
. n

Pp —> @ .
We will now prove a result which is not a direct cor-

ollary of Theorem 1.15, but which is closely allied to it.



13
ien
Theorem 1.19: Let d = p e # -£(0), a + ib =

£(z1) # £(1) = o + ip, and 6_—> 6. Then (£,d_,z;)" is

not regqular.

Proof: By Corollaries 1.10 and 1.18 the result follows

oo

immediately unless 3 1 - o for arbitrary N and
n

pp —> @©- Thus suppose these conditions met. Then

Lemma 1.14 gives
(1.20) (d = a) cos  + (B - b) sin 6 =0 ,
assuming (f,dn,zl)* is regular. If also

(1.21) (B -b) cos 6 + (a -qa) sin 6 =0

and 6 # ¢ % + 24w, then tan 6 = - %—E—g-. But from (1.20),
=_g—_a B—b:a—a _ 2:- _2
tan 6 5 -Db so T4 5~ b and (B b) (a0 =a)™ .

It follows that o = a and £ = b, violating the hypothesis.

on the other hand, if 6 = # % + 247 and (1.21) holds,

then it follows from (1.20) and 1.21) together that o = a

and £ = b, again violating the hypotheses. Heance, the

assumption of regularity implies that (1.21) cannot be true,

so lim T

i n lgm[(ﬁ - b)cos en + (a - a) sin en] =

(p - b) cos 8 + (a - @) sin 6. is either

positive or negative. Theorem 1.15 now gives a contradiction.
This last theorem is in marked contrast to Lemma 1.12,
so (f,dn,zl)*'behaves quite differently from (f,dn,zl) if
£(z,) # £(1).
We have seen that (1.20) is a consequence of regularity

if 4, # -£f(0), and, in fact, it is a consequence of the



14

conservativity conditions 1lim c¢* =0 and 1lim X c*
n no n X nk

= #0. If (1.20) is interpreted as a dot product of

vectors, it says

Corollary 1.22: Let d # -£(0) and suppose

lim ¢ = 0 and lim = c;k = ¢ #0. Then f(z,) and £(1)
n

no n x
lie on a normal to the ray arg z = 6.

In order to consider the relationship between (f,dn,zl)*

and (f,dn,zz)*, let vy, = (f(zy) + dn)! and 8 =

(£(zq) + dn)l, and suppose the elements of the matrices

corresponding to the two methods are, respectively, c;k

and b;k. From (1.2),
(1.21) b*, = ’n c*
: nk 3; nk’

From this it is clear that if a sequence iS (f,dn,zl)*—

summable to s, it is (f,dn,zz)*-summable if and only if

L = lim

i exists; in that event, it is summable to Ls.
n A

::‘01:;<

If L # 0, summability (f,dn,zz)* of a sequence to s im-
plies summability (£,d ,z;)* to L 's, so the summability
fields of the two methods are the same.

The following definition is Agnew's [3].

Definition 1.22: Given the sequence-to-sequence

transforms S and T and the sequence x, let Sx = [Sn}
and Tx = [Tn}. Then the transforms S and T are

equiconvergent for the class C of sequences if
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lJ.m(Sn - Tn) =0 for every x € C.
* * =
Let x be a sequence. Then i (cnk bnk)xk
'n * :
(1 - 3—) J ¢Sy, s0o if L =1 the two methods are equi-
n k

convergent on the class of sequences for which the
(f,dn,zl)* transform is bounded whether or not these
sequences are summable by either of the methods. 1In
particular, if (f,dn,zl)* satisfies (0.1), then the
methods are equiconvergent on at least the space SB of

bounded sequences.

n f(zl) + d-k
Theorem 1.23: Let 7 Y > L. Then a

sequence which is (f,dn,zl)*—summable to s is (f,dn,zz)*-
summable to Ls. If L # O, the summability fields are

the same. If L = 1, the methods are consistent on their
common summability field and are equiconvergent for all
sequences for which either transform is bounded. 1In par-
ticular, if either transform satisfies the conservativity
condition (0.1), then the methods are equiconvergent at

least on SB-

corollary 1.24: A necessary condition that (f,dn,zl)*

be conservative with £ # 0 (in the notation of (0.2)) is

that (f’dn) be conservative and have the same summability

field.

Proof: Let the (f,dn,zl)* matrix be (c;k)' Then
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n £(1) + d n £(zy)+ 4
. * o m _ . m_ ,—1
lg;mlz‘cnk lﬁmqm C#O, so lx:'Lme{HT)"'_dm ' .
Then Theorem 1.23 says that the summability fields are the
same.
Agnew [1] formulated the following

Definition 1.25: A sequence summation method is

multiplicative with multiplier L if every sequence con-
vergent to s 1is summed to Ls by the method.

It is known [8] that necessary and sufficient condi-
tions for a matrix A = (ank) to be multiplicative are
the conservativity conditions (0.1), (0.2), and (0.3) with

a, = 0. The multiplier is then (.

corollary 1.26: Necessary conditions that (f,dn,zl)*

be multiplicative with non-zero multiplier { are that
(f,dn) be regular and have the same summability field.

Proof: 1In the notation of the above corollary and

. . . m - . .
its proof, the relation lim 7 ?TTT_:—E_ = # 0 implies,
1 m

by Theorem 1.23, that (f,dn) is multiplicative with multi-
plier 1, i.e., it is regular, and it has the same field

of summation.

Corollaries 1.24 and 1.26 show, in effect, that for
a given f and a given sequence [dn}, the entire class
of conservative (f,dn,zl)* methods for which ¢ # 0 is
no stronger than the single method (f,dn).

With the machinery now at hand we can deal with the
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question of regularity for a large class of (f,dn,zl)*

methods. We need the following lemma (Theorem 4.6 in [15]).

Lemma 1.27: Let £(z) = az™, where a > 0 and m

is a positive integer. Let o be given with 0 < g <‘%,

and suppose there exist € >0 and N > 0 such that if
i6
n

a, = p, © , then 7286 >a and p > g for all n > N.

Then the method (f,dn) is not regqular.

Theorem 1.28: Let f£(z) = az™, where a >0 and m

is a positive integer. Let a be given with 0 < g < %y
and suppose there exist ¢ >0 and N > 0 such that if
i6
- n
dn-—pne

It follows that (f,dn,zl)* is not regular or even multi-

, then 7286 >a and p >ge for n >N.

plicative with non-zero multiplier.

Proof: Were the contrary true, Corollary 1.26 would
imply the regularity of (azm,dn), thereby violating
Lemma 1.27.

We will now pass to considerations of a different

nature.

We need the following lemma, proved by Agnew in [2]

(Lemma 3.1).
@
Lemma 1.29: For every n Z 0 let X lanvl < o,
v=o0
@
and let 1lim X |a_ | A < oc. Then if 1lim a =0
< nv nv
n v=o0 n

@
for each v it follows that 1lim|Z a ' s/ :.Ahlim|s§|.
n v=o
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Moreover, A 1is the smallest such constant in the sense
that there is a bounded sequence not converging to 0 for

which the equality holds.

Corollary 1.30: Let

n £(z3) + 4,

oo
Q, = T f(zg) + CH 2

-1

cX = 0(1),
2 len,l

n f(zl) + dV

let 1i - 1)c* =0 for each v, and let
im (y fz,) 7 4, )cnv or eac n

{sv} be bounded. Let [tél)] and [téz)] be the (f,dnzl)*

and (f,dn,zz)* transforms, respectively, of [sv]. Then if
T ; =, (2) (1) < o T7=

Q l;m Q, it follows that lrJ;mltn -t | =a l%mlsvl.

Moreover, Q 1is the smallest such constant in the sense

that there is a bounded sequence not converging to O for

which the equality holds.

oo} @
Proof: téz) - tél) = 2 b;vsv - c;v v
V=0 =0
@ * *
- vzo(bnv - cnv) v
(2) _ . (1) _ Jn _ . L
By (1.21), tn tn (6n 1)% SV An application

of Lemma 1.29 now gives the result.

In view of Theorem 1.23, we give a set of conditions

under which the (f,dn,zl)*-transform is bounded on SB: in

fact, the conditions are sufficient for (0.1) to hold for

the (f,dn,zl)* matrix.
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Lemma 1.31: In the notation (1.3), let p —> ®

and X 1. © . Then if £ is holomorphic on the closed

pn?0 Pn
unit disc, the (f,d ,z;)" transform is bounded on Sg -
Proof: Let the (£,d ,z;)* matrix have entries c),,
and let {sk] € Sy. Then, in view of (1.2) and (0.5),

. NCOREN)
c = T ° : t .,
k T TE(z1) +a)F " 2L [T ke
where C is the curve ]t] =r >1. If we let

n £(t) + d,

M X = 8su m ,
(%) SUP T F(zp )7 4,

* < Mn(r)
ekl =—%— + =°

then Cauchy's estimate gives

(1.32) ]Z c*

nkk |

o* | Zo(1)-m () 3 &
= o(1 Zc Z2o(1)M(xr) ==
X n ) rk

ro(l)?Mn(r)

T - 1 = 0(1)- Mn(r)-

n £(t) + 4 n £(t)- £(zq)
e I SR o

But Mh(r) = sup

teC
n o(1) .
< (1l + , since the con-
- 1( |£(z1) + dkf 1)
vergence of Z# i implies the convergence of the infi-
pp7o "n

nite product. The result follows.

One class of (f,dn,zl)* methods is easily discerned.
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Theorem 1.33: In the notation of (1.3), let

Pp —> @, 6n<——> 6, and = 1. ©. Let £ be holo-

P70 Pn

morphic on the closed unit disc and let C be the circle
about the origin of radius r > 1. Then (f,dn,zl)* sums

every bounded sequence to zero if

sup Re ([E(E) - £(z;)] eF) < o.

tec

Proof: By (1.32), li cri Skl = 0(1)-Mn(r). We may

show Mn(r) —> 0 Dby proceeding in a manner analogous to
that used in the proof of Lemma 1.14.
Let f£(t) = u(t) + iv(t). Define

£) = pk[(u(t)-a)cos 6k+(v(t)—b)sin Gk] .

|£(z1) . f’

u2(t) + v2(t) - a? - p2 .
2(£(z;) + a, |*

Now, u(t) and v(t) are bounded on C and P —> @,

so kak(t) —> (u(t) - a)cos 6 + (v(t) - b)sin 6 uni-

formly on C. Since C is compact, there is a t_¢ C

n
n £( + dkl

such that Mn(r) S f(zl) < dkl From the uniform con-

1

vergence, kak(tn) —_ (u(tn) - a)cos 6 + (v(tn) - b)sin 6

= Re([£(t ) - £(z1)] e %) = sup Re([£(t) - £(z1)1e™*7) =
teC

-25 .< 0, so that for k > N we have kak(tn) < =5, or

Qk(tn) < -6/pk, and N is independent of n. Then, by
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Lemma 1.13,
£(t,) + a
n < o
£(zy) + 4| ~ exp (Q ()} < exp(- Fk-} for k > N.
N E(t.) + n |£(t ) +
Tt follows that M,(r) = |7 f(zlz) +:']k< ‘i1 f(21) +:kk

N f +
T f( ) e dkl exp {-6 2 =—}, whence 1lim M (r) = 0.
1 £(z, dk| 1Pk n—soco B

To show that the hypotheses of Theorem 1.33 can be

satisfied, consider the example £(z) = exp{ze » 3%9 21},

Let @ = arg z; and let ¢t = rel®. Simple calculations

r cos (¢-a):

show that £(t) = e [cos (r sin(%=-a)) +

= oF cos (6-a) .

i sin(r sin(¢-a))], so u = Re f(t)

cos (r sin (¢-a)) = e’ for all t € C. On the other hand,
- |zll - . =
f(zy) = e = a. Then, if 6 = 0,

sup Re([£(t) - £(z1)1e™29)= sup(u - a) < e - el?1l <o
teC teC

if r < |z;|. Hence, we have only to choose 1 < r <.|z,|
and 6 = 0 to have the above choice of f satisfy the
conditions of Theorem 1.33.

We conclude this chapter with two examples. In view
of Theorems 1.15, 1.19, and 1.28, the question as to
whether or not there is a regular (f,dn,zl)* method for
which f£(z;) # £(1) arises naturally. The first example
exhibits such a method. The second example shows that
Theorems 1.15, 1.19, and 1.28 fail if the regularity in

the conclusion is weakened to conservativity.
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Example 1.34: The following result is due to Miracle

([12), Theorem 2.1):
]OO

tet ()5

be a sequence of positive numbers such
-1 _ = 4 = 3
that 2 xn o . Let dzn—1 mVRn and d2n len.

Then (z,dn) is regular.

Let 4 be defined as in Miracle's theorem and suppose
x - ﬁ and ¢k = Arg Pk'
where Arg denotes the principal branch. Let

xn —> 00 monotonically. Let P

¥, = Arg (1 + dk) and ¥ = Arg (-1 + dk)' We may suppose

A1 1is so large that ¢, =Y. - ¥!' for every k. From

k k k
the monotonicity of [%n}, it is geometrically clear that

k even

- i = - , SO
|¢kl > 0 monotonically. Moreover, d, d, -1

2m )1 = ¥onoy ~— T and

y! = Arg(-1 + dzm) = Arg[—(l +d,

I

Y

2m Arg(1l + dzm) = Arg[-(-1 - dzm)] = Arg[-(-1 + d

)]

-1

= ¥omey ~ T+ Then O =¥, - Yo = Yonoy T Yom-1 = "®am-y
2n
It follows that s, = % ¢ =0, and s, =8, =-o¢ =
@
—0, > 0, so % & = 0. As a consequenceéoif Ay 1is as-
sumed to be sufficiently large, we have q Pk = 1. Now,
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(z,dn) is regular by Miracle's theorem, and Theorem 1.23

gives the reqularity of (z,dn,—l)*.

Example 1.35: Let f(z) = z. Then from (0.5) follows

= > d. d. ee. d. if n > k, and =
Pak = % %51 %y, 3nx Fnn
1333 <jg<

NS 2
<30

Similarly, if d_ is replaced by |dk|’ then

n n "
m(z + [q]) = 2, Gx®
where
= s d. d. ... d. i f , and = 1.
d x 1<y < l 3y %4q Jn—kl if n>k, andq =1
...<jn_k§n
n x
<
It follows that lpnkl =q + SO kgo Ipnkl-lzl =
n kDN
b anlzl = g(lz] + ldkl). Then, letting z = 1,
k=9
n . n
— 1 + . F thi it i il that
kzo lpnkl ¥( ldk]) rom this it is easily seen a

n nlt+ l | .
K=o e :_-1er1—+—:1‘(—1- H

the (z,dn) matrix.

c is the typical element in

nk

Now consider the (z,in?) method. For this method,

1 ®© 1
1+ ) < v(1+—2) < oo,
k2 1 k

n l<$1+k2<2'1+k2=7r;(
k=0 1 T 1 g2 1

so (0.1) is true, and, of course, (0.2) follows automatically
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for any (f,d ) method. Now,

1 1 n t+jy2

_ 1
nk  27i cf: K1 T T+ive 2ri (f: K+

C

T (1
+
7 1+iv2

where C is a circle about the origin. Since the product

@© o tel .
T (1 + 1+iv3) converges absolutely and uniformly on the

compact set C, it is clear that 1lim Sk exists, i.e.,
n

(0.3) is valid. Thus (z,in?) is conservative, although

Corollary 1.10 shows it is not regular. The product

© 1+iv2 _ @ |
=7 (1 + ) is absolute convergent, hence
1 -1+4iv2 1 -1+iv2

convergent, so Theorem 1.23 says (z,in2,-1)* is also con-
servative. But this method satisfies the hypotheses of
Theorems 1.15, 1.19, and 1.28. 1In connection with Theorem
1.28 it should be observed that although the method is

conservative, it is not multiplicative. By (0.5)

Pho = T d ., so from (1.2) we get c__ T -1+q, -

n -1+ n
T % =T
1 9 1

1 fe») 1

n
TI(].""kz) <7T1 (1+k2) < 00

for each n 2 1, so 1lim C;o #Z 0.
n

£l ya¢

4



CHAPTER II
REGULARITY CONDITIONS FOR (f,dn,zl)

All of the sufficiency conditions for regularity given
in [15] by Smith require that the power series expansion
of £ about the origin have real, non-negative coeffici-
ents. We now give some sufficiency conditions which do
not so require. Of course there are compensating additional
hypotheses. We will need the following theorem of Bajsanski

[S5] and Clunie and vVermes [7]:

Theorem 2.1: Let f be holomorphic on the disc

|z} <R, R >1. Let |f(z)| <1 for |z| =1 except at

a finite number of points ¢ at which |[£({)]| = 1. Then,

k

if £7(z) = 3 a2z, it follows that i la | = 0(1) if

X k

and only if ReAC # 0 for each such (, where Ac[i(z-l)]P(C)
is the lead term of the Taylor expansion about 1 of

hC(z) - za(C), and where hc(z) = E%%%% and q(t) = hé(l).

Theorem 2.2: Let f satisfy the conditions of

Theorem 2.1, |z;| = 1, £(z;) = 1, and
o (1d )2
2 7 < ™.
1 |1+dn|
ie i6

n

1t a = p.e N let 1lim sup Re[(F(0) - 1)e "] < 0. Then

n
n—>a ,dn;éo
@ .
(£,d_,z,) is regular if 3 = .
n 1 |1 + dn |

25



k _ 2 n-j
Proof: (f(z) +d )t =3Sp.z =3 o. £ 9(z),
—_— n “nk . J
k j=o
where 0o =1 and o, = I d ... d for j >0
13y, < V1 j
co<v =
50
Now,
n : n oo © n
T oo (2) = 3 o, Za . kzk = (%o, a_. k)zk
j=0 J j=0 J k=0 J. k=0 j=o J J.
so
n
(2.3) Pnx © z % ®n-j,x

Since f(z;) =1,

(2.4) (£f(zy) + dn): = (1-+dn)t = % o

Substituting p, for d  in (2.4) gives (1 + pn)l =

n
n
2 o', where ¢! =1 and o! = 2 . oo for
0 J J J 1<V1 pV1 PVj
.<v.=n

n n Jj
j >0 Then I jo,| == 05 = (1 + pn)! It follows that

0 0

1 k 1

i lex | = Ti+d;[z i lPnx2y | = [T+d_T: i lPak | =

< 1

n n
Z 05 ag_g l -'|1+d;leiolojl > 120-5 x|

=
+
Q
;_]
M
g

. n +pn - ,
7a 1 2 lojl < B i+a . where B = sup T |a,|.
n n k

1+p, (1+pv < (1+p )2
But [1+d ['— [1+a T2 = ©*P (-1 + [1+d iﬂ}

-|1+d, |2 + (1+p,)2 4(Im V@ )2
exp { ll+dvl2 } = exp { |1+d |2 ).
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(1 + Pn)l n (Im¥d_)?

so , Zexp (4 3 ———>— 1 = 0(1). The regularity
1+ dnl’ 11+ dvl2

condition (0.1) is thus verified, and (0.2) is always true.

We need only show that 1lim S 0 for each k. Suppose
n
i6
lim sup Re[(£(0) - 1)e "] = -36, & > 0. By the maximum
n—>co,d;#0
modulus principle, ]f(O)l < 1-2¢g; for some ¢g; > 0. Let

€ = min(ey,0). Now let I be a circle about the origin

so small that |[£f(t) - £(0)| <eg on TI. Then |[£f(t)| =
i6

[£(0)| + €3 <1 -¢; on T. |Re[(£(0) - 1)e " -

i6 i6
Re[(£(t) - 1)e "1| = |Re[(£(0) - £(t))e "1| = [£(0)-£(t)]|

< ez uniformly in t and n if d # 0. Consequently,

iGn i9n
] -35 => Re[(£(0) - 1)e 7] < =26
iGn <
for large n, so Re[(£(t) - l)e ] < =28 + g3 — =6 for

lim sup Re[(£(0) - 1)e
n—>oo,dn#0

large n. If we let f£f(t) = u(t) + iv(t), then
i6
(2.5) Re[(E(t) - 1)e ™) = (u - 1)cos 6, + vsin 6 < -6

onT for n > N, a, #Z 0.

Let 0 < w <1 and choose g 8o that 0 < g <

2
€1 w*d
min (7—n V2 (1+) ). Let Qn(t) = g2 +u? + v2 4+

2¢€ J(u + p,cos Gn)2 + (v + p sin Gn)2 +
2pn[(u -1)cos 6, + v sin 6 ].

Then if t eI, n >N, and 0 < p_ Z w, we get
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Q (t) <e? + [£(t)|2 + 66 - 2p 8 < e + |£(t)] + 6e <

if(t)l + e, < 1.

On the other hand, if Pn Z w, then

£ /(2 +cos 6 )2+ (= + sin 6_)2 < w?
o \/ pn n pn n \/"2(1_‘_&)

=w <1,

so a multiplication through by 6p =~ gives

ev (u + p, coS en)’ + (v + p, Sin en)2 < &p,

But then,

Qn(t) < g2 +u? +v2 + 2¢ V(u + p, COS en)§*+ (v + p, sin en)2

- 2p. 6 = €3 + (£(t)|3

-2[6pn - € J(u + p, cos Gn)z + (v + Pn sin Gn)z ]

<e? + PE(t)|2<e + [£(t)] <22+ (1 - ) < 1.

Thus in any event, Qn(t) <1 on I for n >N, d £ 0.
But this is equivalent to |1 + d_|? > (e + [£(t) + dnl)z,
or |1 +4d | >¢e+ [£(t) +d |, or-[1+d |+ [f(t) +4]

<-e on T for n >N, d # 0. This is also clearly

true for all n for which dn = 0. It follows immediately

that
+ +
O I LY I
1+ q 13 1+d,
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-j1 + dvl + |£(t) + dv]

exp ( ———— } < exp (- T-‘é———T]
|1 + 4 | 1+4d,
n| £(t) + 4 N| £(t) + 4 n [ f(t)+d
on Tif v N oso 7 5g—| = T—1va | | TFa,
1 v 1 v | N+1 v
(1) e
<0(1) exp {-¢ = } =0o(1) as n — o uni-
N+1 1 + dv
1 1 n £(t) + a, 4
formly on I'. Consequently, ok = 31 g tk+1 T i d;) t

—> 0 as n —> oo.

Corollary 2.6: Let f satisfy the conditions of

‘ o (Im N-Td_)2
Theorem 2.1, |z,| =1, £(z;) = -1, and = ._____J%; < ® .
V|14 |
n
i6 i6
if dn = Ppe n' let 1lim sup Re [(fioi + 1)e n] < 0.
n—>om ,d_#0
n
2 1
Then (f,d_,z;) is regular if % I:I—:—a;T = .

Proof: The above proof, with only minor changes,

proves the corollary.

We remark here that inspection of the proofs above

gives immediately the following two corollaries.

cgrollary 2.7: Let f satisfy the conditions of

Theorem 2.1, |z,| =1, £(z;) =1, and

n 1+ Py
T T+a, - o)
v

where d = p e . Let 1lim sup Re[(E(0) - 1)e "] <oO.
n—>co , dn;éo
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. © 1
Then (f,dn,zl) is regular if % T+, oo .

There are two cases in which Theorem 2.2 and Corol-

lary 2.6 become particularly simple.

Corollary 2.9: Let f satisfy the conditions of

Theorem 2.1, |z,| =1, f(z;) =1, and 4 2 0. Then
C 1
(f,dn,zl) is regular if % i—:-a; = .

Corollary 2.10: Let f satisfy the conditions of

Theorem 2.1, |zy| =1 £(z;) = -1, and d X 0. Then
Py 1

(f.d ,2z1) is regular if % T+ a, = .

It is shown in [7] that the functions

(2.11) £(2z) = g4 (1 + iz + 23),
(2.12) £(z) = &=L e0(z=1) — _ Gim/s
(2.13) £f(z) = exp (®(z - 1) - R2(2z2 - 1)) , & = ei¢, cos ¢ =

all satisfy the conditions of Theorem 2.1 and have £(1) = 1.
If z; = 1, then these functions fulfill the hypotheses of
Corollary 2.9. Moreover, if f is the function (2.13),

B = -sin ¢, and F(z) = fzw/@(z)’ then an easy but tedious
calculation shows that F also fulfills the conditions of
Corollary 2.9 if 2z, = 2% 1f £ is any function obey-
ing the requirements of Theorem 2.1, then the maximum
modulus principle implies |[£(0)| < 1. Then Re £(0) <1,

i6
so if £(0)=a + ib, a - 1 < 0. Hence Re[(E(0) - 1)e "] =

SN
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(a - 1)cos 6, +bsin6 <0 if 6  is sufficiently
close to a multiple of 27. It follows that if Gn is
so restricted and z; = 1, then the functions (2.11),
(2.12), and (2.13) also meet the requirements of Theorem

2.2.

Definition 2.14: Let f Dbe holomorphic on the disc

@
|z]| <R, R > 1, and let £%(z) =3 a kzk for n > 0.
k=0 "

Then the summability method determined by the matrix

(ank) is called a Sonnenschein method.

In (7] the following theorem is proved:

Theorem 2.15: The Sonnenschein method generated by

f is regular if and only if either £(z) = z" for a
positive integer m , or f satisfies the conditions of

Theorem 2.1 and £(1) = 1.

The next two results are immediate consequences.

Theorem 2.16: Let £ be holomorphic on the disc

|z| <R, R > 1, and suppose £(z) # z", m a positive
integer. Then if the Sonnenschein method generated by £
is reqgular, so is the method (f,dn), provided

® (Im \/dn')2 _ - i6_
i} Wa < 0o, lim sup Re[(£(0) - 1)e

n—> , dn;éo

] <0,

and cg TT—%—E_T = @ .
1 n
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Proof: Apply Theorem 2.2, with z; = 1, and Theorem
2.15.

Corollary 2.17: Let £ be holomorphic on the disc

|z] <R, R > 1. Then if the Sonnenschein method generated
by f is regular, so is the method (f,dn), provided
®
1
> —_—
9 =0 and 2 FTyg =@

Proof: If f£(z) = z" for some positive integer m,
then Lemma 1.12 gives the conclusion. Otherwise, Corollary

2.9, with z; =1, gives the result.



CHAPTER III
COINCIDENCE OF METHODS

Lemma 3.1: The method (f,dn,zl) is Sonnenschein if

and only if dn = d,.

Proof: Suppose (f,dn,zl) is the Sonnenschein method
generated by g. Then the matrix coefficients of the two

methods are the same, so

n £f(zz,) + d n

Tz +gq -9 (2)

for n 21 on the intersection of their domains. 1In
f(zzl) + d1

particular, when n =1 we have g(z) = fz,) +d; °
Suppose d; = ... = dn_1 for some n > 1. Then
A (g) n-1 £(zz;) + 4, f(zzy) + a n-i(y) f(zz,) + a,
z) = T . = z) - ,
g 1 £(z1) + &~ TEzg) +a "9 £(zg) +
£(zz,) + qh )
so g(z) = fz.) 7 Qn - But then d = d;, so, by in-

duction, a. = d;. On the other hand, if dn = d,, then

n f(zz,) + d,
1 TE(z1) + d, =g

matrix coefficients of the two methods are clearly the

f(zz + d
z), where g(z) = é(zi§+ di, so the

same. Moreover, since z; is in the (open) disc of con-
vergence of £, g has radius of convergence > 1. Thus

(f,dn.zl) ig the Sonnenschein method generated by g.

33
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Lemma 3.2: Let b and z; # 0 be given. Then
every Sonnenschein method generated by a function g with
g(1) =1 can be realized as an (f,b,z,) method for ap-

propriate f.

Proof: Define f£f(z) = g(z/z,) - b. Since g has
radius of convergence > 1, f has radius of convergence
> |z4]. Then, if 4, = b,

f(zz,) + a, no_(,

n n
Tz +q - Tay=9 (=)

so the (f,b,z;) coefficients are those of the Sonnenschein

method.

If g(1) # 1, then the corresponding Sonnenschein
method cannot be realized as an (f,dn,zl) method since

the equality of the methods would imply that

nly) ;»f(zzl) + 4

1 £(z1) + 4

g for n>1,

whence g(1) s 1. But any Sonnenschein method can be
realized as an (f,dn,zl)* method if g(z;) =1 for some
z; in the disc of convergence of g. In fact, the Sonnen-
schein method generated by g is easily seen to be the
*
method (g,0,2,).
If the matrix of the Sonnenschein method generated

by g is (ank) and g(1) # 1, then either lgm % a .y =

lim gn(l) does not exist or it is zero. In the former
n
case the method cannot be conservative, and in the latter
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case all constant sequences are summed to zero (18], p. 43).
Consequently, in some sense the "interesting" Sonnenschein
methods are those for which g(1) = 1. Lemma 3.2 shows
that the qglass of "interesting" Sonnenschein methods is a
subclass of the set of (f,dn,zl) methods. We will now
prove some results analagous to those appearing in [14]
and which may be considered extensions of those results

if attention is restricted to the "interesting" Sonnenschein

methods.

Definition 3.3: If sj is a term of a sequence, let

(-1 ()8 45

M s

the operator A be defined by Ansj =
k=0

n>0.

Definition 3.4: The Hausdorff method (H,u) is de-

. . = = (Ryn-k
fined by the matrix H (hnk), where hnk (k)A M

for k = n, and h =0 for k > n.
nk

Definition 3.5: The quasi-Hausdorff method (H*,u) is

. . _ * - (ky,k-n
defined by the matrix H* = (h%, ), where h . (n)A T

for kX Z n, and h; =0 for k <n.

k

Definition 3.6: The Euler method (E,p) and the circle

method (T,p) are the Hausdorff and quasi-Hausdorff methods,

respectively, with My = pn and by = pn+1.

In an unpublished paper, Ramanujan has given:

Definition 3.7: Let the modified quasi-Hausdorff

method (H*,u) generated by the quasi-Hausdorff method (H*,u)



be given by the matrix H* = (E:k), where
1 0 0 O ...
1 for n=k=0 = =
0
— 4} for n=0,k2>1 _
h = so that H* = |0
nk 0 for k=0,n>1 B*
0
* >
hn-l,k-1 for n>1,k21 .
—. . e

He has also pointed out that H*(0,s¢,S81,...) =
H*(s¢,8;,83,...), SO H* is not as artificial as it may
look; it arises naturally when considering the translativity
_problem for H*.

In [14), the following proposition is stated:

"The circle method (T,u;) is the only method, regular
or not, which is both quasi-Hausdorff and Sonnenschein.®

Bojanic [6] subsequently pointed out that the proposi-
tion is not correct as it stands, but can be made so by
replacing "circle" by "identity". 1In his unpublished paper
Ramanujan showed that the above proposition can be made

correct if it is altered so as to read:

. The modified quasi-Hausdorff method (H*,p) is
(3.8) "The modified ' dor£f method (H*,u)

Sonnenschein if and only if (H*,p) is the circle method."

We remark here that his proof shows that if the Sonnen-

schein method in question is generated by g(z), then

(3.9) g(z) =7 _%i ——7y; - where p = o and |1 -p| <1.
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We will now prove an analog of (3.8) for (f,dn,zl)

methods .

Theorem 3.10: The modified quasi-Hausdorff method

(B*,u), u # 0, is (f,d_,z,) if either
n n’'“1
(3.11) the associated quasi-Hausdorff method (H*,u) is the
circle method (T,p) with |1 - p| < 1,

or

cpz _ _n+1
z, - (1 -plz where b, =P '

(3.12) f£(z) - £(0) =

|1 - p| <1, and a = -£(0),
and only if both (3.11) and (3.12) hold.

Proof: Suppose (H*,u) = (f,dn,zl), and let the
(f,dn,zl) matrix be (cnk). We first make use of the fact

= h 1 ]
that c_, = h* , and then use the relation (£(zz4) + dn).

= (£(zzy) + 4 )(£(zz,) + 4 )! to get first

n-1
(3.13) E:E:;)jdj’}zt = E__n K™, 25 . nx1
and then
(3.14) :§::3)++djn k=E§1(k:i)A - Hn-2 2 =
:én (ﬁ:i)Ak_n T z% , n 2.

. _ . oo £(2zz3) +dy R k-1 k
Setting n =1 in (3.13)igives flz;) * 4, —\E AT Tuez

so if z =0 we have £(0) +d; = 0. Let
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®
f£(z) = % a, zX. Then from (3.14) follows, for n > 2,
@
k k
(ao+dn) + % az,z ] g? (k-l)Ak-n+1u 2K =
£(z1] + 4 k=h-1 D72 n-2

@

2 (i:i)Ak-n“n-lzk'

k=n
so equating coefficients of z""t gives (aqy + dn)p.n_2 =0,
whence d = -ap = -f(0). It follows immediately, by in-
duction, that d = -£(0). But then Lemma 3.1 says that

(f,dn,zl) is the Sonnenschein method generated by

f(zz,) - £(0)

g(z) = fz,) = £(0)" Now (3.8) implies that (H*,u) is the

circle method, so the necessity of (3.11) has been shown

along with the necessity for d -£f(0). Moreover, (3.9)

gives the formula g(z) = %%::%)__ffé?) = 1= (gz- 5z

|t - p| <1. If c = £f(z;) - £(0), then £(zz,) - £(0) =

cpz _ _ cpz .
T-(1-p)z ' °° £(z) - £(0) = Zi = (1 - p)z - Pgain

e

oo}
k-1 k _ pz cy s .
gilA HoZ = 7= 1-piz ° But it is readily shown that
@ @
pz k-1 k _ k-1 k
= 2 (1 - z = 2 A z , so
T -1 -p)z k=1( p) P Z, P

1 .
A" "ue = A p and p = yo. Definition (3.6) now implies

that u =p for each n. Hence, (3.12) follows.
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Conversely, suppose (3.11) is true. Then Wy = pn+1, so
T Lk _ k-1, k-n _ (k-1, k-n n
hoe = B3 xor = (qop)a ey = ()87 p for n 21,

k >21. It follows that

loe] (oo}
k k-1, k-n n k k-1 k-n_n k
s hfz = = (C_9)a pzo= = (L 7)(1-p) z
k=n Pk x=n P71 k=n 771
n
pz - n

s = (@),

where g(z) = 1 = (Ipf 5z - It is now immediate that

(H*,u) is the Sonnenschein method generated by g provided

g has radius of convergence > 1, i.e., provided |1 - p| < 1.
(3.11) insures this condition is met. Lemma 3.2 now says

that (H*,p) is a method (f,b,z;). Finally, suppose (3.12)

is true. It is easily seen that ¢ = £(z,) - £(0), so
f(zz,) + 4

f(z) - £(0) - pz - 1 m

flzi) - £00) 7, - (1 - p)z 24 thus 9(2) = gy 5 g

f(zz,) - £(0) . :
= “F{z, - £(0) ~I(T - p)z - Since |1 -p| <1, g has

radius of convergence > 1, so it is clear that

n f(zzy) + a,
1 £(z.) + d.

= gn(z),vhence (f,dn,zl)

is the Sonnenschein method generated by g. We see now

that

’

n 0 0] oo
k-1 k-n_n_k k-1, k-
= )(1-p)*p 2" = ( 77)A nphz®
k=n

for n 21, k 21, so the (f,dn,zl) matrix is that of the

modified quasi-Hausdorff method having Wy = pn+1.
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Lemma 3.15: The only matrix which is both (f,dn,zl)

and quasi-Hausdorff is I.

Proof: From definition 3.5, the quasi-Hausdorff
00

_ k, .k-n
_kzn(n)A W Sp- If

this is also an (f,dn,zl) transform, then for n = 0 we

transform of [sn] has the form t;

have Akuo =1 when k =0 and Akuo =0 when k.» O.

It follows immediately that g = w3 = 1. Suppose

k
Lo = H1 = eee = U.,k_l = 1. Then 0 = A Lo =
k . k-1 . k .
s (-3 = ue = (-1)IE) ¢ (1R 2w = (-1

+ (-1)¥u = (-1)%(1y - wo). so u_ = up = 1.

By induction, b, = 1. Then k > n implies Ak_nun =

Ak-nuo = 0. Claarly, t; = s . SO t; is the identity
transform.

It is remarked in [14] that the Euler method is the
only one which is both Sonnenschein and Hausdorff. 1In the

same vein 1is

Theorem 3.16: The Hausdorff method (H,u) is (f,dn,zl)

if either
(3.17) (H,u) is the Euler method (E,p),
or

(3.18) there is a constant di such that (f,d ,z;) =

Z3
Zl+di'

(z,d;, z,) and by = p" , where p =

and only if both (3.17 and (3.18) hold.
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Proof: We will first show the necessity of both (3.17)
and (3.18). Since the Hausdorff matrix is triangular, it
can be an (f,dn,zl) matrix only if £ is a first degree
polynomial, say f(z) = az + B. But then

f(zz,) + dk azz; + B + dk zzy + dﬂ
£(z,) + d T az, + B+ dk = z, + d{ ’

so (f,dn,zl) = (z,d&,zl). Now form the analogs of (3.13)
and (3.14), getting

(zz, +4d'):
(3.19) R dETT

k
and

22y +d 0=t g1k x _ 0 onyak Uk
(3.20) ————+ = (") bzt =2 ()" ezt on 2 2.

z1 +dj x=o k=0
By letting n =k = 0, it is seen that the equality

of the matrices requires that g = 1. Setting n =1

z
in (3.19) gives —r - Ly. For n > 2, we equate co-
Zl+d1
< n z _
efficients of =z in (3.20) to get ;:—i—a; Mooy = My SO
n
Z1

= > . .
My (z + dg): for each n 2 1 by induction. Suppose

! o= di for all k <n, n > 2. Equating coefficients of

z""! in (3.20) gives
dl
%1 - _0n_ = >
zy +d] (n 1)Aun-z * zy + d_ Mpoy = 08K, » R = 2.

This expression, together with the above formula for Sy

yields d' = dé_ d{ after a simple calculation. Then

1

b = pn, where p = ——:El—r , so (3.18) follows. But now
n z, + d;
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definition (3.6) says that (H,p) = (E,p), so (3.17) is
true, too. Conversely, suppose (3.17) obtains, so that

. = pn for every n > 0 and some p. Then

n-k

5 )(—l)juk+jzk

= (
0 k=9 j=o

(0PN 5 () (p)3F = 2 (M)pF(1-8)" K = (pa v (1-p))",

so the method (H,u) is the Sonnenschein method generated by
g(z) = pz + 1-p. Lemma 3.2 now gives the desired result.

(zzy + d )t zzy; + dy p
1f (3.18) is valid, then R dn)i = ( Z T Al

) n)An-kpkzk, so the method (z,d;,z,) is

n
(pz + 1-p)" = 3 (i

also the method (H,u).

Definition 3.21: Let [qm]g) be a complex sequence

n
with A =3 q #0 for n > 0. Then the Norlund method
0

determined by the sequence [qm} is defined by the matrix

- = < =
A (ank)' where a . qn_k/)\n for k X n, and a, =0

for k > n.

Suppose the Norlund matrix A is also an (f,dn,zl)
matrix. -Since A is triangular, we may, as in the proof
of Theorem 3.16, assume f(z) = z. It must follow that

(zz4, + dn)t n q

-k _k
3.22 - = e
( ) (z4 + dn). X

k z ' nill
o n

™M

and from this,



43

zz, + dn n-1 qn-k-1 X

n
(3.23) > zh = 3 z5 , n>2.
21 * 94 =0 Mna k=o

Equating constant terms in (3.22) we get, if n =1,

(3.24) qodl = qlzl.

Equating coefficients of z" in (3.23) gives
2190 =2 so 21 * 9 _ o and
A (Zl + d y A ! Z4 A
n-1 n n n-1
d q
1+ Eﬂ =1+ xn Then,
1 n-1
(3.25) d) Ao, = 9,21 , n > 2,

Equating constant terms in (3.23), we have

dn qn— 1 qn

===, n2Z2.
Aaoalze + )

(3.26)

We need two more relations:

Qo(d; + dj) d;
M(zy +dy) — Ay

(3.27)

Z; 1
M(zqp + dp) A2

(3.28)

The second of these is obtained by equating the coef-
ficients of 22 in (3.23) with n = 2; the first is obtained
by equating coefficients of z in (3.23) with n =2 and
using (3.24).

Substituting from (3.28) into (3.27) gives

do(d; + d3) = 9327. Then, using (3.24),
we get qqo(d; + d;) = goedy , so d; = 0. Then (3.25)

implies gy, = 0, and from (3.26) it is clear by recursion
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that q = 0 for j >~ 2. Then from(3.25), d =0 for

n 2 2. Then the matrix in question reduces to

(3.29) M

d1 do ., where g; =0 or

O d1_ do
.o T d12; = gedy # O.

We have proved

Theorem 3.30: A Norlund matrix which is also an (f,dn,zl)

matrix must have the form (3.29). If gq, = O, then the
matrix is the identity, and this case arises precisely when

f(z) =z and 4
n

0. The alternative case arises pre-

cisely when f£f(z) = z, d =0 for n 22, and d;qo = q123 #Z 0.

Corollary 3.31: The identity matrix is the only one

which is both Norlund and Sonnenschein.

Proof: Let A = (a,) be a matrix which is both
Norlund and Sonnenschein, and let the generating function
of A as the latter method be g. Then g(1) =
x;l(ql + dg) =1, so by Lemma 3.2, A is an (£,
matrix. Then Lemma 3.1 says dn = d;, whence Theorem 3.30

implies A = 1I.

Corollary 3.31 is Proposition 1 of [14].

Corollary 3.32: The identity is the only method which

is both (f,dn,zl) and (C,a).
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Proof: (C,q) is defined for each real o which is

not a negative integer, and is the Norlund method deter-

=q (a) =

mined by the sequence {qn]go, where q_ n

ala + 1)...(a +n -1)
n'

for n > 0, and gg(a) = 1. By

=gl +1) -,

Theorem 3.30, g3 (a) 5

so g = 0. But (c,0)

is the identity.

Definition 3.33: Given a complex sequence {qm]go,

n
let A = % an, #0 for n 2 0. Then the Riesz method

determined by (q ] is defined by the matrix A = (ank)'

_ < _
where a , = qk/7\n for X Zn, and a, =0 for k >n.

Theorem 3.34: There is no matrix which defines both a

Riesz method and an (f,dn,zl) method.

Proof: We proceed as before, Since the Riesz matrix

is triangular, if it is also an (f,dn,zl) matrix, we may

assume f(z) = z. Then it must follow that
(zzq, + 4_)° n gq
(zq + dn)' Z KE 2* , n 21 and from this
1 n’’ k=0 “n
that
zz, +d n-1 g n g
(3.35) ——=2 =5 E—2F= 3 X, n>oa.
. 1 n k=0 "n-1 k=0 ™n

Equating constant terms in (3.35) leads to

(3.36) dd =N _, 21 #0, n>2,

From this it is clear that q_ #20 for n 2 2, so
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= ——— . Plugging this value for d_  into (3.35)

gives, after a short computation,

n-1

q 49 q. dqd, do n q
(3.37) 'ir-l.)\—nl-zn -l-)\L > —];—k—l—'-{- qk)zk +T= Z%Zk,
n'n-1 n k=1 n-1 n k=0"n
n>2.

Again equating coefficients, we see that 9, 9, =0 for
1%k =<n-1, soif n>2 4 there is aj =2 2 with

a = 0, in violation of (3.36).



CHAPTER IV
INCLUSION RELATIONS

It is relatively easy to give an example of a conserva-
tive (f,dn,zl) method which is at least as strong as the
(c,1) method. We will give such an example below after
some necessary tools have been developed. We will now

concern ourselves with results in the opposite direction.

Lemma 4.1: Let f Dbe holomorphic at the origin and
let z; Dbelong to its disc of convergence. Suppose

(e 0] x
1 = >
(£(z) + 4 ). kio P Z +nZ1l. Then

n 1 (00)

' 1 _ k
zy£' (2z1) % £(z,) + dj T (f(z4) + dnfi k§1 kK Ppx Z1-

Proof: Let gn(z) (f(zz,) + dn)i Then gA(z) -

oo ' (¢ o) X
Z kp,y212 ,ﬂagn(l) = § kp ;21- Also, gg(z) =
k=1 k=1
n
z,£'(zz,) = T (f(zzq) + dk) = z,f'(z2z,) " (£f(z2,) + dn)!
j=1 13k=n
k#3J
n 1 n "
{: f(zzl) T dj , SO gn(l) = 2z4,f (Zl)'(f(zl)+dn).§, m .

The result follows.

Corollary 4.2: Let (f,dn,zl) be regular, f(0)+dn#0,

and either
47
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(4.3)

f(z,) + dn is real and has constant sign for large n,
or

(4.4) Re[f(z,) + d ] =0 and Im[f(z,) + a ]

has constant
sign for large n.

Then if £'(z;) # 0 it follows that

1 @ k
Tt(z,) + dn)l kzl k PpxZ1 # 0(1)-

Proof: By Lemma 4.1 we need only show that

n 1

2 Hz,) + dj # o(1).

Theorem 1 of [16] asserts that if

£(0) + a # 0, then a necessary condition for the regularity

oo
. 1
of (f,dn,zl) is that E HOE: djl = . But then
@ 1 (o'e) 1
% Tf(zl) N djl = oo, too, whence so does |2

1 f(zy) + dj

The result follows.

We can now prove

Theorem 4.5:

k
Let f(z) = Z a, z~ have radius of
0

convergence greater than p > 0, and let a

k - 0 if k
is not a multiple of the integer

m > 1. Suppose either

(4.3) or (4.4), £'(z,) #0, £(0) + d #0, and (f,dn,zl)
to be regular. Then the summability field of (f,dn,zl)

does not contain that of the Riesz method associated with

n
the sequence {qk], with x = % dy: if lim inf %1§E
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@ A z+ |k a | A k
and 3 X |2 and 3 k l - 12 both converge.
(V] qk ¢ o qk+1 P
n @ k
Proof: Let f (z) = 2 a_ ,z - The only powers of =z
k=0

appearing in the expansion of fn(z) are multiples of m,

so a
nk

ey
=3 p kzk , then from (2.3) it follows that p x = 0 if
k=p D n
k is not a multiple of m. But then

pnk/qk if kX = fm,

P P Z; - ; =
nk _ ‘n,k+1 - pn,k+1zl/qk+1 if k+1 fm,
dx A +q
0 otherwise,
so
@® [P p 1 k
[£(z1) wludT' = an B glkﬂ Tz | 2
1 n' k=0 | %%k k+1
1 Prk n,k+121|.| k l
] z L 21 =
1£(z1) + d 1ty o | % A+ "
22
1 Prk|., k
- 2 —_— Z1 A =
T T 2y [ 15 M
£20
A
1 Prx|., k . .. 211
- 2 | z . Since lim inf =|—| > O,
TElz) * ATt oo fay | 120 ™! X |3,
there is an € >0 and N > O such that ;h > ke for
k

1 (ele]

Prk|., k 5
k > N, so ]f‘(zr) T dn]T.k=§+1 ‘&'}‘(‘_ IZ]_ ?\kl =

= 0 unless k is a multiple of m. If (f(z) + dn)
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(e 9] a

k - k
|f(zl) - E k§N+1| Phx 21| > l(f(zl) ¥a_)t 2o, Pnk®l

# 0(1) by Corollary 4.2, provided we can show that

N

1
- = kp
(E(z2) + )t 2, nk?

=0(1) as n —> .

This is easily shown to be the case. For if the (f,dn,zl)

matrix is (cnk), its presumed regularity simplies that

z |e =B for every n. 1In particular,
X nk
k . ‘
_ [P | <B for all k and
le x| = [F(zq) 7 @]t = B for a and n, so
kpnkz 1 <

kB for all kX and n.

(£(z,) + dn)l

N

Z kp .2,
k=0 nk

N
1
Th - B3 k =0(1). Hence,
en (f(zl) + dny. ) ( )

a

1 5 Phk  Pn,k+1%1
Tszl) + dnT: k=0

9y Ak +1

k
|24 xkl Z 0o(1) as

n — oo, so the transformation

1 OO (P nk _ pn,k+lzl k

(4.6) (f(z1) = d ). 0 3, sy ) 21 M g

is not conservative inasmuch as (0.1) fails. This fact is

-1
the crux of the argument. Suppose that tn = kn % Sy
MtaMo1bn-g

L

>‘°M8

is the Riesz transform of [sk}, so that s_ =

M
Cauchy's estimate for Ipnkl is —

* and this, together with
[
k

the convergence of the series Zl——l |-—4 and

— - |-—ﬁ assures the absolute convergence of
qk+1
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P k P 1 k
= EEE %kzl t and 32 —%Qki— xk 2y ty for every bounded
k “k k k+1

sequence [tk]. In particular, if the Riesz method sums
{sk], then [tk} is bounded, and we can use summation by

parts to write the (f,dn,zl) transform of {sk} as

1 @© k
(f(z,) + dn)t kzo Pox %21 Sy =
® k M T M-1 Bk
(£(z7) + )t 2, Pnk %1 T =
OO (p nk _ Pn,k+1 21
(f(zﬁy +a T 2, ey D41 d Me ke

But this is the transformation (4.6) and is not conservative.
In view of the reversibility of the Riesz matrix, it is
easily seen that the transform (4.6) will sum everything
the Riesz method does if and only if the transform is con-
servative. The result follows.

As examples of functions which satisfy the conditions

of the above theorem, we give the following. In each case

z;y = 1.

(4.7) f£(z) = 2", m an integer greater than 1,
(4.8) f£(z) = exp(z™), m an integer greater than 1,
(4.9) £(z) = cosh z,

(4.10) £(z) = log sec z.

If f 1is any of these functions and [dn] is chosen so that

d 20 and 3 - S @ , then Lemma 1.12 gives the regularity
n 1 1+dn

of (f,dn,zl), so all the conditions on f and {dn} are met.
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The following is a variant of Theorem 4.5 having some-

what less elaborate hypotheses.

Theorem 4.11: Let f be holomorphic at the origin

with radius of convergence greater than p > 0. Let

k
21 p p Z,
nk n,k+1
b - - [ - . ] and suppose
nk (f(zl) + dn). e ety
lim bnk = 0 for each k, lim sup = bnk > 0, and both
n n — oo k
?\k 21 }\k 23
2l |= and ZI s |- converge. Then if
el 1P Ik +1 P

M| = o, the summability field of (£f,d ,z;) does not
contain that of the Riesz method associated with the

sequence (qk].

Proof: Given B > 0, there is an N > 0 such that

@® O
k >N=>[N|2ZB, so = b,|N|232 b,[N|+
k=0 k=0

a. N a o0
B £ b = 2 (|n|-B)b +B3XDb =0(1) +BZb ..
k=N+1 nk k=0 l k nk k=0 nk k=0 nk

@
Then, if lim sup 5= b = g, lim sup £ b | A
n—> a k nk n —> oo k=0 nk

kl > Be.

Since B 1is arbitrary it follows that
@
iif>82§ kzo bnklxkl = .
An immediate consequence of this is that the transformation
(4.6) is not conservative since (0.1) fails. The conclu-
sion of the theorem now follows exactly as in the proof of

Theorem 4.5.
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oo
Theorem 4.12: Let f(z) = % a, zk, where a = 0

if k 1is not a multiple of m > 1. Then the summability
field of (f,dn,zl) is not contained in that of the Abel

method.

Proof: The (f,dn,zl) matrix (cnk) is defined by

k
_ Pnx %2
Sk TE(z,) + a7 ° We have already seen that for such

n
an f, Pox = 0 unless k is a multiple of m, so the

corresponding Ck = 0, too. Consequently, (f,dn,zl)
will sum to zero the sequence {sk}, where sk = 27,

k # fm, and s, =0, %k = gm. But clearly this sequence

k

is not Abel summable.

Corollary 4.13: Let (f,dn,zl) be subject to the con-

ditions of Theorem 4.5 with p > |z;|. Then (f,dn,zl) is
not comparable with the Abel method or with any (C,a)

method for oo = 1.

Proof: (C,1) is the Riesz method determined by the
sequence {1}. By Theorem 4.5, the summability field of
(f,dn,zl) does not contain that of (C,1), and hence does
not contain that of (C,a) for a > 1 or that of the Abel
method. On the other hand, Theorem 4.12 says the summabil-
ity field of (f,dn,zl) is not contained in that of the Abel
method, and thus also it is not contained in that of (C,a)

for any «a.

The following Lemma is well-known ([17],Lemme 4).
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@ k
Lemma 4.14: Let 3 bk > a. converge and let
k=0 j=o ]

ool le’e} k 00 oo
= |b,| <c©0. Then 3 b S a, = Za., I b, if and only

k . .
0 = %o 3 j=o J x=j X

@ k

if lim 3 bk S a. = 0.

g—wo d q ]

Definition 4.15: The Y-transform of [sk} is the

sequence [yn], where yqo = %-so, and y = %(sn + Sn-1)

for n > 1.

Theorem 4.16: Let f be holomorphic at the origin.

Let either (4.3) or (4.4) hold, f'(zy) # 0, and £(0) + a_ £ 0.
1f (£(z) + dn)t = i Pk zk, supposé that for each n,

(-—1)k Phx z? is real and does not change sign for k > N.
It follows that if (f,dn,zl) is regular, its summability

field does not contain that of the Y-method.

Proof: 1Inverting the Y-transform gives

k k .
s, = 2(-1)° 3 (-1)7 y.. There is a
X o j

p > |21| > 0 such that p 1is less than the radius of
convergence of £, and Cauchy's estimate for Pk is then
Mn/pk. Then for all bounded sequences[yj} we can apply
Lemma 4.14 and write the (f,dn,zl) transform of [sk] as

a

1 > Zk S =
(£(z1) + @ )% 2, Pnk %1 Sk
k
2 @ k k j
r = p, z1(-1)" = (-1)7 y. =
(f(zl) + dn)' k=0 nk . j:o J
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o'} . @ X
(417) ey a T 2 (172 (0 2 py vy

To prove the theorem, it is sufficient to show that this
transform is not conservative, and this will be done by

violating (0.1). The regularity of (f,dnﬁa) and (0.1)

together imply that

2 |e | = 1 - 2 |p Z?I = 0(1l) as n —> @ .
% | nk 1£(zy) + dnT} x ''nk _

Hence, we can invoke Lemma 4.14 again to write

9 @ | © X X _
0 N | oo kX
TE(zy)+d Tt jfo kfj(_l) ‘1 pnk’ ¥
2 O (00} % k B
TEUH T 2., kij(‘l) Z1 pnkl -
o(1) + T3 -5 S lzx b, | =
1£(zq)+d_| J=N+1 k=3 nk
2 QO
o(1) + HEEENE kj;+1(k—N)lzl Pyl =
2
o) Te(z)+a_[* 2, (el o]+
(00
HenE LA U
2 (00)
0(1) + Tf(;]‘)_,_d Tl‘ kio(k N)lzl p kl
2 © 2 ?
o) * THE T E F 2 Pkl - TEE N TEE, 12 P
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o(1) + TfTZ1)3dnT=;§;|k z? pnkl # 0(1) by cCorollary 4.2,
so (0.1) fails for the transformation (4.17) and the theorem
is proved.

Inasmuch as the Y-method is rather weak, the possibility
arises that an (f,dn,zl) method whose summability field
does not even contain that of Y might be convergence-
equivalent, i.e., that it might sum only convergent sequences.
Example 4.19 below shows that this is not the case.

The following theorem is known ([15],Theorem 2.3).

@
Theorem 4.18: Suppose that % |f(1Y1 dn{—= oo,

o) (Iden)2

3 [£(1)+d ]2 < o, and that the Taylor expansion of f

about the origin has real non-negative coefficients. Then

(f’dn) is reqular.

-1
n2+1 °

Example 4.19: Let f(z) = z3, z, = 1, and dn =

It is trivial to show that (4.3) holds and to see that

k

£'(z;) #0 and £(0) +d_ #0. If £7(z) =2 a_, 2z, then

X k

a =1 if kX = 3n and a = 0 otherwise. Then it follows
nk nk

from (2.3)that P =0 if k # 34 for some 4 with

< < = 1 =
02 /4 —~=n, and Phx 9n-k/3 otherwise, where g 1 and
o. = b) d ---4d for j > 0. From the definition of
J 1<vq< Vi V.
=V1 J
eee<v.>n
J

Oj and the fact that each dn < 0, it is clear that
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sgn Oj = (-1)3, Let Xk be any multiple of 3 for which

=0 or Pn,k+3 = oh-k+3 '

3

Pk # 0. Then either Ph k+3

so that sgn P k+3 = sgn 0, 14, T S9N On‘h » = -sgn o0, _p

3 3 )

] =

k+3

= -sgn p_, - From this we have sgn[{-1) P k+3

k+3 _ k+3 k
(-1)""" sgn p, 4, = (-1)"""(-sgn p ;) = (-1)" sgn p , =
k k , .
sgn[(-1) Py} so that (-1) P, does not change sign.

Finally, Theorem 4.18 assures the regularity of (f’dn)' so
the hypotheses of Theorem 4.16 are met and (f,dn) is not

at least as strong a Y . Now define the sequence (sk] by

s, = This sequence is

k

O, k is a multiple of 3
1, otherwise

easily seen to be summable to 0 by (ﬁ,dn), but it is

not convergent, and is not even Y-summable. Thus we have

Lemma 4.20: There is a regular (f,dn,zl) method which
is not comparable to the Y-method.

We will now give an example of a conservative (f,dn,zl)
method which is at least as strong as (c,1). The (C,1)
method is the Riesz method generated by the sequenée {1}.
From the proof of Theorem 4.5 we know that what we seek is

a conservative (fgdn,zl) method for which the transformation

(4.6) is conservative. Choose f(z) =2z, z; =1, d = n2.
Summation by parts shows that Z(k+1)(pnk-pn k+1) = 2 Ppy-
k ‘ ! k

so we have



58

1 1
(4.21) W]Z( (k+1)(p . - Pn,k+1) B ETI i Pk = 1.

If we assume for the moment that (z,n2) is conservative,

p
then 1lim 1+gk - must exist for each %, whence also
n n’’
(4.22) 1lim (k+1) (Pry ~Ppy 41 ) exists for each k.
n Ti+d_) "
n
n n
t+k2 t-1

On any compact set, T TIEQl = | T (1 + T:ié)l =

n N @
T (1 + iE_ll) =7 (1 + B ) < @, where B 1is a bound
1 1+k?2 1 1+k2

for |t-1| on the compact set. Then, if C is a circle of

radius p > 1 about the origin,

lpnk - pn,k+ll - L f( 1 _ 1 ) Tl;l' t+v2 at
(T + n2)t  2r|l' ke~ k2’ T THVZ O
1 t-1 % t+4y2 <M |t-1] o(1)
Zr|{ okve T T 0|~ 27 [T Rew 1901 = ey independentiy

of n. It follows that

1 k+1 _
(4-238) taza T P00 Pk o | = 0(1) 2 5 = o(1)-

The conditions (4.21), (4.22), and (4.23) are sufficient

for the transform (4.6) to be conservative. It only remains
to show that (z,n2) is conservative. We have (0.2) with

t = 1 automatically, and because of the special choice of
f(z) and a . (0.1) is equivalent to (0.2) in this case.

To show (0.3), we must show that
Pnk

lim 7735
o (1 +n2):



v —— —— —— -
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exists for every k. On any compact set the product

a L a
t+v2 t-1
T InT T 7 (1 + 1552)

converges absolutely and uniformly. Thus if C 1is a

circle about the origin of radius >1, it is clear that

p n 2
. nk : 1 1 t+v .
lim w37=7 70 lim == [ kw1 T I+v? dt exists for each k.

cCt

Hence, (z,n?) is conservative.
We now turn to the question of inclusion with regard
/

to the methods (z.d_,z;) and(f,dﬁ,zz\, that is, under what

conditions the latter will contain the former.
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In [11], Meir proved the following theorem:

eo) , 1O : : _ ,
Let {dn}l and [dn}1 be given with dn £ -1 # dn.
le’e} -1 1+ dk -
Suppose % ]1 + dnl = o and 0 < mg -1 if

n>ny, and 1 Xk Z n. Then (E,dﬁ) is consistent with,
and at least as strong as, (F,dn).

By generalizing his techniques we can prove a much more
general theorem.

Define the linear operator E by Esk = Sy iy and de-
. 0 _ n = n-l >
fine E (sk) = s, and E's, E(E sk) for n > 1. Then

the (z,dn,zl) transform may be written as

n dk + z4E

= ———————— >
(4.24) t T 3 vz s » n2>0,
0 + Z]_E
provided we define q T Tz, So = Spo

k
Since the (z,dn,zl) matrix is normal, it is reversible,

so there are coefficients bnm so that

n

= >
(4.25) s_ S bty . nZo.
m=o0

Explicit formulas for these coefficients are in [9], p. 288.
From (4.25) we see that bnm =0 if m > n. For conveni-
ence we also define bnm =0 if n <0 or m<O0.

From (4.24) and (4.25) we get

n n m dk + z4,E
(4.26) Esg=s_= % b T —3———35 ,n2>0.
n m=o DM 1 dk + z,
Then
_ n-1 m 4, + z,E
(4.27) E° 150 =s = 3 Db T —= n21.

—_— S
n-i,m 4 d +Zl o v

0 k
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Operating on {4.27) with 2z,E we have

n--. m dk + 2z,E
n
z1E'sg = 238 = Z b z2,F T ————— s
1= =0 1°n mso Roremittoyd o+zp 7O
n m-1 + z4E
=2 b 2B T dg ¥z, 0
m=1 = ' 1 k 1
n ) 4 )m-1 dk + z,E
=2 b .lz.E + T - S
ey nrem-itte m’ oy 4 tzy 0
; b 4 m-2 dk + ZlE
- _ m So
m=1 r—-1,m-=1 m i dk + Zl
g (d . m dk + ZIE
= _ _ + 2y) T =—m3———— Sq
m=1 DN-1,m-1'"m 1 dk + z
ngl L g m dk + z4E
- _ . T SO
m=g D71/ m+1i dk + z4
n m dk + z4E
=z N + 21) T3> so
m=o PTl.m=1tTm i dk + z4
n m dk + ZlE <
- ad + z. °¢
2 bn-l,m dm+1 T dk + z;
m=0
n ) m dk + z,E
= 2 {b d +zy) - b_ . d_ )T =
m=0{ n-1i,m-1'"m % n-1,m m+ i dk + 24
It follows from this and (4.26) that
- 21 Vo~
(4.28) b = z; (b i mor (g *+21) P 1 mOmef £OF

It is clear from (4.25) that bgy = 1.
Let the {f,dg,zz) transform be

o/e) (o] m

tﬁ = Eo c! s = 3 C E bmk tk ,

nm m nm nZzo,
m = k

for those sequences [sm] summed by (z,dn,zl).

If the
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order of summation can be reversed, then

@ 0o @
(4.29) ¢! = kzo(mzk el bmk)tk = k§0 ay ty o
where
0o
(4.30) a . = mik ¢/m Pk for n 20,k zZo0.

For future convenience we define ank =0 if n < 0 or

k <0, and c¢', = 0 for k <O0.
nk
If (4.29) is a regular transformation, then (f,dﬁ,zz)
will sum every sequence (z,dn,zl) does, and to the same
number, that is, (f,d!.,z;) will be consistent with, and

at least as strong as, (z,dnizl). We will show that if £

is a polynomial, then under suitable conditions (4.29) is

regular.
a x
Let (z + dn)t = kzo Py Z and (f(z) + dé)! =
oo}
, k

Then

t = 1 ; zks and t' = S o zk
n (z, + dn)i ﬁio Ppyx®18¢ n (f(zz)+dﬁ)gkiopnk 25y~

n
=
il
g

so setting Sy = 1 gives tn Plugging these
values into (4.29) gives

(o)

- >
(4.31) kEo a, =1 nZXo.

@
In general, if f(z) = X Py 2 . then
0



S b, 2 = (E(z)va, )t = (£(2)ear, ) 3 pl o
k=0 Dn+1 n n k—o D
@ oo [o'e}
k ' k ‘ ' k
=(Z g2z )(2p, 2°) +d S p. z
o "k k=0 nk n+1 k=0 nk
@ )m ]
=3 (q _+d° p' )z , where q = 3 g.p_., - Hence,
m=o DM n+i'nm nm 5 +k=m j nk
4 = § : > >
(4.32) Prhti,m = %m ¥ 94y Ppp o P2 1. m 20
; m
: Prhm %2
Since c = . ¥ for n 2 1, we may use

nmo (£(zp) + dp): -

(4.32) to derive

' m m [ m

o _ n+i,m %2 _ 9nm %2 n+1Pnm %2

n+1,m (f(zg) + dn+1) (f(zz) + dr‘.'H_l)'. (f(Zz) + dﬁ+1)'.
m 1]
_ qnm Z2 n+l Cnm Then
(£(2z2) + df4)  £(2z5) + Ahsq
1 v

4.33) c! = — , s c! z 1S

( ) n+1,m  f(z,)+d n41 [22 j+vem Bj nv 2 n+1°nm J

for n>21. m>0.

From (4.30),

e eo) b m
%h+1,k - 2 Sntr,mPmk T2 f(z )Tg' [22 2 Byc),2 23"
’ m=k ’ m=k 2 n+1.  j+v=m j
* 941 ]
or
(4.34) a = Z {22b > 6 CI 2 +d }
n+1,k f(Zij?dn+1 ek mk nv n+1 nk

j+v=m

for n2>21, %k > 0.
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If the matrix c' = (¢!,) is row finite, i.e., if f
is a polynomial, then tﬁ can be written in the form
(4.29). 1t is also clear that then %lankl < o for each

n, for suppose

(4.35) £(z) = g Bz £ 0.
oo
By (4.30), a g = jzk CAJ bjk But céj =0 for j > mn,
so
(4.36) a, =0 for k >mn if n 20 and k Z 0.

From now on, we will suppose f is given by (4.35), and

m will be reserved for the degree of f£f. Define Oper =
a‘,, + f(z,). Then (4.34) gives
_ 1 v oVt
an+1,k { z zzbvk(ﬁoc Z2 +61C , V=1 29 +"'+6Vc'no)
On+1 v=k
+ dn+1 nk}
In view of the convention that céq =0 for ¢q <0 and
the assumption that Bj =0 for Jj > m, we can write
_ 1 Zo vVt . -v+m
qh+1,k T { Z z2bvk(aocnx 23 Blcn v-122 tee tBrCh, ven?2 )
n+1 =k
* dn+1 nk}
mn mn+1 mn-+m
= {Bo = c!. b . +0123 = c' b +...+8 253 I c! b
nel v=k nv- vk V=k n,v-1 vk m < _x n,v-m vk
1
+dn+1ank}

or
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Iv

4.37 a = 2 B.zg X c! b d'. .a . n
n+1,k On+1 =0 Jj v=k B:V-3 vk n+1 nk
k
Here it is necessary to introduce the notation
Q
(4.38) = aq; d; ...d, = s (4, ce-a;
and
Q
(4.39) =4, ---d;, =1 for arbitrary g and Q.
q 11 lo
mn+j
We now examine X c' .b .. When j = 0 this
vek n,v-j vk
mn
‘ -
reduces to vzk cnvbvk = a - Suppose
: mn+j _sJt1 r-1J"F
(4.40) vik Cn,v-jbvk = z; 151(-1) v7=ro(z1+dk_v) .
k+1
s 4, ---d a ..._, for 02X 3 —p,
k-3+4r 1 i, n,k-j+r-1
where
1 if Q < g,
Q
(4.41) 7 (24 + 4 ) = 1 if v 2>k forq =X v =g,
v=q -
T (zy + d,__) otherwise.
q=vQ k-v
v<k
b
(We remark here that if a =0, b > 0, then I a, ---d;
a 1 v
b
s di ---di .) Since we shall use the formula (4.28), we
1 1 v

suppose at first that k Z 1.

Then
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mn+p+1 mn+p+1

! = [ -1
VEk cn, V-p-lek V2=:k cn, v-p-1 21 FbV—l,k—l(zl+d]<)

- bv—1,k dk+1] =

mn+p+1

-1
21 {(zl+dk) vik cn,v-p-lbv-l,k—1
mn+p+1
- s <! b ] =
dk+1 v=k D/V-P-1 v-1,k
-1 mn+p mn+p
Z1 {(zl+dk)v=i_1 Cn,v-pbv,k-l - dk+1v§k¥1cn,v-pbvk} ’

By the induction hypothesis (4.40), this is

-1

-p p+1 p-r
Z4 {Zl (Zl+dk)"

z (-l)r-1 T (z,+d
=1 V=0

k—v—1) )
r

k

b) d, ---d, ca
k-1-p+r i, 1.4 n,k-p+r-2
p+1 k+1

p-r
;P -1)*°t . . e . =
Z1 dk+1r£1( 1) ;z;(zl+dk—v) k-§+rdil dir_1 an,k—p+r-1]

p+1 p+tli-x k

-p-1 r-1
z;" {2 (-1) T (z1+ ) - = &, ---d, .a -
r=1 v=0 dk-v k+r-p-1 1; lr_1 n,k+r-p-2

p+2 p+l-x k+1

r
Z(_l) m (z1+ )Od Z d. .-.d. a ] =
25 O dk-v k+1k+r—p—1 ig i n,k+r-p-2

p
_p_l _ p+1 .p+1 .
zq ((-1)"""ap ] ay +VZO(Z1+dk-V) a +

p+1 r_1p¥1—r k
z (-1) T (zatd,_ ) [ = d, ---d, +
r=2 V=0 k+r-p-1

k+1
> d, ---d. ]la
k+r-p-1 -

dk+1
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P
-p-1,, . \P+1 _p+1 .
Z1 ((-1) sy 2nk t vzo(zl + dk-v) qn,k-p-1 T

)T T e ) 4 - a
r=2 V=0 1 dk'v X+r-p-1 ig i, n,k+r-p-2} =
z, P! pgz(-1)r'1p+;-r(z1+dk ) kgl d, ---d -a
r=1 V=0 -V k+r_p_1 il ir"l n,k+r‘p"2 ’

so (4.40) is true for j = p+l provided k Z 1. By in-
duction, (4.40) is true for 0 2 j Zm if %k > 1. Now, if
k = 0, it is very easy to prove by induction that

mn+j

[ =__1 J < 2 <
VE; cn,v—jbvo (-z7y74d;) a , for 023 =m, so (4.40)

is valid for k20 and 0 = j I m.

It now follows from (4.37) that

m i i _q3-r
(4.42) a ,, , = = 28,3 5 (-1 (2 )

n+1 j=o J 21 r=1 v=0
k+1 1
z 4., °°°d; - a i, t—— a! a for
k-j+r iq i1 n,k-j+r-1 On+1 n+1 nk

n>1, k 2 0, under the notational conventions
(4.41) and (4.38).

Now, interchanging the order of summation in (4.42),

we write
1 m j J-r
1 m+ r-1 zg.J 3
z|a | = o7 2|92 2 (F1) = Bi(37) w(zatq ) -
X n+1,k Op4q | x| D¥L nk r=1 j=r-1 jYz, v=0 dk-v
k+1
s PRARL T b S Feoy I

k-j+r r-1

and, under the substitution t = j+l1-r, this becomes
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%Ian+1,k|' ohil i dh+1%nk *
m;l( 1)r 1m+;:—rB (E&)t+r-1 t- 1(z .
re1 too ttr-1lzy V=0 1 dk-v
k+1
T T e

Again changing the order of summation inside the absolute

value signs we have

— 1 '
i an+1,kl - lon+1| E dn+1 nk +
m m+i-t (zz)t+r-1 t- 1( )
2 : z: (_1) B Zq + _ .
t=0 r=1 t+r-1 Z4 V=0 dk v
k+1
z d. ...d_ I =
k+1-t 11 Tr-1 n.k-t
m+1
1 r-1
zk' = (-1)""'p ? +
|°n+1| % N n+1 reo1 r-1 z1, dk+1 nk
m m+1-t( )r (zz t+r-1 t-1
t=1 r=1 t+r-1‘z4 v-O dk-v
k+1
z d,. ---d a =
k+1-t 1 ipay Dkt
TG + 5, (D7, G @ e +
n+1l kI D re r-1'z, 1 n
_2,. i |
pX z(-1) s ( (z,+ o--d . + -0+
klir=1 dk r-1 I k-1
m+1-t t+r-1 t-1
r-1 z
i r§1(-1) Bt+r-1(zl) _o(zl+dk—v



k+1
k+§—tdi1...dir-1 |an,k—tl +...4
z, M m-1
%lﬁm(;%) vZo (21 + & _ )| lag ypl) -
We recall that a ., = 0 if v >mn or if v <0, so
.z m+;,—t(_1)r_16 (E&)t+r—1 t;l(z . ) .
x| r=1 t+r-1'z, v= 1+dy
k+1
mn;t m§1-t(-1)r_1ﬁ (E&)t+r_1 t;l(z .\ -
ket lr=1 t+r-1'z, v=o. 1
k+1
k+§-t dil...dir-1 20 k-] =
mn n+1-t t+r-1 t-1
k§o r§1 (_l)r_15t+r»1g;%)‘ ;Z;(zl+dk+t-v) )
k}1+t
Then,
- 1 mn n+1 r-1 zg X1 ro1
Rl ST T Z M T2 @) el
m -1 z3 r k+2
l(zl+dk+1)r§§—1) By (Z2) Z dil---dir_ll Foaa. o+
t-1 +1- +r-1
ERCUNRICY ST
k+1+t
> di ...di | + eee +
k+1 1 r-1
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m-1 2. M
vzo(zl * dk+m-v).5m(zf) ]Iankl'

Thus if we define

X t-1 m+1-t r-1 Zg t+r-1
(4.43) of = v1=ro(z1+dk+t_v).I‘E]L (-1) Bt+r-1(-zT) :
k+i1+t
s a, ---d, , 0 2t Zm,
k+1 1 tr-1

we have

1 oo , k k
(4.44) ilan+1,k| :'|on+1| kio{ldn+1 + °o| + |¢1, te.ot

>

k k
[¢t| +...+|¢m|]]ank| for n > 1.

From (4.44) it is clear that if
(4.45) Ta—l—T— {|d$+1 + ¢§|+I¢¥|+---+I¢ﬁl] =1 for each k
n+1 ’

and for all large n, then it will follow that

(4.46) =|a | =0(1) as n —> co.
k . k k
dn+1 + ¢0 ¢t
In particular, if for all large n, —m— and ——
n+1 On+1

are real and all non-negative or real and all non-positive

for 1 2t Zm, then if

k
o, = f{z,) for each k,

utm3s

(4.47)

t=o

it follows from (4.44) that ilan+1,kl :'ilank| for all

large n, so (4.46) is true. We remark here that from
(4.44) it is apparent that the above conditions are needed
only for 0 =k Zmn. For the moment we will assume the

truth of (4.47).
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Substituting ti= j-r+l1 in (4.42) gives

ek = T [+ 28,200 3 ()3 (aea )
n+1,k ~ o ., ‘n+1°nk 320 'z’ 2o - veo Y ey
k¥
k-§+1di1.. dlj-t' *nx-t) T
m m Jj . t-1
kt1
U PR dij__,c' 3, k-t )
Thus if we define
m - :
a];o = °nl+if(d’"“ + Jio(-l)JBj(-:-})J d),,) and
ék = 1 ( s ( l)j#t (E&) t-1 ( . )
nt o ., j=t B zq Eo Z1tdy
k+1
z 4 ---dy ) for 1 =2t = m,
k-t+1 1 j-t
it follows that
Tk
(4.48) a ., , = éo bnt ®n k-t ¢+ D=1 and k 20.

Letting n =1 in (4.48), we get

_ sk k. : k
Ak = 610 alk + 611\ gi,k—l + ... + 61m al’k_m .
Suppose
n n n
k k k
(4.49) a = a T, + 3 b PR - P
n+1,k 1k ., Vo vy V1 V.k-1 j=v+1 IO
n n
k k
=z o a . T 6.
y=1 vm v.,k-m j=y+yp J0
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where 6.. =1 when g < p.

ns

From (4.48) we get

a = 6k a + 2 6k a
n+2 ,k n+1,0 n+1,k to1 n+1,t “n+1,k-t °
Using (4.49), this becomes
n+1 n n+1
k k ‘ Tk
a =a,, md  + X 6" . a - T 6. + ...+
n+2,k ke oy VOO T, ViV, k-1 j=y+1 IO
n n+1 m
k k k
> b a . T &, + 3 & a -
ymy VM v, k-m j=v+1 jo g=q BT1.t "n+l k-t
.
n+1 n+1 n+1
k k k
a T 8T + X &6 .a s T &, + ... +
ikv=1 vo vep V2 v, k-1 j=v+1 jo
nt+1 n+1
k k
z 6 a . T 6. .
y=1 'W v, k-m j=v+1 jo

By induction, (4.4?) is valid for n > 1, kX > 0.

k
€
Define et by ok =t , 1=t Zm. Also, let
nt o)
n+1
T m . j.
k - _Xk - 1VJg (22V°53 1=
1-6. = , where .T.. = 0 -[a!, + 3(=1)2g.(=2) 1=
no Op+1 k n+i n+1 j=0 jtzy dk+1

doyy * £(2za) - dp,, - f(-';%dk+1) B f(zz) - f("EI'dk+1) is

independent of n.

Suppose for each k Z 0 there is an ny such that

for n Z.nk we have O :.6§°< 1. Then we claim

n k n
-1 -1
(4.50) Ian+1,k| :'Ak(f l°v+1| ) °exp[-ak§ l°v+1| } for n
k

lv |v

e
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where A, and ¢, depend only on k, and 0 <q = lrkl.

x
For every real x, 1 +x =e", so for k >0,

n n Xk n ) ’Tk
(4.51) | = vo] = T [1-(1-6vo)] = 7 (1- = ) =
V=) v=3j vV=j v+1
. .
exp {-Jrkl = |°v+1| } if j > n, and
n -1
Z]ov+1| =0 for j >n

Suppose n > ny . 1 24i= n, . and g > 0 is fixed. Then,
by (4.51),

n n
| T 650| = | ;k6k0|-| T 6 ol = ( max ln* 6
v=i v=i Y v=nk+1 _J_n v=j
n -1, < Ny -1
exp {~|7 |2 Jo,,, |7} 2q exp {|7] %|0v+1| ]
ny +1

— -1 q _
-1lq (% I°v+1| ) =

], where Bi

o ) ),
Bk(f |oysy 7)) exp {Tltkl v+1

depends only on k. On the other hand, if 1 i Zn = ny

then
n j X
Ivziévol _-(1§$g;;nklvzzévol) eXP {Itk|% [0y4a | )

n 1. : n 1
exP[-lTk'% [oy4y | 73 2 1y exp -ITkI§ LN

1

a n q n
-1 " -1 -
|77 = Bk(§|°v+1| ) exp[—|1k|%|0v+1| :
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and Bﬂ depends only on k. Finally, suppose

1:n<i>= ny - Then

n x _ n -1,4 n -1
Ivzlévol =1 :‘Bk(n)(§l°v+1| ) exP{‘lTk|§l°v+1l
if -Bk(n) is sufficiently large. Let B} = max Bk(n).

1:n:nk-1

Now

n q n

k " - -1

|7 2 ey (Blo,, 1™ expll5y |2 le,,, 1) for

V=1

and n <i =n and B

<
1-n=<n k'’ k depends only on k.

k
Let B, = max (Bk By / B“ﬁ. It follows that there is a

constant B independent of i, such that

kl

= . . = (1)
Now let k = 0 in (4.49) to obtain 3 4+ 0 alovzlévo.
An application of (4.52) with g =k = 0 gives
n -1
Ian+1,o| = |a10]" I”éo | = |a10|Bo exp[-lT0|Z|0v+1| }on21.
If Ag = |ae|Bo and a9 = |Tp|, we have (4.50) for k = O.
Suppose (4.50) is true for columns O, ..., k-1. From
(4.49) we have
n
k k
|a | « la, 7o, | += |6..a, . T & + ... 4
n+1.,k 1tk _, Vo ymg V1 VK 1J -yl jOl
n n
k |, _ k
Z |6vm v.k-m. T %501 = lagx T8l + T+ . T

v=1 j=v41 IO v=1
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In view of our convention regarding anp' Tr =0 if r > k.

Thus we suppose r X k. Let

n Ny-1 n
k k k
T—Zlé T 6L |2 2 |6, al 6., +

r o= vrlv, k- rJ =y+1 IO v=y VT v,k rj=v+1 jo

n n

k k - _ .
z Iévr v.k-r. T 6jo| S; + Sz, where S, =0 if
vEn, j=v+1

1.k
n, > n. By (4.52), s, = nk( mtx lévr v, k- rl)Bk(zlov+1| .
15r>m

n -1 n -1.k n -
exp (- 53101 ) < (Floysa 1) exp-I5 3o,

We remark here that we may assume n, > 2, and, if it is

further assumed that % |o = @, that n, is so

n

k -
large that 2 loj | 1> 1. Now we apply the inductive
1

+1
supposition (4.50) in conjunction with (4.51) to get
n v-1 k-r V=1

k -1 ' -1
Sz :'VE [6r [Py r € % IOj+1I ) expl-op_, 2 Icj+1I ) -

k
exp (- |% I Z IOj+1i } = (zl°3+1j Z |6vfl
v=n
k
eXP{-ak(ZIOJ+1| -1 lovt1l-1)]' where D = max AL

l—l

and o = mln (ak |ty ]} - But O‘klorv+1‘-.1: ltkl.'ov+1

- 1.5k < '
=1 6vo -1, so
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< n -1, n -1 k
Sa "eDk(§|°j+1l ) exp {"ak%l°j+1| }o = [8,
ven,
n -1 k-r n -1 k -1
= eDk(§|0j+1] ) exp&ok§|oj+1| e, Qénklov+1|
X, _1 k-r+1 n -1
<« eDker(.'>1:|oj+1| ) exp{-ay 5i3|°j+1| )

n 1.k n -1
« B l2log,, 17) expl-op 2oy, | )
where E = max eDket and the inequality is independent
15rSm
of r. From (4.52),

—1 .k

r o5 | 2 E (2., |7t expl-|t|Zos.. [Tt It now
Ia1kvz1 voI = "x'\11im exp ltk 1! J+1 ‘ no

follows immediately from the estimates for S;, Sp, and

n
|a1k T 650|, since they are independent of r, that (4.50)
v=1

h

is valid for the kt colymn and thus for every column.

As a consequence we have

(4.53) 1lim |a | =0 for k=0
n—>@o n+;,k
® -1
provided > ]cY+1l = .

The formulas (4.31), (4.46), and (4.53) are the
regularity conditions for the transformation (4.29).
It remains to prove (4.47). The following notation

will be used throughout the proof:



b
b di co di = z a, --- d, if r > 1,
a 1 r ali,Si s M1 1r
...:ﬁr:b
b b
zd4d, ---d, =1#4d, **°-d, , 3d_ ---d =1=4 ...d ,
a *1 1o b § lo 5, P1 Po 1 ]
b
=d ---d = z d ---d if r 2 1.
a P1 pr ) a:p1'<92_< P1i pr
ee.<p_ b
X
By definition,
x _r-1 m-r+1 -1 z, X+tj-1 .
o = T (zl+d] ) (-1)"7"B__._ (52) ’
I = +r-v 5=1 r+j-1‘z,4
k+r+1
z 4, --- 4, , 0ZXr Zm. But
k+1 11 1y-1
r—1( ) k+r ( ) r _, kir
T (244 _ = T z, +d.) = X z3 = 4 ---4d ,
V=0 dk+r v k+1 J v=0 k+1 P1 Py
so
r k+xr m-xr+1 . r+j-1
k r-v j-1 Z2
o> = ( = =23 sd_ ---d_ )=z (-1)"tp_,. () .
* v=o k+1 P1 Py’ y=4 r+j-1%z,
k+r+1
> d, --- 4, .
k+1 11 ty-1

Thus ¢¥ is a sum of terms of the form (-1)3-1 T(xr,v,j,P,1),
where

-y zo Iti-1
4.54) T(r,v,j.,P,I) = zf V(=% (@ ---d )-
(4.54) T(rov.3RD) =2 T B @ d )

d, --- d, , P = PR '
( iy lj-1) (P1 Pv)

and I = (iy, ---, i, _) , subject to
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(4.55) 02 vZir=m 12jZm-r+1, k+1Zp; <py <

<p,~k+r, and k+1Zi; Zi; = ...

< 3 <
=15, Zk+r + 1.

-In fact, ¢¥ = 2(91)3_1 T(r,v,j,P,I), where the sum is taken

over all values of v,j,P, and I subject only to the
conditions (4.55). We will consider T = T(r,v,j,P,I)
and T' =T'(x',v',j',P',I') to be distinct unless they

have the same form, i.e., unless r'-v' =r - vy, r' + j' =

r + j, and the sequences {pi,-°~,p;.,ii,°-',i3._1] and

{pl,---,pv,il,---,ij_l} are permutations of each other.

Clearly (-1)3-1 T(r,v,j,P,I) reduces to Brz§ if
v=0 and j =1, so that to prove (4.47) it is sufficient

to show that

(4.56) 5. -1)3 r(zr,v.5.p,1) = 0,
0=rm
(v.3)#(0,1)

where the sum is over all r,v,j,P, and I satisfying
(4.55), except that the ordered pair (v,j) # (0,1).

For convenience we shall use T for T(r,v,j.P,I)

k

where no cbnfusion will result, and we will write T € ¢r

.

to indicate that T is one of the terms comprising ¢:.

We will also assume (v,j) # (0,1).

.Lemma 4.57: Suppose T € ¢§ , where T 1is given by
(4.54). If j > 1 and there is a Y with 1 ¢ =X 3j -1

such that iY # pu for every . in the range 1 = y =X v,

k

then T € ¢r+1'
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Proof: By (4.55), a consequence of the assumption
that j > 1 is that r < m. Hence, we may set r'= r+l,

j* = j-1, and v' = v+l. Since k + 1 =i .Y “k+r+1,
we may assume that there is a largest y; such that

0 2y X v and P, <i,, if we define pgy = k. Choose

b4
[— ] 1 =< < s ' = 1 , [ 3
P, =P, if —H—t P Ty and P, =P, if
Hpy +2 2w = v' =v + 1. cChoose i& = iu if 1 =p=v-1
Cy . < < iLl= 4 - 2. . .
and lu 1u+1 if Y2 puZ3j Jj 2 It is easily

seen that the conditions 4.55 are satisfied for v',j'
p&, and i&. Moreover, r' - v! =r - v, r' + j' =xr + j,

and the sets [pi,...[p&,ii,...,i-j'_l] and {pl,...,pv

k
r+1°

k
il""'ij-1] are the same, so T' =T, T' € ¢,

The construction of T' from T is illustrated by the

J

diagram below:

T : (a_ ...d d, ...d .. edg

IP1 Py, P f\‘r‘}i“lﬂ, \l
T : (a_,...4, d R ICIERRRL A

Pi Pus P’ Hytl p u1+2 '1 3 ‘-1

t

It should be observed that the above lemma is true even
if the last hypothesis holds vacuously, i.e., if v = 0.

For convenience, define pg = k.

Lemma 4.58: Let T be given by (4.54) and let

T € ¢¥. Suppose that either v =0 or v >0, j > 1, and

3 < 3 "n = - - - 3
lj-1 =p,- Define «r max (x V. P, k 1). Then if
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r'* = r, in order that T ¢ ¢¥, it is necessary and suf-

ficient that r*' = r".

Proof: We prove the necessity first. If T € ¢¥..

then T =7'(x',v',3',P',I') and r' - v' = r - v,

r* + j* = r + j, and {pi,...,p;,, ii,...,i'j._l] must be
a permutation of [pl,...,pv, il”"'ij-1]' In particular,
if r*'=r - q, then v' = v -gq and 3j' = j + g. But

vt 20, so X v, and thus r'-Zr - v. If v =0, the

proof of the necessity is complete. Thus suppose v > 0,

j > 1, and ij_1 i.pv. Since vVv' = v-- q, at least g
d_'s must be rewritten as d,,'s. If d is so rewrit-
P 1 p
v b v
ten, then by (4.55), p, Xk +r' + 1, whence r°' Zp, -k - 1.
If 4 is not so rewritten, then d =d_, for some .,
Py P, P,

so p, Zk+r', or 'z P, - k > P, - k - 1.

The sufficiency is trivial if v = 0, so assume v > O.
In order to prove the sufficiency of the conditions, it is
enough to show that T can be re-expressed as T'(x',v',Jj"',

P',I') with r',v',j',p&, and i' in agreement with

Y
(4.55). We will so rewrite T. Let r' =r - g X r", and

set v' = v-q and j' = j +g. Since r - g Z r" >
r - v, clearly g X v, so v' 2 0. Set pﬁ =P, if
1 u=v =v-g. Let the elements of the sequence
{pv_q+1,pv_q+2,...,pv,ll,-.,lj_l] be partially ordered

according to magnitude, and let (i}, ii., ..., i'j,_l) be
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. . s < ] =
the resulting (g + j - 1)-tuple. Now, P, = Pys = pv-q':

p, -9k +r -q=%+r' for each u. By hypothesis,
r* Z " > P, - k -1, so P, =Xk +r* + 1; but then

= P, 2k +r' + 1. The other conditions of (4.55) are
obviously satisfied, so T = T' ¢ ¢t,. The construction

of T' from T is illustrated below:

T : (d ... d )

... d d .
P1 Py-q Py-g+1 tj-1

I A A

(d ... d , ) (partially ordered by magnitude)

T' .
P1 pvl

Lemma 4.59: Let T = T(r*,v*,j*,P,I) Dbe given, and

k
suppose r* is maximal such that T ¢ O x- Then if j* > 1,

each iy = pu for some ..

Proof: It follows immediately from (4.55) that
r¥* <m. If the conclusion were false, Lemma 4.57 would

k
say T € ¢

r* 4+, thereby violating the definition of «r*.

Corollary 4.60: Let T = T(x*,v*,j*,P,I) Dbe given,

and suppose r* is maximal such that T € 02*. -Then
T € ¢t if and only if r* 2 r > r" = max(r* - v¥,
x -k -1).

Py

Proof: If 3j* > 1, then Lemma 4.59 implies v* > 0

and i But then Lemma 4.58 says that T ¢ ¢¥

<
j*-l - pv* ®
if and only if r Z r". Now suppose Jj*¥ = 1. Since we

are concerned with T's for which (v,j) # (8,1), ij* =1
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implies v* > 0. Then Lemma 4.38 still applies to say

T € ¢: if and only if r = r".

Now let T = T(r,v,j,P,I) € ¢: , and let tr be the

number of distinq% subscripts among {pl'°"'pv’i1'°"’ij-1]
which are Z k + r. We claim that the number of times T
appears in ®¥ is (tr). -Since r is fixed and T is
fixed, so must v and j be fixed, i.e., if T'(xr,v'.,j"*,
P',I') € ¢: and T' =T, then v' = v and 3j' = j.

Thus for any such T', P' = (p;j, ---, p;), and all the

elements in this v-tuple are distinct. The number of ways

of forming such a v-tuple from t. distinct elements is
t
(vr)’ But T' is completely determined by P' inasmuch

as there is a fixed set of subscripts from which to form
P' and 1I'. This establishes the claim.

Suppose r* is maximal such that T (r*,6 v*,6j%,P,I) € ¢¥*-
If j* =1, it is obvious that t , = v*; if 3j* > 1, then

r* <m and Lemma 4.57 says every iY =p for some .,

so again t x = V¥. For each u, let pu =k + Q- Let

T' =T'(r',v',3',P",I') € ¢¥., where r' < xr* and T' = T.
Then v' Z v* and p;, XXk + r', so we see that tooo= v¥
provided p , =Kk + a , Zk +r', i.e., provided r' Za,,-
LR = L - 1 =
Similarly, tr‘ v 1 provided Px_q k + Aow_y =
k +xr', or r'2qg . We have shown
V¥ -1
- * * > > Q . - * -
(4.61) tr v for rr* Z r = - tr v 1 for
. k
- > >
o 12r2aq,_, provided T e ¢°  for all

such r.
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Let T(r,v,j.P,I) € ¢¥. Then the sign preceding T
is (-1)77', so all occurrences of T in ¢: have the

same sign. If T'(xr-1,v',j',P',I') € ¢k and T' =T,

r-1
then 3j' = j - 1, so the sign preceding T' 1is (-1)3'2,
and the sign preceding each occurrence of T in o:_l is

opposite that in ¢¥. To prove (4.56), then, it suffices
to show that for each fixed T(r,v,j,P,I) for which

(v.j) # (0,1), the relation

joa-1 t

b k(-1) ( r') = 0 holds, where T' =
1 v 1

T e¢r, r

T'=T

T'(r',vr,,jr.,Pr.,Ir.) = T, and the sum is over .all values

of r' for which T € ¢:,. Equivalently, since Ve

changes as jr' does, we may show

V [ ] t []
(4.62) X (k1) (F)H) =o.
T'e¢k vr,
rl
T'=T

By Corollary 4.60, if r* and r*" are, respectively,

the largest and the smallest values of r' for which

T € ¢kr. , then r" = r* - v¥ or " = Pyx ~ k - 1. Sup-

pose first that r" =p , -k - 1 =aqa, - 1. Then if

T" (x",v", 3", P",1I") € ¢§” and T" =T, V" = v¢ - (r* - o

+ 1), so, in view of (4.61), the relation (4.62) becomes

V¥
(4.63) b (_l)v(v*) + (_1)V*'(I*-av*+1{
v¥=(r*-a ,) v

v¥ - 1

]
o

v¥ -(r*—av* + 1)
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If v* = 0, then, since (v*,j*) # (0,1), j* > 1. Bit this

violates Lemma 4.59 since there are 1i_'s but no pu's.

b
Thus v*¥* > 0, and also % Z 1. By (4.55), a,x = r*, so
v = (r* - av*) = v*. We now need the formula
b, _ ,/b-1 b-1 .
(4.64) (a) = ( a ) (a—l)' a and b are non-negative

integers, b Z a.

If r* - ¢ = 0, then the left side of (4.63) reduces to

VA

v* 1

(-1) + (—l)v*- = 0, and (4.63) is true. Suppose (4.63)

is true for r* - qa = q, and let r* -q ., =q + 1. Then

V*
using the supposition and (4.64), we write for the left
side of (4.63),

V*

ve - 1
S DA M I C5 DR ( ) =
v¥-g-1 : v - q -2

V¥ \ '

v V¥ V¥ -q-1 v¥ v¥-q[ v¥*-1
L @ e ()] e o)
x v -1 * V¥ _ v¥-1
(-1)" ‘q< ) +(-1 " ‘( )H-l)v* q( ) -

v¢-q-1 v¥-q-1 V¥ -q-2

S v¥-1 vé -1 v¥ -1
v¥-g-1 v¥ -gq-1 v¥* -q-2

( ve =1
_1y)v*a =
(-1) V¢ -2 0.

By induction, (4.63) is true regardless of the value of

r¥ - g Now assume that r" = r* - v¥ > o - 1. Then

v* * Vv*

v" = 0, so the left side of (4.62) is
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V*

z (1" (:’_‘) =aqa-1n"=o

Hence, (4.62) is true, and thus also (4.56).

We have proved

m
Theorem 4.65: Let £f(z) = = avzv and let
)
Oppr = 9h4q T £(22) #0. For 0 Xt = m, define
t-1 m+1-t t+r-1
k = . _1yI-1 E.&
* T (21+dk*t-v)' § (-1) Bt+r-1(z ) :
v=o r=1
2 d. e di ’
k+13i,3- - 11 r-1i
<3 <
i ktth
-1
.« e = = >
where Zdil dio 1 v1=ro(zl + dk-v)' Let N 20 be
arbitrary, and for all n > N, let - (dﬁ+ + ¢§)‘Z 0
n+1 1
¢k
for 0 2k *mn and =—=—— >0 for 1t =m and
n+1

0 2k Zmn. Furthermore, assume that for each k 2 0 there

. A < 1 k
exists n, > 0 such that O -5 (d'n+1 + oo) <1 for
n+1
0o -
> 3 (] P . ]
all n Zn_. Finally, let %ldn+1| = co. Then' (f,d',23)

is consistent with, and at least as strong as, (z,dn,zl).

oo
We have used the fact that 3 |0n+1|_1 = oo if and
1 .
@ -
only if §:|d5+1| 1 = 0. It should be cbserved that since
1
k _ Z2 : ,
oo = £(- Z: dk+1)' the hypotheses can be cast in a slightly

different form by making this substitution.
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We will now show that Meir's theorem is contained in
Theorem 4.65. Choose f(z) =z, m=1, g =0, p; = 1,
and z; =z, = 1. Theorem 4.65 then reduces to :

Let 1 +d),. # 0 and suppose

s dk+1 >

a) for all n >N, N2 0 arbitrary, 3 1 =
n+

0

for 0 2k = n;

b) for each k > Q there is n, > 0 such that

< n+1 dk+1 .
o= L 1 <1 for all n Z.nk ;

n+1
1+
c¢) for all n > N, TT—;—’§—+1_>_0 for 0 2k = n;
n+1

d) 2 |a: +1|

Then (z,dﬂ) is consistent with, and at least as strong
(z,dn).
A moment's thought confirms that the hypotheses (a),

(b), and (c) are consequences of the single hypothesis

n+1 dk+1

<

{e) for all n >N, N 20 arbitrary, let 0 =

d' +1 + 1
for 0 Xk Z n.
But (e) is equivalent to
1 +
(e') for all n > N, N > 0 arbitrary, let 0 < dk+1 =<1

1 + d'
for 0 2 kx = n. o

Thus, substituting the {stronger) hypothesis (e') for (a),

(b)., and (c), Theorem 4.65 takes the form:
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Let 1 + 4 #0. For n >N, N 20 arbitrary, let

n+1i
1 +4d
k+1 < < < -1 —
0 < T‘:‘E;::“ 1 for 0k Z n. Let 2 |dn+1| = .

Then (z,dﬁ) is consistent with, and at least as strong as,

(z,dn).

This is Meir's Theorem.

v

Corollary 4.66: Let f(z) B,z . B, >0, 23 >0,

n
oM 3

2y > 4], 4, <0, a4 20, anda 3 |a;, |7 = ®. Then

.| n+1
(f,dﬁ,zz) is consistent with, and at least as strong as,

(Z,dn,zl) .

m
' v k _
Proof: o =d° .+ % B,Zz > 0. o, f(—r dk+1
Z214 et
= f(zlldk+1l) > 0. Moreover, vZo (zy, + dk+t—v) > 0.
-1
Also, (-1)*™" a, ... a, = |d, ---d, |, so
ig i, ig i, N
r-1 dﬁ+1 + ¢0
(-1) =d, --- 4, > 0. It follows that —— ——
11 Tr-1 n+1
¢k
and -t are positive. Finall E&| | < 25, so
n+1 P ) Yo 23 !%4 2
k
a' + ¢ a + £(- )
0
dk+1 < £(z,). Then n+1 _ _n+1 +1
Sn+1 0n+1
d.+1 + f(22)
< -2 S = 1. The hypotheses of Theorem 4.65 are
n+1

satisfied, so the result follows.
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m v
Corollary 4.67: Let f(z) =382z, p_ >0,d <0,
0 \% \% n

z
zy > |d, :;i >0, d: <0, |d'| Z £(1). Then (£,d.2,)

is consistent with, and at least as strong as, (z,dn,zl).

- = ' ] >
Proof: o . =4d' 4+ f(zy) > a‘., + £(1) 2 0.
-E& > - z_z_ — k > > .
Moreover, z1|dk+1| 21, so f£( z1 dk+1) = 0, 2 £(1)x Idnl,
dﬁ+1 + ¢§
so — Z 0. The remaining hypotheses of Theorem
n+1

4.65 follow as in the proof of Corollary 4.66, except for
@

1 . ‘o
the condition I =5 = a . But this is a trivial con-
: lldn+1l
sequence of |d6| = £f(1). The result follows.
m v
Corollary 4.68: Let f£f(z) = X sz , Bv > 0, dn <0,
0

£(1) 2z, > |4 | 2 1. Then (£f,d ,z;) is consistent with,

and at least as strong as, (z,dn,zl).

Proof: Corollary 4.67 with 2z, = z; and dﬁ = dn'

The above corollaries require that dn < 0. Now sup-
pose that z; > 0, z, >0, 0 = dn.i.zl =B with B 2 1, and

k+t+1

a' 2 max |£(z)|. Then = a, .- 4, = Bv't(t + 1)\}-t
|z |24 k+1 1 v-t
=B M (m + 1)™1 oM if 1<t =<m. For 1=t <m, let
z, Jj m m
By = M[ max (E_) ] = B, where 2 g = 0. Then
1532 m-1 21 41 VY mel
t-1 m+1-t t+r-1 k+t+1
k r-1 Z2
o, =T (23+ )2 (-1) e (55) - 2 4, ---d,
t V=0 dk+t VY et t+r-1'z, k+1 11 1.4
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k+t ) m v k+t+1
= 7 (z4+44.) = (-1 ~tg ( 2y . s d. ---d,
k+1 I =t V21 k+1 11 Ly-t
k+t( ). ( )t m ( )v—t (zz)V k+t+1
= T zl+d B + 3 -1 g (—) - 2 4, ...d,
k+1 t'zq v=t+1 vz k+1 Y1 1
(zz)t k+t( ) 22 v-t k+t+1
Z (== T (z,+d.)-[B,. - 2 B (= . 3 4., ---4, ]
21’ x4 J t =t+1 Y 21 k+1 i1 i,
2, t K+t
2 (35 7w (z1+d.)- (B, - M[ max (—) |z p,} = 0.
1 kx+1 J 1553 m-1 21 Tt4a
Moreover, =3 = dk = 2z5, sO B (zz - 6 zy-
’ ——dk+1 z - 2 v Ezdk+1 = Py72
Then
X Zq m Zq v m v . .
¢y = £(- zy 1) 2 By (- Ezdk+1) <2 B2 = £(zz) since m21.
k z k
a' a + £(- ) ®
Thus 0 = “;1 % _ ar f(zgj' 1" <1 and —% > 0.
n+1 n+1 2 n+1

Thaeorem 4.65 now yields

m
Corollary 4.69: Let £(z) = S avzv, z, >0, z; > O,
(1]
0=d <z; =B with B21, 4 2 max |£(z)]|, and
|z|= 2z, -
m

- . 253
By ZB" "(mt1)" [ max 1)7) g for 1t m
12 §3m-1 21 T4 Y

where Z B, . Then, if 2 (a: = oo, it follows
m+1 . Y

that (f,dﬁ,zz) is consistent with, and at least as strong
(z,dn,zl).
From Definition 3.6 it is easily seen that the Euler

method (E,p) is defined by the transformation
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o/

n
t. = = (i) an-k pk s, = 2 (2) pk (l-p)n-k s+ and this
k=0 k=0 .

in turn is seen to be the (z,lgg) transformation. Setting

z; =1 and dn = lgE in Corollary 4.69 gives

m
Corollary 4.70: Let f(z) = = szv, z, > O, dﬁ >
o

m-1 p
max |£(z)|, and By 2 (m+1) [ max 23] = g, for

|z |22 15j3m-1 t+1
m ool -1
1>t >m, where =B =0. Then, if 3 (4', ) = oo and
v 1 n+1
m+1

%.: p =1, it follows that (f,dﬂ,zz) is consistent with, and
at least as strong as, (z,dn,zl).
It is well-known that the (E,p) method is regqular

([8), Theorem 117). cConsequently, Corollary 4.70 gives

m
Corollary 4.71: Let f£(z) = = ﬁvzv, z, >0, dn >
°
m-1 j, B
max |f(z)|, and By = (m+1) [ max 23] =g, for
|z|= 24 1=j5m-1 t+1
m © _,
1=tZm, where =B =0. Then, if 3 d | = o, it
m+1 v 1 n+1

follows that (f,dn,zl) is regular.
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